polynom5.miz
begin
theorem ::
POLYNOM5:1
Th1: for n,m be
Nat st n
<>
0 & m
<>
0 holds ((((n
* m)
- n)
- m)
+ 1)
>=
0
proof
let n,m be
Nat;
assume that
A1: n
<>
0 and
A2: m
<>
0 ;
m
>= (
0
+ 1) by
A2,
NAT_1: 13;
then
A3: (m
- 1)
>= ((
0
+ 1)
- 1);
n
>= (
0
+ 1) by
A1,
NAT_1: 13;
then (n
- 1)
>= ((
0
+ 1)
- 1);
then ((n
- 1)
* (m
- 1))
>=
0 by
A3;
hence thesis;
end;
theorem ::
POLYNOM5:2
Th2: for x,y be
Real st y
>
0 holds ((
min (x,y))
/ (
max (x,y)))
<= 1
proof
let x,y be
Real;
assume
A1: y
>
0 ;
per cases ;
suppose
A2: x
>
0 ;
now
per cases ;
suppose
A3: x
>= y;
then (
max (x,y))
= x & (
min (x,y))
= y by
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
A1,
A3,
XREAL_1: 183;
end;
suppose
A4: x
< y;
then (
max (x,y))
= y & (
min (x,y))
= x by
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
A2,
A4,
XREAL_1: 183;
end;
end;
hence thesis;
end;
suppose
A5: x
<=
0 ;
then (
min (x,y))
= x & (
max (x,y))
= y by
A1,
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
A1,
A5;
end;
end;
theorem ::
POLYNOM5:3
Th3: for x,y be
Real st for c be
Real st c
>
0 & c
< 1 holds (c
* x)
>= y holds y
<=
0
proof
let x,y be
Real;
assume
A1: for c be
Real st c
>
0 & c
< 1 holds (c
* x)
>= y;
set ma = (
max (x,y));
set mi = (
min (x,y));
set c = (mi
/ (2
* ma));
assume
A2: y
>
0 ;
then
A3: (y
* 2)
> y by
XREAL_1: 155;
per cases ;
suppose
A4: x
>
0 ;
then
A5: mi
>
0 & ma
>
0 by
A2,
XXREAL_0: 15,
XXREAL_0: 16;
then ((mi
/ ma)
* 2)
> (mi
/ ma) by
XREAL_1: 155;
then (mi
/ ma)
> ((mi
/ ma)
/ 2) by
XREAL_1: 83;
then
A6: (mi
/ ma)
> (mi
/ (ma
* 2)) by
XCMPLX_1: 78;
(mi
/ ma)
<= 1 by
A4,
Th2;
then c
< 1 by
A6,
XXREAL_0: 2;
then
A7: (c
* x)
>= y by
A1,
A5;
now
per cases ;
suppose x
>= y;
then ma
= x & mi
= y by
XXREAL_0:def 9,
XXREAL_0:def 10;
then (c
* x)
= (y
/ 2) by
A4,
XCMPLX_1: 92;
hence contradiction by
A3,
A7,
XREAL_1: 83;
end;
suppose
A8: x
< y;
then ma
= y & mi
= x by
XXREAL_0:def 9,
XXREAL_0:def 10;
then (c
* x)
< ((x
/ (2
* y))
* y) by
A4,
A8,
XREAL_1: 98;
then
A9: (c
* x)
< (x
/ 2) by
A2,
XCMPLX_1: 92;
A10: y
> (y
/ 2) by
A3,
XREAL_1: 83;
(x
/ 2)
< (y
/ 2) by
A8,
XREAL_1: 74;
then (c
* x)
< (y
/ 2) by
A9,
XXREAL_0: 2;
hence contradiction by
A7,
A10,
XXREAL_0: 2;
end;
end;
hence contradiction;
end;
suppose x
<=
0 ;
then ((1
/ 2)
* x)
<=
0 ;
hence contradiction by
A1,
A2;
end;
end;
Lm1: for x,y be
Real st for c be
Real st c
>
0 & c
< 1 holds (c
* x)
>= y holds y
<=
0 by
Th3;
theorem ::
POLYNOM5:4
Th4: for p be
FinSequence of
REAL st for n be
Element of
NAT st n
in (
dom p) holds (p
. n)
>=
0 holds for i be
Element of
NAT st i
in (
dom p) holds (
Sum p)
>= (p
. i)
proof
defpred
Q[
FinSequence of
REAL ] means (for n be
Element of
NAT st n
in (
dom $1) holds ($1
. n)
>=
0 ) implies for i be
Element of
NAT st i
in (
dom $1) holds (
Sum $1)
>= ($1
. i);
A1: for p be
FinSequence of
REAL holds for x be
Element of
REAL st
Q[p] holds
Q[(p
^
<*x*>)]
proof
let p be
FinSequence of
REAL ;
let x be
Element of
REAL ;
assume
A2: (for n be
Element of
NAT st n
in (
dom p) holds (p
. n)
>=
0 ) implies for i be
Element of
NAT st i
in (
dom p) holds (
Sum p)
>= (p
. i);
defpred
P[
Nat] means (
Sum (p
| $1))
>=
0 ;
assume
A3: for n be
Element of
NAT st n
in (
dom (p
^
<*x*>)) holds ((p
^
<*x*>)
. n)
>=
0 ;
A4: (
dom p)
c= (
dom (p
^
<*x*>)) by
FINSEQ_1: 26;
A5:
now
let n be
Element of
NAT ;
assume
A6: n
in (
dom p);
then ((p
^
<*x*>)
. n)
>=
0 by
A3,
A4;
hence (p
. n)
>=
0 by
A6,
FINSEQ_1:def 7;
end;
A7: for j be
Nat st
P[j] holds
P[(j
+ 1)]
proof
let j be
Nat;
assume
A8: (
Sum (p
| j))
>=
0 ;
per cases ;
suppose
A9: (j
+ 1)
<= (
len p);
then (p
| (j
+ 1))
= ((p
| j)
^
<*(p
/. (j
+ 1))*>) by
FINSEQ_5: 82;
then
A10: (
Sum (p
| (j
+ 1)))
= ((
Sum (p
| j))
+ (p
/. (j
+ 1))) by
RVSUM_1: 74;
(j
+ 1)
>= 1 by
NAT_1: 11;
then
A11: (j
+ 1)
in (
dom p) by
A9,
FINSEQ_3: 25;
then (p
. (j
+ 1))
>=
0 by
A5;
then (p
/. (j
+ 1))
>=
0 by
A11,
PARTFUN1:def 6;
hence thesis by
A8,
A10;
end;
suppose
A12: (j
+ 1)
> (
len p);
then j
>= (
len p) by
NAT_1: 13;
then (p
| j)
= p by
FINSEQ_1: 58;
hence thesis by
A8,
A12,
FINSEQ_1: 58;
end;
end;
let i be
Element of
NAT ;
((
len p)
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then (
len (p
^
<*x*>))
>= 1 by
FINSEQ_2: 16;
then (
len (p
^
<*x*>))
in (
dom (p
^
<*x*>)) by
FINSEQ_3: 25;
then ((p
^
<*x*>)
. (
len (p
^
<*x*>)))
>=
0 by
A3;
then ((p
^
<*x*>)
. ((
len p)
+ 1))
>=
0 by
FINSEQ_2: 16;
then x
>=
0 by
FINSEQ_1: 42;
then
A13: ((p
. i)
+ x)
>= ((p
. i)
+
0 ) by
XREAL_1: 6;
A14: (p
| (
len p))
= p by
FINSEQ_1: 58;
(
len (p
^
<*x*>))
= ((
len p)
+ 1) by
FINSEQ_2: 16;
then
A15: (
dom (p
^
<*x*>))
= (
Seg ((
len p)
+ 1)) by
FINSEQ_1:def 3
.= ((
Seg (
len p))
\/
{((
len p)
+ 1)}) by
FINSEQ_1: 9
.= ((
dom p)
\/
{((
len p)
+ 1)}) by
FINSEQ_1:def 3;
A16:
P[
0 ] by
RVSUM_1: 72;
for j be
Nat holds
P[j] from
NAT_1:sch 2(
A16,
A7);
then
A17: (
Sum p)
>=
0 by
A14;
assume
A18: i
in (
dom (p
^
<*x*>));
per cases by
A18,
A15,
XBOOLE_0:def 3;
suppose
A19: i
in (
dom p);
A20: (
Sum (p
^
<*x*>))
= ((
Sum p)
+ x) by
RVSUM_1: 74;
(
Sum p)
>= (p
. i) by
A2,
A5,
A19;
then (
Sum (p
^
<*x*>))
>= ((p
. i)
+ x) by
A20,
XREAL_1: 6;
then (
Sum (p
^
<*x*>))
>= (p
. i) by
A13,
XXREAL_0: 2;
hence thesis by
A19,
FINSEQ_1:def 7;
end;
suppose i
in
{((
len p)
+ 1)};
then i
= ((
len p)
+ 1) by
TARSKI:def 1;
then ((p
^
<*x*>)
. i)
= x by
FINSEQ_1: 42;
then ((
Sum p)
+ x)
>= (
0
+ ((p
^
<*x*>)
. i)) by
A17,
XREAL_1: 6;
hence thesis by
RVSUM_1: 74;
end;
end;
A21:
Q[(
<*>
REAL )];
thus for p be
FinSequence of
REAL holds
Q[p] from
FINSEQ_2:sch 2(
A21,
A1);
end;
theorem ::
POLYNOM5:5
Th5: for x,y be
Real holds (
-
[**x, y**])
=
[**(
- x), (
- y)**]
proof
let x,y be
Real;
thus (
-
[**x, y**])
= (
- (x
+ (y
*
<i> ))) by
COMPLFLD: 2
.=
[**(
- x), (
- y)**];
end;
theorem ::
POLYNOM5:6
Th6: for x1,y1,x2,y2 be
Real holds (
[**x1, y1**]
-
[**x2, y2**])
=
[**(x1
- x2), (y1
- y2)**]
proof
let x1,y1,x2,y2 be
Real;
thus (
[**x1, y1**]
-
[**x2, y2**])
= (
[**x1, y1**]
+
[**(
- x2), (
- y2)**]) by
Th5
.=
[**(x1
- x2), (y1
- y2)**];
end;
definition
let R be non
empty
multMagma;
let z be
Element of R, n be
Nat;
::
POLYNOM5:def1
func
power (z,n) ->
Element of R equals ((
power R)
. (z,n));
coherence ;
end
theorem ::
POLYNOM5:7
Th7: for z be
Element of
F_Complex st z
<> (
0.
F_Complex ) holds for n be
Nat holds
|.(
power (z,n)).|
= (
|.z.|
to_power n)
proof
let z be
Element of
F_Complex ;
defpred
P[
Nat] means
|.(
power (z,$1)).|
= (
|.z.|
to_power $1);
assume z
<> (
0.
F_Complex );
then
A1:
|.z.|
<>
0 by
COMPLFLD: 58;
A2:
|.z.|
>=
0 by
COMPLEX1: 46;
A3: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A4:
|.(
power (z,n)).|
= (
|.z.|
to_power n);
thus
|.(
power (z,(n
+ 1))).|
=
|.(((
power
F_Complex )
. (z,n))
* z).| by
GROUP_1:def 7
.= ((
|.z.|
to_power n)
*
|.z.|) by
A4,
COMPLFLD: 71
.= ((
|.z.|
to_power n)
* (
|.z.|
to_power 1)) by
POWER: 25
.= (
|.z.|
to_power (n
+ 1)) by
A1,
A2,
POWER: 27;
end;
|.((
power
F_Complex )
. (z,
0 )).|
= 1 by
COMPLEX1: 48,
COMPLFLD: 8,
GROUP_1:def 7
.= (
|.z.|
to_power
0 ) by
POWER: 24;
then
A5:
P[
0 ];
thus for n be
Nat holds
P[n] from
NAT_1:sch 2(
A5,
A3);
end;
definition
let p be
complex-valued
FinSequence;
:: original:
|.
redefine
::
POLYNOM5:def2
func
|.p.| ->
FinSequence of
REAL means
:
Def2: (
len it )
= (
len p) & for n be
Nat st n
in (
dom p) holds (it
. n)
=
|.(p
. n).|;
coherence by
RVSUM_1: 145;
compatibility
proof
let f be
FinSequence of
REAL ;
hereby
assume
A1: f
=
|.p.|;
(
dom
|.p.|)
= (
dom p) by
VALUED_1:def 11;
hence (
len f)
= (
len p) by
A1,
FINSEQ_3: 29;
let n be
Nat such that n
in (
dom p);
thus (f
. n)
=
|.(p
. n).| by
A1,
VALUED_1: 18;
end;
assume that
A1: (
len f)
= (
len p) and
A2: for n be
Nat st n
in (
dom p) holds (f
. n)
=
|.(p
. n).|;
A3: (
dom f)
= (
dom p) by
A1,
FINSEQ_3: 29;
then for c be
object st c
in (
dom f) holds (f
. c)
=
|.(p
. c).| by
A2;
hence f
=
|.p.| by
A3,
VALUED_1:def 11;
end;
end
theorem ::
POLYNOM5:8
Th8:
|.(
<*> the
carrier of
F_Complex ).|
= (
<*>
REAL )
proof
(
len
|.(
<*> the
carrier of
F_Complex ).|)
= (
len (
<*> the
carrier of
F_Complex )) by
Def2
.=
0 ;
hence thesis;
end;
theorem ::
POLYNOM5:9
Th9: for x be
Complex holds
|.
<*x*>.|
=
<*
|.x.|*>
proof
let x be
Complex;
(
0
+ 1)
in (
Seg (
0
+ 1)) by
FINSEQ_1: 4;
then
A1: 1
in (
dom
<*x*>) by
FINSEQ_1: 38;
A2: (
len
|.
<*x*>.|)
= (
len
<*x*>) by
Def2
.= 1 by
FINSEQ_1: 39;
then
A3: (
dom
|.
<*x*>.|)
= (
Seg 1) by
FINSEQ_1:def 3;
A5:
now
let n be
Nat;
assume n
in (
dom
|.
<*x*>.|);
then
A6: n
= 1 by
A3,
FINSEQ_1: 2,
TARSKI:def 1;
hence (
|.
<*x*>.|
. n)
=
|.(
<*x*>
. 1).| by
A1,
Def2
.=
|.x.| by
FINSEQ_1: 40
.= (
<*
|.x.|*>
. n) by
A6,
FINSEQ_1: 40;
end;
(
len
<*
|.x.|*>)
= 1 by
FINSEQ_1: 39;
hence thesis by
A2,
A5,
FINSEQ_2: 9;
end;
theorem ::
POLYNOM5:10
for x,y be
Complex holds
|.
<*x, y*>.|
=
<*
|.x.|,
|.y.|*>
proof
let x,y be
Complex;
A1: (
len
|.
<*x, y*>.|)
= (
len
<*x, y*>) by
Def2
.= 2 by
FINSEQ_1: 44;
then
A2: (
dom
|.
<*x, y*>.|)
= (
Seg 2) by
FINSEQ_1:def 3;
A3:
now
let n be
Nat;
assume
A4: n
in (
dom
|.
<*x, y*>.|);
per cases by
A2,
A4,
FINSEQ_1: 2,
TARSKI:def 2;
suppose
A5: n
= 1;
then
A6: 1
in (
dom
<*x, y*>) by
A2,
A4,
FINSEQ_1: 89;
(
|.
<*x, y*>.|
. 1)
=
|.(
<*x, y*>
. 1).| by
A6,
Def2;
then (
|.
<*x, y*>.|
. 1)
=
|.x.| by
FINSEQ_1: 44;
hence (
|.
<*x, y*>.|
. n)
= (
<*
|.x.|,
|.y.|*>
. n) by
A5,
FINSEQ_1: 44;
end;
suppose
A7: n
= 2;
then
A8: 2
in (
dom
<*x, y*>) by
A2,
A4,
FINSEQ_1: 89;
(
|.
<*x, y*>.|
. 2)
=
|.(
<*x, y*>
. 2).| by
A8,
Def2;
then (
|.
<*x, y*>.|
. 2)
=
|.y.| by
FINSEQ_1: 44;
hence (
|.
<*x, y*>.|
. n)
= (
<*
|.x.|,
|.y.|*>
. n) by
A7,
FINSEQ_1: 44;
end;
end;
(
len
<*
|.x.|,
|.y.|*>)
= 2 by
FINSEQ_1: 44;
hence thesis by
A1,
A3,
FINSEQ_2: 9;
end;
theorem ::
POLYNOM5:11
for x,y,z be
Complex holds
|.
<*x, y, z*>.|
=
<*
|.x.|,
|.y.|,
|.z.|*>
proof
let x,y,z be
Complex;
A1: (
len
|.
<*x, y, z*>.|)
= (
len
<*x, y, z*>) by
Def2
.= 3 by
FINSEQ_1: 45;
then
A2: (
dom
|.
<*x, y, z*>.|)
= (
Seg 3) by
FINSEQ_1:def 3;
A3:
now
let n be
Nat;
assume
A4: n
in (
dom
|.
<*x, y, z*>.|);
per cases by
A2,
A4,
ENUMSET1:def 1,
FINSEQ_3: 1;
suppose
A5: n
= 1;
A6: 1
in (
dom
<*x, y, z*>) by
FINSEQ_1: 81;
(
|.
<*x, y, z*>.|
. 1)
=
|.(
<*x, y, z*>
. 1).| by
A6,
Def2;
then (
|.
<*x, y, z*>.|
. 1)
=
|.x.| by
FINSEQ_1: 45;
hence (
|.
<*x, y, z*>.|
. n)
= (
<*
|.x.|,
|.y.|,
|.z.|*>
. n) by
A5,
FINSEQ_1: 45;
end;
suppose
A7: n
= 2;
A8: 2
in (
dom
<*x, y, z*>) by
FINSEQ_1: 81;
(
|.
<*x, y, z*>.|
. 2)
=
|.(
<*x, y, z*>
. 2).| by
A8,
Def2;
then (
|.
<*x, y, z*>.|
. 2)
=
|.y.| by
FINSEQ_1: 45;
hence (
|.
<*x, y, z*>.|
. n)
= (
<*
|.x.|,
|.y.|,
|.z.|*>
. n) by
A7,
FINSEQ_1: 45;
end;
suppose
A9: n
= 3;
A10: 3
in (
dom
<*x, y, z*>) by
FINSEQ_1: 81;
(
|.
<*x, y, z*>.|
. 3)
=
|.(
<*x, y, z*>
. 3).| by
A10,
Def2;
then (
|.
<*x, y, z*>.|
. 3)
=
|.z.| by
FINSEQ_1: 45;
hence (
|.
<*x, y, z*>.|
. n)
= (
<*
|.x.|,
|.y.|,
|.z.|*>
. n) by
A9,
FINSEQ_1: 45;
end;
end;
(
len
<*
|.x.|,
|.y.|,
|.z.|*>)
= 3 by
FINSEQ_1: 45;
hence thesis by
A1,
A3,
FINSEQ_2: 9;
end;
theorem ::
POLYNOM5:12
Th12: for p,q be
complex-valued
FinSequence holds
|.(p
^ q).|
= (
|.p.|
^
|.q.|)
proof
let p,q be
complex-valued
FinSequence;
A1: (
dom
|.(p
^ q).|)
= (
Seg (
len
|.(p
^ q).|)) by
FINSEQ_1:def 3;
A2:
now
let n be
Nat;
A3: (
len
|.p.|)
= (
len p) by
Def2;
assume
A4: n
in (
dom
|.(p
^ q).|);
then
A5: n
>= 1 by
A1,
FINSEQ_1: 1;
A6: (
len
|.(p
^ q).|)
= (
len (p
^ q)) by
Def2;
then
A7: n
in (
dom (p
^ q)) by
A1,
A4,
FINSEQ_1:def 3;
per cases ;
suppose
A8: n
in (
dom p);
A9: ((p
^ q)
. n)
= (p
. n) by
A8,
FINSEQ_1:def 7;
A10: n
in (
dom
|.p.|) by
A3,
A8,
FINSEQ_3: 29;
thus (
|.(p
^ q).|
. n)
=
|.((p
^ q)
. n).| by
A7,
Def2
.= (
|.p.|
. n) by
A8,
A9,
Def2
.= ((
|.p.|
^
|.q.|)
. n) by
A10,
FINSEQ_1:def 7;
end;
suppose not n
in (
dom p);
then
A11: n
> (
0
+ (
len p)) by
A5,
FINSEQ_3: 25;
then
A12: (n
- (
len p))
>
0 by
XREAL_1: 20;
A13: n
= ((
len p)
+ (n
- (
len p)))
.= ((
len p)
+ (n
-' (
len p))) by
A12,
XREAL_0:def 2;
n
<= (
len (p
^ q)) by
A1,
A4,
A6,
FINSEQ_1: 1;
then n
<= ((
len q)
+ (
len p)) by
FINSEQ_1: 22;
then (n
- (
len p))
<= (
len q) by
XREAL_1: 20;
then
A14: (n
-' (
len p))
<= (
len q) by
XREAL_0:def 2;
(1
+ (
len p))
<= n by
A11,
NAT_1: 13;
then 1
<= (n
- (
len p)) by
XREAL_1: 19;
then 1
<= (n
-' (
len p)) by
XREAL_0:def 2;
then
A15: (n
-' (
len p))
in (
Seg (
len q)) by
A14,
FINSEQ_1: 1;
then
A16: (n
-' (
len p))
in (
dom q) by
FINSEQ_1:def 3;
(
len
|.q.|)
= (
len q) by
Def2;
then
A17: (n
-' (
len p))
in (
dom
|.q.|) by
A15,
FINSEQ_1:def 3;
A18: ((p
^ q)
. n)
= (q
. (n
-' (
len p))) by
A13,
A16,
FINSEQ_1:def 7;
thus (
|.(p
^ q).|
. n)
=
|.((p
^ q)
. n).| by
A7,
Def2
.= (
|.q.|
. (n
-' (
len p))) by
A16,
A18,
Def2
.= ((
|.p.|
^
|.q.|)
. n) by
A3,
A13,
A17,
FINSEQ_1:def 7;
end;
end;
(
len
|.(p
^ q).|)
= (
len (p
^ q)) by
Def2
.= ((
len p)
+ (
len q)) by
FINSEQ_1: 22
.= ((
len p)
+ (
len
|.q.|)) by
Def2
.= ((
len
|.p.|)
+ (
len
|.q.|)) by
Def2
.= (
len (
|.p.|
^
|.q.|)) by
FINSEQ_1: 22;
hence thesis by
A2,
FINSEQ_2: 9;
end;
theorem ::
POLYNOM5:13
for p be
complex-valued
FinSequence holds for x be
Complex holds
|.(p
^
<*x*>).|
= (
|.p.|
^
<*
|.x.|*>) &
|.(
<*x*>
^ p).|
= (
<*
|.x.|*>
^
|.p.|)
proof
let p be
complex-valued
FinSequence;
let x be
Complex;
thus
|.(p
^
<*x*>).|
= (
|.p.|
^
|.
<*x*>.|) by
Th12
.= (
|.p.|
^
<*
|.x.|*>) by
Th9;
thus
|.(
<*x*>
^ p).|
= (
|.
<*x*>.|
^
|.p.|) by
Th12
.= (
<*
|.x.|*>
^
|.p.|) by
Th9;
end;
theorem ::
POLYNOM5:14
Th14: for p be
FinSequence of the
carrier of
F_Complex holds
|.(
Sum p).|
<= (
Sum
|.p.|)
proof
set D = the
carrier of
F_Complex ;
defpred
P[
FinSequence of D] means
|.(
Sum $1).|
<= (
Sum
|.$1.|);
A1:
now
let p be
FinSequence of D;
let x be
Element of D;
assume
P[p];
then
A2: (
|.(
Sum p).|
+
|.x.|)
<= ((
Sum
|.p.|)
+
|.x.|) by
XREAL_1: 6;
(
Sum (p
^
<*x*>))
= ((
Sum p)
+ x) by
FVSUM_1: 71;
then
A3:
|.(
Sum (p
^
<*x*>)).|
<= (
|.(
Sum p).|
+
|.x.|) by
COMPLFLD: 62;
reconsider xx =
|.x.| as
Element of
REAL by
XREAL_0:def 1;
((
Sum
|.p.|)
+
|.x.|)
= ((
Sum
|.p.|)
+ (
Sum
<*xx*>)) by
FINSOP_1: 11
.= ((
Sum
|.p.|)
+ (
Sum
|.
<*x*>.|)) by
Th9
.= (
Sum (
|.p.|
^
|.
<*x*>.|)) by
RVSUM_1: 75
.= (
Sum
|.(p
^
<*x*>).|) by
Th12;
hence
P[(p
^
<*x*>)] by
A2,
A3,
XXREAL_0: 2;
end;
A4:
P[(
<*> D)] by
Th8,
COMPLFLD: 57,
RLVECT_1: 43,
RVSUM_1: 72;
thus for p be
FinSequence of D holds
P[p] from
FINSEQ_2:sch 2(
A4,
A1);
end;
begin
definition
let L be
Abelian
add-associative
right_zeroed
right_complementable
right_unital
commutative
distributive non
empty
doubleLoopStr;
let p be
Polynomial of L;
let n be
Nat;
::
POLYNOM5:def3
func p
`^ n ->
sequence of L equals ((
power (
Polynom-Ring L))
. (p,n));
coherence
proof
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
reconsider p1 = p as
Element of (
Polynom-Ring L) by
POLYNOM3:def 10;
((
power (
Polynom-Ring L))
. (p1,n)) is
Element of (
Polynom-Ring L);
hence thesis by
POLYNOM3:def 10;
end;
end
registration
let L be
Abelian
add-associative
right_zeroed
right_complementable
right_unital
commutative
distributive non
empty
doubleLoopStr;
let p be
Polynomial of L;
let n be
Nat;
cluster (p
`^ n) ->
finite-Support;
coherence
proof
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
reconsider p1 = p as
Element of (
Polynom-Ring L) by
POLYNOM3:def 10;
((
power (
Polynom-Ring L))
. (p1,n)) is
Polynomial of L by
POLYNOM3:def 10;
hence thesis;
end;
end
theorem ::
POLYNOM5:15
Th15: for L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr holds for p be
Polynomial of L holds (p
`^
0 )
= (
1_. L)
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr;
let p be
Polynomial of L;
reconsider p1 = p as
Element of (
Polynom-Ring L) by
POLYNOM3:def 10;
thus (p
`^
0 )
= ((
power (
Polynom-Ring L))
. (p1,
0 ))
.= (
1_ (
Polynom-Ring L)) by
GROUP_1:def 7
.= (
1_. L) by
POLYNOM3: 37;
end;
theorem ::
POLYNOM5:16
for L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr holds for p be
Polynomial of L holds (p
`^ 1)
= p
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr;
let p be
Polynomial of L;
reconsider p1 = p as
Element of (
Polynom-Ring L) by
POLYNOM3:def 10;
thus (p
`^ 1)
= ((
power (
Polynom-Ring L))
. (p1,(
0
+ 1)))
.= (((
power (
Polynom-Ring L))
. (p1,
0 ))
* p1) by
GROUP_1:def 7
.= ((
1_ (
Polynom-Ring L))
* p1) by
GROUP_1:def 7
.= p;
end;
theorem ::
POLYNOM5:17
for L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr holds for p be
Polynomial of L holds (p
`^ 2)
= (p
*' p)
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr;
let p be
Polynomial of L;
reconsider p1 = p as
Element of (
Polynom-Ring L) by
POLYNOM3:def 10;
thus (p
`^ 2)
= ((
power (
Polynom-Ring L))
. (p1,(1
+ 1)))
.= ((
power (p1,(
0
+ 1)))
* p1) by
GROUP_1:def 7
.= ((((
power (
Polynom-Ring L))
. (p1,
0 ))
* p1)
* p1) by
GROUP_1:def 7
.= (((
1_ (
Polynom-Ring L))
* p1)
* p1) by
GROUP_1:def 7
.= (p1
* p1)
.= (p
*' p) by
POLYNOM3:def 10;
end;
theorem ::
POLYNOM5:18
for L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr holds for p be
Polynomial of L holds (p
`^ 3)
= ((p
*' p)
*' p)
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr;
let p be
Polynomial of L;
reconsider p1 = p as
Element of (
Polynom-Ring L) by
POLYNOM3:def 10;
reconsider pp = (p1
* p1) as
Polynomial of L by
POLYNOM3:def 10;
thus (p
`^ 3)
= ((
power (
Polynom-Ring L))
. (p1,(2
+ 1)))
.= ((
power (p1,(1
+ 1)))
* p1) by
GROUP_1:def 7
.= (((
power (p1,(
0
+ 1)))
* p1)
* p1) by
GROUP_1:def 7
.= (((((
power (
Polynom-Ring L))
. (p1,
0 ))
* p1)
* p1)
* p1) by
GROUP_1:def 7
.= ((((
1_ (
Polynom-Ring L))
* p1)
* p1)
* p1) by
GROUP_1:def 7
.= ((p1
* p1)
* p1)
.= (pp
*' p) by
POLYNOM3:def 10
.= ((p
*' p)
*' p) by
POLYNOM3:def 10;
end;
theorem ::
POLYNOM5:19
Th19: for L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr holds for p be
Polynomial of L holds for n be
Nat holds (p
`^ (n
+ 1))
= ((p
`^ n)
*' p)
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr;
let p be
Polynomial of L;
let n be
Nat;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
reconsider p1 = p as
Element of (
Polynom-Ring L) by
POLYNOM3:def 10;
thus (p
`^ (n
+ 1))
= (((
power (
Polynom-Ring L))
. (p1,nn))
* p1) by
GROUP_1:def 7
.= ((p
`^ n)
*' p) by
POLYNOM3:def 10;
end;
theorem ::
POLYNOM5:20
Th20: for L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr holds for n be
Element of
NAT holds ((
0_. L)
`^ (n
+ 1))
= (
0_. L)
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr;
let n be
Element of
NAT ;
thus ((
0_. L)
`^ (n
+ 1))
= (((
0_. L)
`^ n)
*' (
0_. L)) by
Th19
.= (
0_. L) by
POLYNOM3: 34;
end;
theorem ::
POLYNOM5:21
for L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr holds for n be
Nat holds ((
1_. L)
`^ n)
= (
1_. L)
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr;
defpred
P[
Nat] means ((
1_. L)
`^ $1)
= (
1_. L);
A1:
now
let n be
Nat;
assume
P[n];
then ((
1_. L)
`^ (n
+ 1))
= ((
1_. L)
*' (
1_. L)) by
Th19
.= (
1_. L) by
POLYNOM3: 35;
hence
P[(n
+ 1)];
end;
A2:
P[
0 ] by
Th15;
thus for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A1);
end;
theorem ::
POLYNOM5:22
Th22: for L be
Field holds for p be
Polynomial of L holds for x be
Element of L holds for n be
Nat holds (
eval ((p
`^ n),x))
= ((
power L)
. ((
eval (p,x)),n))
proof
let L be
Field;
let p be
Polynomial of L;
let x be
Element of L;
defpred
P[
Nat] means (
eval ((p
`^ $1),x))
= ((
power L)
. ((
eval (p,x)),$1));
A1:
now
let n be
Nat;
assume
A2:
P[n];
(
eval ((p
`^ (n
+ 1)),x))
= (
eval (((p
`^ n)
*' p),x)) by
Th19
.= (((
power L)
. ((
eval (p,x)),n))
* (
eval (p,x))) by
A2,
POLYNOM4: 24
.= ((
power L)
. ((
eval (p,x)),(n
+ 1))) by
GROUP_1:def 7;
hence
P[(n
+ 1)];
end;
(
eval ((p
`^
0 ),x))
= (
eval ((
1_. L),x)) by
Th15
.= (
1_ L) by
POLYNOM4: 18
.= ((
power L)
. ((
eval (p,x)),
0 )) by
GROUP_1:def 7;
then
A3:
P[
0 ];
thus for n be
Nat holds
P[n] from
NAT_1:sch 2(
A3,
A1);
end;
Lm2: for L be non
empty
ZeroStr, p be
AlgSequence of L st (
len p)
>
0 holds (p
. ((
len p)
-' 1))
<> (
0. L)
proof
let L be non
empty
ZeroStr, p be
AlgSequence of L;
assume (
len p)
>
0 ;
then ex k be
Nat st (
len p)
= (k
+ 1) by
NAT_1: 6;
then (
len p)
= (((
len p)
-' 1)
+ 1) by
NAT_D: 34;
hence thesis by
ALGSEQ_1: 10;
end;
theorem ::
POLYNOM5:23
Th23: for L be
domRing holds for p be
Polynomial of L st (
len p)
<>
0 holds for n be
Nat holds (
len (p
`^ n))
= (((n
* (
len p))
- n)
+ 1)
proof
let L be
domRing;
let p be
Polynomial of L;
defpred
P[
Nat] means (
len (p
`^ $1))
= ((($1
* (
len p))
- $1)
+ 1);
assume
A1: (
len p)
<>
0 ;
A2:
now
(
len p)
>= (
0
+ 1) by
A1,
NAT_1: 13;
then ((
len p)
- 1)
>= ((
0
+ 1)
- 1);
then
A3: ((
len p)
-' 1)
= ((
len p)
- 1) by
XREAL_0:def 2;
A4: (p
. ((
len p)
-' 1))
<> (
0. L) by
A1,
Lm2;
let n be
Nat;
assume
A5:
P[n];
((n
* ((
len p)
-' 1))
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then ((p
`^ n)
. ((
len (p
`^ n))
-' 1))
<> (
0. L) by
A5,
A3,
Lm2;
then
A6: (((p
`^ n)
. ((
len (p
`^ n))
-' 1))
* (p
. ((
len p)
-' 1)))
<> (
0. L) by
A4,
VECTSP_2:def 1;
(
len (p
`^ (n
+ 1)))
= (
len ((p
`^ n)
*' p)) by
Th19
.= (((((n
* (
len p))
- n)
+ 1)
+ (
len p))
- 1) by
A5,
A6,
POLYNOM4: 10
.= ((((n
+ 1)
* (
len p))
- (n
+ 1))
+ 1);
hence
P[(n
+ 1)];
end;
(
len (p
`^
0 ))
= (
len (
1_. L)) by
Th15
.= (((
0
* (
len p))
-
0 )
+ 1) by
POLYNOM4: 4;
then
A7:
P[
0 ];
thus for n be
Nat holds
P[n] from
NAT_1:sch 2(
A7,
A2);
end;
definition
let L be non
empty
multMagma;
let p be
sequence of L;
let v be
Element of L;
::
POLYNOM5:def4
func v
* p ->
sequence of L means
:
Def4: for n be
Element of
NAT holds (it
. n)
= (v
* (p
. n));
existence
proof
deffunc
F(
Element of
NAT ) = (v
* (p
. $1));
consider r be
sequence of L such that
A1: for n be
Element of
NAT holds (r
. n)
=
F(n) from
FUNCT_2:sch 4;
take r;
thus thesis by
A1;
end;
uniqueness
proof
let p1,p2 be
sequence of L such that
A2: for n be
Element of
NAT holds (p1
. n)
= (v
* (p
. n)) and
A3: for n be
Element of
NAT holds (p2
. n)
= (v
* (p
. n));
now
let k be
Element of
NAT ;
thus (p1
. k)
= (v
* (p
. k)) by
A2
.= (p2
. k) by
A3;
end;
hence p1
= p2 by
FUNCT_2: 63;
end;
end
registration
let L be
add-associative
right_zeroed
right_complementable
right-distributive non
empty
doubleLoopStr;
let p be
Polynomial of L;
let v be
Element of L;
cluster (v
* p) ->
finite-Support;
coherence
proof
take s = (
len p);
let i be
Nat;
assume
A1: i
>= s;
reconsider ii = i as
Element of
NAT by
ORDINAL1:def 12;
thus ((v
* p)
. i)
= (v
* (p
. ii)) by
Def4
.= (v
* (
0. L)) by
A1,
ALGSEQ_1: 8
.= (
0. L);
end;
end
theorem ::
POLYNOM5:24
Th24: for L be
add-associative
right_zeroed
right_complementable
distributive non
empty
doubleLoopStr holds for p be
Polynomial of L holds (
len ((
0. L)
* p))
=
0
proof
let L be
add-associative
right_zeroed
right_complementable
distributive non
empty
doubleLoopStr;
let p be
Polynomial of L;
0
is_at_least_length_of ((
0. L)
* p)
proof
let i be
Nat;
assume i
>=
0 ;
reconsider ii = i as
Element of
NAT by
ORDINAL1:def 12;
thus (((
0. L)
* p)
. i)
= ((
0. L)
* (p
. ii)) by
Def4
.= (
0. L);
end;
hence thesis by
ALGSEQ_1:def 3;
end;
theorem ::
POLYNOM5:25
Th25: for L be
add-associative
right_zeroed
right_complementable
well-unital
commutative
associative
distributive
almost_left_invertible non
empty
doubleLoopStr holds for p be
Polynomial of L holds for v be
Element of L st v
<> (
0. L) holds (
len (v
* p))
= (
len p)
proof
let L be
add-associative
right_zeroed
right_complementable
well-unital
commutative
associative
distributive
almost_left_invertible non
empty
doubleLoopStr;
let p be
Polynomial of L;
let v be
Element of L;
assume
A1: v
<> (
0. L);
A2:
now
let n be
Nat;
assume
A3: n
is_at_least_length_of (v
* p);
n
is_at_least_length_of p
proof
let i be
Nat;
reconsider i1 = i as
Element of
NAT by
ORDINAL1:def 12;
assume i
>= n;
then ((v
* p)
. i)
= (
0. L) by
A3;
then (v
* (p
. i1))
= (
0. L) by
Def4;
hence thesis by
A1,
VECTSP_1: 12;
end;
hence (
len p)
<= n by
ALGSEQ_1:def 3;
end;
(
len p)
is_at_least_length_of (v
* p)
proof
let i be
Nat;
assume
A4: i
>= (
len p);
reconsider ii = i as
Element of
NAT by
ORDINAL1:def 12;
thus ((v
* p)
. i)
= (v
* (p
. ii)) by
Def4
.= (v
* (
0. L)) by
A4,
ALGSEQ_1: 8
.= (
0. L);
end;
hence thesis by
A2,
ALGSEQ_1:def 3;
end;
theorem ::
POLYNOM5:26
Th26: for L be
add-associative
right_zeroed
right_complementable
left-distributive non
empty
doubleLoopStr holds for p be
sequence of L holds ((
0. L)
* p)
= (
0_. L)
proof
let L be
add-associative
right_zeroed
right_complementable
left-distributive non
empty
doubleLoopStr;
let p be
sequence of L;
for n be
Element of
NAT holds ((
0_. L)
. n)
= ((
0. L)
* (p
. n)) by
FUNCOP_1: 7;
hence thesis by
Def4;
end;
theorem ::
POLYNOM5:27
Th27: for L be
well-unital non
empty
multLoopStr holds for p be
sequence of L holds ((
1. L)
* p)
= p
proof
let L be
well-unital non
empty
multLoopStr;
let p be
sequence of L;
for n be
Element of
NAT holds (p
. n)
= ((
1. L)
* (p
. n));
hence thesis by
Def4;
end;
theorem ::
POLYNOM5:28
Th28: for L be
add-associative
right_zeroed
right_complementable
right-distributive non
empty
doubleLoopStr holds for v be
Element of L holds (v
* (
0_. L))
= (
0_. L)
proof
let L be
add-associative
right_zeroed
right_complementable
right-distributive non
empty
doubleLoopStr;
let v be
Element of L;
now
let n be
Element of
NAT ;
thus ((
0_. L)
. n)
= (
0. L) by
FUNCOP_1: 7
.= (v
* (
0. L))
.= (v
* ((
0_. L)
. n)) by
FUNCOP_1: 7;
end;
hence thesis by
Def4;
end;
theorem ::
POLYNOM5:29
Th29: for L be
add-associative
right_zeroed
right_complementable
well-unital
right-distributive non
empty
doubleLoopStr holds for v be
Element of L holds (v
* (
1_. L))
=
<%v%>
proof
let L be
add-associative
right_zeroed
right_complementable
well-unital
right-distributive non
empty
doubleLoopStr;
let v be
Element of L;
now
let n be
Element of
NAT ;
per cases ;
suppose
A1: n
=
0 ;
hence (
<%v%>
. n)
= v by
ALGSEQ_1:def 5
.= (v
* (
1. L))
.= (v
* ((
1_. L)
. n)) by
A1,
POLYNOM3: 30;
end;
suppose
A2: n
<>
0 ;
A3: (
len
<%v%>)
<= 1 by
ALGSEQ_1:def 5;
n
>= (
0
+ 1) by
A2,
NAT_1: 13;
hence (
<%v%>
. n)
= (
0. L) by
A3,
ALGSEQ_1: 8,
XXREAL_0: 2
.= (v
* (
0. L))
.= (v
* ((
1_. L)
. n)) by
A2,
POLYNOM3: 30;
end;
end;
hence thesis by
Def4;
end;
theorem ::
POLYNOM5:30
Th30: for L be
add-associative
right_zeroed
right_complementable
well-unital
distributive
commutative
associative
almost_left_invertible non
empty
doubleLoopStr holds for p be
Polynomial of L holds for v,x be
Element of L holds (
eval ((v
* p),x))
= (v
* (
eval (p,x)))
proof
let L be
add-associative
right_zeroed
right_complementable
well-unital
distributive
commutative
associative
almost_left_invertible non
empty
doubleLoopStr;
let p be
Polynomial of L;
let v,x be
Element of L;
consider F1 be
FinSequence of the
carrier of L such that
A1: (
eval (p,x))
= (
Sum F1) and
A2: (
len F1)
= (
len p) and
A3: for n be
Element of
NAT st n
in (
dom F1) holds (F1
. n)
= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
POLYNOM4:def 2;
consider F2 be
FinSequence of the
carrier of L such that
A4: (
eval ((v
* p),x))
= (
Sum F2) and
A5: (
len F2)
= (
len (v
* p)) and
A6: for n be
Element of
NAT st n
in (
dom F2) holds (F2
. n)
= (((v
* p)
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
POLYNOM4:def 2;
per cases ;
suppose v
<> (
0. L);
then (
len F1)
= (
len F2) by
A2,
A5,
Th25;
then
A7: (
dom F1)
= (
dom F2) by
FINSEQ_3: 29;
now
let i be
object;
assume
A8: i
in (
dom F1);
then
reconsider i1 = i as
Element of
NAT ;
A9: ((p
. (i1
-' 1))
* ((
power L)
. (x,(i1
-' 1))))
= (F1
. i) by
A3,
A8
.= (F1
/. i) by
A8,
PARTFUN1:def 6;
thus (F2
/. i)
= (F2
. i) by
A7,
A8,
PARTFUN1:def 6
.= (((v
* p)
. (i1
-' 1))
* ((
power L)
. (x,(i1
-' 1)))) by
A6,
A7,
A8
.= ((v
* (p
. (i1
-' 1)))
* ((
power L)
. (x,(i1
-' 1)))) by
Def4
.= (v
* (F1
/. i)) by
A9,
GROUP_1:def 3;
end;
then F2
= (v
* F1) by
A7,
POLYNOM1:def 1;
hence thesis by
A1,
A4,
POLYNOM1: 12;
end;
suppose
A10: v
= (
0. L);
hence (
eval ((v
* p),x))
= (
eval ((
0_. L),x)) by
Th26
.= (
0. L) by
POLYNOM4: 17
.= (v
* (
eval (p,x))) by
A10;
end;
end;
theorem ::
POLYNOM5:31
Th31: for L be
add-associative
right_zeroed
right_complementable
right-distributive
unital non
empty
doubleLoopStr holds for p be
Polynomial of L holds (
eval (p,(
0. L)))
= (p
.
0 )
proof
let L be
add-associative
right_zeroed
right_complementable
right-distributive
unital non
empty
doubleLoopStr;
let p be
Polynomial of L;
consider F be
FinSequence of the
carrier of L such that
A1: (
eval (p,(
0. L)))
= (
Sum F) and
A2: (
len F)
= (
len p) and
A3: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= ((p
. (n
-' 1))
* ((
power L)
. ((
0. L),(n
-' 1)))) by
POLYNOM4:def 2;
per cases ;
suppose (
len F)
>
0 ;
then (
0
+ 1)
<= (
len F) by
NAT_1: 13;
then
A4: 1
in (
dom F) by
FINSEQ_3: 25;
now
let i be
Element of
NAT ;
assume that
A5: i
in (
dom F) and
A6: i
<> 1;
(
0
+ 1)
<= i by
A5,
FINSEQ_3: 25;
then i
> (
0
+ 1) by
A6,
XXREAL_0: 1;
then (i
- 1)
>
0 by
XREAL_1: 20;
then
A7: (i
-' 1)
>
0 by
XREAL_0:def 2;
thus (F
/. i)
= (F
. i) by
A5,
PARTFUN1:def 6
.= ((p
. (i
-' 1))
* ((
power L)
. ((
0. L),(i
-' 1)))) by
A3,
A5
.= ((p
. (i
-' 1))
* (
0. L)) by
A7,
VECTSP_1: 36
.= (
0. L);
end;
hence (
eval (p,(
0. L)))
= (F
/. 1) by
A1,
A4,
POLYNOM2: 3
.= (F
. 1) by
A4,
PARTFUN1:def 6
.= ((p
. (1
-' 1))
* ((
power L)
. ((
0. L),(1
-' 1)))) by
A3,
A4
.= ((p
. (1
-' 1))
* ((
power L)
. ((
0. L),
0 ))) by
XREAL_1: 232
.= ((p
. (1
-' 1))
* (
1_ L)) by
GROUP_1:def 7
.= (p
. (1
-' 1)) by
GROUP_1:def 4
.= (p
.
0 ) by
XREAL_1: 232;
end;
suppose (
len F)
=
0 ;
then
A8: p
= (
0_. L) by
A2,
POLYNOM4: 5;
hence (
eval (p,(
0. L)))
= (
0. L) by
POLYNOM4: 17
.= (p
.
0 ) by
A8,
FUNCOP_1: 7;
end;
end;
definition
let L be non
empty
ZeroStr;
let z0,z1 be
Element of L;
::
POLYNOM5:def5
func
<%z0,z1%> ->
sequence of L equals (((
0_. L)
+* (
0 ,z0))
+* (1,z1));
coherence ;
end
theorem ::
POLYNOM5:32
Th32: for L be non
empty
ZeroStr holds for z0 be
Element of L holds (
<%z0%>
.
0 )
= z0 & for n be
Element of
NAT st n
>= 1 holds (
<%z0%>
. n)
= (
0. L)
proof
let L be non
empty
ZeroStr;
let z0 be
Element of L;
thus (
<%z0%>
.
0 )
= z0 by
ALGSEQ_1:def 5;
let n be
Element of
NAT ;
A1: (
len
<%z0%>)
<= 1 by
ALGSEQ_1:def 5;
assume n
>= 1;
hence thesis by
A1,
ALGSEQ_1: 8,
XXREAL_0: 2;
end;
theorem ::
POLYNOM5:33
Th33: for L be non
empty
ZeroStr holds for z0 be
Element of L st z0
<> (
0. L) holds (
len
<%z0%>)
= 1
proof
let L be non
empty
ZeroStr;
let z0 be
Element of L;
assume z0
<> (
0. L);
then (
<%z0%>
.
0 )
<> (
0. L) by
ALGSEQ_1:def 5;
then
<%z0%>
<>
<%(
0. L)%> by
ALGSEQ_1:def 5;
then (
len
<%z0%>)
<>
0 by
ALGSEQ_1: 14;
then
A1: (
len
<%z0%>)
>= (
0
+ 1) by
NAT_1: 13;
assume (
len
<%z0%>)
<> 1;
then (
len
<%z0%>)
> 1 by
A1,
XXREAL_0: 1;
hence contradiction by
ALGSEQ_1:def 5;
end;
theorem ::
POLYNOM5:34
Th34: for L be non
empty
ZeroStr holds
<%(
0. L)%>
= (
0_. L)
proof
let L be non
empty
ZeroStr;
(
len
<%(
0. L)%>)
=
0 by
ALGSEQ_1: 14;
hence thesis by
POLYNOM4: 5;
end;
theorem ::
POLYNOM5:35
Th35: for L be
add-associative
right_zeroed
right_complementable
distributive
commutative
associative
well-unital
domRing-like non
empty
doubleLoopStr holds for x,y be
Element of L holds (
<%x%>
*'
<%y%>)
=
<%(x
* y)%>
proof
let L be
add-associative
right_zeroed
right_complementable
distributive
commutative
associative
well-unital
domRing-like non
empty
doubleLoopStr;
let x,y be
Element of L;
A1: (
len
<%x%>)
<= 1 by
ALGSEQ_1:def 5;
A2: (
len
<%y%>)
<= 1 by
ALGSEQ_1:def 5;
per cases ;
suppose
A3: (
len
<%x%>)
<>
0 & (
len
<%y%>)
<>
0 ;
x
<> (
0. L) & y
<> (
0. L)
proof
assume x
= (
0. L) or y
= (
0. L);
then
<%x%>
= (
0_. L) or
<%y%>
= (
0_. L) by
Th34;
hence contradiction by
A3,
POLYNOM4: 3;
end;
then (x
* y)
<> (
0. L) by
VECTSP_2:def 1;
then
A4: (
len
<%(x
* y)%>)
= 1 by
Th33;
consider r be
FinSequence of the
carrier of L such that
A5: (
len r)
= (
0
+ 1) and
A6: ((
<%x%>
*'
<%y%>)
.
0 )
= (
Sum r) and
A7: for k be
Element of
NAT st k
in (
dom r) holds (r
. k)
= ((
<%x%>
. (k
-' 1))
* (
<%y%>
. ((
0
+ 1)
-' k))) by
POLYNOM3:def 9;
1
in (
dom r) by
A5,
FINSEQ_3: 25;
then (r
. 1)
= ((
<%x%>
. (1
-' 1))
* (
<%y%>
. ((
0
+ 1)
-' 1))) by
A7
.= ((
<%x%>
.
0 )
* (
<%y%>
. (1
-' 1))) by
XREAL_1: 232
.= ((
<%x%>
.
0 )
* (
<%y%>
.
0 )) by
XREAL_1: 232
.= ((
<%x%>
.
0 )
* y) by
ALGSEQ_1:def 5
.= (x
* y) by
ALGSEQ_1:def 5;
then
A8: r
=
<*(x
* y)*> by
A5,
FINSEQ_1: 40;
A9:
now
let n be
Nat;
assume n
< 1;
then n
< (
0
+ 1);
then
A10: n
=
0 by
NAT_1: 13;
hence ((
<%x%>
*'
<%y%>)
. n)
= (x
* y) by
A6,
A8,
RLVECT_1: 44
.= (
<%(x
* y)%>
. n) by
A10,
ALGSEQ_1:def 5;
end;
(
<%x%>
. ((
len
<%x%>)
-' 1))
<> (
0. L) & (
<%y%>
. ((
len
<%y%>)
-' 1))
<> (
0. L) by
A3,
Lm2;
then
A11: ((
<%x%>
. ((
len
<%x%>)
-' 1))
* (
<%y%>
. ((
len
<%y%>)
-' 1)))
<> (
0. L) by
VECTSP_2:def 1;
(
len
<%y%>)
>= (
0
+ 1) by
A3,
NAT_1: 13;
then
A12: (
len
<%y%>)
= 1 by
A2,
XXREAL_0: 1;
(
len
<%x%>)
>= (
0
+ 1) by
A3,
NAT_1: 13;
then (
len
<%x%>)
= 1 by
A1,
XXREAL_0: 1;
then (
len (
<%x%>
*'
<%y%>))
= ((1
+ 1)
- 1) by
A12,
A11,
POLYNOM4: 10;
hence thesis by
A9,
A4,
ALGSEQ_1: 12;
end;
suppose
A13: (
len
<%x%>)
=
0 ;
then
A14: x
= (
0. L) by
Th33;
<%x%>
= (
0_. L) by
A13,
POLYNOM4: 5;
hence (
<%x%>
*'
<%y%>)
= (
0_. L) by
POLYNOM4: 2
.=
<%(
0. L)%> by
Th34
.=
<%(x
* y)%> by
A14;
end;
suppose
A15: (
len
<%y%>)
=
0 ;
then
A16: y
= (
0. L) by
Th33;
<%y%>
= (
0_. L) by
A15,
POLYNOM4: 5;
hence (
<%x%>
*'
<%y%>)
= (
0_. L) by
POLYNOM3: 34
.=
<%(
0. L)%> by
Th34
.=
<%(x
* y)%> by
A16;
end;
end;
theorem ::
POLYNOM5:36
Th36: for L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
associative
commutative
distributive
almost_left_invertible non
empty
doubleLoopStr holds for x be
Element of L holds for n be
Nat holds (
<%x%>
`^ n)
=
<%(
power (x,n))%>
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
associative
commutative
distributive
almost_left_invertible non
empty
doubleLoopStr;
let x be
Element of L;
defpred
P[
Nat] means (
<%x%>
`^ $1)
=
<%(
power (x,$1))%>;
A1: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume (
<%x%>
`^ n)
=
<%(
power (x,n))%>;
hence (
<%x%>
`^ (n
+ 1))
= (
<%((
power L)
. (x,n))%>
*'
<%x%>) by
Th19
.=
<%(((
power L)
. (x,n))
* x)%> by
Th35
.=
<%(
power (x,(n
+ 1)))%> by
GROUP_1:def 7;
end;
(
<%x%>
`^
0 )
= (
1_. L) by
Th15
.= ((
1. L)
* (
1_. L)) by
Th27
.=
<%(
1_ L)%> by
Th29
.=
<%((
power L)
. (x,
0 ))%> by
GROUP_1:def 7;
then
A2:
P[
0 ];
thus for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A1);
end;
theorem ::
POLYNOM5:37
for L be
add-associative
right_zeroed
right_complementable
unital non
empty
doubleLoopStr holds for z0,x be
Element of L holds (
eval (
<%z0%>,x))
= z0
proof
let L be
add-associative
right_zeroed
right_complementable
unital non
empty
doubleLoopStr;
let z0,x be
Element of L;
consider F be
FinSequence of the
carrier of L such that
A1: (
eval (
<%z0%>,x))
= (
Sum F) and
A2: (
len F)
= (
len
<%z0%>) and
A3: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= ((
<%z0%>
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
POLYNOM4:def 2;
A4: (
len F)
<= 1 by
A2,
ALGSEQ_1:def 5;
per cases by
A4,
NAT_1: 25;
suppose (
len F)
=
0 ;
then
A5:
<%z0%>
= (
0_. L) by
A2,
POLYNOM4: 5;
hence (
eval (
<%z0%>,x))
= (
0. L) by
POLYNOM4: 17
.= ((
0_. L)
.
0 ) by
FUNCOP_1: 7
.= z0 by
A5,
Th32;
end;
suppose
A6: (
len F)
= 1;
then (
0
+ 1)
in (
Seg (
len F)) by
FINSEQ_1: 4;
then 1
in (
dom F) by
FINSEQ_1:def 3;
then (F
. 1)
= ((
<%z0%>
. (1
-' 1))
* ((
power L)
. (x,(1
-' 1)))) by
A3
.= ((
<%z0%>
.
0 )
* ((
power L)
. (x,(1
-' 1)))) by
XREAL_1: 232
.= ((
<%z0%>
.
0 )
* ((
power L)
. (x,
0 ))) by
XREAL_1: 232
.= (z0
* ((
power L)
. (x,
0 ))) by
Th32
.= (z0
* (
1_ L)) by
GROUP_1:def 7
.= z0 by
GROUP_1:def 4;
then F
=
<*z0*> by
A6,
FINSEQ_1: 40;
hence thesis by
A1,
RLVECT_1: 44;
end;
end;
theorem ::
POLYNOM5:38
Th38: for L be non
empty
ZeroStr holds for z0,z1 be
Element of L holds (
<%z0, z1%>
.
0 )
= z0 & (
<%z0, z1%>
. 1)
= z1 & for n be
Nat st n
>= 2 holds (
<%z0, z1%>
. n)
= (
0. L)
proof
let L be non
empty
ZeroStr;
let z0,z1 be
Element of L;
0
in
NAT ;
then
A1:
0
in (
dom (
0_. L)) by
FUNCT_2:def 1;
thus (
<%z0, z1%>
.
0 )
= (((
0_. L)
+* (
0 ,z0))
.
0 ) by
FUNCT_7: 32
.= z0 by
A1,
FUNCT_7: 31;
1
in
NAT ;
then 1
in (
dom ((
0_. L)
+* (
0 ,z0))) by
FUNCT_2:def 1;
hence (
<%z0, z1%>
. 1)
= z1 by
FUNCT_7: 31;
let n be
Nat;
A2: n
in
NAT by
ORDINAL1:def 12;
assume
A3: n
>= 2;
then n
>= (1
+ 1);
then n
> (
0
+ 1) by
NAT_1: 13;
hence (
<%z0, z1%>
. n)
= (((
0_. L)
+* (
0 ,z0))
. n) by
FUNCT_7: 32
.= ((
0_. L)
. n) by
A3,
FUNCT_7: 32
.= (
0. L) by
A2,
FUNCOP_1: 7;
end;
registration
let L be non
empty
ZeroStr;
let z0,z1 be
Element of L;
cluster
<%z0, z1%> ->
finite-Support;
coherence
proof
take 2;
let n be
Nat;
thus thesis by
Th38;
end;
end
theorem ::
POLYNOM5:39
Th39: for L be non
empty
ZeroStr holds for z0,z1 be
Element of L holds (
len
<%z0, z1%>)
<= 2
proof
let L be non
empty
ZeroStr;
let z0,z1 be
Element of L;
2
is_at_least_length_of
<%z0, z1%> by
Th38;
hence thesis by
ALGSEQ_1:def 3;
end;
theorem ::
POLYNOM5:40
Th40: for L be non
empty
ZeroStr holds for z0,z1 be
Element of L st z1
<> (
0. L) holds (
len
<%z0, z1%>)
= 2
proof
let L be non
empty
ZeroStr;
let z0,z1 be
Element of L;
assume z1
<> (
0. L);
then (
<%z0, z1%>
. 1)
<> (
0. L) by
Th38;
then
A1: for n be
Nat st n
is_at_least_length_of
<%z0, z1%> holds (1
+ 1)
<= n by
NAT_1: 13;
2
is_at_least_length_of
<%z0, z1%> by
Th38;
hence thesis by
A1,
ALGSEQ_1:def 3;
end;
theorem ::
POLYNOM5:41
Th41: for L be non
empty
ZeroStr holds for z0 be
Element of L st z0
<> (
0. L) holds (
len
<%z0, (
0. L)%>)
= 1
proof
let L be non
empty
ZeroStr;
let z0 be
Element of L;
A1: 1
is_at_least_length_of
<%z0, (
0. L)%>
proof
let n be
Nat;
assume
A2: n
>= 1;
per cases by
A2,
XXREAL_0: 1;
suppose n
= 1;
hence thesis by
Th38;
end;
suppose n
> 1;
then n
>= (1
+ 1) by
NAT_1: 13;
hence thesis by
Th38;
end;
end;
assume z0
<> (
0. L);
then (
<%z0, (
0. L)%>
.
0 )
<> (
0. L) by
Th38;
then for n be
Nat st n
is_at_least_length_of
<%z0, (
0. L)%> holds (
0
+ 1)
<= n by
NAT_1: 13;
hence thesis by
A1,
ALGSEQ_1:def 3;
end;
theorem ::
POLYNOM5:42
Th42: for L be non
empty
ZeroStr holds
<%(
0. L), (
0. L)%>
= (
0_. L)
proof
let L be non
empty
ZeroStr;
0
is_at_least_length_of
<%(
0. L), (
0. L)%>
proof
let n be
Nat;
assume n
>=
0 ;
per cases ;
suppose n
=
0 ;
hence thesis by
Th38;
end;
suppose n
>
0 ;
then
A1: n
>= (
0
+ 1) by
NAT_1: 13;
now
per cases by
A1,
XXREAL_0: 1;
suppose n
= 1;
hence thesis by
Th38;
end;
suppose n
> 1;
then n
>= (1
+ 1) by
NAT_1: 13;
hence thesis by
Th38;
end;
end;
hence thesis;
end;
end;
then (
len
<%(
0. L), (
0. L)%>)
=
0 by
ALGSEQ_1:def 3;
hence thesis by
POLYNOM4: 5;
end;
theorem ::
POLYNOM5:43
for L be non
empty
ZeroStr holds for z0 be
Element of L holds
<%z0, (
0. L)%>
=
<%z0%>
proof
let L be non
empty
ZeroStr;
let z0 be
Element of L;
per cases ;
suppose
A1: z0
= (
0. L);
hence
<%z0, (
0. L)%>
= (
0_. L) by
Th42
.=
<%z0%> by
A1,
Th34;
end;
suppose
A2: z0
<> (
0. L);
then
A3: (
len
<%z0%>)
= (
0
+ 1) by
Th33;
A4:
now
let n be
Nat;
assume n
< (
len
<%z0%>);
then
A5: n
=
0 by
A3,
NAT_1: 13;
hence (
<%z0, (
0. L)%>
. n)
= z0 by
Th38
.= (
<%z0%>
. n) by
A5,
ALGSEQ_1:def 5;
end;
(
len
<%z0, (
0. L)%>)
= 1 by
A2,
Th41;
hence thesis by
A2,
A4,
Th33,
ALGSEQ_1: 12;
end;
end;
theorem ::
POLYNOM5:44
Th44: for L be
add-associative
right_zeroed
right_complementable
left-distributive
unital non
empty
doubleLoopStr holds for z0,z1,x be
Element of L holds (
eval (
<%z0, z1%>,x))
= (z0
+ (z1
* x))
proof
let L be
add-associative
right_zeroed
right_complementable
left-distributive
unital non
empty
doubleLoopStr;
let z0,z1,x be
Element of L;
consider F be
FinSequence of the
carrier of L such that
A1: (
eval (
<%z0, z1%>,x))
= (
Sum F) and
A2: (
len F)
= (
len
<%z0, z1%>) and
A3: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= ((
<%z0, z1%>
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
POLYNOM4:def 2;
(
len F)
<= 2 by
A2,
Th39;
then (
len F)
=
0 or ... or (
len F)
= 2;
per cases ;
suppose (
len F)
=
0 ;
then
A4:
<%z0, z1%>
= (
0_. L) by
A2,
POLYNOM4: 5;
hence (
eval (
<%z0, z1%>,x))
= (
0. L) by
POLYNOM4: 17
.= ((
0_. L)
.
0 ) by
FUNCOP_1: 7
.= z0 by
A4,
Th38
.= (z0
+ (
0. L)) by
RLVECT_1:def 4
.= (z0
+ ((
0. L)
* x))
.= (z0
+ (((
0_. L)
. 1)
* x)) by
FUNCOP_1: 7
.= (z0
+ (z1
* x)) by
A4,
Th38;
end;
suppose
A5: (
len F)
= 1;
then (
0
+ 1)
in (
Seg (
len F)) by
FINSEQ_1: 4;
then 1
in (
dom F) by
FINSEQ_1:def 3;
then (F
. 1)
= ((
<%z0, z1%>
. (1
-' 1))
* ((
power L)
. (x,(1
-' 1)))) by
A3
.= ((
<%z0, z1%>
.
0 )
* ((
power L)
. (x,(1
-' 1)))) by
XREAL_1: 232
.= ((
<%z0, z1%>
.
0 )
* ((
power L)
. (x,
0 ))) by
XREAL_1: 232
.= (z0
* ((
power L)
. (x,
0 ))) by
Th38
.= (z0
* (
1_ L)) by
GROUP_1:def 7
.= z0 by
GROUP_1:def 4;
then F
=
<*z0*> by
A5,
FINSEQ_1: 40;
hence (
eval (
<%z0, z1%>,x))
= z0 by
A1,
RLVECT_1: 44
.= (z0
+ (
0. L)) by
RLVECT_1:def 4
.= (z0
+ ((
0. L)
* x))
.= (z0
+ ((
<%z0, z1%>
. 1)
* x)) by
A2,
A5,
ALGSEQ_1: 8
.= (z0
+ (z1
* x)) by
Th38;
end;
suppose
A6: (
len F)
= 2;
then 1
in (
dom F) by
FINSEQ_3: 25;
then
A7: (F
. 1)
= ((
<%z0, z1%>
. (1
-' 1))
* ((
power L)
. (x,(1
-' 1)))) by
A3
.= ((
<%z0, z1%>
.
0 )
* ((
power L)
. (x,(1
-' 1)))) by
XREAL_1: 232
.= ((
<%z0, z1%>
.
0 )
* ((
power L)
. (x,
0 ))) by
XREAL_1: 232
.= (z0
* ((
power L)
. (x,
0 ))) by
Th38
.= (z0
* (
1_ L)) by
GROUP_1:def 7
.= z0 by
GROUP_1:def 4;
A8: (2
-' 1)
= (2
- 1) by
XREAL_0:def 2;
2
in (
dom F) by
A6,
FINSEQ_3: 25;
then (F
. 2)
= ((
<%z0, z1%>
. (2
-' 1))
* ((
power L)
. (x,(2
-' 1)))) by
A3
.= (z1
* ((
power L)
. (x,1))) by
A8,
Th38
.= (z1
* x) by
GROUP_1: 50;
then F
=
<*z0, (z1
* x)*> by
A6,
A7,
FINSEQ_1: 44;
hence thesis by
A1,
RLVECT_1: 45;
end;
end;
theorem ::
POLYNOM5:45
for L be
add-associative
right_zeroed
right_complementable
left-distributive
well-unital non
empty
doubleLoopStr holds for z0,z1,x be
Element of L holds (
eval (
<%z0, (
0. L)%>,x))
= z0
proof
let L be
add-associative
right_zeroed
right_complementable
left-distributive
well-unital non
empty
doubleLoopStr;
let z0,z1,x be
Element of L;
thus (
eval (
<%z0, (
0. L)%>,x))
= (z0
+ ((
0. L)
* x)) by
Th44
.= (z0
+ (
0. L))
.= z0 by
RLVECT_1:def 4;
end;
theorem ::
POLYNOM5:46
for L be
add-associative
right_zeroed
right_complementable
left-distributive
unital non
empty
doubleLoopStr holds for z0,z1,x be
Element of L holds (
eval (
<%(
0. L), z1%>,x))
= (z1
* x)
proof
let L be
add-associative
right_zeroed
right_complementable
left-distributive
unital non
empty
doubleLoopStr;
let z0,z1,x be
Element of L;
thus (
eval (
<%(
0. L), z1%>,x))
= ((
0. L)
+ (z1
* x)) by
Th44
.= (z1
* x) by
RLVECT_1: 4;
end;
theorem ::
POLYNOM5:47
Th47: for L be
add-associative
right_zeroed
right_complementable
left-distributive
well-unital non
empty
doubleLoopStr holds for z0,z1,x be
Element of L holds (
eval (
<%z0, (
1. L)%>,x))
= (z0
+ x)
proof
let L be
add-associative
right_zeroed
right_complementable
left-distributive
well-unital non
empty
doubleLoopStr;
let z0,z1,x be
Element of L;
thus (
eval (
<%z0, (
1. L)%>,x))
= (z0
+ ((
1. L)
* x)) by
Th44
.= (z0
+ x);
end;
theorem ::
POLYNOM5:48
for L be
add-associative
right_zeroed
right_complementable
left-distributive
well-unital non
empty
doubleLoopStr holds for z0,z1,x be
Element of L holds (
eval (
<%(
0. L), (
1. L)%>,x))
= x
proof
let L be
add-associative
right_zeroed
right_complementable
left-distributive
well-unital non
empty
doubleLoopStr;
let z0,z1,x be
Element of L;
thus (
eval (
<%(
0. L), (
1. L)%>,x))
= ((
0. L)
+ ((
1. L)
* x)) by
Th44
.= ((
0. L)
+ x)
.= x by
RLVECT_1: 4;
end;
begin
definition
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr;
let p,q be
Polynomial of L;
::
POLYNOM5:def6
func
Subst (p,q) ->
Polynomial of L means
:
Def6: ex F be
FinSequence of the
carrier of (
Polynom-Ring L) st it
= (
Sum F) & (
len F)
= (
len p) & for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= ((p
. (n
-' 1))
* (q
`^ (n
-' 1)));
existence
proof
defpred
P[
Nat,
set] means $2
= ((p
. ($1
-' 1))
* (q
`^ ($1
-' 1)));
set k = (
len p);
A1:
now
let n be
Nat;
assume n
in (
Seg k);
reconsider x = ((p
. (n
-' 1))
* (q
`^ (n
-' 1))) as
Element of (
Polynom-Ring L) by
POLYNOM3:def 10;
take x;
thus
P[n, x];
end;
consider F be
FinSequence of the
carrier of (
Polynom-Ring L) such that
A2: (
dom F)
= (
Seg k) & for n be
Nat st n
in (
Seg k) holds
P[n, (F
. n)] from
FINSEQ_1:sch 5(
A1);
reconsider r = (
Sum F) as
Polynomial of L by
POLYNOM3:def 10;
take r, F;
thus thesis by
A2,
FINSEQ_1:def 3;
end;
uniqueness
proof
let y1,y2 be
Polynomial of L;
given F1 be
FinSequence of the
carrier of (
Polynom-Ring L) such that
A3: y1
= (
Sum F1) and
A4: (
len F1)
= (
len p) and
A5: for n be
Element of
NAT st n
in (
dom F1) holds (F1
. n)
= ((p
. (n
-' 1))
* (q
`^ (n
-' 1)));
given F2 be
FinSequence of the
carrier of (
Polynom-Ring L) such that
A6: y2
= (
Sum F2) and
A7: (
len F2)
= (
len p) and
A8: for n be
Element of
NAT st n
in (
dom F2) holds (F2
. n)
= ((p
. (n
-' 1))
* (q
`^ (n
-' 1)));
A9: (
dom F1)
= (
Seg (
len F1)) by
FINSEQ_1:def 3;
now
let n be
Nat;
assume
A10: n
in (
dom F1);
then
A11: n
in (
dom F2) by
A4,
A7,
A9,
FINSEQ_1:def 3;
thus (F1
. n)
= ((p
. (n
-' 1))
* (q
`^ (n
-' 1))) by
A5,
A10
.= (F2
. n) by
A8,
A11;
end;
hence y1
= y2 by
A3,
A4,
A6,
A7,
FINSEQ_2: 9;
end;
end
theorem ::
POLYNOM5:49
Th49: for L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr holds for p be
Polynomial of L holds (
Subst ((
0_. L),p))
= (
0_. L)
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr;
let p be
Polynomial of L;
consider F be
FinSequence of the
carrier of (
Polynom-Ring L) such that
A1: (
Subst ((
0_. L),p))
= (
Sum F) and (
len F)
= (
len (
0_. L)) and
A2: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= (((
0_. L)
. (n
-' 1))
* (p
`^ (n
-' 1))) by
Def6;
now
let n be
Element of
NAT ;
assume n
in (
dom F);
hence (F
. n)
= (((
0_. L)
. (n
-' 1))
* (p
`^ (n
-' 1))) by
A2
.= ((
0. L)
* (p
`^ (n
-' 1))) by
FUNCOP_1: 7
.= (
0_. L) by
Th26
.= (
0. (
Polynom-Ring L)) by
POLYNOM3:def 10;
end;
hence (
Subst ((
0_. L),p))
= (
0. (
Polynom-Ring L)) by
A1,
POLYNOM3: 1
.= (
0_. L) by
POLYNOM3:def 10;
end;
theorem ::
POLYNOM5:50
for L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr holds for p be
Polynomial of L holds (
Subst (p,(
0_. L)))
=
<%(p
.
0 )%>
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
commutative
distributive non
empty
doubleLoopStr;
let p be
Polynomial of L;
consider F be
FinSequence of the
carrier of (
Polynom-Ring L) such that
A1: (
Subst (p,(
0_. L)))
= (
Sum F) and
A2: (
len F)
= (
len p) and
A3: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= ((p
. (n
-' 1))
* ((
0_. L)
`^ (n
-' 1))) by
Def6;
per cases ;
suppose (
len F)
<>
0 ;
then (
0
+ 1)
<= (
len F) by
NAT_1: 13;
then
A4: 1
in (
dom F) by
FINSEQ_3: 25;
now
let n be
Element of
NAT ;
assume that
A5: n
in (
dom F) and
A6: n
<> 1;
n
>= 1 by
A5,
FINSEQ_3: 25;
then
A7: n
> (
0
+ 1) by
A6,
XXREAL_0: 1;
then n
>= (1
+ 1) by
NAT_1: 13;
then
A8: (n
- 2)
>= ((1
+ 1)
- 2) by
XREAL_1: 9;
(n
- 1)
>=
0 by
A7;
then
A9: (n
-' 1)
= ((n
- (1
+ 1))
+ 1) by
XREAL_0:def 2
.= ((n
-' 2)
+ 1) by
A8,
XREAL_0:def 2;
thus (F
/. n)
= (F
. n) by
A5,
PARTFUN1:def 6
.= ((p
. (n
-' 1))
* ((
0_. L)
`^ (n
-' 1))) by
A3,
A5
.= ((p
. (n
-' 1))
* (
0_. L)) by
A9,
Th20
.= (
0_. L) by
Th28
.= (
0. (
Polynom-Ring L)) by
POLYNOM3:def 10;
end;
hence (
Subst (p,(
0_. L)))
= (F
/. 1) by
A1,
A4,
POLYNOM2: 3
.= (F
. 1) by
A4,
PARTFUN1:def 6
.= ((p
. (1
-' 1))
* ((
0_. L)
`^ (1
-' 1))) by
A3,
A4
.= ((p
. (1
-' 1))
* ((
0_. L)
`^
0 )) by
XREAL_1: 232
.= ((p
.
0 )
* ((
0_. L)
`^
0 )) by
XREAL_1: 232
.= ((p
.
0 )
* (
1_. L)) by
Th15
.=
<%(p
.
0 )%> by
Th29;
end;
suppose (
len F)
=
0 ;
then
A10: p
= (
0_. L) by
A2,
POLYNOM4: 5;
hence (
Subst (p,(
0_. L)))
= (
0_. L) by
Th49
.=
<%(
0. L)%> by
Th34
.=
<%(p
.
0 )%> by
A10,
FUNCOP_1: 7;
end;
end;
theorem ::
POLYNOM5:51
for L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
associative
commutative
distributive
almost_left_invertible non
empty
doubleLoopStr holds for p be
Polynomial of L holds for x be
Element of L holds (
len (
Subst (p,
<%x%>)))
<= 1
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
well-unital
associative
commutative
distributive
almost_left_invertible non
empty
doubleLoopStr;
let p be
Polynomial of L;
let x be
Element of L;
now
now
consider F be
FinSequence of the
carrier of (
Polynom-Ring L) such that
A1: (
Subst (p,
<%x%>))
= (
Sum F) and (
len F)
= (
len p) and
A2: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= ((p
. (n
-' 1))
* (
<%x%>
`^ (n
-' 1))) by
Def6;
defpred
P[
Nat] means for p be
Polynomial of L st p
= (
Sum (F
| $1)) holds (
len p)
<= 1;
A3: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
reconsider F1 = (
Sum (F
| n)) as
Polynomial of L by
POLYNOM3:def 10;
reconsider maxFq = (
max ((
len F1),(
len ((p
. nn)
* (
<%x%>
`^ n))))) as
Element of
NAT by
ORDINAL1:def 12;
A4: (
len ((p
. nn)
* (
<%x%>
`^ n)))
<= 1
proof
per cases ;
suppose (p
. n)
<> (
0. L);
then (
len ((p
. nn)
* (
<%x%>
`^ n)))
= (
len (
<%x%>
`^ n)) by
Th25
.= (
len
<%(
power (x,n))%>) by
Th36;
hence thesis by
ALGSEQ_1:def 5;
end;
suppose (p
. n)
= (
0. L);
hence thesis by
Th24;
end;
end;
assume
A5: for q be
Polynomial of L st q
= (
Sum (F
| n)) holds (
len q)
<= 1;
then (
len F1)
<= 1;
then
A6: maxFq
<= 1 by
A4,
XXREAL_0: 28;
let q be
Polynomial of L;
assume
A7: q
= (
Sum (F
| (n
+ 1)));
A8: maxFq
>= (
len F1) & maxFq
>= (
len ((p
. nn)
* (
<%x%>
`^ n))) by
XXREAL_0: 25;
now
per cases ;
suppose
A9: (n
+ 1)
<= (
len F);
(n
+ 1)
>= 1 by
NAT_1: 11;
then
A10: (n
+ 1)
in (
dom F) by
A9,
FINSEQ_3: 25;
then
A11: (F
/. (n
+ 1))
= (F
. (n
+ 1)) by
PARTFUN1:def 6
.= ((p
. ((n
+ 1)
-' 1))
* (
<%x%>
`^ ((n
+ 1)
-' 1))) by
A2,
A10
.= ((p
. nn)
* (
<%x%>
`^ ((n
+ 1)
-' 1))) by
NAT_D: 34
.= ((p
. nn)
* (
<%x%>
`^ n)) by
NAT_D: 34;
(F
| (n
+ 1))
= ((F
| n)
^
<*(F
/. (n
+ 1))*>) by
A9,
FINSEQ_5: 82;
then q
= ((
Sum (F
| n))
+ (F
/. (n
+ 1))) by
A7,
FVSUM_1: 71
.= (F1
+ ((p
. nn)
* (
<%x%>
`^ n))) by
A11,
POLYNOM3:def 10;
then (
len q)
<= maxFq by
A8,
POLYNOM4: 6;
hence thesis by
A6,
XXREAL_0: 2;
end;
suppose
A12: (n
+ 1)
> (
len F);
then n
>= (
len F) by
NAT_1: 13;
then
A13: (F
| n)
= F by
FINSEQ_1: 58;
(F
| (n
+ 1))
= F by
A12,
FINSEQ_1: 58;
hence thesis by
A5,
A7,
A13;
end;
end;
hence thesis;
end;
A14: (F
| (
len F))
= F by
FINSEQ_1: 58;
A15:
P[
0 ]
proof
let p be
Polynomial of L;
A16: (F
|
0 )
= (
<*> the
carrier of (
Polynom-Ring L));
assume p
= (
Sum (F
|
0 ));
then p
= (
0. (
Polynom-Ring L)) by
A16,
RLVECT_1: 43
.= (
0_. L) by
POLYNOM3:def 10;
hence thesis by
POLYNOM4: 3;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A15,
A3);
hence thesis by
A1,
A14;
end;
hence thesis;
end;
hence thesis;
end;
theorem ::
POLYNOM5:52
Th52: for L be
Field holds for p,q be
Polynomial of L st (
len p)
<>
0 & (
len q)
> 1 holds (
len (
Subst (p,q)))
= (((((
len p)
* (
len q))
- (
len p))
- (
len q))
+ 2)
proof
let L be
Field;
let p,q be
Polynomial of L;
assume that
A1: (
len p)
<>
0 and
A2: (
len q)
> 1;
consider F be
FinSequence of the
carrier of (
Polynom-Ring L) such that
A3: (
Subst (p,q))
= (
Sum F) and
A4: (
len F)
= (
len p) and
A5: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= ((p
. (n
-' 1))
* (q
`^ (n
-' 1))) by
Def6;
A6: (
0
+ 1)
<= (
len F) by
A1,
A4,
NAT_1: 13;
then
A7: 1
in (
dom F) by
FINSEQ_3: 25;
reconsider k = (((((
len p)
* (
len q))
- (
len p))
- (
len q))
+ 1) as
Element of
NAT by
A1,
A2,
Th1,
INT_1: 3;
(
len p)
>= (
0
+ 1) by
A1,
NAT_1: 13;
then
A8: ((
len p)
- 1)
>=
0 ;
A9: (
len (q
`^ ((
len F)
-' 1)))
= (((((
len p)
-' 1)
* (
len q))
- ((
len p)
-' 1))
+ 1) by
A2,
A4,
Th23
.= (((((
len p)
-' 1)
* (
len q))
- ((
len p)
- 1))
+ 1) by
A8,
XREAL_0:def 2
.= (((((
len p)
- 1)
* (
len q))
- ((
len p)
- 1))
+ 1) by
A8,
XREAL_0:def 2
.= (((((
len p)
* (
len q))
- (
len p))
- (
len q))
+ (1
+ 1));
A10: (
len (
Subst (p,q)))
>= (((((
len p)
* (
len q))
- (
len p))
- (
len q))
+ (1
+ 1))
proof
set lF1 = ((
len F)
-' 1);
set F1 = (F
| lF1);
reconsider sF1 = (
Sum F1) as
Polynomial of L by
POLYNOM3:def 10;
A11: (
len F)
= (lF1
+ 1) by
A6,
XREAL_1: 235;
then
A12: F
= (F1
^
<*(F
/. (
len F))*>) by
FINSEQ_5: 21;
then
A13: (
Sum F)
= ((
Sum F1)
+ (F
/. (
len F))) by
FVSUM_1: 71;
A14: (
len F)
= ((
len F1)
+ 1) by
A12,
FINSEQ_2: 16;
assume
A15: (
len (
Subst (p,q)))
< (((((
len p)
* (
len q))
- (
len p))
- (
len q))
+ (1
+ 1));
then (
len (
Subst (p,q)))
< (k
+ 1);
then (
len (
Subst (p,q)))
<= k by
NAT_1: 13;
then
A16: ((
Subst (p,q))
. k)
= (
0. L) by
ALGSEQ_1: 8;
now
per cases ;
suppose
A17: (
len F1)
<>
{} ;
defpred
P[
Nat] means for F2 be
Polynomial of L st F2
= (
Sum (F1
| $1)) holds (
len F2)
<= (((($1
* (
len q))
- (
len q))
- $1)
+ 2);
A18: (F1
| (
len F1))
= F1 by
FINSEQ_1: 58;
A19: for n be non
zero
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be non
zero
Nat;
assume
A20: for F2 be
Polynomial of L st F2
= (
Sum (F1
| n)) holds (
len F2)
<= ((((n
* (
len q))
- (
len q))
- n)
+ 2);
(
len q)
>= (
0
+ (1
+ 1)) by
A2,
NAT_1: 13;
then ((
len q)
- 2)
>=
0 by
XREAL_1: 19;
then ((((n
* (
len q))
- n)
+ 1)
+
0 )
<= ((((n
* (
len q))
- n)
+ 1)
+ ((
len q)
- 2)) by
XREAL_1: 7;
then (((((n
* (
len q))
- (
len q))
- n)
+ 2)
+
0 )
<= (((((n
* (
len q))
- (
len q))
- n)
+ 2)
+ 1) & ((((n
* (
len q))
- n)
+ 1)
- ((
len q)
- 2))
<= (((n
* (
len q))
- n)
+ 1) by
XREAL_1: 6,
XREAL_1: 20;
then
A21: ((((n
* (
len q))
- (
len q))
- n)
+ 2)
<= (((n
* (
len q))
- n)
+ 1) by
XXREAL_0: 2;
reconsider F3 = (
Sum (F1
| n)) as
Polynomial of L by
POLYNOM3:def 10;
let F2 be
Polynomial of L;
assume
A22: F2
= (
Sum (F1
| (n
+ 1)));
(
len F3)
<= ((((n
* (
len q))
- (
len q))
- n)
+ 2) by
A20;
then
A23: (
len F3)
<= (((n
* (
len q))
- n)
+ 1) by
A21,
XXREAL_0: 2;
now
per cases ;
suppose
A24: (n
+ 1)
<= (
len F1);
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
A25: (n
+ 1)
>= 1 by
NAT_1: 11;
reconsider maxFq = (
max ((
len F3),(
len ((p
. nn)
* (q
`^ nn))))) as
Element of
NAT by
ORDINAL1:def 12;
A26: maxFq
>= (
len F3) & maxFq
>= (
len ((p
. nn)
* (q
`^ nn))) by
XXREAL_0: 25;
(
len ((p
. nn)
* (q
`^ nn)))
<= (((n
* (
len q))
- n)
+ 1)
proof
per cases ;
suppose (p
. n)
<> (
0. L);
then (
len ((p
. nn)
* (q
`^ nn)))
= (
len (q
`^ nn)) by
Th25;
hence thesis by
A2,
Th23;
end;
suppose
A27: (p
. n)
= (
0. L);
(
len q)
>= (
0
+ 1) by
A2;
then ((
len q)
- 1)
>=
0 ;
then
A28: (n
* ((
len q)
- 1))
>=
0 ;
(n
* (
len q))
<= ((n
* (
len q))
+ 1) by
NAT_1: 11;
then ((n
* (
len q))
- n)
<= (((n
* (
len q))
+ 1)
- n) by
XREAL_1: 9;
hence thesis by
A27,
A28,
Th24;
end;
end;
then
A29: maxFq
<= (((n
* (
len q))
- n)
+ 1) by
A23,
XXREAL_0: 28;
(
len F1)
<= (
len F) by
A14,
NAT_1: 11;
then (n
+ 1)
<= (
len F) by
A24,
XXREAL_0: 2;
then
A30: (n
+ 1)
in (
dom F) by
A25,
FINSEQ_3: 25;
A31: (n
+ 1)
in (
dom F1) by
A24,
A25,
FINSEQ_3: 25;
then
A32: (F1
/. (n
+ 1))
= (F1
. (n
+ 1)) by
PARTFUN1:def 6
.= (F
. (n
+ 1)) by
A12,
A31,
FINSEQ_1:def 7
.= ((p
. ((n
+ 1)
-' 1))
* (q
`^ ((n
+ 1)
-' 1))) by
A5,
A30
.= ((p
. nn)
* (q
`^ ((n
+ 1)
-' 1))) by
NAT_D: 34
.= ((p
. nn)
* (q
`^ nn)) by
NAT_D: 34;
(F1
| (nn
+ 1))
= ((F1
| nn)
^
<*(F1
/. (nn
+ 1))*>) by
A24,
FINSEQ_5: 82;
then F2
= ((
Sum (F1
| n))
+ (F1
/. (n
+ 1))) by
A22,
FVSUM_1: 71
.= (F3
+ ((p
. nn)
* (q
`^ nn))) by
A32,
POLYNOM3:def 10;
then (
len F2)
<= maxFq by
A26,
POLYNOM4: 6;
hence (
len F2)
<= (((((n
+ 1)
* (
len q))
- (
len q))
- (n
+ 1))
+ 2) by
A29,
XXREAL_0: 2;
end;
suppose
A33: (n
+ 1)
> (
len F1);
(
- (
len q))
<= (
- 1) by
A2,
XREAL_1: 24;
then (((n
* (
len q))
- n)
+ (
- (
len q)))
<= (((n
* (
len q))
- n)
+ (
- 1)) by
XREAL_1: 6;
then
A34: ((((n
* (
len q))
- (
len q))
- n)
+ 2)
<= (((((n
+ 1)
* (
len q))
- (
len q))
- (n
+ 1))
+ 2) by
XREAL_1: 6;
n
>= (
len F1) by
A33,
NAT_1: 13;
then
A35: (F1
| n)
= F1 by
FINSEQ_1: 58;
(F1
| (n
+ 1))
= F1 by
A33,
FINSEQ_1: 58;
then (
len F2)
<= ((((n
* (
len q))
- (
len q))
- n)
+ 2) by
A20,
A22,
A35;
hence (
len F2)
<= (((((n
+ 1)
* (
len q))
- (
len q))
- (n
+ 1))
+ 2) by
A34,
XXREAL_0: 2;
end;
end;
hence (
len F2)
<= (((((n
+ 1)
* (
len q))
- (
len q))
- (n
+ 1))
+ 2);
end;
(
0
+ (
len q))
>= (1
+ 1) by
A2,
NAT_1: 13;
then (2
- (
len q))
<=
0 by
XREAL_1: 20;
then
A36: ((2
- (
len q))
+ k)
<= (
0
+ k) by
XREAL_1: 6;
(
0
+ 1)
<= (
len F1) by
A17,
NAT_1: 13;
then
A37: 1
in (
dom F1) by
FINSEQ_3: 25;
A38:
P[1]
proof
let F2 be
Polynomial of L;
Z: (F1
. 1)
= (F1
/. 1) by
A37,
PARTFUN1:def 6;
(F1
| 1)
=
<*(F1
. 1)*> by
A17,
CARD_1: 27,
FINSEQ_5: 20;
then
A39: (
Sum (F1
| 1))
= (F1
. 1) by
Z,
RLVECT_1: 44
.= (F
. 1) by
A12,
A37,
FINSEQ_1:def 7
.= ((p
. (1
-' 1))
* (q
`^ (1
-' 1))) by
A5,
A7
.= ((p
.
0 )
* (q
`^ (1
-' 1))) by
XREAL_1: 232
.= ((p
.
0 )
* (q
`^
0 )) by
XREAL_1: 232
.= ((p
.
0 )
* (
1_. L)) by
Th15
.=
<%(p
.
0 )%> by
Th29;
assume F2
= (
Sum (F1
| 1));
hence (
len F2)
<= ((((1
* (
len q))
- (
len q))
- 1)
+ 2) by
A39,
ALGSEQ_1:def 5;
end;
for n be non
zero
Nat holds
P[n] from
NAT_1:sch 10(
A38,
A19);
then (
len sF1)
<= (((((
len F1)
* (
len q))
- (
len q))
- (
len F1))
+ 2) by
A17,
A18;
then
A40: (sF1
. k)
= (
0. L) by
A4,
A14,
A36,
ALGSEQ_1: 8,
XXREAL_0: 2;
A41: (
len F)
in (
dom F) by
A6,
FINSEQ_3: 25;
then (F
/. (
len F))
= (F
. (
len F)) by
PARTFUN1:def 6
.= ((p
. lF1)
* (q
`^ lF1)) by
A5,
A41;
then (
Subst (p,q))
= (sF1
+ ((p
. lF1)
* (q
`^ lF1))) by
A3,
A13,
POLYNOM3:def 10;
then
A42: ((
Subst (p,q))
. k)
= ((sF1
. k)
+ (((p
. lF1)
* (q
`^ lF1))
. k)) by
NORMSP_1:def 2
.= (((p
. lF1)
* (q
`^ lF1))
. k) by
A40,
RLVECT_1:def 4
.= ((p
. lF1)
* ((q
`^ lF1)
. k)) by
Def4;
(
len (q
`^ lF1))
= (k
+ 1) by
A9;
then
A43: ((q
`^ lF1)
. k)
<> (
0. L) by
ALGSEQ_1: 10;
(p
. lF1)
<> (
0. L) by
A4,
A11,
ALGSEQ_1: 10;
hence contradiction by
A16,
A42,
A43,
VECTSP_1: 12;
end;
suppose
A44: (
len F1)
=
{} ;
A45: (F
/. 1)
= (F
. 1) by
A7,
PARTFUN1:def 6
.= ((p
. (1
-' 1))
* (q
`^ (1
-' 1))) by
A5,
A7
.= ((p
.
0 )
* (q
`^ (1
-' 1))) by
XREAL_1: 232
.= ((p
.
0 )
* (q
`^
0 )) by
XREAL_1: 232
.= ((p
.
0 )
* (
1_. L)) by
Th15
.=
<%(p
.
0 )%> by
Th29;
A46: (
0. (
Polynom-Ring L))
= (
0_. L) by
POLYNOM3:def 10;
A47: (
len F)
= (
0
+ 1) by
A12,
A44,
FINSEQ_2: 16;
then
A48: (p
.
0 )
<> (
0. L) by
A4,
ALGSEQ_1: 10;
F1
= (
<*> the
carrier of (
Polynom-Ring L)) by
A44;
then (
Sum F)
= ((
0. (
Polynom-Ring L))
+ (F
/. 1)) by
A13,
A47,
RLVECT_1: 43
.= ((
0_. L)
+
<%(p
.
0 )%>) by
A45,
A46,
POLYNOM3:def 10
.=
<%(p
.
0 )%> by
POLYNOM3: 28;
hence contradiction by
A3,
A4,
A15,
A47,
A48,
Th33;
end;
end;
hence contradiction;
end;
defpred
P[
Nat] means for F1 be
Polynomial of L st F1
= (
Sum (F
| $1)) holds (
len F1)
<= (
len (q
`^ ($1
-' 1)));
A49: for n be non
zero
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be non
zero
Nat;
assume
A50: for F1 be
Polynomial of L st F1
= (
Sum (F
| n)) holds (
len F1)
<= (
len (q
`^ (n
-' 1)));
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
reconsider F2 = (
Sum (F
| n)) as
Polynomial of L by
POLYNOM3:def 10;
let F1 be
Polynomial of L;
assume
A51: F1
= (
Sum (F
| (n
+ 1)));
((n
* (
len q))
+ ((
len q)
-' 1))
>= (n
* (
len q)) by
NAT_1: 11;
then
A52: ((n
* (
len q))
- ((
len q)
-' 1))
<= (n
* (
len q)) by
XREAL_1: 20;
(
len q)
>= (
0
+ 1) by
A2;
then ((
len q)
- 1)
>=
0 ;
then ((n
* (
len q))
- ((
len q)
- 1))
<= (n
* (
len q)) by
A52,
XREAL_0:def 2;
then ((((n
* (
len q))
- (
len q))
+ 1)
- n)
<= ((n
* (
len q))
- n) by
XREAL_1: 9;
then
A53: (((((n
* (
len q))
- (
len q))
- n)
+ 1)
+ 1)
<= (((n
* (
len q))
- n)
+ 1) by
XREAL_1: 6;
(
len (q
`^ (n
-' 1)))
= ((((n
-' 1)
* (
len q))
- (n
-' 1))
+ 1) by
A2,
Th23
.= ((((n
- 1)
* (
len q))
- (n
-' 1))
+ 1) by
XREAL_0:def 2
.= ((((n
* (
len q))
- (1
* (
len q)))
- (n
- 1))
+ 1) by
XREAL_0:def 2
.= (((((n
* (
len q))
- (
len q))
- n)
+ 1)
+ 1);
then
A54: (
len (q
`^ (n
-' 1)))
<= (
len (q
`^ nn)) by
A2,
A53,
Th23;
per cases ;
suppose
A55: (n
+ 1)
<= (
len F);
reconsider maxFq = (
max ((
len F2),(
len ((p
. nn)
* (q
`^ nn))))) as
Element of
NAT by
ORDINAL1:def 12;
(p
. n)
<> (
0. L) or (p
. n)
= (
0. L);
then
A56: (
len ((p
. nn)
* (q
`^ nn)))
<= (
len (q
`^ nn)) by
Th24,
Th25;
(
len F2)
<= (
len (q
`^ (n
-' 1))) by
A50;
then (
len F2)
<= (
len (q
`^ nn)) by
A54,
XXREAL_0: 2;
then
A57: maxFq
<= (
len (q
`^ nn)) by
A56,
XXREAL_0: 28;
(F
| (n
+ 1))
= ((F
| n)
^
<*(F
/. (nn
+ 1))*>) by
A55,
FINSEQ_5: 82;
then
A58: F1
= ((
Sum (F
| n))
+ (F
/. (n
+ 1))) by
A51,
FVSUM_1: 71;
(n
+ 1)
>= 1 by
NAT_1: 11;
then
A59: (n
+ 1)
in (
dom F) by
A55,
FINSEQ_3: 25;
then (F
/. (n
+ 1))
= (F
. (n
+ 1)) by
PARTFUN1:def 6
.= ((p
. ((n
+ 1)
-' 1))
* (q
`^ ((n
+ 1)
-' 1))) by
A5,
A59
.= ((p
. nn)
* (q
`^ ((n
+ 1)
-' 1))) by
NAT_D: 34
.= ((p
. nn)
* (q
`^ nn)) by
NAT_D: 34;
then
A60: F1
= (F2
+ ((p
. nn)
* (q
`^ nn))) by
A58,
POLYNOM3:def 10;
maxFq
>= (
len F2) & maxFq
>= (
len ((p
. nn)
* (q
`^ nn))) by
XXREAL_0: 25;
then (
len F1)
<= maxFq by
A60,
POLYNOM4: 6;
then (
len F1)
<= (
len (q
`^ nn)) by
A57,
XXREAL_0: 2;
hence thesis by
NAT_D: 34;
end;
suppose
A61: (n
+ 1)
> (
len F);
then n
>= (
len F) by
NAT_1: 13;
then
A62: (F
| n)
= F by
FINSEQ_1: 58;
(F
| (n
+ 1))
= F by
A61,
FINSEQ_1: 58;
then (
len F1)
<= (
len (q
`^ (n
-' 1))) by
A50,
A51,
A62;
then (
len F1)
<= (
len (q
`^ nn)) by
A54,
XXREAL_0: 2;
hence thesis by
NAT_D: 34;
end;
end;
A63: (F
| (
len F))
= F by
FINSEQ_1: 58;
A64:
P[1]
proof
let F1 be
Polynomial of L;
Z: (F
. 1)
= (F
/. 1) by
A7,
PARTFUN1:def 6;
(F
| 1)
=
<*(F
. 1)*> by
A1,
A4,
CARD_1: 27,
FINSEQ_5: 20;
then
A65: (
Sum (F
| 1))
= (F
. 1) by
Z,
RLVECT_1: 44
.= ((p
. (1
-' 1))
* (q
`^ (1
-' 1))) by
A5,
A7
.= ((p
.
0 )
* (q
`^ (1
-' 1))) by
XREAL_1: 232
.= ((p
.
0 )
* (q
`^
0 )) by
XREAL_1: 232
.= ((p
.
0 )
* (
1_. L)) by
Th15
.=
<%(p
.
0 )%> by
Th29;
assume F1
= (
Sum (F
| 1));
then (
len F1)
<= 1 by
A65,
ALGSEQ_1:def 5;
then (
len F1)
<= (
len (
1_. L)) by
POLYNOM4: 4;
then (
len F1)
<= (
len (q
`^
0 )) by
Th15;
hence thesis by
XREAL_1: 232;
end;
for n be non
zero
Nat holds
P[n] from
NAT_1:sch 10(
A64,
A49);
then (
len (
Subst (p,q)))
<= (
len (q
`^ ((
len F)
-' 1))) by
A1,
A3,
A4,
A63;
hence thesis by
A9,
A10,
XXREAL_0: 1;
end;
theorem ::
POLYNOM5:53
Th53: for L be
Field holds for p,q be
Polynomial of L holds for x be
Element of L holds (
eval ((
Subst (p,q)),x))
= (
eval (p,(
eval (q,x))))
proof
let L be
Field;
let p,q be
Polynomial of L;
let x be
Element of L;
consider F1 be
FinSequence of the
carrier of L such that
A1: (
eval (p,(
eval (q,x))))
= (
Sum F1) and
A2: (
len F1)
= (
len p) and
A3: for n be
Element of
NAT st n
in (
dom F1) holds (F1
. n)
= ((p
. (n
-' 1))
* ((
power L)
. ((
eval (q,x)),(n
-' 1)))) by
POLYNOM4:def 2;
consider F be
FinSequence of the
carrier of (
Polynom-Ring L) such that
A4: (
Subst (p,q))
= (
Sum F) and
A5: (
len F)
= (
len p) and
A6: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= ((p
. (n
-' 1))
* (q
`^ (n
-' 1))) by
Def6;
defpred
P[
Nat] means for r be
Polynomial of L st r
= (
Sum (F
| $1)) holds (
eval (r,x))
= (
Sum (F1
| $1));
A7: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
assume
A8: for r be
Polynomial of L st r
= (
Sum (F
| n)) holds (
eval (r,x))
= (
Sum (F1
| n));
let r be
Polynomial of L;
assume
A9: r
= (
Sum (F
| (n
+ 1)));
per cases ;
suppose
A10: (n
+ 1)
<= (
len F);
then
A11: (F1
| (n
+ 1))
= ((F1
| n)
^
<*(F1
/. (n
+ 1))*>) by
A5,
A2,
FINSEQ_5: 82;
(F
| (n
+ 1))
= ((F
| n)
^
<*(F
/. (n
+ 1))*>) by
A10,
FINSEQ_5: 82;
then
A12: r
= ((
Sum (F
| n))
+ (F
/. (n
+ 1))) by
A9,
FVSUM_1: 71;
reconsider r1 = (
Sum (F
| n)) as
Polynomial of L by
POLYNOM3:def 10;
(n
+ 1)
>= 1 by
NAT_1: 11;
then
A13: (n
+ 1)
in (
dom F) by
A10,
FINSEQ_3: 25;
A14: (
dom F)
= (
dom F1) by
A5,
A2,
FINSEQ_3: 29;
then
A15: ((p
. ((n
+ 1)
-' 1))
* ((
power L)
. ((
eval (q,x)),((n
+ 1)
-' 1))))
= (F1
. (n
+ 1)) by
A3,
A13
.= (F1
/. (n
+ 1)) by
A13,
A14,
PARTFUN1:def 6;
(F
/. (n
+ 1))
= (F
. (n
+ 1)) by
A13,
PARTFUN1:def 6
.= ((p
. ((n
+ 1)
-' 1))
* (q
`^ ((n
+ 1)
-' 1))) by
A6,
A13
.= ((p
. nn)
* (q
`^ ((n
+ 1)
-' 1))) by
NAT_D: 34
.= ((p
. nn)
* (q
`^ n)) by
NAT_D: 34;
then r
= (r1
+ ((p
. nn)
* (q
`^ n))) by
A12,
POLYNOM3:def 10;
hence (
eval (r,x))
= ((
eval (r1,x))
+ (
eval (((p
. nn)
* (q
`^ n)),x))) by
POLYNOM4: 19
.= ((
Sum (F1
| n))
+ (
eval (((p
. nn)
* (q
`^ n)),x))) by
A8
.= ((
Sum (F1
| n))
+ ((p
. nn)
* (
eval ((q
`^ n),x)))) by
Th30
.= ((
Sum (F1
| n))
+ ((p
. nn)
* ((
power L)
. ((
eval (q,x)),n)))) by
Th22
.= ((
Sum (F1
| n))
+ ((p
. ((n
+ 1)
-' 1))
* ((
power L)
. ((
eval (q,x)),n)))) by
NAT_D: 34
.= ((
Sum (F1
| n))
+ (F1
/. (n
+ 1))) by
A15,
NAT_D: 34
.= (
Sum (F1
| (n
+ 1))) by
A11,
FVSUM_1: 71;
end;
suppose
A16: (n
+ 1)
> (
len F);
then n
>= (
len F) by
NAT_1: 13;
then
A17: (F
| n)
= F & (F1
| n)
= F1 by
A5,
A2,
FINSEQ_1: 58;
(F
| (n
+ 1))
= F & (F1
| (n
+ 1))
= F1 by
A5,
A2,
A16,
FINSEQ_1: 58;
hence thesis by
A8,
A9,
A17;
end;
end;
A18: (F
| (
len F))
= F & (F1
| (
len F1))
= F1 by
FINSEQ_1: 58;
A19:
P[
0 ]
proof
let r be
Polynomial of L;
A20: (F
|
0 )
= (
<*> the
carrier of (
Polynom-Ring L));
A21: (F1
|
0 )
= (
<*> the
carrier of L);
assume r
= (
Sum (F
|
0 ));
then r
= (
0. (
Polynom-Ring L)) by
A20,
RLVECT_1: 43
.= (
0_. L) by
POLYNOM3:def 10;
hence (
eval (r,x))
= (
0. L) by
POLYNOM4: 17
.= (
Sum (F1
|
0 )) by
A21,
RLVECT_1: 43;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A19,
A7);
hence thesis by
A4,
A5,
A1,
A2,
A18;
end;
begin
definition
let L be
unital non
empty
doubleLoopStr;
let p be
Polynomial of L;
let x be
Element of L;
::
POLYNOM5:def7
pred x
is_a_root_of p means (
eval (p,x))
= (
0. L);
end
definition
let L be
unital non
empty
doubleLoopStr;
let p be
Polynomial of L;
::
POLYNOM5:def8
attr p is
with_roots means ex x be
Element of L st x
is_a_root_of p;
end
theorem ::
POLYNOM5:54
Th54: for L be
unital non
empty
doubleLoopStr holds (
0_. L) is
with_roots
proof
let L be
unital non
empty
doubleLoopStr;
set x = the
Element of L;
take x;
thus (
eval ((
0_. L),x))
= (
0. L) by
POLYNOM4: 17;
end;
registration
let L be
unital non
empty
doubleLoopStr;
cluster (
0_. L) ->
with_roots;
coherence by
Th54;
end
theorem ::
POLYNOM5:55
for L be
unital non
empty
doubleLoopStr holds for x be
Element of L holds x
is_a_root_of (
0_. L) by
POLYNOM4: 17;
registration
let L be
unital non
empty
doubleLoopStr;
cluster
with_roots for
Polynomial of L;
existence
proof
take (
0_. L);
thus thesis;
end;
end
definition
let L be
unital non
empty
doubleLoopStr;
::
POLYNOM5:def9
attr L is
algebraic-closed means for p be
Polynomial of L st (
len p)
> 1 holds p is
with_roots;
end
definition
let L be
unital non
empty
doubleLoopStr;
let p be
Polynomial of L;
::
POLYNOM5:def10
func
Roots (p) ->
Subset of L means
:
Def10: for x be
Element of L holds x
in it iff x
is_a_root_of p;
existence
proof
{ x where x be
Element of L : x
is_a_root_of p }
c= the
carrier of L
proof
let y be
object;
assume y
in { x where x be
Element of L : x
is_a_root_of p };
then ex x be
Element of L st x
= y & x
is_a_root_of p;
hence thesis;
end;
then
reconsider X = { x where x be
Element of L : x
is_a_root_of p } as
Subset of L;
take X;
let x be
Element of L;
thus x
in X implies x
is_a_root_of p
proof
assume x
in X;
then ex y be
Element of L st x
= y & y
is_a_root_of p;
hence thesis;
end;
assume x
is_a_root_of p;
hence thesis;
end;
uniqueness
proof
let X1,X2 be
Subset of L such that
A1: for x be
Element of L holds x
in X1 iff x
is_a_root_of p and
A2: for x be
Element of L holds x
in X2 iff x
is_a_root_of p;
thus X1
c= X2 by
A1,
A2;
let x be
object;
assume
A3: x
in X2;
then
reconsider y = x as
Element of L;
y
is_a_root_of p by
A2,
A3;
hence thesis by
A1;
end;
end
definition
let L be
commutative
associative
well-unital
distributive
almost_left_invertible non
empty
doubleLoopStr;
let p be
Polynomial of L;
::
POLYNOM5:def11
func
NormPolynomial (p) ->
sequence of L means
:
Def11: for n be
Element of
NAT holds (it
. n)
= ((p
. n)
/ (p
. ((
len p)
-' 1)));
existence
proof
deffunc
F(
Element of
NAT ) = ((p
. $1)
/ (p
. ((
len p)
-' 1)));
consider q be
sequence of L such that
A1: for n be
Element of
NAT holds (q
. n)
=
F(n) from
FUNCT_2:sch 4;
take q;
thus thesis by
A1;
end;
uniqueness
proof
let p1,p2 be
sequence of L such that
A2: for n be
Element of
NAT holds (p1
. n)
= ((p
. n)
/ (p
. ((
len p)
-' 1))) and
A3: for n be
Element of
NAT holds (p2
. n)
= ((p
. n)
/ (p
. ((
len p)
-' 1)));
now
let n be
Element of
NAT ;
thus (p1
. n)
= ((p
. n)
/ (p
. ((
len p)
-' 1))) by
A2
.= (p2
. n) by
A3;
end;
hence p1
= p2 by
FUNCT_2: 63;
end;
end
registration
let L be
add-associative
right_zeroed
right_complementable
commutative
associative
well-unital
distributive
almost_left_invertible non
empty
doubleLoopStr;
let p be
Polynomial of L;
cluster (
NormPolynomial p) ->
finite-Support;
coherence
proof
now
let n be
Nat;
assume
A1: n
>= (
len p);
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
thus ((
NormPolynomial p)
. n)
= ((p
. nn)
/ (p
. ((
len p)
-' 1))) by
Def11
.= ((
0. L)
/ (p
. ((
len p)
-' 1))) by
A1,
ALGSEQ_1: 8
.= ((
0. L)
* ((p
. ((
len p)
-' 1))
" ))
.= (
0. L);
end;
hence thesis;
end;
end
theorem ::
POLYNOM5:56
Th56: for L be
commutative
associative
well-unital
distributive
almost_left_invertible non
empty
doubleLoopStr holds for p be
Polynomial of L st (
len p)
<>
0 holds ((
NormPolynomial p)
. ((
len p)
-' 1))
= (
1. L)
proof
let L be
commutative
associative
well-unital
distributive
almost_left_invertible non
empty
doubleLoopStr;
let p be
Polynomial of L;
assume (
len p)
<>
0 ;
then (
len p)
>= (
0
+ 1) by
NAT_1: 13;
then (
len p)
= (((
len p)
-' 1)
+ 1) by
XREAL_1: 235;
then
A1: (p
. ((
len p)
-' 1))
<> (
0. L) by
ALGSEQ_1: 10;
thus ((
NormPolynomial p)
. ((
len p)
-' 1))
= ((p
. ((
len p)
-' 1))
/ (p
. ((
len p)
-' 1))) by
Def11
.= ((p
. ((
len p)
-' 1))
* ((p
. ((
len p)
-' 1))
" ))
.= (
1. L) by
A1,
VECTSP_1:def 10;
end;
theorem ::
POLYNOM5:57
Th57: for L be
Field holds for p be
Polynomial of L st (
len p)
<>
0 holds (
len (
NormPolynomial p))
= (
len p)
proof
let L be
Field;
let p be
Polynomial of L;
assume (
len p)
<>
0 ;
then (
len p)
>= (
0
+ 1) by
NAT_1: 13;
then (
len p)
= (((
len p)
-' 1)
+ 1) by
XREAL_1: 235;
then (p
. ((
len p)
-' 1))
<> (
0. L) by
ALGSEQ_1: 10;
then
A1: ((p
. ((
len p)
-' 1))
" )
<> (
0. L) by
VECTSP_1: 25;
A2:
now
let n be
Nat;
assume
A3: n
is_at_least_length_of (
NormPolynomial p);
n
is_at_least_length_of p
proof
let i be
Nat;
reconsider ii = i as
Element of
NAT by
ORDINAL1:def 12;
assume i
>= n;
then ((
NormPolynomial p)
. i)
= (
0. L) by
A3;
then ((p
. ii)
/ (p
. ((
len p)
-' 1)))
= (
0. L) by
Def11;
then ((p
. ii)
* ((p
. ((
len p)
-' 1))
" ))
= (
0. L);
hence thesis by
A1,
VECTSP_1: 12;
end;
hence (
len p)
<= n by
ALGSEQ_1:def 3;
end;
(
len p)
is_at_least_length_of (
NormPolynomial p)
proof
let n be
Nat;
assume
A4: n
>= (
len p);
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
thus ((
NormPolynomial p)
. n)
= ((p
. nn)
/ (p
. ((
len p)
-' 1))) by
Def11
.= ((
0. L)
/ (p
. ((
len p)
-' 1))) by
A4,
ALGSEQ_1: 8
.= ((
0. L)
* ((p
. ((
len p)
-' 1))
" ))
.= (
0. L);
end;
hence thesis by
A2,
ALGSEQ_1:def 3;
end;
theorem ::
POLYNOM5:58
Th58: for L be
Field holds for p be
Polynomial of L st (
len p)
<>
0 holds for x be
Element of L holds (
eval ((
NormPolynomial p),x))
= ((
eval (p,x))
/ (p
. ((
len p)
-' 1)))
proof
let L be
Field;
let p be
Polynomial of L;
assume
A1: (
len p)
<>
0 ;
set NPp = (
NormPolynomial p);
let x be
Element of L;
consider F1 be
FinSequence of the
carrier of L such that
A2: (
eval (p,x))
= (
Sum F1) and
A3: (
len F1)
= (
len p) and
A4: for n be
Element of
NAT st n
in (
dom F1) holds (F1
. n)
= ((p
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
POLYNOM4:def 2;
consider F2 be
FinSequence of the
carrier of L such that
A5: (
eval (NPp,x))
= (
Sum F2) and
A6: (
len F2)
= (
len NPp) and
A7: for n be
Element of
NAT st n
in (
dom F2) holds (F2
. n)
= ((NPp
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
POLYNOM4:def 2;
(
len F1)
= (
len F2) by
A1,
A3,
A6,
Th57;
then
A8: (
dom F1)
= (
dom F2) by
FINSEQ_3: 29;
now
let i be
object;
assume
A9: i
in (
dom F1);
then
reconsider i1 = i as
Element of
NAT ;
A10: ((p
. (i1
-' 1))
* ((
power L)
. (x,(i1
-' 1))))
= (F1
. i) by
A4,
A9
.= (F1
/. i) by
A9,
PARTFUN1:def 6;
thus (F2
/. i)
= (F2
. i) by
A8,
A9,
PARTFUN1:def 6
.= ((NPp
. (i1
-' 1))
* ((
power L)
. (x,(i1
-' 1)))) by
A7,
A8,
A9
.= (((p
. (i1
-' 1))
/ (p
. ((
len p)
-' 1)))
* ((
power L)
. (x,(i1
-' 1)))) by
Def11
.= (((p
. (i1
-' 1))
* ((p
. ((
len p)
-' 1))
" ))
* ((
power L)
. (x,(i1
-' 1))))
.= ((F1
/. i)
* ((p
. ((
len p)
-' 1))
" )) by
A10,
GROUP_1:def 3;
end;
then F2
= (F1
* ((p
. ((
len p)
-' 1))
" )) by
A8,
POLYNOM1:def 2;
then (
eval ((
NormPolynomial p),x))
= ((
eval (p,x))
* ((p
. ((
len p)
-' 1))
" )) by
A2,
A5,
POLYNOM1: 13;
hence thesis;
end;
theorem ::
POLYNOM5:59
Th59: for L be
Field holds for p be
Polynomial of L st (
len p)
<>
0 holds for x be
Element of L holds x
is_a_root_of p iff x
is_a_root_of (
NormPolynomial p)
proof
let L be
Field;
let p be
Polynomial of L;
assume
A1: (
len p)
<>
0 ;
then (
len p)
>= (
0
+ 1) by
NAT_1: 13;
then (
len p)
= (((
len p)
-' 1)
+ 1) by
XREAL_1: 235;
then (p
. ((
len p)
-' 1))
<> (
0. L) by
ALGSEQ_1: 10;
then
A2: ((p
. ((
len p)
-' 1))
" )
<> (
0. L) by
VECTSP_1: 25;
let x be
Element of L;
thus x
is_a_root_of p implies x
is_a_root_of (
NormPolynomial p)
proof
assume x
is_a_root_of p;
then (
eval (p,x))
= (
0. L);
then (
eval ((
NormPolynomial p),x))
= ((
0. L)
/ (p
. ((
len p)
-' 1))) by
A1,
Th58
.= ((
0. L)
* ((p
. ((
len p)
-' 1))
" ))
.= (
0. L);
hence thesis;
end;
assume x
is_a_root_of (
NormPolynomial p);
then (
0. L)
= (
eval ((
NormPolynomial p),x))
.= ((
eval (p,x))
/ (p
. ((
len p)
-' 1))) by
A1,
Th58
.= ((
eval (p,x))
* ((p
. ((
len p)
-' 1))
" ));
then (
eval (p,x))
= (
0. L) by
A2,
VECTSP_1: 12;
hence thesis;
end;
theorem ::
POLYNOM5:60
Th60: for L be
Field holds for p be
Polynomial of L st (
len p)
<>
0 holds p is
with_roots iff (
NormPolynomial p) is
with_roots
proof
let L be
Field;
let p be
Polynomial of L;
assume
A1: (
len p)
<>
0 ;
thus p is
with_roots implies (
NormPolynomial p) is
with_roots
proof
assume p is
with_roots;
then
consider x be
Element of L such that
A2: x
is_a_root_of p;
x
is_a_root_of (
NormPolynomial p) by
A1,
A2,
Th59;
hence thesis;
end;
assume (
NormPolynomial p) is
with_roots;
then
consider x be
Element of L such that
A3: x
is_a_root_of (
NormPolynomial p);
x
is_a_root_of p by
A1,
A3,
Th59;
hence thesis;
end;
theorem ::
POLYNOM5:61
for L be
Field holds for p be
Polynomial of L st (
len p)
<>
0 holds (
Roots p)
= (
Roots (
NormPolynomial p))
proof
let L be
Field;
let p be
Polynomial of L;
assume
A1: (
len p)
<>
0 ;
thus (
Roots p)
c= (
Roots (
NormPolynomial p))
proof
let x be
object;
assume
A2: x
in (
Roots p);
then
reconsider x1 = x as
Element of L;
x1
is_a_root_of p by
A2,
Def10;
then x1
is_a_root_of (
NormPolynomial p) by
A1,
Th59;
hence thesis by
Def10;
end;
thus (
Roots (
NormPolynomial p))
c= (
Roots p)
proof
let x be
object;
assume
A3: x
in (
Roots (
NormPolynomial p));
then
reconsider x1 = x as
Element of L;
x1
is_a_root_of (
NormPolynomial p) by
A3,
Def10;
then x1
is_a_root_of p by
A1,
Th59;
hence thesis by
Def10;
end;
end;
theorem ::
POLYNOM5:62
Th62: (
id
COMPLEX )
is_continuous_on
COMPLEX
proof
A1:
now
let x be
Complex;
let r be
Real;
assume that x
in
COMPLEX and
A2:
0
< r;
take s = r;
thus
0
< s by
A2;
let y be
Complex;
assume that y
in
COMPLEX and
A3:
|.(y
- x).|
< s;
reconsider xx = x, yy = y as
Element of
COMPLEX by
XCMPLX_0:def 2;
|.(((
id
COMPLEX )
/. yy)
- ((
id
COMPLEX )
/. xx)).|
< r by
A3;
hence
|.(((
id
COMPLEX )
/. y)
- ((
id
COMPLEX )
/. x)).|
< r;
end;
(
dom (
id
COMPLEX ))
=
COMPLEX by
FUNCT_2:def 1;
hence thesis by
A1,
CFCONT_1: 39;
end;
theorem ::
POLYNOM5:63
Th63: for x be
Element of
COMPLEX holds (
COMPLEX
--> x)
is_continuous_on
COMPLEX
proof
let x be
Element of
COMPLEX ;
A1:
now
let x1 be
Complex;
let r be
Real;
assume that
A2: x1
in
COMPLEX and
A3:
0
< r;
take s = r;
thus
0
< s by
A3;
let x2 be
Complex;
assume that
A4: x2
in
COMPLEX and
|.(x2
- x1).|
< s;
reconsider xx1 = x1, xx2 = x2 as
Element of
COMPLEX by
A2,
A4;
((
COMPLEX
--> x)
/. xx1)
= x & ((
COMPLEX
--> x)
/. xx2)
= x by
FUNCOP_1: 7;
hence
|.(((
COMPLEX
--> x)
/. x2)
- ((
COMPLEX
--> x)
/. x1)).|
< r by
A3,
COMPLEX1: 44;
end;
(
dom (
COMPLEX
--> x))
=
COMPLEX by
FUNCOP_1: 13;
hence thesis by
A1,
CFCONT_1: 39;
end;
definition
let L be
unital non
empty
multMagma;
let x be
Element of L;
let n be
Nat;
::
POLYNOM5:def12
func
FPower (x,n) ->
Function of L, L means
:
Def12: for y be
Element of L holds (it
. y)
= (x
* (
power (y,n)));
existence
proof
deffunc
F(
Element of L) = (x
* (
power ($1,n)));
consider f be
Function of the
carrier of L, the
carrier of L such that
A1: for y be
Element of L holds (f
. y)
=
F(y) from
FUNCT_2:sch 4;
reconsider f as
Function of L, L;
take f;
thus thesis by
A1;
end;
uniqueness
proof
let f1,f2 be
Function of L, L such that
A2: for y be
Element of L holds (f1
. y)
= (x
* (
power (y,n))) and
A3: for y be
Element of L holds (f2
. y)
= (x
* (
power (y,n)));
now
let y be
Element of L;
thus (f1
. y)
= (x
* (
power (y,n))) by
A2
.= (f2
. y) by
A3;
end;
hence f1
= f2 by
FUNCT_2: 63;
end;
end
theorem ::
POLYNOM5:64
for L be
unital non
empty
multMagma holds (
FPower ((
1_ L),1))
= (
id the
carrier of L)
proof
let L be
unital non
empty
multMagma;
A1:
now
let x be
object;
assume x
in the
carrier of L;
then
reconsider x1 = x as
Element of L;
((
FPower ((
1_ L),1))
. x1)
= ((
1_ L)
* (
power (x1,1))) by
Def12
.= ((
power L)
. (x1,1)) by
GROUP_1:def 4;
hence ((
FPower ((
1_ L),1))
. x)
= x by
GROUP_1: 50;
end;
(
dom (
FPower ((
1_ L),1)))
= the
carrier of L by
FUNCT_2:def 1;
hence thesis by
A1,
FUNCT_1: 17;
end;
theorem ::
POLYNOM5:65
(
FPower ((
1_
F_Complex ),2))
= ((
id
COMPLEX )
(#) (
id
COMPLEX ))
proof
the
carrier of
F_Complex
=
COMPLEX by
COMPLFLD:def 1;
then
reconsider f = ((
id
COMPLEX )
(#) (
id
COMPLEX )) as
Function of
F_Complex ,
F_Complex ;
now
let x be
Element of
F_Complex ;
reconsider x1 = x as
Element of
COMPLEX by
COMPLFLD:def 1;
((
id
COMPLEX )
/. x1)
= x1 & (
dom ((
id
COMPLEX )
(#) (
id
COMPLEX )))
=
COMPLEX by
FUNCT_2:def 1;
hence (f
. x)
= (x
* x) by
VALUED_1:def 4
.= ((
power
F_Complex )
. (x,2)) by
GROUP_1: 51
.= ((
1_
F_Complex )
* (
power (x,2)));
end;
hence thesis by
Def12;
end;
theorem ::
POLYNOM5:66
Th66: for L be
unital non
empty
multMagma holds for x be
Element of L holds (
FPower (x,
0 ))
= (the
carrier of L
--> x)
proof
let L be
unital non
empty
multMagma;
let x be
Element of L;
reconsider f = (the
carrier of L
--> x) as
Function of L, L;
now
let y be
Element of L;
thus (f
. y)
= x by
FUNCOP_1: 7
.= (x
* (
1_ L)) by
GROUP_1:def 4
.= (x
* (
power (y,
0 ))) by
GROUP_1:def 7;
end;
hence thesis by
Def12;
end;
theorem ::
POLYNOM5:67
for x be
Element of
F_Complex holds ex x1 be
Element of
COMPLEX st x
= x1 & (
FPower (x,1))
= (x1
(#) (
id
COMPLEX ))
proof
let x be
Element of
F_Complex ;
reconsider x1 = x as
Element of
COMPLEX by
COMPLFLD:def 1;
take x1;
thus x
= x1;
the
carrier of
F_Complex
=
COMPLEX by
COMPLFLD:def 1;
then
reconsider f = (x1
(#) (
id
COMPLEX )) as
Function of
F_Complex ,
F_Complex ;
now
let y be
Element of
F_Complex ;
reconsider y1 = y as
Element of
COMPLEX by
COMPLFLD:def 1;
thus (f
. y)
= (x1
* ((
id
COMPLEX )
. y1)) by
VALUED_1: 6
.= (x
* y)
.= (x
* (
power (y,1))) by
GROUP_1: 50;
end;
hence thesis by
Def12;
end;
theorem ::
POLYNOM5:68
for x be
Element of
F_Complex holds ex x1 be
Element of
COMPLEX st x
= x1 & (
FPower (x,2))
= (x1
(#) ((
id
COMPLEX )
(#) (
id
COMPLEX )))
proof
let x be
Element of
F_Complex ;
reconsider x1 = x as
Element of
COMPLEX by
COMPLFLD:def 1;
take x1;
thus x
= x1;
the
carrier of
F_Complex
=
COMPLEX by
COMPLFLD:def 1;
then
reconsider f = (x1
(#) ((
id
COMPLEX )
(#) (
id
COMPLEX ))) as
Function of
F_Complex ,
F_Complex ;
now
let y be
Element of
F_Complex ;
reconsider y1 = y as
Element of
COMPLEX by
COMPLFLD:def 1;
thus (f
. y)
= (x1
* (((
id
COMPLEX )
(#) (
id
COMPLEX ))
. y1)) by
VALUED_1: 6
.= (x1
* (((
id
COMPLEX )
. y1)
* ((
id
COMPLEX )
. y1))) by
VALUED_1: 5
.= (x1
* (y1
* ((
id
COMPLEX )
. y1)))
.= (x
* (y
* y))
.= (x
* (
power (y,2))) by
GROUP_1: 51;
end;
hence thesis by
Def12;
end;
theorem ::
POLYNOM5:69
Th69: for x be
Element of
F_Complex holds for n be
Nat holds ex f be
Function of
COMPLEX ,
COMPLEX st f
= (
FPower (x,n)) & (
FPower (x,(n
+ 1)))
= (f
(#) (
id
COMPLEX ))
proof
let x be
Element of
F_Complex ;
let n be
Nat;
A1: the
carrier of
F_Complex
=
COMPLEX by
COMPLFLD:def 1;
then
reconsider f = (
FPower (x,n)) as
Function of
COMPLEX ,
COMPLEX ;
reconsider g = (f
(#) (
id
COMPLEX )) as
Function of
F_Complex ,
F_Complex by
A1;
take f;
thus f
= (
FPower (x,n));
now
let y be
Element of
F_Complex ;
reconsider y1 = y as
Element of
COMPLEX by
COMPLFLD:def 1;
thus (g
. y)
= ((f
. y1)
* ((
id
COMPLEX )
. y1)) by
VALUED_1: 5
.= (((
FPower (x,n))
. y)
* y)
.= ((x
* (
power (y,n)))
* y) by
Def12
.= (x
* (((
power
F_Complex )
. (y,n))
* y))
.= (x
* (
power (y,(n
+ 1)))) by
GROUP_1:def 7;
end;
hence thesis by
Def12;
end;
theorem ::
POLYNOM5:70
Th70: for x be
Element of
F_Complex holds for n be
Nat holds ex f be
Function of
COMPLEX ,
COMPLEX st f
= (
FPower (x,n)) & f
is_continuous_on
COMPLEX
proof
let x be
Element of
F_Complex ;
defpred
P[
Nat] means ex f be
Function of
COMPLEX ,
COMPLEX st f
= (
FPower (x,$1)) & f
is_continuous_on
COMPLEX ;
A1: the
carrier of
F_Complex
=
COMPLEX by
COMPLFLD:def 1;
A2: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
reconsider g = (
FPower (x,(n
+ 1))) as
Function of
COMPLEX ,
COMPLEX by
A1;
given f be
Function of
COMPLEX ,
COMPLEX such that
A3: f
= (
FPower (x,n)) & f
is_continuous_on
COMPLEX ;
take g;
thus g
= (
FPower (x,(n
+ 1)));
ex f1 be
Function of
COMPLEX ,
COMPLEX st f1
= (
FPower (x,n)) & (
FPower (x,(n
+ 1)))
= (f1
(#) (
id
COMPLEX )) by
Th69;
hence thesis by
A3,
Th62,
CFCONT_1: 43;
end;
A4:
P[
0 ]
proof
reconsider f = (
FPower (x,
0 )) as
Function of
COMPLEX ,
COMPLEX by
A1;
take f;
thus f
= (
FPower (x,
0 ));
f
= (the
carrier of
F_Complex
--> x) by
Th66;
hence thesis by
A1,
Th63;
end;
thus for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A2);
end;
definition
let L be
well-unital non
empty
doubleLoopStr;
let p be
Polynomial of L;
::
POLYNOM5:def13
func
Polynomial-Function (L,p) ->
Function of L, L means
:
Def13: for x be
Element of L holds (it
. x)
= (
eval (p,x));
existence
proof
deffunc
F(
Element of L) = (
eval (p,$1));
consider f be
Function of the
carrier of L, the
carrier of L such that
A1: for x be
Element of L holds (f
. x)
=
F(x) from
FUNCT_2:sch 4;
reconsider f as
Function of L, L;
take f;
thus thesis by
A1;
end;
uniqueness
proof
let f1,f2 be
Function of L, L such that
A2: for x be
Element of L holds (f1
. x)
= (
eval (p,x)) and
A3: for x be
Element of L holds (f2
. x)
= (
eval (p,x));
now
let x be
Element of L;
thus (f1
. x)
= (
eval (p,x)) by
A2
.= (f2
. x) by
A3;
end;
hence f1
= f2 by
FUNCT_2: 63;
end;
end
theorem ::
POLYNOM5:71
Th71: for p be
Polynomial of
F_Complex holds ex f be
Function of
COMPLEX ,
COMPLEX st f
= (
Polynomial-Function (
F_Complex ,p)) & f
is_continuous_on
COMPLEX
proof
set FuFF = (
Funcs (
COMPLEX ,
COMPLEX ));
let p be
Polynomial of
F_Complex ;
reconsider fzero = (
COMPLEX
-->
0c ) as
Element of FuFF by
FUNCT_2: 9;
defpred
P[
Nat,
set] means $2
= (
FPower ((p
. ($1
-' 1)),($1
-' 1)));
A1: the
carrier of
F_Complex
=
COMPLEX by
COMPLFLD:def 1;
then
reconsider f = (
Polynomial-Function (
F_Complex ,p)) as
Function of
COMPLEX ,
COMPLEX ;
deffunc
F(
Element of FuFF,
Element of FuFF) = ($1
+ $2);
take f;
thus f
= (
Polynomial-Function (
F_Complex ,p));
A2: for x,y be
Element of FuFF holds
F(x,y)
in FuFF by
FUNCT_2: 8;
consider fadd be
BinOp of FuFF such that
A3: for x,y be
Element of FuFF holds (fadd
. (x,y))
=
F(x,y) from
FUNCT_7:sch 1(
A2);
reconsider L =
addLoopStr (# FuFF, fadd, fzero #) as non
empty
addLoopStr;
A4:
now
let u,v,w be
Element of L;
reconsider u1 = u, v1 = v, w1 = w as
Function of
COMPLEX ,
COMPLEX by
FUNCT_2: 66;
A5: (u1
+ v1)
in (
Funcs (
COMPLEX ,
COMPLEX )) by
FUNCT_2: 9;
A6: (v1
+ w1)
in (
Funcs (
COMPLEX ,
COMPLEX )) by
FUNCT_2: 9;
thus ((u
+ v)
+ w)
= (fadd
. ((u1
+ v1),w)) by
A3
.= ((u1
+ v1)
+ w1) by
A3,
A5
.= (u1
+ (v1
+ w1)) by
CFUNCT_1: 13
.= (fadd
. (u,(v1
+ w1))) by
A3,
A6
.= (u
+ (v
+ w)) by
A3;
end;
A7:
now
let v be
Element of L;
reconsider v1 = v as
Function of
COMPLEX ,
COMPLEX by
FUNCT_2: 66;
A8:
now
let x be
Element of
COMPLEX ;
thus ((v1
+ fzero)
. x)
= ((v1
. x)
+ (fzero
. x)) by
VALUED_1: 1
.= ((v1
. x)
+
0c ) by
FUNCOP_1: 7
.= (v1
. x);
end;
thus (v
+ (
0. L))
= (v1
+ fzero) by
A3
.= v by
A8,
FUNCT_2: 63;
end;
L is
right_complementable
proof
let v be
Element of L;
reconsider v1 = v as
Function of
COMPLEX ,
COMPLEX by
FUNCT_2: 66;
reconsider w = (
- v1) as
Element of L by
FUNCT_2: 9;
take w;
A9:
now
let x be
Element of
COMPLEX ;
thus ((v1
+ (
- v1))
. x)
= ((v1
. x)
+ ((
- v1)
. x)) by
VALUED_1: 1
.= ((v1
. x)
+ (
- (v1
. x))) by
VALUED_1: 8
.= (fzero
. x) by
FUNCOP_1: 7;
end;
thus (v
+ w)
= (v1
+ (
- v1)) by
A3
.= (
0. L) by
A9,
FUNCT_2: 63;
end;
then
reconsider L as
add-associative
right_zeroed
right_complementable non
empty
addLoopStr by
A4,
A7,
RLVECT_1:def 3,
RLVECT_1:def 4;
A10:
now
let n be
Nat;
reconsider x = (
FPower ((p
. (n
-' 1)),(n
-' 1))) as
Element of L by
A1,
FUNCT_2: 9;
assume n
in (
Seg (
len p));
take x;
thus
P[n, x];
end;
consider F be
FinSequence of the
carrier of L such that
A11: (
dom F)
= (
Seg (
len p)) and
A12: for n be
Nat st n
in (
Seg (
len p)) holds
P[n, (F
. n)] from
FINSEQ_1:sch 5(
A10);
A13: (F
| (
len F))
= F by
FINSEQ_1: 58;
reconsider SF = (
Sum F) as
Function of
COMPLEX ,
COMPLEX by
FUNCT_2: 66;
A14:
now
let x be
Element of
COMPLEX ;
reconsider x1 = x as
Element of
F_Complex by
COMPLFLD:def 1;
consider H be
FinSequence of the
carrier of
F_Complex such that
A15: (
eval (p,x1))
= (
Sum H) and
A16: (
len H)
= (
len p) and
A17: for n be
Element of
NAT st n
in (
dom H) holds (H
. n)
= ((p
. (n
-' 1))
* ((
power
F_Complex )
. (x1,(n
-' 1)))) by
POLYNOM4:def 2;
defpred
P[
Nat] means for SFk be
Function of
COMPLEX ,
COMPLEX st SFk
= (
Sum (F
| $1)) holds (
Sum (H
| $1))
= (SFk
. x);
A18: (
len F)
= (
len p) by
A11,
FINSEQ_1:def 3;
A19: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
reconsider kk = k as
Element of
NAT by
ORDINAL1:def 12;
assume
A20: for SFk be
Function of
COMPLEX ,
COMPLEX st SFk
= (
Sum (F
| k)) holds (
Sum (H
| k))
= (SFk
. x);
reconsider SFk1 = (
Sum (F
| k)) as
Function of
COMPLEX ,
COMPLEX by
FUNCT_2: 66;
let SFk be
Function of
COMPLEX ,
COMPLEX ;
assume
A21: SFk
= (
Sum (F
| (k
+ 1)));
per cases ;
suppose
A22: (
len F)
> k;
reconsider g2 = (
FPower ((p
. kk),k)) as
Function of
COMPLEX ,
COMPLEX by
A1;
A23: (k
+ 1)
>= 1 by
NAT_1: 11;
(k
+ 1)
<= (
len F) by
A22,
NAT_1: 13;
then
A24: (k
+ 1)
in (
dom F) by
A23,
FINSEQ_3: 25;
then
A25: (F
/. (k
+ 1))
= (F
. (k
+ 1)) by
PARTFUN1:def 6
.= (
FPower ((p
. ((k
+ 1)
-' 1)),((k
+ 1)
-' 1))) by
A11,
A12,
A24
.= (
FPower ((p
. kk),((k
+ 1)
-' 1))) by
NAT_D: 34
.= (
FPower ((p
. kk),k)) by
NAT_D: 34;
(F
| (k
+ 1))
= ((F
| k)
^
<*(F
. (k
+ 1))*>) by
A22,
FINSEQ_5: 83
.= ((F
| k)
^
<*(F
/. (k
+ 1))*>) by
A24,
PARTFUN1:def 6;
then
A26: SFk
= ((
Sum (F
| k))
+ (F
/. (k
+ 1))) by
A21,
FVSUM_1: 71
.= (SFk1
+ g2) by
A3,
A25;
A27: (
Sum (H
| k))
= (SFk1
. x) by
A20;
A28: (
dom F)
= (
dom H) by
A11,
A16,
FINSEQ_1:def 3;
then
A29: (H
/. (k
+ 1))
= (H
. (k
+ 1)) by
A24,
PARTFUN1:def 6
.= ((p
. ((k
+ 1)
-' 1))
* ((
power
F_Complex )
. (x1,((k
+ 1)
-' 1)))) by
A17,
A28,
A24
.= ((p
. kk)
* ((
power
F_Complex )
. (x1,((k
+ 1)
-' 1)))) by
NAT_D: 34
.= ((p
. kk)
* (
power (x1,k))) by
NAT_D: 34
.= ((
FPower ((p
. kk),k))
. x) by
Def12;
(H
| (k
+ 1))
= ((H
| k)
^
<*(H
. (k
+ 1))*>) by
A16,
A18,
A22,
FINSEQ_5: 83
.= ((H
| k)
^
<*(H
/. (k
+ 1))*>) by
A28,
A24,
PARTFUN1:def 6;
hence (
Sum (H
| (k
+ 1)))
= ((
Sum (H
| k))
+ (H
/. (k
+ 1))) by
FVSUM_1: 71
.= (SFk
. x) by
A29,
A26,
A27,
VALUED_1: 1;
end;
suppose
A30: (
len F)
<= k;
k
<= (k
+ 1) by
NAT_1: 11;
then
A31: (F
| (k
+ 1))
= F & (H
| (k
+ 1))
= H by
A16,
A18,
A30,
FINSEQ_1: 58,
XXREAL_0: 2;
(F
| k)
= F & (H
| k)
= H by
A16,
A18,
A30,
FINSEQ_1: 58;
hence thesis by
A20,
A21,
A31;
end;
end;
A32:
P[
0 ]
proof
let SFk be
Function of
COMPLEX ,
COMPLEX ;
A33: (F
|
0 )
= (
<*> the
carrier of L);
assume SFk
= (
Sum (F
|
0 ));
then
A34: SFk
= (
0. L) by
A33,
RLVECT_1: 43
.= (
COMPLEX
-->
0c );
(H
|
0 )
= (
<*> the
carrier of
F_Complex );
hence (
Sum (H
|
0 ))
= (
0.
F_Complex ) by
RLVECT_1: 43
.= (SFk
. x) by
A34,
COMPLFLD: 7,
FUNCOP_1: 7;
end;
A35: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A32,
A19);
A36: (
Sum (F
| (
len F)))
= SF by
FINSEQ_1: 58;
thus (f
. x)
= (
Sum H) by
A15,
Def13
.= (
Sum (H
| (
len H))) by
FINSEQ_1: 58
.= (SF
. x) by
A16,
A18,
A35,
A36;
end;
defpred
P[
Nat] means for g be
PartFunc of
COMPLEX ,
COMPLEX st g
= (
Sum (F
| $1)) holds g
is_continuous_on
COMPLEX ;
A37: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
reconsider kk = k as
Element of
NAT by
ORDINAL1:def 12;
reconsider g1 = (
Sum (F
| k)) as
Function of
COMPLEX ,
COMPLEX by
FUNCT_2: 66;
assume
A38: for g be
PartFunc of
COMPLEX ,
COMPLEX st g
= (
Sum (F
| k)) holds g
is_continuous_on
COMPLEX ;
then
A39: g1
is_continuous_on
COMPLEX ;
let g be
PartFunc of
COMPLEX ,
COMPLEX ;
assume
A40: g
= (
Sum (F
| (k
+ 1)));
per cases ;
suppose
A41: (
len F)
> k;
A42: (k
+ 1)
>= 1 by
NAT_1: 11;
(k
+ 1)
<= (
len F) by
A41,
NAT_1: 13;
then
A43: (k
+ 1)
in (
dom F) by
A42,
FINSEQ_3: 25;
then
A44: (F
/. (k
+ 1))
= (F
. (k
+ 1)) by
PARTFUN1:def 6
.= (
FPower ((p
. ((k
+ 1)
-' 1)),((k
+ 1)
-' 1))) by
A11,
A12,
A43
.= (
FPower ((p
. kk),((k
+ 1)
-' 1))) by
NAT_D: 34
.= (
FPower ((p
. kk),k)) by
NAT_D: 34;
consider g2 be
Function of
COMPLEX ,
COMPLEX such that
A45: g2
= (
FPower ((p
. kk),k)) and
A46: g2
is_continuous_on
COMPLEX by
Th70;
(F
| (k
+ 1))
= ((F
| k)
^
<*(F
. (k
+ 1))*>) by
A41,
FINSEQ_5: 83
.= ((F
| k)
^
<*(F
/. (k
+ 1))*>) by
A43,
PARTFUN1:def 6;
then g
= ((
Sum (F
| k))
+ (F
/. (k
+ 1))) by
A40,
FVSUM_1: 71
.= (g1
+ g2) by
A3,
A44,
A45;
hence thesis by
A39,
A46,
CFCONT_1: 43;
end;
suppose
A47: (
len F)
<= k;
k
<= (k
+ 1) by
NAT_1: 11;
then (F
| (k
+ 1))
= F by
A47,
FINSEQ_1: 58,
XXREAL_0: 2
.= (F
| k) by
A47,
FINSEQ_1: 58;
hence thesis by
A38,
A40;
end;
end;
A48:
P[
0 ]
proof
let g be
PartFunc of
COMPLEX ,
COMPLEX ;
A49: (F
|
0 )
= (
<*> the
carrier of L);
assume g
= (
Sum (F
|
0 ));
then g
= (
0. L) by
A49,
RLVECT_1: 43
.= (
COMPLEX
-->
0c );
hence thesis by
Th63;
end;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A48,
A37);
hence thesis by
A13,
A14,
FUNCT_2: 63;
end;
theorem ::
POLYNOM5:72
Th72: for p be
Polynomial of
F_Complex st (
len p)
> 2 &
|.(p
. ((
len p)
-' 1)).|
= 1 holds for F be
FinSequence of
REAL st (
len F)
= (
len p) & for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
=
|.(p
. (n
-' 1)).| holds for z be
Element of
F_Complex st
|.z.|
> (
Sum F) holds
|.(
eval (p,z)).|
> (
|.(p
.
0 ).|
+ 1)
proof
let p be
Polynomial of
F_Complex ;
assume that
A1: (
len p)
> 2 and
A2:
|.(p
. ((
len p)
-' 1)).|
= 1;
let F be
FinSequence of
REAL ;
assume that
A3: (
len F)
= (
len p) and
A4: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
=
|.(p
. (n
-' 1)).|;
set lF1 = ((
len F)
-' 1);
A5: (lF1
+ 1)
= (
len F) by
A1,
A3,
XREAL_1: 235,
XXREAL_0: 2;
then
A6: F
= (F
| (lF1
+ 1)) by
FINSEQ_1: 58
.= ((F
| lF1)
^
<*(F
/. (lF1
+ 1))*>) by
A5,
FINSEQ_5: 82;
A7: (
len p)
> 1 by
A1,
XXREAL_0: 2;
then
A8: 1
in (
dom F) by
A3,
FINSEQ_3: 25;
A9:
now
let n be
Element of
NAT ;
A10: (
dom (F
| lF1))
c= (
dom F) by
FINSEQ_5: 18;
assume
A11: n
in (
dom (F
| lF1));
then ((F
| lF1)
. n)
= ((F
| lF1)
/. n) by
PARTFUN1:def 6
.= (F
/. n) by
A11,
FINSEQ_4: 70
.= (F
. n) by
A11,
A10,
PARTFUN1:def 6
.=
|.(p
. (n
-' 1)).| by
A4,
A11,
A10;
hence ((F
| lF1)
. n)
>=
0 by
COMPLEX1: 46;
end;
A12: (
len (F
| lF1))
= lF1 by
A5,
FINSEQ_1: 59,
NAT_1: 11;
|.(p
.
0 ).|
>=
0 by
COMPLEX1: 46;
then
A13: (
|.(p
.
0 ).|
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
let z be
Element of
F_Complex ;
consider G be
FinSequence of the
carrier of
F_Complex such that
A14: (
eval (p,z))
= (
Sum G) and
A15: (
len G)
= (
len p) and
A16: for n be
Element of
NAT st n
in (
dom G) holds (G
. n)
= ((p
. (n
-' 1))
* ((
power
F_Complex )
. (z,(n
-' 1)))) by
POLYNOM4:def 2;
set lF2 = ((
len F)
-' 2);
assume
A17:
|.z.|
> (
Sum F);
A18: (
len F)
in (
dom F) by
A7,
A3,
FINSEQ_3: 25;
then (F
/. (lF1
+ 1))
= (F
. (lF1
+ 1)) by
A5,
PARTFUN1:def 6
.= 1 by
A2,
A3,
A4,
A5,
A18;
then
A19: (
Sum F)
= ((
Sum (F
| lF1))
+ 1) by
A6,
RVSUM_1: 74;
A20: (
len F)
>= ((1
+ 1)
+
0 ) by
A1,
A3;
then lF1
>= 1 by
A5,
XREAL_1: 6;
then
A21: 1
in (
dom (F
| lF1)) by
A12,
FINSEQ_3: 25;
then ((F
| lF1)
. 1)
= ((F
| lF1)
/. 1) by
PARTFUN1:def 6
.= (F
/. 1) by
A21,
FINSEQ_4: 70
.= (F
. 1) by
A8,
PARTFUN1:def 6
.=
|.(p
. (1
-' 1)).| by
A4,
A8
.=
|.(p
.
0 ).| by
XREAL_1: 232;
then (
Sum (F
| lF1))
>=
|.(p
.
0 ).| by
A21,
A9,
Th4;
then
A22: (
Sum F)
>= (
|.(p
.
0 ).|
+ 1) by
A19,
XREAL_1: 6;
then
A23: z
<> (
0.
F_Complex ) by
A17,
A13,
COMPLFLD: 59;
G
= (G
| (lF1
+ 1)) by
A3,
A15,
A5,
FINSEQ_1: 58
.= ((G
| lF1)
^
<*(G
/. (lF1
+ 1))*>) by
A3,
A15,
A5,
FINSEQ_5: 82;
then
A24: (
Sum G)
= ((
Sum (G
| lF1))
+ (G
/. (lF1
+ 1))) by
FVSUM_1: 71;
A25: (
dom F)
= (
dom G) by
A3,
A15,
FINSEQ_3: 29;
then (G
/. (lF1
+ 1))
= (G
. (lF1
+ 1)) by
A5,
A18,
PARTFUN1:def 6
.= ((p
. lF1)
* ((
power
F_Complex )
. (z,lF1))) by
A16,
A5,
A18,
A25;
then
|.(G
/. (lF1
+ 1)).|
= (1
*
|.((
power
F_Complex )
. (z,lF1)).|) by
A2,
A3,
COMPLFLD: 71;
then
A26:
|.(
eval (p,z)).|
>= (
|.((
power
F_Complex )
. (z,lF1)).|
-
|.(
Sum (G
| lF1)).|) by
A14,
A24,
COMPLFLD: 64;
A27: ((
len F)
- 1)
>=
0 by
A7,
A3;
A28: (
len (F
| lF1))
= lF1 by
A5,
FINSEQ_1: 59,
NAT_1: 11
.= (
len (G
| lF1)) by
A3,
A15,
A5,
FINSEQ_1: 59,
NAT_1: 11;
then
A29: ((F
| lF1)
| (
len (F
| lF1)))
= (F
| lF1) & ((G
| lF1)
| (
len (F
| lF1)))
= (G
| lF1) by
FINSEQ_1: 58;
defpred
P[
Nat] means
|.(
Sum ((G
| lF1)
| $1)).|
<= ((
Sum ((F
| lF1)
| $1))
*
|.((
power
F_Complex )
. (z,lF2)).|);
((
len F)
- 2)
>=
0 by
A20,
XREAL_1: 19;
then
A30: (lF2
+ 1)
= (((
len F)
- 2)
+ 1) by
XREAL_0:def 2
.= lF1 by
A27,
XREAL_0:def 2;
then ((
power
F_Complex )
. (z,lF1))
= (((
power
F_Complex )
. (z,lF2))
* z) by
GROUP_1:def 7;
then
A31: (
|.((
power
F_Complex )
. (z,lF1)).|
- (
|.((
power
F_Complex )
. (z,lF2)).|
* (
Sum (F
| lF1))))
= ((
|.((
power
F_Complex )
. (z,lF2)).|
*
|.z.|)
- (
|.((
power
F_Complex )
. (z,lF2)).|
* (
Sum (F
| lF1)))) by
COMPLFLD: 71
.= (
|.((
power
F_Complex )
. (z,lF2)).|
* (
|.z.|
- (
Sum (F
| lF1))));
A32:
|.z.|
> (
|.(p
.
0 ).|
+ 1) by
A17,
A22,
XXREAL_0: 2;
then
A33:
|.z.|
> 1 by
A13,
XXREAL_0: 2;
A34: (
dom (F
| lF1))
= (
dom (G
| lF1)) by
A28,
FINSEQ_3: 29;
A35: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
assume
A36:
|.(
Sum ((G
| lF1)
| n)).|
<= ((
Sum ((F
| lF1)
| n))
*
|.((
power
F_Complex )
. (z,lF2)).|);
then
A37: (
|.(
Sum ((G
| lF1)
| n)).|
+
|.((G
| lF1)
/. (n
+ 1)).|)
<= (((
Sum ((F
| lF1)
| n))
*
|.((
power
F_Complex )
. (z,lF2)).|)
+
|.((G
| lF1)
/. (n
+ 1)).|) by
XREAL_1: 6;
per cases ;
suppose
A38: (n
+ 1)
<= (
len (G
| lF1));
then (n
+ 1)
<= (lF2
+ 1) by
A3,
A15,
A5,
A30,
FINSEQ_1: 59,
NAT_1: 11;
then n
<= lF2 by
XREAL_1: 6;
then (
|.z.|
to_power n)
<= (
|.z.|
to_power lF2) by
A33,
PRE_FF: 8;
then (
|.z.|
to_power n)
<=
|.(
power (z,lF2)).| by
A23,
Th7;
then
A39:
|.(p
. nn).|
>=
0 &
|.(
power (z,n)).|
<=
|.(
power (z,lF2)).| by
A23,
Th7,
COMPLEX1: 46;
((G
| lF1)
| (n
+ 1))
= (((G
| lF1)
| n)
^
<*((G
| lF1)
/. (n
+ 1))*>) by
A38,
FINSEQ_5: 82;
then (
Sum ((G
| lF1)
| (n
+ 1)))
= ((
Sum ((G
| lF1)
| n))
+ ((G
| lF1)
/. (n
+ 1))) by
FVSUM_1: 71;
then
|.(
Sum ((G
| lF1)
| (n
+ 1))).|
<= (
|.(
Sum ((G
| lF1)
| n)).|
+
|.((G
| lF1)
/. (n
+ 1)).|) by
COMPLFLD: 62;
then
A40:
|.(
Sum ((G
| lF1)
| (n
+ 1))).|
<= (((
Sum ((F
| lF1)
| n))
*
|.((
power
F_Complex )
. (z,lF2)).|)
+
|.((G
| lF1)
/. (n
+ 1)).|) by
A37,
XXREAL_0: 2;
A41: (
dom (G
| lF1))
c= (
dom G) by
FINSEQ_5: 18;
(n
+ 1)
>= 1 by
NAT_1: 11;
then
A42: (n
+ 1)
in (
dom (G
| lF1)) by
A38,
FINSEQ_3: 25;
then
A43: ((F
| lF1)
/. (n
+ 1))
= (F
/. (n
+ 1)) by
A34,
FINSEQ_4: 70
.= (F
. (n
+ 1)) by
A25,
A42,
A41,
PARTFUN1:def 6
.=
|.(p
. ((n
+ 1)
-' 1)).| by
A4,
A25,
A42,
A41
.=
|.(p
. nn).| by
NAT_D: 34;
((G
| lF1)
/. (n
+ 1))
= (G
/. (n
+ 1)) by
A42,
FINSEQ_4: 70
.= (G
. (n
+ 1)) by
A42,
A41,
PARTFUN1:def 6
.= ((p
. ((n
+ 1)
-' 1))
* ((
power
F_Complex )
. (z,((n
+ 1)
-' 1)))) by
A16,
A42,
A41
.= ((p
. nn)
* ((
power
F_Complex )
. (z,((n
+ 1)
-' 1)))) by
NAT_D: 34
.= ((p
. nn)
* ((
power
F_Complex )
. (z,n))) by
NAT_D: 34;
then
|.((G
| lF1)
/. (n
+ 1)).|
= (((F
| lF1)
/. (n
+ 1))
*
|.((
power
F_Complex )
. (z,n)).|) by
A43,
COMPLFLD: 71;
then
|.((G
| lF1)
/. (n
+ 1)).|
<= (((F
| lF1)
/. (n
+ 1))
*
|.((
power
F_Complex )
. (z,lF2)).|) by
A43,
A39,
XREAL_1: 64;
then
A44: (((
Sum ((F
| lF1)
| n))
*
|.((
power
F_Complex )
. (z,lF2)).|)
+
|.((G
| lF1)
/. (n
+ 1)).|)
<= (((
Sum ((F
| lF1)
| n))
*
|.((
power
F_Complex )
. (z,lF2)).|)
+ (((F
| lF1)
/. (n
+ 1))
*
|.((
power
F_Complex )
. (z,lF2)).|)) by
XREAL_1: 6;
((F
| lF1)
| (n
+ 1))
= (((F
| lF1)
| n)
^
<*((F
| lF1)
/. (n
+ 1))*>) by
A28,
A38,
FINSEQ_5: 82;
then (
Sum ((F
| lF1)
| (n
+ 1)))
= ((
Sum ((F
| lF1)
| n))
+ ((F
| lF1)
/. (n
+ 1))) by
RVSUM_1: 74;
hence thesis by
A40,
A44,
XXREAL_0: 2;
end;
suppose
A45: (n
+ 1)
> (
len (G
| lF1));
then n
>= (
len (G
| lF1)) by
NAT_1: 13;
then
A46: ((G
| lF1)
| n)
= (G
| lF1) & ((F
| lF1)
| n)
= (F
| lF1) by
A28,
FINSEQ_1: 58;
((G
| lF1)
| (n
+ 1))
= (G
| lF1) by
A45,
FINSEQ_1: 58;
hence thesis by
A28,
A36,
A45,
A46,
FINSEQ_1: 58;
end;
end;
((G
| lF1)
|
0 )
= (
<*> the
carrier of
F_Complex );
then
A47:
P[
0 ] by
COMPLFLD: 57,
RLVECT_1: 43,
RVSUM_1: 72;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A47,
A35);
then
|.(
Sum (G
| lF1)).|
<= ((
Sum (F
| lF1))
*
|.((
power
F_Complex )
. (z,lF2)).|) by
A29;
then (
|.((
power
F_Complex )
. (z,lF1)).|
-
|.(
Sum (G
| lF1)).|)
>= (
|.((
power
F_Complex )
. (z,lF1)).|
- ((
Sum (F
| lF1))
*
|.((
power
F_Complex )
. (z,lF2)).|)) by
XREAL_1: 13;
then
A48:
|.(
eval (p,z)).|
>= (
|.((
power
F_Complex )
. (z,lF1)).|
- (
|.((
power
F_Complex )
. (z,lF2)).|
* (
Sum (F
| lF1)))) by
A26,
XXREAL_0: 2;
(
len F)
>= (2
+ 1) by
A1,
A3,
NAT_1: 13;
then ((
len F)
- 2)
>= 1 by
XREAL_1: 19;
then lF2
>= 1 by
XREAL_0:def 2;
then (
|.z.|
to_power lF2)
>= (
|.z.|
to_power 1) by
A33,
PRE_FF: 8;
then
|.(
power (z,lF2)).|
>= (
|.z.|
to_power 1) by
A23,
Th7;
then
|.((
power
F_Complex )
. (z,lF2)).|
>=
|.(
power (z,1)).| by
A23,
Th7;
then
A49:
|.((
power
F_Complex )
. (z,lF2)).|
>=
|.z.| by
GROUP_1: 50;
|.((
power
F_Complex )
. (z,lF2)).|
>=
0 & (
|.z.|
- (
Sum (F
| lF1)))
> 1 by
A17,
A19,
COMPLEX1: 46,
XREAL_1: 20;
then (
|.((
power
F_Complex )
. (z,lF2)).|
* (
|.z.|
- (
Sum (F
| lF1))))
>= (
|.((
power
F_Complex )
. (z,lF2)).|
* 1) by
XREAL_1: 64;
then
|.(
eval (p,z)).|
>=
|.((
power
F_Complex )
. (z,lF2)).| by
A48,
A31,
XXREAL_0: 2;
then
|.(
eval (p,z)).|
>=
|.z.| by
A49,
XXREAL_0: 2;
hence thesis by
A32,
XXREAL_0: 2;
end;
theorem ::
POLYNOM5:73
Th73: for p be
Polynomial of
F_Complex st (
len p)
> 2 holds ex z0 be
Element of
F_Complex st for z be
Element of
F_Complex holds
|.(
eval (p,z)).|
>=
|.(
eval (p,z0)).|
proof
defpred
P[
set] means not contradiction;
let p be
Polynomial of
F_Complex ;
set np = (
NormPolynomial p);
deffunc
F(
Element of
F_Complex ) = (
In (
|.(
eval (np,$1)).|,
REAL ));
reconsider D = {
F(z) where z be
Element of
F_Complex :
P[z] } as
Subset of
REAL from
DOMAIN_1:sch 8;
set q = (
lower_bound D);
A1: D is
bounded_below
proof
take
0 ;
let b be
ExtReal;
assume b
in D;
then
consider z be
Element of
F_Complex such that
A2: b
= (
In (
|.(
eval (np,z)).|,
REAL ));
b
=
|.(
eval (np,z)).| by
A2;
hence thesis by
COMPLEX1: 46;
end;
defpred
P[
Nat,
object] means ex g1 be
Element of
F_Complex st g1
= $2 &
|.(
eval (np,g1)).|
< (q
+ (1
/ ($1
+ 1)));
(
In (
|.(
eval (np,(
0.
F_Complex ))).|,
REAL ))
=
|.(
eval (np,(
0.
F_Complex ))).|;
then
A3:
|.(
eval (np,(
0.
F_Complex ))).|
in D;
A4: for n be
Nat holds ex g be
Complex st
P[n, g]
proof
let n be
Nat;
consider r be
Real such that
A5: r
in D and
A6: r
< (q
+ (1
/ (n
+ 1))) by
A3,
A1,
SEQ_4:def 2;
consider g1 be
Element of
F_Complex such that
A7: r
= (
In (
|.(
eval (np,g1)).|,
REAL )) by
A5;
reconsider g = g1 as
Element of
COMPLEX by
COMPLFLD:def 1;
take g, g1;
thus g1
= g;
thus thesis by
A6,
A7;
end;
consider G be
Complex_Sequence such that
A8: for n be
Nat holds
P[n, (G
. n)] from
CFCONT_1:sch 1(
A4);
deffunc
G(
Nat) = (
In (
|.(np
. ($1
-' 1)).|,
REAL ));
consider F be
FinSequence of
REAL such that
A9: (
len F)
= (
len np) and
A10: for n be
Nat st n
in (
dom F) holds (F
. n)
=
G(n) from
FINSEQ_2:sch 1;
assume
A11: (
len p)
> 2;
then
A12: (
len p)
= (((
len p)
-' 1)
+ 1) by
XREAL_1: 235,
XXREAL_0: 2;
then (p
. ((
len p)
-' 1))
<> (
0.
F_Complex ) by
ALGSEQ_1: 10;
then
A13:
|.(p
. ((
len p)
-' 1)).|
>
0 by
COMPLFLD: 59;
G is
bounded
proof
take r = ((
Sum F)
+ 1);
let n be
Nat;
consider Gn be
Element of
F_Complex such that
A14: Gn
= (G
. n) and
A15:
|.(
eval (np,Gn)).|
< (q
+ (1
/ (n
+ 1))) by
A8;
(n
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then
A16: (1
/ (n
+ 1))
<= 1 by
XREAL_1: 211;
A17: (
len np)
= (
len p) by
A11,
Th57;
then
A18: (np
. ((
len np)
-' 1))
= (
1_
F_Complex ) by
A11,
Th56;
|.(G
. n).|
<= (
Sum F)
proof
A19: (
eval (np,(
0.
F_Complex )))
= (np
.
0 ) by
Th31;
(
In (
|.(np
.
0 ).|,
REAL ))
=
|.(np
.
0 ).|;
then
|.(np
.
0 ).|
in D by
A19;
then
|.(np
.
0 ).|
>= q by
A1,
SEQ_4:def 2;
then
A20: (
|.(np
.
0 ).|
+ 1)
>= (q
+ (1
/ (n
+ 1))) by
A16,
XREAL_1: 7;
A21: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
=
|.(np
. (n
-' 1)).|
proof
let n be
Element of
NAT ;
assume n
in (
dom F);
then (F
. n)
=
G(n) by
A10;
hence (F
. n)
=
|.(np
. (n
-' 1)).|;
end;
assume
|.(G
. n).|
> (
Sum F);
then
|.(
eval (np,Gn)).|
> (
|.(np
.
0 ).|
+ 1) by
A11,
A9,
A14,
A17,
A18,
A21,
COMPLFLD: 60,
Th72;
hence contradiction by
A15,
A20,
XXREAL_0: 2;
end;
then (
|.(G
. n).|
+
0 )
< r by
XREAL_1: 8;
hence thesis;
end;
then
consider G1 be
Complex_Sequence such that
A22: G1 is
subsequence of G and
A23: G1 is
convergent by
COMSEQ_3: 50;
defpred
P[
Nat,
object] means ex G1n be
Element of
F_Complex st G1n
= (G1
. $1) & $2
= (
eval (np,G1n));
(
lim G1)
in
COMPLEX by
XCMPLX_0:def 2;
then
reconsider z0 = (
lim G1) as
Element of
F_Complex by
COMPLFLD:def 1;
A24: for n be
Nat holds ex g be
Complex st
P[n, g]
proof
let n be
Nat;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
reconsider G1n = (G1
. nn) as
Element of
F_Complex by
COMPLFLD:def 1;
reconsider g = (
eval (np,G1n)) as
Element of
COMPLEX by
COMPLFLD:def 1;
take g, G1n;
thus G1n
= (G1
. n);
thus thesis;
end;
consider H be
Complex_Sequence such that
A25: for n be
Nat holds
P[n, (H
. n)] from
CFCONT_1:sch 1(
A24);
reconsider enp0 = (
eval (np,z0)) as
Element of
COMPLEX by
COMPLFLD:def 1;
consider g be
Complex such that
A26: for p be
Real st
0
< p holds ex n be
Nat st for m be
Nat st n
<= m holds
|.((G1
. m)
- g).|
< p by
A23;
A27: g
in
COMPLEX by
XCMPLX_0:def 2;
then
reconsider g1 = g as
Element of
F_Complex by
COMPLFLD:def 1;
reconsider eg = (
eval (np,g1)) as
Element of
COMPLEX by
COMPLFLD:def 1;
now
let p be
Real;
consider fPF be
Function of
COMPLEX ,
COMPLEX such that
A28: fPF
= (
Polynomial-Function (
F_Complex ,np)) and
A29: fPF
is_continuous_on
COMPLEX by
Th71;
assume
0
< p;
then
consider p1 be
Real such that
A30:
0
< p1 and
A31: for x1 be
Complex st x1
in
COMPLEX &
|.(x1
- g).|
< p1 holds
|.((fPF
/. x1)
- (fPF
/. g)).|
< p by
A29,
CFCONT_1: 39,
A27;
consider n be
Nat such that
A32: for m be
Nat st n
<= m holds
|.((G1
. m)
- g).|
< p1 by
A26,
A30;
take n;
let m be
Nat;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
assume n
<= m;
then
A33:
|.((G1
. m)
- g).|
< p1 by
A32;
ex G1m be
Element of
F_Complex st G1m
= (G1
. m) & (H
. m)
= (
eval (np,G1m)) by
A25;
then
A34: (H
. m)
= (fPF
/. (G1
. mm)) by
A28,
Def13;
eg
= (fPF
/. g) by
A28,
Def13;
hence
|.((H
. m)
- eg).|
< p by
A31,
A33,
A34;
end;
then
A35: H is
convergent;
consider PF be
Function of
COMPLEX ,
COMPLEX such that
A36: PF
= (
Polynomial-Function (
F_Complex ,np)) and
A37: PF
is_continuous_on
COMPLEX by
Th71;
now
let a be
Real;
A38: (
lim G1)
in
COMPLEX by
XCMPLX_0:def 2;
assume
0
< a;
then
consider s be
Real such that
A39:
0
< s and
A40: for x1 be
Complex st x1
in
COMPLEX &
|.(x1
- (
lim G1)).|
< s holds
|.((PF
/. x1)
- (PF
/. (
lim G1))).|
< a by
A37,
CFCONT_1: 39,
A38;
consider n be
Nat such that
A41: for m be
Nat st n
<= m holds
|.((G1
. m)
- (
lim G1)).|
< s by
A23,
A39,
COMSEQ_2:def 6;
take n;
let m be
Nat;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
assume n
<= m;
then
A42:
|.((G1
. m)
- (
lim G1)).|
< s by
A41;
ex G1m be
Element of
F_Complex st G1m
= (G1
. m) & (H
. m)
= (
eval (np,G1m)) by
A25;
then
A43: (PF
/. (G1
. mm))
= (H
. m) by
A36,
Def13;
(PF
/. (
lim G1))
= (
eval (np,z0)) by
A36,
Def13;
hence
|.((H
. m)
- enp0).|
< a by
A40,
A42,
A43;
end;
then
A44: enp0
= (
lim H) by
A35,
COMSEQ_2:def 6;
deffunc
F(
Nat) = (1
/ ($1
+ 1));
consider R be
Real_Sequence such that
A45: for n be
Nat holds (R
. n)
=
F(n) from
SEQ_1:sch 1;
take z0;
let z be
Element of
F_Complex ;
reconsider v =
|.(
eval (np,z)).| as
Element of
REAL by
XREAL_0:def 1;
set Rcons = (
seq_const
|.(
eval (np,z)).|);
consider Nseq be
increasing
sequence of
NAT such that
A46: G1
= (G
* Nseq) by
A22,
VALUED_0:def 17;
(
In (
|.(
eval (np,z)).|,
REAL ))
=
|.(
eval (np,z)).|;
then
|.(
eval (np,z)).|
in D;
then
A47:
|.(
eval (np,z)).|
>= q by
A1,
SEQ_4:def 2;
A48:
now
let n be
Nat;
A49: n
in
NAT by
ORDINAL1:def 12;
consider G1n be
Element of
F_Complex such that
A50: G1n
= (G1
. n) and
A51: (H
. n)
= (
eval (np,G1n)) by
A25;
consider gNn be
Element of
F_Complex such that
A52: gNn
= (G
. (Nseq
. n)) and
A53:
|.(
eval (np,gNn)).|
< (q
+ (1
/ ((Nseq
. n)
+ 1))) by
A8;
(Nseq
. n)
>= n by
SEQM_3: 14;
then ((Nseq
. n)
+ 1)
>= (n
+ 1) by
XREAL_1: 6;
then (1
/ ((Nseq
. n)
+ 1))
<= (1
/ (n
+ 1)) by
XREAL_1: 85;
then (q
+ (1
/ ((Nseq
. n)
+ 1)))
<= (q
+ (1
/ (n
+ 1))) by
XREAL_1: 6;
then
|.(
eval (np,gNn)).|
< (q
+ (1
/ (n
+ 1))) by
A53,
XXREAL_0: 2;
then q
> (
|.(
eval (np,gNn)).|
- (1
/ (n
+ 1))) by
XREAL_1: 19;
then
A54: (Rcons
. n)
=
|.(
eval (np,z)).| &
|.(
eval (np,z)).|
> (
|.(
eval (np,gNn)).|
- (1
/ (n
+ 1))) by
A47,
SEQ_1: 57,
XXREAL_0: 2;
(
dom (
|.H.|
- R))
=
NAT by
FUNCT_2:def 1;
then ((
|.H.|
- R)
. n)
= ((
|.H.|
. n)
- (R
. n)) by
VALUED_1: 13,
A49
.= ((
|.H.|
. n)
- (1
/ (n
+ 1))) by
A45
.= (
|.(
eval (np,G1n)).|
- (1
/ (n
+ 1))) by
A51,
VALUED_1: 18;
hence (Rcons
. n)
>= ((
|.H.|
- R)
. n) by
A46,
A50,
A52,
A54,
FUNCT_2: 15,
A49;
end;
A55: R is
convergent by
A45,
SEQ_4: 31;
then (
|.H.|
- R) is
convergent by
A35;
then (Rcons
.
0 )
=
|.(
eval (np,z)).| & (
lim (
|.H.|
- R))
<= (
lim Rcons) by
A48,
SEQ_1: 57,
SEQ_2: 18;
then
A56: (
lim (
|.H.|
- R))
<=
|.(
eval (np,z)).| by
SEQ_4: 25;
(
lim (
|.H.|
- R))
= ((
lim
|.H.|)
- (
lim R)) by
A35,
A55,
SEQ_2: 12
.= (
|.(
lim H).|
- (
lim R)) by
A35,
SEQ_2: 27
.= (
|.(
lim H).|
-
0 ) by
A45,
SEQ_4: 31;
then
|.((
eval (p,z))
/ (p
. ((
len p)
-' 1))).|
>=
|.(
eval (np,z0)).| by
A11,
A56,
A44,
Th58;
then
|.((
eval (p,z))
/ (p
. ((
len p)
-' 1))).|
>=
|.((
eval (p,z0))
/ (p
. ((
len p)
-' 1))).| by
A11,
Th58;
then (
|.(
eval (p,z)).|
/
|.(p
. ((
len p)
-' 1)).|)
>=
|.((
eval (p,z0))
/ (p
. ((
len p)
-' 1))).| by
A12,
ALGSEQ_1: 10,
COMPLFLD: 73;
then (
|.(
eval (p,z)).|
/
|.(p
. ((
len p)
-' 1)).|)
>= (
|.(
eval (p,z0)).|
/
|.(p
. ((
len p)
-' 1)).|) by
A12,
ALGSEQ_1: 10,
COMPLFLD: 73;
hence thesis by
A13,
XREAL_1: 74;
end;
::$Notion-Name
theorem ::
POLYNOM5:74
Th74: for p be
Polynomial of
F_Complex st (
len p)
> 1 holds p is
with_roots
proof
let p be
Polynomial of
F_Complex ;
assume
A1: (
len p)
> 1;
then
A2: (
len p)
>= (1
+ 1) by
NAT_1: 13;
per cases by
A2,
XXREAL_0: 1;
suppose (
len p)
> 2;
then
consider z0 be
Element of
F_Complex such that
A3: for z be
Element of
F_Complex holds
|.(
eval (p,z)).|
>=
|.(
eval (p,z0)).| by
Th73;
set q = (
Subst (p,
<%z0, (
1_
F_Complex )%>));
defpred
P[
Nat] means $1
>= 1 & (q
. $1)
<> (
0.
F_Complex );
(
len
<%z0, (
1_
F_Complex )%>)
= 2 by
Th40;
then
A4: (
len q)
= ((((2
* (
len p))
- (
len p))
- 2)
+ 2) by
A1,
Th52
.= (
len p);
A5: ex k be
Nat st
P[k]
proof
((
len q)
- 1)
= ((
len q)
-' 1) by
A1,
A4,
XREAL_0:def 2;
then
reconsider k = ((
len q)
- 1) as
Element of
NAT ;
take k;
(
len q)
>= (1
+ 1) by
A1,
A4,
NAT_1: 13;
hence k
>= 1 by
XREAL_1: 19;
(
len q)
= (k
+ 1);
hence (q
. k)
<> (
0.
F_Complex ) by
ALGSEQ_1: 10;
end;
consider k be
Nat such that
A6:
P[k] and
A7: for n be
Nat st
P[n] holds k
<= n from
NAT_1:sch 5(
A5);
A8: (k
+ 1)
> 1 by
A6,
NAT_1: 13;
reconsider k1 = k as non
zero
Element of
NAT by
A6,
ORDINAL1:def 12;
set sq = the
CRoot of k1, (
- ((q
.
0 )
/ (q
. k1)));
deffunc
O(
Nat) = ((q
. (
In ((k1
+ $1),
NAT )))
* ((
power
F_Complex )
. (sq,(
In ((k1
+ $1),
NAT )))));
consider F2 be
FinSequence of the
carrier of
F_Complex such that
A9: (
len F2)
= ((
len q)
-' (k1
+ 1)) and
A10: for n be
Nat st n
in (
dom F2) holds (F2
. n)
=
O(n) from
FINSEQ_2:sch 1;
k1
< (
len q) by
A6,
ALGSEQ_1: 8;
then
A11: ((k
+ 1)
+
0 )
<= (
len q) by
NAT_1: 13;
then ((
len q)
- (k
+ 1))
>=
0 by
XREAL_1: 19;
then
A12: (
len F2)
= ((
len q)
- (k
+ 1)) by
A9,
XREAL_0:def 2;
A13: (
eval (p,z0))
= (
eval (p,(z0
+ (
0.
F_Complex )))) by
RLVECT_1:def 4
.= (
eval (p,(
eval (
<%z0, (
1_
F_Complex )%>,(
0.
F_Complex ))))) by
Th47
.= (
eval (q,(
0.
F_Complex ))) by
Th53;
A14:
now
let z be
Element of
F_Complex ;
(
eval (q,z))
= (
eval (p,(
eval (
<%z0, (
1_
F_Complex )%>,z)))) by
Th53
.= (
eval (p,(z0
+ z))) by
Th47;
then
|.(
eval (q,z)).|
>=
|.(
eval (p,z0)).| by
A3;
hence
|.(
eval (q,z)).|
>=
|.(q
.
0 ).| by
A13,
Th31;
end;
now
let c be
Real;
assume that
A15:
0
< c and
A16: c
< 1;
set z1 = (
[**c,
0 **]
* sq);
consider F1 be
FinSequence of the
carrier of
F_Complex such that
A17: (
eval (q,z1))
= (
Sum F1) and
A18: (
len F1)
= (
len q) and
A19: for n be
Element of
NAT st n
in (
dom F1) holds (F1
. n)
= ((q
. (n
-' 1))
* ((
power
F_Complex )
. (z1,(n
-' 1)))) by
POLYNOM4:def 2;
A20: (
dom ((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" )))
= (
dom (F1
/^ (k
+ 1))) by
POLYNOM1:def 2;
A21: k1
< (
len F1) by
A6,
A18,
ALGSEQ_1: 8;
1
in (
Seg k) by
A6,
FINSEQ_1: 1;
then 1
in (
Seg (
len (F1
| k))) by
A21,
FINSEQ_1: 59;
then
A22: 1
in (
dom (F1
| k)) by
FINSEQ_1:def 3;
A23: (
dom (F1
| k))
c= (
dom F1) by
FINSEQ_5: 18;
now
let i be
Element of
NAT ;
assume that
A24: i
in (
dom (F1
| k)) and
A25: i
<> 1;
A26: (
0
+ 1)
<= i by
A24,
FINSEQ_3: 25;
then i
> 1 by
A25,
XXREAL_0: 1;
then i
>= (1
+ 1) by
NAT_1: 13;
then (i
- 1)
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
then
A27: (i
-' 1)
>= 1 by
XREAL_0:def 2;
i
<= (
len (F1
| k)) by
A24,
FINSEQ_3: 25;
then i
<= k by
A21,
FINSEQ_1: 59;
then i
< (k
+ 1) by
NAT_1: 13;
then
A28: (i
- 1)
< k by
XREAL_1: 19;
(i
- 1)
>=
0 by
A26;
then
A29: (i
-' 1)
< k by
A28,
XREAL_0:def 2;
thus ((F1
| k1)
/. i)
= (F1
/. i) by
A24,
FINSEQ_4: 70
.= (F1
. i) by
A23,
A24,
PARTFUN1:def 6
.= ((q
. (i
-' 1))
* ((
power
F_Complex )
. (z1,(i
-' 1)))) by
A19,
A23,
A24
.= ((
0.
F_Complex )
* ((
power
F_Complex )
. (z1,(i
-' 1)))) by
A7,
A27,
A29
.= (
0.
F_Complex );
end;
then
A30: (
Sum (F1
| k))
= ((F1
| k1)
/. 1) by
A22,
POLYNOM2: 3
.= (F1
/. 1) by
A22,
FINSEQ_4: 70
.= (F1
. 1) by
A22,
A23,
PARTFUN1:def 6
.= ((q
. (1
-' 1))
* ((
power
F_Complex )
. (z1,(1
-' 1)))) by
A19,
A22,
A23
.= ((q
.
0 )
* ((
power
F_Complex )
. (z1,(1
-' 1)))) by
XREAL_1: 232
.= ((q
.
0 )
* ((
power
F_Complex )
. (z1,
0 ))) by
XREAL_1: 232
.= ((q
.
0 )
* (
1_
F_Complex )) by
GROUP_1:def 7
.= (q
.
0 );
(k
+ 1)
in (
Seg (
len F1)) by
A8,
A11,
A18,
FINSEQ_1: 1;
then
A31: (k
+ 1)
in (
dom F1) by
FINSEQ_1:def 3;
then
A32: (F1
. (k
+ 1))
= (F1
/. (k
+ 1)) by
PARTFUN1:def 6;
set gc = ((
Sum (F1
/^ (k
+ 1)))
/
[**(c
to_power (k
+ 1)),
0 **]);
A33: (c
to_power (k
+ 1))
>
0 by
A15,
POWER: 34;
then
A34: (
Sum (F1
/^ (k
+ 1)))
= ((
[**(c
to_power (k
+ 1)),
0 **]
* (
Sum (F1
/^ (k
+ 1))))
/
[**(c
to_power (k
+ 1)),
0 **]) by
COMPLFLD: 7,
COMPLFLD: 30
.= (
[**(c
to_power (k
+ 1)),
0 **]
* gc);
A35: (F1
/. (k
+ 1))
= (F1
. (k
+ 1)) by
A31,
PARTFUN1:def 6
.= ((q
. ((k
+ 1)
-' 1))
* ((
power
F_Complex )
. (z1,((k
+ 1)
-' 1)))) by
A19,
A31
.= ((q
. k1)
* ((
power
F_Complex )
. (z1,((k
+ 1)
-' 1)))) by
NAT_D: 34
.= ((q
. k1)
* ((
power
F_Complex )
. (z1,k1))) by
NAT_D: 34
.= ((q
. k1)
* (((
power
F_Complex )
. (
[**c,
0 **],k1))
* ((
power
F_Complex )
. (sq,k1)))) by
GROUP_1: 52
.= ((q
. k1)
* (((
power
F_Complex )
. (
[**c,
0 **],k1))
* (
- ((q
.
0 )
/ (q
. k1))))) by
COMPLFLD:def 2
.= (((q
. k1)
* (
- ((q
.
0 )
/ (q
. k1))))
* ((
power
F_Complex )
. (
[**c,
0 **],k1)))
.= (((q
. k1)
* ((
- (q
.
0 ))
/ (q
. k1)))
* ((
power
F_Complex )
. (
[**c,
0 **],k1))) by
A6,
COMPLFLD: 42
.= ((((q
. k1)
* (
- (q
.
0 )))
/ (q
. k1))
* ((
power
F_Complex )
. (
[**c,
0 **],k1)))
.= ((
- (q
.
0 ))
* ((
power
F_Complex )
. (
[**c,
0 **],k1))) by
A6,
COMPLFLD: 30
.= ((
- (q
.
0 ))
*
[**(c
to_power k),
0 **]) by
A15,
HAHNBAN1: 29;
A36:
|.(((q
.
0 )
* ((
1_
F_Complex )
-
[**(c
to_power k),
0 **]))
+ (
[**(c
to_power (k
+ 1)),
0 **]
* gc)).|
<= (
|.((q
.
0 )
* ((
1_
F_Complex )
-
[**(c
to_power k),
0 **])).|
+
|.(
[**(c
to_power (k
+ 1)),
0 **]
* gc).|) by
COMPLFLD: 62;
F1
= (((F1
| ((k
+ 1)
-' 1))
^
<*(F1
. (k
+ 1))*>)
^ (F1
/^ (k
+ 1))) by
A8,
A11,
A18,
POLYNOM4: 1;
then (
Sum F1)
= ((
Sum ((F1
| ((k
+ 1)
-' 1))
^
<*(F1
/. (k
+ 1))*>))
+ (
Sum (F1
/^ (k
+ 1)))) by
A32,
RLVECT_1: 41
.= (((
Sum (F1
| ((k
+ 1)
-' 1)))
+ (
Sum
<*(F1
/. (k
+ 1))*>))
+ (
Sum (F1
/^ (k
+ 1)))) by
RLVECT_1: 41
.= (((
Sum (F1
| k))
+ (
Sum
<*(F1
/. (k
+ 1))*>))
+ (
Sum (F1
/^ (k
+ 1)))) by
NAT_D: 34
.= (((q
.
0 )
+ ((
- (q
.
0 ))
*
[**(c
to_power k),
0 **]))
+ (
Sum (F1
/^ (k
+ 1)))) by
A30,
A35,
RLVECT_1: 44
.= (((q
.
0 )
+ (
- ((q
.
0 )
*
[**(c
to_power k),
0 **])))
+ (
Sum (F1
/^ (k
+ 1)))) by
VECTSP_1: 9
.= ((((q
.
0 )
* (
1_
F_Complex ))
- ((q
.
0 )
*
[**(c
to_power k),
0 **]))
+ (
Sum (F1
/^ (k
+ 1))))
.= (((q
.
0 )
* ((
1_
F_Complex )
-
[**(c
to_power k),
0 **]))
+ (
[**(c
to_power (k
+ 1)),
0 **]
* gc)) by
A34,
VECTSP_1: 11;
then
|.(((q
.
0 )
* ((
1_
F_Complex )
-
[**(c
to_power k),
0 **]))
+ (
[**(c
to_power (k
+ 1)),
0 **]
* gc)).|
>=
|.(q
.
0 ).| by
A14,
A17;
then (
|.((q
.
0 )
* ((
1_
F_Complex )
-
[**(c
to_power k),
0 **])).|
+
|.(
[**(c
to_power (k
+ 1)),
0 **]
* gc).|)
>=
|.(q
.
0 ).| by
A36,
XXREAL_0: 2;
then ((
|.(q
.
0 ).|
*
|.((
1_
F_Complex )
-
[**(c
to_power k),
0 **]).|)
+
|.(
[**(c
to_power (k
+ 1)),
0 **]
* gc).|)
>=
|.(q
.
0 ).| by
COMPLFLD: 71;
then
A37: ((
|.(q
.
0 ).|
*
|.((
1_
F_Complex )
-
[**(c
to_power k),
0 **]).|)
+ (
|.
[**(c
to_power (k
+ 1)),
0 **].|
*
|.gc.|))
>=
|.(q
.
0 ).| by
COMPLFLD: 71;
(
0
+ (c
to_power k1))
<= 1 by
A15,
A16,
TBSP_1: 2;
then
A38: (1
- (c
to_power k))
>=
0 by
XREAL_1: 19;
A39: (c
to_power k)
>
0 by
A15,
POWER: 34;
A40: (
len
|.((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" )).|)
= (
len ((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" ))) by
Def2
.= (
len (F1
/^ (k
+ 1))) by
A20,
FINSEQ_3: 29
.= ((
len F1)
- (k
+ 1)) by
A11,
A18,
RFINSEQ:def 1
.= (
len
|.F2.|) by
A12,
A18,
Def2;
now
let i be
Element of
NAT ;
A41: (((k
+ 1)
+ i)
-' 1)
= (((k
+ i)
+ 1)
- 1) by
XREAL_0:def 2
.= (k
+ i);
assume i
in (
dom
|.((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" )).|);
then
A43: i
in (
Seg (
len
|.((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" )).|)) by
FINSEQ_1:def 3;
then i
<= (
len
|.F2.|) by
A40,
FINSEQ_1: 1;
then i
<= ((
len F1)
- (k
+ 1)) by
A12,
A18,
Def2;
then ((k
+ i)
+ 1)
>= (
0
+ 1) & ((k
+ 1)
+ i)
<= (
len F1) by
XREAL_1: 6,
XREAL_1: 19;
then
A44: ((k
+ 1)
+ i)
in (
dom F1) by
FINSEQ_3: 25;
i
>= (
0
+ 1) by
A43,
FINSEQ_1: 1;
then
A45: (i
- 1)
>=
0 ;
(c
to_power (i
-' 1))
<= 1 by
A15,
A16,
TBSP_1: 2;
then
A46: (c
to_power (i
- 1))
<= 1 by
A45,
XREAL_0:def 2;
A47: (c
to_power (k
+ i))
>
0 by
A15,
POWER: 34;
A48: ((k
+ i)
- (k
+ 1))
= (i
- 1);
i
in (
Seg (
len ((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" )))) by
A43,
Def2;
then
A49: i
in (
dom ((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" ))) by
FINSEQ_1:def 3;
then
A50: ((F1
/^ (k
+ 1))
/. i)
= ((F1
/^ (k
+ 1))
. i) by
A20,
PARTFUN1:def 6
.= (F1
. ((k
+ 1)
+ i)) by
A11,
A18,
A20,
A49,
RFINSEQ:def 1
.= ((q
. (
In ((((k
+ 1)
+ i)
-' 1),
NAT )))
* ((
power
F_Complex )
. ((
[**c,
0 **]
* sq),(((k
+ 1)
+ i)
-' 1)))) by
A19,
A44
.= ((q
. (
In ((k
+ i),
NAT )))
* ((
power (sq,(k
+ i)))
* (
power (
[**c,
0 **],(k
+ i))))) by
A41,
GROUP_1: 52
.= (((q
. (
In ((k
+ i),
NAT )))
* (
power (sq,(k
+ i))))
* (
power (
[**c,
0 **],(k
+ i))));
A51: (
len F2)
= (
len
|.F2.|) by
Def2;
A53: (
|.((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" )).|
. i)
=
|.(((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" ))
. i).| by
A49,
Def2
.=
|.(((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" ))
/. i).| by
A49,
PARTFUN1:def 6
.=
|.(((F1
/^ (k
+ 1))
/. i)
* (
[**(c
to_power (k
+ 1)),
0 **]
" )).| by
A20,
A49,
POLYNOM1:def 2
.= (
|.((F1
/^ (k
+ 1))
/. i).|
*
|.(
[**(c
to_power (k
+ 1)),
0 **]
" ).|) by
COMPLFLD: 71
.= (
|.(((q
. (
In ((k
+ i),
NAT )))
* (
power (sq,(k
+ i))))
* (
power (
[**c,
0 **],(k
+ i)))).|
* (
|.(c
to_power (k
+ 1)).|
" )) by
A33,
A50,
COMPLFLD: 7,
COMPLFLD: 72
.= ((
|.((q
. (
In ((k
+ i),
NAT )))
* (
power (sq,(k
+ i)))).|
*
|.(
power (
[**c,
0 **],(k
+ i))).|)
* (
|.(c
to_power (k
+ 1)).|
" )) by
COMPLFLD: 71
.= ((
|.((q
. (
In ((k
+ i),
NAT )))
* (
power (sq,(k
+ i)))).|
*
|.
[**(c
to_power (k
+ i)),
0 **].|)
* (
|.(c
to_power (k
+ 1)).|
" )) by
A15,
HAHNBAN1: 29
.= ((
|.((q
. (
In ((k
+ i),
NAT )))
* (
power (sq,(k
+ i)))).|
* (c
to_power (k
+ i)))
* (
|.(c
to_power (k
+ 1)).|
" )) by
A47,
ABSVALUE:def 1
.= ((
|.((q
. (
In ((k
+ i),
NAT )))
* (
power (sq,(k
+ i)))).|
* (c
to_power (k
+ i)))
* ((c
to_power (
In ((k
+ 1),
NAT )))
" )) by
A33,
ABSVALUE:def 1
.= (
|.((q
. (
In ((k
+ i),
NAT )))
* (
power (sq,(k
+ i)))).|
* ((c
to_power (k
+ i))
* ((c
to_power (k
+ 1))
" )))
.= (
|.((q
. (
In ((k
+ i),
NAT )))
* (
power (sq,(k
+ i)))).|
* ((c
to_power (k
+ i))
/ (c
to_power (k
+ 1))))
.= (
|.((q
. (
In ((k
+ i),
NAT )))
* (
power (sq,(k
+ i)))).|
* (c
to_power (i
- 1))) by
A15,
A48,
POWER: 29;
A54: i
in (
dom F2) by
A40,
A43,
A51,
FINSEQ_1:def 3;
((q
. (
In ((k
+ i),
NAT )))
* (
power (sq,(k
+ i))))
= ((q
. (
In ((k
+ i),
NAT )))
* ((
power
F_Complex )
. (sq,(
In ((k
+ i),
NAT )))))
.=
O(i)
.= (F2
. i) by
A54,
A10;
then (
|.((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" )).|
. i)
<=
|.(F2
. i).| by
A46,
A53,
COMPLEX1: 46,
XREAL_1: 153;
hence (
|.((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" )).|
. i)
<= (
|.F2.|
. i) by
A54,
Def2;
end;
then
A55: (
Sum
|.((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" )).|)
<= (
Sum
|.F2.|) by
A40,
INTEGRA5: 3;
|.((
1_
F_Complex )
-
[**(c
to_power k),
0 **]).|
=
|.(
[**1,
0 **]
-
[**(c
to_power k),
0 **]).| by
COMPLEX1:def 4,
COMPLFLD: 8
.=
|.
[**(1
- (c
to_power k1)), (
0
-
0 )**].| by
Th6
.= (1
- (c
to_power k)) by
A38,
ABSVALUE:def 1;
then (
|.
[**(c
to_power (k
+ 1)),
0 **].|
*
|.gc.|)
>= ((
|.(q
.
0 ).|
* 1)
- (
|.(q
.
0 ).|
* (1
- (c
to_power k)))) by
A37,
XREAL_1: 20;
then ((c
to_power (k
+ 1))
*
|.gc.|)
>= (
|.(q
.
0 ).|
* (c
to_power k)) by
A33,
ABSVALUE:def 1;
then (((c
to_power (k
+ 1))
*
|.gc.|)
/ (c
to_power k))
>= ((
|.(q
.
0 ).|
* (c
to_power k))
/ (c
to_power k)) by
A39,
XREAL_1: 72;
then (((c
to_power (k
+ 1))
/ (c
to_power k))
*
|.gc.|)
>=
|.(q
.
0 ).| by
A39,
XCMPLX_1: 89;
then ((c
to_power ((k
+ 1)
- k))
*
|.gc.|)
>=
|.(q
.
0 ).| by
A15,
POWER: 29;
then
A56: (c
*
|.gc.|)
>=
|.(q
.
0 ).| by
POWER: 25;
gc
= ((
Sum (F1
/^ (k
+ 1)))
* (
[**(c
to_power (k
+ 1)),
0 **]
" ))
.= (
Sum ((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" ))) by
POLYNOM1: 13;
then
|.gc.|
<= (
Sum
|.((F1
/^ (k
+ 1))
* (
[**(c
to_power (k
+ 1)),
0 **]
" )).|) by
Th14;
then
|.gc.|
<= (
Sum
|.F2.|) by
A55,
XXREAL_0: 2;
then (c
*
|.gc.|)
<= (c
* (
Sum
|.F2.|)) by
A15,
XREAL_1: 64;
hence (c
* (
Sum
|.F2.|))
>=
|.(q
.
0 ).| by
A56,
XXREAL_0: 2;
end;
then
|.(q
.
0 ).|
<=
0 by
Lm1;
then
A57: (q
.
0 )
= (
0.
F_Complex ) by
COMPLFLD: 59;
ex x be
Element of
F_Complex st x
is_a_root_of p
proof
take z0;
(
eval (p,z0))
= (
0.
F_Complex ) by
A13,
A57,
Th31;
hence thesis;
end;
hence thesis;
end;
suppose
A58: (
len p)
= 2;
set np = (
NormPolynomial p);
A59: ((
len p)
-' 1)
= (2
- 1) by
A58,
XREAL_0:def 2;
A60: (
len np)
= (
len p) by
A58,
Th57;
A61:
now
let k be
Nat;
assume
A62: k
< (
len np);
per cases by
A58,
A60,
A62,
NAT_1: 23;
suppose k
=
0 ;
hence (np
. k)
= (
<%(np
.
0 ), (
1_
F_Complex )%>
. k) by
Th38;
end;
suppose
A63: k
= 1;
hence (np
. k)
= (
1_
F_Complex ) by
A58,
A59,
Th56
.= (
<%(np
.
0 ), (
1_
F_Complex )%>
. k) by
A63,
Th38;
end;
end;
(
len
<%(np
.
0 ), (
1_
F_Complex )%>)
= 2 by
Th40;
then
A64: np
=
<%(np
.
0 ), (
1_
F_Complex )%> by
A58,
A61,
Th57,
ALGSEQ_1: 12;
ex x be
Element of
F_Complex st x
is_a_root_of np
proof
take z0 = (
- (np
.
0 ));
(
eval (np,z0))
= ((np
.
0 )
+ z0) by
A64,
Th47
.= (
0.
F_Complex ) by
RLVECT_1: 5;
hence thesis;
end;
then np is
with_roots;
hence thesis by
A58,
Th60;
end;
end;
registration
cluster
F_Complex ->
algebraic-closed;
coherence by
Th74;
end
registration
cluster
algebraic-closed
add-associative
right_zeroed
right_complementable
Abelian
commutative
associative
distributive
almost_left_invertible non
degenerated for
well-unital non
empty
doubleLoopStr;
existence
proof
take
F_Complex ;
thus thesis;
end;
end