hurwitz2.miz
begin
theorem ::
HURWITZ2:1
Th1: for x,y be
Complex st (
Im x)
=
0 & (
Re y)
=
0 holds (
Re (x
/ y))
=
0
proof
let x,y be
Complex;
reconsider R2 = ((
Re y)
^2 ), I2 = ((
Im y)
^2 ) as
Real;
assume
A1: (
Im x)
=
0 & (
Re y)
=
0 ;
then (
Re (x
/ y))
= ((((
Re x)
*
0 )
+ ((
Im x)
* (
Im y)))
/ (R2
+ I2)) by
COMPLEX1: 24
.= (
0
/ (R2
+ I2)) by
A1;
hence (
Re (x
/ y))
=
0 ;
end;
theorem ::
HURWITZ2:2
for a be
Complex holds (a
* (a
*' ))
= (
|.a.|
^2 )
proof
let a be
Complex;
set ac = a;
reconsider b = (a
*' ) as
Complex;
reconsider Ra = (
Re ac), Ia = (
Im ac) as
Real;
reconsider Ra2 = (Ra
^2 ), Ia2 = (Ia
^2 ) as
Real;
A1:
|.a.|
= (
sqrt (Ra2
+ Ia2)) by
COMPLEX1:def 12;
reconsider xx = (Ra2
+ Ia2) as
Real;
Ra2
>=
0 &
0
<= Ia2 by
XREAL_1: 63;
then (
|.a.|
^2 )
= ((((
Re ac)
* (
Re ac))
- ((
Im ac)
* (
- (
Im ac))))
+ ((((
Re ac)
* (
- (
Im ac)))
+ ((
Re ac)
* (
Im ac)))
*
<i> )) by
A1,
SQUARE_1:def 2
.= ((((
Re ac)
* (
Re ac))
- ((
Im ac)
* (
- (
Im ac))))
+ ((((
Re ac)
* (
Im b))
+ ((
Re ac)
* (
Im ac)))
*
<i> )) by
COMPLEX1: 27
.= ((((
Re ac)
* (
Re ac))
- ((
Im ac)
* (
Im b)))
+ ((((
Re ac)
* (
Im b))
+ ((
Re ac)
* (
Im ac)))
*
<i> )) by
COMPLEX1: 27
.= ((((
Re ac)
* (
Re ac))
- ((
Im ac)
* (
Im b)))
+ ((((
Re ac)
* (
Im b))
+ ((
Re b)
* (
Im ac)))
*
<i> )) by
COMPLEX1: 27
.= ((((
Re ac)
* (
Re b))
- ((
Im ac)
* (
Im b)))
+ ((((
Re ac)
* (
Im b))
+ ((
Re b)
* (
Im ac)))
*
<i> )) by
COMPLEX1: 27
.= (ac
* b) by
COMPLEX1: 82;
hence thesis;
end;
registration
cluster
Hurwitz for
Polynomial of
F_Complex ;
existence
proof
take ((
1.
F_Complex )
* (
1_.
F_Complex ));
thus thesis by
HURWITZ: 38;
end;
end
Lm1: ((2
*
0 )
+ 1)
= 1;
registration
cluster
0 ->
even;
coherence ;
end
theorem ::
HURWITZ2:3
Th3: for L be
add-associative
right_zeroed
right_complementable
associative
distributive non
empty
doubleLoopStr holds for k be
even
Element of
NAT holds for x be
Element of L holds ((
power L)
. ((
- x),k))
= ((
power L)
. (x,k))
proof
let L be
add-associative
right_zeroed
right_complementable
associative
distributive non
empty
doubleLoopStr;
let k be
even
Element of
NAT ;
let x be
Element of L;
defpred
P[
Nat] means $1 is
even implies ((
power L)
. ((
- x),$1))
= ((
power L)
. (x,$1));
A1:
now
let k be
Nat;
assume
A2: for n be
Nat st n
< k holds
P[n];
now
assume
A3: k is
even;
now
per cases by
NAT_1: 23;
case
A4: k
=
0 ;
hence ((
power L)
. ((
- x),k))
= (
1_ L) by
GROUP_1:def 7
.= ((
power L)
. (x,k)) by
A4,
GROUP_1:def 7;
end;
case k
= 1;
hence ((
power L)
. ((
- x),k))
= ((
power L)
. (x,k)) by
Lm1,
A3;
end;
case
A5: k
>= 2;
then
reconsider k2 = (k
- 2) as
Element of
NAT by
NAT_1: 21;
(k
- 1)
>= (2
- 1) by
A5,
XREAL_1: 9;
then
reconsider k1 = (k
- 1) as
Element of
NAT by
INT_1: 3;
A6: (k1
+ 1)
= k;
A7: (k
- 2)
< (k
-
0 ) by
XREAL_1: 10;
consider l be
Nat such that
A8: k
= (2
* l) by
A3,
ABIAN:def 2;
A9: (2
* (l
- 1))
= (k
- 2) by
A8;
reconsider a = ((
power L)
. ((
- x),k1)) as
Element of L;
reconsider b = ((
power L)
. (x,k1)) as
Element of L;
reconsider y = ((
power L)
. ((
- x),k2)) as
Element of L;
reconsider z = ((
power L)
. (x,k2)) as
Element of L;
A10: ((
power L)
. ((
- x),(k2
+ 1)))
= (y
* (
- x)) by
GROUP_1:def 7;
A11: ((
power L)
. (x,(k2
+ 1)))
= (z
* x) by
GROUP_1:def 7;
thus ((
power L)
. ((
- x),k))
= ((y
* (
- x))
* (
- x)) by
A10,
A6,
GROUP_1:def 7
.= ((z
* (
- x))
* (
- x)) by
A7,
A2,
A9
.= (z
* ((
- x)
* (
- x))) by
GROUP_1:def 3
.= (z
* (x
* x)) by
VECTSP_1: 10
.= (b
* x) by
A11,
GROUP_1:def 3
.= ((
power L)
. (x,k)) by
A6,
GROUP_1:def 7;
end;
end;
hence ((
power L)
. ((
- x),k))
= ((
power L)
. (x,k));
end;
hence
P[k];
end;
for k be
Nat holds
P[k] from
NAT_1:sch 4(
A1);
hence thesis;
end;
theorem ::
HURWITZ2:4
Th4: for L be
add-associative
right_zeroed
right_complementable
associative
distributive non
empty
doubleLoopStr holds for k be
odd
Element of
NAT holds for x be
Element of L holds ((
power L)
. ((
- x),k))
= (
- ((
power L)
. (x,k)))
proof
let L be
add-associative
right_zeroed
right_complementable
associative
distributive non
empty
doubleLoopStr;
let k be
odd
Element of
NAT ;
let x be
Element of L;
per cases by
NAT_1: 14;
suppose k
=
0 ;
hence ((
power L)
. ((
- x),k))
= (
- ((
power L)
. (x,k)));
end;
suppose k
>= 1;
then
reconsider k1 = (k
- 1) as
Element of
NAT by
INT_1: 5;
A1: (k1
+ 1)
= k;
reconsider a = ((
power L)
. ((
- x),k1)) as
Element of L;
reconsider b = ((
power L)
. (x,k1)) as
Element of L;
((
power L)
. ((
- x),k1))
= ((
power L)
. (x,k1)) by
Th3;
hence ((
power L)
. ((
- x),k))
= (b
* (
- x)) by
A1,
GROUP_1:def 7
.= (
- (b
* x)) by
VECTSP_1: 8
.= (
- ((
power L)
. (x,k))) by
A1,
GROUP_1:def 7;
end;
end;
theorem ::
HURWITZ2:5
Th5: for k be
even
Element of
NAT holds for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Im ((
power
F_Complex )
. (x,k)))
=
0
proof
let k be
even
Element of
NAT ;
let x be
Element of
F_Complex ;
assume
A1: (
Re x)
=
0 ;
defpred
P[
Nat] means for k1 be
Element of
NAT st k1
= $1 & k1 is
even holds for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Im ((
power
F_Complex )
. (x,k1)))
=
0 ;
A2:
now
let k be
Nat;
assume
A3: for n be
Nat st n
< k holds
P[n];
now
per cases by
NAT_1: 23;
case
A4: k
=
0 ;
now
let k1 be
Element of
NAT ;
assume
A5: k1
= k & k1 is
even;
let x be
Element of
F_Complex ;
assume (
Re x)
=
0 ;
((
power
F_Complex )
. (x,
0 ))
= (
1_
F_Complex ) by
GROUP_1:def 7
.=
1r by
COMPLFLD:def 1;
hence (
Im ((
power
F_Complex )
. (x,k1)))
=
0 by
A4,
A5,
COMPLEX1: 6;
end;
hence
P[k];
end;
case k
= 1;
hence
P[k] by
Lm1;
end;
case k
>= 2;
then
reconsider n = (k
- 2) as
Element of
NAT by
INT_1: 5;
reconsider n1 = (n
+ 1) as
Element of
NAT ;
A6: (n1
+ 1)
= k & (n
+ 1)
= n1;
now
let k1 be
Element of
NAT ;
assume
A7: k1
= k & k1 is
even;
let x be
Element of
F_Complex ;
assume
A8: (
Re x)
=
0 ;
A9: n is
even
proof
consider t be
Nat such that
A10: k
= (2
* t) by
A7,
ABIAN:def 2;
n
= (2
* (t
- 1)) by
A10;
hence thesis;
end;
A11:
now
assume n
>= k;
then ((k
- 2)
- k)
>= (k
- k) by
XREAL_1: 11;
hence contradiction;
end;
A12: ((
power
F_Complex )
. (x,k1))
= (((
power
F_Complex )
. (x,n1))
* x) by
A7,
A6,
GROUP_1:def 7
.= ((((
power
F_Complex )
. (x,n))
* x)
* x) by
GROUP_1:def 7
.= (((
power
F_Complex )
. (x,n))
* (x
* x));
set z1 = ((
power
F_Complex )
. (x,n)), z2 = (x
* x);
A13: (
Im z2)
= (((
Re x)
* (
Im x))
+ ((
Re x)
* (
Im x))) by
COMPLEX1: 9
.=
0 by
A8;
A14: (
Im z1)
=
0 by
A9,
A11,
A3,
A8;
thus (
Im ((
power
F_Complex )
. (x,k1)))
= (((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1))) by
A12,
COMPLEX1: 9
.=
0 by
A13,
A14;
end;
hence
P[k];
end;
end;
hence
P[k];
end;
for k be
Nat holds
P[k] from
NAT_1:sch 4(
A2);
hence thesis by
A1;
end;
theorem ::
HURWITZ2:6
Th6: for k be
odd
Element of
NAT holds for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Re ((
power
F_Complex )
. (x,k)))
=
0
proof
let k be
odd
Element of
NAT ;
let x be
Element of
F_Complex ;
assume
A1: (
Re x)
=
0 ;
defpred
P[
Nat] means for k1 be
Element of
NAT st k1
= $1 & k1 is
odd holds for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Re ((
power
F_Complex )
. (x,k1)))
=
0 ;
A2:
now
let k be
Nat;
assume
A3: for n be
Nat st n
< k holds
P[n];
now
per cases by
NAT_1: 23;
case
A4: k
= 1;
now
let k1 be
Element of
NAT ;
assume
A5: k1
= k & k1 is
odd;
let x be
Element of
F_Complex ;
assume
A6: (
Re x)
=
0 ;
reconsider z =
0 as
Element of
NAT by
ORDINAL1:def 12;
1
= (
0
+ 1);
then ((
power
F_Complex )
. (x,1))
= (((
power
F_Complex )
. (x,z))
* x) by
GROUP_1:def 7
.= ((
1_
F_Complex )
* x) by
GROUP_1:def 7
.= x;
hence (
Re ((
power
F_Complex )
. (x,k1)))
=
0 by
A6,
A5,
A4;
end;
hence
P[k];
end;
case k
=
0 ;
hence
P[k];
end;
case k
>= 2;
then
reconsider n = (k
- 2) as
Element of
NAT by
INT_1: 5;
reconsider n1 = (n
+ 1) as
Element of
NAT ;
A7: (n1
+ 1)
= k & (n
+ 1)
= n1;
now
let k1 be
Element of
NAT ;
assume
A8: k1
= k & k1 is
odd;
let x be
Element of
F_Complex ;
assume
A9: (
Re x)
=
0 ;
A10: n is
odd
proof
consider t be
Integer such that
A11: k
= ((2
* t)
+ 1) by
A8,
ABIAN: 1;
n
= ((2
* (t
- 1))
+ 1) by
A11;
hence thesis;
end;
A12:
now
assume n
>= k;
then ((k
- 2)
- k)
>= (k
- k) by
XREAL_1: 11;
hence contradiction;
end;
A13: ((
power
F_Complex )
. (x,k1))
= (((
power
F_Complex )
. (x,n1))
* x) by
A8,
A7,
GROUP_1:def 7
.= ((((
power
F_Complex )
. (x,n))
* x)
* x) by
GROUP_1:def 7
.= (((
power
F_Complex )
. (x,n))
* (x
* x));
set z1 = ((
power
F_Complex )
. (x,n)), z2 = (x
* x);
A14: (
Im z2)
= (((
Re x)
* (
Im x))
+ ((
Re x)
* (
Im x))) by
COMPLEX1: 9
.=
0 by
A9;
A15: (
Re z1)
=
0 by
A10,
A12,
A3,
A9;
thus (
Re ((
power
F_Complex )
. (x,k1)))
= (((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2))) by
A13,
COMPLEX1: 9
.=
0 by
A14,
A15;
end;
hence
P[k];
end;
end;
hence
P[k];
end;
for k be
Nat holds
P[k] from
NAT_1:sch 4(
A2);
hence thesis by
A1;
end;
begin
definition
let L be non
empty
ZeroStr;
let p be
sequence of L;
::
HURWITZ2:def1
func
even_part p ->
sequence of L means
:
Def1: for i be
even
Nat holds (it
. i)
= (p
. i) & for i be
odd
Nat holds (it
. i)
= (
0. L);
existence
proof
defpred
P[
object,
object] means for i be
Nat st i
= $1 holds (i is
even implies $2
= (p
. $1)) & (i is
odd implies $2
= (
0. L));
A1:
now
let x be
object;
assume
A2: x
in
NAT ;
thus ex y be
object st y
in the
carrier of L &
P[x, y]
proof
reconsider m = x as
Nat by
A2;
per cases ;
suppose
A3: m is
even;
take (p
. m);
thus thesis by
A3;
end;
suppose
A4: m is
odd;
take (
0. L);
thus thesis by
A4;
end;
end;
end;
consider f be
Function of
NAT , the
carrier of L such that
A5: for x be
object st x
in
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 1(
A1);
take f;
A6:
now
let i be
even
Nat;
i is
Element of
NAT by
ORDINAL1:def 12;
hence (f
. i)
= (p
. i) by
A5;
end;
now
let i be
odd
Nat;
i is
Element of
NAT by
ORDINAL1:def 12;
hence (f
. i)
= (
0. L) by
A5;
end;
hence thesis by
A6;
end;
uniqueness
proof
let z1,z2 be
sequence of L;
assume
A7: for i be
even
Nat holds (z1
. i)
= (p
. i) & for i be
odd
Nat holds (z1
. i)
= (
0. L);
assume
A8: for i be
even
Nat holds (z2
. i)
= (p
. i) & for i be
odd
Nat holds (z2
. i)
= (
0. L);
A9: (
dom z1)
=
NAT by
FUNCT_2:def 1
.= (
dom z2) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom z1);
then
reconsider m = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case
A10: m is
even;
hence (z1
. m)
= (p
. m) by
A7
.= (z2
. m) by
A10,
A8;
end;
case
A11: m is
odd;
hence (z1
. m)
= (
0. L) by
A7
.= (z2
. m) by
A11,
A8;
end;
end;
hence (z1
. x)
= (z2
. x);
end;
hence z1
= z2 by
A9,
FUNCT_1: 2;
end;
::
HURWITZ2:def2
func
odd_part p ->
sequence of L means
:
Def2: for i be
even
Nat holds (it
. i)
= (
0. L) & for i be
odd
Nat holds (it
. i)
= (p
. i);
existence
proof
defpred
P[
object,
object] means for i be
Nat st i
= $1 holds (i is
even implies $2
= (
0. L)) & (i is
odd implies $2
= (p
. $1));
A12:
now
let x be
object;
assume
A13: x
in
NAT ;
thus ex y be
object st y
in the
carrier of L &
P[x, y]
proof
reconsider m = x as
Nat by
A13;
per cases ;
suppose
A14: m is
even;
take (
0. L);
thus thesis by
A14;
end;
suppose
A15: m is
odd;
take (p
. m);
thus thesis by
A15;
end;
end;
end;
consider f be
Function of
NAT , the
carrier of L such that
A16: for x be
object st x
in
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 1(
A12);
take f;
A17:
now
let i be
even
Nat;
i is
Element of
NAT by
ORDINAL1:def 12;
hence (f
. i)
= (
0. L) by
A16;
end;
now
let i be
odd
Nat;
i is
Element of
NAT by
ORDINAL1:def 12;
hence (f
. i)
= (p
. i) by
A16;
end;
hence thesis by
A17;
end;
uniqueness
proof
let z1,z2 be
sequence of L;
assume
A18: for i be
even
Nat holds (z1
. i)
= (
0. L) & for i be
odd
Nat holds (z1
. i)
= (p
. i);
assume
A19: for i be
even
Nat holds (z2
. i)
= (
0. L) & for i be
odd
Nat holds (z2
. i)
= (p
. i);
A20: (
dom z1)
=
NAT by
FUNCT_2:def 1
.= (
dom z2) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom z1);
then
reconsider m = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case
A21: m is
even;
hence (z1
. m)
= (
0. L) by
A18
.= (z2
. m) by
A21,
A19;
end;
case
A22: m is
odd;
hence (z1
. m)
= (p
. m) by
A18
.= (z2
. m) by
A22,
A19;
end;
end;
hence (z1
. x)
= (z2
. x);
end;
hence z1
= z2 by
A20,
FUNCT_1: 2;
end;
end
registration
let L be non
empty
ZeroStr;
let p be
Polynomial of L;
cluster (
even_part p) ->
finite-Support;
coherence
proof
set e = (
even_part p);
ex n be
Nat st for i be
Nat st i
>= n holds (e
. i)
= (
0. L)
proof
set l = (
len p);
take l;
now
let x be
Nat;
reconsider i = x as
Element of
NAT by
ORDINAL1:def 12;
assume
A1: x
>= l;
now
per cases ;
case i is
even;
hence (e
. i)
= (p
. i) by
Def1
.= (
0. L) by
A1,
ALGSEQ_1: 8;
end;
case i is
odd;
hence (e
. i)
= (
0. L) by
Def1;
end;
end;
hence (e
. x)
= (
0. L);
end;
hence thesis;
end;
hence thesis;
end;
cluster (
odd_part p) ->
finite-Support;
coherence
proof
set o = (
odd_part p);
ex n be
Nat st for i be
Nat st i
>= n holds (o
. i)
= (
0. L)
proof
set l = (
len p);
take l;
now
let x be
Nat;
reconsider i = x as
Element of
NAT by
ORDINAL1:def 12;
assume
A2: x
>= l;
now
per cases ;
case i is
odd;
hence (o
. i)
= (p
. i) by
Def2
.= (
0. L) by
A2,
ALGSEQ_1: 8;
end;
case i is
even;
hence (o
. i)
= (
0. L) by
Def2;
end;
end;
hence (o
. x)
= (
0. L);
end;
hence thesis;
end;
hence thesis;
end;
end
theorem ::
HURWITZ2:7
Th7: for L be non
empty
ZeroStr holds (
even_part (
0_. L))
= (
0_. L) & (
odd_part (
0_. L))
= (
0_. L)
proof
let L be non
empty
ZeroStr;
set e = (
even_part (
0_. L)), p = (
0_. L);
A1: (
dom p)
=
NAT by
FUNCT_2:def 1
.= (
dom e) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom p);
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case i is
even;
hence (e
. i)
= (p
. i) by
Def1;
end;
case i is
odd;
hence (e
. i)
= (
0. L) by
Def1
.= (p
. i) by
FUNCOP_1: 7;
end;
end;
hence (p
. x)
= (e
. x);
end;
hence (
even_part (
0_. L))
= (
0_. L) by
A1,
FUNCT_1: 2;
set o = (
odd_part (
0_. L));
A2: (
dom p)
=
NAT by
FUNCT_2:def 1
.= (
dom o) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom p);
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case i is
odd;
hence (o
. i)
= (p
. i) by
Def2;
end;
case i is
even;
hence (o
. i)
= (
0. L) by
Def2
.= (p
. i) by
FUNCOP_1: 7;
end;
end;
hence (p
. x)
= (o
. x);
end;
hence (
odd_part (
0_. L))
= (
0_. L) by
A2,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:8
for L be non
empty
multLoopStr_0 holds (
even_part (
1_. L))
= (
1_. L) & (
odd_part (
1_. L))
= (
0_. L)
proof
let L be non
empty
multLoopStr_0;
set e = (
even_part (
1_. L)), p = (
1_. L);
A1: (
dom p)
=
NAT by
FUNCT_2:def 1
.= (
dom e) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom p);
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case i is
even;
hence (e
. i)
= (p
. i) by
Def1;
end;
case
A2: i is
odd;
hence (e
. i)
= (
0. L) by
Def1
.= (p
. i) by
A2,
POLYNOM3: 30;
end;
end;
hence (p
. x)
= (e
. x);
end;
hence (
even_part (
1_. L))
= (
1_. L) by
A1,
FUNCT_1: 2;
set o = (
odd_part (
1_. L)), p = (
0_. L);
A3: (
dom p)
=
NAT by
FUNCT_2:def 1
.= (
dom o) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom p);
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case
A4: i is
odd;
hence (o
. i)
= ((
1_. L)
. i) by
Def2
.= (
0. L) by
A4,
POLYNOM3: 30
.= (p
. i) by
FUNCOP_1: 7;
end;
case i is
even;
hence (o
. i)
= (
0. L) by
Def2
.= (p
. i) by
FUNCOP_1: 7;
end;
end;
hence (p
. x)
= (o
. x);
end;
hence (
odd_part (
1_. L))
= (
0_. L) by
A3,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:9
Th9: for L be
left_zeroed
right_zeroed non
empty
addLoopStr, p be
Polynomial of L holds ((
even_part p)
+ (
odd_part p))
= p
proof
let L be
left_zeroed
right_zeroed non
empty
addLoopStr, p be
Polynomial of L;
set e = (
even_part p), o = (
odd_part p);
A1: (
dom p)
=
NAT by
FUNCT_2:def 1
.= (
dom (e
+ o)) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom p);
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case
A2: i is
even;
hence ((e
. i)
+ (o
. i))
= ((e
. i)
+ (
0. L)) by
Def2
.= (e
. i) by
RLVECT_1:def 4
.= (p
. i) by
Def1,
A2;
end;
case
A3: i is
odd;
hence ((e
. i)
+ (o
. i))
= ((
0. L)
+ (o
. i)) by
Def1
.= (o
. i) by
ALGSTR_1:def 2
.= (p
. i) by
Def2,
A3;
end;
end;
hence (p
. x)
= ((e
+ o)
. x) by
NORMSP_1:def 2;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:10
Th10: for L be
left_zeroed
right_zeroed non
empty
addLoopStr, p be
Polynomial of L holds ((
odd_part p)
+ (
even_part p))
= p
proof
let L be
left_zeroed
right_zeroed non
empty
addLoopStr, p be
Polynomial of L;
set e = (
even_part p), o = (
odd_part p);
A1: (
dom p)
=
NAT by
FUNCT_2:def 1
.= (
dom (o
+ e)) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom p);
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case
A2: i is
even;
hence ((o
/. i)
+ (e
/. i))
= ((
0. L)
+ (e
. i)) by
Def2
.= (e
. i) by
ALGSTR_1:def 2
.= (p
/. i) by
Def1,
A2;
end;
case
A3: i is
odd;
hence ((o
/. i)
+ (e
/. i))
= ((o
. i)
+ (
0. L)) by
Def1
.= (o
. i) by
RLVECT_1:def 4
.= (p
/. i) by
Def2,
A3;
end;
end;
hence (p
. x)
= ((o
+ e)
. x) by
NORMSP_1:def 2;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:11
for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr, p be
Polynomial of L holds (p
- (
odd_part p))
= (
even_part p)
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr, p be
Polynomial of L;
set e = (
even_part p), o = (
odd_part p);
A1: (
dom (p
- o))
=
NAT by
FUNCT_2:def 1
.= (
dom e) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom e);
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
p
= (e
+ o) by
Th9;
then (p
. i)
= ((e
. i)
+ (o
. i)) by
NORMSP_1:def 2;
then ((p
. i)
- (o
. i))
= ((e
. i)
+ ((o
. i)
+ (
- (o
. i)))) by
RLVECT_1:def 3
.= ((e
. i)
+ (
0. L)) by
RLVECT_1: 5
.= (e
. i) by
RLVECT_1:def 4;
hence ((p
- o)
. x)
= (e
. x) by
POLYNOM3: 27;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:12
for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr, p be
Polynomial of L holds (p
- (
even_part p))
= (
odd_part p)
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr, p be
Polynomial of L;
set e = (
even_part p), o = (
odd_part p);
A1: (
dom (p
- e))
=
NAT by
FUNCT_2:def 1
.= (
dom o) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom o);
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
p
= (o
+ e) by
Th10;
then (p
. i)
= ((o
. i)
+ (e
. i)) by
NORMSP_1:def 2;
then ((p
. i)
- (e
. i))
= ((o
. i)
+ ((e
. i)
+ (
- (e
. i)))) by
RLVECT_1:def 3
.= ((o
. i)
+ (
0. L)) by
RLVECT_1: 5
.= (o
. i) by
RLVECT_1:def 4;
hence ((p
- e)
. x)
= (o
. x) by
POLYNOM3: 27;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:13
for L be
add-associative
right_zeroed
right_complementable
Abelian non
empty
addLoopStr, p be
Polynomial of L holds ((
even_part p)
- p)
= (
- (
odd_part p))
proof
let L be
add-associative
right_zeroed
right_complementable
Abelian non
empty
addLoopStr, p be
Polynomial of L;
set e = (
even_part p), o = (
odd_part p);
A1: (
dom (e
- p))
=
NAT by
FUNCT_2:def 1
.= (
dom (
- o)) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom (
- o));
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
p
= (e
+ o) by
Th9;
then (p
. i)
= ((e
. i)
+ (o
. i)) by
NORMSP_1:def 2;
then ((e
. i)
- (p
. i))
= ((e
. i)
+ ((
- (o
. i))
+ (
- (e
. i)))) by
RLVECT_1: 31
.= (((e
. i)
+ (
- (e
. i)))
+ (
- (o
. i))) by
RLVECT_1:def 3
.= ((
- (o
. i))
+ (
0. L)) by
RLVECT_1: 5
.= (
- (o
. i)) by
RLVECT_1:def 4
.= ((
- o)
. i) by
BHSP_1: 44;
hence ((e
- p)
. x)
= ((
- o)
. x) by
POLYNOM3: 27;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:14
for L be
add-associative
right_zeroed
right_complementable
Abelian non
empty
addLoopStr, p be
Polynomial of L holds ((
odd_part p)
- p)
= (
- (
even_part p))
proof
let L be
add-associative
right_zeroed
right_complementable
Abelian non
empty
addLoopStr, p be
Polynomial of L;
set e = (
even_part p), o = (
odd_part p);
A1: (
dom (o
- p))
=
NAT by
FUNCT_2:def 1
.= (
dom (
- e)) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom (
- e));
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
p
= (o
+ e) by
Th9;
then (p
. i)
= ((o
. i)
+ (e
. i)) by
NORMSP_1:def 2;
then ((o
. i)
- (p
. i))
= ((o
. i)
+ ((
- (e
. i))
+ (
- (o
. i)))) by
RLVECT_1: 31
.= (((o
. i)
+ (
- (o
. i)))
+ (
- (e
. i))) by
RLVECT_1:def 3
.= ((
0. L)
+ (
- (e
. i))) by
RLVECT_1: 5
.= (
- (e
. i)) by
RLVECT_1:def 4
.= ((
- e)
. i) by
BHSP_1: 44;
hence ((o
- p)
. x)
= ((
- e)
. x) by
POLYNOM3: 27;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:15
Th15: for L be
add-associative
right_zeroed
right_complementable
Abelian non
empty
addLoopStr, p,q be
Polynomial of L holds (
even_part (p
+ q))
= ((
even_part p)
+ (
even_part q))
proof
let L be
add-associative
right_zeroed
right_complementable
Abelian non
empty
addLoopStr;
let p,q be
Polynomial of L;
set epq = (
even_part (p
+ q)), ep = (
even_part p), eq = (
even_part q);
A1: (
dom epq)
=
NAT by
FUNCT_2:def 1
.= (
dom (ep
+ eq)) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom epq);
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case
A2: i is
even;
thus ((ep
+ eq)
. i)
= ((ep
. i)
+ (eq
. i)) by
NORMSP_1:def 2
.= ((p
. i)
+ (eq
. i)) by
A2,
Def1
.= ((p
. i)
+ (q
. i)) by
A2,
Def1
.= ((p
+ q)
. i) by
NORMSP_1:def 2
.= (epq
. i) by
A2,
Def1;
end;
case
A3: i is
odd;
thus ((ep
+ eq)
. i)
= ((ep
. i)
+ (eq
. i)) by
NORMSP_1:def 2
.= ((
0. L)
+ (eq
. i)) by
A3,
Def1
.= ((
0. L)
+ (
0. L)) by
A3,
Def1
.= (
0. L) by
RLVECT_1:def 4
.= (epq
. i) by
A3,
Def1;
end;
end;
hence ((ep
+ eq)
. x)
= (epq
. x);
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:16
Th16: for L be
add-associative
right_zeroed
right_complementable
Abelian non
empty
addLoopStr, p,q be
Polynomial of L holds (
odd_part (p
+ q))
= ((
odd_part p)
+ (
odd_part q))
proof
let L be
add-associative
right_zeroed
right_complementable
Abelian non
empty
addLoopStr;
let p,q be
Polynomial of L;
set opq = (
odd_part (p
+ q)), op = (
odd_part p), oq = (
odd_part q);
A1: (
dom opq)
=
NAT by
FUNCT_2:def 1
.= (
dom (op
+ oq)) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom opq);
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case
A2: i is
odd;
thus ((op
+ oq)
. i)
= ((op
. i)
+ (oq
. i)) by
NORMSP_1:def 2
.= ((p
. i)
+ (oq
. i)) by
A2,
Def2
.= ((p
. i)
+ (q
. i)) by
A2,
Def2
.= ((p
+ q)
. i) by
NORMSP_1:def 2
.= (opq
. i) by
A2,
Def2;
end;
case
A3: i is
even;
thus ((op
+ oq)
. i)
= ((op
. i)
+ (oq
. i)) by
NORMSP_1:def 2
.= ((
0. L)
+ (oq
. i)) by
A3,
Def2
.= ((
0. L)
+ (
0. L)) by
A3,
Def2
.= (
0. L) by
RLVECT_1:def 4
.= (opq
. i) by
A3,
Def2;
end;
end;
hence ((op
+ oq)
. x)
= (opq
. x);
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:17
Th17: for L be
well-unital non
empty
doubleLoopStr holds for p be
Polynomial of L st (
deg p) is
even holds (
even_part (
Leading-Monomial p))
= (
Leading-Monomial p)
proof
let L be
well-unital non
empty
doubleLoopStr;
let p be
Polynomial of L;
assume
A1: (
deg p) is
even;
set LMp = (
Leading-Monomial p);
set e = (
even_part LMp);
A2: (
dom e)
=
NAT by
FUNCT_2:def 1
.= (
dom LMp) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom e);
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case (
len p)
=
0 ;
then p
= (
0_. L) by
POLYNOM4: 5;
then LMp
= (
0_. L) by
POLYNOM4: 13;
hence (e
. x)
= (LMp
. x) by
Th7;
end;
case (
len p)
<>
0 ;
then ((
len p)
+ 1)
> (
0
+ 1) by
XREAL_1: 8;
then (
len p)
>= 1 by
NAT_1: 13;
then
A3: ((
len p)
-' 1)
= (
deg p) by
XREAL_1: 233;
now
per cases ;
case i is
even;
hence (e
. i)
= (LMp
. i) by
Def1;
end;
case
A4: i is
odd;
hence (LMp
. i)
= (
0. L) by
A3,
A1,
POLYNOM4:def 1
.= (e
. i) by
A4,
Def1;
end;
end;
hence (e
. x)
= (LMp
. x);
end;
end;
hence (e
. x)
= (LMp
. x);
end;
hence thesis by
A2,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:18
Th18: for L be
well-unital non
empty
doubleLoopStr holds for p be
Polynomial of L st (
deg p) is
odd holds (
even_part (
Leading-Monomial p))
= (
0_. L)
proof
let L be
well-unital non
empty
doubleLoopStr;
let p be
Polynomial of L;
assume
A1: (
deg p) is
odd;
set LMp = (
Leading-Monomial p);
set e = (
even_part LMp);
A2: (
dom (
0_. L))
=
NAT by
FUNCT_2:def 1
.= (
dom e) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom (
0_. L));
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case (
len p)
=
0 ;
then p
= (
0_. L) by
POLYNOM4: 5;
then LMp
= (
0_. L) by
POLYNOM4: 13;
hence (e
. x)
= ((
0_. L)
. x) by
Th7;
end;
case (
len p)
<>
0 ;
then ((
len p)
+ 1)
> (
0
+ 1) by
XREAL_1: 8;
then (
len p)
>= 1 by
NAT_1: 13;
then
A3: ((
len p)
-' 1)
= (
deg p) by
XREAL_1: 233;
now
per cases ;
case
A4: i is
even;
hence (e
. i)
= (LMp
. i) by
Def1
.= (
0. L) by
A4,
A3,
A1,
POLYNOM4:def 1
.= ((
0_. L)
. i) by
FUNCOP_1: 7;
end;
case i is
odd;
hence (e
. i)
= (
0. L) by
Def1
.= ((
0_. L)
. i) by
FUNCOP_1: 7;
end;
end;
hence (e
. x)
= ((
0_. L)
. x);
end;
end;
hence (e
. x)
= ((
0_. L)
. x);
end;
hence thesis by
A2,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:19
Th19: for L be
well-unital non
empty
doubleLoopStr holds for p be
Polynomial of L st (
deg p) is
even holds (
odd_part (
Leading-Monomial p))
= (
0_. L)
proof
let L be
well-unital non
empty
doubleLoopStr;
let p be
Polynomial of L;
assume
A1: (
deg p) is
even;
set LMp = (
Leading-Monomial p);
set o = (
odd_part LMp);
A2: (
dom (
0_. L))
=
NAT by
FUNCT_2:def 1
.= (
dom o) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom (
0_. L));
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case (
len p)
=
0 ;
then p
= (
0_. L) by
POLYNOM4: 5;
then LMp
= (
0_. L) by
POLYNOM4: 13;
hence (o
. x)
= ((
0_. L)
. x) by
Th7;
end;
case (
len p)
<>
0 ;
then ((
len p)
+ 1)
> (
0
+ 1) by
XREAL_1: 8;
then (
len p)
>= 1 by
NAT_1: 13;
then
A3: ((
len p)
-' 1)
= (
deg p) by
XREAL_1: 233;
now
per cases ;
case
A4: i is
odd;
hence (o
. i)
= (LMp
. i) by
Def2
.= (
0. L) by
A4,
A3,
A1,
POLYNOM4:def 1
.= ((
0_. L)
. i) by
FUNCOP_1: 7;
end;
case i is
even;
hence (o
. i)
= (
0. L) by
Def2
.= ((
0_. L)
. i) by
FUNCOP_1: 7;
end;
end;
hence (o
. x)
= ((
0_. L)
. x);
end;
end;
hence (o
. x)
= ((
0_. L)
. x);
end;
hence thesis by
A2,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:20
Th20: for L be
well-unital non
empty
doubleLoopStr holds for p be
Polynomial of L st (
deg p) is
odd holds (
odd_part (
Leading-Monomial p))
= (
Leading-Monomial p)
proof
let L be
well-unital non
empty
doubleLoopStr;
let p be
Polynomial of L;
assume
A1: (
deg p) is
odd;
set LMp = (
Leading-Monomial p);
set o = (
odd_part LMp);
A2: (
dom o)
=
NAT by
FUNCT_2:def 1
.= (
dom LMp) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom o);
then
reconsider i = x as
Element of
NAT by
FUNCT_2:def 1;
now
per cases ;
case (
len p)
=
0 ;
then p
= (
0_. L) by
POLYNOM4: 5;
then LMp
= (
0_. L) by
POLYNOM4: 13;
hence (o
. x)
= (LMp
. x) by
Th7;
end;
case (
len p)
<>
0 ;
then ((
len p)
+ 1)
> (
0
+ 1) by
XREAL_1: 8;
then (
len p)
>= 1 by
NAT_1: 13;
then
A3: ((
len p)
-' 1)
= (
deg p) by
XREAL_1: 233;
now
per cases ;
case i is
odd;
hence (o
. i)
= (LMp
. i) by
Def2;
end;
case
A4: i is
even;
hence (LMp
. i)
= (
0. L) by
A3,
A1,
POLYNOM4:def 1
.= (o
. i) by
A4,
Def2;
end;
end;
hence (o
. x)
= (LMp
. x);
end;
end;
hence (o
. x)
= (LMp
. x);
end;
hence thesis by
A2,
FUNCT_1: 2;
end;
theorem ::
HURWITZ2:21
Th21: for L be
well-unital
add-associative
right_zeroed
right_complementable
Abelian
associative
distributive non
degenerated
doubleLoopStr holds for p be non
zero
Polynomial of L holds (
deg (
even_part p))
<> (
deg (
odd_part p))
proof
let L be
add-associative
right_zeroed
right_complementable
associative
Abelian
well-unital
distributive non
degenerated
doubleLoopStr;
let p be non
zero
Polynomial of L;
set e = (
even_part p), o = (
odd_part p);
per cases ;
suppose
A1: o
= (
0_. L) or e
= (
0_. L);
then
A2: (
deg o)
= (
- 1) or (
deg e)
= (
- 1) by
HURWITZ: 20;
A3: ((
0_. L)
+ (
0_. L))
= (
0_. L) by
POLYNOM3: 28;
now
per cases by
A1;
case o
= (
0_. L);
then e
<> (
0_. L) by
A3,
Th9;
hence thesis by
A2,
HURWITZ: 20;
end;
case e
= (
0_. L);
then o
<> (
0_. L) by
A3,
Th9;
hence thesis by
A2,
HURWITZ: 20;
end;
end;
hence thesis;
end;
suppose o
<> (
0_. L) & e
<> (
0_. L);
then
reconsider e, o as non
zero
Polynomial of L by
UPROOTS:def 5;
reconsider de = (
degree e) as
Element of
NAT by
ORDINAL1:def 12;
reconsider deo = (
degree o) as
Element of
NAT by
ORDINAL1:def 12;
now
assume
A4: (
deg e)
= (
deg o);
((
degree e)
+ 1)
= (
len e);
then
A5: (e
. de)
<> (
0. L) by
ALGSEQ_1: 10;
((
degree o)
+ 1)
= (
len o);
then
A6: (o
. deo)
<> (
0. L) by
ALGSEQ_1: 10;
now
per cases ;
case (
degree e) is
even;
hence contradiction by
A6,
A4,
Def2;
end;
case (
degree e) is
odd;
hence contradiction by
A5,
Def1;
end;
end;
hence contradiction;
end;
hence thesis;
end;
end;
theorem ::
HURWITZ2:22
for L be
well-unital
add-associative
right_zeroed
right_complementable
associative
Abelian
distributive non
degenerated
doubleLoopStr holds for p be
Polynomial of L holds (
deg (
even_part p))
<= (
deg p) & (
deg (
odd_part p))
<= (
deg p)
proof
let L be
add-associative
right_zeroed
right_complementable
associative
Abelian
well-unital
distributive non
degenerated
doubleLoopStr;
let p be
Polynomial of L;
set e = (
even_part p), o = (
odd_part p);
per cases ;
suppose p
= (
0_. L);
hence thesis by
Th7;
end;
suppose p
<> (
0_. L);
then
reconsider pp = p as non
zero
Polynomial of L by
UPROOTS:def 5;
p
= (e
+ o) by
Th9;
then
A1: (
deg pp)
= (
max ((
deg e),(
deg o))) by
Th21,
HURWITZ: 21;
hence (
deg (
even_part p))
<= (
deg p) by
XXREAL_0: 25;
thus (
deg (
odd_part p))
<= (
deg p) by
A1,
XXREAL_0: 25;
end;
end;
theorem ::
HURWITZ2:23
Th23: for L be
well-unital
add-associative
right_zeroed
right_complementable
associative
Abelian
distributive non
degenerated
doubleLoopStr holds for p be
Polynomial of L holds (
deg p)
= (
max ((
deg (
even_part p)),(
deg (
odd_part p))))
proof
let L be
add-associative
right_zeroed
right_complementable
associative
Abelian
well-unital
distributive non
degenerated
doubleLoopStr;
let p be
Polynomial of L;
set e = (
even_part p), o = (
odd_part p);
per cases ;
suppose
A1: p
= (
0_. L);
then e
= (
0_. L) & o
= (
0_. L) by
Th7;
hence thesis by
A1;
end;
suppose p
<> (
0_. L);
then
reconsider pp = p as non
zero
Polynomial of L by
UPROOTS:def 5;
p
= (e
+ o) by
Th9;
then (
deg pp)
= (
max ((
deg e),(
deg o))) by
Th21,
HURWITZ: 21;
hence thesis;
end;
end;
begin
definition
let L be non
empty
addLoopStr;
let f be
Function of L, L;
::
HURWITZ2:def3
attr f is
even means
:
Def3: for x be
Element of L holds (f
. (
- x))
= (f
. x);
::
HURWITZ2:def4
attr f is
odd means
:
Def4: for x be
Element of L holds (f
. (
- x))
= (
- (f
. x));
end
definition
let L be
well-unital non
empty
doubleLoopStr;
let p be
Polynomial of L;
::
HURWITZ2:def5
attr p is
even means
:
Def5: (
Polynomial-Function (L,p)) is
even;
::
HURWITZ2:def6
attr p is
odd means
:
Def6: (
Polynomial-Function (L,p)) is
odd;
end
definition
let L be
well-unital non
trivial
doubleLoopStr;
let Z be
rational_function of L;
::
HURWITZ2:def7
attr Z is
odd means ((Z
`1 ) is
even & (Z
`2 ) is
odd) or ((Z
`1 ) is
odd & (Z
`2 ) is
even);
end
notation
let L be
well-unital non
trivial
doubleLoopStr;
let Z be
rational_function of L;
antonym Z is
even for Z is
odd;
end
registration
let L be
well-unital non
empty
doubleLoopStr;
cluster
even for
Polynomial of L;
existence
proof
set p = (
0_. L);
take p;
set f = (
Polynomial-Function (L,p));
A1:
now
let x be
Element of L;
thus (f
. x)
= (
eval (p,x)) by
POLYNOM5:def 13
.= (
0. L) by
POLYNOM4: 17;
end;
now
let x be
Element of L;
thus (f
. (
- x))
= (
0. L) by
A1
.= (f
. x) by
A1;
end;
hence thesis by
Def3;
end;
end
registration
let L be
add-associative
right_zeroed
right_complementable
well-unital non
empty
doubleLoopStr;
cluster
odd for
Polynomial of L;
existence
proof
set p = (
0_. L);
take p;
set f = (
Polynomial-Function (L,p));
A1:
now
let x be
Element of L;
thus (f
. x)
= (
eval (p,x)) by
POLYNOM5:def 13
.= (
0. L) by
POLYNOM4: 17;
end;
now
let x be
Element of L;
thus (f
. (
- x))
= (
0. L) by
A1
.= (
- (
0. L)) by
RLVECT_1: 12
.= (
- (f
. x)) by
A1;
end;
hence thesis by
Def4;
end;
end
registration
let L be
well-unital
add-associative
right_zeroed
right_complementable
associative non
degenerated
doubleLoopStr;
cluster non
zero
even for
Polynomial of L;
existence
proof
set p = (
1_. L);
take p;
set f = (
Polynomial-Function (L,p));
A1:
now
let x be
Element of L;
thus (f
. x)
= (
eval (p,x)) by
POLYNOM5:def 13
.= (
1. L) by
POLYNOM4: 18;
end;
now
let x be
Element of L;
thus (f
. (
- x))
= (
1. L) by
A1
.= (f
. x) by
A1;
end;
hence thesis by
Def3;
end;
end
registration
let L be
add-associative
right_zeroed
right_complementable
Abelian
well-unital non
degenerated
doubleLoopStr;
cluster non
zero
odd for
Polynomial of L;
existence
proof
set p = (
rpoly (1,(
0. L)));
take p;
set f = (
Polynomial-Function (L,p));
now
let x be
Element of L;
thus (f
. (
- x))
= (
eval (p,(
- x))) by
POLYNOM5:def 13
.= ((
- x)
- (
0. L)) by
HURWITZ: 29
.= (
- x) by
RLVECT_1: 13
.= (
- (x
- (
0. L))) by
RLVECT_1: 13
.= (
- (
eval (p,x))) by
HURWITZ: 29
.= (
- (f
. x)) by
POLYNOM5:def 13;
end;
then f is
odd;
hence thesis;
end;
end
theorem ::
HURWITZ2:24
Th24: for L be
well-unital non
empty
doubleLoopStr holds for p be
even
Polynomial of L holds for x be
Element of L holds (
eval (p,(
- x)))
= (
eval (p,x))
proof
let L be
well-unital non
empty
doubleLoopStr;
let p be
even
Polynomial of L;
let x be
Element of L;
thus (
eval (p,(
- x)))
= ((
Polynomial-Function (L,p))
. (
- x)) by
POLYNOM5:def 13
.= ((
Polynomial-Function (L,p))
. x) by
Def3,
Def5
.= (
eval (p,x)) by
POLYNOM5:def 13;
end;
theorem ::
HURWITZ2:25
Th25: for L be
add-associative
right_zeroed
right_complementable
Abelian
well-unital non
degenerated
doubleLoopStr holds for p be
odd
Polynomial of L holds for x be
Element of L holds (
eval (p,(
- x)))
= (
- (
eval (p,x)))
proof
let L be
add-associative
right_zeroed
right_complementable
Abelian
well-unital non
degenerated
doubleLoopStr;
let p be
odd
Polynomial of L;
let x be
Element of L;
A1: (
Polynomial-Function (L,p)) is
odd by
Def6;
thus (
eval (p,(
- x)))
= ((
Polynomial-Function (L,p))
. (
- x)) by
POLYNOM5:def 13
.= (
- ((
Polynomial-Function (L,p))
. x)) by
A1
.= (
- (
eval (p,x))) by
POLYNOM5:def 13;
end;
registration
let L be
well-unital non
empty
doubleLoopStr;
cluster (
0_. L) ->
even;
coherence
proof
set f = (
Polynomial-Function (L,(
0_. L)));
now
let x be
Element of L;
thus (f
. (
- x))
= (
eval ((
0_. L),(
- x))) by
POLYNOM5:def 13
.= (
0. L) by
POLYNOM4: 17
.= (
eval ((
0_. L),x)) by
POLYNOM4: 17
.= (f
. x) by
POLYNOM5:def 13;
end;
then f is
even;
hence thesis;
end;
end
registration
let L be
add-associative
right_zeroed
right_complementable
well-unital non
empty
doubleLoopStr;
cluster (
0_. L) ->
odd;
coherence
proof
set f = (
Polynomial-Function (L,(
0_. L)));
now
let x be
Element of L;
thus (f
. (
- x))
= (
eval ((
0_. L),(
- x))) by
POLYNOM5:def 13
.= (
0. L) by
POLYNOM4: 17
.= (
- (
0. L)) by
RLVECT_1: 12
.= (
- (
eval ((
0_. L),x))) by
POLYNOM4: 17
.= (
- (f
. x)) by
POLYNOM5:def 13;
end;
hence thesis by
Def4;
end;
end
registration
let L be
well-unital
add-associative
right_zeroed
right_complementable
associative non
degenerated
doubleLoopStr;
cluster (
1_. L) ->
even;
coherence
proof
set f = (
Polynomial-Function (L,(
1_. L)));
now
let x be
Element of L;
thus (f
. (
- x))
= (
eval ((
1_. L),(
- x))) by
POLYNOM5:def 13
.= (
1. L) by
POLYNOM4: 18
.= (
eval ((
1_. L),x)) by
POLYNOM4: 18
.= (f
. x) by
POLYNOM5:def 13;
end;
then f is
even;
hence (
1_. L) is
even;
end;
end
registration
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
left-distributive non
empty
doubleLoopStr;
let p,q be
even
Polynomial of L;
cluster (p
+ q) ->
even;
coherence
proof
set g = (
Polynomial-Function (L,(p
+ q)));
now
let x be
Element of L;
thus (g
. (
- x))
= (
eval ((p
+ q),(
- x))) by
POLYNOM5:def 13
.= ((
eval (p,(
- x)))
+ (
eval (q,(
- x)))) by
POLYNOM4: 19
.= ((
eval (p,x))
+ (
eval (q,(
- x)))) by
Th24
.= ((
eval (p,x))
+ (
eval (q,x))) by
Th24
.= (
eval ((p
+ q),x)) by
POLYNOM4: 19
.= (g
. x) by
POLYNOM5:def 13;
end;
hence thesis by
Def3;
end;
end
registration
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
left-distributive non
degenerated
doubleLoopStr;
let p,q be
odd
Polynomial of L;
cluster (p
+ q) ->
odd;
coherence
proof
set g = (
Polynomial-Function (L,(p
+ q)));
now
let x be
Element of L;
thus (g
. (
- x))
= (
eval ((p
+ q),(
- x))) by
POLYNOM5:def 13
.= ((
eval (p,(
- x)))
+ (
eval (q,(
- x)))) by
POLYNOM4: 19
.= ((
- (
eval (p,x)))
+ (
eval (q,(
- x)))) by
Th25
.= ((
- (
eval (p,x)))
+ (
- (
eval (q,x)))) by
Th25
.= (
- ((
eval (p,x))
+ (
eval (q,x)))) by
RLVECT_1: 31
.= (
- (
eval ((p
+ q),x))) by
POLYNOM4: 19
.= (
- (g
. x)) by
POLYNOM5:def 13;
end;
then g is
odd;
hence thesis;
end;
end
registration
let L be
Abelian
add-associative
right_zeroed
right_complementable
associative
well-unital
distributive non
degenerated
doubleLoopStr;
let p be
Polynomial of L;
cluster (
even_part p) ->
even;
coherence
proof
defpred
P[
Nat] means for p be
Polynomial of L st (
len p)
= $1 holds (
even_part p) is
even;
A1:
now
let k be
Nat;
assume
A2: for n be
Nat st n
< k holds
P[n];
now
let p be
Polynomial of L;
assume
A3: (
len p)
= k;
now
per cases ;
case k
=
0 ;
then p
= (
0_. L) by
A3,
POLYNOM4: 5;
hence (
even_part p) is
even by
Th7;
end;
case
A4: k
<>
0 ;
set LMp = (
Leading-Monomial p);
set g = (
Polynomial-Function (L,LMp));
(LMp
+ (p
- LMp))
= ((LMp
+ (
- LMp))
+ p) by
POLYNOM3: 26
.= ((LMp
- LMp)
+ p)
.= ((
0_. L)
+ p) by
POLYNOM3: 29
.= p by
POLYNOM3: 28;
then
A5: (
even_part p)
= ((
even_part LMp)
+ (
even_part (p
- LMp))) by
Th15;
consider t be
Polynomial of L such that
A6: (
len t)
< (
len p) & p
= (t
+ (
Leading-Monomial p)) & for n be
Element of
NAT st n
< ((
len p)
- 1) holds (t
. n)
= (p
. n) by
A4,
A3,
POLYNOM4: 16;
(p
- LMp)
= (t
+ (LMp
- LMp)) by
A6,
POLYNOM3: 26
.= (t
+ (
0_. L)) by
POLYNOM3: 29
.= t by
POLYNOM3: 28;
then
A7: (
even_part (p
- LMp)) is
even by
A6,
A2,
A3;
now
per cases ;
case
A8: (
deg p) is
even;
now
let x be
Element of L;
((
len p)
+ 1)
> (
0
+ 1) by
A3,
A4,
XREAL_1: 8;
then (
len p)
>= 1 by
NAT_1: 13;
then
A9: ((
len p)
-' 1)
= (
deg p) by
XREAL_1: 233;
thus (g
. x)
= (
eval (LMp,x)) by
POLYNOM5:def 13
.= ((p
. ((
len p)
-' 1))
* ((
power L)
. (x,((
len p)
-' 1)))) by
POLYNOM4: 22
.= ((p
. ((
len p)
-' 1))
* ((
power L)
. ((
- x),((
len p)
-' 1)))) by
A9,
A8,
Th3
.= (
eval (LMp,(
- x))) by
POLYNOM4: 22
.= (g
. (
- x)) by
POLYNOM5:def 13;
end;
then g is
even;
hence (
even_part LMp) is
even by
A8,
Th17;
end;
case (
deg p) is
odd;
then (
even_part LMp)
= (
0_. L) by
Th18;
hence (
even_part LMp) is
even;
end;
end;
hence (
even_part p) is
even by
A7,
A5;
end;
end;
hence (
even_part p) is
even;
end;
hence
P[k];
end;
A10: for k be
Nat holds
P[k] from
NAT_1:sch 4(
A1);
consider k be
Nat such that
A11: (
len p)
= k;
thus thesis by
A11,
A10;
end;
cluster (
odd_part p) ->
odd;
coherence
proof
defpred
P[
Nat] means for p be
Polynomial of L st (
len p)
= $1 holds (
odd_part p) is
odd;
A12:
now
let k be
Nat;
assume
A13: for n be
Nat st n
< k holds
P[n];
now
let p be
Polynomial of L;
assume
A14: (
len p)
= k;
now
per cases ;
case k
=
0 ;
then p
= (
0_. L) by
A14,
POLYNOM4: 5;
hence (
odd_part p) is
odd by
Th7;
end;
case
A15: k
<>
0 ;
set LMp = (
Leading-Monomial p);
set g = (
Polynomial-Function (L,LMp));
(LMp
+ (p
- LMp))
= ((LMp
+ (
- LMp))
+ p) by
POLYNOM3: 26
.= ((LMp
- LMp)
+ p)
.= ((
0_. L)
+ p) by
POLYNOM3: 29
.= p by
POLYNOM3: 28;
then
A16: (
odd_part p)
= ((
odd_part LMp)
+ (
odd_part (p
- LMp))) by
Th16;
consider t be
Polynomial of L such that
A17: (
len t)
< (
len p) & p
= (t
+ (
Leading-Monomial p)) & for n be
Element of
NAT st n
< ((
len p)
- 1) holds (t
. n)
= (p
. n) by
A15,
A14,
POLYNOM4: 16;
(p
- LMp)
= (t
+ (LMp
- LMp)) by
A17,
POLYNOM3: 26
.= (t
+ (
0_. L)) by
POLYNOM3: 29
.= t by
POLYNOM3: 28;
then
A18: (
odd_part (p
- LMp)) is
odd by
A17,
A13,
A14;
now
per cases ;
case
A19: (
deg p) is
odd;
then
A20: (
odd_part LMp)
= LMp by
Th20;
now
let x be
Element of L;
((
len p)
+ 1)
> (
0
+ 1) by
A14,
A15,
XREAL_1: 8;
then (
len p)
>= 1 by
NAT_1: 13;
then
A21: ((
len p)
-' 1)
= (
deg p) by
XREAL_1: 233;
thus (
- (g
. x))
= (
- (
eval (LMp,x))) by
POLYNOM5:def 13
.= (
- ((p
. ((
len p)
-' 1))
* ((
power L)
. (x,((
len p)
-' 1))))) by
POLYNOM4: 22
.= ((p
. ((
len p)
-' 1))
* (
- ((
power L)
. (x,((
len p)
-' 1))))) by
VECTSP_1: 8
.= ((p
. ((
len p)
-' 1))
* ((
power L)
. ((
- x),((
len p)
-' 1)))) by
A21,
A19,
Th4
.= (
eval (LMp,(
- x))) by
POLYNOM4: 22
.= (g
. (
- x)) by
POLYNOM5:def 13;
end;
hence (
odd_part LMp) is
odd by
A20,
Def4;
end;
case (
deg p) is
even;
then (
odd_part LMp)
= (
0_. L) by
Th19;
hence (
odd_part LMp) is
odd;
end;
end;
hence (
odd_part p) is
odd by
A18,
A16;
end;
end;
hence (
odd_part p) is
odd;
end;
hence
P[k];
end;
A22: for k be
Nat holds
P[k] from
NAT_1:sch 4(
A12);
consider k be
Nat such that
A23: (
len p)
= k;
thus thesis by
A23,
A22;
end;
end
theorem ::
HURWITZ2:26
Th26: for L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
distributive non
degenerated
doubleLoopStr holds for p be
even
Polynomial of L holds for q be
odd
Polynomial of L holds for x be
Element of L st x
is_a_common_root_of (p,q) holds (
- x)
is_a_root_of (p
+ q)
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
distributive non
degenerated
doubleLoopStr;
let p be
even
Polynomial of L;
let q be
odd
Polynomial of L;
let x be
Element of L;
assume
A1: x
is_a_common_root_of (p,q);
then
A2: (
eval (p,x))
= (
0. L) by
POLYNOM5:def 7;
(
eval ((p
+ q),(
- x)))
= ((
eval (p,(
- x)))
+ (
eval (q,(
- x)))) by
POLYNOM4: 19
.= ((
eval (p,x))
+ (
eval (q,(
- x)))) by
Th24
.= ((
eval (p,x))
+ (
- (
eval (q,x)))) by
Th25
.= ((
0. L)
+ (
- (
0. L))) by
A2,
A1,
POLYNOM5:def 7
.= (
0. L) by
RLVECT_1: 5;
hence (
- x)
is_a_root_of (p
+ q) by
POLYNOM5:def 7;
end;
theorem ::
HURWITZ2:27
for p be
Hurwitz
Polynomial of
F_Complex holds ((
even_part p),(
odd_part p))
have_no_common_roots
proof
let p be
Hurwitz
Polynomial of
F_Complex ;
set e = (
even_part p), o = (
odd_part p);
let x be
Element of
F_Complex ;
assume
A1: x
is_a_common_root_of (e,o);
A2: x
is_a_root_of (e
+ o) by
A1,
RATFUNC1: 16;
(e
+ o)
= p by
Th9;
then
A3: (
Re x)
<
0 & (
Re (
- x))
<
0 by
A1,
Th26,
A2,
HURWITZ:def 8;
reconsider s = x as
Complex;
(
Re (
- s))
= (
- (
Re s)) by
COMPLEX1: 17;
hence contradiction by
A3,
COMPLFLD: 2;
end;
begin
definition
let p be
Polynomial of
F_Complex ;
::
HURWITZ2:def8
attr p is
real means
:
Def8: for i be
Nat holds (p
. i) is
Real;
::
HURWITZ2:def9
attr p is
positive means for x be
Element of
F_Complex holds (
Re x)
>
0 implies (
Re (
eval (p,x)))
>
0 ;
end
registration
cluster (
0_.
F_Complex ) ->
real non
positive;
coherence
proof
set p = (
0_.
F_Complex );
now
let i be
Nat;
(p
. i)
= (
0.
F_Complex ) by
FUNCOP_1: 7,
ORDINAL1:def 12
.=
0 by
COMPLFLD:def 1;
hence (p
. i) is
Real;
end;
hence p is
real;
A1: (
Re (
1.
F_Complex ))
>
0 by
COMPLEX1: 6,
COMPLFLD:def 1;
(
eval (p,(
1.
F_Complex )))
= (
0.
F_Complex ) by
POLYNOM4: 17
.=
0 by
COMPLFLD:def 1;
hence p is non
positive by
A1,
COMPLEX1: 4;
end;
cluster (
1_.
F_Complex ) ->
real
positive;
coherence
proof
set p = (
1_.
F_Complex );
now
let i be
Nat;
now
per cases ;
case i
=
0 ;
then (p
. i)
= (
1.
F_Complex ) by
POLYNOM3: 30
.= 1 by
COMPLEX1:def 4,
COMPLFLD:def 1;
hence (p
. i) is
Real;
end;
case i
<>
0 ;
then (p
. i)
= (
0.
F_Complex ) by
POLYNOM3: 30
.=
0 by
COMPLFLD:def 1;
hence (p
. i) is
Real;
end;
end;
hence (p
. i) is
Real;
end;
hence p is
real;
thus p is
positive by
POLYNOM4: 18,
COMPLFLD: 8,
COMPLEX1: 6;
end;
end
registration
cluster non
zero
real
positive for
Polynomial of
F_Complex ;
existence
proof
set p = (
1_.
F_Complex );
take p;
thus p is non
zero;
thus p is
real;
thus p is
positive;
end;
end
registration
cluster
real ->
real-valued for
Polynomial of
F_Complex ;
coherence
proof
let p be
Polynomial of
F_Complex ;
assume
A1: p is
real;
now
let y be
object;
assume y
in (
rng p);
then
consider x be
object such that
A2: x
in (
dom p) & (p
. x)
= y by
FUNCT_1:def 3;
reconsider x as
Element of
NAT by
A2,
FUNCT_2:def 1;
(p
. x) is
Real by
A1;
hence y
in
REAL by
A2,
XREAL_0:def 1;
end;
hence thesis by
VALUED_0:def 3,
TARSKI:def 3;
end;
end
registration
let p be
real
Polynomial of
F_Complex ;
cluster (
even_part p) ->
real;
coherence
proof
set e = (
even_part p);
now
let i be
Nat;
now
per cases ;
case i is
odd;
then (e
. i)
= (
0.
F_Complex ) by
Def1
.=
0 by
COMPLFLD:def 1;
hence (e
. i) is
Real;
end;
case i is
even;
then (e
. i)
= (p
. i) by
Def1;
hence (e
. i) is
Real;
end;
end;
hence (e
. i) is
Real;
end;
hence thesis;
end;
cluster (
odd_part p) ->
real;
coherence
proof
set o = (
odd_part p);
now
let i be
Nat;
now
per cases ;
case i is
even;
then (o
. i)
= (
0.
F_Complex ) by
Def2
.=
0 by
COMPLFLD:def 1;
hence (o
. i) is
Real;
end;
case i is
odd;
then (o
. i)
= (p
. i) by
Def2;
hence (o
. i) is
Real;
end;
end;
hence (o
. i) is
Real;
end;
hence thesis;
end;
end
definition
let L be non
empty
addLoopStr;
let p be
Polynomial of L;
::
HURWITZ2:def10
attr p is
with_all_coefficients means
:
Def10: for i be
Nat st i
<= (
deg p) holds (p
. i)
<>
0 ;
end
definition
let p be
real
Polynomial of
F_Complex ;
::
HURWITZ2:def11
attr p is
with_positive_coefficients means for i be
Nat st i
<= (
deg p) holds (p
. i)
>
0 ;
::
HURWITZ2:def12
attr p is
with_negative_coefficients means for i be
Nat st i
<= (
deg p) holds (p
. i)
<
0 ;
end
registration
cluster
with_positive_coefficients ->
with_all_coefficients for
real
Polynomial of
F_Complex ;
coherence ;
cluster
with_negative_coefficients ->
with_all_coefficients for
real
Polynomial of
F_Complex ;
coherence ;
end
registration
cluster non
constant
with_positive_coefficients for
real
Polynomial of
F_Complex ;
existence
proof
set L =
F_Complex ;
set x = (
1.
F_Complex );
set p = (((
0_. L)
+* (
0 ,x))
+* (1,x));
A1: (
dom (
0_. L))
=
NAT by
FUNCOP_1: 13;
then
A2: (
dom ((
0_. L)
+* (
0 ,x)))
=
NAT by
FUNCT_7: 30;
reconsider z =
0 as
Element of
NAT by
ORDINAL1:def 12;
A3: (p
.
0 )
= (((
0_. L)
+* (z,x))
. z) by
FUNCT_7: 32
.= x by
A1,
FUNCT_7: 31
.= 1 by
COMPLFLD:def 1,
COMPLEX1:def 4;
A4: (p
. 1)
= x by
A2,
FUNCT_7: 31
.= 1 by
COMPLFLD:def 1,
COMPLEX1:def 4;
A5:
now
let i be
Nat;
now
per cases by
NAT_1: 23;
case i
=
0 ;
hence (p
. i) is
Real by
A3;
end;
case i
= 1;
hence (p
. i) is
Real by
A4;
end;
case
A6: i
>= 2;
then i
<> 1;
then (p
. i)
= (((
0_. L)
+* (
0 ,x))
. i) by
FUNCT_7: 32
.= ((
0_. L)
. i) by
A6,
FUNCT_7: 32
.= (
0. L) by
FUNCOP_1: 7,
ORDINAL1:def 12
.=
0 by
COMPLFLD:def 1;
hence (p
. i) is
Real;
end;
end;
hence (p
. i) is
Real;
end;
ex n be
Nat st for i be
Nat st i
>= n holds (p
. i)
= (
0. L)
proof
take 2;
now
let i be
Nat;
assume
A7: i
>= 2;
then 1
<> i;
hence (p
. i)
= (((
0_. L)
+* (
0 ,x))
. i) by
FUNCT_7: 32
.= ((
0_. L)
. i) by
A7,
FUNCT_7: 32
.= (
0. L) by
ORDINAL1:def 12,
FUNCOP_1: 7;
end;
hence thesis;
end;
then
reconsider p as
Polynomial of L by
ALGSEQ_1:def 1;
now
let i be
Nat;
assume
A8: i
>= 2;
then 1
<> i;
hence (p
. i)
= (((
0_. L)
+* (
0 ,x))
. i) by
FUNCT_7: 32
.= ((
0_. L)
. i) by
A8,
FUNCT_7: 32
.= (
0. L) by
ORDINAL1:def 12,
FUNCOP_1: 7;
end;
then
A9: 2
is_at_least_length_of p;
now
let m be
Nat;
assume
A10: m
is_at_least_length_of p;
now
assume m
< 2;
then m
< (1
+ 1);
then (p
. 1)
= (
0. L) by
A10,
INT_1: 7;
hence contradiction by
A2,
FUNCT_7: 31;
end;
hence 2
<= m;
end;
then
A11: (
len p)
= 2 by
A9,
ALGSEQ_1:def 3;
reconsider p as
real
Polynomial of
F_Complex by
A5,
Def8;
take p;
thus p is non
constant by
A11;
now
let i be
Nat;
assume i
<= (
deg p);
then
A12: i
< (1
+ 1) by
A11,
NAT_1: 13;
now
per cases by
A12,
NAT_1: 23;
case i
=
0 ;
hence (p
. i)
>
0 by
A3;
end;
case i
= 1;
hence (p
. i)
>
0 by
A4;
end;
end;
hence (p
. i)
>
0 ;
end;
hence p is
with_positive_coefficients;
end;
end
registration
let p be non
zero
with_all_coefficients
real
Polynomial of
F_Complex ;
cluster (
even_part p) -> non
zero;
coherence
proof
set e = (
even_part p);
reconsider z =
0 as
Element of
NAT by
ORDINAL1:def 12;
0
<= (
degree p);
then
A1: (p
. z)
<> z by
Def10;
(e
. z)
= (p
. z) by
Def1;
then (e
. z)
<> (
0.
F_Complex ) by
A1,
COMPLFLD:def 1;
hence thesis by
FUNCOP_1: 7;
end;
end
registration
let p be non
constant
with_all_coefficients
real
Polynomial of
F_Complex ;
cluster (
odd_part p) -> non
zero;
coherence
proof
set o = (
odd_part p);
(
0
+ 1)
<= (
degree p) by
INT_1: 7,
RATFUNC1:def 2;
then
A1: (p
. 1)
<>
0 by
Def10;
(o
. 1)
= (p
. 1) by
Def2,
Lm1;
then (o
. 1)
<> (
0.
F_Complex ) by
A1,
COMPLFLD:def 1;
hence thesis by
FUNCOP_1: 7;
end;
end
definition
let Z be
rational_function of
F_Complex ;
::
HURWITZ2:def13
attr Z is
real means for i be
Nat holds ((Z
`1 )
. i) is
Real & ((Z
`2 )
. i) is
Real;
::
HURWITZ2:def14
attr Z is
positive means for x be
Element of
F_Complex st (
Re x)
>
0 & (
eval ((Z
`2 ),x))
<>
0 holds (
Re (
eval (Z,x)))
>
0 ;
end
registration
cluster non
zero
odd
real
positive for
rational_function of
F_Complex ;
existence
proof
set f = (
rpoly (1,(
0.
F_Complex )));
set p =
[f, (
1_.
F_Complex )];
A1:
now
let x be
Element of
F_Complex ;
thus (
eval (f,x))
= (x
- (
0.
F_Complex )) by
HURWITZ: 29
.= x by
RLVECT_1: 13;
end;
take p;
thus p is non
zero;
set fp = (
Polynomial-Function (
F_Complex ,f));
now
let x be
Element of
F_Complex ;
thus (fp
. (
- x))
= (
eval (f,(
- x))) by
POLYNOM5:def 13
.= ((
- x)
- (
0.
F_Complex )) by
HURWITZ: 29
.= (
- x) by
RLVECT_1: 13
.= (
- (x
- (
0.
F_Complex ))) by
RLVECT_1: 13
.= (
- (
eval (f,x))) by
HURWITZ: 29
.= (
- (fp
. x)) by
POLYNOM5:def 13;
end;
then fp is
odd;
then f is
odd;
hence p is
odd;
reconsider z =
0 as
Element of
NAT by
ORDINAL1:def 12;
now
let i be
Nat;
A2: i
in
NAT by
ORDINAL1:def 12;
now
per cases ;
case
A3: i
=
0 ;
A4: (
0
+ 1)
= 1;
(f
. i)
= (
- ((
power
F_Complex )
. ((
0.
F_Complex ),1))) by
A3,
HURWITZ: 25
.= (
- (((
power
F_Complex )
. ((
0.
F_Complex ),z))
* (
0.
F_Complex ))) by
A4,
GROUP_1:def 7
.= (
0.
F_Complex ) by
RLVECT_1: 12;
hence (f
. i) is
Real by
COMPLFLD:def 1;
end;
case i
= 1;
then (f
. i)
= (
1.
F_Complex ) by
HURWITZ: 25
.=
1r by
COMPLFLD:def 1;
hence (f
. i) is
Real by
COMPLEX1:def 4;
end;
case i
<> 1 & i
<>
0 ;
then (f
. i)
= (
0.
F_Complex ) by
HURWITZ: 26,
A2
.=
0 by
COMPLFLD:def 1;
hence (f
. i) is
Real;
end;
end;
hence ((p
`1 )
. i) is
Real;
thus ((p
`2 )
. i) is
Real;
end;
hence p is
real;
now
let x be
Element of
F_Complex ;
assume
A5: (
Re x)
>
0 & (
eval ((p
`2 ),x))
<>
0 ;
A6: (
eval ((
1_.
F_Complex ),x))
= (
1_
F_Complex ) by
POLYNOM4: 18;
(
1.
F_Complex )
<> (
0.
F_Complex );
then
A7: (((
1.
F_Complex )
" )
* (
1.
F_Complex ))
= (
1.
F_Complex ) by
VECTSP_1:def 10;
(
eval (p,x))
= (x
* ((
1.
F_Complex )
" )) by
A1,
A6
.= (x
* (
1.
F_Complex )) by
A7
.= x;
hence (
Re (
eval (p,x)))
>
0 by
A5;
end;
hence p is
positive;
end;
end
registration
let p1 be
real
Polynomial of
F_Complex ;
let p2 be non
zero
real
Polynomial of
F_Complex ;
cluster
[p1, p2] ->
real;
coherence ;
end
begin
definition
mode
one_port_function is
real
positive
rational_function of
F_Complex ;
mode
reactance_one_port_function is
odd
real
positive
rational_function of
F_Complex ;
end
theorem ::
HURWITZ2:28
Th28: for p be
real
Polynomial of
F_Complex holds for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Im (
eval ((
even_part p),x)))
=
0
proof
let p be
real
Polynomial of
F_Complex ;
let x be
Element of
F_Complex ;
defpred
P[
Nat] means for p be
Polynomial of
F_Complex st p is
real & (
len p)
= $1 holds (for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Im (
eval ((
even_part p),x)))
=
0 );
A1:
now
let k be
Nat;
assume
A2: for n be
Nat st n
< k holds
P[n];
now
let p be
Polynomial of
F_Complex ;
assume
A3: p is
real & (
len p)
= k;
now
per cases by
NAT_1: 14;
case k
=
0 ;
then p
= (
0_.
F_Complex ) by
A3,
POLYNOM4: 5;
then
A4: (
even_part p)
= (
0_.
F_Complex ) by
Th7;
thus for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Im (
eval ((
even_part p),x)))
=
0
proof
let x be
Element of
F_Complex ;
assume (
Re x)
=
0 ;
(
eval ((
even_part p),x))
= (
0.
F_Complex ) by
A4,
POLYNOM4: 17
.=
0 by
COMPLFLD:def 1;
hence thesis by
COMPLEX1: 4;
end;
end;
case
A5: k
>= 1;
set LMp = (
Leading-Monomial p);
(LMp
+ (p
- LMp))
= ((LMp
+ (
- LMp))
+ p) by
POLYNOM3: 26
.= ((LMp
- LMp)
+ p)
.= ((
0_.
F_Complex )
+ p) by
POLYNOM3: 29
.= p by
POLYNOM3: 28;
then
A6: (
even_part p)
= ((
even_part LMp)
+ (
even_part (p
- LMp))) by
Th15;
thus for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Im (
eval ((
even_part p),x)))
=
0
proof
let x be
Element of
F_Complex ;
assume
A7: (
Re x)
=
0 ;
consider t be
Polynomial of
F_Complex such that
A8: (
len t)
< (
len p) & p
= (t
+ (
Leading-Monomial p)) & for n be
Element of
NAT st n
< ((
len p)
- 1) holds (t
. n)
= (p
. n) by
A5,
A3,
POLYNOM4: 16;
A9: (p
- LMp)
= (t
+ (LMp
- LMp)) by
A8,
POLYNOM3: 26
.= (t
+ (
0_.
F_Complex )) by
POLYNOM3: 29
.= t by
POLYNOM3: 28;
now
let n be
Nat;
A10: n
in
NAT by
ORDINAL1:def 12;
now
per cases ;
case n
< ((
len p)
- 1);
then (t
. n)
= (p
. n) by
A8,
A10;
hence (t
. n) is
Real by
A3;
end;
case
A11: n
>= ((
len p)
- 1);
reconsider lp = ((
len p)
- 1) as
Element of
NAT by
A5,
A3,
INT_1: 5;
(
len t)
< (lp
+ 1) by
A8;
then lp
>= (
len t) by
NAT_1: 13;
then (t
. n)
= (
0.
F_Complex ) by
ALGSEQ_1: 8,
A11,
XXREAL_0: 2;
hence (t
. n) is
Real by
COMPLFLD:def 1;
end;
end;
hence (t
. n) is
Real;
end;
then
A12: t is
real;
A13: (
Im (
eval ((
even_part LMp),x)))
=
0
proof
now
per cases ;
case (
deg p) is
odd;
then (
even_part LMp)
= (
0_.
F_Complex ) by
Th18;
then (
eval ((
even_part LMp),x))
= (
0.
F_Complex ) by
POLYNOM4: 17
.=
0 by
COMPLFLD:def 1;
hence thesis by
COMPLEX1: 4;
end;
case
A14: (
deg p) is
even;
then
A15: (
eval ((
even_part LMp),x))
= (
eval (LMp,x)) by
Th17
.= ((p
. ((
len p)
-' 1))
* ((
power
F_Complex )
. (x,((
len p)
-' 1)))) by
POLYNOM4: 22;
set z1 = (p
. ((
len p)
-' 1)), z2 = ((
power
F_Complex )
. (x,((
len p)
-' 1)));
((
len p)
-' 1)
= (
deg p) by
A3,
A5,
XREAL_1: 233;
then
A16: (
Im z2)
=
0 by
A7,
A14,
Th5;
z1
in
REAL by
A3,
XREAL_0:def 1;
then
A17: (
Im z1)
=
0 by
COMPLEX1:def 2;
thus (
Im (
eval ((
even_part LMp),x)))
= (((
Re z1)
* (
Im z2))
+ ((
Re z2)
* (
Im z1))) by
A15,
COMPLEX1: 9
.=
0 by
A16,
A17;
end;
end;
hence thesis;
end;
thus (
Im (
eval ((
even_part p),x)))
= (
Im ((
eval ((
even_part LMp),x))
+ (
eval ((
even_part (p
- LMp)),x)))) by
A6,
POLYNOM4: 19
.= (
0
+ (
Im (
eval ((
even_part (p
- LMp)),x)))) by
A13,
COMPLEX1: 8
.=
0 by
A12,
A8,
A9,
A7,
A3,
A2;
end;
end;
end;
hence for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Im (
eval ((
even_part p),x)))
=
0 ;
end;
hence
P[k];
end;
A18: for k be
Nat holds
P[k] from
NAT_1:sch 4(
A1);
consider n be
Nat such that
A19: (
len p)
= n;
thus thesis by
A18,
A19;
end;
theorem ::
HURWITZ2:29
Th29: for p be
real
Polynomial of
F_Complex holds for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Re (
eval ((
odd_part p),x)))
=
0
proof
let p be
real
Polynomial of
F_Complex ;
let x be
Element of
F_Complex ;
defpred
P[
Nat] means for p be
Polynomial of
F_Complex st p is
real & (
len p)
= $1 holds (for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Re (
eval ((
odd_part p),x)))
=
0 );
A1:
now
let k be
Nat;
assume
A2: for n be
Nat st n
< k holds
P[n];
now
let p be
Polynomial of
F_Complex ;
assume
A3: p is
real & (
len p)
= k;
now
per cases by
NAT_1: 14;
case k
=
0 ;
then p
= (
0_.
F_Complex ) by
A3,
POLYNOM4: 5;
then
A4: (
odd_part p)
= (
0_.
F_Complex ) by
Th7;
thus for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Re (
eval ((
odd_part p),x)))
=
0
proof
let x be
Element of
F_Complex ;
assume (
Re x)
=
0 ;
(
eval ((
odd_part p),x))
= (
0.
F_Complex ) by
A4,
POLYNOM4: 17
.=
0 by
COMPLFLD:def 1;
hence thesis by
COMPLEX1: 4;
end;
end;
case
A5: k
>= 1;
set LMp = (
Leading-Monomial p);
(LMp
+ (p
- LMp))
= ((LMp
+ (
- LMp))
+ p) by
POLYNOM3: 26
.= ((LMp
- LMp)
+ p)
.= ((
0_.
F_Complex )
+ p) by
POLYNOM3: 29
.= p by
POLYNOM3: 28;
then
A6: (
odd_part p)
= ((
odd_part LMp)
+ (
odd_part (p
- LMp))) by
Th16;
thus for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Re (
eval ((
odd_part p),x)))
=
0
proof
let x be
Element of
F_Complex ;
assume
A7: (
Re x)
=
0 ;
consider t be
Polynomial of
F_Complex such that
A8: (
len t)
< (
len p) & p
= (t
+ (
Leading-Monomial p)) & for n be
Element of
NAT st n
< ((
len p)
- 1) holds (t
. n)
= (p
. n) by
A5,
A3,
POLYNOM4: 16;
A9: (p
- LMp)
= (t
+ (LMp
- LMp)) by
A8,
POLYNOM3: 26
.= (t
+ (
0_.
F_Complex )) by
POLYNOM3: 29
.= t by
POLYNOM3: 28;
now
let n be
Nat;
A10: n
in
NAT by
ORDINAL1:def 12;
now
per cases ;
case n
< ((
len p)
- 1);
then (t
. n)
= (p
. n) by
A8,
A10;
hence (t
. n) is
Real by
A3;
end;
case
A11: n
>= ((
len p)
- 1);
reconsider lp = ((
len p)
- 1) as
Element of
NAT by
A5,
A3,
INT_1: 5;
(
len t)
< (lp
+ 1) by
A8;
then lp
>= (
len t) by
NAT_1: 13;
then (t
. n)
= (
0.
F_Complex ) by
A11,
XXREAL_0: 2,
ALGSEQ_1: 8;
hence (t
. n) is
Real by
COMPLFLD:def 1;
end;
end;
hence (t
. n) is
Real;
end;
then
A12: t is
real;
A13: (
Re (
eval ((
odd_part LMp),x)))
=
0
proof
now
per cases ;
case (
deg p) is
even;
then (
odd_part LMp)
= (
0_.
F_Complex ) by
Th19;
then (
eval ((
odd_part LMp),x))
= (
0.
F_Complex ) by
POLYNOM4: 17
.=
0 by
COMPLFLD:def 1;
hence thesis by
COMPLEX1: 4;
end;
case
A14: (
deg p) is
odd;
then
A15: (
eval ((
odd_part LMp),x))
= (
eval (LMp,x)) by
Th20
.= ((p
. ((
len p)
-' 1))
* ((
power
F_Complex )
. (x,((
len p)
-' 1)))) by
POLYNOM4: 22;
set z1 = (p
. ((
len p)
-' 1)), z2 = ((
power
F_Complex )
. (x,((
len p)
-' 1)));
((
len p)
-' 1)
= (
deg p) by
A3,
A5,
XREAL_1: 233;
then
A16: (
Re z2)
=
0 by
A7,
A14,
Th6;
z1
in
REAL by
A3,
XREAL_0:def 1;
then
A17: (
Im z1)
=
0 by
COMPLEX1:def 2;
thus (
Re (
eval ((
odd_part LMp),x)))
= (((
Re z1)
* (
Re z2))
- ((
Im z1)
* (
Im z2))) by
A15,
COMPLEX1: 9
.=
0 by
A17,
A16;
end;
end;
hence thesis;
end;
thus (
Re (
eval ((
odd_part p),x)))
= (
Re ((
eval ((
odd_part LMp),x))
+ (
eval ((
odd_part (p
- LMp)),x)))) by
A6,
POLYNOM4: 19
.= (
0
+ (
Re (
eval ((
odd_part (p
- LMp)),x)))) by
A13,
COMPLEX1: 8
.=
0 by
A12,
A8,
A9,
A7,
A3,
A2;
end;
end;
end;
hence for x be
Element of
F_Complex st (
Re x)
=
0 holds (
Re (
eval ((
odd_part p),x)))
=
0 ;
end;
hence
P[k];
end;
A18: for k be
Nat holds
P[k] from
NAT_1:sch 4(
A1);
consider n be
Nat such that
A19: (
len p)
= n;
thus thesis by
A18,
A19;
end;
theorem ::
HURWITZ2:30
Th30: for p be non
constant
with_positive_coefficients
real
Polynomial of
F_Complex st
[(
even_part p), (
odd_part p)] is
positive & ((
even_part p),(
odd_part p))
have_no_common_roots holds (for x be
Element of
F_Complex st (
Re x)
=
0 & (
eval ((
odd_part p),x))
<>
0 holds (
Re (
eval (
[(
even_part p), (
odd_part p)],x)))
>=
0 ) & ((
even_part p)
+ (
odd_part p)) is
Hurwitz
proof
let p be non
constant
with_positive_coefficients
real
Polynomial of
F_Complex ;
assume
A1:
[(
even_part p), (
odd_part p)] is
positive & ((
even_part p),(
odd_part p))
have_no_common_roots ;
set p1 = (
even_part p), p2 = (
odd_part p);
set z =
[p1, p2];
per cases ;
suppose (p1
- p2)
= (
0_.
F_Complex );
then (p1
+ (p2
+ (
- p2)))
= ((
0_.
F_Complex )
+ p2) by
POLYNOM3: 26;
then (p1
+ (p2
- p2))
= ((
0_.
F_Complex )
+ p2);
then (p1
+ (
0_.
F_Complex ))
= ((
0_.
F_Complex )
+ p2) by
POLYNOM3: 29;
then
A2: p1
= ((
0_.
F_Complex )
+ p2) by
POLYNOM3: 28;
A3: for x be
Element of
F_Complex holds (
eval (p2,x))
<> (
0.
F_Complex )
proof
let x be
Element of
F_Complex ;
assume (
eval (p2,x))
= (
0.
F_Complex );
then x
is_a_root_of p2 by
POLYNOM5:def 7;
then x
is_a_common_root_of (p1,p2) by
A2,
POLYNOM3: 28;
hence thesis by
A1;
end;
A4: for x be
Element of
F_Complex holds (
eval (z,x))
= (
1.
F_Complex )
proof
let x be
Element of
F_Complex ;
A5: (
eval (p2,x))
<> (
0.
F_Complex ) by
A3;
thus (
eval (z,x))
= ((
eval (p2,x))
* ((
eval (p2,x))
" )) by
A2,
POLYNOM3: 28
.= (
1.
F_Complex ) by
A5,
VECTSP_1:def 10;
end;
A6: (
Re (
1.
F_Complex ))
= 1 by
COMPLFLD:def 1,
COMPLEX1: 6;
now
let x be
Element of
F_Complex ;
assume x
is_a_root_of (p1
+ p2);
then (
0.
F_Complex )
= (
eval ((p1
+ p2),x)) by
POLYNOM5:def 7
.= ((
eval (p1,x))
+ (
eval (p2,x))) by
POLYNOM4: 19
.= ((
eval (p2,x))
+ (
eval (p2,x))) by
A2,
POLYNOM3: 28;
then (2
* (
eval (p2,x)))
=
0 by
COMPLFLD:def 1;
then (
0.
F_Complex )
= (
eval (p2,x)) by
COMPLFLD:def 1;
hence (
Re x)
<
0 by
A3;
end;
hence ((for x be
Element of
F_Complex st (
Re x)
=
0 & (
eval (p2,x))
<>
0 holds (
Re (
eval (z,x)))
>=
0 ) & (p1
+ p2) is
Hurwitz) by
A4,
A6;
end;
suppose (p1
- p2)
<> (
0_.
F_Complex );
then
reconsider pp = (p1
- p2) as non
zero
Polynomial of
F_Complex by
UPROOTS:def 5;
set w =
[(p1
+ p2), pp];
A7:
now
let x be
Element of
F_Complex ;
assume
A8: (
eval ((z
`2 ),x))
= (
0.
F_Complex );
A9: (
eval (pp,x))
= ((
eval (p1,x))
- (
eval (p2,x))) by
POLYNOM4: 21
.= (
eval (p1,x)) by
RLVECT_1: 13,
A8;
A10: (
eval ((p1
+ p2),x))
= ((
eval (p1,x))
+ (
eval (p2,x))) by
POLYNOM4: 19
.= (
eval (p1,x)) by
RLVECT_1:def 4,
A8;
A11:
now
assume (
eval (p1,x))
= (
0.
F_Complex );
then x
is_a_common_root_of (p1,p2) by
A8,
POLYNOM5:def 7;
hence contradiction by
A1;
end;
thus (
eval (w,x))
= (((
eval (p1,x))
" )
* (
eval (p1,x))) by
A10,
A9
.= (
1.
F_Complex ) by
VECTSP_1:def 10,
A11;
end;
A12:
now
let x be
Element of
F_Complex ;
assume
A13: (
eval (w,x))
= (
1.
F_Complex ) & (
eval (p2,x))
<> (
0.
F_Complex ) & (
eval (p2,x))
<> (
eval (p1,x));
A14:
now
assume (
eval (pp,x))
= (
0.
F_Complex );
then ((
eval (p1,x))
- (
eval (p2,x)))
= (
0.
F_Complex ) by
POLYNOM4: 21;
then (
eval (p2,x))
= (((
eval (p1,x))
- (
eval (p2,x)))
+ (
eval (p2,x))) by
RLVECT_1:def 4
.= ((
eval (p1,x))
+ ((
- (
eval (p2,x)))
+ (
eval (p2,x))))
.= ((
eval (p1,x))
+ (
0.
F_Complex )) by
RLVECT_1: 5
.= (
eval (p1,x)) by
RLVECT_1:def 4;
hence contradiction by
A13;
end;
reconsider a = (
eval (p2,x)) as
Complex;
((
1.
F_Complex )
* (
eval (pp,x)))
= ((
eval ((p1
+ p2),x))
* (((
eval (pp,x))
" )
* (
eval (pp,x)))) by
A13
.= ((
eval ((p1
+ p2),x))
* (
1.
F_Complex )) by
A14,
VECTSP_1:def 10
.= (
eval ((p1
+ p2),x));
then (
eval ((p1
+ p2),x))
= (
eval (pp,x))
.= ((
eval (p1,x))
- (
eval (p2,x))) by
POLYNOM4: 21;
then ((
eval (p1,x))
+ (
eval (p2,x)))
= ((
eval (p1,x))
- (
eval (p2,x))) by
POLYNOM4: 19;
then a
= (
- a) by
COMPLFLD: 2;
hence (
eval ((z
`2 ),x))
= (
0.
F_Complex ) by
COMPLFLD:def 1;
end;
A15:
now
let x be
Element of
F_Complex ;
assume
A16: (
eval (p2,x))
<> (
0.
F_Complex ) & (
eval (p2,x))
<> (
eval (p1,x));
((
eval (w,x))
- (
1.
F_Complex ))
<> ((
1.
F_Complex )
- (
1.
F_Complex )) by
A16,
A12;
then
A17: ((
eval (w,x))
- (
1.
F_Complex ))
<> (
0.
F_Complex ) by
RLVECT_1: 15;
A18: 1
= (
1.
F_Complex ) by
COMPLFLD:def 1,
COMPLEX1:def 4;
then
A19: ((
eval (w,x))
- 1)
= ((
eval (w,x))
- (
1.
F_Complex )) by
COMPLFLD: 3;
A20: (
eval ((p1
- p2),x))
= ((
eval (p1,x))
- (
eval (p2,x))) by
POLYNOM4: 21;
A21:
now
assume (
eval ((p1
- p2),x))
= (
0.
F_Complex );
then ((
eval (p1,x))
- (
eval (p2,x)))
= (
0.
F_Complex ) by
POLYNOM4: 21;
hence contradiction by
A16,
RLVECT_1: 21;
end;
A22: ((
eval ((p1
- p2),x))
+ (
eval ((p1
+ p2),x)))
= (((
eval (p1,x))
- (
eval (p2,x)))
+ ((
eval (p1,x))
+ (
eval (p2,x)))) by
A20,
POLYNOM4: 19
.= (((
eval (p2,x))
- (
eval (p2,x)))
+ ((
eval (p1,x))
+ (
eval (p1,x))))
.= ((
0.
F_Complex )
+ ((
eval (p1,x))
+ (
eval (p1,x)))) by
RLVECT_1:def 10
.= ((
eval (p1,x))
+ (
eval (p1,x))) by
RLVECT_1:def 4;
A23: (((
eval ((p1
+ p2),x))
* ((
eval ((p1
- p2),x))
" ))
- ((
eval ((p1
- p2),x))
* ((
eval ((p1
- p2),x))
" )))
= (((
eval ((p1
+ p2),x))
* ((
eval ((p1
- p2),x))
" ))
+ ((
- (
eval ((p1
- p2),x)))
* ((
eval ((p1
- p2),x))
" ))) by
VECTSP_1: 8
.= (((
eval ((p1
+ p2),x))
+ (
- (
eval ((p1
- p2),x))))
* ((
eval ((p1
- p2),x))
" ))
.= ((((
eval (p1,x))
+ (
eval (p2,x)))
- (
eval ((p1
- p2),x)))
* ((
eval ((p1
- p2),x))
" )) by
POLYNOM4: 19
.= ((((
eval (p1,x))
+ (
eval (p2,x)))
- ((
eval (p1,x))
- (
eval (p2,x))))
* ((
eval ((p1
- p2),x))
" )) by
POLYNOM4: 21
.= ((((
eval (p1,x))
+ (
eval (p2,x)))
+ ((
eval (p2,x))
+ (
- (
eval (p1,x)))))
* ((
eval ((p1
- p2),x))
" )) by
RLVECT_1: 33
.= (((((
eval (p1,x))
+ (
- (
eval (p1,x))))
+ (
eval (p2,x)))
+ (
eval (p2,x)))
* ((
eval ((p1
- p2),x))
" ))
.= ((((
0.
F_Complex )
+ (
eval (p2,x)))
+ (
eval (p2,x)))
* ((
eval ((p1
- p2),x))
" )) by
RLVECT_1:def 10
.= (((
eval (p2,x))
+ (
eval (p2,x)))
* ((
eval ((p1
- p2),x))
" )) by
ALGSTR_1:def 2
.= ((
eval ((p2
+ p2),x))
* ((
eval ((p1
- p2),x))
" )) by
POLYNOM4: 19;
A24: ((
eval (z,x))
* ((
eval (w,x))
- 1))
= (((
eval (p1,x))
* ((
eval (p2,x))
" ))
* ((
eval (w,x))
- (
1.
F_Complex ))) by
COMPLEX1:def 4,
COMPLFLD: 8,
COMPLFLD: 3
.= (((
eval (p1,x))
* ((
eval (p2,x))
" ))
* ((
eval (w,x))
- ((
eval ((p1
- p2),x))
* ((
eval ((p1
- p2),x))
" )))) by
A21,
VECTSP_1:def 10
.= (((
eval (p1,x))
* ((
eval (p2,x))
" ))
* (((
eval (p2,x))
+ (
eval (p2,x)))
* ((
eval ((p1
- p2),x))
" ))) by
A23,
POLYNOM4: 19
.= ((((
eval (p1,x))
* 2)
* (((
eval (p2,x))
" )
* (
eval (p2,x))))
* ((
eval ((p1
- p2),x))
" ))
.= ((((
eval (p1,x))
* 2)
* (
1.
F_Complex ))
* ((
eval ((p1
- p2),x))
" )) by
A16,
VECTSP_1:def 10
.= ((2
* (
eval (p1,x)))
* ((
eval ((p1
- p2),x))
" )) by
A18;
(1
+ (
eval (w,x)))
= (((
eval ((p1
- p2),x))
* ((
eval ((p1
- p2),x))
" ))
+ ((
eval ((p1
+ p2),x))
* ((
eval ((p1
- p2),x))
" ))) by
A18,
A21,
VECTSP_1:def 10
.= (((
eval (p1,x))
+ (
eval (p1,x)))
* ((
eval ((p1
- p2),x))
" )) by
A22;
then ((1
+ (
eval (w,x)))
* (((
eval (w,x))
- 1)
" ))
= (((
eval (z,x))
* ((
eval (w,x))
- 1))
* (((
eval (w,x))
- 1)
" )) by
A24
.= ((
eval (z,x))
* (((
eval (w,x))
- 1)
* (((
eval (w,x))
- 1)
" )))
.= ((
eval (z,x))
* (((
eval (w,x))
- (
1.
F_Complex ))
* (((
eval (w,x))
- (
1.
F_Complex ))
" ))) by
A19,
A17,
COMPLFLD: 5
.= ((
eval (z,x))
* (
1.
F_Complex )) by
A17,
VECTSP_1:def 10
.= (
eval (z,x));
hence ((1
+ (
eval (w,x)))
/ ((
eval (w,x))
- 1))
= (
eval (z,x));
end;
A25:
now
let x be
Real;
assume
0
<= x & (x
* x)
= 1;
then
0
< x & x
= (x
" ) by
XCMPLX_1: 210;
hence x
= 1 by
XCMPLX_1: 223;
end;
A26: for x be
Element of
F_Complex , E2,E1 be
Real st E2
= (
|.(
eval (w,x)).|
^2 ) & E1
= (
|.((
eval (w,x))
- 1).|
^2 ) & (
eval (p2,x))
<> (
0.
F_Complex ) & (
eval (p2,x))
<> (
eval (p1,x)) holds (
Re (
eval (z,x)))
= ((E2
- 1)
/ E1)
proof
let x be
Element of
F_Complex , E2,E1 be
Real;
assume
A27: E2
= (
|.(
eval (w,x)).|
^2 ) & E1
= (
|.((
eval (w,x))
- 1).|
^2 );
assume
A28: (
eval (p2,x))
<> (
0.
F_Complex ) & (
eval (p2,x))
<> (
eval (p1,x));
set z1 = (1
+ (
eval (w,x))), z2 = ((
eval (w,x))
- 1);
A29: (
Re z1)
= ((
Re (
eval (w,x)))
+ 1) by
COMPLEX1: 8,
COMPLEX1: 6,
COMPLEX1:def 4;
A30: (
Re z2)
= ((
Re (
eval (w,x)))
- 1) by
COMPLEX1:def 4,
COMPLEX1: 6,
COMPLEX1: 19;
A31: (
Im z1)
= (
0
+ (
Im (
eval (w,x)))) by
COMPLEX1: 8,
COMPLEX1: 6,
COMPLEX1:def 4;
A32: (
Im z2)
= ((
Im (
eval (w,x)))
- (
Im
1r )) by
COMPLEX1: 19,
COMPLEX1:def 4
.= ((
Im (
eval (w,x)))
+
0 ) by
COMPLEX1: 6;
reconsider R2 = ((
Re z2)
^2 ), I2 = ((
Im z2)
^2 ) as
Real;
reconsider RR = ((
Re (
eval (w,x)))
^2 ), II = ((
Im (
eval (w,x)))
^2 ) as
Real;
(
Re ((1
+ (
eval (w,x)))
/ ((
eval (w,x))
- 1)))
= ((((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
/ (R2
+ I2)) by
COMPLEX1: 24
.= (((RR
+ II)
- 1)
/ (R2
+ I2)) by
A29,
A30,
A31,
A32
.= ((
|.((
eval (w,x))
* (
eval (w,x))).|
- 1)
/ (R2
+ I2)) by
COMPLEX1: 68
.= (((
|.(
eval (w,x)).|
*
|.(
eval (w,x)).|)
- 1)
/ (R2
+ I2)) by
COMPLEX1: 65
.= ((E2
- 1)
/
|.(z2
* z2).|) by
COMPLEX1: 68,
A27
.= ((E2
- 1)
/ E1) by
COMPLEX1: 65,
A27;
hence (
Re (
eval (z,x)))
= ((E2
- 1)
/ E1) by
A28,
A15;
end;
A33: for x be
Element of
F_Complex holds ((
eval (p2,x))
<> (
eval (p1,x)) & (
Re (
eval (z,x)))
>=
0 ) implies
|.(
eval (w,x)).|
>= 1
proof
let x be
Element of
F_Complex ;
reconsider E2 = (
|.((
eval (w,x))
- 1).|
^2 ) as
Real;
reconsider E1 = (
|.(
eval (w,x)).|
^2 ) as
Real;
assume
A34: (
eval (p2,x))
<> (
eval (p1,x)) & (
Re (
eval (z,x)))
>=
0 ;
A35: E2
>=
0 by
XREAL_1: 63;
now
per cases by
A34;
case (
eval (p2,x))
= (
0.
F_Complex );
then (
eval (w,x))
= (
1.
F_Complex ) by
A7
.= 1 by
COMPLFLD:def 1,
COMPLEX1:def 4;
hence
|.(
eval (w,x)).|
>= 1 by
COMPLEX1: 48;
end;
case (
Re (
eval (z,x)))
>
0 & (
eval (p2,x))
<> (
0.
F_Complex );
then
A36: ((E1
- 1)
/ E2)
>
0 by
A34,
A26;
then (E1
- 1)
>
0 by
A35;
then
A37: ((E1
- 1)
+ 1)
> (
0
+ 1) by
XREAL_1: 8;
now
per cases ;
case (
eval (w,x))
=
0 ;
hence
|.(
eval (w,x)).|
>= 1 by
A35,
A36,
COMPLEX1: 44;
end;
case (
eval (w,x))
<>
0 ;
then
A38:
|.(
eval (w,x)).|
>
0 by
COMPLEX1: 47;
now
assume
A39:
|.(
eval (w,x)).|
< 1;
then E1
<=
|.(
eval (w,x)).| by
A38,
SQUARE_1: 42;
hence contradiction by
A37,
A39,
XXREAL_0: 2;
end;
hence
|.(
eval (w,x)).|
>= 1;
end;
end;
hence
|.(
eval (w,x)).|
>= 1;
end;
case (
Re (
eval (z,x)))
=
0 & (
eval (p2,x))
<> (
0.
F_Complex );
then
A40: ((E1
- 1)
/ E2)
=
0 by
A34,
A26;
now
per cases ;
case (
|.((
eval (w,x))
- 1).|
^2 )
=
0 ;
then
|.((
eval (w,x))
- 1).|
=
0 ;
then ((
eval (w,x))
- 1)
=
0 by
COMPLEX1: 45;
hence
|.(
eval (w,x)).|
= 1 by
COMPLEX1: 48;
end;
case (
|.((
eval (w,x))
- 1).|
^2 )
<>
0 ;
then (E1
- 1)
=
0 by
A40;
hence
|.(
eval (w,x)).|
= 1 by
A25,
COMPLEX1: 46;
end;
end;
hence
|.(
eval (w,x)).|
>= 1;
end;
end;
hence
|.(
eval (w,x)).|
>= 1;
end;
thus for x be
Element of
F_Complex st (
Re x)
=
0 & (
eval (p2,x))
<>
0 holds (
Re (
eval (z,x)))
>=
0
proof
let x be
Element of
F_Complex ;
assume
A41: (
Re x)
=
0 & (
eval (p2,x))
<>
0 ;
then
A42: (
Im (
eval (p1,x)))
=
0 by
Th28;
A43: (
Re (
eval (p2,x)))
=
0 by
A41,
Th29;
A44: (
eval (p2,x))
<> (
0.
F_Complex ) by
A41,
COMPLFLD:def 1;
reconsider y1 = (
eval (p1,x)) as
Complex;
reconsider y2 = (
eval (p2,x)) as
Complex;
(
Re ((
eval (p1,x))
/ (
eval (p2,x))))
= (
Re (y1
/ y2)) by
A44,
COMPLFLD: 6
.=
0 by
A42,
A43,
Th1;
hence thesis;
end;
now
let x be
Element of
F_Complex ;
assume
A45: (
Re x)
>=
0 ;
reconsider RW = (
|.(
eval (w,x)).|
^2 ) as
Real;
now
per cases ;
case
A46: (
eval (p2,x))
= (
eval (p1,x));
A47:
now
assume (
eval (p1,x))
= (
0.
F_Complex );
then x
is_a_common_root_of (p1,p2) by
A46,
POLYNOM5:def 7;
hence contradiction by
A1;
end;
now
assume (
eval ((p1
+ p2),x))
= (
0.
F_Complex );
then
A48: ((
eval (p1,x))
+ (
eval (p1,x)))
= (
0.
F_Complex ) by
A46,
POLYNOM4: 19
.=
0 by
COMPLFLD:def 1;
reconsider a = (
eval (p1,x)) as
Complex;
thus contradiction by
A48,
A47,
COMPLFLD:def 1;
end;
hence not (x
is_a_root_of (p1
+ p2)) by
POLYNOM5:def 7;
end;
case
A49: (
eval (p2,x))
<> (
eval (p1,x));
now
per cases by
A45;
case
A50: (
Re x)
=
0 ;
then
A51: (
Im (
eval (p1,x)))
=
0 by
Th28;
A52: (
Re (
eval (p2,x)))
=
0 by
A50,
Th29;
now
per cases ;
case
A53: (
eval (p2,x))
=
0 ;
then
A54: (
eval (p2,x))
= (
0.
F_Complex ) by
COMPLFLD:def 1;
A55: (
eval (pp,x))
= ((
eval (p1,x))
- (
eval (p2,x))) by
POLYNOM4: 21
.= ((
eval (p1,x))
- (
0.
F_Complex )) by
A53,
COMPLFLD:def 1
.= (
eval (p1,x)) by
RLVECT_1: 13;
A56: (
eval ((p1
+ p2),x))
= ((
eval (p1,x))
+ (
eval (p2,x))) by
POLYNOM4: 19
.= (
eval (p1,x)) by
A53;
A57:
now
assume (
eval (p1,x))
= (
0.
F_Complex );
then x
is_a_common_root_of (p1,p2) by
A54,
POLYNOM5:def 7;
hence contradiction by
A1;
end;
(
eval (w,x))
= (((
eval (p1,x))
" )
* (
eval (p1,x))) by
A55,
A56
.= (
1.
F_Complex ) by
VECTSP_1:def 10,
A57
.=
1r by
COMPLFLD:def 1;
hence
|.(
eval (w,x)).|
= 1 by
COMPLEX1: 48;
end;
case
A58: (
eval (p2,x))
<>
0 ;
then
A59: (
eval (p2,x))
<> (
0.
F_Complex ) by
COMPLFLD:def 1;
A60: (
eval (p2,x))
<> (
0.
F_Complex ) by
A58,
COMPLFLD:def 1;
reconsider y1 = (
eval (p1,x)) as
Complex;
reconsider y2 = (
eval (p2,x)) as
Complex;
reconsider E1 = (
|.((
eval (w,x))
- 1).|
^2 ) as
Real;
(
Re ((
eval (p1,x))
/ (
eval (p2,x))))
= (
Re (y1
/ y2)) by
A59,
COMPLFLD: 6
.=
0 by
A51,
A52,
Th1;
then (
Re (
eval (z,x)))
=
0 ;
then
A61: ((RW
- 1)
/ E1)
=
0 by
A49,
A60,
A26;
now
per cases ;
case (
|.((
eval (w,x))
- 1).|
^2 )
=
0 ;
then
|.((
eval (w,x))
- 1).|
=
0 ;
then ((
eval (w,x))
- 1)
=
0 by
COMPLEX1: 45;
hence
|.(
eval (w,x)).|
= 1 by
COMPLEX1: 48;
end;
case (
|.((
eval (w,x))
- 1).|
^2 )
<>
0 ;
then (RW
- 1)
=
0 by
A61;
hence
|.(
eval (w,x)).|
= 1 by
A25,
COMPLEX1: 46;
end;
end;
hence
|.(
eval (w,x)).|
= 1;
end;
end;
then (
eval ((w
`1 ),x))
<>
0 by
COMPLEX1: 47;
then (
eval ((p1
+ p2),x))
<> (
0.
F_Complex ) by
COMPLFLD:def 1;
hence not (x
is_a_root_of (p1
+ p2)) by
POLYNOM5:def 7;
end;
case (
Re x)
>
0 & (
eval ((z
`2 ),x))
<>
0 ;
then (
Re (
eval (z,x)))
>
0 by
A1;
then
|.(
eval (w,x)).|
>= 1 by
A33,
A49;
then (
eval ((w
`1 ),x))
<>
0 by
COMPLEX1: 47;
then (
eval ((p1
+ p2),x))
<> (
0.
F_Complex ) by
COMPLFLD:def 1;
hence not (x
is_a_root_of (p1
+ p2)) by
POLYNOM5:def 7;
end;
case (
Re x)
>
0 & (
eval ((z
`2 ),x))
=
0 ;
then
A62: (
eval (p2,x))
= (
0.
F_Complex ) by
COMPLFLD:def 1;
A63: (
eval (pp,x))
= ((
eval (p1,x))
- (
eval (p2,x))) by
POLYNOM4: 21
.= (
eval (p1,x)) by
A62,
RLVECT_1: 13;
A64: (
eval ((p1
+ p2),x))
= ((
eval (p1,x))
+ (
eval (p2,x))) by
POLYNOM4: 19
.= (
eval (p1,x)) by
A62,
RLVECT_1:def 4;
A65:
now
assume (
eval (p1,x))
= (
0.
F_Complex );
then x
is_a_common_root_of (p1,p2) by
A62,
POLYNOM5:def 7;
hence contradiction by
A1;
end;
(
eval (w,x))
= (((
eval (p1,x))
" )
* (
eval (p1,x))) by
A63,
A64
.= (
1.
F_Complex ) by
VECTSP_1:def 10,
A65
.=
1r by
COMPLFLD:def 1;
then (
eval ((w
`1 ),x))
<>
0 by
COMPLEX1: 47,
COMPLEX1: 48;
then (
eval ((p1
+ p2),x))
<> (
0.
F_Complex ) by
COMPLFLD:def 1;
hence not (x
is_a_root_of (p1
+ p2)) by
POLYNOM5:def 7;
end;
end;
hence not (x
is_a_root_of (p1
+ p2));
end;
end;
hence not (x
is_a_root_of (p1
+ p2));
end;
hence (p1
+ p2) is
Hurwitz;
end;
end;
theorem ::
HURWITZ2:31
for p be non
constant
with_positive_coefficients
real
Polynomial of
F_Complex st
[(
even_part p), (
odd_part p)] is
one_port_function & (
degree
[(
even_part p), (
odd_part p)])
= (
degree p) holds p is
Hurwitz
proof
let p be non
constant
with_positive_coefficients
real
Polynomial of
F_Complex ;
set e = (
even_part p), o = (
odd_part p);
set f =
[e, o];
assume
A1:
[e, o] is
one_port_function & (
degree
[e, o])
= (
degree p);
A2: f is non
zero;
(
degree f)
= (
max ((
degree (f
`1 )),(
degree (f
`2 )))) by
A1,
Th23;
then f is
irreducible by
A2,
RATFUNC1: 30;
then (e
+ o) is
Hurwitz by
A1,
Th30;
hence p is
Hurwitz by
Th9;
end;