jgraph_3.miz
begin
reserve x for
Real;
Lm1: ((x
^2 )
+ 1)
>
0
proof
(x
^2 )
>=
0 by
XREAL_1: 63;
hence thesis;
end;
Lm2: (
dom
proj1 )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
Lm3: (
dom
proj2 )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
theorem ::
JGRAPH_3:1
for p be
Point of (
TOP-REAL 2) holds
|.p.|
= (
sqrt (((p
`1 )
^2 )
+ ((p
`2 )
^2 ))) & (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_1: 29,
JGRAPH_1: 30;
theorem ::
JGRAPH_3:2
for f be
Function, B,C be
set holds ((f
| B)
.: C)
= (f
.: (C
/\ B))
proof
let f be
Function, B,C be
set;
thus ((f
| B)
.: C)
c= (f
.: (C
/\ B))
proof
let x be
object;
assume x
in ((f
| B)
.: C);
then
consider y be
object such that
A1: y
in (
dom (f
| B)) and
A2: y
in C and
A3: x
= ((f
| B)
. y) by
FUNCT_1:def 6;
A4: ((f
| B)
. y)
= (f
. y) by
A1,
FUNCT_1: 47;
A5: (
dom (f
| B))
= ((
dom f)
/\ B) by
RELAT_1: 61;
then y
in B by
A1,
XBOOLE_0:def 4;
then
A6: y
in (C
/\ B) by
A2,
XBOOLE_0:def 4;
y
in (
dom f) by
A1,
A5,
XBOOLE_0:def 4;
hence thesis by
A3,
A6,
A4,
FUNCT_1:def 6;
end;
let x be
object;
assume x
in (f
.: (C
/\ B));
then
consider y be
object such that
A7: y
in (
dom f) and
A8: y
in (C
/\ B) and
A9: x
= (f
. y) by
FUNCT_1:def 6;
A10: y
in C by
A8,
XBOOLE_0:def 4;
y
in B by
A8,
XBOOLE_0:def 4;
then y
in ((
dom f)
/\ B) by
A7,
XBOOLE_0:def 4;
then
A11: y
in (
dom (f
| B)) by
RELAT_1: 61;
then ((f
| B)
. y)
= (f
. y) by
FUNCT_1: 47;
hence thesis by
A9,
A10,
A11,
FUNCT_1:def 6;
end;
theorem ::
JGRAPH_3:3
Th3: for X,Y be non
empty
TopSpace, p0 be
Point of X, D be non
empty
Subset of X, E be non
empty
Subset of Y, f be
Function of X, Y st (D
` )
=
{p0} & (E
` )
=
{(f
. p0)} & X is
T_2 & Y is
T_2 & (for p be
Point of (X
| D) holds (f
. p)
<> (f
. p0)) & (f
| D) is
continuous
Function of (X
| D), (Y
| E) & (for V be
Subset of Y st (f
. p0)
in V & V is
open holds ex W be
Subset of X st p0
in W & W is
open & (f
.: W)
c= V) holds f is
continuous
proof
let X,Y be non
empty
TopSpace, p0 be
Point of X, D be non
empty
Subset of X, E be non
empty
Subset of Y, f be
Function of X, Y;
assume that
A1: (D
` )
=
{p0} and
A2: (E
` )
=
{(f
. p0)} and
A3: X is
T_2 and
A4: Y is
T_2 and
A5: for p be
Point of (X
| D) holds (f
. p)
<> (f
. p0) and
A6: (f
| D) is
continuous
Function of (X
| D), (Y
| E) and
A7: for V be
Subset of Y st (f
. p0)
in V & V is
open holds ex W be
Subset of X st p0
in W & W is
open & (f
.: W)
c= V;
for p be
Point of X, V be
Subset of Y st (f
. p)
in V & V is
open holds ex W be
Subset of X st p
in W & W is
open & (f
.: W)
c= V
proof
A8: the
carrier of (X
| D)
= D by
PRE_TOPC: 8;
let p be
Point of X, V be
Subset of Y;
assume that
A9: (f
. p)
in V and
A10: V is
open;
per cases ;
suppose p
= p0;
hence thesis by
A7,
A9,
A10;
end;
suppose
A11: p
<> p0;
then not p
in (D
` ) by
A1,
TARSKI:def 1;
then p
in (the
carrier of X
\ (D
` )) by
XBOOLE_0:def 5;
then
A12: p
in ((D
` )
` ) by
SUBSET_1:def 4;
then (f
. p)
<> (f
. p0) by
A5,
A8;
then
consider G1,G2 be
Subset of Y such that
A13: G1 is
open and G2 is
open and
A14: (f
. p)
in G1 and (f
. p0)
in G2 and G1
misses G2 by
A4,
PRE_TOPC:def 10;
A15: (
[#] (X
| D))
= D by
PRE_TOPC:def 5;
then
reconsider p22 = p as
Point of (X
| D) by
A12;
consider h be
Function of (X
| D), (Y
| E) such that
A16: h
= (f
| D) and
A17: h is
continuous by
A6;
A18: (h
. p)
= (f
. p) by
A12,
A16,
FUNCT_1: 49;
A19: (
[#] (Y
| E))
= E by
PRE_TOPC:def 5;
then
reconsider V20 = ((G1
/\ V)
/\ E) as
Subset of (Y
| E) by
XBOOLE_1: 17;
(G1
/\ V) is
open by
A10,
A13,
TOPS_1: 11;
then
A20: V20 is
open by
A19,
TOPS_2: 24;
(f
. p)
<> (f
. p0) by
A5,
A12,
A15;
then not (f
. p)
in (E
` ) by
A2,
TARSKI:def 1;
then not (f
. p)
in (the
carrier of Y
\ E) by
SUBSET_1:def 4;
then
A21: (h
. p22)
in E by
A18,
XBOOLE_0:def 5;
(h
. p22)
in (G1
/\ V) by
A9,
A14,
A18,
XBOOLE_0:def 4;
then (h
. p22)
in V20 by
A21,
XBOOLE_0:def 4;
then
consider W2 be
Subset of (X
| D) such that
A22: p22
in W2 and
A23: W2 is
open and
A24: (h
.: W2)
c= V20 by
A17,
A20,
JGRAPH_2: 10;
consider W3b be
Subset of X such that
A25: W3b is
open and
A26: W2
= (W3b
/\ (
[#] (X
| D))) by
A23,
TOPS_2: 24;
consider H1,H2 be
Subset of X such that
A27: H1 is
open and H2 is
open and
A28: p
in H1 and
A29: p0
in H2 and
A30: H1
misses H2 by
A3,
A11,
PRE_TOPC:def 10;
p22
in W3b by
A22,
A26,
XBOOLE_0:def 4;
then
A31: p
in (H1
/\ W3b) by
A28,
XBOOLE_0:def 4;
reconsider W3 = (H1
/\ W3b) as
Subset of X;
A32: W3
c= W3b by
XBOOLE_1: 17;
A33: (f
.: W3)
c= (h
.: W2)
proof
let xx be
object;
assume xx
in (f
.: W3);
then
consider yy be
object such that
A34: yy
in (
dom f) and
A35: yy
in W3 and
A36: xx
= (f
. yy) by
FUNCT_1:def 6;
H2
c= (H1
` ) by
A30,
SUBSET_1: 23;
then (D
` )
c= (H1
` ) by
A1,
A29,
ZFMISC_1: 31;
then W3
c= H1 & H1
c= D by
SUBSET_1: 12,
XBOOLE_1: 17;
then
A37: W3
c= D;
then
A38: yy
in W2 by
A15,
A26,
A32,
A35,
XBOOLE_0:def 4;
(
dom h)
= ((
dom f)
/\ D) by
A16,
RELAT_1: 61;
then
A39: yy
in (
dom h) by
A34,
A35,
A37,
XBOOLE_0:def 4;
then (h
. yy)
= (f
. yy) by
A16,
FUNCT_1: 47;
hence thesis by
A36,
A39,
A38,
FUNCT_1:def 6;
end;
((G1
/\ V)
/\ E)
c= (G1
/\ V) by
XBOOLE_1: 17;
then (G1
/\ V)
c= V & (h
.: W2)
c= (G1
/\ V) by
A24,
XBOOLE_1: 17;
then
A40: (h
.: W2)
c= V;
(H1
/\ W3b) is
open by
A25,
A27,
TOPS_1: 11;
hence thesis by
A31,
A33,
A40,
XBOOLE_1: 1;
end;
end;
hence thesis by
JGRAPH_2: 10;
end;
begin
reserve p,q for
Point of (
TOP-REAL 2);
definition
::
JGRAPH_3:def1
func
Sq_Circ ->
Function of the
carrier of (
TOP-REAL 2), the
carrier of (
TOP-REAL 2) means
:
Def1: for p be
Point of (
TOP-REAL 2) holds (p
= (
0. (
TOP-REAL 2)) implies (it
. p)
= p) & (((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies (it
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) & ( not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies (it
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|);
existence
proof
defpred
P[
set,
set] means (for p be
Point of (
TOP-REAL 2) st p
= $1 holds (p
= (
0. (
TOP-REAL 2)) implies $2
= p) & (((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies $2
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) & ( not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies $2
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|));
set BP = the
carrier of (
TOP-REAL 2);
A1: for x be
Element of BP holds ex y be
Element of BP st
P[x, y]
proof
let x be
Element of BP;
set q = x;
per cases ;
suppose q
= (
0. (
TOP-REAL 2));
then for p be
Point of (
TOP-REAL 2) st p
= x holds (p
= (
0. (
TOP-REAL 2)) implies (
0. (
TOP-REAL 2))
= p) & (((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies (
0. (
TOP-REAL 2))
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) & ( not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies (
0. (
TOP-REAL 2))
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|);
hence thesis;
end;
suppose
A2: ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 ))) & q
<> (
0. (
TOP-REAL 2));
set r =
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|;
for p be
Point of (
TOP-REAL 2) st p
= x holds (p
= (
0. (
TOP-REAL 2)) implies r
= p) & (((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies r
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) & ( not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies r
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|) by
A2;
hence thesis;
end;
suppose
A3: not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 ))) & q
<> (
0. (
TOP-REAL 2));
set r =
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|;
for p be
Point of (
TOP-REAL 2) st p
= x holds (p
= (
0. (
TOP-REAL 2)) implies r
= p) & (((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies r
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) & ( not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies r
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|) by
A3;
hence thesis;
end;
end;
ex h be
Function of BP, BP st for x be
Element of BP holds
P[x, (h
. x)] from
FUNCT_2:sch 3(
A1);
then
consider h be
Function of BP, BP such that
A4: for x be
Element of BP holds for p be
Point of (
TOP-REAL 2) st p
= x holds (p
= (
0. (
TOP-REAL 2)) implies (h
. x)
= p) & (((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies (h
. x)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) & ( not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies (h
. x)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|);
for p be
Point of (
TOP-REAL 2) holds (p
= (
0. (
TOP-REAL 2)) implies (h
. p)
= p) & (((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies (h
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) & ( not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies (h
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|) by
A4;
hence thesis;
end;
uniqueness
proof
let h1,h2 be
Function of the
carrier of (
TOP-REAL 2), the
carrier of (
TOP-REAL 2);
assume that
A5: for p be
Point of (
TOP-REAL 2) holds (p
= (
0. (
TOP-REAL 2)) implies (h1
. p)
= p) & (((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies (h1
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) & ( not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies (h1
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|) and
A6: for p be
Point of (
TOP-REAL 2) holds (p
= (
0. (
TOP-REAL 2)) implies (h2
. p)
= p) & (((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies (h2
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) & ( not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies (h2
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|);
for x be
object st x
in the
carrier of (
TOP-REAL 2) holds (h1
. x)
= (h2
. x)
proof
let x be
object;
assume x
in the
carrier of (
TOP-REAL 2);
then
reconsider q = x as
Point of (
TOP-REAL 2);
per cases ;
suppose
A7: q
= (
0. (
TOP-REAL 2));
then (h1
. q)
= q by
A5;
hence thesis by
A6,
A7;
end;
suppose
A8: ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 ))) & q
<> (
0. (
TOP-REAL 2));
then (h1
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A5;
hence thesis by
A6,
A8;
end;
suppose
A9: not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 ))) & q
<> (
0. (
TOP-REAL 2));
then (h1
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
A5;
hence thesis by
A6,
A9;
end;
end;
hence h1
= h2 by
FUNCT_2: 12;
end;
end
theorem ::
JGRAPH_3:4
Th4: for p be
Point of (
TOP-REAL 2) st p
<> (
0. (
TOP-REAL 2)) holds (((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) implies (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|) & ( not ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) implies (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|)
proof
let p be
Point of (
TOP-REAL 2);
A1: (
- (p
`2 ))
< (p
`1 ) implies (
- (
- (p
`2 )))
> (
- (p
`1 )) by
XREAL_1: 24;
assume
A2: p
<> (
0. (
TOP-REAL 2));
hereby
assume
A3: (p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ));
now
per cases by
A3;
case
A4: (p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 );
now
assume
A5: (p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ));
A6:
now
per cases by
A5;
case (p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 );
hence (p
`1 )
= (p
`2 ) or (p
`1 )
= (
- (p
`2 )) by
A4,
XXREAL_0: 1;
end;
case (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ));
then (
- (p
`2 ))
>= (
- (
- (p
`1 ))) by
XREAL_1: 24;
hence (p
`1 )
= (p
`2 ) or (p
`1 )
= (
- (p
`2 )) by
A4,
XXREAL_0: 1;
end;
end;
now
per cases by
A6;
case (p
`1 )
= (p
`2 );
hence (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A2,
A5,
Def1;
end;
case
A7: (p
`1 )
= (
- (p
`2 ));
then (p
`1 )
<>
0 & (
- (p
`1 ))
= (p
`2 ) by
A2,
EUCLID: 53,
EUCLID: 54;
then
A8: ((p
`2 )
/ (p
`1 ))
= (
- 1) by
XCMPLX_1: 197;
(p
`2 )
<>
0 by
A2,
A7,
EUCLID: 53,
EUCLID: 54;
then ((p
`1 )
/ (p
`2 ))
= (
- 1) by
A7,
XCMPLX_1: 197;
hence (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A2,
A5,
A8,
Def1;
end;
end;
hence (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|;
end;
hence (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A2,
Def1;
end;
case
A9: (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ));
now
assume
A10: (p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ));
A11:
now
per cases by
A10;
case (p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 );
then (
- (
- (p
`1 )))
>= (
- (p
`2 )) by
XREAL_1: 24;
hence (p
`1 )
= (p
`2 ) or (p
`1 )
= (
- (p
`2 )) by
A9,
XXREAL_0: 1;
end;
case (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ));
hence (p
`1 )
= (p
`2 ) or (p
`1 )
= (
- (p
`2 )) by
A9,
XXREAL_0: 1;
end;
end;
now
per cases by
A11;
case (p
`1 )
= (p
`2 );
hence (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A2,
A10,
Def1;
end;
case
A12: (p
`1 )
= (
- (p
`2 ));
then (p
`1 )
<>
0 & (
- (p
`1 ))
= (p
`2 ) by
A2,
EUCLID: 53,
EUCLID: 54;
then
A13: ((p
`2 )
/ (p
`1 ))
= (
- 1) by
XCMPLX_1: 197;
(p
`2 )
<>
0 by
A2,
A12,
EUCLID: 53,
EUCLID: 54;
then ((p
`1 )
/ (p
`2 ))
= (
- 1) by
A12,
XCMPLX_1: 197;
hence (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A2,
A10,
A13,
Def1;
end;
end;
hence (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|;
end;
hence (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A2,
Def1;
end;
end;
hence (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|;
end;
A14: (
- (p
`2 ))
> (p
`1 ) implies (
- (
- (p
`2 )))
< (
- (p
`1 )) by
XREAL_1: 24;
assume not ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 )));
hence thesis by
A2,
A1,
A14,
Def1;
end;
theorem ::
JGRAPH_3:5
Th5: for X be non
empty
TopSpace, f1 be
Function of X,
R^1 st f1 is
continuous & (for q be
Point of X holds ex r be
Real st (f1
. q)
= r & r
>=
0 ) holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g
. p)
= (
sqrt r1)) & g is
continuous
proof
let X be non
empty
TopSpace, f1 be
Function of X,
R^1 ;
assume that
A1: f1 is
continuous and
A2: for q be
Point of X holds ex r be
Real st (f1
. q)
= r & r
>=
0 ;
defpred
P[
set,
set] means (for r11 be
Real st (f1
. $1)
= r11 holds $2
= (
sqrt r11));
A3: for x be
Element of X holds ex y be
Element of
REAL st
P[x, y]
proof
let x be
Element of X;
reconsider r1 = (f1
. x) as
Element of
REAL by
TOPMETR: 17;
reconsider y = (
sqrt r1) as
Element of
REAL by
XREAL_0:def 1;
take y;
thus thesis;
end;
ex f be
Function of the
carrier of X,
REAL st for x2 be
Element of X holds
P[x2, (f
. x2)] from
FUNCT_2:sch 3(
A3);
then
consider f be
Function of the
carrier of X,
REAL such that
A4: for x2 be
Element of X holds for r11 be
Real st (f1
. x2)
= r11 holds (f
. x2)
= (
sqrt r11);
reconsider g0 = f as
Function of X,
R^1 by
TOPMETR: 17;
for p be
Point of X, V be
Subset of
R^1 st (g0
. p)
in V & V is
open holds ex W be
Subset of X st p
in W & W is
open & (g0
.: W)
c= V
proof
let p be
Point of X, V be
Subset of
R^1 ;
reconsider r = (g0
. p) as
Real;
reconsider r1 = (f1
. p) as
Real;
assume (g0
. p)
in V & V is
open;
then
consider r01 be
Real such that
A5: r01
>
0 and
A6:
].(r
- r01), (r
+ r01).[
c= V by
FRECHET: 8;
set r0 = (
min (r01,1));
A7: r0
>
0 by
A5,
XXREAL_0: 21;
A8: r0
>
0 by
A5,
XXREAL_0: 21;
r0
<= r01 by
XXREAL_0: 17;
then (r
- r01)
<= (r
- r0) & (r
+ r0)
<= (r
+ r01) by
XREAL_1: 6,
XREAL_1: 10;
then
].(r
- r0), (r
+ r0).[
c=
].(r
- r01), (r
+ r01).[ by
XXREAL_1: 46;
then
A9:
].(r
- r0), (r
+ r0).[
c= V by
A6;
A10: ex r8 be
Real st (f1
. p)
= r8 & r8
>=
0 by
A2;
A11: r
= (
sqrt r1) by
A4;
then
A12: r1
= (r
^2 ) by
A10,
SQUARE_1:def 2;
A13: r
>=
0 by
A10,
A11,
SQUARE_1: 17,
SQUARE_1: 26;
then
A14: (((2
* r)
* r0)
+ (r0
^2 ))
> (
0
+
0 ) by
A8,
SQUARE_1: 12,
XREAL_1: 8;
per cases ;
suppose
A15: (r
- r0)
>
0 ;
set r4 = (r0
* (r
- r0));
reconsider G1 =
].(r1
- r4), (r1
+ r4).[ as
Subset of
R^1 by
TOPMETR: 17;
A16: r1
< (r1
+ r4) by
A8,
A15,
XREAL_1: 29,
XREAL_1: 129;
then (r1
- r4)
< r1 by
XREAL_1: 19;
then
A17: (f1
. p)
in G1 by
A16,
XXREAL_1: 4;
G1 is
open by
JORDAN6: 35;
then
consider W1 be
Subset of X such that
A18: p
in W1 & W1 is
open and
A19: (f1
.: W1)
c= G1 by
A1,
A17,
JGRAPH_2: 10;
set W = W1;
A20: ((r
- ((1
/ 2)
* r0))
^2 )
>=
0 & (r0
^2 )
>=
0 by
XREAL_1: 63;
now
assume r1
=
0 ;
then r
=
0 by
A4,
SQUARE_1: 17;
hence contradiction by
A7,
A15;
end;
then
0
< r by
A10,
A11,
SQUARE_1: 25;
then
A21: (r0
* r)
>
0 by
A8,
XREAL_1: 129;
then (
0
+ (r
* r0))
< ((r
* r0)
+ (r
* r0)) by
XREAL_1: 8;
then ((r0
* r)
- (r0
* r0))
< (((2
* r)
* r0)
- (r0
* r0)) by
XREAL_1: 14;
then (
- r4)
> (
- (((2
* r)
* r0)
- (r0
^2 ))) by
XREAL_1: 24;
then (r1
+ (
- r4))
> ((r
^2 )
+ (
- (((2
* r)
* r0)
- (r0
^2 )))) by
A12,
XREAL_1: 8;
then (
sqrt (r1
- r4))
> (
sqrt ((r
- r0)
^2 )) by
SQUARE_1: 27,
XREAL_1: 63;
then
A22: (
sqrt (r1
- r4))
> (r
- r0) by
A15,
SQUARE_1: 22;
(
0
+ (r
* r0))
< ((r
* r0)
+ (r
* r0)) by
A21,
XREAL_1: 8;
then ((r0
* r)
+
0 )
< (((2
* r)
* r0)
+ (2
* (r0
* r0))) by
A8,
XREAL_1: 8;
then (((r0
* r)
- (r0
* r0))
+ (r0
* r0))
< ((((2
* r)
* r0)
+ (r0
* r0))
+ (r0
* r0));
then ((r0
* r)
- (r0
* r0))
< (((2
* r)
* r0)
+ (r0
* r0)) by
XREAL_1: 7;
then (r1
+ r4)
< ((r
^2 )
+ (((2
* r)
* r0)
+ (r0
^2 ))) by
A12,
XREAL_1: 8;
then (
sqrt (r1
+ r4))
< (
sqrt ((r
+ r0)
^2 )) by
A10,
A8,
A15,
SQUARE_1: 27;
then
A23: (r
+ r0)
> (
sqrt (r1
+ r4)) by
A13,
A7,
SQUARE_1: 22;
A24: (r1
- r4)
= ((r
^2 )
- ((r0
* r)
- (r0
* r0))) by
A10,
A11,
SQUARE_1:def 2
.= (((r
- ((1
/ 2)
* r0))
^2 )
+ ((3
/ 4)
* (r0
^2 )));
(g0
.: W)
c=
].(r
- r0), (r
+ r0).[
proof
let x be
object;
assume x
in (g0
.: W);
then
consider z be
object such that
A25: z
in (
dom g0) and
A26: z
in W and
A27: (g0
. z)
= x by
FUNCT_1:def 6;
reconsider pz = z as
Point of X by
A25;
reconsider aa1 = (f1
. pz) as
Real;
A28: ex r9 be
Real st (f1
. pz)
= r9 & r9
>=
0 by
A2;
pz
in the
carrier of X;
then pz
in (
dom f1) by
FUNCT_2:def 1;
then
A29: (f1
. pz)
in (f1
.: W1) by
A26,
FUNCT_1:def 6;
then aa1
< (r1
+ r4) by
A19,
XXREAL_1: 4;
then (
sqrt aa1)
< (
sqrt (r1
+ r4)) by
A28,
SQUARE_1: 27;
then
A30: (
sqrt aa1)
< (r
+ r0) by
A23,
XXREAL_0: 2;
A31: (r1
- r4)
< aa1 by
A19,
A29,
XXREAL_1: 4;
A32:
now
per cases ;
case
0
<= (r1
- r4);
then (
sqrt (r1
- r4))
<= (
sqrt aa1) by
A31,
SQUARE_1: 26;
hence (r
- r0)
< (
sqrt aa1) by
A22,
XXREAL_0: 2;
end;
case
0
> (r1
- r4);
hence contradiction by
A24,
A20;
end;
end;
x
= (
sqrt aa1) by
A4,
A27;
hence thesis by
A30,
A32,
XXREAL_1: 4;
end;
hence thesis by
A9,
A18,
XBOOLE_1: 1;
end;
suppose
A33: (r
- r0)
<=
0 ;
set r4 = ((((2
* r)
* r0)
+ (r0
^2 ))
/ 3);
reconsider G1 =
].(r1
- r4), (r1
+ r4).[ as
Subset of
R^1 by
TOPMETR: 17;
((((2
* r)
* r0)
+ (r0
^2 ))
/ 3)
>
0 by
A14,
XREAL_1: 139;
then
A34: r1
< (r1
+ r4) by
XREAL_1: 29;
then (r1
- r4)
< r1 by
XREAL_1: 19;
then
A35: (f1
. p)
in G1 by
A34,
XXREAL_1: 4;
G1 is
open by
JORDAN6: 35;
then
consider W1 be
Subset of X such that
A36: p
in W1 & W1 is
open and
A37: (f1
.: W1)
c= G1 by
A1,
A35,
JGRAPH_2: 10;
set W = W1;
((((2
* r)
* r0)
+ (r0
^2 ))
/ 3)
< (((2
* r)
* r0)
+ (r0
^2 )) by
A14,
XREAL_1: 221;
then (r1
+ r4)
< ((r
^2 )
+ (((2
* r)
* r0)
+ (r0
^2 ))) by
A12,
XREAL_1: 8;
then (
sqrt (r1
+ r4))
<= (
sqrt ((r
+ r0)
^2 )) by
A10,
A13,
A8,
SQUARE_1: 26;
then
A38: (r
+ r0)
>= (
sqrt (r1
+ r4)) by
A13,
A7,
SQUARE_1: 22;
(g0
.: W)
c=
].(r
- r0), (r
+ r0).[
proof
let x be
object;
assume x
in (g0
.: W);
then
consider z be
object such that
A39: z
in (
dom g0) and
A40: z
in W and
A41: (g0
. z)
= x by
FUNCT_1:def 6;
reconsider pz = z as
Point of X by
A39;
reconsider aa1 = (f1
. pz) as
Real;
A42: ex r9 be
Real st (f1
. pz)
= r9 & r9
>=
0 by
A2;
pz
in the
carrier of X;
then pz
in (
dom f1) by
FUNCT_2:def 1;
then
A43: (f1
. pz)
in (f1
.: W1) by
A40,
FUNCT_1:def 6;
then aa1
< (r1
+ r4) by
A37,
XXREAL_1: 4;
then (
sqrt aa1)
< (
sqrt (r1
+ r4)) by
A42,
SQUARE_1: 27;
then
A44: (
sqrt aa1)
< (r
+ r0) by
A38,
XXREAL_0: 2;
A45: (r1
- r4)
< aa1 by
A37,
A43,
XXREAL_1: 4;
A46:
now
per cases by
A33;
case (r
- r0)
=
0 ;
hence (r
- r0)
< (
sqrt aa1) by
A12,
A45,
SQUARE_1: 17,
SQUARE_1: 27;
end;
case (r
- r0)
<
0 ;
hence (r
- r0)
< (
sqrt aa1) by
A42,
SQUARE_1: 17,
SQUARE_1: 26;
end;
end;
x
= (
sqrt aa1) by
A4,
A41;
hence thesis by
A44,
A46,
XXREAL_1: 4;
end;
hence thesis by
A9,
A36,
XBOOLE_1: 1;
end;
end;
then
A47: g0 is
continuous by
JGRAPH_2: 10;
for p be
Point of X, r11 be
Real st (f1
. p)
= r11 holds (g0
. p)
= (
sqrt r11) by
A4;
hence thesis by
A47;
end;
theorem ::
JGRAPH_3:6
Th6: for X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 st f1 is
continuous & f2 is
continuous & (for q be
Point of X holds (f2
. q)
<>
0 ) holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g
. p)
= ((r1
/ r2)
^2 )) & g is
continuous
proof
let X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 ;
assume f1 is
continuous & f2 is
continuous & for q be
Point of X holds (f2
. q)
<>
0 ;
then
consider g2 be
Function of X,
R^1 such that
A1: for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g2
. p)
= (r1
/ r2) and
A2: g2 is
continuous by
JGRAPH_2: 27;
consider g3 be
Function of X,
R^1 such that
A3: for p be
Point of X, r1 be
Real st (g2
. p)
= r1 holds (g3
. p)
= (r1
* r1) and
A4: g3 is
continuous by
A2,
JGRAPH_2: 22;
for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g3
. p)
= ((r1
/ r2)
^2 )
proof
let p be
Point of X, r1,r2 be
Real;
assume (f1
. p)
= r1 & (f2
. p)
= r2;
then (g2
. p)
= (r1
/ r2) by
A1;
hence thesis by
A3;
end;
hence thesis by
A4;
end;
theorem ::
JGRAPH_3:7
Th7: for X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 st f1 is
continuous & f2 is
continuous & (for q be
Point of X holds (f2
. q)
<>
0 ) holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g
. p)
= (1
+ ((r1
/ r2)
^2 ))) & g is
continuous
proof
let X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 ;
assume f1 is
continuous & f2 is
continuous & for q be
Point of X holds (f2
. q)
<>
0 ;
then
consider g2 be
Function of X,
R^1 such that
A1: for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g2
. p)
= ((r1
/ r2)
^2 ) and
A2: g2 is
continuous by
Th6;
consider g3 be
Function of X,
R^1 such that
A3: for p be
Point of X, r1 be
Real st (g2
. p)
= r1 holds (g3
. p)
= (r1
+ 1) and
A4: g3 is
continuous by
A2,
JGRAPH_2: 24;
for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g3
. p)
= (1
+ ((r1
/ r2)
^2 ))
proof
let p be
Point of X, r1,r2 be
Real;
assume (f1
. p)
= r1 & (f2
. p)
= r2;
then (g2
. p)
= ((r1
/ r2)
^2 ) by
A1;
hence thesis by
A3;
end;
hence thesis by
A4;
end;
theorem ::
JGRAPH_3:8
Th8: for X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 st f1 is
continuous & f2 is
continuous & (for q be
Point of X holds (f2
. q)
<>
0 ) holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g
. p)
= (
sqrt (1
+ ((r1
/ r2)
^2 )))) & g is
continuous
proof
let X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 ;
assume f1 is
continuous & f2 is
continuous & for q be
Point of X holds (f2
. q)
<>
0 ;
then
consider g2 be
Function of X,
R^1 such that
A1: for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g2
. p)
= (1
+ ((r1
/ r2)
^2 )) and
A2: g2 is
continuous by
Th7;
for q be
Point of X holds ex r be
Real st (g2
. q)
= r & r
>=
0
proof
let q be
Point of X;
reconsider r1 = (f1
. q), r2 = (f2
. q) as
Real;
(1
+ ((r1
/ r2)
^2 ))
>
0 by
Lm1;
hence thesis by
A1;
end;
then
consider g3 be
Function of X,
R^1 such that
A3: for p be
Point of X, r1 be
Real st (g2
. p)
= r1 holds (g3
. p)
= (
sqrt r1) and
A4: g3 is
continuous by
A2,
Th5;
for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g3
. p)
= (
sqrt (1
+ ((r1
/ r2)
^2 )))
proof
let p be
Point of X, r1,r2 be
Real;
assume (f1
. p)
= r1 & (f2
. p)
= r2;
then (g2
. p)
= (1
+ ((r1
/ r2)
^2 )) by
A1;
hence thesis by
A3;
end;
hence thesis by
A4;
end;
theorem ::
JGRAPH_3:9
Th9: for X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 st f1 is
continuous & f2 is
continuous & (for q be
Point of X holds (f2
. q)
<>
0 ) holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g
. p)
= (r1
/ (
sqrt (1
+ ((r1
/ r2)
^2 ))))) & g is
continuous
proof
let X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 ;
assume that
A1: f1 is
continuous and
A2: f2 is
continuous & for q be
Point of X holds (f2
. q)
<>
0 ;
consider g2 be
Function of X,
R^1 such that
A3: for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g2
. p)
= (
sqrt (1
+ ((r1
/ r2)
^2 ))) and
A4: g2 is
continuous by
A1,
A2,
Th8;
for q be
Point of X holds (g2
. q)
<>
0
proof
let q be
Point of X;
reconsider r1 = (f1
. q), r2 = (f2
. q) as
Real;
(
sqrt (1
+ ((r1
/ r2)
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
hence thesis by
A3;
end;
then
consider g3 be
Function of X,
R^1 such that
A5: for p be
Point of X, r1,r0 be
Real st (f1
. p)
= r1 & (g2
. p)
= r0 holds (g3
. p)
= (r1
/ r0) and
A6: g3 is
continuous by
A1,
A4,
JGRAPH_2: 27;
for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g3
. p)
= (r1
/ (
sqrt (1
+ ((r1
/ r2)
^2 ))))
proof
let p be
Point of X, r1,r2 be
Real;
assume that
A7: (f1
. p)
= r1 and
A8: (f2
. p)
= r2;
(g2
. p)
= (
sqrt (1
+ ((r1
/ r2)
^2 ))) by
A3,
A7,
A8;
hence thesis by
A5,
A7;
end;
hence thesis by
A6;
end;
theorem ::
JGRAPH_3:10
Th10: for X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 st f1 is
continuous & f2 is
continuous & (for q be
Point of X holds (f2
. q)
<>
0 ) holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g
. p)
= (r2
/ (
sqrt (1
+ ((r1
/ r2)
^2 ))))) & g is
continuous
proof
let X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 ;
assume that
A1: f1 is
continuous and
A2: f2 is
continuous and
A3: for q be
Point of X holds (f2
. q)
<>
0 ;
consider g2 be
Function of X,
R^1 such that
A4: for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g2
. p)
= (
sqrt (1
+ ((r1
/ r2)
^2 ))) and
A5: g2 is
continuous by
A1,
A2,
A3,
Th8;
for q be
Point of X holds (g2
. q)
<>
0
proof
let q be
Point of X;
reconsider r1 = (f1
. q), r2 = (f2
. q) as
Real;
(
sqrt (1
+ ((r1
/ r2)
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
hence thesis by
A4;
end;
then
consider g3 be
Function of X,
R^1 such that
A6: for p be
Point of X, r2,r0 be
Real st (f2
. p)
= r2 & (g2
. p)
= r0 holds (g3
. p)
= (r2
/ r0) and
A7: g3 is
continuous by
A2,
A5,
JGRAPH_2: 27;
for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g3
. p)
= (r2
/ (
sqrt (1
+ ((r1
/ r2)
^2 ))))
proof
let p be
Point of X, r1,r2 be
Real;
assume that
A8: (f1
. p)
= r1 and
A9: (f2
. p)
= r2;
(g2
. p)
= (
sqrt (1
+ ((r1
/ r2)
^2 ))) by
A4,
A8,
A9;
hence thesis by
A6,
A9;
end;
hence thesis by
A7;
end;
Lm4: for K1 be non
empty
Subset of (
TOP-REAL 2) holds for q be
Point of ((
TOP-REAL 2)
| K1) holds ((
proj2
| K1)
. q)
= (
proj2
. q)
proof
let K1 be non
empty
Subset of (
TOP-REAL 2);
let q be
Point of ((
TOP-REAL 2)
| K1);
the
carrier of ((
TOP-REAL 2)
| K1)
= K1 & q
in the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then q
in ((
dom
proj2 )
/\ K1) by
Lm3,
XBOOLE_0:def 4;
hence thesis by
FUNCT_1: 48;
end;
Lm5: for K1 be non
empty
Subset of (
TOP-REAL 2) holds (
proj2
| K1) is
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1
proof
let K1 be non
empty
Subset of (
TOP-REAL 2);
reconsider g2 = (
proj2
| K1) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
TOPMETR: 17;
for q be
Point of ((
TOP-REAL 2)
| K1) holds (g2
. q)
= (
proj2
. q) by
Lm4;
hence thesis by
JGRAPH_2: 30;
end;
Lm6: for K1 be non
empty
Subset of (
TOP-REAL 2) holds for q be
Point of ((
TOP-REAL 2)
| K1) holds ((
proj1
| K1)
. q)
= (
proj1
. q)
proof
let K1 be non
empty
Subset of (
TOP-REAL 2);
let q be
Point of ((
TOP-REAL 2)
| K1);
the
carrier of ((
TOP-REAL 2)
| K1)
= K1 & q
in the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then q
in ((
dom
proj1 )
/\ K1) by
Lm2,
XBOOLE_0:def 4;
hence thesis by
FUNCT_1: 48;
end;
Lm7: for K1 be non
empty
Subset of (
TOP-REAL 2) holds (
proj1
| K1) is
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1
proof
let K1 be non
empty
Subset of (
TOP-REAL 2);
reconsider g2 = (
proj1
| K1) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
TOPMETR: 17;
for q be
Point of ((
TOP-REAL 2)
| K1) holds (g2
. q)
= (
proj1
. q) by
Lm6;
hence thesis by
JGRAPH_2: 29;
end;
theorem ::
JGRAPH_3:11
Th11: for K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<>
0 ) holds f is
continuous
proof
let K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm7;
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
assume that
A1: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) and
A2: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<>
0 ;
A3: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
now
let q be
Point of ((
TOP-REAL 2)
| K1);
q
in the
carrier of ((
TOP-REAL 2)
| K1);
then
reconsider q2 = q as
Point of (
TOP-REAL 2) by
A3;
(g1
. q)
= (
proj1
. q) by
Lm6
.= (q2
`1 ) by
PSCOMP_1:def 5;
hence (g1
. q)
<>
0 by
A2;
end;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A4: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
/ (
sqrt (1
+ ((r1
/ r2)
^2 )))) and
A5: g3 is
continuous by
Th10;
A6: for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A7: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in the
carrier of ((
TOP-REAL 2)
| K1) by
A7;
then x
in K1 by
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A8: (
proj2
. r)
= (r
`2 ) & (
proj1
. r)
= (r
`1 ) by
PSCOMP_1:def 5,
PSCOMP_1:def 6;
A9: (g2
. s)
= (
proj2
. s) & (g1
. s)
= (
proj1
. s) by
Lm4,
Lm6;
(f
. r)
= ((r
`1 )
/ (
sqrt (1
+ (((r
`2 )
/ (r
`1 ))
^2 )))) by
A1,
A7;
hence thesis by
A4,
A9,
A8;
end;
(
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
hence thesis by
A5,
A6,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_3:12
Th12: for K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<>
0 ) holds f is
continuous
proof
let K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm7;
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
assume that
A1: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) and
A2: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<>
0 ;
A3: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
now
let q be
Point of ((
TOP-REAL 2)
| K1);
q
in the
carrier of ((
TOP-REAL 2)
| K1);
then
reconsider q2 = q as
Point of (
TOP-REAL 2) by
A3;
(g1
. q)
= (
proj1
. q) by
Lm6
.= (q2
`1 ) by
PSCOMP_1:def 5;
hence (g1
. q)
<>
0 by
A2;
end;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A4: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r1
/ (
sqrt (1
+ ((r1
/ r2)
^2 )))) and
A5: g3 is
continuous by
Th9;
A6: for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A7: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in the
carrier of ((
TOP-REAL 2)
| K1) by
A7;
then x
in K1 by
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A8: (
proj2
. r)
= (r
`2 ) & (
proj1
. r)
= (r
`1 ) by
PSCOMP_1:def 5,
PSCOMP_1:def 6;
A9: (g2
. s)
= (
proj2
. s) & (g1
. s)
= (
proj1
. s) by
Lm4,
Lm6;
(f
. r)
= ((r
`2 )
/ (
sqrt (1
+ (((r
`2 )
/ (r
`1 ))
^2 )))) by
A1,
A7;
hence thesis by
A4,
A9,
A8;
end;
(
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
hence thesis by
A5,
A6,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_3:13
Th13: for K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<>
0 ) holds f is
continuous
proof
let K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm7;
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
assume that
A1: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) and
A2: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<>
0 ;
A3: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
now
let q be
Point of ((
TOP-REAL 2)
| K1);
q
in the
carrier of ((
TOP-REAL 2)
| K1);
then
reconsider q2 = q as
Point of (
TOP-REAL 2) by
A3;
(g2
. q)
= (
proj2
. q) by
Lm4
.= (q2
`2 ) by
PSCOMP_1:def 6;
hence (g2
. q)
<>
0 by
A2;
end;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A4: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g1
. q)
= r1 & (g2
. q)
= r2 holds (g3
. q)
= (r2
/ (
sqrt (1
+ ((r1
/ r2)
^2 )))) and
A5: g3 is
continuous by
Th10;
A6: for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A7: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in the
carrier of ((
TOP-REAL 2)
| K1) by
A7;
then x
in K1 by
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A8: (
proj2
. r)
= (r
`2 ) & (
proj1
. r)
= (r
`1 ) by
PSCOMP_1:def 5,
PSCOMP_1:def 6;
A9: (g2
. s)
= (
proj2
. s) & (g1
. s)
= (
proj1
. s) by
Lm4,
Lm6;
(f
. r)
= ((r
`2 )
/ (
sqrt (1
+ (((r
`1 )
/ (r
`2 ))
^2 )))) by
A1,
A7;
hence thesis by
A4,
A9,
A8;
end;
(
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
hence thesis by
A5,
A6,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_3:14
Th14: for K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<>
0 ) holds f is
continuous
proof
let K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm7;
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
assume that
A1: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) and
A2: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<>
0 ;
A3: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
now
let q be
Point of ((
TOP-REAL 2)
| K1);
q
in the
carrier of ((
TOP-REAL 2)
| K1);
then
reconsider q2 = q as
Point of (
TOP-REAL 2) by
A3;
(g2
. q)
= (
proj2
. q) by
Lm4
.= (q2
`2 ) by
PSCOMP_1:def 6;
hence (g2
. q)
<>
0 by
A2;
end;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A4: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g1
. q)
= r1 & (g2
. q)
= r2 holds (g3
. q)
= (r1
/ (
sqrt (1
+ ((r1
/ r2)
^2 )))) and
A5: g3 is
continuous by
Th9;
A6: for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A7: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in the
carrier of ((
TOP-REAL 2)
| K1) by
A7;
then x
in K1 by
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A8: (
proj2
. r)
= (r
`2 ) & (
proj1
. r)
= (r
`1 ) by
PSCOMP_1:def 5,
PSCOMP_1:def 6;
A9: (g2
. s)
= (
proj2
. s) & (g1
. s)
= (
proj1
. s) by
Lm4,
Lm6;
(f
. r)
= ((r
`1 )
/ (
sqrt (1
+ (((r
`1 )
/ (r
`2 ))
^2 )))) by
A1,
A7;
hence thesis by
A4,
A9,
A8;
end;
(
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
hence thesis by
A5,
A6,
FUNCT_1: 2;
end;
Lm8: (
0.REAL 2)
= (
0. (
TOP-REAL 2)) by
EUCLID: 66;
Lm9: ((
1.REAL 2)
`2 )
<= ((
1.REAL 2)
`1 ) & (
- ((
1.REAL 2)
`1 ))
<= ((
1.REAL 2)
`2 ) or ((
1.REAL 2)
`2 )
>= ((
1.REAL 2)
`1 ) & ((
1.REAL 2)
`2 )
<= (
- ((
1.REAL 2)
`1 )) by
JGRAPH_2: 5;
Lm10: (
1.REAL 2)
<> (
0. (
TOP-REAL 2)) by
Lm8,
REVROT_1: 19;
Lm11: for K1 be non
empty
Subset of (
TOP-REAL 2) holds (
dom (
proj2
* (
Sq_Circ
| K1)))
= the
carrier of ((
TOP-REAL 2)
| K1)
proof
let K1 be non
empty
Subset of (
TOP-REAL 2);
A1: (
dom (
Sq_Circ
| K1))
c= (
dom (
proj2
* (
Sq_Circ
| K1)))
proof
let x be
object;
assume
A2: x
in (
dom (
Sq_Circ
| K1));
then x
in ((
dom
Sq_Circ )
/\ K1) by
RELAT_1: 61;
then x
in (
dom
Sq_Circ ) by
XBOOLE_0:def 4;
then
A3: (
Sq_Circ
. x)
in (
rng
Sq_Circ ) by
FUNCT_1: 3;
((
Sq_Circ
| K1)
. x)
= (
Sq_Circ
. x) by
A2,
FUNCT_1: 47;
hence thesis by
A2,
A3,
Lm3,
FUNCT_1: 11;
end;
(
dom (
proj2
* (
Sq_Circ
| K1)))
c= (
dom (
Sq_Circ
| K1)) by
RELAT_1: 25;
hence (
dom (
proj2
* (
Sq_Circ
| K1)))
= (
dom (
Sq_Circ
| K1)) by
A1
.= ((
dom
Sq_Circ )
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
end;
Lm12: for K1 be non
empty
Subset of (
TOP-REAL 2) holds (
dom (
proj1
* (
Sq_Circ
| K1)))
= the
carrier of ((
TOP-REAL 2)
| K1)
proof
let K1 be non
empty
Subset of (
TOP-REAL 2);
A1: (
dom (
Sq_Circ
| K1))
c= (
dom (
proj1
* (
Sq_Circ
| K1)))
proof
let x be
object;
assume
A2: x
in (
dom (
Sq_Circ
| K1));
then x
in ((
dom
Sq_Circ )
/\ K1) by
RELAT_1: 61;
then x
in (
dom
Sq_Circ ) by
XBOOLE_0:def 4;
then
A3: (
Sq_Circ
. x)
in (
rng
Sq_Circ ) by
FUNCT_1: 3;
((
Sq_Circ
| K1)
. x)
= (
Sq_Circ
. x) by
A2,
FUNCT_1: 47;
hence thesis by
A2,
A3,
Lm2,
FUNCT_1: 11;
end;
(
dom (
proj1
* (
Sq_Circ
| K1)))
c= (
dom (
Sq_Circ
| K1)) by
RELAT_1: 25;
hence (
dom (
proj1
* (
Sq_Circ
| K1)))
= (
dom (
Sq_Circ
| K1)) by
A1
.= ((
dom
Sq_Circ )
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
end;
Lm13: (
NonZero (
TOP-REAL 2))
<>
{} by
JGRAPH_2: 9;
theorem ::
JGRAPH_3:15
Th15: for K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st f
= (
Sq_Circ
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
assume
A1: f
= (
Sq_Circ
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) };
then (
1.REAL 2)
in K0 by
Lm9,
Lm10;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
(
dom (
proj1
* (
Sq_Circ
| K1)))
= the
carrier of ((
TOP-REAL 2)
| K1) & (
rng (
proj1
* (
Sq_Circ
| K1)))
c= the
carrier of
R^1 by
Lm12,
TOPMETR: 17;
then
reconsider g1 = (
proj1
* (
Sq_Circ
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g1
. p)
= ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
proof
let p be
Point of (
TOP-REAL 2);
A2: (
dom (
Sq_Circ
| K1))
= ((
dom
Sq_Circ )
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A3: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A4: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`2 )
<= (p3
`1 ) & (
- (p3
`1 ))
<= (p3
`2 ) or (p3
`2 )
>= (p3
`1 ) & (p3
`2 )
<= (
- (p3
`1 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A3;
then
A5: (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
Def1;
((
Sq_Circ
| K1)
. p)
= (
Sq_Circ
. p) by
A4,
A3,
FUNCT_1: 49;
then (g1
. p)
= (
proj1
.
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) by
A4,
A2,
A3,
A5,
FUNCT_1: 13
.= (
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|
`1 ) by
PSCOMP_1:def 5
.= ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
EUCLID: 52;
hence thesis;
end;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A6: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f1
. p)
= ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))));
(
dom (
proj2
* (
Sq_Circ
| K1)))
= the
carrier of ((
TOP-REAL 2)
| K1) & (
rng (
proj2
* (
Sq_Circ
| K1)))
c= the
carrier of
R^1 by
Lm11,
TOPMETR: 17;
then
reconsider g2 = (
proj2
* (
Sq_Circ
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g2
. p)
= ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
proof
let p be
Point of (
TOP-REAL 2);
A7: (
dom (
Sq_Circ
| K1))
= ((
dom
Sq_Circ )
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A8: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A9: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`2 )
<= (p3
`1 ) & (
- (p3
`1 ))
<= (p3
`2 ) or (p3
`2 )
>= (p3
`1 ) & (p3
`2 )
<= (
- (p3
`1 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A8;
then
A10: (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
Def1;
((
Sq_Circ
| K1)
. p)
= (
Sq_Circ
. p) by
A9,
A8,
FUNCT_1: 49;
then (g2
. p)
= (
proj2
.
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) by
A9,
A7,
A8,
A10,
FUNCT_1: 13
.= (
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|
`2 ) by
PSCOMP_1:def 6
.= ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
EUCLID: 52;
hence thesis;
end;
then
consider f2 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A11: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f2
. p)
= ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))));
A12:
now
let q be
Point of (
TOP-REAL 2);
A13: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then
A14: ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`2 )
<= (p3
`1 ) & (
- (p3
`1 ))
<= (p3
`2 ) or (p3
`2 )
>= (p3
`1 ) & (p3
`2 )
<= (
- (p3
`1 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A13;
now
assume
A15: (q
`1 )
=
0 ;
then (q
`2 )
=
0 by
A14;
hence contradiction by
A14,
A15,
EUCLID: 53,
EUCLID: 54;
end;
hence (q
`1 )
<>
0 ;
end;
then
A16: f1 is
continuous by
A6,
Th11;
A17: for x,y,r,s be
Real st
|[x, y]|
in K1 & r
= (f1
.
|[x, y]|) & s
= (f2
.
|[x, y]|) holds (f
.
|[x, y]|)
=
|[r, s]|
proof
let x,y,r,s be
Real;
assume that
A18:
|[x, y]|
in K1 and
A19: r
= (f1
.
|[x, y]|) & s
= (f2
.
|[x, y]|);
set p99 =
|[x, y]|;
A20: ex p3 be
Point of (
TOP-REAL 2) st p99
= p3 & ((p3
`2 )
<= (p3
`1 ) & (
- (p3
`1 ))
<= (p3
`2 ) or (p3
`2 )
>= (p3
`1 ) & (p3
`2 )
<= (
- (p3
`1 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A18;
A21: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
A22: (f1
. p99)
= ((p99
`1 )
/ (
sqrt (1
+ (((p99
`2 )
/ (p99
`1 ))
^2 )))) by
A6,
A18;
((
Sq_Circ
| K0)
.
|[x, y]|)
= (
Sq_Circ
.
|[x, y]|) by
A18,
FUNCT_1: 49
.=
|[((p99
`1 )
/ (
sqrt (1
+ (((p99
`2 )
/ (p99
`1 ))
^2 )))), ((p99
`2 )
/ (
sqrt (1
+ (((p99
`2 )
/ (p99
`1 ))
^2 ))))]| by
A20,
Def1
.=
|[r, s]| by
A11,
A18,
A19,
A21,
A22;
hence thesis by
A1;
end;
f2 is
continuous by
A12,
A11,
Th12;
hence thesis by
A1,
A16,
A17,
Lm13,
JGRAPH_2: 35;
end;
Lm14: ((
1.REAL 2)
`1 )
<= ((
1.REAL 2)
`2 ) & (
- ((
1.REAL 2)
`2 ))
<= ((
1.REAL 2)
`1 ) or ((
1.REAL 2)
`1 )
>= ((
1.REAL 2)
`2 ) & ((
1.REAL 2)
`1 )
<= (
- ((
1.REAL 2)
`2 )) by
JGRAPH_2: 5;
Lm15: (
1.REAL 2)
<> (
0. (
TOP-REAL 2)) by
Lm8,
REVROT_1: 19;
theorem ::
JGRAPH_3:16
Th16: for K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st f
= (
Sq_Circ
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
assume
A1: f
= (
Sq_Circ
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) };
then (
1.REAL 2)
in K0 by
Lm14,
Lm15;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
(
dom (
proj2
* (
Sq_Circ
| K1)))
= the
carrier of ((
TOP-REAL 2)
| K1) & (
rng (
proj2
* (
Sq_Circ
| K1)))
c= the
carrier of
R^1 by
Lm11,
TOPMETR: 17;
then
reconsider g1 = (
proj2
* (
Sq_Circ
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g1
. p)
= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
proof
let p be
Point of (
TOP-REAL 2);
A2: (
dom (
Sq_Circ
| K1))
= ((
dom
Sq_Circ )
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A3: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A4: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`1 )
<= (p3
`2 ) & (
- (p3
`2 ))
<= (p3
`1 ) or (p3
`1 )
>= (p3
`2 ) & (p3
`1 )
<= (
- (p3
`2 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A3;
then
A5: (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
Th4;
((
Sq_Circ
| K1)
. p)
= (
Sq_Circ
. p) by
A4,
A3,
FUNCT_1: 49;
then (g1
. p)
= (
proj2
.
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|) by
A4,
A2,
A3,
A5,
FUNCT_1: 13
.= (
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|
`2 ) by
PSCOMP_1:def 6
.= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
EUCLID: 52;
hence thesis;
end;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A6: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f1
. p)
= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))));
(
dom (
proj1
* (
Sq_Circ
| K1)))
= the
carrier of ((
TOP-REAL 2)
| K1) & (
rng (
proj1
* (
Sq_Circ
| K1)))
c= the
carrier of
R^1 by
Lm12,
TOPMETR: 17;
then
reconsider g2 = (
proj1
* (
Sq_Circ
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g2
. p)
= ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
proof
let p be
Point of (
TOP-REAL 2);
A7: (
dom (
Sq_Circ
| K1))
= ((
dom
Sq_Circ )
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A8: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A9: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`1 )
<= (p3
`2 ) & (
- (p3
`2 ))
<= (p3
`1 ) or (p3
`1 )
>= (p3
`2 ) & (p3
`1 )
<= (
- (p3
`2 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A8;
then
A10: (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
Th4;
((
Sq_Circ
| K1)
. p)
= (
Sq_Circ
. p) by
A9,
A8,
FUNCT_1: 49;
then (g2
. p)
= (
proj1
.
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|) by
A9,
A7,
A8,
A10,
FUNCT_1: 13
.= (
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|
`1 ) by
PSCOMP_1:def 5
.= ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
EUCLID: 52;
hence thesis;
end;
then
consider f2 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A11: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f2
. p)
= ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))));
A12: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<>
0
proof
let q be
Point of (
TOP-REAL 2);
A13: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then
A14: ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`1 )
<= (p3
`2 ) & (
- (p3
`2 ))
<= (p3
`1 ) or (p3
`1 )
>= (p3
`2 ) & (p3
`1 )
<= (
- (p3
`2 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A13;
now
assume
A15: (q
`2 )
=
0 ;
then (q
`1 )
=
0 by
A14;
hence contradiction by
A14,
A15,
EUCLID: 53,
EUCLID: 54;
end;
hence thesis;
end;
then
A16: f1 is
continuous by
A6,
Th13;
A17:
now
let x,y,s,r be
Real;
assume that
A18:
|[x, y]|
in K1 and
A19: s
= (f2
.
|[x, y]|) & r
= (f1
.
|[x, y]|);
set p99 =
|[x, y]|;
A20: ex p3 be
Point of (
TOP-REAL 2) st p99
= p3 & ((p3
`1 )
<= (p3
`2 ) & (
- (p3
`2 ))
<= (p3
`1 ) or (p3
`1 )
>= (p3
`2 ) & (p3
`1 )
<= (
- (p3
`2 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A18;
A21: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
A22: (f1
. p99)
= ((p99
`2 )
/ (
sqrt (1
+ (((p99
`1 )
/ (p99
`2 ))
^2 )))) by
A6,
A18;
((
Sq_Circ
| K0)
.
|[x, y]|)
= (
Sq_Circ
.
|[x, y]|) by
A18,
FUNCT_1: 49
.=
|[((p99
`1 )
/ (
sqrt (1
+ (((p99
`1 )
/ (p99
`2 ))
^2 )))), ((p99
`2 )
/ (
sqrt (1
+ (((p99
`1 )
/ (p99
`2 ))
^2 ))))]| by
A20,
Th4
.=
|[s, r]| by
A11,
A18,
A19,
A21,
A22;
hence (f
.
|[x, y]|)
=
|[s, r]| by
A1;
end;
f2 is
continuous by
A12,
A11,
Th14;
hence thesis by
A1,
A16,
A17,
Lm13,
JGRAPH_2: 35;
end;
scheme ::
JGRAPH_3:sch1
TopIncl { P[
set] } :
{ p : P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= (
NonZero (
TOP-REAL 2));
let x be
object;
assume x
in { p : P[p] & p
<> (
0. (
TOP-REAL 2)) };
then
A1: ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & P[p8] & p8
<> (
0. (
TOP-REAL 2));
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A1,
XBOOLE_0:def 5;
end;
scheme ::
JGRAPH_3:sch2
TopInter { P[
set] } :
{ p : P[p] & p
<> (
0. (
TOP-REAL 2)) }
= ({ p7 where p7 be
Point of (
TOP-REAL 2) : P[p7] }
/\ (
NonZero (
TOP-REAL 2)));
set B0 = (
NonZero (
TOP-REAL 2));
set K1 = { p7 where p7 be
Point of (
TOP-REAL 2) : P[p7] };
set K0 = { p : P[p] & p
<> (
0. (
TOP-REAL 2)) };
A1: (K1
/\ B0)
c= K0
proof
let x be
object;
assume
A2: x
in (K1
/\ B0);
then x
in B0 by
XBOOLE_0:def 4;
then not x
in
{(
0. (
TOP-REAL 2))} by
XBOOLE_0:def 5;
then
A3: x
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
x
in K1 by
A2,
XBOOLE_0:def 4;
then ex p7 be
Point of (
TOP-REAL 2) st p7
= x & P[p7];
hence thesis by
A3;
end;
K0
c= (K1
/\ B0)
proof
let x be
object;
assume x
in K0;
then
A4: ex p be
Point of (
TOP-REAL 2) st x
= p & P[p] & p
<> (
0. (
TOP-REAL 2));
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
then
A5: x
in B0 by
A4,
XBOOLE_0:def 5;
x
in K1 by
A4;
hence thesis by
A5,
XBOOLE_0:def 4;
end;
hence thesis by
A1;
end;
theorem ::
JGRAPH_3:17
Th17: for B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0) st f
= (
Sq_Circ
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous & K0 is
closed
proof
reconsider K5 = { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`2 )
<= (
- (p7
`1 )) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 47;
reconsider K4 = { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`1 )
<= (p7
`2 ) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 46;
reconsider K3 = { p7 where p7 be
Point of (
TOP-REAL 2) : (
- (p7
`1 ))
<= (p7
`2 ) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 47;
reconsider K2 = { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`2 )
<= (p7
`1 ) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 46;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
<= ($1
`1 ) & (
- ($1
`1 ))
<= ($1
`2 ) or ($1
`2 )
>= ($1
`1 ) & ($1
`2 )
<= (
- ($1
`1 )));
let B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0);
assume
A1: f
= (
Sq_Circ
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) };
the
carrier of ((
TOP-REAL 2)
| B0)
= B0 by
PRE_TOPC: 8;
then
reconsider K1 = K0 as
Subset of (
TOP-REAL 2) by
XBOOLE_1: 1;
{ p :
P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= (
NonZero (
TOP-REAL 2)) from
TopIncl;
then
A2: (((
TOP-REAL 2)
| B0)
| K0)
= ((
TOP-REAL 2)
| K1) by
A1,
PRE_TOPC: 7;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
<= ($1
`1 ) & (
- ($1
`1 ))
<= ($1
`2 ) or ($1
`2 )
>= ($1
`1 ) & ($1
`2 )
<= (
- ($1
`1 )));
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
<= ($1
`1 ) & (
- ($1
`1 ))
<= ($1
`2 ) or ($1
`2 )
>= ($1
`1 ) & ($1
`2 )
<= (
- ($1
`1 )));
{ p :
P[p] & p
<> (
0. (
TOP-REAL 2)) }
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ (
NonZero (
TOP-REAL 2))) from
TopInter;
then
A3: K0
= (K1
/\ (
[#] ((
TOP-REAL 2)
| B0))) by
A1,
PRE_TOPC:def 5;
A4: ((K2
/\ K3)
\/ (K4
/\ K5))
c= K1
proof
let x be
object;
assume
A5: x
in ((K2
/\ K3)
\/ (K4
/\ K5));
per cases by
A5,
XBOOLE_0:def 3;
suppose
A6: x
in (K2
/\ K3);
then x
in K3 by
XBOOLE_0:def 4;
then
A7: ex p8 be
Point of (
TOP-REAL 2) st p8
= x & (
- (p8
`1 ))
<= (p8
`2 );
x
in K2 by
A6,
XBOOLE_0:def 4;
then ex p7 be
Point of (
TOP-REAL 2) st p7
= x & (p7
`2 )
<= (p7
`1 );
hence thesis by
A7;
end;
suppose
A8: x
in (K4
/\ K5);
then x
in K5 by
XBOOLE_0:def 4;
then
A9: ex p8 be
Point of (
TOP-REAL 2) st p8
= x & (p8
`2 )
<= (
- (p8
`1 ));
x
in K4 by
A8,
XBOOLE_0:def 4;
then ex p7 be
Point of (
TOP-REAL 2) st p7
= x & (p7
`2 )
>= (p7
`1 );
hence thesis by
A9;
end;
end;
A10: (K2
/\ K3) is
closed & (K4
/\ K5) is
closed by
TOPS_1: 8;
K1
c= ((K2
/\ K3)
\/ (K4
/\ K5))
proof
let x be
object;
assume x
in K1;
then ex p be
Point of (
TOP-REAL 2) st p
= x & ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )));
then x
in K2 & x
in K3 or x
in K4 & x
in K5;
then x
in (K2
/\ K3) or x
in (K4
/\ K5) by
XBOOLE_0:def 4;
hence thesis by
XBOOLE_0:def 3;
end;
then K1
= ((K2
/\ K3)
\/ (K4
/\ K5)) by
A4;
then K1 is
closed by
A10,
TOPS_1: 9;
hence thesis by
A1,
A2,
A3,
Th15,
PRE_TOPC: 13;
end;
theorem ::
JGRAPH_3:18
Th18: for B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0) st f
= (
Sq_Circ
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous & K0 is
closed
proof
reconsider K5 = { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`1 )
<= (
- (p7
`2 )) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 48;
reconsider K4 = { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`2 )
<= (p7
`1 ) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 46;
reconsider K3 = { p7 where p7 be
Point of (
TOP-REAL 2) : (
- (p7
`2 ))
<= (p7
`1 ) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 48;
reconsider K2 = { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`1 )
<= (p7
`2 ) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 46;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
<= ($1
`2 ) & (
- ($1
`2 ))
<= ($1
`1 ) or ($1
`1 )
>= ($1
`2 ) & ($1
`1 )
<= (
- ($1
`2 )));
set b0 = (
NonZero (
TOP-REAL 2));
defpred
P0[
Point of (
TOP-REAL 2)] means (($1
`1 )
<= ($1
`2 ) & (
- ($1
`2 ))
<= ($1
`1 ) or ($1
`1 )
>= ($1
`2 ) & ($1
`1 )
<= (
- ($1
`2 )));
let B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0);
assume
A1: f
= (
Sq_Circ
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) };
the
carrier of ((
TOP-REAL 2)
| B0)
= B0 by
PRE_TOPC: 8;
then
reconsider K1 = K0 as
Subset of (
TOP-REAL 2) by
XBOOLE_1: 1;
{ p :
P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= (
NonZero (
TOP-REAL 2)) from
TopIncl;
then
A2: (((
TOP-REAL 2)
| B0)
| K0)
= ((
TOP-REAL 2)
| K1) by
A1,
PRE_TOPC: 7;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
<= ($1
`2 ) & (
- ($1
`2 ))
<= ($1
`1 ) or ($1
`1 )
>= ($1
`2 ) & ($1
`1 )
<= (
- ($1
`2 )));
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A3: ((K2
/\ K3)
\/ (K4
/\ K5))
c= K1
proof
let x be
object;
assume
A4: x
in ((K2
/\ K3)
\/ (K4
/\ K5));
per cases by
A4,
XBOOLE_0:def 3;
suppose
A5: x
in (K2
/\ K3);
then x
in K3 by
XBOOLE_0:def 4;
then
A6: ex p8 be
Point of (
TOP-REAL 2) st p8
= x & (
- (p8
`2 ))
<= (p8
`1 );
x
in K2 by
A5,
XBOOLE_0:def 4;
then ex p7 be
Point of (
TOP-REAL 2) st p7
= x & (p7
`1 )
<= (p7
`2 );
hence thesis by
A6;
end;
suppose
A7: x
in (K4
/\ K5);
then x
in K5 by
XBOOLE_0:def 4;
then
A8: ex p8 be
Point of (
TOP-REAL 2) st p8
= x & (p8
`1 )
<= (
- (p8
`2 ));
x
in K4 by
A7,
XBOOLE_0:def 4;
then ex p7 be
Point of (
TOP-REAL 2) st p7
= x & (p7
`1 )
>= (p7
`2 );
hence thesis by
A8;
end;
end;
set k0 = { p :
P0[p] & p
<> (
0. (
TOP-REAL 2)) };
A9: (K2
/\ K3) is
closed & (K4
/\ K5) is
closed by
TOPS_1: 8;
K1
c= ((K2
/\ K3)
\/ (K4
/\ K5))
proof
let x be
object;
assume x
in K1;
then ex p be
Point of (
TOP-REAL 2) st p
= x & ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 )));
then x
in K2 & x
in K3 or x
in K4 & x
in K5;
then x
in (K2
/\ K3) or x
in (K4
/\ K5) by
XBOOLE_0:def 4;
hence thesis by
XBOOLE_0:def 3;
end;
then K1
= ((K2
/\ K3)
\/ (K4
/\ K5)) by
A3;
then
A10: K1 is
closed by
A9,
TOPS_1: 9;
k0
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P0[p7] }
/\ b0) from
TopInter;
then K0
= (K1
/\ (
[#] ((
TOP-REAL 2)
| B0))) by
A1,
PRE_TOPC:def 5;
hence thesis by
A1,
A2,
A10,
Th16,
PRE_TOPC: 13;
end;
theorem ::
JGRAPH_3:19
Th19: for D be non
empty
Subset of (
TOP-REAL 2) st (D
` )
=
{(
0. (
TOP-REAL 2))} holds ex h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) st h
= (
Sq_Circ
| D) & h is
continuous
proof
set Y1 =
|[(
- 1), 1]|;
let D be non
empty
Subset of (
TOP-REAL 2);
A1: the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
(
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A2: (
dom (
Sq_Circ
| D))
= (the
carrier of (
TOP-REAL 2)
/\ D) by
RELAT_1: 61
.= the
carrier of ((
TOP-REAL 2)
| D) by
A1,
XBOOLE_1: 28;
assume
A3: (D
` )
=
{(
0. (
TOP-REAL 2))};
then
A4: D
= (
{(
0. (
TOP-REAL 2))}
` )
.= (
NonZero (
TOP-REAL 2)) by
SUBSET_1:def 4;
A5: { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D)
proof
let x be
object;
assume x
in { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) };
then
A6: ex p st x
= p & ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2));
now
assume not x
in D;
then x
in (the
carrier of (
TOP-REAL 2)
\ D) by
A6,
XBOOLE_0:def 5;
then x
in (D
` ) by
SUBSET_1:def 4;
hence contradiction by
A3,
A6,
TARSKI:def 1;
end;
hence thesis by
PRE_TOPC: 8;
end;
(
1.REAL 2)
in { p where p be
Point of (
TOP-REAL 2) : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) } by
Lm9,
Lm10;
then
reconsider K0 = { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| D) by
A5;
A7: K0
= the
carrier of (((
TOP-REAL 2)
| D)
| K0) by
PRE_TOPC: 8;
A8: { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D)
proof
let x be
object;
assume x
in { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) };
then
A9: ex p st x
= p & ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2));
now
assume not x
in D;
then x
in (the
carrier of (
TOP-REAL 2)
\ D) by
A9,
XBOOLE_0:def 5;
then x
in (D
` ) by
SUBSET_1:def 4;
hence contradiction by
A3,
A9,
TARSKI:def 1;
end;
hence thesis by
PRE_TOPC: 8;
end;
(Y1
`1 )
= (
- 1) & (Y1
`2 )
= 1 by
EUCLID: 52;
then Y1
in { p where p be
Point of (
TOP-REAL 2) : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) } by
JGRAPH_2: 3;
then
reconsider K1 = { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| D) by
A8;
A10: K1
= the
carrier of (((
TOP-REAL 2)
| D)
| K1) by
PRE_TOPC: 8;
A11: D
c= (K0
\/ K1)
proof
let x be
object;
assume
A12: x
in D;
then
reconsider px = x as
Point of (
TOP-REAL 2);
not x
in
{(
0. (
TOP-REAL 2))} by
A4,
A12,
XBOOLE_0:def 5;
then ((px
`2 )
<= (px
`1 ) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 ))) & px
<> (
0. (
TOP-REAL 2)) or ((px
`1 )
<= (px
`2 ) & (
- (px
`2 ))
<= (px
`1 ) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 ))) & px
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1,
XREAL_1: 26;
then x
in K0 or x
in K1;
hence thesis by
XBOOLE_0:def 3;
end;
A13: the
carrier of ((
TOP-REAL 2)
| D)
= (
[#] ((
TOP-REAL 2)
| D))
.= (
NonZero (
TOP-REAL 2)) by
A4,
PRE_TOPC:def 5;
A14: the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
A15: (
rng (
Sq_Circ
| K0))
c= the
carrier of (((
TOP-REAL 2)
| D)
| K0)
proof
reconsider K00 = K0 as
Subset of (
TOP-REAL 2) by
A14,
XBOOLE_1: 1;
let y be
object;
A16: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K00) holds (q
`1 )
<>
0
proof
let q be
Point of (
TOP-REAL 2);
A17: the
carrier of ((
TOP-REAL 2)
| K00)
= K0 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K00);
then
A18: ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`2 )
<= (p3
`1 ) & (
- (p3
`1 ))
<= (p3
`2 ) or (p3
`2 )
>= (p3
`1 ) & (p3
`2 )
<= (
- (p3
`1 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A17;
now
assume
A19: (q
`1 )
=
0 ;
then (q
`2 )
=
0 by
A18;
hence contradiction by
A18,
A19,
EUCLID: 53,
EUCLID: 54;
end;
hence thesis;
end;
assume y
in (
rng (
Sq_Circ
| K0));
then
consider x be
object such that
A20: x
in (
dom (
Sq_Circ
| K0)) and
A21: y
= ((
Sq_Circ
| K0)
. x) by
FUNCT_1:def 3;
A22: x
in ((
dom
Sq_Circ )
/\ K0) by
A20,
RELAT_1: 61;
then
A23: x
in K0 by
XBOOLE_0:def 4;
K0
c= the
carrier of (
TOP-REAL 2) by
A14,
XBOOLE_1: 1;
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A23;
K00
= the
carrier of ((
TOP-REAL 2)
| K00) by
PRE_TOPC: 8;
then p
in the
carrier of ((
TOP-REAL 2)
| K00) by
A22,
XBOOLE_0:def 4;
then
A24: (p
`1 )
<>
0 by
A16;
A25: ex px be
Point of (
TOP-REAL 2) st x
= px & ((px
`2 )
<= (px
`1 ) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 ))) & px
<> (
0. (
TOP-REAL 2)) by
A23;
then
A26: (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
Def1;
A27: (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
then ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
<= ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) & ((
- (p
`1 ))
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
<= ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) or ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
>= ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) & ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
<= ((
- (p
`1 ))
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
A25,
XREAL_1: 72;
then
A28: ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
<= ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) & (
- ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))))
<= ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) or ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
>= ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) & ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
<= (
- ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))) by
XCMPLX_1: 187;
set p9 =
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|;
A29: (p9
`1 )
= ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) & (p9
`2 )
= ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
EUCLID: 52;
A30: (p9
`1 )
= ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
EUCLID: 52;
A31:
now
assume p9
= (
0. (
TOP-REAL 2));
then (
0
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
= (((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
A30,
EUCLID: 52,
EUCLID: 54;
hence contradiction by
A24,
A27,
XCMPLX_1: 87;
end;
(
Sq_Circ
. p)
= y by
A21,
A23,
FUNCT_1: 49;
then y
in K0 by
A31,
A26,
A28,
A29;
then y
in (
[#] (((
TOP-REAL 2)
| D)
| K0)) by
PRE_TOPC:def 5;
hence thesis;
end;
A32: K0
c= the
carrier of (
TOP-REAL 2)
proof
let z be
object;
assume z
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st p8
= z & ((p8
`2 )
<= (p8
`1 ) & (
- (p8
`1 ))
<= (p8
`2 ) or (p8
`2 )
>= (p8
`1 ) & (p8
`2 )
<= (
- (p8
`1 ))) & p8
<> (
0. (
TOP-REAL 2));
hence thesis;
end;
(
dom (
Sq_Circ
| K0))
= ((
dom
Sq_Circ )
/\ K0) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K0) by
FUNCT_2:def 1
.= K0 by
A32,
XBOOLE_1: 28;
then
reconsider f = (
Sq_Circ
| K0) as
Function of (((
TOP-REAL 2)
| D)
| K0), ((
TOP-REAL 2)
| D) by
A7,
A15,
FUNCT_2: 2,
XBOOLE_1: 1;
A33: K1
= (
[#] (((
TOP-REAL 2)
| D)
| K1)) by
PRE_TOPC:def 5;
A34: K1
c= the
carrier of (
TOP-REAL 2)
proof
let z be
object;
assume z
in K1;
then ex p8 be
Point of (
TOP-REAL 2) st p8
= z & ((p8
`1 )
<= (p8
`2 ) & (
- (p8
`2 ))
<= (p8
`1 ) or (p8
`1 )
>= (p8
`2 ) & (p8
`1 )
<= (
- (p8
`2 ))) & p8
<> (
0. (
TOP-REAL 2));
hence thesis;
end;
A35: (
rng (
Sq_Circ
| K1))
c= the
carrier of (((
TOP-REAL 2)
| D)
| K1)
proof
reconsider K10 = K1 as
Subset of (
TOP-REAL 2) by
A34;
let y be
object;
A36: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K10) holds (q
`2 )
<>
0
proof
let q be
Point of (
TOP-REAL 2);
A37: the
carrier of ((
TOP-REAL 2)
| K10)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K10);
then
A38: ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`1 )
<= (p3
`2 ) & (
- (p3
`2 ))
<= (p3
`1 ) or (p3
`1 )
>= (p3
`2 ) & (p3
`1 )
<= (
- (p3
`2 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A37;
now
assume
A39: (q
`2 )
=
0 ;
then (q
`1 )
=
0 by
A38;
hence contradiction by
A38,
A39,
EUCLID: 53,
EUCLID: 54;
end;
hence thesis;
end;
assume y
in (
rng (
Sq_Circ
| K1));
then
consider x be
object such that
A40: x
in (
dom (
Sq_Circ
| K1)) and
A41: y
= ((
Sq_Circ
| K1)
. x) by
FUNCT_1:def 3;
A42: x
in ((
dom
Sq_Circ )
/\ K1) by
A40,
RELAT_1: 61;
then
A43: x
in K1 by
XBOOLE_0:def 4;
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A34;
K10
= the
carrier of ((
TOP-REAL 2)
| K10) by
PRE_TOPC: 8;
then p
in the
carrier of ((
TOP-REAL 2)
| K10) by
A42,
XBOOLE_0:def 4;
then
A44: (p
`2 )
<>
0 by
A36;
set p9 =
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|;
A45: (p9
`2 )
= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) & (p9
`1 )
= ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
EUCLID: 52;
A46: ex px be
Point of (
TOP-REAL 2) st x
= px & ((px
`1 )
<= (px
`2 ) & (
- (px
`2 ))
<= (px
`1 ) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 ))) & px
<> (
0. (
TOP-REAL 2)) by
A43;
then
A47: (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
Th4;
A48: (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
then ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
<= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) & ((
- (p
`2 ))
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
<= ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) or ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
>= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) & ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
<= ((
- (p
`2 ))
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
A46,
XREAL_1: 72;
then
A49: ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
<= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) & (
- ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))))
<= ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) or ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
>= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) & ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
<= (
- ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))) by
XCMPLX_1: 187;
A50: (p9
`2 )
= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
EUCLID: 52;
A51:
now
assume p9
= (
0. (
TOP-REAL 2));
then (
0
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
= (((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
A50,
EUCLID: 52,
EUCLID: 54;
hence contradiction by
A44,
A48,
XCMPLX_1: 87;
end;
(
Sq_Circ
. p)
= y by
A41,
A43,
FUNCT_1: 49;
then y
in K1 by
A51,
A47,
A49,
A45;
hence thesis by
PRE_TOPC: 8;
end;
(
dom (
Sq_Circ
| K1))
= ((
dom
Sq_Circ )
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
A34,
XBOOLE_1: 28;
then
reconsider g = (
Sq_Circ
| K1) as
Function of (((
TOP-REAL 2)
| D)
| K1), ((
TOP-REAL 2)
| D) by
A10,
A35,
FUNCT_2: 2,
XBOOLE_1: 1;
A52: (
dom g)
= K1 by
A10,
FUNCT_2:def 1;
g
= (
Sq_Circ
| K1);
then
A53: K1 is
closed by
A4,
Th18;
A54: K0
= (
[#] (((
TOP-REAL 2)
| D)
| K0)) by
PRE_TOPC:def 5;
A55: for x be
object st x
in ((
[#] (((
TOP-REAL 2)
| D)
| K0))
/\ (
[#] (((
TOP-REAL 2)
| D)
| K1))) holds (f
. x)
= (g
. x)
proof
let x be
object;
assume
A56: x
in ((
[#] (((
TOP-REAL 2)
| D)
| K0))
/\ (
[#] (((
TOP-REAL 2)
| D)
| K1)));
then x
in K0 by
A54,
XBOOLE_0:def 4;
then (f
. x)
= (
Sq_Circ
. x) by
FUNCT_1: 49;
hence thesis by
A33,
A56,
FUNCT_1: 49;
end;
f
= (
Sq_Circ
| K0);
then
A57: K0 is
closed by
A4,
Th17;
A58: (
dom f)
= K0 by
A7,
FUNCT_2:def 1;
D
= (
[#] ((
TOP-REAL 2)
| D)) by
PRE_TOPC:def 5;
then
A59: ((
[#] (((
TOP-REAL 2)
| D)
| K0))
\/ (
[#] (((
TOP-REAL 2)
| D)
| K1)))
= (
[#] ((
TOP-REAL 2)
| D)) by
A54,
A33,
A11;
A60: f is
continuous & g is
continuous by
A4,
Th17,
Th18;
then
consider h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) such that
A61: h
= (f
+* g) and h is
continuous by
A54,
A33,
A59,
A57,
A53,
A55,
JGRAPH_2: 1;
K0
= (
[#] (((
TOP-REAL 2)
| D)
| K0)) & K1
= (
[#] (((
TOP-REAL 2)
| D)
| K1)) by
PRE_TOPC:def 5;
then
A62: f
tolerates g by
A55,
A58,
A52,
PARTFUN1:def 4;
A63: for x be
object st x
in (
dom h) holds (h
. x)
= ((
Sq_Circ
| D)
. x)
proof
let x be
object;
assume
A64: x
in (
dom h);
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A13,
XBOOLE_0:def 5;
not x
in
{(
0. (
TOP-REAL 2))} by
A13,
A64,
XBOOLE_0:def 5;
then
A65: x
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
x
in (the
carrier of (
TOP-REAL 2)
\ (D
` )) by
A3,
A13,
A64;
then
A66: x
in ((D
` )
` ) by
SUBSET_1:def 4;
per cases ;
suppose
A67: x
in K0;
A68: ((
Sq_Circ
| D)
. p)
= (
Sq_Circ
. p) by
A66,
FUNCT_1: 49
.= (f
. p) by
A67,
FUNCT_1: 49;
(h
. p)
= ((g
+* f)
. p) by
A61,
A62,
FUNCT_4: 34
.= (f
. p) by
A58,
A67,
FUNCT_4: 13;
hence thesis by
A68;
end;
suppose not x
in K0;
then not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) by
A65;
then (p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 )) by
XREAL_1: 26;
then
A69: x
in K1 by
A65;
((
Sq_Circ
| D)
. p)
= (
Sq_Circ
. p) by
A66,
FUNCT_1: 49
.= (g
. p) by
A69,
FUNCT_1: 49;
hence thesis by
A61,
A52,
A69,
FUNCT_4: 13;
end;
end;
(
dom h)
= the
carrier of ((
TOP-REAL 2)
| D) by
FUNCT_2:def 1;
then (f
+* g)
= (
Sq_Circ
| D) by
A61,
A2,
A63;
hence thesis by
A54,
A33,
A59,
A57,
A60,
A53,
A55,
JGRAPH_2: 1;
end;
theorem ::
JGRAPH_3:20
Th20: for D be non
empty
Subset of (
TOP-REAL 2) st D
= (
NonZero (
TOP-REAL 2)) holds (D
` )
=
{(
0. (
TOP-REAL 2))}
proof
let D be non
empty
Subset of (
TOP-REAL 2);
assume
A1: D
= (
NonZero (
TOP-REAL 2));
A2: (D
` )
c=
{(
0. (
TOP-REAL 2))}
proof
let x be
object;
assume
A3: x
in (D
` );
then x
in (the
carrier of (
TOP-REAL 2)
\ D) by
SUBSET_1:def 4;
then not x
in D by
XBOOLE_0:def 5;
hence thesis by
A1,
A3,
XBOOLE_0:def 5;
end;
{(
0. (
TOP-REAL 2))}
c= (D
` )
proof
let x be
object;
assume
A4: x
in
{(
0. (
TOP-REAL 2))};
then not x
in D by
A1,
XBOOLE_0:def 5;
then x
in (the
carrier of (
TOP-REAL 2)
\ D) by
A4,
XBOOLE_0:def 5;
hence thesis by
SUBSET_1:def 4;
end;
hence thesis by
A2;
end;
Lm16: the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
theorem ::
JGRAPH_3:21
Th21: ex h be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st h
=
Sq_Circ & h is
continuous
proof
reconsider D = (
NonZero (
TOP-REAL 2)) as non
empty
Subset of (
TOP-REAL 2) by
JGRAPH_2: 9;
reconsider f =
Sq_Circ as
Function of (
TOP-REAL 2), (
TOP-REAL 2);
A1: for p be
Point of ((
TOP-REAL 2)
| D) holds (f
. p)
<> (f
. (
0. (
TOP-REAL 2)))
proof
let p be
Point of ((
TOP-REAL 2)
| D);
A2: (
[#] ((
TOP-REAL 2)
| D))
= D by
PRE_TOPC:def 5;
then
reconsider q = p as
Point of (
TOP-REAL 2) by
XBOOLE_0:def 5;
not p
in
{(
0. (
TOP-REAL 2))} by
A2,
XBOOLE_0:def 5;
then
A3: not p
= (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
per cases ;
suppose
A4: not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
then
A5: (q
`2 )
<>
0 ;
set q9 =
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|;
A6: (q9
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A7: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A8:
now
assume q9
= (
0. (
TOP-REAL 2));
then (
0
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
= (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A6,
EUCLID: 52,
EUCLID: 54;
hence contradiction by
A5,
A7,
XCMPLX_1: 87;
end;
(
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
A3,
A4,
Def1;
hence thesis by
A8,
Def1;
end;
suppose
A9: (q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 ));
A10:
now
assume
A11: (q
`1 )
=
0 ;
then (q
`2 )
=
0 by
A9;
hence contradiction by
A3,
A11,
EUCLID: 53,
EUCLID: 54;
end;
set q9 =
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|;
A12: (q9
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A13: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A14:
now
assume q9
= (
0. (
TOP-REAL 2));
then (
0
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
= (((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A12,
EUCLID: 52,
EUCLID: 54;
hence contradiction by
A10,
A13,
XCMPLX_1: 87;
end;
(
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A3,
A9,
Def1;
hence thesis by
A14,
Def1;
end;
end;
A15: (f
. (
0. (
TOP-REAL 2)))
= (
0. (
TOP-REAL 2)) by
Def1;
A16: for V be
Subset of (
TOP-REAL 2) st (f
. (
0. (
TOP-REAL 2)))
in V & V is
open holds ex W be
Subset of (
TOP-REAL 2) st (
0. (
TOP-REAL 2))
in W & W is
open & (f
.: W)
c= V
proof
reconsider u0 = (
0. (
TOP-REAL 2)) as
Point of (
Euclid 2) by
EUCLID: 67;
let V be
Subset of (
TOP-REAL 2);
reconsider VV = V as
Subset of (
TopSpaceMetr (
Euclid 2)) by
Lm16;
assume that
A17: (f
. (
0. (
TOP-REAL 2)))
in V and
A18: V is
open;
VV is
open by
A18,
Lm16,
PRE_TOPC: 30;
then
consider r be
Real such that
A19: r
>
0 and
A20: (
Ball (u0,r))
c= V by
A15,
A17,
TOPMETR: 15;
reconsider r as
Real;
reconsider W1 = (
Ball (u0,r)) as
Subset of (
TOP-REAL 2) by
EUCLID: 67;
A21: W1 is
open by
GOBOARD6: 3;
A22: (f
.: W1)
c= W1
proof
let z be
object;
assume z
in (f
.: W1);
then
consider y be
object such that
A23: y
in (
dom f) and
A24: y
in W1 and
A25: z
= (f
. y) by
FUNCT_1:def 6;
z
in (
rng f) by
A23,
A25,
FUNCT_1:def 3;
then
reconsider qz = z as
Point of (
TOP-REAL 2);
reconsider pz = qz as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider q = y as
Point of (
TOP-REAL 2) by
A23;
reconsider qy = q as
Point of (
Euclid 2) by
EUCLID: 67;
(
dist (u0,qy))
< r by
A24,
METRIC_1: 11;
then
|.((
0. (
TOP-REAL 2))
- q).|
< r by
JGRAPH_1: 28;
then (
sqrt (((((
0. (
TOP-REAL 2))
- q)
`1 )
^2 )
+ ((((
0. (
TOP-REAL 2))
- q)
`2 )
^2 )))
< r by
JGRAPH_1: 30;
then (
sqrt (((((
0. (
TOP-REAL 2))
`1 )
- (q
`1 ))
^2 )
+ ((((
0. (
TOP-REAL 2))
- q)
`2 )
^2 )))
< r by
TOPREAL3: 3;
then
A26: (
sqrt (((((
0. (
TOP-REAL 2))
`1 )
- (q
`1 ))
^2 )
+ ((((
0. (
TOP-REAL 2))
`2 )
- (q
`2 ))
^2 )))
< r by
TOPREAL3: 3;
per cases ;
suppose q
= (
0. (
TOP-REAL 2));
hence thesis by
A24,
A25,
Def1;
end;
suppose
A27: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
A28: ((q
`2 )
^2 )
>=
0 by
XREAL_1: 63;
(((q
`2 )
/ (q
`1 ))
^2 )
>=
0 by
XREAL_1: 63;
then (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>= (1
+
0 ) by
XREAL_1: 7;
then
A29: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>= 1 by
SQUARE_1: 18,
SQUARE_1: 26;
then ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 )
>= (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XREAL_1: 151;
then
A30: 1
<= ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ) by
A29,
XXREAL_0: 2;
A31: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A27,
Def1;
then ((qz
`2 )
^2 )
= (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 ) by
A25,
EUCLID: 52
.= (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 )) by
XCMPLX_1: 76;
then
A32: ((qz
`2 )
^2 )
<= (((q
`2 )
^2 )
/ 1) by
A30,
A28,
XREAL_1: 118;
A33: ((q
`1 )
^2 )
>=
0 by
XREAL_1: 63;
((qz
`1 )
^2 )
= (((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 ) by
A25,
A31,
EUCLID: 52
.= (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 )) by
XCMPLX_1: 76;
then ((qz
`1 )
^2 )
<= (((q
`1 )
^2 )
/ 1) by
A30,
A33,
XREAL_1: 118;
then
A34: (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A32,
XREAL_1: 7;
((qz
`1 )
^2 )
>=
0 & ((qz
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A35: (
sqrt (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )))
<= (
sqrt (((q
`1 )
^2 )
+ ((q
`2 )
^2 ))) by
A34,
SQUARE_1: 26;
A36: (((
0. (
TOP-REAL 2))
- qz)
`2 )
= (((
0. (
TOP-REAL 2))
`2 )
- (qz
`2 )) by
TOPREAL3: 3
.= (
- (qz
`2 )) by
JGRAPH_2: 3;
(((
0. (
TOP-REAL 2))
- qz)
`1 )
= (((
0. (
TOP-REAL 2))
`1 )
- (qz
`1 )) by
TOPREAL3: 3
.= (
- (qz
`1 )) by
JGRAPH_2: 3;
then (
sqrt (((((
0. (
TOP-REAL 2))
- qz)
`1 )
^2 )
+ ((((
0. (
TOP-REAL 2))
- qz)
`2 )
^2 )))
< r by
A26,
A36,
A35,
JGRAPH_2: 3,
XXREAL_0: 2;
then
|.((
0. (
TOP-REAL 2))
- qz).|
< r by
JGRAPH_1: 30;
then (
dist (u0,pz))
< r by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 11;
end;
suppose
A37: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
A38: ((q
`2 )
^2 )
>=
0 by
XREAL_1: 63;
(((q
`1 )
/ (q
`2 ))
^2 )
>=
0 by
XREAL_1: 63;
then (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>= (1
+
0 ) by
XREAL_1: 7;
then
A39: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>= 1 by
SQUARE_1: 18,
SQUARE_1: 26;
then ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 )
>= (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
XREAL_1: 151;
then
A40: 1
<= ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ) by
A39,
XXREAL_0: 2;
A41: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
A37,
Def1;
then ((qz
`2 )
^2 )
= (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 ) by
A25,
EUCLID: 52
.= (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 )) by
XCMPLX_1: 76;
then
A42: ((qz
`2 )
^2 )
<= (((q
`2 )
^2 )
/ 1) by
A40,
A38,
XREAL_1: 118;
A43: ((q
`1 )
^2 )
>=
0 by
XREAL_1: 63;
((qz
`1 )
^2 )
= (((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 ) by
A25,
A41,
EUCLID: 52
.= (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 )) by
XCMPLX_1: 76;
then ((qz
`1 )
^2 )
<= (((q
`1 )
^2 )
/ 1) by
A40,
A43,
XREAL_1: 118;
then
A44: (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A42,
XREAL_1: 7;
((qz
`1 )
^2 )
>=
0 & ((qz
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A45: (
sqrt (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )))
<= (
sqrt (((q
`1 )
^2 )
+ ((q
`2 )
^2 ))) by
A44,
SQUARE_1: 26;
A46: (((
0. (
TOP-REAL 2))
- qz)
`2 )
= (((
0. (
TOP-REAL 2))
`2 )
- (qz
`2 )) by
TOPREAL3: 3
.= (
- (qz
`2 )) by
JGRAPH_2: 3;
(((
0. (
TOP-REAL 2))
- qz)
`1 )
= (((
0. (
TOP-REAL 2))
`1 )
- (qz
`1 )) by
TOPREAL3: 3
.= (
- (qz
`1 )) by
JGRAPH_2: 3;
then (
sqrt (((((
0. (
TOP-REAL 2))
- qz)
`1 )
^2 )
+ ((((
0. (
TOP-REAL 2))
- qz)
`2 )
^2 )))
< r by
A26,
A46,
A45,
JGRAPH_2: 3,
XXREAL_0: 2;
then
|.((
0. (
TOP-REAL 2))
- qz).|
< r by
JGRAPH_1: 30;
then (
dist (u0,pz))
< r by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 11;
end;
end;
u0
in W1 by
A19,
GOBOARD6: 1;
hence thesis by
A20,
A21,
A22,
XBOOLE_1: 1;
end;
A47: (D
` )
=
{(
0. (
TOP-REAL 2))} by
Th20;
then ex h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) st h
= (
Sq_Circ
| D) & h is
continuous by
Th19;
hence thesis by
A15,
A47,
A1,
A16,
Th3;
end;
theorem ::
JGRAPH_3:22
Th22:
Sq_Circ is
one-to-one
proof
let x1,x2 be
object;
assume that
A1: x1
in (
dom
Sq_Circ ) and
A2: x2
in (
dom
Sq_Circ ) and
A3: (
Sq_Circ
. x1)
= (
Sq_Circ
. x2);
reconsider p2 = x2 as
Point of (
TOP-REAL 2) by
A2;
reconsider p1 = x1 as
Point of (
TOP-REAL 2) by
A1;
set q = p1, p = p2;
per cases ;
suppose
A4: q
= (
0. (
TOP-REAL 2));
then
A5: (
Sq_Circ
. q)
= (
0. (
TOP-REAL 2)) by
Def1;
now
per cases ;
case p
= (
0. (
TOP-REAL 2));
hence thesis by
A4;
end;
case
A6: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )));
(((p
`2 )
/ (p
`1 ))
^2 )
>=
0 by
XREAL_1: 63;
then (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))
>= (1
+
0 ) by
XREAL_1: 7;
then
A7: (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
>= 1 by
SQUARE_1: 18,
SQUARE_1: 26;
A8: (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
A6,
Def1;
then ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
=
0 by
A3,
A5,
EUCLID: 52,
JGRAPH_2: 3;
then
A9: (p
`2 )
= (
0
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
A7,
XCMPLX_1: 87
.=
0 ;
((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
=
0 by
A3,
A5,
A8,
EUCLID: 52,
JGRAPH_2: 3;
then (p
`1 )
= (
0
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
A7,
XCMPLX_1: 87
.=
0 ;
hence contradiction by
A6,
A9,
EUCLID: 53,
EUCLID: 54;
end;
case
A10: p
<> (
0. (
TOP-REAL 2)) & not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )));
(((p
`1 )
/ (p
`2 ))
^2 )
>=
0 by
XREAL_1: 63;
then (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))
>= (1
+
0 ) by
XREAL_1: 7;
then
A11: (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
>= 1 by
SQUARE_1: 18,
SQUARE_1: 26;
(
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A10,
Def1;
then ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
=
0 by
A3,
A5,
EUCLID: 52,
JGRAPH_2: 3;
then (p
`2 )
= (
0
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
A11,
XCMPLX_1: 87
.=
0 ;
hence contradiction by
A10;
end;
end;
hence thesis;
end;
suppose
A12: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
A13: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A14: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A12,
Def1;
A15: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A16: (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
Lm1;
A17: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
now
per cases ;
case
A18: p
= (
0. (
TOP-REAL 2));
(((q
`2 )
/ (q
`1 ))
^2 )
>=
0 by
XREAL_1: 63;
then (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>= (1
+
0 ) by
XREAL_1: 7;
then
A19: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>= 1 by
SQUARE_1: 18,
SQUARE_1: 26;
A20: (
Sq_Circ
. p)
= (
0. (
TOP-REAL 2)) by
A18,
Def1;
then ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A3,
A14,
EUCLID: 52,
JGRAPH_2: 3;
then
A21: (q
`2 )
= (
0
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A19,
XCMPLX_1: 87
.=
0 ;
((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A3,
A14,
A20,
EUCLID: 52,
JGRAPH_2: 3;
then (q
`1 )
= (
0
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A19,
XCMPLX_1: 87
.=
0 ;
hence contradiction by
A12,
A21,
EUCLID: 53,
EUCLID: 54;
end;
case
A22: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )));
now
assume
A23: (p
`1 )
=
0 ;
then (p
`2 )
=
0 by
A22;
hence contradiction by
A22,
A23,
EUCLID: 53,
EUCLID: 54;
end;
then
A24: ((p
`1 )
^2 )
>
0 by
SQUARE_1: 12;
A25: (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A26: (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))
>
0 by
Lm1;
A27: (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
A22,
Def1;
then
A28: ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A3,
A14,
A15,
EUCLID: 52;
then (((p
`2 )
^2 )
/ ((
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
^2 ))
= (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 ) by
XCMPLX_1: 76;
then (((p
`2 )
^2 )
/ ((
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
^2 ))
= (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 )) by
XCMPLX_1: 76;
then (((p
`2 )
^2 )
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 )) by
A26,
SQUARE_1:def 2;
then
A29: (((p
`2 )
^2 )
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= (((q
`2 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A16,
SQUARE_1:def 2;
A30: ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A3,
A14,
A17,
A27,
EUCLID: 52;
then (((p
`1 )
^2 )
/ ((
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
^2 ))
= (((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 ) by
XCMPLX_1: 76;
then (((p
`1 )
^2 )
/ ((
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
^2 ))
= (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 )) by
XCMPLX_1: 76;
then (((p
`1 )
^2 )
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 )) by
A26,
SQUARE_1:def 2;
then (((p
`1 )
^2 )
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= (((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A16,
SQUARE_1:def 2;
then ((((p
`1 )
^2 )
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
/ ((p
`1 )
^2 ))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 48;
then ((((p
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 48;
then (1
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A24,
XCMPLX_1: 60;
then
A31: ((1
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
= (((q
`1 )
^2 )
/ ((p
`1 )
^2 )) by
A16,
XCMPLX_1: 87;
now
assume
A32: (q
`1 )
=
0 ;
then (q
`2 )
=
0 by
A12;
hence contradiction by
A12,
A32,
EUCLID: 53,
EUCLID: 54;
end;
then
A33: ((q
`1 )
^2 )
>
0 by
SQUARE_1: 12;
now
per cases ;
case
A34: (p
`2 )
=
0 ;
then ((q
`2 )
^2 )
=
0 by
A16,
A29,
XCMPLX_1: 50;
then
A35: (q
`2 )
=
0 by
XCMPLX_1: 6;
then p
=
|[(q
`1 ),
0 ]| by
A3,
A14,
A27,
A34,
EUCLID: 53,
SQUARE_1: 18;
hence thesis by
A35,
EUCLID: 53;
end;
case (p
`2 )
<>
0 ;
then
A36: ((p
`2 )
^2 )
>
0 by
SQUARE_1: 12;
((((p
`2 )
^2 )
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
/ ((p
`2 )
^2 ))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A29,
XCMPLX_1: 48;
then ((((p
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 48;
then (1
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A36,
XCMPLX_1: 60;
then ((1
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
= (((q
`2 )
^2 )
/ ((p
`2 )
^2 )) by
A16,
XCMPLX_1: 87;
then ((((q
`1 )
^2 )
/ ((q
`1 )
^2 ))
/ ((p
`1 )
^2 ))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ ((q
`1 )
^2 )) by
A31,
XCMPLX_1: 48;
then (1
/ ((p
`1 )
^2 ))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ ((q
`1 )
^2 )) by
A33,
XCMPLX_1: 60;
then ((1
/ ((p
`1 )
^2 ))
* ((p
`2 )
^2 ))
= ((((p
`2 )
^2 )
* (((q
`2 )
^2 )
/ ((p
`2 )
^2 )))
/ ((q
`1 )
^2 )) by
XCMPLX_1: 74;
then ((1
/ ((p
`1 )
^2 ))
* ((p
`2 )
^2 ))
= (((q
`2 )
^2 )
/ ((q
`1 )
^2 )) by
A36,
XCMPLX_1: 87;
then (((p
`2 )
^2 )
/ ((p
`1 )
^2 ))
= (((q
`2 )
^2 )
/ ((q
`1 )
^2 )) by
XCMPLX_1: 99;
then (((p
`2 )
/ (p
`1 ))
^2 )
= (((q
`2 )
^2 )
/ ((q
`1 )
^2 )) by
XCMPLX_1: 76;
then
A37: (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))
= (1
+ (((q
`2 )
/ (q
`1 ))
^2 )) by
XCMPLX_1: 76;
then (p
`2 )
= (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A28,
A25,
XCMPLX_1: 87;
then
A38: (p
`2 )
= (q
`2 ) by
A13,
XCMPLX_1: 87;
(p
`1 )
= (((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A30,
A25,
A37,
XCMPLX_1: 87;
then (p
`1 )
= (q
`1 ) by
A13,
XCMPLX_1: 87;
then p
=
|[(q
`1 ), (q
`2 )]| by
A38,
EUCLID: 53;
hence thesis by
EUCLID: 53;
end;
end;
hence thesis;
end;
case
A39: p
<> (
0. (
TOP-REAL 2)) & not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )));
A40: (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))
>
0 by
Lm1;
A41: p
<> (
0. (
TOP-REAL 2)) & (p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 )) by
A39,
JGRAPH_2: 13;
(p
`2 )
<>
0 by
A39;
then
A42: ((p
`2 )
^2 )
>
0 by
SQUARE_1: 12;
(
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|
`2 )
= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
EUCLID: 52;
then
A43: ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A3,
A14,
A15,
A39,
Def1;
then (((p
`2 )
^2 )
/ ((
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
^2 ))
= (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 ) by
XCMPLX_1: 76;
then (((p
`2 )
^2 )
/ ((
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
^2 ))
= (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 )) by
XCMPLX_1: 76;
then (((p
`2 )
^2 )
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 )) by
A40,
SQUARE_1:def 2;
then (((p
`2 )
^2 )
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= (((q
`2 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A16,
SQUARE_1:def 2;
then ((((p
`2 )
^2 )
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
/ ((p
`2 )
^2 ))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 48;
then ((((p
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 48;
then (1
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A42,
XCMPLX_1: 60;
then
A44: ((1
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
= (((q
`2 )
^2 )
/ ((p
`2 )
^2 )) by
A16,
XCMPLX_1: 87;
A45: (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
(
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|
`1 )
= ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
EUCLID: 52;
then
A46: ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A3,
A14,
A17,
A39,
Def1;
then (((p
`1 )
^2 )
/ ((
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
^2 ))
= (((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 ) by
XCMPLX_1: 76;
then (((p
`1 )
^2 )
/ ((
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
^2 ))
= (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 )) by
XCMPLX_1: 76;
then (((p
`1 )
^2 )
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 )) by
A40,
SQUARE_1:def 2;
then
A47: (((p
`1 )
^2 )
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= (((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A16,
SQUARE_1:def 2;
A48:
now
assume
A49: (q
`1 )
=
0 ;
then (q
`2 )
=
0 by
A12;
hence contradiction by
A12,
A49,
EUCLID: 53,
EUCLID: 54;
end;
then
A50: ((q
`1 )
^2 )
>
0 by
SQUARE_1: 12;
now
per cases ;
case (p
`1 )
=
0 ;
then ((q
`1 )
^2 )
=
0 by
A16,
A47,
XCMPLX_1: 50;
then
A51: (q
`1 )
=
0 by
XCMPLX_1: 6;
then (q
`2 )
=
0 by
A12;
hence contradiction by
A12,
A51,
EUCLID: 53,
EUCLID: 54;
end;
case
A52: (p
`1 )
<>
0 ;
set a = ((q
`2 )
/ (q
`1 ));
((((p
`1 )
^2 )
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
/ ((p
`1 )
^2 ))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A47,
XCMPLX_1: 48;
then
A53: ((((p
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 48;
A54: ((q
`1 )
* a)
<= (q
`1 ) & (
- (q
`1 ))
<= ((q
`1 )
* a) or ((q
`1 )
* a)
>= (q
`1 ) & ((q
`1 )
* a)
<= (
- (q
`1 )) by
A12,
A48,
XCMPLX_1: 87;
A55:
now
per cases by
A48;
case
A56: (q
`1 )
>
0 ;
then ((a
* (q
`1 ))
/ (q
`1 ))
<= ((q
`1 )
/ (q
`1 )) & ((
- (q
`1 ))
/ (q
`1 ))
<= ((a
* (q
`1 ))
/ (q
`1 )) or ((a
* (q
`1 ))
/ (q
`1 ))
>= ((q
`1 )
/ (q
`1 )) & ((a
* (q
`1 ))
/ (q
`1 ))
<= ((
- (q
`1 ))
/ (q
`1 )) by
A54,
XREAL_1: 72;
then
A57: a
<= ((q
`1 )
/ (q
`1 )) & ((
- (q
`1 ))
/ (q
`1 ))
<= a or a
>= ((q
`1 )
/ (q
`1 )) & a
<= ((
- (q
`1 ))
/ (q
`1 )) by
A56,
XCMPLX_1: 89;
((q
`1 )
/ (q
`1 ))
= 1 by
A56,
XCMPLX_1: 60;
hence a
<= 1 & (
- 1)
<= a or a
>= 1 & a
<= (
- 1) by
A57,
XCMPLX_1: 187;
end;
case
A58: (q
`1 )
<
0 ;
then
A59: ((q
`1 )
/ (q
`1 ))
= 1 & ((
- (q
`1 ))
/ (q
`1 ))
= (
- 1) by
XCMPLX_1: 60,
XCMPLX_1: 197;
((a
* (q
`1 ))
/ (q
`1 ))
>= ((q
`1 )
/ (q
`1 )) & ((
- (q
`1 ))
/ (q
`1 ))
>= ((a
* (q
`1 ))
/ (q
`1 )) or ((a
* (q
`1 ))
/ (q
`1 ))
<= ((q
`1 )
/ (q
`1 )) & ((a
* (q
`1 ))
/ (q
`1 ))
>= ((
- (q
`1 ))
/ (q
`1 )) by
A54,
A58,
XREAL_1: 73;
hence a
<= 1 & (
- 1)
<= a or a
>= 1 & a
<= (
- 1) by
A58,
A59,
XCMPLX_1: 89;
end;
end;
((p
`1 )
^2 )
>
0 by
A52,
SQUARE_1: 12;
then (1
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A53,
XCMPLX_1: 60;
then ((1
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
= (((q
`1 )
^2 )
/ ((p
`1 )
^2 )) by
A16,
XCMPLX_1: 87;
then ((((q
`1 )
^2 )
/ ((q
`1 )
^2 ))
/ ((p
`1 )
^2 ))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ ((q
`1 )
^2 )) by
A44,
XCMPLX_1: 48;
then (1
/ ((p
`1 )
^2 ))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ ((q
`1 )
^2 )) by
A50,
XCMPLX_1: 60;
then ((1
/ ((p
`1 )
^2 ))
* ((p
`2 )
^2 ))
= ((((p
`2 )
^2 )
* (((q
`2 )
^2 )
/ ((p
`2 )
^2 )))
/ ((q
`1 )
^2 )) by
XCMPLX_1: 74;
then ((1
/ ((p
`1 )
^2 ))
* ((p
`2 )
^2 ))
= (((q
`2 )
^2 )
/ ((q
`1 )
^2 )) by
A42,
XCMPLX_1: 87;
then (((p
`2 )
^2 )
/ ((p
`1 )
^2 ))
= (((q
`2 )
^2 )
/ ((q
`1 )
^2 )) by
XCMPLX_1: 99;
then (((p
`2 )
/ (p
`1 ))
^2 )
= (((q
`2 )
^2 )
/ ((q
`1 )
^2 )) by
XCMPLX_1: 76;
then
A60: (((p
`2 )
/ (p
`1 ))
^2 )
= (((q
`2 )
/ (q
`1 ))
^2 ) by
XCMPLX_1: 76;
then
A61: (((p
`2 )
/ (p
`1 ))
* (p
`1 ))
= (a
* (p
`1 )) or (((p
`2 )
/ (p
`1 ))
* (p
`1 ))
= ((
- a)
* (p
`1 )) by
SQUARE_1: 40;
A62:
now
per cases by
A52,
A61,
XCMPLX_1: 87;
case
A63: (p
`2 )
= (a
* (p
`1 ));
now
per cases by
A52;
case (p
`1 )
>
0 ;
then ((p
`1 )
/ (p
`1 ))
<= ((a
* (p
`1 ))
/ (p
`1 )) & ((
- (a
* (p
`1 )))
/ (p
`1 ))
<= ((p
`1 )
/ (p
`1 )) or ((p
`1 )
/ (p
`1 ))
>= ((a
* (p
`1 ))
/ (p
`1 )) & ((p
`1 )
/ (p
`1 ))
<= ((
- (a
* (p
`1 )))
/ (p
`1 )) by
A41,
A63,
XREAL_1: 72;
then
A64: 1
<= ((a
* (p
`1 ))
/ (p
`1 )) & ((
- (a
* (p
`1 )))
/ (p
`1 ))
<= 1 or 1
>= ((a
* (p
`1 ))
/ (p
`1 )) & 1
<= ((
- (a
* (p
`1 )))
/ (p
`1 )) by
A52,
XCMPLX_1: 60;
((a
* (p
`1 ))
/ (p
`1 ))
= a by
A52,
XCMPLX_1: 89;
hence 1
<= a & (
- a)
<= 1 or 1
>= a & 1
<= (
- a) by
A64,
XCMPLX_1: 187;
end;
case (p
`1 )
<
0 ;
then ((p
`1 )
/ (p
`1 ))
>= ((a
* (p
`1 ))
/ (p
`1 )) & ((
- (a
* (p
`1 )))
/ (p
`1 ))
>= ((p
`1 )
/ (p
`1 )) or ((p
`1 )
/ (p
`1 ))
<= ((a
* (p
`1 ))
/ (p
`1 )) & ((p
`1 )
/ (p
`1 ))
>= ((
- (a
* (p
`1 )))
/ (p
`1 )) by
A41,
A63,
XREAL_1: 73;
then
A65: 1
>= ((a
* (p
`1 ))
/ (p
`1 )) & ((
- (a
* (p
`1 )))
/ (p
`1 ))
>= 1 or 1
<= ((a
* (p
`1 ))
/ (p
`1 )) & 1
>= ((
- (a
* (p
`1 )))
/ (p
`1 )) by
A52,
XCMPLX_1: 60;
((a
* (p
`1 ))
/ (p
`1 ))
= a by
A52,
XCMPLX_1: 89;
hence 1
<= a & (
- a)
<= 1 or 1
>= a & 1
<= (
- a) by
A65,
XCMPLX_1: 187;
end;
end;
then 1
<= a & (
- a)
<= 1 or 1
>= a & (
- 1)
>= (
- (
- a)) by
XREAL_1: 24;
hence 1
<= a or (
- 1)
>= a;
end;
case
A66: (p
`2 )
= ((
- a)
* (p
`1 ));
now
per cases by
A52;
case (p
`1 )
>
0 ;
then ((p
`1 )
/ (p
`1 ))
<= (((
- a)
* (p
`1 ))
/ (p
`1 )) & ((
- ((
- a)
* (p
`1 )))
/ (p
`1 ))
<= ((p
`1 )
/ (p
`1 )) or ((p
`1 )
/ (p
`1 ))
>= (((
- a)
* (p
`1 ))
/ (p
`1 )) & ((p
`1 )
/ (p
`1 ))
<= ((
- ((
- a)
* (p
`1 )))
/ (p
`1 )) by
A41,
A66,
XREAL_1: 72;
then 1
<= (((
- a)
* (p
`1 ))
/ (p
`1 )) & ((
- ((
- a)
* (p
`1 )))
/ (p
`1 ))
<= 1 or 1
>= (((
- a)
* (p
`1 ))
/ (p
`1 )) & 1
<= ((
- ((
- a)
* (p
`1 )))
/ (p
`1 )) by
A52,
XCMPLX_1: 60;
then
A67: 1
<= (
- a) & (
- (((
- a)
* (p
`1 ))
/ (p
`1 )))
<= 1 or 1
>= (
- a) & 1
<= (
- (((
- a)
* (p
`1 ))
/ (p
`1 ))) by
A52,
XCMPLX_1: 89,
XCMPLX_1: 187;
(((
- a)
* (p
`1 ))
/ (p
`1 ))
= (
- a) by
A52,
XCMPLX_1: 89;
hence 1
<= a & (
- a)
<= 1 or 1
>= a & 1
<= (
- a) by
A67;
end;
case (p
`1 )
<
0 ;
then ((p
`1 )
/ (p
`1 ))
>= (((
- a)
* (p
`1 ))
/ (p
`1 )) & ((
- ((
- a)
* (p
`1 )))
/ (p
`1 ))
>= ((p
`1 )
/ (p
`1 )) or ((p
`1 )
/ (p
`1 ))
<= (((
- a)
* (p
`1 ))
/ (p
`1 )) & ((p
`1 )
/ (p
`1 ))
>= ((
- ((
- a)
* (p
`1 )))
/ (p
`1 )) by
A41,
A66,
XREAL_1: 73;
then 1
>= (((
- a)
* (p
`1 ))
/ (p
`1 )) & ((
- ((
- a)
* (p
`1 )))
/ (p
`1 ))
>= 1 or 1
<= (((
- a)
* (p
`1 ))
/ (p
`1 )) & 1
>= ((
- ((
- a)
* (p
`1 )))
/ (p
`1 )) by
A52,
XCMPLX_1: 60;
then
A68: 1
>= (
- a) & (
- (((
- a)
* (p
`1 ))
/ (p
`1 )))
>= 1 or 1
<= (
- a) & 1
>= (
- (((
- a)
* (p
`1 ))
/ (p
`1 ))) by
A52,
XCMPLX_1: 89,
XCMPLX_1: 187;
(((
- a)
* (p
`1 ))
/ (p
`1 ))
= (
- a) by
A52,
XCMPLX_1: 89;
hence 1
<= a & (
- a)
<= 1 or 1
>= a & 1
<= (
- a) by
A68;
end;
end;
then 1
<= a & (
- a)
<= 1 or 1
>= a & (
- 1)
>= (
- (
- a)) by
XREAL_1: 24;
hence 1
<= a or (
- 1)
>= a;
end;
end;
A69:
now
per cases by
A62,
A55,
XXREAL_0: 1;
case a
= 1;
then (((p
`2 )
^2 )
/ ((p
`1 )
^2 ))
= 1 by
A60,
XCMPLX_1: 76;
then
A70: ((p
`2 )
^2 )
= ((p
`1 )
^2 ) by
XCMPLX_1: 58;
(((p
`1 )
/ (p
`2 ))
^2 )
= (((p
`1 )
^2 )
/ ((p
`2 )
^2 )) by
XCMPLX_1: 76;
hence (((p
`1 )
/ (p
`2 ))
^2 )
= (((q
`2 )
/ (q
`1 ))
^2 ) by
A60,
A70,
XCMPLX_1: 76;
end;
case a
= (
- 1);
then (((p
`2 )
^2 )
/ ((p
`1 )
^2 ))
= 1 by
A60,
XCMPLX_1: 76;
then
A71: ((p
`2 )
^2 )
= ((p
`1 )
^2 ) by
XCMPLX_1: 58;
(((p
`1 )
/ (p
`2 ))
^2 )
= (((p
`1 )
^2 )
/ ((p
`2 )
^2 )) by
XCMPLX_1: 76;
hence (((p
`1 )
/ (p
`2 ))
^2 )
= (((q
`2 )
/ (q
`1 ))
^2 ) by
A60,
A71,
XCMPLX_1: 76;
end;
end;
then (p
`2 )
= (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A43,
A45,
XCMPLX_1: 87;
then
A72: (p
`2 )
= (q
`2 ) by
A13,
XCMPLX_1: 87;
(p
`1 )
= (((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A46,
A45,
A69,
XCMPLX_1: 87;
then (p
`1 )
= (q
`1 ) by
A13,
XCMPLX_1: 87;
then p
=
|[(q
`1 ), (q
`2 )]| by
A72,
EUCLID: 53;
hence thesis by
EUCLID: 53;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
suppose
A73: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
A74: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A75: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A76: (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>
0 by
Lm1;
A77: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A78: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
A73,
Def1;
A79: (q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & (q
`1 )
<= (
- (q
`2 )) by
A73,
JGRAPH_2: 13;
now
per cases ;
case
A80: p
= (
0. (
TOP-REAL 2));
(((q
`1 )
/ (q
`2 ))
^2 )
>=
0 by
XREAL_1: 63;
then (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>= (1
+
0 ) by
XREAL_1: 7;
then
A81: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>= 1 by
SQUARE_1: 18,
SQUARE_1: 26;
(
Sq_Circ
. p)
= (
0. (
TOP-REAL 2)) by
A80,
Def1;
then ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
=
0 by
A3,
A78,
EUCLID: 52,
JGRAPH_2: 3;
then (q
`2 )
= (
0
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A81,
XCMPLX_1: 87
.=
0 ;
hence contradiction by
A73;
end;
case
A82: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )));
now
assume
A83: (p
`1 )
=
0 ;
then (p
`2 )
=
0 by
A82;
hence contradiction by
A82,
A83,
EUCLID: 53,
EUCLID: 54;
end;
then
A84: ((p
`1 )
^2 )
>
0 by
SQUARE_1: 12;
A85: (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))
>
0 by
Lm1;
A86: (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
A82,
Def1;
then
A87: ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
= ((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A3,
A78,
A75,
EUCLID: 52;
then (((p
`1 )
^2 )
/ ((
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
^2 ))
= (((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 ) by
XCMPLX_1: 76;
then (((p
`1 )
^2 )
/ ((
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
^2 ))
= (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 )) by
XCMPLX_1: 76;
then (((p
`1 )
^2 )
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 )) by
A85,
SQUARE_1:def 2;
then (((p
`1 )
^2 )
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= (((q
`1 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
A76,
SQUARE_1:def 2;
then ((((p
`1 )
^2 )
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
/ ((p
`1 )
^2 ))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
XCMPLX_1: 48;
then ((((p
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
XCMPLX_1: 48;
then (1
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
A84,
XCMPLX_1: 60;
then
A88: ((1
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
* (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
= (((q
`1 )
^2 )
/ ((p
`1 )
^2 )) by
A76,
XCMPLX_1: 87;
A89: ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
= ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A3,
A78,
A74,
A86,
EUCLID: 52;
then (((p
`2 )
^2 )
/ ((
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
^2 ))
= (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 ) by
XCMPLX_1: 76;
then (((p
`2 )
^2 )
/ ((
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
^2 ))
= (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 )) by
XCMPLX_1: 76;
then (((p
`2 )
^2 )
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 )) by
A85,
SQUARE_1:def 2;
then
A90: (((p
`2 )
^2 )
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= (((q
`2 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
A76,
SQUARE_1:def 2;
A91: (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A92: (q
`2 )
<>
0 by
A73;
then
A93: ((q
`2 )
^2 )
>
0 by
SQUARE_1: 12;
now
per cases ;
case (p
`2 )
=
0 ;
then ((q
`2 )
^2 )
=
0 by
A76,
A90,
XCMPLX_1: 50;
then (q
`2 )
=
0 by
XCMPLX_1: 6;
hence contradiction by
A73;
end;
case
A94: (p
`2 )
<>
0 ;
set a = ((q
`1 )
/ (q
`2 ));
((((p
`2 )
^2 )
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
/ ((p
`2 )
^2 ))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
A90,
XCMPLX_1: 48;
then
A95: ((((p
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
XCMPLX_1: 48;
A96: ((q
`2 )
* a)
<= (q
`2 ) & (
- (q
`2 ))
<= ((q
`2 )
* a) or ((q
`2 )
* a)
>= (q
`2 ) & ((q
`2 )
* a)
<= (
- (q
`2 )) by
A79,
A92,
XCMPLX_1: 87;
A97:
now
per cases by
A73;
case
A98: (q
`2 )
>
0 ;
then
A99: ((q
`2 )
/ (q
`2 ))
= 1 & ((
- (q
`2 ))
/ (q
`2 ))
= (
- 1) by
XCMPLX_1: 60,
XCMPLX_1: 197;
((a
* (q
`2 ))
/ (q
`2 ))
<= ((q
`2 )
/ (q
`2 )) & ((
- (q
`2 ))
/ (q
`2 ))
<= ((a
* (q
`2 ))
/ (q
`2 )) or ((a
* (q
`2 ))
/ (q
`2 ))
>= ((q
`2 )
/ (q
`2 )) & ((a
* (q
`2 ))
/ (q
`2 ))
<= ((
- (q
`2 ))
/ (q
`2 )) by
A96,
A98,
XREAL_1: 72;
hence a
<= 1 & (
- 1)
<= a or a
>= 1 & a
<= (
- 1) by
A98,
A99,
XCMPLX_1: 89;
end;
case
A100: (q
`2 )
<
0 ;
then ((a
* (q
`2 ))
/ (q
`2 ))
>= ((q
`2 )
/ (q
`2 )) & ((
- (q
`2 ))
/ (q
`2 ))
>= ((a
* (q
`2 ))
/ (q
`2 )) or ((a
* (q
`2 ))
/ (q
`2 ))
<= ((q
`2 )
/ (q
`2 )) & ((a
* (q
`2 ))
/ (q
`2 ))
>= ((
- (q
`2 ))
/ (q
`2 )) by
A96,
XREAL_1: 73;
then a
>= ((q
`2 )
/ (q
`2 )) & ((
- (q
`2 ))
/ (q
`2 ))
>= a or a
<= ((q
`2 )
/ (q
`2 )) & a
>= ((
- (q
`2 ))
/ (q
`2 )) by
A100,
XCMPLX_1: 89;
hence a
<= 1 & (
- 1)
<= a or a
>= 1 & a
<= (
- 1) by
A100,
XCMPLX_1: 60,
XCMPLX_1: 197;
end;
end;
((p
`2 )
^2 )
>
0 by
A94,
SQUARE_1: 12;
then (1
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
A95,
XCMPLX_1: 60;
then ((1
/ (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
* (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
= (((q
`2 )
^2 )
/ ((p
`2 )
^2 )) by
A76,
XCMPLX_1: 87;
then ((((q
`2 )
^2 )
/ ((q
`2 )
^2 ))
/ ((p
`2 )
^2 ))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ ((q
`2 )
^2 )) by
A88,
XCMPLX_1: 48;
then (1
/ ((p
`2 )
^2 ))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ ((q
`2 )
^2 )) by
A93,
XCMPLX_1: 60;
then ((1
/ ((p
`2 )
^2 ))
* ((p
`1 )
^2 ))
= ((((p
`1 )
^2 )
* (((q
`1 )
^2 )
/ ((p
`1 )
^2 )))
/ ((q
`2 )
^2 )) by
XCMPLX_1: 74;
then ((1
/ ((p
`2 )
^2 ))
* ((p
`1 )
^2 ))
= (((q
`1 )
^2 )
/ ((q
`2 )
^2 )) by
A84,
XCMPLX_1: 87;
then (((p
`1 )
^2 )
/ ((p
`2 )
^2 ))
= (((q
`1 )
^2 )
/ ((q
`2 )
^2 )) by
XCMPLX_1: 99;
then (((p
`1 )
/ (p
`2 ))
^2 )
= (((q
`1 )
^2 )
/ ((q
`2 )
^2 )) by
XCMPLX_1: 76;
then
A101: (((p
`1 )
/ (p
`2 ))
^2 )
= (((q
`1 )
/ (q
`2 ))
^2 ) by
XCMPLX_1: 76;
then
A102: ((p
`1 )
/ (p
`2 ))
= ((q
`1 )
/ (q
`2 )) or ((p
`1 )
/ (p
`2 ))
= (
- ((q
`1 )
/ (q
`2 ))) by
SQUARE_1: 40;
A103:
now
per cases by
A94,
A102,
XCMPLX_1: 87;
case
A104: (p
`1 )
= (a
* (p
`2 ));
now
per cases by
A94;
case (p
`2 )
>
0 ;
then ((p
`2 )
/ (p
`2 ))
<= ((a
* (p
`2 ))
/ (p
`2 )) & ((
- (a
* (p
`2 )))
/ (p
`2 ))
<= ((p
`2 )
/ (p
`2 )) or ((p
`2 )
/ (p
`2 ))
>= ((a
* (p
`2 ))
/ (p
`2 )) & ((p
`2 )
/ (p
`2 ))
<= ((
- (a
* (p
`2 )))
/ (p
`2 )) by
A82,
A104,
XREAL_1: 72;
then
A105: 1
<= ((a
* (p
`2 ))
/ (p
`2 )) & ((
- (a
* (p
`2 )))
/ (p
`2 ))
<= 1 or 1
>= ((a
* (p
`2 ))
/ (p
`2 )) & 1
<= ((
- (a
* (p
`2 )))
/ (p
`2 )) by
A94,
XCMPLX_1: 60;
((a
* (p
`2 ))
/ (p
`2 ))
= a by
A94,
XCMPLX_1: 89;
hence 1
<= a & (
- a)
<= 1 or 1
>= a & 1
<= (
- a) by
A105,
XCMPLX_1: 187;
end;
case (p
`2 )
<
0 ;
then ((p
`2 )
/ (p
`2 ))
>= ((a
* (p
`2 ))
/ (p
`2 )) & ((
- (a
* (p
`2 )))
/ (p
`2 ))
>= ((p
`2 )
/ (p
`2 )) or ((p
`2 )
/ (p
`2 ))
<= ((a
* (p
`2 ))
/ (p
`2 )) & ((p
`2 )
/ (p
`2 ))
>= ((
- (a
* (p
`2 )))
/ (p
`2 )) by
A82,
A104,
XREAL_1: 73;
then
A106: 1
>= ((a
* (p
`2 ))
/ (p
`2 )) & ((
- (a
* (p
`2 )))
/ (p
`2 ))
>= 1 or 1
<= ((a
* (p
`2 ))
/ (p
`2 )) & 1
>= ((
- (a
* (p
`2 )))
/ (p
`2 )) by
A94,
XCMPLX_1: 60;
((a
* (p
`2 ))
/ (p
`2 ))
= a by
A94,
XCMPLX_1: 89;
hence 1
<= a & (
- a)
<= 1 or 1
>= a & 1
<= (
- a) by
A106,
XCMPLX_1: 187;
end;
end;
then 1
<= a & (
- a)
<= 1 or 1
>= a & (
- 1)
>= (
- (
- a)) by
XREAL_1: 24;
hence 1
<= a or (
- 1)
>= a;
end;
case
A107: (p
`1 )
= ((
- a)
* (p
`2 ));
now
per cases by
A94;
case (p
`2 )
>
0 ;
then ((p
`2 )
/ (p
`2 ))
<= (((
- a)
* (p
`2 ))
/ (p
`2 )) & ((
- ((
- a)
* (p
`2 )))
/ (p
`2 ))
<= ((p
`2 )
/ (p
`2 )) or ((p
`2 )
/ (p
`2 ))
>= (((
- a)
* (p
`2 ))
/ (p
`2 )) & ((p
`2 )
/ (p
`2 ))
<= ((
- ((
- a)
* (p
`2 )))
/ (p
`2 )) by
A82,
A107,
XREAL_1: 72;
then 1
<= (((
- a)
* (p
`2 ))
/ (p
`2 )) & ((
- ((
- a)
* (p
`2 )))
/ (p
`2 ))
<= 1 or 1
>= (((
- a)
* (p
`2 ))
/ (p
`2 )) & 1
<= ((
- ((
- a)
* (p
`2 )))
/ (p
`2 )) by
A94,
XCMPLX_1: 60;
then
A108: 1
<= (
- a) & (
- (((
- a)
* (p
`2 ))
/ (p
`2 )))
<= 1 or 1
>= (
- a) & 1
<= (
- (((
- a)
* (p
`2 ))
/ (p
`2 ))) by
A94,
XCMPLX_1: 89,
XCMPLX_1: 187;
(((
- a)
* (p
`2 ))
/ (p
`2 ))
= (
- a) by
A94,
XCMPLX_1: 89;
hence 1
<= a & (
- a)
<= 1 or 1
>= a & 1
<= (
- a) by
A108;
end;
case (p
`2 )
<
0 ;
then ((p
`2 )
/ (p
`2 ))
>= (((
- a)
* (p
`2 ))
/ (p
`2 )) & ((
- ((
- a)
* (p
`2 )))
/ (p
`2 ))
>= ((p
`2 )
/ (p
`2 )) or ((p
`2 )
/ (p
`2 ))
<= (((
- a)
* (p
`2 ))
/ (p
`2 )) & ((p
`2 )
/ (p
`2 ))
>= ((
- ((
- a)
* (p
`2 )))
/ (p
`2 )) by
A82,
A107,
XREAL_1: 73;
then 1
>= (((
- a)
* (p
`2 ))
/ (p
`2 )) & ((
- ((
- a)
* (p
`2 )))
/ (p
`2 ))
>= 1 or 1
<= (((
- a)
* (p
`2 ))
/ (p
`2 )) & 1
>= ((
- ((
- a)
* (p
`2 )))
/ (p
`2 )) by
A94,
XCMPLX_1: 60;
then
A109: 1
>= (
- a) & (
- (((
- a)
* (p
`2 ))
/ (p
`2 )))
>= 1 or 1
<= (
- a) & 1
>= (
- (((
- a)
* (p
`2 ))
/ (p
`2 ))) by
A94,
XCMPLX_1: 89,
XCMPLX_1: 187;
(((
- a)
* (p
`2 ))
/ (p
`2 ))
= (
- a) by
A94,
XCMPLX_1: 89;
hence 1
<= a & (
- a)
<= 1 or 1
>= a & 1
<= (
- a) by
A109;
end;
end;
then 1
<= a & (
- a)
<= 1 or 1
>= a & (
- 1)
>= (
- (
- a)) by
XREAL_1: 24;
hence 1
<= a or (
- 1)
>= a;
end;
end;
A110:
now
per cases by
A103,
A97,
XXREAL_0: 1;
case a
= 1;
then (((p
`1 )
^2 )
/ ((p
`2 )
^2 ))
= 1 by
A101,
XCMPLX_1: 76;
then
A111: ((p
`1 )
^2 )
= ((p
`2 )
^2 ) by
XCMPLX_1: 58;
(((p
`2 )
/ (p
`1 ))
^2 )
= (((p
`2 )
^2 )
/ ((p
`1 )
^2 )) by
XCMPLX_1: 76;
hence (((p
`2 )
/ (p
`1 ))
^2 )
= (((q
`1 )
/ (q
`2 ))
^2 ) by
A101,
A111,
XCMPLX_1: 76;
end;
case a
= (
- 1);
then (((p
`1 )
^2 )
/ ((p
`2 )
^2 ))
= 1 by
A101,
XCMPLX_1: 76;
then
A112: ((p
`1 )
^2 )
= ((p
`2 )
^2 ) by
XCMPLX_1: 58;
(((p
`2 )
/ (p
`1 ))
^2 )
= (((p
`2 )
^2 )
/ ((p
`1 )
^2 )) by
XCMPLX_1: 76;
hence (((p
`2 )
/ (p
`1 ))
^2 )
= (((q
`1 )
/ (q
`2 ))
^2 ) by
A101,
A112,
XCMPLX_1: 76;
end;
end;
then (p
`1 )
= (((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A87,
A91,
XCMPLX_1: 87;
then
A113: (p
`1 )
= (q
`1 ) by
A77,
XCMPLX_1: 87;
(p
`2 )
= (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A89,
A91,
A110,
XCMPLX_1: 87;
then (p
`2 )
= (q
`2 ) by
A77,
XCMPLX_1: 87;
then p
=
|[(q
`1 ), (q
`2 )]| by
A113,
EUCLID: 53;
hence thesis by
EUCLID: 53;
end;
end;
hence thesis;
end;
case
A114: p
<> (
0. (
TOP-REAL 2)) & not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )));
then (p
`2 )
<>
0 ;
then
A115: ((p
`2 )
^2 )
>
0 by
SQUARE_1: 12;
A116: (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A117: (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))
>
0 by
Lm1;
A118: (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A114,
Def1;
then
A119: ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
= ((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A3,
A78,
A75,
EUCLID: 52;
then (((p
`1 )
^2 )
/ ((
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
^2 ))
= (((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 ) by
XCMPLX_1: 76;
then (((p
`1 )
^2 )
/ ((
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
^2 ))
= (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 )) by
XCMPLX_1: 76;
then (((p
`1 )
^2 )
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 )) by
A117,
SQUARE_1:def 2;
then
A120: (((p
`1 )
^2 )
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= (((q
`1 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
A76,
SQUARE_1:def 2;
A121: ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
= ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A3,
A78,
A74,
A118,
EUCLID: 52;
then (((p
`2 )
^2 )
/ ((
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
^2 ))
= (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 ) by
XCMPLX_1: 76;
then (((p
`2 )
^2 )
/ ((
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
^2 ))
= (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 )) by
XCMPLX_1: 76;
then (((p
`2 )
^2 )
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 )) by
A117,
SQUARE_1:def 2;
then (((p
`2 )
^2 )
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= (((q
`2 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
A76,
SQUARE_1:def 2;
then ((((p
`2 )
^2 )
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
/ ((p
`2 )
^2 ))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
XCMPLX_1: 48;
then ((((p
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
XCMPLX_1: 48;
then (1
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= ((((q
`2 )
^2 )
/ ((p
`2 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
A115,
XCMPLX_1: 60;
then
A122: ((1
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
* (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
= (((q
`2 )
^2 )
/ ((p
`2 )
^2 )) by
A76,
XCMPLX_1: 87;
(q
`2 )
<>
0 by
A73;
then
A123: ((q
`2 )
^2 )
>
0 by
SQUARE_1: 12;
now
per cases ;
case
A124: (p
`1 )
=
0 ;
then ((q
`1 )
^2 )
=
0 by
A76,
A120,
XCMPLX_1: 50;
then
A125: (q
`1 )
=
0 by
XCMPLX_1: 6;
then p
=
|[
0 , (q
`2 )]| by
A3,
A78,
A118,
A124,
EUCLID: 53,
SQUARE_1: 18;
hence thesis by
A125,
EUCLID: 53;
end;
case (p
`1 )
<>
0 ;
then
A126: ((p
`1 )
^2 )
>
0 by
SQUARE_1: 12;
((((p
`1 )
^2 )
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
/ ((p
`1 )
^2 ))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
A120,
XCMPLX_1: 48;
then ((((p
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
XCMPLX_1: 48;
then (1
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
A126,
XCMPLX_1: 60;
then ((1
/ (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
* (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
= (((q
`1 )
^2 )
/ ((p
`1 )
^2 )) by
A76,
XCMPLX_1: 87;
then ((((q
`2 )
^2 )
/ ((q
`2 )
^2 ))
/ ((p
`2 )
^2 ))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ ((q
`2 )
^2 )) by
A122,
XCMPLX_1: 48;
then (1
/ ((p
`2 )
^2 ))
= ((((q
`1 )
^2 )
/ ((p
`1 )
^2 ))
/ ((q
`2 )
^2 )) by
A123,
XCMPLX_1: 60;
then ((1
/ ((p
`2 )
^2 ))
* ((p
`1 )
^2 ))
= ((((p
`1 )
^2 )
* (((q
`1 )
^2 )
/ ((p
`1 )
^2 )))
/ ((q
`2 )
^2 )) by
XCMPLX_1: 74;
then ((1
/ ((p
`2 )
^2 ))
* ((p
`1 )
^2 ))
= (((q
`1 )
^2 )
/ ((q
`2 )
^2 )) by
A126,
XCMPLX_1: 87;
then (((p
`1 )
^2 )
/ ((p
`2 )
^2 ))
= (((q
`1 )
^2 )
/ ((q
`2 )
^2 )) by
XCMPLX_1: 99;
then (((p
`1 )
/ (p
`2 ))
^2 )
= (((q
`1 )
^2 )
/ ((q
`2 )
^2 )) by
XCMPLX_1: 76;
then
A127: (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))
= (1
+ (((q
`1 )
/ (q
`2 ))
^2 )) by
XCMPLX_1: 76;
then (p
`1 )
= (((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A119,
A116,
XCMPLX_1: 87;
then
A128: (p
`1 )
= (q
`1 ) by
A77,
XCMPLX_1: 87;
(p
`2 )
= (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A121,
A116,
A127,
XCMPLX_1: 87;
then (p
`2 )
= (q
`2 ) by
A77,
XCMPLX_1: 87;
then p
=
|[(q
`1 ), (q
`2 )]| by
A128,
EUCLID: 53;
hence thesis by
EUCLID: 53;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
registration
cluster
Sq_Circ ->
one-to-one;
coherence by
Th22;
end
theorem ::
JGRAPH_3:23
Th23: for Kb,Cb be
Subset of (
TOP-REAL 2) st Kb
= { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 } & Cb
= { p2 where p2 be
Point of (
TOP-REAL 2) :
|.p2.|
= 1 } holds (
Sq_Circ
.: Kb)
= Cb
proof
let Kb,Cb be
Subset of (
TOP-REAL 2);
assume
A1: Kb
= { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 } & Cb
= { p2 where p2 be
Point of (
TOP-REAL 2) :
|.p2.|
= 1 };
thus (
Sq_Circ
.: Kb)
c= Cb
proof
let y be
object;
assume y
in (
Sq_Circ
.: Kb);
then
consider x be
object such that x
in (
dom
Sq_Circ ) and
A2: x
in Kb and
A3: y
= (
Sq_Circ
. x) by
FUNCT_1:def 6;
consider q be
Point of (
TOP-REAL 2) such that
A4: q
= x and
A5: (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 by
A1,
A2;
now
per cases ;
case q
= (
0. (
TOP-REAL 2));
hence contradiction by
A5,
JGRAPH_2: 3;
end;
case
A6: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
A7: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) & (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A8: (1
+ ((q
`2 )
^2 ))
>
0 by
Lm1;
A9: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A6,
Def1;
now
per cases by
A5;
case (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1;
then (
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
^2 )
= ((((
- 1)
/ (
sqrt (1
+ (((q
`2 )
/ (
- 1))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (
- 1))
^2 ))))
^2 )) by
A7,
JGRAPH_1: 29
.= ((((
- 1)
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (
- 1))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (
- 1))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((1
/ ((
sqrt (1
+ ((
- (q
`2 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ ((
- (q
`2 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((1
/ (1
+ ((q
`2 )
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ ((q
`2 )
^2 )))
^2 ))) by
A8,
SQUARE_1:def 2
.= ((1
/ (1
+ ((q
`2 )
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ ((q
`2 )
^2 )))) by
A8,
SQUARE_1:def 2
.= ((1
+ ((q
`2 )
^2 ))
/ (1
+ ((q
`2 )
^2 ))) by
XCMPLX_1: 62
.= 1 by
A8,
XCMPLX_1: 60;
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
= 1 by
SQUARE_1: 18,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
= 1 by
A3,
A4,
A9;
end;
case (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1;
then (
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
^2 )
= (((1
/ (
sqrt (1
+ (((q
`2 )
/ 1)
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ 1)
^2 ))))
^2 )) by
A7,
JGRAPH_1: 29
.= (((1
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ 1)
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ 1)
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((1
/ ((
sqrt (1
+ (((q
`2 )
/ 1)
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ 1)
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((1
/ (1
+ ((q
`2 )
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ ((q
`2 )
^2 )))
^2 ))) by
A8,
SQUARE_1:def 2
.= ((1
/ (1
+ ((q
`2 )
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ ((q
`2 )
^2 )))) by
A8,
SQUARE_1:def 2
.= ((1
+ ((q
`2 )
^2 ))
/ (1
+ ((q
`2 )
^2 ))) by
XCMPLX_1: 62
.= 1 by
A8,
XCMPLX_1: 60;
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
= 1 by
SQUARE_1: 18,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
= 1 by
A3,
A4,
A9;
end;
case
A10: (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1;
then (
- 1)
<= (q
`1 ) & (q
`1 )
>= 1 or (
- 1)
>= (q
`1 ) & 1
>= (q
`1 ) by
A6,
XREAL_1: 24;
then
A11: (q
`1 )
= 1 or (q
`1 )
= (
- 1) by
A10,
XXREAL_0: 1;
(
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((
- 1)
/ (q
`1 ))
^2 ))))
^2 )
+ (((
- 1)
/ (
sqrt (1
+ (((
- 1)
/ (q
`1 ))
^2 ))))
^2 )) by
A7,
A10,
JGRAPH_1: 29
.= ((((q
`1 )
/ (
sqrt (1
+ (((
- 1)
/ (q
`1 ))
^2 ))))
^2 )
+ (((
- 1)
^2 )
/ ((
sqrt (1
+ (((
- 1)
/ (q
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((
- 1)
/ (q
`1 ))
^2 )))
^2 ))
+ (1
/ ((
sqrt (1
+ (((
- 1)
/ (q
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((1
/ 2)
+ (1
/ ((
sqrt 2)
^2 ))) by
A11,
SQUARE_1:def 2
.= ((1
/ 2)
+ (1
/ 2)) by
SQUARE_1:def 2
.= 1;
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
= 1 by
SQUARE_1: 18,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
= 1 by
A3,
A4,
A9;
end;
case
A12: 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1;
then 1
<= (q
`1 ) & (q
`1 )
>= (
- 1) or 1
>= (q
`1 ) & (
- 1)
>= (q
`1 ) by
A6,
XREAL_1: 25;
then
A13: (q
`1 )
= 1 or (q
`1 )
= (
- 1) by
A12,
XXREAL_0: 1;
(
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ ((1
/ (q
`1 ))
^2 ))))
^2 )
+ ((1
/ (
sqrt (1
+ ((1
/ (q
`1 ))
^2 ))))
^2 )) by
A7,
A12,
JGRAPH_1: 29
.= ((((q
`1 )
/ (
sqrt (1
+ ((1
/ (q
`1 ))
^2 ))))
^2 )
+ ((1
^2 )
/ ((
sqrt (1
+ ((1
/ (q
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((1
/ ((
sqrt (1
+ (1
/ 1)))
^2 ))
+ (1
/ ((
sqrt (1
+ (1
/ 1)))
^2 ))) by
A13,
XCMPLX_1: 76
.= ((1
/ 2)
+ (1
/ ((
sqrt 2)
^2 ))) by
SQUARE_1:def 2
.= ((1
/ 2)
+ (1
/ 2)) by
SQUARE_1:def 2
.= 1;
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
= 1 by
SQUARE_1: 18,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
= 1 by
A3,
A4,
A9;
end;
end;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
= 1;
end;
case
A14: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
A15: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) & (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A16: (1
+ ((q
`1 )
^2 ))
>
0 by
Lm1;
A17: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
A14,
Def1;
now
per cases by
A5;
case (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1;
then (
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (
- 1))
^2 ))))
^2 )
+ (((
- 1)
/ (
sqrt (1
+ (((q
`1 )
/ (
- 1))
^2 ))))
^2 )) by
A15,
JGRAPH_1: 29
.= ((((
- 1)
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (
- 1))
^2 )))
^2 ))
+ (((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (
- 1))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((1
/ ((
sqrt (1
+ ((
- (q
`1 ))
^2 )))
^2 ))
+ (((q
`1 )
^2 )
/ ((
sqrt (1
+ ((
- (q
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((1
/ (1
+ ((q
`1 )
^2 )))
+ (((q
`1 )
^2 )
/ ((
sqrt (1
+ ((q
`1 )
^2 )))
^2 ))) by
A16,
SQUARE_1:def 2
.= ((1
/ (1
+ ((q
`1 )
^2 )))
+ (((q
`1 )
^2 )
/ (1
+ ((q
`1 )
^2 )))) by
A16,
SQUARE_1:def 2
.= ((1
+ ((q
`1 )
^2 ))
/ (1
+ ((q
`1 )
^2 ))) by
XCMPLX_1: 62
.= 1 by
A16,
XCMPLX_1: 60;
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|.|
= 1 by
SQUARE_1: 18,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
= 1 by
A3,
A4,
A17;
end;
case (q
`2 )
= 1 & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1;
then (
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|.|
^2 )
= (((1
/ (
sqrt (1
+ (((q
`1 )
/ 1)
^2 ))))
^2 )
+ (((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ 1)
^2 ))))
^2 )) by
A15,
JGRAPH_1: 29
.= (((1
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ 1)
^2 )))
^2 ))
+ (((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ 1)
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((1
/ ((
sqrt (1
+ (((q
`1 )
/ 1)
^2 )))
^2 ))
+ (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ 1)
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((1
/ (1
+ ((q
`1 )
^2 )))
+ (((q
`1 )
^2 )
/ ((
sqrt (1
+ ((q
`1 )
^2 )))
^2 ))) by
A16,
SQUARE_1:def 2
.= ((1
/ (1
+ ((q
`1 )
^2 )))
+ (((q
`1 )
^2 )
/ (1
+ ((q
`1 )
^2 )))) by
A16,
SQUARE_1:def 2
.= ((1
+ ((q
`1 )
^2 ))
/ (1
+ ((q
`1 )
^2 ))) by
XCMPLX_1: 62
.= 1 by
A16,
XCMPLX_1: 60;
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|.|
= 1 by
SQUARE_1: 18,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
= 1 by
A3,
A4,
A17;
end;
case (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
= 1 by
A14;
end;
case 1
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
= 1 by
A14;
end;
end;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
= 1;
end;
end;
hence thesis by
A1;
end;
let y be
object;
assume y
in Cb;
then
consider p2 be
Point of (
TOP-REAL 2) such that
A18: p2
= y and
A19:
|.p2.|
= 1 by
A1;
set q = p2;
now
per cases ;
case q
= (
0. (
TOP-REAL 2));
hence contradiction by
A19,
TOPRNS_1: 23;
end;
case
A20: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
A21: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_1: 29;
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|;
A22: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A23: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
then
A24: (q
`2 )
= (((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
XCMPLX_1: 89
.= ((px
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A25: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
then
A26: ((px
`2 )
/ (px
`1 ))
= ((q
`2 )
/ (q
`1 )) by
A22,
A23,
XCMPLX_1: 91;
then
A27: ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`2 ) by
A25,
A23,
XCMPLX_1: 89;
(q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A20,
A23,
XREAL_1: 64;
then
A28: (q
`2 )
<= (q
`1 ) & ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A22,
A25,
A23,
XREAL_1: 64;
A29: (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))
>
0 by
Lm1;
(q
`1 )
= (((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A23,
XCMPLX_1: 89
.= ((px
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
then ((((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 ))
+ (((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
^2 ))
= 1 by
A19,
A26,
A24,
A21,
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 ))
+ (((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 )))
= 1 by
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 )))
= 1 by
A29,
SQUARE_1:def 2;
then (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
= ((1
+ (((px
`2 )
/ (px
`1 ))
^2 ))
* ((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))) by
A29,
SQUARE_1:def 2
.= (((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ ((((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))));
then (((px
`1 )
^2 )
+ ((((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A29,
XCMPLX_1: 87;
then
A30: (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
= (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A29,
XCMPLX_1: 87
.= (1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 ))) by
XCMPLX_1: 76;
A31:
now
assume that
A32: (px
`1 )
=
0 and
A33: (px
`2 )
=
0 ;
((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A33,
EUCLID: 52;
then
A34: (q
`2 )
=
0 by
A23,
XCMPLX_1: 6;
((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A32,
EUCLID: 52;
then (q
`1 )
=
0 by
A23,
XCMPLX_1: 6;
hence contradiction by
A20,
A34,
EUCLID: 53,
EUCLID: 54;
end;
then not (px
`1 )
=
0 by
A22,
A25,
A23,
A28,
XREAL_1: 64;
then ((((px
`1 )
^2 )
+ (((px
`2 )
^2 )
- 1))
* ((px
`1 )
^2 ))
= ((px
`2 )
^2 ) by
A30,
XCMPLX_1: 6,
XCMPLX_1: 87;
then
0
= ((((px
`1 )
^2 )
- 1)
* (((px
`1 )
^2 )
+ ((px
`2 )
^2 )));
then
A35: (((px
`1 )
^2 )
- 1)
=
0 or (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
=
0 by
XCMPLX_1: 6;
now
per cases by
A31,
A35,
COMPLEX1: 1,
SQUARE_1: 41;
case (px
`1 )
= 1;
hence (
- 1)
= (px
`1 ) & (
- 1)
<= (px
`2 ) & (px
`2 )
<= 1 or (px
`1 )
= 1 & (
- 1)
<= (px
`2 ) & (px
`2 )
<= 1 or (
- 1)
= (px
`2 ) & (
- 1)
<= (px
`1 ) & (px
`1 )
<= 1 or 1
= (px
`2 ) & (
- 1)
<= (px
`1 ) & (px
`1 )
<= 1 by
A22,
A25,
A23,
A28,
XREAL_1: 64;
end;
case (px
`1 )
= (
- 1);
hence (
- 1)
= (px
`1 ) & (
- 1)
<= (px
`2 ) & (px
`2 )
<= 1 or (px
`1 )
= 1 & (
- 1)
<= (px
`2 ) & (px
`2 )
<= 1 or (
- 1)
= (px
`2 ) & (
- 1)
<= (px
`1 ) & (px
`1 )
<= 1 or 1
= (px
`2 ) & (
- 1)
<= (px
`1 ) & (px
`1 )
<= 1 by
A22,
A23,
A28,
XREAL_1: 64;
end;
end;
then
A36: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) & px
in Kb by
A1,
FUNCT_2:def 1;
(px
`2 )
<= (px
`1 ) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A22,
A25,
A23,
A28,
XREAL_1: 64;
then
A37: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))]| by
A31,
Def1,
JGRAPH_2: 3;
((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`1 ) by
A22,
A23,
A26,
XCMPLX_1: 89;
hence ex x be
set st x
in (
dom
Sq_Circ ) & x
in Kb & y
= (
Sq_Circ
. x) by
A18,
A37,
A27,
A36,
EUCLID: 53;
end;
case
A38: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
A39: (
|.q.|
^2 )
= (((q
`2 )
^2 )
+ ((q
`1 )
^2 )) by
JGRAPH_1: 29;
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|;
A40: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A41: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
then
A42: (q
`1 )
= ((px
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A40,
XCMPLX_1: 89;
A43: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
then
A44: ((px
`1 )
/ (px
`2 ))
= ((q
`1 )
/ (q
`2 )) by
A41,
A40,
XCMPLX_1: 91;
then
A45: ((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`1 ) by
A41,
A40,
XCMPLX_1: 89;
(q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & (q
`1 )
<= (
- (q
`2 )) by
A38,
JGRAPH_2: 13;
then (q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A40,
XREAL_1: 64;
then
A46: (q
`1 )
<= (q
`2 ) & ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A43,
A41,
A40,
XREAL_1: 64;
A47: (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))
>
0 by
Lm1;
(q
`2 )
= ((px
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A43,
A40,
XCMPLX_1: 89;
then ((((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 ))
+ (((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
^2 ))
= 1 by
A19,
A44,
A42,
A39,
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 ))
+ (((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 )))
= 1 by
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 )))
= 1 by
A47,
SQUARE_1:def 2;
then (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
= ((1
+ (((px
`1 )
/ (px
`2 ))
^2 ))
* ((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))) by
A47,
SQUARE_1:def 2
.= (((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ ((((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))));
then (((px
`2 )
^2 )
+ ((((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A47,
XCMPLX_1: 87;
then (((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
= (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A47,
XCMPLX_1: 87;
then
A48: ((((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
- 1)
= (((px
`1 )
^2 )
/ ((px
`2 )
^2 )) by
XCMPLX_1: 76;
A49:
now
assume that
A50: (px
`2 )
=
0 and (px
`1 )
=
0 ;
(q
`2 )
=
0 by
A43,
A40,
A50,
XCMPLX_1: 6;
hence contradiction by
A38;
end;
then (px
`2 )
<>
0 by
A43,
A41,
A40,
A46,
XREAL_1: 64;
then ((((px
`2 )
^2 )
+ (((px
`1 )
^2 )
- 1))
* ((px
`2 )
^2 ))
= ((px
`1 )
^2 ) by
A48,
XCMPLX_1: 6,
XCMPLX_1: 87;
then
0
= ((((px
`2 )
^2 )
- 1)
* (((px
`2 )
^2 )
+ ((px
`1 )
^2 )));
then
A51: (((px
`2 )
^2 )
- 1)
=
0 or (((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
=
0 by
XCMPLX_1: 6;
now
per cases by
A49,
A51,
COMPLEX1: 1,
SQUARE_1: 41;
case (px
`2 )
= 1;
hence (
- 1)
= (px
`2 ) & (
- 1)
<= (px
`1 ) & (px
`1 )
<= 1 or (px
`2 )
= 1 & (
- 1)
<= (px
`1 ) & (px
`1 )
<= 1 or (
- 1)
= (px
`1 ) & (
- 1)
<= (px
`2 ) & (px
`2 )
<= 1 or 1
= (px
`1 ) & (
- 1)
<= (px
`2 ) & (px
`2 )
<= 1 by
A43,
A41,
A40,
A46,
XREAL_1: 64;
end;
case (px
`2 )
= (
- 1);
hence (
- 1)
= (px
`2 ) & (
- 1)
<= (px
`1 ) & (px
`1 )
<= 1 or (px
`2 )
= 1 & (
- 1)
<= (px
`1 ) & (px
`1 )
<= 1 or (
- 1)
= (px
`1 ) & (
- 1)
<= (px
`2 ) & (px
`2 )
<= 1 or 1
= (px
`1 ) & (
- 1)
<= (px
`2 ) & (px
`2 )
<= 1 by
A43,
A40,
A46,
XREAL_1: 64;
end;
end;
then
A52: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) & px
in Kb by
A1,
FUNCT_2:def 1;
(px
`1 )
<= (px
`2 ) & (
- (px
`2 ))
<= (px
`1 ) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A43,
A41,
A40,
A46,
XREAL_1: 64;
then
A53: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))]| by
A49,
Th4,
JGRAPH_2: 3;
((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`2 ) by
A43,
A40,
A44,
XCMPLX_1: 89;
hence ex x be
set st x
in (
dom
Sq_Circ ) & x
in Kb & y
= (
Sq_Circ
. x) by
A18,
A53,
A45,
A52,
EUCLID: 53;
end;
end;
hence thesis by
FUNCT_1:def 6;
end;
theorem ::
JGRAPH_3:24
Th24: for P,Kb be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| Kb), ((
TOP-REAL 2)
| P) st Kb
= { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 } & f is
being_homeomorphism holds P is
being_simple_closed_curve
proof
set X = ((
TOP-REAL 2)
|
R^2-unit_square );
set b = 1, a =
0 ;
set v =
|[1,
0 ]|;
let P,Kb be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| Kb), ((
TOP-REAL 2)
| P);
assume
A1: Kb
= { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 } & f is
being_homeomorphism;
(v
`1 )
= 1 & (v
`2 )
=
0 by
EUCLID: 52;
then
A2:
|[1,
0 ]|
in { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 };
then
reconsider Kbb = Kb as non
empty
Subset of (
TOP-REAL 2) by
A1;
set A = (2
/ (b
- a)), B = (1
- ((2
* b)
/ (b
- a))), C = (2
/ (b
- a)), D = (1
- ((2
* b)
/ (b
- a)));
reconsider Kbd = Kbb as non
empty
Subset of (
TOP-REAL 2);
defpred
P[
object,
object] means (for t be
Point of (
TOP-REAL 2) st t
= $1 holds $2
=
|[((A
* (t
`1 ))
+ B), ((C
* (t
`2 ))
+ D)]|);
A3: for x be
object st x
in the
carrier of (
TOP-REAL 2) holds ex y be
object st
P[x, y]
proof
let x be
object;
assume x
in the
carrier of (
TOP-REAL 2);
then
reconsider t2 = x as
Point of (
TOP-REAL 2);
reconsider y2 =
|[((A
* (t2
`1 ))
+ B), ((C
* (t2
`2 ))
+ D)]| as
set;
for t be
Point of (
TOP-REAL 2) st t
= x holds y2
=
|[((A
* (t
`1 ))
+ B), ((C
* (t
`2 ))
+ D)]|;
hence thesis;
end;
ex ff be
Function st (
dom ff)
= the
carrier of (
TOP-REAL 2) & for x be
object st x
in the
carrier of (
TOP-REAL 2) holds
P[x, (ff
. x)] from
CLASSES1:sch 1(
A3);
then
consider ff be
Function such that
A4: (
dom ff)
= the
carrier of (
TOP-REAL 2) and
A5: for x be
object st x
in the
carrier of (
TOP-REAL 2) holds for t be
Point of (
TOP-REAL 2) st t
= x holds (ff
. x)
=
|[((A
* (t
`1 ))
+ B), ((C
* (t
`2 ))
+ D)]|;
A6: for t be
Point of (
TOP-REAL 2) holds (ff
. t)
=
|[((A
* (t
`1 ))
+ B), ((C
* (t
`2 ))
+ D)]| by
A5;
for x be
object st x
in the
carrier of (
TOP-REAL 2) holds (ff
. x)
in the
carrier of (
TOP-REAL 2)
proof
let x be
object;
assume x
in the
carrier of (
TOP-REAL 2);
then
reconsider t = x as
Point of (
TOP-REAL 2);
(ff
. t)
=
|[((A
* (t
`1 ))
+ B), ((C
* (t
`2 ))
+ D)]| by
A5;
hence thesis;
end;
then
reconsider ff as
Function of (
TOP-REAL 2), (
TOP-REAL 2) by
A4,
FUNCT_2: 3;
reconsider f11 = (ff
|
R^2-unit_square ) as
Function of ((
TOP-REAL 2)
|
R^2-unit_square ), (
TOP-REAL 2) by
PRE_TOPC: 9;
A7: f11 is
continuous by
A6,
JGRAPH_2: 43,
TOPMETR: 7;
ff is
one-to-one
proof
let x1,x2 be
object;
assume that
A8: x1
in (
dom ff) & x2
in (
dom ff) and
A9: (ff
. x1)
= (ff
. x2);
reconsider p1 = x1, p2 = x2 as
Point of (
TOP-REAL 2) by
A8;
A10: (ff
. x1)
=
|[((A
* (p1
`1 ))
+ B), ((C
* (p1
`2 ))
+ D)]| & (ff
. x2)
=
|[((A
* (p2
`1 ))
+ B), ((C
* (p2
`2 ))
+ D)]| by
A5;
then (((A
* (p1
`1 ))
+ B)
- B)
= (((A
* (p2
`1 ))
+ B)
- B) by
A9,
SPPOL_2: 1;
then ((A
* (p1
`1 ))
/ A)
= (p2
`1 ) by
XCMPLX_1: 89;
then
A11: (p1
`1 )
= (p2
`1 ) by
XCMPLX_1: 89;
(((C
* (p1
`2 ))
+ D)
- D)
= (((C
* (p2
`2 ))
+ D)
- D) by
A9,
A10,
SPPOL_2: 1;
then ((C
* (p1
`2 ))
/ C)
= (p2
`2 ) by
XCMPLX_1: 89;
hence thesis by
A11,
TOPREAL3: 6,
XCMPLX_1: 89;
end;
then
A12: f11 is
one-to-one by
FUNCT_1: 52;
A13: (
dom f11)
= ((
dom ff)
/\
R^2-unit_square ) by
RELAT_1: 61
.=
R^2-unit_square by
A4,
XBOOLE_1: 28;
A14: Kbd
c= (
rng f11)
proof
let y be
object;
assume
A15: y
in Kbd;
then
reconsider py = y as
Point of (
TOP-REAL 2);
set t =
|[(((py
`1 )
- B)
/ 2), (((py
`2 )
- D)
/ 2)]|;
A16: ex q st py
= q & ((
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1) by
A1,
A15;
now
per cases by
A16;
case
A17: (
- 1)
= (py
`1 ) & (
- 1)
<= (py
`2 ) & (py
`2 )
<= 1;
then (2
- 1)
>= (py
`2 );
then 2
>= ((py
`2 )
+ 1) by
XREAL_1: 19;
then
A18: (2
/ 2)
>= (((py
`2 )
- D)
/ 2) by
XREAL_1: 72;
(
0
- 1)
<= (py
`2 ) by
A17;
then
0
<= ((py
`2 )
+ 1) by
XREAL_1: 20;
hence (t
`1 )
=
0 & (t
`2 )
<= 1 & (t
`2 )
>=
0 or (t
`1 )
<= 1 & (t
`1 )
>=
0 & (t
`2 )
= 1 or (t
`1 )
<= 1 & (t
`1 )
>=
0 & (t
`2 )
=
0 or (t
`1 )
= 1 & (t
`2 )
<= 1 & (t
`2 )
>=
0 by
A17,
A18,
EUCLID: 52;
end;
case
A19: (py
`1 )
= 1 & (
- 1)
<= (py
`2 ) & (py
`2 )
<= 1;
then (2
- 1)
>= (py
`2 );
then 2
>= ((py
`2 )
+ 1) by
XREAL_1: 19;
then
A20: (2
/ 2)
>= (((py
`2 )
- D)
/ 2) by
XREAL_1: 72;
(
0
- 1)
<= (py
`2 ) by
A19;
then
0
<= ((py
`2 )
+ 1) by
XREAL_1: 20;
hence (t
`1 )
=
0 & (t
`2 )
<= 1 & (t
`2 )
>=
0 or (t
`1 )
<= 1 & (t
`1 )
>=
0 & (t
`2 )
= 1 or (t
`1 )
<= 1 & (t
`1 )
>=
0 & (t
`2 )
=
0 or (t
`1 )
= 1 & (t
`2 )
<= 1 & (t
`2 )
>=
0 by
A19,
A20,
EUCLID: 52;
end;
case
A21: (
- 1)
= (py
`2 ) & (
- 1)
<= (py
`1 ) & (py
`1 )
<= 1;
then (2
- 1)
>= (py
`1 );
then 2
>= ((py
`1 )
+ 1) by
XREAL_1: 19;
then
A22: (2
/ 2)
>= (((py
`1 )
- B)
/ 2) by
XREAL_1: 72;
(
0
- 1)
<= (py
`1 ) by
A21;
then
0
<= ((py
`1 )
+ 1) by
XREAL_1: 20;
hence (t
`1 )
=
0 & (t
`2 )
<= 1 & (t
`2 )
>=
0 or (t
`1 )
<= 1 & (t
`1 )
>=
0 & (t
`2 )
= 1 or (t
`1 )
<= 1 & (t
`1 )
>=
0 & (t
`2 )
=
0 or (t
`1 )
= 1 & (t
`2 )
<= 1 & (t
`2 )
>=
0 by
A21,
A22,
EUCLID: 52;
end;
case
A23: 1
= (py
`2 ) & (
- 1)
<= (py
`1 ) & (py
`1 )
<= 1;
then (2
- 1)
>= (py
`1 );
then 2
>= ((py
`1 )
+ 1) by
XREAL_1: 19;
then
A24: (2
/ 2)
>= (((py
`1 )
- B)
/ 2) by
XREAL_1: 72;
(
0
- 1)
<= (py
`1 ) by
A23;
then
0
<= ((py
`1 )
+ 1) by
XREAL_1: 20;
hence (t
`1 )
=
0 & (t
`2 )
<= 1 & (t
`2 )
>=
0 or (t
`1 )
<= 1 & (t
`1 )
>=
0 & (t
`2 )
= 1 or (t
`1 )
<= 1 & (t
`1 )
>=
0 & (t
`2 )
=
0 or (t
`1 )
= 1 & (t
`2 )
<= 1 & (t
`2 )
>=
0 by
A23,
A24,
EUCLID: 52;
end;
end;
then
A25: t
in
R^2-unit_square by
TOPREAL1: 14;
(t
`1 )
= (((py
`1 )
- B)
/ 2) & (t
`2 )
= (((py
`2 )
- D)
/ 2) by
EUCLID: 52;
then py
=
|[((A
* (t
`1 ))
+ B), ((C
* (t
`2 ))
+ D)]| by
EUCLID: 53;
then py
= (ff
. t) by
A5
.= (f11
. t) by
A25,
FUNCT_1: 49;
hence thesis by
A13,
A25,
FUNCT_1:def 3;
end;
(
rng f11)
c= Kbd
proof
let y be
object;
assume y
in (
rng f11);
then
consider x be
object such that
A26: x
in (
dom f11) and
A27: y
= (f11
. x) by
FUNCT_1:def 3;
reconsider t = x as
Point of (
TOP-REAL 2) by
A13,
A26;
A28: y
= (ff
. t) by
A13,
A26,
A27,
FUNCT_1: 49
.=
|[((A
* (t
`1 ))
+ B), ((C
* (t
`2 ))
+ D)]| by
A5;
then
reconsider qy = y as
Point of (
TOP-REAL 2);
A29: ex p st t
= p & ((p
`1 )
=
0 & (p
`2 )
<= 1 & (p
`2 )
>=
0 or (p
`1 )
<= 1 & (p
`1 )
>=
0 & (p
`2 )
= 1 or (p
`1 )
<= 1 & (p
`1 )
>=
0 & (p
`2 )
=
0 or (p
`1 )
= 1 & (p
`2 )
<= 1 & (p
`2 )
>=
0 ) by
A13,
A26,
TOPREAL1: 14;
now
per cases by
A29;
suppose
A30: (t
`1 )
=
0 & (t
`2 )
<= 1 & (t
`2 )
>=
0 ;
A31: (qy
`2 )
= ((2
* (t
`2 ))
- 1) by
A28,
EUCLID: 52;
(2
* 1)
>= (2
* (t
`2 )) by
A30,
XREAL_1: 64;
then
A32: ((1
+ 1)
- 1)
>= (((qy
`2 )
+ 1)
- 1) by
A31,
XREAL_1: 9;
(
0
- 1)
<= (((qy
`2 )
+ 1)
- 1) by
A30,
A31,
XREAL_1: 9;
hence (
- 1)
= (qy
`1 ) & (
- 1)
<= (qy
`2 ) & (qy
`2 )
<= 1 or (qy
`1 )
= 1 & (
- 1)
<= (qy
`2 ) & (qy
`2 )
<= 1 or (
- 1)
= (qy
`2 ) & (
- 1)
<= (qy
`1 ) & (qy
`1 )
<= 1 or 1
= (qy
`2 ) & (
- 1)
<= (qy
`1 ) & (qy
`1 )
<= 1 by
A28,
A30,
A32,
EUCLID: 52;
end;
suppose
A33: (t
`1 )
<= 1 & (t
`1 )
>=
0 & (t
`2 )
= 1;
A34: (qy
`1 )
= ((2
* (t
`1 ))
- 1) by
A28,
EUCLID: 52;
(2
* 1)
>= (2
* (t
`1 )) by
A33,
XREAL_1: 64;
then
A35: ((1
+ 1)
- 1)
>= (((qy
`1 )
+ 1)
- 1) by
A34,
XREAL_1: 9;
(
0
- 1)
<= (((qy
`1 )
+ 1)
- 1) by
A33,
A34,
XREAL_1: 9;
hence (
- 1)
= (qy
`1 ) & (
- 1)
<= (qy
`2 ) & (qy
`2 )
<= 1 or (qy
`1 )
= 1 & (
- 1)
<= (qy
`2 ) & (qy
`2 )
<= 1 or (
- 1)
= (qy
`2 ) & (
- 1)
<= (qy
`1 ) & (qy
`1 )
<= 1 or 1
= (qy
`2 ) & (
- 1)
<= (qy
`1 ) & (qy
`1 )
<= 1 by
A28,
A33,
A35,
EUCLID: 52;
end;
suppose
A36: (t
`1 )
<= 1 & (t
`1 )
>=
0 & (t
`2 )
=
0 ;
A37: (qy
`1 )
= ((2
* (t
`1 ))
- 1) by
A28,
EUCLID: 52;
(2
* 1)
>= (2
* (t
`1 )) by
A36,
XREAL_1: 64;
then
A38: ((1
+ 1)
- 1)
>= (((qy
`1 )
+ 1)
- 1) by
A37,
XREAL_1: 9;
(
0
- 1)
<= (((qy
`1 )
+ 1)
- 1) by
A36,
A37,
XREAL_1: 9;
hence (
- 1)
= (qy
`1 ) & (
- 1)
<= (qy
`2 ) & (qy
`2 )
<= 1 or (qy
`1 )
= 1 & (
- 1)
<= (qy
`2 ) & (qy
`2 )
<= 1 or (
- 1)
= (qy
`2 ) & (
- 1)
<= (qy
`1 ) & (qy
`1 )
<= 1 or 1
= (qy
`2 ) & (
- 1)
<= (qy
`1 ) & (qy
`1 )
<= 1 by
A28,
A36,
A38,
EUCLID: 52;
end;
suppose
A39: (t
`1 )
= 1 & (t
`2 )
<= 1 & (t
`2 )
>=
0 ;
A40: (qy
`2 )
= ((2
* (t
`2 ))
- 1) by
A28,
EUCLID: 52;
(2
* 1)
>= (2
* (t
`2 )) by
A39,
XREAL_1: 64;
then
A41: ((1
+ 1)
- 1)
>= (((qy
`2 )
+ 1)
- 1) by
A40,
XREAL_1: 9;
(
0
- 1)
<= (((qy
`2 )
+ 1)
- 1) by
A39,
A40,
XREAL_1: 9;
hence (
- 1)
= (qy
`1 ) & (
- 1)
<= (qy
`2 ) & (qy
`2 )
<= 1 or (qy
`1 )
= 1 & (
- 1)
<= (qy
`2 ) & (qy
`2 )
<= 1 or (
- 1)
= (qy
`2 ) & (
- 1)
<= (qy
`1 ) & (qy
`1 )
<= 1 or 1
= (qy
`2 ) & (
- 1)
<= (qy
`1 ) & (qy
`1 )
<= 1 by
A28,
A39,
A41,
EUCLID: 52;
end;
end;
hence thesis by
A1;
end;
then Kbd
= (
rng f11) by
A14;
then
consider f1 be
Function of X, ((
TOP-REAL 2)
| Kbd) such that f11
= f1 and
A42: f1 is
being_homeomorphism by
A7,
A12,
JGRAPH_1: 46;
(
dom f)
= (
[#] ((
TOP-REAL 2)
| Kb)) by
A1,
TOPS_2:def 5
.= Kb by
PRE_TOPC:def 5;
then (f
.
|[1,
0 ]|)
in (
rng f) by
A1,
A2,
FUNCT_1: 3;
then
reconsider PP = P as non
empty
Subset of (
TOP-REAL 2);
reconsider g = f as
Function of ((
TOP-REAL 2)
| Kbb), ((
TOP-REAL 2)
| PP);
reconsider g as
Function of ((
TOP-REAL 2)
| Kbb), ((
TOP-REAL 2)
| PP);
reconsider f22 = f1 as
Function of X, ((
TOP-REAL 2)
| Kbb);
reconsider h = (g
* f22) as
Function of ((
TOP-REAL 2)
|
R^2-unit_square ), ((
TOP-REAL 2)
| PP);
h is
being_homeomorphism by
A1,
A42,
TOPS_2: 57;
hence thesis by
TOPREAL2:def 1;
end;
theorem ::
JGRAPH_3:25
Th25: for Kb be
Subset of (
TOP-REAL 2) st Kb
= { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 } holds Kb is
being_simple_closed_curve & Kb is
compact
proof
set v =
|[1,
0 ]|;
let Kb be
Subset of (
TOP-REAL 2);
assume
A1: Kb
= { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 };
(v
`1 )
= 1 & (v
`2 )
=
0 by
EUCLID: 52;
then
|[1,
0 ]|
in { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 };
then
reconsider Kbd = Kb as non
empty
Subset of (
TOP-REAL 2) by
A1;
set P = Kb;
(
id ((
TOP-REAL 2)
| Kbd)) is
being_homeomorphism;
hence Kb is
being_simple_closed_curve by
A1,
Th24;
then
consider f be
Function of ((
TOP-REAL 2)
|
R^2-unit_square ), ((
TOP-REAL 2)
| P) such that
A2: f is
being_homeomorphism by
TOPREAL2:def 1;
per cases ;
suppose
A3: P is
empty;
Kbd
<>
{} ;
hence thesis by
A3;
end;
suppose P is non
empty;
then
reconsider R = P as non
empty
Subset of (
TOP-REAL 2);
f is
continuous & (
rng f)
= (
[#] ((
TOP-REAL 2)
| P)) by
A2,
TOPS_2:def 5;
then ((
TOP-REAL 2)
| R) is
compact by
COMPTS_1: 14;
hence thesis by
COMPTS_1: 3;
end;
end;
theorem ::
JGRAPH_3:26
for Cb be
Subset of (
TOP-REAL 2) st Cb
= { p where p be
Point of (
TOP-REAL 2) :
|.p.|
= 1 } holds Cb is
being_simple_closed_curve
proof
defpred
P[
Point of (
TOP-REAL 2)] means (
- 1)
= ($1
`1 ) & (
- 1)
<= ($1
`2 ) & ($1
`2 )
<= 1 or ($1
`1 )
= 1 & (
- 1)
<= ($1
`2 ) & ($1
`2 )
<= 1 or (
- 1)
= ($1
`2 ) & (
- 1)
<= ($1
`1 ) & ($1
`1 )
<= 1 or 1
= ($1
`2 ) & (
- 1)
<= ($1
`1 ) & ($1
`1 )
<= 1;
A1: (
|[1,
0 ]|
`1 )
= 1 & (
|[1,
0 ]|
`2 )
=
0 by
EUCLID: 52;
A2: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
set v =
|[1,
0 ]|;
let Cb be
Subset of (
TOP-REAL 2);
assume
A3: Cb
= { p where p be
Point of (
TOP-REAL 2) :
|.p.|
= 1 };
(v
`1 )
= 1 & (v
`2 )
=
0 by
EUCLID: 52;
then
A4:
|[1,
0 ]|
in { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 };
{ q where q be
Element of (
TOP-REAL 2) :
P[q] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider Kb = { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 } as non
empty
Subset of (
TOP-REAL 2) by
A4;
|.
|[1,
0 ]|.|
= (
sqrt (((
|[1,
0 ]|
`1 )
^2 )
+ ((
|[1,
0 ]|
`2 )
^2 ))) by
JGRAPH_1: 30
.= 1 by
A1,
SQUARE_1: 18;
then
|[1,
0 ]|
in Cb by
A3;
then
reconsider Cbb = Cb as non
empty
Subset of (
TOP-REAL 2);
A5: the
carrier of ((
TOP-REAL 2)
| Kb)
= Kb by
PRE_TOPC: 8;
A6: (
dom (
Sq_Circ
| Kb))
= ((
dom
Sq_Circ )
/\ Kb) by
RELAT_1: 61
.= the
carrier of ((
TOP-REAL 2)
| Kb) by
A5,
A2,
XBOOLE_1: 28;
A7: (
rng (
Sq_Circ
| Kb))
c= ((
Sq_Circ
| Kb)
.: the
carrier of ((
TOP-REAL 2)
| Kb))
proof
let u be
object;
assume u
in (
rng (
Sq_Circ
| Kb));
then ex z be
object st z
in (
dom (
Sq_Circ
| Kb)) & u
= ((
Sq_Circ
| Kb)
. z) by
FUNCT_1:def 3;
hence thesis by
A6,
FUNCT_1:def 6;
end;
((
Sq_Circ
| Kb)
.: the
carrier of ((
TOP-REAL 2)
| Kb))
= (
Sq_Circ
.: Kb) by
A5,
RELAT_1: 129
.= Cb by
A3,
Th23
.= the
carrier of ((
TOP-REAL 2)
| Cbb) by
PRE_TOPC: 8;
then
reconsider f0 = (
Sq_Circ
| Kb) as
Function of ((
TOP-REAL 2)
| Kb), ((
TOP-REAL 2)
| Cbb) by
A6,
A7,
FUNCT_2: 2;
(
rng (
Sq_Circ
| Kb))
c= the
carrier of (
TOP-REAL 2);
then
reconsider f00 = f0 as
Function of ((
TOP-REAL 2)
| Kb), (
TOP-REAL 2) by
A6,
FUNCT_2: 2;
A8: f0 is
one-to-one & Kb is
compact by
Th25,
FUNCT_1: 52;
(
rng f0)
= ((
Sq_Circ
| Kb)
.: the
carrier of ((
TOP-REAL 2)
| Kb)) by
RELSET_1: 22
.= (
Sq_Circ
.: Kb) by
A5,
RELAT_1: 129
.= Cb by
A3,
Th23;
then ex f1 be
Function of ((
TOP-REAL 2)
| Kb), ((
TOP-REAL 2)
| Cbb) st f00
= f1 & f1 is
being_homeomorphism by
A8,
Th21,
JGRAPH_1: 46,
TOPMETR: 7;
hence thesis by
Th24;
end;
begin
theorem ::
JGRAPH_3:27
for K0,C0 be
Subset of (
TOP-REAL 2) st K0
= { p : (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 } & C0
= { p1 where p1 be
Point of (
TOP-REAL 2) :
|.p1.|
<= 1 } holds (
Sq_Circ
" C0)
c= K0
proof
let K0,C0 be
Subset of (
TOP-REAL 2);
assume
A1: K0
= { p : (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 } & C0
= { p1 where p1 be
Point of (
TOP-REAL 2) :
|.p1.|
<= 1 };
let x be
object;
assume
A2: x
in (
Sq_Circ
" C0);
then
reconsider px = x as
Point of (
TOP-REAL 2);
set q = px;
A3: (
Sq_Circ
. x)
in C0 by
A2,
FUNCT_1:def 7;
now
per cases ;
case q
= (
0. (
TOP-REAL 2));
hence (
- 1)
<= (px
`1 ) & (px
`1 )
<= 1 & (
- 1)
<= (px
`2 ) & (px
`2 )
<= 1 by
JGRAPH_2: 3;
end;
case
A4: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
A5:
now
assume (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
=
0 ;
then (px
`1 )
=
0 & (px
`2 )
=
0 by
COMPLEX1: 1;
hence contradiction by
A4,
EUCLID: 53,
EUCLID: 54;
end;
A6: ((px
`1 )
^2 )
>=
0 by
XREAL_1: 63;
A7:
now
assume
A8: (px
`1 )
=
0 ;
then (px
`2 )
=
0 by
A4;
hence contradiction by
A4,
A8,
EUCLID: 53,
EUCLID: 54;
end;
A9: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) & (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
consider p1 be
Point of (
TOP-REAL 2) such that
A10: p1
= (
Sq_Circ
. q) and
A11:
|.p1.|
<= 1 by
A1,
A3;
(
|.p1.|
^2 )
<=
|.p1.| by
A11,
SQUARE_1: 42;
then
A12: (
|.p1.|
^2 )
<= 1 by
A11,
XXREAL_0: 2;
A13: (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
Lm1;
(
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A4,
Def1;
then (
|.p1.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
A9,
A10,
JGRAPH_1: 29
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
A13,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A13,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 62;
then (((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
<= (1
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A13,
A12,
XREAL_1: 64;
then (((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
<= (1
+ (((q
`2 )
/ (q
`1 ))
^2 )) by
A13,
XCMPLX_1: 87;
then (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<= (1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 ))) by
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
<= ((1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 )))
- 1) by
XREAL_1: 9;
then (((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
* ((px
`1 )
^2 ))
<= ((((px
`2 )
^2 )
/ ((px
`1 )
^2 ))
* ((px
`1 )
^2 )) by
A6,
XREAL_1: 64;
then ((((px
`1 )
^2 )
* ((px
`1 )
^2 ))
+ ((((px
`2 )
^2 )
- 1)
* ((px
`1 )
^2 )))
<= ((px
`2 )
^2 ) by
A7,
XCMPLX_1: 6,
XCMPLX_1: 87;
then ((((((px
`1 )
^2 )
* ((px
`1 )
^2 ))
- (((px
`1 )
^2 )
* 1))
+ (((px
`1 )
^2 )
* ((px
`2 )
^2 )))
- (1
* ((px
`2 )
^2 )))
<=
0 by
XREAL_1: 47;
then
A14: ((((px
`1 )
^2 )
- 1)
* (((px
`1 )
^2 )
+ ((px
`2 )
^2 )))
<=
0 ;
((px
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A15: (((px
`1 )
^2 )
- 1)
<=
0 by
A6,
A14,
A5,
XREAL_1: 129;
then
A16: (px
`1 )
<= 1 by
SQUARE_1: 43;
A17: (
- 1)
<= (px
`1 ) by
A15,
SQUARE_1: 43;
then (q
`2 )
<= 1 & (
- (
- (q
`1 )))
>= (
- (q
`2 )) or (q
`2 )
>= (
- 1) & (
- (q
`2 ))
>= (
- (
- (q
`1 ))) by
A4,
A16,
XREAL_1: 24,
XXREAL_0: 2;
then (q
`2 )
<= 1 & 1
>= (
- (q
`2 )) or (q
`2 )
>= (
- 1) & (
- (q
`2 ))
>= (q
`1 ) by
A16,
XXREAL_0: 2;
then (q
`2 )
<= 1 & (
- 1)
<= (
- (
- (q
`2 ))) or (q
`2 )
>= (
- 1) & (
- (q
`2 ))
>= (
- 1) by
A17,
XREAL_1: 24,
XXREAL_0: 2;
hence (
- 1)
<= (px
`1 ) & (px
`1 )
<= 1 & (
- 1)
<= (px
`2 ) & (px
`2 )
<= 1 by
A15,
SQUARE_1: 43,
XREAL_1: 24;
end;
case
A18: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
A19:
now
assume (((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
=
0 ;
then (px
`2 )
=
0 by
COMPLEX1: 1;
hence contradiction by
A18;
end;
A20: ((px
`2 )
^2 )
>=
0 by
XREAL_1: 63;
A21: (px
`2 )
<>
0 by
A18;
A22: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) & (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
consider p1 be
Point of (
TOP-REAL 2) such that
A23: p1
= (
Sq_Circ
. q) and
A24:
|.p1.|
<= 1 by
A1,
A3;
(
|.p1.|
^2 )
<=
|.p1.| by
A24,
SQUARE_1: 42;
then
A25: (
|.p1.|
^2 )
<= 1 by
A24,
XXREAL_0: 2;
A26: (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>
0 by
Lm1;
(
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
A18,
Def1;
then (
|.p1.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )) by
A22,
A23,
JGRAPH_1: 29
.= ((((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))
+ (((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))
+ (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`2 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
+ (((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))) by
A26,
SQUARE_1:def 2
.= ((((q
`2 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
+ (((q
`1 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A26,
SQUARE_1:def 2
.= ((((q
`2 )
^2 )
+ ((q
`1 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
XCMPLX_1: 62;
then (((((q
`2 )
^2 )
+ ((q
`1 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
* (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
<= (1
* (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
A26,
A25,
XREAL_1: 64;
then (((q
`2 )
^2 )
+ ((q
`1 )
^2 ))
<= (1
+ (((q
`1 )
/ (q
`2 ))
^2 )) by
A26,
XCMPLX_1: 87;
then (((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
<= (1
+ (((px
`1 )
^2 )
/ ((px
`2 )
^2 ))) by
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
- 1)
<= ((1
+ (((px
`1 )
^2 )
/ ((px
`2 )
^2 )))
- 1) by
XREAL_1: 9;
then (((((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
- 1)
* ((px
`2 )
^2 ))
<= ((((px
`1 )
^2 )
/ ((px
`2 )
^2 ))
* ((px
`2 )
^2 )) by
A20,
XREAL_1: 64;
then ((((px
`2 )
^2 )
* ((px
`2 )
^2 ))
+ ((((px
`1 )
^2 )
- 1)
* ((px
`2 )
^2 )))
<= ((px
`1 )
^2 ) by
A21,
XCMPLX_1: 6,
XCMPLX_1: 87;
then ((((((px
`2 )
^2 )
* ((px
`2 )
^2 ))
- (((px
`2 )
^2 )
* 1))
+ (((px
`2 )
^2 )
* ((px
`1 )
^2 )))
- (1
* ((px
`1 )
^2 )))
<=
0 by
XREAL_1: 47;
then
A27: ((((px
`2 )
^2 )
- 1)
* (((px
`2 )
^2 )
+ ((px
`1 )
^2 )))
<=
0 ;
((px
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then
A28: (((px
`2 )
^2 )
- 1)
<=
0 by
A20,
A27,
A19,
XREAL_1: 129;
then (
- 1)
<= (px
`2 ) & (px
`2 )
<= 1 by
SQUARE_1: 43;
then (q
`1 )
<= 1 & 1
>= (
- (q
`1 )) or (q
`1 )
>= (
- 1) & (
- (q
`1 ))
>= (
- 1) by
A18,
XXREAL_0: 2;
then (q
`1 )
<= 1 & (
- 1)
<= (
- (
- (q
`1 ))) or (q
`1 )
>= (
- 1) & (q
`1 )
<= 1 by
XREAL_1: 24;
hence (
- 1)
<= (px
`1 ) & (px
`1 )
<= 1 & (
- 1)
<= (px
`2 ) & (px
`2 )
<= 1 by
A28,
SQUARE_1: 43;
end;
end;
hence thesis by
A1;
end;
theorem ::
JGRAPH_3:28
Th28: for p holds (p
= (
0. (
TOP-REAL 2)) implies ((
Sq_Circ
" )
. p)
= (
0. (
TOP-REAL 2))) & (((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) implies ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) & ( not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) implies ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|)
proof
let p;
set q = p;
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|;
A1: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A2: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
hereby
assume
A3: p
= (
0. (
TOP-REAL 2));
then (
Sq_Circ
. p)
= p by
Def1;
hence ((
Sq_Circ
" )
. p)
= (
0. (
TOP-REAL 2)) by
A2,
A3,
FUNCT_1: 34;
end;
hereby
A4: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
set q = p;
assume that
A5: (p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )) and
A6: p
<> (
0. (
TOP-REAL 2));
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|;
A7: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A8: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A9: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
then
A10: ((px
`2 )
/ (px
`1 ))
= ((q
`2 )
/ (q
`1 )) by
A7,
A8,
XCMPLX_1: 91;
then
A11: ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`2 ) by
A9,
A8,
XCMPLX_1: 89;
A12:
now
assume (px
`1 )
=
0 & (px
`2 )
=
0 ;
then (q
`1 )
=
0 & (q
`2 )
=
0 by
A7,
A9,
A8,
XCMPLX_1: 6;
hence contradiction by
A6,
EUCLID: 53,
EUCLID: 54;
end;
(q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A5,
A8,
XREAL_1: 64;
then (q
`2 )
<= (q
`1 ) & ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A7,
A9,
A8,
XREAL_1: 64;
then ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A7,
A8,
EUCLID: 52,
XREAL_1: 64;
then
A13: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))]| by
A7,
A9,
A12,
Def1,
JGRAPH_2: 3;
((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`1 ) by
A7,
A8,
A10,
XCMPLX_1: 89;
then q
= (
Sq_Circ
. px) by
A13,
A11,
EUCLID: 53;
hence ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
A4,
FUNCT_1: 34;
end;
A14: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A15: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A16: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
then
A17: ((px
`1 )
/ (px
`2 ))
= ((q
`1 )
/ (q
`2 )) by
A1,
A15,
XCMPLX_1: 91;
then
A18: ((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`1 ) by
A16,
A15,
XCMPLX_1: 89;
assume
A19: not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )));
A20:
now
assume that
A21: (px
`2 )
=
0 and (px
`1 )
=
0 ;
(q
`2 )
=
0 by
A1,
A15,
A21,
XCMPLX_1: 6;
hence contradiction by
A19;
end;
(p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 )) by
A19,
JGRAPH_2: 13;
then (q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A15,
XREAL_1: 64;
then (q
`1 )
<= (q
`2 ) & ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A1,
A16,
A15,
XREAL_1: 64;
then ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) & (
- (px
`2 ))
<= (px
`1 ) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A1,
A15,
EUCLID: 52,
XREAL_1: 64;
then
A22: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))]| by
A1,
A16,
A20,
Th4,
JGRAPH_2: 3;
((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`2 ) by
A1,
A15,
A17,
XCMPLX_1: 89;
then q
= (
Sq_Circ
. px) by
A22,
A18,
EUCLID: 53;
hence thesis by
A14,
FUNCT_1: 34;
end;
theorem ::
JGRAPH_3:29
Th29: (
Sq_Circ
" ) is
Function of (
TOP-REAL 2), (
TOP-REAL 2)
proof
A1: the
carrier of (
TOP-REAL 2)
c= (
rng
Sq_Circ )
proof
let y be
object;
assume y
in the
carrier of (
TOP-REAL 2);
then
reconsider py = y as
Point of (
TOP-REAL 2);
A2: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
now
per cases ;
case py
= (
0. (
TOP-REAL 2));
then (
Sq_Circ
. py)
= py by
Def1;
hence ex x be
set st x
in (
dom
Sq_Circ ) & y
= (
Sq_Circ
. x) by
A2;
end;
case
A3: ((py
`2 )
<= (py
`1 ) & (
- (py
`1 ))
<= (py
`2 ) or (py
`2 )
>= (py
`1 ) & (py
`2 )
<= (
- (py
`1 ))) & py
<> (
0. (
TOP-REAL 2));
set q = py;
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|;
A4: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A5:
now
assume that
A6: (px
`1 )
=
0 and
A7: (px
`2 )
=
0 ;
((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A7,
EUCLID: 52;
then
A8: (q
`2 )
=
0 by
A4,
XCMPLX_1: 6;
((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A6,
EUCLID: 52;
then (q
`1 )
=
0 by
A4,
XCMPLX_1: 6;
hence contradiction by
A3,
A8,
EUCLID: 53,
EUCLID: 54;
end;
A9: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A10: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A11: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
then
A12: ((px
`2 )
/ (px
`1 ))
= ((q
`2 )
/ (q
`1 )) by
A10,
A4,
XCMPLX_1: 91;
then
A13: ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`2 ) by
A11,
A4,
XCMPLX_1: 89;
(q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A3,
A4,
XREAL_1: 64;
then (q
`2 )
<= (q
`1 ) & ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A10,
A11,
A4,
XREAL_1: 64;
then ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A10,
A4,
EUCLID: 52,
XREAL_1: 64;
then
A14: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))]| by
A10,
A11,
A5,
Def1,
JGRAPH_2: 3;
((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`1 ) by
A10,
A4,
A12,
XCMPLX_1: 89;
hence ex x be
set st x
in (
dom
Sq_Circ ) & y
= (
Sq_Circ
. x) by
A14,
A13,
A9,
EUCLID: 53;
end;
case
A15: not ((py
`2 )
<= (py
`1 ) & (
- (py
`1 ))
<= (py
`2 ) or (py
`2 )
>= (py
`1 ) & (py
`2 )
<= (
- (py
`1 ))) & py
<> (
0. (
TOP-REAL 2));
set q = py;
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|;
A16: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A17: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A18:
now
assume that
A19: (px
`2 )
=
0 and (px
`1 )
=
0 ;
(q
`2 )
=
0 by
A17,
A16,
A19,
XCMPLX_1: 6;
hence contradiction by
A15;
end;
A20: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
then
A21: ((px
`1 )
/ (px
`2 ))
= ((q
`1 )
/ (q
`2 )) by
A17,
A16,
XCMPLX_1: 91;
then
A22: ((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`1 ) by
A20,
A16,
XCMPLX_1: 89;
(py
`1 )
<= (py
`2 ) & (
- (py
`2 ))
<= (py
`1 ) or (py
`1 )
>= (py
`2 ) & (py
`1 )
<= (
- (py
`2 )) by
A15,
JGRAPH_2: 13;
then (q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A16,
XREAL_1: 64;
then (q
`1 )
<= (q
`2 ) & ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A17,
A20,
A16,
XREAL_1: 64;
then ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) & (
- (px
`2 ))
<= (px
`1 ) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A17,
A16,
EUCLID: 52,
XREAL_1: 64;
then
A23: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))]| by
A17,
A20,
A18,
Th4,
JGRAPH_2: 3;
A24: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`2 ) by
A17,
A16,
A21,
XCMPLX_1: 89;
hence ex x be
set st x
in (
dom
Sq_Circ ) & y
= (
Sq_Circ
. x) by
A23,
A22,
A24,
EUCLID: 53;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
A25: (
rng (
Sq_Circ
" ))
= (
dom
Sq_Circ ) by
FUNCT_1: 33
.= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
(
dom (
Sq_Circ
" ))
= (
rng
Sq_Circ ) by
FUNCT_1: 33;
then (
dom (
Sq_Circ
" ))
= the
carrier of (
TOP-REAL 2) by
A1;
hence thesis by
A25,
FUNCT_2: 1;
end;
theorem ::
JGRAPH_3:30
Th30: for p be
Point of (
TOP-REAL 2) st p
<> (
0. (
TOP-REAL 2)) holds (((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) implies ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|) & ( not ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) implies ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|)
proof
let p be
Point of (
TOP-REAL 2);
A1: (
- (p
`2 ))
< (p
`1 ) implies (
- (
- (p
`2 )))
> (
- (p
`1 )) by
XREAL_1: 24;
assume
A2: p
<> (
0. (
TOP-REAL 2));
hereby
assume
A3: (p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ));
now
per cases by
A3;
case
A4: (p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 );
now
assume
A5: (p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ));
A6:
now
per cases by
A5;
case (p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 );
hence (p
`1 )
= (p
`2 ) or (p
`1 )
= (
- (p
`2 )) by
A4,
XXREAL_0: 1;
end;
case (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ));
then (
- (p
`2 ))
>= (
- (
- (p
`1 ))) by
XREAL_1: 24;
hence (p
`1 )
= (p
`2 ) or (p
`1 )
= (
- (p
`2 )) by
A4,
XXREAL_0: 1;
end;
end;
now
per cases by
A6;
case (p
`1 )
= (p
`2 );
hence ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A2,
A5,
Th28;
end;
case (p
`1 )
= (
- (p
`2 ));
then (p
`1 )
<>
0 & (
- (p
`1 ))
= (p
`2 ) by
A2,
EUCLID: 53,
EUCLID: 54;
then ((p
`1 )
/ (p
`2 ))
= (
- 1) & ((p
`2 )
/ (p
`1 ))
= (
- 1) by
XCMPLX_1: 197,
XCMPLX_1: 198;
hence ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A2,
A5,
Th28;
end;
end;
hence ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|;
end;
hence ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
Th28;
end;
case
A7: (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ));
now
assume
A8: (p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ));
A9:
now
per cases by
A8;
case (p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 );
then (
- (
- (p
`1 )))
>= (
- (p
`2 )) by
XREAL_1: 24;
hence (p
`1 )
= (p
`2 ) or (p
`1 )
= (
- (p
`2 )) by
A7,
XXREAL_0: 1;
end;
case (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ));
hence (p
`1 )
= (p
`2 ) or (p
`1 )
= (
- (p
`2 )) by
A7,
XXREAL_0: 1;
end;
end;
now
per cases by
A9;
case (p
`1 )
= (p
`2 );
hence ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A2,
A8,
Th28;
end;
case
A10: (p
`1 )
= (
- (p
`2 ));
then (p
`1 )
<>
0 & (
- (p
`1 ))
= (p
`2 ) by
A2,
EUCLID: 53,
EUCLID: 54;
then
A11: ((p
`2 )
/ (p
`1 ))
= (
- 1) by
XCMPLX_1: 197;
(p
`2 )
<>
0 by
A2,
A10,
EUCLID: 53,
EUCLID: 54;
then ((p
`1 )
/ (p
`2 ))
= (
- 1) by
A10,
XCMPLX_1: 197;
hence ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A2,
A8,
A11,
Th28;
end;
end;
hence ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|;
end;
hence ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
Th28;
end;
end;
hence ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|;
end;
A12: (
- (p
`2 ))
> (p
`1 ) implies (
- (
- (p
`2 )))
< (
- (p
`1 )) by
XREAL_1: 24;
assume not ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 )));
hence thesis by
A2,
A1,
A12,
Th28;
end;
theorem ::
JGRAPH_3:31
Th31: for X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 st f1 is
continuous & f2 is
continuous & (for q be
Point of X holds (f2
. q)
<>
0 ) holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g
. p)
= (r1
* (
sqrt (1
+ ((r1
/ r2)
^2 ))))) & g is
continuous
proof
let X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 ;
assume that
A1: f1 is
continuous and
A2: f2 is
continuous & for q be
Point of X holds (f2
. q)
<>
0 ;
consider g2 be
Function of X,
R^1 such that
A3: for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g2
. p)
= (
sqrt (1
+ ((r1
/ r2)
^2 ))) and
A4: g2 is
continuous by
A1,
A2,
Th8;
consider g3 be
Function of X,
R^1 such that
A5: for p be
Point of X, r1,r0 be
Real st (f1
. p)
= r1 & (g2
. p)
= r0 holds (g3
. p)
= (r1
* r0) and
A6: g3 is
continuous by
A1,
A4,
JGRAPH_2: 25;
for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g3
. p)
= (r1
* (
sqrt (1
+ ((r1
/ r2)
^2 ))))
proof
let p be
Point of X, r1,r2 be
Real;
assume that
A7: (f1
. p)
= r1 and
A8: (f2
. p)
= r2;
(g2
. p)
= (
sqrt (1
+ ((r1
/ r2)
^2 ))) by
A3,
A7,
A8;
hence thesis by
A5,
A7;
end;
hence thesis by
A6;
end;
theorem ::
JGRAPH_3:32
Th32: for X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 st f1 is
continuous & f2 is
continuous & (for q be
Point of X holds (f2
. q)
<>
0 ) holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g
. p)
= (r2
* (
sqrt (1
+ ((r1
/ r2)
^2 ))))) & g is
continuous
proof
let X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 ;
assume that
A1: f1 is
continuous and
A2: f2 is
continuous and
A3: for q be
Point of X holds (f2
. q)
<>
0 ;
consider g2 be
Function of X,
R^1 such that
A4: for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g2
. p)
= (
sqrt (1
+ ((r1
/ r2)
^2 ))) and
A5: g2 is
continuous by
A1,
A2,
A3,
Th8;
consider g3 be
Function of X,
R^1 such that
A6: for p be
Point of X, r2,r0 be
Real st (f2
. p)
= r2 & (g2
. p)
= r0 holds (g3
. p)
= (r2
* r0) and
A7: g3 is
continuous by
A2,
A5,
JGRAPH_2: 25;
for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g3
. p)
= (r2
* (
sqrt (1
+ ((r1
/ r2)
^2 ))))
proof
let p be
Point of X, r1,r2 be
Real;
assume that
A8: (f1
. p)
= r1 and
A9: (f2
. p)
= r2;
(g2
. p)
= (
sqrt (1
+ ((r1
/ r2)
^2 ))) by
A4,
A8,
A9;
hence thesis by
A6,
A9;
end;
hence thesis by
A7;
end;
theorem ::
JGRAPH_3:33
Th33: for K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<>
0 ) holds f is
continuous
proof
let K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm7;
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
assume that
A1: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) and
A2: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<>
0 ;
A3: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0
proof
let q be
Point of ((
TOP-REAL 2)
| K1);
q
in the
carrier of ((
TOP-REAL 2)
| K1);
then
reconsider q2 = q as
Point of (
TOP-REAL 2) by
A3;
(g1
. q)
= (
proj1
. q) by
Lm6
.= (q2
`1 ) by
PSCOMP_1:def 5;
hence thesis by
A2;
end;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A4: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (
sqrt (1
+ ((r1
/ r2)
^2 )))) and
A5: g3 is
continuous by
Th32;
A6:
now
let x be
object;
assume
A7: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in the
carrier of ((
TOP-REAL 2)
| K1) by
A7;
then x
in K1 by
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A8: (
proj2
. r)
= (r
`2 ) & (
proj1
. r)
= (r
`1 ) by
PSCOMP_1:def 5,
PSCOMP_1:def 6;
A9: (g2
. s)
= (
proj2
. s) & (g1
. s)
= (
proj1
. s) by
Lm4,
Lm6;
(f
. r)
= ((r
`1 )
* (
sqrt (1
+ (((r
`2 )
/ (r
`1 ))
^2 )))) by
A1,
A7;
hence (f
. x)
= (g3
. x) by
A4,
A9,
A8;
end;
(
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
hence thesis by
A5,
A6,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_3:34
Th34: for K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<>
0 ) holds f is
continuous
proof
let K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm7;
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
assume that
A1: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) and
A2: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<>
0 ;
A3: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0
proof
let q be
Point of ((
TOP-REAL 2)
| K1);
q
in the
carrier of ((
TOP-REAL 2)
| K1);
then
reconsider q2 = q as
Point of (
TOP-REAL 2) by
A3;
(g1
. q)
= (
proj1
. q) by
Lm6
.= (q2
`1 ) by
PSCOMP_1:def 5;
hence thesis by
A2;
end;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A4: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r1
* (
sqrt (1
+ ((r1
/ r2)
^2 )))) and
A5: g3 is
continuous by
Th31;
A6:
now
let x be
object;
assume
A7: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in the
carrier of ((
TOP-REAL 2)
| K1) by
A7;
then x
in K1 by
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A8: (
proj2
. r)
= (r
`2 ) & (
proj1
. r)
= (r
`1 ) by
PSCOMP_1:def 5,
PSCOMP_1:def 6;
A9: (g2
. s)
= (
proj2
. s) & (g1
. s)
= (
proj1
. s) by
Lm4,
Lm6;
(f
. r)
= ((r
`2 )
* (
sqrt (1
+ (((r
`2 )
/ (r
`1 ))
^2 )))) by
A1,
A7;
hence (f
. x)
= (g3
. x) by
A4,
A9,
A8;
end;
(
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
hence thesis by
A5,
A6,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_3:35
Th35: for K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<>
0 ) holds f is
continuous
proof
let K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm7;
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
assume that
A1: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) and
A2: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<>
0 ;
A3: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
for q be
Point of ((
TOP-REAL 2)
| K1) holds (g2
. q)
<>
0
proof
let q be
Point of ((
TOP-REAL 2)
| K1);
q
in the
carrier of ((
TOP-REAL 2)
| K1);
then
reconsider q2 = q as
Point of (
TOP-REAL 2) by
A3;
(g2
. q)
= (
proj2
. q) by
Lm4
.= (q2
`2 ) by
PSCOMP_1:def 6;
hence thesis by
A2;
end;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A4: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g1
. q)
= r1 & (g2
. q)
= r2 holds (g3
. q)
= (r2
* (
sqrt (1
+ ((r1
/ r2)
^2 )))) and
A5: g3 is
continuous by
Th32;
A6:
now
let x be
object;
assume
A7: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in the
carrier of ((
TOP-REAL 2)
| K1) by
A7;
then x
in K1 by
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A8: (
proj2
. r)
= (r
`2 ) & (
proj1
. r)
= (r
`1 ) by
PSCOMP_1:def 5,
PSCOMP_1:def 6;
A9: (g2
. s)
= (
proj2
. s) & (g1
. s)
= (
proj1
. s) by
Lm4,
Lm6;
(f
. r)
= ((r
`2 )
* (
sqrt (1
+ (((r
`1 )
/ (r
`2 ))
^2 )))) by
A1,
A7;
hence (f
. x)
= (g3
. x) by
A4,
A9,
A8;
end;
(
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
hence thesis by
A5,
A6,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_3:36
Th36: for K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<>
0 ) holds f is
continuous
proof
let K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm7;
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
assume that
A1: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) and
A2: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<>
0 ;
A3: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
for q be
Point of ((
TOP-REAL 2)
| K1) holds (g2
. q)
<>
0
proof
let q be
Point of ((
TOP-REAL 2)
| K1);
q
in the
carrier of ((
TOP-REAL 2)
| K1);
then
reconsider q2 = q as
Point of (
TOP-REAL 2) by
A3;
(g2
. q)
= (
proj2
. q) by
Lm4
.= (q2
`2 ) by
PSCOMP_1:def 6;
hence thesis by
A2;
end;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A4: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g1
. q)
= r1 & (g2
. q)
= r2 holds (g3
. q)
= (r1
* (
sqrt (1
+ ((r1
/ r2)
^2 )))) and
A5: g3 is
continuous by
Th31;
A6:
now
let x be
object;
assume
A7: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in the
carrier of ((
TOP-REAL 2)
| K1) by
A7;
then x
in K1 by
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A8: (
proj2
. r)
= (r
`2 ) & (
proj1
. r)
= (r
`1 ) by
PSCOMP_1:def 5,
PSCOMP_1:def 6;
A9: (g2
. s)
= (
proj2
. s) & (g1
. s)
= (
proj1
. s) by
Lm4,
Lm6;
(f
. r)
= ((r
`1 )
* (
sqrt (1
+ (((r
`1 )
/ (r
`2 ))
^2 )))) by
A1,
A7;
hence (f
. x)
= (g3
. x) by
A4,
A9,
A8;
end;
(
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
hence thesis by
A5,
A6,
FUNCT_1: 2;
end;
Lm17: for K1 be non
empty
Subset of (
TOP-REAL 2) holds (
proj2
* ((
Sq_Circ
" )
| K1)) is
Function of ((
TOP-REAL 2)
| K1),
R^1
proof
let K1 be non
empty
Subset of (
TOP-REAL 2);
A1: (
rng (
proj2
* ((
Sq_Circ
" )
| K1)))
c= (
rng
proj2 ) by
RELAT_1: 26;
A2: (
dom ((
Sq_Circ
" )
| K1))
c= (
dom (
proj2
* ((
Sq_Circ
" )
| K1)))
proof
let x be
object;
A3: (
rng (
Sq_Circ
" ))
c= the
carrier of (
TOP-REAL 2) by
Th29,
RELAT_1:def 19;
assume
A4: x
in (
dom ((
Sq_Circ
" )
| K1));
then x
in ((
dom (
Sq_Circ
" ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (
Sq_Circ
" )) by
XBOOLE_0:def 4;
then
A5: ((
Sq_Circ
" )
. x)
in (
rng (
Sq_Circ
" )) by
FUNCT_1: 3;
(((
Sq_Circ
" )
| K1)
. x)
= ((
Sq_Circ
" )
. x) by
A4,
FUNCT_1: 47;
hence thesis by
A4,
A5,
A3,
Lm3,
FUNCT_1: 11;
end;
(
dom (
proj2
* ((
Sq_Circ
" )
| K1)))
c= (
dom ((
Sq_Circ
" )
| K1)) by
RELAT_1: 25;
then (
dom (
proj2
* ((
Sq_Circ
" )
| K1)))
= (
dom ((
Sq_Circ
" )
| K1)) by
A2
.= ((
dom (
Sq_Circ
" ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
Th29,
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
hence thesis by
A1,
FUNCT_2: 2,
TOPMETR: 17,
XBOOLE_1: 1;
end;
Lm18: for K1 be non
empty
Subset of (
TOP-REAL 2) holds (
proj1
* ((
Sq_Circ
" )
| K1)) is
Function of ((
TOP-REAL 2)
| K1),
R^1
proof
let K1 be non
empty
Subset of (
TOP-REAL 2);
A1: (
rng (
proj1
* ((
Sq_Circ
" )
| K1)))
c= (
rng
proj1 ) by
RELAT_1: 26;
A2: (
dom ((
Sq_Circ
" )
| K1))
c= (
dom (
proj1
* ((
Sq_Circ
" )
| K1)))
proof
let x be
object;
A3: (
rng (
Sq_Circ
" ))
c= the
carrier of (
TOP-REAL 2) by
Th29,
RELAT_1:def 19;
assume
A4: x
in (
dom ((
Sq_Circ
" )
| K1));
then x
in ((
dom (
Sq_Circ
" ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (
Sq_Circ
" )) by
XBOOLE_0:def 4;
then
A5: ((
Sq_Circ
" )
. x)
in (
rng (
Sq_Circ
" )) by
FUNCT_1: 3;
(((
Sq_Circ
" )
| K1)
. x)
= ((
Sq_Circ
" )
. x) by
A4,
FUNCT_1: 47;
hence thesis by
A4,
A5,
A3,
Lm2,
FUNCT_1: 11;
end;
(
dom (
proj1
* ((
Sq_Circ
" )
| K1)))
c= (
dom ((
Sq_Circ
" )
| K1)) by
RELAT_1: 25;
then (
dom (
proj1
* ((
Sq_Circ
" )
| K1)))
= (
dom ((
Sq_Circ
" )
| K1)) by
A2
.= ((
dom (
Sq_Circ
" ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
Th29,
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
hence thesis by
A1,
FUNCT_2: 2,
TOPMETR: 17,
XBOOLE_1: 1;
end;
theorem ::
JGRAPH_3:37
Th37: for K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st f
= ((
Sq_Circ
" )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
assume
A1: f
= ((
Sq_Circ
" )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) };
then (
1.REAL 2)
in K0 by
Lm9,
Lm10;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
reconsider g1 = (
proj1
* ((
Sq_Circ
" )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm18;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g1
. p)
= ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
proof
A2: (
dom ((
Sq_Circ
" )
| K1))
= ((
dom (
Sq_Circ
" ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
Th29,
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
let p be
Point of (
TOP-REAL 2);
A3: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A4: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`2 )
<= (p3
`1 ) & (
- (p3
`1 ))
<= (p3
`2 ) or (p3
`2 )
>= (p3
`1 ) & (p3
`2 )
<= (
- (p3
`1 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A3;
then
A5: ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
Th28;
(((
Sq_Circ
" )
| K1)
. p)
= ((
Sq_Circ
" )
. p) by
A4,
A3,
FUNCT_1: 49;
then (g1
. p)
= (
proj1
.
|[((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) by
A4,
A2,
A3,
A5,
FUNCT_1: 13
.= (
|[((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|
`1 ) by
PSCOMP_1:def 5
.= ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
EUCLID: 52;
hence thesis;
end;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A6: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f1
. p)
= ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))));
reconsider g2 = (
proj2
* ((
Sq_Circ
" )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm17;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g2
. p)
= ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
proof
A7: (
dom ((
Sq_Circ
" )
| K1))
= ((
dom (
Sq_Circ
" ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
Th29,
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
let p be
Point of (
TOP-REAL 2);
A8: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A9: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`2 )
<= (p3
`1 ) & (
- (p3
`1 ))
<= (p3
`2 ) or (p3
`2 )
>= (p3
`1 ) & (p3
`2 )
<= (
- (p3
`1 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A8;
then
A10: ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
Th28;
(((
Sq_Circ
" )
| K1)
. p)
= ((
Sq_Circ
" )
. p) by
A9,
A8,
FUNCT_1: 49;
then (g2
. p)
= (
proj2
.
|[((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|) by
A9,
A7,
A8,
A10,
FUNCT_1: 13
.= (
|[((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|
`2 ) by
PSCOMP_1:def 6
.= ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
EUCLID: 52;
hence thesis;
end;
then
consider f2 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A11: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f2
. p)
= ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))));
A12: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<>
0
proof
let q be
Point of (
TOP-REAL 2);
A13: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then
A14: ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`2 )
<= (p3
`1 ) & (
- (p3
`1 ))
<= (p3
`2 ) or (p3
`2 )
>= (p3
`1 ) & (p3
`2 )
<= (
- (p3
`1 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A13;
now
assume
A15: (q
`1 )
=
0 ;
then (q
`2 )
=
0 by
A14;
hence contradiction by
A14,
A15,
EUCLID: 53,
EUCLID: 54;
end;
hence thesis;
end;
then
A16: f1 is
continuous by
A6,
Th33;
A17:
now
let x,y,r,s be
Real;
assume that
A18:
|[x, y]|
in K1 and
A19: r
= (f1
.
|[x, y]|) & s
= (f2
.
|[x, y]|);
set p99 =
|[x, y]|;
A20: ex p3 be
Point of (
TOP-REAL 2) st p99
= p3 & ((p3
`2 )
<= (p3
`1 ) & (
- (p3
`1 ))
<= (p3
`2 ) or (p3
`2 )
>= (p3
`1 ) & (p3
`2 )
<= (
- (p3
`1 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A18;
A21: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
A22: (f1
. p99)
= ((p99
`1 )
* (
sqrt (1
+ (((p99
`2 )
/ (p99
`1 ))
^2 )))) by
A6,
A18;
(((
Sq_Circ
" )
| K0)
.
|[x, y]|)
= ((
Sq_Circ
" )
.
|[x, y]|) by
A18,
FUNCT_1: 49
.=
|[((p99
`1 )
* (
sqrt (1
+ (((p99
`2 )
/ (p99
`1 ))
^2 )))), ((p99
`2 )
* (
sqrt (1
+ (((p99
`2 )
/ (p99
`1 ))
^2 ))))]| by
A20,
Th28
.=
|[r, s]| by
A11,
A18,
A19,
A21,
A22;
hence (f
.
|[x, y]|)
=
|[r, s]| by
A1;
end;
f2 is
continuous by
A12,
A11,
Th34;
hence thesis by
A1,
A16,
A17,
Lm13,
JGRAPH_2: 35;
end;
theorem ::
JGRAPH_3:38
Th38: for K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st f
= ((
Sq_Circ
" )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
assume
A1: f
= ((
Sq_Circ
" )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) };
then (
1.REAL 2)
in K0 by
Lm14,
Lm15;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
reconsider g1 = (
proj2
* ((
Sq_Circ
" )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm17;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g1
. p)
= ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
proof
A2: (
dom ((
Sq_Circ
" )
| K1))
= ((
dom (
Sq_Circ
" ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
Th29,
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
let p be
Point of (
TOP-REAL 2);
A3: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A4: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`1 )
<= (p3
`2 ) & (
- (p3
`2 ))
<= (p3
`1 ) or (p3
`1 )
>= (p3
`2 ) & (p3
`1 )
<= (
- (p3
`2 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A3;
then
A5: ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
Th30;
(((
Sq_Circ
" )
| K1)
. p)
= ((
Sq_Circ
" )
. p) by
A4,
A3,
FUNCT_1: 49;
then (g1
. p)
= (
proj2
.
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|) by
A4,
A2,
A3,
A5,
FUNCT_1: 13
.= (
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|
`2 ) by
PSCOMP_1:def 6
.= ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
EUCLID: 52;
hence thesis;
end;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A6: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f1
. p)
= ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))));
reconsider g2 = (
proj1
* ((
Sq_Circ
" )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm18;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g2
. p)
= ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
proof
A7: (
dom ((
Sq_Circ
" )
| K1))
= ((
dom (
Sq_Circ
" ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
Th29,
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
let p be
Point of (
TOP-REAL 2);
A8: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A9: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`1 )
<= (p3
`2 ) & (
- (p3
`2 ))
<= (p3
`1 ) or (p3
`1 )
>= (p3
`2 ) & (p3
`1 )
<= (
- (p3
`2 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A8;
then
A10: ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
Th30;
(((
Sq_Circ
" )
| K1)
. p)
= ((
Sq_Circ
" )
. p) by
A9,
A8,
FUNCT_1: 49;
then (g2
. p)
= (
proj1
.
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|) by
A9,
A7,
A8,
A10,
FUNCT_1: 13
.= (
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|
`1 ) by
PSCOMP_1:def 5
.= ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
EUCLID: 52;
hence thesis;
end;
then
consider f2 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A11: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f2
. p)
= ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))));
A12: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<>
0
proof
let q be
Point of (
TOP-REAL 2);
A13: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then
A14: ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`1 )
<= (p3
`2 ) & (
- (p3
`2 ))
<= (p3
`1 ) or (p3
`1 )
>= (p3
`2 ) & (p3
`1 )
<= (
- (p3
`2 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A13;
now
assume
A15: (q
`2 )
=
0 ;
then (q
`1 )
=
0 by
A14;
hence contradiction by
A14,
A15,
EUCLID: 53,
EUCLID: 54;
end;
hence thesis;
end;
then
A16: f1 is
continuous by
A6,
Th35;
A17: for x,y,s,r be
Real st
|[x, y]|
in K1 & s
= (f2
.
|[x, y]|) & r
= (f1
.
|[x, y]|) holds (f
.
|[x, y]|)
=
|[s, r]|
proof
let x,y,s,r be
Real;
assume that
A18:
|[x, y]|
in K1 and
A19: s
= (f2
.
|[x, y]|) & r
= (f1
.
|[x, y]|);
set p99 =
|[x, y]|;
A20: ex p3 be
Point of (
TOP-REAL 2) st p99
= p3 & ((p3
`1 )
<= (p3
`2 ) & (
- (p3
`2 ))
<= (p3
`1 ) or (p3
`1 )
>= (p3
`2 ) & (p3
`1 )
<= (
- (p3
`2 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A1,
A18;
A21: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
A22: (f1
. p99)
= ((p99
`2 )
* (
sqrt (1
+ (((p99
`1 )
/ (p99
`2 ))
^2 )))) by
A6,
A18;
(((
Sq_Circ
" )
| K0)
.
|[x, y]|)
= ((
Sq_Circ
" )
.
|[x, y]|) by
A18,
FUNCT_1: 49
.=
|[((p99
`1 )
* (
sqrt (1
+ (((p99
`1 )
/ (p99
`2 ))
^2 )))), ((p99
`2 )
* (
sqrt (1
+ (((p99
`1 )
/ (p99
`2 ))
^2 ))))]| by
A20,
Th30
.=
|[s, r]| by
A11,
A18,
A19,
A21,
A22;
hence thesis by
A1;
end;
f2 is
continuous by
A12,
A11,
Th36;
hence thesis by
A1,
A16,
A17,
Lm13,
JGRAPH_2: 35;
end;
theorem ::
JGRAPH_3:39
Th39: for B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0) st f
= ((
Sq_Circ
" )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous & K0 is
closed
proof
reconsider K5 = { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`2 )
<= (
- (p7
`1 )) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 47;
reconsider K4 = { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`1 )
<= (p7
`2 ) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 46;
reconsider K3 = { p7 where p7 be
Point of (
TOP-REAL 2) : (
- (p7
`1 ))
<= (p7
`2 ) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 47;
reconsider K2 = { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`2 )
<= (p7
`1 ) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 46;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
<= ($1
`1 ) & (
- ($1
`1 ))
<= ($1
`2 ) or ($1
`2 )
>= ($1
`1 ) & ($1
`2 )
<= (
- ($1
`1 )));
set b0 = (
NonZero (
TOP-REAL 2));
defpred
P0[
Point of (
TOP-REAL 2)] means (($1
`2 )
<= ($1
`1 ) & (
- ($1
`1 ))
<= ($1
`2 ) or ($1
`2 )
>= ($1
`1 ) & ($1
`2 )
<= (
- ($1
`1 )));
let B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0);
set k0 = { p :
P0[p] & p
<> (
0. (
TOP-REAL 2)) };
assume that
A1: f
= ((
Sq_Circ
" )
| K0) and
A2: B0
= b0 & K0
= k0;
the
carrier of ((
TOP-REAL 2)
| B0)
= B0 by
PRE_TOPC: 8;
then
reconsider K1 = K0 as
Subset of (
TOP-REAL 2) by
XBOOLE_1: 1;
k0
c= (
NonZero (
TOP-REAL 2)) from
TopIncl;
then
A3: (((
TOP-REAL 2)
| B0)
| K0)
= ((
TOP-REAL 2)
| K1) by
A2,
PRE_TOPC: 7;
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A4: ((K2
/\ K3)
\/ (K4
/\ K5))
c= K1
proof
let x be
object;
assume
A5: x
in ((K2
/\ K3)
\/ (K4
/\ K5));
per cases by
A5,
XBOOLE_0:def 3;
suppose
A6: x
in (K2
/\ K3);
then x
in K3 by
XBOOLE_0:def 4;
then
A7: ex p8 be
Point of (
TOP-REAL 2) st p8
= x & (
- (p8
`1 ))
<= (p8
`2 );
x
in K2 by
A6,
XBOOLE_0:def 4;
then ex p7 be
Point of (
TOP-REAL 2) st p7
= x & (p7
`2 )
<= (p7
`1 );
hence thesis by
A7;
end;
suppose
A8: x
in (K4
/\ K5);
then x
in K5 by
XBOOLE_0:def 4;
then
A9: ex p8 be
Point of (
TOP-REAL 2) st p8
= x & (p8
`2 )
<= (
- (p8
`1 ));
x
in K4 by
A8,
XBOOLE_0:def 4;
then ex p7 be
Point of (
TOP-REAL 2) st p7
= x & (p7
`2 )
>= (p7
`1 );
hence thesis by
A9;
end;
end;
A10: (K2
/\ K3) is
closed & (K4
/\ K5) is
closed by
TOPS_1: 8;
K1
c= ((K2
/\ K3)
\/ (K4
/\ K5))
proof
let x be
object;
assume x
in K1;
then ex p be
Point of (
TOP-REAL 2) st p
= x & ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )));
then x
in K2 & x
in K3 or x
in K4 & x
in K5;
then x
in (K2
/\ K3) or x
in (K4
/\ K5) by
XBOOLE_0:def 4;
hence thesis by
XBOOLE_0:def 3;
end;
then K1
= ((K2
/\ K3)
\/ (K4
/\ K5)) by
A4;
then
A11: K1 is
closed by
A10,
TOPS_1: 9;
k0
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P0[p7] }
/\ b0) from
TopInter;
then K0
= (K1
/\ (
[#] ((
TOP-REAL 2)
| B0))) by
A2,
PRE_TOPC:def 5;
hence thesis by
A1,
A2,
A3,
A11,
Th37,
PRE_TOPC: 13;
end;
theorem ::
JGRAPH_3:40
Th40: for B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0) st f
= ((
Sq_Circ
" )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous & K0 is
closed
proof
reconsider K5 = { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`1 )
<= (
- (p7
`2 )) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 48;
reconsider K4 = { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`2 )
<= (p7
`1 ) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 46;
reconsider K3 = { p7 where p7 be
Point of (
TOP-REAL 2) : (
- (p7
`2 ))
<= (p7
`1 ) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 48;
reconsider K2 = { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`1 )
<= (p7
`2 ) } as
closed
Subset of (
TOP-REAL 2) by
JGRAPH_2: 46;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
<= ($1
`2 ) & (
- ($1
`2 ))
<= ($1
`1 ) or ($1
`1 )
>= ($1
`2 ) & ($1
`1 )
<= (
- ($1
`2 )));
defpred
P0[
Point of (
TOP-REAL 2)] means (($1
`1 )
<= ($1
`2 ) & (
- ($1
`2 ))
<= ($1
`1 ) or ($1
`1 )
>= ($1
`2 ) & ($1
`1 )
<= (
- ($1
`2 )));
let B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0);
set k0 = { p :
P0[p] & p
<> (
0. (
TOP-REAL 2)) }, b0 = (
NonZero (
TOP-REAL 2));
assume that
A1: f
= ((
Sq_Circ
" )
| K0) and
A2: B0
= b0 & K0
= k0;
the
carrier of ((
TOP-REAL 2)
| B0)
= B0 by
PRE_TOPC: 8;
then
reconsider K1 = K0 as
Subset of (
TOP-REAL 2) by
XBOOLE_1: 1;
{ p :
P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= (
NonZero (
TOP-REAL 2)) from
TopIncl;
then
A3: (((
TOP-REAL 2)
| B0)
| K0)
= ((
TOP-REAL 2)
| K1) by
A2,
PRE_TOPC: 7;
set k1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P0[p7] };
A4: (K2
/\ K3) is
closed & (K4
/\ K5) is
closed by
TOPS_1: 8;
reconsider K1 = k1 as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A5: ((K2
/\ K3)
\/ (K4
/\ K5))
c= K1
proof
let x be
object;
assume
A6: x
in ((K2
/\ K3)
\/ (K4
/\ K5));
per cases by
A6,
XBOOLE_0:def 3;
suppose
A7: x
in (K2
/\ K3);
then x
in K3 by
XBOOLE_0:def 4;
then
A8: ex p8 be
Point of (
TOP-REAL 2) st p8
= x & (
- (p8
`2 ))
<= (p8
`1 );
x
in K2 by
A7,
XBOOLE_0:def 4;
then ex p7 be
Point of (
TOP-REAL 2) st p7
= x & (p7
`1 )
<= (p7
`2 );
hence thesis by
A8;
end;
suppose
A9: x
in (K4
/\ K5);
then x
in K5 by
XBOOLE_0:def 4;
then
A10: ex p8 be
Point of (
TOP-REAL 2) st p8
= x & (p8
`1 )
<= (
- (p8
`2 ));
x
in K4 by
A9,
XBOOLE_0:def 4;
then ex p7 be
Point of (
TOP-REAL 2) st p7
= x & (p7
`1 )
>= (p7
`2 );
hence thesis by
A10;
end;
end;
K1
c= ((K2
/\ K3)
\/ (K4
/\ K5))
proof
let x be
object;
assume x
in K1;
then ex p be
Point of (
TOP-REAL 2) st p
= x & ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 )));
then x
in K2 & x
in K3 or x
in K4 & x
in K5;
then x
in (K2
/\ K3) or x
in (K4
/\ K5) by
XBOOLE_0:def 4;
hence thesis by
XBOOLE_0:def 3;
end;
then K1
= ((K2
/\ K3)
\/ (K4
/\ K5)) by
A5;
then
A11: K1 is
closed by
A4,
TOPS_1: 9;
k0
= (k1
/\ b0) from
TopInter;
then K0
= (K1
/\ (
[#] ((
TOP-REAL 2)
| B0))) by
A2,
PRE_TOPC:def 5;
hence thesis by
A1,
A2,
A3,
A11,
Th38,
PRE_TOPC: 13;
end;
theorem ::
JGRAPH_3:41
Th41: for D be non
empty
Subset of (
TOP-REAL 2) st (D
` )
=
{(
0. (
TOP-REAL 2))} holds ex h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) st h
= ((
Sq_Circ
" )
| D) & h is
continuous
proof
set Y1 =
|[(
- 1), 1]|;
set B0 =
{(
0. (
TOP-REAL 2))};
let D be non
empty
Subset of (
TOP-REAL 2);
A1: the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
(
dom (
Sq_Circ
" ))
= the
carrier of (
TOP-REAL 2) by
Th29,
FUNCT_2:def 1;
then
A2: (
dom ((
Sq_Circ
" )
| D))
= (the
carrier of (
TOP-REAL 2)
/\ D) by
RELAT_1: 61
.= the
carrier of ((
TOP-REAL 2)
| D) by
A1,
XBOOLE_1: 28;
assume
A3: (D
` )
=
{(
0. (
TOP-REAL 2))};
then
A4: D
= (B0
` )
.= (
NonZero (
TOP-REAL 2)) by
SUBSET_1:def 4;
A5: { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D)
proof
let x be
object;
assume x
in { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) };
then
A6: ex p st x
= p & ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2));
now
assume not x
in D;
then x
in (the
carrier of (
TOP-REAL 2)
\ D) by
A6,
XBOOLE_0:def 5;
then x
in (D
` ) by
SUBSET_1:def 4;
hence contradiction by
A3,
A6,
TARSKI:def 1;
end;
hence thesis by
PRE_TOPC: 8;
end;
(
1.REAL 2)
in { p where p be
Point of (
TOP-REAL 2) : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) } by
Lm9,
Lm10;
then
reconsider K0 = { p : ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| D) by
A5;
A7: K0
= the
carrier of (((
TOP-REAL 2)
| D)
| K0) by
PRE_TOPC: 8;
A8: { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D)
proof
let x be
object;
assume x
in { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) };
then
A9: ex p st x
= p & ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2));
now
assume not x
in D;
then x
in (the
carrier of (
TOP-REAL 2)
\ D) by
A9,
XBOOLE_0:def 5;
then x
in (D
` ) by
SUBSET_1:def 4;
hence contradiction by
A3,
A9,
TARSKI:def 1;
end;
hence thesis by
PRE_TOPC: 8;
end;
(Y1
`1 )
= (
- 1) & (Y1
`2 )
= 1 by
EUCLID: 52;
then Y1
in { p where p be
Point of (
TOP-REAL 2) : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) } by
JGRAPH_2: 3;
then
reconsider K1 = { p : ((p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 ))) & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| D) by
A8;
A10: K1
= the
carrier of (((
TOP-REAL 2)
| D)
| K1) by
PRE_TOPC: 8;
A11: D
c= (K0
\/ K1)
proof
let x be
object;
assume
A12: x
in D;
then
reconsider px = x as
Point of (
TOP-REAL 2);
not x
in
{(
0. (
TOP-REAL 2))} by
A4,
A12,
XBOOLE_0:def 5;
then ((px
`2 )
<= (px
`1 ) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 ))) & px
<> (
0. (
TOP-REAL 2)) or ((px
`1 )
<= (px
`2 ) & (
- (px
`2 ))
<= (px
`1 ) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 ))) & px
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1,
XREAL_1: 26;
then x
in K0 or x
in K1;
hence thesis by
XBOOLE_0:def 3;
end;
A13: the
carrier of ((
TOP-REAL 2)
| D)
= (
[#] ((
TOP-REAL 2)
| D))
.= (
NonZero (
TOP-REAL 2)) by
A4,
PRE_TOPC:def 5;
A14: K0
c= the
carrier of (
TOP-REAL 2)
proof
let z be
object;
assume z
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st p8
= z & ((p8
`2 )
<= (p8
`1 ) & (
- (p8
`1 ))
<= (p8
`2 ) or (p8
`2 )
>= (p8
`1 ) & (p8
`2 )
<= (
- (p8
`1 ))) & p8
<> (
0. (
TOP-REAL 2));
hence thesis;
end;
A15: (
rng ((
Sq_Circ
" )
| K0))
c= the
carrier of (((
TOP-REAL 2)
| D)
| K0)
proof
reconsider K00 = K0 as
Subset of (
TOP-REAL 2) by
A14;
let y be
object;
A16: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K00) holds (q
`1 )
<>
0
proof
let q be
Point of (
TOP-REAL 2);
A17: the
carrier of ((
TOP-REAL 2)
| K00)
= K0 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K00);
then
A18: ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`2 )
<= (p3
`1 ) & (
- (p3
`1 ))
<= (p3
`2 ) or (p3
`2 )
>= (p3
`1 ) & (p3
`2 )
<= (
- (p3
`1 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A17;
now
assume
A19: (q
`1 )
=
0 ;
then (q
`2 )
=
0 by
A18;
hence contradiction by
A18,
A19,
EUCLID: 53,
EUCLID: 54;
end;
hence thesis;
end;
assume y
in (
rng ((
Sq_Circ
" )
| K0));
then
consider x be
object such that
A20: x
in (
dom ((
Sq_Circ
" )
| K0)) and
A21: y
= (((
Sq_Circ
" )
| K0)
. x) by
FUNCT_1:def 3;
A22: x
in ((
dom (
Sq_Circ
" ))
/\ K0) by
A20,
RELAT_1: 61;
then
A23: x
in K0 by
XBOOLE_0:def 4;
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A14;
K00
= the
carrier of ((
TOP-REAL 2)
| K00) by
PRE_TOPC: 8;
then p
in the
carrier of ((
TOP-REAL 2)
| K00) by
A22,
XBOOLE_0:def 4;
then
A24: (p
`1 )
<>
0 by
A16;
set p9 =
|[((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]|;
A25: (p9
`1 )
= ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) & (p9
`2 )
= ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
EUCLID: 52;
A26: ex px be
Point of (
TOP-REAL 2) st x
= px & ((px
`2 )
<= (px
`1 ) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 ))) & px
<> (
0. (
TOP-REAL 2)) by
A23;
then
A27: ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
Th28;
A28: (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
then ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
<= ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) & ((
- (p
`1 ))
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
<= ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) or ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
>= ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) & ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
<= ((
- (p
`1 ))
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
A26,
XREAL_1: 64;
then
A29: ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
<= ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) & (
- ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))))
<= ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) or ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
>= ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) & ((p
`2 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
<= (
- ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))));
A30: (p9
`1 )
= ((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
EUCLID: 52;
A31:
now
assume p9
= (
0. (
TOP-REAL 2));
then (
0
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
= (((p
`1 )
* (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
A30,
EUCLID: 52,
EUCLID: 54;
hence contradiction by
A24,
A28,
XCMPLX_1: 89;
end;
((
Sq_Circ
" )
. p)
= y by
A21,
A23,
FUNCT_1: 49;
then y
in K0 by
A31,
A27,
A29,
A25;
hence thesis by
PRE_TOPC: 8;
end;
(
dom ((
Sq_Circ
" )
| K0))
= ((
dom (
Sq_Circ
" ))
/\ K0) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K0) by
Th29,
FUNCT_2:def 1
.= K0 by
A14,
XBOOLE_1: 28;
then
reconsider f = ((
Sq_Circ
" )
| K0) as
Function of (((
TOP-REAL 2)
| D)
| K0), ((
TOP-REAL 2)
| D) by
A7,
A15,
FUNCT_2: 2,
XBOOLE_1: 1;
A32: K1
= (
[#] (((
TOP-REAL 2)
| D)
| K1)) by
PRE_TOPC:def 5;
A33: K1
c= the
carrier of (
TOP-REAL 2)
proof
let z be
object;
assume z
in K1;
then ex p8 be
Point of (
TOP-REAL 2) st p8
= z & ((p8
`1 )
<= (p8
`2 ) & (
- (p8
`2 ))
<= (p8
`1 ) or (p8
`1 )
>= (p8
`2 ) & (p8
`1 )
<= (
- (p8
`2 ))) & p8
<> (
0. (
TOP-REAL 2));
hence thesis;
end;
A34: (
rng ((
Sq_Circ
" )
| K1))
c= the
carrier of (((
TOP-REAL 2)
| D)
| K1)
proof
reconsider K10 = K1 as
Subset of (
TOP-REAL 2) by
A33;
let y be
object;
A35: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K10) holds (q
`2 )
<>
0
proof
let q be
Point of (
TOP-REAL 2);
A36: the
carrier of ((
TOP-REAL 2)
| K10)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K10);
then
A37: ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`1 )
<= (p3
`2 ) & (
- (p3
`2 ))
<= (p3
`1 ) or (p3
`1 )
>= (p3
`2 ) & (p3
`1 )
<= (
- (p3
`2 ))) & p3
<> (
0. (
TOP-REAL 2)) by
A36;
now
assume
A38: (q
`2 )
=
0 ;
then (q
`1 )
=
0 by
A37;
hence contradiction by
A37,
A38,
EUCLID: 53,
EUCLID: 54;
end;
hence thesis;
end;
assume y
in (
rng ((
Sq_Circ
" )
| K1));
then
consider x be
object such that
A39: x
in (
dom ((
Sq_Circ
" )
| K1)) and
A40: y
= (((
Sq_Circ
" )
| K1)
. x) by
FUNCT_1:def 3;
A41: x
in ((
dom (
Sq_Circ
" ))
/\ K1) by
A39,
RELAT_1: 61;
then
A42: x
in K1 by
XBOOLE_0:def 4;
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A33;
K10
= the
carrier of ((
TOP-REAL 2)
| K10) by
PRE_TOPC: 8;
then p
in the
carrier of ((
TOP-REAL 2)
| K10) by
A41,
XBOOLE_0:def 4;
then
A43: (p
`2 )
<>
0 by
A35;
set p9 =
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]|;
A44: (p9
`2 )
= ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) & (p9
`1 )
= ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
EUCLID: 52;
A45: ex px be
Point of (
TOP-REAL 2) st x
= px & ((px
`1 )
<= (px
`2 ) & (
- (px
`2 ))
<= (px
`1 ) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 ))) & px
<> (
0. (
TOP-REAL 2)) by
A42;
then
A46: ((
Sq_Circ
" )
. p)
=
|[((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
Th30;
A47: (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
then ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
<= ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) & ((
- (p
`2 ))
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
<= ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) or ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
>= ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) & ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
<= ((
- (p
`2 ))
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
A45,
XREAL_1: 64;
then
A48: ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
<= ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) & (
- ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))))
<= ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) or ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
>= ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) & ((p
`1 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
<= (
- ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))));
A49: (p9
`2 )
= ((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
EUCLID: 52;
A50:
now
assume p9
= (
0. (
TOP-REAL 2));
then (
0
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
= (((p
`2 )
* (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
A49,
EUCLID: 52,
EUCLID: 54;
hence contradiction by
A43,
A47,
XCMPLX_1: 89;
end;
((
Sq_Circ
" )
. p)
= y by
A40,
A42,
FUNCT_1: 49;
then y
in K1 by
A50,
A46,
A48,
A44;
hence thesis by
PRE_TOPC: 8;
end;
(
dom ((
Sq_Circ
" )
| K1))
= ((
dom (
Sq_Circ
" ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
Th29,
FUNCT_2:def 1
.= K1 by
A33,
XBOOLE_1: 28;
then
reconsider g = ((
Sq_Circ
" )
| K1) as
Function of (((
TOP-REAL 2)
| D)
| K1), ((
TOP-REAL 2)
| D) by
A10,
A34,
FUNCT_2: 2,
XBOOLE_1: 1;
A51: (
dom g)
= K1 by
A10,
FUNCT_2:def 1;
g
= ((
Sq_Circ
" )
| K1);
then
A52: K1 is
closed by
A4,
Th40;
A53: K0
= (
[#] (((
TOP-REAL 2)
| D)
| K0)) by
PRE_TOPC:def 5;
A54:
now
let x be
object;
assume
A55: x
in ((
[#] (((
TOP-REAL 2)
| D)
| K0))
/\ (
[#] (((
TOP-REAL 2)
| D)
| K1)));
then x
in K0 by
A53,
XBOOLE_0:def 4;
then (f
. x)
= ((
Sq_Circ
" )
. x) by
FUNCT_1: 49;
hence (f
. x)
= (g
. x) by
A32,
A55,
FUNCT_1: 49;
end;
f
= ((
Sq_Circ
" )
| K0);
then
A56: K0 is
closed by
A4,
Th39;
A57: (
dom f)
= K0 by
A7,
FUNCT_2:def 1;
D
= (
[#] ((
TOP-REAL 2)
| D)) by
PRE_TOPC:def 5;
then
A58: ((
[#] (((
TOP-REAL 2)
| D)
| K0))
\/ (
[#] (((
TOP-REAL 2)
| D)
| K1)))
= (
[#] ((
TOP-REAL 2)
| D)) by
A53,
A32,
A11;
A59: f is
continuous & g is
continuous by
A4,
Th39,
Th40;
then
consider h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) such that
A60: h
= (f
+* g) and h is
continuous by
A53,
A32,
A58,
A56,
A52,
A54,
JGRAPH_2: 1;
K0
= (
[#] (((
TOP-REAL 2)
| D)
| K0)) & K1
= (
[#] (((
TOP-REAL 2)
| D)
| K1)) by
PRE_TOPC:def 5;
then
A61: f
tolerates g by
A54,
A57,
A51,
PARTFUN1:def 4;
A62: for x be
object st x
in (
dom h) holds (h
. x)
= (((
Sq_Circ
" )
| D)
. x)
proof
let x be
object;
assume
A63: x
in (
dom h);
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A13,
XBOOLE_0:def 5;
not x
in
{(
0. (
TOP-REAL 2))} by
A13,
A63,
XBOOLE_0:def 5;
then
A64: x
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
x
in (the
carrier of (
TOP-REAL 2)
\ (D
` )) by
A3,
A13,
A63;
then
A65: x
in ((D
` )
` ) by
SUBSET_1:def 4;
per cases ;
suppose
A66: x
in K0;
A67: (((
Sq_Circ
" )
| D)
. p)
= ((
Sq_Circ
" )
. p) by
A65,
FUNCT_1: 49
.= (f
. p) by
A66,
FUNCT_1: 49;
(h
. p)
= ((g
+* f)
. p) by
A60,
A61,
FUNCT_4: 34
.= (f
. p) by
A57,
A66,
FUNCT_4: 13;
hence thesis by
A67;
end;
suppose not x
in K0;
then not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ))) by
A64;
then (p
`1 )
<= (p
`2 ) & (
- (p
`2 ))
<= (p
`1 ) or (p
`1 )
>= (p
`2 ) & (p
`1 )
<= (
- (p
`2 )) by
XREAL_1: 26;
then
A68: x
in K1 by
A64;
(((
Sq_Circ
" )
| D)
. p)
= ((
Sq_Circ
" )
. p) by
A65,
FUNCT_1: 49
.= (g
. p) by
A68,
FUNCT_1: 49;
hence thesis by
A60,
A51,
A68,
FUNCT_4: 13;
end;
end;
(
dom h)
= the
carrier of ((
TOP-REAL 2)
| D) by
FUNCT_2:def 1;
then (f
+* g)
= ((
Sq_Circ
" )
| D) by
A60,
A2,
A62;
hence thesis by
A53,
A32,
A58,
A56,
A59,
A52,
A54,
JGRAPH_2: 1;
end;
theorem ::
JGRAPH_3:42
Th42: ex h be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st h
= (
Sq_Circ
" ) & h is
continuous
proof
reconsider f = (
Sq_Circ
" ) as
Function of (
TOP-REAL 2), (
TOP-REAL 2) by
Th29;
reconsider D = (
NonZero (
TOP-REAL 2)) as non
empty
Subset of (
TOP-REAL 2) by
JGRAPH_2: 9;
A1: (f
. (
0. (
TOP-REAL 2)))
= (
0. (
TOP-REAL 2)) by
Th28;
A2: for p be
Point of ((
TOP-REAL 2)
| D) holds (f
. p)
<> (f
. (
0. (
TOP-REAL 2)))
proof
let p be
Point of ((
TOP-REAL 2)
| D);
A3: (
[#] ((
TOP-REAL 2)
| D))
= D by
PRE_TOPC:def 5;
then
reconsider q = p as
Point of (
TOP-REAL 2) by
XBOOLE_0:def 5;
not p
in
{(
0. (
TOP-REAL 2))} by
A3,
XBOOLE_0:def 5;
then
A4: not p
= (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
per cases ;
suppose
A5: not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
then
A6: (q
`2 )
<>
0 ;
set q9 =
|[((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|;
A7: (q9
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A8: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
now
assume q9
= (
0. (
TOP-REAL 2));
then (
0
* (q
`2 ))
= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A7,
EUCLID: 52,
EUCLID: 54;
then (
0
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
= (((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))));
hence contradiction by
A6,
A8,
XCMPLX_1: 89;
end;
hence thesis by
A1,
A5,
Th28;
end;
suppose
A9: (q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 ));
A10:
now
assume
A11: (q
`1 )
=
0 ;
then (q
`2 )
=
0 by
A9;
hence contradiction by
A4,
A11,
EUCLID: 53,
EUCLID: 54;
end;
set q9 =
|[((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|;
A12: (q9
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A13: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
now
assume q9
= (
0. (
TOP-REAL 2));
then (
0
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
= (((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A12,
EUCLID: 52,
EUCLID: 54;
hence contradiction by
A10,
A13,
XCMPLX_1: 89;
end;
hence thesis by
A1,
A4,
A9,
Th28;
end;
end;
A14: for V be
Subset of (
TOP-REAL 2) st (f
. (
0. (
TOP-REAL 2)))
in V & V is
open holds ex W be
Subset of (
TOP-REAL 2) st (
0. (
TOP-REAL 2))
in W & W is
open & (f
.: W)
c= V
proof
reconsider u0 = (
0. (
TOP-REAL 2)) as
Point of (
Euclid 2) by
EUCLID: 67;
let V be
Subset of (
TOP-REAL 2);
reconsider VV = V as
Subset of (
TopSpaceMetr (
Euclid 2)) by
Lm16;
assume that
A15: (f
. (
0. (
TOP-REAL 2)))
in V and
A16: V is
open;
VV is
open by
A16,
Lm16,
PRE_TOPC: 30;
then
consider r be
Real such that
A17: r
>
0 and
A18: (
Ball (u0,r))
c= V by
A1,
A15,
TOPMETR: 15;
reconsider r as
Real;
reconsider W1 = (
Ball (u0,r)), V1 = (
Ball (u0,(r
/ (
sqrt 2)))) as
Subset of (
TOP-REAL 2) by
EUCLID: 67;
A19: (f
.: V1)
c= W1
proof
let z be
object;
A20: (
sqrt 2)
>
0 by
SQUARE_1: 25;
assume z
in (f
.: V1);
then
consider y be
object such that
A21: y
in (
dom f) and
A22: y
in V1 and
A23: z
= (f
. y) by
FUNCT_1:def 6;
z
in (
rng f) by
A21,
A23,
FUNCT_1:def 3;
then
reconsider qz = z as
Point of (
TOP-REAL 2);
reconsider pz = qz as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider q = y as
Point of (
TOP-REAL 2) by
A21;
reconsider qy = q as
Point of (
Euclid 2) by
EUCLID: 67;
A24: ((q
`1 )
^2 )
>=
0 by
XREAL_1: 63;
A25: ((q
`2 )
^2 )
>=
0 by
XREAL_1: 63;
(
dist (u0,qy))
< (r
/ (
sqrt 2)) by
A22,
METRIC_1: 11;
then
|.((
0. (
TOP-REAL 2))
- q).|
< (r
/ (
sqrt 2)) by
JGRAPH_1: 28;
then (
sqrt (((((
0. (
TOP-REAL 2))
- q)
`1 )
^2 )
+ ((((
0. (
TOP-REAL 2))
- q)
`2 )
^2 )))
< (r
/ (
sqrt 2)) by
JGRAPH_1: 30;
then (
sqrt (((((
0. (
TOP-REAL 2))
`1 )
- (q
`1 ))
^2 )
+ ((((
0. (
TOP-REAL 2))
- q)
`2 )
^2 )))
< (r
/ (
sqrt 2)) by
TOPREAL3: 3;
then (
sqrt (((((
0. (
TOP-REAL 2))
`1 )
- (q
`1 ))
^2 )
+ ((((
0. (
TOP-REAL 2))
`2 )
- (q
`2 ))
^2 )))
< (r
/ (
sqrt 2)) by
TOPREAL3: 3;
then ((
sqrt (((q
`1 )
^2 )
+ ((q
`2 )
^2 )))
* (
sqrt 2))
< ((r
/ (
sqrt 2))
* (
sqrt 2)) by
A20,
JGRAPH_2: 3,
XREAL_1: 68;
then (
sqrt ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
* 2))
< ((r
/ (
sqrt 2))
* (
sqrt 2)) by
A24,
A25,
SQUARE_1: 29;
then
A26: (
sqrt ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
* 2))
< r by
A20,
XCMPLX_1: 87;
per cases ;
suppose q
= (
0. (
TOP-REAL 2));
then z
= (
0. (
TOP-REAL 2)) by
A23,
Th28;
hence thesis by
A17,
GOBOARD6: 1;
end;
suppose
A27: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
A28:
now
assume ((q
`1 )
^2 )
<=
0 ;
then ((q
`1 )
^2 )
=
0 by
XREAL_1: 63;
then
A29: (q
`1 )
=
0 by
XCMPLX_1: 6;
then (q
`2 )
=
0 by
A27;
hence contradiction by
A27,
A29,
EUCLID: 53,
EUCLID: 54;
end;
A30: ((
Sq_Circ
" )
. q)
=
|[((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A27,
Th28;
then (qz
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A23,
EUCLID: 52;
then
A31: ((qz
`1 )
^2 )
= (((q
`1 )
^2 )
* ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ));
(qz
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A23,
A30,
EUCLID: 52;
then
A32: ((qz
`2 )
^2 )
= (((q
`2 )
^2 )
* ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ));
A33: (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
Lm1;
now
per cases by
A27;
case
A34: (q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 );
now
per cases ;
case
0
<= (q
`2 );
hence ((q
`2 )
^2 )
<= ((q
`1 )
^2 ) by
A34,
SQUARE_1: 15;
end;
case
A35:
0
> (q
`2 );
(
- (
- (q
`1 )))
>= (
- (q
`2 )) by
A34,
XREAL_1: 24;
then ((
- (q
`2 ))
^2 )
<= ((q
`1 )
^2 ) by
A35,
SQUARE_1: 15;
hence ((q
`2 )
^2 )
<= ((q
`1 )
^2 );
end;
end;
hence ((q
`2 )
^2 )
<= ((q
`1 )
^2 );
end;
case
A36: (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 ));
now
per cases ;
case
A37:
0
>= (q
`2 );
(
- (q
`2 ))
<= (
- (q
`1 )) by
A36,
XREAL_1: 24;
then ((
- (q
`2 ))
^2 )
<= ((
- (q
`1 ))
^2 ) by
A37,
SQUARE_1: 15;
hence ((q
`2 )
^2 )
<= ((q
`1 )
^2 );
end;
case
0
< (q
`2 );
then ((q
`2 )
^2 )
<= ((
- (q
`1 ))
^2 ) by
A36,
SQUARE_1: 15;
hence ((q
`2 )
^2 )
<= ((q
`1 )
^2 );
end;
end;
hence ((q
`2 )
^2 )
<= ((q
`1 )
^2 );
end;
end;
then (((q
`2 )
^2 )
/ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
/ ((q
`1 )
^2 )) by
A28,
XREAL_1: 72;
then (((q
`2 )
/ (q
`1 ))
^2 )
<= (((q
`1 )
^2 )
/ ((q
`1 )
^2 )) by
XCMPLX_1: 76;
then (((q
`2 )
/ (q
`1 ))
^2 )
<= 1 by
A28,
XCMPLX_1: 60;
then
A38: (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
<= (1
+ 1) by
XREAL_1: 7;
then (((q
`2 )
^2 )
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
<= (((q
`2 )
^2 )
* 2) by
A25,
XREAL_1: 64;
then
A39: ((qz
`2 )
^2 )
<= (((q
`2 )
^2 )
* 2) by
A33,
A32,
SQUARE_1:def 2;
(((q
`1 )
^2 )
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
<= (((q
`1 )
^2 )
* 2) by
A24,
A38,
XREAL_1: 64;
then ((qz
`1 )
^2 )
<= (((q
`1 )
^2 )
* 2) by
A33,
A31,
SQUARE_1:def 2;
then
A40: (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 ))
<= ((((q
`1 )
^2 )
* 2)
+ (((q
`2 )
^2 )
* 2)) by
A39,
XREAL_1: 7;
((qz
`1 )
^2 )
>=
0 & ((qz
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A41: (
sqrt (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )))
<= (
sqrt ((((q
`1 )
^2 )
* 2)
+ (((q
`2 )
^2 )
* 2))) by
A40,
SQUARE_1: 26;
A42: (((
0. (
TOP-REAL 2))
- qz)
`2 )
= (((
0. (
TOP-REAL 2))
`2 )
- (qz
`2 )) by
TOPREAL3: 3
.= (
- (qz
`2 )) by
JGRAPH_2: 3;
(((
0. (
TOP-REAL 2))
- qz)
`1 )
= (((
0. (
TOP-REAL 2))
`1 )
- (qz
`1 )) by
TOPREAL3: 3
.= (
- (qz
`1 )) by
JGRAPH_2: 3;
then (
sqrt (((((
0. (
TOP-REAL 2))
- qz)
`1 )
^2 )
+ ((((
0. (
TOP-REAL 2))
- qz)
`2 )
^2 )))
< r by
A26,
A42,
A41,
XXREAL_0: 2;
then
|.((
0. (
TOP-REAL 2))
- qz).|
< r by
JGRAPH_1: 30;
then (
dist (u0,pz))
< r by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 11;
end;
suppose
A43: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
A44:
now
assume ((q
`2 )
^2 )
<=
0 ;
then ((q
`2 )
^2 )
=
0 by
XREAL_1: 63;
then (q
`2 )
=
0 by
XCMPLX_1: 6;
hence contradiction by
A43;
end;
now
per cases by
A43,
JGRAPH_2: 13;
case
A45: (q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 );
now
per cases ;
case
0
<= (q
`1 );
hence ((q
`1 )
^2 )
<= ((q
`2 )
^2 ) by
A45,
SQUARE_1: 15;
end;
case
A46:
0
> (q
`1 );
(
- (
- (q
`2 )))
>= (
- (q
`1 )) by
A45,
XREAL_1: 24;
then ((
- (q
`1 ))
^2 )
<= ((q
`2 )
^2 ) by
A46,
SQUARE_1: 15;
hence ((q
`1 )
^2 )
<= ((q
`2 )
^2 );
end;
end;
hence ((q
`1 )
^2 )
<= ((q
`2 )
^2 );
end;
case
A47: (q
`1 )
>= (q
`2 ) & (q
`1 )
<= (
- (q
`2 ));
now
per cases ;
case
A48:
0
>= (q
`1 );
(
- (q
`1 ))
<= (
- (q
`2 )) by
A47,
XREAL_1: 24;
then ((
- (q
`1 ))
^2 )
<= ((
- (q
`2 ))
^2 ) by
A48,
SQUARE_1: 15;
hence ((q
`1 )
^2 )
<= ((q
`2 )
^2 );
end;
case
0
< (q
`1 );
then ((q
`1 )
^2 )
<= ((
- (q
`2 ))
^2 ) by
A47,
SQUARE_1: 15;
hence ((q
`1 )
^2 )
<= ((q
`2 )
^2 );
end;
end;
hence ((q
`1 )
^2 )
<= ((q
`2 )
^2 );
end;
end;
then (((q
`1 )
^2 )
/ ((q
`2 )
^2 ))
<= (((q
`2 )
^2 )
/ ((q
`2 )
^2 )) by
A44,
XREAL_1: 72;
then (((q
`1 )
/ (q
`2 ))
^2 )
<= (((q
`2 )
^2 )
/ ((q
`2 )
^2 )) by
XCMPLX_1: 76;
then (((q
`1 )
/ (q
`2 ))
^2 )
<= 1 by
A44,
XCMPLX_1: 60;
then
A49: (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
<= (1
+ 1) by
XREAL_1: 7;
then
A50: (((q
`2 )
^2 )
* (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
<= (((q
`2 )
^2 )
* 2) by
A25,
XREAL_1: 64;
(1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>
0 by
Lm1;
then
A51: ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 )
= (1
+ (((q
`1 )
/ (q
`2 ))
^2 )) by
SQUARE_1:def 2;
A52: (((q
`1 )
^2 )
* (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
<= (((q
`1 )
^2 )
* 2) by
A24,
A49,
XREAL_1: 64;
A53: ((
Sq_Circ
" )
. q)
=
|[((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
A43,
Th28;
then (qz
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A23,
EUCLID: 52;
then
A54: ((qz
`1 )
^2 )
<= (((q
`1 )
^2 )
* 2) by
A52,
A51,
SQUARE_1: 9;
(qz
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A23,
A53,
EUCLID: 52;
then ((qz
`2 )
^2 )
<= (((q
`2 )
^2 )
* 2) by
A50,
A51,
SQUARE_1: 9;
then
A55: (((qz
`2 )
^2 )
+ ((qz
`1 )
^2 ))
<= ((((q
`2 )
^2 )
* 2)
+ (((q
`1 )
^2 )
* 2)) by
A54,
XREAL_1: 7;
((qz
`2 )
^2 )
>=
0 & ((qz
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then
A56: (
sqrt (((qz
`2 )
^2 )
+ ((qz
`1 )
^2 )))
<= (
sqrt ((((q
`2 )
^2 )
* 2)
+ (((q
`1 )
^2 )
* 2))) by
A55,
SQUARE_1: 26;
A57: (((
0. (
TOP-REAL 2))
- qz)
`2 )
= (((
0. (
TOP-REAL 2))
`2 )
- (qz
`2 )) by
TOPREAL3: 3
.= (
- (qz
`2 )) by
JGRAPH_2: 3;
(((
0. (
TOP-REAL 2))
- qz)
`1 )
= (((
0. (
TOP-REAL 2))
`1 )
- (qz
`1 )) by
TOPREAL3: 3
.= (
- (qz
`1 )) by
JGRAPH_2: 3;
then (
sqrt (((((
0. (
TOP-REAL 2))
- qz)
`2 )
^2 )
+ ((((
0. (
TOP-REAL 2))
- qz)
`1 )
^2 )))
< r by
A26,
A57,
A56,
XXREAL_0: 2;
then
|.((
0. (
TOP-REAL 2))
- qz).|
< r by
JGRAPH_1: 30;
then (
dist (u0,pz))
< r by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 11;
end;
end;
A58: V1 is
open by
GOBOARD6: 3;
(
sqrt 2)
>
0 by
SQUARE_1: 25;
then u0
in V1 by
A17,
GOBOARD6: 1,
XREAL_1: 139;
hence thesis by
A18,
A58,
A19,
XBOOLE_1: 1;
end;
A59: (D
` )
=
{(
0. (
TOP-REAL 2))} by
Th20;
then ex h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) st h
= ((
Sq_Circ
" )
| D) & h is
continuous by
Th41;
hence thesis by
A1,
A59,
A2,
A14,
Th3;
end;
theorem ::
JGRAPH_3:43
Th43:
Sq_Circ is
Function of (
TOP-REAL 2), (
TOP-REAL 2) & (
rng
Sq_Circ )
= the
carrier of (
TOP-REAL 2) & for f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
=
Sq_Circ holds f is
being_homeomorphism
proof
thus
Sq_Circ is
Function of (
TOP-REAL 2), (
TOP-REAL 2);
A1: for f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
=
Sq_Circ holds (
rng
Sq_Circ )
= the
carrier of (
TOP-REAL 2) & f is
being_homeomorphism
proof
let f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume
A2: f
=
Sq_Circ ;
reconsider g = (f
/" ) as
Function of (
TOP-REAL 2), (
TOP-REAL 2);
A3: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
the
carrier of (
TOP-REAL 2)
c= (
rng f)
proof
let y be
object;
assume y
in the
carrier of (
TOP-REAL 2);
then
reconsider p2 = y as
Point of (
TOP-REAL 2);
set q = p2;
now
per cases ;
case q
= (
0. (
TOP-REAL 2));
then y
= (
Sq_Circ
. q) by
Def1;
hence ex x be
set st x
in (
dom
Sq_Circ ) & y
= (
Sq_Circ
. x) by
A2,
A3;
end;
case
A4: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|;
A5: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A6:
now
assume that
A7: (px
`1 )
=
0 and
A8: (px
`2 )
=
0 ;
((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A8,
EUCLID: 52;
then
A9: (q
`2 )
=
0 by
A5,
XCMPLX_1: 6;
((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A7,
EUCLID: 52;
then (q
`1 )
=
0 by
A5,
XCMPLX_1: 6;
hence contradiction by
A4,
A9,
EUCLID: 53,
EUCLID: 54;
end;
A10: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A11: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A12: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
then
A13: ((px
`2 )
/ (px
`1 ))
= ((q
`2 )
/ (q
`1 )) by
A11,
A5,
XCMPLX_1: 91;
then
A14: ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`2 ) by
A12,
A5,
XCMPLX_1: 89;
(q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A4,
A5,
XREAL_1: 64;
then (q
`2 )
<= (q
`1 ) & ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A11,
A12,
A5,
XREAL_1: 64;
then ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A11,
A5,
EUCLID: 52,
XREAL_1: 64;
then
A15: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))]| by
A11,
A12,
A6,
Def1,
JGRAPH_2: 3;
((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`1 ) by
A11,
A5,
A13,
XCMPLX_1: 89;
hence ex x be
set st x
in (
dom
Sq_Circ ) & y
= (
Sq_Circ
. x) by
A15,
A14,
A10,
EUCLID: 53;
end;
case
A16: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|;
A17: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A18:
now
assume that
A19: (px
`2 )
=
0 and (px
`1 )
=
0 ;
((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
=
0 by
A19,
EUCLID: 52;
then (q
`2 )
=
0 by
A17,
XCMPLX_1: 6;
hence contradiction by
A16;
end;
A20: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A21: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
then
A22: ((px
`1 )
/ (px
`2 ))
= ((q
`1 )
/ (q
`2 )) by
A20,
A17,
XCMPLX_1: 91;
then
A23: ((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`1 ) by
A21,
A17,
XCMPLX_1: 89;
(q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & (q
`1 )
<= (
- (q
`2 )) by
A16,
JGRAPH_2: 13;
then (q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A17,
XREAL_1: 64;
then (q
`1 )
<= (q
`2 ) & ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A20,
A21,
A17,
XREAL_1: 64;
then ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) & (
- (px
`2 ))
<= (px
`1 ) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A20,
A17,
EUCLID: 52,
XREAL_1: 64;
then
A24: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))]| by
A20,
A21,
A18,
Th4,
JGRAPH_2: 3;
A25: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`2 ) by
A20,
A17,
A22,
XCMPLX_1: 89;
hence ex x be
set st x
in (
dom
Sq_Circ ) & y
= (
Sq_Circ
. x) by
A24,
A23,
A25,
EUCLID: 53;
end;
end;
hence thesis by
A2,
FUNCT_1:def 3;
end;
then (
rng f)
= the
carrier of (
TOP-REAL 2);
then
A26: f is
onto by
FUNCT_2:def 3;
A27: (
rng f)
= (
dom (f qua
Function
" )) by
A2,
FUNCT_1: 33
.= (
dom (f
/" )) by
A2,
A26,
TOPS_2:def 4
.= (
[#] (
TOP-REAL 2)) by
FUNCT_2:def 1;
g
= (
Sq_Circ
" ) by
A26,
A2,
TOPS_2:def 4;
hence thesis by
A2,
A3,
A27,
Th21,
Th42,
TOPS_2:def 5;
end;
hence (
rng
Sq_Circ )
= the
carrier of (
TOP-REAL 2);
thus thesis by
A1;
end;
Lm19:
now
let pz2,pz1 be
Real;
assume ((((pz2
^2 )
+ (pz1
^2 ))
- 1)
* (pz2
^2 ))
<= (pz1
^2 );
then ((((pz2
^2 )
* (pz2
^2 ))
+ ((pz2
^2 )
* ((pz1
^2 )
- 1)))
- (pz1
^2 ))
<= ((pz1
^2 )
- (pz1
^2 )) by
XREAL_1: 9;
hence (((pz2
^2 )
- 1)
* ((pz2
^2 )
+ (pz1
^2 )))
<=
0 ;
end;
Lm20:
now
let px1 be
Real;
assume ((px1
^2 )
- 1)
=
0 ;
then ((px1
- 1)
* (px1
+ 1))
=
0 ;
then (px1
- 1)
=
0 or (px1
+ 1)
=
0 by
XCMPLX_1: 6;
hence px1
= 1 or px1
= (
- 1);
end;
theorem ::
JGRAPH_3:44
for f,g be
Function of
I[01] , (
TOP-REAL 2), C0,KXP,KXN,KYP,KYN be
Subset of (
TOP-REAL 2), O,I be
Point of
I[01] st O
=
0 & I
= 1 & f is
continuous
one-to-one & g is
continuous
one-to-one & C0
= { p :
|.p.|
<= 1 } & KXP
= { q1 where q1 be
Point of (
TOP-REAL 2) :
|.q1.|
= 1 & (q1
`2 )
<= (q1
`1 ) & (q1
`2 )
>= (
- (q1
`1 )) } & KXN
= { q2 where q2 be
Point of (
TOP-REAL 2) :
|.q2.|
= 1 & (q2
`2 )
>= (q2
`1 ) & (q2
`2 )
<= (
- (q2
`1 )) } & KYP
= { q3 where q3 be
Point of (
TOP-REAL 2) :
|.q3.|
= 1 & (q3
`2 )
>= (q3
`1 ) & (q3
`2 )
>= (
- (q3
`1 )) } & KYN
= { q4 where q4 be
Point of (
TOP-REAL 2) :
|.q4.|
= 1 & (q4
`2 )
<= (q4
`1 ) & (q4
`2 )
<= (
- (q4
`1 )) } & (f
. O)
in KXN & (f
. I)
in KXP & (g
. O)
in KYN & (g
. I)
in KYP & (
rng f)
c= C0 & (
rng g)
c= C0 holds (
rng f)
meets (
rng g)
proof
A1: (
dom (
Sq_Circ
" ))
= the
carrier of (
TOP-REAL 2) by
Th29,
FUNCT_2:def 1;
let f,g be
Function of
I[01] , (
TOP-REAL 2), C0,KXP,KXN,KYP,KYN be
Subset of (
TOP-REAL 2), O,I be
Point of
I[01] ;
assume
A2: O
=
0 & I
= 1 & f is
continuous
one-to-one & g is
continuous
one-to-one & C0
= { p :
|.p.|
<= 1 } & KXP
= { q1 where q1 be
Point of (
TOP-REAL 2) :
|.q1.|
= 1 & (q1
`2 )
<= (q1
`1 ) & (q1
`2 )
>= (
- (q1
`1 )) } & KXN
= { q2 where q2 be
Point of (
TOP-REAL 2) :
|.q2.|
= 1 & (q2
`2 )
>= (q2
`1 ) & (q2
`2 )
<= (
- (q2
`1 )) } & KYP
= { q3 where q3 be
Point of (
TOP-REAL 2) :
|.q3.|
= 1 & (q3
`2 )
>= (q3
`1 ) & (q3
`2 )
>= (
- (q3
`1 )) } & KYN
= { q4 where q4 be
Point of (
TOP-REAL 2) :
|.q4.|
= 1 & (q4
`2 )
<= (q4
`1 ) & (q4
`2 )
<= (
- (q4
`1 )) } & (f
. O)
in KXN & (f
. I)
in KXP & (g
. O)
in KYN & (g
. I)
in KYP & (
rng f)
c= C0 & (
rng g)
c= C0;
then
consider p1 be
Point of (
TOP-REAL 2) such that
A3: (f
. O)
= p1 and
A4:
|.p1.|
= 1 and
A5: (p1
`2 )
>= (p1
`1 ) and
A6: (p1
`2 )
<= (
- (p1
`1 ));
reconsider gg = ((
Sq_Circ
" )
* g) as
Function of
I[01] , (
TOP-REAL 2) by
Th29,
FUNCT_2: 13;
A7: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
reconsider ff = ((
Sq_Circ
" )
* f) as
Function of
I[01] , (
TOP-REAL 2) by
Th29,
FUNCT_2: 13;
A8: (
dom gg)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A9: (
dom ff)
= the
carrier of
I[01] by
FUNCT_2:def 1;
then
A10: (ff
. O)
= ((
Sq_Circ
" )
. (f
. O)) by
FUNCT_1: 12;
A11: (
dom f)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A12: for r be
Point of
I[01] holds (
- 1)
<= ((ff
. r)
`1 ) & ((ff
. r)
`1 )
<= 1 & (
- 1)
<= ((gg
. r)
`1 ) & ((gg
. r)
`1 )
<= 1 & (
- 1)
<= ((ff
. r)
`2 ) & ((ff
. r)
`2 )
<= 1 & (
- 1)
<= ((gg
. r)
`2 ) & ((gg
. r)
`2 )
<= 1
proof
let r be
Point of
I[01] ;
(f
. r)
in (
rng f) by
A11,
FUNCT_1: 3;
then (f
. r)
in C0 by
A2;
then
consider p1 be
Point of (
TOP-REAL 2) such that
A13: (f
. r)
= p1 and
A14:
|.p1.|
<= 1 by
A2;
(g
. r)
in (
rng g) by
A7,
FUNCT_1: 3;
then (g
. r)
in C0 by
A2;
then
consider p2 be
Point of (
TOP-REAL 2) such that
A15: (g
. r)
= p2 and
A16:
|.p2.|
<= 1 by
A2;
A17: (gg
. r)
= ((
Sq_Circ
" )
. (g
. r)) by
A8,
FUNCT_1: 12;
A18:
now
per cases ;
case p2
= (
0. (
TOP-REAL 2));
hence (
- 1)
<= ((gg
. r)
`1 ) & ((gg
. r)
`1 )
<= 1 & (
- 1)
<= ((gg
. r)
`2 ) & ((gg
. r)
`2 )
<= 1 by
A17,
A15,
Th28,
JGRAPH_2: 3;
end;
case
A19: p2
<> (
0. (
TOP-REAL 2)) & ((p2
`2 )
<= (p2
`1 ) & (
- (p2
`1 ))
<= (p2
`2 ) or (p2
`2 )
>= (p2
`1 ) & (p2
`2 )
<= (
- (p2
`1 )));
set px = (gg
. r);
A20: ((
Sq_Circ
" )
. p2)
=
|[((p2
`1 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))), ((p2
`2 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 ))))]| by
A19,
Th28;
then
A21: (px
`1 )
= ((p2
`1 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))) by
A17,
A15,
EUCLID: 52;
(
|.p2.|
^2 )
<=
|.p2.| by
A16,
SQUARE_1: 42;
then
A22: (
|.p2.|
^2 )
<= 1 by
A16,
XXREAL_0: 2;
A23: ((px
`2 )
^2 )
>=
0 by
XREAL_1: 63;
A24: ((px
`1 )
^2 )
>=
0 by
XREAL_1: 63;
A25: (px
`2 )
= ((p2
`2 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))) by
A17,
A15,
A20,
EUCLID: 52;
A26: (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
then (p2
`2 )
<= (p2
`1 ) & (
- (p2
`1 ))
<= (p2
`2 ) or (p2
`2 )
>= (p2
`1 ) & ((p2
`2 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 ))))
<= ((
- (p2
`1 ))
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))) by
A19,
XREAL_1: 64;
then
A27: (p2
`2 )
<= (p2
`1 ) & ((
- (p2
`1 ))
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 ))))
<= ((p2
`2 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A21,
A25,
A26,
XREAL_1: 64;
then
A28: ((p2
`2 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 ))))
<= ((p2
`1 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A17,
A15,
A20,
A21,
A26,
EUCLID: 52,
XREAL_1: 64;
A29:
now
assume (px
`1 )
=
0 & (px
`2 )
=
0 ;
then (p2
`1 )
=
0 & (p2
`2 )
=
0 by
A21,
A25,
A26,
XCMPLX_1: 6;
hence contradiction by
A19,
EUCLID: 53,
EUCLID: 54;
end;
then
A30: (px
`1 )
<>
0 by
A21,
A25,
A26,
A27,
XREAL_1: 64;
set q = px;
A31: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A32: (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
Lm1;
A33: p2
= (
Sq_Circ
. px) & (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A17,
A15,
Th43,
EUCLID: 52,
FUNCT_1: 32;
(
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A21,
A25,
A29,
A28,
Def1,
JGRAPH_2: 3;
then (
|.p2.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
A33,
A31,
JGRAPH_1: 29
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
A32,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A32,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 62;
then (((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
<= (1
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A32,
A22,
XREAL_1: 64;
then (((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
<= (1
+ (((q
`2 )
/ (q
`1 ))
^2 )) by
A32,
XCMPLX_1: 87;
then (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<= (1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 ))) by
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
<= (((px
`2 )
^2 )
/ ((px
`1 )
^2 )) by
XREAL_1: 20;
then (((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
* ((px
`1 )
^2 ))
<= ((((px
`2 )
^2 )
/ ((px
`1 )
^2 ))
* ((px
`1 )
^2 )) by
A24,
XREAL_1: 64;
then (((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
* ((px
`1 )
^2 ))
<= ((px
`2 )
^2 ) by
A30,
XCMPLX_1: 6,
XCMPLX_1: 87;
then
A34: ((((px
`1 )
^2 )
- 1)
* (((px
`1 )
^2 )
+ ((px
`2 )
^2 )))
<=
0 by
Lm19;
(((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<>
0 by
A29,
COMPLEX1: 1;
then
A35: (((px
`1 )
^2 )
- 1)
<=
0 by
A24,
A34,
A23,
XREAL_1: 129;
then
A36: (px
`1 )
>= (
- 1) by
SQUARE_1: 43;
A37: (px
`1 )
<= 1 by
A35,
SQUARE_1: 43;
then (q
`2 )
<= 1 & (
- (
- (q
`1 )))
>= (
- (q
`2 )) or (q
`2 )
>= (
- 1) & (q
`2 )
<= (
- (q
`1 )) by
A21,
A25,
A28,
A36,
XREAL_1: 24,
XXREAL_0: 2;
then (q
`2 )
<= 1 & (q
`1 )
>= (
- (q
`2 )) or (q
`2 )
>= (
- 1) & (
- (q
`2 ))
>= (
- (
- (q
`1 ))) by
XREAL_1: 24;
then (q
`2 )
<= 1 & 1
>= (
- (q
`2 )) or (q
`2 )
>= (
- 1) & (
- (q
`2 ))
>= (q
`1 ) by
A37,
XXREAL_0: 2;
then (q
`2 )
<= 1 & (
- 1)
<= (
- (
- (q
`2 ))) or (q
`2 )
>= (
- 1) & (
- (q
`2 ))
>= (
- 1) by
A36,
XREAL_1: 24,
XXREAL_0: 2;
hence (
- 1)
<= ((gg
. r)
`1 ) & ((gg
. r)
`1 )
<= 1 & (
- 1)
<= ((gg
. r)
`2 ) & ((gg
. r)
`2 )
<= 1 by
A35,
SQUARE_1: 43,
XREAL_1: 24;
end;
case
A38: p2
<> (
0. (
TOP-REAL 2)) & not ((p2
`2 )
<= (p2
`1 ) & (
- (p2
`1 ))
<= (p2
`2 ) or (p2
`2 )
>= (p2
`1 ) & (p2
`2 )
<= (
- (p2
`1 )));
set pz = (gg
. r);
A39: ((
Sq_Circ
" )
. p2)
=
|[((p2
`1 )
* (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 )))), ((p2
`2 )
* (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 ))))]| by
A38,
Th28;
then
A40: (pz
`2 )
= ((p2
`2 )
* (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 )))) by
A17,
A15,
EUCLID: 52;
A41: (pz
`1 )
= ((p2
`1 )
* (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 )))) by
A17,
A15,
A39,
EUCLID: 52;
A42: (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
(p2
`1 )
<= (p2
`2 ) & (
- (p2
`2 ))
<= (p2
`1 ) or (p2
`1 )
>= (p2
`2 ) & (p2
`1 )
<= (
- (p2
`2 )) by
A38,
JGRAPH_2: 13;
then (p2
`1 )
<= (p2
`2 ) & (
- (p2
`2 ))
<= (p2
`1 ) or (p2
`1 )
>= (p2
`2 ) & ((p2
`1 )
* (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 ))))
<= ((
- (p2
`2 ))
* (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 )))) by
A42,
XREAL_1: 64;
then
A43: (p2
`1 )
<= (p2
`2 ) & ((
- (p2
`2 ))
* (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 ))))
<= ((p2
`1 )
* (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 )))) or (pz
`1 )
>= (pz
`2 ) & (pz
`1 )
<= (
- (pz
`2 )) by
A40,
A41,
A42,
XREAL_1: 64;
then
A44: ((p2
`1 )
* (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 ))))
<= ((p2
`2 )
* (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 )))) & (
- (pz
`2 ))
<= (pz
`1 ) or (pz
`1 )
>= (pz
`2 ) & (pz
`1 )
<= (
- (pz
`2 )) by
A17,
A15,
A39,
A40,
A42,
EUCLID: 52,
XREAL_1: 64;
A45:
now
assume that
A46: (pz
`2 )
=
0 and (pz
`1 )
=
0 ;
(p2
`2 )
=
0 by
A40,
A42,
A46,
XCMPLX_1: 6;
hence contradiction by
A38;
end;
then
A47: (pz
`2 )
<>
0 by
A40,
A41,
A42,
A43,
XREAL_1: 64;
A48: p2
= (
Sq_Circ
. pz) & (
|[((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))), ((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))]|
`2 )
= ((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))) by
A17,
A15,
Th43,
EUCLID: 52,
FUNCT_1: 32;
A49: ((pz
`2 )
^2 )
>=
0 by
XREAL_1: 63;
(
|.p2.|
^2 )
<=
|.p2.| by
A16,
SQUARE_1: 42;
then
A50: (
|.p2.|
^2 )
<= 1 by
A16,
XXREAL_0: 2;
A51: ((pz
`1 )
^2 )
>=
0 by
XREAL_1: 63;
A52: (
|[((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))), ((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))]|
`1 )
= ((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))) by
EUCLID: 52;
A53: (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))
>
0 by
Lm1;
(
Sq_Circ
. pz)
=
|[((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))), ((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))]| by
A40,
A41,
A45,
A44,
Th4,
JGRAPH_2: 3;
then (
|.p2.|
^2 )
= ((((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))
^2 )
+ (((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))
^2 )) by
A48,
A52,
JGRAPH_1: 29
.= ((((pz
`2 )
^2 )
/ ((
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
^2 ))
+ (((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((pz
`2 )
^2 )
/ ((
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
^2 ))
+ (((pz
`1 )
^2 )
/ ((
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((pz
`2 )
^2 )
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
+ (((pz
`1 )
^2 )
/ ((
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
^2 ))) by
A53,
SQUARE_1:def 2
.= ((((pz
`2 )
^2 )
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
+ (((pz
`1 )
^2 )
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))) by
A53,
SQUARE_1:def 2
.= ((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))) by
XCMPLX_1: 62;
then (((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
* (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
<= (1
* (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))) by
A53,
A50,
XREAL_1: 64;
then (((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
<= (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )) by
A53,
XCMPLX_1: 87;
then (((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
<= (1
+ (((pz
`1 )
^2 )
/ ((pz
`2 )
^2 ))) by
XCMPLX_1: 76;
then ((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
- 1)
<= (((pz
`1 )
^2 )
/ ((pz
`2 )
^2 )) by
XREAL_1: 20;
then (((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
- 1)
* ((pz
`2 )
^2 ))
<= ((((pz
`1 )
^2 )
/ ((pz
`2 )
^2 ))
* ((pz
`2 )
^2 )) by
A49,
XREAL_1: 64;
then (((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
- 1)
* ((pz
`2 )
^2 ))
<= ((pz
`1 )
^2 ) by
A47,
XCMPLX_1: 6,
XCMPLX_1: 87;
then
A54: ((((pz
`2 )
^2 )
- 1)
* (((pz
`2 )
^2 )
+ ((pz
`1 )
^2 )))
<=
0 by
Lm19;
(((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
<>
0 by
A45,
COMPLEX1: 1;
then
A55: (((pz
`2 )
^2 )
- 1)
<=
0 by
A49,
A54,
A51,
XREAL_1: 129;
then
A56: (pz
`2 )
>= (
- 1) by
SQUARE_1: 43;
A57: (pz
`2 )
<= 1 by
A55,
SQUARE_1: 43;
then (pz
`1 )
<= 1 & (
- (
- (pz
`2 )))
>= (
- (pz
`1 )) or (pz
`1 )
>= (
- 1) & (pz
`1 )
<= (
- (pz
`2 )) by
A40,
A41,
A44,
A56,
XREAL_1: 24,
XXREAL_0: 2;
then (pz
`1 )
<= 1 & 1
>= (
- (pz
`1 )) or (pz
`1 )
>= (
- 1) & (
- (pz
`1 ))
>= (
- (
- (pz
`2 ))) by
A57,
XREAL_1: 24,
XXREAL_0: 2;
then (pz
`1 )
<= 1 & 1
>= (
- (pz
`1 )) or (pz
`1 )
>= (
- 1) & (
- (pz
`1 ))
>= (
- 1) by
A56,
XXREAL_0: 2;
then (pz
`1 )
<= 1 & (
- 1)
<= (
- (
- (pz
`1 ))) or (pz
`1 )
>= (
- 1) & (pz
`1 )
<= 1 by
XREAL_1: 24;
hence (
- 1)
<= ((gg
. r)
`1 ) & ((gg
. r)
`1 )
<= 1 & (
- 1)
<= ((gg
. r)
`2 ) & ((gg
. r)
`2 )
<= 1 by
A55,
SQUARE_1: 43;
end;
end;
A58: (ff
. r)
= ((
Sq_Circ
" )
. (f
. r)) by
A9,
FUNCT_1: 12;
now
per cases ;
case p1
= (
0. (
TOP-REAL 2));
hence (
- 1)
<= ((ff
. r)
`1 ) & ((ff
. r)
`1 )
<= 1 & (
- 1)
<= ((ff
. r)
`2 ) & ((ff
. r)
`2 )
<= 1 by
A58,
A13,
Th28,
JGRAPH_2: 3;
end;
case
A59: p1
<> (
0. (
TOP-REAL 2)) & ((p1
`2 )
<= (p1
`1 ) & (
- (p1
`1 ))
<= (p1
`2 ) or (p1
`2 )
>= (p1
`1 ) & (p1
`2 )
<= (
- (p1
`1 )));
set px = (ff
. r);
((
Sq_Circ
" )
. p1)
=
|[((p1
`1 )
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))), ((p1
`2 )
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 ))))]| by
A59,
Th28;
then
A60: (px
`1 )
= ((p1
`1 )
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))) & (px
`2 )
= ((p1
`2 )
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))) by
A58,
A13,
EUCLID: 52;
A61: (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
then (p1
`2 )
<= (p1
`1 ) & (
- (p1
`1 ))
<= (p1
`2 ) or (p1
`2 )
>= (p1
`1 ) & ((p1
`2 )
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 ))))
<= ((
- (p1
`1 ))
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))) by
A59,
XREAL_1: 64;
then
A62: (p1
`2 )
<= (p1
`1 ) & ((
- (p1
`1 ))
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 ))))
<= ((p1
`2 )
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A60,
A61,
XREAL_1: 64;
then
A63: (px
`2 )
<= (px
`1 ) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A60,
A61,
XREAL_1: 64;
A64:
now
assume (px
`1 )
=
0 & (px
`2 )
=
0 ;
then (p1
`1 )
=
0 & (p1
`2 )
=
0 by
A60,
A61,
XCMPLX_1: 6;
hence contradiction by
A59,
EUCLID: 53,
EUCLID: 54;
end;
then
A65: (px
`1 )
<>
0 by
A60,
A61,
A62,
XREAL_1: 64;
(
|.p1.|
^2 )
<=
|.p1.| by
A14,
SQUARE_1: 42;
then
A66: (
|.p1.|
^2 )
<= 1 by
A14,
XXREAL_0: 2;
A67: ((px
`1 )
^2 )
>=
0 by
XREAL_1: 63;
A68: ((px
`2 )
^2 )
>=
0 by
XREAL_1: 63;
set q = px;
A69: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A70: (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
Lm1;
A71: p1
= (
Sq_Circ
. px) & (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A58,
A13,
Th43,
EUCLID: 52,
FUNCT_1: 32;
(
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A64,
A63,
Def1,
JGRAPH_2: 3;
then (
|.p1.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
A71,
A69,
JGRAPH_1: 29
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
A70,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A70,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 62;
then (((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
<= (1
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A70,
A66,
XREAL_1: 64;
then (((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
<= (1
+ (((q
`2 )
/ (q
`1 ))
^2 )) by
A70,
XCMPLX_1: 87;
then (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<= (1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 ))) by
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
<= (((px
`2 )
^2 )
/ ((px
`1 )
^2 )) by
XREAL_1: 20;
then (((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
* ((px
`1 )
^2 ))
<= ((((px
`2 )
^2 )
/ ((px
`1 )
^2 ))
* ((px
`1 )
^2 )) by
A67,
XREAL_1: 64;
then (((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
* ((px
`1 )
^2 ))
<= ((px
`2 )
^2 ) by
A65,
XCMPLX_1: 6,
XCMPLX_1: 87;
then
A72: ((((px
`1 )
^2 )
- 1)
* (((px
`1 )
^2 )
+ ((px
`2 )
^2 )))
<=
0 by
Lm19;
(((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<>
0 by
A64,
COMPLEX1: 1;
then
A73: (((px
`1 )
^2 )
- 1)
<=
0 by
A67,
A72,
A68,
XREAL_1: 129;
then
A74: (px
`1 )
>= (
- 1) by
SQUARE_1: 43;
A75: (px
`1 )
<= 1 by
A73,
SQUARE_1: 43;
then (q
`2 )
<= 1 & (
- (
- (q
`1 )))
>= (
- (q
`2 )) or (q
`2 )
>= (
- 1) & (q
`2 )
<= (
- (q
`1 )) by
A63,
A74,
XREAL_1: 24,
XXREAL_0: 2;
then (q
`2 )
<= 1 & (q
`1 )
>= (
- (q
`2 )) or (q
`2 )
>= (
- 1) & (
- (q
`2 ))
>= (
- (
- (q
`1 ))) by
XREAL_1: 24;
then (q
`2 )
<= 1 & 1
>= (
- (q
`2 )) or (q
`2 )
>= (
- 1) & (
- (q
`2 ))
>= (q
`1 ) by
A75,
XXREAL_0: 2;
then (q
`2 )
<= 1 & (
- 1)
<= (
- (
- (q
`2 ))) or (q
`2 )
>= (
- 1) & (
- (q
`2 ))
>= (
- 1) by
A74,
XREAL_1: 24,
XXREAL_0: 2;
hence (
- 1)
<= ((ff
. r)
`1 ) & ((ff
. r)
`1 )
<= 1 & (
- 1)
<= ((ff
. r)
`2 ) & ((ff
. r)
`2 )
<= 1 by
A73,
SQUARE_1: 43,
XREAL_1: 24;
end;
case
A76: p1
<> (
0. (
TOP-REAL 2)) & not ((p1
`2 )
<= (p1
`1 ) & (
- (p1
`1 ))
<= (p1
`2 ) or (p1
`2 )
>= (p1
`1 ) & (p1
`2 )
<= (
- (p1
`1 )));
set pz = (ff
. r);
A77: ((
Sq_Circ
" )
. p1)
=
|[((p1
`1 )
* (
sqrt (1
+ (((p1
`1 )
/ (p1
`2 ))
^2 )))), ((p1
`2 )
* (
sqrt (1
+ (((p1
`1 )
/ (p1
`2 ))
^2 ))))]| by
A76,
Th28;
then
A78: (pz
`2 )
= ((p1
`2 )
* (
sqrt (1
+ (((p1
`1 )
/ (p1
`2 ))
^2 )))) by
A58,
A13,
EUCLID: 52;
A79: (pz
`1 )
= ((p1
`1 )
* (
sqrt (1
+ (((p1
`1 )
/ (p1
`2 ))
^2 )))) by
A58,
A13,
A77,
EUCLID: 52;
A80: (
sqrt (1
+ (((p1
`1 )
/ (p1
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
(p1
`1 )
<= (p1
`2 ) & (
- (p1
`2 ))
<= (p1
`1 ) or (p1
`1 )
>= (p1
`2 ) & (p1
`1 )
<= (
- (p1
`2 )) by
A76,
JGRAPH_2: 13;
then (p1
`1 )
<= (p1
`2 ) & (
- (p1
`2 ))
<= (p1
`1 ) or (p1
`1 )
>= (p1
`2 ) & ((p1
`1 )
* (
sqrt (1
+ (((p1
`1 )
/ (p1
`2 ))
^2 ))))
<= ((
- (p1
`2 ))
* (
sqrt (1
+ (((p1
`1 )
/ (p1
`2 ))
^2 )))) by
A80,
XREAL_1: 64;
then
A81: (p1
`1 )
<= (p1
`2 ) & ((
- (p1
`2 ))
* (
sqrt (1
+ (((p1
`1 )
/ (p1
`2 ))
^2 ))))
<= ((p1
`1 )
* (
sqrt (1
+ (((p1
`1 )
/ (p1
`2 ))
^2 )))) or (pz
`1 )
>= (pz
`2 ) & (pz
`1 )
<= (
- (pz
`2 )) by
A78,
A79,
A80,
XREAL_1: 64;
then
A82: ((p1
`1 )
* (
sqrt (1
+ (((p1
`1 )
/ (p1
`2 ))
^2 ))))
<= ((p1
`2 )
* (
sqrt (1
+ (((p1
`1 )
/ (p1
`2 ))
^2 )))) & (
- (pz
`2 ))
<= (pz
`1 ) or (pz
`1 )
>= (pz
`2 ) & (pz
`1 )
<= (
- (pz
`2 )) by
A58,
A13,
A77,
A78,
A80,
EUCLID: 52,
XREAL_1: 64;
A83:
now
assume that
A84: (pz
`2 )
=
0 and (pz
`1 )
=
0 ;
(p1
`2 )
=
0 by
A78,
A80,
A84,
XCMPLX_1: 6;
hence contradiction by
A76;
end;
then
A85: (pz
`2 )
<>
0 by
A78,
A79,
A80,
A81,
XREAL_1: 64;
A86: p1
= (
Sq_Circ
. pz) & (
|[((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))), ((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))]|
`2 )
= ((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))) by
A58,
A13,
Th43,
EUCLID: 52,
FUNCT_1: 32;
A87: ((pz
`2 )
^2 )
>=
0 by
XREAL_1: 63;
(
|.p1.|
^2 )
<=
|.p1.| by
A14,
SQUARE_1: 42;
then
A88: (
|.p1.|
^2 )
<= 1 by
A14,
XXREAL_0: 2;
A89: ((pz
`1 )
^2 )
>=
0 by
XREAL_1: 63;
A90: (
|[((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))), ((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))]|
`1 )
= ((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))) by
EUCLID: 52;
A91: (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))
>
0 by
Lm1;
(
Sq_Circ
. pz)
=
|[((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))), ((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))]| by
A78,
A79,
A83,
A82,
Th4,
JGRAPH_2: 3;
then (
|.p1.|
^2 )
= ((((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))
^2 )
+ (((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))
^2 )) by
A86,
A90,
JGRAPH_1: 29
.= ((((pz
`2 )
^2 )
/ ((
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
^2 ))
+ (((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((pz
`2 )
^2 )
/ ((
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
^2 ))
+ (((pz
`1 )
^2 )
/ ((
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((pz
`2 )
^2 )
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
+ (((pz
`1 )
^2 )
/ ((
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
^2 ))) by
A91,
SQUARE_1:def 2
.= ((((pz
`2 )
^2 )
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
+ (((pz
`1 )
^2 )
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))) by
A91,
SQUARE_1:def 2
.= ((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))) by
XCMPLX_1: 62;
then (((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
* (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
<= (1
* (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))) by
A91,
A88,
XREAL_1: 64;
then (((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
<= (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )) by
A91,
XCMPLX_1: 87;
then (((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
<= (1
+ (((pz
`1 )
^2 )
/ ((pz
`2 )
^2 ))) by
XCMPLX_1: 76;
then ((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
- 1)
<= (((pz
`1 )
^2 )
/ ((pz
`2 )
^2 )) by
XREAL_1: 20;
then (((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
- 1)
* ((pz
`2 )
^2 ))
<= ((((pz
`1 )
^2 )
/ ((pz
`2 )
^2 ))
* ((pz
`2 )
^2 )) by
A87,
XREAL_1: 64;
then (((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
- 1)
* ((pz
`2 )
^2 ))
<= ((pz
`1 )
^2 ) by
A85,
XCMPLX_1: 6,
XCMPLX_1: 87;
then
A92: ((((pz
`2 )
^2 )
- 1)
* (((pz
`2 )
^2 )
+ ((pz
`1 )
^2 )))
<=
0 by
Lm19;
(((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
<>
0 by
A83,
COMPLEX1: 1;
then
A93: (((pz
`2 )
^2 )
- 1)
<=
0 by
A87,
A92,
A89,
XREAL_1: 129;
then
A94: (pz
`2 )
>= (
- 1) by
SQUARE_1: 43;
A95: (pz
`2 )
<= 1 by
A93,
SQUARE_1: 43;
then (pz
`1 )
<= 1 & (
- (
- (pz
`2 )))
>= (
- (pz
`1 )) or (pz
`1 )
>= (
- 1) & (pz
`1 )
<= (
- (pz
`2 )) by
A78,
A79,
A82,
A94,
XREAL_1: 24,
XXREAL_0: 2;
then (pz
`1 )
<= 1 & 1
>= (
- (pz
`1 )) or (pz
`1 )
>= (
- 1) & (
- (pz
`1 ))
>= (
- (
- (pz
`2 ))) by
A95,
XREAL_1: 24,
XXREAL_0: 2;
then (pz
`1 )
<= 1 & 1
>= (
- (pz
`1 )) or (pz
`1 )
>= (
- 1) & (
- (pz
`1 ))
>= (
- 1) by
A94,
XXREAL_0: 2;
then (pz
`1 )
<= 1 & (
- 1)
<= (
- (
- (pz
`1 ))) or (pz
`1 )
>= (
- 1) & (pz
`1 )
<= 1 by
XREAL_1: 24;
hence (
- 1)
<= ((ff
. r)
`1 ) & ((ff
. r)
`1 )
<= 1 & (
- 1)
<= ((ff
. r)
`2 ) & ((ff
. r)
`2 )
<= 1 by
A93,
SQUARE_1: 43;
end;
end;
hence thesis by
A18;
end;
set y = the
Element of ((
rng ff)
/\ (
rng gg));
A96: p1
<> (
0. (
TOP-REAL 2)) by
A4,
TOPRNS_1: 23;
then
A97: ((
Sq_Circ
" )
. p1)
=
|[((p1
`1 )
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))), ((p1
`2 )
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 ))))]| by
A5,
A6,
Th28;
((ff
. O)
`1 )
= (
- 1) & ((ff
. I)
`1 )
= 1 & ((gg
. O)
`2 )
= (
- 1) & ((gg
. I)
`2 )
= 1
proof
set pz = (gg
. O);
set py = (ff
. I);
set px = (ff
. O);
set q = px;
A98: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
set pu = (gg
. I);
A99: (
|[((py
`1 )
/ (
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))), ((py
`2 )
/ (
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 ))))]|
`1 )
= ((py
`1 )
/ (
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))) by
EUCLID: 52;
A100: (
|[((pu
`1 )
/ (
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))), ((pu
`2 )
/ (
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 ))))]|
`2 )
= ((pu
`2 )
/ (
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))) by
EUCLID: 52;
A101: (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 ))
>
0 by
Lm1;
((
Sq_Circ
" )
. p1)
= q by
A9,
A3,
FUNCT_1: 12;
then
A102: p1
= (
Sq_Circ
. px) by
Th43,
FUNCT_1: 32;
consider p4 be
Point of (
TOP-REAL 2) such that
A103: (g
. I)
= p4 and
A104:
|.p4.|
= 1 and
A105: (p4
`2 )
>= (p4
`1 ) and
A106: (p4
`2 )
>= (
- (p4
`1 )) by
A2;
A107: (
sqrt (1
+ (((p4
`1 )
/ (p4
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A108: (
- (p4
`2 ))
<= (
- (
- (p4
`1 ))) by
A106,
XREAL_1: 24;
then
A109: (p4
`1 )
<= (p4
`2 ) & ((
- (p4
`2 ))
* (
sqrt (1
+ (((p4
`1 )
/ (p4
`2 ))
^2 ))))
<= ((p4
`1 )
* (
sqrt (1
+ (((p4
`1 )
/ (p4
`2 ))
^2 )))) or (pu
`1 )
>= (pu
`2 ) & (pu
`1 )
<= (
- (pu
`2 )) by
A105,
A107,
XREAL_1: 64;
A110: (gg
. I)
= ((
Sq_Circ
" )
. (g
. I)) by
A8,
FUNCT_1: 12;
then
A111: p4
= (
Sq_Circ
. pu) by
A103,
Th43,
FUNCT_1: 32;
A112: p4
<> (
0. (
TOP-REAL 2)) by
A104,
TOPRNS_1: 23;
then
A113: ((
Sq_Circ
" )
. p4)
=
|[((p4
`1 )
* (
sqrt (1
+ (((p4
`1 )
/ (p4
`2 ))
^2 )))), ((p4
`2 )
* (
sqrt (1
+ (((p4
`1 )
/ (p4
`2 ))
^2 ))))]| by
A105,
A108,
Th30;
then
A114: (pu
`2 )
= ((p4
`2 )
* (
sqrt (1
+ (((p4
`1 )
/ (p4
`2 ))
^2 )))) by
A110,
A103,
EUCLID: 52;
A115: (pu
`1 )
= ((p4
`1 )
* (
sqrt (1
+ (((p4
`1 )
/ (p4
`2 ))
^2 )))) by
A110,
A103,
A113,
EUCLID: 52;
A116:
now
assume (pu
`2 )
=
0 & (pu
`1 )
=
0 ;
then (p4
`2 )
=
0 & (p4
`1 )
=
0 by
A114,
A115,
A107,
XCMPLX_1: 6;
hence contradiction by
A112,
EUCLID: 53,
EUCLID: 54;
end;
((p4
`1 )
* (
sqrt (1
+ (((p4
`1 )
/ (p4
`2 ))
^2 ))))
<= ((p4
`2 )
* (
sqrt (1
+ (((p4
`1 )
/ (p4
`2 ))
^2 )))) & (
- (pu
`2 ))
<= (pu
`1 ) or (pu
`1 )
>= (pu
`2 ) & (pu
`1 )
<= (
- (pu
`2 )) by
A110,
A103,
A113,
A114,
A107,
A109,
EUCLID: 52,
XREAL_1: 64;
then
A117: (
Sq_Circ
. pu)
=
|[((pu
`1 )
/ (
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))), ((pu
`2 )
/ (
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 ))))]| by
A114,
A115,
A116,
Th4,
JGRAPH_2: 3;
(
|[((pu
`1 )
/ (
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))), ((pu
`2 )
/ (
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 ))))]|
`1 )
= ((pu
`1 )
/ (
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))) by
EUCLID: 52;
then (
|.p4.|
^2 )
= ((((pu
`2 )
/ (
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 ))))
^2 )
+ (((pu
`1 )
/ (
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 ))))
^2 )) by
A111,
A117,
A100,
JGRAPH_1: 29
.= ((((pu
`2 )
^2 )
/ ((
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))
^2 ))
+ (((pu
`1 )
/ (
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((pu
`2 )
^2 )
/ ((
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))
^2 ))
+ (((pu
`1 )
^2 )
/ ((
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((pu
`2 )
^2 )
/ (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))
+ (((pu
`1 )
^2 )
/ ((
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))
^2 ))) by
A101,
SQUARE_1:def 2
.= ((((pu
`2 )
^2 )
/ (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))
+ (((pu
`1 )
^2 )
/ (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))) by
A101,
SQUARE_1:def 2
.= ((((pu
`2 )
^2 )
+ ((pu
`1 )
^2 ))
/ (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 ))) by
XCMPLX_1: 62;
then (((((pu
`2 )
^2 )
+ ((pu
`1 )
^2 ))
/ (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))
* (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))
= (1
* (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 ))) by
A104;
then (((pu
`2 )
^2 )
+ ((pu
`1 )
^2 ))
= (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )) by
A101,
XCMPLX_1: 87;
then
A118: ((((pu
`2 )
^2 )
+ ((pu
`1 )
^2 ))
- 1)
= (((pu
`1 )
^2 )
/ ((pu
`2 )
^2 )) by
XCMPLX_1: 76;
(pu
`2 )
<>
0 by
A114,
A115,
A107,
A116,
A109,
XREAL_1: 64;
then (((((pu
`2 )
^2 )
+ ((pu
`1 )
^2 ))
- 1)
* ((pu
`2 )
^2 ))
= ((pu
`1 )
^2 ) by
A118,
XCMPLX_1: 6,
XCMPLX_1: 87;
then
A119: ((((pu
`2 )
^2 )
- 1)
* (((pu
`2 )
^2 )
+ ((pu
`1 )
^2 )))
=
0 ;
(((pu
`2 )
^2 )
+ ((pu
`1 )
^2 ))
<>
0 by
A116,
COMPLEX1: 1;
then
A120: (((pu
`2 )
^2 )
- 1)
=
0 by
A119,
XCMPLX_1: 6;
A121: (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A122: (
sqrt (1
+ (((pu
`1 )
/ (pu
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A123:
now
assume
A124: (pu
`2 )
= (
- 1);
then (
- (p4
`1 ))
<
0 by
A106,
A111,
A117,
A100,
A122,
XREAL_1: 141;
then (
- (
- (p4
`1 )))
> (
-
0 );
hence contradiction by
A105,
A111,
A117,
A122,
A124,
EUCLID: 52;
end;
A125: (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))
>
0 by
Lm1;
A126: (px
`1 )
= ((p1
`1 )
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))) & (px
`2 )
= ((p1
`2 )
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))) by
A10,
A3,
A97,
EUCLID: 52;
A127:
now
assume (px
`1 )
=
0 & (px
`2 )
=
0 ;
then (p1
`1 )
=
0 & (p1
`2 )
=
0 by
A126,
A121,
XCMPLX_1: 6;
hence contradiction by
A96,
EUCLID: 53,
EUCLID: 54;
end;
(p1
`2 )
<= (p1
`1 ) & (
- (p1
`1 ))
<= (p1
`2 ) or (p1
`2 )
>= (p1
`1 ) & ((p1
`2 )
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 ))))
<= ((
- (p1
`1 ))
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))) by
A5,
A6,
A121,
XREAL_1: 64;
then
A128: (p1
`2 )
<= (p1
`1 ) & ((
- (p1
`1 ))
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 ))))
<= ((p1
`2 )
* (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A126,
A121,
XREAL_1: 64;
then (px
`2 )
<= (px
`1 ) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A126,
A121,
XREAL_1: 64;
then
A129: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A127,
Def1,
JGRAPH_2: 3;
A130: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A131:
now
assume
A132: (px
`1 )
= 1;
(
- (p1
`2 ))
>= (
- (
- (p1
`1 ))) by
A6,
XREAL_1: 24;
then (
- (p1
`2 ))
>
0 by
A102,
A129,
A98,
A130,
A132,
XREAL_1: 139;
then (
- (
- (p1
`2 )))
< (
-
0 );
hence contradiction by
A5,
A102,
A129,
A130,
A132,
EUCLID: 52;
end;
consider p2 be
Point of (
TOP-REAL 2) such that
A133: (f
. I)
= p2 and
A134:
|.p2.|
= 1 and
A135: (p2
`2 )
<= (p2
`1 ) and
A136: (p2
`2 )
>= (
- (p2
`1 )) by
A2;
A137: (ff
. I)
= ((
Sq_Circ
" )
. (f
. I)) by
A9,
FUNCT_1: 12;
then
A138: p2
= (
Sq_Circ
. py) by
A133,
Th43,
FUNCT_1: 32;
A139: p2
<> (
0. (
TOP-REAL 2)) by
A134,
TOPRNS_1: 23;
then
A140: ((
Sq_Circ
" )
. p2)
=
|[((p2
`1 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))), ((p2
`2 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 ))))]| by
A135,
A136,
Th28;
then
A141: (py
`1 )
= ((p2
`1 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))) by
A137,
A133,
EUCLID: 52;
A142: (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A143: (py
`2 )
= ((p2
`2 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))) by
A137,
A133,
A140,
EUCLID: 52;
A144:
now
assume (py
`1 )
=
0 & (py
`2 )
=
0 ;
then (p2
`1 )
=
0 & (p2
`2 )
=
0 by
A141,
A143,
A142,
XCMPLX_1: 6;
hence contradiction by
A139,
EUCLID: 53,
EUCLID: 54;
end;
A145: (p2
`2 )
<= (p2
`1 ) & ((
- (p2
`1 ))
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 ))))
<= ((p2
`2 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))) or (py
`2 )
>= (py
`1 ) & (py
`2 )
<= (
- (py
`1 )) by
A135,
A136,
A142,
XREAL_1: 64;
then ((p2
`2 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 ))))
<= ((p2
`1 )
* (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))) & (
- (py
`1 ))
<= (py
`2 ) or (py
`2 )
>= (py
`1 ) & (py
`2 )
<= (
- (py
`1 )) by
A137,
A133,
A140,
A141,
A142,
EUCLID: 52,
XREAL_1: 64;
then
A146: (
Sq_Circ
. py)
=
|[((py
`1 )
/ (
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))), ((py
`2 )
/ (
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 ))))]| by
A141,
A143,
A144,
Def1,
JGRAPH_2: 3;
A147: (
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A148:
now
assume
A149: (py
`1 )
= (
- 1);
(
- (p2
`2 ))
<= (
- (
- (p2
`1 ))) by
A136,
XREAL_1: 24;
then (
- (p2
`2 ))
<
0 by
A138,
A146,
A99,
A147,
A149,
XREAL_1: 141;
then (
- (
- (p2
`2 )))
> (
-
0 );
hence contradiction by
A135,
A138,
A146,
A147,
A149,
EUCLID: 52;
end;
A150: (1
+ (((py
`2 )
/ (py
`1 ))
^2 ))
>
0 by
Lm1;
(
|[((py
`1 )
/ (
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))), ((py
`2 )
/ (
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 ))))]|
`2 )
= ((py
`2 )
/ (
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))) by
EUCLID: 52;
then (
|.p2.|
^2 )
= ((((py
`1 )
/ (
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 ))))
^2 )
+ (((py
`2 )
/ (
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 ))))
^2 )) by
A138,
A146,
A99,
JGRAPH_1: 29
.= ((((py
`1 )
^2 )
/ ((
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))
^2 ))
+ (((py
`2 )
/ (
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((py
`1 )
^2 )
/ ((
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))
^2 ))
+ (((py
`2 )
^2 )
/ ((
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((py
`1 )
^2 )
/ (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))
+ (((py
`2 )
^2 )
/ ((
sqrt (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))
^2 ))) by
A150,
SQUARE_1:def 2
.= ((((py
`1 )
^2 )
/ (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))
+ (((py
`2 )
^2 )
/ (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))) by
A150,
SQUARE_1:def 2
.= ((((py
`1 )
^2 )
+ ((py
`2 )
^2 ))
/ (1
+ (((py
`2 )
/ (py
`1 ))
^2 ))) by
XCMPLX_1: 62;
then (((((py
`1 )
^2 )
+ ((py
`2 )
^2 ))
/ (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))
* (1
+ (((py
`2 )
/ (py
`1 ))
^2 )))
= (1
* (1
+ (((py
`2 )
/ (py
`1 ))
^2 ))) by
A134;
then (((py
`1 )
^2 )
+ ((py
`2 )
^2 ))
= (1
+ (((py
`2 )
/ (py
`1 ))
^2 )) by
A150,
XCMPLX_1: 87;
then
A151: ((((py
`1 )
^2 )
+ ((py
`2 )
^2 ))
- 1)
= (((py
`2 )
^2 )
/ ((py
`1 )
^2 )) by
XCMPLX_1: 76;
(py
`1 )
<>
0 by
A141,
A143,
A142,
A144,
A145,
XREAL_1: 64;
then (((((py
`1 )
^2 )
+ ((py
`2 )
^2 ))
- 1)
* ((py
`1 )
^2 ))
= ((py
`2 )
^2 ) by
A151,
XCMPLX_1: 6,
XCMPLX_1: 87;
then
A152: ((((py
`1 )
^2 )
- 1)
* (((py
`1 )
^2 )
+ ((py
`2 )
^2 )))
=
0 ;
(((py
`1 )
^2 )
+ ((py
`2 )
^2 ))
<>
0 by
A144,
COMPLEX1: 1;
then
A153: (((py
`1 )
^2 )
- 1)
=
0 by
A152,
XCMPLX_1: 6;
A154: (
|[((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))), ((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))]|
`2 )
= ((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))) by
EUCLID: 52;
A155: (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
Lm1;
(
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
then (
|.p1.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
A102,
A129,
A98,
JGRAPH_1: 29
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
A155,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A155,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 62;
then (((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
= (1
* (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
A4;
then (((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
= (1
+ (((q
`2 )
/ (q
`1 ))
^2 )) by
A155,
XCMPLX_1: 87;
then
A156: ((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
= (((px
`2 )
^2 )
/ ((px
`1 )
^2 )) by
XCMPLX_1: 76;
(px
`1 )
<>
0 by
A126,
A121,
A127,
A128,
XREAL_1: 64;
then (((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
* ((px
`1 )
^2 ))
= ((px
`2 )
^2 ) by
A156,
XCMPLX_1: 6,
XCMPLX_1: 87;
then
A157: ((((px
`1 )
^2 )
- 1)
* (((px
`1 )
^2 )
+ ((px
`2 )
^2 )))
=
0 ;
consider p3 be
Point of (
TOP-REAL 2) such that
A158: (g
. O)
= p3 and
A159:
|.p3.|
= 1 and
A160: (p3
`2 )
<= (p3
`1 ) and
A161: (p3
`2 )
<= (
- (p3
`1 )) by
A2;
A162: p3
<> (
0. (
TOP-REAL 2)) by
A159,
TOPRNS_1: 23;
A163: (gg
. O)
= ((
Sq_Circ
" )
. (g
. O)) by
A8,
FUNCT_1: 12;
then
A164: p3
= (
Sq_Circ
. pz) by
A158,
Th43,
FUNCT_1: 32;
A165: (
- (p3
`2 ))
>= (
- (
- (p3
`1 ))) by
A161,
XREAL_1: 24;
then
A166: ((
Sq_Circ
" )
. p3)
=
|[((p3
`1 )
* (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 )))), ((p3
`2 )
* (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 ))))]| by
A160,
A162,
Th30;
then
A167: (pz
`2 )
= ((p3
`2 )
* (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 )))) by
A163,
A158,
EUCLID: 52;
A168: (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A169: (pz
`1 )
= ((p3
`1 )
* (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 )))) by
A163,
A158,
A166,
EUCLID: 52;
A170:
now
assume (pz
`2 )
=
0 & (pz
`1 )
=
0 ;
then (p3
`2 )
=
0 & (p3
`1 )
=
0 by
A167,
A169,
A168,
XCMPLX_1: 6;
hence contradiction by
A162,
EUCLID: 53,
EUCLID: 54;
end;
(p3
`1 )
<= (p3
`2 ) & (
- (p3
`2 ))
<= (p3
`1 ) or (p3
`1 )
>= (p3
`2 ) & ((p3
`1 )
* (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 ))))
<= ((
- (p3
`2 ))
* (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 )))) by
A160,
A165,
A168,
XREAL_1: 64;
then
A171: (p3
`1 )
<= (p3
`2 ) & ((
- (p3
`2 ))
* (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 ))))
<= ((p3
`1 )
* (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 )))) or (pz
`1 )
>= (pz
`2 ) & (pz
`1 )
<= (
- (pz
`2 )) by
A167,
A169,
A168,
XREAL_1: 64;
then ((p3
`1 )
* (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 ))))
<= ((p3
`2 )
* (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 )))) & (
- (pz
`2 ))
<= (pz
`1 ) or (pz
`1 )
>= (pz
`2 ) & (pz
`1 )
<= (
- (pz
`2 )) by
A163,
A158,
A166,
A167,
A168,
EUCLID: 52,
XREAL_1: 64;
then
A172: (
Sq_Circ
. pz)
=
|[((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))), ((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))]| by
A167,
A169,
A170,
Th4,
JGRAPH_2: 3;
A173: (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
>
0 by
Lm1,
SQUARE_1: 25;
A174:
now
assume
A175: (pz
`2 )
= 1;
then (
- (p3
`1 ))
>
0 by
A161,
A164,
A172,
A154,
A173,
XREAL_1: 139;
then (
- (
- (p3
`1 )))
< (
-
0 );
hence contradiction by
A160,
A164,
A172,
A173,
A175,
EUCLID: 52;
end;
(
|[((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))), ((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))]|
`1 )
= ((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))) by
EUCLID: 52;
then (
|.p3.|
^2 )
= ((((pz
`2 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))
^2 )
+ (((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))
^2 )) by
A164,
A172,
A154,
JGRAPH_1: 29
.= ((((pz
`2 )
^2 )
/ ((
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
^2 ))
+ (((pz
`1 )
/ (
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((pz
`2 )
^2 )
/ ((
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
^2 ))
+ (((pz
`1 )
^2 )
/ ((
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((pz
`2 )
^2 )
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
+ (((pz
`1 )
^2 )
/ ((
sqrt (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
^2 ))) by
A125,
SQUARE_1:def 2
.= ((((pz
`2 )
^2 )
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
+ (((pz
`1 )
^2 )
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))) by
A125,
SQUARE_1:def 2
.= ((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))) by
XCMPLX_1: 62;
then (((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
/ (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
* (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )))
= (1
* (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 ))) by
A159;
then (((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
= (1
+ (((pz
`1 )
/ (pz
`2 ))
^2 )) by
A125,
XCMPLX_1: 87;
then
A176: ((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
- 1)
= (((pz
`1 )
^2 )
/ ((pz
`2 )
^2 )) by
XCMPLX_1: 76;
(pz
`2 )
<>
0 by
A167,
A169,
A168,
A170,
A171,
XREAL_1: 64;
then (((((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
- 1)
* ((pz
`2 )
^2 ))
= ((pz
`1 )
^2 ) by
A176,
XCMPLX_1: 6,
XCMPLX_1: 87;
then
A177: ((((pz
`2 )
^2 )
- 1)
* (((pz
`2 )
^2 )
+ ((pz
`1 )
^2 )))
=
0 ;
(((pz
`2 )
^2 )
+ ((pz
`1 )
^2 ))
<>
0 by
A170,
COMPLEX1: 1;
then
A178: (((pz
`2 )
^2 )
- 1)
=
0 by
A177,
XCMPLX_1: 6;
(((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<>
0 by
A127,
COMPLEX1: 1;
then (((px
`1 )
^2 )
- 1)
=
0 by
A157,
XCMPLX_1: 6;
hence thesis by
A131,
A153,
A148,
A178,
A174,
A120,
A123,
Lm20;
end;
then (
rng ff)
meets (
rng gg) by
A2,
A12,
Th42,
JGRAPH_1: 47;
then
A179: ((
rng ff)
/\ (
rng gg))
<>
{} ;
then y
in (
rng ff) by
XBOOLE_0:def 4;
then
consider x1 be
object such that
A180: x1
in (
dom ff) and
A181: y
= (ff
. x1) by
FUNCT_1:def 3;
x1
in (
dom f) by
A180,
FUNCT_1: 11;
then
A182: (f
. x1)
in (
rng f) by
FUNCT_1:def 3;
y
in (
rng gg) by
A179,
XBOOLE_0:def 4;
then
consider x2 be
object such that
A183: x2
in (
dom gg) and
A184: y
= (gg
. x2) by
FUNCT_1:def 3;
A185: (gg
. x2)
= ((
Sq_Circ
" )
. (g
. x2)) by
A183,
FUNCT_1: 12;
x2
in (
dom g) by
A183,
FUNCT_1: 11;
then
A186: (g
. x2)
in (
rng g) by
FUNCT_1:def 3;
(ff
. x1)
= ((
Sq_Circ
" )
. (f
. x1)) by
A180,
FUNCT_1: 12;
then (f
. x1)
= (g
. x2) by
A181,
A184,
A1,
A182,
A186,
A185,
FUNCT_1:def 4;
then ((
rng f)
/\ (
rng g))
<>
{} by
A182,
A186,
XBOOLE_0:def 4;
hence thesis;
end;