jgraph_3.miz
    
    begin
    
    reserve x for
    Real;
    
    
    
    
    
    Lm1: ((x 
    ^2 ) 
    + 1) 
    >  
    0  
    
    proof
    
      (x
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm2: ( 
    dom  
    proj1 ) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
    
    
    
    
    Lm3: ( 
    dom  
    proj2 ) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
    theorem :: 
    
    JGRAPH_3:1
    
    for p be
    Point of ( 
    TOP-REAL 2) holds 
    |.p.|
    = ( 
    sqrt (((p 
    `1 ) 
    ^2 ) 
    + ((p 
    `2 ) 
    ^2 ))) & ( 
    |.p.|
    ^2 ) 
    = (((p 
    `1 ) 
    ^2 ) 
    + ((p 
    `2 ) 
    ^2 )) by 
    JGRAPH_1: 29,
    JGRAPH_1: 30;
    
    theorem :: 
    
    JGRAPH_3:2
    
    for f be
    Function, B,C be 
    set holds ((f 
    | B) 
    .: C) 
    = (f 
    .: (C 
    /\ B)) 
    
    proof
    
      let f be
    Function, B,C be 
    set;
    
      thus ((f
    | B) 
    .: C) 
    c= (f 
    .: (C 
    /\ B)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ((f 
    | B) 
    .: C); 
    
        then
    
        consider y be
    object such that 
    
        
    
    A1: y 
    in ( 
    dom (f 
    | B)) and 
    
        
    
    A2: y 
    in C and 
    
        
    
    A3: x 
    = ((f 
    | B) 
    . y) by 
    FUNCT_1:def 6;
    
        
    
        
    
    A4: ((f 
    | B) 
    . y) 
    = (f 
    . y) by 
    A1,
    FUNCT_1: 47;
    
        
    
        
    
    A5: ( 
    dom (f 
    | B)) 
    = (( 
    dom f) 
    /\ B) by 
    RELAT_1: 61;
    
        then y
    in B by 
    A1,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A6: y 
    in (C 
    /\ B) by 
    A2,
    XBOOLE_0:def 4;
    
        y
    in ( 
    dom f) by 
    A1,
    A5,
    XBOOLE_0:def 4;
    
        hence thesis by
    A3,
    A6,
    A4,
    FUNCT_1:def 6;
    
      end;
    
      let x be
    object;
    
      assume x
    in (f 
    .: (C 
    /\ B)); 
    
      then
    
      consider y be
    object such that 
    
      
    
    A7: y 
    in ( 
    dom f) and 
    
      
    
    A8: y 
    in (C 
    /\ B) and 
    
      
    
    A9: x 
    = (f 
    . y) by 
    FUNCT_1:def 6;
    
      
    
      
    
    A10: y 
    in C by 
    A8,
    XBOOLE_0:def 4;
    
      y
    in B by 
    A8,
    XBOOLE_0:def 4;
    
      then y
    in (( 
    dom f) 
    /\ B) by 
    A7,
    XBOOLE_0:def 4;
    
      then
    
      
    
    A11: y 
    in ( 
    dom (f 
    | B)) by 
    RELAT_1: 61;
    
      then ((f
    | B) 
    . y) 
    = (f 
    . y) by 
    FUNCT_1: 47;
    
      hence thesis by
    A9,
    A10,
    A11,
    FUNCT_1:def 6;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:3
    
    
    
    
    
    Th3: for X,Y be non 
    empty  
    TopSpace, p0 be 
    Point of X, D be non 
    empty  
    Subset of X, E be non 
    empty  
    Subset of Y, f be 
    Function of X, Y st (D 
    ` ) 
    =  
    {p0} & (E
    ` ) 
    =  
    {(f
    . p0)} & X is 
    T_2 & Y is 
    T_2 & (for p be 
    Point of (X 
    | D) holds (f 
    . p) 
    <> (f 
    . p0)) & (f 
    | D) is 
    continuous  
    Function of (X 
    | D), (Y 
    | E) & (for V be 
    Subset of Y st (f 
    . p0) 
    in V & V is 
    open holds ex W be 
    Subset of X st p0 
    in W & W is 
    open & (f 
    .: W) 
    c= V) holds f is 
    continuous
    
    proof
    
      let X,Y be non
    empty  
    TopSpace, p0 be 
    Point of X, D be non 
    empty  
    Subset of X, E be non 
    empty  
    Subset of Y, f be 
    Function of X, Y; 
    
      assume that
    
      
    
    A1: (D 
    ` ) 
    =  
    {p0} and
    
      
    
    A2: (E 
    ` ) 
    =  
    {(f
    . p0)} and 
    
      
    
    A3: X is 
    T_2 and 
    
      
    
    A4: Y is 
    T_2 and 
    
      
    
    A5: for p be 
    Point of (X 
    | D) holds (f 
    . p) 
    <> (f 
    . p0) and 
    
      
    
    A6: (f 
    | D) is 
    continuous  
    Function of (X 
    | D), (Y 
    | E) and 
    
      
    
    A7: for V be 
    Subset of Y st (f 
    . p0) 
    in V & V is 
    open holds ex W be 
    Subset of X st p0 
    in W & W is 
    open & (f 
    .: W) 
    c= V; 
    
      for p be
    Point of X, V be 
    Subset of Y st (f 
    . p) 
    in V & V is 
    open holds ex W be 
    Subset of X st p 
    in W & W is 
    open & (f 
    .: W) 
    c= V 
    
      proof
    
        
    
        
    
    A8: the 
    carrier of (X 
    | D) 
    = D by 
    PRE_TOPC: 8;
    
        let p be
    Point of X, V be 
    Subset of Y; 
    
        assume that
    
        
    
    A9: (f 
    . p) 
    in V and 
    
        
    
    A10: V is 
    open;
    
        per cases ;
    
          suppose p
    = p0; 
    
          hence thesis by
    A7,
    A9,
    A10;
    
        end;
    
          suppose
    
          
    
    A11: p 
    <> p0; 
    
          then not p
    in (D 
    ` ) by 
    A1,
    TARSKI:def 1;
    
          then p
    in (the 
    carrier of X 
    \ (D 
    ` )) by 
    XBOOLE_0:def 5;
    
          then
    
          
    
    A12: p 
    in ((D 
    ` ) 
    ` ) by 
    SUBSET_1:def 4;
    
          then (f
    . p) 
    <> (f 
    . p0) by 
    A5,
    A8;
    
          then
    
          consider G1,G2 be
    Subset of Y such that 
    
          
    
    A13: G1 is 
    open and G2 is 
    open and 
    
          
    
    A14: (f 
    . p) 
    in G1 and (f 
    . p0) 
    in G2 and G1 
    misses G2 by 
    A4,
    PRE_TOPC:def 10;
    
          
    
          
    
    A15: ( 
    [#] (X 
    | D)) 
    = D by 
    PRE_TOPC:def 5;
    
          then
    
          reconsider p22 = p as
    Point of (X 
    | D) by 
    A12;
    
          consider h be
    Function of (X 
    | D), (Y 
    | E) such that 
    
          
    
    A16: h 
    = (f 
    | D) and 
    
          
    
    A17: h is 
    continuous by 
    A6;
    
          
    
          
    
    A18: (h 
    . p) 
    = (f 
    . p) by 
    A12,
    A16,
    FUNCT_1: 49;
    
          
    
          
    
    A19: ( 
    [#] (Y 
    | E)) 
    = E by 
    PRE_TOPC:def 5;
    
          then
    
          reconsider V20 = ((G1
    /\ V) 
    /\ E) as 
    Subset of (Y 
    | E) by 
    XBOOLE_1: 17;
    
          (G1
    /\ V) is 
    open by 
    A10,
    A13,
    TOPS_1: 11;
    
          then
    
          
    
    A20: V20 is 
    open by 
    A19,
    TOPS_2: 24;
    
          (f
    . p) 
    <> (f 
    . p0) by 
    A5,
    A12,
    A15;
    
          then not (f
    . p) 
    in (E 
    ` ) by 
    A2,
    TARSKI:def 1;
    
          then not (f
    . p) 
    in (the 
    carrier of Y 
    \ E) by 
    SUBSET_1:def 4;
    
          then
    
          
    
    A21: (h 
    . p22) 
    in E by 
    A18,
    XBOOLE_0:def 5;
    
          (h
    . p22) 
    in (G1 
    /\ V) by 
    A9,
    A14,
    A18,
    XBOOLE_0:def 4;
    
          then (h
    . p22) 
    in V20 by 
    A21,
    XBOOLE_0:def 4;
    
          then
    
          consider W2 be
    Subset of (X 
    | D) such that 
    
          
    
    A22: p22 
    in W2 and 
    
          
    
    A23: W2 is 
    open and 
    
          
    
    A24: (h 
    .: W2) 
    c= V20 by 
    A17,
    A20,
    JGRAPH_2: 10;
    
          consider W3b be
    Subset of X such that 
    
          
    
    A25: W3b is 
    open and 
    
          
    
    A26: W2 
    = (W3b 
    /\ ( 
    [#] (X 
    | D))) by 
    A23,
    TOPS_2: 24;
    
          consider H1,H2 be
    Subset of X such that 
    
          
    
    A27: H1 is 
    open and H2 is 
    open and 
    
          
    
    A28: p 
    in H1 and 
    
          
    
    A29: p0 
    in H2 and 
    
          
    
    A30: H1 
    misses H2 by 
    A3,
    A11,
    PRE_TOPC:def 10;
    
          p22
    in W3b by 
    A22,
    A26,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A31: p 
    in (H1 
    /\ W3b) by 
    A28,
    XBOOLE_0:def 4;
    
          reconsider W3 = (H1
    /\ W3b) as 
    Subset of X; 
    
          
    
          
    
    A32: W3 
    c= W3b by 
    XBOOLE_1: 17;
    
          
    
          
    
    A33: (f 
    .: W3) 
    c= (h 
    .: W2) 
    
          proof
    
            let xx be
    object;
    
            assume xx
    in (f 
    .: W3); 
    
            then
    
            consider yy be
    object such that 
    
            
    
    A34: yy 
    in ( 
    dom f) and 
    
            
    
    A35: yy 
    in W3 and 
    
            
    
    A36: xx 
    = (f 
    . yy) by 
    FUNCT_1:def 6;
    
            H2
    c= (H1 
    ` ) by 
    A30,
    SUBSET_1: 23;
    
            then (D
    ` ) 
    c= (H1 
    ` ) by 
    A1,
    A29,
    ZFMISC_1: 31;
    
            then W3
    c= H1 & H1 
    c= D by 
    SUBSET_1: 12,
    XBOOLE_1: 17;
    
            then
    
            
    
    A37: W3 
    c= D; 
    
            then
    
            
    
    A38: yy 
    in W2 by 
    A15,
    A26,
    A32,
    A35,
    XBOOLE_0:def 4;
    
            (
    dom h) 
    = (( 
    dom f) 
    /\ D) by 
    A16,
    RELAT_1: 61;
    
            then
    
            
    
    A39: yy 
    in ( 
    dom h) by 
    A34,
    A35,
    A37,
    XBOOLE_0:def 4;
    
            then (h
    . yy) 
    = (f 
    . yy) by 
    A16,
    FUNCT_1: 47;
    
            hence thesis by
    A36,
    A39,
    A38,
    FUNCT_1:def 6;
    
          end;
    
          ((G1
    /\ V) 
    /\ E) 
    c= (G1 
    /\ V) by 
    XBOOLE_1: 17;
    
          then (G1
    /\ V) 
    c= V & (h 
    .: W2) 
    c= (G1 
    /\ V) by 
    A24,
    XBOOLE_1: 17;
    
          then
    
          
    
    A40: (h 
    .: W2) 
    c= V; 
    
          (H1
    /\ W3b) is 
    open by 
    A25,
    A27,
    TOPS_1: 11;
    
          hence thesis by
    A31,
    A33,
    A40,
    XBOOLE_1: 1;
    
        end;
    
      end;
    
      hence thesis by
    JGRAPH_2: 10;
    
    end;
    
    begin
    
    reserve p,q for
    Point of ( 
    TOP-REAL 2); 
    
    definition
    
      :: 
    
    JGRAPH_3:def1
    
      func
    
    Sq_Circ -> 
    Function of the 
    carrier of ( 
    TOP-REAL 2), the 
    carrier of ( 
    TOP-REAL 2) means 
    
      :
    
    Def1: for p be 
    Point of ( 
    TOP-REAL 2) holds (p 
    = ( 
    0. ( 
    TOP-REAL 2)) implies (it 
    . p) 
    = p) & (((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies (it 
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) & ( not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies (it 
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|); 
    
      existence
    
      proof
    
        defpred
    
    P[
    set, 
    set] means (for p be
    Point of ( 
    TOP-REAL 2) st p 
    = $1 holds (p 
    = ( 
    0. ( 
    TOP-REAL 2)) implies $2 
    = p) & (((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies $2 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) & ( not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies $2 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|)); 
    
        set BP = the
    carrier of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A1: for x be 
    Element of BP holds ex y be 
    Element of BP st 
    P[x, y]
    
        proof
    
          let x be
    Element of BP; 
    
          set q = x;
    
          per cases ;
    
            suppose q
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            then for p be
    Point of ( 
    TOP-REAL 2) st p 
    = x holds (p 
    = ( 
    0. ( 
    TOP-REAL 2)) implies ( 
    0. ( 
    TOP-REAL 2)) 
    = p) & (((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies ( 
    0. ( 
    TOP-REAL 2)) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) & ( not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies ( 
    0. ( 
    TOP-REAL 2)) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|); 
    
            hence thesis;
    
          end;
    
            suppose
    
            
    
    A2: ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))) & q 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
            set r =
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|; 
    
            for p be
    Point of ( 
    TOP-REAL 2) st p 
    = x holds (p 
    = ( 
    0. ( 
    TOP-REAL 2)) implies r 
    = p) & (((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies r 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) & ( not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies r 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|) by 
    A2;
    
            hence thesis;
    
          end;
    
            suppose
    
            
    
    A3: not ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))) & q 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
            set r =
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]|; 
    
            for p be
    Point of ( 
    TOP-REAL 2) st p 
    = x holds (p 
    = ( 
    0. ( 
    TOP-REAL 2)) implies r 
    = p) & (((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies r 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) & ( not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies r 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|) by 
    A3;
    
            hence thesis;
    
          end;
    
        end;
    
        ex h be
    Function of BP, BP st for x be 
    Element of BP holds 
    P[x, (h
    . x)] from 
    FUNCT_2:sch 3(
    A1);
    
        then
    
        consider h be
    Function of BP, BP such that 
    
        
    
    A4: for x be 
    Element of BP holds for p be 
    Point of ( 
    TOP-REAL 2) st p 
    = x holds (p 
    = ( 
    0. ( 
    TOP-REAL 2)) implies (h 
    . x) 
    = p) & (((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies (h 
    . x) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) & ( not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies (h 
    . x) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|); 
    
        for p be
    Point of ( 
    TOP-REAL 2) holds (p 
    = ( 
    0. ( 
    TOP-REAL 2)) implies (h 
    . p) 
    = p) & (((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies (h 
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) & ( not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies (h 
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|) by 
    A4;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let h1,h2 be
    Function of the 
    carrier of ( 
    TOP-REAL 2), the 
    carrier of ( 
    TOP-REAL 2); 
    
        assume that
    
        
    
    A5: for p be 
    Point of ( 
    TOP-REAL 2) holds (p 
    = ( 
    0. ( 
    TOP-REAL 2)) implies (h1 
    . p) 
    = p) & (((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies (h1 
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) & ( not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies (h1 
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|) and 
    
        
    
    A6: for p be 
    Point of ( 
    TOP-REAL 2) holds (p 
    = ( 
    0. ( 
    TOP-REAL 2)) implies (h2 
    . p) 
    = p) & (((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies (h2 
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) & ( not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies (h2 
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|); 
    
        for x be
    object st x 
    in the 
    carrier of ( 
    TOP-REAL 2) holds (h1 
    . x) 
    = (h2 
    . x) 
    
        proof
    
          let x be
    object;
    
          assume x
    in the 
    carrier of ( 
    TOP-REAL 2); 
    
          then
    
          reconsider q = x as
    Point of ( 
    TOP-REAL 2); 
    
          per cases ;
    
            suppose
    
            
    
    A7: q 
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            then (h1
    . q) 
    = q by 
    A5;
    
            hence thesis by
    A6,
    A7;
    
          end;
    
            suppose
    
            
    
    A8: ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))) & q 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
            then (h1
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| by 
    A5;
    
            hence thesis by
    A6,
    A8;
    
          end;
    
            suppose
    
            
    
    A9: not ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))) & q 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
            then (h1
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| by 
    A5;
    
            hence thesis by
    A6,
    A9;
    
          end;
    
        end;
    
        hence h1
    = h2 by 
    FUNCT_2: 12;
    
      end;
    
    end
    
    theorem :: 
    
    JGRAPH_3:4
    
    
    
    
    
    Th4: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    <> ( 
    0. ( 
    TOP-REAL 2)) holds (((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) implies ( 
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|) & ( not ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) implies ( 
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) 
    
    proof
    
      let p be
    Point of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: ( 
    - (p 
    `2 )) 
    < (p 
    `1 ) implies ( 
    - ( 
    - (p 
    `2 ))) 
    > ( 
    - (p 
    `1 )) by 
    XREAL_1: 24;
    
      assume
    
      
    
    A2: p 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
      hereby
    
        assume
    
        
    
    A3: (p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 )); 
    
        now
    
          per cases by
    A3;
    
            case
    
            
    
    A4: (p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ); 
    
            now
    
              assume
    
              
    
    A5: (p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 )); 
    
              
    
    A6: 
    
              now
    
                per cases by
    A5;
    
                  case (p
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ); 
    
                  hence (p
    `1 ) 
    = (p 
    `2 ) or (p 
    `1 ) 
    = ( 
    - (p 
    `2 )) by 
    A4,
    XXREAL_0: 1;
    
                end;
    
                  case (p
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 )); 
    
                  then (
    - (p 
    `2 )) 
    >= ( 
    - ( 
    - (p 
    `1 ))) by 
    XREAL_1: 24;
    
                  hence (p
    `1 ) 
    = (p 
    `2 ) or (p 
    `1 ) 
    = ( 
    - (p 
    `2 )) by 
    A4,
    XXREAL_0: 1;
    
                end;
    
              end;
    
              now
    
                per cases by
    A6;
    
                  case (p
    `1 ) 
    = (p 
    `2 ); 
    
                  hence (
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    A2,
    A5,
    Def1;
    
                end;
    
                  case
    
                  
    
    A7: (p 
    `1 ) 
    = ( 
    - (p 
    `2 )); 
    
                  then (p
    `1 ) 
    <>  
    0 & ( 
    - (p 
    `1 )) 
    = (p 
    `2 ) by 
    A2,
    EUCLID: 53,
    EUCLID: 54;
    
                  then
    
                  
    
    A8: ((p 
    `2 ) 
    / (p 
    `1 )) 
    = ( 
    - 1) by 
    XCMPLX_1: 197;
    
                  (p
    `2 ) 
    <>  
    0 by 
    A2,
    A7,
    EUCLID: 53,
    EUCLID: 54;
    
                  then ((p
    `1 ) 
    / (p 
    `2 )) 
    = ( 
    - 1) by 
    A7,
    XCMPLX_1: 197;
    
                  hence (
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    A2,
    A5,
    A8,
    Def1;
    
                end;
    
              end;
    
              hence (
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|; 
    
            end;
    
            hence (
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    A2,
    Def1;
    
          end;
    
            case
    
            
    
    A9: (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 )); 
    
            now
    
              assume
    
              
    
    A10: (p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 )); 
    
              
    
    A11: 
    
              now
    
                per cases by
    A10;
    
                  case (p
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ); 
    
                  then (
    - ( 
    - (p 
    `1 ))) 
    >= ( 
    - (p 
    `2 )) by 
    XREAL_1: 24;
    
                  hence (p
    `1 ) 
    = (p 
    `2 ) or (p 
    `1 ) 
    = ( 
    - (p 
    `2 )) by 
    A9,
    XXREAL_0: 1;
    
                end;
    
                  case (p
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 )); 
    
                  hence (p
    `1 ) 
    = (p 
    `2 ) or (p 
    `1 ) 
    = ( 
    - (p 
    `2 )) by 
    A9,
    XXREAL_0: 1;
    
                end;
    
              end;
    
              now
    
                per cases by
    A11;
    
                  case (p
    `1 ) 
    = (p 
    `2 ); 
    
                  hence (
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    A2,
    A10,
    Def1;
    
                end;
    
                  case
    
                  
    
    A12: (p 
    `1 ) 
    = ( 
    - (p 
    `2 )); 
    
                  then (p
    `1 ) 
    <>  
    0 & ( 
    - (p 
    `1 )) 
    = (p 
    `2 ) by 
    A2,
    EUCLID: 53,
    EUCLID: 54;
    
                  then
    
                  
    
    A13: ((p 
    `2 ) 
    / (p 
    `1 )) 
    = ( 
    - 1) by 
    XCMPLX_1: 197;
    
                  (p
    `2 ) 
    <>  
    0 by 
    A2,
    A12,
    EUCLID: 53,
    EUCLID: 54;
    
                  then ((p
    `1 ) 
    / (p 
    `2 )) 
    = ( 
    - 1) by 
    A12,
    XCMPLX_1: 197;
    
                  hence (
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    A2,
    A10,
    A13,
    Def1;
    
                end;
    
              end;
    
              hence (
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|; 
    
            end;
    
            hence (
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    A2,
    Def1;
    
          end;
    
        end;
    
        hence (
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|; 
    
      end;
    
      
    
      
    
    A14: ( 
    - (p 
    `2 )) 
    > (p 
    `1 ) implies ( 
    - ( 
    - (p 
    `2 ))) 
    < ( 
    - (p 
    `1 )) by 
    XREAL_1: 24;
    
      assume not ((p
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))); 
    
      hence thesis by
    A2,
    A1,
    A14,
    Def1;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:5
    
    
    
    
    
    Th5: for X be non 
    empty  
    TopSpace, f1 be 
    Function of X, 
    R^1 st f1 is 
    continuous & (for q be 
    Point of X holds ex r be 
    Real st (f1 
    . q) 
    = r & r 
    >=  
    0 ) holds ex g be 
    Function of X, 
    R^1 st (for p be 
    Point of X, r1 be 
    Real st (f1 
    . p) 
    = r1 holds (g 
    . p) 
    = ( 
    sqrt r1)) & g is 
    continuous
    
    proof
    
      let X be non
    empty  
    TopSpace, f1 be 
    Function of X, 
    R^1 ; 
    
      assume that
    
      
    
    A1: f1 is 
    continuous and 
    
      
    
    A2: for q be 
    Point of X holds ex r be 
    Real st (f1 
    . q) 
    = r & r 
    >=  
    0 ; 
    
      defpred
    
    P[
    set, 
    set] means (for r11 be
    Real st (f1 
    . $1) 
    = r11 holds $2 
    = ( 
    sqrt r11)); 
    
      
    
      
    
    A3: for x be 
    Element of X holds ex y be 
    Element of 
    REAL st 
    P[x, y]
    
      proof
    
        let x be
    Element of X; 
    
        reconsider r1 = (f1
    . x) as 
    Element of 
    REAL by 
    TOPMETR: 17;
    
        reconsider y = (
    sqrt r1) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        take y;
    
        thus thesis;
    
      end;
    
      ex f be
    Function of the 
    carrier of X, 
    REAL st for x2 be 
    Element of X holds 
    P[x2, (f
    . x2)] from 
    FUNCT_2:sch 3(
    A3);
    
      then
    
      consider f be
    Function of the 
    carrier of X, 
    REAL such that 
    
      
    
    A4: for x2 be 
    Element of X holds for r11 be 
    Real st (f1 
    . x2) 
    = r11 holds (f 
    . x2) 
    = ( 
    sqrt r11); 
    
      reconsider g0 = f as
    Function of X, 
    R^1 by 
    TOPMETR: 17;
    
      for p be
    Point of X, V be 
    Subset of 
    R^1 st (g0 
    . p) 
    in V & V is 
    open holds ex W be 
    Subset of X st p 
    in W & W is 
    open & (g0 
    .: W) 
    c= V 
    
      proof
    
        let p be
    Point of X, V be 
    Subset of 
    R^1 ; 
    
        reconsider r = (g0
    . p) as 
    Real;
    
        reconsider r1 = (f1
    . p) as 
    Real;
    
        assume (g0
    . p) 
    in V & V is 
    open;
    
        then
    
        consider r01 be
    Real such that 
    
        
    
    A5: r01 
    >  
    0 and 
    
        
    
    A6: 
    ].(r
    - r01), (r 
    + r01).[ 
    c= V by 
    FRECHET: 8;
    
        set r0 = (
    min (r01,1)); 
    
        
    
        
    
    A7: r0 
    >  
    0 by 
    A5,
    XXREAL_0: 21;
    
        
    
        
    
    A8: r0 
    >  
    0 by 
    A5,
    XXREAL_0: 21;
    
        r0
    <= r01 by 
    XXREAL_0: 17;
    
        then (r
    - r01) 
    <= (r 
    - r0) & (r 
    + r0) 
    <= (r 
    + r01) by 
    XREAL_1: 6,
    XREAL_1: 10;
    
        then
    ].(r
    - r0), (r 
    + r0).[ 
    c=  
    ].(r
    - r01), (r 
    + r01).[ by 
    XXREAL_1: 46;
    
        then
    
        
    
    A9: 
    ].(r
    - r0), (r 
    + r0).[ 
    c= V by 
    A6;
    
        
    
        
    
    A10: ex r8 be 
    Real st (f1 
    . p) 
    = r8 & r8 
    >=  
    0 by 
    A2;
    
        
    
        
    
    A11: r 
    = ( 
    sqrt r1) by 
    A4;
    
        then
    
        
    
    A12: r1 
    = (r 
    ^2 ) by 
    A10,
    SQUARE_1:def 2;
    
        
    
        
    
    A13: r 
    >=  
    0 by 
    A10,
    A11,
    SQUARE_1: 17,
    SQUARE_1: 26;
    
        then
    
        
    
    A14: (((2 
    * r) 
    * r0) 
    + (r0 
    ^2 )) 
    > ( 
    0  
    +  
    0 ) by 
    A8,
    SQUARE_1: 12,
    XREAL_1: 8;
    
        per cases ;
    
          suppose
    
          
    
    A15: (r 
    - r0) 
    >  
    0 ; 
    
          set r4 = (r0
    * (r 
    - r0)); 
    
          reconsider G1 =
    ].(r1
    - r4), (r1 
    + r4).[ as 
    Subset of 
    R^1 by 
    TOPMETR: 17;
    
          
    
          
    
    A16: r1 
    < (r1 
    + r4) by 
    A8,
    A15,
    XREAL_1: 29,
    XREAL_1: 129;
    
          then (r1
    - r4) 
    < r1 by 
    XREAL_1: 19;
    
          then
    
          
    
    A17: (f1 
    . p) 
    in G1 by 
    A16,
    XXREAL_1: 4;
    
          G1 is
    open by 
    JORDAN6: 35;
    
          then
    
          consider W1 be
    Subset of X such that 
    
          
    
    A18: p 
    in W1 & W1 is 
    open and 
    
          
    
    A19: (f1 
    .: W1) 
    c= G1 by 
    A1,
    A17,
    JGRAPH_2: 10;
    
          set W = W1;
    
          
    
          
    
    A20: ((r 
    - ((1 
    / 2) 
    * r0)) 
    ^2 ) 
    >=  
    0 & (r0 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
          now
    
            assume r1
    =  
    0 ; 
    
            then r
    =  
    0 by 
    A4,
    SQUARE_1: 17;
    
            hence contradiction by
    A7,
    A15;
    
          end;
    
          then
    0  
    < r by 
    A10,
    A11,
    SQUARE_1: 25;
    
          then
    
          
    
    A21: (r0 
    * r) 
    >  
    0 by 
    A8,
    XREAL_1: 129;
    
          then (
    0  
    + (r 
    * r0)) 
    < ((r 
    * r0) 
    + (r 
    * r0)) by 
    XREAL_1: 8;
    
          then ((r0
    * r) 
    - (r0 
    * r0)) 
    < (((2 
    * r) 
    * r0) 
    - (r0 
    * r0)) by 
    XREAL_1: 14;
    
          then (
    - r4) 
    > ( 
    - (((2 
    * r) 
    * r0) 
    - (r0 
    ^2 ))) by 
    XREAL_1: 24;
    
          then (r1
    + ( 
    - r4)) 
    > ((r 
    ^2 ) 
    + ( 
    - (((2 
    * r) 
    * r0) 
    - (r0 
    ^2 )))) by 
    A12,
    XREAL_1: 8;
    
          then (
    sqrt (r1 
    - r4)) 
    > ( 
    sqrt ((r 
    - r0) 
    ^2 )) by 
    SQUARE_1: 27,
    XREAL_1: 63;
    
          then
    
          
    
    A22: ( 
    sqrt (r1 
    - r4)) 
    > (r 
    - r0) by 
    A15,
    SQUARE_1: 22;
    
          (
    0  
    + (r 
    * r0)) 
    < ((r 
    * r0) 
    + (r 
    * r0)) by 
    A21,
    XREAL_1: 8;
    
          then ((r0
    * r) 
    +  
    0 ) 
    < (((2 
    * r) 
    * r0) 
    + (2 
    * (r0 
    * r0))) by 
    A8,
    XREAL_1: 8;
    
          then (((r0
    * r) 
    - (r0 
    * r0)) 
    + (r0 
    * r0)) 
    < ((((2 
    * r) 
    * r0) 
    + (r0 
    * r0)) 
    + (r0 
    * r0)); 
    
          then ((r0
    * r) 
    - (r0 
    * r0)) 
    < (((2 
    * r) 
    * r0) 
    + (r0 
    * r0)) by 
    XREAL_1: 7;
    
          then (r1
    + r4) 
    < ((r 
    ^2 ) 
    + (((2 
    * r) 
    * r0) 
    + (r0 
    ^2 ))) by 
    A12,
    XREAL_1: 8;
    
          then (
    sqrt (r1 
    + r4)) 
    < ( 
    sqrt ((r 
    + r0) 
    ^2 )) by 
    A10,
    A8,
    A15,
    SQUARE_1: 27;
    
          then
    
          
    
    A23: (r 
    + r0) 
    > ( 
    sqrt (r1 
    + r4)) by 
    A13,
    A7,
    SQUARE_1: 22;
    
          
    
          
    
    A24: (r1 
    - r4) 
    = ((r 
    ^2 ) 
    - ((r0 
    * r) 
    - (r0 
    * r0))) by 
    A10,
    A11,
    SQUARE_1:def 2
    
          .= (((r
    - ((1 
    / 2) 
    * r0)) 
    ^2 ) 
    + ((3 
    / 4) 
    * (r0 
    ^2 ))); 
    
          (g0
    .: W) 
    c=  
    ].(r
    - r0), (r 
    + r0).[ 
    
          proof
    
            let x be
    object;
    
            assume x
    in (g0 
    .: W); 
    
            then
    
            consider z be
    object such that 
    
            
    
    A25: z 
    in ( 
    dom g0) and 
    
            
    
    A26: z 
    in W and 
    
            
    
    A27: (g0 
    . z) 
    = x by 
    FUNCT_1:def 6;
    
            reconsider pz = z as
    Point of X by 
    A25;
    
            reconsider aa1 = (f1
    . pz) as 
    Real;
    
            
    
            
    
    A28: ex r9 be 
    Real st (f1 
    . pz) 
    = r9 & r9 
    >=  
    0 by 
    A2;
    
            pz
    in the 
    carrier of X; 
    
            then pz
    in ( 
    dom f1) by 
    FUNCT_2:def 1;
    
            then
    
            
    
    A29: (f1 
    . pz) 
    in (f1 
    .: W1) by 
    A26,
    FUNCT_1:def 6;
    
            then aa1
    < (r1 
    + r4) by 
    A19,
    XXREAL_1: 4;
    
            then (
    sqrt aa1) 
    < ( 
    sqrt (r1 
    + r4)) by 
    A28,
    SQUARE_1: 27;
    
            then
    
            
    
    A30: ( 
    sqrt aa1) 
    < (r 
    + r0) by 
    A23,
    XXREAL_0: 2;
    
            
    
            
    
    A31: (r1 
    - r4) 
    < aa1 by 
    A19,
    A29,
    XXREAL_1: 4;
    
            
    
    A32: 
    
            now
    
              per cases ;
    
                case
    0  
    <= (r1 
    - r4); 
    
                then (
    sqrt (r1 
    - r4)) 
    <= ( 
    sqrt aa1) by 
    A31,
    SQUARE_1: 26;
    
                hence (r
    - r0) 
    < ( 
    sqrt aa1) by 
    A22,
    XXREAL_0: 2;
    
              end;
    
                case
    0  
    > (r1 
    - r4); 
    
                hence contradiction by
    A24,
    A20;
    
              end;
    
            end;
    
            x
    = ( 
    sqrt aa1) by 
    A4,
    A27;
    
            hence thesis by
    A30,
    A32,
    XXREAL_1: 4;
    
          end;
    
          hence thesis by
    A9,
    A18,
    XBOOLE_1: 1;
    
        end;
    
          suppose
    
          
    
    A33: (r 
    - r0) 
    <=  
    0 ; 
    
          set r4 = ((((2
    * r) 
    * r0) 
    + (r0 
    ^2 )) 
    / 3); 
    
          reconsider G1 =
    ].(r1
    - r4), (r1 
    + r4).[ as 
    Subset of 
    R^1 by 
    TOPMETR: 17;
    
          ((((2
    * r) 
    * r0) 
    + (r0 
    ^2 )) 
    / 3) 
    >  
    0 by 
    A14,
    XREAL_1: 139;
    
          then
    
          
    
    A34: r1 
    < (r1 
    + r4) by 
    XREAL_1: 29;
    
          then (r1
    - r4) 
    < r1 by 
    XREAL_1: 19;
    
          then
    
          
    
    A35: (f1 
    . p) 
    in G1 by 
    A34,
    XXREAL_1: 4;
    
          G1 is
    open by 
    JORDAN6: 35;
    
          then
    
          consider W1 be
    Subset of X such that 
    
          
    
    A36: p 
    in W1 & W1 is 
    open and 
    
          
    
    A37: (f1 
    .: W1) 
    c= G1 by 
    A1,
    A35,
    JGRAPH_2: 10;
    
          set W = W1;
    
          ((((2
    * r) 
    * r0) 
    + (r0 
    ^2 )) 
    / 3) 
    < (((2 
    * r) 
    * r0) 
    + (r0 
    ^2 )) by 
    A14,
    XREAL_1: 221;
    
          then (r1
    + r4) 
    < ((r 
    ^2 ) 
    + (((2 
    * r) 
    * r0) 
    + (r0 
    ^2 ))) by 
    A12,
    XREAL_1: 8;
    
          then (
    sqrt (r1 
    + r4)) 
    <= ( 
    sqrt ((r 
    + r0) 
    ^2 )) by 
    A10,
    A13,
    A8,
    SQUARE_1: 26;
    
          then
    
          
    
    A38: (r 
    + r0) 
    >= ( 
    sqrt (r1 
    + r4)) by 
    A13,
    A7,
    SQUARE_1: 22;
    
          (g0
    .: W) 
    c=  
    ].(r
    - r0), (r 
    + r0).[ 
    
          proof
    
            let x be
    object;
    
            assume x
    in (g0 
    .: W); 
    
            then
    
            consider z be
    object such that 
    
            
    
    A39: z 
    in ( 
    dom g0) and 
    
            
    
    A40: z 
    in W and 
    
            
    
    A41: (g0 
    . z) 
    = x by 
    FUNCT_1:def 6;
    
            reconsider pz = z as
    Point of X by 
    A39;
    
            reconsider aa1 = (f1
    . pz) as 
    Real;
    
            
    
            
    
    A42: ex r9 be 
    Real st (f1 
    . pz) 
    = r9 & r9 
    >=  
    0 by 
    A2;
    
            pz
    in the 
    carrier of X; 
    
            then pz
    in ( 
    dom f1) by 
    FUNCT_2:def 1;
    
            then
    
            
    
    A43: (f1 
    . pz) 
    in (f1 
    .: W1) by 
    A40,
    FUNCT_1:def 6;
    
            then aa1
    < (r1 
    + r4) by 
    A37,
    XXREAL_1: 4;
    
            then (
    sqrt aa1) 
    < ( 
    sqrt (r1 
    + r4)) by 
    A42,
    SQUARE_1: 27;
    
            then
    
            
    
    A44: ( 
    sqrt aa1) 
    < (r 
    + r0) by 
    A38,
    XXREAL_0: 2;
    
            
    
            
    
    A45: (r1 
    - r4) 
    < aa1 by 
    A37,
    A43,
    XXREAL_1: 4;
    
            
    
    A46: 
    
            now
    
              per cases by
    A33;
    
                case (r
    - r0) 
    =  
    0 ; 
    
                hence (r
    - r0) 
    < ( 
    sqrt aa1) by 
    A12,
    A45,
    SQUARE_1: 17,
    SQUARE_1: 27;
    
              end;
    
                case (r
    - r0) 
    <  
    0 ; 
    
                hence (r
    - r0) 
    < ( 
    sqrt aa1) by 
    A42,
    SQUARE_1: 17,
    SQUARE_1: 26;
    
              end;
    
            end;
    
            x
    = ( 
    sqrt aa1) by 
    A4,
    A41;
    
            hence thesis by
    A44,
    A46,
    XXREAL_1: 4;
    
          end;
    
          hence thesis by
    A9,
    A36,
    XBOOLE_1: 1;
    
        end;
    
      end;
    
      then
    
      
    
    A47: g0 is 
    continuous by 
    JGRAPH_2: 10;
    
      for p be
    Point of X, r11 be 
    Real st (f1 
    . p) 
    = r11 holds (g0 
    . p) 
    = ( 
    sqrt r11) by 
    A4;
    
      hence thesis by
    A47;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:6
    
    
    
    
    
    Th6: for X be non 
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 st f1 is 
    continuous & f2 is 
    continuous & (for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ) holds ex g be 
    Function of X, 
    R^1 st (for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g 
    . p) 
    = ((r1 
    / r2) 
    ^2 )) & g is 
    continuous
    
    proof
    
      let X be non
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 ; 
    
      assume f1 is
    continuous & f2 is 
    continuous & for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ; 
    
      then
    
      consider g2 be
    Function of X, 
    R^1 such that 
    
      
    
    A1: for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g2 
    . p) 
    = (r1 
    / r2) and 
    
      
    
    A2: g2 is 
    continuous by 
    JGRAPH_2: 27;
    
      consider g3 be
    Function of X, 
    R^1 such that 
    
      
    
    A3: for p be 
    Point of X, r1 be 
    Real st (g2 
    . p) 
    = r1 holds (g3 
    . p) 
    = (r1 
    * r1) and 
    
      
    
    A4: g3 is 
    continuous by 
    A2,
    JGRAPH_2: 22;
    
      for p be
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g3 
    . p) 
    = ((r1 
    / r2) 
    ^2 ) 
    
      proof
    
        let p be
    Point of X, r1,r2 be 
    Real;
    
        assume (f1
    . p) 
    = r1 & (f2 
    . p) 
    = r2; 
    
        then (g2
    . p) 
    = (r1 
    / r2) by 
    A1;
    
        hence thesis by
    A3;
    
      end;
    
      hence thesis by
    A4;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:7
    
    
    
    
    
    Th7: for X be non 
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 st f1 is 
    continuous & f2 is 
    continuous & (for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ) holds ex g be 
    Function of X, 
    R^1 st (for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g 
    . p) 
    = (1 
    + ((r1 
    / r2) 
    ^2 ))) & g is 
    continuous
    
    proof
    
      let X be non
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 ; 
    
      assume f1 is
    continuous & f2 is 
    continuous & for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ; 
    
      then
    
      consider g2 be
    Function of X, 
    R^1 such that 
    
      
    
    A1: for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g2 
    . p) 
    = ((r1 
    / r2) 
    ^2 ) and 
    
      
    
    A2: g2 is 
    continuous by 
    Th6;
    
      consider g3 be
    Function of X, 
    R^1 such that 
    
      
    
    A3: for p be 
    Point of X, r1 be 
    Real st (g2 
    . p) 
    = r1 holds (g3 
    . p) 
    = (r1 
    + 1) and 
    
      
    
    A4: g3 is 
    continuous by 
    A2,
    JGRAPH_2: 24;
    
      for p be
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g3 
    . p) 
    = (1 
    + ((r1 
    / r2) 
    ^2 )) 
    
      proof
    
        let p be
    Point of X, r1,r2 be 
    Real;
    
        assume (f1
    . p) 
    = r1 & (f2 
    . p) 
    = r2; 
    
        then (g2
    . p) 
    = ((r1 
    / r2) 
    ^2 ) by 
    A1;
    
        hence thesis by
    A3;
    
      end;
    
      hence thesis by
    A4;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:8
    
    
    
    
    
    Th8: for X be non 
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 st f1 is 
    continuous & f2 is 
    continuous & (for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ) holds ex g be 
    Function of X, 
    R^1 st (for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g 
    . p) 
    = ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) & g is 
    continuous
    
    proof
    
      let X be non
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 ; 
    
      assume f1 is
    continuous & f2 is 
    continuous & for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ; 
    
      then
    
      consider g2 be
    Function of X, 
    R^1 such that 
    
      
    
    A1: for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g2 
    . p) 
    = (1 
    + ((r1 
    / r2) 
    ^2 )) and 
    
      
    
    A2: g2 is 
    continuous by 
    Th7;
    
      for q be
    Point of X holds ex r be 
    Real st (g2 
    . q) 
    = r & r 
    >=  
    0  
    
      proof
    
        let q be
    Point of X; 
    
        reconsider r1 = (f1
    . q), r2 = (f2 
    . q) as 
    Real;
    
        (1
    + ((r1 
    / r2) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
        hence thesis by
    A1;
    
      end;
    
      then
    
      consider g3 be
    Function of X, 
    R^1 such that 
    
      
    
    A3: for p be 
    Point of X, r1 be 
    Real st (g2 
    . p) 
    = r1 holds (g3 
    . p) 
    = ( 
    sqrt r1) and 
    
      
    
    A4: g3 is 
    continuous by 
    A2,
    Th5;
    
      for p be
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g3 
    . p) 
    = ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))) 
    
      proof
    
        let p be
    Point of X, r1,r2 be 
    Real;
    
        assume (f1
    . p) 
    = r1 & (f2 
    . p) 
    = r2; 
    
        then (g2
    . p) 
    = (1 
    + ((r1 
    / r2) 
    ^2 )) by 
    A1;
    
        hence thesis by
    A3;
    
      end;
    
      hence thesis by
    A4;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:9
    
    
    
    
    
    Th9: for X be non 
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 st f1 is 
    continuous & f2 is 
    continuous & (for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ) holds ex g be 
    Function of X, 
    R^1 st (for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g 
    . p) 
    = (r1 
    / ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))))) & g is 
    continuous
    
    proof
    
      let X be non
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 ; 
    
      assume that
    
      
    
    A1: f1 is 
    continuous and 
    
      
    
    A2: f2 is 
    continuous & for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ; 
    
      consider g2 be
    Function of X, 
    R^1 such that 
    
      
    
    A3: for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g2 
    . p) 
    = ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))) and 
    
      
    
    A4: g2 is 
    continuous by 
    A1,
    A2,
    Th8;
    
      for q be
    Point of X holds (g2 
    . q) 
    <>  
    0  
    
      proof
    
        let q be
    Point of X; 
    
        reconsider r1 = (f1
    . q), r2 = (f2 
    . q) as 
    Real;
    
        (
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        hence thesis by
    A3;
    
      end;
    
      then
    
      consider g3 be
    Function of X, 
    R^1 such that 
    
      
    
    A5: for p be 
    Point of X, r1,r0 be 
    Real st (f1 
    . p) 
    = r1 & (g2 
    . p) 
    = r0 holds (g3 
    . p) 
    = (r1 
    / r0) and 
    
      
    
    A6: g3 is 
    continuous by 
    A1,
    A4,
    JGRAPH_2: 27;
    
      for p be
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g3 
    . p) 
    = (r1 
    / ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) 
    
      proof
    
        let p be
    Point of X, r1,r2 be 
    Real;
    
        assume that
    
        
    
    A7: (f1 
    . p) 
    = r1 and 
    
        
    
    A8: (f2 
    . p) 
    = r2; 
    
        (g2
    . p) 
    = ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))) by 
    A3,
    A7,
    A8;
    
        hence thesis by
    A5,
    A7;
    
      end;
    
      hence thesis by
    A6;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:10
    
    
    
    
    
    Th10: for X be non 
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 st f1 is 
    continuous & f2 is 
    continuous & (for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ) holds ex g be 
    Function of X, 
    R^1 st (for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g 
    . p) 
    = (r2 
    / ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))))) & g is 
    continuous
    
    proof
    
      let X be non
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 ; 
    
      assume that
    
      
    
    A1: f1 is 
    continuous and 
    
      
    
    A2: f2 is 
    continuous and 
    
      
    
    A3: for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ; 
    
      consider g2 be
    Function of X, 
    R^1 such that 
    
      
    
    A4: for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g2 
    . p) 
    = ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))) and 
    
      
    
    A5: g2 is 
    continuous by 
    A1,
    A2,
    A3,
    Th8;
    
      for q be
    Point of X holds (g2 
    . q) 
    <>  
    0  
    
      proof
    
        let q be
    Point of X; 
    
        reconsider r1 = (f1
    . q), r2 = (f2 
    . q) as 
    Real;
    
        (
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        hence thesis by
    A4;
    
      end;
    
      then
    
      consider g3 be
    Function of X, 
    R^1 such that 
    
      
    
    A6: for p be 
    Point of X, r2,r0 be 
    Real st (f2 
    . p) 
    = r2 & (g2 
    . p) 
    = r0 holds (g3 
    . p) 
    = (r2 
    / r0) and 
    
      
    
    A7: g3 is 
    continuous by 
    A2,
    A5,
    JGRAPH_2: 27;
    
      for p be
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g3 
    . p) 
    = (r2 
    / ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) 
    
      proof
    
        let p be
    Point of X, r1,r2 be 
    Real;
    
        assume that
    
        
    
    A8: (f1 
    . p) 
    = r1 and 
    
        
    
    A9: (f2 
    . p) 
    = r2; 
    
        (g2
    . p) 
    = ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))) by 
    A4,
    A8,
    A9;
    
        hence thesis by
    A6,
    A9;
    
      end;
    
      hence thesis by
    A7;
    
    end;
    
    
    
    
    
    Lm4: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2) holds for q be 
    Point of (( 
    TOP-REAL 2) 
    | K1) holds (( 
    proj2  
    | K1) 
    . q) 
    = ( 
    proj2  
    . q) 
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      let q be
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
      the
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 & q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    PRE_TOPC: 8;
    
      then q
    in (( 
    dom  
    proj2 ) 
    /\ K1) by 
    Lm3,
    XBOOLE_0:def 4;
    
      hence thesis by
    FUNCT_1: 48;
    
    end;
    
    
    
    
    
    Lm5: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2) holds ( 
    proj2  
    | K1) is 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1  
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      reconsider g2 = (
    proj2  
    | K1) as 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    TOPMETR: 17;
    
      for q be
    Point of (( 
    TOP-REAL 2) 
    | K1) holds (g2 
    . q) 
    = ( 
    proj2  
    . q) by 
    Lm4;
    
      hence thesis by
    JGRAPH_2: 30;
    
    end;
    
    
    
    
    
    Lm6: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2) holds for q be 
    Point of (( 
    TOP-REAL 2) 
    | K1) holds (( 
    proj1  
    | K1) 
    . q) 
    = ( 
    proj1  
    . q) 
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      let q be
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
      the
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 & q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    PRE_TOPC: 8;
    
      then q
    in (( 
    dom  
    proj1 ) 
    /\ K1) by 
    Lm2,
    XBOOLE_0:def 4;
    
      hence thesis by
    FUNCT_1: 48;
    
    end;
    
    
    
    
    
    Lm7: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2) holds ( 
    proj1  
    | K1) is 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1  
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      reconsider g2 = (
    proj1  
    | K1) as 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    TOPMETR: 17;
    
      for q be
    Point of (( 
    TOP-REAL 2) 
    | K1) holds (g2 
    . q) 
    = ( 
    proj1  
    . q) by 
    Lm6;
    
      hence thesis by
    JGRAPH_2: 29;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:11
    
    
    
    
    
    Th11: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 st (for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))) & (for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `1 ) 
    <>  
    0 ) holds f is 
    continuous
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 ; 
    
      reconsider g1 = (
    proj1  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm7;
    
      reconsider g2 = (
    proj2  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm5;
    
      assume that
    
      
    
    A1: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) and 
    
      
    
    A2: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `1 ) 
    <>  
    0 ; 
    
      
    
      
    
    A3: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
      now
    
        let q be
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then
    
        reconsider q2 = q as
    Point of ( 
    TOP-REAL 2) by 
    A3;
    
        (g1
    . q) 
    = ( 
    proj1  
    . q) by 
    Lm6
    
        .= (q2
    `1 ) by 
    PSCOMP_1:def 5;
    
        hence (g1
    . q) 
    <>  
    0 by 
    A2;
    
      end;
    
      then
    
      consider g3 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A4: for q be 
    Point of (( 
    TOP-REAL 2) 
    | K1), r1,r2 be 
    Real st (g2 
    . q) 
    = r1 & (g1 
    . q) 
    = r2 holds (g3 
    . q) 
    = (r2 
    / ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) and 
    
      
    
    A5: g3 is 
    continuous by 
    Th10;
    
      
    
      
    
    A6: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    = (g3 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A7: x 
    in ( 
    dom f); 
    
        then
    
        reconsider s = x as
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        x
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    A7;
    
        then x
    in K1 by 
    PRE_TOPC: 8;
    
        then
    
        reconsider r = x as
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A8: ( 
    proj2  
    . r) 
    = (r 
    `2 ) & ( 
    proj1  
    . r) 
    = (r 
    `1 ) by 
    PSCOMP_1:def 5,
    PSCOMP_1:def 6;
    
        
    
        
    
    A9: (g2 
    . s) 
    = ( 
    proj2  
    . s) & (g1 
    . s) 
    = ( 
    proj1  
    . s) by 
    Lm4,
    Lm6;
    
        (f
    . r) 
    = ((r 
    `1 ) 
    / ( 
    sqrt (1 
    + (((r 
    `2 ) 
    / (r 
    `1 )) 
    ^2 )))) by 
    A1,
    A7;
    
        hence thesis by
    A4,
    A9,
    A8;
    
      end;
    
      (
    dom g3) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    FUNCT_2:def 1;
    
      then (
    dom f) 
    = ( 
    dom g3) by 
    FUNCT_2:def 1;
    
      hence thesis by
    A5,
    A6,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:12
    
    
    
    
    
    Th12: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 st (for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))) & (for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `1 ) 
    <>  
    0 ) holds f is 
    continuous
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 ; 
    
      reconsider g1 = (
    proj1  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm7;
    
      reconsider g2 = (
    proj2  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm5;
    
      assume that
    
      
    
    A1: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) and 
    
      
    
    A2: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `1 ) 
    <>  
    0 ; 
    
      
    
      
    
    A3: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
      now
    
        let q be
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then
    
        reconsider q2 = q as
    Point of ( 
    TOP-REAL 2) by 
    A3;
    
        (g1
    . q) 
    = ( 
    proj1  
    . q) by 
    Lm6
    
        .= (q2
    `1 ) by 
    PSCOMP_1:def 5;
    
        hence (g1
    . q) 
    <>  
    0 by 
    A2;
    
      end;
    
      then
    
      consider g3 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A4: for q be 
    Point of (( 
    TOP-REAL 2) 
    | K1), r1,r2 be 
    Real st (g2 
    . q) 
    = r1 & (g1 
    . q) 
    = r2 holds (g3 
    . q) 
    = (r1 
    / ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) and 
    
      
    
    A5: g3 is 
    continuous by 
    Th9;
    
      
    
      
    
    A6: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    = (g3 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A7: x 
    in ( 
    dom f); 
    
        then
    
        reconsider s = x as
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        x
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    A7;
    
        then x
    in K1 by 
    PRE_TOPC: 8;
    
        then
    
        reconsider r = x as
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A8: ( 
    proj2  
    . r) 
    = (r 
    `2 ) & ( 
    proj1  
    . r) 
    = (r 
    `1 ) by 
    PSCOMP_1:def 5,
    PSCOMP_1:def 6;
    
        
    
        
    
    A9: (g2 
    . s) 
    = ( 
    proj2  
    . s) & (g1 
    . s) 
    = ( 
    proj1  
    . s) by 
    Lm4,
    Lm6;
    
        (f
    . r) 
    = ((r 
    `2 ) 
    / ( 
    sqrt (1 
    + (((r 
    `2 ) 
    / (r 
    `1 )) 
    ^2 )))) by 
    A1,
    A7;
    
        hence thesis by
    A4,
    A9,
    A8;
    
      end;
    
      (
    dom g3) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    FUNCT_2:def 1;
    
      then (
    dom f) 
    = ( 
    dom g3) by 
    FUNCT_2:def 1;
    
      hence thesis by
    A5,
    A6,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:13
    
    
    
    
    
    Th13: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 st (for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))) & (for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `2 ) 
    <>  
    0 ) holds f is 
    continuous
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 ; 
    
      reconsider g1 = (
    proj1  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm7;
    
      reconsider g2 = (
    proj2  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm5;
    
      assume that
    
      
    
    A1: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) and 
    
      
    
    A2: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `2 ) 
    <>  
    0 ; 
    
      
    
      
    
    A3: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
      now
    
        let q be
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then
    
        reconsider q2 = q as
    Point of ( 
    TOP-REAL 2) by 
    A3;
    
        (g2
    . q) 
    = ( 
    proj2  
    . q) by 
    Lm4
    
        .= (q2
    `2 ) by 
    PSCOMP_1:def 6;
    
        hence (g2
    . q) 
    <>  
    0 by 
    A2;
    
      end;
    
      then
    
      consider g3 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A4: for q be 
    Point of (( 
    TOP-REAL 2) 
    | K1), r1,r2 be 
    Real st (g1 
    . q) 
    = r1 & (g2 
    . q) 
    = r2 holds (g3 
    . q) 
    = (r2 
    / ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) and 
    
      
    
    A5: g3 is 
    continuous by 
    Th10;
    
      
    
      
    
    A6: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    = (g3 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A7: x 
    in ( 
    dom f); 
    
        then
    
        reconsider s = x as
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        x
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    A7;
    
        then x
    in K1 by 
    PRE_TOPC: 8;
    
        then
    
        reconsider r = x as
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A8: ( 
    proj2  
    . r) 
    = (r 
    `2 ) & ( 
    proj1  
    . r) 
    = (r 
    `1 ) by 
    PSCOMP_1:def 5,
    PSCOMP_1:def 6;
    
        
    
        
    
    A9: (g2 
    . s) 
    = ( 
    proj2  
    . s) & (g1 
    . s) 
    = ( 
    proj1  
    . s) by 
    Lm4,
    Lm6;
    
        (f
    . r) 
    = ((r 
    `2 ) 
    / ( 
    sqrt (1 
    + (((r 
    `1 ) 
    / (r 
    `2 )) 
    ^2 )))) by 
    A1,
    A7;
    
        hence thesis by
    A4,
    A9,
    A8;
    
      end;
    
      (
    dom g3) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    FUNCT_2:def 1;
    
      then (
    dom f) 
    = ( 
    dom g3) by 
    FUNCT_2:def 1;
    
      hence thesis by
    A5,
    A6,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:14
    
    
    
    
    
    Th14: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 st (for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))) & (for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `2 ) 
    <>  
    0 ) holds f is 
    continuous
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 ; 
    
      reconsider g1 = (
    proj1  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm7;
    
      reconsider g2 = (
    proj2  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm5;
    
      assume that
    
      
    
    A1: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) and 
    
      
    
    A2: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `2 ) 
    <>  
    0 ; 
    
      
    
      
    
    A3: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
      now
    
        let q be
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then
    
        reconsider q2 = q as
    Point of ( 
    TOP-REAL 2) by 
    A3;
    
        (g2
    . q) 
    = ( 
    proj2  
    . q) by 
    Lm4
    
        .= (q2
    `2 ) by 
    PSCOMP_1:def 6;
    
        hence (g2
    . q) 
    <>  
    0 by 
    A2;
    
      end;
    
      then
    
      consider g3 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A4: for q be 
    Point of (( 
    TOP-REAL 2) 
    | K1), r1,r2 be 
    Real st (g1 
    . q) 
    = r1 & (g2 
    . q) 
    = r2 holds (g3 
    . q) 
    = (r1 
    / ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) and 
    
      
    
    A5: g3 is 
    continuous by 
    Th9;
    
      
    
      
    
    A6: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    = (g3 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A7: x 
    in ( 
    dom f); 
    
        then
    
        reconsider s = x as
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        x
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    A7;
    
        then x
    in K1 by 
    PRE_TOPC: 8;
    
        then
    
        reconsider r = x as
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A8: ( 
    proj2  
    . r) 
    = (r 
    `2 ) & ( 
    proj1  
    . r) 
    = (r 
    `1 ) by 
    PSCOMP_1:def 5,
    PSCOMP_1:def 6;
    
        
    
        
    
    A9: (g2 
    . s) 
    = ( 
    proj2  
    . s) & (g1 
    . s) 
    = ( 
    proj1  
    . s) by 
    Lm4,
    Lm6;
    
        (f
    . r) 
    = ((r 
    `1 ) 
    / ( 
    sqrt (1 
    + (((r 
    `1 ) 
    / (r 
    `2 )) 
    ^2 )))) by 
    A1,
    A7;
    
        hence thesis by
    A4,
    A9,
    A8;
    
      end;
    
      (
    dom g3) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    FUNCT_2:def 1;
    
      then (
    dom f) 
    = ( 
    dom g3) by 
    FUNCT_2:def 1;
    
      hence thesis by
    A5,
    A6,
    FUNCT_1: 2;
    
    end;
    
    
    
    
    
    Lm8: ( 
    0.REAL 2) 
    = ( 
    0. ( 
    TOP-REAL 2)) by 
    EUCLID: 66;
    
    
    
    
    
    Lm9: (( 
    1.REAL 2) 
    `2 ) 
    <= (( 
    1.REAL 2) 
    `1 ) & ( 
    - (( 
    1.REAL 2) 
    `1 )) 
    <= (( 
    1.REAL 2) 
    `2 ) or (( 
    1.REAL 2) 
    `2 ) 
    >= (( 
    1.REAL 2) 
    `1 ) & (( 
    1.REAL 2) 
    `2 ) 
    <= ( 
    - (( 
    1.REAL 2) 
    `1 )) by 
    JGRAPH_2: 5;
    
    
    
    
    
    Lm10: ( 
    1.REAL 2) 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    Lm8,
    REVROT_1: 19;
    
    
    
    
    
    Lm11: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2) holds ( 
    dom ( 
    proj2  
    * ( 
    Sq_Circ  
    | K1))) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: ( 
    dom ( 
    Sq_Circ  
    | K1)) 
    c= ( 
    dom ( 
    proj2  
    * ( 
    Sq_Circ  
    | K1))) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A2: x 
    in ( 
    dom ( 
    Sq_Circ  
    | K1)); 
    
        then x
    in (( 
    dom  
    Sq_Circ ) 
    /\ K1) by 
    RELAT_1: 61;
    
        then x
    in ( 
    dom  
    Sq_Circ ) by 
    XBOOLE_0:def 4;
    
        then
    
        
    
    A3: ( 
    Sq_Circ  
    . x) 
    in ( 
    rng  
    Sq_Circ ) by 
    FUNCT_1: 3;
    
        ((
    Sq_Circ  
    | K1) 
    . x) 
    = ( 
    Sq_Circ  
    . x) by 
    A2,
    FUNCT_1: 47;
    
        hence thesis by
    A2,
    A3,
    Lm3,
    FUNCT_1: 11;
    
      end;
    
      (
    dom ( 
    proj2  
    * ( 
    Sq_Circ  
    | K1))) 
    c= ( 
    dom ( 
    Sq_Circ  
    | K1)) by 
    RELAT_1: 25;
    
      
    
      hence (
    dom ( 
    proj2  
    * ( 
    Sq_Circ  
    | K1))) 
    = ( 
    dom ( 
    Sq_Circ  
    | K1)) by 
    A1
    
      .= ((
    dom  
    Sq_Circ ) 
    /\ K1) by 
    RELAT_1: 61
    
      .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    FUNCT_2:def 1
    
      .= K1 by
    XBOOLE_1: 28
    
      .= the
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    PRE_TOPC: 8;
    
    end;
    
    
    
    
    
    Lm12: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2) holds ( 
    dom ( 
    proj1  
    * ( 
    Sq_Circ  
    | K1))) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: ( 
    dom ( 
    Sq_Circ  
    | K1)) 
    c= ( 
    dom ( 
    proj1  
    * ( 
    Sq_Circ  
    | K1))) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A2: x 
    in ( 
    dom ( 
    Sq_Circ  
    | K1)); 
    
        then x
    in (( 
    dom  
    Sq_Circ ) 
    /\ K1) by 
    RELAT_1: 61;
    
        then x
    in ( 
    dom  
    Sq_Circ ) by 
    XBOOLE_0:def 4;
    
        then
    
        
    
    A3: ( 
    Sq_Circ  
    . x) 
    in ( 
    rng  
    Sq_Circ ) by 
    FUNCT_1: 3;
    
        ((
    Sq_Circ  
    | K1) 
    . x) 
    = ( 
    Sq_Circ  
    . x) by 
    A2,
    FUNCT_1: 47;
    
        hence thesis by
    A2,
    A3,
    Lm2,
    FUNCT_1: 11;
    
      end;
    
      (
    dom ( 
    proj1  
    * ( 
    Sq_Circ  
    | K1))) 
    c= ( 
    dom ( 
    Sq_Circ  
    | K1)) by 
    RELAT_1: 25;
    
      
    
      hence (
    dom ( 
    proj1  
    * ( 
    Sq_Circ  
    | K1))) 
    = ( 
    dom ( 
    Sq_Circ  
    | K1)) by 
    A1
    
      .= ((
    dom  
    Sq_Circ ) 
    /\ K1) by 
    RELAT_1: 61
    
      .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    FUNCT_2:def 1
    
      .= K1 by
    XBOOLE_1: 28
    
      .= the
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    PRE_TOPC: 8;
    
    end;
    
    
    
    
    
    Lm13: ( 
    NonZero ( 
    TOP-REAL 2)) 
    <>  
    {} by 
    JGRAPH_2: 9;
    
    theorem :: 
    
    JGRAPH_3:15
    
    
    
    
    
    Th15: for K0,B0 be 
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K0), (( 
    TOP-REAL 2) 
    | B0) st f 
    = ( 
    Sq_Circ  
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } holds f is 
    continuous
    
    proof
    
      let K0,B0 be
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K0), (( 
    TOP-REAL 2) 
    | B0); 
    
      assume
    
      
    
    A1: f 
    = ( 
    Sq_Circ  
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
      then (
    1.REAL 2) 
    in K0 by 
    Lm9,
    Lm10;
    
      then
    
      reconsider K1 = K0 as non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      (
    dom ( 
    proj1  
    * ( 
    Sq_Circ  
    | K1))) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) & ( 
    rng ( 
    proj1  
    * ( 
    Sq_Circ  
    | K1))) 
    c= the 
    carrier of 
    R^1 by 
    Lm12,
    TOPMETR: 17;
    
      then
    
      reconsider g1 = (
    proj1  
    * ( 
    Sq_Circ  
    | K1)) as 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    FUNCT_2: 2;
    
      for p be
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (g1 
    . p) 
    = ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    
      proof
    
        let p be
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A2: ( 
    dom ( 
    Sq_Circ  
    | K1)) 
    = (( 
    dom  
    Sq_Circ ) 
    /\ K1) by 
    RELAT_1: 61
    
        .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    FUNCT_2:def 1
    
        .= K1 by
    XBOOLE_1: 28;
    
        
    
        
    
    A3: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        assume
    
        
    
    A4: p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then ex p3 be
    Point of ( 
    TOP-REAL 2) st p 
    = p3 & ((p3 
    `2 ) 
    <= (p3 
    `1 ) & ( 
    - (p3 
    `1 )) 
    <= (p3 
    `2 ) or (p3 
    `2 ) 
    >= (p3 
    `1 ) & (p3 
    `2 ) 
    <= ( 
    - (p3 
    `1 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A3;
    
        then
    
        
    
    A5: ( 
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| by 
    Def1;
    
        ((
    Sq_Circ  
    | K1) 
    . p) 
    = ( 
    Sq_Circ  
    . p) by 
    A4,
    A3,
    FUNCT_1: 49;
    
        
    
        then (g1
    . p) 
    = ( 
    proj1  
    .  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) by 
    A4,
    A2,
    A3,
    A5,
    FUNCT_1: 13
    
        .= (
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| 
    `1 ) by 
    PSCOMP_1:def 5
    
        .= ((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        hence thesis;
    
      end;
    
      then
    
      consider f1 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A6: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f1 
    . p) 
    = ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))); 
    
      (
    dom ( 
    proj2  
    * ( 
    Sq_Circ  
    | K1))) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) & ( 
    rng ( 
    proj2  
    * ( 
    Sq_Circ  
    | K1))) 
    c= the 
    carrier of 
    R^1 by 
    Lm11,
    TOPMETR: 17;
    
      then
    
      reconsider g2 = (
    proj2  
    * ( 
    Sq_Circ  
    | K1)) as 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    FUNCT_2: 2;
    
      for p be
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (g2 
    . p) 
    = ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    
      proof
    
        let p be
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A7: ( 
    dom ( 
    Sq_Circ  
    | K1)) 
    = (( 
    dom  
    Sq_Circ ) 
    /\ K1) by 
    RELAT_1: 61
    
        .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    FUNCT_2:def 1
    
        .= K1 by
    XBOOLE_1: 28;
    
        
    
        
    
    A8: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        assume
    
        
    
    A9: p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then ex p3 be
    Point of ( 
    TOP-REAL 2) st p 
    = p3 & ((p3 
    `2 ) 
    <= (p3 
    `1 ) & ( 
    - (p3 
    `1 )) 
    <= (p3 
    `2 ) or (p3 
    `2 ) 
    >= (p3 
    `1 ) & (p3 
    `2 ) 
    <= ( 
    - (p3 
    `1 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A8;
    
        then
    
        
    
    A10: ( 
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| by 
    Def1;
    
        ((
    Sq_Circ  
    | K1) 
    . p) 
    = ( 
    Sq_Circ  
    . p) by 
    A9,
    A8,
    FUNCT_1: 49;
    
        
    
        then (g2
    . p) 
    = ( 
    proj2  
    .  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) by 
    A9,
    A7,
    A8,
    A10,
    FUNCT_1: 13
    
        .= (
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| 
    `2 ) by 
    PSCOMP_1:def 6
    
        .= ((p
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        hence thesis;
    
      end;
    
      then
    
      consider f2 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A11: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f2 
    . p) 
    = ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))); 
    
      
    
    A12: 
    
      now
    
        let q be
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A13: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        assume q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then
    
        
    
    A14: ex p3 be 
    Point of ( 
    TOP-REAL 2) st q 
    = p3 & ((p3 
    `2 ) 
    <= (p3 
    `1 ) & ( 
    - (p3 
    `1 )) 
    <= (p3 
    `2 ) or (p3 
    `2 ) 
    >= (p3 
    `1 ) & (p3 
    `2 ) 
    <= ( 
    - (p3 
    `1 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A13;
    
        now
    
          assume
    
          
    
    A15: (q 
    `1 ) 
    =  
    0 ; 
    
          then (q
    `2 ) 
    =  
    0 by 
    A14;
    
          hence contradiction by
    A14,
    A15,
    EUCLID: 53,
    EUCLID: 54;
    
        end;
    
        hence (q
    `1 ) 
    <>  
    0 ; 
    
      end;
    
      then
    
      
    
    A16: f1 is 
    continuous by 
    A6,
    Th11;
    
      
    
      
    
    A17: for x,y,r,s be 
    Real st 
    |[x, y]|
    in K1 & r 
    = (f1 
    .  
    |[x, y]|) & s
    = (f2 
    .  
    |[x, y]|) holds (f
    .  
    |[x, y]|)
    =  
    |[r, s]|
    
      proof
    
        let x,y,r,s be
    Real;
    
        assume that
    
        
    
    A18: 
    |[x, y]|
    in K1 and 
    
        
    
    A19: r 
    = (f1 
    .  
    |[x, y]|) & s
    = (f2 
    .  
    |[x, y]|);
    
        set p99 =
    |[x, y]|;
    
        
    
        
    
    A20: ex p3 be 
    Point of ( 
    TOP-REAL 2) st p99 
    = p3 & ((p3 
    `2 ) 
    <= (p3 
    `1 ) & ( 
    - (p3 
    `1 )) 
    <= (p3 
    `2 ) or (p3 
    `2 ) 
    >= (p3 
    `1 ) & (p3 
    `2 ) 
    <= ( 
    - (p3 
    `1 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A18;
    
        
    
        
    
    A21: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        then
    
        
    
    A22: (f1 
    . p99) 
    = ((p99 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p99 
    `2 ) 
    / (p99 
    `1 )) 
    ^2 )))) by 
    A6,
    A18;
    
        ((
    Sq_Circ  
    | K0) 
    .  
    |[x, y]|)
    = ( 
    Sq_Circ  
    .  
    |[x, y]|) by
    A18,
    FUNCT_1: 49
    
        .=
    |[((p99
    `1 ) 
    / ( 
    sqrt (1 
    + (((p99 
    `2 ) 
    / (p99 
    `1 )) 
    ^2 )))), ((p99 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p99 
    `2 ) 
    / (p99 
    `1 )) 
    ^2 ))))]| by 
    A20,
    Def1
    
        .=
    |[r, s]| by
    A11,
    A18,
    A19,
    A21,
    A22;
    
        hence thesis by
    A1;
    
      end;
    
      f2 is
    continuous by 
    A12,
    A11,
    Th12;
    
      hence thesis by
    A1,
    A16,
    A17,
    Lm13,
    JGRAPH_2: 35;
    
    end;
    
    
    
    
    
    Lm14: (( 
    1.REAL 2) 
    `1 ) 
    <= (( 
    1.REAL 2) 
    `2 ) & ( 
    - (( 
    1.REAL 2) 
    `2 )) 
    <= (( 
    1.REAL 2) 
    `1 ) or (( 
    1.REAL 2) 
    `1 ) 
    >= (( 
    1.REAL 2) 
    `2 ) & (( 
    1.REAL 2) 
    `1 ) 
    <= ( 
    - (( 
    1.REAL 2) 
    `2 )) by 
    JGRAPH_2: 5;
    
    
    
    
    
    Lm15: ( 
    1.REAL 2) 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    Lm8,
    REVROT_1: 19;
    
    theorem :: 
    
    JGRAPH_3:16
    
    
    
    
    
    Th16: for K0,B0 be 
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K0), (( 
    TOP-REAL 2) 
    | B0) st f 
    = ( 
    Sq_Circ  
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } holds f is 
    continuous
    
    proof
    
      let K0,B0 be
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K0), (( 
    TOP-REAL 2) 
    | B0); 
    
      assume
    
      
    
    A1: f 
    = ( 
    Sq_Circ  
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
      then (
    1.REAL 2) 
    in K0 by 
    Lm14,
    Lm15;
    
      then
    
      reconsider K1 = K0 as non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      (
    dom ( 
    proj2  
    * ( 
    Sq_Circ  
    | K1))) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) & ( 
    rng ( 
    proj2  
    * ( 
    Sq_Circ  
    | K1))) 
    c= the 
    carrier of 
    R^1 by 
    Lm11,
    TOPMETR: 17;
    
      then
    
      reconsider g1 = (
    proj2  
    * ( 
    Sq_Circ  
    | K1)) as 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    FUNCT_2: 2;
    
      for p be
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (g1 
    . p) 
    = ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    
      proof
    
        let p be
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A2: ( 
    dom ( 
    Sq_Circ  
    | K1)) 
    = (( 
    dom  
    Sq_Circ ) 
    /\ K1) by 
    RELAT_1: 61
    
        .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    FUNCT_2:def 1
    
        .= K1 by
    XBOOLE_1: 28;
    
        
    
        
    
    A3: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        assume
    
        
    
    A4: p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then ex p3 be
    Point of ( 
    TOP-REAL 2) st p 
    = p3 & ((p3 
    `1 ) 
    <= (p3 
    `2 ) & ( 
    - (p3 
    `2 )) 
    <= (p3 
    `1 ) or (p3 
    `1 ) 
    >= (p3 
    `2 ) & (p3 
    `1 ) 
    <= ( 
    - (p3 
    `2 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A3;
    
        then
    
        
    
    A5: ( 
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    Th4;
    
        ((
    Sq_Circ  
    | K1) 
    . p) 
    = ( 
    Sq_Circ  
    . p) by 
    A4,
    A3,
    FUNCT_1: 49;
    
        
    
        then (g1
    . p) 
    = ( 
    proj2  
    .  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|) by 
    A4,
    A2,
    A3,
    A5,
    FUNCT_1: 13
    
        .= (
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| 
    `2 ) by 
    PSCOMP_1:def 6
    
        .= ((p
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        hence thesis;
    
      end;
    
      then
    
      consider f1 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A6: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f1 
    . p) 
    = ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))); 
    
      (
    dom ( 
    proj1  
    * ( 
    Sq_Circ  
    | K1))) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) & ( 
    rng ( 
    proj1  
    * ( 
    Sq_Circ  
    | K1))) 
    c= the 
    carrier of 
    R^1 by 
    Lm12,
    TOPMETR: 17;
    
      then
    
      reconsider g2 = (
    proj1  
    * ( 
    Sq_Circ  
    | K1)) as 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    FUNCT_2: 2;
    
      for p be
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (g2 
    . p) 
    = ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    
      proof
    
        let p be
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A7: ( 
    dom ( 
    Sq_Circ  
    | K1)) 
    = (( 
    dom  
    Sq_Circ ) 
    /\ K1) by 
    RELAT_1: 61
    
        .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    FUNCT_2:def 1
    
        .= K1 by
    XBOOLE_1: 28;
    
        
    
        
    
    A8: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        assume
    
        
    
    A9: p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then ex p3 be
    Point of ( 
    TOP-REAL 2) st p 
    = p3 & ((p3 
    `1 ) 
    <= (p3 
    `2 ) & ( 
    - (p3 
    `2 )) 
    <= (p3 
    `1 ) or (p3 
    `1 ) 
    >= (p3 
    `2 ) & (p3 
    `1 ) 
    <= ( 
    - (p3 
    `2 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A8;
    
        then
    
        
    
    A10: ( 
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    Th4;
    
        ((
    Sq_Circ  
    | K1) 
    . p) 
    = ( 
    Sq_Circ  
    . p) by 
    A9,
    A8,
    FUNCT_1: 49;
    
        
    
        then (g2
    . p) 
    = ( 
    proj1  
    .  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|) by 
    A9,
    A7,
    A8,
    A10,
    FUNCT_1: 13
    
        .= (
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| 
    `1 ) by 
    PSCOMP_1:def 5
    
        .= ((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        hence thesis;
    
      end;
    
      then
    
      consider f2 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A11: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f2 
    . p) 
    = ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))); 
    
      
    
      
    
    A12: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `2 ) 
    <>  
    0  
    
      proof
    
        let q be
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A13: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        assume q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then
    
        
    
    A14: ex p3 be 
    Point of ( 
    TOP-REAL 2) st q 
    = p3 & ((p3 
    `1 ) 
    <= (p3 
    `2 ) & ( 
    - (p3 
    `2 )) 
    <= (p3 
    `1 ) or (p3 
    `1 ) 
    >= (p3 
    `2 ) & (p3 
    `1 ) 
    <= ( 
    - (p3 
    `2 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A13;
    
        now
    
          assume
    
          
    
    A15: (q 
    `2 ) 
    =  
    0 ; 
    
          then (q
    `1 ) 
    =  
    0 by 
    A14;
    
          hence contradiction by
    A14,
    A15,
    EUCLID: 53,
    EUCLID: 54;
    
        end;
    
        hence thesis;
    
      end;
    
      then
    
      
    
    A16: f1 is 
    continuous by 
    A6,
    Th13;
    
      
    
    A17: 
    
      now
    
        let x,y,s,r be
    Real;
    
        assume that
    
        
    
    A18: 
    |[x, y]|
    in K1 and 
    
        
    
    A19: s 
    = (f2 
    .  
    |[x, y]|) & r
    = (f1 
    .  
    |[x, y]|);
    
        set p99 =
    |[x, y]|;
    
        
    
        
    
    A20: ex p3 be 
    Point of ( 
    TOP-REAL 2) st p99 
    = p3 & ((p3 
    `1 ) 
    <= (p3 
    `2 ) & ( 
    - (p3 
    `2 )) 
    <= (p3 
    `1 ) or (p3 
    `1 ) 
    >= (p3 
    `2 ) & (p3 
    `1 ) 
    <= ( 
    - (p3 
    `2 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A18;
    
        
    
        
    
    A21: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        then
    
        
    
    A22: (f1 
    . p99) 
    = ((p99 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p99 
    `1 ) 
    / (p99 
    `2 )) 
    ^2 )))) by 
    A6,
    A18;
    
        ((
    Sq_Circ  
    | K0) 
    .  
    |[x, y]|)
    = ( 
    Sq_Circ  
    .  
    |[x, y]|) by
    A18,
    FUNCT_1: 49
    
        .=
    |[((p99
    `1 ) 
    / ( 
    sqrt (1 
    + (((p99 
    `1 ) 
    / (p99 
    `2 )) 
    ^2 )))), ((p99 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p99 
    `1 ) 
    / (p99 
    `2 )) 
    ^2 ))))]| by 
    A20,
    Th4
    
        .=
    |[s, r]| by
    A11,
    A18,
    A19,
    A21,
    A22;
    
        hence (f
    .  
    |[x, y]|)
    =  
    |[s, r]| by
    A1;
    
      end;
    
      f2 is
    continuous by 
    A12,
    A11,
    Th14;
    
      hence thesis by
    A1,
    A16,
    A17,
    Lm13,
    JGRAPH_2: 35;
    
    end;
    
    scheme :: 
    
    JGRAPH_3:sch1
    
    TopIncl { P[
    set] } :
    
{ p : P[p] & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } 
    c= ( 
    NonZero ( 
    TOP-REAL 2)); 
    
      let x be
    object;
    
      assume x
    in { p : P[p] & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
      then
    
      
    
    A1: ex p8 be 
    Point of ( 
    TOP-REAL 2) st x 
    = p8 & P[p8] & p8 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
      then not x
    in  
    {(
    0. ( 
    TOP-REAL 2))} by 
    TARSKI:def 1;
    
      hence thesis by
    A1,
    XBOOLE_0:def 5;
    
    end;
    
    scheme :: 
    
    JGRAPH_3:sch2
    
    TopInter { P[
    set] } :
    
{ p : P[p] & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } 
    = ({ p7 where p7 be 
    Point of ( 
    TOP-REAL 2) : P[p7] } 
    /\ ( 
    NonZero ( 
    TOP-REAL 2))); 
    
      set B0 = (
    NonZero ( 
    TOP-REAL 2)); 
    
      set K1 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : P[p7] }; 
    
      set K0 = { p : P[p] & p
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
      
    
      
    
    A1: (K1 
    /\ B0) 
    c= K0 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A2: x 
    in (K1 
    /\ B0); 
    
        then x
    in B0 by 
    XBOOLE_0:def 4;
    
        then not x
    in  
    {(
    0. ( 
    TOP-REAL 2))} by 
    XBOOLE_0:def 5;
    
        then
    
        
    
    A3: x 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    TARSKI:def 1;
    
        x
    in K1 by 
    A2,
    XBOOLE_0:def 4;
    
        then ex p7 be
    Point of ( 
    TOP-REAL 2) st p7 
    = x & P[p7]; 
    
        hence thesis by
    A3;
    
      end;
    
      K0
    c= (K1 
    /\ B0) 
    
      proof
    
        let x be
    object;
    
        assume x
    in K0; 
    
        then
    
        
    
    A4: ex p be 
    Point of ( 
    TOP-REAL 2) st x 
    = p & P[p] & p 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
        then not x
    in  
    {(
    0. ( 
    TOP-REAL 2))} by 
    TARSKI:def 1;
    
        then
    
        
    
    A5: x 
    in B0 by 
    A4,
    XBOOLE_0:def 5;
    
        x
    in K1 by 
    A4;
    
        hence thesis by
    A5,
    XBOOLE_0:def 4;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:17
    
    
    
    
    
    Th17: for B0 be 
    Subset of ( 
    TOP-REAL 2), K0 be 
    Subset of (( 
    TOP-REAL 2) 
    | B0), f be 
    Function of ((( 
    TOP-REAL 2) 
    | B0) 
    | K0), (( 
    TOP-REAL 2) 
    | B0) st f 
    = ( 
    Sq_Circ  
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } holds f is 
    continuous & K0 is 
    closed
    
    proof
    
      reconsider K5 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : (p7 
    `2 ) 
    <= ( 
    - (p7 
    `1 )) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 47;
    
      reconsider K4 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : (p7 
    `1 ) 
    <= (p7 
    `2 ) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 46;
    
      reconsider K3 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : ( 
    - (p7 
    `1 )) 
    <= (p7 
    `2 ) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 47;
    
      reconsider K2 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : (p7 
    `2 ) 
    <= (p7 
    `1 ) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 46;
    
      defpred
    
    P[
    Point of ( 
    TOP-REAL 2)] means (($1 
    `2 ) 
    <= ($1 
    `1 ) & ( 
    - ($1 
    `1 )) 
    <= ($1 
    `2 ) or ($1 
    `2 ) 
    >= ($1 
    `1 ) & ($1 
    `2 ) 
    <= ( 
    - ($1 
    `1 ))); 
    
      let B0 be
    Subset of ( 
    TOP-REAL 2), K0 be 
    Subset of (( 
    TOP-REAL 2) 
    | B0), f be 
    Function of ((( 
    TOP-REAL 2) 
    | B0) 
    | K0), (( 
    TOP-REAL 2) 
    | B0); 
    
      assume
    
      
    
    A1: f 
    = ( 
    Sq_Circ  
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
      the
    carrier of (( 
    TOP-REAL 2) 
    | B0) 
    = B0 by 
    PRE_TOPC: 8;
    
      then
    
      reconsider K1 = K0 as
    Subset of ( 
    TOP-REAL 2) by 
    XBOOLE_1: 1;
    
      { p :
    P[p] & p
    <> ( 
    0. ( 
    TOP-REAL 2)) } 
    c= ( 
    NonZero ( 
    TOP-REAL 2)) from 
    TopIncl;
    
      then
    
      
    
    A2: ((( 
    TOP-REAL 2) 
    | B0) 
    | K0) 
    = (( 
    TOP-REAL 2) 
    | K1) by 
    A1,
    PRE_TOPC: 7;
    
      defpred
    
    P[
    Point of ( 
    TOP-REAL 2)] means (($1 
    `2 ) 
    <= ($1 
    `1 ) & ( 
    - ($1 
    `1 )) 
    <= ($1 
    `2 ) or ($1 
    `2 ) 
    >= ($1 
    `1 ) & ($1 
    `2 ) 
    <= ( 
    - ($1 
    `1 ))); 
    
      reconsider K1 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : 
    P[p7] } as
    Subset of ( 
    TOP-REAL 2) from 
    JGRAPH_2:sch 1;
    
      defpred
    
    P[
    Point of ( 
    TOP-REAL 2)] means (($1 
    `2 ) 
    <= ($1 
    `1 ) & ( 
    - ($1 
    `1 )) 
    <= ($1 
    `2 ) or ($1 
    `2 ) 
    >= ($1 
    `1 ) & ($1 
    `2 ) 
    <= ( 
    - ($1 
    `1 ))); 
    
      { p :
    P[p] & p
    <> ( 
    0. ( 
    TOP-REAL 2)) } 
    = ({ p7 where p7 be 
    Point of ( 
    TOP-REAL 2) : 
    P[p7] }
    /\ ( 
    NonZero ( 
    TOP-REAL 2))) from 
    TopInter;
    
      then
    
      
    
    A3: K0 
    = (K1 
    /\ ( 
    [#] (( 
    TOP-REAL 2) 
    | B0))) by 
    A1,
    PRE_TOPC:def 5;
    
      
    
      
    
    A4: ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)) 
    c= K1 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)); 
    
        per cases by
    A5,
    XBOOLE_0:def 3;
    
          suppose
    
          
    
    A6: x 
    in (K2 
    /\ K3); 
    
          then x
    in K3 by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A7: ex p8 be 
    Point of ( 
    TOP-REAL 2) st p8 
    = x & ( 
    - (p8 
    `1 )) 
    <= (p8 
    `2 ); 
    
          x
    in K2 by 
    A6,
    XBOOLE_0:def 4;
    
          then ex p7 be
    Point of ( 
    TOP-REAL 2) st p7 
    = x & (p7 
    `2 ) 
    <= (p7 
    `1 ); 
    
          hence thesis by
    A7;
    
        end;
    
          suppose
    
          
    
    A8: x 
    in (K4 
    /\ K5); 
    
          then x
    in K5 by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A9: ex p8 be 
    Point of ( 
    TOP-REAL 2) st p8 
    = x & (p8 
    `2 ) 
    <= ( 
    - (p8 
    `1 )); 
    
          x
    in K4 by 
    A8,
    XBOOLE_0:def 4;
    
          then ex p7 be
    Point of ( 
    TOP-REAL 2) st p7 
    = x & (p7 
    `2 ) 
    >= (p7 
    `1 ); 
    
          hence thesis by
    A9;
    
        end;
    
      end;
    
      
    
      
    
    A10: (K2 
    /\ K3) is 
    closed & (K4 
    /\ K5) is 
    closed by 
    TOPS_1: 8;
    
      K1
    c= ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in K1; 
    
        then ex p be
    Point of ( 
    TOP-REAL 2) st p 
    = x & ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))); 
    
        then x
    in K2 & x 
    in K3 or x 
    in K4 & x 
    in K5; 
    
        then x
    in (K2 
    /\ K3) or x 
    in (K4 
    /\ K5) by 
    XBOOLE_0:def 4;
    
        hence thesis by
    XBOOLE_0:def 3;
    
      end;
    
      then K1
    = ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)) by 
    A4;
    
      then K1 is
    closed by 
    A10,
    TOPS_1: 9;
    
      hence thesis by
    A1,
    A2,
    A3,
    Th15,
    PRE_TOPC: 13;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:18
    
    
    
    
    
    Th18: for B0 be 
    Subset of ( 
    TOP-REAL 2), K0 be 
    Subset of (( 
    TOP-REAL 2) 
    | B0), f be 
    Function of ((( 
    TOP-REAL 2) 
    | B0) 
    | K0), (( 
    TOP-REAL 2) 
    | B0) st f 
    = ( 
    Sq_Circ  
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } holds f is 
    continuous & K0 is 
    closed
    
    proof
    
      reconsider K5 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : (p7 
    `1 ) 
    <= ( 
    - (p7 
    `2 )) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 48;
    
      reconsider K4 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : (p7 
    `2 ) 
    <= (p7 
    `1 ) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 46;
    
      reconsider K3 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : ( 
    - (p7 
    `2 )) 
    <= (p7 
    `1 ) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 48;
    
      reconsider K2 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : (p7 
    `1 ) 
    <= (p7 
    `2 ) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 46;
    
      defpred
    
    P[
    Point of ( 
    TOP-REAL 2)] means (($1 
    `1 ) 
    <= ($1 
    `2 ) & ( 
    - ($1 
    `2 )) 
    <= ($1 
    `1 ) or ($1 
    `1 ) 
    >= ($1 
    `2 ) & ($1 
    `1 ) 
    <= ( 
    - ($1 
    `2 ))); 
    
      set b0 = (
    NonZero ( 
    TOP-REAL 2)); 
    
      defpred
    
    P0[
    Point of ( 
    TOP-REAL 2)] means (($1 
    `1 ) 
    <= ($1 
    `2 ) & ( 
    - ($1 
    `2 )) 
    <= ($1 
    `1 ) or ($1 
    `1 ) 
    >= ($1 
    `2 ) & ($1 
    `1 ) 
    <= ( 
    - ($1 
    `2 ))); 
    
      let B0 be
    Subset of ( 
    TOP-REAL 2), K0 be 
    Subset of (( 
    TOP-REAL 2) 
    | B0), f be 
    Function of ((( 
    TOP-REAL 2) 
    | B0) 
    | K0), (( 
    TOP-REAL 2) 
    | B0); 
    
      assume
    
      
    
    A1: f 
    = ( 
    Sq_Circ  
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
      the
    carrier of (( 
    TOP-REAL 2) 
    | B0) 
    = B0 by 
    PRE_TOPC: 8;
    
      then
    
      reconsider K1 = K0 as
    Subset of ( 
    TOP-REAL 2) by 
    XBOOLE_1: 1;
    
      { p :
    P[p] & p
    <> ( 
    0. ( 
    TOP-REAL 2)) } 
    c= ( 
    NonZero ( 
    TOP-REAL 2)) from 
    TopIncl;
    
      then
    
      
    
    A2: ((( 
    TOP-REAL 2) 
    | B0) 
    | K0) 
    = (( 
    TOP-REAL 2) 
    | K1) by 
    A1,
    PRE_TOPC: 7;
    
      defpred
    
    P[
    Point of ( 
    TOP-REAL 2)] means (($1 
    `1 ) 
    <= ($1 
    `2 ) & ( 
    - ($1 
    `2 )) 
    <= ($1 
    `1 ) or ($1 
    `1 ) 
    >= ($1 
    `2 ) & ($1 
    `1 ) 
    <= ( 
    - ($1 
    `2 ))); 
    
      reconsider K1 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : 
    P[p7] } as
    Subset of ( 
    TOP-REAL 2) from 
    JGRAPH_2:sch 1;
    
      
    
      
    
    A3: ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)) 
    c= K1 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)); 
    
        per cases by
    A4,
    XBOOLE_0:def 3;
    
          suppose
    
          
    
    A5: x 
    in (K2 
    /\ K3); 
    
          then x
    in K3 by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A6: ex p8 be 
    Point of ( 
    TOP-REAL 2) st p8 
    = x & ( 
    - (p8 
    `2 )) 
    <= (p8 
    `1 ); 
    
          x
    in K2 by 
    A5,
    XBOOLE_0:def 4;
    
          then ex p7 be
    Point of ( 
    TOP-REAL 2) st p7 
    = x & (p7 
    `1 ) 
    <= (p7 
    `2 ); 
    
          hence thesis by
    A6;
    
        end;
    
          suppose
    
          
    
    A7: x 
    in (K4 
    /\ K5); 
    
          then x
    in K5 by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A8: ex p8 be 
    Point of ( 
    TOP-REAL 2) st p8 
    = x & (p8 
    `1 ) 
    <= ( 
    - (p8 
    `2 )); 
    
          x
    in K4 by 
    A7,
    XBOOLE_0:def 4;
    
          then ex p7 be
    Point of ( 
    TOP-REAL 2) st p7 
    = x & (p7 
    `1 ) 
    >= (p7 
    `2 ); 
    
          hence thesis by
    A8;
    
        end;
    
      end;
    
      set k0 = { p :
    P0[p] & p
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
      
    
      
    
    A9: (K2 
    /\ K3) is 
    closed & (K4 
    /\ K5) is 
    closed by 
    TOPS_1: 8;
    
      K1
    c= ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in K1; 
    
        then ex p be
    Point of ( 
    TOP-REAL 2) st p 
    = x & ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))); 
    
        then x
    in K2 & x 
    in K3 or x 
    in K4 & x 
    in K5; 
    
        then x
    in (K2 
    /\ K3) or x 
    in (K4 
    /\ K5) by 
    XBOOLE_0:def 4;
    
        hence thesis by
    XBOOLE_0:def 3;
    
      end;
    
      then K1
    = ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)) by 
    A3;
    
      then
    
      
    
    A10: K1 is 
    closed by 
    A9,
    TOPS_1: 9;
    
      k0
    = ({ p7 where p7 be 
    Point of ( 
    TOP-REAL 2) : 
    P0[p7] }
    /\ b0) from 
    TopInter;
    
      then K0
    = (K1 
    /\ ( 
    [#] (( 
    TOP-REAL 2) 
    | B0))) by 
    A1,
    PRE_TOPC:def 5;
    
      hence thesis by
    A1,
    A2,
    A10,
    Th16,
    PRE_TOPC: 13;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:19
    
    
    
    
    
    Th19: for D be non 
    empty  
    Subset of ( 
    TOP-REAL 2) st (D 
    ` ) 
    =  
    {(
    0. ( 
    TOP-REAL 2))} holds ex h be 
    Function of (( 
    TOP-REAL 2) 
    | D), (( 
    TOP-REAL 2) 
    | D) st h 
    = ( 
    Sq_Circ  
    | D) & h is 
    continuous
    
    proof
    
      set Y1 =
    |[(
    - 1), 1]|; 
    
      let D be non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: the 
    carrier of (( 
    TOP-REAL 2) 
    | D) 
    = D by 
    PRE_TOPC: 8;
    
      (
    dom  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
      
    
      then
    
      
    
    A2: ( 
    dom ( 
    Sq_Circ  
    | D)) 
    = (the 
    carrier of ( 
    TOP-REAL 2) 
    /\ D) by 
    RELAT_1: 61
    
      .= the
    carrier of (( 
    TOP-REAL 2) 
    | D) by 
    A1,
    XBOOLE_1: 28;
    
      assume
    
      
    
    A3: (D 
    ` ) 
    =  
    {(
    0. ( 
    TOP-REAL 2))}; 
    
      
    
      then
    
      
    
    A4: D 
    = ( 
    {(
    0. ( 
    TOP-REAL 2))} 
    ` ) 
    
      .= (
    NonZero ( 
    TOP-REAL 2)) by 
    SUBSET_1:def 4;
    
      
    
      
    
    A5: { p : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } 
    c= the 
    carrier of (( 
    TOP-REAL 2) 
    | D) 
    
      proof
    
        let x be
    object;
    
        assume x
    in { p : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
        then
    
        
    
    A6: ex p st x 
    = p & ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
        now
    
          assume not x
    in D; 
    
          then x
    in (the 
    carrier of ( 
    TOP-REAL 2) 
    \ D) by 
    A6,
    XBOOLE_0:def 5;
    
          then x
    in (D 
    ` ) by 
    SUBSET_1:def 4;
    
          hence contradiction by
    A3,
    A6,
    TARSKI:def 1;
    
        end;
    
        hence thesis by
    PRE_TOPC: 8;
    
      end;
    
      (
    1.REAL 2) 
    in { p where p be 
    Point of ( 
    TOP-REAL 2) : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } by 
    Lm9,
    Lm10;
    
      then
    
      reconsider K0 = { p : ((p
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } as non 
    empty  
    Subset of (( 
    TOP-REAL 2) 
    | D) by 
    A5;
    
      
    
      
    
    A7: K0 
    = the 
    carrier of ((( 
    TOP-REAL 2) 
    | D) 
    | K0) by 
    PRE_TOPC: 8;
    
      
    
      
    
    A8: { p : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } 
    c= the 
    carrier of (( 
    TOP-REAL 2) 
    | D) 
    
      proof
    
        let x be
    object;
    
        assume x
    in { p : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
        then
    
        
    
    A9: ex p st x 
    = p & ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
        now
    
          assume not x
    in D; 
    
          then x
    in (the 
    carrier of ( 
    TOP-REAL 2) 
    \ D) by 
    A9,
    XBOOLE_0:def 5;
    
          then x
    in (D 
    ` ) by 
    SUBSET_1:def 4;
    
          hence contradiction by
    A3,
    A9,
    TARSKI:def 1;
    
        end;
    
        hence thesis by
    PRE_TOPC: 8;
    
      end;
    
      (Y1
    `1 ) 
    = ( 
    - 1) & (Y1 
    `2 ) 
    = 1 by 
    EUCLID: 52;
    
      then Y1
    in { p where p be 
    Point of ( 
    TOP-REAL 2) : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } by 
    JGRAPH_2: 3;
    
      then
    
      reconsider K1 = { p : ((p
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } as non 
    empty  
    Subset of (( 
    TOP-REAL 2) 
    | D) by 
    A8;
    
      
    
      
    
    A10: K1 
    = the 
    carrier of ((( 
    TOP-REAL 2) 
    | D) 
    | K1) by 
    PRE_TOPC: 8;
    
      
    
      
    
    A11: D 
    c= (K0 
    \/ K1) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A12: x 
    in D; 
    
        then
    
        reconsider px = x as
    Point of ( 
    TOP-REAL 2); 
    
         not x
    in  
    {(
    0. ( 
    TOP-REAL 2))} by 
    A4,
    A12,
    XBOOLE_0:def 5;
    
        then ((px
    `2 ) 
    <= (px 
    `1 ) & ( 
    - (px 
    `1 )) 
    <= (px 
    `2 ) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 ))) & px 
    <> ( 
    0. ( 
    TOP-REAL 2)) or ((px 
    `1 ) 
    <= (px 
    `2 ) & ( 
    - (px 
    `2 )) 
    <= (px 
    `1 ) or (px 
    `1 ) 
    >= (px 
    `2 ) & (px 
    `1 ) 
    <= ( 
    - (px 
    `2 ))) & px 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    TARSKI:def 1,
    XREAL_1: 26;
    
        then x
    in K0 or x 
    in K1; 
    
        hence thesis by
    XBOOLE_0:def 3;
    
      end;
    
      
    
      
    
    A13: the 
    carrier of (( 
    TOP-REAL 2) 
    | D) 
    = ( 
    [#] (( 
    TOP-REAL 2) 
    | D)) 
    
      .= (
    NonZero ( 
    TOP-REAL 2)) by 
    A4,
    PRE_TOPC:def 5;
    
      
    
      
    
    A14: the 
    carrier of (( 
    TOP-REAL 2) 
    | D) 
    = D by 
    PRE_TOPC: 8;
    
      
    
      
    
    A15: ( 
    rng ( 
    Sq_Circ  
    | K0)) 
    c= the 
    carrier of ((( 
    TOP-REAL 2) 
    | D) 
    | K0) 
    
      proof
    
        reconsider K00 = K0 as
    Subset of ( 
    TOP-REAL 2) by 
    A14,
    XBOOLE_1: 1;
    
        let y be
    object;
    
        
    
        
    
    A16: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K00) holds (q 
    `1 ) 
    <>  
    0  
    
        proof
    
          let q be
    Point of ( 
    TOP-REAL 2); 
    
          
    
          
    
    A17: the 
    carrier of (( 
    TOP-REAL 2) 
    | K00) 
    = K0 by 
    PRE_TOPC: 8;
    
          assume q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K00); 
    
          then
    
          
    
    A18: ex p3 be 
    Point of ( 
    TOP-REAL 2) st q 
    = p3 & ((p3 
    `2 ) 
    <= (p3 
    `1 ) & ( 
    - (p3 
    `1 )) 
    <= (p3 
    `2 ) or (p3 
    `2 ) 
    >= (p3 
    `1 ) & (p3 
    `2 ) 
    <= ( 
    - (p3 
    `1 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A17;
    
          now
    
            assume
    
            
    
    A19: (q 
    `1 ) 
    =  
    0 ; 
    
            then (q
    `2 ) 
    =  
    0 by 
    A18;
    
            hence contradiction by
    A18,
    A19,
    EUCLID: 53,
    EUCLID: 54;
    
          end;
    
          hence thesis;
    
        end;
    
        assume y
    in ( 
    rng ( 
    Sq_Circ  
    | K0)); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A20: x 
    in ( 
    dom ( 
    Sq_Circ  
    | K0)) and 
    
        
    
    A21: y 
    = (( 
    Sq_Circ  
    | K0) 
    . x) by 
    FUNCT_1:def 3;
    
        
    
        
    
    A22: x 
    in (( 
    dom  
    Sq_Circ ) 
    /\ K0) by 
    A20,
    RELAT_1: 61;
    
        then
    
        
    
    A23: x 
    in K0 by 
    XBOOLE_0:def 4;
    
        K0
    c= the 
    carrier of ( 
    TOP-REAL 2) by 
    A14,
    XBOOLE_1: 1;
    
        then
    
        reconsider p = x as
    Point of ( 
    TOP-REAL 2) by 
    A23;
    
        K00
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K00) by 
    PRE_TOPC: 8;
    
        then p
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K00) by 
    A22,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A24: (p 
    `1 ) 
    <>  
    0 by 
    A16;
    
        
    
        
    
    A25: ex px be 
    Point of ( 
    TOP-REAL 2) st x 
    = px & ((px 
    `2 ) 
    <= (px 
    `1 ) & ( 
    - (px 
    `1 )) 
    <= (px 
    `2 ) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 ))) & px 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A23;
    
        then
    
        
    
    A26: ( 
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| by 
    Def1;
    
        
    
        
    
    A27: ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        then ((p
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    <= ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) & (( 
    - (p 
    `1 )) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    <= ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) or ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    >= ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) & ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    <= (( 
    - (p 
    `1 )) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    A25,
    XREAL_1: 72;
    
        then
    
        
    
    A28: ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    <= ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) & ( 
    - ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))) 
    <= ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) or ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    >= ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) & ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    <= ( 
    - ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))) by 
    XCMPLX_1: 187;
    
        set p9 =
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|; 
    
        
    
        
    
    A29: (p9 
    `1 ) 
    = ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) & (p9 
    `2 ) 
    = ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        
    
    A30: (p9 
    `1 ) 
    = ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
    A31: 
    
        now
    
          assume p9
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
          then (
    0  
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    = (((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    A30,
    EUCLID: 52,
    EUCLID: 54;
    
          hence contradiction by
    A24,
    A27,
    XCMPLX_1: 87;
    
        end;
    
        (
    Sq_Circ  
    . p) 
    = y by 
    A21,
    A23,
    FUNCT_1: 49;
    
        then y
    in K0 by 
    A31,
    A26,
    A28,
    A29;
    
        then y
    in ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K0)) by 
    PRE_TOPC:def 5;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A32: K0 
    c= the 
    carrier of ( 
    TOP-REAL 2) 
    
      proof
    
        let z be
    object;
    
        assume z
    in K0; 
    
        then ex p8 be
    Point of ( 
    TOP-REAL 2) st p8 
    = z & ((p8 
    `2 ) 
    <= (p8 
    `1 ) & ( 
    - (p8 
    `1 )) 
    <= (p8 
    `2 ) or (p8 
    `2 ) 
    >= (p8 
    `1 ) & (p8 
    `2 ) 
    <= ( 
    - (p8 
    `1 ))) & p8 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
        hence thesis;
    
      end;
    
      (
    dom ( 
    Sq_Circ  
    | K0)) 
    = (( 
    dom  
    Sq_Circ ) 
    /\ K0) by 
    RELAT_1: 61
    
      .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K0) by 
    FUNCT_2:def 1
    
      .= K0 by
    A32,
    XBOOLE_1: 28;
    
      then
    
      reconsider f = (
    Sq_Circ  
    | K0) as 
    Function of ((( 
    TOP-REAL 2) 
    | D) 
    | K0), (( 
    TOP-REAL 2) 
    | D) by 
    A7,
    A15,
    FUNCT_2: 2,
    XBOOLE_1: 1;
    
      
    
      
    
    A33: K1 
    = ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K1)) by 
    PRE_TOPC:def 5;
    
      
    
      
    
    A34: K1 
    c= the 
    carrier of ( 
    TOP-REAL 2) 
    
      proof
    
        let z be
    object;
    
        assume z
    in K1; 
    
        then ex p8 be
    Point of ( 
    TOP-REAL 2) st p8 
    = z & ((p8 
    `1 ) 
    <= (p8 
    `2 ) & ( 
    - (p8 
    `2 )) 
    <= (p8 
    `1 ) or (p8 
    `1 ) 
    >= (p8 
    `2 ) & (p8 
    `1 ) 
    <= ( 
    - (p8 
    `2 ))) & p8 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
        hence thesis;
    
      end;
    
      
    
      
    
    A35: ( 
    rng ( 
    Sq_Circ  
    | K1)) 
    c= the 
    carrier of ((( 
    TOP-REAL 2) 
    | D) 
    | K1) 
    
      proof
    
        reconsider K10 = K1 as
    Subset of ( 
    TOP-REAL 2) by 
    A34;
    
        let y be
    object;
    
        
    
        
    
    A36: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K10) holds (q 
    `2 ) 
    <>  
    0  
    
        proof
    
          let q be
    Point of ( 
    TOP-REAL 2); 
    
          
    
          
    
    A37: the 
    carrier of (( 
    TOP-REAL 2) 
    | K10) 
    = K1 by 
    PRE_TOPC: 8;
    
          assume q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K10); 
    
          then
    
          
    
    A38: ex p3 be 
    Point of ( 
    TOP-REAL 2) st q 
    = p3 & ((p3 
    `1 ) 
    <= (p3 
    `2 ) & ( 
    - (p3 
    `2 )) 
    <= (p3 
    `1 ) or (p3 
    `1 ) 
    >= (p3 
    `2 ) & (p3 
    `1 ) 
    <= ( 
    - (p3 
    `2 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A37;
    
          now
    
            assume
    
            
    
    A39: (q 
    `2 ) 
    =  
    0 ; 
    
            then (q
    `1 ) 
    =  
    0 by 
    A38;
    
            hence contradiction by
    A38,
    A39,
    EUCLID: 53,
    EUCLID: 54;
    
          end;
    
          hence thesis;
    
        end;
    
        assume y
    in ( 
    rng ( 
    Sq_Circ  
    | K1)); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A40: x 
    in ( 
    dom ( 
    Sq_Circ  
    | K1)) and 
    
        
    
    A41: y 
    = (( 
    Sq_Circ  
    | K1) 
    . x) by 
    FUNCT_1:def 3;
    
        
    
        
    
    A42: x 
    in (( 
    dom  
    Sq_Circ ) 
    /\ K1) by 
    A40,
    RELAT_1: 61;
    
        then
    
        
    
    A43: x 
    in K1 by 
    XBOOLE_0:def 4;
    
        then
    
        reconsider p = x as
    Point of ( 
    TOP-REAL 2) by 
    A34;
    
        K10
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K10) by 
    PRE_TOPC: 8;
    
        then p
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K10) by 
    A42,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A44: (p 
    `2 ) 
    <>  
    0 by 
    A36;
    
        set p9 =
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|; 
    
        
    
        
    
    A45: (p9 
    `2 ) 
    = ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) & (p9 
    `1 ) 
    = ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        
    
    A46: ex px be 
    Point of ( 
    TOP-REAL 2) st x 
    = px & ((px 
    `1 ) 
    <= (px 
    `2 ) & ( 
    - (px 
    `2 )) 
    <= (px 
    `1 ) or (px 
    `1 ) 
    >= (px 
    `2 ) & (px 
    `1 ) 
    <= ( 
    - (px 
    `2 ))) & px 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A43;
    
        then
    
        
    
    A47: ( 
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    Th4;
    
        
    
        
    
    A48: ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        then ((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    <= ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) & (( 
    - (p 
    `2 )) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    <= ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) or ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    >= ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) & ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    <= (( 
    - (p 
    `2 )) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    A46,
    XREAL_1: 72;
    
        then
    
        
    
    A49: ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    <= ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) & ( 
    - ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))) 
    <= ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) or ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    >= ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) & ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    <= ( 
    - ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))) by 
    XCMPLX_1: 187;
    
        
    
        
    
    A50: (p9 
    `2 ) 
    = ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
    A51: 
    
        now
    
          assume p9
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
          then (
    0  
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    = (((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    A50,
    EUCLID: 52,
    EUCLID: 54;
    
          hence contradiction by
    A44,
    A48,
    XCMPLX_1: 87;
    
        end;
    
        (
    Sq_Circ  
    . p) 
    = y by 
    A41,
    A43,
    FUNCT_1: 49;
    
        then y
    in K1 by 
    A51,
    A47,
    A49,
    A45;
    
        hence thesis by
    PRE_TOPC: 8;
    
      end;
    
      (
    dom ( 
    Sq_Circ  
    | K1)) 
    = (( 
    dom  
    Sq_Circ ) 
    /\ K1) by 
    RELAT_1: 61
    
      .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    FUNCT_2:def 1
    
      .= K1 by
    A34,
    XBOOLE_1: 28;
    
      then
    
      reconsider g = (
    Sq_Circ  
    | K1) as 
    Function of ((( 
    TOP-REAL 2) 
    | D) 
    | K1), (( 
    TOP-REAL 2) 
    | D) by 
    A10,
    A35,
    FUNCT_2: 2,
    XBOOLE_1: 1;
    
      
    
      
    
    A52: ( 
    dom g) 
    = K1 by 
    A10,
    FUNCT_2:def 1;
    
      g
    = ( 
    Sq_Circ  
    | K1); 
    
      then
    
      
    
    A53: K1 is 
    closed by 
    A4,
    Th18;
    
      
    
      
    
    A54: K0 
    = ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K0)) by 
    PRE_TOPC:def 5;
    
      
    
      
    
    A55: for x be 
    object st x 
    in (( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K0)) 
    /\ ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K1))) holds (f 
    . x) 
    = (g 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A56: x 
    in (( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K0)) 
    /\ ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K1))); 
    
        then x
    in K0 by 
    A54,
    XBOOLE_0:def 4;
    
        then (f
    . x) 
    = ( 
    Sq_Circ  
    . x) by 
    FUNCT_1: 49;
    
        hence thesis by
    A33,
    A56,
    FUNCT_1: 49;
    
      end;
    
      f
    = ( 
    Sq_Circ  
    | K0); 
    
      then
    
      
    
    A57: K0 is 
    closed by 
    A4,
    Th17;
    
      
    
      
    
    A58: ( 
    dom f) 
    = K0 by 
    A7,
    FUNCT_2:def 1;
    
      D
    = ( 
    [#] (( 
    TOP-REAL 2) 
    | D)) by 
    PRE_TOPC:def 5;
    
      then
    
      
    
    A59: (( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K0)) 
    \/ ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K1))) 
    = ( 
    [#] (( 
    TOP-REAL 2) 
    | D)) by 
    A54,
    A33,
    A11;
    
      
    
      
    
    A60: f is 
    continuous & g is 
    continuous by 
    A4,
    Th17,
    Th18;
    
      then
    
      consider h be
    Function of (( 
    TOP-REAL 2) 
    | D), (( 
    TOP-REAL 2) 
    | D) such that 
    
      
    
    A61: h 
    = (f 
    +* g) and h is 
    continuous by 
    A54,
    A33,
    A59,
    A57,
    A53,
    A55,
    JGRAPH_2: 1;
    
      K0
    = ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K0)) & K1 
    = ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K1)) by 
    PRE_TOPC:def 5;
    
      then
    
      
    
    A62: f 
    tolerates g by 
    A55,
    A58,
    A52,
    PARTFUN1:def 4;
    
      
    
      
    
    A63: for x be 
    object st x 
    in ( 
    dom h) holds (h 
    . x) 
    = (( 
    Sq_Circ  
    | D) 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A64: x 
    in ( 
    dom h); 
    
        then
    
        reconsider p = x as
    Point of ( 
    TOP-REAL 2) by 
    A13,
    XBOOLE_0:def 5;
    
         not x
    in  
    {(
    0. ( 
    TOP-REAL 2))} by 
    A13,
    A64,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A65: x 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    TARSKI:def 1;
    
        x
    in (the 
    carrier of ( 
    TOP-REAL 2) 
    \ (D 
    ` )) by 
    A3,
    A13,
    A64;
    
        then
    
        
    
    A66: x 
    in ((D 
    ` ) 
    ` ) by 
    SUBSET_1:def 4;
    
        per cases ;
    
          suppose
    
          
    
    A67: x 
    in K0; 
    
          
    
          
    
    A68: (( 
    Sq_Circ  
    | D) 
    . p) 
    = ( 
    Sq_Circ  
    . p) by 
    A66,
    FUNCT_1: 49
    
          .= (f
    . p) by 
    A67,
    FUNCT_1: 49;
    
          (h
    . p) 
    = ((g 
    +* f) 
    . p) by 
    A61,
    A62,
    FUNCT_4: 34
    
          .= (f
    . p) by 
    A58,
    A67,
    FUNCT_4: 13;
    
          hence thesis by
    A68;
    
        end;
    
          suppose not x
    in K0; 
    
          then not ((p
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) by 
    A65;
    
          then (p
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 )) by 
    XREAL_1: 26;
    
          then
    
          
    
    A69: x 
    in K1 by 
    A65;
    
          ((
    Sq_Circ  
    | D) 
    . p) 
    = ( 
    Sq_Circ  
    . p) by 
    A66,
    FUNCT_1: 49
    
          .= (g
    . p) by 
    A69,
    FUNCT_1: 49;
    
          hence thesis by
    A61,
    A52,
    A69,
    FUNCT_4: 13;
    
        end;
    
      end;
    
      (
    dom h) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | D) by 
    FUNCT_2:def 1;
    
      then (f
    +* g) 
    = ( 
    Sq_Circ  
    | D) by 
    A61,
    A2,
    A63;
    
      hence thesis by
    A54,
    A33,
    A59,
    A57,
    A60,
    A53,
    A55,
    JGRAPH_2: 1;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:20
    
    
    
    
    
    Th20: for D be non 
    empty  
    Subset of ( 
    TOP-REAL 2) st D 
    = ( 
    NonZero ( 
    TOP-REAL 2)) holds (D 
    ` ) 
    =  
    {(
    0. ( 
    TOP-REAL 2))} 
    
    proof
    
      let D be non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      assume
    
      
    
    A1: D 
    = ( 
    NonZero ( 
    TOP-REAL 2)); 
    
      
    
      
    
    A2: (D 
    ` ) 
    c=  
    {(
    0. ( 
    TOP-REAL 2))} 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A3: x 
    in (D 
    ` ); 
    
        then x
    in (the 
    carrier of ( 
    TOP-REAL 2) 
    \ D) by 
    SUBSET_1:def 4;
    
        then not x
    in D by 
    XBOOLE_0:def 5;
    
        hence thesis by
    A1,
    A3,
    XBOOLE_0:def 5;
    
      end;
    
      
    {(
    0. ( 
    TOP-REAL 2))} 
    c= (D 
    ` ) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in  
    {(
    0. ( 
    TOP-REAL 2))}; 
    
        then not x
    in D by 
    A1,
    XBOOLE_0:def 5;
    
        then x
    in (the 
    carrier of ( 
    TOP-REAL 2) 
    \ D) by 
    A4,
    XBOOLE_0:def 5;
    
        hence thesis by
    SUBSET_1:def 4;
    
      end;
    
      hence thesis by
    A2;
    
    end;
    
    
    
    
    
    Lm16: the TopStruct of ( 
    TOP-REAL 2) 
    = ( 
    TopSpaceMetr ( 
    Euclid 2)) by 
    EUCLID:def 8;
    
    theorem :: 
    
    JGRAPH_3:21
    
    
    
    
    
    Th21: ex h be 
    Function of ( 
    TOP-REAL 2), ( 
    TOP-REAL 2) st h 
    =  
    Sq_Circ & h is 
    continuous
    
    proof
    
      reconsider D = (
    NonZero ( 
    TOP-REAL 2)) as non 
    empty  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 9;
    
      reconsider f =
    Sq_Circ as 
    Function of ( 
    TOP-REAL 2), ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: for p be 
    Point of (( 
    TOP-REAL 2) 
    | D) holds (f 
    . p) 
    <> (f 
    . ( 
    0. ( 
    TOP-REAL 2))) 
    
      proof
    
        let p be
    Point of (( 
    TOP-REAL 2) 
    | D); 
    
        
    
        
    
    A2: ( 
    [#] (( 
    TOP-REAL 2) 
    | D)) 
    = D by 
    PRE_TOPC:def 5;
    
        then
    
        reconsider q = p as
    Point of ( 
    TOP-REAL 2) by 
    XBOOLE_0:def 5;
    
         not p
    in  
    {(
    0. ( 
    TOP-REAL 2))} by 
    A2,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A3: not p 
    = ( 
    0. ( 
    TOP-REAL 2)) by 
    TARSKI:def 1;
    
        per cases ;
    
          suppose
    
          
    
    A4: not ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
          then
    
          
    
    A5: (q 
    `2 ) 
    <>  
    0 ; 
    
          set q9 =
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]|; 
    
          
    
          
    
    A6: (q9 
    `2 ) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
          
    
          
    
    A7: ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
          
    
    A8: 
    
          now
    
            assume q9
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            then (
    0  
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    = (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A6,
    EUCLID: 52,
    EUCLID: 54;
    
            hence contradiction by
    A5,
    A7,
    XCMPLX_1: 87;
    
          end;
    
          (
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| by 
    A3,
    A4,
    Def1;
    
          hence thesis by
    A8,
    Def1;
    
        end;
    
          suppose
    
          
    
    A9: (q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 )); 
    
          
    
    A10: 
    
          now
    
            assume
    
            
    
    A11: (q 
    `1 ) 
    =  
    0 ; 
    
            then (q
    `2 ) 
    =  
    0 by 
    A9;
    
            hence contradiction by
    A3,
    A11,
    EUCLID: 53,
    EUCLID: 54;
    
          end;
    
          set q9 =
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|; 
    
          
    
          
    
    A12: (q9 
    `1 ) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
          
    
          
    
    A13: ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
          
    
    A14: 
    
          now
    
            assume q9
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            then (
    0  
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    = (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A12,
    EUCLID: 52,
    EUCLID: 54;
    
            hence contradiction by
    A10,
    A13,
    XCMPLX_1: 87;
    
          end;
    
          (
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| by 
    A3,
    A9,
    Def1;
    
          hence thesis by
    A14,
    Def1;
    
        end;
    
      end;
    
      
    
      
    
    A15: (f 
    . ( 
    0. ( 
    TOP-REAL 2))) 
    = ( 
    0. ( 
    TOP-REAL 2)) by 
    Def1;
    
      
    
      
    
    A16: for V be 
    Subset of ( 
    TOP-REAL 2) st (f 
    . ( 
    0. ( 
    TOP-REAL 2))) 
    in V & V is 
    open holds ex W be 
    Subset of ( 
    TOP-REAL 2) st ( 
    0. ( 
    TOP-REAL 2)) 
    in W & W is 
    open & (f 
    .: W) 
    c= V 
    
      proof
    
        reconsider u0 = (
    0. ( 
    TOP-REAL 2)) as 
    Point of ( 
    Euclid 2) by 
    EUCLID: 67;
    
        let V be
    Subset of ( 
    TOP-REAL 2); 
    
        reconsider VV = V as
    Subset of ( 
    TopSpaceMetr ( 
    Euclid 2)) by 
    Lm16;
    
        assume that
    
        
    
    A17: (f 
    . ( 
    0. ( 
    TOP-REAL 2))) 
    in V and 
    
        
    
    A18: V is 
    open;
    
        VV is
    open by 
    A18,
    Lm16,
    PRE_TOPC: 30;
    
        then
    
        consider r be
    Real such that 
    
        
    
    A19: r 
    >  
    0 and 
    
        
    
    A20: ( 
    Ball (u0,r)) 
    c= V by 
    A15,
    A17,
    TOPMETR: 15;
    
        reconsider r as
    Real;
    
        reconsider W1 = (
    Ball (u0,r)) as 
    Subset of ( 
    TOP-REAL 2) by 
    EUCLID: 67;
    
        
    
        
    
    A21: W1 is 
    open by 
    GOBOARD6: 3;
    
        
    
        
    
    A22: (f 
    .: W1) 
    c= W1 
    
        proof
    
          let z be
    object;
    
          assume z
    in (f 
    .: W1); 
    
          then
    
          consider y be
    object such that 
    
          
    
    A23: y 
    in ( 
    dom f) and 
    
          
    
    A24: y 
    in W1 and 
    
          
    
    A25: z 
    = (f 
    . y) by 
    FUNCT_1:def 6;
    
          z
    in ( 
    rng f) by 
    A23,
    A25,
    FUNCT_1:def 3;
    
          then
    
          reconsider qz = z as
    Point of ( 
    TOP-REAL 2); 
    
          reconsider pz = qz as
    Point of ( 
    Euclid 2) by 
    EUCLID: 67;
    
          reconsider q = y as
    Point of ( 
    TOP-REAL 2) by 
    A23;
    
          reconsider qy = q as
    Point of ( 
    Euclid 2) by 
    EUCLID: 67;
    
          (
    dist (u0,qy)) 
    < r by 
    A24,
    METRIC_1: 11;
    
          then
    |.((
    0. ( 
    TOP-REAL 2)) 
    - q).| 
    < r by 
    JGRAPH_1: 28;
    
          then (
    sqrt ((((( 
    0. ( 
    TOP-REAL 2)) 
    - q) 
    `1 ) 
    ^2 ) 
    + (((( 
    0. ( 
    TOP-REAL 2)) 
    - q) 
    `2 ) 
    ^2 ))) 
    < r by 
    JGRAPH_1: 30;
    
          then (
    sqrt ((((( 
    0. ( 
    TOP-REAL 2)) 
    `1 ) 
    - (q 
    `1 )) 
    ^2 ) 
    + (((( 
    0. ( 
    TOP-REAL 2)) 
    - q) 
    `2 ) 
    ^2 ))) 
    < r by 
    TOPREAL3: 3;
    
          then
    
          
    
    A26: ( 
    sqrt ((((( 
    0. ( 
    TOP-REAL 2)) 
    `1 ) 
    - (q 
    `1 )) 
    ^2 ) 
    + (((( 
    0. ( 
    TOP-REAL 2)) 
    `2 ) 
    - (q 
    `2 )) 
    ^2 ))) 
    < r by 
    TOPREAL3: 3;
    
          per cases ;
    
            suppose q
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            hence thesis by
    A24,
    A25,
    Def1;
    
          end;
    
            suppose
    
            
    
    A27: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
            
    
            
    
    A28: ((q 
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            (((q
    `2 ) 
    / (q 
    `1 )) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            then (1
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) 
    >= (1 
    +  
    0 ) by 
    XREAL_1: 7;
    
            then
    
            
    
    A29: ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    >= 1 by 
    SQUARE_1: 18,
    SQUARE_1: 26;
    
            then ((
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ) 
    >= ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    XREAL_1: 151;
    
            then
    
            
    
    A30: 1 
    <= (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ) by 
    A29,
    XXREAL_0: 2;
    
            
    
            
    
    A31: ( 
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| by 
    A27,
    Def1;
    
            
    
            then ((qz
    `2 ) 
    ^2 ) 
    = (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) by 
    A25,
    EUCLID: 52
    
            .= (((q
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then
    
            
    
    A32: ((qz 
    `2 ) 
    ^2 ) 
    <= (((q 
    `2 ) 
    ^2 ) 
    / 1) by 
    A30,
    A28,
    XREAL_1: 118;
    
            
    
            
    
    A33: ((q 
    `1 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            ((qz
    `1 ) 
    ^2 ) 
    = (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) by 
    A25,
    A31,
    EUCLID: 52
    
            .= (((q
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then ((qz
    `1 ) 
    ^2 ) 
    <= (((q 
    `1 ) 
    ^2 ) 
    / 1) by 
    A30,
    A33,
    XREAL_1: 118;
    
            then
    
            
    
    A34: (((qz 
    `1 ) 
    ^2 ) 
    + ((qz 
    `2 ) 
    ^2 )) 
    <= (((q 
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) by 
    A32,
    XREAL_1: 7;
    
            ((qz
    `1 ) 
    ^2 ) 
    >=  
    0 & ((qz 
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            then
    
            
    
    A35: ( 
    sqrt (((qz 
    `1 ) 
    ^2 ) 
    + ((qz 
    `2 ) 
    ^2 ))) 
    <= ( 
    sqrt (((q 
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 ))) by 
    A34,
    SQUARE_1: 26;
    
            
    
            
    
    A36: ((( 
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `2 ) 
    = ((( 
    0. ( 
    TOP-REAL 2)) 
    `2 ) 
    - (qz 
    `2 )) by 
    TOPREAL3: 3
    
            .= (
    - (qz 
    `2 )) by 
    JGRAPH_2: 3;
    
            (((
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `1 ) 
    = ((( 
    0. ( 
    TOP-REAL 2)) 
    `1 ) 
    - (qz 
    `1 )) by 
    TOPREAL3: 3
    
            .= (
    - (qz 
    `1 )) by 
    JGRAPH_2: 3;
    
            then (
    sqrt ((((( 
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `1 ) 
    ^2 ) 
    + (((( 
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `2 ) 
    ^2 ))) 
    < r by 
    A26,
    A36,
    A35,
    JGRAPH_2: 3,
    XXREAL_0: 2;
    
            then
    |.((
    0. ( 
    TOP-REAL 2)) 
    - qz).| 
    < r by 
    JGRAPH_1: 30;
    
            then (
    dist (u0,pz)) 
    < r by 
    JGRAPH_1: 28;
    
            hence thesis by
    METRIC_1: 11;
    
          end;
    
            suppose
    
            
    
    A37: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & not ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
            
    
            
    
    A38: ((q 
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            (((q
    `1 ) 
    / (q 
    `2 )) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            then (1
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )) 
    >= (1 
    +  
    0 ) by 
    XREAL_1: 7;
    
            then
    
            
    
    A39: ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    >= 1 by 
    SQUARE_1: 18,
    SQUARE_1: 26;
    
            then ((
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 ) 
    >= ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    XREAL_1: 151;
    
            then
    
            
    
    A40: 1 
    <= (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 ) by 
    A39,
    XXREAL_0: 2;
    
            
    
            
    
    A41: ( 
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| by 
    A37,
    Def1;
    
            
    
            then ((qz
    `2 ) 
    ^2 ) 
    = (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    ^2 ) by 
    A25,
    EUCLID: 52
    
            .= (((q
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then
    
            
    
    A42: ((qz 
    `2 ) 
    ^2 ) 
    <= (((q 
    `2 ) 
    ^2 ) 
    / 1) by 
    A40,
    A38,
    XREAL_1: 118;
    
            
    
            
    
    A43: ((q 
    `1 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            ((qz
    `1 ) 
    ^2 ) 
    = (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    ^2 ) by 
    A25,
    A41,
    EUCLID: 52
    
            .= (((q
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then ((qz
    `1 ) 
    ^2 ) 
    <= (((q 
    `1 ) 
    ^2 ) 
    / 1) by 
    A40,
    A43,
    XREAL_1: 118;
    
            then
    
            
    
    A44: (((qz 
    `1 ) 
    ^2 ) 
    + ((qz 
    `2 ) 
    ^2 )) 
    <= (((q 
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) by 
    A42,
    XREAL_1: 7;
    
            ((qz
    `1 ) 
    ^2 ) 
    >=  
    0 & ((qz 
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            then
    
            
    
    A45: ( 
    sqrt (((qz 
    `1 ) 
    ^2 ) 
    + ((qz 
    `2 ) 
    ^2 ))) 
    <= ( 
    sqrt (((q 
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 ))) by 
    A44,
    SQUARE_1: 26;
    
            
    
            
    
    A46: ((( 
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `2 ) 
    = ((( 
    0. ( 
    TOP-REAL 2)) 
    `2 ) 
    - (qz 
    `2 )) by 
    TOPREAL3: 3
    
            .= (
    - (qz 
    `2 )) by 
    JGRAPH_2: 3;
    
            (((
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `1 ) 
    = ((( 
    0. ( 
    TOP-REAL 2)) 
    `1 ) 
    - (qz 
    `1 )) by 
    TOPREAL3: 3
    
            .= (
    - (qz 
    `1 )) by 
    JGRAPH_2: 3;
    
            then (
    sqrt ((((( 
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `1 ) 
    ^2 ) 
    + (((( 
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `2 ) 
    ^2 ))) 
    < r by 
    A26,
    A46,
    A45,
    JGRAPH_2: 3,
    XXREAL_0: 2;
    
            then
    |.((
    0. ( 
    TOP-REAL 2)) 
    - qz).| 
    < r by 
    JGRAPH_1: 30;
    
            then (
    dist (u0,pz)) 
    < r by 
    JGRAPH_1: 28;
    
            hence thesis by
    METRIC_1: 11;
    
          end;
    
        end;
    
        u0
    in W1 by 
    A19,
    GOBOARD6: 1;
    
        hence thesis by
    A20,
    A21,
    A22,
    XBOOLE_1: 1;
    
      end;
    
      
    
      
    
    A47: (D 
    ` ) 
    =  
    {(
    0. ( 
    TOP-REAL 2))} by 
    Th20;
    
      then ex h be
    Function of (( 
    TOP-REAL 2) 
    | D), (( 
    TOP-REAL 2) 
    | D) st h 
    = ( 
    Sq_Circ  
    | D) & h is 
    continuous by 
    Th19;
    
      hence thesis by
    A15,
    A47,
    A1,
    A16,
    Th3;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:22
    
    
    
    
    
    Th22: 
    Sq_Circ is 
    one-to-one
    
    proof
    
      let x1,x2 be
    object;
    
      assume that
    
      
    
    A1: x1 
    in ( 
    dom  
    Sq_Circ ) and 
    
      
    
    A2: x2 
    in ( 
    dom  
    Sq_Circ ) and 
    
      
    
    A3: ( 
    Sq_Circ  
    . x1) 
    = ( 
    Sq_Circ  
    . x2); 
    
      reconsider p2 = x2 as
    Point of ( 
    TOP-REAL 2) by 
    A2;
    
      reconsider p1 = x1 as
    Point of ( 
    TOP-REAL 2) by 
    A1;
    
      set q = p1, p = p2;
    
      per cases ;
    
        suppose
    
        
    
    A4: q 
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
        then
    
        
    
    A5: ( 
    Sq_Circ  
    . q) 
    = ( 
    0. ( 
    TOP-REAL 2)) by 
    Def1;
    
        now
    
          per cases ;
    
            case p
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            hence thesis by
    A4;
    
          end;
    
            case
    
            
    
    A6: p 
    <> ( 
    0. ( 
    TOP-REAL 2)) & ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))); 
    
            (((p
    `2 ) 
    / (p 
    `1 )) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            then (1
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )) 
    >= (1 
    +  
    0 ) by 
    XREAL_1: 7;
    
            then
    
            
    
    A7: ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    >= 1 by 
    SQUARE_1: 18,
    SQUARE_1: 26;
    
            
    
            
    
    A8: ( 
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| by 
    A6,
    Def1;
    
            then ((p
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    =  
    0 by 
    A3,
    A5,
    EUCLID: 52,
    JGRAPH_2: 3;
    
            
    
            then
    
            
    
    A9: (p 
    `2 ) 
    = ( 
    0  
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    A7,
    XCMPLX_1: 87
    
            .=
    0 ; 
    
            ((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    =  
    0 by 
    A3,
    A5,
    A8,
    EUCLID: 52,
    JGRAPH_2: 3;
    
            
    
            then (p
    `1 ) 
    = ( 
    0  
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    A7,
    XCMPLX_1: 87
    
            .=
    0 ; 
    
            hence contradiction by
    A6,
    A9,
    EUCLID: 53,
    EUCLID: 54;
    
          end;
    
            case
    
            
    
    A10: p 
    <> ( 
    0. ( 
    TOP-REAL 2)) & not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))); 
    
            (((p
    `1 ) 
    / (p 
    `2 )) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            then (1
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )) 
    >= (1 
    +  
    0 ) by 
    XREAL_1: 7;
    
            then
    
            
    
    A11: ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    >= 1 by 
    SQUARE_1: 18,
    SQUARE_1: 26;
    
            (
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    A10,
    Def1;
    
            then ((p
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    =  
    0 by 
    A3,
    A5,
    EUCLID: 52,
    JGRAPH_2: 3;
    
            
    
            then (p
    `2 ) 
    = ( 
    0  
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    A11,
    XCMPLX_1: 87
    
            .=
    0 ; 
    
            hence contradiction by
    A10;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
        suppose
    
        
    
    A12: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
        
    
        
    
    A13: ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        
    
        
    
    A14: ( 
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| by 
    A12,
    Def1;
    
        
    
        
    
    A15: ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| 
    `2 ) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        
    
    A16: (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
        
    
        
    
    A17: ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| 
    `1 ) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        now
    
          per cases ;
    
            case
    
            
    
    A18: p 
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            (((q
    `2 ) 
    / (q 
    `1 )) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            then (1
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) 
    >= (1 
    +  
    0 ) by 
    XREAL_1: 7;
    
            then
    
            
    
    A19: ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    >= 1 by 
    SQUARE_1: 18,
    SQUARE_1: 26;
    
            
    
            
    
    A20: ( 
    Sq_Circ  
    . p) 
    = ( 
    0. ( 
    TOP-REAL 2)) by 
    A18,
    Def1;
    
            then ((q
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    =  
    0 by 
    A3,
    A14,
    EUCLID: 52,
    JGRAPH_2: 3;
    
            
    
            then
    
            
    
    A21: (q 
    `2 ) 
    = ( 
    0  
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A19,
    XCMPLX_1: 87
    
            .=
    0 ; 
    
            ((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    =  
    0 by 
    A3,
    A14,
    A20,
    EUCLID: 52,
    JGRAPH_2: 3;
    
            
    
            then (q
    `1 ) 
    = ( 
    0  
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A19,
    XCMPLX_1: 87
    
            .=
    0 ; 
    
            hence contradiction by
    A12,
    A21,
    EUCLID: 53,
    EUCLID: 54;
    
          end;
    
            case
    
            
    
    A22: p 
    <> ( 
    0. ( 
    TOP-REAL 2)) & ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))); 
    
            now
    
              assume
    
              
    
    A23: (p 
    `1 ) 
    =  
    0 ; 
    
              then (p
    `2 ) 
    =  
    0 by 
    A22;
    
              hence contradiction by
    A22,
    A23,
    EUCLID: 53,
    EUCLID: 54;
    
            end;
    
            then
    
            
    
    A24: ((p 
    `1 ) 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
            
    
            
    
    A25: ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
            
    
            
    
    A26: (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
            
    
            
    
    A27: ( 
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| by 
    A22,
    Def1;
    
            then
    
            
    
    A28: ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A3,
    A14,
    A15,
    EUCLID: 52;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) by 
    XCMPLX_1: 76;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) by 
    A26,
    SQUARE_1:def 2;
    
            then
    
            
    
    A29: (((p 
    `2 ) 
    ^2 ) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = (((q 
    `2 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A16,
    SQUARE_1:def 2;
    
            
    
            
    
    A30: ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A3,
    A14,
    A17,
    A27,
    EUCLID: 52;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) by 
    XCMPLX_1: 76;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) by 
    A26,
    SQUARE_1:def 2;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = (((q 
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A16,
    SQUARE_1:def 2;
    
            then ((((p
    `1 ) 
    ^2 ) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    / ((p 
    `1 ) 
    ^2 )) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    XCMPLX_1: 48;
    
            then ((((p
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    XCMPLX_1: 48;
    
            then (1
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A24,
    XCMPLX_1: 60;
    
            then
    
            
    
    A31: ((1 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    = (((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) by 
    A16,
    XCMPLX_1: 87;
    
            now
    
              assume
    
              
    
    A32: (q 
    `1 ) 
    =  
    0 ; 
    
              then (q
    `2 ) 
    =  
    0 by 
    A12;
    
              hence contradiction by
    A12,
    A32,
    EUCLID: 53,
    EUCLID: 54;
    
            end;
    
            then
    
            
    
    A33: ((q 
    `1 ) 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
            now
    
              per cases ;
    
                case
    
                
    
    A34: (p 
    `2 ) 
    =  
    0 ; 
    
                then ((q
    `2 ) 
    ^2 ) 
    =  
    0 by 
    A16,
    A29,
    XCMPLX_1: 50;
    
                then
    
                
    
    A35: (q 
    `2 ) 
    =  
    0 by 
    XCMPLX_1: 6;
    
                then p
    =  
    |[(q
    `1 ), 
    0 ]| by 
    A3,
    A14,
    A27,
    A34,
    EUCLID: 53,
    SQUARE_1: 18;
    
                hence thesis by
    A35,
    EUCLID: 53;
    
              end;
    
                case (p
    `2 ) 
    <>  
    0 ; 
    
                then
    
                
    
    A36: ((p 
    `2 ) 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
                ((((p
    `2 ) 
    ^2 ) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    / ((p 
    `2 ) 
    ^2 )) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A29,
    XCMPLX_1: 48;
    
                then ((((p
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    XCMPLX_1: 48;
    
                then (1
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A36,
    XCMPLX_1: 60;
    
                then ((1
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    = (((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) by 
    A16,
    XCMPLX_1: 87;
    
                then ((((q
    `1 ) 
    ^2 ) 
    / ((q 
    `1 ) 
    ^2 )) 
    / ((p 
    `1 ) 
    ^2 )) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / ((q 
    `1 ) 
    ^2 )) by 
    A31,
    XCMPLX_1: 48;
    
                then (1
    / ((p 
    `1 ) 
    ^2 )) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / ((q 
    `1 ) 
    ^2 )) by 
    A33,
    XCMPLX_1: 60;
    
                then ((1
    / ((p 
    `1 ) 
    ^2 )) 
    * ((p 
    `2 ) 
    ^2 )) 
    = ((((p 
    `2 ) 
    ^2 ) 
    * (((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 ))) 
    / ((q 
    `1 ) 
    ^2 )) by 
    XCMPLX_1: 74;
    
                then ((1
    / ((p 
    `1 ) 
    ^2 )) 
    * ((p 
    `2 ) 
    ^2 )) 
    = (((q 
    `2 ) 
    ^2 ) 
    / ((q 
    `1 ) 
    ^2 )) by 
    A36,
    XCMPLX_1: 87;
    
                then (((p
    `2 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    = (((q 
    `2 ) 
    ^2 ) 
    / ((q 
    `1 ) 
    ^2 )) by 
    XCMPLX_1: 99;
    
                then (((p
    `2 ) 
    / (p 
    `1 )) 
    ^2 ) 
    = (((q 
    `2 ) 
    ^2 ) 
    / ((q 
    `1 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
                then
    
                
    
    A37: (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )) 
    = (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) by 
    XCMPLX_1: 76;
    
                then (p
    `2 ) 
    = (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A28,
    A25,
    XCMPLX_1: 87;
    
                then
    
                
    
    A38: (p 
    `2 ) 
    = (q 
    `2 ) by 
    A13,
    XCMPLX_1: 87;
    
                (p
    `1 ) 
    = (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A30,
    A25,
    A37,
    XCMPLX_1: 87;
    
                then (p
    `1 ) 
    = (q 
    `1 ) by 
    A13,
    XCMPLX_1: 87;
    
                then p
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    A38,
    EUCLID: 53;
    
                hence thesis by
    EUCLID: 53;
    
              end;
    
            end;
    
            hence thesis;
    
          end;
    
            case
    
            
    
    A39: p 
    <> ( 
    0. ( 
    TOP-REAL 2)) & not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))); 
    
            
    
            
    
    A40: (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
            
    
            
    
    A41: p 
    <> ( 
    0. ( 
    TOP-REAL 2)) & (p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 )) by 
    A39,
    JGRAPH_2: 13;
    
            (p
    `2 ) 
    <>  
    0 by 
    A39;
    
            then
    
            
    
    A42: ((p 
    `2 ) 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
            (
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| 
    `2 ) 
    = ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
            then
    
            
    
    A43: ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A3,
    A14,
    A15,
    A39,
    Def1;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) by 
    XCMPLX_1: 76;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) by 
    A40,
    SQUARE_1:def 2;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = (((q 
    `2 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A16,
    SQUARE_1:def 2;
    
            then ((((p
    `2 ) 
    ^2 ) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    / ((p 
    `2 ) 
    ^2 )) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    XCMPLX_1: 48;
    
            then ((((p
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    XCMPLX_1: 48;
    
            then (1
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A42,
    XCMPLX_1: 60;
    
            then
    
            
    
    A44: ((1 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    = (((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) by 
    A16,
    XCMPLX_1: 87;
    
            
    
            
    
    A45: ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
            (
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| 
    `1 ) 
    = ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
            then
    
            
    
    A46: ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A3,
    A14,
    A17,
    A39,
    Def1;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) by 
    XCMPLX_1: 76;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) by 
    A40,
    SQUARE_1:def 2;
    
            then
    
            
    
    A47: (((p 
    `1 ) 
    ^2 ) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = (((q 
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A16,
    SQUARE_1:def 2;
    
            
    
    A48: 
    
            now
    
              assume
    
              
    
    A49: (q 
    `1 ) 
    =  
    0 ; 
    
              then (q
    `2 ) 
    =  
    0 by 
    A12;
    
              hence contradiction by
    A12,
    A49,
    EUCLID: 53,
    EUCLID: 54;
    
            end;
    
            then
    
            
    
    A50: ((q 
    `1 ) 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
            now
    
              per cases ;
    
                case (p
    `1 ) 
    =  
    0 ; 
    
                then ((q
    `1 ) 
    ^2 ) 
    =  
    0 by 
    A16,
    A47,
    XCMPLX_1: 50;
    
                then
    
                
    
    A51: (q 
    `1 ) 
    =  
    0 by 
    XCMPLX_1: 6;
    
                then (q
    `2 ) 
    =  
    0 by 
    A12;
    
                hence contradiction by
    A12,
    A51,
    EUCLID: 53,
    EUCLID: 54;
    
              end;
    
                case
    
                
    
    A52: (p 
    `1 ) 
    <>  
    0 ; 
    
                set a = ((q
    `2 ) 
    / (q 
    `1 )); 
    
                ((((p
    `1 ) 
    ^2 ) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    / ((p 
    `1 ) 
    ^2 )) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A47,
    XCMPLX_1: 48;
    
                then
    
                
    
    A53: ((((p 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    XCMPLX_1: 48;
    
                
    
                
    
    A54: ((q 
    `1 ) 
    * a) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= ((q 
    `1 ) 
    * a) or ((q 
    `1 ) 
    * a) 
    >= (q 
    `1 ) & ((q 
    `1 ) 
    * a) 
    <= ( 
    - (q 
    `1 )) by 
    A12,
    A48,
    XCMPLX_1: 87;
    
                
    
    A55: 
    
                now
    
                  per cases by
    A48;
    
                    case
    
                    
    
    A56: (q 
    `1 ) 
    >  
    0 ; 
    
                    then ((a
    * (q 
    `1 )) 
    / (q 
    `1 )) 
    <= ((q 
    `1 ) 
    / (q 
    `1 )) & (( 
    - (q 
    `1 )) 
    / (q 
    `1 )) 
    <= ((a 
    * (q 
    `1 )) 
    / (q 
    `1 )) or ((a 
    * (q 
    `1 )) 
    / (q 
    `1 )) 
    >= ((q 
    `1 ) 
    / (q 
    `1 )) & ((a 
    * (q 
    `1 )) 
    / (q 
    `1 )) 
    <= (( 
    - (q 
    `1 )) 
    / (q 
    `1 )) by 
    A54,
    XREAL_1: 72;
    
                    then
    
                    
    
    A57: a 
    <= ((q 
    `1 ) 
    / (q 
    `1 )) & (( 
    - (q 
    `1 )) 
    / (q 
    `1 )) 
    <= a or a 
    >= ((q 
    `1 ) 
    / (q 
    `1 )) & a 
    <= (( 
    - (q 
    `1 )) 
    / (q 
    `1 )) by 
    A56,
    XCMPLX_1: 89;
    
                    ((q
    `1 ) 
    / (q 
    `1 )) 
    = 1 by 
    A56,
    XCMPLX_1: 60;
    
                    hence a
    <= 1 & ( 
    - 1) 
    <= a or a 
    >= 1 & a 
    <= ( 
    - 1) by 
    A57,
    XCMPLX_1: 187;
    
                  end;
    
                    case
    
                    
    
    A58: (q 
    `1 ) 
    <  
    0 ; 
    
                    then
    
                    
    
    A59: ((q 
    `1 ) 
    / (q 
    `1 )) 
    = 1 & (( 
    - (q 
    `1 )) 
    / (q 
    `1 )) 
    = ( 
    - 1) by 
    XCMPLX_1: 60,
    XCMPLX_1: 197;
    
                    ((a
    * (q 
    `1 )) 
    / (q 
    `1 )) 
    >= ((q 
    `1 ) 
    / (q 
    `1 )) & (( 
    - (q 
    `1 )) 
    / (q 
    `1 )) 
    >= ((a 
    * (q 
    `1 )) 
    / (q 
    `1 )) or ((a 
    * (q 
    `1 )) 
    / (q 
    `1 )) 
    <= ((q 
    `1 ) 
    / (q 
    `1 )) & ((a 
    * (q 
    `1 )) 
    / (q 
    `1 )) 
    >= (( 
    - (q 
    `1 )) 
    / (q 
    `1 )) by 
    A54,
    A58,
    XREAL_1: 73;
    
                    hence a
    <= 1 & ( 
    - 1) 
    <= a or a 
    >= 1 & a 
    <= ( 
    - 1) by 
    A58,
    A59,
    XCMPLX_1: 89;
    
                  end;
    
                end;
    
                ((p
    `1 ) 
    ^2 ) 
    >  
    0 by 
    A52,
    SQUARE_1: 12;
    
                then (1
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A53,
    XCMPLX_1: 60;
    
                then ((1
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    = (((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) by 
    A16,
    XCMPLX_1: 87;
    
                then ((((q
    `1 ) 
    ^2 ) 
    / ((q 
    `1 ) 
    ^2 )) 
    / ((p 
    `1 ) 
    ^2 )) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / ((q 
    `1 ) 
    ^2 )) by 
    A44,
    XCMPLX_1: 48;
    
                then (1
    / ((p 
    `1 ) 
    ^2 )) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / ((q 
    `1 ) 
    ^2 )) by 
    A50,
    XCMPLX_1: 60;
    
                then ((1
    / ((p 
    `1 ) 
    ^2 )) 
    * ((p 
    `2 ) 
    ^2 )) 
    = ((((p 
    `2 ) 
    ^2 ) 
    * (((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 ))) 
    / ((q 
    `1 ) 
    ^2 )) by 
    XCMPLX_1: 74;
    
                then ((1
    / ((p 
    `1 ) 
    ^2 )) 
    * ((p 
    `2 ) 
    ^2 )) 
    = (((q 
    `2 ) 
    ^2 ) 
    / ((q 
    `1 ) 
    ^2 )) by 
    A42,
    XCMPLX_1: 87;
    
                then (((p
    `2 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    = (((q 
    `2 ) 
    ^2 ) 
    / ((q 
    `1 ) 
    ^2 )) by 
    XCMPLX_1: 99;
    
                then (((p
    `2 ) 
    / (p 
    `1 )) 
    ^2 ) 
    = (((q 
    `2 ) 
    ^2 ) 
    / ((q 
    `1 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
                then
    
                
    
    A60: (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ) 
    = (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ) by 
    XCMPLX_1: 76;
    
                then
    
                
    
    A61: (((p 
    `2 ) 
    / (p 
    `1 )) 
    * (p 
    `1 )) 
    = (a 
    * (p 
    `1 )) or (((p 
    `2 ) 
    / (p 
    `1 )) 
    * (p 
    `1 )) 
    = (( 
    - a) 
    * (p 
    `1 )) by 
    SQUARE_1: 40;
    
                
    
    A62: 
    
                now
    
                  per cases by
    A52,
    A61,
    XCMPLX_1: 87;
    
                    case
    
                    
    
    A63: (p 
    `2 ) 
    = (a 
    * (p 
    `1 )); 
    
                    now
    
                      per cases by
    A52;
    
                        case (p
    `1 ) 
    >  
    0 ; 
    
                        then ((p
    `1 ) 
    / (p 
    `1 )) 
    <= ((a 
    * (p 
    `1 )) 
    / (p 
    `1 )) & (( 
    - (a 
    * (p 
    `1 ))) 
    / (p 
    `1 )) 
    <= ((p 
    `1 ) 
    / (p 
    `1 )) or ((p 
    `1 ) 
    / (p 
    `1 )) 
    >= ((a 
    * (p 
    `1 )) 
    / (p 
    `1 )) & ((p 
    `1 ) 
    / (p 
    `1 )) 
    <= (( 
    - (a 
    * (p 
    `1 ))) 
    / (p 
    `1 )) by 
    A41,
    A63,
    XREAL_1: 72;
    
                        then
    
                        
    
    A64: 1 
    <= ((a 
    * (p 
    `1 )) 
    / (p 
    `1 )) & (( 
    - (a 
    * (p 
    `1 ))) 
    / (p 
    `1 )) 
    <= 1 or 1 
    >= ((a 
    * (p 
    `1 )) 
    / (p 
    `1 )) & 1 
    <= (( 
    - (a 
    * (p 
    `1 ))) 
    / (p 
    `1 )) by 
    A52,
    XCMPLX_1: 60;
    
                        ((a
    * (p 
    `1 )) 
    / (p 
    `1 )) 
    = a by 
    A52,
    XCMPLX_1: 89;
    
                        hence 1
    <= a & ( 
    - a) 
    <= 1 or 1 
    >= a & 1 
    <= ( 
    - a) by 
    A64,
    XCMPLX_1: 187;
    
                      end;
    
                        case (p
    `1 ) 
    <  
    0 ; 
    
                        then ((p
    `1 ) 
    / (p 
    `1 )) 
    >= ((a 
    * (p 
    `1 )) 
    / (p 
    `1 )) & (( 
    - (a 
    * (p 
    `1 ))) 
    / (p 
    `1 )) 
    >= ((p 
    `1 ) 
    / (p 
    `1 )) or ((p 
    `1 ) 
    / (p 
    `1 )) 
    <= ((a 
    * (p 
    `1 )) 
    / (p 
    `1 )) & ((p 
    `1 ) 
    / (p 
    `1 )) 
    >= (( 
    - (a 
    * (p 
    `1 ))) 
    / (p 
    `1 )) by 
    A41,
    A63,
    XREAL_1: 73;
    
                        then
    
                        
    
    A65: 1 
    >= ((a 
    * (p 
    `1 )) 
    / (p 
    `1 )) & (( 
    - (a 
    * (p 
    `1 ))) 
    / (p 
    `1 )) 
    >= 1 or 1 
    <= ((a 
    * (p 
    `1 )) 
    / (p 
    `1 )) & 1 
    >= (( 
    - (a 
    * (p 
    `1 ))) 
    / (p 
    `1 )) by 
    A52,
    XCMPLX_1: 60;
    
                        ((a
    * (p 
    `1 )) 
    / (p 
    `1 )) 
    = a by 
    A52,
    XCMPLX_1: 89;
    
                        hence 1
    <= a & ( 
    - a) 
    <= 1 or 1 
    >= a & 1 
    <= ( 
    - a) by 
    A65,
    XCMPLX_1: 187;
    
                      end;
    
                    end;
    
                    then 1
    <= a & ( 
    - a) 
    <= 1 or 1 
    >= a & ( 
    - 1) 
    >= ( 
    - ( 
    - a)) by 
    XREAL_1: 24;
    
                    hence 1
    <= a or ( 
    - 1) 
    >= a; 
    
                  end;
    
                    case
    
                    
    
    A66: (p 
    `2 ) 
    = (( 
    - a) 
    * (p 
    `1 )); 
    
                    now
    
                      per cases by
    A52;
    
                        case (p
    `1 ) 
    >  
    0 ; 
    
                        then ((p
    `1 ) 
    / (p 
    `1 )) 
    <= ((( 
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 )) & (( 
    - (( 
    - a) 
    * (p 
    `1 ))) 
    / (p 
    `1 )) 
    <= ((p 
    `1 ) 
    / (p 
    `1 )) or ((p 
    `1 ) 
    / (p 
    `1 )) 
    >= ((( 
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 )) & ((p 
    `1 ) 
    / (p 
    `1 )) 
    <= (( 
    - (( 
    - a) 
    * (p 
    `1 ))) 
    / (p 
    `1 )) by 
    A41,
    A66,
    XREAL_1: 72;
    
                        then 1
    <= ((( 
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 )) & (( 
    - (( 
    - a) 
    * (p 
    `1 ))) 
    / (p 
    `1 )) 
    <= 1 or 1 
    >= ((( 
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 )) & 1 
    <= (( 
    - (( 
    - a) 
    * (p 
    `1 ))) 
    / (p 
    `1 )) by 
    A52,
    XCMPLX_1: 60;
    
                        then
    
                        
    
    A67: 1 
    <= ( 
    - a) & ( 
    - ((( 
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 ))) 
    <= 1 or 1 
    >= ( 
    - a) & 1 
    <= ( 
    - ((( 
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 ))) by 
    A52,
    XCMPLX_1: 89,
    XCMPLX_1: 187;
    
                        (((
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 )) 
    = ( 
    - a) by 
    A52,
    XCMPLX_1: 89;
    
                        hence 1
    <= a & ( 
    - a) 
    <= 1 or 1 
    >= a & 1 
    <= ( 
    - a) by 
    A67;
    
                      end;
    
                        case (p
    `1 ) 
    <  
    0 ; 
    
                        then ((p
    `1 ) 
    / (p 
    `1 )) 
    >= ((( 
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 )) & (( 
    - (( 
    - a) 
    * (p 
    `1 ))) 
    / (p 
    `1 )) 
    >= ((p 
    `1 ) 
    / (p 
    `1 )) or ((p 
    `1 ) 
    / (p 
    `1 )) 
    <= ((( 
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 )) & ((p 
    `1 ) 
    / (p 
    `1 )) 
    >= (( 
    - (( 
    - a) 
    * (p 
    `1 ))) 
    / (p 
    `1 )) by 
    A41,
    A66,
    XREAL_1: 73;
    
                        then 1
    >= ((( 
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 )) & (( 
    - (( 
    - a) 
    * (p 
    `1 ))) 
    / (p 
    `1 )) 
    >= 1 or 1 
    <= ((( 
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 )) & 1 
    >= (( 
    - (( 
    - a) 
    * (p 
    `1 ))) 
    / (p 
    `1 )) by 
    A52,
    XCMPLX_1: 60;
    
                        then
    
                        
    
    A68: 1 
    >= ( 
    - a) & ( 
    - ((( 
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 ))) 
    >= 1 or 1 
    <= ( 
    - a) & 1 
    >= ( 
    - ((( 
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 ))) by 
    A52,
    XCMPLX_1: 89,
    XCMPLX_1: 187;
    
                        (((
    - a) 
    * (p 
    `1 )) 
    / (p 
    `1 )) 
    = ( 
    - a) by 
    A52,
    XCMPLX_1: 89;
    
                        hence 1
    <= a & ( 
    - a) 
    <= 1 or 1 
    >= a & 1 
    <= ( 
    - a) by 
    A68;
    
                      end;
    
                    end;
    
                    then 1
    <= a & ( 
    - a) 
    <= 1 or 1 
    >= a & ( 
    - 1) 
    >= ( 
    - ( 
    - a)) by 
    XREAL_1: 24;
    
                    hence 1
    <= a or ( 
    - 1) 
    >= a; 
    
                  end;
    
                end;
    
                
    
    A69: 
    
                now
    
                  per cases by
    A62,
    A55,
    XXREAL_0: 1;
    
                    case a
    = 1; 
    
                    then (((p
    `2 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    = 1 by 
    A60,
    XCMPLX_1: 76;
    
                    then
    
                    
    
    A70: ((p 
    `2 ) 
    ^2 ) 
    = ((p 
    `1 ) 
    ^2 ) by 
    XCMPLX_1: 58;
    
                    (((p
    `1 ) 
    / (p 
    `2 )) 
    ^2 ) 
    = (((p 
    `1 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
                    hence (((p
    `1 ) 
    / (p 
    `2 )) 
    ^2 ) 
    = (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ) by 
    A60,
    A70,
    XCMPLX_1: 76;
    
                  end;
    
                    case a
    = ( 
    - 1); 
    
                    then (((p
    `2 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    = 1 by 
    A60,
    XCMPLX_1: 76;
    
                    then
    
                    
    
    A71: ((p 
    `2 ) 
    ^2 ) 
    = ((p 
    `1 ) 
    ^2 ) by 
    XCMPLX_1: 58;
    
                    (((p
    `1 ) 
    / (p 
    `2 )) 
    ^2 ) 
    = (((p 
    `1 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
                    hence (((p
    `1 ) 
    / (p 
    `2 )) 
    ^2 ) 
    = (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ) by 
    A60,
    A71,
    XCMPLX_1: 76;
    
                  end;
    
                end;
    
                then (p
    `2 ) 
    = (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A43,
    A45,
    XCMPLX_1: 87;
    
                then
    
                
    
    A72: (p 
    `2 ) 
    = (q 
    `2 ) by 
    A13,
    XCMPLX_1: 87;
    
                (p
    `1 ) 
    = (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A46,
    A45,
    A69,
    XCMPLX_1: 87;
    
                then (p
    `1 ) 
    = (q 
    `1 ) by 
    A13,
    XCMPLX_1: 87;
    
                then p
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    A72,
    EUCLID: 53;
    
                hence thesis by
    EUCLID: 53;
    
              end;
    
            end;
    
            hence thesis;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
        suppose
    
        
    
    A73: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & not ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
        
    
        
    
    A74: ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| 
    `2 ) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        
    
    A75: ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| 
    `1 ) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        
    
    A76: (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
        
    
        
    
    A77: ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        
    
        
    
    A78: ( 
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| by 
    A73,
    Def1;
    
        
    
        
    
    A79: (q 
    `1 ) 
    <= (q 
    `2 ) & ( 
    - (q 
    `2 )) 
    <= (q 
    `1 ) or (q 
    `1 ) 
    >= (q 
    `2 ) & (q 
    `1 ) 
    <= ( 
    - (q 
    `2 )) by 
    A73,
    JGRAPH_2: 13;
    
        now
    
          per cases ;
    
            case
    
            
    
    A80: p 
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            (((q
    `1 ) 
    / (q 
    `2 )) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            then (1
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )) 
    >= (1 
    +  
    0 ) by 
    XREAL_1: 7;
    
            then
    
            
    
    A81: ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    >= 1 by 
    SQUARE_1: 18,
    SQUARE_1: 26;
    
            (
    Sq_Circ  
    . p) 
    = ( 
    0. ( 
    TOP-REAL 2)) by 
    A80,
    Def1;
    
            then ((q
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    =  
    0 by 
    A3,
    A78,
    EUCLID: 52,
    JGRAPH_2: 3;
    
            
    
            then (q
    `2 ) 
    = ( 
    0  
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A81,
    XCMPLX_1: 87
    
            .=
    0 ; 
    
            hence contradiction by
    A73;
    
          end;
    
            case
    
            
    
    A82: p 
    <> ( 
    0. ( 
    TOP-REAL 2)) & ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))); 
    
            now
    
              assume
    
              
    
    A83: (p 
    `1 ) 
    =  
    0 ; 
    
              then (p
    `2 ) 
    =  
    0 by 
    A82;
    
              hence contradiction by
    A82,
    A83,
    EUCLID: 53,
    EUCLID: 54;
    
            end;
    
            then
    
            
    
    A84: ((p 
    `1 ) 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
            
    
            
    
    A85: (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
            
    
            
    
    A86: ( 
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| by 
    A82,
    Def1;
    
            then
    
            
    
    A87: ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A3,
    A78,
    A75,
    EUCLID: 52;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    ^2 ) by 
    XCMPLX_1: 76;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 )) by 
    A85,
    SQUARE_1:def 2;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = (((q 
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    A76,
    SQUARE_1:def 2;
    
            then ((((p
    `1 ) 
    ^2 ) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    / ((p 
    `1 ) 
    ^2 )) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    XCMPLX_1: 48;
    
            then ((((p
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    XCMPLX_1: 48;
    
            then (1
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    A84,
    XCMPLX_1: 60;
    
            then
    
            
    
    A88: ((1 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    = (((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) by 
    A76,
    XCMPLX_1: 87;
    
            
    
            
    
    A89: ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A3,
    A78,
    A74,
    A86,
    EUCLID: 52;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    ^2 ) by 
    XCMPLX_1: 76;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 )) by 
    A85,
    SQUARE_1:def 2;
    
            then
    
            
    
    A90: (((p 
    `2 ) 
    ^2 ) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = (((q 
    `2 ) 
    ^2 ) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    A76,
    SQUARE_1:def 2;
    
            
    
            
    
    A91: ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
            
    
            
    
    A92: (q 
    `2 ) 
    <>  
    0 by 
    A73;
    
            then
    
            
    
    A93: ((q 
    `2 ) 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
            now
    
              per cases ;
    
                case (p
    `2 ) 
    =  
    0 ; 
    
                then ((q
    `2 ) 
    ^2 ) 
    =  
    0 by 
    A76,
    A90,
    XCMPLX_1: 50;
    
                then (q
    `2 ) 
    =  
    0 by 
    XCMPLX_1: 6;
    
                hence contradiction by
    A73;
    
              end;
    
                case
    
                
    
    A94: (p 
    `2 ) 
    <>  
    0 ; 
    
                set a = ((q
    `1 ) 
    / (q 
    `2 )); 
    
                ((((p
    `2 ) 
    ^2 ) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    / ((p 
    `2 ) 
    ^2 )) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    A90,
    XCMPLX_1: 48;
    
                then
    
                
    
    A95: ((((p 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    XCMPLX_1: 48;
    
                
    
                
    
    A96: ((q 
    `2 ) 
    * a) 
    <= (q 
    `2 ) & ( 
    - (q 
    `2 )) 
    <= ((q 
    `2 ) 
    * a) or ((q 
    `2 ) 
    * a) 
    >= (q 
    `2 ) & ((q 
    `2 ) 
    * a) 
    <= ( 
    - (q 
    `2 )) by 
    A79,
    A92,
    XCMPLX_1: 87;
    
                
    
    A97: 
    
                now
    
                  per cases by
    A73;
    
                    case
    
                    
    
    A98: (q 
    `2 ) 
    >  
    0 ; 
    
                    then
    
                    
    
    A99: ((q 
    `2 ) 
    / (q 
    `2 )) 
    = 1 & (( 
    - (q 
    `2 )) 
    / (q 
    `2 )) 
    = ( 
    - 1) by 
    XCMPLX_1: 60,
    XCMPLX_1: 197;
    
                    ((a
    * (q 
    `2 )) 
    / (q 
    `2 )) 
    <= ((q 
    `2 ) 
    / (q 
    `2 )) & (( 
    - (q 
    `2 )) 
    / (q 
    `2 )) 
    <= ((a 
    * (q 
    `2 )) 
    / (q 
    `2 )) or ((a 
    * (q 
    `2 )) 
    / (q 
    `2 )) 
    >= ((q 
    `2 ) 
    / (q 
    `2 )) & ((a 
    * (q 
    `2 )) 
    / (q 
    `2 )) 
    <= (( 
    - (q 
    `2 )) 
    / (q 
    `2 )) by 
    A96,
    A98,
    XREAL_1: 72;
    
                    hence a
    <= 1 & ( 
    - 1) 
    <= a or a 
    >= 1 & a 
    <= ( 
    - 1) by 
    A98,
    A99,
    XCMPLX_1: 89;
    
                  end;
    
                    case
    
                    
    
    A100: (q 
    `2 ) 
    <  
    0 ; 
    
                    then ((a
    * (q 
    `2 )) 
    / (q 
    `2 )) 
    >= ((q 
    `2 ) 
    / (q 
    `2 )) & (( 
    - (q 
    `2 )) 
    / (q 
    `2 )) 
    >= ((a 
    * (q 
    `2 )) 
    / (q 
    `2 )) or ((a 
    * (q 
    `2 )) 
    / (q 
    `2 )) 
    <= ((q 
    `2 ) 
    / (q 
    `2 )) & ((a 
    * (q 
    `2 )) 
    / (q 
    `2 )) 
    >= (( 
    - (q 
    `2 )) 
    / (q 
    `2 )) by 
    A96,
    XREAL_1: 73;
    
                    then a
    >= ((q 
    `2 ) 
    / (q 
    `2 )) & (( 
    - (q 
    `2 )) 
    / (q 
    `2 )) 
    >= a or a 
    <= ((q 
    `2 ) 
    / (q 
    `2 )) & a 
    >= (( 
    - (q 
    `2 )) 
    / (q 
    `2 )) by 
    A100,
    XCMPLX_1: 89;
    
                    hence a
    <= 1 & ( 
    - 1) 
    <= a or a 
    >= 1 & a 
    <= ( 
    - 1) by 
    A100,
    XCMPLX_1: 60,
    XCMPLX_1: 197;
    
                  end;
    
                end;
    
                ((p
    `2 ) 
    ^2 ) 
    >  
    0 by 
    A94,
    SQUARE_1: 12;
    
                then (1
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    A95,
    XCMPLX_1: 60;
    
                then ((1
    / (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    = (((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) by 
    A76,
    XCMPLX_1: 87;
    
                then ((((q
    `2 ) 
    ^2 ) 
    / ((q 
    `2 ) 
    ^2 )) 
    / ((p 
    `2 ) 
    ^2 )) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / ((q 
    `2 ) 
    ^2 )) by 
    A88,
    XCMPLX_1: 48;
    
                then (1
    / ((p 
    `2 ) 
    ^2 )) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / ((q 
    `2 ) 
    ^2 )) by 
    A93,
    XCMPLX_1: 60;
    
                then ((1
    / ((p 
    `2 ) 
    ^2 )) 
    * ((p 
    `1 ) 
    ^2 )) 
    = ((((p 
    `1 ) 
    ^2 ) 
    * (((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 ))) 
    / ((q 
    `2 ) 
    ^2 )) by 
    XCMPLX_1: 74;
    
                then ((1
    / ((p 
    `2 ) 
    ^2 )) 
    * ((p 
    `1 ) 
    ^2 )) 
    = (((q 
    `1 ) 
    ^2 ) 
    / ((q 
    `2 ) 
    ^2 )) by 
    A84,
    XCMPLX_1: 87;
    
                then (((p
    `1 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    = (((q 
    `1 ) 
    ^2 ) 
    / ((q 
    `2 ) 
    ^2 )) by 
    XCMPLX_1: 99;
    
                then (((p
    `1 ) 
    / (p 
    `2 )) 
    ^2 ) 
    = (((q 
    `1 ) 
    ^2 ) 
    / ((q 
    `2 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
                then
    
                
    
    A101: (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ) 
    = (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ) by 
    XCMPLX_1: 76;
    
                then
    
                
    
    A102: ((p 
    `1 ) 
    / (p 
    `2 )) 
    = ((q 
    `1 ) 
    / (q 
    `2 )) or ((p 
    `1 ) 
    / (p 
    `2 )) 
    = ( 
    - ((q 
    `1 ) 
    / (q 
    `2 ))) by 
    SQUARE_1: 40;
    
                
    
    A103: 
    
                now
    
                  per cases by
    A94,
    A102,
    XCMPLX_1: 87;
    
                    case
    
                    
    
    A104: (p 
    `1 ) 
    = (a 
    * (p 
    `2 )); 
    
                    now
    
                      per cases by
    A94;
    
                        case (p
    `2 ) 
    >  
    0 ; 
    
                        then ((p
    `2 ) 
    / (p 
    `2 )) 
    <= ((a 
    * (p 
    `2 )) 
    / (p 
    `2 )) & (( 
    - (a 
    * (p 
    `2 ))) 
    / (p 
    `2 )) 
    <= ((p 
    `2 ) 
    / (p 
    `2 )) or ((p 
    `2 ) 
    / (p 
    `2 )) 
    >= ((a 
    * (p 
    `2 )) 
    / (p 
    `2 )) & ((p 
    `2 ) 
    / (p 
    `2 )) 
    <= (( 
    - (a 
    * (p 
    `2 ))) 
    / (p 
    `2 )) by 
    A82,
    A104,
    XREAL_1: 72;
    
                        then
    
                        
    
    A105: 1 
    <= ((a 
    * (p 
    `2 )) 
    / (p 
    `2 )) & (( 
    - (a 
    * (p 
    `2 ))) 
    / (p 
    `2 )) 
    <= 1 or 1 
    >= ((a 
    * (p 
    `2 )) 
    / (p 
    `2 )) & 1 
    <= (( 
    - (a 
    * (p 
    `2 ))) 
    / (p 
    `2 )) by 
    A94,
    XCMPLX_1: 60;
    
                        ((a
    * (p 
    `2 )) 
    / (p 
    `2 )) 
    = a by 
    A94,
    XCMPLX_1: 89;
    
                        hence 1
    <= a & ( 
    - a) 
    <= 1 or 1 
    >= a & 1 
    <= ( 
    - a) by 
    A105,
    XCMPLX_1: 187;
    
                      end;
    
                        case (p
    `2 ) 
    <  
    0 ; 
    
                        then ((p
    `2 ) 
    / (p 
    `2 )) 
    >= ((a 
    * (p 
    `2 )) 
    / (p 
    `2 )) & (( 
    - (a 
    * (p 
    `2 ))) 
    / (p 
    `2 )) 
    >= ((p 
    `2 ) 
    / (p 
    `2 )) or ((p 
    `2 ) 
    / (p 
    `2 )) 
    <= ((a 
    * (p 
    `2 )) 
    / (p 
    `2 )) & ((p 
    `2 ) 
    / (p 
    `2 )) 
    >= (( 
    - (a 
    * (p 
    `2 ))) 
    / (p 
    `2 )) by 
    A82,
    A104,
    XREAL_1: 73;
    
                        then
    
                        
    
    A106: 1 
    >= ((a 
    * (p 
    `2 )) 
    / (p 
    `2 )) & (( 
    - (a 
    * (p 
    `2 ))) 
    / (p 
    `2 )) 
    >= 1 or 1 
    <= ((a 
    * (p 
    `2 )) 
    / (p 
    `2 )) & 1 
    >= (( 
    - (a 
    * (p 
    `2 ))) 
    / (p 
    `2 )) by 
    A94,
    XCMPLX_1: 60;
    
                        ((a
    * (p 
    `2 )) 
    / (p 
    `2 )) 
    = a by 
    A94,
    XCMPLX_1: 89;
    
                        hence 1
    <= a & ( 
    - a) 
    <= 1 or 1 
    >= a & 1 
    <= ( 
    - a) by 
    A106,
    XCMPLX_1: 187;
    
                      end;
    
                    end;
    
                    then 1
    <= a & ( 
    - a) 
    <= 1 or 1 
    >= a & ( 
    - 1) 
    >= ( 
    - ( 
    - a)) by 
    XREAL_1: 24;
    
                    hence 1
    <= a or ( 
    - 1) 
    >= a; 
    
                  end;
    
                    case
    
                    
    
    A107: (p 
    `1 ) 
    = (( 
    - a) 
    * (p 
    `2 )); 
    
                    now
    
                      per cases by
    A94;
    
                        case (p
    `2 ) 
    >  
    0 ; 
    
                        then ((p
    `2 ) 
    / (p 
    `2 )) 
    <= ((( 
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 )) & (( 
    - (( 
    - a) 
    * (p 
    `2 ))) 
    / (p 
    `2 )) 
    <= ((p 
    `2 ) 
    / (p 
    `2 )) or ((p 
    `2 ) 
    / (p 
    `2 )) 
    >= ((( 
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 )) & ((p 
    `2 ) 
    / (p 
    `2 )) 
    <= (( 
    - (( 
    - a) 
    * (p 
    `2 ))) 
    / (p 
    `2 )) by 
    A82,
    A107,
    XREAL_1: 72;
    
                        then 1
    <= ((( 
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 )) & (( 
    - (( 
    - a) 
    * (p 
    `2 ))) 
    / (p 
    `2 )) 
    <= 1 or 1 
    >= ((( 
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 )) & 1 
    <= (( 
    - (( 
    - a) 
    * (p 
    `2 ))) 
    / (p 
    `2 )) by 
    A94,
    XCMPLX_1: 60;
    
                        then
    
                        
    
    A108: 1 
    <= ( 
    - a) & ( 
    - ((( 
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 ))) 
    <= 1 or 1 
    >= ( 
    - a) & 1 
    <= ( 
    - ((( 
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 ))) by 
    A94,
    XCMPLX_1: 89,
    XCMPLX_1: 187;
    
                        (((
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 )) 
    = ( 
    - a) by 
    A94,
    XCMPLX_1: 89;
    
                        hence 1
    <= a & ( 
    - a) 
    <= 1 or 1 
    >= a & 1 
    <= ( 
    - a) by 
    A108;
    
                      end;
    
                        case (p
    `2 ) 
    <  
    0 ; 
    
                        then ((p
    `2 ) 
    / (p 
    `2 )) 
    >= ((( 
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 )) & (( 
    - (( 
    - a) 
    * (p 
    `2 ))) 
    / (p 
    `2 )) 
    >= ((p 
    `2 ) 
    / (p 
    `2 )) or ((p 
    `2 ) 
    / (p 
    `2 )) 
    <= ((( 
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 )) & ((p 
    `2 ) 
    / (p 
    `2 )) 
    >= (( 
    - (( 
    - a) 
    * (p 
    `2 ))) 
    / (p 
    `2 )) by 
    A82,
    A107,
    XREAL_1: 73;
    
                        then 1
    >= ((( 
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 )) & (( 
    - (( 
    - a) 
    * (p 
    `2 ))) 
    / (p 
    `2 )) 
    >= 1 or 1 
    <= ((( 
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 )) & 1 
    >= (( 
    - (( 
    - a) 
    * (p 
    `2 ))) 
    / (p 
    `2 )) by 
    A94,
    XCMPLX_1: 60;
    
                        then
    
                        
    
    A109: 1 
    >= ( 
    - a) & ( 
    - ((( 
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 ))) 
    >= 1 or 1 
    <= ( 
    - a) & 1 
    >= ( 
    - ((( 
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 ))) by 
    A94,
    XCMPLX_1: 89,
    XCMPLX_1: 187;
    
                        (((
    - a) 
    * (p 
    `2 )) 
    / (p 
    `2 )) 
    = ( 
    - a) by 
    A94,
    XCMPLX_1: 89;
    
                        hence 1
    <= a & ( 
    - a) 
    <= 1 or 1 
    >= a & 1 
    <= ( 
    - a) by 
    A109;
    
                      end;
    
                    end;
    
                    then 1
    <= a & ( 
    - a) 
    <= 1 or 1 
    >= a & ( 
    - 1) 
    >= ( 
    - ( 
    - a)) by 
    XREAL_1: 24;
    
                    hence 1
    <= a or ( 
    - 1) 
    >= a; 
    
                  end;
    
                end;
    
                
    
    A110: 
    
                now
    
                  per cases by
    A103,
    A97,
    XXREAL_0: 1;
    
                    case a
    = 1; 
    
                    then (((p
    `1 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    = 1 by 
    A101,
    XCMPLX_1: 76;
    
                    then
    
                    
    
    A111: ((p 
    `1 ) 
    ^2 ) 
    = ((p 
    `2 ) 
    ^2 ) by 
    XCMPLX_1: 58;
    
                    (((p
    `2 ) 
    / (p 
    `1 )) 
    ^2 ) 
    = (((p 
    `2 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
                    hence (((p
    `2 ) 
    / (p 
    `1 )) 
    ^2 ) 
    = (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ) by 
    A101,
    A111,
    XCMPLX_1: 76;
    
                  end;
    
                    case a
    = ( 
    - 1); 
    
                    then (((p
    `1 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    = 1 by 
    A101,
    XCMPLX_1: 76;
    
                    then
    
                    
    
    A112: ((p 
    `1 ) 
    ^2 ) 
    = ((p 
    `2 ) 
    ^2 ) by 
    XCMPLX_1: 58;
    
                    (((p
    `2 ) 
    / (p 
    `1 )) 
    ^2 ) 
    = (((p 
    `2 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
                    hence (((p
    `2 ) 
    / (p 
    `1 )) 
    ^2 ) 
    = (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ) by 
    A101,
    A112,
    XCMPLX_1: 76;
    
                  end;
    
                end;
    
                then (p
    `1 ) 
    = (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A87,
    A91,
    XCMPLX_1: 87;
    
                then
    
                
    
    A113: (p 
    `1 ) 
    = (q 
    `1 ) by 
    A77,
    XCMPLX_1: 87;
    
                (p
    `2 ) 
    = (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A89,
    A91,
    A110,
    XCMPLX_1: 87;
    
                then (p
    `2 ) 
    = (q 
    `2 ) by 
    A77,
    XCMPLX_1: 87;
    
                then p
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    A113,
    EUCLID: 53;
    
                hence thesis by
    EUCLID: 53;
    
              end;
    
            end;
    
            hence thesis;
    
          end;
    
            case
    
            
    
    A114: p 
    <> ( 
    0. ( 
    TOP-REAL 2)) & not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))); 
    
            then (p
    `2 ) 
    <>  
    0 ; 
    
            then
    
            
    
    A115: ((p 
    `2 ) 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
            
    
            
    
    A116: ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
            
    
            
    
    A117: (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
            
    
            
    
    A118: ( 
    Sq_Circ  
    . p) 
    =  
    |[((p
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    A114,
    Def1;
    
            then
    
            
    
    A119: ((p 
    `1 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A3,
    A78,
    A75,
    EUCLID: 52;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    ^2 ) by 
    XCMPLX_1: 76;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then (((p
    `1 ) 
    ^2 ) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 )) by 
    A117,
    SQUARE_1:def 2;
    
            then
    
            
    
    A120: (((p 
    `1 ) 
    ^2 ) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = (((q 
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    A76,
    SQUARE_1:def 2;
    
            
    
            
    
    A121: ((p 
    `2 ) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A3,
    A78,
    A74,
    A118,
    EUCLID: 52;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    ^2 ) by 
    XCMPLX_1: 76;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    = (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 )) by 
    A117,
    SQUARE_1:def 2;
    
            then (((p
    `2 ) 
    ^2 ) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = (((q 
    `2 ) 
    ^2 ) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    A76,
    SQUARE_1:def 2;
    
            then ((((p
    `2 ) 
    ^2 ) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    / ((p 
    `2 ) 
    ^2 )) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    XCMPLX_1: 48;
    
            then ((((p
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    XCMPLX_1: 48;
    
            then (1
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = ((((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    A115,
    XCMPLX_1: 60;
    
            then
    
            
    
    A122: ((1 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    = (((q 
    `2 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) by 
    A76,
    XCMPLX_1: 87;
    
            (q
    `2 ) 
    <>  
    0 by 
    A73;
    
            then
    
            
    
    A123: ((q 
    `2 ) 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
            now
    
              per cases ;
    
                case
    
                
    
    A124: (p 
    `1 ) 
    =  
    0 ; 
    
                then ((q
    `1 ) 
    ^2 ) 
    =  
    0 by 
    A76,
    A120,
    XCMPLX_1: 50;
    
                then
    
                
    
    A125: (q 
    `1 ) 
    =  
    0 by 
    XCMPLX_1: 6;
    
                then p
    =  
    |[
    0 , (q 
    `2 )]| by 
    A3,
    A78,
    A118,
    A124,
    EUCLID: 53,
    SQUARE_1: 18;
    
                hence thesis by
    A125,
    EUCLID: 53;
    
              end;
    
                case (p
    `1 ) 
    <>  
    0 ; 
    
                then
    
                
    
    A126: ((p 
    `1 ) 
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
                ((((p
    `1 ) 
    ^2 ) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    / ((p 
    `1 ) 
    ^2 )) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    A120,
    XCMPLX_1: 48;
    
                then ((((p
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    XCMPLX_1: 48;
    
                then (1
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    A126,
    XCMPLX_1: 60;
    
                then ((1
    / (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    = (((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) by 
    A76,
    XCMPLX_1: 87;
    
                then ((((q
    `2 ) 
    ^2 ) 
    / ((q 
    `2 ) 
    ^2 )) 
    / ((p 
    `2 ) 
    ^2 )) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / ((q 
    `2 ) 
    ^2 )) by 
    A122,
    XCMPLX_1: 48;
    
                then (1
    / ((p 
    `2 ) 
    ^2 )) 
    = ((((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 )) 
    / ((q 
    `2 ) 
    ^2 )) by 
    A123,
    XCMPLX_1: 60;
    
                then ((1
    / ((p 
    `2 ) 
    ^2 )) 
    * ((p 
    `1 ) 
    ^2 )) 
    = ((((p 
    `1 ) 
    ^2 ) 
    * (((q 
    `1 ) 
    ^2 ) 
    / ((p 
    `1 ) 
    ^2 ))) 
    / ((q 
    `2 ) 
    ^2 )) by 
    XCMPLX_1: 74;
    
                then ((1
    / ((p 
    `2 ) 
    ^2 )) 
    * ((p 
    `1 ) 
    ^2 )) 
    = (((q 
    `1 ) 
    ^2 ) 
    / ((q 
    `2 ) 
    ^2 )) by 
    A126,
    XCMPLX_1: 87;
    
                then (((p
    `1 ) 
    ^2 ) 
    / ((p 
    `2 ) 
    ^2 )) 
    = (((q 
    `1 ) 
    ^2 ) 
    / ((q 
    `2 ) 
    ^2 )) by 
    XCMPLX_1: 99;
    
                then (((p
    `1 ) 
    / (p 
    `2 )) 
    ^2 ) 
    = (((q 
    `1 ) 
    ^2 ) 
    / ((q 
    `2 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
                then
    
                
    
    A127: (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )) 
    = (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )) by 
    XCMPLX_1: 76;
    
                then (p
    `1 ) 
    = (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A119,
    A116,
    XCMPLX_1: 87;
    
                then
    
                
    
    A128: (p 
    `1 ) 
    = (q 
    `1 ) by 
    A77,
    XCMPLX_1: 87;
    
                (p
    `2 ) 
    = (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A121,
    A116,
    A127,
    XCMPLX_1: 87;
    
                then (p
    `2 ) 
    = (q 
    `2 ) by 
    A77,
    XCMPLX_1: 87;
    
                then p
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    A128,
    EUCLID: 53;
    
                hence thesis by
    EUCLID: 53;
    
              end;
    
            end;
    
            hence thesis;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
    end;
    
    registration
    
      cluster 
    Sq_Circ -> 
    one-to-one;
    
      coherence by
    Th22;
    
    end
    
    theorem :: 
    
    JGRAPH_3:23
    
    
    
    
    
    Th23: for Kb,Cb be 
    Subset of ( 
    TOP-REAL 2) st Kb 
    = { q : ( 
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or (q 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 or 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 } & Cb 
    = { p2 where p2 be 
    Point of ( 
    TOP-REAL 2) : 
    |.p2.|
    = 1 } holds ( 
    Sq_Circ  
    .: Kb) 
    = Cb 
    
    proof
    
      let Kb,Cb be
    Subset of ( 
    TOP-REAL 2); 
    
      assume
    
      
    
    A1: Kb 
    = { q : ( 
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or (q 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 or 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 } & Cb 
    = { p2 where p2 be 
    Point of ( 
    TOP-REAL 2) : 
    |.p2.|
    = 1 }; 
    
      thus (
    Sq_Circ  
    .: Kb) 
    c= Cb 
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    Sq_Circ  
    .: Kb); 
    
        then
    
        consider x be
    object such that x 
    in ( 
    dom  
    Sq_Circ ) and 
    
        
    
    A2: x 
    in Kb and 
    
        
    
    A3: y 
    = ( 
    Sq_Circ  
    . x) by 
    FUNCT_1:def 6;
    
        consider q be
    Point of ( 
    TOP-REAL 2) such that 
    
        
    
    A4: q 
    = x and 
    
        
    
    A5: ( 
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or (q 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 or 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 by 
    A1,
    A2;
    
        now
    
          per cases ;
    
            case q
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            hence contradiction by
    A5,
    JGRAPH_2: 3;
    
          end;
    
            case
    
            
    
    A6: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
            
    
            
    
    A7: ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| 
    `1 ) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) & ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| 
    `2 ) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
            
    
            
    
    A8: (1 
    + ((q 
    `2 ) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
            
    
            
    
    A9: ( 
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| by 
    A6,
    Def1;
    
            now
    
              per cases by
    A5;
    
                case (
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1; 
    
                
    
                then (
    |.
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|.| 
    ^2 ) 
    = (((( 
    - 1) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / ( 
    - 1)) 
    ^2 )))) 
    ^2 ) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / ( 
    - 1)) 
    ^2 )))) 
    ^2 )) by 
    A7,
    JGRAPH_1: 29
    
                .= ((((
    - 1) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / ( 
    - 1)) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / ( 
    - 1)) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
                .= ((1
    / (( 
    sqrt (1 
    + (( 
    - (q 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (( 
    - (q 
    `2 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
                .= ((1
    / (1 
    + ((q 
    `2 ) 
    ^2 ))) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + ((q 
    `2 ) 
    ^2 ))) 
    ^2 ))) by 
    A8,
    SQUARE_1:def 2
    
                .= ((1
    / (1 
    + ((q 
    `2 ) 
    ^2 ))) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (1 
    + ((q 
    `2 ) 
    ^2 )))) by 
    A8,
    SQUARE_1:def 2
    
                .= ((1
    + ((q 
    `2 ) 
    ^2 )) 
    / (1 
    + ((q 
    `2 ) 
    ^2 ))) by 
    XCMPLX_1: 62
    
                .= 1 by
    A8,
    XCMPLX_1: 60;
    
                then
    |.
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|.| 
    = 1 by 
    SQUARE_1: 18,
    SQUARE_1: 22;
    
                hence ex p2 be
    Point of ( 
    TOP-REAL 2) st p2 
    = y & 
    |.p2.|
    = 1 by 
    A3,
    A4,
    A9;
    
              end;
    
                case (q
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1; 
    
                
    
                then (
    |.
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|.| 
    ^2 ) 
    = (((1 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / 1) 
    ^2 )))) 
    ^2 ) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / 1) 
    ^2 )))) 
    ^2 )) by 
    A7,
    JGRAPH_1: 29
    
                .= (((1
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / 1) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / 1) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
                .= ((1
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / 1) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / 1) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
                .= ((1
    / (1 
    + ((q 
    `2 ) 
    ^2 ))) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + ((q 
    `2 ) 
    ^2 ))) 
    ^2 ))) by 
    A8,
    SQUARE_1:def 2
    
                .= ((1
    / (1 
    + ((q 
    `2 ) 
    ^2 ))) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (1 
    + ((q 
    `2 ) 
    ^2 )))) by 
    A8,
    SQUARE_1:def 2
    
                .= ((1
    + ((q 
    `2 ) 
    ^2 )) 
    / (1 
    + ((q 
    `2 ) 
    ^2 ))) by 
    XCMPLX_1: 62
    
                .= 1 by
    A8,
    XCMPLX_1: 60;
    
                then
    |.
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|.| 
    = 1 by 
    SQUARE_1: 18,
    SQUARE_1: 22;
    
                hence ex p2 be
    Point of ( 
    TOP-REAL 2) st p2 
    = y & 
    |.p2.|
    = 1 by 
    A3,
    A4,
    A9;
    
              end;
    
                case
    
                
    
    A10: ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1; 
    
                then (
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    >= 1 or ( 
    - 1) 
    >= (q 
    `1 ) & 1 
    >= (q 
    `1 ) by 
    A6,
    XREAL_1: 24;
    
                then
    
                
    
    A11: (q 
    `1 ) 
    = 1 or (q 
    `1 ) 
    = ( 
    - 1) by 
    A10,
    XXREAL_0: 1;
    
                (
    |.
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|.| 
    ^2 ) 
    = ((((q 
    `1 ) 
    / ( 
    sqrt (1 
    + ((( 
    - 1) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) 
    + ((( 
    - 1) 
    / ( 
    sqrt (1 
    + ((( 
    - 1) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 )) by 
    A7,
    A10,
    JGRAPH_1: 29
    
                .= ((((q
    `1 ) 
    / ( 
    sqrt (1 
    + ((( 
    - 1) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) 
    + ((( 
    - 1) 
    ^2 ) 
    / (( 
    sqrt (1 
    + ((( 
    - 1) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
                .= ((((q
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + ((( 
    - 1) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (1 
    / (( 
    sqrt (1 
    + ((( 
    - 1) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
                .= ((1
    / 2) 
    + (1 
    / (( 
    sqrt 2) 
    ^2 ))) by 
    A11,
    SQUARE_1:def 2
    
                .= ((1
    / 2) 
    + (1 
    / 2)) by 
    SQUARE_1:def 2
    
                .= 1;
    
                then
    |.
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|.| 
    = 1 by 
    SQUARE_1: 18,
    SQUARE_1: 22;
    
                hence ex p2 be
    Point of ( 
    TOP-REAL 2) st p2 
    = y & 
    |.p2.|
    = 1 by 
    A3,
    A4,
    A9;
    
              end;
    
                case
    
                
    
    A12: 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1; 
    
                then 1
    <= (q 
    `1 ) & (q 
    `1 ) 
    >= ( 
    - 1) or 1 
    >= (q 
    `1 ) & ( 
    - 1) 
    >= (q 
    `1 ) by 
    A6,
    XREAL_1: 25;
    
                then
    
                
    
    A13: (q 
    `1 ) 
    = 1 or (q 
    `1 ) 
    = ( 
    - 1) by 
    A12,
    XXREAL_0: 1;
    
                (
    |.
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|.| 
    ^2 ) 
    = ((((q 
    `1 ) 
    / ( 
    sqrt (1 
    + ((1 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) 
    + ((1 
    / ( 
    sqrt (1 
    + ((1 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 )) by 
    A7,
    A12,
    JGRAPH_1: 29
    
                .= ((((q
    `1 ) 
    / ( 
    sqrt (1 
    + ((1 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) 
    + ((1 
    ^2 ) 
    / (( 
    sqrt (1 
    + ((1 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
                .= ((1
    / (( 
    sqrt (1 
    + (1 
    / 1))) 
    ^2 )) 
    + (1 
    / (( 
    sqrt (1 
    + (1 
    / 1))) 
    ^2 ))) by 
    A13,
    XCMPLX_1: 76
    
                .= ((1
    / 2) 
    + (1 
    / (( 
    sqrt 2) 
    ^2 ))) by 
    SQUARE_1:def 2
    
                .= ((1
    / 2) 
    + (1 
    / 2)) by 
    SQUARE_1:def 2
    
                .= 1;
    
                then
    |.
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|.| 
    = 1 by 
    SQUARE_1: 18,
    SQUARE_1: 22;
    
                hence ex p2 be
    Point of ( 
    TOP-REAL 2) st p2 
    = y & 
    |.p2.|
    = 1 by 
    A3,
    A4,
    A9;
    
              end;
    
            end;
    
            hence ex p2 be
    Point of ( 
    TOP-REAL 2) st p2 
    = y & 
    |.p2.|
    = 1; 
    
          end;
    
            case
    
            
    
    A14: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & not ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
            
    
            
    
    A15: ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| 
    `1 ) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) & ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| 
    `2 ) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
            
    
            
    
    A16: (1 
    + ((q 
    `1 ) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
            
    
            
    
    A17: ( 
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| by 
    A14,
    Def1;
    
            now
    
              per cases by
    A5;
    
                case (
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1; 
    
                
    
                then (
    |.
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]|.| 
    ^2 ) 
    = ((((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / ( 
    - 1)) 
    ^2 )))) 
    ^2 ) 
    + ((( 
    - 1) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / ( 
    - 1)) 
    ^2 )))) 
    ^2 )) by 
    A15,
    JGRAPH_1: 29
    
                .= ((((
    - 1) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / ( 
    - 1)) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / ( 
    - 1)) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
                .= ((1
    / (( 
    sqrt (1 
    + (( 
    - (q 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (( 
    - (q 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
                .= ((1
    / (1 
    + ((q 
    `1 ) 
    ^2 ))) 
    + (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + ((q 
    `1 ) 
    ^2 ))) 
    ^2 ))) by 
    A16,
    SQUARE_1:def 2
    
                .= ((1
    / (1 
    + ((q 
    `1 ) 
    ^2 ))) 
    + (((q 
    `1 ) 
    ^2 ) 
    / (1 
    + ((q 
    `1 ) 
    ^2 )))) by 
    A16,
    SQUARE_1:def 2
    
                .= ((1
    + ((q 
    `1 ) 
    ^2 )) 
    / (1 
    + ((q 
    `1 ) 
    ^2 ))) by 
    XCMPLX_1: 62
    
                .= 1 by
    A16,
    XCMPLX_1: 60;
    
                then
    |.
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]|.| 
    = 1 by 
    SQUARE_1: 18,
    SQUARE_1: 22;
    
                hence ex p2 be
    Point of ( 
    TOP-REAL 2) st p2 
    = y & 
    |.p2.|
    = 1 by 
    A3,
    A4,
    A17;
    
              end;
    
                case (q
    `2 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1; 
    
                
    
                then (
    |.
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]|.| 
    ^2 ) 
    = (((1 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / 1) 
    ^2 )))) 
    ^2 ) 
    + (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / 1) 
    ^2 )))) 
    ^2 )) by 
    A15,
    JGRAPH_1: 29
    
                .= (((1
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / 1) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / 1) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
                .= ((1
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / 1) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / 1) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
                .= ((1
    / (1 
    + ((q 
    `1 ) 
    ^2 ))) 
    + (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + ((q 
    `1 ) 
    ^2 ))) 
    ^2 ))) by 
    A16,
    SQUARE_1:def 2
    
                .= ((1
    / (1 
    + ((q 
    `1 ) 
    ^2 ))) 
    + (((q 
    `1 ) 
    ^2 ) 
    / (1 
    + ((q 
    `1 ) 
    ^2 )))) by 
    A16,
    SQUARE_1:def 2
    
                .= ((1
    + ((q 
    `1 ) 
    ^2 )) 
    / (1 
    + ((q 
    `1 ) 
    ^2 ))) by 
    XCMPLX_1: 62
    
                .= 1 by
    A16,
    XCMPLX_1: 60;
    
                then
    |.
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]|.| 
    = 1 by 
    SQUARE_1: 18,
    SQUARE_1: 22;
    
                hence ex p2 be
    Point of ( 
    TOP-REAL 2) st p2 
    = y & 
    |.p2.|
    = 1 by 
    A3,
    A4,
    A17;
    
              end;
    
                case (
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1; 
    
                hence ex p2 be
    Point of ( 
    TOP-REAL 2) st p2 
    = y & 
    |.p2.|
    = 1 by 
    A14;
    
              end;
    
                case 1
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1; 
    
                hence ex p2 be
    Point of ( 
    TOP-REAL 2) st p2 
    = y & 
    |.p2.|
    = 1 by 
    A14;
    
              end;
    
            end;
    
            hence ex p2 be
    Point of ( 
    TOP-REAL 2) st p2 
    = y & 
    |.p2.|
    = 1; 
    
          end;
    
        end;
    
        hence thesis by
    A1;
    
      end;
    
      let y be
    object;
    
      assume y
    in Cb; 
    
      then
    
      consider p2 be
    Point of ( 
    TOP-REAL 2) such that 
    
      
    
    A18: p2 
    = y and 
    
      
    
    A19: 
    |.p2.|
    = 1 by 
    A1;
    
      set q = p2;
    
      now
    
        per cases ;
    
          case q
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
          hence contradiction by
    A19,
    TOPRNS_1: 23;
    
        end;
    
          case
    
          
    
    A20: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
          
    
          
    
    A21: ( 
    |.q.|
    ^2 ) 
    = (((q 
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) by 
    JGRAPH_1: 29;
    
          set px =
    |[((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|; 
    
          
    
          
    
    A22: (px 
    `1 ) 
    = ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
          
    
          
    
    A23: ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
          
    
          then
    
          
    
    A24: (q 
    `2 ) 
    = (((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    XCMPLX_1: 89
    
          .= ((px
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
          
    
          
    
    A25: (px 
    `2 ) 
    = ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
          then
    
          
    
    A26: ((px 
    `2 ) 
    / (px 
    `1 )) 
    = ((q 
    `2 ) 
    / (q 
    `1 )) by 
    A22,
    A23,
    XCMPLX_1: 91;
    
          then
    
          
    
    A27: ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))) 
    = (q 
    `2 ) by 
    A25,
    A23,
    XCMPLX_1: 89;
    
          (q
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    <= (( 
    - (q 
    `1 )) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A20,
    A23,
    XREAL_1: 64;
    
          then
    
          
    
    A28: (q 
    `2 ) 
    <= (q 
    `1 ) & (( 
    - (q 
    `1 )) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    <= ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A22,
    A25,
    A23,
    XREAL_1: 64;
    
          
    
          
    
    A29: (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
          (q
    `1 ) 
    = (((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A23,
    XCMPLX_1: 89
    
          .= ((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
          then ((((px
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))) 
    ^2 )) 
    = 1 by 
    A19,
    A26,
    A24,
    A21,
    XCMPLX_1: 76;
    
          then ((((px
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((px 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) 
    ^2 ))) 
    = 1 by 
    XCMPLX_1: 76;
    
          then ((((px
    `1 ) 
    ^2 ) 
    / (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) 
    + (((px 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) 
    ^2 ))) 
    = 1 by 
    A29,
    SQUARE_1:def 2;
    
          
    
          then (1
    * (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) 
    = ((1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )) 
    * ((((px 
    `1 ) 
    ^2 ) 
    / (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) 
    + (((px 
    `2 ) 
    ^2 ) 
    / (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))))) by 
    A29,
    SQUARE_1:def 2
    
          .= (((((px
    `1 ) 
    ^2 ) 
    / (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) 
    * (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) 
    + ((((px 
    `2 ) 
    ^2 ) 
    / (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) 
    * (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))); 
    
          then (((px
    `1 ) 
    ^2 ) 
    + ((((px 
    `2 ) 
    ^2 ) 
    / (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) 
    * (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))) 
    = (1 
    * (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) by 
    A29,
    XCMPLX_1: 87;
    
          
    
          then
    
          
    
    A30: (((px 
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    = (1 
    * (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))) by 
    A29,
    XCMPLX_1: 87
    
          .= (1
    + (((px 
    `2 ) 
    ^2 ) 
    / ((px 
    `1 ) 
    ^2 ))) by 
    XCMPLX_1: 76;
    
          
    
    A31: 
    
          now
    
            assume that
    
            
    
    A32: (px 
    `1 ) 
    =  
    0 and 
    
            
    
    A33: (px 
    `2 ) 
    =  
    0 ; 
    
            ((q
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    =  
    0 by 
    A33,
    EUCLID: 52;
    
            then
    
            
    
    A34: (q 
    `2 ) 
    =  
    0 by 
    A23,
    XCMPLX_1: 6;
    
            ((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    =  
    0 by 
    A32,
    EUCLID: 52;
    
            then (q
    `1 ) 
    =  
    0 by 
    A23,
    XCMPLX_1: 6;
    
            hence contradiction by
    A20,
    A34,
    EUCLID: 53,
    EUCLID: 54;
    
          end;
    
          then not (px
    `1 ) 
    =  
    0 by 
    A22,
    A25,
    A23,
    A28,
    XREAL_1: 64;
    
          then ((((px
    `1 ) 
    ^2 ) 
    + (((px 
    `2 ) 
    ^2 ) 
    - 1)) 
    * ((px 
    `1 ) 
    ^2 )) 
    = ((px 
    `2 ) 
    ^2 ) by 
    A30,
    XCMPLX_1: 6,
    XCMPLX_1: 87;
    
          then
    0  
    = ((((px 
    `1 ) 
    ^2 ) 
    - 1) 
    * (((px 
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 ))); 
    
          then
    
          
    
    A35: (((px 
    `1 ) 
    ^2 ) 
    - 1) 
    =  
    0 or (((px 
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    =  
    0 by 
    XCMPLX_1: 6;
    
          now
    
            per cases by
    A31,
    A35,
    COMPLEX1: 1,
    SQUARE_1: 41;
    
              case (px
    `1 ) 
    = 1; 
    
              hence (
    - 1) 
    = (px 
    `1 ) & ( 
    - 1) 
    <= (px 
    `2 ) & (px 
    `2 ) 
    <= 1 or (px 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (px 
    `2 ) & (px 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (px 
    `2 ) & ( 
    - 1) 
    <= (px 
    `1 ) & (px 
    `1 ) 
    <= 1 or 1 
    = (px 
    `2 ) & ( 
    - 1) 
    <= (px 
    `1 ) & (px 
    `1 ) 
    <= 1 by 
    A22,
    A25,
    A23,
    A28,
    XREAL_1: 64;
    
            end;
    
              case (px
    `1 ) 
    = ( 
    - 1); 
    
              hence (
    - 1) 
    = (px 
    `1 ) & ( 
    - 1) 
    <= (px 
    `2 ) & (px 
    `2 ) 
    <= 1 or (px 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (px 
    `2 ) & (px 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (px 
    `2 ) & ( 
    - 1) 
    <= (px 
    `1 ) & (px 
    `1 ) 
    <= 1 or 1 
    = (px 
    `2 ) & ( 
    - 1) 
    <= (px 
    `1 ) & (px 
    `1 ) 
    <= 1 by 
    A22,
    A23,
    A28,
    XREAL_1: 64;
    
            end;
    
          end;
    
          then
    
          
    
    A36: ( 
    dom  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) & px 
    in Kb by 
    A1,
    FUNCT_2:def 1;
    
          (px
    `2 ) 
    <= (px 
    `1 ) & ( 
    - (px 
    `1 )) 
    <= (px 
    `2 ) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A22,
    A25,
    A23,
    A28,
    XREAL_1: 64;
    
          then
    
          
    
    A37: ( 
    Sq_Circ  
    . px) 
    =  
    |[((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))), ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))))]| by 
    A31,
    Def1,
    JGRAPH_2: 3;
    
          ((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))) 
    = (q 
    `1 ) by 
    A22,
    A23,
    A26,
    XCMPLX_1: 89;
    
          hence ex x be
    set st x 
    in ( 
    dom  
    Sq_Circ ) & x 
    in Kb & y 
    = ( 
    Sq_Circ  
    . x) by 
    A18,
    A37,
    A27,
    A36,
    EUCLID: 53;
    
        end;
    
          case
    
          
    
    A38: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & not ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
          
    
          
    
    A39: ( 
    |.q.|
    ^2 ) 
    = (((q 
    `2 ) 
    ^2 ) 
    + ((q 
    `1 ) 
    ^2 )) by 
    JGRAPH_1: 29;
    
          set px =
    |[((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]|; 
    
          
    
          
    
    A40: ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
          
    
          
    
    A41: (px 
    `1 ) 
    = ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
          then
    
          
    
    A42: (q 
    `1 ) 
    = ((px 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A40,
    XCMPLX_1: 89;
    
          
    
          
    
    A43: (px 
    `2 ) 
    = ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
          then
    
          
    
    A44: ((px 
    `1 ) 
    / (px 
    `2 )) 
    = ((q 
    `1 ) 
    / (q 
    `2 )) by 
    A41,
    A40,
    XCMPLX_1: 91;
    
          then
    
          
    
    A45: ((px 
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))) 
    = (q 
    `1 ) by 
    A41,
    A40,
    XCMPLX_1: 89;
    
          (q
    `1 ) 
    <= (q 
    `2 ) & ( 
    - (q 
    `2 )) 
    <= (q 
    `1 ) or (q 
    `1 ) 
    >= (q 
    `2 ) & (q 
    `1 ) 
    <= ( 
    - (q 
    `2 )) by 
    A38,
    JGRAPH_2: 13;
    
          then (q
    `1 ) 
    <= (q 
    `2 ) & ( 
    - (q 
    `2 )) 
    <= (q 
    `1 ) or (q 
    `1 ) 
    >= (q 
    `2 ) & ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    <= (( 
    - (q 
    `2 )) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A40,
    XREAL_1: 64;
    
          then
    
          
    
    A46: (q 
    `1 ) 
    <= (q 
    `2 ) & (( 
    - (q 
    `2 )) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    <= ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) or (px 
    `1 ) 
    >= (px 
    `2 ) & (px 
    `1 ) 
    <= ( 
    - (px 
    `2 )) by 
    A43,
    A41,
    A40,
    XREAL_1: 64;
    
          
    
          
    
    A47: (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
          (q
    `2 ) 
    = ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A43,
    A40,
    XCMPLX_1: 89;
    
          then ((((px
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((px 
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))) 
    ^2 )) 
    = 1 by 
    A19,
    A44,
    A42,
    A39,
    XCMPLX_1: 76;
    
          then ((((px
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((px 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) 
    ^2 ))) 
    = 1 by 
    XCMPLX_1: 76;
    
          then ((((px
    `2 ) 
    ^2 ) 
    / (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) 
    + (((px 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) 
    ^2 ))) 
    = 1 by 
    A47,
    SQUARE_1:def 2;
    
          
    
          then (1
    * (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) 
    = ((1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )) 
    * ((((px 
    `2 ) 
    ^2 ) 
    / (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) 
    + (((px 
    `1 ) 
    ^2 ) 
    / (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))))) by 
    A47,
    SQUARE_1:def 2
    
          .= (((((px
    `2 ) 
    ^2 ) 
    / (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) 
    * (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) 
    + ((((px 
    `1 ) 
    ^2 ) 
    / (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) 
    * (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))); 
    
          then (((px
    `2 ) 
    ^2 ) 
    + ((((px 
    `1 ) 
    ^2 ) 
    / (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) 
    * (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))) 
    = (1 
    * (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) by 
    A47,
    XCMPLX_1: 87;
    
          then (((px
    `2 ) 
    ^2 ) 
    + ((px 
    `1 ) 
    ^2 )) 
    = (1 
    * (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))) by 
    A47,
    XCMPLX_1: 87;
    
          then
    
          
    
    A48: ((((px 
    `2 ) 
    ^2 ) 
    + ((px 
    `1 ) 
    ^2 )) 
    - 1) 
    = (((px 
    `1 ) 
    ^2 ) 
    / ((px 
    `2 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
          
    
    A49: 
    
          now
    
            assume that
    
            
    
    A50: (px 
    `2 ) 
    =  
    0 and (px 
    `1 ) 
    =  
    0 ; 
    
            (q
    `2 ) 
    =  
    0 by 
    A43,
    A40,
    A50,
    XCMPLX_1: 6;
    
            hence contradiction by
    A38;
    
          end;
    
          then (px
    `2 ) 
    <>  
    0 by 
    A43,
    A41,
    A40,
    A46,
    XREAL_1: 64;
    
          then ((((px
    `2 ) 
    ^2 ) 
    + (((px 
    `1 ) 
    ^2 ) 
    - 1)) 
    * ((px 
    `2 ) 
    ^2 )) 
    = ((px 
    `1 ) 
    ^2 ) by 
    A48,
    XCMPLX_1: 6,
    XCMPLX_1: 87;
    
          then
    0  
    = ((((px 
    `2 ) 
    ^2 ) 
    - 1) 
    * (((px 
    `2 ) 
    ^2 ) 
    + ((px 
    `1 ) 
    ^2 ))); 
    
          then
    
          
    
    A51: (((px 
    `2 ) 
    ^2 ) 
    - 1) 
    =  
    0 or (((px 
    `2 ) 
    ^2 ) 
    + ((px 
    `1 ) 
    ^2 )) 
    =  
    0 by 
    XCMPLX_1: 6;
    
          now
    
            per cases by
    A49,
    A51,
    COMPLEX1: 1,
    SQUARE_1: 41;
    
              case (px
    `2 ) 
    = 1; 
    
              hence (
    - 1) 
    = (px 
    `2 ) & ( 
    - 1) 
    <= (px 
    `1 ) & (px 
    `1 ) 
    <= 1 or (px 
    `2 ) 
    = 1 & ( 
    - 1) 
    <= (px 
    `1 ) & (px 
    `1 ) 
    <= 1 or ( 
    - 1) 
    = (px 
    `1 ) & ( 
    - 1) 
    <= (px 
    `2 ) & (px 
    `2 ) 
    <= 1 or 1 
    = (px 
    `1 ) & ( 
    - 1) 
    <= (px 
    `2 ) & (px 
    `2 ) 
    <= 1 by 
    A43,
    A41,
    A40,
    A46,
    XREAL_1: 64;
    
            end;
    
              case (px
    `2 ) 
    = ( 
    - 1); 
    
              hence (
    - 1) 
    = (px 
    `2 ) & ( 
    - 1) 
    <= (px 
    `1 ) & (px 
    `1 ) 
    <= 1 or (px 
    `2 ) 
    = 1 & ( 
    - 1) 
    <= (px 
    `1 ) & (px 
    `1 ) 
    <= 1 or ( 
    - 1) 
    = (px 
    `1 ) & ( 
    - 1) 
    <= (px 
    `2 ) & (px 
    `2 ) 
    <= 1 or 1 
    = (px 
    `1 ) & ( 
    - 1) 
    <= (px 
    `2 ) & (px 
    `2 ) 
    <= 1 by 
    A43,
    A40,
    A46,
    XREAL_1: 64;
    
            end;
    
          end;
    
          then
    
          
    
    A52: ( 
    dom  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) & px 
    in Kb by 
    A1,
    FUNCT_2:def 1;
    
          (px
    `1 ) 
    <= (px 
    `2 ) & ( 
    - (px 
    `2 )) 
    <= (px 
    `1 ) or (px 
    `1 ) 
    >= (px 
    `2 ) & (px 
    `1 ) 
    <= ( 
    - (px 
    `2 )) by 
    A43,
    A41,
    A40,
    A46,
    XREAL_1: 64;
    
          then
    
          
    
    A53: ( 
    Sq_Circ  
    . px) 
    =  
    |[((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))), ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))))]| by 
    A49,
    Th4,
    JGRAPH_2: 3;
    
          ((px
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))) 
    = (q 
    `2 ) by 
    A43,
    A40,
    A44,
    XCMPLX_1: 89;
    
          hence ex x be
    set st x 
    in ( 
    dom  
    Sq_Circ ) & x 
    in Kb & y 
    = ( 
    Sq_Circ  
    . x) by 
    A18,
    A53,
    A45,
    A52,
    EUCLID: 53;
    
        end;
    
      end;
    
      hence thesis by
    FUNCT_1:def 6;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:24
    
    
    
    
    
    Th24: for P,Kb be 
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | Kb), (( 
    TOP-REAL 2) 
    | P) st Kb 
    = { q : ( 
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or (q 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 or 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 } & f is 
    being_homeomorphism holds P is 
    being_simple_closed_curve
    
    proof
    
      set X = ((
    TOP-REAL 2) 
    |  
    R^2-unit_square ); 
    
      set b = 1, a =
    0 ; 
    
      set v =
    |[1,
    0 ]|; 
    
      let P,Kb be
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | Kb), (( 
    TOP-REAL 2) 
    | P); 
    
      assume
    
      
    
    A1: Kb 
    = { q : ( 
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or (q 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 or 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 } & f is 
    being_homeomorphism;
    
      (v
    `1 ) 
    = 1 & (v 
    `2 ) 
    =  
    0 by 
    EUCLID: 52;
    
      then
    
      
    
    A2: 
    |[1,
    0 ]| 
    in { q : ( 
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or (q 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 or 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 }; 
    
      then
    
      reconsider Kbb = Kb as non
    empty  
    Subset of ( 
    TOP-REAL 2) by 
    A1;
    
      set A = (2
    / (b 
    - a)), B = (1 
    - ((2 
    * b) 
    / (b 
    - a))), C = (2 
    / (b 
    - a)), D = (1 
    - ((2 
    * b) 
    / (b 
    - a))); 
    
      reconsider Kbd = Kbb as non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      defpred
    
    P[
    object, 
    object] means (for t be
    Point of ( 
    TOP-REAL 2) st t 
    = $1 holds $2 
    =  
    |[((A
    * (t 
    `1 )) 
    + B), ((C 
    * (t 
    `2 )) 
    + D)]|); 
    
      
    
      
    
    A3: for x be 
    object st x 
    in the 
    carrier of ( 
    TOP-REAL 2) holds ex y be 
    object st 
    P[x, y]
    
      proof
    
        let x be
    object;
    
        assume x
    in the 
    carrier of ( 
    TOP-REAL 2); 
    
        then
    
        reconsider t2 = x as
    Point of ( 
    TOP-REAL 2); 
    
        reconsider y2 =
    |[((A
    * (t2 
    `1 )) 
    + B), ((C 
    * (t2 
    `2 )) 
    + D)]| as 
    set;
    
        for t be
    Point of ( 
    TOP-REAL 2) st t 
    = x holds y2 
    =  
    |[((A
    * (t 
    `1 )) 
    + B), ((C 
    * (t 
    `2 )) 
    + D)]|; 
    
        hence thesis;
    
      end;
    
      ex ff be
    Function st ( 
    dom ff) 
    = the 
    carrier of ( 
    TOP-REAL 2) & for x be 
    object st x 
    in the 
    carrier of ( 
    TOP-REAL 2) holds 
    P[x, (ff
    . x)] from 
    CLASSES1:sch 1(
    A3);
    
      then
    
      consider ff be
    Function such that 
    
      
    
    A4: ( 
    dom ff) 
    = the 
    carrier of ( 
    TOP-REAL 2) and 
    
      
    
    A5: for x be 
    object st x 
    in the 
    carrier of ( 
    TOP-REAL 2) holds for t be 
    Point of ( 
    TOP-REAL 2) st t 
    = x holds (ff 
    . x) 
    =  
    |[((A
    * (t 
    `1 )) 
    + B), ((C 
    * (t 
    `2 )) 
    + D)]|; 
    
      
    
      
    
    A6: for t be 
    Point of ( 
    TOP-REAL 2) holds (ff 
    . t) 
    =  
    |[((A
    * (t 
    `1 )) 
    + B), ((C 
    * (t 
    `2 )) 
    + D)]| by 
    A5;
    
      for x be
    object st x 
    in the 
    carrier of ( 
    TOP-REAL 2) holds (ff 
    . x) 
    in the 
    carrier of ( 
    TOP-REAL 2) 
    
      proof
    
        let x be
    object;
    
        assume x
    in the 
    carrier of ( 
    TOP-REAL 2); 
    
        then
    
        reconsider t = x as
    Point of ( 
    TOP-REAL 2); 
    
        (ff
    . t) 
    =  
    |[((A
    * (t 
    `1 )) 
    + B), ((C 
    * (t 
    `2 )) 
    + D)]| by 
    A5;
    
        hence thesis;
    
      end;
    
      then
    
      reconsider ff as
    Function of ( 
    TOP-REAL 2), ( 
    TOP-REAL 2) by 
    A4,
    FUNCT_2: 3;
    
      reconsider f11 = (ff
    |  
    R^2-unit_square ) as 
    Function of (( 
    TOP-REAL 2) 
    |  
    R^2-unit_square ), ( 
    TOP-REAL 2) by 
    PRE_TOPC: 9;
    
      
    
      
    
    A7: f11 is 
    continuous by 
    A6,
    JGRAPH_2: 43,
    TOPMETR: 7;
    
      ff is
    one-to-one
    
      proof
    
        let x1,x2 be
    object;
    
        assume that
    
        
    
    A8: x1 
    in ( 
    dom ff) & x2 
    in ( 
    dom ff) and 
    
        
    
    A9: (ff 
    . x1) 
    = (ff 
    . x2); 
    
        reconsider p1 = x1, p2 = x2 as
    Point of ( 
    TOP-REAL 2) by 
    A8;
    
        
    
        
    
    A10: (ff 
    . x1) 
    =  
    |[((A
    * (p1 
    `1 )) 
    + B), ((C 
    * (p1 
    `2 )) 
    + D)]| & (ff 
    . x2) 
    =  
    |[((A
    * (p2 
    `1 )) 
    + B), ((C 
    * (p2 
    `2 )) 
    + D)]| by 
    A5;
    
        then (((A
    * (p1 
    `1 )) 
    + B) 
    - B) 
    = (((A 
    * (p2 
    `1 )) 
    + B) 
    - B) by 
    A9,
    SPPOL_2: 1;
    
        then ((A
    * (p1 
    `1 )) 
    / A) 
    = (p2 
    `1 ) by 
    XCMPLX_1: 89;
    
        then
    
        
    
    A11: (p1 
    `1 ) 
    = (p2 
    `1 ) by 
    XCMPLX_1: 89;
    
        (((C
    * (p1 
    `2 )) 
    + D) 
    - D) 
    = (((C 
    * (p2 
    `2 )) 
    + D) 
    - D) by 
    A9,
    A10,
    SPPOL_2: 1;
    
        then ((C
    * (p1 
    `2 )) 
    / C) 
    = (p2 
    `2 ) by 
    XCMPLX_1: 89;
    
        hence thesis by
    A11,
    TOPREAL3: 6,
    XCMPLX_1: 89;
    
      end;
    
      then
    
      
    
    A12: f11 is 
    one-to-one by 
    FUNCT_1: 52;
    
      
    
      
    
    A13: ( 
    dom f11) 
    = (( 
    dom ff) 
    /\  
    R^2-unit_square ) by 
    RELAT_1: 61
    
      .=
    R^2-unit_square by 
    A4,
    XBOOLE_1: 28;
    
      
    
      
    
    A14: Kbd 
    c= ( 
    rng f11) 
    
      proof
    
        let y be
    object;
    
        assume
    
        
    
    A15: y 
    in Kbd; 
    
        then
    
        reconsider py = y as
    Point of ( 
    TOP-REAL 2); 
    
        set t =
    |[(((py
    `1 ) 
    - B) 
    / 2), (((py 
    `2 ) 
    - D) 
    / 2)]|; 
    
        
    
        
    
    A16: ex q st py 
    = q & (( 
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or (q 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 or 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1) by 
    A1,
    A15;
    
        now
    
          per cases by
    A16;
    
            case
    
            
    
    A17: ( 
    - 1) 
    = (py 
    `1 ) & ( 
    - 1) 
    <= (py 
    `2 ) & (py 
    `2 ) 
    <= 1; 
    
            then (2
    - 1) 
    >= (py 
    `2 ); 
    
            then 2
    >= ((py 
    `2 ) 
    + 1) by 
    XREAL_1: 19;
    
            then
    
            
    
    A18: (2 
    / 2) 
    >= (((py 
    `2 ) 
    - D) 
    / 2) by 
    XREAL_1: 72;
    
            (
    0  
    - 1) 
    <= (py 
    `2 ) by 
    A17;
    
            then
    0  
    <= ((py 
    `2 ) 
    + 1) by 
    XREAL_1: 20;
    
            hence (t
    `1 ) 
    =  
    0 & (t 
    `2 ) 
    <= 1 & (t 
    `2 ) 
    >=  
    0 or (t 
    `1 ) 
    <= 1 & (t 
    `1 ) 
    >=  
    0 & (t 
    `2 ) 
    = 1 or (t 
    `1 ) 
    <= 1 & (t 
    `1 ) 
    >=  
    0 & (t 
    `2 ) 
    =  
    0 or (t 
    `1 ) 
    = 1 & (t 
    `2 ) 
    <= 1 & (t 
    `2 ) 
    >=  
    0 by 
    A17,
    A18,
    EUCLID: 52;
    
          end;
    
            case
    
            
    
    A19: (py 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (py 
    `2 ) & (py 
    `2 ) 
    <= 1; 
    
            then (2
    - 1) 
    >= (py 
    `2 ); 
    
            then 2
    >= ((py 
    `2 ) 
    + 1) by 
    XREAL_1: 19;
    
            then
    
            
    
    A20: (2 
    / 2) 
    >= (((py 
    `2 ) 
    - D) 
    / 2) by 
    XREAL_1: 72;
    
            (
    0  
    - 1) 
    <= (py 
    `2 ) by 
    A19;
    
            then
    0  
    <= ((py 
    `2 ) 
    + 1) by 
    XREAL_1: 20;
    
            hence (t
    `1 ) 
    =  
    0 & (t 
    `2 ) 
    <= 1 & (t 
    `2 ) 
    >=  
    0 or (t 
    `1 ) 
    <= 1 & (t 
    `1 ) 
    >=  
    0 & (t 
    `2 ) 
    = 1 or (t 
    `1 ) 
    <= 1 & (t 
    `1 ) 
    >=  
    0 & (t 
    `2 ) 
    =  
    0 or (t 
    `1 ) 
    = 1 & (t 
    `2 ) 
    <= 1 & (t 
    `2 ) 
    >=  
    0 by 
    A19,
    A20,
    EUCLID: 52;
    
          end;
    
            case
    
            
    
    A21: ( 
    - 1) 
    = (py 
    `2 ) & ( 
    - 1) 
    <= (py 
    `1 ) & (py 
    `1 ) 
    <= 1; 
    
            then (2
    - 1) 
    >= (py 
    `1 ); 
    
            then 2
    >= ((py 
    `1 ) 
    + 1) by 
    XREAL_1: 19;
    
            then
    
            
    
    A22: (2 
    / 2) 
    >= (((py 
    `1 ) 
    - B) 
    / 2) by 
    XREAL_1: 72;
    
            (
    0  
    - 1) 
    <= (py 
    `1 ) by 
    A21;
    
            then
    0  
    <= ((py 
    `1 ) 
    + 1) by 
    XREAL_1: 20;
    
            hence (t
    `1 ) 
    =  
    0 & (t 
    `2 ) 
    <= 1 & (t 
    `2 ) 
    >=  
    0 or (t 
    `1 ) 
    <= 1 & (t 
    `1 ) 
    >=  
    0 & (t 
    `2 ) 
    = 1 or (t 
    `1 ) 
    <= 1 & (t 
    `1 ) 
    >=  
    0 & (t 
    `2 ) 
    =  
    0 or (t 
    `1 ) 
    = 1 & (t 
    `2 ) 
    <= 1 & (t 
    `2 ) 
    >=  
    0 by 
    A21,
    A22,
    EUCLID: 52;
    
          end;
    
            case
    
            
    
    A23: 1 
    = (py 
    `2 ) & ( 
    - 1) 
    <= (py 
    `1 ) & (py 
    `1 ) 
    <= 1; 
    
            then (2
    - 1) 
    >= (py 
    `1 ); 
    
            then 2
    >= ((py 
    `1 ) 
    + 1) by 
    XREAL_1: 19;
    
            then
    
            
    
    A24: (2 
    / 2) 
    >= (((py 
    `1 ) 
    - B) 
    / 2) by 
    XREAL_1: 72;
    
            (
    0  
    - 1) 
    <= (py 
    `1 ) by 
    A23;
    
            then
    0  
    <= ((py 
    `1 ) 
    + 1) by 
    XREAL_1: 20;
    
            hence (t
    `1 ) 
    =  
    0 & (t 
    `2 ) 
    <= 1 & (t 
    `2 ) 
    >=  
    0 or (t 
    `1 ) 
    <= 1 & (t 
    `1 ) 
    >=  
    0 & (t 
    `2 ) 
    = 1 or (t 
    `1 ) 
    <= 1 & (t 
    `1 ) 
    >=  
    0 & (t 
    `2 ) 
    =  
    0 or (t 
    `1 ) 
    = 1 & (t 
    `2 ) 
    <= 1 & (t 
    `2 ) 
    >=  
    0 by 
    A23,
    A24,
    EUCLID: 52;
    
          end;
    
        end;
    
        then
    
        
    
    A25: t 
    in  
    R^2-unit_square by 
    TOPREAL1: 14;
    
        (t
    `1 ) 
    = (((py 
    `1 ) 
    - B) 
    / 2) & (t 
    `2 ) 
    = (((py 
    `2 ) 
    - D) 
    / 2) by 
    EUCLID: 52;
    
        then py
    =  
    |[((A
    * (t 
    `1 )) 
    + B), ((C 
    * (t 
    `2 )) 
    + D)]| by 
    EUCLID: 53;
    
        
    
        then py
    = (ff 
    . t) by 
    A5
    
        .= (f11
    . t) by 
    A25,
    FUNCT_1: 49;
    
        hence thesis by
    A13,
    A25,
    FUNCT_1:def 3;
    
      end;
    
      (
    rng f11) 
    c= Kbd 
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    rng f11); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A26: x 
    in ( 
    dom f11) and 
    
        
    
    A27: y 
    = (f11 
    . x) by 
    FUNCT_1:def 3;
    
        reconsider t = x as
    Point of ( 
    TOP-REAL 2) by 
    A13,
    A26;
    
        
    
        
    
    A28: y 
    = (ff 
    . t) by 
    A13,
    A26,
    A27,
    FUNCT_1: 49
    
        .=
    |[((A
    * (t 
    `1 )) 
    + B), ((C 
    * (t 
    `2 )) 
    + D)]| by 
    A5;
    
        then
    
        reconsider qy = y as
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A29: ex p st t 
    = p & ((p 
    `1 ) 
    =  
    0 & (p 
    `2 ) 
    <= 1 & (p 
    `2 ) 
    >=  
    0 or (p 
    `1 ) 
    <= 1 & (p 
    `1 ) 
    >=  
    0 & (p 
    `2 ) 
    = 1 or (p 
    `1 ) 
    <= 1 & (p 
    `1 ) 
    >=  
    0 & (p 
    `2 ) 
    =  
    0 or (p 
    `1 ) 
    = 1 & (p 
    `2 ) 
    <= 1 & (p 
    `2 ) 
    >=  
    0 ) by 
    A13,
    A26,
    TOPREAL1: 14;
    
        now
    
          per cases by
    A29;
    
            suppose
    
            
    
    A30: (t 
    `1 ) 
    =  
    0 & (t 
    `2 ) 
    <= 1 & (t 
    `2 ) 
    >=  
    0 ; 
    
            
    
            
    
    A31: (qy 
    `2 ) 
    = ((2 
    * (t 
    `2 )) 
    - 1) by 
    A28,
    EUCLID: 52;
    
            (2
    * 1) 
    >= (2 
    * (t 
    `2 )) by 
    A30,
    XREAL_1: 64;
    
            then
    
            
    
    A32: ((1 
    + 1) 
    - 1) 
    >= (((qy 
    `2 ) 
    + 1) 
    - 1) by 
    A31,
    XREAL_1: 9;
    
            (
    0  
    - 1) 
    <= (((qy 
    `2 ) 
    + 1) 
    - 1) by 
    A30,
    A31,
    XREAL_1: 9;
    
            hence (
    - 1) 
    = (qy 
    `1 ) & ( 
    - 1) 
    <= (qy 
    `2 ) & (qy 
    `2 ) 
    <= 1 or (qy 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (qy 
    `2 ) & (qy 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (qy 
    `2 ) & ( 
    - 1) 
    <= (qy 
    `1 ) & (qy 
    `1 ) 
    <= 1 or 1 
    = (qy 
    `2 ) & ( 
    - 1) 
    <= (qy 
    `1 ) & (qy 
    `1 ) 
    <= 1 by 
    A28,
    A30,
    A32,
    EUCLID: 52;
    
          end;
    
            suppose
    
            
    
    A33: (t 
    `1 ) 
    <= 1 & (t 
    `1 ) 
    >=  
    0 & (t 
    `2 ) 
    = 1; 
    
            
    
            
    
    A34: (qy 
    `1 ) 
    = ((2 
    * (t 
    `1 )) 
    - 1) by 
    A28,
    EUCLID: 52;
    
            (2
    * 1) 
    >= (2 
    * (t 
    `1 )) by 
    A33,
    XREAL_1: 64;
    
            then
    
            
    
    A35: ((1 
    + 1) 
    - 1) 
    >= (((qy 
    `1 ) 
    + 1) 
    - 1) by 
    A34,
    XREAL_1: 9;
    
            (
    0  
    - 1) 
    <= (((qy 
    `1 ) 
    + 1) 
    - 1) by 
    A33,
    A34,
    XREAL_1: 9;
    
            hence (
    - 1) 
    = (qy 
    `1 ) & ( 
    - 1) 
    <= (qy 
    `2 ) & (qy 
    `2 ) 
    <= 1 or (qy 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (qy 
    `2 ) & (qy 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (qy 
    `2 ) & ( 
    - 1) 
    <= (qy 
    `1 ) & (qy 
    `1 ) 
    <= 1 or 1 
    = (qy 
    `2 ) & ( 
    - 1) 
    <= (qy 
    `1 ) & (qy 
    `1 ) 
    <= 1 by 
    A28,
    A33,
    A35,
    EUCLID: 52;
    
          end;
    
            suppose
    
            
    
    A36: (t 
    `1 ) 
    <= 1 & (t 
    `1 ) 
    >=  
    0 & (t 
    `2 ) 
    =  
    0 ; 
    
            
    
            
    
    A37: (qy 
    `1 ) 
    = ((2 
    * (t 
    `1 )) 
    - 1) by 
    A28,
    EUCLID: 52;
    
            (2
    * 1) 
    >= (2 
    * (t 
    `1 )) by 
    A36,
    XREAL_1: 64;
    
            then
    
            
    
    A38: ((1 
    + 1) 
    - 1) 
    >= (((qy 
    `1 ) 
    + 1) 
    - 1) by 
    A37,
    XREAL_1: 9;
    
            (
    0  
    - 1) 
    <= (((qy 
    `1 ) 
    + 1) 
    - 1) by 
    A36,
    A37,
    XREAL_1: 9;
    
            hence (
    - 1) 
    = (qy 
    `1 ) & ( 
    - 1) 
    <= (qy 
    `2 ) & (qy 
    `2 ) 
    <= 1 or (qy 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (qy 
    `2 ) & (qy 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (qy 
    `2 ) & ( 
    - 1) 
    <= (qy 
    `1 ) & (qy 
    `1 ) 
    <= 1 or 1 
    = (qy 
    `2 ) & ( 
    - 1) 
    <= (qy 
    `1 ) & (qy 
    `1 ) 
    <= 1 by 
    A28,
    A36,
    A38,
    EUCLID: 52;
    
          end;
    
            suppose
    
            
    
    A39: (t 
    `1 ) 
    = 1 & (t 
    `2 ) 
    <= 1 & (t 
    `2 ) 
    >=  
    0 ; 
    
            
    
            
    
    A40: (qy 
    `2 ) 
    = ((2 
    * (t 
    `2 )) 
    - 1) by 
    A28,
    EUCLID: 52;
    
            (2
    * 1) 
    >= (2 
    * (t 
    `2 )) by 
    A39,
    XREAL_1: 64;
    
            then
    
            
    
    A41: ((1 
    + 1) 
    - 1) 
    >= (((qy 
    `2 ) 
    + 1) 
    - 1) by 
    A40,
    XREAL_1: 9;
    
            (
    0  
    - 1) 
    <= (((qy 
    `2 ) 
    + 1) 
    - 1) by 
    A39,
    A40,
    XREAL_1: 9;
    
            hence (
    - 1) 
    = (qy 
    `1 ) & ( 
    - 1) 
    <= (qy 
    `2 ) & (qy 
    `2 ) 
    <= 1 or (qy 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (qy 
    `2 ) & (qy 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (qy 
    `2 ) & ( 
    - 1) 
    <= (qy 
    `1 ) & (qy 
    `1 ) 
    <= 1 or 1 
    = (qy 
    `2 ) & ( 
    - 1) 
    <= (qy 
    `1 ) & (qy 
    `1 ) 
    <= 1 by 
    A28,
    A39,
    A41,
    EUCLID: 52;
    
          end;
    
        end;
    
        hence thesis by
    A1;
    
      end;
    
      then Kbd
    = ( 
    rng f11) by 
    A14;
    
      then
    
      consider f1 be
    Function of X, (( 
    TOP-REAL 2) 
    | Kbd) such that f11 
    = f1 and 
    
      
    
    A42: f1 is 
    being_homeomorphism by 
    A7,
    A12,
    JGRAPH_1: 46;
    
      (
    dom f) 
    = ( 
    [#] (( 
    TOP-REAL 2) 
    | Kb)) by 
    A1,
    TOPS_2:def 5
    
      .= Kb by
    PRE_TOPC:def 5;
    
      then (f
    .  
    |[1,
    0 ]|) 
    in ( 
    rng f) by 
    A1,
    A2,
    FUNCT_1: 3;
    
      then
    
      reconsider PP = P as non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      reconsider g = f as
    Function of (( 
    TOP-REAL 2) 
    | Kbb), (( 
    TOP-REAL 2) 
    | PP); 
    
      reconsider g as
    Function of (( 
    TOP-REAL 2) 
    | Kbb), (( 
    TOP-REAL 2) 
    | PP); 
    
      reconsider f22 = f1 as
    Function of X, (( 
    TOP-REAL 2) 
    | Kbb); 
    
      reconsider h = (g
    * f22) as 
    Function of (( 
    TOP-REAL 2) 
    |  
    R^2-unit_square ), (( 
    TOP-REAL 2) 
    | PP); 
    
      h is
    being_homeomorphism by 
    A1,
    A42,
    TOPS_2: 57;
    
      hence thesis by
    TOPREAL2:def 1;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:25
    
    
    
    
    
    Th25: for Kb be 
    Subset of ( 
    TOP-REAL 2) st Kb 
    = { q : ( 
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or (q 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 or 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 } holds Kb is 
    being_simple_closed_curve & Kb is 
    compact
    
    proof
    
      set v =
    |[1,
    0 ]|; 
    
      let Kb be
    Subset of ( 
    TOP-REAL 2); 
    
      assume
    
      
    
    A1: Kb 
    = { q : ( 
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or (q 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 or 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 }; 
    
      (v
    `1 ) 
    = 1 & (v 
    `2 ) 
    =  
    0 by 
    EUCLID: 52;
    
      then
    |[1,
    0 ]| 
    in { q : ( 
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or (q 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 or 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 }; 
    
      then
    
      reconsider Kbd = Kb as non
    empty  
    Subset of ( 
    TOP-REAL 2) by 
    A1;
    
      set P = Kb;
    
      (
    id (( 
    TOP-REAL 2) 
    | Kbd)) is 
    being_homeomorphism;
    
      hence Kb is
    being_simple_closed_curve by 
    A1,
    Th24;
    
      then
    
      consider f be
    Function of (( 
    TOP-REAL 2) 
    |  
    R^2-unit_square ), (( 
    TOP-REAL 2) 
    | P) such that 
    
      
    
    A2: f is 
    being_homeomorphism by 
    TOPREAL2:def 1;
    
      per cases ;
    
        suppose
    
        
    
    A3: P is 
    empty;
    
        Kbd
    <>  
    {} ; 
    
        hence thesis by
    A3;
    
      end;
    
        suppose P is non
    empty;
    
        then
    
        reconsider R = P as non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
        f is
    continuous & ( 
    rng f) 
    = ( 
    [#] (( 
    TOP-REAL 2) 
    | P)) by 
    A2,
    TOPS_2:def 5;
    
        then ((
    TOP-REAL 2) 
    | R) is 
    compact by 
    COMPTS_1: 14;
    
        hence thesis by
    COMPTS_1: 3;
    
      end;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:26
    
    for Cb be
    Subset of ( 
    TOP-REAL 2) st Cb 
    = { p where p be 
    Point of ( 
    TOP-REAL 2) : 
    |.p.|
    = 1 } holds Cb is 
    being_simple_closed_curve
    
    proof
    
      defpred
    
    P[
    Point of ( 
    TOP-REAL 2)] means ( 
    - 1) 
    = ($1 
    `1 ) & ( 
    - 1) 
    <= ($1 
    `2 ) & ($1 
    `2 ) 
    <= 1 or ($1 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= ($1 
    `2 ) & ($1 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = ($1 
    `2 ) & ( 
    - 1) 
    <= ($1 
    `1 ) & ($1 
    `1 ) 
    <= 1 or 1 
    = ($1 
    `2 ) & ( 
    - 1) 
    <= ($1 
    `1 ) & ($1 
    `1 ) 
    <= 1; 
    
      
    
      
    
    A1: ( 
    |[1,
    0 ]| 
    `1 ) 
    = 1 & ( 
    |[1,
    0 ]| 
    `2 ) 
    =  
    0 by 
    EUCLID: 52;
    
      
    
      
    
    A2: ( 
    dom  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
      set v =
    |[1,
    0 ]|; 
    
      let Cb be
    Subset of ( 
    TOP-REAL 2); 
    
      assume
    
      
    
    A3: Cb 
    = { p where p be 
    Point of ( 
    TOP-REAL 2) : 
    |.p.|
    = 1 }; 
    
      (v
    `1 ) 
    = 1 & (v 
    `2 ) 
    =  
    0 by 
    EUCLID: 52;
    
      then
    
      
    
    A4: 
    |[1,
    0 ]| 
    in { q : ( 
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or (q 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 or 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 }; 
    
      { q where q be
    Element of ( 
    TOP-REAL 2) : 
    P[q] } is
    Subset of ( 
    TOP-REAL 2) from 
    DOMAIN_1:sch 7;
    
      then
    
      reconsider Kb = { q : (
    - 1) 
    = (q 
    `1 ) & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or (q 
    `1 ) 
    = 1 & ( 
    - 1) 
    <= (q 
    `2 ) & (q 
    `2 ) 
    <= 1 or ( 
    - 1) 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 or 1 
    = (q 
    `2 ) & ( 
    - 1) 
    <= (q 
    `1 ) & (q 
    `1 ) 
    <= 1 } as non 
    empty  
    Subset of ( 
    TOP-REAL 2) by 
    A4;
    
      
    |.
    |[1,
    0 ]|.| 
    = ( 
    sqrt ((( 
    |[1,
    0 ]| 
    `1 ) 
    ^2 ) 
    + (( 
    |[1,
    0 ]| 
    `2 ) 
    ^2 ))) by 
    JGRAPH_1: 30
    
      .= 1 by
    A1,
    SQUARE_1: 18;
    
      then
    |[1,
    0 ]| 
    in Cb by 
    A3;
    
      then
    
      reconsider Cbb = Cb as non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A5: the 
    carrier of (( 
    TOP-REAL 2) 
    | Kb) 
    = Kb by 
    PRE_TOPC: 8;
    
      
    
      
    
    A6: ( 
    dom ( 
    Sq_Circ  
    | Kb)) 
    = (( 
    dom  
    Sq_Circ ) 
    /\ Kb) by 
    RELAT_1: 61
    
      .= the
    carrier of (( 
    TOP-REAL 2) 
    | Kb) by 
    A5,
    A2,
    XBOOLE_1: 28;
    
      
    
      
    
    A7: ( 
    rng ( 
    Sq_Circ  
    | Kb)) 
    c= (( 
    Sq_Circ  
    | Kb) 
    .: the 
    carrier of (( 
    TOP-REAL 2) 
    | Kb)) 
    
      proof
    
        let u be
    object;
    
        assume u
    in ( 
    rng ( 
    Sq_Circ  
    | Kb)); 
    
        then ex z be
    object st z 
    in ( 
    dom ( 
    Sq_Circ  
    | Kb)) & u 
    = (( 
    Sq_Circ  
    | Kb) 
    . z) by 
    FUNCT_1:def 3;
    
        hence thesis by
    A6,
    FUNCT_1:def 6;
    
      end;
    
      ((
    Sq_Circ  
    | Kb) 
    .: the 
    carrier of (( 
    TOP-REAL 2) 
    | Kb)) 
    = ( 
    Sq_Circ  
    .: Kb) by 
    A5,
    RELAT_1: 129
    
      .= Cb by
    A3,
    Th23
    
      .= the
    carrier of (( 
    TOP-REAL 2) 
    | Cbb) by 
    PRE_TOPC: 8;
    
      then
    
      reconsider f0 = (
    Sq_Circ  
    | Kb) as 
    Function of (( 
    TOP-REAL 2) 
    | Kb), (( 
    TOP-REAL 2) 
    | Cbb) by 
    A6,
    A7,
    FUNCT_2: 2;
    
      (
    rng ( 
    Sq_Circ  
    | Kb)) 
    c= the 
    carrier of ( 
    TOP-REAL 2); 
    
      then
    
      reconsider f00 = f0 as
    Function of (( 
    TOP-REAL 2) 
    | Kb), ( 
    TOP-REAL 2) by 
    A6,
    FUNCT_2: 2;
    
      
    
      
    
    A8: f0 is 
    one-to-one & Kb is 
    compact by 
    Th25,
    FUNCT_1: 52;
    
      (
    rng f0) 
    = (( 
    Sq_Circ  
    | Kb) 
    .: the 
    carrier of (( 
    TOP-REAL 2) 
    | Kb)) by 
    RELSET_1: 22
    
      .= (
    Sq_Circ  
    .: Kb) by 
    A5,
    RELAT_1: 129
    
      .= Cb by
    A3,
    Th23;
    
      then ex f1 be
    Function of (( 
    TOP-REAL 2) 
    | Kb), (( 
    TOP-REAL 2) 
    | Cbb) st f00 
    = f1 & f1 is 
    being_homeomorphism by 
    A8,
    Th21,
    JGRAPH_1: 46,
    TOPMETR: 7;
    
      hence thesis by
    Th24;
    
    end;
    
    begin
    
    theorem :: 
    
    JGRAPH_3:27
    
    for K0,C0 be
    Subset of ( 
    TOP-REAL 2) st K0 
    = { p : ( 
    - 1) 
    <= (p 
    `1 ) & (p 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= (p 
    `2 ) & (p 
    `2 ) 
    <= 1 } & C0 
    = { p1 where p1 be 
    Point of ( 
    TOP-REAL 2) : 
    |.p1.|
    <= 1 } holds ( 
    Sq_Circ  
    " C0) 
    c= K0 
    
    proof
    
      let K0,C0 be
    Subset of ( 
    TOP-REAL 2); 
    
      assume
    
      
    
    A1: K0 
    = { p : ( 
    - 1) 
    <= (p 
    `1 ) & (p 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= (p 
    `2 ) & (p 
    `2 ) 
    <= 1 } & C0 
    = { p1 where p1 be 
    Point of ( 
    TOP-REAL 2) : 
    |.p1.|
    <= 1 }; 
    
      let x be
    object;
    
      assume
    
      
    
    A2: x 
    in ( 
    Sq_Circ  
    " C0); 
    
      then
    
      reconsider px = x as
    Point of ( 
    TOP-REAL 2); 
    
      set q = px;
    
      
    
      
    
    A3: ( 
    Sq_Circ  
    . x) 
    in C0 by 
    A2,
    FUNCT_1:def 7;
    
      now
    
        per cases ;
    
          case q
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
          hence (
    - 1) 
    <= (px 
    `1 ) & (px 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= (px 
    `2 ) & (px 
    `2 ) 
    <= 1 by 
    JGRAPH_2: 3;
    
        end;
    
          case
    
          
    
    A4: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
          
    
    A5: 
    
          now
    
            assume (((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    =  
    0 ; 
    
            then (px
    `1 ) 
    =  
    0 & (px 
    `2 ) 
    =  
    0 by 
    COMPLEX1: 1;
    
            hence contradiction by
    A4,
    EUCLID: 53,
    EUCLID: 54;
    
          end;
    
          
    
          
    
    A6: ((px 
    `1 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
          
    
    A7: 
    
          now
    
            assume
    
            
    
    A8: (px 
    `1 ) 
    =  
    0 ; 
    
            then (px
    `2 ) 
    =  
    0 by 
    A4;
    
            hence contradiction by
    A4,
    A8,
    EUCLID: 53,
    EUCLID: 54;
    
          end;
    
          
    
          
    
    A9: ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| 
    `1 ) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) & ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| 
    `2 ) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
          consider p1 be
    Point of ( 
    TOP-REAL 2) such that 
    
          
    
    A10: p1 
    = ( 
    Sq_Circ  
    . q) and 
    
          
    
    A11: 
    |.p1.|
    <= 1 by 
    A1,
    A3;
    
          (
    |.p1.|
    ^2 ) 
    <=  
    |.p1.| by
    A11,
    SQUARE_1: 42;
    
          then
    
          
    
    A12: ( 
    |.p1.|
    ^2 ) 
    <= 1 by 
    A11,
    XXREAL_0: 2;
    
          
    
          
    
    A13: (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
          (
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| by 
    A4,
    Def1;
    
          
    
          then (
    |.p1.|
    ^2 ) 
    = ((((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 )) by 
    A9,
    A10,
    JGRAPH_1: 29
    
          .= ((((q
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
          .= ((((q
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
          .= ((((q
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    A13,
    SQUARE_1:def 2
    
          .= ((((q
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A13,
    SQUARE_1:def 2
    
          .= ((((q
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    XCMPLX_1: 62;
    
          then (((((q
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    <= (1 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A13,
    A12,
    XREAL_1: 64;
    
          then (((q
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    <= (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) by 
    A13,
    XCMPLX_1: 87;
    
          then (((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    <= (1 
    + (((px 
    `2 ) 
    ^2 ) 
    / ((px 
    `1 ) 
    ^2 ))) by 
    XCMPLX_1: 76;
    
          then ((((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    - 1) 
    <= ((1 
    + (((px 
    `2 ) 
    ^2 ) 
    / ((px 
    `1 ) 
    ^2 ))) 
    - 1) by 
    XREAL_1: 9;
    
          then (((((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    - 1) 
    * ((px 
    `1 ) 
    ^2 )) 
    <= ((((px 
    `2 ) 
    ^2 ) 
    / ((px 
    `1 ) 
    ^2 )) 
    * ((px 
    `1 ) 
    ^2 )) by 
    A6,
    XREAL_1: 64;
    
          then ((((px
    `1 ) 
    ^2 ) 
    * ((px 
    `1 ) 
    ^2 )) 
    + ((((px 
    `2 ) 
    ^2 ) 
    - 1) 
    * ((px 
    `1 ) 
    ^2 ))) 
    <= ((px 
    `2 ) 
    ^2 ) by 
    A7,
    XCMPLX_1: 6,
    XCMPLX_1: 87;
    
          then ((((((px
    `1 ) 
    ^2 ) 
    * ((px 
    `1 ) 
    ^2 )) 
    - (((px 
    `1 ) 
    ^2 ) 
    * 1)) 
    + (((px 
    `1 ) 
    ^2 ) 
    * ((px 
    `2 ) 
    ^2 ))) 
    - (1 
    * ((px 
    `2 ) 
    ^2 ))) 
    <=  
    0 by 
    XREAL_1: 47;
    
          then
    
          
    
    A14: ((((px 
    `1 ) 
    ^2 ) 
    - 1) 
    * (((px 
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 ))) 
    <=  
    0 ; 
    
          ((px
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
          then
    
          
    
    A15: (((px 
    `1 ) 
    ^2 ) 
    - 1) 
    <=  
    0 by 
    A6,
    A14,
    A5,
    XREAL_1: 129;
    
          then
    
          
    
    A16: (px 
    `1 ) 
    <= 1 by 
    SQUARE_1: 43;
    
          
    
          
    
    A17: ( 
    - 1) 
    <= (px 
    `1 ) by 
    A15,
    SQUARE_1: 43;
    
          then (q
    `2 ) 
    <= 1 & ( 
    - ( 
    - (q 
    `1 ))) 
    >= ( 
    - (q 
    `2 )) or (q 
    `2 ) 
    >= ( 
    - 1) & ( 
    - (q 
    `2 )) 
    >= ( 
    - ( 
    - (q 
    `1 ))) by 
    A4,
    A16,
    XREAL_1: 24,
    XXREAL_0: 2;
    
          then (q
    `2 ) 
    <= 1 & 1 
    >= ( 
    - (q 
    `2 )) or (q 
    `2 ) 
    >= ( 
    - 1) & ( 
    - (q 
    `2 )) 
    >= (q 
    `1 ) by 
    A16,
    XXREAL_0: 2;
    
          then (q
    `2 ) 
    <= 1 & ( 
    - 1) 
    <= ( 
    - ( 
    - (q 
    `2 ))) or (q 
    `2 ) 
    >= ( 
    - 1) & ( 
    - (q 
    `2 )) 
    >= ( 
    - 1) by 
    A17,
    XREAL_1: 24,
    XXREAL_0: 2;
    
          hence (
    - 1) 
    <= (px 
    `1 ) & (px 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= (px 
    `2 ) & (px 
    `2 ) 
    <= 1 by 
    A15,
    SQUARE_1: 43,
    XREAL_1: 24;
    
        end;
    
          case
    
          
    
    A18: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & not ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
          
    
    A19: 
    
          now
    
            assume (((px
    `2 ) 
    ^2 ) 
    + ((px 
    `1 ) 
    ^2 )) 
    =  
    0 ; 
    
            then (px
    `2 ) 
    =  
    0 by 
    COMPLEX1: 1;
    
            hence contradiction by
    A18;
    
          end;
    
          
    
          
    
    A20: ((px 
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
          
    
          
    
    A21: (px 
    `2 ) 
    <>  
    0 by 
    A18;
    
          
    
          
    
    A22: ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| 
    `2 ) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) & ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| 
    `1 ) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
          consider p1 be
    Point of ( 
    TOP-REAL 2) such that 
    
          
    
    A23: p1 
    = ( 
    Sq_Circ  
    . q) and 
    
          
    
    A24: 
    |.p1.|
    <= 1 by 
    A1,
    A3;
    
          (
    |.p1.|
    ^2 ) 
    <=  
    |.p1.| by
    A24,
    SQUARE_1: 42;
    
          then
    
          
    
    A25: ( 
    |.p1.|
    ^2 ) 
    <= 1 by 
    A24,
    XXREAL_0: 2;
    
          
    
          
    
    A26: (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
          (
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| by 
    A18,
    Def1;
    
          
    
          then (
    |.p1.|
    ^2 ) 
    = ((((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    ^2 ) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    ^2 )) by 
    A22,
    A23,
    JGRAPH_1: 29
    
          .= ((((q
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
          .= ((((q
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
          .= ((((q
    `2 ) 
    ^2 ) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    + (((q 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 ))) by 
    A26,
    SQUARE_1:def 2
    
          .= ((((q
    `2 ) 
    ^2 ) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    + (((q 
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A26,
    SQUARE_1:def 2
    
          .= ((((q
    `2 ) 
    ^2 ) 
    + ((q 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    XCMPLX_1: 62;
    
          then (((((q
    `2 ) 
    ^2 ) 
    + ((q 
    `1 ) 
    ^2 )) 
    / (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    <= (1 
    * (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) by 
    A26,
    A25,
    XREAL_1: 64;
    
          then (((q
    `2 ) 
    ^2 ) 
    + ((q 
    `1 ) 
    ^2 )) 
    <= (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )) by 
    A26,
    XCMPLX_1: 87;
    
          then (((px
    `2 ) 
    ^2 ) 
    + ((px 
    `1 ) 
    ^2 )) 
    <= (1 
    + (((px 
    `1 ) 
    ^2 ) 
    / ((px 
    `2 ) 
    ^2 ))) by 
    XCMPLX_1: 76;
    
          then ((((px
    `2 ) 
    ^2 ) 
    + ((px 
    `1 ) 
    ^2 )) 
    - 1) 
    <= ((1 
    + (((px 
    `1 ) 
    ^2 ) 
    / ((px 
    `2 ) 
    ^2 ))) 
    - 1) by 
    XREAL_1: 9;
    
          then (((((px
    `2 ) 
    ^2 ) 
    + ((px 
    `1 ) 
    ^2 )) 
    - 1) 
    * ((px 
    `2 ) 
    ^2 )) 
    <= ((((px 
    `1 ) 
    ^2 ) 
    / ((px 
    `2 ) 
    ^2 )) 
    * ((px 
    `2 ) 
    ^2 )) by 
    A20,
    XREAL_1: 64;
    
          then ((((px
    `2 ) 
    ^2 ) 
    * ((px 
    `2 ) 
    ^2 )) 
    + ((((px 
    `1 ) 
    ^2 ) 
    - 1) 
    * ((px 
    `2 ) 
    ^2 ))) 
    <= ((px 
    `1 ) 
    ^2 ) by 
    A21,
    XCMPLX_1: 6,
    XCMPLX_1: 87;
    
          then ((((((px
    `2 ) 
    ^2 ) 
    * ((px 
    `2 ) 
    ^2 )) 
    - (((px 
    `2 ) 
    ^2 ) 
    * 1)) 
    + (((px 
    `2 ) 
    ^2 ) 
    * ((px 
    `1 ) 
    ^2 ))) 
    - (1 
    * ((px 
    `1 ) 
    ^2 ))) 
    <=  
    0 by 
    XREAL_1: 47;
    
          then
    
          
    
    A27: ((((px 
    `2 ) 
    ^2 ) 
    - 1) 
    * (((px 
    `2 ) 
    ^2 ) 
    + ((px 
    `1 ) 
    ^2 ))) 
    <=  
    0 ; 
    
          ((px
    `1 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
          then
    
          
    
    A28: (((px 
    `2 ) 
    ^2 ) 
    - 1) 
    <=  
    0 by 
    A20,
    A27,
    A19,
    XREAL_1: 129;
    
          then (
    - 1) 
    <= (px 
    `2 ) & (px 
    `2 ) 
    <= 1 by 
    SQUARE_1: 43;
    
          then (q
    `1 ) 
    <= 1 & 1 
    >= ( 
    - (q 
    `1 )) or (q 
    `1 ) 
    >= ( 
    - 1) & ( 
    - (q 
    `1 )) 
    >= ( 
    - 1) by 
    A18,
    XXREAL_0: 2;
    
          then (q
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= ( 
    - ( 
    - (q 
    `1 ))) or (q 
    `1 ) 
    >= ( 
    - 1) & (q 
    `1 ) 
    <= 1 by 
    XREAL_1: 24;
    
          hence (
    - 1) 
    <= (px 
    `1 ) & (px 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= (px 
    `2 ) & (px 
    `2 ) 
    <= 1 by 
    A28,
    SQUARE_1: 43;
    
        end;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:28
    
    
    
    
    
    Th28: for p holds (p 
    = ( 
    0. ( 
    TOP-REAL 2)) implies (( 
    Sq_Circ  
    " ) 
    . p) 
    = ( 
    0. ( 
    TOP-REAL 2))) & (((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) implies (( 
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) & ( not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) implies (( 
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|) 
    
    proof
    
      let p;
    
      set q = p;
    
      set px =
    |[((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]|; 
    
      
    
      
    
    A1: (px 
    `2 ) 
    = ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
      
    
      
    
    A2: ( 
    dom  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
      hereby
    
        assume
    
        
    
    A3: p 
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
        then (
    Sq_Circ  
    . p) 
    = p by 
    Def1;
    
        hence ((
    Sq_Circ  
    " ) 
    . p) 
    = ( 
    0. ( 
    TOP-REAL 2)) by 
    A2,
    A3,
    FUNCT_1: 34;
    
      end;
    
      hereby
    
        
    
        
    
    A4: ( 
    dom  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
        set q = p;
    
        assume that
    
        
    
    A5: (p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 )) and 
    
        
    
    A6: p 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
        set px =
    |[((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|; 
    
        
    
        
    
    A7: (px 
    `1 ) 
    = ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        
    
    A8: ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        
    
        
    
    A9: (px 
    `2 ) 
    = ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        then
    
        
    
    A10: ((px 
    `2 ) 
    / (px 
    `1 )) 
    = ((q 
    `2 ) 
    / (q 
    `1 )) by 
    A7,
    A8,
    XCMPLX_1: 91;
    
        then
    
        
    
    A11: ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))) 
    = (q 
    `2 ) by 
    A9,
    A8,
    XCMPLX_1: 89;
    
        
    
    A12: 
    
        now
    
          assume (px
    `1 ) 
    =  
    0 & (px 
    `2 ) 
    =  
    0 ; 
    
          then (q
    `1 ) 
    =  
    0 & (q 
    `2 ) 
    =  
    0 by 
    A7,
    A9,
    A8,
    XCMPLX_1: 6;
    
          hence contradiction by
    A6,
    EUCLID: 53,
    EUCLID: 54;
    
        end;
    
        (q
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    <= (( 
    - (q 
    `1 )) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A5,
    A8,
    XREAL_1: 64;
    
        then (q
    `2 ) 
    <= (q 
    `1 ) & (( 
    - (q 
    `1 )) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    <= ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A7,
    A9,
    A8,
    XREAL_1: 64;
    
        then ((q
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    <= ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) & ( 
    - (px 
    `1 )) 
    <= (px 
    `2 ) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A7,
    A8,
    EUCLID: 52,
    XREAL_1: 64;
    
        then
    
        
    
    A13: ( 
    Sq_Circ  
    . px) 
    =  
    |[((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))), ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))))]| by 
    A7,
    A9,
    A12,
    Def1,
    JGRAPH_2: 3;
    
        ((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))) 
    = (q 
    `1 ) by 
    A7,
    A8,
    A10,
    XCMPLX_1: 89;
    
        then q
    = ( 
    Sq_Circ  
    . px) by 
    A13,
    A11,
    EUCLID: 53;
    
        hence ((
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| by 
    A4,
    FUNCT_1: 34;
    
      end;
    
      
    
      
    
    A14: ( 
    dom  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
      
    
      
    
    A15: ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
      
    
      
    
    A16: (px 
    `1 ) 
    = ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
      then
    
      
    
    A17: ((px 
    `1 ) 
    / (px 
    `2 )) 
    = ((q 
    `1 ) 
    / (q 
    `2 )) by 
    A1,
    A15,
    XCMPLX_1: 91;
    
      then
    
      
    
    A18: ((px 
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))) 
    = (q 
    `1 ) by 
    A16,
    A15,
    XCMPLX_1: 89;
    
      assume
    
      
    
    A19: not ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))); 
    
      
    
    A20: 
    
      now
    
        assume that
    
        
    
    A21: (px 
    `2 ) 
    =  
    0 and (px 
    `1 ) 
    =  
    0 ; 
    
        (q
    `2 ) 
    =  
    0 by 
    A1,
    A15,
    A21,
    XCMPLX_1: 6;
    
        hence contradiction by
    A19;
    
      end;
    
      (p
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 )) by 
    A19,
    JGRAPH_2: 13;
    
      then (q
    `1 ) 
    <= (q 
    `2 ) & ( 
    - (q 
    `2 )) 
    <= (q 
    `1 ) or (q 
    `1 ) 
    >= (q 
    `2 ) & ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    <= (( 
    - (q 
    `2 )) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A15,
    XREAL_1: 64;
    
      then (q
    `1 ) 
    <= (q 
    `2 ) & (( 
    - (q 
    `2 )) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    <= ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) or (px 
    `1 ) 
    >= (px 
    `2 ) & (px 
    `1 ) 
    <= ( 
    - (px 
    `2 )) by 
    A1,
    A16,
    A15,
    XREAL_1: 64;
    
      then ((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    <= ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) & ( 
    - (px 
    `2 )) 
    <= (px 
    `1 ) or (px 
    `1 ) 
    >= (px 
    `2 ) & (px 
    `1 ) 
    <= ( 
    - (px 
    `2 )) by 
    A1,
    A15,
    EUCLID: 52,
    XREAL_1: 64;
    
      then
    
      
    
    A22: ( 
    Sq_Circ  
    . px) 
    =  
    |[((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))), ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))))]| by 
    A1,
    A16,
    A20,
    Th4,
    JGRAPH_2: 3;
    
      ((px
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))) 
    = (q 
    `2 ) by 
    A1,
    A15,
    A17,
    XCMPLX_1: 89;
    
      then q
    = ( 
    Sq_Circ  
    . px) by 
    A22,
    A18,
    EUCLID: 53;
    
      hence thesis by
    A14,
    FUNCT_1: 34;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:29
    
    
    
    
    
    Th29: ( 
    Sq_Circ  
    " ) is 
    Function of ( 
    TOP-REAL 2), ( 
    TOP-REAL 2) 
    
    proof
    
      
    
      
    
    A1: the 
    carrier of ( 
    TOP-REAL 2) 
    c= ( 
    rng  
    Sq_Circ ) 
    
      proof
    
        let y be
    object;
    
        assume y
    in the 
    carrier of ( 
    TOP-REAL 2); 
    
        then
    
        reconsider py = y as
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A2: ( 
    dom  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
        now
    
          per cases ;
    
            case py
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            then (
    Sq_Circ  
    . py) 
    = py by 
    Def1;
    
            hence ex x be
    set st x 
    in ( 
    dom  
    Sq_Circ ) & y 
    = ( 
    Sq_Circ  
    . x) by 
    A2;
    
          end;
    
            case
    
            
    
    A3: ((py 
    `2 ) 
    <= (py 
    `1 ) & ( 
    - (py 
    `1 )) 
    <= (py 
    `2 ) or (py 
    `2 ) 
    >= (py 
    `1 ) & (py 
    `2 ) 
    <= ( 
    - (py 
    `1 ))) & py 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
            set q = py;
    
            set px =
    |[((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|; 
    
            
    
            
    
    A4: ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
            
    
    A5: 
    
            now
    
              assume that
    
              
    
    A6: (px 
    `1 ) 
    =  
    0 and 
    
              
    
    A7: (px 
    `2 ) 
    =  
    0 ; 
    
              ((q
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    =  
    0 by 
    A7,
    EUCLID: 52;
    
              then
    
              
    
    A8: (q 
    `2 ) 
    =  
    0 by 
    A4,
    XCMPLX_1: 6;
    
              ((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    =  
    0 by 
    A6,
    EUCLID: 52;
    
              then (q
    `1 ) 
    =  
    0 by 
    A4,
    XCMPLX_1: 6;
    
              hence contradiction by
    A3,
    A8,
    EUCLID: 53,
    EUCLID: 54;
    
            end;
    
            
    
            
    
    A9: ( 
    dom  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
            
    
            
    
    A10: (px 
    `1 ) 
    = ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
            
    
            
    
    A11: (px 
    `2 ) 
    = ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
            then
    
            
    
    A12: ((px 
    `2 ) 
    / (px 
    `1 )) 
    = ((q 
    `2 ) 
    / (q 
    `1 )) by 
    A10,
    A4,
    XCMPLX_1: 91;
    
            then
    
            
    
    A13: ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))) 
    = (q 
    `2 ) by 
    A11,
    A4,
    XCMPLX_1: 89;
    
            (q
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    <= (( 
    - (q 
    `1 )) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A3,
    A4,
    XREAL_1: 64;
    
            then (q
    `2 ) 
    <= (q 
    `1 ) & (( 
    - (q 
    `1 )) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    <= ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A10,
    A11,
    A4,
    XREAL_1: 64;
    
            then ((q
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    <= ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) & ( 
    - (px 
    `1 )) 
    <= (px 
    `2 ) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A10,
    A4,
    EUCLID: 52,
    XREAL_1: 64;
    
            then
    
            
    
    A14: ( 
    Sq_Circ  
    . px) 
    =  
    |[((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))), ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))))]| by 
    A10,
    A11,
    A5,
    Def1,
    JGRAPH_2: 3;
    
            ((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))) 
    = (q 
    `1 ) by 
    A10,
    A4,
    A12,
    XCMPLX_1: 89;
    
            hence ex x be
    set st x 
    in ( 
    dom  
    Sq_Circ ) & y 
    = ( 
    Sq_Circ  
    . x) by 
    A14,
    A13,
    A9,
    EUCLID: 53;
    
          end;
    
            case
    
            
    
    A15: not ((py 
    `2 ) 
    <= (py 
    `1 ) & ( 
    - (py 
    `1 )) 
    <= (py 
    `2 ) or (py 
    `2 ) 
    >= (py 
    `1 ) & (py 
    `2 ) 
    <= ( 
    - (py 
    `1 ))) & py 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
            set q = py;
    
            set px =
    |[((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]|; 
    
            
    
            
    
    A16: ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
            
    
            
    
    A17: (px 
    `2 ) 
    = ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
            
    
    A18: 
    
            now
    
              assume that
    
              
    
    A19: (px 
    `2 ) 
    =  
    0 and (px 
    `1 ) 
    =  
    0 ; 
    
              (q
    `2 ) 
    =  
    0 by 
    A17,
    A16,
    A19,
    XCMPLX_1: 6;
    
              hence contradiction by
    A15;
    
            end;
    
            
    
            
    
    A20: (px 
    `1 ) 
    = ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
            then
    
            
    
    A21: ((px 
    `1 ) 
    / (px 
    `2 )) 
    = ((q 
    `1 ) 
    / (q 
    `2 )) by 
    A17,
    A16,
    XCMPLX_1: 91;
    
            then
    
            
    
    A22: ((px 
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))) 
    = (q 
    `1 ) by 
    A20,
    A16,
    XCMPLX_1: 89;
    
            (py
    `1 ) 
    <= (py 
    `2 ) & ( 
    - (py 
    `2 )) 
    <= (py 
    `1 ) or (py 
    `1 ) 
    >= (py 
    `2 ) & (py 
    `1 ) 
    <= ( 
    - (py 
    `2 )) by 
    A15,
    JGRAPH_2: 13;
    
            then (q
    `1 ) 
    <= (q 
    `2 ) & ( 
    - (q 
    `2 )) 
    <= (q 
    `1 ) or (q 
    `1 ) 
    >= (q 
    `2 ) & ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    <= (( 
    - (q 
    `2 )) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A16,
    XREAL_1: 64;
    
            then (q
    `1 ) 
    <= (q 
    `2 ) & (( 
    - (q 
    `2 )) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    <= ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) or (px 
    `1 ) 
    >= (px 
    `2 ) & (px 
    `1 ) 
    <= ( 
    - (px 
    `2 )) by 
    A17,
    A20,
    A16,
    XREAL_1: 64;
    
            then ((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    <= ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) & ( 
    - (px 
    `2 )) 
    <= (px 
    `1 ) or (px 
    `1 ) 
    >= (px 
    `2 ) & (px 
    `1 ) 
    <= ( 
    - (px 
    `2 )) by 
    A17,
    A16,
    EUCLID: 52,
    XREAL_1: 64;
    
            then
    
            
    
    A23: ( 
    Sq_Circ  
    . px) 
    =  
    |[((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))), ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))))]| by 
    A17,
    A20,
    A18,
    Th4,
    JGRAPH_2: 3;
    
            
    
            
    
    A24: ( 
    dom  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
            ((px
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))) 
    = (q 
    `2 ) by 
    A17,
    A16,
    A21,
    XCMPLX_1: 89;
    
            hence ex x be
    set st x 
    in ( 
    dom  
    Sq_Circ ) & y 
    = ( 
    Sq_Circ  
    . x) by 
    A23,
    A22,
    A24,
    EUCLID: 53;
    
          end;
    
        end;
    
        hence thesis by
    FUNCT_1:def 3;
    
      end;
    
      
    
      
    
    A25: ( 
    rng ( 
    Sq_Circ  
    " )) 
    = ( 
    dom  
    Sq_Circ ) by 
    FUNCT_1: 33
    
      .= the
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
      (
    dom ( 
    Sq_Circ  
    " )) 
    = ( 
    rng  
    Sq_Circ ) by 
    FUNCT_1: 33;
    
      then (
    dom ( 
    Sq_Circ  
    " )) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    A1;
    
      hence thesis by
    A25,
    FUNCT_2: 1;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:30
    
    
    
    
    
    Th30: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    <> ( 
    0. ( 
    TOP-REAL 2)) holds (((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) implies (( 
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|) & ( not ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) implies (( 
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) 
    
    proof
    
      let p be
    Point of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: ( 
    - (p 
    `2 )) 
    < (p 
    `1 ) implies ( 
    - ( 
    - (p 
    `2 ))) 
    > ( 
    - (p 
    `1 )) by 
    XREAL_1: 24;
    
      assume
    
      
    
    A2: p 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
      hereby
    
        assume
    
        
    
    A3: (p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 )); 
    
        now
    
          per cases by
    A3;
    
            case
    
            
    
    A4: (p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ); 
    
            now
    
              assume
    
              
    
    A5: (p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 )); 
    
              
    
    A6: 
    
              now
    
                per cases by
    A5;
    
                  case (p
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ); 
    
                  hence (p
    `1 ) 
    = (p 
    `2 ) or (p 
    `1 ) 
    = ( 
    - (p 
    `2 )) by 
    A4,
    XXREAL_0: 1;
    
                end;
    
                  case (p
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 )); 
    
                  then (
    - (p 
    `2 )) 
    >= ( 
    - ( 
    - (p 
    `1 ))) by 
    XREAL_1: 24;
    
                  hence (p
    `1 ) 
    = (p 
    `2 ) or (p 
    `1 ) 
    = ( 
    - (p 
    `2 )) by 
    A4,
    XXREAL_0: 1;
    
                end;
    
              end;
    
              now
    
                per cases by
    A6;
    
                  case (p
    `1 ) 
    = (p 
    `2 ); 
    
                  hence ((
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    A2,
    A5,
    Th28;
    
                end;
    
                  case (p
    `1 ) 
    = ( 
    - (p 
    `2 )); 
    
                  then (p
    `1 ) 
    <>  
    0 & ( 
    - (p 
    `1 )) 
    = (p 
    `2 ) by 
    A2,
    EUCLID: 53,
    EUCLID: 54;
    
                  then ((p
    `1 ) 
    / (p 
    `2 )) 
    = ( 
    - 1) & ((p 
    `2 ) 
    / (p 
    `1 )) 
    = ( 
    - 1) by 
    XCMPLX_1: 197,
    XCMPLX_1: 198;
    
                  hence ((
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    A2,
    A5,
    Th28;
    
                end;
    
              end;
    
              hence ((
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|; 
    
            end;
    
            hence ((
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    Th28;
    
          end;
    
            case
    
            
    
    A7: (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 )); 
    
            now
    
              assume
    
              
    
    A8: (p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 )); 
    
              
    
    A9: 
    
              now
    
                per cases by
    A8;
    
                  case (p
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ); 
    
                  then (
    - ( 
    - (p 
    `1 ))) 
    >= ( 
    - (p 
    `2 )) by 
    XREAL_1: 24;
    
                  hence (p
    `1 ) 
    = (p 
    `2 ) or (p 
    `1 ) 
    = ( 
    - (p 
    `2 )) by 
    A7,
    XXREAL_0: 1;
    
                end;
    
                  case (p
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 )); 
    
                  hence (p
    `1 ) 
    = (p 
    `2 ) or (p 
    `1 ) 
    = ( 
    - (p 
    `2 )) by 
    A7,
    XXREAL_0: 1;
    
                end;
    
              end;
    
              now
    
                per cases by
    A9;
    
                  case (p
    `1 ) 
    = (p 
    `2 ); 
    
                  hence ((
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    A2,
    A8,
    Th28;
    
                end;
    
                  case
    
                  
    
    A10: (p 
    `1 ) 
    = ( 
    - (p 
    `2 )); 
    
                  then (p
    `1 ) 
    <>  
    0 & ( 
    - (p 
    `1 )) 
    = (p 
    `2 ) by 
    A2,
    EUCLID: 53,
    EUCLID: 54;
    
                  then
    
                  
    
    A11: ((p 
    `2 ) 
    / (p 
    `1 )) 
    = ( 
    - 1) by 
    XCMPLX_1: 197;
    
                  (p
    `2 ) 
    <>  
    0 by 
    A2,
    A10,
    EUCLID: 53,
    EUCLID: 54;
    
                  then ((p
    `1 ) 
    / (p 
    `2 )) 
    = ( 
    - 1) by 
    A10,
    XCMPLX_1: 197;
    
                  hence ((
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    A2,
    A8,
    A11,
    Th28;
    
                end;
    
              end;
    
              hence ((
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|; 
    
            end;
    
            hence ((
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    Th28;
    
          end;
    
        end;
    
        hence ((
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|; 
    
      end;
    
      
    
      
    
    A12: ( 
    - (p 
    `2 )) 
    > (p 
    `1 ) implies ( 
    - ( 
    - (p 
    `2 ))) 
    < ( 
    - (p 
    `1 )) by 
    XREAL_1: 24;
    
      assume not ((p
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))); 
    
      hence thesis by
    A2,
    A1,
    A12,
    Th28;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:31
    
    
    
    
    
    Th31: for X be non 
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 st f1 is 
    continuous & f2 is 
    continuous & (for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ) holds ex g be 
    Function of X, 
    R^1 st (for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g 
    . p) 
    = (r1 
    * ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))))) & g is 
    continuous
    
    proof
    
      let X be non
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 ; 
    
      assume that
    
      
    
    A1: f1 is 
    continuous and 
    
      
    
    A2: f2 is 
    continuous & for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ; 
    
      consider g2 be
    Function of X, 
    R^1 such that 
    
      
    
    A3: for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g2 
    . p) 
    = ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))) and 
    
      
    
    A4: g2 is 
    continuous by 
    A1,
    A2,
    Th8;
    
      consider g3 be
    Function of X, 
    R^1 such that 
    
      
    
    A5: for p be 
    Point of X, r1,r0 be 
    Real st (f1 
    . p) 
    = r1 & (g2 
    . p) 
    = r0 holds (g3 
    . p) 
    = (r1 
    * r0) and 
    
      
    
    A6: g3 is 
    continuous by 
    A1,
    A4,
    JGRAPH_2: 25;
    
      for p be
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g3 
    . p) 
    = (r1 
    * ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) 
    
      proof
    
        let p be
    Point of X, r1,r2 be 
    Real;
    
        assume that
    
        
    
    A7: (f1 
    . p) 
    = r1 and 
    
        
    
    A8: (f2 
    . p) 
    = r2; 
    
        (g2
    . p) 
    = ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))) by 
    A3,
    A7,
    A8;
    
        hence thesis by
    A5,
    A7;
    
      end;
    
      hence thesis by
    A6;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:32
    
    
    
    
    
    Th32: for X be non 
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 st f1 is 
    continuous & f2 is 
    continuous & (for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ) holds ex g be 
    Function of X, 
    R^1 st (for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g 
    . p) 
    = (r2 
    * ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))))) & g is 
    continuous
    
    proof
    
      let X be non
    empty  
    TopSpace, f1,f2 be 
    Function of X, 
    R^1 ; 
    
      assume that
    
      
    
    A1: f1 is 
    continuous and 
    
      
    
    A2: f2 is 
    continuous and 
    
      
    
    A3: for q be 
    Point of X holds (f2 
    . q) 
    <>  
    0 ; 
    
      consider g2 be
    Function of X, 
    R^1 such that 
    
      
    
    A4: for p be 
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g2 
    . p) 
    = ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))) and 
    
      
    
    A5: g2 is 
    continuous by 
    A1,
    A2,
    A3,
    Th8;
    
      consider g3 be
    Function of X, 
    R^1 such that 
    
      
    
    A6: for p be 
    Point of X, r2,r0 be 
    Real st (f2 
    . p) 
    = r2 & (g2 
    . p) 
    = r0 holds (g3 
    . p) 
    = (r2 
    * r0) and 
    
      
    
    A7: g3 is 
    continuous by 
    A2,
    A5,
    JGRAPH_2: 25;
    
      for p be
    Point of X, r1,r2 be 
    Real st (f1 
    . p) 
    = r1 & (f2 
    . p) 
    = r2 holds (g3 
    . p) 
    = (r2 
    * ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) 
    
      proof
    
        let p be
    Point of X, r1,r2 be 
    Real;
    
        assume that
    
        
    
    A8: (f1 
    . p) 
    = r1 and 
    
        
    
    A9: (f2 
    . p) 
    = r2; 
    
        (g2
    . p) 
    = ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 ))) by 
    A4,
    A8,
    A9;
    
        hence thesis by
    A6,
    A9;
    
      end;
    
      hence thesis by
    A7;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:33
    
    
    
    
    
    Th33: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 st (for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))) & (for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `1 ) 
    <>  
    0 ) holds f is 
    continuous
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 ; 
    
      reconsider g1 = (
    proj1  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm7;
    
      reconsider g2 = (
    proj2  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm5;
    
      assume that
    
      
    
    A1: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) and 
    
      
    
    A2: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `1 ) 
    <>  
    0 ; 
    
      
    
      
    
    A3: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
      for q be
    Point of (( 
    TOP-REAL 2) 
    | K1) holds (g1 
    . q) 
    <>  
    0  
    
      proof
    
        let q be
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then
    
        reconsider q2 = q as
    Point of ( 
    TOP-REAL 2) by 
    A3;
    
        (g1
    . q) 
    = ( 
    proj1  
    . q) by 
    Lm6
    
        .= (q2
    `1 ) by 
    PSCOMP_1:def 5;
    
        hence thesis by
    A2;
    
      end;
    
      then
    
      consider g3 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A4: for q be 
    Point of (( 
    TOP-REAL 2) 
    | K1), r1,r2 be 
    Real st (g2 
    . q) 
    = r1 & (g1 
    . q) 
    = r2 holds (g3 
    . q) 
    = (r2 
    * ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) and 
    
      
    
    A5: g3 is 
    continuous by 
    Th32;
    
      
    
    A6: 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A7: x 
    in ( 
    dom f); 
    
        then
    
        reconsider s = x as
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        x
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    A7;
    
        then x
    in K1 by 
    PRE_TOPC: 8;
    
        then
    
        reconsider r = x as
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A8: ( 
    proj2  
    . r) 
    = (r 
    `2 ) & ( 
    proj1  
    . r) 
    = (r 
    `1 ) by 
    PSCOMP_1:def 5,
    PSCOMP_1:def 6;
    
        
    
        
    
    A9: (g2 
    . s) 
    = ( 
    proj2  
    . s) & (g1 
    . s) 
    = ( 
    proj1  
    . s) by 
    Lm4,
    Lm6;
    
        (f
    . r) 
    = ((r 
    `1 ) 
    * ( 
    sqrt (1 
    + (((r 
    `2 ) 
    / (r 
    `1 )) 
    ^2 )))) by 
    A1,
    A7;
    
        hence (f
    . x) 
    = (g3 
    . x) by 
    A4,
    A9,
    A8;
    
      end;
    
      (
    dom g3) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    FUNCT_2:def 1;
    
      then (
    dom f) 
    = ( 
    dom g3) by 
    FUNCT_2:def 1;
    
      hence thesis by
    A5,
    A6,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:34
    
    
    
    
    
    Th34: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 st (for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))) & (for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `1 ) 
    <>  
    0 ) holds f is 
    continuous
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 ; 
    
      reconsider g1 = (
    proj1  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm7;
    
      reconsider g2 = (
    proj2  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm5;
    
      assume that
    
      
    
    A1: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) and 
    
      
    
    A2: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `1 ) 
    <>  
    0 ; 
    
      
    
      
    
    A3: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
      for q be
    Point of (( 
    TOP-REAL 2) 
    | K1) holds (g1 
    . q) 
    <>  
    0  
    
      proof
    
        let q be
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then
    
        reconsider q2 = q as
    Point of ( 
    TOP-REAL 2) by 
    A3;
    
        (g1
    . q) 
    = ( 
    proj1  
    . q) by 
    Lm6
    
        .= (q2
    `1 ) by 
    PSCOMP_1:def 5;
    
        hence thesis by
    A2;
    
      end;
    
      then
    
      consider g3 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A4: for q be 
    Point of (( 
    TOP-REAL 2) 
    | K1), r1,r2 be 
    Real st (g2 
    . q) 
    = r1 & (g1 
    . q) 
    = r2 holds (g3 
    . q) 
    = (r1 
    * ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) and 
    
      
    
    A5: g3 is 
    continuous by 
    Th31;
    
      
    
    A6: 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A7: x 
    in ( 
    dom f); 
    
        then
    
        reconsider s = x as
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        x
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    A7;
    
        then x
    in K1 by 
    PRE_TOPC: 8;
    
        then
    
        reconsider r = x as
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A8: ( 
    proj2  
    . r) 
    = (r 
    `2 ) & ( 
    proj1  
    . r) 
    = (r 
    `1 ) by 
    PSCOMP_1:def 5,
    PSCOMP_1:def 6;
    
        
    
        
    
    A9: (g2 
    . s) 
    = ( 
    proj2  
    . s) & (g1 
    . s) 
    = ( 
    proj1  
    . s) by 
    Lm4,
    Lm6;
    
        (f
    . r) 
    = ((r 
    `2 ) 
    * ( 
    sqrt (1 
    + (((r 
    `2 ) 
    / (r 
    `1 )) 
    ^2 )))) by 
    A1,
    A7;
    
        hence (f
    . x) 
    = (g3 
    . x) by 
    A4,
    A9,
    A8;
    
      end;
    
      (
    dom g3) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    FUNCT_2:def 1;
    
      then (
    dom f) 
    = ( 
    dom g3) by 
    FUNCT_2:def 1;
    
      hence thesis by
    A5,
    A6,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:35
    
    
    
    
    
    Th35: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 st (for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))) & (for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `2 ) 
    <>  
    0 ) holds f is 
    continuous
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 ; 
    
      reconsider g1 = (
    proj1  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm7;
    
      reconsider g2 = (
    proj2  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm5;
    
      assume that
    
      
    
    A1: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) and 
    
      
    
    A2: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `2 ) 
    <>  
    0 ; 
    
      
    
      
    
    A3: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
      for q be
    Point of (( 
    TOP-REAL 2) 
    | K1) holds (g2 
    . q) 
    <>  
    0  
    
      proof
    
        let q be
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then
    
        reconsider q2 = q as
    Point of ( 
    TOP-REAL 2) by 
    A3;
    
        (g2
    . q) 
    = ( 
    proj2  
    . q) by 
    Lm4
    
        .= (q2
    `2 ) by 
    PSCOMP_1:def 6;
    
        hence thesis by
    A2;
    
      end;
    
      then
    
      consider g3 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A4: for q be 
    Point of (( 
    TOP-REAL 2) 
    | K1), r1,r2 be 
    Real st (g1 
    . q) 
    = r1 & (g2 
    . q) 
    = r2 holds (g3 
    . q) 
    = (r2 
    * ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) and 
    
      
    
    A5: g3 is 
    continuous by 
    Th32;
    
      
    
    A6: 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A7: x 
    in ( 
    dom f); 
    
        then
    
        reconsider s = x as
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        x
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    A7;
    
        then x
    in K1 by 
    PRE_TOPC: 8;
    
        then
    
        reconsider r = x as
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A8: ( 
    proj2  
    . r) 
    = (r 
    `2 ) & ( 
    proj1  
    . r) 
    = (r 
    `1 ) by 
    PSCOMP_1:def 5,
    PSCOMP_1:def 6;
    
        
    
        
    
    A9: (g2 
    . s) 
    = ( 
    proj2  
    . s) & (g1 
    . s) 
    = ( 
    proj1  
    . s) by 
    Lm4,
    Lm6;
    
        (f
    . r) 
    = ((r 
    `2 ) 
    * ( 
    sqrt (1 
    + (((r 
    `1 ) 
    / (r 
    `2 )) 
    ^2 )))) by 
    A1,
    A7;
    
        hence (f
    . x) 
    = (g3 
    . x) by 
    A4,
    A9,
    A8;
    
      end;
    
      (
    dom g3) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    FUNCT_2:def 1;
    
      then (
    dom f) 
    = ( 
    dom g3) by 
    FUNCT_2:def 1;
    
      hence thesis by
    A5,
    A6,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:36
    
    
    
    
    
    Th36: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 st (for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))) & (for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `2 ) 
    <>  
    0 ) holds f is 
    continuous
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 ; 
    
      reconsider g1 = (
    proj1  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm7;
    
      reconsider g2 = (
    proj2  
    | K1) as 
    continuous  
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm5;
    
      assume that
    
      
    
    A1: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f 
    . p) 
    = ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) and 
    
      
    
    A2: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `2 ) 
    <>  
    0 ; 
    
      
    
      
    
    A3: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
      for q be
    Point of (( 
    TOP-REAL 2) 
    | K1) holds (g2 
    . q) 
    <>  
    0  
    
      proof
    
        let q be
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then
    
        reconsider q2 = q as
    Point of ( 
    TOP-REAL 2) by 
    A3;
    
        (g2
    . q) 
    = ( 
    proj2  
    . q) by 
    Lm4
    
        .= (q2
    `2 ) by 
    PSCOMP_1:def 6;
    
        hence thesis by
    A2;
    
      end;
    
      then
    
      consider g3 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A4: for q be 
    Point of (( 
    TOP-REAL 2) 
    | K1), r1,r2 be 
    Real st (g1 
    . q) 
    = r1 & (g2 
    . q) 
    = r2 holds (g3 
    . q) 
    = (r1 
    * ( 
    sqrt (1 
    + ((r1 
    / r2) 
    ^2 )))) and 
    
      
    
    A5: g3 is 
    continuous by 
    Th31;
    
      
    
    A6: 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A7: x 
    in ( 
    dom f); 
    
        then
    
        reconsider s = x as
    Point of (( 
    TOP-REAL 2) 
    | K1); 
    
        x
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    A7;
    
        then x
    in K1 by 
    PRE_TOPC: 8;
    
        then
    
        reconsider r = x as
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A8: ( 
    proj2  
    . r) 
    = (r 
    `2 ) & ( 
    proj1  
    . r) 
    = (r 
    `1 ) by 
    PSCOMP_1:def 5,
    PSCOMP_1:def 6;
    
        
    
        
    
    A9: (g2 
    . s) 
    = ( 
    proj2  
    . s) & (g1 
    . s) 
    = ( 
    proj1  
    . s) by 
    Lm4,
    Lm6;
    
        (f
    . r) 
    = ((r 
    `1 ) 
    * ( 
    sqrt (1 
    + (((r 
    `1 ) 
    / (r 
    `2 )) 
    ^2 )))) by 
    A1,
    A7;
    
        hence (f
    . x) 
    = (g3 
    . x) by 
    A4,
    A9,
    A8;
    
      end;
    
      (
    dom g3) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    FUNCT_2:def 1;
    
      then (
    dom f) 
    = ( 
    dom g3) by 
    FUNCT_2:def 1;
    
      hence thesis by
    A5,
    A6,
    FUNCT_1: 2;
    
    end;
    
    
    
    
    
    Lm17: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2) holds ( 
    proj2  
    * (( 
    Sq_Circ  
    " ) 
    | K1)) is 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1  
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: ( 
    rng ( 
    proj2  
    * (( 
    Sq_Circ  
    " ) 
    | K1))) 
    c= ( 
    rng  
    proj2 ) by 
    RELAT_1: 26;
    
      
    
      
    
    A2: ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)) 
    c= ( 
    dom ( 
    proj2  
    * (( 
    Sq_Circ  
    " ) 
    | K1))) 
    
      proof
    
        let x be
    object;
    
        
    
        
    
    A3: ( 
    rng ( 
    Sq_Circ  
    " )) 
    c= the 
    carrier of ( 
    TOP-REAL 2) by 
    Th29,
    RELAT_1:def 19;
    
        assume
    
        
    
    A4: x 
    in ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)); 
    
        then x
    in (( 
    dom ( 
    Sq_Circ  
    " )) 
    /\ K1) by 
    RELAT_1: 61;
    
        then x
    in ( 
    dom ( 
    Sq_Circ  
    " )) by 
    XBOOLE_0:def 4;
    
        then
    
        
    
    A5: (( 
    Sq_Circ  
    " ) 
    . x) 
    in ( 
    rng ( 
    Sq_Circ  
    " )) by 
    FUNCT_1: 3;
    
        (((
    Sq_Circ  
    " ) 
    | K1) 
    . x) 
    = (( 
    Sq_Circ  
    " ) 
    . x) by 
    A4,
    FUNCT_1: 47;
    
        hence thesis by
    A4,
    A5,
    A3,
    Lm3,
    FUNCT_1: 11;
    
      end;
    
      (
    dom ( 
    proj2  
    * (( 
    Sq_Circ  
    " ) 
    | K1))) 
    c= ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)) by 
    RELAT_1: 25;
    
      
    
      then (
    dom ( 
    proj2  
    * (( 
    Sq_Circ  
    " ) 
    | K1))) 
    = ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)) by 
    A2
    
      .= ((
    dom ( 
    Sq_Circ  
    " )) 
    /\ K1) by 
    RELAT_1: 61
    
      .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    Th29,
    FUNCT_2:def 1
    
      .= K1 by
    XBOOLE_1: 28
    
      .= the
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    PRE_TOPC: 8;
    
      hence thesis by
    A1,
    FUNCT_2: 2,
    TOPMETR: 17,
    XBOOLE_1: 1;
    
    end;
    
    
    
    
    
    Lm18: for K1 be non 
    empty  
    Subset of ( 
    TOP-REAL 2) holds ( 
    proj1  
    * (( 
    Sq_Circ  
    " ) 
    | K1)) is 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1  
    
    proof
    
      let K1 be non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: ( 
    rng ( 
    proj1  
    * (( 
    Sq_Circ  
    " ) 
    | K1))) 
    c= ( 
    rng  
    proj1 ) by 
    RELAT_1: 26;
    
      
    
      
    
    A2: ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)) 
    c= ( 
    dom ( 
    proj1  
    * (( 
    Sq_Circ  
    " ) 
    | K1))) 
    
      proof
    
        let x be
    object;
    
        
    
        
    
    A3: ( 
    rng ( 
    Sq_Circ  
    " )) 
    c= the 
    carrier of ( 
    TOP-REAL 2) by 
    Th29,
    RELAT_1:def 19;
    
        assume
    
        
    
    A4: x 
    in ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)); 
    
        then x
    in (( 
    dom ( 
    Sq_Circ  
    " )) 
    /\ K1) by 
    RELAT_1: 61;
    
        then x
    in ( 
    dom ( 
    Sq_Circ  
    " )) by 
    XBOOLE_0:def 4;
    
        then
    
        
    
    A5: (( 
    Sq_Circ  
    " ) 
    . x) 
    in ( 
    rng ( 
    Sq_Circ  
    " )) by 
    FUNCT_1: 3;
    
        (((
    Sq_Circ  
    " ) 
    | K1) 
    . x) 
    = (( 
    Sq_Circ  
    " ) 
    . x) by 
    A4,
    FUNCT_1: 47;
    
        hence thesis by
    A4,
    A5,
    A3,
    Lm2,
    FUNCT_1: 11;
    
      end;
    
      (
    dom ( 
    proj1  
    * (( 
    Sq_Circ  
    " ) 
    | K1))) 
    c= ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)) by 
    RELAT_1: 25;
    
      
    
      then (
    dom ( 
    proj1  
    * (( 
    Sq_Circ  
    " ) 
    | K1))) 
    = ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)) by 
    A2
    
      .= ((
    dom ( 
    Sq_Circ  
    " )) 
    /\ K1) by 
    RELAT_1: 61
    
      .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    Th29,
    FUNCT_2:def 1
    
      .= K1 by
    XBOOLE_1: 28
    
      .= the
    carrier of (( 
    TOP-REAL 2) 
    | K1) by 
    PRE_TOPC: 8;
    
      hence thesis by
    A1,
    FUNCT_2: 2,
    TOPMETR: 17,
    XBOOLE_1: 1;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:37
    
    
    
    
    
    Th37: for K0,B0 be 
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K0), (( 
    TOP-REAL 2) 
    | B0) st f 
    = (( 
    Sq_Circ  
    " ) 
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } holds f is 
    continuous
    
    proof
    
      let K0,B0 be
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K0), (( 
    TOP-REAL 2) 
    | B0); 
    
      assume
    
      
    
    A1: f 
    = (( 
    Sq_Circ  
    " ) 
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
      then (
    1.REAL 2) 
    in K0 by 
    Lm9,
    Lm10;
    
      then
    
      reconsider K1 = K0 as non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      reconsider g1 = (
    proj1  
    * (( 
    Sq_Circ  
    " ) 
    | K1)) as 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm18;
    
      for p be
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (g1 
    . p) 
    = ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    
      proof
    
        
    
        
    
    A2: ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)) 
    = (( 
    dom ( 
    Sq_Circ  
    " )) 
    /\ K1) by 
    RELAT_1: 61
    
        .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    Th29,
    FUNCT_2:def 1
    
        .= K1 by
    XBOOLE_1: 28;
    
        let p be
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A3: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        assume
    
        
    
    A4: p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then ex p3 be
    Point of ( 
    TOP-REAL 2) st p 
    = p3 & ((p3 
    `2 ) 
    <= (p3 
    `1 ) & ( 
    - (p3 
    `1 )) 
    <= (p3 
    `2 ) or (p3 
    `2 ) 
    >= (p3 
    `1 ) & (p3 
    `2 ) 
    <= ( 
    - (p3 
    `1 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A3;
    
        then
    
        
    
    A5: (( 
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| by 
    Th28;
    
        (((
    Sq_Circ  
    " ) 
    | K1) 
    . p) 
    = (( 
    Sq_Circ  
    " ) 
    . p) by 
    A4,
    A3,
    FUNCT_1: 49;
    
        
    
        then (g1
    . p) 
    = ( 
    proj1  
    .  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) by 
    A4,
    A2,
    A3,
    A5,
    FUNCT_1: 13
    
        .= (
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| 
    `1 ) by 
    PSCOMP_1:def 5
    
        .= ((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        hence thesis;
    
      end;
    
      then
    
      consider f1 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A6: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f1 
    . p) 
    = ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))); 
    
      reconsider g2 = (
    proj2  
    * (( 
    Sq_Circ  
    " ) 
    | K1)) as 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm17;
    
      for p be
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (g2 
    . p) 
    = ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    
      proof
    
        
    
        
    
    A7: ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)) 
    = (( 
    dom ( 
    Sq_Circ  
    " )) 
    /\ K1) by 
    RELAT_1: 61
    
        .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    Th29,
    FUNCT_2:def 1
    
        .= K1 by
    XBOOLE_1: 28;
    
        let p be
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A8: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        assume
    
        
    
    A9: p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then ex p3 be
    Point of ( 
    TOP-REAL 2) st p 
    = p3 & ((p3 
    `2 ) 
    <= (p3 
    `1 ) & ( 
    - (p3 
    `1 )) 
    <= (p3 
    `2 ) or (p3 
    `2 ) 
    >= (p3 
    `1 ) & (p3 
    `2 ) 
    <= ( 
    - (p3 
    `1 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A8;
    
        then
    
        
    
    A10: (( 
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| by 
    Th28;
    
        (((
    Sq_Circ  
    " ) 
    | K1) 
    . p) 
    = (( 
    Sq_Circ  
    " ) 
    . p) by 
    A9,
    A8,
    FUNCT_1: 49;
    
        
    
        then (g2
    . p) 
    = ( 
    proj2  
    .  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|) by 
    A9,
    A7,
    A8,
    A10,
    FUNCT_1: 13
    
        .= (
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| 
    `2 ) by 
    PSCOMP_1:def 6
    
        .= ((p
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        hence thesis;
    
      end;
    
      then
    
      consider f2 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A11: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f2 
    . p) 
    = ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))); 
    
      
    
      
    
    A12: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `1 ) 
    <>  
    0  
    
      proof
    
        let q be
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A13: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        assume q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then
    
        
    
    A14: ex p3 be 
    Point of ( 
    TOP-REAL 2) st q 
    = p3 & ((p3 
    `2 ) 
    <= (p3 
    `1 ) & ( 
    - (p3 
    `1 )) 
    <= (p3 
    `2 ) or (p3 
    `2 ) 
    >= (p3 
    `1 ) & (p3 
    `2 ) 
    <= ( 
    - (p3 
    `1 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A13;
    
        now
    
          assume
    
          
    
    A15: (q 
    `1 ) 
    =  
    0 ; 
    
          then (q
    `2 ) 
    =  
    0 by 
    A14;
    
          hence contradiction by
    A14,
    A15,
    EUCLID: 53,
    EUCLID: 54;
    
        end;
    
        hence thesis;
    
      end;
    
      then
    
      
    
    A16: f1 is 
    continuous by 
    A6,
    Th33;
    
      
    
    A17: 
    
      now
    
        let x,y,r,s be
    Real;
    
        assume that
    
        
    
    A18: 
    |[x, y]|
    in K1 and 
    
        
    
    A19: r 
    = (f1 
    .  
    |[x, y]|) & s
    = (f2 
    .  
    |[x, y]|);
    
        set p99 =
    |[x, y]|;
    
        
    
        
    
    A20: ex p3 be 
    Point of ( 
    TOP-REAL 2) st p99 
    = p3 & ((p3 
    `2 ) 
    <= (p3 
    `1 ) & ( 
    - (p3 
    `1 )) 
    <= (p3 
    `2 ) or (p3 
    `2 ) 
    >= (p3 
    `1 ) & (p3 
    `2 ) 
    <= ( 
    - (p3 
    `1 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A18;
    
        
    
        
    
    A21: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        then
    
        
    
    A22: (f1 
    . p99) 
    = ((p99 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p99 
    `2 ) 
    / (p99 
    `1 )) 
    ^2 )))) by 
    A6,
    A18;
    
        (((
    Sq_Circ  
    " ) 
    | K0) 
    .  
    |[x, y]|)
    = (( 
    Sq_Circ  
    " ) 
    .  
    |[x, y]|) by
    A18,
    FUNCT_1: 49
    
        .=
    |[((p99
    `1 ) 
    * ( 
    sqrt (1 
    + (((p99 
    `2 ) 
    / (p99 
    `1 )) 
    ^2 )))), ((p99 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p99 
    `2 ) 
    / (p99 
    `1 )) 
    ^2 ))))]| by 
    A20,
    Th28
    
        .=
    |[r, s]| by
    A11,
    A18,
    A19,
    A21,
    A22;
    
        hence (f
    .  
    |[x, y]|)
    =  
    |[r, s]| by
    A1;
    
      end;
    
      f2 is
    continuous by 
    A12,
    A11,
    Th34;
    
      hence thesis by
    A1,
    A16,
    A17,
    Lm13,
    JGRAPH_2: 35;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:38
    
    
    
    
    
    Th38: for K0,B0 be 
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K0), (( 
    TOP-REAL 2) 
    | B0) st f 
    = (( 
    Sq_Circ  
    " ) 
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } holds f is 
    continuous
    
    proof
    
      let K0,B0 be
    Subset of ( 
    TOP-REAL 2), f be 
    Function of (( 
    TOP-REAL 2) 
    | K0), (( 
    TOP-REAL 2) 
    | B0); 
    
      assume
    
      
    
    A1: f 
    = (( 
    Sq_Circ  
    " ) 
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
      then (
    1.REAL 2) 
    in K0 by 
    Lm14,
    Lm15;
    
      then
    
      reconsider K1 = K0 as non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      reconsider g1 = (
    proj2  
    * (( 
    Sq_Circ  
    " ) 
    | K1)) as 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm17;
    
      for p be
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (g1 
    . p) 
    = ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    
      proof
    
        
    
        
    
    A2: ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)) 
    = (( 
    dom ( 
    Sq_Circ  
    " )) 
    /\ K1) by 
    RELAT_1: 61
    
        .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    Th29,
    FUNCT_2:def 1
    
        .= K1 by
    XBOOLE_1: 28;
    
        let p be
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A3: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        assume
    
        
    
    A4: p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then ex p3 be
    Point of ( 
    TOP-REAL 2) st p 
    = p3 & ((p3 
    `1 ) 
    <= (p3 
    `2 ) & ( 
    - (p3 
    `2 )) 
    <= (p3 
    `1 ) or (p3 
    `1 ) 
    >= (p3 
    `2 ) & (p3 
    `1 ) 
    <= ( 
    - (p3 
    `2 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A3;
    
        then
    
        
    
    A5: (( 
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    Th30;
    
        (((
    Sq_Circ  
    " ) 
    | K1) 
    . p) 
    = (( 
    Sq_Circ  
    " ) 
    . p) by 
    A4,
    A3,
    FUNCT_1: 49;
    
        
    
        then (g1
    . p) 
    = ( 
    proj2  
    .  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|) by 
    A4,
    A2,
    A3,
    A5,
    FUNCT_1: 13
    
        .= (
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| 
    `2 ) by 
    PSCOMP_1:def 6
    
        .= ((p
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        hence thesis;
    
      end;
    
      then
    
      consider f1 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A6: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f1 
    . p) 
    = ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))); 
    
      reconsider g2 = (
    proj1  
    * (( 
    Sq_Circ  
    " ) 
    | K1)) as 
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 by 
    Lm18;
    
      for p be
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (g2 
    . p) 
    = ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    
      proof
    
        
    
        
    
    A7: ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)) 
    = (( 
    dom ( 
    Sq_Circ  
    " )) 
    /\ K1) by 
    RELAT_1: 61
    
        .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    Th29,
    FUNCT_2:def 1
    
        .= K1 by
    XBOOLE_1: 28;
    
        let p be
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A8: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        assume
    
        
    
    A9: p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then ex p3 be
    Point of ( 
    TOP-REAL 2) st p 
    = p3 & ((p3 
    `1 ) 
    <= (p3 
    `2 ) & ( 
    - (p3 
    `2 )) 
    <= (p3 
    `1 ) or (p3 
    `1 ) 
    >= (p3 
    `2 ) & (p3 
    `1 ) 
    <= ( 
    - (p3 
    `2 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A8;
    
        then
    
        
    
    A10: (( 
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    Th30;
    
        (((
    Sq_Circ  
    " ) 
    | K1) 
    . p) 
    = (( 
    Sq_Circ  
    " ) 
    . p) by 
    A9,
    A8,
    FUNCT_1: 49;
    
        
    
        then (g2
    . p) 
    = ( 
    proj1  
    .  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|) by 
    A9,
    A7,
    A8,
    A10,
    FUNCT_1: 13
    
        .= (
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| 
    `1 ) by 
    PSCOMP_1:def 5
    
        .= ((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        hence thesis;
    
      end;
    
      then
    
      consider f2 be
    Function of (( 
    TOP-REAL 2) 
    | K1), 
    R^1 such that 
    
      
    
    A11: for p be 
    Point of ( 
    TOP-REAL 2) st p 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (f2 
    . p) 
    = ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))); 
    
      
    
      
    
    A12: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) holds (q 
    `2 ) 
    <>  
    0  
    
      proof
    
        let q be
    Point of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A13: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        assume q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K1); 
    
        then
    
        
    
    A14: ex p3 be 
    Point of ( 
    TOP-REAL 2) st q 
    = p3 & ((p3 
    `1 ) 
    <= (p3 
    `2 ) & ( 
    - (p3 
    `2 )) 
    <= (p3 
    `1 ) or (p3 
    `1 ) 
    >= (p3 
    `2 ) & (p3 
    `1 ) 
    <= ( 
    - (p3 
    `2 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A13;
    
        now
    
          assume
    
          
    
    A15: (q 
    `2 ) 
    =  
    0 ; 
    
          then (q
    `1 ) 
    =  
    0 by 
    A14;
    
          hence contradiction by
    A14,
    A15,
    EUCLID: 53,
    EUCLID: 54;
    
        end;
    
        hence thesis;
    
      end;
    
      then
    
      
    
    A16: f1 is 
    continuous by 
    A6,
    Th35;
    
      
    
      
    
    A17: for x,y,s,r be 
    Real st 
    |[x, y]|
    in K1 & s 
    = (f2 
    .  
    |[x, y]|) & r
    = (f1 
    .  
    |[x, y]|) holds (f
    .  
    |[x, y]|)
    =  
    |[s, r]|
    
      proof
    
        let x,y,s,r be
    Real;
    
        assume that
    
        
    
    A18: 
    |[x, y]|
    in K1 and 
    
        
    
    A19: s 
    = (f2 
    .  
    |[x, y]|) & r
    = (f1 
    .  
    |[x, y]|);
    
        set p99 =
    |[x, y]|;
    
        
    
        
    
    A20: ex p3 be 
    Point of ( 
    TOP-REAL 2) st p99 
    = p3 & ((p3 
    `1 ) 
    <= (p3 
    `2 ) & ( 
    - (p3 
    `2 )) 
    <= (p3 
    `1 ) or (p3 
    `1 ) 
    >= (p3 
    `2 ) & (p3 
    `1 ) 
    <= ( 
    - (p3 
    `2 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A1,
    A18;
    
        
    
        
    
    A21: the 
    carrier of (( 
    TOP-REAL 2) 
    | K1) 
    = K1 by 
    PRE_TOPC: 8;
    
        then
    
        
    
    A22: (f1 
    . p99) 
    = ((p99 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p99 
    `1 ) 
    / (p99 
    `2 )) 
    ^2 )))) by 
    A6,
    A18;
    
        (((
    Sq_Circ  
    " ) 
    | K0) 
    .  
    |[x, y]|)
    = (( 
    Sq_Circ  
    " ) 
    .  
    |[x, y]|) by
    A18,
    FUNCT_1: 49
    
        .=
    |[((p99
    `1 ) 
    * ( 
    sqrt (1 
    + (((p99 
    `1 ) 
    / (p99 
    `2 )) 
    ^2 )))), ((p99 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p99 
    `1 ) 
    / (p99 
    `2 )) 
    ^2 ))))]| by 
    A20,
    Th30
    
        .=
    |[s, r]| by
    A11,
    A18,
    A19,
    A21,
    A22;
    
        hence thesis by
    A1;
    
      end;
    
      f2 is
    continuous by 
    A12,
    A11,
    Th36;
    
      hence thesis by
    A1,
    A16,
    A17,
    Lm13,
    JGRAPH_2: 35;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:39
    
    
    
    
    
    Th39: for B0 be 
    Subset of ( 
    TOP-REAL 2), K0 be 
    Subset of (( 
    TOP-REAL 2) 
    | B0), f be 
    Function of ((( 
    TOP-REAL 2) 
    | B0) 
    | K0), (( 
    TOP-REAL 2) 
    | B0) st f 
    = (( 
    Sq_Circ  
    " ) 
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } holds f is 
    continuous & K0 is 
    closed
    
    proof
    
      reconsider K5 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : (p7 
    `2 ) 
    <= ( 
    - (p7 
    `1 )) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 47;
    
      reconsider K4 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : (p7 
    `1 ) 
    <= (p7 
    `2 ) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 46;
    
      reconsider K3 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : ( 
    - (p7 
    `1 )) 
    <= (p7 
    `2 ) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 47;
    
      reconsider K2 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : (p7 
    `2 ) 
    <= (p7 
    `1 ) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 46;
    
      defpred
    
    P[
    Point of ( 
    TOP-REAL 2)] means (($1 
    `2 ) 
    <= ($1 
    `1 ) & ( 
    - ($1 
    `1 )) 
    <= ($1 
    `2 ) or ($1 
    `2 ) 
    >= ($1 
    `1 ) & ($1 
    `2 ) 
    <= ( 
    - ($1 
    `1 ))); 
    
      set b0 = (
    NonZero ( 
    TOP-REAL 2)); 
    
      defpred
    
    P0[
    Point of ( 
    TOP-REAL 2)] means (($1 
    `2 ) 
    <= ($1 
    `1 ) & ( 
    - ($1 
    `1 )) 
    <= ($1 
    `2 ) or ($1 
    `2 ) 
    >= ($1 
    `1 ) & ($1 
    `2 ) 
    <= ( 
    - ($1 
    `1 ))); 
    
      let B0 be
    Subset of ( 
    TOP-REAL 2), K0 be 
    Subset of (( 
    TOP-REAL 2) 
    | B0), f be 
    Function of ((( 
    TOP-REAL 2) 
    | B0) 
    | K0), (( 
    TOP-REAL 2) 
    | B0); 
    
      set k0 = { p :
    P0[p] & p
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
      assume that
    
      
    
    A1: f 
    = (( 
    Sq_Circ  
    " ) 
    | K0) and 
    
      
    
    A2: B0 
    = b0 & K0 
    = k0; 
    
      the
    carrier of (( 
    TOP-REAL 2) 
    | B0) 
    = B0 by 
    PRE_TOPC: 8;
    
      then
    
      reconsider K1 = K0 as
    Subset of ( 
    TOP-REAL 2) by 
    XBOOLE_1: 1;
    
      k0
    c= ( 
    NonZero ( 
    TOP-REAL 2)) from 
    TopIncl;
    
      then
    
      
    
    A3: ((( 
    TOP-REAL 2) 
    | B0) 
    | K0) 
    = (( 
    TOP-REAL 2) 
    | K1) by 
    A2,
    PRE_TOPC: 7;
    
      reconsider K1 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : 
    P[p7] } as
    Subset of ( 
    TOP-REAL 2) from 
    JGRAPH_2:sch 1;
    
      
    
      
    
    A4: ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)) 
    c= K1 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)); 
    
        per cases by
    A5,
    XBOOLE_0:def 3;
    
          suppose
    
          
    
    A6: x 
    in (K2 
    /\ K3); 
    
          then x
    in K3 by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A7: ex p8 be 
    Point of ( 
    TOP-REAL 2) st p8 
    = x & ( 
    - (p8 
    `1 )) 
    <= (p8 
    `2 ); 
    
          x
    in K2 by 
    A6,
    XBOOLE_0:def 4;
    
          then ex p7 be
    Point of ( 
    TOP-REAL 2) st p7 
    = x & (p7 
    `2 ) 
    <= (p7 
    `1 ); 
    
          hence thesis by
    A7;
    
        end;
    
          suppose
    
          
    
    A8: x 
    in (K4 
    /\ K5); 
    
          then x
    in K5 by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A9: ex p8 be 
    Point of ( 
    TOP-REAL 2) st p8 
    = x & (p8 
    `2 ) 
    <= ( 
    - (p8 
    `1 )); 
    
          x
    in K4 by 
    A8,
    XBOOLE_0:def 4;
    
          then ex p7 be
    Point of ( 
    TOP-REAL 2) st p7 
    = x & (p7 
    `2 ) 
    >= (p7 
    `1 ); 
    
          hence thesis by
    A9;
    
        end;
    
      end;
    
      
    
      
    
    A10: (K2 
    /\ K3) is 
    closed & (K4 
    /\ K5) is 
    closed by 
    TOPS_1: 8;
    
      K1
    c= ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in K1; 
    
        then ex p be
    Point of ( 
    TOP-REAL 2) st p 
    = x & ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))); 
    
        then x
    in K2 & x 
    in K3 or x 
    in K4 & x 
    in K5; 
    
        then x
    in (K2 
    /\ K3) or x 
    in (K4 
    /\ K5) by 
    XBOOLE_0:def 4;
    
        hence thesis by
    XBOOLE_0:def 3;
    
      end;
    
      then K1
    = ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)) by 
    A4;
    
      then
    
      
    
    A11: K1 is 
    closed by 
    A10,
    TOPS_1: 9;
    
      k0
    = ({ p7 where p7 be 
    Point of ( 
    TOP-REAL 2) : 
    P0[p7] }
    /\ b0) from 
    TopInter;
    
      then K0
    = (K1 
    /\ ( 
    [#] (( 
    TOP-REAL 2) 
    | B0))) by 
    A2,
    PRE_TOPC:def 5;
    
      hence thesis by
    A1,
    A2,
    A3,
    A11,
    Th37,
    PRE_TOPC: 13;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:40
    
    
    
    
    
    Th40: for B0 be 
    Subset of ( 
    TOP-REAL 2), K0 be 
    Subset of (( 
    TOP-REAL 2) 
    | B0), f be 
    Function of ((( 
    TOP-REAL 2) 
    | B0) 
    | K0), (( 
    TOP-REAL 2) 
    | B0) st f 
    = (( 
    Sq_Circ  
    " ) 
    | K0) & B0 
    = ( 
    NonZero ( 
    TOP-REAL 2)) & K0 
    = { p : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } holds f is 
    continuous & K0 is 
    closed
    
    proof
    
      reconsider K5 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : (p7 
    `1 ) 
    <= ( 
    - (p7 
    `2 )) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 48;
    
      reconsider K4 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : (p7 
    `2 ) 
    <= (p7 
    `1 ) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 46;
    
      reconsider K3 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : ( 
    - (p7 
    `2 )) 
    <= (p7 
    `1 ) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 48;
    
      reconsider K2 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : (p7 
    `1 ) 
    <= (p7 
    `2 ) } as 
    closed  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 46;
    
      defpred
    
    P[
    Point of ( 
    TOP-REAL 2)] means (($1 
    `1 ) 
    <= ($1 
    `2 ) & ( 
    - ($1 
    `2 )) 
    <= ($1 
    `1 ) or ($1 
    `1 ) 
    >= ($1 
    `2 ) & ($1 
    `1 ) 
    <= ( 
    - ($1 
    `2 ))); 
    
      defpred
    
    P0[
    Point of ( 
    TOP-REAL 2)] means (($1 
    `1 ) 
    <= ($1 
    `2 ) & ( 
    - ($1 
    `2 )) 
    <= ($1 
    `1 ) or ($1 
    `1 ) 
    >= ($1 
    `2 ) & ($1 
    `1 ) 
    <= ( 
    - ($1 
    `2 ))); 
    
      let B0 be
    Subset of ( 
    TOP-REAL 2), K0 be 
    Subset of (( 
    TOP-REAL 2) 
    | B0), f be 
    Function of ((( 
    TOP-REAL 2) 
    | B0) 
    | K0), (( 
    TOP-REAL 2) 
    | B0); 
    
      set k0 = { p :
    P0[p] & p
    <> ( 
    0. ( 
    TOP-REAL 2)) }, b0 = ( 
    NonZero ( 
    TOP-REAL 2)); 
    
      assume that
    
      
    
    A1: f 
    = (( 
    Sq_Circ  
    " ) 
    | K0) and 
    
      
    
    A2: B0 
    = b0 & K0 
    = k0; 
    
      the
    carrier of (( 
    TOP-REAL 2) 
    | B0) 
    = B0 by 
    PRE_TOPC: 8;
    
      then
    
      reconsider K1 = K0 as
    Subset of ( 
    TOP-REAL 2) by 
    XBOOLE_1: 1;
    
      { p :
    P[p] & p
    <> ( 
    0. ( 
    TOP-REAL 2)) } 
    c= ( 
    NonZero ( 
    TOP-REAL 2)) from 
    TopIncl;
    
      then
    
      
    
    A3: ((( 
    TOP-REAL 2) 
    | B0) 
    | K0) 
    = (( 
    TOP-REAL 2) 
    | K1) by 
    A2,
    PRE_TOPC: 7;
    
      set k1 = { p7 where p7 be
    Point of ( 
    TOP-REAL 2) : 
    P0[p7] };
    
      
    
      
    
    A4: (K2 
    /\ K3) is 
    closed & (K4 
    /\ K5) is 
    closed by 
    TOPS_1: 8;
    
      reconsider K1 = k1 as
    Subset of ( 
    TOP-REAL 2) from 
    JGRAPH_2:sch 1;
    
      
    
      
    
    A5: ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)) 
    c= K1 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A6: x 
    in ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)); 
    
        per cases by
    A6,
    XBOOLE_0:def 3;
    
          suppose
    
          
    
    A7: x 
    in (K2 
    /\ K3); 
    
          then x
    in K3 by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A8: ex p8 be 
    Point of ( 
    TOP-REAL 2) st p8 
    = x & ( 
    - (p8 
    `2 )) 
    <= (p8 
    `1 ); 
    
          x
    in K2 by 
    A7,
    XBOOLE_0:def 4;
    
          then ex p7 be
    Point of ( 
    TOP-REAL 2) st p7 
    = x & (p7 
    `1 ) 
    <= (p7 
    `2 ); 
    
          hence thesis by
    A8;
    
        end;
    
          suppose
    
          
    
    A9: x 
    in (K4 
    /\ K5); 
    
          then x
    in K5 by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A10: ex p8 be 
    Point of ( 
    TOP-REAL 2) st p8 
    = x & (p8 
    `1 ) 
    <= ( 
    - (p8 
    `2 )); 
    
          x
    in K4 by 
    A9,
    XBOOLE_0:def 4;
    
          then ex p7 be
    Point of ( 
    TOP-REAL 2) st p7 
    = x & (p7 
    `1 ) 
    >= (p7 
    `2 ); 
    
          hence thesis by
    A10;
    
        end;
    
      end;
    
      K1
    c= ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in K1; 
    
        then ex p be
    Point of ( 
    TOP-REAL 2) st p 
    = x & ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))); 
    
        then x
    in K2 & x 
    in K3 or x 
    in K4 & x 
    in K5; 
    
        then x
    in (K2 
    /\ K3) or x 
    in (K4 
    /\ K5) by 
    XBOOLE_0:def 4;
    
        hence thesis by
    XBOOLE_0:def 3;
    
      end;
    
      then K1
    = ((K2 
    /\ K3) 
    \/ (K4 
    /\ K5)) by 
    A5;
    
      then
    
      
    
    A11: K1 is 
    closed by 
    A4,
    TOPS_1: 9;
    
      k0
    = (k1 
    /\ b0) from 
    TopInter;
    
      then K0
    = (K1 
    /\ ( 
    [#] (( 
    TOP-REAL 2) 
    | B0))) by 
    A2,
    PRE_TOPC:def 5;
    
      hence thesis by
    A1,
    A2,
    A3,
    A11,
    Th38,
    PRE_TOPC: 13;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:41
    
    
    
    
    
    Th41: for D be non 
    empty  
    Subset of ( 
    TOP-REAL 2) st (D 
    ` ) 
    =  
    {(
    0. ( 
    TOP-REAL 2))} holds ex h be 
    Function of (( 
    TOP-REAL 2) 
    | D), (( 
    TOP-REAL 2) 
    | D) st h 
    = (( 
    Sq_Circ  
    " ) 
    | D) & h is 
    continuous
    
    proof
    
      set Y1 =
    |[(
    - 1), 1]|; 
    
      set B0 =
    {(
    0. ( 
    TOP-REAL 2))}; 
    
      let D be non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: the 
    carrier of (( 
    TOP-REAL 2) 
    | D) 
    = D by 
    PRE_TOPC: 8;
    
      (
    dom ( 
    Sq_Circ  
    " )) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    Th29,
    FUNCT_2:def 1;
    
      
    
      then
    
      
    
    A2: ( 
    dom (( 
    Sq_Circ  
    " ) 
    | D)) 
    = (the 
    carrier of ( 
    TOP-REAL 2) 
    /\ D) by 
    RELAT_1: 61
    
      .= the
    carrier of (( 
    TOP-REAL 2) 
    | D) by 
    A1,
    XBOOLE_1: 28;
    
      assume
    
      
    
    A3: (D 
    ` ) 
    =  
    {(
    0. ( 
    TOP-REAL 2))}; 
    
      
    
      then
    
      
    
    A4: D 
    = (B0 
    ` ) 
    
      .= (
    NonZero ( 
    TOP-REAL 2)) by 
    SUBSET_1:def 4;
    
      
    
      
    
    A5: { p : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } 
    c= the 
    carrier of (( 
    TOP-REAL 2) 
    | D) 
    
      proof
    
        let x be
    object;
    
        assume x
    in { p : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
        then
    
        
    
    A6: ex p st x 
    = p & ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
        now
    
          assume not x
    in D; 
    
          then x
    in (the 
    carrier of ( 
    TOP-REAL 2) 
    \ D) by 
    A6,
    XBOOLE_0:def 5;
    
          then x
    in (D 
    ` ) by 
    SUBSET_1:def 4;
    
          hence contradiction by
    A3,
    A6,
    TARSKI:def 1;
    
        end;
    
        hence thesis by
    PRE_TOPC: 8;
    
      end;
    
      (
    1.REAL 2) 
    in { p where p be 
    Point of ( 
    TOP-REAL 2) : ((p 
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } by 
    Lm9,
    Lm10;
    
      then
    
      reconsider K0 = { p : ((p
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } as non 
    empty  
    Subset of (( 
    TOP-REAL 2) 
    | D) by 
    A5;
    
      
    
      
    
    A7: K0 
    = the 
    carrier of ((( 
    TOP-REAL 2) 
    | D) 
    | K0) by 
    PRE_TOPC: 8;
    
      
    
      
    
    A8: { p : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } 
    c= the 
    carrier of (( 
    TOP-REAL 2) 
    | D) 
    
      proof
    
        let x be
    object;
    
        assume x
    in { p : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) }; 
    
        then
    
        
    
    A9: ex p st x 
    = p & ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
        now
    
          assume not x
    in D; 
    
          then x
    in (the 
    carrier of ( 
    TOP-REAL 2) 
    \ D) by 
    A9,
    XBOOLE_0:def 5;
    
          then x
    in (D 
    ` ) by 
    SUBSET_1:def 4;
    
          hence contradiction by
    A3,
    A9,
    TARSKI:def 1;
    
        end;
    
        hence thesis by
    PRE_TOPC: 8;
    
      end;
    
      (Y1
    `1 ) 
    = ( 
    - 1) & (Y1 
    `2 ) 
    = 1 by 
    EUCLID: 52;
    
      then Y1
    in { p where p be 
    Point of ( 
    TOP-REAL 2) : ((p 
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } by 
    JGRAPH_2: 3;
    
      then
    
      reconsider K1 = { p : ((p
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 ))) & p 
    <> ( 
    0. ( 
    TOP-REAL 2)) } as non 
    empty  
    Subset of (( 
    TOP-REAL 2) 
    | D) by 
    A8;
    
      
    
      
    
    A10: K1 
    = the 
    carrier of ((( 
    TOP-REAL 2) 
    | D) 
    | K1) by 
    PRE_TOPC: 8;
    
      
    
      
    
    A11: D 
    c= (K0 
    \/ K1) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A12: x 
    in D; 
    
        then
    
        reconsider px = x as
    Point of ( 
    TOP-REAL 2); 
    
         not x
    in  
    {(
    0. ( 
    TOP-REAL 2))} by 
    A4,
    A12,
    XBOOLE_0:def 5;
    
        then ((px
    `2 ) 
    <= (px 
    `1 ) & ( 
    - (px 
    `1 )) 
    <= (px 
    `2 ) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 ))) & px 
    <> ( 
    0. ( 
    TOP-REAL 2)) or ((px 
    `1 ) 
    <= (px 
    `2 ) & ( 
    - (px 
    `2 )) 
    <= (px 
    `1 ) or (px 
    `1 ) 
    >= (px 
    `2 ) & (px 
    `1 ) 
    <= ( 
    - (px 
    `2 ))) & px 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    TARSKI:def 1,
    XREAL_1: 26;
    
        then x
    in K0 or x 
    in K1; 
    
        hence thesis by
    XBOOLE_0:def 3;
    
      end;
    
      
    
      
    
    A13: the 
    carrier of (( 
    TOP-REAL 2) 
    | D) 
    = ( 
    [#] (( 
    TOP-REAL 2) 
    | D)) 
    
      .= (
    NonZero ( 
    TOP-REAL 2)) by 
    A4,
    PRE_TOPC:def 5;
    
      
    
      
    
    A14: K0 
    c= the 
    carrier of ( 
    TOP-REAL 2) 
    
      proof
    
        let z be
    object;
    
        assume z
    in K0; 
    
        then ex p8 be
    Point of ( 
    TOP-REAL 2) st p8 
    = z & ((p8 
    `2 ) 
    <= (p8 
    `1 ) & ( 
    - (p8 
    `1 )) 
    <= (p8 
    `2 ) or (p8 
    `2 ) 
    >= (p8 
    `1 ) & (p8 
    `2 ) 
    <= ( 
    - (p8 
    `1 ))) & p8 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
        hence thesis;
    
      end;
    
      
    
      
    
    A15: ( 
    rng (( 
    Sq_Circ  
    " ) 
    | K0)) 
    c= the 
    carrier of ((( 
    TOP-REAL 2) 
    | D) 
    | K0) 
    
      proof
    
        reconsider K00 = K0 as
    Subset of ( 
    TOP-REAL 2) by 
    A14;
    
        let y be
    object;
    
        
    
        
    
    A16: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K00) holds (q 
    `1 ) 
    <>  
    0  
    
        proof
    
          let q be
    Point of ( 
    TOP-REAL 2); 
    
          
    
          
    
    A17: the 
    carrier of (( 
    TOP-REAL 2) 
    | K00) 
    = K0 by 
    PRE_TOPC: 8;
    
          assume q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K00); 
    
          then
    
          
    
    A18: ex p3 be 
    Point of ( 
    TOP-REAL 2) st q 
    = p3 & ((p3 
    `2 ) 
    <= (p3 
    `1 ) & ( 
    - (p3 
    `1 )) 
    <= (p3 
    `2 ) or (p3 
    `2 ) 
    >= (p3 
    `1 ) & (p3 
    `2 ) 
    <= ( 
    - (p3 
    `1 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A17;
    
          now
    
            assume
    
            
    
    A19: (q 
    `1 ) 
    =  
    0 ; 
    
            then (q
    `2 ) 
    =  
    0 by 
    A18;
    
            hence contradiction by
    A18,
    A19,
    EUCLID: 53,
    EUCLID: 54;
    
          end;
    
          hence thesis;
    
        end;
    
        assume y
    in ( 
    rng (( 
    Sq_Circ  
    " ) 
    | K0)); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A20: x 
    in ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K0)) and 
    
        
    
    A21: y 
    = ((( 
    Sq_Circ  
    " ) 
    | K0) 
    . x) by 
    FUNCT_1:def 3;
    
        
    
        
    
    A22: x 
    in (( 
    dom ( 
    Sq_Circ  
    " )) 
    /\ K0) by 
    A20,
    RELAT_1: 61;
    
        then
    
        
    
    A23: x 
    in K0 by 
    XBOOLE_0:def 4;
    
        then
    
        reconsider p = x as
    Point of ( 
    TOP-REAL 2) by 
    A14;
    
        K00
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K00) by 
    PRE_TOPC: 8;
    
        then p
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K00) by 
    A22,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A24: (p 
    `1 ) 
    <>  
    0 by 
    A16;
    
        set p9 =
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]|; 
    
        
    
        
    
    A25: (p9 
    `1 ) 
    = ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) & (p9 
    `2 ) 
    = ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        
    
    A26: ex px be 
    Point of ( 
    TOP-REAL 2) st x 
    = px & ((px 
    `2 ) 
    <= (px 
    `1 ) & ( 
    - (px 
    `1 )) 
    <= (px 
    `2 ) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 ))) & px 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A23;
    
        then
    
        
    
    A27: (( 
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))]| by 
    Th28;
    
        
    
        
    
    A28: ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        then ((p
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    <= ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) & (( 
    - (p 
    `1 )) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    <= ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) or ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    >= ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) & ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    <= (( 
    - (p 
    `1 )) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    A26,
    XREAL_1: 64;
    
        then
    
        
    
    A29: ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    <= ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) & ( 
    - ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))) 
    <= ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) or ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    >= ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) & ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    <= ( 
    - ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 ))))); 
    
        
    
        
    
    A30: (p9 
    `1 ) 
    = ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
    A31: 
    
        now
    
          assume p9
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
          then (
    0  
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    = (((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) 
    / ( 
    sqrt (1 
    + (((p 
    `2 ) 
    / (p 
    `1 )) 
    ^2 )))) by 
    A30,
    EUCLID: 52,
    EUCLID: 54;
    
          hence contradiction by
    A24,
    A28,
    XCMPLX_1: 89;
    
        end;
    
        ((
    Sq_Circ  
    " ) 
    . p) 
    = y by 
    A21,
    A23,
    FUNCT_1: 49;
    
        then y
    in K0 by 
    A31,
    A27,
    A29,
    A25;
    
        hence thesis by
    PRE_TOPC: 8;
    
      end;
    
      (
    dom (( 
    Sq_Circ  
    " ) 
    | K0)) 
    = (( 
    dom ( 
    Sq_Circ  
    " )) 
    /\ K0) by 
    RELAT_1: 61
    
      .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K0) by 
    Th29,
    FUNCT_2:def 1
    
      .= K0 by
    A14,
    XBOOLE_1: 28;
    
      then
    
      reconsider f = ((
    Sq_Circ  
    " ) 
    | K0) as 
    Function of ((( 
    TOP-REAL 2) 
    | D) 
    | K0), (( 
    TOP-REAL 2) 
    | D) by 
    A7,
    A15,
    FUNCT_2: 2,
    XBOOLE_1: 1;
    
      
    
      
    
    A32: K1 
    = ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K1)) by 
    PRE_TOPC:def 5;
    
      
    
      
    
    A33: K1 
    c= the 
    carrier of ( 
    TOP-REAL 2) 
    
      proof
    
        let z be
    object;
    
        assume z
    in K1; 
    
        then ex p8 be
    Point of ( 
    TOP-REAL 2) st p8 
    = z & ((p8 
    `1 ) 
    <= (p8 
    `2 ) & ( 
    - (p8 
    `2 )) 
    <= (p8 
    `1 ) or (p8 
    `1 ) 
    >= (p8 
    `2 ) & (p8 
    `1 ) 
    <= ( 
    - (p8 
    `2 ))) & p8 
    <> ( 
    0. ( 
    TOP-REAL 2)); 
    
        hence thesis;
    
      end;
    
      
    
      
    
    A34: ( 
    rng (( 
    Sq_Circ  
    " ) 
    | K1)) 
    c= the 
    carrier of ((( 
    TOP-REAL 2) 
    | D) 
    | K1) 
    
      proof
    
        reconsider K10 = K1 as
    Subset of ( 
    TOP-REAL 2) by 
    A33;
    
        let y be
    object;
    
        
    
        
    
    A35: for q be 
    Point of ( 
    TOP-REAL 2) st q 
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K10) holds (q 
    `2 ) 
    <>  
    0  
    
        proof
    
          let q be
    Point of ( 
    TOP-REAL 2); 
    
          
    
          
    
    A36: the 
    carrier of (( 
    TOP-REAL 2) 
    | K10) 
    = K1 by 
    PRE_TOPC: 8;
    
          assume q
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K10); 
    
          then
    
          
    
    A37: ex p3 be 
    Point of ( 
    TOP-REAL 2) st q 
    = p3 & ((p3 
    `1 ) 
    <= (p3 
    `2 ) & ( 
    - (p3 
    `2 )) 
    <= (p3 
    `1 ) or (p3 
    `1 ) 
    >= (p3 
    `2 ) & (p3 
    `1 ) 
    <= ( 
    - (p3 
    `2 ))) & p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A36;
    
          now
    
            assume
    
            
    
    A38: (q 
    `2 ) 
    =  
    0 ; 
    
            then (q
    `1 ) 
    =  
    0 by 
    A37;
    
            hence contradiction by
    A37,
    A38,
    EUCLID: 53,
    EUCLID: 54;
    
          end;
    
          hence thesis;
    
        end;
    
        assume y
    in ( 
    rng (( 
    Sq_Circ  
    " ) 
    | K1)); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A39: x 
    in ( 
    dom (( 
    Sq_Circ  
    " ) 
    | K1)) and 
    
        
    
    A40: y 
    = ((( 
    Sq_Circ  
    " ) 
    | K1) 
    . x) by 
    FUNCT_1:def 3;
    
        
    
        
    
    A41: x 
    in (( 
    dom ( 
    Sq_Circ  
    " )) 
    /\ K1) by 
    A39,
    RELAT_1: 61;
    
        then
    
        
    
    A42: x 
    in K1 by 
    XBOOLE_0:def 4;
    
        then
    
        reconsider p = x as
    Point of ( 
    TOP-REAL 2) by 
    A33;
    
        K10
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | K10) by 
    PRE_TOPC: 8;
    
        then p
    in the 
    carrier of (( 
    TOP-REAL 2) 
    | K10) by 
    A41,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A43: (p 
    `2 ) 
    <>  
    0 by 
    A35;
    
        set p9 =
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]|; 
    
        
    
        
    
    A44: (p9 
    `2 ) 
    = ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) & (p9 
    `1 ) 
    = ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        
    
    A45: ex px be 
    Point of ( 
    TOP-REAL 2) st x 
    = px & ((px 
    `1 ) 
    <= (px 
    `2 ) & ( 
    - (px 
    `2 )) 
    <= (px 
    `1 ) or (px 
    `1 ) 
    >= (px 
    `2 ) & (px 
    `1 ) 
    <= ( 
    - (px 
    `2 ))) & px 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A42;
    
        then
    
        
    
    A46: (( 
    Sq_Circ  
    " ) 
    . p) 
    =  
    |[((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))), ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))]| by 
    Th30;
    
        
    
        
    
    A47: ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        then ((p
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    <= ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) & (( 
    - (p 
    `2 )) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    <= ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) or ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    >= ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) & ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    <= (( 
    - (p 
    `2 )) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    A45,
    XREAL_1: 64;
    
        then
    
        
    
    A48: ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    <= ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) & ( 
    - ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))) 
    <= ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) or ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    >= ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) & ((p 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    <= ( 
    - ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 ))))); 
    
        
    
        
    
    A49: (p9 
    `2 ) 
    = ((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
    A50: 
    
        now
    
          assume p9
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
          then (
    0  
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    = (((p 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) 
    / ( 
    sqrt (1 
    + (((p 
    `1 ) 
    / (p 
    `2 )) 
    ^2 )))) by 
    A49,
    EUCLID: 52,
    EUCLID: 54;
    
          hence contradiction by
    A43,
    A47,
    XCMPLX_1: 89;
    
        end;
    
        ((
    Sq_Circ  
    " ) 
    . p) 
    = y by 
    A40,
    A42,
    FUNCT_1: 49;
    
        then y
    in K1 by 
    A50,
    A46,
    A48,
    A44;
    
        hence thesis by
    PRE_TOPC: 8;
    
      end;
    
      (
    dom (( 
    Sq_Circ  
    " ) 
    | K1)) 
    = (( 
    dom ( 
    Sq_Circ  
    " )) 
    /\ K1) by 
    RELAT_1: 61
    
      .= (the
    carrier of ( 
    TOP-REAL 2) 
    /\ K1) by 
    Th29,
    FUNCT_2:def 1
    
      .= K1 by
    A33,
    XBOOLE_1: 28;
    
      then
    
      reconsider g = ((
    Sq_Circ  
    " ) 
    | K1) as 
    Function of ((( 
    TOP-REAL 2) 
    | D) 
    | K1), (( 
    TOP-REAL 2) 
    | D) by 
    A10,
    A34,
    FUNCT_2: 2,
    XBOOLE_1: 1;
    
      
    
      
    
    A51: ( 
    dom g) 
    = K1 by 
    A10,
    FUNCT_2:def 1;
    
      g
    = (( 
    Sq_Circ  
    " ) 
    | K1); 
    
      then
    
      
    
    A52: K1 is 
    closed by 
    A4,
    Th40;
    
      
    
      
    
    A53: K0 
    = ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K0)) by 
    PRE_TOPC:def 5;
    
      
    
    A54: 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A55: x 
    in (( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K0)) 
    /\ ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K1))); 
    
        then x
    in K0 by 
    A53,
    XBOOLE_0:def 4;
    
        then (f
    . x) 
    = (( 
    Sq_Circ  
    " ) 
    . x) by 
    FUNCT_1: 49;
    
        hence (f
    . x) 
    = (g 
    . x) by 
    A32,
    A55,
    FUNCT_1: 49;
    
      end;
    
      f
    = (( 
    Sq_Circ  
    " ) 
    | K0); 
    
      then
    
      
    
    A56: K0 is 
    closed by 
    A4,
    Th39;
    
      
    
      
    
    A57: ( 
    dom f) 
    = K0 by 
    A7,
    FUNCT_2:def 1;
    
      D
    = ( 
    [#] (( 
    TOP-REAL 2) 
    | D)) by 
    PRE_TOPC:def 5;
    
      then
    
      
    
    A58: (( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K0)) 
    \/ ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K1))) 
    = ( 
    [#] (( 
    TOP-REAL 2) 
    | D)) by 
    A53,
    A32,
    A11;
    
      
    
      
    
    A59: f is 
    continuous & g is 
    continuous by 
    A4,
    Th39,
    Th40;
    
      then
    
      consider h be
    Function of (( 
    TOP-REAL 2) 
    | D), (( 
    TOP-REAL 2) 
    | D) such that 
    
      
    
    A60: h 
    = (f 
    +* g) and h is 
    continuous by 
    A53,
    A32,
    A58,
    A56,
    A52,
    A54,
    JGRAPH_2: 1;
    
      K0
    = ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K0)) & K1 
    = ( 
    [#] ((( 
    TOP-REAL 2) 
    | D) 
    | K1)) by 
    PRE_TOPC:def 5;
    
      then
    
      
    
    A61: f 
    tolerates g by 
    A54,
    A57,
    A51,
    PARTFUN1:def 4;
    
      
    
      
    
    A62: for x be 
    object st x 
    in ( 
    dom h) holds (h 
    . x) 
    = ((( 
    Sq_Circ  
    " ) 
    | D) 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A63: x 
    in ( 
    dom h); 
    
        then
    
        reconsider p = x as
    Point of ( 
    TOP-REAL 2) by 
    A13,
    XBOOLE_0:def 5;
    
         not x
    in  
    {(
    0. ( 
    TOP-REAL 2))} by 
    A13,
    A63,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A64: x 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    TARSKI:def 1;
    
        x
    in (the 
    carrier of ( 
    TOP-REAL 2) 
    \ (D 
    ` )) by 
    A3,
    A13,
    A63;
    
        then
    
        
    
    A65: x 
    in ((D 
    ` ) 
    ` ) by 
    SUBSET_1:def 4;
    
        per cases ;
    
          suppose
    
          
    
    A66: x 
    in K0; 
    
          
    
          
    
    A67: ((( 
    Sq_Circ  
    " ) 
    | D) 
    . p) 
    = (( 
    Sq_Circ  
    " ) 
    . p) by 
    A65,
    FUNCT_1: 49
    
          .= (f
    . p) by 
    A66,
    FUNCT_1: 49;
    
          (h
    . p) 
    = ((g 
    +* f) 
    . p) by 
    A60,
    A61,
    FUNCT_4: 34
    
          .= (f
    . p) by 
    A57,
    A66,
    FUNCT_4: 13;
    
          hence thesis by
    A67;
    
        end;
    
          suppose not x
    in K0; 
    
          then not ((p
    `2 ) 
    <= (p 
    `1 ) & ( 
    - (p 
    `1 )) 
    <= (p 
    `2 ) or (p 
    `2 ) 
    >= (p 
    `1 ) & (p 
    `2 ) 
    <= ( 
    - (p 
    `1 ))) by 
    A64;
    
          then (p
    `1 ) 
    <= (p 
    `2 ) & ( 
    - (p 
    `2 )) 
    <= (p 
    `1 ) or (p 
    `1 ) 
    >= (p 
    `2 ) & (p 
    `1 ) 
    <= ( 
    - (p 
    `2 )) by 
    XREAL_1: 26;
    
          then
    
          
    
    A68: x 
    in K1 by 
    A64;
    
          (((
    Sq_Circ  
    " ) 
    | D) 
    . p) 
    = (( 
    Sq_Circ  
    " ) 
    . p) by 
    A65,
    FUNCT_1: 49
    
          .= (g
    . p) by 
    A68,
    FUNCT_1: 49;
    
          hence thesis by
    A60,
    A51,
    A68,
    FUNCT_4: 13;
    
        end;
    
      end;
    
      (
    dom h) 
    = the 
    carrier of (( 
    TOP-REAL 2) 
    | D) by 
    FUNCT_2:def 1;
    
      then (f
    +* g) 
    = (( 
    Sq_Circ  
    " ) 
    | D) by 
    A60,
    A2,
    A62;
    
      hence thesis by
    A53,
    A32,
    A58,
    A56,
    A59,
    A52,
    A54,
    JGRAPH_2: 1;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:42
    
    
    
    
    
    Th42: ex h be 
    Function of ( 
    TOP-REAL 2), ( 
    TOP-REAL 2) st h 
    = ( 
    Sq_Circ  
    " ) & h is 
    continuous
    
    proof
    
      reconsider f = (
    Sq_Circ  
    " ) as 
    Function of ( 
    TOP-REAL 2), ( 
    TOP-REAL 2) by 
    Th29;
    
      reconsider D = (
    NonZero ( 
    TOP-REAL 2)) as non 
    empty  
    Subset of ( 
    TOP-REAL 2) by 
    JGRAPH_2: 9;
    
      
    
      
    
    A1: (f 
    . ( 
    0. ( 
    TOP-REAL 2))) 
    = ( 
    0. ( 
    TOP-REAL 2)) by 
    Th28;
    
      
    
      
    
    A2: for p be 
    Point of (( 
    TOP-REAL 2) 
    | D) holds (f 
    . p) 
    <> (f 
    . ( 
    0. ( 
    TOP-REAL 2))) 
    
      proof
    
        let p be
    Point of (( 
    TOP-REAL 2) 
    | D); 
    
        
    
        
    
    A3: ( 
    [#] (( 
    TOP-REAL 2) 
    | D)) 
    = D by 
    PRE_TOPC:def 5;
    
        then
    
        reconsider q = p as
    Point of ( 
    TOP-REAL 2) by 
    XBOOLE_0:def 5;
    
         not p
    in  
    {(
    0. ( 
    TOP-REAL 2))} by 
    A3,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A4: not p 
    = ( 
    0. ( 
    TOP-REAL 2)) by 
    TARSKI:def 1;
    
        per cases ;
    
          suppose
    
          
    
    A5: not ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
          then
    
          
    
    A6: (q 
    `2 ) 
    <>  
    0 ; 
    
          set q9 =
    |[((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]|; 
    
          
    
          
    
    A7: (q9 
    `2 ) 
    = ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
          
    
          
    
    A8: ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
          now
    
            assume q9
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            then (
    0  
    * (q 
    `2 )) 
    = ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A7,
    EUCLID: 52,
    EUCLID: 54;
    
            then (
    0  
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    = (((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    / ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))); 
    
            hence contradiction by
    A6,
    A8,
    XCMPLX_1: 89;
    
          end;
    
          hence thesis by
    A1,
    A5,
    Th28;
    
        end;
    
          suppose
    
          
    
    A9: (q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 )); 
    
          
    
    A10: 
    
          now
    
            assume
    
            
    
    A11: (q 
    `1 ) 
    =  
    0 ; 
    
            then (q
    `2 ) 
    =  
    0 by 
    A9;
    
            hence contradiction by
    A4,
    A11,
    EUCLID: 53,
    EUCLID: 54;
    
          end;
    
          set q9 =
    |[((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|; 
    
          
    
          
    
    A12: (q9 
    `1 ) 
    = ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
          
    
          
    
    A13: ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
          now
    
            assume q9
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            then (
    0  
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    = (((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A12,
    EUCLID: 52,
    EUCLID: 54;
    
            hence contradiction by
    A10,
    A13,
    XCMPLX_1: 89;
    
          end;
    
          hence thesis by
    A1,
    A4,
    A9,
    Th28;
    
        end;
    
      end;
    
      
    
      
    
    A14: for V be 
    Subset of ( 
    TOP-REAL 2) st (f 
    . ( 
    0. ( 
    TOP-REAL 2))) 
    in V & V is 
    open holds ex W be 
    Subset of ( 
    TOP-REAL 2) st ( 
    0. ( 
    TOP-REAL 2)) 
    in W & W is 
    open & (f 
    .: W) 
    c= V 
    
      proof
    
        reconsider u0 = (
    0. ( 
    TOP-REAL 2)) as 
    Point of ( 
    Euclid 2) by 
    EUCLID: 67;
    
        let V be
    Subset of ( 
    TOP-REAL 2); 
    
        reconsider VV = V as
    Subset of ( 
    TopSpaceMetr ( 
    Euclid 2)) by 
    Lm16;
    
        assume that
    
        
    
    A15: (f 
    . ( 
    0. ( 
    TOP-REAL 2))) 
    in V and 
    
        
    
    A16: V is 
    open;
    
        VV is
    open by 
    A16,
    Lm16,
    PRE_TOPC: 30;
    
        then
    
        consider r be
    Real such that 
    
        
    
    A17: r 
    >  
    0 and 
    
        
    
    A18: ( 
    Ball (u0,r)) 
    c= V by 
    A1,
    A15,
    TOPMETR: 15;
    
        reconsider r as
    Real;
    
        reconsider W1 = (
    Ball (u0,r)), V1 = ( 
    Ball (u0,(r 
    / ( 
    sqrt 2)))) as 
    Subset of ( 
    TOP-REAL 2) by 
    EUCLID: 67;
    
        
    
        
    
    A19: (f 
    .: V1) 
    c= W1 
    
        proof
    
          let z be
    object;
    
          
    
          
    
    A20: ( 
    sqrt 2) 
    >  
    0 by 
    SQUARE_1: 25;
    
          assume z
    in (f 
    .: V1); 
    
          then
    
          consider y be
    object such that 
    
          
    
    A21: y 
    in ( 
    dom f) and 
    
          
    
    A22: y 
    in V1 and 
    
          
    
    A23: z 
    = (f 
    . y) by 
    FUNCT_1:def 6;
    
          z
    in ( 
    rng f) by 
    A21,
    A23,
    FUNCT_1:def 3;
    
          then
    
          reconsider qz = z as
    Point of ( 
    TOP-REAL 2); 
    
          reconsider pz = qz as
    Point of ( 
    Euclid 2) by 
    EUCLID: 67;
    
          reconsider q = y as
    Point of ( 
    TOP-REAL 2) by 
    A21;
    
          reconsider qy = q as
    Point of ( 
    Euclid 2) by 
    EUCLID: 67;
    
          
    
          
    
    A24: ((q 
    `1 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
          
    
          
    
    A25: ((q 
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
          (
    dist (u0,qy)) 
    < (r 
    / ( 
    sqrt 2)) by 
    A22,
    METRIC_1: 11;
    
          then
    |.((
    0. ( 
    TOP-REAL 2)) 
    - q).| 
    < (r 
    / ( 
    sqrt 2)) by 
    JGRAPH_1: 28;
    
          then (
    sqrt ((((( 
    0. ( 
    TOP-REAL 2)) 
    - q) 
    `1 ) 
    ^2 ) 
    + (((( 
    0. ( 
    TOP-REAL 2)) 
    - q) 
    `2 ) 
    ^2 ))) 
    < (r 
    / ( 
    sqrt 2)) by 
    JGRAPH_1: 30;
    
          then (
    sqrt ((((( 
    0. ( 
    TOP-REAL 2)) 
    `1 ) 
    - (q 
    `1 )) 
    ^2 ) 
    + (((( 
    0. ( 
    TOP-REAL 2)) 
    - q) 
    `2 ) 
    ^2 ))) 
    < (r 
    / ( 
    sqrt 2)) by 
    TOPREAL3: 3;
    
          then (
    sqrt ((((( 
    0. ( 
    TOP-REAL 2)) 
    `1 ) 
    - (q 
    `1 )) 
    ^2 ) 
    + (((( 
    0. ( 
    TOP-REAL 2)) 
    `2 ) 
    - (q 
    `2 )) 
    ^2 ))) 
    < (r 
    / ( 
    sqrt 2)) by 
    TOPREAL3: 3;
    
          then ((
    sqrt (((q 
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 ))) 
    * ( 
    sqrt 2)) 
    < ((r 
    / ( 
    sqrt 2)) 
    * ( 
    sqrt 2)) by 
    A20,
    JGRAPH_2: 3,
    XREAL_1: 68;
    
          then (
    sqrt ((((q 
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    * 2)) 
    < ((r 
    / ( 
    sqrt 2)) 
    * ( 
    sqrt 2)) by 
    A24,
    A25,
    SQUARE_1: 29;
    
          then
    
          
    
    A26: ( 
    sqrt ((((q 
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    * 2)) 
    < r by 
    A20,
    XCMPLX_1: 87;
    
          per cases ;
    
            suppose q
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            then z
    = ( 
    0. ( 
    TOP-REAL 2)) by 
    A23,
    Th28;
    
            hence thesis by
    A17,
    GOBOARD6: 1;
    
          end;
    
            suppose
    
            
    
    A27: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
            
    
    A28: 
    
            now
    
              assume ((q
    `1 ) 
    ^2 ) 
    <=  
    0 ; 
    
              then ((q
    `1 ) 
    ^2 ) 
    =  
    0 by 
    XREAL_1: 63;
    
              then
    
              
    
    A29: (q 
    `1 ) 
    =  
    0 by 
    XCMPLX_1: 6;
    
              then (q
    `2 ) 
    =  
    0 by 
    A27;
    
              hence contradiction by
    A27,
    A29,
    EUCLID: 53,
    EUCLID: 54;
    
            end;
    
            
    
            
    
    A30: (( 
    Sq_Circ  
    " ) 
    . q) 
    =  
    |[((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| by 
    A27,
    Th28;
    
            then (qz
    `1 ) 
    = ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A23,
    EUCLID: 52;
    
            then
    
            
    
    A31: ((qz 
    `1 ) 
    ^2 ) 
    = (((q 
    `1 ) 
    ^2 ) 
    * (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )); 
    
            (qz
    `2 ) 
    = ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A23,
    A30,
    EUCLID: 52;
    
            then
    
            
    
    A32: ((qz 
    `2 ) 
    ^2 ) 
    = (((q 
    `2 ) 
    ^2 ) 
    * (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )); 
    
            
    
            
    
    A33: (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
            now
    
              per cases by
    A27;
    
                case
    
                
    
    A34: (q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ); 
    
                now
    
                  per cases ;
    
                    case
    0  
    <= (q 
    `2 ); 
    
                    hence ((q
    `2 ) 
    ^2 ) 
    <= ((q 
    `1 ) 
    ^2 ) by 
    A34,
    SQUARE_1: 15;
    
                  end;
    
                    case
    
                    
    
    A35: 
    0  
    > (q 
    `2 ); 
    
                    (
    - ( 
    - (q 
    `1 ))) 
    >= ( 
    - (q 
    `2 )) by 
    A34,
    XREAL_1: 24;
    
                    then ((
    - (q 
    `2 )) 
    ^2 ) 
    <= ((q 
    `1 ) 
    ^2 ) by 
    A35,
    SQUARE_1: 15;
    
                    hence ((q
    `2 ) 
    ^2 ) 
    <= ((q 
    `1 ) 
    ^2 ); 
    
                  end;
    
                end;
    
                hence ((q
    `2 ) 
    ^2 ) 
    <= ((q 
    `1 ) 
    ^2 ); 
    
              end;
    
                case
    
                
    
    A36: (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 )); 
    
                now
    
                  per cases ;
    
                    case
    
                    
    
    A37: 
    0  
    >= (q 
    `2 ); 
    
                    (
    - (q 
    `2 )) 
    <= ( 
    - (q 
    `1 )) by 
    A36,
    XREAL_1: 24;
    
                    then ((
    - (q 
    `2 )) 
    ^2 ) 
    <= (( 
    - (q 
    `1 )) 
    ^2 ) by 
    A37,
    SQUARE_1: 15;
    
                    hence ((q
    `2 ) 
    ^2 ) 
    <= ((q 
    `1 ) 
    ^2 ); 
    
                  end;
    
                    case
    0  
    < (q 
    `2 ); 
    
                    then ((q
    `2 ) 
    ^2 ) 
    <= (( 
    - (q 
    `1 )) 
    ^2 ) by 
    A36,
    SQUARE_1: 15;
    
                    hence ((q
    `2 ) 
    ^2 ) 
    <= ((q 
    `1 ) 
    ^2 ); 
    
                  end;
    
                end;
    
                hence ((q
    `2 ) 
    ^2 ) 
    <= ((q 
    `1 ) 
    ^2 ); 
    
              end;
    
            end;
    
            then (((q
    `2 ) 
    ^2 ) 
    / ((q 
    `1 ) 
    ^2 )) 
    <= (((q 
    `1 ) 
    ^2 ) 
    / ((q 
    `1 ) 
    ^2 )) by 
    A28,
    XREAL_1: 72;
    
            then (((q
    `2 ) 
    / (q 
    `1 )) 
    ^2 ) 
    <= (((q 
    `1 ) 
    ^2 ) 
    / ((q 
    `1 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then (((q
    `2 ) 
    / (q 
    `1 )) 
    ^2 ) 
    <= 1 by 
    A28,
    XCMPLX_1: 60;
    
            then
    
            
    
    A38: (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) 
    <= (1 
    + 1) by 
    XREAL_1: 7;
    
            then (((q
    `2 ) 
    ^2 ) 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    <= (((q 
    `2 ) 
    ^2 ) 
    * 2) by 
    A25,
    XREAL_1: 64;
    
            then
    
            
    
    A39: ((qz 
    `2 ) 
    ^2 ) 
    <= (((q 
    `2 ) 
    ^2 ) 
    * 2) by 
    A33,
    A32,
    SQUARE_1:def 2;
    
            (((q
    `1 ) 
    ^2 ) 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    <= (((q 
    `1 ) 
    ^2 ) 
    * 2) by 
    A24,
    A38,
    XREAL_1: 64;
    
            then ((qz
    `1 ) 
    ^2 ) 
    <= (((q 
    `1 ) 
    ^2 ) 
    * 2) by 
    A33,
    A31,
    SQUARE_1:def 2;
    
            then
    
            
    
    A40: (((qz 
    `1 ) 
    ^2 ) 
    + ((qz 
    `2 ) 
    ^2 )) 
    <= ((((q 
    `1 ) 
    ^2 ) 
    * 2) 
    + (((q 
    `2 ) 
    ^2 ) 
    * 2)) by 
    A39,
    XREAL_1: 7;
    
            ((qz
    `1 ) 
    ^2 ) 
    >=  
    0 & ((qz 
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            then
    
            
    
    A41: ( 
    sqrt (((qz 
    `1 ) 
    ^2 ) 
    + ((qz 
    `2 ) 
    ^2 ))) 
    <= ( 
    sqrt ((((q 
    `1 ) 
    ^2 ) 
    * 2) 
    + (((q 
    `2 ) 
    ^2 ) 
    * 2))) by 
    A40,
    SQUARE_1: 26;
    
            
    
            
    
    A42: ((( 
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `2 ) 
    = ((( 
    0. ( 
    TOP-REAL 2)) 
    `2 ) 
    - (qz 
    `2 )) by 
    TOPREAL3: 3
    
            .= (
    - (qz 
    `2 )) by 
    JGRAPH_2: 3;
    
            (((
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `1 ) 
    = ((( 
    0. ( 
    TOP-REAL 2)) 
    `1 ) 
    - (qz 
    `1 )) by 
    TOPREAL3: 3
    
            .= (
    - (qz 
    `1 )) by 
    JGRAPH_2: 3;
    
            then (
    sqrt ((((( 
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `1 ) 
    ^2 ) 
    + (((( 
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `2 ) 
    ^2 ))) 
    < r by 
    A26,
    A42,
    A41,
    XXREAL_0: 2;
    
            then
    |.((
    0. ( 
    TOP-REAL 2)) 
    - qz).| 
    < r by 
    JGRAPH_1: 30;
    
            then (
    dist (u0,pz)) 
    < r by 
    JGRAPH_1: 28;
    
            hence thesis by
    METRIC_1: 11;
    
          end;
    
            suppose
    
            
    
    A43: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & not ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
            
    
    A44: 
    
            now
    
              assume ((q
    `2 ) 
    ^2 ) 
    <=  
    0 ; 
    
              then ((q
    `2 ) 
    ^2 ) 
    =  
    0 by 
    XREAL_1: 63;
    
              then (q
    `2 ) 
    =  
    0 by 
    XCMPLX_1: 6;
    
              hence contradiction by
    A43;
    
            end;
    
            now
    
              per cases by
    A43,
    JGRAPH_2: 13;
    
                case
    
                
    
    A45: (q 
    `1 ) 
    <= (q 
    `2 ) & ( 
    - (q 
    `2 )) 
    <= (q 
    `1 ); 
    
                now
    
                  per cases ;
    
                    case
    0  
    <= (q 
    `1 ); 
    
                    hence ((q
    `1 ) 
    ^2 ) 
    <= ((q 
    `2 ) 
    ^2 ) by 
    A45,
    SQUARE_1: 15;
    
                  end;
    
                    case
    
                    
    
    A46: 
    0  
    > (q 
    `1 ); 
    
                    (
    - ( 
    - (q 
    `2 ))) 
    >= ( 
    - (q 
    `1 )) by 
    A45,
    XREAL_1: 24;
    
                    then ((
    - (q 
    `1 )) 
    ^2 ) 
    <= ((q 
    `2 ) 
    ^2 ) by 
    A46,
    SQUARE_1: 15;
    
                    hence ((q
    `1 ) 
    ^2 ) 
    <= ((q 
    `2 ) 
    ^2 ); 
    
                  end;
    
                end;
    
                hence ((q
    `1 ) 
    ^2 ) 
    <= ((q 
    `2 ) 
    ^2 ); 
    
              end;
    
                case
    
                
    
    A47: (q 
    `1 ) 
    >= (q 
    `2 ) & (q 
    `1 ) 
    <= ( 
    - (q 
    `2 )); 
    
                now
    
                  per cases ;
    
                    case
    
                    
    
    A48: 
    0  
    >= (q 
    `1 ); 
    
                    (
    - (q 
    `1 )) 
    <= ( 
    - (q 
    `2 )) by 
    A47,
    XREAL_1: 24;
    
                    then ((
    - (q 
    `1 )) 
    ^2 ) 
    <= (( 
    - (q 
    `2 )) 
    ^2 ) by 
    A48,
    SQUARE_1: 15;
    
                    hence ((q
    `1 ) 
    ^2 ) 
    <= ((q 
    `2 ) 
    ^2 ); 
    
                  end;
    
                    case
    0  
    < (q 
    `1 ); 
    
                    then ((q
    `1 ) 
    ^2 ) 
    <= (( 
    - (q 
    `2 )) 
    ^2 ) by 
    A47,
    SQUARE_1: 15;
    
                    hence ((q
    `1 ) 
    ^2 ) 
    <= ((q 
    `2 ) 
    ^2 ); 
    
                  end;
    
                end;
    
                hence ((q
    `1 ) 
    ^2 ) 
    <= ((q 
    `2 ) 
    ^2 ); 
    
              end;
    
            end;
    
            then (((q
    `1 ) 
    ^2 ) 
    / ((q 
    `2 ) 
    ^2 )) 
    <= (((q 
    `2 ) 
    ^2 ) 
    / ((q 
    `2 ) 
    ^2 )) by 
    A44,
    XREAL_1: 72;
    
            then (((q
    `1 ) 
    / (q 
    `2 )) 
    ^2 ) 
    <= (((q 
    `2 ) 
    ^2 ) 
    / ((q 
    `2 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
            then (((q
    `1 ) 
    / (q 
    `2 )) 
    ^2 ) 
    <= 1 by 
    A44,
    XCMPLX_1: 60;
    
            then
    
            
    
    A49: (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )) 
    <= (1 
    + 1) by 
    XREAL_1: 7;
    
            then
    
            
    
    A50: (((q 
    `2 ) 
    ^2 ) 
    * (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    <= (((q 
    `2 ) 
    ^2 ) 
    * 2) by 
    A25,
    XREAL_1: 64;
    
            (1
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
            then
    
            
    
    A51: (( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    ^2 ) 
    = (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )) by 
    SQUARE_1:def 2;
    
            
    
            
    
    A52: (((q 
    `1 ) 
    ^2 ) 
    * (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    <= (((q 
    `1 ) 
    ^2 ) 
    * 2) by 
    A24,
    A49,
    XREAL_1: 64;
    
            
    
            
    
    A53: (( 
    Sq_Circ  
    " ) 
    . q) 
    =  
    |[((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]| by 
    A43,
    Th28;
    
            then (qz
    `1 ) 
    = ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A23,
    EUCLID: 52;
    
            then
    
            
    
    A54: ((qz 
    `1 ) 
    ^2 ) 
    <= (((q 
    `1 ) 
    ^2 ) 
    * 2) by 
    A52,
    A51,
    SQUARE_1: 9;
    
            (qz
    `2 ) 
    = ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A23,
    A53,
    EUCLID: 52;
    
            then ((qz
    `2 ) 
    ^2 ) 
    <= (((q 
    `2 ) 
    ^2 ) 
    * 2) by 
    A50,
    A51,
    SQUARE_1: 9;
    
            then
    
            
    
    A55: (((qz 
    `2 ) 
    ^2 ) 
    + ((qz 
    `1 ) 
    ^2 )) 
    <= ((((q 
    `2 ) 
    ^2 ) 
    * 2) 
    + (((q 
    `1 ) 
    ^2 ) 
    * 2)) by 
    A54,
    XREAL_1: 7;
    
            ((qz
    `2 ) 
    ^2 ) 
    >=  
    0 & ((qz 
    `1 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            then
    
            
    
    A56: ( 
    sqrt (((qz 
    `2 ) 
    ^2 ) 
    + ((qz 
    `1 ) 
    ^2 ))) 
    <= ( 
    sqrt ((((q 
    `2 ) 
    ^2 ) 
    * 2) 
    + (((q 
    `1 ) 
    ^2 ) 
    * 2))) by 
    A55,
    SQUARE_1: 26;
    
            
    
            
    
    A57: ((( 
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `2 ) 
    = ((( 
    0. ( 
    TOP-REAL 2)) 
    `2 ) 
    - (qz 
    `2 )) by 
    TOPREAL3: 3
    
            .= (
    - (qz 
    `2 )) by 
    JGRAPH_2: 3;
    
            (((
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `1 ) 
    = ((( 
    0. ( 
    TOP-REAL 2)) 
    `1 ) 
    - (qz 
    `1 )) by 
    TOPREAL3: 3
    
            .= (
    - (qz 
    `1 )) by 
    JGRAPH_2: 3;
    
            then (
    sqrt ((((( 
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `2 ) 
    ^2 ) 
    + (((( 
    0. ( 
    TOP-REAL 2)) 
    - qz) 
    `1 ) 
    ^2 ))) 
    < r by 
    A26,
    A57,
    A56,
    XXREAL_0: 2;
    
            then
    |.((
    0. ( 
    TOP-REAL 2)) 
    - qz).| 
    < r by 
    JGRAPH_1: 30;
    
            then (
    dist (u0,pz)) 
    < r by 
    JGRAPH_1: 28;
    
            hence thesis by
    METRIC_1: 11;
    
          end;
    
        end;
    
        
    
        
    
    A58: V1 is 
    open by 
    GOBOARD6: 3;
    
        (
    sqrt 2) 
    >  
    0 by 
    SQUARE_1: 25;
    
        then u0
    in V1 by 
    A17,
    GOBOARD6: 1,
    XREAL_1: 139;
    
        hence thesis by
    A18,
    A58,
    A19,
    XBOOLE_1: 1;
    
      end;
    
      
    
      
    
    A59: (D 
    ` ) 
    =  
    {(
    0. ( 
    TOP-REAL 2))} by 
    Th20;
    
      then ex h be
    Function of (( 
    TOP-REAL 2) 
    | D), (( 
    TOP-REAL 2) 
    | D) st h 
    = (( 
    Sq_Circ  
    " ) 
    | D) & h is 
    continuous by 
    Th41;
    
      hence thesis by
    A1,
    A59,
    A2,
    A14,
    Th3;
    
    end;
    
    theorem :: 
    
    JGRAPH_3:43
    
    
    
    
    
    Th43: 
    Sq_Circ is 
    Function of ( 
    TOP-REAL 2), ( 
    TOP-REAL 2) & ( 
    rng  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) & for f be 
    Function of ( 
    TOP-REAL 2), ( 
    TOP-REAL 2) st f 
    =  
    Sq_Circ holds f is 
    being_homeomorphism
    
    proof
    
      thus
    Sq_Circ is 
    Function of ( 
    TOP-REAL 2), ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: for f be 
    Function of ( 
    TOP-REAL 2), ( 
    TOP-REAL 2) st f 
    =  
    Sq_Circ holds ( 
    rng  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) & f is 
    being_homeomorphism
    
      proof
    
        let f be
    Function of ( 
    TOP-REAL 2), ( 
    TOP-REAL 2); 
    
        assume
    
        
    
    A2: f 
    =  
    Sq_Circ ; 
    
        reconsider g = (f
    /" ) as 
    Function of ( 
    TOP-REAL 2), ( 
    TOP-REAL 2); 
    
        
    
        
    
    A3: ( 
    dom f) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
        the
    carrier of ( 
    TOP-REAL 2) 
    c= ( 
    rng f) 
    
        proof
    
          let y be
    object;
    
          assume y
    in the 
    carrier of ( 
    TOP-REAL 2); 
    
          then
    
          reconsider p2 = y as
    Point of ( 
    TOP-REAL 2); 
    
          set q = p2;
    
          now
    
            per cases ;
    
              case q
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
              then y
    = ( 
    Sq_Circ  
    . q) by 
    Def1;
    
              hence ex x be
    set st x 
    in ( 
    dom  
    Sq_Circ ) & y 
    = ( 
    Sq_Circ  
    . x) by 
    A2,
    A3;
    
            end;
    
              case
    
              
    
    A4: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
              set px =
    |[((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]|; 
    
              
    
              
    
    A5: ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
              
    
    A6: 
    
              now
    
                assume that
    
                
    
    A7: (px 
    `1 ) 
    =  
    0 and 
    
                
    
    A8: (px 
    `2 ) 
    =  
    0 ; 
    
                ((q
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    =  
    0 by 
    A8,
    EUCLID: 52;
    
                then
    
                
    
    A9: (q 
    `2 ) 
    =  
    0 by 
    A5,
    XCMPLX_1: 6;
    
                ((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    =  
    0 by 
    A7,
    EUCLID: 52;
    
                then (q
    `1 ) 
    =  
    0 by 
    A5,
    XCMPLX_1: 6;
    
                hence contradiction by
    A4,
    A9,
    EUCLID: 53,
    EUCLID: 54;
    
              end;
    
              
    
              
    
    A10: ( 
    dom  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
              
    
              
    
    A11: (px 
    `1 ) 
    = ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
              
    
              
    
    A12: (px 
    `2 ) 
    = ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
              then
    
              
    
    A13: ((px 
    `2 ) 
    / (px 
    `1 )) 
    = ((q 
    `2 ) 
    / (q 
    `1 )) by 
    A11,
    A5,
    XCMPLX_1: 91;
    
              then
    
              
    
    A14: ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))) 
    = (q 
    `2 ) by 
    A12,
    A5,
    XCMPLX_1: 89;
    
              (q
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    <= (( 
    - (q 
    `1 )) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A4,
    A5,
    XREAL_1: 64;
    
              then (q
    `2 ) 
    <= (q 
    `1 ) & (( 
    - (q 
    `1 )) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    <= ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A11,
    A12,
    A5,
    XREAL_1: 64;
    
              then ((q
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    <= ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) & ( 
    - (px 
    `1 )) 
    <= (px 
    `2 ) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A11,
    A5,
    EUCLID: 52,
    XREAL_1: 64;
    
              then
    
              
    
    A15: ( 
    Sq_Circ  
    . px) 
    =  
    |[((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))), ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 ))))]| by 
    A11,
    A12,
    A6,
    Def1,
    JGRAPH_2: 3;
    
              ((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `2 ) 
    / (px 
    `1 )) 
    ^2 )))) 
    = (q 
    `1 ) by 
    A11,
    A5,
    A13,
    XCMPLX_1: 89;
    
              hence ex x be
    set st x 
    in ( 
    dom  
    Sq_Circ ) & y 
    = ( 
    Sq_Circ  
    . x) by 
    A15,
    A14,
    A10,
    EUCLID: 53;
    
            end;
    
              case
    
              
    
    A16: q 
    <> ( 
    0. ( 
    TOP-REAL 2)) & not ((q 
    `2 ) 
    <= (q 
    `1 ) & ( 
    - (q 
    `1 )) 
    <= (q 
    `2 ) or (q 
    `2 ) 
    >= (q 
    `1 ) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 ))); 
    
              set px =
    |[((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))), ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))))]|; 
    
              
    
              
    
    A17: ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
              
    
    A18: 
    
              now
    
                assume that
    
                
    
    A19: (px 
    `2 ) 
    =  
    0 and (px 
    `1 ) 
    =  
    0 ; 
    
                ((q
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    =  
    0 by 
    A19,
    EUCLID: 52;
    
                then (q
    `2 ) 
    =  
    0 by 
    A17,
    XCMPLX_1: 6;
    
                hence contradiction by
    A16;
    
              end;
    
              
    
              
    
    A20: (px 
    `2 ) 
    = ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
              
    
              
    
    A21: (px 
    `1 ) 
    = ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
              then
    
              
    
    A22: ((px 
    `1 ) 
    / (px 
    `2 )) 
    = ((q 
    `1 ) 
    / (q 
    `2 )) by 
    A20,
    A17,
    XCMPLX_1: 91;
    
              then
    
              
    
    A23: ((px 
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))) 
    = (q 
    `1 ) by 
    A21,
    A17,
    XCMPLX_1: 89;
    
              (q
    `1 ) 
    <= (q 
    `2 ) & ( 
    - (q 
    `2 )) 
    <= (q 
    `1 ) or (q 
    `1 ) 
    >= (q 
    `2 ) & (q 
    `1 ) 
    <= ( 
    - (q 
    `2 )) by 
    A16,
    JGRAPH_2: 13;
    
              then (q
    `1 ) 
    <= (q 
    `2 ) & ( 
    - (q 
    `2 )) 
    <= (q 
    `1 ) or (q 
    `1 ) 
    >= (q 
    `2 ) & ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    <= (( 
    - (q 
    `2 )) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) by 
    A17,
    XREAL_1: 64;
    
              then (q
    `1 ) 
    <= (q 
    `2 ) & (( 
    - (q 
    `2 )) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    <= ((q 
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) or (px 
    `1 ) 
    >= (px 
    `2 ) & (px 
    `1 ) 
    <= ( 
    - (px 
    `2 )) by 
    A20,
    A21,
    A17,
    XREAL_1: 64;
    
              then ((q
    `1 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) 
    <= ((q 
    `2 ) 
    * ( 
    sqrt (1 
    + (((q 
    `1 ) 
    / (q 
    `2 )) 
    ^2 )))) & ( 
    - (px 
    `2 )) 
    <= (px 
    `1 ) or (px 
    `1 ) 
    >= (px 
    `2 ) & (px 
    `1 ) 
    <= ( 
    - (px 
    `2 )) by 
    A20,
    A17,
    EUCLID: 52,
    XREAL_1: 64;
    
              then
    
              
    
    A24: ( 
    Sq_Circ  
    . px) 
    =  
    |[((px
    `1 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))), ((px 
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 ))))]| by 
    A20,
    A21,
    A18,
    Th4,
    JGRAPH_2: 3;
    
              
    
              
    
    A25: ( 
    dom  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    FUNCT_2:def 1;
    
              ((px
    `2 ) 
    / ( 
    sqrt (1 
    + (((px 
    `1 ) 
    / (px 
    `2 )) 
    ^2 )))) 
    = (q 
    `2 ) by 
    A20,
    A17,
    A22,
    XCMPLX_1: 89;
    
              hence ex x be
    set st x 
    in ( 
    dom  
    Sq_Circ ) & y 
    = ( 
    Sq_Circ  
    . x) by 
    A24,
    A23,
    A25,
    EUCLID: 53;
    
            end;
    
          end;
    
          hence thesis by
    A2,
    FUNCT_1:def 3;
    
        end;
    
        then (
    rng f) 
    = the 
    carrier of ( 
    TOP-REAL 2); 
    
        then
    
        
    
    A26: f is 
    onto by 
    FUNCT_2:def 3;
    
        
    
        
    
    A27: ( 
    rng f) 
    = ( 
    dom (f qua 
    Function
    " )) by 
    A2,
    FUNCT_1: 33
    
        .= (
    dom (f 
    /" )) by 
    A2,
    A26,
    TOPS_2:def 4
    
        .= (
    [#] ( 
    TOP-REAL 2)) by 
    FUNCT_2:def 1;
    
        g
    = ( 
    Sq_Circ  
    " ) by 
    A26,
    A2,
    TOPS_2:def 4;
    
        hence thesis by
    A2,
    A3,
    A27,
    Th21,
    Th42,
    TOPS_2:def 5;
    
      end;
    
      hence (
    rng  
    Sq_Circ ) 
    = the 
    carrier of ( 
    TOP-REAL 2); 
    
      thus thesis by
    A1;
    
    end;
    
    
    
    Lm19: 
    
    now
    
      let pz2,pz1 be
    Real;
    
      assume ((((pz2
    ^2 ) 
    + (pz1 
    ^2 )) 
    - 1) 
    * (pz2 
    ^2 )) 
    <= (pz1 
    ^2 ); 
    
      then ((((pz2
    ^2 ) 
    * (pz2 
    ^2 )) 
    + ((pz2 
    ^2 ) 
    * ((pz1 
    ^2 ) 
    - 1))) 
    - (pz1 
    ^2 )) 
    <= ((pz1 
    ^2 ) 
    - (pz1 
    ^2 )) by 
    XREAL_1: 9;
    
      hence (((pz2
    ^2 ) 
    - 1) 
    * ((pz2 
    ^2 ) 
    + (pz1 
    ^2 ))) 
    <=  
    0 ; 
    
    end;
    
    
    
    Lm20: 
    
    now
    
      let px1 be
    Real;
    
      assume ((px1
    ^2 ) 
    - 1) 
    =  
    0 ; 
    
      then ((px1
    - 1) 
    * (px1 
    + 1)) 
    =  
    0 ; 
    
      then (px1
    - 1) 
    =  
    0 or (px1 
    + 1) 
    =  
    0 by 
    XCMPLX_1: 6;
    
      hence px1
    = 1 or px1 
    = ( 
    - 1); 
    
    end;
    
    theorem :: 
    
    JGRAPH_3:44
    
    for f,g be
    Function of 
    I[01] , ( 
    TOP-REAL 2), C0,KXP,KXN,KYP,KYN be 
    Subset of ( 
    TOP-REAL 2), O,I be 
    Point of 
    I[01] st O 
    =  
    0 & I 
    = 1 & f is 
    continuous
    one-to-one & g is 
    continuous
    one-to-one & C0 
    = { p : 
    |.p.|
    <= 1 } & KXP 
    = { q1 where q1 be 
    Point of ( 
    TOP-REAL 2) : 
    |.q1.|
    = 1 & (q1 
    `2 ) 
    <= (q1 
    `1 ) & (q1 
    `2 ) 
    >= ( 
    - (q1 
    `1 )) } & KXN 
    = { q2 where q2 be 
    Point of ( 
    TOP-REAL 2) : 
    |.q2.|
    = 1 & (q2 
    `2 ) 
    >= (q2 
    `1 ) & (q2 
    `2 ) 
    <= ( 
    - (q2 
    `1 )) } & KYP 
    = { q3 where q3 be 
    Point of ( 
    TOP-REAL 2) : 
    |.q3.|
    = 1 & (q3 
    `2 ) 
    >= (q3 
    `1 ) & (q3 
    `2 ) 
    >= ( 
    - (q3 
    `1 )) } & KYN 
    = { q4 where q4 be 
    Point of ( 
    TOP-REAL 2) : 
    |.q4.|
    = 1 & (q4 
    `2 ) 
    <= (q4 
    `1 ) & (q4 
    `2 ) 
    <= ( 
    - (q4 
    `1 )) } & (f 
    . O) 
    in KXN & (f 
    . I) 
    in KXP & (g 
    . O) 
    in KYN & (g 
    . I) 
    in KYP & ( 
    rng f) 
    c= C0 & ( 
    rng g) 
    c= C0 holds ( 
    rng f) 
    meets ( 
    rng g) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    Sq_Circ  
    " )) 
    = the 
    carrier of ( 
    TOP-REAL 2) by 
    Th29,
    FUNCT_2:def 1;
    
      let f,g be
    Function of 
    I[01] , ( 
    TOP-REAL 2), C0,KXP,KXN,KYP,KYN be 
    Subset of ( 
    TOP-REAL 2), O,I be 
    Point of 
    I[01] ; 
    
      assume
    
      
    
    A2: O 
    =  
    0 & I 
    = 1 & f is 
    continuous
    one-to-one & g is 
    continuous
    one-to-one & C0 
    = { p : 
    |.p.|
    <= 1 } & KXP 
    = { q1 where q1 be 
    Point of ( 
    TOP-REAL 2) : 
    |.q1.|
    = 1 & (q1 
    `2 ) 
    <= (q1 
    `1 ) & (q1 
    `2 ) 
    >= ( 
    - (q1 
    `1 )) } & KXN 
    = { q2 where q2 be 
    Point of ( 
    TOP-REAL 2) : 
    |.q2.|
    = 1 & (q2 
    `2 ) 
    >= (q2 
    `1 ) & (q2 
    `2 ) 
    <= ( 
    - (q2 
    `1 )) } & KYP 
    = { q3 where q3 be 
    Point of ( 
    TOP-REAL 2) : 
    |.q3.|
    = 1 & (q3 
    `2 ) 
    >= (q3 
    `1 ) & (q3 
    `2 ) 
    >= ( 
    - (q3 
    `1 )) } & KYN 
    = { q4 where q4 be 
    Point of ( 
    TOP-REAL 2) : 
    |.q4.|
    = 1 & (q4 
    `2 ) 
    <= (q4 
    `1 ) & (q4 
    `2 ) 
    <= ( 
    - (q4 
    `1 )) } & (f 
    . O) 
    in KXN & (f 
    . I) 
    in KXP & (g 
    . O) 
    in KYN & (g 
    . I) 
    in KYP & ( 
    rng f) 
    c= C0 & ( 
    rng g) 
    c= C0; 
    
      then
    
      consider p1 be
    Point of ( 
    TOP-REAL 2) such that 
    
      
    
    A3: (f 
    . O) 
    = p1 and 
    
      
    
    A4: 
    |.p1.|
    = 1 and 
    
      
    
    A5: (p1 
    `2 ) 
    >= (p1 
    `1 ) and 
    
      
    
    A6: (p1 
    `2 ) 
    <= ( 
    - (p1 
    `1 )); 
    
      reconsider gg = ((
    Sq_Circ  
    " ) 
    * g) as 
    Function of 
    I[01] , ( 
    TOP-REAL 2) by 
    Th29,
    FUNCT_2: 13;
    
      
    
      
    
    A7: ( 
    dom g) 
    = the 
    carrier of 
    I[01] by 
    FUNCT_2:def 1;
    
      reconsider ff = ((
    Sq_Circ  
    " ) 
    * f) as 
    Function of 
    I[01] , ( 
    TOP-REAL 2) by 
    Th29,
    FUNCT_2: 13;
    
      
    
      
    
    A8: ( 
    dom gg) 
    = the 
    carrier of 
    I[01] by 
    FUNCT_2:def 1;
    
      
    
      
    
    A9: ( 
    dom ff) 
    = the 
    carrier of 
    I[01] by 
    FUNCT_2:def 1;
    
      then
    
      
    
    A10: (ff 
    . O) 
    = (( 
    Sq_Circ  
    " ) 
    . (f 
    . O)) by 
    FUNCT_1: 12;
    
      
    
      
    
    A11: ( 
    dom f) 
    = the 
    carrier of 
    I[01] by 
    FUNCT_2:def 1;
    
      
    
      
    
    A12: for r be 
    Point of 
    I[01] holds ( 
    - 1) 
    <= ((ff 
    . r) 
    `1 ) & ((ff 
    . r) 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= ((gg 
    . r) 
    `1 ) & ((gg 
    . r) 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= ((ff 
    . r) 
    `2 ) & ((ff 
    . r) 
    `2 ) 
    <= 1 & ( 
    - 1) 
    <= ((gg 
    . r) 
    `2 ) & ((gg 
    . r) 
    `2 ) 
    <= 1 
    
      proof
    
        let r be
    Point of 
    I[01] ; 
    
        (f
    . r) 
    in ( 
    rng f) by 
    A11,
    FUNCT_1: 3;
    
        then (f
    . r) 
    in C0 by 
    A2;
    
        then
    
        consider p1 be
    Point of ( 
    TOP-REAL 2) such that 
    
        
    
    A13: (f 
    . r) 
    = p1 and 
    
        
    
    A14: 
    |.p1.|
    <= 1 by 
    A2;
    
        (g
    . r) 
    in ( 
    rng g) by 
    A7,
    FUNCT_1: 3;
    
        then (g
    . r) 
    in C0 by 
    A2;
    
        then
    
        consider p2 be
    Point of ( 
    TOP-REAL 2) such that 
    
        
    
    A15: (g 
    . r) 
    = p2 and 
    
        
    
    A16: 
    |.p2.|
    <= 1 by 
    A2;
    
        
    
        
    
    A17: (gg 
    . r) 
    = (( 
    Sq_Circ  
    " ) 
    . (g 
    . r)) by 
    A8,
    FUNCT_1: 12;
    
        
    
    A18: 
    
        now
    
          per cases ;
    
            case p2
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            hence (
    - 1) 
    <= ((gg 
    . r) 
    `1 ) & ((gg 
    . r) 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= ((gg 
    . r) 
    `2 ) & ((gg 
    . r) 
    `2 ) 
    <= 1 by 
    A17,
    A15,
    Th28,
    JGRAPH_2: 3;
    
          end;
    
            case
    
            
    
    A19: p2 
    <> ( 
    0. ( 
    TOP-REAL 2)) & ((p2 
    `2 ) 
    <= (p2 
    `1 ) & ( 
    - (p2 
    `1 )) 
    <= (p2 
    `2 ) or (p2 
    `2 ) 
    >= (p2 
    `1 ) & (p2 
    `2 ) 
    <= ( 
    - (p2 
    `1 ))); 
    
            set px = (gg
    . r); 
    
            
    
            
    
    A20: (( 
    Sq_Circ  
    " ) 
    . p2) 
    =  
    |[((p2
    `1 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))), ((p2 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 ))))]| by 
    A19,
    Th28;
    
            then
    
            
    
    A21: (px 
    `1 ) 
    = ((p2 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) by 
    A17,
    A15,
    EUCLID: 52;
    
            (
    |.p2.|
    ^2 ) 
    <=  
    |.p2.| by
    A16,
    SQUARE_1: 42;
    
            then
    
            
    
    A22: ( 
    |.p2.|
    ^2 ) 
    <= 1 by 
    A16,
    XXREAL_0: 2;
    
            
    
            
    
    A23: ((px 
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            
    
            
    
    A24: ((px 
    `1 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            
    
            
    
    A25: (px 
    `2 ) 
    = ((p2 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) by 
    A17,
    A15,
    A20,
    EUCLID: 52;
    
            
    
            
    
    A26: ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
            then (p2
    `2 ) 
    <= (p2 
    `1 ) & ( 
    - (p2 
    `1 )) 
    <= (p2 
    `2 ) or (p2 
    `2 ) 
    >= (p2 
    `1 ) & ((p2 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) 
    <= (( 
    - (p2 
    `1 )) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) by 
    A19,
    XREAL_1: 64;
    
            then
    
            
    
    A27: (p2 
    `2 ) 
    <= (p2 
    `1 ) & (( 
    - (p2 
    `1 )) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) 
    <= ((p2 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A21,
    A25,
    A26,
    XREAL_1: 64;
    
            then
    
            
    
    A28: ((p2 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) 
    <= ((p2 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) & ( 
    - (px 
    `1 )) 
    <= (px 
    `2 ) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A17,
    A15,
    A20,
    A21,
    A26,
    EUCLID: 52,
    XREAL_1: 64;
    
            
    
    A29: 
    
            now
    
              assume (px
    `1 ) 
    =  
    0 & (px 
    `2 ) 
    =  
    0 ; 
    
              then (p2
    `1 ) 
    =  
    0 & (p2 
    `2 ) 
    =  
    0 by 
    A21,
    A25,
    A26,
    XCMPLX_1: 6;
    
              hence contradiction by
    A19,
    EUCLID: 53,
    EUCLID: 54;
    
            end;
    
            then
    
            
    
    A30: (px 
    `1 ) 
    <>  
    0 by 
    A21,
    A25,
    A26,
    A27,
    XREAL_1: 64;
    
            set q = px;
    
            
    
            
    
    A31: ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| 
    `2 ) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
            
    
            
    
    A32: (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
            
    
            
    
    A33: p2 
    = ( 
    Sq_Circ  
    . px) & ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| 
    `1 ) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A17,
    A15,
    Th43,
    EUCLID: 52,
    FUNCT_1: 32;
    
            (
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| by 
    A21,
    A25,
    A29,
    A28,
    Def1,
    JGRAPH_2: 3;
    
            
    
            then (
    |.p2.|
    ^2 ) 
    = ((((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 )) by 
    A33,
    A31,
    JGRAPH_1: 29
    
            .= ((((q
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
            .= ((((q
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
            .= ((((q
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    A32,
    SQUARE_1:def 2
    
            .= ((((q
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A32,
    SQUARE_1:def 2
    
            .= ((((q
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    XCMPLX_1: 62;
    
            then (((((q
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    <= (1 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A32,
    A22,
    XREAL_1: 64;
    
            then (((q
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    <= (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) by 
    A32,
    XCMPLX_1: 87;
    
            then (((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    <= (1 
    + (((px 
    `2 ) 
    ^2 ) 
    / ((px 
    `1 ) 
    ^2 ))) by 
    XCMPLX_1: 76;
    
            then ((((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    - 1) 
    <= (((px 
    `2 ) 
    ^2 ) 
    / ((px 
    `1 ) 
    ^2 )) by 
    XREAL_1: 20;
    
            then (((((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    - 1) 
    * ((px 
    `1 ) 
    ^2 )) 
    <= ((((px 
    `2 ) 
    ^2 ) 
    / ((px 
    `1 ) 
    ^2 )) 
    * ((px 
    `1 ) 
    ^2 )) by 
    A24,
    XREAL_1: 64;
    
            then (((((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    - 1) 
    * ((px 
    `1 ) 
    ^2 )) 
    <= ((px 
    `2 ) 
    ^2 ) by 
    A30,
    XCMPLX_1: 6,
    XCMPLX_1: 87;
    
            then
    
            
    
    A34: ((((px 
    `1 ) 
    ^2 ) 
    - 1) 
    * (((px 
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 ))) 
    <=  
    0 by 
    Lm19;
    
            (((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    <>  
    0 by 
    A29,
    COMPLEX1: 1;
    
            then
    
            
    
    A35: (((px 
    `1 ) 
    ^2 ) 
    - 1) 
    <=  
    0 by 
    A24,
    A34,
    A23,
    XREAL_1: 129;
    
            then
    
            
    
    A36: (px 
    `1 ) 
    >= ( 
    - 1) by 
    SQUARE_1: 43;
    
            
    
            
    
    A37: (px 
    `1 ) 
    <= 1 by 
    A35,
    SQUARE_1: 43;
    
            then (q
    `2 ) 
    <= 1 & ( 
    - ( 
    - (q 
    `1 ))) 
    >= ( 
    - (q 
    `2 )) or (q 
    `2 ) 
    >= ( 
    - 1) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 )) by 
    A21,
    A25,
    A28,
    A36,
    XREAL_1: 24,
    XXREAL_0: 2;
    
            then (q
    `2 ) 
    <= 1 & (q 
    `1 ) 
    >= ( 
    - (q 
    `2 )) or (q 
    `2 ) 
    >= ( 
    - 1) & ( 
    - (q 
    `2 )) 
    >= ( 
    - ( 
    - (q 
    `1 ))) by 
    XREAL_1: 24;
    
            then (q
    `2 ) 
    <= 1 & 1 
    >= ( 
    - (q 
    `2 )) or (q 
    `2 ) 
    >= ( 
    - 1) & ( 
    - (q 
    `2 )) 
    >= (q 
    `1 ) by 
    A37,
    XXREAL_0: 2;
    
            then (q
    `2 ) 
    <= 1 & ( 
    - 1) 
    <= ( 
    - ( 
    - (q 
    `2 ))) or (q 
    `2 ) 
    >= ( 
    - 1) & ( 
    - (q 
    `2 )) 
    >= ( 
    - 1) by 
    A36,
    XREAL_1: 24,
    XXREAL_0: 2;
    
            hence (
    - 1) 
    <= ((gg 
    . r) 
    `1 ) & ((gg 
    . r) 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= ((gg 
    . r) 
    `2 ) & ((gg 
    . r) 
    `2 ) 
    <= 1 by 
    A35,
    SQUARE_1: 43,
    XREAL_1: 24;
    
          end;
    
            case
    
            
    
    A38: p2 
    <> ( 
    0. ( 
    TOP-REAL 2)) & not ((p2 
    `2 ) 
    <= (p2 
    `1 ) & ( 
    - (p2 
    `1 )) 
    <= (p2 
    `2 ) or (p2 
    `2 ) 
    >= (p2 
    `1 ) & (p2 
    `2 ) 
    <= ( 
    - (p2 
    `1 ))); 
    
            set pz = (gg
    . r); 
    
            
    
            
    
    A39: (( 
    Sq_Circ  
    " ) 
    . p2) 
    =  
    |[((p2
    `1 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `1 ) 
    / (p2 
    `2 )) 
    ^2 )))), ((p2 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `1 ) 
    / (p2 
    `2 )) 
    ^2 ))))]| by 
    A38,
    Th28;
    
            then
    
            
    
    A40: (pz 
    `2 ) 
    = ((p2 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `1 ) 
    / (p2 
    `2 )) 
    ^2 )))) by 
    A17,
    A15,
    EUCLID: 52;
    
            
    
            
    
    A41: (pz 
    `1 ) 
    = ((p2 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `1 ) 
    / (p2 
    `2 )) 
    ^2 )))) by 
    A17,
    A15,
    A39,
    EUCLID: 52;
    
            
    
            
    
    A42: ( 
    sqrt (1 
    + (((p2 
    `1 ) 
    / (p2 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
            (p2
    `1 ) 
    <= (p2 
    `2 ) & ( 
    - (p2 
    `2 )) 
    <= (p2 
    `1 ) or (p2 
    `1 ) 
    >= (p2 
    `2 ) & (p2 
    `1 ) 
    <= ( 
    - (p2 
    `2 )) by 
    A38,
    JGRAPH_2: 13;
    
            then (p2
    `1 ) 
    <= (p2 
    `2 ) & ( 
    - (p2 
    `2 )) 
    <= (p2 
    `1 ) or (p2 
    `1 ) 
    >= (p2 
    `2 ) & ((p2 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `1 ) 
    / (p2 
    `2 )) 
    ^2 )))) 
    <= (( 
    - (p2 
    `2 )) 
    * ( 
    sqrt (1 
    + (((p2 
    `1 ) 
    / (p2 
    `2 )) 
    ^2 )))) by 
    A42,
    XREAL_1: 64;
    
            then
    
            
    
    A43: (p2 
    `1 ) 
    <= (p2 
    `2 ) & (( 
    - (p2 
    `2 )) 
    * ( 
    sqrt (1 
    + (((p2 
    `1 ) 
    / (p2 
    `2 )) 
    ^2 )))) 
    <= ((p2 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `1 ) 
    / (p2 
    `2 )) 
    ^2 )))) or (pz 
    `1 ) 
    >= (pz 
    `2 ) & (pz 
    `1 ) 
    <= ( 
    - (pz 
    `2 )) by 
    A40,
    A41,
    A42,
    XREAL_1: 64;
    
            then
    
            
    
    A44: ((p2 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `1 ) 
    / (p2 
    `2 )) 
    ^2 )))) 
    <= ((p2 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `1 ) 
    / (p2 
    `2 )) 
    ^2 )))) & ( 
    - (pz 
    `2 )) 
    <= (pz 
    `1 ) or (pz 
    `1 ) 
    >= (pz 
    `2 ) & (pz 
    `1 ) 
    <= ( 
    - (pz 
    `2 )) by 
    A17,
    A15,
    A39,
    A40,
    A42,
    EUCLID: 52,
    XREAL_1: 64;
    
            
    
    A45: 
    
            now
    
              assume that
    
              
    
    A46: (pz 
    `2 ) 
    =  
    0 and (pz 
    `1 ) 
    =  
    0 ; 
    
              (p2
    `2 ) 
    =  
    0 by 
    A40,
    A42,
    A46,
    XCMPLX_1: 6;
    
              hence contradiction by
    A38;
    
            end;
    
            then
    
            
    
    A47: (pz 
    `2 ) 
    <>  
    0 by 
    A40,
    A41,
    A42,
    A43,
    XREAL_1: 64;
    
            
    
            
    
    A48: p2 
    = ( 
    Sq_Circ  
    . pz) & ( 
    |[((pz
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))), ((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))))]| 
    `2 ) 
    = ((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) by 
    A17,
    A15,
    Th43,
    EUCLID: 52,
    FUNCT_1: 32;
    
            
    
            
    
    A49: ((pz 
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            (
    |.p2.|
    ^2 ) 
    <=  
    |.p2.| by
    A16,
    SQUARE_1: 42;
    
            then
    
            
    
    A50: ( 
    |.p2.|
    ^2 ) 
    <= 1 by 
    A16,
    XXREAL_0: 2;
    
            
    
            
    
    A51: ((pz 
    `1 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            
    
            
    
    A52: ( 
    |[((pz
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))), ((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))))]| 
    `1 ) 
    = ((pz 
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
            
    
            
    
    A53: (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
            (
    Sq_Circ  
    . pz) 
    =  
    |[((pz
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))), ((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))))]| by 
    A40,
    A41,
    A45,
    A44,
    Th4,
    JGRAPH_2: 3;
    
            
    
            then (
    |.p2.|
    ^2 ) 
    = ((((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) 
    ^2 ) 
    + (((pz 
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) 
    ^2 )) by 
    A48,
    A52,
    JGRAPH_1: 29
    
            .= ((((pz
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((pz 
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
            .= ((((pz
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((pz 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
            .= ((((pz
    `2 ) 
    ^2 ) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    + (((pz 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    ^2 ))) by 
    A53,
    SQUARE_1:def 2
    
            .= ((((pz
    `2 ) 
    ^2 ) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    + (((pz 
    `1 ) 
    ^2 ) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) by 
    A53,
    SQUARE_1:def 2
    
            .= ((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) by 
    XCMPLX_1: 62;
    
            then (((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    * (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    <= (1 
    * (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) by 
    A53,
    A50,
    XREAL_1: 64;
    
            then (((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    <= (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )) by 
    A53,
    XCMPLX_1: 87;
    
            then (((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    <= (1 
    + (((pz 
    `1 ) 
    ^2 ) 
    / ((pz 
    `2 ) 
    ^2 ))) by 
    XCMPLX_1: 76;
    
            then ((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    - 1) 
    <= (((pz 
    `1 ) 
    ^2 ) 
    / ((pz 
    `2 ) 
    ^2 )) by 
    XREAL_1: 20;
    
            then (((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    - 1) 
    * ((pz 
    `2 ) 
    ^2 )) 
    <= ((((pz 
    `1 ) 
    ^2 ) 
    / ((pz 
    `2 ) 
    ^2 )) 
    * ((pz 
    `2 ) 
    ^2 )) by 
    A49,
    XREAL_1: 64;
    
            then (((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    - 1) 
    * ((pz 
    `2 ) 
    ^2 )) 
    <= ((pz 
    `1 ) 
    ^2 ) by 
    A47,
    XCMPLX_1: 6,
    XCMPLX_1: 87;
    
            then
    
            
    
    A54: ((((pz 
    `2 ) 
    ^2 ) 
    - 1) 
    * (((pz 
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 ))) 
    <=  
    0 by 
    Lm19;
    
            (((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    <>  
    0 by 
    A45,
    COMPLEX1: 1;
    
            then
    
            
    
    A55: (((pz 
    `2 ) 
    ^2 ) 
    - 1) 
    <=  
    0 by 
    A49,
    A54,
    A51,
    XREAL_1: 129;
    
            then
    
            
    
    A56: (pz 
    `2 ) 
    >= ( 
    - 1) by 
    SQUARE_1: 43;
    
            
    
            
    
    A57: (pz 
    `2 ) 
    <= 1 by 
    A55,
    SQUARE_1: 43;
    
            then (pz
    `1 ) 
    <= 1 & ( 
    - ( 
    - (pz 
    `2 ))) 
    >= ( 
    - (pz 
    `1 )) or (pz 
    `1 ) 
    >= ( 
    - 1) & (pz 
    `1 ) 
    <= ( 
    - (pz 
    `2 )) by 
    A40,
    A41,
    A44,
    A56,
    XREAL_1: 24,
    XXREAL_0: 2;
    
            then (pz
    `1 ) 
    <= 1 & 1 
    >= ( 
    - (pz 
    `1 )) or (pz 
    `1 ) 
    >= ( 
    - 1) & ( 
    - (pz 
    `1 )) 
    >= ( 
    - ( 
    - (pz 
    `2 ))) by 
    A57,
    XREAL_1: 24,
    XXREAL_0: 2;
    
            then (pz
    `1 ) 
    <= 1 & 1 
    >= ( 
    - (pz 
    `1 )) or (pz 
    `1 ) 
    >= ( 
    - 1) & ( 
    - (pz 
    `1 )) 
    >= ( 
    - 1) by 
    A56,
    XXREAL_0: 2;
    
            then (pz
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= ( 
    - ( 
    - (pz 
    `1 ))) or (pz 
    `1 ) 
    >= ( 
    - 1) & (pz 
    `1 ) 
    <= 1 by 
    XREAL_1: 24;
    
            hence (
    - 1) 
    <= ((gg 
    . r) 
    `1 ) & ((gg 
    . r) 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= ((gg 
    . r) 
    `2 ) & ((gg 
    . r) 
    `2 ) 
    <= 1 by 
    A55,
    SQUARE_1: 43;
    
          end;
    
        end;
    
        
    
        
    
    A58: (ff 
    . r) 
    = (( 
    Sq_Circ  
    " ) 
    . (f 
    . r)) by 
    A9,
    FUNCT_1: 12;
    
        now
    
          per cases ;
    
            case p1
    = ( 
    0. ( 
    TOP-REAL 2)); 
    
            hence (
    - 1) 
    <= ((ff 
    . r) 
    `1 ) & ((ff 
    . r) 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= ((ff 
    . r) 
    `2 ) & ((ff 
    . r) 
    `2 ) 
    <= 1 by 
    A58,
    A13,
    Th28,
    JGRAPH_2: 3;
    
          end;
    
            case
    
            
    
    A59: p1 
    <> ( 
    0. ( 
    TOP-REAL 2)) & ((p1 
    `2 ) 
    <= (p1 
    `1 ) & ( 
    - (p1 
    `1 )) 
    <= (p1 
    `2 ) or (p1 
    `2 ) 
    >= (p1 
    `1 ) & (p1 
    `2 ) 
    <= ( 
    - (p1 
    `1 ))); 
    
            set px = (ff
    . r); 
    
            ((
    Sq_Circ  
    " ) 
    . p1) 
    =  
    |[((p1
    `1 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))), ((p1 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 ))))]| by 
    A59,
    Th28;
    
            then
    
            
    
    A60: (px 
    `1 ) 
    = ((p1 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))) & (px 
    `2 ) 
    = ((p1 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))) by 
    A58,
    A13,
    EUCLID: 52;
    
            
    
            
    
    A61: ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
            then (p1
    `2 ) 
    <= (p1 
    `1 ) & ( 
    - (p1 
    `1 )) 
    <= (p1 
    `2 ) or (p1 
    `2 ) 
    >= (p1 
    `1 ) & ((p1 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))) 
    <= (( 
    - (p1 
    `1 )) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))) by 
    A59,
    XREAL_1: 64;
    
            then
    
            
    
    A62: (p1 
    `2 ) 
    <= (p1 
    `1 ) & (( 
    - (p1 
    `1 )) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))) 
    <= ((p1 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A60,
    A61,
    XREAL_1: 64;
    
            then
    
            
    
    A63: (px 
    `2 ) 
    <= (px 
    `1 ) & ( 
    - (px 
    `1 )) 
    <= (px 
    `2 ) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A60,
    A61,
    XREAL_1: 64;
    
            
    
    A64: 
    
            now
    
              assume (px
    `1 ) 
    =  
    0 & (px 
    `2 ) 
    =  
    0 ; 
    
              then (p1
    `1 ) 
    =  
    0 & (p1 
    `2 ) 
    =  
    0 by 
    A60,
    A61,
    XCMPLX_1: 6;
    
              hence contradiction by
    A59,
    EUCLID: 53,
    EUCLID: 54;
    
            end;
    
            then
    
            
    
    A65: (px 
    `1 ) 
    <>  
    0 by 
    A60,
    A61,
    A62,
    XREAL_1: 64;
    
            (
    |.p1.|
    ^2 ) 
    <=  
    |.p1.| by
    A14,
    SQUARE_1: 42;
    
            then
    
            
    
    A66: ( 
    |.p1.|
    ^2 ) 
    <= 1 by 
    A14,
    XXREAL_0: 2;
    
            
    
            
    
    A67: ((px 
    `1 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            
    
            
    
    A68: ((px 
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            set q = px;
    
            
    
            
    
    A69: ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| 
    `2 ) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
            
    
            
    
    A70: (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
            
    
            
    
    A71: p1 
    = ( 
    Sq_Circ  
    . px) & ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| 
    `1 ) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A58,
    A13,
    Th43,
    EUCLID: 52,
    FUNCT_1: 32;
    
            (
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| by 
    A64,
    A63,
    Def1,
    JGRAPH_2: 3;
    
            
    
            then (
    |.p1.|
    ^2 ) 
    = ((((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 )) by 
    A71,
    A69,
    JGRAPH_1: 29
    
            .= ((((q
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
            .= ((((q
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
            .= ((((q
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    A70,
    SQUARE_1:def 2
    
            .= ((((q
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A70,
    SQUARE_1:def 2
    
            .= ((((q
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    XCMPLX_1: 62;
    
            then (((((q
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    <= (1 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A70,
    A66,
    XREAL_1: 64;
    
            then (((q
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    <= (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) by 
    A70,
    XCMPLX_1: 87;
    
            then (((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    <= (1 
    + (((px 
    `2 ) 
    ^2 ) 
    / ((px 
    `1 ) 
    ^2 ))) by 
    XCMPLX_1: 76;
    
            then ((((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    - 1) 
    <= (((px 
    `2 ) 
    ^2 ) 
    / ((px 
    `1 ) 
    ^2 )) by 
    XREAL_1: 20;
    
            then (((((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    - 1) 
    * ((px 
    `1 ) 
    ^2 )) 
    <= ((((px 
    `2 ) 
    ^2 ) 
    / ((px 
    `1 ) 
    ^2 )) 
    * ((px 
    `1 ) 
    ^2 )) by 
    A67,
    XREAL_1: 64;
    
            then (((((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    - 1) 
    * ((px 
    `1 ) 
    ^2 )) 
    <= ((px 
    `2 ) 
    ^2 ) by 
    A65,
    XCMPLX_1: 6,
    XCMPLX_1: 87;
    
            then
    
            
    
    A72: ((((px 
    `1 ) 
    ^2 ) 
    - 1) 
    * (((px 
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 ))) 
    <=  
    0 by 
    Lm19;
    
            (((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    <>  
    0 by 
    A64,
    COMPLEX1: 1;
    
            then
    
            
    
    A73: (((px 
    `1 ) 
    ^2 ) 
    - 1) 
    <=  
    0 by 
    A67,
    A72,
    A68,
    XREAL_1: 129;
    
            then
    
            
    
    A74: (px 
    `1 ) 
    >= ( 
    - 1) by 
    SQUARE_1: 43;
    
            
    
            
    
    A75: (px 
    `1 ) 
    <= 1 by 
    A73,
    SQUARE_1: 43;
    
            then (q
    `2 ) 
    <= 1 & ( 
    - ( 
    - (q 
    `1 ))) 
    >= ( 
    - (q 
    `2 )) or (q 
    `2 ) 
    >= ( 
    - 1) & (q 
    `2 ) 
    <= ( 
    - (q 
    `1 )) by 
    A63,
    A74,
    XREAL_1: 24,
    XXREAL_0: 2;
    
            then (q
    `2 ) 
    <= 1 & (q 
    `1 ) 
    >= ( 
    - (q 
    `2 )) or (q 
    `2 ) 
    >= ( 
    - 1) & ( 
    - (q 
    `2 )) 
    >= ( 
    - ( 
    - (q 
    `1 ))) by 
    XREAL_1: 24;
    
            then (q
    `2 ) 
    <= 1 & 1 
    >= ( 
    - (q 
    `2 )) or (q 
    `2 ) 
    >= ( 
    - 1) & ( 
    - (q 
    `2 )) 
    >= (q 
    `1 ) by 
    A75,
    XXREAL_0: 2;
    
            then (q
    `2 ) 
    <= 1 & ( 
    - 1) 
    <= ( 
    - ( 
    - (q 
    `2 ))) or (q 
    `2 ) 
    >= ( 
    - 1) & ( 
    - (q 
    `2 )) 
    >= ( 
    - 1) by 
    A74,
    XREAL_1: 24,
    XXREAL_0: 2;
    
            hence (
    - 1) 
    <= ((ff 
    . r) 
    `1 ) & ((ff 
    . r) 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= ((ff 
    . r) 
    `2 ) & ((ff 
    . r) 
    `2 ) 
    <= 1 by 
    A73,
    SQUARE_1: 43,
    XREAL_1: 24;
    
          end;
    
            case
    
            
    
    A76: p1 
    <> ( 
    0. ( 
    TOP-REAL 2)) & not ((p1 
    `2 ) 
    <= (p1 
    `1 ) & ( 
    - (p1 
    `1 )) 
    <= (p1 
    `2 ) or (p1 
    `2 ) 
    >= (p1 
    `1 ) & (p1 
    `2 ) 
    <= ( 
    - (p1 
    `1 ))); 
    
            set pz = (ff
    . r); 
    
            
    
            
    
    A77: (( 
    Sq_Circ  
    " ) 
    . p1) 
    =  
    |[((p1
    `1 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `1 ) 
    / (p1 
    `2 )) 
    ^2 )))), ((p1 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `1 ) 
    / (p1 
    `2 )) 
    ^2 ))))]| by 
    A76,
    Th28;
    
            then
    
            
    
    A78: (pz 
    `2 ) 
    = ((p1 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `1 ) 
    / (p1 
    `2 )) 
    ^2 )))) by 
    A58,
    A13,
    EUCLID: 52;
    
            
    
            
    
    A79: (pz 
    `1 ) 
    = ((p1 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `1 ) 
    / (p1 
    `2 )) 
    ^2 )))) by 
    A58,
    A13,
    A77,
    EUCLID: 52;
    
            
    
            
    
    A80: ( 
    sqrt (1 
    + (((p1 
    `1 ) 
    / (p1 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
            (p1
    `1 ) 
    <= (p1 
    `2 ) & ( 
    - (p1 
    `2 )) 
    <= (p1 
    `1 ) or (p1 
    `1 ) 
    >= (p1 
    `2 ) & (p1 
    `1 ) 
    <= ( 
    - (p1 
    `2 )) by 
    A76,
    JGRAPH_2: 13;
    
            then (p1
    `1 ) 
    <= (p1 
    `2 ) & ( 
    - (p1 
    `2 )) 
    <= (p1 
    `1 ) or (p1 
    `1 ) 
    >= (p1 
    `2 ) & ((p1 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `1 ) 
    / (p1 
    `2 )) 
    ^2 )))) 
    <= (( 
    - (p1 
    `2 )) 
    * ( 
    sqrt (1 
    + (((p1 
    `1 ) 
    / (p1 
    `2 )) 
    ^2 )))) by 
    A80,
    XREAL_1: 64;
    
            then
    
            
    
    A81: (p1 
    `1 ) 
    <= (p1 
    `2 ) & (( 
    - (p1 
    `2 )) 
    * ( 
    sqrt (1 
    + (((p1 
    `1 ) 
    / (p1 
    `2 )) 
    ^2 )))) 
    <= ((p1 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `1 ) 
    / (p1 
    `2 )) 
    ^2 )))) or (pz 
    `1 ) 
    >= (pz 
    `2 ) & (pz 
    `1 ) 
    <= ( 
    - (pz 
    `2 )) by 
    A78,
    A79,
    A80,
    XREAL_1: 64;
    
            then
    
            
    
    A82: ((p1 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `1 ) 
    / (p1 
    `2 )) 
    ^2 )))) 
    <= ((p1 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `1 ) 
    / (p1 
    `2 )) 
    ^2 )))) & ( 
    - (pz 
    `2 )) 
    <= (pz 
    `1 ) or (pz 
    `1 ) 
    >= (pz 
    `2 ) & (pz 
    `1 ) 
    <= ( 
    - (pz 
    `2 )) by 
    A58,
    A13,
    A77,
    A78,
    A80,
    EUCLID: 52,
    XREAL_1: 64;
    
            
    
    A83: 
    
            now
    
              assume that
    
              
    
    A84: (pz 
    `2 ) 
    =  
    0 and (pz 
    `1 ) 
    =  
    0 ; 
    
              (p1
    `2 ) 
    =  
    0 by 
    A78,
    A80,
    A84,
    XCMPLX_1: 6;
    
              hence contradiction by
    A76;
    
            end;
    
            then
    
            
    
    A85: (pz 
    `2 ) 
    <>  
    0 by 
    A78,
    A79,
    A80,
    A81,
    XREAL_1: 64;
    
            
    
            
    
    A86: p1 
    = ( 
    Sq_Circ  
    . pz) & ( 
    |[((pz
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))), ((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))))]| 
    `2 ) 
    = ((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) by 
    A58,
    A13,
    Th43,
    EUCLID: 52,
    FUNCT_1: 32;
    
            
    
            
    
    A87: ((pz 
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            (
    |.p1.|
    ^2 ) 
    <=  
    |.p1.| by
    A14,
    SQUARE_1: 42;
    
            then
    
            
    
    A88: ( 
    |.p1.|
    ^2 ) 
    <= 1 by 
    A14,
    XXREAL_0: 2;
    
            
    
            
    
    A89: ((pz 
    `1 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
            
    
            
    
    A90: ( 
    |[((pz
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))), ((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))))]| 
    `1 ) 
    = ((pz 
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
            
    
            
    
    A91: (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
            (
    Sq_Circ  
    . pz) 
    =  
    |[((pz
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))), ((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))))]| by 
    A78,
    A79,
    A83,
    A82,
    Th4,
    JGRAPH_2: 3;
    
            
    
            then (
    |.p1.|
    ^2 ) 
    = ((((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) 
    ^2 ) 
    + (((pz 
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) 
    ^2 )) by 
    A86,
    A90,
    JGRAPH_1: 29
    
            .= ((((pz
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((pz 
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
            .= ((((pz
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((pz 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
            .= ((((pz
    `2 ) 
    ^2 ) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    + (((pz 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    ^2 ))) by 
    A91,
    SQUARE_1:def 2
    
            .= ((((pz
    `2 ) 
    ^2 ) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    + (((pz 
    `1 ) 
    ^2 ) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) by 
    A91,
    SQUARE_1:def 2
    
            .= ((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) by 
    XCMPLX_1: 62;
    
            then (((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    * (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    <= (1 
    * (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) by 
    A91,
    A88,
    XREAL_1: 64;
    
            then (((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    <= (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )) by 
    A91,
    XCMPLX_1: 87;
    
            then (((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    <= (1 
    + (((pz 
    `1 ) 
    ^2 ) 
    / ((pz 
    `2 ) 
    ^2 ))) by 
    XCMPLX_1: 76;
    
            then ((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    - 1) 
    <= (((pz 
    `1 ) 
    ^2 ) 
    / ((pz 
    `2 ) 
    ^2 )) by 
    XREAL_1: 20;
    
            then (((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    - 1) 
    * ((pz 
    `2 ) 
    ^2 )) 
    <= ((((pz 
    `1 ) 
    ^2 ) 
    / ((pz 
    `2 ) 
    ^2 )) 
    * ((pz 
    `2 ) 
    ^2 )) by 
    A87,
    XREAL_1: 64;
    
            then (((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    - 1) 
    * ((pz 
    `2 ) 
    ^2 )) 
    <= ((pz 
    `1 ) 
    ^2 ) by 
    A85,
    XCMPLX_1: 6,
    XCMPLX_1: 87;
    
            then
    
            
    
    A92: ((((pz 
    `2 ) 
    ^2 ) 
    - 1) 
    * (((pz 
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 ))) 
    <=  
    0 by 
    Lm19;
    
            (((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    <>  
    0 by 
    A83,
    COMPLEX1: 1;
    
            then
    
            
    
    A93: (((pz 
    `2 ) 
    ^2 ) 
    - 1) 
    <=  
    0 by 
    A87,
    A92,
    A89,
    XREAL_1: 129;
    
            then
    
            
    
    A94: (pz 
    `2 ) 
    >= ( 
    - 1) by 
    SQUARE_1: 43;
    
            
    
            
    
    A95: (pz 
    `2 ) 
    <= 1 by 
    A93,
    SQUARE_1: 43;
    
            then (pz
    `1 ) 
    <= 1 & ( 
    - ( 
    - (pz 
    `2 ))) 
    >= ( 
    - (pz 
    `1 )) or (pz 
    `1 ) 
    >= ( 
    - 1) & (pz 
    `1 ) 
    <= ( 
    - (pz 
    `2 )) by 
    A78,
    A79,
    A82,
    A94,
    XREAL_1: 24,
    XXREAL_0: 2;
    
            then (pz
    `1 ) 
    <= 1 & 1 
    >= ( 
    - (pz 
    `1 )) or (pz 
    `1 ) 
    >= ( 
    - 1) & ( 
    - (pz 
    `1 )) 
    >= ( 
    - ( 
    - (pz 
    `2 ))) by 
    A95,
    XREAL_1: 24,
    XXREAL_0: 2;
    
            then (pz
    `1 ) 
    <= 1 & 1 
    >= ( 
    - (pz 
    `1 )) or (pz 
    `1 ) 
    >= ( 
    - 1) & ( 
    - (pz 
    `1 )) 
    >= ( 
    - 1) by 
    A94,
    XXREAL_0: 2;
    
            then (pz
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= ( 
    - ( 
    - (pz 
    `1 ))) or (pz 
    `1 ) 
    >= ( 
    - 1) & (pz 
    `1 ) 
    <= 1 by 
    XREAL_1: 24;
    
            hence (
    - 1) 
    <= ((ff 
    . r) 
    `1 ) & ((ff 
    . r) 
    `1 ) 
    <= 1 & ( 
    - 1) 
    <= ((ff 
    . r) 
    `2 ) & ((ff 
    . r) 
    `2 ) 
    <= 1 by 
    A93,
    SQUARE_1: 43;
    
          end;
    
        end;
    
        hence thesis by
    A18;
    
      end;
    
      set y = the
    Element of (( 
    rng ff) 
    /\ ( 
    rng gg)); 
    
      
    
      
    
    A96: p1 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A4,
    TOPRNS_1: 23;
    
      then
    
      
    
    A97: (( 
    Sq_Circ  
    " ) 
    . p1) 
    =  
    |[((p1
    `1 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))), ((p1 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 ))))]| by 
    A5,
    A6,
    Th28;
    
      ((ff
    . O) 
    `1 ) 
    = ( 
    - 1) & ((ff 
    . I) 
    `1 ) 
    = 1 & ((gg 
    . O) 
    `2 ) 
    = ( 
    - 1) & ((gg 
    . I) 
    `2 ) 
    = 1 
    
      proof
    
        set pz = (gg
    . O); 
    
        set py = (ff
    . I); 
    
        set px = (ff
    . O); 
    
        set q = px;
    
        
    
        
    
    A98: ( 
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| 
    `1 ) 
    = ((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        set pu = (gg
    . I); 
    
        
    
        
    
    A99: ( 
    |[((py
    `1 ) 
    / ( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 )))), ((py 
    `2 ) 
    / ( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))))]| 
    `1 ) 
    = ((py 
    `1 ) 
    / ( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        
    
    A100: ( 
    |[((pu
    `1 ) 
    / ( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 )))), ((pu 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))))]| 
    `2 ) 
    = ((pu 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        
    
    A101: (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
        ((
    Sq_Circ  
    " ) 
    . p1) 
    = q by 
    A9,
    A3,
    FUNCT_1: 12;
    
        then
    
        
    
    A102: p1 
    = ( 
    Sq_Circ  
    . px) by 
    Th43,
    FUNCT_1: 32;
    
        consider p4 be
    Point of ( 
    TOP-REAL 2) such that 
    
        
    
    A103: (g 
    . I) 
    = p4 and 
    
        
    
    A104: 
    |.p4.|
    = 1 and 
    
        
    
    A105: (p4 
    `2 ) 
    >= (p4 
    `1 ) and 
    
        
    
    A106: (p4 
    `2 ) 
    >= ( 
    - (p4 
    `1 )) by 
    A2;
    
        
    
        
    
    A107: ( 
    sqrt (1 
    + (((p4 
    `1 ) 
    / (p4 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        
    
        
    
    A108: ( 
    - (p4 
    `2 )) 
    <= ( 
    - ( 
    - (p4 
    `1 ))) by 
    A106,
    XREAL_1: 24;
    
        then
    
        
    
    A109: (p4 
    `1 ) 
    <= (p4 
    `2 ) & (( 
    - (p4 
    `2 )) 
    * ( 
    sqrt (1 
    + (((p4 
    `1 ) 
    / (p4 
    `2 )) 
    ^2 )))) 
    <= ((p4 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p4 
    `1 ) 
    / (p4 
    `2 )) 
    ^2 )))) or (pu 
    `1 ) 
    >= (pu 
    `2 ) & (pu 
    `1 ) 
    <= ( 
    - (pu 
    `2 )) by 
    A105,
    A107,
    XREAL_1: 64;
    
        
    
        
    
    A110: (gg 
    . I) 
    = (( 
    Sq_Circ  
    " ) 
    . (g 
    . I)) by 
    A8,
    FUNCT_1: 12;
    
        then
    
        
    
    A111: p4 
    = ( 
    Sq_Circ  
    . pu) by 
    A103,
    Th43,
    FUNCT_1: 32;
    
        
    
        
    
    A112: p4 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A104,
    TOPRNS_1: 23;
    
        then
    
        
    
    A113: (( 
    Sq_Circ  
    " ) 
    . p4) 
    =  
    |[((p4
    `1 ) 
    * ( 
    sqrt (1 
    + (((p4 
    `1 ) 
    / (p4 
    `2 )) 
    ^2 )))), ((p4 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p4 
    `1 ) 
    / (p4 
    `2 )) 
    ^2 ))))]| by 
    A105,
    A108,
    Th30;
    
        then
    
        
    
    A114: (pu 
    `2 ) 
    = ((p4 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p4 
    `1 ) 
    / (p4 
    `2 )) 
    ^2 )))) by 
    A110,
    A103,
    EUCLID: 52;
    
        
    
        
    
    A115: (pu 
    `1 ) 
    = ((p4 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p4 
    `1 ) 
    / (p4 
    `2 )) 
    ^2 )))) by 
    A110,
    A103,
    A113,
    EUCLID: 52;
    
        
    
    A116: 
    
        now
    
          assume (pu
    `2 ) 
    =  
    0 & (pu 
    `1 ) 
    =  
    0 ; 
    
          then (p4
    `2 ) 
    =  
    0 & (p4 
    `1 ) 
    =  
    0 by 
    A114,
    A115,
    A107,
    XCMPLX_1: 6;
    
          hence contradiction by
    A112,
    EUCLID: 53,
    EUCLID: 54;
    
        end;
    
        ((p4
    `1 ) 
    * ( 
    sqrt (1 
    + (((p4 
    `1 ) 
    / (p4 
    `2 )) 
    ^2 )))) 
    <= ((p4 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p4 
    `1 ) 
    / (p4 
    `2 )) 
    ^2 )))) & ( 
    - (pu 
    `2 )) 
    <= (pu 
    `1 ) or (pu 
    `1 ) 
    >= (pu 
    `2 ) & (pu 
    `1 ) 
    <= ( 
    - (pu 
    `2 )) by 
    A110,
    A103,
    A113,
    A114,
    A107,
    A109,
    EUCLID: 52,
    XREAL_1: 64;
    
        then
    
        
    
    A117: ( 
    Sq_Circ  
    . pu) 
    =  
    |[((pu
    `1 ) 
    / ( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 )))), ((pu 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))))]| by 
    A114,
    A115,
    A116,
    Th4,
    JGRAPH_2: 3;
    
        (
    |[((pu
    `1 ) 
    / ( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 )))), ((pu 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))))]| 
    `1 ) 
    = ((pu 
    `1 ) 
    / ( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        then (
    |.p4.|
    ^2 ) 
    = ((((pu 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 )))) 
    ^2 ) 
    + (((pu 
    `1 ) 
    / ( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 )))) 
    ^2 )) by 
    A111,
    A117,
    A100,
    JGRAPH_1: 29
    
        .= ((((pu
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((pu 
    `1 ) 
    / ( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
        .= ((((pu
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((pu 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
        .= ((((pu
    `2 ) 
    ^2 ) 
    / (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))) 
    + (((pu 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))) 
    ^2 ))) by 
    A101,
    SQUARE_1:def 2
    
        .= ((((pu
    `2 ) 
    ^2 ) 
    / (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))) 
    + (((pu 
    `1 ) 
    ^2 ) 
    / (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 )))) by 
    A101,
    SQUARE_1:def 2
    
        .= ((((pu
    `2 ) 
    ^2 ) 
    + ((pu 
    `1 ) 
    ^2 )) 
    / (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))) by 
    XCMPLX_1: 62;
    
        then (((((pu
    `2 ) 
    ^2 ) 
    + ((pu 
    `1 ) 
    ^2 )) 
    / (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))) 
    * (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))) 
    = (1 
    * (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))) by 
    A104;
    
        then (((pu
    `2 ) 
    ^2 ) 
    + ((pu 
    `1 ) 
    ^2 )) 
    = (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 )) by 
    A101,
    XCMPLX_1: 87;
    
        then
    
        
    
    A118: ((((pu 
    `2 ) 
    ^2 ) 
    + ((pu 
    `1 ) 
    ^2 )) 
    - 1) 
    = (((pu 
    `1 ) 
    ^2 ) 
    / ((pu 
    `2 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
        (pu
    `2 ) 
    <>  
    0 by 
    A114,
    A115,
    A107,
    A116,
    A109,
    XREAL_1: 64;
    
        then (((((pu
    `2 ) 
    ^2 ) 
    + ((pu 
    `1 ) 
    ^2 )) 
    - 1) 
    * ((pu 
    `2 ) 
    ^2 )) 
    = ((pu 
    `1 ) 
    ^2 ) by 
    A118,
    XCMPLX_1: 6,
    XCMPLX_1: 87;
    
        then
    
        
    
    A119: ((((pu 
    `2 ) 
    ^2 ) 
    - 1) 
    * (((pu 
    `2 ) 
    ^2 ) 
    + ((pu 
    `1 ) 
    ^2 ))) 
    =  
    0 ; 
    
        (((pu
    `2 ) 
    ^2 ) 
    + ((pu 
    `1 ) 
    ^2 )) 
    <>  
    0 by 
    A116,
    COMPLEX1: 1;
    
        then
    
        
    
    A120: (((pu 
    `2 ) 
    ^2 ) 
    - 1) 
    =  
    0 by 
    A119,
    XCMPLX_1: 6;
    
        
    
        
    
    A121: ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        
    
        
    
    A122: ( 
    sqrt (1 
    + (((pu 
    `1 ) 
    / (pu 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        
    
    A123: 
    
        now
    
          assume
    
          
    
    A124: (pu 
    `2 ) 
    = ( 
    - 1); 
    
          then (
    - (p4 
    `1 )) 
    <  
    0 by 
    A106,
    A111,
    A117,
    A100,
    A122,
    XREAL_1: 141;
    
          then (
    - ( 
    - (p4 
    `1 ))) 
    > ( 
    -  
    0 ); 
    
          hence contradiction by
    A105,
    A111,
    A117,
    A122,
    A124,
    EUCLID: 52;
    
        end;
    
        
    
        
    
    A125: (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
        
    
        
    
    A126: (px 
    `1 ) 
    = ((p1 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))) & (px 
    `2 ) 
    = ((p1 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))) by 
    A10,
    A3,
    A97,
    EUCLID: 52;
    
        
    
    A127: 
    
        now
    
          assume (px
    `1 ) 
    =  
    0 & (px 
    `2 ) 
    =  
    0 ; 
    
          then (p1
    `1 ) 
    =  
    0 & (p1 
    `2 ) 
    =  
    0 by 
    A126,
    A121,
    XCMPLX_1: 6;
    
          hence contradiction by
    A96,
    EUCLID: 53,
    EUCLID: 54;
    
        end;
    
        (p1
    `2 ) 
    <= (p1 
    `1 ) & ( 
    - (p1 
    `1 )) 
    <= (p1 
    `2 ) or (p1 
    `2 ) 
    >= (p1 
    `1 ) & ((p1 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))) 
    <= (( 
    - (p1 
    `1 )) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))) by 
    A5,
    A6,
    A121,
    XREAL_1: 64;
    
        then
    
        
    
    A128: (p1 
    `2 ) 
    <= (p1 
    `1 ) & (( 
    - (p1 
    `1 )) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))) 
    <= ((p1 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p1 
    `2 ) 
    / (p1 
    `1 )) 
    ^2 )))) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A126,
    A121,
    XREAL_1: 64;
    
        then (px
    `2 ) 
    <= (px 
    `1 ) & ( 
    - (px 
    `1 )) 
    <= (px 
    `2 ) or (px 
    `2 ) 
    >= (px 
    `1 ) & (px 
    `2 ) 
    <= ( 
    - (px 
    `1 )) by 
    A126,
    A121,
    XREAL_1: 64;
    
        then
    
        
    
    A129: ( 
    Sq_Circ  
    . q) 
    =  
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| by 
    A127,
    Def1,
    JGRAPH_2: 3;
    
        
    
        
    
    A130: ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        
    
    A131: 
    
        now
    
          assume
    
          
    
    A132: (px 
    `1 ) 
    = 1; 
    
          (
    - (p1 
    `2 )) 
    >= ( 
    - ( 
    - (p1 
    `1 ))) by 
    A6,
    XREAL_1: 24;
    
          then (
    - (p1 
    `2 )) 
    >  
    0 by 
    A102,
    A129,
    A98,
    A130,
    A132,
    XREAL_1: 139;
    
          then (
    - ( 
    - (p1 
    `2 ))) 
    < ( 
    -  
    0 ); 
    
          hence contradiction by
    A5,
    A102,
    A129,
    A130,
    A132,
    EUCLID: 52;
    
        end;
    
        consider p2 be
    Point of ( 
    TOP-REAL 2) such that 
    
        
    
    A133: (f 
    . I) 
    = p2 and 
    
        
    
    A134: 
    |.p2.|
    = 1 and 
    
        
    
    A135: (p2 
    `2 ) 
    <= (p2 
    `1 ) and 
    
        
    
    A136: (p2 
    `2 ) 
    >= ( 
    - (p2 
    `1 )) by 
    A2;
    
        
    
        
    
    A137: (ff 
    . I) 
    = (( 
    Sq_Circ  
    " ) 
    . (f 
    . I)) by 
    A9,
    FUNCT_1: 12;
    
        then
    
        
    
    A138: p2 
    = ( 
    Sq_Circ  
    . py) by 
    A133,
    Th43,
    FUNCT_1: 32;
    
        
    
        
    
    A139: p2 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A134,
    TOPRNS_1: 23;
    
        then
    
        
    
    A140: (( 
    Sq_Circ  
    " ) 
    . p2) 
    =  
    |[((p2
    `1 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))), ((p2 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 ))))]| by 
    A135,
    A136,
    Th28;
    
        then
    
        
    
    A141: (py 
    `1 ) 
    = ((p2 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) by 
    A137,
    A133,
    EUCLID: 52;
    
        
    
        
    
    A142: ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        
    
        
    
    A143: (py 
    `2 ) 
    = ((p2 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) by 
    A137,
    A133,
    A140,
    EUCLID: 52;
    
        
    
    A144: 
    
        now
    
          assume (py
    `1 ) 
    =  
    0 & (py 
    `2 ) 
    =  
    0 ; 
    
          then (p2
    `1 ) 
    =  
    0 & (p2 
    `2 ) 
    =  
    0 by 
    A141,
    A143,
    A142,
    XCMPLX_1: 6;
    
          hence contradiction by
    A139,
    EUCLID: 53,
    EUCLID: 54;
    
        end;
    
        
    
        
    
    A145: (p2 
    `2 ) 
    <= (p2 
    `1 ) & (( 
    - (p2 
    `1 )) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) 
    <= ((p2 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) or (py 
    `2 ) 
    >= (py 
    `1 ) & (py 
    `2 ) 
    <= ( 
    - (py 
    `1 )) by 
    A135,
    A136,
    A142,
    XREAL_1: 64;
    
        then ((p2
    `2 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) 
    <= ((p2 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p2 
    `2 ) 
    / (p2 
    `1 )) 
    ^2 )))) & ( 
    - (py 
    `1 )) 
    <= (py 
    `2 ) or (py 
    `2 ) 
    >= (py 
    `1 ) & (py 
    `2 ) 
    <= ( 
    - (py 
    `1 )) by 
    A137,
    A133,
    A140,
    A141,
    A142,
    EUCLID: 52,
    XREAL_1: 64;
    
        then
    
        
    
    A146: ( 
    Sq_Circ  
    . py) 
    =  
    |[((py
    `1 ) 
    / ( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 )))), ((py 
    `2 ) 
    / ( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))))]| by 
    A141,
    A143,
    A144,
    Def1,
    JGRAPH_2: 3;
    
        
    
        
    
    A147: ( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        
    
    A148: 
    
        now
    
          assume
    
          
    
    A149: (py 
    `1 ) 
    = ( 
    - 1); 
    
          (
    - (p2 
    `2 )) 
    <= ( 
    - ( 
    - (p2 
    `1 ))) by 
    A136,
    XREAL_1: 24;
    
          then (
    - (p2 
    `2 )) 
    <  
    0 by 
    A138,
    A146,
    A99,
    A147,
    A149,
    XREAL_1: 141;
    
          then (
    - ( 
    - (p2 
    `2 ))) 
    > ( 
    -  
    0 ); 
    
          hence contradiction by
    A135,
    A138,
    A146,
    A147,
    A149,
    EUCLID: 52;
    
        end;
    
        
    
        
    
    A150: (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
        (
    |[((py
    `1 ) 
    / ( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 )))), ((py 
    `2 ) 
    / ( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))))]| 
    `2 ) 
    = ((py 
    `2 ) 
    / ( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        then (
    |.p2.|
    ^2 ) 
    = ((((py 
    `1 ) 
    / ( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 )))) 
    ^2 ) 
    + (((py 
    `2 ) 
    / ( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 )))) 
    ^2 )) by 
    A138,
    A146,
    A99,
    JGRAPH_1: 29
    
        .= ((((py
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((py 
    `2 ) 
    / ( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
        .= ((((py
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((py 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
        .= ((((py
    `1 ) 
    ^2 ) 
    / (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))) 
    + (((py 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    A150,
    SQUARE_1:def 2
    
        .= ((((py
    `1 ) 
    ^2 ) 
    / (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))) 
    + (((py 
    `2 ) 
    ^2 ) 
    / (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 )))) by 
    A150,
    SQUARE_1:def 2
    
        .= ((((py
    `1 ) 
    ^2 ) 
    + ((py 
    `2 ) 
    ^2 )) 
    / (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))) by 
    XCMPLX_1: 62;
    
        then (((((py
    `1 ) 
    ^2 ) 
    + ((py 
    `2 ) 
    ^2 )) 
    / (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))) 
    * (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))) 
    = (1 
    * (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 ))) by 
    A134;
    
        then (((py
    `1 ) 
    ^2 ) 
    + ((py 
    `2 ) 
    ^2 )) 
    = (1 
    + (((py 
    `2 ) 
    / (py 
    `1 )) 
    ^2 )) by 
    A150,
    XCMPLX_1: 87;
    
        then
    
        
    
    A151: ((((py 
    `1 ) 
    ^2 ) 
    + ((py 
    `2 ) 
    ^2 )) 
    - 1) 
    = (((py 
    `2 ) 
    ^2 ) 
    / ((py 
    `1 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
        (py
    `1 ) 
    <>  
    0 by 
    A141,
    A143,
    A142,
    A144,
    A145,
    XREAL_1: 64;
    
        then (((((py
    `1 ) 
    ^2 ) 
    + ((py 
    `2 ) 
    ^2 )) 
    - 1) 
    * ((py 
    `1 ) 
    ^2 )) 
    = ((py 
    `2 ) 
    ^2 ) by 
    A151,
    XCMPLX_1: 6,
    XCMPLX_1: 87;
    
        then
    
        
    
    A152: ((((py 
    `1 ) 
    ^2 ) 
    - 1) 
    * (((py 
    `1 ) 
    ^2 ) 
    + ((py 
    `2 ) 
    ^2 ))) 
    =  
    0 ; 
    
        (((py
    `1 ) 
    ^2 ) 
    + ((py 
    `2 ) 
    ^2 )) 
    <>  
    0 by 
    A144,
    COMPLEX1: 1;
    
        then
    
        
    
    A153: (((py 
    `1 ) 
    ^2 ) 
    - 1) 
    =  
    0 by 
    A152,
    XCMPLX_1: 6;
    
        
    
        
    
    A154: ( 
    |[((pz
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))), ((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))))]| 
    `2 ) 
    = ((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        
    
    A155: (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) 
    >  
    0 by 
    Lm1;
    
        (
    |[((q
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))), ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))))]| 
    `2 ) 
    = ((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        then (
    |.p1.|
    ^2 ) 
    = ((((q 
    `1 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 ) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 )) by 
    A102,
    A129,
    A98,
    JGRAPH_1: 29
    
        .= ((((q
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `2 ) 
    / ( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
        .= ((((q
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 )) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
        .= ((((q
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    ^2 ))) by 
    A155,
    SQUARE_1:def 2
    
        .= ((((q
    `1 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    + (((q 
    `2 ) 
    ^2 ) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )))) by 
    A155,
    SQUARE_1:def 2
    
        .= ((((q
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    XCMPLX_1: 62;
    
        then (((((q
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    / (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) 
    = (1 
    * (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 ))) by 
    A4;
    
        then (((q
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )) 
    = (1 
    + (((q 
    `2 ) 
    / (q 
    `1 )) 
    ^2 )) by 
    A155,
    XCMPLX_1: 87;
    
        then
    
        
    
    A156: ((((px 
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    - 1) 
    = (((px 
    `2 ) 
    ^2 ) 
    / ((px 
    `1 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
        (px
    `1 ) 
    <>  
    0 by 
    A126,
    A121,
    A127,
    A128,
    XREAL_1: 64;
    
        then (((((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    - 1) 
    * ((px 
    `1 ) 
    ^2 )) 
    = ((px 
    `2 ) 
    ^2 ) by 
    A156,
    XCMPLX_1: 6,
    XCMPLX_1: 87;
    
        then
    
        
    
    A157: ((((px 
    `1 ) 
    ^2 ) 
    - 1) 
    * (((px 
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 ))) 
    =  
    0 ; 
    
        consider p3 be
    Point of ( 
    TOP-REAL 2) such that 
    
        
    
    A158: (g 
    . O) 
    = p3 and 
    
        
    
    A159: 
    |.p3.|
    = 1 and 
    
        
    
    A160: (p3 
    `2 ) 
    <= (p3 
    `1 ) and 
    
        
    
    A161: (p3 
    `2 ) 
    <= ( 
    - (p3 
    `1 )) by 
    A2;
    
        
    
        
    
    A162: p3 
    <> ( 
    0. ( 
    TOP-REAL 2)) by 
    A159,
    TOPRNS_1: 23;
    
        
    
        
    
    A163: (gg 
    . O) 
    = (( 
    Sq_Circ  
    " ) 
    . (g 
    . O)) by 
    A8,
    FUNCT_1: 12;
    
        then
    
        
    
    A164: p3 
    = ( 
    Sq_Circ  
    . pz) by 
    A158,
    Th43,
    FUNCT_1: 32;
    
        
    
        
    
    A165: ( 
    - (p3 
    `2 )) 
    >= ( 
    - ( 
    - (p3 
    `1 ))) by 
    A161,
    XREAL_1: 24;
    
        then
    
        
    
    A166: (( 
    Sq_Circ  
    " ) 
    . p3) 
    =  
    |[((p3
    `1 ) 
    * ( 
    sqrt (1 
    + (((p3 
    `1 ) 
    / (p3 
    `2 )) 
    ^2 )))), ((p3 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p3 
    `1 ) 
    / (p3 
    `2 )) 
    ^2 ))))]| by 
    A160,
    A162,
    Th30;
    
        then
    
        
    
    A167: (pz 
    `2 ) 
    = ((p3 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p3 
    `1 ) 
    / (p3 
    `2 )) 
    ^2 )))) by 
    A163,
    A158,
    EUCLID: 52;
    
        
    
        
    
    A168: ( 
    sqrt (1 
    + (((p3 
    `1 ) 
    / (p3 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        
    
        
    
    A169: (pz 
    `1 ) 
    = ((p3 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p3 
    `1 ) 
    / (p3 
    `2 )) 
    ^2 )))) by 
    A163,
    A158,
    A166,
    EUCLID: 52;
    
        
    
    A170: 
    
        now
    
          assume (pz
    `2 ) 
    =  
    0 & (pz 
    `1 ) 
    =  
    0 ; 
    
          then (p3
    `2 ) 
    =  
    0 & (p3 
    `1 ) 
    =  
    0 by 
    A167,
    A169,
    A168,
    XCMPLX_1: 6;
    
          hence contradiction by
    A162,
    EUCLID: 53,
    EUCLID: 54;
    
        end;
    
        (p3
    `1 ) 
    <= (p3 
    `2 ) & ( 
    - (p3 
    `2 )) 
    <= (p3 
    `1 ) or (p3 
    `1 ) 
    >= (p3 
    `2 ) & ((p3 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p3 
    `1 ) 
    / (p3 
    `2 )) 
    ^2 )))) 
    <= (( 
    - (p3 
    `2 )) 
    * ( 
    sqrt (1 
    + (((p3 
    `1 ) 
    / (p3 
    `2 )) 
    ^2 )))) by 
    A160,
    A165,
    A168,
    XREAL_1: 64;
    
        then
    
        
    
    A171: (p3 
    `1 ) 
    <= (p3 
    `2 ) & (( 
    - (p3 
    `2 )) 
    * ( 
    sqrt (1 
    + (((p3 
    `1 ) 
    / (p3 
    `2 )) 
    ^2 )))) 
    <= ((p3 
    `1 ) 
    * ( 
    sqrt (1 
    + (((p3 
    `1 ) 
    / (p3 
    `2 )) 
    ^2 )))) or (pz 
    `1 ) 
    >= (pz 
    `2 ) & (pz 
    `1 ) 
    <= ( 
    - (pz 
    `2 )) by 
    A167,
    A169,
    A168,
    XREAL_1: 64;
    
        then ((p3
    `1 ) 
    * ( 
    sqrt (1 
    + (((p3 
    `1 ) 
    / (p3 
    `2 )) 
    ^2 )))) 
    <= ((p3 
    `2 ) 
    * ( 
    sqrt (1 
    + (((p3 
    `1 ) 
    / (p3 
    `2 )) 
    ^2 )))) & ( 
    - (pz 
    `2 )) 
    <= (pz 
    `1 ) or (pz 
    `1 ) 
    >= (pz 
    `2 ) & (pz 
    `1 ) 
    <= ( 
    - (pz 
    `2 )) by 
    A163,
    A158,
    A166,
    A167,
    A168,
    EUCLID: 52,
    XREAL_1: 64;
    
        then
    
        
    
    A172: ( 
    Sq_Circ  
    . pz) 
    =  
    |[((pz
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))), ((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))))]| by 
    A167,
    A169,
    A170,
    Th4,
    JGRAPH_2: 3;
    
        
    
        
    
    A173: ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    >  
    0 by 
    Lm1,
    SQUARE_1: 25;
    
        
    
    A174: 
    
        now
    
          assume
    
          
    
    A175: (pz 
    `2 ) 
    = 1; 
    
          then (
    - (p3 
    `1 )) 
    >  
    0 by 
    A161,
    A164,
    A172,
    A154,
    A173,
    XREAL_1: 139;
    
          then (
    - ( 
    - (p3 
    `1 ))) 
    < ( 
    -  
    0 ); 
    
          hence contradiction by
    A160,
    A164,
    A172,
    A173,
    A175,
    EUCLID: 52;
    
        end;
    
        (
    |[((pz
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))), ((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))))]| 
    `1 ) 
    = ((pz 
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) by 
    EUCLID: 52;
    
        
    
        then (
    |.p3.|
    ^2 ) 
    = ((((pz 
    `2 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) 
    ^2 ) 
    + (((pz 
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) 
    ^2 )) by 
    A164,
    A172,
    A154,
    JGRAPH_1: 29
    
        .= ((((pz
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((pz 
    `1 ) 
    / ( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) 
    ^2 )) by 
    XCMPLX_1: 76
    
        .= ((((pz
    `2 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    ^2 )) 
    + (((pz 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    ^2 ))) by 
    XCMPLX_1: 76
    
        .= ((((pz
    `2 ) 
    ^2 ) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    + (((pz 
    `1 ) 
    ^2 ) 
    / (( 
    sqrt (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    ^2 ))) by 
    A125,
    SQUARE_1:def 2
    
        .= ((((pz
    `2 ) 
    ^2 ) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    + (((pz 
    `1 ) 
    ^2 ) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )))) by 
    A125,
    SQUARE_1:def 2
    
        .= ((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) by 
    XCMPLX_1: 62;
    
        then (((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    / (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    * (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) 
    = (1 
    * (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 ))) by 
    A159;
    
        then (((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    = (1 
    + (((pz 
    `1 ) 
    / (pz 
    `2 )) 
    ^2 )) by 
    A125,
    XCMPLX_1: 87;
    
        then
    
        
    
    A176: ((((pz 
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    - 1) 
    = (((pz 
    `1 ) 
    ^2 ) 
    / ((pz 
    `2 ) 
    ^2 )) by 
    XCMPLX_1: 76;
    
        (pz
    `2 ) 
    <>  
    0 by 
    A167,
    A169,
    A168,
    A170,
    A171,
    XREAL_1: 64;
    
        then (((((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    - 1) 
    * ((pz 
    `2 ) 
    ^2 )) 
    = ((pz 
    `1 ) 
    ^2 ) by 
    A176,
    XCMPLX_1: 6,
    XCMPLX_1: 87;
    
        then
    
        
    
    A177: ((((pz 
    `2 ) 
    ^2 ) 
    - 1) 
    * (((pz 
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 ))) 
    =  
    0 ; 
    
        (((pz
    `2 ) 
    ^2 ) 
    + ((pz 
    `1 ) 
    ^2 )) 
    <>  
    0 by 
    A170,
    COMPLEX1: 1;
    
        then
    
        
    
    A178: (((pz 
    `2 ) 
    ^2 ) 
    - 1) 
    =  
    0 by 
    A177,
    XCMPLX_1: 6;
    
        (((px
    `1 ) 
    ^2 ) 
    + ((px 
    `2 ) 
    ^2 )) 
    <>  
    0 by 
    A127,
    COMPLEX1: 1;
    
        then (((px
    `1 ) 
    ^2 ) 
    - 1) 
    =  
    0 by 
    A157,
    XCMPLX_1: 6;
    
        hence thesis by
    A131,
    A153,
    A148,
    A178,
    A174,
    A120,
    A123,
    Lm20;
    
      end;
    
      then (
    rng ff) 
    meets ( 
    rng gg) by 
    A2,
    A12,
    Th42,
    JGRAPH_1: 47;
    
      then
    
      
    
    A179: (( 
    rng ff) 
    /\ ( 
    rng gg)) 
    <>  
    {} ; 
    
      then y
    in ( 
    rng ff) by 
    XBOOLE_0:def 4;
    
      then
    
      consider x1 be
    object such that 
    
      
    
    A180: x1 
    in ( 
    dom ff) and 
    
      
    
    A181: y 
    = (ff 
    . x1) by 
    FUNCT_1:def 3;
    
      x1
    in ( 
    dom f) by 
    A180,
    FUNCT_1: 11;
    
      then
    
      
    
    A182: (f 
    . x1) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
      y
    in ( 
    rng gg) by 
    A179,
    XBOOLE_0:def 4;
    
      then
    
      consider x2 be
    object such that 
    
      
    
    A183: x2 
    in ( 
    dom gg) and 
    
      
    
    A184: y 
    = (gg 
    . x2) by 
    FUNCT_1:def 3;
    
      
    
      
    
    A185: (gg 
    . x2) 
    = (( 
    Sq_Circ  
    " ) 
    . (g 
    . x2)) by 
    A183,
    FUNCT_1: 12;
    
      x2
    in ( 
    dom g) by 
    A183,
    FUNCT_1: 11;
    
      then
    
      
    
    A186: (g 
    . x2) 
    in ( 
    rng g) by 
    FUNCT_1:def 3;
    
      (ff
    . x1) 
    = (( 
    Sq_Circ  
    " ) 
    . (f 
    . x1)) by 
    A180,
    FUNCT_1: 12;
    
      then (f
    . x1) 
    = (g 
    . x2) by 
    A181,
    A184,
    A1,
    A182,
    A186,
    A185,
    FUNCT_1:def 4;
    
      then ((
    rng f) 
    /\ ( 
    rng g)) 
    <>  
    {} by 
    A182,
    A186,
    XBOOLE_0:def 4;
    
      hence thesis;
    
    end;