newton02.miz
begin
reserve a,b,c,d,m,x,n,j,k,l for
Nat,
t,u,v,z for
Integer,
f,F for
FinSequence of
NAT ;
reserve p,q,r,s for
real
number;
registration
let a be
Complex;
reduce (1
* (a
|^
0 )) to 1;
reducibility by
NEWTON: 4;
end
registration
let n be non
zero
Nat;
reduce (
0
|^ n) to
0 ;
reducibility by
NEWTON: 84;
end
registration
let a be
Nat;
reduce
|.a.| to a;
reducibility by
ABSVALUE: 29;
end
registration
let a be
Nat;
reduce (a
gcd
0 ) to a;
reducibility by
NEWTON: 52;
end
registration
let t, z;
reduce ((t
mod z)
mod z) to (t
mod z);
reducibility by
NUMERAL2: 14;
end
registration
let t;
reduce (
0
mod t) to
0 ;
reducibility by
INT_1: 73;
end
registration
let u, z;
reduce ((
0
+ (u
* z))
mod z) to
0 ;
reducibility
proof
thus ((
0
+ (u
* z))
mod z)
= (
0
mod z) by
EULER_1: 12
.=
0 ;
end;
end
registration
let r be non
zero
Real;
let n be
even
natural
number;
cluster (r
|^ n) ->
positive;
coherence
proof
per cases ;
suppose r
>
0 ;
then (r
|^ n)
>
0 by
PREPOWER: 6;
hence thesis;
end;
suppose r
<
0 ;
then
A1:
|.r.|
= (
- r) & (
- r)
>
0 by
ABSVALUE:def 1;
then (r
|^ n)
= (((
- 1)
*
|.r.|)
|^ n)
.= (((
- 1)
^ n)
* (
|.r.|
|^ n)) by
NEWTON: 7
.= ((1
*
|.r.|)
^ n);
hence thesis by
A1,
PREPOWER: 6;
end;
end;
end
theorem ::
NEWTON02:1
Th1: (t
gcd z)
= ((
- t)
gcd z)
proof
(t
gcd z)
= (
|.t.|
gcd
|.z.|) by
INT_2: 34
.= (
|.(
- t).|
gcd
|.z.|) by
COMPLEX1: 52
.= ((
- t)
gcd z) by
INT_2: 34;
hence thesis;
end;
LmGCD: for a,b,c,d be
Integer holds b
divides a & d
divides c implies (b
* d)
divides (a
* c)
proof
let a,b,c,d be
Integer;
assume that
A1: b
divides a and
A2: d
divides c;
consider t such that
A3: (b
* t)
= a by
A1;
consider z such that
A4: (d
* z)
= c by
A2;
((b
* d)
* (t
* z))
= (a
* c) by
A3,
A4;
hence thesis;
end;
theorem ::
NEWTON02:2
t
divides z & u
divides v implies (t
* u)
divides (z
* v) by
LmGCD;
theorem ::
NEWTON02:3
Th3: t
divides z iff (t
gcd z)
=
|.t.|
proof
|.t.|
in
NAT &
|.z.|
in
NAT by
INT_1: 3;
then
consider k, l such that
A1: k
=
|.t.| & l
=
|.z.|;
k
divides l iff (k
gcd l)
= k by
NEWTON: 49,
INT_2:def 2;
hence thesis by
A1,
INT_2: 34,
INT_2: 16;
end;
theorem ::
NEWTON02:4
(t
* u)
divides (z
* u) iff (
|.u.|
* (t
gcd z))
= (
|.u.|
*
|.t.|)
proof
A1: (t
* u)
divides (z
* u) iff ((t
* u)
gcd (z
* u))
=
|.(t
* u).| by
Th3;
((t
* u)
gcd (z
* u))
= (
|.u.|
* (t
gcd z)) by
INT_6: 16;
hence thesis by
A1,
COMPLEX1: 65;
end;
Lm0c: ((a
+ (u
* b))
gcd b)
= (a
gcd b)
proof
b
divides (u
* b);
then
A0: (b
gcd (u
* b))
=
|.b.| by
Th3
.= b;
per cases ;
suppose a
<>
0 ;
hence thesis by
EULER_1: 16;
end;
suppose a
=
0 ;
hence thesis by
A0;
end;
end;
Lm0d: ((t
+ (u
* z))
gcd z)
= (t
gcd z)
proof
A0: z
<=
0 implies ((t
+ (u
* z))
gcd z)
= (t
gcd z)
proof
assume
A1: z
<=
0 ;
then
A1a: (
- z)
in
NAT by
INT_1: 3;
per cases ;
suppose t
>=
0 ;
then
A2: t
in
NAT & (
- z)
in
NAT by
A1,
INT_1: 3;
((t
+ (u
* z))
gcd z)
= ((t
+ ((
- u)
* (
- z)))
gcd (
- z)) by
Th1
.= (t
gcd (
- z)) by
A2,
Lm0c;
hence thesis by
Th1;
end;
suppose t
<
0 ;
then
A3: (
- t)
in
NAT by
INT_1: 3;
((t
+ (u
* z))
gcd z)
= ((
- ((
- t)
- (u
* z)))
gcd (
- z)) by
Th1
.= (((
- t)
+ (u
* (
- z)))
gcd (
- z)) by
Th1
.= ((
- t)
gcd (
- z)) by
A1a,
A3,
Lm0c
.= ((
- t)
gcd z) by
Th1
.= (t
gcd z) by
Th1;
hence thesis;
end;
end;
z
>
0 implies ((t
+ (u
* z))
gcd z)
= (t
gcd z)
proof
assume
A1: z
>
0 ;
then
A1a: z
in
NAT by
INT_1: 3;
per cases ;
suppose t
>=
0 ;
then t
in
NAT & z
in
NAT by
A1,
INT_1: 3;
hence thesis by
Lm0c;
end;
suppose t
<
0 ;
then
A3: (
- t)
in
NAT by
INT_1: 3;
((t
+ (u
* z))
gcd z)
= ((
- ((
- t)
- (u
* z)))
gcd z)
.= (((
- t)
+ ((
- u)
* z))
gcd z) by
Th1
.= ((
- t)
gcd z) by
A1a,
A3,
Lm0c
.= (t
gcd z) by
Th1;
hence thesis;
end;
end;
hence thesis by
A0;
end;
theorem ::
NEWTON02:5
Th5: ((t
+ (u
* z))
gcd z)
= (t
gcd z) & ((t
- (u
* z))
gcd z)
= (t
gcd z)
proof
((t
- (u
* z))
gcd z)
= (t
gcd z)
proof
((t
- (u
* z))
gcd z)
= (((t
- (u
* z))
+ (u
* z))
gcd z) by
Lm0d
.= (t
gcd z);
hence thesis;
end;
hence thesis by
Lm0d;
end;
Lm1: b
>
0 & k
>
0 & (a
+ b)
> k & (a
+ b)
divides (k
* (a
|^ n)) implies not (a,b)
are_coprime
proof
assume
A1: b
>
0 & k
>
0 & (a
+ b)
> k & (a
+ b)
divides (k
* (a
|^ n));
defpred
P[
Nat] means (a
+ b)
divides (k
* (a
|^ $1)) implies not (a,b)
are_coprime ;
L1:
P[
0 ]
proof
(k
* (a
|^
0 ))
= (k
* 1) by
NEWTON: 4;
hence thesis by
A1,
INT_2: 27;
end;
L2:
P[x] implies
P[(x
+ 1)]
proof
assume
B1:
P[x];
B2: (a
|^ (x
+ 1))
= ((a
|^ x)
* a) by
NEWTON: 6;
(a,b)
are_coprime & not (a
+ b)
divides (k
* (a
|^ x)) implies not (a
+ b)
divides (k
* (a
|^ (x
+ 1)))
proof
assume
C1: (a,b)
are_coprime & not (a
+ b)
divides (k
* (a
|^ x));
then 1
= ((b
+ (1
* a))
gcd a) by
A1,
EULER_1: 16;
then ((a
+ b),a)
are_coprime ;
then not (a
+ b)
divides ((k
* (a
|^ x))
* a) by
C1,
INT_2: 25;
hence thesis by
B2;
end;
hence thesis by
B1;
end;
for c be
Nat holds
P[c] from
NAT_1:sch 2(
L1,
L2);
hence thesis by
A1;
end;
Lm2: t
divides (((t
+ z)
|^ x)
- (z
|^ x)) implies t
divides ((((t
+ z)
|^ x)
* z)
- (z
|^ (x
+ 1)))
proof
assume t
divides (((t
+ z)
|^ x)
- (z
|^ x));
then t
divides ((((t
+ z)
|^ x)
- (z
|^ x))
* z) by
INT_2: 2;
then t
divides ((((t
+ z)
|^ x)
* z)
- ((z
|^ x)
* z));
hence thesis by
NEWTON: 6;
end;
theorem ::
NEWTON02:6
Th6: n
>
0 implies t
divides (t
|^ n)
proof
t
in
INT by
INT_1:def 2;
then
consider k such that
A1: t
= k or t
= (
- k) by
INT_1:def 1;
(t
|^ n)
= (k
|^ n) or (t
|^ n)
= (
- (k
|^ n)) by
A1,
POWER: 1,
POWER: 2;
then
A2:
|.k.|
=
|.t.| &
|.(k
|^ n).|
=
|.(t
|^ n).| by
A1,
COMPLEX1: 52;
assume n
>
0 ;
then (k
|^ 1)
divides (k
|^ n) by
NEWTON: 89,
NAT_1: 14;
hence thesis by
A2,
INT_2: 16;
end;
Lm5a: a is
odd & (a
gcd b)
= 1 implies (a
gcd (2
* b))
= 1
proof
assume
A1: a is
odd & (a
gcd b)
= 1;
then
A2: (a,b)
are_coprime ;
(a,(2
|^ 1))
are_coprime by
A1,
NAT_5: 3;
then (a,(2
* b))
are_coprime by
A2,
INT_2: 26;
hence thesis;
end;
Lm5b: a is
even & (a
gcd b)
= 1 implies (a
gcd (2
* b))
= 2
proof
assume
A1: a is
even & (a
gcd b)
= 1;
(a,b)
are_coprime by
A1;
then (a
gcd (b
* 2))
= (a
gcd 2) by
INT_6: 19;
hence thesis by
A1,
NEWTON: 49;
end;
Lm5: (b,c)
are_coprime implies (((2
* b)
+ c)
gcd c)
<= 2
proof
assume
A1: (b,c)
are_coprime ;
A3: (((2
* b)
+ (c
* 1))
gcd c)
= ((2
* b)
gcd c) by
EULER_1: 8;
per cases ;
suppose c is
odd;
then ((2
* b)
gcd c)
= 1 by
A1,
Lm5a;
hence thesis by
A3;
end;
suppose c is
even;
hence thesis by
A1,
A3,
Lm5b;
end;
end;
Lm6: a
>
0 & a
= ((a
gcd b)
* k) & b
= ((a
gcd b)
* l) implies (k
gcd l)
= 1
proof
assume
A1: a
>
0 & a
= ((a
gcd b)
* k) & b
= ((a
gcd b)
* l);
then
A2: (a
gcd b)
>
0 ;
k
>
0 by
A1;
then ((a
gcd b)
* 1)
= ((a
gcd b)
* (k
gcd l)) by
A1,
EULER_1: 15;
hence thesis by
XCMPLX_1: 5,
A2;
end;
theorem ::
NEWTON02:7
Th7: ((a
|^ n)
gcd (b
|^ n))
= ((a
gcd b)
|^ n)
proof
(a
gcd b)
= k implies ((a
|^ n)
gcd (b
|^ n))
= (k
|^ n)
proof
assume
A0: (a
gcd b)
= k;
then
consider l be
Nat such that
A2: a
= (k
* l) by
INT_2: 21,
NAT_D:def 3;
consider m be
Nat such that
A3: b
= (k
* m) by
A0,
INT_2: 21,
NAT_D:def 3;
per cases ;
suppose
A4: a
>
0 ;
then (l
gcd m)
= 1 by
A0,
A2,
A3,
Lm6;
then
A6: ((l
|^ n)
gcd (m
|^ n))
= 1 by
WSIERP_1: 12;
a10: l
>
0 by
A2,
A4;
(k
|^ n)
= ((k
|^ n)
* ((l
|^ n)
gcd (m
|^ n))) by
A6
.= (((k
|^ n)
* (l
|^ n))
gcd ((k
|^ n)
* (m
|^ n))) by
a10,
EULER_1: 15
.= (((k
|^ n)
* (l
|^ n))
gcd ((k
* m)
|^ n)) by
NEWTON: 7
.= ((a
|^ n)
gcd (b
|^ n)) by
A2,
A3,
NEWTON: 7;
hence thesis;
end;
suppose
A14: a
=
0 ;
then
A16: (a
|^ n)
=
0 or n
< 1 by
NEWTON: 11;
n
=
0 implies (a
|^ n)
= 1 & (b
|^ n)
= 1 & (k
|^ n)
= 1 by
NEWTON: 4;
hence thesis by
A0,
A14,
A16,
NAT_1: 14,
NAT_D: 32;
end;
end;
hence thesis;
end;
theorem ::
NEWTON02:8
Th8: a
> b & (a,b)
are_coprime implies ((a
+ b)
gcd (a
- b))
<= 2
proof
assume
A1: a
> b & (a,b)
are_coprime ;
then
consider c such that
A2: a
= (b
+ c) by
NAT_1: 10;
((c
+ (1
* b)),b)
are_coprime by
A1,
A2;
then (c,b)
are_coprime by
Th5;
then (((2
* b)
+ c)
gcd c)
<= 2 by
Lm5;
hence thesis by
A2;
end;
theorem ::
NEWTON02:9
Th9: (t
gcd z) is
even iff t is
even & z is
even
proof
(t
gcd z) is
even implies t is
even & z is
even
proof
assume
A1: (t
gcd z) is
even;
(t
gcd z)
divides t & (t
gcd z)
divides z by
INT_2: 21;
hence thesis by
A1;
end;
hence thesis by
INT_2:def 2;
end;
theorem ::
NEWTON02:10
Th10: t
divides (((t
+ z)
|^ n)
- (z
|^ n)) & z
divides (((t
+ z)
|^ n)
- (t
|^ n))
proof
defpred
P[
Nat] means t
divides (((t
+ z)
|^ $1)
- (z
|^ $1)) & z
divides (((t
+ z)
|^ $1)
- (t
|^ $1));
A1:
P[
0 ]
proof
((t
+ z)
|^
0 )
= 1 & (z
|^
0 )
= 1 & (t
|^
0 )
= 1 by
NEWTON: 4;
hence thesis by
INT_1:def 4,
INT_1: 11;
end;
A2:
P[x] implies
P[(x
+ 1)]
proof
assume
A2a:
P[x];
then
A4: t
divides ((((t
+ z)
|^ x)
* z)
- (z
|^ (x
+ 1))) by
Lm2;
A5: z
divides ((((t
+ z)
|^ x)
* t)
- (t
|^ (x
+ 1))) by
Lm2,
A2a;
A6: t
divides (((t
+ z)
|^ x)
* t) & z
divides (((t
+ z)
|^ x)
* z);
then
A7: t
divides ((((t
+ z)
|^ x)
* t)
+ ((((t
+ z)
|^ x)
* z)
- (z
|^ (x
+ 1)))) by
WSIERP_1: 4,
A4;
A3: ((t
+ z)
|^ (x
+ 1))
= (((t
+ z)
|^ x)
* ((t
+ z)
|^ 1)) by
NEWTON: 8
.= ((((t
+ z)
|^ x)
* t)
+ (((t
+ z)
|^ x)
* z));
z
divides ((((t
+ z)
|^ x)
* z)
+ ((((t
+ z)
|^ x)
* t)
- (t
|^ (x
+ 1)))) by
WSIERP_1: 4,
A5,
A6;
hence thesis by
A3,
A7;
end;
for m holds
P[m] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
NEWTON02:11
Th11: u
divides ((u
+ z)
|^ n) iff u
divides (z
|^ n)
proof
A0: u
divides (((u
+ z)
|^ n)
- (z
|^ n)) by
Th10;
consider t such that
A1: t
= (
- (z
|^ n));
A2: u
divides (((u
+ z)
|^ n)
+ t) by
A0,
A1;
then
A3: u
divides t implies u
divides ((u
+ z)
|^ n) by
INT_2: 1;
u
divides ((u
+ z)
|^ n) implies u
divides t by
INT_2: 1,
A2;
hence thesis by
A1,
A3,
INT_2: 10;
end;
theorem ::
NEWTON02:12
t
divides ((t
+ z)
|^ n) implies t
divides (((t
+ z)
|^ n)
+ (z
|^ n))
proof
assume
A0: t
divides ((t
+ z)
|^ n);
then t
divides (z
|^ n) by
Th11;
hence thesis by
WSIERP_1: 4,
A0;
end;
theorem ::
NEWTON02:13
(t
+ u)
divides (((t
+ (2
* u))
|^ n)
- (u
|^ n))
proof
(t
+ u)
divides ((((t
+ u)
+ u)
|^ n)
- (u
|^ n)) by
Th10;
hence thesis;
end;
theorem ::
NEWTON02:14
Th14: l
>
0 & t
divides z implies t
divides (z
|^ l)
proof
assume
A0: l
>
0 & t
divides z;
then
consider n be
Nat such that
A1: l
= (1
+ n) by
NAT_1: 10,
NAT_1: 14;
(z
|^ (1
+ n))
= ((z
|^ 1)
* (z
|^ n)) by
NEWTON: 8
.= (z
* (z
|^ n));
hence thesis by
A0,
A1,
INT_2: 2;
end;
theorem ::
NEWTON02:15
Th15: t
divides z implies (t
|^ n)
divides (z
|^ n)
proof
assume
A1: t
divides z;
|.t.|
in
NAT &
|.z.|
in
NAT by
INT_1: 3;
then
consider a, b such that
A2: a
=
|.t.| & b
=
|.z.|;
A3: (
|.t.|
|^ n)
=
|.(t
|^ n).| & (
|.z.|
|^ n)
=
|.(z
|^ n).| by
TAYLOR_2: 1;
((a
gcd b)
|^ n)
= ((
|.t.|
|^ n)
gcd (
|.z.|
|^ n)) by
A2,
Th7
.= ((t
|^ n)
gcd (z
|^ n)) by
A3,
INT_2: 34;
then ((t
|^ n)
gcd (z
|^ n))
= (
|.a.|
|^ n) by
A1,
A2,
INT_2: 16,
Th3
.=
|.(t
|^ n).| by
A2,
TAYLOR_2: 1;
hence thesis by
Th3;
end;
theorem ::
NEWTON02:16
n
>
0 & not t
divides ((t
+ z)
|^ n) implies not t
divides z
proof
assume n
>
0 & not t
divides ((t
+ z)
|^ n);
then not t
divides (t
+ z) by
Th14;
hence thesis by
WSIERP_1: 4;
end;
theorem ::
NEWTON02:17
Th17: m
>
0 implies (t
* z)
divides (((t
+ z)
|^ m)
- ((t
|^ m)
+ (z
|^ m)))
proof
assume m
>
0 ;
then
consider n such that
A0: m
= (1
+ n) by
NAT_1: 14,
NAT_1: 10;
(t
* z)
divides (((t
+ z)
|^ (n
+ 1))
- ((t
|^ (n
+ 1))
+ (z
|^ (n
+ 1))))
proof
defpred
P[
Nat] means (t
* z)
divides (((t
+ z)
|^ ($1
+ 1))
- ((t
|^ ($1
+ 1))
+ (z
|^ ($1
+ 1))));
A1:
P[
0 ] by
INT_2: 12;
A2:
P[x] implies
P[(x
+ 1)]
proof
assume
P[x];
then
B2: (t
* z)
divides ((((t
+ z)
|^ (x
+ 1))
- ((t
|^ (x
+ 1))
+ (z
|^ (x
+ 1))))
* (t
+ z)) by
INT_2: 2;
B3: ((((t
+ z)
|^ (x
+ 1))
- ((t
|^ (x
+ 1))
+ (z
|^ (x
+ 1))))
* (t
+ z))
= (((((((t
+ z)
|^ (x
+ 1))
* (t
+ z))
- ((t
|^ (x
+ 1))
* t))
- (z
* (t
|^ (x
+ 1))))
- (t
* (z
|^ (x
+ 1))))
- ((z
|^ (x
+ 1))
* z))
.= ((((((t
+ z)
|^ ((x
+ 1)
+ 1))
- ((t
|^ (x
+ 1))
* t))
- (z
* (t
|^ (x
+ 1))))
- (t
* (z
|^ (x
+ 1))))
- ((z
|^ (x
+ 1))
* z)) by
NEWTON: 6
.= ((((((t
+ z)
|^ ((x
+ 1)
+ 1))
- (t
|^ ((x
+ 1)
+ 1)))
- (z
* (t
|^ (x
+ 1))))
- (t
* (z
|^ (x
+ 1))))
- ((z
|^ (x
+ 1))
* z)) by
NEWTON: 6
.= ((((((t
+ z)
|^ ((x
+ 1)
+ 1))
- (t
|^ ((x
+ 1)
+ 1)))
- (z
* ((t
|^ x)
* t)))
- (t
* (z
|^ (x
+ 1))))
- ((z
|^ (x
+ 1))
* z)) by
NEWTON: 6
.= ((((((t
+ z)
|^ ((x
+ 1)
+ 1))
- (t
|^ ((x
+ 1)
+ 1)))
- ((z
* (t
|^ x))
* t))
- (t
* ((z
|^ x)
* z)))
- ((z
|^ (x
+ 1))
* z)) by
NEWTON: 6
.= ((((((t
+ z)
|^ ((x
+ 1)
+ 1))
- (t
|^ ((x
+ 1)
+ 1)))
- (z
* ((t
|^ x)
* t)))
- (t
* ((z
|^ x)
* z)))
- (z
|^ ((x
+ 1)
+ 1))) by
NEWTON: 6
.= (((((t
+ z)
|^ ((x
+ 1)
+ 1))
- (t
|^ ((x
+ 1)
+ 1)))
- (z
|^ ((x
+ 1)
+ 1)))
+ ((t
* z)
* ((
- (t
|^ x))
- (z
|^ x))));
(t
* z)
divides ((t
* z)
* ((
- (t
|^ x))
- (z
|^ x)));
hence thesis by
B2,
B3,
INT_2: 1;
end;
for m holds
P[m] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
hence thesis by
A0;
end;
theorem ::
NEWTON02:18
Th18: (t
- z)
divides ((t
|^ m)
- (z
|^ m))
proof
(t
- z)
divides (((t
- z)
+ z)
|^ n) iff (t
- z)
divides (z
|^ n) by
Th11;
hence thesis by
Th10;
end;
theorem ::
NEWTON02:19
Th19: n
>
0 implies (t
* z)
divides (((t
- z)
|^ n)
- ((t
|^ n)
+ ((
- z)
|^ n)))
proof
n
>
0 implies (t
* (
- z))
divides (((t
+ (
- z))
|^ n)
- ((t
|^ n)
+ ((
- z)
|^ n))) by
Th17;
then n
>
0 implies (
- (t
* z))
divides (((t
+ (
- z))
|^ n)
- ((t
|^ n)
+ ((
- z)
|^ n)));
hence thesis by
INT_2: 10;
end;
theorem ::
NEWTON02:20
Th20: (t
* z)
divides ((((t
+ z)
|^ n)
- ((t
- z)
|^ n))
+ (((
- z)
|^ n)
- (z
|^ n)))
proof
A1: (((t
+ z)
|^ n)
- ((t
|^ n)
+ (z
|^ n)))
= ((((t
+ (
- z))
|^ n)
- ((t
|^ n)
+ ((
- z)
|^ n)))
+ ((((t
+ z)
|^ n)
- ((t
- z)
|^ n))
+ (((
- z)
|^ n)
- (z
|^ n))));
per cases ;
suppose n
=
0 ;
then (((1
* ((t
+ z)
|^ n))
- (1
* ((t
- z)
|^ n)))
+ ((1
* ((
- z)
|^ n))
- (1
* (z
|^ n))))
=
0 ;
hence thesis by
INT_2: 12;
end;
suppose n
>
0 ;
then (t
* z)
divides (((t
- z)
|^ n)
- ((t
|^ n)
+ ((
- z)
|^ n))) & (t
* z)
divides (((t
+ z)
|^ n)
- ((t
|^ n)
+ (z
|^ n))) by
Th17,
Th19;
hence thesis by
A1,
INT_2: 1;
end;
end;
theorem ::
NEWTON02:21
n
>
0 implies t
divides (((t
+ z)
|^ n)
+ ((t
|^ n)
- (z
|^ n)))
proof
assume n
>
0 ;
then
A1: t
divides (
- (t
|^ n)) by
INT_2: 10,
Th6;
t
divides (((((t
+ z)
|^ n)
- (z
|^ n))
+ (t
|^ n))
+ (
- (t
|^ n))) by
Th10;
hence thesis by
A1,
INT_2: 1;
end;
theorem ::
NEWTON02:22
Th22: u
divides (t
+ z) & u
divides (t
- z) implies u
divides (2
* t) & u
divides (2
* z)
proof
A0: (t
+ z)
= ((t
+ t)
+ (z
- t)) & (t
+ z)
= ((t
- z)
+ (z
+ z));
assume
A1: u
divides (t
+ z) & u
divides (t
- z);
then u
divides (
- (t
- z)) by
INT_2: 10;
hence thesis by
A0,
A1,
INT_2: 1;
end;
theorem ::
NEWTON02:23
(t
* z)
divides (((t
+ z)
|^ (2
* n))
- ((t
- z)
|^ (2
* n)))
proof
((
- z)
|^ (2
* n))
= (z
|^ (2
* n)) by
POWER: 1;
then (((
- z)
|^ (2
* n))
- (z
|^ (2
* n)))
=
0 ;
then (t
* z)
divides ((((t
+ z)
|^ (2
* n))
- ((t
- z)
|^ (2
* n)))
+
0 ) by
Th20;
hence thesis;
end;
theorem ::
NEWTON02:24
n
>
0 implies (t
* z)
divides (((t
- z)
|^ (2
* n))
- ((t
|^ (2
* n))
+ (z
|^ (2
* n))))
proof
((
- z)
|^ (2
* n))
= (z
|^ (2
* n)) by
POWER: 1;
hence thesis by
Th19;
end;
theorem ::
NEWTON02:25
(t
* z)
divides (((t
- z)
|^ ((2
* n)
+ 1))
- ((t
|^ ((2
* n)
+ 1))
- (z
|^ ((2
* n)
+ 1))))
proof
A1: ((
- z)
|^ ((2
* n)
+ 1))
= (
- (z
|^ ((2
* n)
+ 1))) by
POWER: 2;
(t
* z)
divides (((t
- z)
|^ ((2
* n)
+ 1))
- ((t
|^ ((2
* n)
+ 1))
+ ((
- z)
|^ ((2
* n)
+ 1)))) by
Th19;
hence thesis by
A1;
end;
theorem ::
NEWTON02:26
k
>
0 & x
divides (a
+ k) & x
divides (a
- k) implies x
<= (2
* k)
proof
assume
A1: k
>
0 ;
x
divides (a
+ k) & x
divides (a
- k) implies x
divides (2
* a) & x
divides (2
* k) by
Th22;
hence thesis by
A1,
NAT_D: 7;
end;
theorem ::
NEWTON02:27
k
>
0 implies (a
gcd b)
<= (a
gcd (b
* k))
proof
assume k
>
0 ;
then (b
* k)
=
0 iff b
=
0 ;
then
A1: (a
gcd (b
* k))
=
0 implies (a
gcd b)
=
0 by
INT_2: 5;
A2: (a
gcd b)
divides b & (a
gcd b)
divides a by
INT_2:def 2;
then (a
gcd b)
divides (b
* k) by
INT_2: 2;
hence thesis by
A1,
A2,
INT_2: 22,
INT_2: 27;
end;
theorem ::
NEWTON02:28
n
>
0 implies ((a
gcd b)
gcd (b
|^ n))
= (a
gcd b)
proof
assume n
>
0 ;
then
A2: n
>= 1 by
NAT_1: 14;
((a
gcd b)
gcd (b
|^ n))
= (a
gcd (b
gcd (b
|^ n))) by
NEWTON: 48
.= (a
gcd (b
|^ 1)) by
A2,
NEWTON: 49,
NEWTON: 89
.= (a
gcd b);
hence thesis;
end;
Lm6: ((t
+ z),z)
are_coprime implies ((t
+ z),t)
are_coprime
proof
assume ((t
+ z),z)
are_coprime ;
then 1
= ((t
+ (1
* z))
gcd z)
.= (t
gcd z) by
Th5
.= ((z
+ (1
* t))
gcd t) by
Th5;
hence thesis;
end;
theorem ::
NEWTON02:29
((t
+ z),t)
are_coprime iff ((t
+ z),z)
are_coprime by
Lm6;
theorem ::
NEWTON02:30
(a,b)
are_coprime & (a
* b)
= (c
|^ n) implies ex k st (k
|^ n)
= a
proof
assume
A1: (a,b)
are_coprime & (a
* b)
= (c
|^ n);
consider k such that
A3: k
= (a
gcd c);
per cases ;
suppose
B1: n
=
0 ;
then a
= (1
|^
0 ) by
A1,
NAT_1: 15,
NEWTON: 4;
hence thesis by
B1;
end;
suppose n
>
0 & a
=
0 ;
then a
= (a
|^ n) by
NEWTON: 11,
NAT_1: 14;
hence thesis;
end;
suppose b
=
0 ;
then a
= (1
|^ n) by
A1;
hence thesis;
end;
suppose
B1: n
>
0 & a
>
0 & b
>
0 ;
then
consider m such that
B2: n
= (1
+ m) by
NAT_1: 10,
NAT_1: 14;
B3: ((a
|^ m),b)
are_coprime by
A1,
WSIERP_1: 10;
(k
|^ n)
= ((a
|^ n)
gcd (c
|^ n)) by
A3,
Th7
.= (((a
|^ m)
* a)
gcd (a
* b)) by
A1,
B2,
NEWTON: 6
.= (a
* 1) by
B3,
B1,
EULER_1: 15;
hence thesis;
end;
end;
theorem ::
NEWTON02:31
Th31: for a, b st (a,b)
are_coprime & (a
+ b)
> 2 holds (a
+ b)
divides ((a
|^ n)
+ (b
|^ n)) iff not (a
+ b)
divides ((a
|^ n)
- (b
|^ n))
proof
let a, b such that
A1: (a,b)
are_coprime & (a
+ b)
> 2;
A2: b
>
0
proof
assume not thesis;
then b
=
0 ;
hence contradiction by
A1;
end;
A3: not (a
+ b)
divides (2
* (a
|^ n)) by
A1,
A2,
Lm1;
(a
+ b)
divides ((a
|^ n)
- (b
|^ n)) implies not ((a
+ b)
divides ((a
|^ n)
+ (b
|^ n)))
proof
assume not thesis;
then (a
+ b)
divides (((a
|^ n)
+ (b
|^ n))
+ ((a
|^ n)
- (b
|^ n))) by
WSIERP_1: 4;
hence contradiction by
A3;
end;
hence thesis by
NEWTON01: 38;
end;
theorem ::
NEWTON02:32
(a,b)
are_coprime & (a
+ b)
> 2 & n is
odd implies not (a
+ b)
divides ((a
|^ n)
- (b
|^ n))
proof
assume
A1: (a,b)
are_coprime & (a
+ b)
> 2 & n is
odd;
then
consider k such that
A2: n
= ((2
* k)
+ 1) by
ABIAN: 9;
(a
+ b)
divides ((a
|^ n)
+ (b
|^ n)) by
A2,
NEWTON01: 35;
hence thesis by
A1,
Th31;
end;
theorem ::
NEWTON02:33
(a,b)
are_coprime & (a
+ b)
> 2 & n is
even implies not (a
+ b)
divides ((a
|^ n)
+ (b
|^ n))
proof
assume
A1: (a,b)
are_coprime & (a
+ b)
> 2 & n is
even;
then (a
+ b)
divides ((a
|^ n)
- (b
|^ n)) by
NEWTON01: 36;
hence thesis by
A1,
Th31;
end;
theorem ::
NEWTON02:34
Th27: (a,b)
are_coprime implies ((a
* b),((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1))))
are_coprime
proof
assume (a,b)
are_coprime ;
then ((a
|^ (n
+ 1)),(b
|^ (n
+ 1)))
are_coprime by
WSIERP_1: 11;
then (((a
|^ (n
+ 1))
+ (1
* (b
|^ (n
+ 1))))
gcd (b
|^ (n
+ 1)))
= 1 & (((b
|^ (n
+ 1))
+ (1
* (a
|^ (n
+ 1))))
gcd (a
|^ (n
+ 1)))
= 1 by
Th5;
then ((((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
* 1),(b
* (b
|^ n)))
are_coprime & ((((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
* 1),(a
* (a
|^ n)))
are_coprime by
NEWTON: 6;
then (((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1))),b)
are_coprime & (((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1))),a)
are_coprime by
NEWTON01: 41;
hence thesis by
INT_2: 26;
end;
theorem ::
NEWTON02:35
Th28: (a,b)
are_coprime implies ((a
* b),((a
|^ (n
+ 1))
- (b
|^ (n
+ 1))))
are_coprime
proof
A1: (b
* (b
|^ n))
=
|.(b
|^ (n
+ 1)).| by
NEWTON: 6;
A2: (a
* (a
|^ n))
=
|.(a
|^ (n
+ 1)).| by
NEWTON: 6;
A3:
|.((a
|^ (n
+ 1))
- (b
|^ (n
+ 1))).|
=
|.(
- ((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))).| by
COMPLEX1: 52;
assume (a,b)
are_coprime ;
then ((a
|^ (n
+ 1)),(b
|^ (n
+ 1)))
are_coprime by
WSIERP_1: 11;
then (((a
|^ (n
+ 1))
- (1
* (b
|^ (n
+ 1))))
gcd (b
|^ (n
+ 1)))
= 1 & (((b
|^ (n
+ 1))
- (1
* (a
|^ (n
+ 1))))
gcd (a
|^ (n
+ 1)))
= 1 by
Th5;
then ((
|.((a
|^ (n
+ 1))
- (b
|^ (n
+ 1))).|
* 1),(b
* (b
|^ n)))
are_coprime & ((
|.((a
|^ (n
+ 1))
- (b
|^ (n
+ 1))).|
* 1),(a
* (a
|^ n)))
are_coprime by
A1,
A2,
A3,
INT_2: 34;
then (
|.((a
|^ (n
+ 1))
- (b
|^ (n
+ 1))).|,b)
are_coprime & (
|.((a
|^ (n
+ 1))
- (b
|^ (n
+ 1))).|,a)
are_coprime by
NEWTON01: 41;
then (
|.((a
|^ (n
+ 1))
- (b
|^ (n
+ 1))).|,(a
* b))
are_coprime by
INT_2: 26;
hence thesis by
INT_6: 14;
end;
theorem ::
NEWTON02:36
Th29: q
>
0 & n
>
0 implies ex r st q
= (r
|^ n)
proof
assume q
>
0 & n
>
0 ;
then q
>
0 & n
>= 1 by
NAT_1: 14;
then
A2: q
= ((n
-Root q)
|^ n) by
PREPOWER: 19;
(n
-Root q)
in
REAL by
XREAL_0:def 1;
hence thesis by
A2;
end;
theorem ::
NEWTON02:37
k
>
0 & (a
+ b)
> k & (a
+ b)
divides (k
* a) implies not (a,b)
are_coprime
proof
assume
A1: k
>
0 & (a
+ b)
> k & (a
+ b)
divides (k
* a);
per cases ;
suppose
B1: b
>
0 ;
B2: not ((a
+ b),a)
are_coprime by
A1,
INT_2: 25,
INT_2: 27;
assume not thesis;
then 1
= ((b
+ (1
* a))
gcd a) by
B1,
EULER_1: 16;
hence contradiction by
B2;
end;
suppose b
=
0 ;
hence thesis by
A1,
NAT_1: 14;
end;
end;
theorem ::
NEWTON02:38
k
> 1 implies not k
divides ((k
+ 1)
|^ n)
proof
assume k
> 1;
then not k
divides (1
|^ n) by
NAT_D: 7;
hence thesis by
Th11;
end;
theorem ::
NEWTON02:39
a
> 1 & b
>
0 & (a
gcd b)
= 1 implies not a
divides ((a
+ b)
|^ n)
proof
assume
A0: a
> 1 & b
>
0 & (a
gcd b)
= 1;
then (a
gcd (b
|^ n))
= 1 by
WSIERP_1: 12;
then not a
divides (a
gcd (b
|^ n)) by
WSIERP_1: 15,
A0;
then not a
divides (b
|^ n) by
INT_2:def 2;
hence thesis by
Th11;
end;
theorem ::
NEWTON02:40
Th40: for c st c
>
0 holds for r,s be non
negative
Real holds r
< s iff (r
|^ c)
< (s
|^ c)
proof
let c such that
A0: c
>
0 ;
let r,s be non
negative
Real;
(r
< s implies (r
|^ c)
< (s
|^ c)) & ((r
|^ c)
< (s
|^ c) implies r
< s)
proof
A0a: r
< s implies (r
|^ c)
< (s
|^ c)
proof
assume
A1: r
< s;
then (s
|^ c)
>
0 by
PREPOWER: 6;
then
A2: r
=
0 implies (s
|^ c)
> (r
|^ c) by
A0,
NAT_1: 14,
NEWTON: 11;
r
>
0 implies (r
to_power c)
< (s
to_power c) by
A0,
A1,
POWER: 37;
hence thesis by
A2;
end;
s
=
0 implies (s
|^ c)
=
0 by
A0,
NAT_1: 14,
NEWTON: 11;
then r
>
0 & s
=
0 implies (r
|^ c)
> (s
|^ c) by
PREPOWER: 6;
hence thesis by
A0a,
PREPOWER: 9;
end;
hence thesis;
end;
theorem ::
NEWTON02:41
for r,s be non
negative
Real holds r
>= s implies (r
|^ n)
>= (s
|^ n)
proof
let r,s be non
negative
Real;
n
=
0 implies (r
|^ n)
= 1 & (s
|^ n)
= 1 by
NEWTON: 4;
hence thesis by
Th40;
end;
theorem ::
NEWTON02:42
a
>
0 & n
>
0 implies ex r st ((a
|^ n)
+ (b
|^ n))
= (r
|^ n) by
Th29;
theorem ::
NEWTON02:43
for a holds ex b st (b
|^ (n
+ 1))
<= a & a
< ((b
+ 1)
|^ (n
+ 1))
proof
defpred
P[
Nat] means ex b st (b
|^ (n
+ 1))
<= $1 & $1
< ((b
+ 1)
|^ (n
+ 1));
A1:
P[
0 ]
proof
(
0
|^ (n
+ 1))
<=
0 &
0
< ((
0
+ 1)
|^ (n
+ 1));
hence thesis;
end;
A2:
P[k] implies
P[(k
+ 1)]
proof
assume
P[k];
then
consider b such that
A3: (b
|^ (n
+ 1))
<= k & k
< ((b
+ 1)
|^ (n
+ 1));
A4: (b
+ 1)
> (b
+
0 ) & ((b
+ 1)
+ 1)
> ((b
+ 1)
+
0 ) by
XREAL_1: 6;
(k
+ 1)
<= ((b
+ 1)
|^ (n
+ 1)) by
A3,
NAT_1: 13;
per cases by
XXREAL_0: 1;
suppose
A5: (k
+ 1)
< ((b
+ 1)
|^ (n
+ 1));
(k
+ 1)
> (b
|^ (n
+ 1)) by
A3,
NAT_1: 13;
hence thesis by
A5;
end;
suppose
A5: (k
+ 1)
= ((b
+ 1)
|^ (n
+ 1));
then (k
+ 1)
< (((b
+ 1)
+ 1)
|^ (n
+ 1)) by
A4,
Th40;
hence thesis by
A5;
end;
end;
for x holds
P[x] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
NEWTON02:44
n
>
0 & a
> b & (a,b)
are_coprime implies (((a
|^ n)
+ (b
|^ n))
gcd ((a
|^ n)
- (b
|^ n)))
<= 2
proof
assume n
>
0 & a
> b & (a,b)
are_coprime ;
then (a
|^ n)
> (b
|^ n) & ((a
|^ n),(b
|^ n))
are_coprime by
Th40,
WSIERP_1: 11;
hence thesis by
Th8;
end;
theorem ::
NEWTON02:45
(a
+ b)
divides c & (a,c)
are_coprime implies (a,b)
are_coprime
proof
assume
A1: (a
+ b)
divides c & (a,c)
are_coprime ;
then
consider k such that
A2: c
= ((a
+ b)
* k) by
NAT_D:def 3;
1
= (a
gcd ((b
* k)
+ (k
* a))) by
A1,
A2
.= (a
gcd (b
* k)) by
Th5;
then ((a
* 1),(k
* b))
are_coprime ;
hence thesis by
NEWTON01: 41;
end;
Lm20: t is
even & (t,u)
are_coprime implies u is
odd
proof
A1: ((2
*
0 )
+ 1) is
odd;
assume not thesis;
hence contradiction by
A1,
Th9;
end;
theorem ::
NEWTON02:46
(t,z)
are_coprime & (t,u)
are_coprime & t is
even implies (u
+ z) is
even & (u
- z) is
even & (u
* z) is
odd
proof
assume (t,z)
are_coprime & (t,u)
are_coprime & t is
even;
then z is
odd & u is
odd by
Lm20;
hence thesis;
end;
theorem ::
NEWTON02:47
(a,b)
are_coprime & c is
even & ((a
|^ n)
+ (b
|^ n))
= (c
|^ n) implies (a
+ b) is
even & (a
- b) is
even
proof
assume
A1: (a,b)
are_coprime & c is
even & ((a
|^ n)
+ (b
|^ n))
= (c
|^ n);
n
=
0 implies ((1
* (a
|^ n))
+ (1
* (b
|^ n)))
> (1
* (c
|^ n));
then (a is
even & b is
even) or (a is
odd & b is
odd) by
A1;
hence thesis;
end;
theorem ::
NEWTON02:48
a is
even & (a,b)
are_coprime implies ((a
- b),(a
+ b))
are_coprime
proof
assume
A1: a is
even & (a,b)
are_coprime ;
then not 2
divides (a
gcd b) by
NAT_D: 7;
then
A2: b is
odd by
A1,
INT_2:def 2;
then
A3: ((a
+ b)
gcd (a
- b)) is
odd by
A1,
Th9;
A4: ((a
+ b)
gcd (a
- b))
<>
0 by
A2,
INT_2: 5;
per cases by
A1,
A2,
XXREAL_0: 1;
suppose a
> b;
then ((a
+ b)
gcd (a
- b))
<= 2 by
A1,
Th8;
then ((a
+ b)
gcd (a
- b))
< 2 by
A3,
XXREAL_0: 1;
hence thesis by
A4,
NAT_1: 23;
end;
suppose a
< b;
then ((a
+ b)
gcd (b
- a))
<= 2 by
A1,
Th8;
then ((a
+ b)
gcd (
- (b
- a)))
<= 2 by
Th1;
then ((a
+ b)
gcd (a
- b))
< 2 by
A3,
XXREAL_0: 1;
hence thesis by
A4,
NAT_1: 23;
end;
end;
theorem ::
NEWTON02:49
(a,b)
are_coprime implies ((a
+ b),(a
* b))
are_coprime
proof
assume (a,b)
are_coprime ;
then ((a
+ (1
* b))
gcd b)
= 1 & ((b
+ (1
* a))
gcd a)
= 1 by
Th5;
hence thesis by
WSIERP_1: 7;
end;
theorem ::
NEWTON02:50
Th50: not 3
divides (a
* b) implies 3
divides ((a
+ b)
* (a
- b))
proof
assume not 3
divides (a
* b);
then not (3
gcd a)
=
|.3.| & not (3
gcd b)
=
|.3.| by
INT_2: 2,
Th3;
then
A3: (3,(a
|^ 2))
are_coprime & (3,(b
|^ 2))
are_coprime by
PEPIN: 2,
PEPIN: 41,
WSIERP_1: 10;
then (3
gcd (a
|^ 2))
<>
|.3.|;
then not (((a
|^ 2)
-
0 ),
0 )
are_congruent_mod 3 by
Th3;
then
A4: ((a
|^ 2),1)
are_congruent_mod 3 by
NAT_6: 15;
(3
gcd (b
|^ 2))
<>
|.3.| by
A3;
then not (((b
|^ 2)
-
0 ),
0 )
are_congruent_mod 3 by
Th3;
then ((b
|^ 2),1)
are_congruent_mod 3 by
NAT_6: 15;
then (((a
|^ 2)
- (b
|^ 2)),(1
- 1))
are_congruent_mod 3 by
A4,
INT_1: 17;
hence thesis by
NEWTON01: 1;
end;
Lm33: 3
divides (((a
+ b)
* (a
- b))
+ (a
* b)) implies 3
divides a
proof
assume
A1: 3
divides (((a
+ b)
* (a
- b))
+ (a
* b));
L1: 3
divides (a
* b)
proof
assume
A2: not 3
divides (a
* b);
then 3
divides ((a
+ b)
* (a
- b)) by
Th50;
hence contradiction by
A1,
A2,
INT_2: 1;
end;
L2: 3
divides ((a
+ b)
* (a
- b))
proof
assume
A2: not 3
divides ((a
+ b)
* (a
- b));
then 3
divides (a
* b) by
Th50;
hence contradiction by
A1,
A2,
INT_2: 1;
end;
assume
C1: not 3
divides a;
then
C2: 3
divides b by
L1,
NAT_6: 7,
PEPIN: 41;
then
C3: 3
divides (
- b) by
INT_2: 10;
per cases by
L2,
INT_5: 7,
PEPIN: 41;
suppose 3
divides (a
+ b);
hence contradiction by
C1,
C2,
INT_2: 1;
end;
suppose 3
divides (a
+ (
- b));
hence contradiction by
C1,
C3,
INT_2: 1;
end;
end;
Lm34: 3
divides (((a
+ b)
* (a
- b))
+ (a
* b)) implies 3
divides b
proof
assume
A1: 3
divides (((a
+ b)
* (a
- b))
+ (a
* b));
L1: 3
divides (a
* b)
proof
assume
A2: not 3
divides (a
* b);
then 3
divides ((a
+ b)
* (a
- b)) by
Th50;
hence contradiction by
A1,
A2,
INT_2: 1;
end;
3
divides ((a
+ b)
* (a
- b))
proof
assume
A2: not 3
divides ((a
+ b)
* (a
- b));
then 3
divides (a
* b) by
Th50;
hence contradiction by
A1,
A2,
INT_2: 1;
end;
then 3
divides (a
+ b) or 3
divides (a
- b) by
INT_5: 7,
PEPIN: 41;
then
L3: 3
divides (a
+ b) or 3
divides (
- (a
- b)) by
INT_2: 10;
assume
C1: not 3
divides b;
then
C2: 3
divides a by
L1,
NAT_6: 7,
PEPIN: 41;
then
C3: 3
divides (
- a) by
INT_2: 10;
per cases by
L3;
suppose 3
divides (a
+ b);
hence contradiction by
C1,
C2,
INT_2: 1;
end;
suppose 3
divides (b
+ (
- a));
hence contradiction by
C1,
C3,
INT_2: 1;
end;
end;
theorem ::
NEWTON02:51
Th51: 3
divides (((a
+ b)
* (a
- b))
+ (a
* b)) iff 3
divides a & 3
divides b
proof
3
divides a & 3
divides b implies 3
divides (a
+ b) by
WSIERP_1: 4;
hence thesis by
Lm33,
Lm34,
WSIERP_1: 5;
end;
theorem ::
NEWTON02:52
(b
|^ 2)
= (a
* (a
- b)) implies 3
divides a & 3
divides b
proof
assume (b
|^ 2)
= (a
* (a
- b));
then
0
= (((b
|^ 2)
- (a
* a))
+ (a
* b))
.= (((b
|^ 2)
- (a
|^ 2))
+ (a
* b)) by
NEWTON: 81
.= (((b
- a)
* (b
+ a))
+ (a
* b)) by
NEWTON01: 1;
then 3
divides (((b
- a)
* (b
+ a))
+ (a
* b)) by
INT_2: 12;
hence thesis by
Th51;
end;
theorem ::
NEWTON02:53
(a,b)
are_coprime implies not 3
divides (((a
+ b)
* (a
- b))
+ (a
* b))
proof
assume (a,b)
are_coprime ;
then not 3
divides a or not 3
divides b by
PYTHTRIP:def 1;
hence thesis by
Th51;
end;
theorem ::
NEWTON02:54
a
> b & (a
+ b)
>= (2
|^ (n
+ 1)) implies a
> (2
|^ n)
proof
assume
A1: a
> b & (a
+ b)
>= (2
|^ (n
+ 1));
then (a
+ a)
> (a
+ b) by
XREAL_1: 6;
then (2
* a)
> (2
|^ (n
+ 1)) by
A1,
XXREAL_0: 2;
then (2
* a)
> (2
* (2
|^ n)) by
NEWTON: 6;
hence thesis by
XREAL_1: 66;
end;
theorem ::
NEWTON02:55
Th55: a
<> b implies ((2
* a)
* b)
< ((a
|^ 2)
+ (b
|^ 2))
proof
A0: (a
* a)
= (a
|^ 2) & (b
* b)
= (b
|^ 2) by
NEWTON: 81;
assume a
<> b;
then (a
- b) is non
zero
real & 2 is
even;
then
A1: ((a
- b)
|^ 2)
>
0 ;
assume not thesis;
then (((2
* a)
* b)
- ((2
* a)
* b))
>= (((a
|^ 2)
+ (b
|^ 2))
- ((2
* a)
* b)) by
XREAL_1: 9;
then
0
>= ((a
- b)
* (a
- b)) by
A0;
hence contradiction by
A1,
NEWTON: 81;
end;
theorem ::
NEWTON02:56
n
>
0 & a
<> b implies ((2
* (a
|^ n))
* (b
|^ n))
< ((a
|^ (2
* n))
+ (b
|^ (2
* n)))
proof
A0: ((a
|^ n)
|^ 2)
= (a
|^ (2
* n)) & ((b
|^ n)
|^ 2)
= (b
|^ (2
* n)) by
NEWTON: 9;
assume n
>
0 & a
<> b;
then n
>= 1 & (a
> b or b
> a) by
NAT_1: 14,
XXREAL_0: 1;
then (a
|^ n)
<> (b
|^ n) by
PREPOWER: 10;
hence thesis by
A0,
Th55;
end;
theorem ::
NEWTON02:57
b
>
0 implies ex n st b
>= (2
|^ n) & b
< (2
|^ (n
+ 1))
proof
assume b
>
0 ;
then
consider a such that
A0: b
= (1
+ a) by
NAT_1: 10,
NAT_1: 14;
ex n st (a
+ 1)
>= (2
|^ n) & (a
+ 1)
< (2
|^ (n
+ 1))
proof
defpred
P[
Nat] means ex n st ($1
+ 1)
>= (2
|^ n) & ($1
+ 1)
< (2
|^ (n
+ 1));
(
0
+ 1)
>= (1
* (2
|^
0 )) & (
0
+ 1)
< (2
|^ (
0
+ 1));
then
A1:
P[
0 ];
A2:
P[k] implies
P[(k
+ 1)]
proof
assume
P[k];
then
consider n such that
B1: (k
+ 1)
>= (2
|^ n) & (k
+ 1)
< (2
|^ (n
+ 1));
per cases ;
suppose
C1: ((k
+ 1)
+ 1)
< (2
|^ (n
+ 1));
((k
+ 1)
+ 1)
> ((k
+ 1)
+
0 ) by
XREAL_1: 6;
then ((k
+ 1)
+ 1)
>= (2
|^ n) by
B1,
XXREAL_0: 2;
hence thesis by
C1;
end;
suppose
C1: ((k
+ 1)
+ 1)
>= (2
|^ (n
+ 1));
(2
* (k
+ 1))
< (2
* (2
|^ (n
+ 1))) by
B1,
XREAL_1: 68;
then
C2: ((2
* k)
+ 2)
< (2
|^ ((n
+ 1)
+ 1)) by
NEWTON: 6;
((k
+ 2)
+
0 )
<= ((k
+ 2)
+ k) by
XREAL_1: 6;
then ((k
+ 1)
+ 1)
< (2
|^ ((n
+ 1)
+ 1)) by
C2,
XXREAL_0: 2;
hence thesis by
C1;
end;
end;
for c be
Nat holds
P[c] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
hence thesis by
A0;
end;
theorem ::
NEWTON02:58
Th58: for a,b be
odd
Nat holds (4
divides (a
+ b) iff not 4
divides (a
- b))
proof
let a,b be
odd
Nat;
(a
+ b) is
even & (a
- b) is
even;
then 2
divides (a
+ b) & 2
divides (a
- b);
then
consider t, z such that
A3: (a
+ b)
= (2
* t) & (a
- b)
= (2
* z);
A5: t is
odd iff z is
even
proof
a
= (t
+ z) & b
= (t
- z) by
A3;
hence thesis;
end;
A6: (2
* (2
gcd z))
= (
|.2.|
* (2
gcd z))
.= ((2
* 2)
gcd (2
* z)) by
INT_6: 16;
A7: (2
* 2)
divides (a
+ b) implies not (2
* 2)
divides (a
- b)
proof
assume (2
* 2)
divides (a
+ b);
then
|.(2
* 2).|
= ((2
* 2)
gcd (2
* t)) by
A3,
Th3
.= (
|.2.|
* (t
gcd 2)) by
INT_6: 16;
then ((2
* 2)
gcd (2
* z))
<>
|.4.| by
A5,
A6,
Th3;
hence thesis by
A3,
Th3;
end;
( not (2
* 2)
divides (a
+ b)) implies (2
* 2)
divides (a
- b)
proof
assume not (2
* 2)
divides (a
+ b);
then not
|.(2
* 2).|
= ((2
* 2)
gcd (2
* t)) by
A3,
Th3;
then not
|.(2
* 2).|
= (
|.2.|
* (t
gcd 2)) by
INT_6: 16;
then ((2
* 2)
gcd (2
* z))
=
|.4.| by
A5,
A6,
Th3;
hence thesis by
A3,
Th3;
end;
hence thesis by
A7;
end;
theorem ::
NEWTON02:59
((b
+ c)
gcd b)
= 1 & c is
odd implies (((2
* b)
+ c)
gcd c)
= 1
proof
assume
A1: ((b
+ c)
gcd b)
= 1 & c is
odd;
then ((c
+ (b
* 1))
gcd b)
= 1;
then
A2: (c
gcd b)
= 1 by
EULER_1: 8;
(((2
* b)
+ (c
* 1))
gcd c)
= ((2
* b)
gcd c) by
EULER_1: 8;
hence thesis by
A1,
A2,
Lm5a;
end;
theorem ::
NEWTON02:60
(a
+ b)
= ((k
* a)
+ (k
* b)) & (a
* b)
>
0 implies k
= 1
proof
assume
A0: (a
+ b)
= ((k
* a)
+ (k
* b)) & (a
* b)
>
0 ;
then ((k
- 1)
* (a
+ b))
=
0 ;
then (a
+ b)
=
0 or (k
- 1)
=
0 ;
then a
=
0 or k
= 1;
hence thesis by
A0;
end;
theorem ::
NEWTON02:61
(t
* z)
= (t
+ z) implies t
= z
proof
assume (t
* z)
= (t
+ z);
then
0
= (((t
- 1)
* (z
- 1))
- 1);
then ((t
- 1)
= 1 & (z
- 1)
= 1) or ((t
- 1)
= (
- 1) & (z
- 1)
= (
- 1)) by
INT_1: 9;
hence thesis;
end;
theorem ::
NEWTON02:62
Th62: (((2
* n)
+ 1)
|^ 2)
= (((4
* n)
* (n
+ 1))
+ 1)
proof
thus (((2
* n)
+ 1)
|^ 2)
= (((2
* n)
+ 1)
* ((2
* n)
+ 1)) by
NEWTON: 81
.= (((4
* n)
* (n
+ 1))
+ 1);
end;
theorem ::
NEWTON02:63
a is
odd & b is
odd implies 8
divides ((a
|^ 2)
- (b
|^ 2))
proof
assume
A0: a is
odd & b is
odd;
then
consider k such that
A1: a
= ((2
* k)
+ 1) by
ABIAN: 9;
consider n such that
A1a: b
= ((2
* n)
+ 1) by
A0,
ABIAN: 9;
(k is
even or (k
+ 1) is
even) & (n is
even or (n
+ 1) is
even);
then ((k
* (k
+ 1))
- (n
* (n
+ 1))) is
even;
then
A2: (2
* 4)
divides (4
* ((k
* (k
+ 1))
- (n
* (n
+ 1)))) by
INT_6: 8;
((a
|^ 2)
- (b
|^ 2))
= ((((2
* k)
+ 1)
|^ 2)
- (((4
* n)
* (n
+ 1))
+ 1)) by
A1,
A1a,
Th62
.= ((((4
* k)
* (k
+ 1))
+ 1)
- (((4
* n)
* (n
+ 1))
+ 1)) by
Th62
.= (4
* ((k
* (k
+ 1))
- (n
* (n
+ 1))));
hence thesis by
A2;
end;
Lm60: for a,b,m be
odd
Nat holds 4
divides (a
+ b) implies 4
divides ((a
|^ m)
+ (b
|^ m))
proof
let a,b,m be
odd
Nat;
consider n such that
A0: m
= ((2
* n)
+ 1) by
ABIAN: 9;
assume
A1: 4
divides (a
+ b);
(a
+ b)
divides ((a
|^ ((2
* n)
+ 1))
+ (b
|^ ((2
* n)
+ 1))) by
NEWTON01: 35;
hence thesis by
A0,
A1,
INT_2: 9;
end;
theorem ::
NEWTON02:64
Th64: for a,b be
odd
Nat holds 4
divides (a
- b) implies 4
divides ((a
|^ n)
- (b
|^ n))
proof
let a,b be
odd
Nat;
assume
A1: 4
divides (a
- b);
(a
- b)
divides ((a
|^ n)
- (b
|^ n)) by
NEWTON01: 33;
hence thesis by
A1,
INT_2: 9;
end;
theorem ::
NEWTON02:65
Th65: for a,b be
odd
Nat, m be
even
Nat holds 4
divides ((a
|^ m)
- (b
|^ m))
proof
let a,b be
odd
Nat, m be
even
Nat;
consider n such that
L0: m
= (2
* n) by
ABIAN:def 2;
L1: 4
divides (a
+ b) implies 4
divides ((a
|^ m)
- (b
|^ m))
proof
assume
A1: 4
divides (a
+ b);
(a
+ b)
divides ((a
|^ m)
- (b
|^ m)) by
NEWTON01: 36,
L0;
hence thesis by
A1,
INT_2: 9;
end;
4
divides (a
- b) implies 4
divides ((a
|^ m)
- (b
|^ m)) by
Th64;
hence thesis by
L1,
Th58;
end;
theorem ::
NEWTON02:66
t is
even & not 4
divides t implies ex u st u
= (t
/ 2) & u is
odd
proof
assume
A1: t is
even & not 4
divides t;
then
consider u such that
A2: t
= (2
* u) by
ABIAN: 11;
not (2
* 2)
divides (2
* u) by
A1,
A2;
then u
= (t
/ 2) & u is
odd by
A2,
LmGCD;
hence thesis;
end;
Lm63: a is
even & not 4
divides a implies ex b st b
= (a
/ 2) & b is
odd
proof
assume
A1: a is
even & not 4
divides a;
then
consider b such that
A2: a
= (2
* b);
not (2
* 2)
divides (2
* b) by
A1,
A2;
then b
= (a
/ 2) & b is
odd by
A2,
LmGCD;
hence thesis;
end;
theorem ::
NEWTON02:67
Th67: a is
odd & (2
|^ n)
divides (a
* b) implies (2
|^ n)
divides b
proof
assume
A1: a is
odd & (2
|^ n)
divides (a
* b);
then ((2
|^ n),a)
are_coprime by
NAT_5: 3;
hence thesis by
A1,
WSIERP_1: 29;
end;
theorem ::
NEWTON02:68
Th68: for a,b,m be
odd
Nat holds 4
divides ((a
|^ m)
+ (b
|^ m)) iff 4
divides (a
+ b)
proof
let a,b,m be
odd
Nat;
consider n such that
L0: m
= ((2
* n)
+ 1) by
ABIAN: 9;
4
divides ((a
|^ ((2
* n)
+ 1))
+ (b
|^ ((2
* n)
+ 1))) implies 4
divides (a
+ b)
proof
B2: (2
|^ 2)
= (2
* 2) by
NEWTON: 81;
A1: 4
divides ((a
|^ (2
* n))
- (b
|^ (2
* n))) by
Th65;
A2: 4
divides (((a
|^ (2
* n))
- (b
|^ (2
* n)))
* (((a
|^ 1)
- (b
|^ 1))
/ 2)) by
Th65,
INT_2: 2;
consider l such that
A3: l
= (((a
|^ (2
* n))
+ (b
|^ (2
* n)))
/ 2) & l is
odd by
A1,
Th58,
Lm63;
A4: ((a
|^ ((2
* n)
+ 1))
+ (b
|^ ((2
* n)
+ 1)))
= (((((a
|^ (2
* n))
+ (b
|^ (2
* n)))
* ((a
|^ 1)
+ (b
|^ 1)))
+ (((a
|^ (2
* n))
- (b
|^ (2
* n)))
* ((a
|^ 1)
- (b
|^ 1))))
/ 2) by
NEWTON01: 8
.= (((((a
|^ (2
* n))
+ (b
|^ (2
* n)))
* ((a
|^ 1)
+ (b
|^ 1)))
/ 2)
+ ((((a
|^ (2
* n))
- (b
|^ (2
* n)))
* ((a
|^ 1)
- (b
|^ 1)))
/ 2));
assume 4
divides ((a
|^ ((2
* n)
+ 1))
+ (b
|^ ((2
* n)
+ 1)));
then (2
|^ 2)
divides ((((a
|^ (2
* n))
+ (b
|^ (2
* n)))
/ 2)
* ((a
|^ 1)
+ (b
|^ 1))) by
B2,
A2,
A4,
INT_2: 1;
hence thesis by
B2,
A3,
Th67;
end;
hence thesis by
L0,
Lm60;
end;
theorem ::
NEWTON02:69
for a,b,m be
odd
Nat holds 4
divides (a
- b) iff not 4
divides ((a
|^ m)
+ (b
|^ m))
proof
let a,b,m be
odd
Nat;
thus 4
divides (a
- b) implies not 4
divides ((a
|^ m)
+ (b
|^ m))
proof
assume 4
divides (a
- b);
then not 4
divides (a
+ b) by
Th58;
hence thesis by
Th68;
end;
assume not 4
divides ((a
|^ m)
+ (b
|^ m));
then not 4
divides (a
+ b) by
Th68;
hence thesis by
Th58;
end;
theorem ::
NEWTON02:70
((a
|^ 2)
+ (b
|^ 2))
= (c
|^ 2) implies ex t st (b
|^ 2)
= (((2
* a)
+ t)
* t)
proof
assume ((a
|^ 2)
+ (b
|^ 2))
= (c
|^ 2);
then (b
|^ 2)
= ((c
|^ 2)
- (a
|^ 2))
.= ((c
- a)
* (c
+ a)) by
NEWTON01: 1
.= ((c
- a)
* ((c
- a)
+ (2
* a)));
hence thesis;
end;
theorem ::
NEWTON02:71
(b
|^ 2)
= (((2
* a)
+ t)
* t) implies ex c st ((a
|^ 2)
+ (b
|^ 2))
= (c
|^ 2)
proof
assume (b
|^ 2)
= (((2
* a)
+ t)
* t);
then
A1: (b
|^ 2)
= (((a
+ t)
+ a)
* ((a
+ t)
- a))
.= (((a
+ t)
|^ 2)
- (a
|^ 2)) by
NEWTON01: 1;
|.(a
+ t).|
in
NAT by
INT_1: 3;
then
consider c such that
A2: c
=
|.(a
+ t).|;
(c
|^ 2)
= ((a
+ t)
|^ 2) or (c
|^ 2)
= ((
- (a
+ t))
|^ 2) by
A2,
ABSVALUE: 1;
then (c
|^ 2)
= ((a
+ t)
|^ 2) by
WSIERP_1: 1;
hence thesis by
A1;
end;
Lm40: a is
odd & b is
odd implies ((a
|^ 2)
+ (b
|^ 2))
<> (c
|^ 2)
proof
a is
odd & b is
odd & c is
even implies ((a
|^ 2)
+ (b
|^ 2))
<> (c
|^ 2)
proof
assume
A1: a is
odd & b is
odd & c is
even;
then 4
divides ((a
|^ 1)
- (b
|^ 1)) or 4
divides ((a
|^ 1)
+ (b
|^ 1)) by
Th58;
then 4
divides (((a
|^ 1)
- (b
|^ 1))
* ((a
|^ 1)
+ (b
|^ 1))) by
INT_2: 2;
then 4
divides ((a
|^ 2)
- (b
|^ 2)) by
NEWTON01: 1;
then
A2: not 4
divides ((a
|^ 2)
+ (b
|^ 2)) by
A1,
Th58;
(2
* 2)
divides (c
* c) by
A1,
LmGCD;
hence thesis by
A2,
NEWTON: 81;
end;
hence thesis;
end;
theorem ::
NEWTON02:72
a is
odd & b is
odd & m is
even implies ((a
|^ m)
+ (b
|^ m))
<> (c
|^ m)
proof
a is
odd & b is
odd implies ((a
|^ (2
* n))
+ (b
|^ (2
* n)))
<> (c
|^ (2
* n))
proof
A1: (a
|^ (2
* n))
= ((a
|^ n)
|^ 2) & (b
|^ (2
* n))
= ((b
|^ n)
|^ 2) & (c
|^ (2
* n))
= ((c
|^ n)
|^ 2) by
NEWTON: 9;
assume a is
odd & b is
odd;
hence thesis by
A1,
Lm40;
end;
hence thesis;
end;
theorem ::
NEWTON02:73
Th73: (t,(z
|^ n))
are_coprime & n
>
0 implies (t,z)
are_coprime
proof
assume
A1: (t,(z
|^ n))
are_coprime & n
>
0 ;
then
A2: t
divides (t
|^ n) & z
divides (z
|^ n) by
Th6;
(t
gcd z)
divides t & (t
gcd z)
divides z by
INT_2:def 2;
then
A3: (t
gcd z)
divides (t
|^ n) & (t
gcd z)
divides (z
|^ n) by
A2,
INT_2: 2;
((t
|^ n),(z
|^ n))
are_coprime by
A1,
WSIERP_1: 10;
hence thesis by
A3,
INT_2: 13,
INT_2: 22;
end;
theorem ::
NEWTON02:74
Th74: (a,b)
are_coprime implies (((a
+ b)
|^ 2)
gcd (((a
|^ 2)
+ (b
|^ 2))
- (((n
- 2)
* a)
* b)))
= ((((a
|^ 2)
+ (b
|^ 2))
- (((n
- 2)
* a)
* b))
gcd n)
proof
A0: (a
|^ 2)
= (a
* a) & (b
|^ 2)
= (b
* b) by
NEWTON: 81;
assume
A1: (a,b)
are_coprime ;
A2: ((a
+ b)
|^ 2)
= ((a
+ b)
* (a
+ b)) by
NEWTON: 81
.= ((((a
|^ 2)
+ (b
|^ 2))
- (((n
- 2)
* a)
* b))
+ ((n
* a)
* b)) by
A0;
(((a
|^ (
0
+ 1))
+ (b
|^ (
0
+ 1))),(a
* b))
are_coprime by
A1,
Th27;
then (((a
+ b)
|^ 2),(a
* b))
are_coprime by
WSIERP_1: 10;
then 1
= ((((a
+ b)
|^ 2)
- (n
* (a
* b)))
gcd (a
* b)) by
Th5
.= ((((((a
|^ 2)
+ (b
|^ 2))
- (((n
- 2)
* a)
* b))
+ ((n
* a)
* b))
- ((n
* a)
* b))
gcd (a
* b)) by
A2;
then
A4: ((((a
|^ 2)
+ (b
|^ 2))
- (((n
- 2)
* a)
* b)),(a
* b))
are_coprime ;
(((a
+ b)
|^ 2)
gcd (((a
|^ 2)
+ (b
|^ 2))
- (((n
- 2)
* a)
* b)))
= ((((n
* a)
* b)
+ (1
* (((a
|^ 2)
+ (b
|^ 2))
- (((n
- 2)
* a)
* b))))
gcd (((a
|^ 2)
+ (b
|^ 2))
- (((n
- 2)
* a)
* b))) by
A2
.= ((n
* (a
* b))
gcd (((a
|^ 2)
+ (b
|^ 2))
- (((n
- 2)
* a)
* b))) by
Th5
.= (n
gcd (((a
|^ 2)
+ (b
|^ 2))
- (((n
- 2)
* a)
* b))) by
A4,
INT_6: 19;
hence thesis;
end;
theorem ::
NEWTON02:75
(a,b)
are_coprime implies ((a
+ b),(((a
|^ 2)
+ (b
|^ 2))
+ (a
* b)))
are_coprime
proof
assume
A1: (a,b)
are_coprime ;
A2:
|.(((a
|^ 2)
+ (b
|^ 2))
- (((1
- 2)
* a)
* b)).|
in
NAT by
INT_1: 3;
(((a
+ b)
|^ 2)
gcd (((a
|^ 2)
+ (b
|^ 2))
+ (a
* b)))
= (
|.(((a
|^ 2)
+ (b
|^ 2))
- (((1
- 2)
* a)
* b)).|
gcd
|.1.|) by
A1,
Th74
.= 1 by
NEWTON: 51,
A2;
then (((a
+ b)
|^ 2),(((a
|^ 2)
+ (b
|^ 2))
+ (a
* b)))
are_coprime ;
hence thesis by
Th73;
end;
theorem ::
NEWTON02:76
(a,b)
are_coprime implies (((a
- b)
|^ 2)
gcd (((a
|^ 2)
+ (b
|^ 2))
+ (((n
- 2)
* a)
* b)))
= ((((a
|^ 2)
+ (b
|^ 2))
+ (((n
- 2)
* a)
* b))
gcd n)
proof
A0: (a
|^ 2)
= (a
* a) & (b
|^ 2)
= (b
* b) by
NEWTON: 81;
assume
A1: (a,b)
are_coprime ;
A2: ((a
- b)
|^ 2)
= ((a
- b)
* (a
- b)) by
NEWTON: 81
.= ((((a
|^ 2)
+ (b
|^ 2))
+ (((n
- 2)
* a)
* b))
- ((n
* a)
* b)) by
A0;
(((a
|^ (
0
+ 1))
- (b
|^ (
0
+ 1))),(a
* b))
are_coprime by
A1,
Th28;
then (((a
- b)
|^ 2),(a
* b))
are_coprime by
WSIERP_1: 10;
then 1
= ((((a
- b)
|^ 2)
+ (n
* (a
* b)))
gcd (a
* b)) by
Th5
.= ((((((a
|^ 2)
+ (b
|^ 2))
+ (((n
- 2)
* a)
* b))
- ((n
* a)
* b))
+ ((n
* a)
* b))
gcd (a
* b)) by
A2;
then
A4: ((((a
|^ 2)
+ (b
|^ 2))
+ (((n
- 2)
* a)
* b)),(a
* b))
are_coprime ;
(((a
- b)
|^ 2)
gcd (((a
|^ 2)
+ (b
|^ 2))
+ (((n
- 2)
* a)
* b)))
= (((
- ((n
* a)
* b))
+ (1
* (((a
|^ 2)
+ (b
|^ 2))
+ (((n
- 2)
* a)
* b))))
gcd (((a
|^ 2)
+ (b
|^ 2))
+ (((n
- 2)
* a)
* b))) by
A2
.= (((
- n)
* (a
* b))
gcd (((a
|^ 2)
+ (b
|^ 2))
+ (((n
- 2)
* a)
* b))) by
Th5
.= ((
- n)
gcd (((a
|^ 2)
+ (b
|^ 2))
+ (((n
- 2)
* a)
* b))) by
A4,
INT_6: 19;
hence thesis by
Th1;
end;
theorem ::
NEWTON02:77
Th77: a
divides (k
* ((a
* n)
+ 1)) iff a
divides k
proof
a
divides (k
* ((a
* n)
+ 1)) implies a
divides k
proof
assume a
divides (k
* ((a
* n)
+ 1));
then
A1: a
divides (((k
* a)
* n)
+ (k
* 1));
a
divides (a
* (k
* n));
hence thesis by
A1,
INT_2: 1;
end;
hence thesis by
INT_2: 2;
end;
theorem ::
NEWTON02:78
for n be
positive
Nat holds a
divides (k
* ((a
|^ n)
+ 1)) iff a
divides k
proof
let n be
positive
Nat;
consider k such that
A1: n
= (1
+ k) by
NAT_1: 10,
NAT_1: 14;
(a
|^ (1
+ k))
= (a
* (a
|^ k)) by
NEWTON: 6;
hence thesis by
A1,
Th77;
end;
theorem ::
NEWTON02:79
for a,b be
positive
Nat holds (a
mod b)
= (b
mod a) implies a
= b
proof
let a,b be
positive
Nat;
per cases by
XXREAL_0: 1;
suppose a
< b;
then (a
mod b)
= a by
NAT_D: 24;
hence thesis by
NAT_D: 1;
end;
suppose b
< a;
then (b
mod a)
= b by
NAT_D: 24;
hence thesis by
NAT_D: 1;
end;
suppose b
= a;
hence thesis;
end;
end;
theorem ::
NEWTON02:80
Th80: ((k
* ((a
* n)
+ 1))
mod a)
= (k
mod a)
proof
thus ((k
* ((a
* n)
+ 1))
mod a)
= (((a
* (k
* n))
+ k)
mod a)
.= (k
mod a) by
NAT_D: 21;
end;
theorem ::
NEWTON02:81
Th81: for n be
positive
Nat holds ((k
* ((a
|^ n)
+ 1))
mod a)
= (k
mod a)
proof
let n be
positive
Nat;
consider k such that
A1: n
= (1
+ k) by
NAT_1: 10,
NAT_1: 14;
(a
|^ (1
+ k))
= (a
* (a
|^ k)) by
NEWTON: 6;
hence thesis by
A1,
Th80;
end;
theorem ::
NEWTON02:82
Th82: for n be
positive
Nat holds ((k
* (((a
|^ n)
+ 1)
|^ m))
mod a)
= (k
mod a)
proof
let n be
positive
Nat;
per cases by
NAT_1: 25;
suppose
C1: a
> 1;
((((a
|^ n)
+ 1)
|^ m)
mod a)
= (((((a
|^ n)
+ 1)
mod a)
|^ m)
mod a) by
GR_CY_3: 30;
then ((k
* (((a
|^ n)
+ 1)
|^ m))
mod a)
= ((k
* ((((1
* ((a
|^ n)
+ 1))
mod a)
|^ m)
mod a))
mod a) by
RADIX_2: 3
.= ((k
* (((1
mod a)
|^ m)
mod a))
mod a) by
Th81
.= ((k
* ((1
|^ m)
mod a))
mod a) by
C1,
NAT_D: 14
.= ((k
* 1)
mod a) by
RADIX_2: 3;
hence thesis;
end;
suppose a
= 1;
then ((k
* (((a
|^ n)
+ 1)
|^ m))
mod a)
=
0 & (k
mod a)
=
0 by
RADIX_2: 1;
hence thesis;
end;
suppose a
=
0 ;
hence thesis;
end;
end;
theorem ::
NEWTON02:83
Th83: for n be
positive
Nat holds (((b
* (((a
|^ n)
+ 1)
|^ m))
+ (c
* (((a
|^ n)
+ 1)
|^ l)))
mod a)
= ((b
+ c)
mod a)
proof
let n be
positive
Nat;
A1: ((b
* (((a
|^ n)
+ 1)
|^ m))
mod a)
= (b
mod a) & ((c
* (((a
|^ n)
+ 1)
|^ l))
mod a)
= (c
mod a) by
Th82;
(((b
* (((a
|^ n)
+ 1)
|^ m))
+ (c
* (((a
|^ n)
+ 1)
|^ l)))
mod a)
= (((b
mod a)
+ (c
mod a))
mod a) by
A1,
NAT_D: 66
.= ((b
+ c)
mod a) by
NAT_D: 66;
hence thesis;
end;
theorem ::
NEWTON02:84
for a,n be
positive
Nat holds a
divides ((b
* (((a
|^ n)
+ 1)
|^ m))
+ (c
* (((a
|^ n)
+ 1)
|^ l))) iff a
divides (b
+ c)
proof
let a,n be
positive
Nat;
(((b
* (((a
|^ n)
+ 1)
|^ m))
+ (c
* (((a
|^ n)
+ 1)
|^ l)))
mod a)
=
0 iff ((b
+ c)
mod a)
=
0 by
Th83;
hence thesis by
PEPIN: 6;
end;
theorem ::
NEWTON02:85
|.t.|
< a implies (t
mod a)
=
|.t.| or (t
mod a)
= (a
-
|.t.|)
proof
assume
|.t.|
< a;
then
A2: t
< a & t
> (
- a) by
SEQ_2: 1;
per cases ;
suppose
B1: t
>=
0 ;
then (t
mod a)
= t by
A2,
NAT_D: 63;
hence thesis by
B1,
ABSVALUE:def 1;
end;
suppose
B1: t
<
0 ;
then (t
mod a)
= (a
+ t) by
A2,
NAT_D: 63
.= (a
- (
- t))
.= (a
-
|.t.|) by
B1,
ABSVALUE:def 1;
hence thesis;
end;
end;
theorem ::
NEWTON02:86
((
- t)
mod a)
= (((u
* a)
- (t
mod a))
mod a)
proof
thus (((u
* a)
- (t
mod a))
mod a)
= ((((
0
+ (u
* a))
mod a)
- ((t
mod a)
mod a))
mod a) by
INT_6: 7
.= (((
0
mod a)
- (t
mod a))
mod a)
.= ((
0
- t)
mod a) by
INT_6: 7
.= ((
- t)
mod a);
end;
Lm3: (t
mod 3)
=
0 or (t
mod 3)
= 1 or (t
mod 3)
= 2
proof
A1: (t
mod 3)
in
NAT by
INT_1: 3,
INT_1: 57;
((t
mod 3)
mod 3)
= (t
mod 3);
then (t
mod 3)
< (2
+ 1) by
A1,
NAT_D: 1;
hence thesis by
A1,
NAT_1: 22,
NAT_1: 23;
end;
LmMod: for n be
odd
Nat holds ((2
|^ n)
mod 3)
= 2
proof
let n be
odd
Nat;
consider m such that
L0: n
= ((2
* m)
+ 1) by
ABIAN: 9;
defpred
P[
Nat] means ((2
|^ ((2
* $1)
+ 1))
mod 3)
= 2;
L1:
P[
0 ] by
NAT_D: 63;
L2:
P[k] implies
P[(k
+ 1)]
proof
assume
A1:
P[k];
A2: 1
= (1
mod 3) by
NAT_D: 63
.= (((1
* 3)
+ 1)
mod 3) by
NAT_D: 21
.= ((2
* 2)
mod 3)
.= ((2
|^ 2)
mod 3) by
NEWTON: 81;
2
= ((2
* 1)
mod 3) by
NAT_D: 63
.= (((2
|^ ((2
* k)
+ 1))
* (2
|^ 2))
mod 3) by
A1,
A2,
NAT_D: 67
.= ((2
|^ (((2
* k)
+ 1)
+ 2))
mod 3) by
NEWTON: 8
.= ((2
|^ ((2
* (k
+ 1))
+ 1))
mod 3);
hence thesis;
end;
for c be
Nat holds
P[c] from
NAT_1:sch 2(
L1,
L2);
hence thesis by
L0;
end;
theorem ::
NEWTON02:87
Th87: for n be
odd
Nat holds ((t
|^ n)
mod 3)
= (t
mod 3)
proof
let n be
odd
Nat;
per cases by
Lm3;
suppose
A1: (t
mod 3)
=
0 ;
then
0
= (((t
mod 3)
|^ n)
mod 3);
hence thesis by
A1,
GR_CY_3: 30;
end;
suppose
A1: (t
mod 3)
= 1;
then 1
= (((t
mod 3)
|^ n)
mod 3);
hence thesis by
A1,
GR_CY_3: 30;
end;
suppose
A1: (t
mod 3)
= 2;
then 2
= (((t
mod 3)
|^ n)
mod 3) by
LmMod;
hence thesis by
A1,
GR_CY_3: 30;
end;
end;
theorem ::
NEWTON02:88
Th88: ((t
+ (u
mod z))
mod z)
= ((t
+ u)
mod z)
proof
thus ((t
+ (u
mod z))
mod z)
= ((((t
mod z)
+ ((u
mod z)
mod z))
mod z)
mod z) by
NAT_D: 66
.= ((t
+ u)
mod z) by
NAT_D: 66;
end;
LmSum: (((a
+ b)
- c)
mod 3)
= ((((a
mod 3)
+ (b
mod 3))
+ (2
* (c
mod 3)))
mod 3)
proof
thus (((a
+ b)
- c)
mod 3)
= ((((a
+ b)
- c)
+ (c
* 3))
mod 3) by
EULER_1: 12
.= ((a
+ (b
+ (2
* c)))
mod 3)
.= (((a
mod 3)
+ ((b
+ (2
* c))
mod 3))
mod 3) by
NAT_D: 66
.= ((((a
mod 3)
mod 3)
+ (((b
mod 3)
+ ((c
+ c)
mod 3))
mod 3))
mod 3) by
NAT_D: 66
.= ((((a
mod 3)
mod 3)
+ (((b
mod 3)
+ (((c
mod 3)
+ (c
mod 3))
mod 3))
mod 3))
mod 3) by
NAT_D: 66
.= ((((a
mod 3)
mod 3)
+ (((b
mod 3)
+ ((c
mod 3)
+ (c
mod 3)))
mod 3))
mod 3) by
Th88
.= (((a
mod 3)
+ ((b
mod 3)
+ ((c
mod 3)
+ (c
mod 3))))
mod 3) by
Th88
.= ((((a
mod 3)
+ (b
mod 3))
+ (2
* (c
mod 3)))
mod 3);
end;
theorem ::
NEWTON02:89
Th89: for n be
odd
Nat holds (((a
+ b)
- c)
mod 3)
= ((((a
|^ n)
+ (b
|^ n))
- (c
|^ n))
mod 3)
proof
let n be
odd
Nat;
A1: ((a
|^ n)
mod 3)
= (a
mod 3) & ((b
|^ n)
mod 3)
= (b
mod 3) & ((c
|^ n)
mod 3)
= (c
mod 3) by
Th87;
(((a
+ b)
- c)
mod 3)
= ((((a
mod 3)
+ (b
mod 3))
+ (2
* (c
mod 3)))
mod 3) by
LmSum
.= ((((a
|^ n)
+ (b
|^ n))
- (c
|^ n))
mod 3) by
A1,
LmSum;
hence thesis;
end;
theorem ::
NEWTON02:90
Th90: for k be
positive
Nat holds (t
mod k)
= (k
- 1) iff ((t
+ 1)
mod k)
=
0
proof
let k be
positive
Nat;
thus (t
mod k)
= (k
- 1) implies ((t
+ 1)
mod k)
=
0
proof
assume
A1: (t
mod k)
= (k
- 1);
0
= ((
0
+ (1
* k))
mod k)
.= ((1
+ (t
mod k))
mod k) by
A1
.= ((1
+ t)
mod k) by
Th88;
hence thesis;
end;
assume
A1: ((t
+ 1)
mod k)
=
0 ;
((k
- 1)
+ 1)
> ((k
- 1)
+
0 ) by
XREAL_1: 6;
then (k
- 1)
= (((k
- 1)
+ ((t
+ 1)
mod k))
mod k) by
A1,
NAT_D: 24
.= (((k
- 1)
+ (t
+ 1))
mod k) by
Th88
.= ((t
+ (1
* k))
mod k)
.= (t
mod k) by
EULER_1: 12;
hence thesis;
end;
LmABC: 3
divides ((u
+ t)
+ z) implies 3
divides ((u
* t)
* z) or ((u
mod 3)
= (t
mod 3) & (t
mod 3)
= (z
mod 3))
proof
assume
A1: 3
divides ((u
+ t)
+ z);
then
A2: (((u
+ t)
+ z)
mod 3)
=
0 by
INT_1: 62;
A3: ((u
+ t)
mod 3)
= (((u
mod 3)
+ (t
mod 3))
mod 3) by
NAT_D: 66;
per cases by
Lm3;
suppose (u
mod 3)
=
0 ;
then 3
divides u by
INT_1: 62;
then 3
divides (u
* (t
* z)) by
INT_2: 2;
hence thesis;
end;
suppose
B1: (u
mod 3)
= 1;
per cases by
Lm3;
suppose (t
mod 3)
=
0 ;
then 3
divides t by
INT_1: 62;
then 3
divides (t
* (u
* z)) by
INT_2: 2;
hence thesis;
end;
suppose
C1: (t
mod 3)
= 1;
then ((u
+ t)
mod 3)
= (3
- 1) by
B1,
A3,
NAT_D: 24;
then (((u
+ t)
+ 1)
mod 3)
= (((u
+ t)
+ z)
mod 3) by
A2,
Th90;
then (((u
+ t)
+ z),((u
+ t)
+ 1))
are_congruent_mod 3 by
NAT_D: 64;
then (z,1)
are_congruent_mod 3;
then (z
mod 3)
= (1
mod 3) by
NAT_D: 64
.= 1 by
NAT_D: 14;
hence thesis by
C1,
B1;
end;
suppose (t
mod 3)
= 2;
then ((u
+ t)
mod 3)
=
0 by
B1,
A3,
NAT_D: 25;
then 3
divides (u
+ t) by
INT_1: 62;
then 3
divides z by
A1,
INT_2: 1;
hence thesis by
INT_2: 2;
end;
end;
suppose
B1: (u
mod 3)
= 2;
per cases by
Lm3;
suppose (t
mod 3)
=
0 ;
then 3
divides t by
INT_1: 62;
then 3
divides (t
* (u
* z)) by
INT_2: 2;
hence thesis;
end;
suppose (t
mod 3)
= 1;
then ((u
+ t)
mod 3)
=
0 by
B1,
A3,
NAT_D: 25;
then 3
divides (u
+ t) by
INT_1: 62;
then 3
divides z by
A1,
INT_2: 1;
hence thesis by
INT_2: 2;
end;
suppose
C1: (t
mod 3)
= 2;
then
C2: ((u
+ t)
mod 3)
= ((1
+ 3)
mod 3) by
B1,
A3
.= (((1
mod 3)
+ (3
mod 3))
mod 3) by
NAT_D: 66
.= ((1
+ (3
mod 3))
mod 3) by
RADIX_2: 2
.= ((1
+
0 )
mod 3) by
NAT_D: 25
.= 1 by
NAT_D: 14;
(((u
+ t)
+ 2)
mod 3)
= (((2
mod 3)
+ ((u
+ t)
mod 3))
mod 3) by
NAT_D: 66
.= ((2
+ 1)
mod 3) by
NAT_D: 24,
C2
.= (((u
+ t)
+ z)
mod 3) by
A2,
NAT_D: 25;
then (((u
+ t)
+ z),((u
+ t)
+ 2))
are_congruent_mod 3 by
NAT_D: 64;
then (z,2)
are_congruent_mod 3;
then (z
mod 3)
= (2
mod 3) by
NAT_D: 64
.= 2 by
NAT_D: 24;
hence thesis by
B1,
C1;
end;
end;
end;
LmAB3: (u
+ t)
= z implies 3
divides ((u
* t)
* z) or 3
divides (u
- t)
proof
assume (u
+ t)
= z;
then 3
divides (((u
+ t)
- z)
+ (3
* z));
then 3
divides ((u
+ t)
+ (2
* z));
then 3
divides ((u
* t)
* (2
* z)) or (u
mod 3)
= (t
mod 3) by
LmABC;
then 3
divides (2
* ((u
* t)
* z)) or (u,t)
are_congruent_mod 3 by
NAT_D: 64;
hence thesis by
PEPIN: 41,
INT_2: 25,
INT_2: 28,
INT_2: 30;
end;
theorem ::
NEWTON02:91
((a
|^ 2)
+ (b
|^ 2))
= (c
|^ 2) implies 3
divides ((a
* b)
* c)
proof
A0: (((a
|^ 2)
* (b
|^ 2))
* (c
|^ 2))
= (((a
* b)
|^ 2)
* (c
|^ 2)) by
NEWTON: 7
.= (((a
* b)
* c)
|^ 2) by
NEWTON: 7;
assume
A1: ((a
|^ 2)
+ (b
|^ 2))
= (c
|^ 2);
per cases by
LmAB3;
suppose 3
divides (((a
|^ 2)
* (b
|^ 2))
* (c
|^ 2));
hence thesis by
A0,
NAT_3: 5,
PEPIN: 41;
end;
suppose 3
divides ((a
|^ 2)
- (b
|^ 2)) & not 3
divides (((a
|^ 2)
* (b
|^ 2))
* (c
|^ 2));
then
B2: not 3
divides ((a
|^ 2)
* ((b
|^ 2)
* (c
|^ 2))) & not 3
divides ((b
|^ 2)
* ((a
|^ 2)
* (c
|^ 2))) & not 3
divides ((c
|^ 2)
* ((b
|^ 2)
* (a
|^ 2)));
then not 3
divides (a
|^ 2) & not 3
divides (b
|^ 2) & not 3
divides (c
|^ 2) by
INT_2: 2;
then not 3
divides a & not 3
divides b & not 3
divides c by
Th14;
then not 3
divides (c
* a) by
INT_5: 7,
PEPIN: 41;
then 3
divides ((c
+ a)
* (c
- a)) by
Th50;
then 3
divides ((c
|^ 2)
- (a
|^ 2)) by
NEWTON01: 1;
hence thesis by
A1,
B2,
INT_2: 2;
end;
end;
theorem ::
NEWTON02:92
for a,n be non
zero
Nat holds (t
mod a)
= (z
mod a) implies ((t
|^ n)
mod a)
= ((z
|^ n)
mod a)
proof
let a,n be non
zero
Nat;
assume (t
mod a)
= (z
mod a);
then ((t
|^ n),(z
|^ n))
are_congruent_mod a by
NAT_D: 64,
GR_CY_3: 34;
hence thesis by
NAT_D: 64;
end;
theorem ::
NEWTON02:93
3
divides (t
- z) implies 3
divides ((t
|^ n)
- (z
|^ n))
proof
3
divides (t
- z) & (t
- z)
divides ((t
|^ n)
- (z
|^ n)) implies 3
divides ((t
|^ n)
- (z
|^ n)) by
INT_2: 9;
hence thesis by
Th18;
end;
theorem ::
NEWTON02:94
for n be
odd
Nat holds 3
divides ((a
+ b)
- c) iff 3
divides (((a
|^ n)
+ (b
|^ n))
- (c
|^ n))
proof
let n be
odd
Nat;
thus 3
divides ((a
+ b)
- c) implies 3
divides (((a
|^ n)
+ (b
|^ n))
- (c
|^ n))
proof
assume 3
divides ((a
+ b)
- c);
then (((a
+ b)
- c)
mod 3)
=
0 by
INT_1: 62;
then ((((a
|^ n)
+ (b
|^ n))
- (c
|^ n))
mod 3)
=
0 by
Th89;
hence thesis by
INT_1: 62;
end;
assume 3
divides (((a
|^ n)
+ (b
|^ n))
- (c
|^ n));
then ((((a
|^ n)
+ (b
|^ n))
- (c
|^ n))
mod 3)
=
0 by
INT_1: 62;
then (((a
+ b)
- c)
mod 3)
=
0 by
Th89;
hence thesis by
INT_1: 62;
end;
theorem ::
NEWTON02:95
((((t
+ u)
- z)
|^ 2),(((t
|^ 2)
+ (u
|^ 2))
+ (z
|^ 2)))
are_congruent_mod 2
proof
(((t
- z)
+ u)
|^ 2)
= ((((((t
|^ 2)
+ (z
|^ 2))
+ (u
|^ 2))
- ((2
* t)
* z))
+ ((2
* t)
* u))
- ((2
* z)
* u)) by
SERIES_4: 3;
then ((((t
- z)
+ u)
|^ 2)
- (((t
|^ 2)
+ (z
|^ 2))
+ (u
|^ 2)))
= (2
* (((t
* u)
- (t
* z))
- (z
* u)));
hence thesis;
end;
LmTUZ: ((((t
+ u)
+ z)
|^ 3),(((t
|^ 3)
+ (u
|^ 3))
+ (z
|^ 3)))
are_congruent_mod 3
proof
(((t
+ u)
+ z)
|^ 3)
= (((((((t
|^ 3)
+ (u
|^ 3))
+ (z
|^ 3))
+ (((3
* (t
|^ 2))
* u)
+ ((3
* (t
|^ 2))
* z)))
+ (((3
* (u
|^ 2))
* t)
+ ((3
* (u
|^ 2))
* z)))
+ (((3
* (z
|^ 2))
* t)
+ ((3
* (z
|^ 2))
* u)))
+ (((6
* t)
* u)
* z)) by
SERIES_4: 8;
then ((((t
+ u)
+ z)
|^ 3)
- (((t
|^ 3)
+ (u
|^ 3))
+ (z
|^ 3)))
= (3
* ((((((t
|^ 2)
* u)
+ ((t
|^ 2)
* z))
+ (((u
|^ 2)
* t)
+ ((u
|^ 2)
* z)))
+ (((z
|^ 2)
* t)
+ ((z
|^ 2)
* u)))
+ (((2
* t)
* u)
* z)));
hence thesis;
end;
theorem ::
NEWTON02:96
((((t
+ u)
- z)
|^ 3),(((t
|^ 3)
+ (u
|^ 3))
- (z
|^ 3)))
are_congruent_mod 3
proof
((2
* 1)
+ 1) is
odd;
then
A1: ((
- z)
|^ 3)
= (
- (z
|^ 3)) by
POWER: 2;
((((t
+ u)
+ (
- z))
|^ 3),(((t
|^ 3)
+ (u
|^ 3))
+ ((
- z)
|^ 3)))
are_congruent_mod 3 by
LmTUZ;
hence thesis by
A1;
end;
theorem ::
NEWTON02:97
6
divides ((a
|^ 3)
- a)
proof
3
divides (a
* 1) or 3
divides ((a
+ 1)
* (a
- 1)) by
Th50;
then
A1: 3
divides (((a
- 1)
* (a
+ 1))
* (a
* 1)) by
INT_2: 2;
a is
even or (a
+ 1) is
even;
then
A2: ((a
* (a
+ 1))
* (a
- 1)) is
even;
((2
* 1)
+ 1) is
odd;
then
A3: (3,(2
|^ 1))
are_coprime by
NAT_5: 3;
((a
|^ (2
+ 1))
- a)
= (((a
|^ 2)
* a)
- a) by
NEWTON: 6
.= ((((a
|^ 2)
- (1
|^ 2))
* a)
* 1)
.= ((((a
- 1)
* (a
+ 1))
* a)
* 1) by
NEWTON01: 1;
then
|.3.|
divides
|.((a
|^ 3)
- a).| &
|.2.|
divides
|.((a
|^ 3)
- a).| by
A1,
A2,
INT_2: 16;
then
|.(3
* 2).|
divides
|.((a
|^ 3)
- a).| by
PEPIN: 4,
A3;
hence thesis by
INT_2: 16;
end;
theorem ::
NEWTON02:98
for a,b,c be
odd
Nat holds 3
divides (((t
|^ a)
+ (t
|^ b))
+ (t
|^ c))
proof
let a,b,c be
odd
Nat;
A1: ((t
|^ a)
mod 3)
= (t
mod 3) & ((t
|^ b)
mod 3)
= (t
mod 3) & ((t
|^ c)
mod 3)
= (t
mod 3) by
Th87;
((((t
|^ a)
+ (t
|^ b))
+ (t
|^ c))
mod 3)
= ((((t
|^ a)
+ (t
|^ b))
+ ((t
|^ c)
mod 3))
mod 3) by
Th88
.= (((((t
|^ c)
mod 3)
+ (t
|^ a))
+ (t
|^ b))
mod 3)
.= (((((t
|^ c)
mod 3)
+ (t
|^ a))
+ ((t
|^ b)
mod 3))
mod 3) by
Th88
.= (((((t
|^ c)
mod 3)
+ ((t
|^ b)
mod 3))
+ (t
|^ a))
mod 3)
.= (((((t
|^ c)
mod 3)
+ ((t
|^ b)
mod 3))
+ ((t
|^ a)
mod 3))
mod 3) by
Th88
.= ((
0
+ (3
* (t
mod 3)))
mod 3) by
A1
.=
0 ;
hence thesis by
INT_1: 62;
end;
theorem ::
NEWTON02:99
((2
|^ m)
- 1)
divides ((2
|^ ((2
* m)
+ 1))
- 2) & ((2
|^ m)
+ 1)
divides ((2
|^ ((2
* m)
+ 1))
- 2)
proof
((2
|^ ((2
* m)
+ 1))
- 2)
= ((2
* (2
|^ (2
* m)))
- 2) by
NEWTON: 6
.= (((2
|^ (2
* m))
- (1
|^ m))
* 2)
.= ((((2
|^ m)
|^ 2)
- ((1
|^ m)
|^ 2))
* 2) by
NEWTON: 9
.= ((((2
|^ m)
- (1
|^ m))
* ((2
|^ m)
+ (1
|^ m)))
* 2) by
NEWTON01: 1
.= (((2
|^ m)
- 1)
* (((2
|^ m)
+ 1)
* 2));
hence thesis by
INT_1:def 3,
INT_2: 2;
end;
theorem ::
NEWTON02:100
Th100: ((u
+ t)
+ z) is
even implies ((u
* t)
* z) is
even
proof
assume
A1: ((u
+ t)
+ z) is
even;
per cases ;
suppose u is
even;
hence thesis;
end;
suppose
B1: u is
odd;
per cases ;
suppose t is
even;
hence thesis;
end;
suppose t is
odd;
then z is
even by
A1,
B1;
hence thesis;
end;
end;
end;
theorem ::
NEWTON02:101
((t
|^ n)
+ (u
|^ n))
= (z
|^ n) implies (2
|^ n)
divides (((t
* u)
* z)
|^ n)
proof
assume ((t
|^ n)
+ (u
|^ n))
= (z
|^ n);
then (((t
|^ n)
+ (u
|^ n))
+ (
- (z
|^ n)))
=
0 ;
then (((t
|^ n)
+ (u
|^ n))
+ (
- (z
|^ n))) is
even;
then (((t
|^ n)
* (u
|^ n))
* (
- (z
|^ n))) is
even by
Th100;
then (
- (((t
|^ n)
* (u
|^ n))
* (z
|^ n))) is
even;
then (((t
|^ n)
* (u
|^ n))
* (z
|^ n)) is
even by
INT_2: 10;
then t is
even or u is
even or z is
even;
then ((t
* u)
* z) is
even;
hence thesis by
Th15;
end;
theorem ::
NEWTON02:102
((t
|^ n),(t
|^ m))
are_congruent_mod (t
- 1)
proof
per cases ;
suppose n
>= m;
then
consider k such that
B2: n
= (m
+ k) by
NAT_1: 10;
(t
|^ (m
+ k))
= ((t
|^ m)
* (t
|^ k)) by
NEWTON: 8;
then ((t
|^ (m
+ k))
- (t
|^ m))
= ((t
|^ m)
* ((t
|^ k)
- (1
|^ k)));
hence thesis by
B2,
Th18,
INT_2: 2;
end;
suppose m
>= n;
then
consider k such that
B2: m
= (n
+ k) by
NAT_1: 10;
(t
|^ (n
+ k))
= ((t
|^ n)
* (t
|^ k)) by
NEWTON: 8;
then ((t
|^ (n
+ k))
- (t
|^ n))
= ((t
|^ n)
* ((t
|^ k)
- (1
|^ k)));
then (t
- 1)
divides ((t
|^ m)
- (t
|^ n)) by
B2,
Th18,
INT_2: 2;
then (t
- 1)
divides (
- ((
- (t
|^ n))
+ (t
|^ m))) by
INT_2: 10;
hence thesis;
end;
end;
begin
reserve a,b,c,d,m,x,n,k,l for
Nat,
t,z for
Integer,
f,F,G for
FinSequence of
REAL ;
reserve q,r,s for
real
number;
reserve D for
set;
theorem ::
NEWTON02:103
Th1: for f be
FinSequence holds f is D
-valued iff f is
FinSequence of D
proof
let f be
FinSequence;
f is D
-valued implies f is
FinSequence of D
proof
assume f is D
-valued;
then (
rng f)
c= D by
RELAT_1:def 19;
hence thesis by
FINSEQ_1:def 4;
end;
hence thesis;
end;
theorem ::
NEWTON02:104
Th2: (k
+ 1)
in (
Seg n) iff k
< n
proof
thus (k
+ 1)
in (
Seg n) implies k
< n
proof
assume (k
+ 1)
in (
Seg n);
then (k
+ 1)
<= n by
FINSEQ_1: 1;
hence k
< n by
NAT_1: 13;
end;
thus thesis by
FINSEQ_3: 11;
end;
theorem ::
NEWTON02:105
Th3: (n
+ 1)
<= (
len f) iff (n
+ 1)
in (
dom f)
proof
thus (n
+ 1)
<= (
len f) implies (n
+ 1)
in (
dom f)
proof
assume (n
+ 1)
<= (
len f);
then n
< (
len f) by
NAT_1: 13;
then (n
+ 1)
in (
Seg (
len f)) by
Th2;
hence (n
+ 1)
in (
dom f) by
FINSEQ_1:def 3;
end;
assume (n
+ 1)
in (
dom f);
then (n
+ 1)
in (
Seg (
len f)) by
FINSEQ_1:def 3;
then n
< (
len f) by
Th2;
hence (n
+ 1)
<= (
len f) by
NAT_1: 13;
end;
theorem ::
NEWTON02:106
k
in (
Segm n) iff (k
+ 1)
in (
Seg n) by
Th2,
NAT_1: 44;
theorem ::
NEWTON02:107
Th7: n
in (
dom f) & 1
<= m & m
<= n implies (f
. m)
= ((f
| n)
. m)
proof
assume
A1: n
in (
dom f) & 1
<= m & m
<= n;
then m
in (
Seg n);
hence thesis by
A1,
RFINSEQ: 6;
end;
theorem ::
NEWTON02:108
f is
FinSequence of D implies (f
| n) is
FinSequence of D & (f
/^ n) is
FinSequence of D
proof
assume
A1: f is
FinSequence of D;
((f
| n)
^ (f
/^ n))
= f by
RFINSEQ: 8;
hence thesis by
A1,
FINSEQ_1: 36;
end;
theorem ::
NEWTON02:109
Th9: n
in (
dom f) implies ((f
| n)
. 1)
= (f
. 1)
proof
assume
A1: n
in (
dom f);
then n
>= 1 by
FINSEQ_3: 24,
NAT_1: 14;
hence thesis by
A1,
Th7;
end;
theorem ::
NEWTON02:110
Th10: for f be
FinSequence of
REAL st n
in (
dom f) holds (
len (f
| n))
= n
proof
let f be
FinSequence of
REAL ;
assume n
in (
dom f);
then n
<= (
len f) by
FINSEQ_3: 25;
hence thesis by
FINSEQ_1: 59;
end;
registration
let s;
cluster
<*s*> ->
REAL
-valued;
coherence by
TOPREALC: 19;
end
registration
let D;
let f be D
-valued
FinSequence;
let n;
cluster (f
| n) -> D
-valued;
coherence ;
end
registration
let D;
let f be
FinSequence of D;
let n;
cluster (f
/^ n) -> D
-valued;
coherence ;
end
theorem ::
NEWTON02:111
for f be
FinSequence of
COMPLEX holds k
in (
dom (f
| n)) implies k
in (
dom f)
proof
let f be
FinSequence of
COMPLEX ;
assume k
in (
dom (f
| n));
then k
in (
dom ((f
| n)
^ (f
/^ n))) by
FINSEQ_2: 15;
hence thesis by
RFINSEQ: 8;
end;
registration
let n;
cluster (
{}
/^ n) ->
empty;
coherence
proof
reconsider f = (
<*>
NAT ) as
FinSequence of
NAT ;
A1: (f
/^ (
len f))
=
{} by
RFINSEQ: 27;
per cases ;
suppose n
=
0 ;
hence thesis by
A1;
end;
suppose n
>
0 ;
then n
> (
len
{} );
hence thesis by
RFINSEQ:def 1;
end;
end;
end
registration
let f, n;
cluster ((f
| n)
/^ n) ->
empty;
coherence
proof
per cases ;
suppose
A1: n
>
0 ;
(
len (f
| n))
= n or not n
in (
dom f) by
Th10;
then (
len (f
| n))
= n or n
< 1 or n
> (
len f) by
FINSEQ_3: 25;
then (
len (f
| n))
<= n by
FINSEQ_1: 58,
A1,
NAT_1: 14;
hence thesis by
FINSEQ_5: 32;
end;
suppose n
=
0 ;
then (f
| n)
=
{} ;
hence thesis;
end;
end;
end
registration
let D;
let f be D
-valued
FinSequence;
let n;
cluster (f
/^ n) -> D
-valued;
coherence
proof
(
rng f)
c= D by
RELAT_1:def 19;
then f is
FinSequence of D by
FINSEQ_1:def 4;
hence thesis;
end;
end
registration
let f be
FinSequence of
NAT , n;
cluster (f
. n) ->
natural;
coherence ;
end
registration
let f be
FinSequence of
NAT , n, k;
cluster ((f
| n)
. k) ->
natural;
coherence ;
cluster (((f
| n)
/^ 1)
. k) ->
natural;
coherence ;
end
theorem ::
NEWTON02:112
Th14: (
Sum (f
^ F))
= ((
Sum f)
+ (
Sum F))
proof
f is
FinSequence of
COMPLEX & F is
FinSequence of
COMPLEX by
RVSUM_1: 146;
hence thesis by
MATRIXC1: 46;
end;
theorem ::
NEWTON02:113
Th15: for f be
FinSequence of
REAL holds k
in (
dom (f
/^ n)) & n
in (
dom f) implies (n
+ k)
in (
dom f)
proof
let f be
FinSequence of
REAL ;
assume
A1: k
in (
dom (f
/^ n)) & n
in (
dom f);
then ((
len (f
| n))
+ k)
in (
dom ((f
| n)
^ (f
/^ n))) by
FINSEQ_1: 28;
then (n
+ k)
in (
dom ((f
| n)
^ (f
/^ n))) by
A1,
Th10;
hence thesis by
RFINSEQ: 8;
end;
theorem ::
NEWTON02:114
Th16: for k be
positive
Nat holds (n
+ k)
in (
dom f) implies k
in (
dom (f
/^ n))
proof
let k be
positive
Nat;
A0: k
>= 1 by
NAT_1: 14;
assume (n
+ k)
in (
dom f);
then
A2: (n
+ k)
<= (
len f) by
FINSEQ_3: 25;
then
A3: ((n
+ k)
- n)
<= ((
len f)
- n) by
XREAL_1: 9;
(n
+ k)
> (n
+
0 ) by
XREAL_1: 6;
then (
len f)
> n by
A2,
XXREAL_0: 2;
then k
<= (
len (f
/^ n)) by
A3,
RFINSEQ:def 1;
hence thesis by
A0,
FINSEQ_3: 25;
end;
theorem ::
NEWTON02:115
Th17: for n be
positive
Nat st (n
+ 1)
= (
len f) holds (
Sum f)
= (((
Sum ((f
| n)
/^ 1))
+ (f
. 1))
+ (f
. (n
+ 1)))
proof
let n be
positive
Nat such that
A0: (n
+ 1)
= (
len f);
A2: f
= ((f
| n)
^
<*(f
. (n
+ 1))*>) by
A0,
RFINSEQ: 7;
n
>= 1 & (
len f)
>= n by
A0,
NAT_1: 13,
NAT_1: 14;
then
A2a: n
in (
dom f) by
FINSEQ_3: 25;
(n
+ 1)
> (n
+
0 ) by
XREAL_1: 6;
then
A3: (
len (f
| n))
>
0 by
A0,
FINSEQ_1: 59;
<*(f
. (n
+ 1))*> is
FinSequence of
REAL by
RVSUM_1: 145;
then (
Sum f)
= ((
Sum (f
| n))
+ (
Sum
<*(f
. (n
+ 1))*>)) by
Th14,
A2
.= ((
Sum (f
| n))
+ (f
. (n
+ 1))) by
RVSUM_1: 73
.= ((((f
| n)
. 1)
+ (
Sum ((f
| n)
/^ 1)))
+ (f
. (n
+ 1))) by
A3,
IRRAT_1: 17;
hence thesis by
A2a,
Th9;
end;
theorem ::
NEWTON02:116
(n
+ 1)
= (
len f) implies (f
/^ n)
=
<*(f
. (n
+ 1))*>
proof
assume (n
+ 1)
= (
len f);
then ((f
| n)
^
<*(f
. (n
+ 1))*>)
= f by
RFINSEQ: 7
.= ((f
| n)
^ (f
/^ n)) by
RFINSEQ: 8;
hence thesis by
FINSEQ_1: 33;
end;
theorem ::
NEWTON02:117
not ((f
| n)
/^ 1) is
empty implies (
len ((f
| n)
/^ 1))
<= ((
len f)
- 1)
proof
assume not ((f
| n)
/^ 1) is
empty;
then not (f
| n) is
empty;
then
A2: 1
in (
dom (f
| n)) by
FINSEQ_5: 6;
(f
| n)
= (((f
| n)
| 1)
^ ((f
| n)
/^ 1)) by
RFINSEQ: 8;
then (
len (f
| n))
= ((
len ((f
| n)
| 1))
+ (
len ((f
| n)
/^ 1))) by
FINSEQ_1: 22;
then
A3: ((
len ((f
| n)
/^ 1))
+ 1)
= (
len (f
| n)) by
A2,
Th10;
((
len (f
| n))
- 1)
<= ((
len f)
- 1) by
XREAL_1: 9,
FINSEQ_5: 16;
hence thesis by
A3;
end;
theorem ::
NEWTON02:118
Th20: not ((f
| n)
/^ 1) is
empty implies (
len ((f
| n)
/^ 1))
< n
proof
assume not ((f
| n)
/^ 1) is
empty;
then not (f
| n) is
empty;
then
A2: 1
in (
dom (f
| n)) by
FINSEQ_5: 6;
(f
| n)
= (((f
| n)
| 1)
^ ((f
| n)
/^ 1)) by
RFINSEQ: 8;
then (
len (f
| n))
= ((
len ((f
| n)
| 1))
+ (
len ((f
| n)
/^ 1))) by
FINSEQ_1: 22;
then
A3: ((
len ((f
| n)
/^ 1))
+ 1)
= (
len (f
| n)) by
A2,
Th10;
(
len (f
| n))
<= n by
FINSEQ_5: 17;
hence thesis by
A3,
NAT_1: 13;
end;
theorem ::
NEWTON02:119
Th21: n is
prime & k
<>
0 & k
<> n implies n
divides (n
choose k)
proof
assume
A1: n is
prime & k
<>
0 & k
<> n;
per cases by
XXREAL_0: 1;
suppose k
> n;
then (n
choose k)
=
0 by
NEWTON:def 3;
hence thesis by
NAT_D: 6;
end;
suppose
B1: k
< n;
then
consider m such that
B1a: n
= (1
+ m) by
NAT_1: 14,
NAT_1: 10;
B1b: ((k
! ),n)
are_coprime by
A1,
B1,
NAT_4: 19,
GROUP_17: 5;
consider l such that
B2: n
= (k
+ l) by
B1,
NAT_1: 10;
(k
+ l)
> (
0
+ l) by
A1,
XREAL_1: 6;
then
B3a: ((l
! ),n)
are_coprime by
A1,
B2,
NAT_4: 19,
GROUP_17: 5;
l
= (n
- k) by
B2;
then (n
choose k)
= ((n
! )
/ ((k
! )
* (l
! ))) by
B1,
NEWTON:def 3;
then ((n
choose k)
* ((k
! )
* (l
! )))
= (n
! ) by
XCMPLX_1: 87;
then ((n
choose k)
* ((k
! )
* (l
! )))
= ((m
! )
* n) by
B1a,
NEWTON: 15;
then n
divides (((n
choose k)
* (k
! ))
* (l
! ));
then n
divides ((n
choose k)
* (k
! )) by
B3a,
INT_2: 25;
hence thesis by
B1b,
INT_2: 25;
end;
end;
theorem ::
NEWTON02:120
Th22: b
>= 2 implies ((b
+ 1)
! )
> (2
|^ b)
proof
defpred
P[
Nat] means (($1
+ 1)
! )
> (2
|^ $1);
A1:
P[2]
proof
B1: ((2
+ 1)
! )
= (2
* 3) by
NEWTON: 14,
NEWTON: 15;
(2
|^ 2)
= (2
* 2) by
NEWTON: 81;
hence thesis by
B1;
end;
A2: for k be
Nat st k
>= 2 &
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
B1: k
>= 2 & ((k
+ 1)
! )
> (2
|^ k);
then (k
+ 2)
> (2
+
0 ) by
XREAL_1: 6;
then (((k
+ 1)
! )
* ((k
+ 1)
+ 1))
> ((2
|^ k)
* 2) by
B1,
XREAL_1: 96;
then (((k
+ 1)
! )
* ((k
+ 1)
+ 1))
> (2
|^ (k
+ 1)) by
NEWTON: 6;
hence thesis by
NEWTON: 15;
end;
for x be
Nat st x
>= 2 holds
P[x] from
NAT_1:sch 8(
A1,
A2);
hence thesis;
end;
Lm3: for b be
positive
Nat holds b
divides ((b
+ c)
! )
proof
let b be
positive
Nat;
(b
+ c)
>= (b
+
0 ) by
XREAL_1: 6;
hence thesis by
NEWTON: 41;
end;
Lm4: for a,b be
positive
Nat holds (a,(b
! ))
are_coprime implies (a,b)
are_coprime
proof
let a,b be
positive
Nat;
assume
A1: (a,(b
! ))
are_coprime ;
b
divides ((b
+
0 )
! ) by
Lm3;
hence thesis by
A1,
WSIERP_1: 15,
NEWTON: 57;
end;
theorem ::
NEWTON02:121
Th23: b
> 1 iff (b
! )
> 1
proof
thus b
> 1 implies (b
! )
> 1
proof
assume b
> 1;
then b
>= (1
+ 1) by
NAT_1: 13;
hence thesis by
ASYMPT_1: 55;
end;
thus thesis by
ASYMPT_1: 56,
NEWTON: 13;
end;
theorem ::
NEWTON02:122
Th24: b
>= 2 implies (b
! )
< (b
|^ b)
proof
defpred
P[
Nat] means ($1
! )
< ($1
|^ $1);
A1:
P[2]
proof
(2
|^ 2)
= (2
* 2) by
NEWTON: 81;
hence thesis by
NEWTON: 14;
end;
A2: for k be
Nat st k
>= 2 &
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
B1: k
>= 2 & (k
! )
< (k
|^ k);
B2: k
>= 1 by
B1,
XXREAL_0: 2;
(k
+ 1)
> (k
+
0 ) by
XREAL_1: 6;
then ((k
+ 1)
|^ k)
> (k
|^ k) by
B2,
PREPOWER: 10;
then
B3: (((k
+ 1)
|^ k)
* (k
+ 1))
> ((k
|^ k)
* (k
+ 1)) by
XREAL_1: 68;
((k
! )
* (k
+ 1))
< ((k
|^ k)
* (k
+ 1)) by
B1,
XREAL_1: 68;
then ((k
! )
* (k
+ 1))
< (((k
+ 1)
|^ k)
* (k
+ 1)) by
B3,
XXREAL_0: 2;
then ((k
+ 1)
! )
< (((k
+ 1)
|^ k)
* (k
+ 1)) by
NEWTON: 15;
hence thesis by
NEWTON: 6;
end;
for x be
Nat st x
>= 2 holds
P[x] from
NAT_1:sch 8(
A1,
A2);
hence thesis;
end;
theorem ::
NEWTON02:123
((b
+ 1)
! )
>= (2
|^ b)
proof
per cases by
NAT_1: 23;
suppose b
>= 2;
hence thesis by
Th22;
end;
suppose b
=
0 ;
hence thesis by
NEWTON: 4,
NEWTON: 13;
end;
suppose b
= 1;
hence thesis by
NEWTON: 14;
end;
end;
theorem ::
NEWTON02:124
(b
! )
<= (b
|^ b)
proof
per cases by
NAT_1: 23;
suppose b
>= 2;
hence thesis by
Th24;
end;
suppose b
=
0 ;
hence thesis by
NEWTON: 4,
NEWTON: 12;
end;
suppose b
= 1;
hence thesis by
NEWTON: 13;
end;
end;
theorem ::
NEWTON02:125
b
>
0 & (a,(b
! ))
are_coprime implies (a,b)
are_coprime
proof
assume
A1: b
>
0 & (a,(b
! ))
are_coprime ;
per cases ;
suppose a
=
0 ;
then b
<= 1 by
A1,
Th23;
then b
< (1
+ 1) by
NAT_1: 13;
then b
= 1 or b
=
0 by
NAT_1: 23;
hence thesis by
A1,
NEWTON: 51;
end;
suppose a
>
0 ;
hence thesis by
A1,
Lm4;
end;
end;
theorem ::
NEWTON02:126
(a,((a
+ b)
! ))
are_coprime implies a
= 1 or (a
=
0 & (b
=
0 or b
= 1))
proof
assume
A1: (a,((a
+ b)
! ))
are_coprime ;
per cases ;
suppose
B1: a
=
0 ;
then b
<= 1 by
A1,
Th23;
then b
< (1
+ 1) by
NAT_1: 13;
hence thesis by
B1,
NAT_1: 23;
end;
suppose a
>
0 ;
hence thesis by
A1,
Lm3,
NEWTON: 49;
end;
end;
theorem ::
NEWTON02:127
Th29: for n st n
in (
dom f) & m
in (
dom ((f
| n)
/^ 1)) holds (((f
| n)
/^ 1)
. m)
= (f
. (m
+ 1))
proof
let n such that
A0: n
in (
dom f);
set F = (f
| n);
assume
A1: m
in (
dom ((f
| n)
/^ 1));
A1a: (m
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
(f
| n)
<>
{} by
A1;
then
A2: 1
in (
dom (f
| n)) by
FINSEQ_5: 6;
then (m
+ 1)
<= (
len (f
| n)) by
A1,
Th15,
Th3;
then
A4: (m
+ 1)
<= n by
A0,
Th10;
(((f
| n)
/^ 1)
. m)
= (((f
| n)
/^ 1)
/. m) by
A1,
PARTFUN1:def 6
.= ((f
| n)
/. (1
+ m)) by
A1,
FINSEQ_5: 27
.= ((f
| n)
. (1
+ m)) by
A1,
A2,
Th15,
PARTFUN1:def 6
.= (f
. (1
+ m)) by
A0,
Th7,
A1a,
A4;
hence thesis;
end;
registration
let n;
cluster (
Newton_Coeff n) -> non
empty;
coherence
proof
(
len (
Newton_Coeff n))
= (n
+ 1) by
NEWTON:def 5;
hence thesis;
end;
end
registration
let n, m;
cluster ((
Newton_Coeff n)
. m) ->
natural;
coherence
proof
per cases ;
suppose
A0: m
in (
dom (
Newton_Coeff n));
then
consider k such that
A1: m
= (1
+ k) by
NAT_1: 10,
FINSEQ_3: 25;
k
= (m
- 1) by
A1;
then ((
Newton_Coeff n)
. m)
= (n
choose k) by
A0,
NEWTON:def 5;
hence thesis;
end;
suppose not m
in (
dom (
Newton_Coeff n));
hence thesis by
FUNCT_1:def 2;
end;
end;
end
registration
let n;
cluster (
Newton_Coeff n) ->
NAT
-valued;
coherence
proof
for k st k
in (
dom (
Newton_Coeff n)) holds ((
Newton_Coeff n)
. k)
in
NAT by
ORDINAL1:def 12;
hence thesis by
FINSEQ_2: 12;
end;
end
registration
let h be
FinSequence of
NAT ;
cluster (
Sum h) ->
natural;
coherence
proof
A1: for n st n
in (
dom h) holds (h
. n)
>=
0 ;
(
Sum h) is
integer;
then (
Sum h) is
Element of
NAT by
A1,
RVSUM_1: 84,
INT_1: 3;
hence thesis;
end;
end
theorem ::
NEWTON02:128
Th30: n
>
0 implies n
in (
dom (
Newton_Coeff n))
proof
assume n
>
0 ;
then
A1: n
in (
Seg n) by
FINSEQ_1: 3;
(
dom (
Newton_Coeff n))
= (
Seg (
len (
Newton_Coeff n))) by
FINSEQ_1:def 3
.= (
Seg (n
+ 1)) by
NEWTON:def 5;
hence thesis by
A1,
FINSEQ_2: 8;
end;
theorem ::
NEWTON02:129
(
Newton_Coeff n) is
FinSequence of
NAT
proof
for k st k
in (
dom (
Newton_Coeff n)) holds ((
Newton_Coeff n)
. k)
in
NAT ;
hence thesis by
FINSEQ_2: 12;
end;
theorem ::
NEWTON02:130
Th32: ((
Newton_Coeff n)
. (n
+ 1))
= 1
proof
A1: (
len (
Newton_Coeff n))
= (n
+ 1) by
NEWTON:def 5;
then
A2: n
= ((
len (
Newton_Coeff n))
- 1);
(n
+ 1)
in (
dom (
Newton_Coeff n)) by
A1,
Th3;
then ((
Newton_Coeff n)
. (n
+ 1))
= (n
choose n) by
A2,
NEWTON:def 5;
hence thesis by
NEWTON: 21;
end;
theorem ::
NEWTON02:131
Th33: ((
Newton_Coeff k)
. 1)
= 1
proof
(((1,1)
In_Power k)
. 1)
= 1
proof
thus (((1,1)
In_Power k)
. 1)
= (1
|^ k) by
NEWTON: 28
.= 1;
end;
hence thesis by
NEWTON: 31;
end;
theorem ::
NEWTON02:132
Th34: for n be
positive
Nat holds (
Sum (
Newton_Coeff n))
= (((
Sum (((
Newton_Coeff n)
| n)
/^ 1))
+ ((
Newton_Coeff n)
. 1))
+ ((
Newton_Coeff n)
. (n
+ 1)))
proof
let n be
positive
Nat;
(
len (
Newton_Coeff n))
= (n
+ 1) by
NEWTON:def 5;
then
A2: (
Newton_Coeff n)
= (((
Newton_Coeff n)
| n)
^
<*((
Newton_Coeff n)
. (n
+ 1))*>) by
RFINSEQ: 7;
A2a: n
in (
dom (
Newton_Coeff n)) by
Th30;
A3: (
len ((
Newton_Coeff n)
| n))
>
0 ;
<*((
Newton_Coeff n)
. (n
+ 1))*> is
FinSequence of
REAL by
RVSUM_1: 145;
then (
Sum (
Newton_Coeff n))
= ((
Sum ((
Newton_Coeff n)
| n))
+ (
Sum
<*((
Newton_Coeff n)
. (n
+ 1))*>)) by
Th14,
A2
.= ((
Sum ((
Newton_Coeff n)
| n))
+ ((
Newton_Coeff n)
. (n
+ 1))) by
RVSUM_1: 73
.= (((((
Newton_Coeff n)
| n)
. 1)
+ (
Sum (((
Newton_Coeff n)
| n)
/^ 1)))
+ ((
Newton_Coeff n)
. (n
+ 1))) by
A3,
IRRAT_1: 17;
hence thesis by
A2a,
Th9;
end;
theorem ::
NEWTON02:133
Th35: for n be
positive
Nat holds (
Sum (
Newton_Coeff n))
= ((
Sum (((
Newton_Coeff n)
| n)
/^ 1))
+ 2)
proof
let n be
positive
Nat;
(
Sum (
Newton_Coeff n))
= (((
Sum (((
Newton_Coeff n)
| n)
/^ 1))
+ ((
Newton_Coeff n)
. 1))
+ ((
Newton_Coeff n)
. (n
+ 1))) by
Th34
.= (((
Sum (((
Newton_Coeff n)
| n)
/^ 1))
+ ((
Newton_Coeff n)
. 1))
+ 1) by
Th32
.= (((
Sum (((
Newton_Coeff n)
| n)
/^ 1))
+ 1)
+ 1) by
Th33;
hence thesis;
end;
theorem ::
NEWTON02:134
(
Sum (
Newton_Coeff n))
= ((
Sum ((
Newton_Coeff n)
| n))
+ 1)
proof
A0: (
Newton_Coeff n) is
FinSequence of
NAT by
Th1;
A1: ((
Newton_Coeff n)
. (n
+ 1))
= (((1,1)
In_Power n)
. (n
+ 1)) by
NEWTON: 31
.= (1
^ n) by
NEWTON: 29;
A2: (n
+ 1)
= (
len (
Newton_Coeff n)) by
NEWTON:def 5;
(n
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then
A3: (n
+ 1)
in (
dom (
Newton_Coeff n)) by
FINSEQ_3: 25,
A2;
(
Newton_Coeff n)
= (((
Newton_Coeff n)
| n)
^
<*((
Newton_Coeff n)
/. (n
+ 1))*>) by
A0,
A2,
FINSEQ_5: 21
.= (((
Newton_Coeff n)
| n)
^
<*((
Newton_Coeff n)
. (n
+ 1))*>) by
A3,
PARTFUN1:def 6;
hence thesis by
A1,
RVSUM_1: 74;
end;
theorem ::
NEWTON02:135
(
len ((
Newton_Coeff n)
| n))
= n
proof
(
len (
Newton_Coeff n))
= (n
+ 1) by
NEWTON:def 5;
then n
< (
len (
Newton_Coeff n)) by
NAT_1: 13;
hence thesis by
FINSEQ_1: 59;
end;
theorem ::
NEWTON02:136
Th38: m
in (
dom (((
Newton_Coeff n)
| n)
/^ 1)) implies ((((
Newton_Coeff n)
| n)
/^ 1)
. m)
= ((
Newton_Coeff n)
. (m
+ 1))
proof
A1: n
=
0 implies ((
Newton_Coeff n)
| n)
=
{} ;
n
>
0 implies n
in (
dom (
Newton_Coeff n)) by
Th30;
hence thesis by
A1,
Th29;
end;
theorem ::
NEWTON02:137
Th39: n is
prime implies n
divides ((((
Newton_Coeff n)
| n)
/^ 1)
. k)
proof
L1: n is
prime & k
>= n implies n
divides ((((
Newton_Coeff n)
| n)
/^ 1)
. k)
proof
assume
A1: n is
prime & k
>= n;
then n
in (
dom (
Newton_Coeff n)) by
Th30;
then k
>= (
len ((
Newton_Coeff n)
| n)) by
A1,
Th10;
then (k
+ 1)
> (
len ((
Newton_Coeff n)
| n)) by
NAT_1: 13;
then not (k
+ 1)
in (
dom ((
Newton_Coeff n)
| n)) by
FINSEQ_3: 25;
then not k
in (
dom (((
Newton_Coeff n)
| n)
/^ 1)) by
FINSEQ_5: 26;
then ((((
Newton_Coeff n)
| n)
/^ 1)
. k)
=
{} by
FUNCT_1:def 2;
hence thesis by
NAT_D: 6;
end;
n is
prime & k
< n implies n
divides ((((
Newton_Coeff n)
| n)
/^ 1)
. k)
proof
A0: k
= ((k
+ 1)
- 1);
assume
A1: n is
prime & k
< n;
per cases ;
suppose
A1aa: k
>
0 ;
then
A1a: (k
+ 1)
> (
0
+ 1) & (k
+ 1)
< (n
+ 1) & (
len (
Newton_Coeff n))
= (n
+ 1) by
A1,
XREAL_1: 8,
NEWTON:def 5;
then
A2: (k
+ 1)
in (
dom (
Newton_Coeff n)) by
FINSEQ_3: 25;
n
in (
dom (
Newton_Coeff n)) by
A1,
Th30;
then
A3: (
len ((
Newton_Coeff n)
| n))
= n by
Th10;
(k
+ 1)
<= n by
A1,
NAT_1: 13;
then (k
+ 1)
in (
dom ((
Newton_Coeff n)
| n)) by
A1a,
A3,
FINSEQ_3: 25;
then k
in (
dom (((
Newton_Coeff n)
| n)
/^ 1)) by
A1aa,
Th16;
then ((((
Newton_Coeff n)
| n)
/^ 1)
. k)
= ((
Newton_Coeff n)
. (k
+ 1)) by
Th38
.= (n
choose k) by
A0,
A2,
NEWTON:def 5;
hence thesis by
A1,
A1aa,
Th21;
end;
suppose k
=
0 ;
then not k
in (
dom (((
Newton_Coeff n)
| n)
/^ 1)) by
FINSEQ_3: 25;
then ((((
Newton_Coeff n)
| n)
/^ 1)
. k)
=
{} by
FUNCT_1:def 2;
hence thesis by
NAT_D: 6;
end;
end;
hence thesis by
L1;
end;
theorem ::
NEWTON02:138
Th40: for n be
prime
Nat holds n
divides ((2
|^ n)
- 2)
proof
let n be
prime
Nat;
reconsider h = (
Newton_Coeff n) as
FinSequence of
NAT by
Th1;
reconsider f = (((
Newton_Coeff n)
| n)
/^ 1) as
FinSequence of
NAT by
Th1;
A2: for k st k
in (
dom f) holds n
divides (f
. k) by
Th39;
(
Sum h)
= ((
Sum f)
+ 2) by
Th35;
then (2
|^ n)
= ((
Sum f)
+ 2) by
NEWTON: 32;
hence thesis by
A2,
INT_4: 36;
end;
registration
let k be
positive
Nat;
let n;
cluster ((n
|^ k)
- n) ->
natural;
coherence
proof
k
>= 1 by
NAT_1: 14;
then (n
|^ k)
>= n or n
< 1 by
PREPOWER: 12;
then ((n
|^ k)
- n)
>= (n
- n) or n
=
0 by
XREAL_1: 9,
NAT_1: 14;
then ((n
|^ k)
- n) is
Element of
NAT by
INT_1: 3;
hence thesis;
end;
end
theorem ::
NEWTON02:139
for k,n be
prime
Nat holds (n
* k)
divides (((2
|^ n)
- 2)
* ((2
|^ k)
- 2))
proof
let k,n be
prime
Nat;
n
divides ((2
|^ n)
- 2) & k
divides ((2
|^ k)
- 2) by
Th40;
hence thesis by
NAT_3: 1;
end;
theorem ::
NEWTON02:140
for n be
odd
Prime st n
= ((2
* k)
+ 1) holds n
divides ((2
|^ k)
- 1) iff not n
divides ((2
|^ k)
+ 1)
proof
let n be
odd
Prime such that
A1: n
= ((2
* k)
+ 1);
not 2
divides n;
then
A2: not n
divides 2 by
INT_2: 28,
INT_2: 30,
PYTHTRIP:def 2;
A3: n
divides ((2
|^ k)
- 1) or n
divides ((2
|^ k)
+ 1)
proof
n
divides ((2
|^ ((2
* k)
+ 1))
- 2) by
A1,
Th40;
then n
divides (((2
|^ (2
* k))
* 2)
- 2) by
NEWTON: 6;
then n
divides (2
* ((2
|^ (2
* k))
- (1
|^ 2)));
then n
divides ((2
|^ (2
* k))
- 1) by
A2,
INT_5: 7;
then n
divides (((2
|^ k)
|^ 2)
- (1
|^ 2)) by
NEWTON: 9;
then n
divides (((2
|^ k)
- 1)
* ((2
|^ k)
+ 1)) by
NEWTON01: 1;
hence thesis by
INT_5: 7;
end;
(((2
|^ k)
+ 1)
- ((2
|^ k)
- 1))
= 2;
hence thesis by
A2,
INT_5: 1,
A3;
end;
definition
let n be
natural
number;
::
NEWTON02:def1
func n
\ ->
FinSequence of
REAL equals ((1,1)
In_Power n);
coherence ;
end
registration
let n;
identify
Newton_Coeff n with n
\ ;
correctness by
NEWTON: 31;
identify n
\ with
Newton_Coeff n;
correctness ;
end
theorem ::
NEWTON02:141
Th43: n
>
0 implies n
in (
dom ((a,b)
In_Power n))
proof
assume n
>
0 ;
then
A1: n
in (
Seg n) by
FINSEQ_1: 3;
(
dom ((a,b)
In_Power n))
= (
Seg (
len ((a,b)
In_Power n))) by
FINSEQ_1:def 3
.= (
Seg (n
+ 1)) by
NEWTON:def 4;
hence thesis by
A1,
FINSEQ_2: 8;
end;
registration
let a, b, n, m;
cluster (((a,b)
In_Power n)
. m) ->
natural;
coherence
proof
per cases ;
suppose
A0: m
in (
dom ((a,b)
In_Power n));
then
consider k such that
A1: m
= (1
+ k) by
NAT_1: 10,
FINSEQ_3: 25;
(
len ((a,b)
In_Power n))
= (n
+ 1) by
NEWTON:def 4;
then n
>= k by
A0,
FINSEQ_3: 25,
A1,
XREAL_1: 6;
then
consider l such that
A2: n
= (k
+ l) by
NAT_1: 10;
k
= (m
- 1) & l
= (n
- k) by
A1,
A2;
then (((a,b)
In_Power n)
. m)
= (((n
choose k)
* (a
|^ l))
* (b
|^ k)) by
A0,
NEWTON:def 4;
hence thesis;
end;
suppose not m
in (
dom ((a,b)
In_Power n));
hence thesis by
FUNCT_1:def 2;
end;
end;
end
registration
let a, b, n;
cluster ((a,b)
In_Power n) ->
NAT
-valued;
coherence
proof
for k st k
in (
dom ((a,b)
In_Power n)) holds (((a,b)
In_Power n)
. k)
in
NAT by
ORDINAL1:def 12;
hence thesis by
FINSEQ_2: 12;
end;
end
Lm1: (((a,b)
In_Power (k
+ l))
. (k
+ 1))
= ((((k
+ l)
choose k)
* (a
|^ l))
* (b
|^ k))
proof
(k
+ l)
>= (k
+
0 ) by
XREAL_1: 6;
then (((a,b)
In_Power (k
+ l))
. (k
+ 1))
= ((((k
+ l)
choose k)
* (a
^ ((k
+ l)
- k)))
* (b
^ k)) by
IRRAT_1: 19
.= ((((k
+ l)
choose k)
* (a
|^ l))
* (b
|^ k)) by
POWER: 41;
hence thesis;
end;
theorem ::
NEWTON02:142
(k
+ l) is
prime & k
>
0 & l
>
0 implies (k
+ l)
divides (((a,b)
In_Power (k
+ l))
. (k
+ 1))
proof
assume
A1: (k
+ l) is
prime & k
>
0 & l
>
0 ;
then (k
+ l)
> (k
+
0 ) by
XREAL_1: 6;
then
A2: (k
+ l)
divides ((k
+ l)
choose k) by
A1,
Th21;
((k
+ l)
choose k)
divides (((k
+ l)
choose k)
* ((a
|^ l)
* (b
|^ k)));
then
consider x such that
A3: (((k
+ l)
choose k)
* ((a
|^ l)
* (b
|^ k)))
= ((k
+ l)
* x) by
A2,
INT_2: 9,
NAT_D:def 3;
(((a,b)
In_Power (k
+ l))
. (k
+ 1))
= ((((k
+ l)
choose k)
* (a
|^ l))
* (b
|^ k)) by
Lm1
.= ((k
+ l)
* x) by
A3;
hence thesis;
end;
Lm5: m
in (
dom ((((a,b)
In_Power n)
| n)
/^ 1)) implies (((((a,b)
In_Power n)
| n)
/^ 1)
. m)
= (((a,b)
In_Power n)
. (m
+ 1))
proof
A1: n
=
0 implies (((a,b)
In_Power n)
| n)
=
{} ;
n
>
0 implies n
in (
dom ((a,b)
In_Power n)) by
Th43;
hence thesis by
A1,
Th29;
end;
theorem ::
NEWTON02:143
Th45: a
<>
0 implies (((a,b)
In_Power m)
. 1)
<>
0
proof
assume
A1: a
<>
0 ;
(((a,b)
In_Power m)
. 1)
= (a
|^ m) by
NEWTON: 28;
hence thesis by
A1;
end;
theorem ::
NEWTON02:144
for m be non
zero
Nat holds a
=
0 iff (((a,b)
In_Power m)
. 1)
=
0
proof
for m be non
zero
Nat holds a
=
0 implies (((a,b)
In_Power m)
. 1)
=
0
proof
let m be non
zero
Nat;
assume
A1: a
=
0 ;
(((a,b)
In_Power m)
. 1)
= (a
|^ m) by
NEWTON: 28;
hence thesis by
A1;
end;
hence thesis by
Th45;
end;
theorem ::
NEWTON02:145
(((a,b)
In_Power m)
. 1)
=
0 implies m
<>
0
proof
assume
A1: (((a,b)
In_Power m)
. 1)
=
0 ;
(a
|^
0 )
= 1 by
NEWTON: 4;
hence thesis by
A1,
NEWTON: 28;
end;
theorem ::
NEWTON02:146
Th48: for m be
positive
Nat holds (
Sum ((a,b)
In_Power m))
= (((a
|^ m)
+ (b
|^ m))
+ (
Sum ((((a,b)
In_Power m)
| m)
/^ 1)))
proof
let m be
positive
Nat;
(
len ((a,b)
In_Power m))
= (m
+ 1) by
NEWTON:def 4;
then (
Sum ((a,b)
In_Power m))
= (((
Sum ((((a,b)
In_Power m)
| m)
/^ 1))
+ (((a,b)
In_Power m)
. 1))
+ (((a,b)
In_Power m)
. (m
+ 1))) by
Th17
.= (((
Sum ((((a,b)
In_Power m)
| m)
/^ 1))
+ (a
|^ m))
+ (((a,b)
In_Power m)
. (m
+ 1))) by
NEWTON: 28
.= (((
Sum ((((a,b)
In_Power m)
| m)
/^ 1))
+ (a
|^ m))
+ (b
|^ m)) by
NEWTON: 29;
hence thesis;
end;
theorem ::
NEWTON02:147
(
Sum ((a,b)
In_Power (m
+ n)))
= ((
Sum ((a,b)
In_Power m))
* (
Sum ((a,b)
In_Power n)))
proof
(
Sum ((a,b)
In_Power (m
+ n)))
= ((a
+ b)
|^ (m
+ n)) by
NEWTON: 30
.= (((a
+ b)
|^ m)
* ((a
+ b)
|^ n)) by
NEWTON: 8
.= ((
Sum ((a,b)
In_Power m))
* ((a
+ b)
|^ n)) by
NEWTON: 30
.= ((
Sum ((a,b)
In_Power m))
* (
Sum ((a,b)
In_Power n))) by
NEWTON: 30;
hence thesis;
end;
theorem ::
NEWTON02:148
Th50: l
>
0 implies ex x st (((a,b)
In_Power (k
+ l))
. (k
+ 1))
= (a
* x)
proof
assume l
>
0 ;
then
consider n such that
A3: l
= (1
+ n) by
NAT_1: 10,
NAT_1: 14;
consider x such that
A4: x
= ((((k
+ l)
choose k)
* (a
|^ n))
* (b
|^ k));
(((a,b)
In_Power (k
+ l))
. (k
+ 1))
= ((((k
+ l)
choose k)
* (a
|^ l))
* (b
|^ k)) by
Lm1
.= ((((k
+ l)
choose k)
* ((a
|^ 1)
* (a
|^ n)))
* (b
|^ k)) by
A3,
NEWTON: 8
.= (a
* x) by
A4;
hence thesis;
end;
theorem ::
NEWTON02:149
m
>
0 implies ex k st (((a,b)
In_Power m)
. 1)
= (a
* k)
proof
m
>
0 implies ex k st (((a,b)
In_Power (m
+
0 ))
. (
0
+ 1))
= (a
* k) by
Th50;
hence thesis;
end;
theorem ::
NEWTON02:150
l
>
0 implies ex x st (((a,b)
In_Power (k
+ l))
. l)
= (a
* x)
proof
assume l
>
0 ;
then
consider n be
Nat such that
A3: l
= (1
+ n) by
NAT_1: 10,
NAT_1: 14;
set m = (k
+ 1);
consider x such that
A4: x
= ((((m
+ n)
choose n)
* (a
|^ k))
* (b
|^ n));
(((a,b)
In_Power (k
+ l))
. l)
= ((((m
+ n)
choose n)
* (a
|^ m))
* (b
|^ n)) by
Lm1,
A3
.= ((((m
+ n)
choose n)
* ((a
|^ 1)
* (a
|^ k)))
* (b
|^ n)) by
NEWTON: 8
.= (a
* x) by
A4;
hence thesis;
end;
theorem ::
NEWTON02:151
for n st n
= (((a,b)
In_Power (k
+ l))
. (k
+ 1)) & l
>
0 holds a
divides n
proof
let n;
assume n
= (((a,b)
In_Power (k
+ l))
. (k
+ 1)) & l
>
0 ;
then
consider x such that
A2: n
= (a
* x) by
Th50;
thus thesis by
A2;
end;
theorem ::
NEWTON02:152
Th54: for n be
prime
Nat, a,b be
positive
Nat holds ((n
* a)
* b)
divides (((((a,b)
In_Power n)
| n)
/^ 1)
. k)
proof
let n be
prime
Nat, a,b be
positive
Nat;
L1: not k
in (
dom ((((a,b)
In_Power n)
| n)
/^ 1)) implies ((n
* a)
* b)
divides (((((a,b)
In_Power n)
| n)
/^ 1)
. k)
proof
assume not k
in (
dom ((((a,b)
In_Power n)
| n)
/^ 1));
then (((((a,b)
In_Power n)
| n)
/^ 1)
. k)
=
{} by
FUNCT_1:def 2;
hence thesis by
NAT_D: 6;
end;
n is
prime & k
in (
dom ((((a,b)
In_Power n)
| n)
/^ 1)) implies ((n
* a)
* b)
divides (((((a,b)
In_Power n)
| n)
/^ 1)
. k)
proof
A0: k
= ((k
+ 1)
- 1);
assume
A1: n is
prime & k
in (
dom ((((a,b)
In_Power n)
| n)
/^ 1));
then
A2: not ((((a,b)
In_Power n)
| n)
/^ 1) is
empty;
A3: k
>= 1 & k
<= (
len ((((a,b)
In_Power n)
| n)
/^ 1)) by
FINSEQ_3: 25,
A1;
then
A3a: k
< n by
A2,
Th20,
XXREAL_0: 2;
then
A4: (k
+ 1)
< (n
+ 1) & (k
+ 1)
> 1 by
A1,
FINSEQ_3: 25,
NAT_1: 13,
XREAL_1: 6;
A4a: (n
- k)
> (k
- k) by
A3a,
XREAL_1: 9;
consider l such that
A4b: n
= (k
+ l) by
A3a,
NAT_1: 10;
A4d: l
= (n
- k) by
A4b;
(
len ((a,b)
In_Power n))
= (n
+ 1) by
NEWTON:def 4;
then
A6: (k
+ 1)
in (
dom ((a,b)
In_Power n)) by
A4,
FINSEQ_3: 25;
A7: (((((a,b)
In_Power n)
| n)
/^ 1)
. k)
= (((a,b)
In_Power n)
. (k
+ 1)) by
A1,
Lm5
.= (((n
choose k)
* (a
|^ l))
* (b
|^ k)) by
A0,
A4d,
A6,
NEWTON:def 4;
A8: n
divides (n
choose k) by
A3,
A3a,
Th21;
a
divides (a
|^ l) & b
divides (b
|^ k) by
A4a,
A4b,
A3,
NAT_3: 3;
then (a
* b)
divides ((a
|^ l)
* (b
|^ k)) by
NAT_3: 1;
then (n
* (a
* b))
divides ((n
choose k)
* ((a
|^ l)
* (b
|^ k))) by
A8,
NAT_3: 1;
hence thesis by
A7;
end;
hence thesis by
L1;
end;
theorem ::
NEWTON02:153
Th55: for n be
prime
Nat, a,b be
positive
Nat holds ((n
* a)
* b)
divides (((a
+ b)
|^ n)
- ((a
|^ n)
+ (b
|^ n)))
proof
let n be
prime
Nat, a,b be
positive
Nat;
reconsider g = ((a,b)
In_Power n) as
FinSequence of
NAT by
Th1;
reconsider h = ((((a,b)
In_Power n)
| n)
/^ 1) as
FinSequence of
NAT by
Th1;
A1: for k st k
in (
dom h) holds ((n
* a)
* b)
divides (h
. k) by
Th54;
(
Sum g)
= (((a
|^ n)
+ (b
|^ n))
+ (
Sum h)) by
Th48;
then ((a
+ b)
|^ n)
= (((
Sum h)
+ (a
|^ n))
+ (b
|^ n)) by
NEWTON: 30;
hence thesis by
A1,
INT_4: 36;
end;
theorem ::
NEWTON02:154
Th56: for n be
prime
Nat holds (n
* a)
divides (((a
+ 1)
|^ n)
- ((a
|^ n)
+ 1))
proof
let n be
prime
Nat;
L1: a
>
0 implies ((n
* a)
* 1)
divides (((a
+ 1)
|^ n)
- ((a
|^ n)
+ (1
|^ n))) by
Th55;
a
=
0 implies (n
* a)
divides (((a
+ 1)
|^ n)
- ((a
|^ n)
+ 1));
hence thesis by
L1;
end;
theorem ::
NEWTON02:155
for a,b be
positive
Nat holds ((2
* a)
* b)
divides (((a
+ b)
|^ 2)
- ((a
|^ 2)
+ (b
|^ 2))) by
Th55,
INT_2: 28;
theorem ::
NEWTON02:156
Th58: for n be
prime
Nat holds n
divides ((a
|^ n)
- a)
proof
let n be
prime
Nat;
defpred
P[
Nat] means n
divides (($1
|^ n)
- $1);
L1:
P[
0 ] by
INT_2: 12;
L2:
P[k] implies
P[(k
+ 1)]
proof
assume
A0:
P[k];
(n
* k)
divides (((k
+ 1)
|^ n)
- ((k
|^ n)
+ 1)) by
Th56;
then n
divides (((k
+ 1)
|^ n)
- ((k
|^ n)
+ 1)) by
INT_2: 2,
INT_1:def 3;
then n
divides (((k
|^ n)
- k)
+ (((k
+ 1)
|^ n)
- ((k
|^ n)
+ 1))) by
A0,
WSIERP_1: 4;
hence thesis;
end;
for x be
Nat holds
P[x] from
NAT_1:sch 2(
L1,
L2);
hence thesis;
end;
theorem ::
NEWTON02:157
Th59: for k be
Nat st (k
+ 1) is
prime & not (k
+ 1)
divides a holds (k
+ 1)
divides ((a
|^ k)
- 1)
proof
let k be
Nat such that
A1: (k
+ 1) is
prime and
A2: not (k
+ 1)
divides a;
(k
+ 1)
divides ((a
|^ (k
+ 1))
- a) by
A1,
Th58;
then (k
+ 1)
divides (((a
|^ k)
* a)
- a) by
NEWTON: 6;
then (k
+ 1)
divides (a
* ((a
|^ k)
- 1));
hence thesis by
A1,
A2,
INT_5: 7;
end;
theorem ::
NEWTON02:158
Th60: for n be
prime
Nat holds n
divides (a
+ b) iff n
divides ((a
|^ n)
+ (b
|^ n))
proof
let n be
prime
Nat;
n
divides ((a
|^ n)
- a) & n
divides ((b
|^ n)
- b) by
Th58;
then
A1: n
divides (((a
|^ n)
- a)
+ ((b
|^ n)
- b)) by
WSIERP_1: 4;
A2: ((a
|^ n)
+ (b
|^ n))
= ((a
+ b)
+ (((a
|^ n)
+ (b
|^ n))
- (a
+ b)));
hence n
divides (a
+ b) implies n
divides ((a
|^ n)
+ (b
|^ n)) by
A1,
WSIERP_1: 4;
assume n
divides ((a
|^ n)
+ (b
|^ n));
hence thesis by
A1,
A2,
INT_2: 1;
end;
theorem ::
NEWTON02:159
163
divides (a
+ b) iff 163
divides ((a
|^ 163)
+ (b
|^ 163)) by
NAT_4: 35,
Th60;
theorem ::
NEWTON02:160
Th62: for n be
prime
Nat holds n
divides a iff n
divides (a
|^ n)
proof
let n be
prime
Nat;
a
divides (a
|^ n) by
NAT_3: 3;
hence thesis by
NAT_D: 4,
NAT_3: 5;
end;
theorem ::
NEWTON02:161
Th63: for n be
prime
Nat holds n
divides ((a
|^ n)
+ 1) iff n
divides (a
+ 1)
proof
let n be
prime
Nat;
n
divides ((a
|^ n)
+ (1
|^ n)) iff n
divides (a
+ 1) by
Th60;
hence thesis;
end;
theorem ::
NEWTON02:162
for n be
prime
Nat holds n
divides ((a
|^ n)
+ (b
|^ n)) iff n
divides ((a
+ b)
|^ n) by
Th60,
Th62;
theorem ::
NEWTON02:163
7
divides ((a
|^ 7)
+ 1) iff 7
divides (a
+ 1) by
Th63,
NAT_4: 26;
theorem ::
NEWTON02:164
not 7
divides a implies 7
divides ((a
|^ 6)
- 1)
proof
assume not 7
divides a;
then
A1: not (a
gcd 7)
= 7 by
INT_2:def 2;
7
divides ((a
|^ (6
+ 1))
- a) by
NAT_4: 26,
Th58;
then 7
divides (((a
|^ 6)
* a)
- a) by
NEWTON: 6;
then 7
divides (a
* ((a
|^ 6)
- 1));
hence thesis by
A1,
NAT_4: 26,
PEPIN: 2,
INT_2: 25;
end;
theorem ::
NEWTON02:165
for n be
prime
Nat, a,b be
positive
Nat holds ((n
* a)
* b)
divides (((a
+ b)
|^ (k
* n))
- (((a
|^ n)
+ (b
|^ n))
|^ k))
proof
let n be
prime
Nat, a,b be
positive
Nat;
(((a
+ b)
|^ n)
- ((a
|^ n)
+ (b
|^ n)))
divides ((((a
+ b)
|^ n)
|^ k)
- (((a
|^ n)
+ (b
|^ n))
|^ k)) by
NEWTON01: 33;
then
A1: (((a
+ b)
|^ n)
- ((a
|^ n)
+ (b
|^ n)))
divides (((a
+ b)
|^ (k
* n))
- (((a
|^ n)
+ (b
|^ n))
|^ k)) by
NEWTON: 9;
((n
* a)
* b)
divides (((a
+ b)
|^ n)
- ((a
|^ n)
+ (b
|^ n))) by
Th55;
hence thesis by
A1,
INT_2: 9;
end;
theorem ::
NEWTON02:166
for n be
prime
Nat, a,b be
positive
Nat holds ((n
* a)
* b)
divides (((a
+ t)
|^ n)
- ((a
|^ n)
+ (b
|^ n))) implies ((n
* a)
* b)
divides (((a
+ b)
|^ n)
- ((a
+ t)
|^ n))
proof
let n be
prime
Nat, a,b be
positive
Nat;
assume
A1: ((n
* a)
* b)
divides (((a
+ t)
|^ n)
- ((a
|^ n)
+ (b
|^ n)));
((n
* a)
* b)
divides (
- (((a
+ b)
|^ n)
- ((a
|^ n)
+ (b
|^ n)))) by
INT_2: 10,
Th55;
then ((n
* a)
* b)
divides ((((a
|^ n)
+ (b
|^ n))
- ((a
+ b)
|^ n))
+ (((a
+ t)
|^ n)
- ((a
|^ n)
+ (b
|^ n)))) by
A1,
WSIERP_1: 4;
then ((n
* a)
* b)
divides (
- (((a
+ b)
|^ n)
- ((a
+ t)
|^ n)));
hence thesis by
INT_2: 10;
end;
theorem ::
NEWTON02:167
for n be
prime
Nat, a,b,c be
positive
Nat holds ((n
* a)
* b)
divides (c
- b) implies ((n
* a)
* b)
divides (((a
|^ n)
+ (b
|^ n))
- ((a
+ c)
|^ n))
proof
let n be
prime
Nat, a,b,c be
positive
Nat;
assume ((n
* a)
* b)
divides (c
- b);
then ((n
* a)
* b)
divides (
- (b
- c));
then
A1: ((n
* a)
* b)
divides (b
- c) by
INT_2: 10;
((a
+ b)
- (a
+ c))
divides (((a
+ b)
|^ n)
- ((a
+ c)
|^ n)) by
NEWTON01: 33;
then
A3: ((n
* a)
* b)
divides (((a
+ b)
|^ n)
- ((a
+ c)
|^ n)) by
A1,
INT_2: 9;
((n
* a)
* b)
divides (
- (((a
+ b)
|^ n)
- ((a
|^ n)
+ (b
|^ n)))) by
INT_2: 10,
Th55;
then ((n
* a)
* b)
divides ((((a
+ b)
|^ n)
- ((a
+ c)
|^ n))
+ (
- (((a
+ b)
|^ n)
- ((a
|^ n)
+ (b
|^ n))))) by
A3,
WSIERP_1: 4;
hence thesis;
end;
theorem ::
NEWTON02:168
Th70: for p be
prime
Nat st p
= ((2
* n)
+ 1) holds p
divides a or p
divides ((a
|^ n)
- 1) or p
divides ((a
|^ n)
+ 1)
proof
let p be
prime
Nat such that
A1: p
= ((2
* n)
+ 1);
((a
|^ ((2
* n)
+ 1))
- a)
= (((a
|^ (2
* n))
* a)
- a) by
NEWTON: 6
.= (a
* ((a
|^ (2
* n))
- 1))
.= (a
* (((a
|^ n)
|^ 2)
- (1
|^ 2))) by
NEWTON: 9
.= (a
* (((a
|^ n)
- 1)
* ((a
|^ n)
+ 1))) by
NEWTON01: 1;
then p
divides a or p
divides (((a
|^ n)
- 1)
* ((a
|^ n)
+ 1)) by
A1,
Th58,
INT_5: 7;
hence thesis by
INT_5: 7;
end;
theorem ::
NEWTON02:169
for p be
prime
Nat st not p
divides a holds ex n st p
divides ((a
|^ n)
- 1) &
0
< n & n
< p
proof
let p be
prime
Nat such that
A0: not p
divides a;
p
> 1 by
INT_2:def 4;
then p
>= (1
+ 1) by
NAT_1: 13;
then
consider k such that
A1: p
= (2
+ k) by
NAT_1: 10;
p
= ((k
+ 1)
+ 1) by
A1;
then p
divides ((a
|^ (k
+ 1))
- 1) by
A0,
Th59;
hence thesis by
A1,
XREAL_1: 6;
end;
theorem ::
NEWTON02:170
5
divides ((a
|^ 3)
- 1) iff 5
divides (a
- 1)
proof
L1: 5
divides ((a
|^ 3)
- 1) implies 5
divides (a
- 1)
proof
A1: 5
divides ((a
|^ 5)
- a) by
PEPIN: 59,
Th58;
assume
A2: 5
divides ((a
|^ 3)
- 1);
then
a2b: (a
|^ 3)
<>
0 by
INT_2: 13;
A3: a
divides (a
|^ 3) by
NAT_3: 3;
5
divides ((
- (a
|^ 2))
* ((a
|^ 3)
- 1)) by
A2,
INT_2: 2;
then 5
divides ((
- ((a
|^ 2)
* (a
|^ 3)))
+ (a
|^ 2));
then 5
divides ((
- (a
|^ (2
+ 3)))
+ (a
|^ 2)) by
NEWTON: 8;
then 5
divides (((
- (a
|^ 5))
+ (a
|^ 2))
+ ((a
|^ 5)
- a)) by
WSIERP_1: 4,
A1;
then 5
divides ((a
|^ 2)
- a);
then 5
divides ((a
* a)
- a) by
NEWTON: 81;
then
A4: 5
divides (a
* (a
- 1));
not 5
divides (((a
|^ 3)
- 1)
+ 1) by
A2,
a2b,
NEWTON: 39;
then not 5
divides a by
A3,
INT_2: 9;
hence thesis by
A4,
PEPIN: 59,
INT_5: 7;
end;
(a
- 1)
divides ((a
|^ 3)
- (1
|^ 3)) by
NEWTON01: 33;
hence thesis by
L1,
INT_2: 9;
end;
theorem ::
NEWTON02:171
Th73: for k st (k
+ 1) is
prime holds (k
+ 1)
divides ((a
|^ ((n
* k)
+ 1))
- a)
proof
let k such that
A1: (k
+ 1) is
prime;
per cases ;
suppose (k
+ 1)
divides a;
then (k
+ 1)
divides (a
* ((a
|^ (n
* k))
- 1)) by
INT_2: 2;
then (k
+ 1)
divides ((a
* (a
|^ (n
* k)))
- a);
hence thesis by
NEWTON: 6;
end;
suppose not (k
+ 1)
divides a;
then
B1: (k
+ 1)
divides ((a
|^ k)
- 1) by
A1,
Th59;
((a
|^ k)
- (1
|^ k))
divides (((a
|^ k)
|^ n)
- ((1
|^ k)
|^ n)) by
NEWTON01: 33;
then (k
+ 1)
divides (((a
|^ k)
|^ n)
- ((1
|^ k)
|^ n)) by
B1,
INT_2: 9;
then (k
+ 1)
divides ((a
|^ (n
* k))
- 1) by
NEWTON: 9;
then (k
+ 1)
divides (a
* ((a
|^ (n
* k))
- 1)) by
INT_2: 2;
then (k
+ 1)
divides ((a
* (a
|^ (n
* k)))
- a);
hence thesis by
NEWTON: 6;
end;
end;
theorem ::
NEWTON02:172
Th74: 2
divides ((a
|^ (n
+ 1))
- a)
proof
(1
+ 1)
divides ((a
|^ ((n
* 1)
+ 1))
- a) by
INT_2: 28,
Th73;
hence thesis;
end;
theorem ::
NEWTON02:173
Th75: 3
divides ((a
|^ ((2
* n)
+ 1))
- a)
proof
(2
+ 1)
divides ((a
|^ ((2
* n)
+ 1))
- a) by
PEPIN: 41,
Th73;
hence thesis;
end;
theorem ::
NEWTON02:174
Th76: 5
divides ((a
|^ ((4
* n)
+ 1))
- a)
proof
(4
+ 1)
divides ((a
|^ ((4
* n)
+ 1))
- a) by
PEPIN: 59,
Th73;
hence thesis;
end;
theorem ::
NEWTON02:175
Th77: 7
divides ((a
|^ ((6
* n)
+ 1))
- a)
proof
(6
+ 1)
divides ((a
|^ ((6
* n)
+ 1))
- a) by
NAT_4: 26,
Th73;
hence thesis;
end;
theorem ::
NEWTON02:176
Th78: for k, l st k
<> l & (k
+ 1) is
odd
prime & (l
+ 1) is
odd
prime holds ((2
* (k
+ 1))
* (l
+ 1))
divides ((a
|^ ((k
* l)
+ 1))
- a)
proof
let k, l such that
A0: k
<> l and
A1: (k
+ 1) is
odd
prime & (l
+ 1) is
odd
prime;
A2: (k
+ 1)
<> (l
+ 1) by
A0;
(k
+ 1)
divides ((a
|^ ((k
* l)
+ 1))
- a) & (l
+ 1)
divides ((a
|^ ((k
* l)
+ 1))
- a) by
A1,
Th73;
then
A5: ((k
+ 1)
* (l
+ 1))
divides ((a
|^ ((k
* l)
+ 1))
- a) by
A1,
A2,
INT_2: 30,
PEPIN: 4;
A6: (((k
+ 1)
* (l
+ 1)),(2
|^ 1))
are_coprime by
A1,
NAT_5: 3;
2
divides ((a
|^ ((1
* (k
* l))
+ 1))
- a) by
Th74;
then (2
* ((k
+ 1)
* (l
+ 1)))
divides ((a
|^ ((k
* l)
+ 1))
- a) by
A5,
A6,
PEPIN: 4;
hence thesis;
end;
theorem ::
NEWTON02:177
154
divides ((a
|^ 61)
- a)
proof
(6
+ 1) is
odd
prime & (10
+ 1) is
odd
prime by
NAT_4: 26,
NAT_4: 27;
then ((2
* (6
+ 1))
* (10
+ 1))
divides ((a
|^ ((6
* 10)
+ 1))
- a) by
Th78;
hence thesis;
end;
theorem ::
NEWTON02:178
6
divides ((a
|^ ((2
* n)
+ 1))
- a)
proof
A1: 2
divides ((a
|^ ((2
* n)
+ 1))
- a) by
Th74;
3
divides ((a
|^ ((2
* n)
+ 1))
- a) by
Th75;
then (2
* 3)
divides ((a
|^ ((2
* n)
+ 1))
- a) by
INT_2: 28,
INT_2: 30,
PEPIN: 41,
A1,
PEPIN: 4;
hence thesis;
end;
theorem ::
NEWTON02:179
30
divides ((a
|^ ((4
* n)
+ 1))
- a)
proof
A0: (2,5)
are_coprime & (3,5)
are_coprime by
INT_2: 28,
INT_2: 30,
PEPIN: 41,
PEPIN: 59;
A1: 2
divides ((a
|^ ((4
* n)
+ 1))
- a) by
Th74;
3
divides ((a
|^ ((2
* (2
* n))
+ 1))
- a) by
Th75;
then
A2: (2
* 3)
divides ((a
|^ ((4
* n)
+ 1))
- a) by
INT_2: 28,
INT_2: 30,
PEPIN: 41,
A1,
PEPIN: 4;
5
divides ((a
|^ ((4
* n)
+ 1))
- a) by
Th76;
then (5
* (2
* 3))
divides ((a
|^ ((4
* n)
+ 1))
- a) by
A0,
EULER_1: 14,
A2,
PEPIN: 4;
hence thesis;
end;
theorem ::
NEWTON02:180
42
divides ((a
|^ ((6
* n)
+ 1))
- a)
proof
A0: (2,7)
are_coprime & (3,7)
are_coprime by
INT_2: 28,
INT_2: 30,
PEPIN: 41,
NAT_4: 26;
A1: 2
divides ((a
|^ ((6
* n)
+ 1))
- a) by
Th74;
3
divides ((a
|^ ((2
* (3
* n))
+ 1))
- a) by
Th75;
then
A2: (2
* 3)
divides ((a
|^ ((6
* n)
+ 1))
- a) by
INT_2: 28,
INT_2: 30,
PEPIN: 41,
A1,
PEPIN: 4;
7
divides ((a
|^ ((6
* n)
+ 1))
- a) by
Th77;
then (7
* (2
* 3))
divides ((a
|^ ((6
* n)
+ 1))
- a) by
A0,
EULER_1: 14,
A2,
PEPIN: 4;
hence thesis;
end;
theorem ::
NEWTON02:181
for n be
prime
Nat holds n
divides ((a
|^ (n
+ k))
- (a
|^ (k
+ 1)))
proof
let n be
prime
Nat;
((a
|^ (n
+ k))
- (a
|^ (k
+ 1)))
= (((a
|^ n)
* (a
|^ k))
- (a
|^ (k
+ 1))) by
NEWTON: 8
.= (((a
|^ n)
* (a
|^ k))
- ((a
|^ k)
* a)) by
NEWTON: 6
.= ((a
|^ k)
* ((a
|^ n)
- a));
hence thesis by
Th58,
INT_2: 2;
end;
theorem ::
NEWTON02:182
Th84: for n st ((2
* n)
+ 1) is
prime holds for k st (2
* n)
> k & k
> 1 holds not ((2
* n)
+ 1)
divides ((a
|^ n)
- k) & not ((2
* n)
+ 1)
divides ((a
|^ n)
+ k)
proof
let n such that
A1: ((2
* n)
+ 1) is
prime;
set p = ((2
* n)
+ 1);
(2
* n)
<>
0 by
A1;
then
A1a: n
>
0 ;
let k such that
A1b: (2
* n)
> k & k
> 1;
A1c: (k
- 1)
> (1
- 1) by
A1b,
XREAL_1: 9;
A1d: ((k
- 1)
+ 2)
> ((k
- 1)
+ 1)
> ((k
- 1)
+
0 ) by
XREAL_1: 6;
((2
* n)
+ 1)
> (k
+ 1) by
A1b,
XREAL_1: 6;
then ((2
* n)
+ 1)
> (k
+ 1) & ((2
* n)
+ 1)
> k by
A1d,
XXREAL_0: 2;
then
A2: ((2
* n)
+ 1)
> (k
+ 1) & ((2
* n)
+ 1)
> k & ((2
* n)
+ 1)
> (k
- 1) by
A1d,
XXREAL_0: 2;
A3: p
divides a or p
divides ((a
|^ n)
- 1) or p
divides ((a
|^ n)
+ 1) by
A1,
Th70;
a
divides (a
|^ n) by
A1a,
NAT_3: 3;
then p
divides a implies p
divides (a
|^ n) by
INT_2: 9;
then
A4: p
divides ((
- 1)
* (a
|^ n)) or p
divides ((
- 1)
* ((a
|^ n)
- 1)) or p
divides ((
- 1)
* ((a
|^ n)
+ 1)) by
A3,
INT_2: 2;
assume not thesis;
then p
divides ((
- (a
|^ n))
+ ((a
|^ n)
- k)) or p
divides ((
- (a
|^ n))
+ ((a
|^ n)
+ k)) or p
divides (((
- (a
|^ n))
- 1)
+ ((a
|^ n)
- k)) or p
divides (((
- (a
|^ n))
- 1)
+ ((a
|^ n)
+ k)) or p
divides (((
- (a
|^ n))
+ 1)
+ ((a
|^ n)
- k)) or p
divides (((
- (a
|^ n))
+ 1)
+ ((a
|^ n)
+ k)) by
A4,
WSIERP_1: 4;
then p
divides (
- k) or p
divides k or p
divides (
- (1
+ k)) or p
divides ((
- 1)
+ k) or p
divides (
- (k
- 1)) or p
divides (1
+ k);
hence contradiction by
A1b,
A1c,
A2,
INT_2: 27,
INT_2: 10;
end;
theorem ::
NEWTON02:183
Th85: not 5
divides ((a
|^ 2)
- 2) & not 5
divides ((a
|^ 2)
+ 2) & not 5
divides ((a
|^ 2)
- 3) & not 5
divides ((a
|^ 2)
+ 3)
proof
5
= ((2
* 2)
+ 1);
hence thesis by
Th84,
PEPIN: 59;
end;
theorem ::
NEWTON02:184
((a
|^ 2)
+ (b
|^ 2))
= (c
|^ 2) implies 5
divides a or 5
divides b or 5
divides c
proof
assume
A1: ((a
|^ 2)
+ (b
|^ 2))
= (c
|^ 2);
A1a: ((a
|^ 2)
+ ((b
|^ 2)
- 1))
= ((c
|^ 2)
- 1) & (((a
|^ 2)
- 2)
+ ((b
|^ 2)
+ 1))
= ((c
|^ 2)
- 1) by
A1;
A1b: ((a
|^ 2)
+ ((b
|^ 2)
+ 1))
= ((c
|^ 2)
+ 1) & (((a
|^ 2)
+ 2)
+ ((b
|^ 2)
- 1))
= ((c
|^ 2)
+ 1) by
A1;
A2: ((2
* 2)
+ 1)
= 5;
per cases by
Th70,
PEPIN: 59;
suppose 5
divides c;
hence thesis;
end;
suppose
B1: 5
divides ((c
|^ 2)
- 1);
per cases by
A2,
Th70,
PEPIN: 59;
suppose 5
divides b;
hence thesis;
end;
suppose 5
divides ((b
|^ 2)
- 1);
then 5
divides (a
|^ 2) by
A1a,
B1,
INT_2: 1;
hence thesis by
NAT_3: 5,
PEPIN: 59;
end;
suppose 5
divides ((b
|^ 2)
+ 1);
hence thesis by
A1a,
B1,
INT_2: 1,
Th85;
end;
end;
suppose
B2: 5
divides ((c
|^ 2)
+ 1);
per cases by
A2,
Th70,
PEPIN: 59;
suppose 5
divides b;
hence thesis;
end;
suppose 5
divides ((b
|^ 2)
+ 1);
then 5
divides (a
|^ 2) by
A1b,
B2,
INT_2: 1;
hence thesis by
NAT_3: 5,
PEPIN: 59;
end;
suppose 5
divides ((b
|^ 2)
- 1);
hence thesis by
A1b,
B2,
INT_2: 1,
Th85;
end;
end;
end;
theorem ::
NEWTON02:185
Th87: not 7
divides ((a
|^ 3)
- 2) & not 7
divides ((a
|^ 3)
+ 2) & not 7
divides ((a
|^ 3)
- 3) & not 7
divides ((a
|^ 3)
+ 3) & not 7
divides ((a
|^ 3)
- 4) & not 7
divides ((a
|^ 3)
+ 4) & not 7
divides ((a
|^ 3)
- 5) & not 7
divides ((a
|^ 3)
+ 5)
proof
7
= ((2
* 3)
+ 1);
hence thesis by
Th84,
NAT_4: 26;
end;
theorem ::
NEWTON02:186
Th88: 2
divides ((2
|^ n)
- 1) iff n
=
0
proof
L1: 2
divides ((2
|^ n)
- 1) implies n
=
0
proof
assume
A1: not thesis;
then 2
divides (2
|^ n) & not 2
divides (
- 1) by
NAT_3: 3,
INT_2: 13;
hence contradiction by
A1;
end;
n
=
0 implies ((2
|^ n)
- 1)
= (1
- 1) by
NEWTON: 4;
hence thesis by
INT_2: 12,
L1;
end;
theorem ::
NEWTON02:187
(2
|^ (k
+ l))
divides ((2
|^ (n
+ k))
- (2
|^ k)) implies l
=
0 or n
=
0
proof
A0: (2
|^ (k
+ l))
= ((2
|^ k)
* (2
|^ l)) & (2
|^ (n
+ k))
= ((2
|^ n)
* (2
|^ k)) by
NEWTON: 8;
assume (2
|^ (k
+ l))
divides ((2
|^ (n
+ k))
- (2
|^ k));
then
A2: ((2
|^ k)
* (2
|^ l))
divides ((2
|^ k)
* ((2
|^ n)
- 1)) by
A0;
reconsider a = ((2
|^ n)
- 1) as
Element of
NAT by
INT_1: 3;
reconsider b = (2
|^ l) as
Element of
NAT by
ORDINAL1:def 12;
reconsider c = (2
|^ k) as
Element of
NAT by
ORDINAL1:def 12;
A3: b
divides a or c
=
0 by
A2,
PYTHTRIP: 7;
2
divides (2
|^ l) or l
=
0 by
NAT_3: 3;
hence thesis by
Th88,
INT_2: 9,
A3;
end;
theorem ::
NEWTON02:188
Th90: 3
divides b or 3
divides (b
- 1) or 3
divides (b
+ 1)
proof
((2
* 1)
+ 1)
= 3 & (b
|^ 1)
= b;
hence thesis by
Th70,
PEPIN: 41;
end;
theorem ::
NEWTON02:189
Th91: not 3
divides b implies not 3
divides ((b
|^ 2)
+ (c
|^ 2))
proof
L1: not 3
divides b & not 3
divides c implies not 3
divides ((b
|^ 2)
+ (c
|^ 2))
proof
assume
A0: not 3
divides b & not 3
divides c;
(2
+ 1)
= 3;
then 3
divides ((b
|^ 2)
- 1) & 3
divides ((c
|^ 2)
- 1) by
A0,
Th59,
PEPIN: 41;
then
A1: 3
divides (((b
|^ 2)
- 1)
+ ((c
|^ 2)
- 1)) by
WSIERP_1: 4;
((b
|^ 2)
+ (c
|^ 2))
= ((((b
|^ 2)
+ (c
|^ 2))
- 2)
+ 2);
hence thesis by
A1,
INT_2: 1,
INT_2: 27;
end;
not 3
divides b & 3
divides c implies not 3
divides ((b
|^ 2)
+ (c
|^ 2))
proof
assume
A1: not 3
divides b & 3
divides c;
c
divides (c
|^ 2) by
NAT_3: 3;
then not 3
divides (b
|^ 2) & 3
divides (c
|^ 2) by
INT_2: 9,
A1,
NAT_3: 5,
PEPIN: 41;
hence thesis by
INT_2: 1;
end;
hence thesis by
L1;
end;
theorem ::
NEWTON02:190
Th92: not 3
divides ((b
|^ 2)
+ 1) & not 3
divides ((b
|^ 2)
- 2)
proof
A1: ((b
|^ 2)
+ 1)
= (3
+ ((b
|^ 2)
- 2));
not 3
divides ((1
|^ 2)
+ (b
|^ 2)) by
INT_2: 27,
Th91;
hence thesis by
A1,
WSIERP_1: 4;
end;
theorem ::
NEWTON02:191
not 3
divides ((((b
|^ 3)
+ (b
|^ 2))
- b)
+ 1)
proof
A0: (((b
|^ 2)
+ 1)
+ ((b
|^ 3)
- b))
= ((((b
|^ 3)
+ (b
|^ 2))
- b)
+ 1);
not 3
divides ((b
|^ 2)
+ 1) by
Th92;
hence thesis by
A0,
PEPIN: 41,
Th58,
INT_2: 1;
end;
theorem ::
NEWTON02:192
Th94: for a be
positive
Nat holds (b,c)
are_coprime & (a
+ 1)
divides b implies not (a
+ 1)
divides c
proof
let a be
positive
Nat;
assume
A1: (b,c)
are_coprime & (a
+ 1)
divides b;
A2: (a
+ 1)
> (
0
+ 1) by
XREAL_1: 6;
assume not thesis;
hence contradiction by
A1,
A2,
PYTHTRIP:def 1;
end;
theorem ::
NEWTON02:193
Th95: (b,c)
are_coprime implies not 3
divides ((b
|^ 2)
+ (c
|^ 2))
proof
assume
A1: (b,c)
are_coprime ;
(2
+ 1)
divides b implies not (2
+ 1)
divides c by
A1,
Th94;
hence thesis by
Th91;
end;
theorem ::
NEWTON02:194
Th96: for p be
prime
Nat holds p
divides a implies p
divides (a
|^ (n
+ 1))
proof
let p be
prime
Nat;
assume p
divides a;
then p
divides (a
* (a
|^ n)) by
INT_2: 2;
hence thesis by
NEWTON: 6;
end;
theorem ::
NEWTON02:195
(b,c)
are_coprime & ((b
|^ 2)
+ (c
|^ 2))
= (a
|^ 2) implies not 3
divides a
proof
(b,c)
are_coprime & ((b
|^ 2)
+ (c
|^ 2))
= (a
|^ 2) implies not 3
divides (a
|^ (1
+ 1)) by
Th95;
hence thesis by
Th96,
PEPIN: 41;
end;
theorem ::
NEWTON02:196
Th98: for p be
prime
Nat holds p
divides (a
+ b) implies p
divides ((a
|^ ((2
* n)
+ 1))
+ (b
|^ ((2
* n)
+ 1)))
proof
let p be
prime
Nat;
A1: (a
+ b)
divides ((a
|^ ((2
* n)
+ 1))
+ (b
|^ ((2
* n)
+ 1))) by
NEWTON01: 35;
assume p
divides (a
+ b);
hence thesis by
A1,
INT_2: 9;
end;
theorem ::
NEWTON02:197
for p be
prime
Nat holds not p
divides ((a
|^ ((2
* n)
+ 1))
+ (b
|^ ((2
* n)
+ 1))) & p
divides ((a
|^ 2)
- (b
|^ 2)) implies p
divides (a
- b)
proof
let p be
prime
Nat;
assume not p
divides ((a
|^ ((2
* n)
+ 1))
+ (b
|^ ((2
* n)
+ 1))) & p
divides ((a
|^ 2)
- (b
|^ 2));
then not p
divides (a
+ b) & p
divides ((a
+ b)
* (a
- b)) by
NEWTON01: 1,
Th98;
hence thesis by
INT_5: 7;
end;
theorem ::
NEWTON02:198
3
divides (a
* b) or 3
divides (a
+ b) or 3
divides (a
- b)
proof
per cases ;
suppose 3
divides a or 3
divides b;
hence thesis by
INT_2: 2;
end;
suppose not 3
divides a & not 3
divides b;
per cases by
Th90;
suppose 3
divides (a
+ 1) & 3
divides (b
+ 1);
then 3
divides ((a
+ 1)
- (b
+ 1)) by
INT_5: 1;
hence thesis;
end;
suppose 3
divides (a
- 1) & 3
divides (b
- 1);
then 3
divides ((a
- 1)
- (b
- 1)) by
INT_5: 1;
hence thesis;
end;
suppose 3
divides (a
- 1) & 3
divides (b
+ 1);
then 3
divides ((a
- 1)
+ (b
+ 1)) by
WSIERP_1: 4;
hence thesis;
end;
suppose 3
divides (a
+ 1) & 3
divides (b
- 1);
then 3
divides ((a
+ 1)
+ (b
- 1)) by
WSIERP_1: 4;
hence thesis;
end;
end;
end;
theorem ::
NEWTON02:199
not 3
divides a & not 3
divides b implies 3
divides ((a
|^ ((2
* n)
+ 1))
+ (b
|^ ((2
* n)
+ 1))) or 3
divides ((a
|^ ((2
* n)
+ 1))
- (b
|^ ((2
* n)
+ 1)))
proof
assume not 3
divides a & not 3
divides b;
per cases by
Th90;
suppose 3
divides (a
+ 1) & 3
divides (b
+ 1);
then 3
divides ((a
+ 1)
- (b
+ 1)) & (a
- b)
divides ((a
|^ ((2
* n)
+ 1))
- (b
|^ ((2
* n)
+ 1))) by
INT_5: 1,
NEWTON01: 33;
hence thesis by
INT_2: 9;
end;
suppose 3
divides (a
- 1) & 3
divides (b
- 1);
then 3
divides ((a
- 1)
- (b
- 1)) & (a
- b)
divides ((a
|^ ((2
* n)
+ 1))
- (b
|^ ((2
* n)
+ 1))) by
INT_5: 1,
NEWTON01: 33;
hence thesis by
INT_2: 9;
end;
suppose 3
divides (a
- 1) & 3
divides (b
+ 1);
then 3
divides ((a
- 1)
+ (b
+ 1)) & (a
+ b)
divides ((a
|^ ((2
* n)
+ 1))
+ (b
|^ ((2
* n)
+ 1))) by
WSIERP_1: 4,
NEWTON01: 35;
hence thesis by
INT_2: 9;
end;
suppose 3
divides (a
+ 1) & 3
divides (b
- 1);
then 3
divides ((a
+ 1)
+ (b
- 1)) & (a
+ b)
divides ((a
|^ ((2
* n)
+ 1))
+ (b
|^ ((2
* n)
+ 1))) by
WSIERP_1: 4,
NEWTON01: 35;
hence thesis by
INT_2: 9;
end;
end;
theorem ::
NEWTON02:200
((a
|^ 3)
+ (b
|^ 3))
= (c
|^ 3) implies 7
divides a or 7
divides b or 7
divides c
proof
assume
A1: ((a
|^ 3)
+ (b
|^ 3))
= (c
|^ 3);
A1a: ((a
|^ 3)
+ ((b
|^ 3)
- 1))
= ((c
|^ 3)
- 1) & (((a
|^ 3)
- 2)
+ ((b
|^ 3)
+ 1))
= ((c
|^ 3)
- 1) by
A1;
A1b: ((a
|^ 3)
+ ((b
|^ 3)
+ 1))
= ((c
|^ 3)
+ 1) & (((a
|^ 3)
+ 2)
+ ((b
|^ 3)
- 1))
= ((c
|^ 3)
+ 1) by
A1;
A2: ((2
* 3)
+ 1)
= 7;
per cases by
Th70,
NAT_4: 26;
suppose 7
divides c;
hence thesis;
end;
suppose
B1: 7
divides ((c
|^ 3)
- 1);
per cases by
A2,
Th70,
NAT_4: 26;
suppose 7
divides b;
hence thesis;
end;
suppose 7
divides ((b
|^ 3)
- 1);
then 7
divides (a
|^ 3) by
A1a,
B1,
INT_2: 1;
hence thesis by
NAT_3: 5,
NAT_4: 26;
end;
suppose 7
divides ((b
|^ 3)
+ 1);
hence thesis by
A1a,
B1,
INT_2: 1,
Th87;
end;
end;
suppose
B2: 7
divides ((c
|^ 3)
+ 1);
per cases by
A2,
Th70,
NAT_4: 26;
suppose 7
divides b;
hence thesis;
end;
suppose 7
divides ((b
|^ 3)
+ 1);
then 7
divides (a
|^ 3) by
A1b,
B2,
INT_2: 1;
hence thesis by
NAT_3: 5,
NAT_4: 26;
end;
suppose 7
divides ((b
|^ 3)
- 1);
hence thesis by
A1b,
B2,
INT_2: 1,
Th87;
end;
end;
end;