jgraph_4.miz
begin
reserve a for
Real;
reserve p,q for
Point of (
TOP-REAL 2);
Lm1: p
<> (
0. (
TOP-REAL 2)) implies
|.p.|
>
0
proof
assume p
<> (
0. (
TOP-REAL 2));
then
|.p.|
<>
0 by
TOPRNS_1: 24;
hence thesis;
end;
theorem ::
JGRAPH_4:1
Th1: for X be non
empty
TopStruct, g be
Function of X,
R^1 , B be
Subset of X, a be
Real st g is
continuous & B
= { p where p be
Point of X : (g
/. p)
> a } holds B is
open
proof
let X be non
empty
TopStruct, g be
Function of X,
R^1 , B be
Subset of X, a be
Real;
assume that
A1: g is
continuous and
A2: B
= { p where p be
Point of X : (g
/. p)
> a };
{ r where r be
Real : r
> a }
c= the
carrier of
R^1
proof
let x be
object;
assume x
in { r where r be
Real : r
> a };
then
consider r be
Real such that
A3: r
= x & r
> a;
r
in
REAL by
XREAL_0:def 1;
hence thesis by
A3,
TOPMETR: 17;
end;
then
reconsider D = { r where r be
Real : r
> a } as
Subset of
R^1 ;
A4: (g
" D)
c= B
proof
let x be
object;
assume
A5: x
in (g
" D);
then
reconsider p = x as
Point of X;
(g
. x)
in D by
A5,
FUNCT_1:def 7;
then
A6: ex r be
Real st r
= (g
. x) & r
> a;
(g
/. p)
= (g
. p);
hence thesis by
A2,
A6;
end;
A7: (
[#]
R^1 )
<>
{} & D is
open by
JORDAN2B: 25;
B
c= (g
" D)
proof
let x be
object;
assume x
in B;
then
consider p be
Point of X such that
A8: p
= x and
A9: (g
/. p)
> a by
A2;
(
dom g)
= the
carrier of X & (g
. x)
in D by
A8,
A9,
FUNCT_2:def 1;
hence thesis by
A8,
FUNCT_1:def 7;
end;
then B
= (g
" D) by
A4,
XBOOLE_0:def 10;
hence thesis by
A1,
A7,
TOPS_2: 43;
end;
theorem ::
JGRAPH_4:2
Th2: for X be non
empty
TopStruct, g be
Function of X,
R^1 , B be
Subset of X, a be
Real st g is
continuous & B
= { p where p be
Point of X : (g
/. p)
< a } holds B is
open
proof
let X be non
empty
TopStruct, g be
Function of X,
R^1 , B be
Subset of X, a be
Real;
assume that
A1: g is
continuous and
A2: B
= { p where p be
Point of X : (g
/. p)
< a };
{ r where r be
Real : r
< a }
c= the
carrier of
R^1
proof
let x be
object;
assume x
in { r where r be
Real : r
< a };
then
consider r be
Real such that
A3: r
= x & r
< a;
r
in
REAL by
XREAL_0:def 1;
hence thesis by
A3,
TOPMETR: 17;
end;
then
reconsider D = { r where r be
Real : r
< a } as
Subset of
R^1 ;
A4: (g
" D)
c= B
proof
let x be
object;
assume
A5: x
in (g
" D);
then
reconsider p = x as
Point of X;
(g
. x)
in D by
A5,
FUNCT_1:def 7;
then
A6: ex r be
Real st r
= (g
. x) & r
< a;
(g
/. p)
= (g
. p);
hence thesis by
A2,
A6;
end;
A7: (
[#]
R^1 )
<>
{} & D is
open by
JORDAN2B: 24;
B
c= (g
" D)
proof
let x be
object;
assume x
in B;
then
consider p be
Point of X such that
A8: p
= x and
A9: (g
/. p)
< a by
A2;
(
dom g)
= the
carrier of X & (g
. x)
in D by
A8,
A9,
FUNCT_2:def 1;
hence thesis by
A8,
FUNCT_1:def 7;
end;
then B
= (g
" D) by
A4,
XBOOLE_0:def 10;
hence thesis by
A1,
A7,
TOPS_2: 43;
end;
theorem ::
JGRAPH_4:3
Th3: for f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f is
continuous
one-to-one & (
rng f)
= (
[#] (
TOP-REAL 2)) & (for p2 be
Point of (
TOP-REAL 2) holds ex K be non
empty
compact
Subset of (
TOP-REAL 2) st K
= (f
.: K) & (ex V2 be
Subset of (
TOP-REAL 2) st p2
in V2 & V2 is
open & V2
c= K & (f
. p2)
in V2)) holds f is
being_homeomorphism
proof
let f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume that
A1: f is
continuous
one-to-one and
A2: (
rng f)
= (
[#] (
TOP-REAL 2)) and
A3: for p2 be
Point of (
TOP-REAL 2) holds ex K be non
empty
compact
Subset of (
TOP-REAL 2) st K
= (f
.: K) & ex V2 be
Subset of (
TOP-REAL 2) st p2
in V2 & V2 is
open & V2
c= K & (f
. p2)
in V2;
reconsider g = (f qua
Function
" ) as
Function of (
TOP-REAL 2), (
TOP-REAL 2) by
A1,
A2,
FUNCT_2: 25;
A4: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
for p be
Point of (
TOP-REAL 2), V be
Subset of (
TOP-REAL 2) st (g
. p)
in V & V is
open holds ex W be
Subset of (
TOP-REAL 2) st p
in W & W is
open & (g
.: W)
c= V
proof
let p be
Point of (
TOP-REAL 2), V be
Subset of (
TOP-REAL 2);
assume that
A5: (g
. p)
in V and
A6: V is
open;
consider K be non
empty
compact
Subset of (
TOP-REAL 2) such that
A7: K
= (f
.: K) and
A8: ex V2 be
Subset of (
TOP-REAL 2) st (g
. p)
in V2 & V2 is
open & V2
c= K & (f
. (g
. p))
in V2 by
A3;
consider V2 be
Subset of (
TOP-REAL 2) such that
A9: (g
. p)
in V2 and
A10: V2 is
open and
A11: V2
c= K and
A12: (f
. (g
. p))
in V2 by
A8;
A13: (
dom (f
| K))
= ((
dom f)
/\ K) by
RELAT_1: 61
.= K by
A4,
XBOOLE_1: 28;
A14: (g
. p)
in (V
/\ V2) by
A5,
A9,
XBOOLE_0:def 4;
the
carrier of ((
TOP-REAL 2)
| K)
= K by
PRE_TOPC: 8;
then
reconsider R = ((V
/\ V2)
/\ K) as
Subset of ((
TOP-REAL 2)
| K) by
XBOOLE_1: 17;
A15: R
= ((V
/\ V2)
/\ (
[#] ((
TOP-REAL 2)
| K))) by
PRE_TOPC:def 5;
(V
/\ V2) is
open by
A6,
A10,
TOPS_1: 11;
then
A16: R is
open by
A15,
TOPS_2: 24;
A17: p
in V2 by
A1,
A2,
A12,
FUNCT_1: 35;
then
reconsider q = p as
Point of ((
TOP-REAL 2)
| K) by
A11,
PRE_TOPC: 8;
A18: (
rng (f
| K))
c= the
carrier of (
TOP-REAL 2);
(
dom (f
| K))
= ((
dom f)
/\ K) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K) by
FUNCT_2:def 1
.= K by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K) by
PRE_TOPC: 8;
then
reconsider h = (f
| K) as
Function of ((
TOP-REAL 2)
| K), (
TOP-REAL 2) by
A18,
FUNCT_2: 2;
A19: h is
one-to-one by
A1,
FUNCT_1: 52;
A20: K
= ((f
| K)
.: K) by
A7,
RELAT_1: 129
.= (
rng (f
| K)) by
A13,
RELAT_1: 113;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K), ((
TOP-REAL 2)
| K) such that
A21: h
= f1 and
A22: f1 is
being_homeomorphism by
A1,
A19,
JGRAPH_1: 46,
TOPMETR: 7;
A23: (
rng f1)
= (
[#] ((
TOP-REAL 2)
| K)) by
A22,
TOPS_2:def 5;
A24: f1 is
onto by
A23,
FUNCT_2:def 3;
(
dom (f1 qua
Function
" ))
= (
rng f1) & (
rng (f1 qua
Function
" ))
= (
dom f1) by
A19,
A21,
FUNCT_1: 33;
then
reconsider g1 = (f1 qua
Function
" ) as
Function of ((
TOP-REAL 2)
| K), ((
TOP-REAL 2)
| K) by
A23,
FUNCT_2: 2;
g1
= (f1
" ) by
A19,
A21,
A24,
TOPS_2:def 4;
then
A25: g1 is
continuous by
A22,
TOPS_2:def 5;
A26: (f1
. (g
. p))
= (f
. (g
. p)) by
A9,
A11,
A21,
FUNCT_1: 49
.= p by
A1,
A2,
FUNCT_1: 35;
A27: (
dom f1)
= ((
dom f)
/\ K) by
A21,
RELAT_1: 61
.= K by
A4,
XBOOLE_1: 28;
(
rng f1)
= (
dom (f1 qua
Function
" )) by
A19,
A21,
FUNCT_1: 33;
then
A28: ((f1 qua
Function
" )
. p)
in (
rng (f1 qua
Function
" )) by
A11,
A17,
A20,
A21,
FUNCT_1: 3;
A29: (
rng (f1 qua
Function
" ))
= (
dom f1) by
A19,
A21,
FUNCT_1: 33;
(f1
. ((f1 qua
Function
" )
. p))
= p by
A11,
A17,
A19,
A20,
A21,
FUNCT_1: 35;
then ((f1 qua
Function
" )
. p)
= (g
. p) by
A8,
A19,
A21,
A26,
A27,
A29,
A28,
FUNCT_1:def 4;
then ((f1 qua
Function
" )
. p)
in R by
A9,
A11,
A14,
XBOOLE_0:def 4;
then
consider W3 be
Subset of ((
TOP-REAL 2)
| K) such that
A30: q
in W3 and
A31: W3 is
open and
A32: ((f1 qua
Function
" )
.: W3)
c= R by
A16,
A25,
JGRAPH_2: 10;
R
= (V
/\ (V2
/\ K)) by
XBOOLE_1: 16;
then
A33: R
c= V by
XBOOLE_1: 17;
consider W5 be
Subset of (
TOP-REAL 2) such that
A34: W5 is
open and
A35: W3
= (W5
/\ (
[#] ((
TOP-REAL 2)
| K))) by
A31,
TOPS_2: 24;
reconsider W4 = (W5
/\ V2) as
Subset of (
TOP-REAL 2);
p
in W5 by
A30,
A35,
XBOOLE_0:def 4;
then
A36: p
in W4 by
A17,
XBOOLE_0:def 4;
A37: (
dom f1)
= the
carrier of ((
TOP-REAL 2)
| K) by
FUNCT_2:def 1;
A38: ((f qua
Function
" )
.: W3)
c= R
proof
let y be
object;
assume y
in ((f qua
Function
" )
.: W3);
then
consider x be
object such that
A39: x
in (
dom (f qua
Function
" )) and
A40: x
in W3 and
A41: y
= ((f qua
Function
" )
. x) by
FUNCT_1:def 6;
A42: x
in (
rng f) by
A1,
A39,
FUNCT_1: 33;
then
A43: y
in (
dom f) by
A1,
A41,
FUNCT_1: 32;
A44: (f
. y)
= x by
A1,
A41,
A42,
FUNCT_1: 32;
the
carrier of ((
TOP-REAL 2)
| K)
= K by
PRE_TOPC: 8;
then ex z2 be
object st z2
in (
dom f) & z2
in K & (f
. y)
= (f
. z2) by
A7,
A40,
A44,
FUNCT_1:def 6;
then
A45: y
in K by
A1,
A43,
FUNCT_1:def 4;
then
A46: y
in the
carrier of ((
TOP-REAL 2)
| K) by
PRE_TOPC: 8;
A47: (
dom (f1 qua
Function
" ))
= the
carrier of ((
TOP-REAL 2)
| K) by
A19,
A21,
A23,
FUNCT_1: 33;
(f1
. y)
= x by
A21,
A44,
A45,
FUNCT_1: 49;
then y
= ((f1 qua
Function
" )
. x) by
A19,
A21,
A37,
A46,
FUNCT_1: 32;
then y
in ((f1 qua
Function
" )
.: W3) by
A40,
A47,
FUNCT_1:def 6;
hence thesis by
A32;
end;
W4
= (W5
/\ (V2
/\ K)) by
A11,
XBOOLE_1: 28
.= ((W5
/\ K)
/\ V2) by
XBOOLE_1: 16
.= (W3
/\ V2) by
A35,
PRE_TOPC:def 5;
then
A48: (g
.: W4)
c= ((g
.: W3)
/\ (g
.: V2)) by
RELAT_1: 121;
((g
.: W3)
/\ (g
.: V2))
c= (g
.: W3) by
XBOOLE_1: 17;
then (g
.: W4)
c= (g
.: W3) by
A48;
then
A49: (g
.: W4)
c= R by
A38;
W4 is
open by
A10,
A34,
TOPS_1: 11;
hence thesis by
A36,
A49,
A33,
XBOOLE_1: 1;
end;
then
A50: g is
continuous by
JGRAPH_2: 10;
f is
onto by
A2,
FUNCT_2:def 3;
then g
= (f
" ) by
A1,
TOPS_2:def 4;
hence thesis by
A1,
A2,
A4,
A50,
TOPS_2:def 5;
end;
theorem ::
JGRAPH_4:4
Th4: for X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 , a,b be
Real st f1 is
continuous & f2 is
continuous & b
<>
0 & (for q be
Point of X holds (f2
. q)
<>
0 ) holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g
. p)
= (((r1
/ r2)
- a)
/ b)) & g is
continuous
proof
let X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 , a,b be
Real;
assume that
A1: f1 is
continuous & f2 is
continuous and
A2: b
<>
0 and
A3: for q be
Point of X holds (f2
. q)
<>
0 ;
consider g3 be
Function of X,
R^1 such that
A4: for p be
Point of X, r1,r0 be
Real st (f1
. p)
= r1 & (f2
. p)
= r0 holds (g3
. p)
= (r1
/ r0) and
A5: g3 is
continuous by
A1,
A3,
JGRAPH_2: 27;
consider g1 be
Function of X,
R^1 such that
A6: for p be
Point of X holds (g1
. p)
= b & g1 is
continuous by
JGRAPH_2: 20;
consider g2 be
Function of X,
R^1 such that
A7: for p be
Point of X holds (g2
. p)
= a & g2 is
continuous by
JGRAPH_2: 20;
consider g4 be
Function of X,
R^1 such that
A8: for p be
Point of X, r1,r0 be
Real st (g3
. p)
= r1 & (g2
. p)
= r0 holds (g4
. p)
= (r1
- r0) and
A9: g4 is
continuous by
A7,
A5,
JGRAPH_2: 21;
for q be
Point of X holds (g1
. q)
<>
0 by
A2,
A6;
then
consider g5 be
Function of X,
R^1 such that
A10: for p be
Point of X, r1,r0 be
Real st (g4
. p)
= r1 & (g1
. p)
= r0 holds (g5
. p)
= (r1
/ r0) and
A11: g5 is
continuous by
A6,
A9,
JGRAPH_2: 27;
for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g5
. p)
= (((r1
/ r2)
- a)
/ b)
proof
let p be
Point of X, r1,r2 be
Real;
set r8 = (r1
/ r2);
A12: (g1
. p)
= b by
A6;
assume (f1
. p)
= r1 & (f2
. p)
= r2;
then
A13: (g3
. p)
= r8 by
A4;
(g2
. p)
= a by
A7;
then (g4
. p)
= (r8
- a) by
A8,
A13;
hence thesis by
A10,
A12;
end;
hence thesis by
A11;
end;
theorem ::
JGRAPH_4:5
Th5: for X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 , a,b be
Real st f1 is
continuous & f2 is
continuous & b
<>
0 & (for q be
Point of X holds (f2
. q)
<>
0 ) holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g
. p)
= (r2
* (((r1
/ r2)
- a)
/ b))) & g is
continuous
proof
let X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 , a,b be
Real;
assume that
A1: f1 is
continuous and
A2: f2 is
continuous and
A3: b
<>
0 and
A4: for q be
Point of X holds (f2
. q)
<>
0 ;
consider g3 be
Function of X,
R^1 such that
A5: for p be
Point of X, r1,r0 be
Real st (f1
. p)
= r1 & (f2
. p)
= r0 holds (g3
. p)
= (r1
/ r0) and
A6: g3 is
continuous by
A1,
A2,
A4,
JGRAPH_2: 27;
consider g1 be
Function of X,
R^1 such that
A7: for p be
Point of X holds (g1
. p)
= b & g1 is
continuous by
JGRAPH_2: 20;
consider g2 be
Function of X,
R^1 such that
A8: for p be
Point of X holds (g2
. p)
= a & g2 is
continuous by
JGRAPH_2: 20;
consider g4 be
Function of X,
R^1 such that
A9: for p be
Point of X, r1,r0 be
Real st (g3
. p)
= r1 & (g2
. p)
= r0 holds (g4
. p)
= (r1
- r0) and
A10: g4 is
continuous by
A8,
A6,
JGRAPH_2: 21;
for q be
Point of X holds (g1
. q)
<>
0 by
A3,
A7;
then
consider g5 be
Function of X,
R^1 such that
A11: for p be
Point of X, r1,r0 be
Real st (g4
. p)
= r1 & (g1
. p)
= r0 holds (g5
. p)
= (r1
/ r0) and
A12: g5 is
continuous by
A7,
A10,
JGRAPH_2: 27;
consider g6 be
Function of X,
R^1 such that
A13: for p be
Point of X, r1,r0 be
Real st (f2
. p)
= r1 & (g5
. p)
= r0 holds (g6
. p)
= (r1
* r0) and
A14: g6 is
continuous by
A2,
A12,
JGRAPH_2: 25;
for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g6
. p)
= (r2
* (((r1
/ r2)
- a)
/ b))
proof
let p be
Point of X, r1,r2 be
Real;
assume that
A15: (f1
. p)
= r1 and
A16: (f2
. p)
= r2;
A17: (g2
. p)
= a by
A8;
set r8 = (r1
/ r2);
A18: (g1
. p)
= b by
A7;
(g3
. p)
= r8 by
A5,
A15,
A16;
then (g4
. p)
= (r8
- a) by
A9,
A17;
then (g5
. p)
= (((r1
/ r2)
- a)
/ b) by
A11,
A18;
hence thesis by
A13,
A16;
end;
hence thesis by
A14;
end;
theorem ::
JGRAPH_4:6
Th6: for X be non
empty
TopSpace, f1 be
Function of X,
R^1 st f1 is
continuous holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g
. p)
= (r1
^2 )) & g is
continuous
proof
let X be non
empty
TopSpace, f1 be
Function of X,
R^1 ;
assume f1 is
continuous;
then
consider g1 be
Function of X,
R^1 such that
A1: for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g1
. p)
= (r1
* r1) and
A2: g1 is
continuous by
JGRAPH_2: 22;
for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g1
. p)
= (r1
^2 ) by
A1;
hence thesis by
A2;
end;
theorem ::
JGRAPH_4:7
Th7: for X be non
empty
TopSpace, f1 be
Function of X,
R^1 st f1 is
continuous holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g
. p)
=
|.r1.|) & g is
continuous
proof
let X be non
empty
TopSpace, f1 be
Function of X,
R^1 ;
assume f1 is
continuous;
then
consider g1 be
Function of X,
R^1 such that
A1: for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g1
. p)
= (r1
^2 ) and
A2: g1 is
continuous by
Th6;
for q be
Point of X holds ex r be
Real st (g1
. q)
= r & r
>=
0
proof
let q be
Point of X;
reconsider r11 = (f1
. q) as
Real;
(g1
. q)
= (r11
^2 ) by
A1;
hence thesis by
XREAL_1: 63;
end;
then
consider g2 be
Function of X,
R^1 such that
A3: for p be
Point of X, r1 be
Real st (g1
. p)
= r1 holds (g2
. p)
= (
sqrt r1) and
A4: g2 is
continuous by
A2,
JGRAPH_3: 5;
for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g2
. p)
=
|.r1.|
proof
let p be
Point of X, r1 be
Real;
assume (f1
. p)
= r1;
then (g1
. p)
= (r1
^2 ) by
A1;
then (g2
. p)
= (
sqrt (r1
^2 )) by
A3
.=
|.r1.| by
COMPLEX1: 72;
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
JGRAPH_4:8
Th8: for X be non
empty
TopSpace, f1 be
Function of X,
R^1 st f1 is
continuous holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g
. p)
= (
- r1)) & g is
continuous
proof
let X be non
empty
TopSpace, f1 be
Function of X,
R^1 ;
consider g1 be
Function of X,
R^1 such that
A1: for p be
Point of X holds (g1
. p)
=
0 and
A2: g1 is
continuous by
JGRAPH_2: 20;
assume f1 is
continuous;
then
consider g2 be
Function of X,
R^1 such that
A3: for p be
Point of X, r1,r2 be
Real st (g1
. p)
= r1 & (f1
. p)
= r2 holds (g2
. p)
= (r1
- r2) and
A4: g2 is
continuous by
A2,
JGRAPH_2: 21;
for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g2
. p)
= (
- r1)
proof
let p be
Point of X, r1 be
Real;
assume
A5: (f1
. p)
= r1;
(g1
. p)
=
0 by
A1;
then (g2
. p)
= (
0
- r1) by
A3,
A5;
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
JGRAPH_4:9
Th9: for X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 , a,b be
Real st f1 is
continuous & f2 is
continuous & b
<>
0 & (for q be
Point of X holds (f2
. q)
<>
0 ) holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g
. p)
= (r2
* (
- (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|)))) & g is
continuous
proof
let X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 , a,b be
Real;
assume that
A1: f1 is
continuous and
A2: f2 is
continuous and
A3: b
<>
0 & for q be
Point of X holds (f2
. q)
<>
0 ;
consider g1 be
Function of X,
R^1 such that
A4: for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g1
. p)
= (((r1
/ r2)
- a)
/ b) and
A5: g1 is
continuous by
A1,
A2,
A3,
Th4;
consider g2 be
Function of X,
R^1 such that
A6: for p be
Point of X, s be
Real st (g1
. p)
= s holds (g2
. p)
= (s
^2 ) and
A7: g2 is
continuous by
A5,
Th6;
consider g0 be
Function of X,
R^1 such that
A8: for p be
Point of X holds (g0
. p)
= 1 and
A9: g0 is
continuous by
JGRAPH_2: 20;
consider g3 be
Function of X,
R^1 such that
A10: for p be
Point of X, s,t be
Real st (g0
. p)
= s & (g2
. p)
= t holds (g3
. p)
= (s
- t) and
A11: g3 is
continuous by
A7,
A9,
JGRAPH_2: 21;
consider g4 be
Function of X,
R^1 such that
A12: for p be
Point of X, s be
Real st (g3
. p)
= s holds (g4
. p)
=
|.s.| and
A13: g4 is
continuous by
A11,
Th7;
for q be
Point of X holds ex r be
Real st (g4
. q)
= r & r
>=
0
proof
let q be
Point of X;
reconsider s = (g3
. q) as
Real;
(g4
. q)
=
|.s.| by
A12;
hence thesis by
COMPLEX1: 46;
end;
then
consider g5 be
Function of X,
R^1 such that
A14: for p be
Point of X, s be
Real st (g4
. p)
= s holds (g5
. p)
= (
sqrt s) and
A15: g5 is
continuous by
A13,
JGRAPH_3: 5;
consider g6 be
Function of X,
R^1 such that
A16: for p be
Point of X, s be
Real st (g5
. p)
= s holds (g6
. p)
= (
- s) and
A17: g6 is
continuous by
A15,
Th8;
consider g7 be
Function of X,
R^1 such that
A18: for p be
Point of X, r1,r0 be
Real st (f2
. p)
= r1 & (g6
. p)
= r0 holds (g7
. p)
= (r1
* r0) and
A19: g7 is
continuous by
A2,
A17,
JGRAPH_2: 25;
for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g7
. p)
= (r2
* (
- (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|)))
proof
let p be
Point of X, r1,r2 be
Real;
assume that
A20: (f1
. p)
= r1 and
A21: (f2
. p)
= r2;
A22: (g0
. p)
= 1 by
A8;
(g1
. p)
= (((r1
/ r2)
- a)
/ b) by
A4,
A20,
A21;
then (g2
. p)
= ((((r1
/ r2)
- a)
/ b)
^2 ) by
A6;
then (g3
. p)
= (1
- ((((r1
/ r2)
- a)
/ b)
^2 )) by
A10,
A22;
then (g4
. p)
=
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).| by
A12;
then (g5
. p)
= (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|) by
A14;
then (g6
. p)
= (
- (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|)) by
A16;
hence thesis by
A18,
A21;
end;
hence thesis by
A19;
end;
theorem ::
JGRAPH_4:10
Th10: for X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 , a,b be
Real st f1 is
continuous & f2 is
continuous & b
<>
0 & (for q be
Point of X holds (f2
. q)
<>
0 ) holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g
. p)
= (r2
* (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|))) & g is
continuous
proof
let X be non
empty
TopSpace, f1,f2 be
Function of X,
R^1 , a,b be
Real;
assume that
A1: f1 is
continuous and
A2: f2 is
continuous and
A3: b
<>
0 & for q be
Point of X holds (f2
. q)
<>
0 ;
consider g1 be
Function of X,
R^1 such that
A4: for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g1
. p)
= (((r1
/ r2)
- a)
/ b) and
A5: g1 is
continuous by
A1,
A2,
A3,
Th4;
consider g2 be
Function of X,
R^1 such that
A6: for p be
Point of X, s be
Real st (g1
. p)
= s holds (g2
. p)
= (s
^2 ) and
A7: g2 is
continuous by
A5,
Th6;
consider g0 be
Function of X,
R^1 such that
A8: for p be
Point of X holds (g0
. p)
= 1 and
A9: g0 is
continuous by
JGRAPH_2: 20;
consider g3 be
Function of X,
R^1 such that
A10: for p be
Point of X, s,t be
Real st (g0
. p)
= s & (g2
. p)
= t holds (g3
. p)
= (s
- t) and
A11: g3 is
continuous by
A7,
A9,
JGRAPH_2: 21;
consider g4 be
Function of X,
R^1 such that
A12: for p be
Point of X, s be
Real st (g3
. p)
= s holds (g4
. p)
=
|.s.| and
A13: g4 is
continuous by
A11,
Th7;
for q be
Point of X holds ex r be
Real st (g4
. q)
= r & r
>=
0
proof
let q be
Point of X;
reconsider s = (g3
. q) as
Real;
(g4
. q)
=
|.s.| by
A12;
hence thesis by
COMPLEX1: 46;
end;
then
consider g5 be
Function of X,
R^1 such that
A14: for p be
Point of X, s be
Real st (g4
. p)
= s holds (g5
. p)
= (
sqrt s) and
A15: g5 is
continuous by
A13,
JGRAPH_3: 5;
consider g7 be
Function of X,
R^1 such that
A16: for p be
Point of X, r1,r0 be
Real st (f2
. p)
= r1 & (g5
. p)
= r0 holds (g7
. p)
= (r1
* r0) and
A17: g7 is
continuous by
A2,
A15,
JGRAPH_2: 25;
for p be
Point of X, r1,r2 be
Real st (f1
. p)
= r1 & (f2
. p)
= r2 holds (g7
. p)
= (r2
* (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|))
proof
let p be
Point of X, r1,r2 be
Real;
assume that
A18: (f1
. p)
= r1 and
A19: (f2
. p)
= r2;
A20: (g0
. p)
= 1 by
A8;
(g1
. p)
= (((r1
/ r2)
- a)
/ b) by
A4,
A18,
A19;
then (g2
. p)
= ((((r1
/ r2)
- a)
/ b)
^2 ) by
A6;
then (g3
. p)
= (1
- ((((r1
/ r2)
- a)
/ b)
^2 )) by
A10,
A20;
then (g4
. p)
=
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).| by
A12;
then (g5
. p)
= (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|) by
A14;
hence thesis by
A16,
A19;
end;
hence thesis by
A17;
end;
definition
let n be
Nat;
deffunc
F(
Point of (
TOP-REAL n)) =
|.$1.|;
::
JGRAPH_4:def1
func n
NormF ->
Function of (
TOP-REAL n),
R^1 means
:
Def1: for q be
Point of (
TOP-REAL n) holds (it
. q)
=
|.q.|;
existence
proof
A1: for x be
Element of (
TOP-REAL n) holds
F(x)
in the
carrier of
R^1 by
TOPMETR: 17,
XREAL_0:def 1;
thus ex IT be
Function of (
TOP-REAL n),
R^1 st for q be
Point of (
TOP-REAL n) holds (IT
. q)
=
F(q) from
FUNCT_2:sch 8(
A1);
end;
uniqueness
proof
thus for f,g be
Function of (
TOP-REAL n),
R^1 st (for q be
Point of (
TOP-REAL n) holds (f
. q)
=
F(q)) & (for q be
Point of (
TOP-REAL n) holds (g
. q)
=
F(q)) holds f
= g from
BINOP_2:sch 1;
end;
end
theorem ::
JGRAPH_4:11
for n be
Nat holds (
dom (n
NormF ))
= the
carrier of (
TOP-REAL n) & (
dom (n
NormF ))
= (
REAL n)
proof
let n be
Nat;
thus (
dom (n
NormF ))
= the
carrier of (
TOP-REAL n) by
FUNCT_2:def 1;
hence thesis by
EUCLID: 22;
end;
theorem ::
JGRAPH_4:12
Th12: for n be
Nat holds (n
NormF ) is
continuous
proof
let n be
Nat;
for q be
Point of (
TOP-REAL n) holds ((n
NormF )
. q)
=
|.q.| by
Def1;
hence thesis by
JORDAN2C: 83;
end;
registration
let n be
Nat;
cluster (n
NormF ) ->
continuous;
coherence by
Th12;
end
theorem ::
JGRAPH_4:13
Th13: for n be
Element of
NAT , K0 be
Subset of (
TOP-REAL n), f be
Function of ((
TOP-REAL n)
| K0),
R^1 st (for p be
Point of ((
TOP-REAL n)
| K0) holds (f
. p)
= ((n
NormF )
. p)) holds f is
continuous
proof
let n be
Element of
NAT , K0 be
Subset of (
TOP-REAL n), f be
Function of ((
TOP-REAL n)
| K0),
R^1 ;
A1: (the
carrier of (
TOP-REAL n)
/\ K0)
= K0 by
XBOOLE_1: 28;
reconsider g = (n
NormF ) as
Function of (
TOP-REAL n),
R^1 ;
assume for p be
Point of ((
TOP-REAL n)
| K0) holds (f
. p)
= ((n
NormF )
. p);
then
A2: for x be
object st x
in (
dom f) holds (f
. x)
= ((n
NormF )
. x);
(
dom f)
= the
carrier of ((
TOP-REAL n)
| K0) & the
carrier of ((
TOP-REAL n)
| K0)
= K0 by
FUNCT_2:def 1,
PRE_TOPC: 8;
then (
dom f)
= ((
dom (n
NormF ))
/\ K0) by
A1,
FUNCT_2:def 1;
then f
= (g
| K0) by
A2,
FUNCT_1: 46;
hence thesis by
TOPMETR: 7;
end;
theorem ::
JGRAPH_4:14
Th14: for n be
Element of
NAT , p be
Point of (
Euclid n), r be
Real, B be
Subset of (
TOP-REAL n) st B
= (
cl_Ball (p,r)) holds B is
bounded
closed
proof
let n be
Element of
NAT , p be
Point of (
Euclid n), r be
Real, B be
Subset of (
TOP-REAL n);
assume
A1: B
= (
cl_Ball (p,r));
(
cl_Ball (p,r))
c= (
Ball (p,(r
+ 1)))
proof
let x be
object;
A2: r
< (r
+ 1) by
XREAL_1: 29;
assume
A3: x
in (
cl_Ball (p,r));
then
reconsider q = x as
Point of (
Euclid n);
(
dist (p,q))
<= r by
A3,
METRIC_1: 12;
then (
dist (p,q))
< (r
+ 1) by
A2,
XXREAL_0: 2;
hence thesis by
METRIC_1: 11;
end;
then (
cl_Ball (p,r)) is
bounded by
TBSP_1: 14;
hence B is
bounded by
A1,
JORDAN2C: 11;
A4: the TopStruct of (
TOP-REAL n)
= (
TopSpaceMetr (
Euclid n)) by
EUCLID:def 8;
then
reconsider BB = B as
Subset of (
TopSpaceMetr (
Euclid n));
BB is
closed by
A1,
TOPREAL6: 57;
hence thesis by
A4,
PRE_TOPC: 31;
end;
theorem ::
JGRAPH_4:15
Th15: for p be
Point of (
Euclid 2), r be
Real, B be
Subset of (
TOP-REAL 2) st B
= (
cl_Ball (p,r)) holds B is
compact
proof
let p be
Point of (
Euclid 2), r be
Real, B be
Subset of (
TOP-REAL 2);
assume B
= (
cl_Ball (p,r));
then B is
bounded
closed by
Th14;
hence thesis by
TOPREAL6: 79;
end;
begin
definition
let s be
Real, q be
Point of (
TOP-REAL 2);
::
JGRAPH_4:def2
func
FanW (s,q) ->
Point of (
TOP-REAL 2) equals
:
Def2: (
|.q.|
*
|[(
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- s)
/ (1
- s))
^2 )))), ((((q
`2 )
/
|.q.|)
- s)
/ (1
- s))]|) if ((q
`2 )
/
|.q.|)
>= s & (q
`1 )
<
0 ,
(
|.q.|
*
|[(
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- s)
/ (1
+ s))
^2 )))), ((((q
`2 )
/
|.q.|)
- s)
/ (1
+ s))]|) if ((q
`2 )
/
|.q.|)
< s & (q
`1 )
<
0
otherwise q;
correctness ;
end
definition
let s be
Real;
::
JGRAPH_4:def3
func s
-FanMorphW ->
Function of (
TOP-REAL 2), (
TOP-REAL 2) means
:
Def3: for q be
Point of (
TOP-REAL 2) holds (it
. q)
= (
FanW (s,q));
existence
proof
deffunc
F(
Point of (
TOP-REAL 2)) = (
FanW (s,$1));
thus ex IT be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st for q be
Point of (
TOP-REAL 2) holds (IT
. q)
=
F(q) from
FUNCT_2:sch 4;
end;
uniqueness
proof
deffunc
F(
Point of (
TOP-REAL 2)) = (
FanW (s,$1));
thus for f,g be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st (for q be
Point of (
TOP-REAL 2) holds (f
. q)
=
F(q)) & (for q be
Point of (
TOP-REAL 2) holds (g
. q)
=
F(q)) holds f
= g from
BINOP_2:sch 1;
end;
end
theorem ::
JGRAPH_4:16
Th16: for sn be
Real holds (((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
<
0 implies ((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]|) & ((q
`1 )
>=
0 implies ((sn
-FanMorphW )
. q)
= q)
proof
let sn be
Real;
hereby
assume ((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
<
0 ;
then (
FanW (sn,q))
= (
|.q.|
*
|[(
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))]|) by
Def2
.=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
EUCLID: 58;
hence ((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
Def3;
end;
assume
A1: (q
`1 )
>=
0 ;
((sn
-FanMorphW )
. q)
= (
FanW (sn,q)) by
Def3;
hence thesis by
A1,
Def2;
end;
theorem ::
JGRAPH_4:17
Th17: for sn be
Real st ((q
`2 )
/
|.q.|)
<= sn & (q
`1 )
<
0 holds ((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]|
proof
let sn be
Real;
assume that
A1: ((q
`2 )
/
|.q.|)
<= sn and
A2: (q
`1 )
<
0 ;
per cases by
A1,
XXREAL_0: 1;
suppose ((q
`2 )
/
|.q.|)
< sn;
then (
FanW (sn,q))
= (
|.q.|
*
|[(
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))]|) by
A2,
Def2
.=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]| by
EUCLID: 58;
hence thesis by
Def3;
end;
suppose
A3: ((q
`2 )
/
|.q.|)
= sn;
then ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
=
0 ;
hence thesis by
A2,
A3,
Th16;
end;
end;
theorem ::
JGRAPH_4:18
Th18: for sn be
Real st (
- 1)
< sn & sn
< 1 holds (((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2)) implies ((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]|) & (((q
`2 )
/
|.q.|)
<= sn & (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2)) implies ((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]|)
proof
let sn be
Real;
assume that
A1: (
- 1)
< sn and
A2: sn
< 1;
per cases ;
suppose
A3: ((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
per cases ;
suppose
A4: (q
`1 )
<
0 ;
then (
FanW (sn,q))
= (
|.q.|
*
|[(
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))]|) by
A3,
Def2
.=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
EUCLID: 58;
hence thesis by
A4,
Def3,
Th17;
end;
suppose
A5: (q
`1 )
>=
0 ;
then
A6: ((sn
-FanMorphW )
. q)
= q by
Th16;
A7: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A8: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
A9: (q
`1 )
=
0 by
A3,
A5;
|.q.|
<>
0 by
A3,
TOPRNS_1: 24;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
= (1
^2 ) by
A7,
A9,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
= (1
^2 ) by
XCMPLX_1: 76;
then
A10: (
sqrt (((q
`2 )
/
|.q.|)
^2 ))
= 1 by
SQUARE_1: 22;
A11:
now
assume (q
`2 )
<
0 ;
then (
- ((q
`2 )
/
|.q.|))
= 1 by
A10,
SQUARE_1: 23;
hence contradiction by
A1,
A3;
end;
(
sqrt (
|.q.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A12:
|.q.|
= (q
`2 ) by
A7,
A9,
A11,
SQUARE_1: 22;
then 1
= ((q
`2 )
/
|.q.|) by
A3,
TOPRNS_1: 24,
XCMPLX_1: 60;
then ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
= 1 by
A8,
XCMPLX_1: 60;
hence thesis by
A2,
A6,
A9,
A12,
EUCLID: 53,
SQUARE_1: 17,
TOPRNS_1: 24,
XCMPLX_1: 60;
end;
end;
suppose
A13: ((q
`2 )
/
|.q.|)
<= sn & (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
per cases ;
suppose (q
`1 )
<
0 ;
hence thesis by
Th16,
Th17;
end;
suppose
A14: (q
`1 )
>=
0 ;
A15: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
A16:
|.q.|
<>
0 by
A13,
TOPRNS_1: 24;
A17: (q
`1 )
=
0 by
A13,
A14;
|.q.|
>
0 & 1
> ((q
`2 )
/
|.q.|) by
A2,
A13,
Lm1,
XXREAL_0: 2;
then (1
*
|.q.|)
> (((q
`2 )
/
|.q.|)
*
|.q.|) by
XREAL_1: 68;
then
A18: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) &
|.q.|
> (q
`2 ) by
A13,
JGRAPH_3: 1,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A19: (q
`2 )
= (
-
|.q.|) by
A17,
SQUARE_1: 40;
then (
- 1)
= ((q
`2 )
/
|.q.|) by
A13,
TOPRNS_1: 24,
XCMPLX_1: 197;
then
A20: ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
= ((
- (1
+ sn))
/ (1
+ sn))
.= (
- 1) by
A15,
XCMPLX_1: 197;
|.q.|
= (
- (q
`2 )) by
A17,
A18,
SQUARE_1: 40;
then
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]|
= q by
A17,
A20,
EUCLID: 53,
SQUARE_1: 17;
hence thesis by
A1,
A14,
A16,
A19,
Th16,
XCMPLX_1: 197;
end;
end;
suppose (q
`1 )
>
0 or q
= (
0. (
TOP-REAL 2));
hence thesis;
end;
end;
Lm2: for K be non
empty
Subset of (
TOP-REAL 2) holds (
proj1
| K) is
continuous
Function of ((
TOP-REAL 2)
| K),
R^1 & for q be
Point of ((
TOP-REAL 2)
| K) holds ((
proj1
| K)
. q)
= (
proj1
. q)
proof
let K be non
empty
Subset of (
TOP-REAL 2);
reconsider g2 = (
proj1
| K) as
Function of ((
TOP-REAL 2)
| K),
R^1 by
TOPMETR: 17;
A1: the
carrier of ((
TOP-REAL 2)
| K)
= K by
PRE_TOPC: 8;
for q be
Point of ((
TOP-REAL 2)
| K) holds (g2
. q)
= (
proj1
. q)
proof
let q be
Point of ((
TOP-REAL 2)
| K);
q
in the
carrier of ((
TOP-REAL 2)
| K) & (
dom
proj1 )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then q
in ((
dom
proj1 )
/\ K) by
A1,
XBOOLE_0:def 4;
hence thesis by
FUNCT_1: 48;
end;
hence thesis by
JGRAPH_2: 29;
end;
Lm3: for K be non
empty
Subset of (
TOP-REAL 2) holds (
proj2
| K) is
continuous
Function of ((
TOP-REAL 2)
| K),
R^1 & for q be
Point of ((
TOP-REAL 2)
| K) holds ((
proj2
| K)
. q)
= (
proj2
. q)
proof
let K be non
empty
Subset of (
TOP-REAL 2);
reconsider g2 = (
proj2
| K) as
Function of ((
TOP-REAL 2)
| K),
R^1 by
TOPMETR: 17;
A1: the
carrier of ((
TOP-REAL 2)
| K)
= K by
PRE_TOPC: 8;
for q be
Point of ((
TOP-REAL 2)
| K) holds (g2
. q)
= (
proj2
. q)
proof
let q be
Point of ((
TOP-REAL 2)
| K);
q
in the
carrier of ((
TOP-REAL 2)
| K) & (
dom
proj2 )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then q
in ((
dom
proj2 )
/\ K) by
A1,
XBOOLE_0:def 4;
hence thesis by
FUNCT_1: 48;
end;
hence thesis by
JGRAPH_2: 30;
end;
Lm4: (
dom (2
NormF ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
Lm5: for K be non
empty
Subset of (
TOP-REAL 2) holds ((2
NormF )
| K) is
continuous
Function of ((
TOP-REAL 2)
| K),
R^1 & for q be
Point of ((
TOP-REAL 2)
| K) holds (((2
NormF )
| K)
. q)
= ((2
NormF )
. q)
proof
let K1 be non
empty
Subset of (
TOP-REAL 2);
A1: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
reconsider g1 = ((2
NormF )
| K1) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
FUNCT_2: 32;
for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
= ((2
NormF )
. q)
proof
let q be
Point of ((
TOP-REAL 2)
| K1);
q
in the
carrier of ((
TOP-REAL 2)
| K1);
then q
in ((
dom (2
NormF ))
/\ K1) by
A1,
Lm4,
XBOOLE_0:def 4;
hence thesis by
FUNCT_1: 48;
end;
hence thesis by
Th13;
end;
Lm6: for K1 be non
empty
Subset of (
TOP-REAL 2), g1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 st g1
= ((2
NormF )
| K1) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2))) holds for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0
proof
let K1 be non
empty
Subset of (
TOP-REAL 2), g1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
assume that
A1: g1
= ((2
NormF )
| K1) and
A2: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2));
let q be
Point of ((
TOP-REAL 2)
| K1);
the
carrier of ((
TOP-REAL 2)
| K1)
= K1 & q
in the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider q2 = q as
Point of (
TOP-REAL 2);
(g1
. q)
= ((2
NormF )
. q) by
A1,
Lm5
.=
|.q2.| by
Def1;
hence thesis by
A2,
TOPRNS_1: 24;
end;
theorem ::
JGRAPH_4:19
Th19: for sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st sn
< 1 & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = sn, b = (1
- sn);
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm3;
assume that
A1: sn
< 1 and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then
A4: for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
b
>
0 by
A1,
XREAL_1: 149;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (((r1
/ r2)
- a)
/ b)) and
A6: g3 is
continuous by
A4,
Th5;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then
A8: (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A9: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in K1 by
A7,
A8,
A9,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A10: (
proj2
. r)
= (r
`2 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 6;
A11: (g2
. s)
= (
proj2
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm3,
Lm5;
(f
. r)
= (
|.r.|
* ((((r
`2 )
/
|.r.|)
- sn)
/ (1
- sn))) by
A2,
A9;
hence thesis by
A5,
A11,
A10;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:20
Th20: for sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (
- 1)
< sn & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = sn, b = (1
+ sn);
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm3;
assume that
A1: (
- 1)
< sn and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then
A4: for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
(1
+ sn)
>
0 by
A1,
XREAL_1: 148;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (((r1
/ r2)
- a)
/ b)) and
A6: g3 is
continuous by
A4,
Th5;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
A8: for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A9: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in (
dom g3) by
A7,
A9;
then x
in K1 by
A7,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A10: (
proj2
. r)
= (r
`2 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 6;
A11: (g2
. s)
= (
proj2
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm3,
Lm5;
(f
. r)
= (
|.r.|
* ((((r
`2 )
/
|.r.|)
- sn)
/ (1
+ sn))) by
A2,
A9;
hence thesis by
A5,
A11,
A10;
end;
(
dom f)
= (
dom g3) by
A7,
FUNCT_2:def 1;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:21
Th21: for sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st sn
< 1 & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<=
0 & ((q
`2 )
/
|.q.|)
>= sn & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = sn, b = (1
- sn);
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm3;
assume that
A1: sn
< 1 and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<=
0 & ((q
`2 )
/
|.q.|)
>= sn & q
<> (
0. (
TOP-REAL 2));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then
A4: for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
b
>
0 by
A1,
XREAL_1: 149;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (
- (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|))) and
A6: g3 is
continuous by
A4,
Th9;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then
A8: (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
A9: (1
- sn)
>
0 by
A1,
XREAL_1: 149;
assume
A10: x
in (
dom f);
then x
in K1 by
A7,
A8,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A11:
|.r.|
<>
0 by
A3,
A10,
TOPRNS_1: 24;
(
|.r.|
^2 )
= (((r
`1 )
^2 )
+ ((r
`2 )
^2 )) by
JGRAPH_3: 1;
then
A12: (((r
`2 )
-
|.r.|)
* ((r
`2 )
+
|.r.|))
= (
- ((r
`1 )
^2 ));
((r
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then (r
`2 )
<=
|.r.| by
A12,
XREAL_1: 93;
then ((r
`2 )
/
|.r.|)
<= (
|.r.|
/
|.r.|) by
XREAL_1: 72;
then ((r
`2 )
/
|.r.|)
<= 1 by
A11,
XCMPLX_1: 60;
then
A13: (((r
`2 )
/
|.r.|)
- sn)
<= (1
- sn) by
XREAL_1: 9;
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1) by
A10;
A14:
now
assume ((1
- sn)
^2 )
=
0 ;
then ((1
- sn)
+ sn)
= (
0
+ sn) by
XCMPLX_1: 6;
hence contradiction by
A1;
end;
(sn
- ((r
`2 )
/
|.r.|))
<=
0 by
A3,
A10,
XREAL_1: 47;
then (
- (sn
- ((r
`2 )
/
|.r.|)))
>= (
- (1
- sn)) by
A9,
XREAL_1: 24;
then ((1
- sn)
^2 )
>=
0 & ((((r
`2 )
/
|.r.|)
- sn)
^2 )
<= ((1
- sn)
^2 ) by
A13,
SQUARE_1: 49,
XREAL_1: 63;
then (((((r
`2 )
/
|.r.|)
- sn)
^2 )
/ ((1
- sn)
^2 ))
<= (((1
- sn)
^2 )
/ ((1
- sn)
^2 )) by
XREAL_1: 72;
then (((((r
`2 )
/
|.r.|)
- sn)
^2 )
/ ((1
- sn)
^2 ))
<= 1 by
A14,
XCMPLX_1: 60;
then (((((r
`2 )
/
|.r.|)
- sn)
/ (1
- sn))
^2 )
<= 1 by
XCMPLX_1: 76;
then (1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
|.(1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
- sn))
^2 )).|
= (1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
- sn))
^2 )) by
ABSVALUE:def 1;
then
A15: (f
. r)
= (
|.r.|
* (
- (
sqrt
|.(1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
- sn))
^2 )).|))) by
A2,
A10;
A16: (
proj2
. r)
= (r
`2 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 6;
(g2
. s)
= (
proj2
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm3,
Lm5;
hence thesis by
A5,
A15,
A16;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:22
Th22: for sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (
- 1)
< sn & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<=
0 & ((q
`2 )
/
|.q.|)
<= sn & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = sn, b = (1
+ sn);
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm3;
assume that
A1: (
- 1)
< sn and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<=
0 & ((q
`2 )
/
|.q.|)
<= sn & q
<> (
0. (
TOP-REAL 2));
A4: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (
- (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|))) and
A6: g3 is
continuous by
A4,
Th9;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then
A8: (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A9: x
in (
dom f);
then x
in K1 by
A7,
A8,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1) by
A9;
A10: ((1
+ sn)
^2 )
>
0 by
A4,
SQUARE_1: 12;
A11:
|.r.|
<>
0 by
A3,
A9,
TOPRNS_1: 24;
(
|.r.|
^2 )
= (((r
`1 )
^2 )
+ ((r
`2 )
^2 )) by
JGRAPH_3: 1;
then
A12: (((r
`2 )
-
|.r.|)
* ((r
`2 )
+
|.r.|))
= (
- ((r
`1 )
^2 ));
((r
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then (
-
|.r.|)
<= (r
`2 ) by
A12,
XREAL_1: 93;
then ((r
`2 )
/
|.r.|)
>= ((
-
|.r.|)
/
|.r.|) by
XREAL_1: 72;
then ((r
`2 )
/
|.r.|)
>= (
- 1) by
A11,
XCMPLX_1: 197;
then (((r
`2 )
/
|.r.|)
- sn)
>= ((
- 1)
- sn) by
XREAL_1: 9;
then
A13: (((r
`2 )
/
|.r.|)
- sn)
>= (
- (1
+ sn));
(sn
- ((r
`2 )
/
|.r.|))
>=
0 by
A3,
A9,
XREAL_1: 48;
then (
- (sn
- ((r
`2 )
/
|.r.|)))
<= (
-
0 );
then ((((r
`2 )
/
|.r.|)
- sn)
^2 )
<= ((1
+ sn)
^2 ) by
A4,
A13,
SQUARE_1: 49;
then (((((r
`2 )
/
|.r.|)
- sn)
^2 )
/ ((1
+ sn)
^2 ))
<= (((1
+ sn)
^2 )
/ ((1
+ sn)
^2 )) by
A4,
XREAL_1: 72;
then (((((r
`2 )
/
|.r.|)
- sn)
^2 )
/ ((1
+ sn)
^2 ))
<= 1 by
A10,
XCMPLX_1: 60;
then (((((r
`2 )
/
|.r.|)
- sn)
/ (1
+ sn))
^2 )
<= 1 by
XCMPLX_1: 76;
then (1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
|.(1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
+ sn))
^2 )).|
= (1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
+ sn))
^2 )) by
ABSVALUE:def 1;
then
A14: (f
. r)
= (
|.r.|
* (
- (
sqrt
|.(1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
+ sn))
^2 )).|))) by
A2,
A9;
A15: (
proj2
. r)
= (r
`2 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 6;
(g2
. s)
= (
proj2
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm3,
Lm5;
hence thesis by
A5,
A14,
A15;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:23
Th23: for sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphW )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set cn = (
sqrt (1
- (sn
^2 )));
set p0 =
|[(
- cn), sn]|;
A1: (p0
`1 )
= (
- cn) by
EUCLID: 52;
(p0
`2 )
= sn by
EUCLID: 52;
then
A2:
|.p0.|
= (
sqrt (((
- cn)
^2 )
+ (sn
^2 ))) by
A1,
JGRAPH_3: 1
.= (
sqrt ((cn
^2 )
+ (sn
^2 )));
assume
A3: (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphW )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (sn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A4: (1
- (sn
^2 ))
>
0 by
XREAL_1: 50;
then
A5: (
- (
- cn))
>
0 by
SQUARE_1: 25;
A6:
now
assume p0
= (
0. (
TOP-REAL 2));
then (
- (
- cn))
= (
-
0 ) by
EUCLID: 52,
JGRAPH_2: 3;
hence contradiction by
A4,
SQUARE_1: 25;
end;
(cn
^2 )
= (1
- (sn
^2 )) by
A4,
SQUARE_1:def 2;
then ((p0
`2 )
/
|.p0.|)
= sn by
A2,
EUCLID: 52,
SQUARE_1: 18;
then
A7: p0
in K0 by
A3,
A1,
A6,
A5;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
A8: (
rng (
proj1
* ((sn
-FanMorphW )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
A9: K0
c= B0
proof
let x be
object;
assume x
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & ((p8
`2 )
/
|.p8.|)
>= sn & (p8
`1 )
<=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A3;
hence thesis by
A3;
end;
A10: (
dom ((sn
-FanMorphW )
| K1))
c= (
dom (
proj2
* ((sn
-FanMorphW )
| K1)))
proof
let x be
object;
assume
A11: x
in (
dom ((sn
-FanMorphW )
| K1));
then x
in ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (sn
-FanMorphW )) by
XBOOLE_0:def 4;
then
A12: (
dom
proj2 )
= the
carrier of (
TOP-REAL 2) & ((sn
-FanMorphW )
. x)
in (
rng (sn
-FanMorphW )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((sn
-FanMorphW )
| K1)
. x)
= ((sn
-FanMorphW )
. x) by
A11,
FUNCT_1: 47;
hence thesis by
A11,
A12,
FUNCT_1: 11;
end;
A13: (
rng (
proj2
* ((sn
-FanMorphW )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
(
dom (
proj2
* ((sn
-FanMorphW )
| K1)))
c= (
dom ((sn
-FanMorphW )
| K1)) by
RELAT_1: 25;
then (
dom (
proj2
* ((sn
-FanMorphW )
| K1)))
= (
dom ((sn
-FanMorphW )
| K1)) by
A10,
XBOOLE_0:def 10
.= ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g2 = (
proj2
* ((sn
-FanMorphW )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A13,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g2
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))
proof
let p be
Point of (
TOP-REAL 2);
A14: (
dom ((sn
-FanMorphW )
| K1))
= ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A15: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A16: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`2 )
/
|.p3.|)
>= sn & (p3
`1 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A15;
then
A17: ((sn
-FanMorphW )
. p)
=
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]| by
A3,
Th18;
(((sn
-FanMorphW )
| K1)
. p)
= ((sn
-FanMorphW )
. p) by
A16,
A15,
FUNCT_1: 49;
then (g2
. p)
= (
proj2
.
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|) by
A16,
A14,
A15,
A17,
FUNCT_1: 13
.= (
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|
`2 ) by
PSCOMP_1:def 6
.= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
hence thesis;
end;
then
consider f2 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A18: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f2
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)));
A19: (
dom ((sn
-FanMorphW )
| K1))
c= (
dom (
proj1
* ((sn
-FanMorphW )
| K1)))
proof
let x be
object;
assume
A20: x
in (
dom ((sn
-FanMorphW )
| K1));
then x
in ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (sn
-FanMorphW )) by
XBOOLE_0:def 4;
then
A21: (
dom
proj1 )
= the
carrier of (
TOP-REAL 2) & ((sn
-FanMorphW )
. x)
in (
rng (sn
-FanMorphW )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((sn
-FanMorphW )
| K1)
. x)
= ((sn
-FanMorphW )
. x) by
A20,
FUNCT_1: 47;
hence thesis by
A20,
A21,
FUNCT_1: 11;
end;
(
dom (
proj1
* ((sn
-FanMorphW )
| K1)))
c= (
dom ((sn
-FanMorphW )
| K1)) by
RELAT_1: 25;
then (
dom (
proj1
* ((sn
-FanMorphW )
| K1)))
= (
dom ((sn
-FanMorphW )
| K1)) by
A19,
XBOOLE_0:def 10
.= ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g1 = (
proj1
* ((sn
-FanMorphW )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A8,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g1
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))))
proof
let p be
Point of (
TOP-REAL 2);
A22: (
dom ((sn
-FanMorphW )
| K1))
= ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A23: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A24: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`2 )
/
|.p3.|)
>= sn & (p3
`1 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A23;
then
A25: ((sn
-FanMorphW )
. p)
=
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]| by
A3,
Th18;
(((sn
-FanMorphW )
| K1)
. p)
= ((sn
-FanMorphW )
. p) by
A24,
A23,
FUNCT_1: 49;
then (g1
. p)
= (
proj1
.
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|) by
A24,
A22,
A23,
A25,
FUNCT_1: 13
.= (
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|
`1 ) by
PSCOMP_1:def 5
.= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))) by
EUCLID: 52;
hence thesis;
end;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A26: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f1
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<=
0 & ((q
`2 )
/
|.q.|)
>= sn & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A27: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`2 )
/
|.p3.|)
>= sn & (p3
`1 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A27;
hence thesis;
end;
then
A28: f1 is
continuous by
A3,
A26,
Th21;
A29: for x,y,r,s be
Real st
|[x, y]|
in K1 & r
= (f1
.
|[x, y]|) & s
= (f2
.
|[x, y]|) holds (f
.
|[x, y]|)
=
|[r, s]|
proof
let x,y,r,s be
Real;
assume that
A30:
|[x, y]|
in K1 and
A31: r
= (f1
.
|[x, y]|) & s
= (f2
.
|[x, y]|);
set p99 =
|[x, y]|;
A32: ex p3 be
Point of (
TOP-REAL 2) st p99
= p3 & ((p3
`2 )
/
|.p3.|)
>= sn & (p3
`1 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A30;
A33: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
A34: (f1
. p99)
= (
|.p99.|
* (
- (
sqrt (1
- (((((p99
`2 )
/
|.p99.|)
- sn)
/ (1
- sn))
^2 ))))) by
A26,
A30;
(((sn
-FanMorphW )
| K0)
.
|[x, y]|)
= ((sn
-FanMorphW )
.
|[x, y]|) by
A30,
FUNCT_1: 49
.=
|[(
|.p99.|
* (
- (
sqrt (1
- (((((p99
`2 )
/
|.p99.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p99.|
* ((((p99
`2 )
/
|.p99.|)
- sn)
/ (1
- sn)))]| by
A3,
A32,
Th18
.=
|[r, s]| by
A18,
A30,
A31,
A33,
A34;
hence thesis by
A3;
end;
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A35: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`2 )
/
|.p3.|)
>= sn & (p3
`1 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A35;
hence thesis;
end;
then f2 is
continuous by
A3,
A18,
Th19;
hence thesis by
A7,
A9,
A28,
A29,
JGRAPH_2: 35;
end;
theorem ::
JGRAPH_4:24
Th24: for sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphW )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set cn = (
sqrt (1
- (sn
^2 )));
set p0 =
|[(
- cn), sn]|;
A1: (p0
`1 )
= (
- cn) by
EUCLID: 52;
(p0
`2 )
= sn by
EUCLID: 52;
then
A2:
|.p0.|
= (
sqrt (((
- cn)
^2 )
+ (sn
^2 ))) by
A1,
JGRAPH_3: 1
.= (
sqrt ((cn
^2 )
+ (sn
^2 )));
assume
A3: (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphW )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (sn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A4: (1
- (sn
^2 ))
>
0 by
XREAL_1: 50;
then
A5: (
- (
- cn))
>
0 by
SQUARE_1: 25;
A6:
now
assume p0
= (
0. (
TOP-REAL 2));
then (
- (
- cn))
= (
-
0 ) by
EUCLID: 52,
JGRAPH_2: 3;
hence contradiction by
A4,
SQUARE_1: 25;
end;
(cn
^2 )
= (1
- (sn
^2 )) by
A4,
SQUARE_1:def 2;
then ((p0
`2 )
/
|.p0.|)
= sn by
A2,
EUCLID: 52,
SQUARE_1: 18;
then
A7: p0
in K0 by
A3,
A1,
A6,
A5;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
A8: (
rng (
proj1
* ((sn
-FanMorphW )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
A9: K0
c= B0
proof
let x be
object;
assume x
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & ((p8
`2 )
/
|.p8.|)
<= sn & (p8
`1 )
<=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A3;
hence thesis by
A3;
end;
A10: (
dom ((sn
-FanMorphW )
| K1))
c= (
dom (
proj2
* ((sn
-FanMorphW )
| K1)))
proof
let x be
object;
assume
A11: x
in (
dom ((sn
-FanMorphW )
| K1));
then x
in ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (sn
-FanMorphW )) by
XBOOLE_0:def 4;
then
A12: (
dom
proj2 )
= the
carrier of (
TOP-REAL 2) & ((sn
-FanMorphW )
. x)
in (
rng (sn
-FanMorphW )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((sn
-FanMorphW )
| K1)
. x)
= ((sn
-FanMorphW )
. x) by
A11,
FUNCT_1: 47;
hence thesis by
A11,
A12,
FUNCT_1: 11;
end;
A13: (
rng (
proj2
* ((sn
-FanMorphW )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
(
dom (
proj2
* ((sn
-FanMorphW )
| K1)))
c= (
dom ((sn
-FanMorphW )
| K1)) by
RELAT_1: 25;
then (
dom (
proj2
* ((sn
-FanMorphW )
| K1)))
= (
dom ((sn
-FanMorphW )
| K1)) by
A10,
XBOOLE_0:def 10
.= ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g2 = (
proj2
* ((sn
-FanMorphW )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A13,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g2
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))
proof
let p be
Point of (
TOP-REAL 2);
A14: (
dom ((sn
-FanMorphW )
| K1))
= ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A15: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A16: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`2 )
/
|.p3.|)
<= sn & (p3
`1 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A15;
then
A17: ((sn
-FanMorphW )
. p)
=
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]| by
A3,
Th18;
(((sn
-FanMorphW )
| K1)
. p)
= ((sn
-FanMorphW )
. p) by
A16,
A15,
FUNCT_1: 49;
then (g2
. p)
= (
proj2
.
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|) by
A16,
A14,
A15,
A17,
FUNCT_1: 13
.= (
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|
`2 ) by
PSCOMP_1:def 6
.= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
hence thesis;
end;
then
consider f2 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A18: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f2
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)));
A19: (
dom ((sn
-FanMorphW )
| K1))
c= (
dom (
proj1
* ((sn
-FanMorphW )
| K1)))
proof
let x be
object;
assume
A20: x
in (
dom ((sn
-FanMorphW )
| K1));
then x
in ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (sn
-FanMorphW )) by
XBOOLE_0:def 4;
then
A21: (
dom
proj1 )
= the
carrier of (
TOP-REAL 2) & ((sn
-FanMorphW )
. x)
in (
rng (sn
-FanMorphW )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((sn
-FanMorphW )
| K1)
. x)
= ((sn
-FanMorphW )
. x) by
A20,
FUNCT_1: 47;
hence thesis by
A20,
A21,
FUNCT_1: 11;
end;
(
dom (
proj1
* ((sn
-FanMorphW )
| K1)))
c= (
dom ((sn
-FanMorphW )
| K1)) by
RELAT_1: 25;
then (
dom (
proj1
* ((sn
-FanMorphW )
| K1)))
= (
dom ((sn
-FanMorphW )
| K1)) by
A19,
XBOOLE_0:def 10
.= ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g1 = (
proj1
* ((sn
-FanMorphW )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A8,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g1
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))))
proof
let p be
Point of (
TOP-REAL 2);
A22: (
dom ((sn
-FanMorphW )
| K1))
= ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A23: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A24: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`2 )
/
|.p3.|)
<= sn & (p3
`1 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A23;
then
A25: ((sn
-FanMorphW )
. p)
=
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]| by
A3,
Th18;
(((sn
-FanMorphW )
| K1)
. p)
= ((sn
-FanMorphW )
. p) by
A24,
A23,
FUNCT_1: 49;
then (g1
. p)
= (
proj1
.
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|) by
A24,
A22,
A23,
A25,
FUNCT_1: 13
.= (
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|
`1 ) by
PSCOMP_1:def 5
.= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))) by
EUCLID: 52;
hence thesis;
end;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A26: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f1
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<=
0 & ((q
`2 )
/
|.q.|)
<= sn & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A27: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`2 )
/
|.p3.|)
<= sn & (p3
`1 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A27;
hence thesis;
end;
then
A28: f1 is
continuous by
A3,
A26,
Th22;
A29: for x,y,r,s be
Real st
|[x, y]|
in K1 & r
= (f1
.
|[x, y]|) & s
= (f2
.
|[x, y]|) holds (f
.
|[x, y]|)
=
|[r, s]|
proof
let x,y,r,s be
Real;
assume that
A30:
|[x, y]|
in K1 and
A31: r
= (f1
.
|[x, y]|) & s
= (f2
.
|[x, y]|);
set p99 =
|[x, y]|;
A32: ex p3 be
Point of (
TOP-REAL 2) st p99
= p3 & ((p3
`2 )
/
|.p3.|)
<= sn & (p3
`1 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A30;
A33: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
A34: (f1
. p99)
= (
|.p99.|
* (
- (
sqrt (1
- (((((p99
`2 )
/
|.p99.|)
- sn)
/ (1
+ sn))
^2 ))))) by
A26,
A30;
(((sn
-FanMorphW )
| K0)
.
|[x, y]|)
= ((sn
-FanMorphW )
.
|[x, y]|) by
A30,
FUNCT_1: 49
.=
|[(
|.p99.|
* (
- (
sqrt (1
- (((((p99
`2 )
/
|.p99.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p99.|
* ((((p99
`2 )
/
|.p99.|)
- sn)
/ (1
+ sn)))]| by
A3,
A32,
Th18
.=
|[r, s]| by
A18,
A30,
A31,
A33,
A34;
hence thesis by
A3;
end;
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A35: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`2 )
/
|.p3.|)
<= sn & (p3
`1 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A35;
hence thesis;
end;
then f2 is
continuous by
A3,
A18,
Th20;
hence thesis by
A7,
A9,
A28,
A29,
JGRAPH_2: 35;
end;
Lm7: for sn be
Real, K1 be
Subset of (
TOP-REAL 2) st K1
= { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`2 )
>= (sn
*
|.p7.|) } holds K1 is
closed
proof
set K10 = (
[#] (
TOP-REAL 2));
reconsider g0 = ((2
NormF )
| K10) as
continuous
Function of ((
TOP-REAL 2)
| K10),
R^1 by
Lm5;
reconsider g1 = (
proj2
| K10) as
continuous
Function of ((
TOP-REAL 2)
| K10),
R^1 by
Lm3;
let sn be
Real, K1 be
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
>= (sn
*
|.$1.|));
consider g2 be
Function of ((
TOP-REAL 2)
| K10),
R^1 such that
A1: for q be
Point of ((
TOP-REAL 2)
| K10), r1 be
Real st (g0
. q)
= r1 holds (g2
. q)
= (sn
* r1) and
A2: g2 is
continuous by
JGRAPH_2: 23;
consider g3 be
Function of ((
TOP-REAL 2)
| K10),
R^1 such that
A3: for q be
Point of ((
TOP-REAL 2)
| K10), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r1
- r2) and
A4: g3 is
continuous by
A2,
JGRAPH_2: 21;
A5: ((
TOP-REAL 2)
| K10)
= the TopStruct of (
TOP-REAL 2) by
TSEP_1: 93;
then
reconsider g = g3 as
Function of (
TOP-REAL 2),
R^1 ;
reconsider K2 = K1 as
Subset of the TopStruct of (
TOP-REAL 2);
assume K1
= { p : (p
`2 )
>= (sn
*
|.p.|) };
then
A6: K1
= { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] };
A7: (K1
` )
= { p7 where p7 be
Point of (
TOP-REAL 2) : not
P[p7] } from
JGRAPH_2:sch 2(
A6);
A8: for p be
Point of (
TOP-REAL 2) holds (g3
. p)
= ((sn
*
|.p.|)
- (p
`2 ))
proof
let p be
Point of (
TOP-REAL 2);
(g0
. p)
= ((2
NormF )
. p) by
A5,
Lm5
.=
|.p.| by
Def1;
then
A9: (g2
. p)
= (sn
*
|.p.|) by
A1,
A5;
(g1
. p)
= (
proj2
. p) by
A5,
Lm3
.= (p
`2 ) by
PSCOMP_1:def 6;
hence thesis by
A3,
A5,
A9;
end;
A10: (K1
` )
c= { p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
>
0 }
proof
let x be
object;
assume x
in (K1
` );
then
consider p9 be
Point of (
TOP-REAL 2) such that
A11: x
= p9 and
A12: (p9
`2 )
< (sn
*
|.p9.|) by
A7;
A13: (g
/. p9)
= ((sn
*
|.p9.|)
- (p9
`2 )) by
A8;
((sn
*
|.p9.|)
- (p9
`2 ))
>
0 by
A12,
XREAL_1: 50;
hence thesis by
A11,
A13;
end;
{ p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
>
0 }
c= (K1
` )
proof
let x be
object;
assume x
in { p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
>
0 };
then
consider p7 be
Point of (
TOP-REAL 2) such that
A14: p7
= x and
A15: (g
/. p7)
>
0 ;
(g
/. p7)
= ((sn
*
|.p7.|)
- (p7
`2 )) by
A8;
then (((sn
*
|.p7.|)
- (p7
`2 ))
+ (p7
`2 ))
> (
0
+ (p7
`2 )) by
A15,
XREAL_1: 8;
hence thesis by
A7,
A14;
end;
then (K1
` )
= { p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
>
0 } by
A10,
XBOOLE_0:def 10;
then (K2
` ) is
open by
A4,
A5,
Th1;
then (K1
` ) is
open by
PRE_TOPC: 30;
hence thesis by
TOPS_1: 3;
end;
Lm8: for sn be
Real, K1 be
Subset of (
TOP-REAL 2) st K1
= { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`1 )
>= (sn
*
|.p7.|) } holds K1 is
closed
proof
set K10 = (
[#] (
TOP-REAL 2));
reconsider g0 = ((2
NormF )
| K10) as
continuous
Function of ((
TOP-REAL 2)
| K10),
R^1 by
Lm5;
reconsider g1 = (
proj1
| K10) as
continuous
Function of ((
TOP-REAL 2)
| K10),
R^1 by
Lm2;
let sn be
Real, K1 be
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
>= (sn
*
|.$1.|));
consider g2 be
Function of ((
TOP-REAL 2)
| K10),
R^1 such that
A1: for q be
Point of ((
TOP-REAL 2)
| K10), r1 be
Real st (g0
. q)
= r1 holds (g2
. q)
= (sn
* r1) and
A2: g2 is
continuous by
JGRAPH_2: 23;
consider g3 be
Function of ((
TOP-REAL 2)
| K10),
R^1 such that
A3: for q be
Point of ((
TOP-REAL 2)
| K10), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r1
- r2) and
A4: g3 is
continuous by
A2,
JGRAPH_2: 21;
A5: ((
TOP-REAL 2)
| K10)
= the TopStruct of (
TOP-REAL 2) by
TSEP_1: 93;
then
reconsider g = g3 as
Function of (
TOP-REAL 2),
R^1 ;
reconsider K2 = K1 as
Subset of the TopStruct of (
TOP-REAL 2);
assume K1
= { p : (p
`1 )
>= (sn
*
|.p.|) };
then
A6: K1
= { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] };
A7: (K1
` )
= { p7 where p7 be
Point of (
TOP-REAL 2) : not
P[p7] } from
JGRAPH_2:sch 2(
A6);
A8: for p be
Point of (
TOP-REAL 2) holds (g3
. p)
= ((sn
*
|.p.|)
- (p
`1 ))
proof
let p be
Point of (
TOP-REAL 2);
(g0
. p)
= ((2
NormF )
. p) by
A5,
Lm5
.=
|.p.| by
Def1;
then
A9: (g2
. p)
= (sn
*
|.p.|) by
A1,
A5;
(g1
. p)
= (
proj1
. p) by
A5,
Lm2
.= (p
`1 ) by
PSCOMP_1:def 5;
hence thesis by
A3,
A5,
A9;
end;
A10: (K1
` )
c= { p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
>
0 }
proof
let x be
object;
assume x
in (K1
` );
then
consider p9 be
Point of (
TOP-REAL 2) such that
A11: x
= p9 and
A12: (p9
`1 )
< (sn
*
|.p9.|) by
A7;
A13: (g
/. p9)
= ((sn
*
|.p9.|)
- (p9
`1 )) by
A8;
((sn
*
|.p9.|)
- (p9
`1 ))
>
0 by
A12,
XREAL_1: 50;
hence thesis by
A11,
A13;
end;
{ p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
>
0 }
c= (K1
` )
proof
let x be
object;
assume x
in { p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
>
0 };
then
consider p7 be
Point of (
TOP-REAL 2) such that
A14: p7
= x and
A15: (g
/. p7)
>
0 ;
(g
/. p7)
= ((sn
*
|.p7.|)
- (p7
`1 )) by
A8;
then (((sn
*
|.p7.|)
- (p7
`1 ))
+ (p7
`1 ))
> (
0
+ (p7
`1 )) by
A15,
XREAL_1: 8;
hence thesis by
A7,
A14;
end;
then (K1
` )
= { p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
>
0 } by
A10,
XBOOLE_0:def 10;
then (K2
` ) is
open by
A4,
A5,
Th1;
then (K1
` ) is
open by
PRE_TOPC: 30;
hence thesis by
TOPS_1: 3;
end;
theorem ::
JGRAPH_4:25
Th25: for sn be
Real, K03 be
Subset of (
TOP-REAL 2) st K03
= { p : (p
`2 )
>= (sn
*
|.p.|) & (p
`1 )
<=
0 } holds K03 is
closed
proof
defpred
Q[
Point of (
TOP-REAL 2)] means ($1
`1 )
<=
0 ;
let sn be
Real, K003 be
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
>= (sn
*
|.$1.|));
assume
A1: K003
= { p : (p
`2 )
>= (sn
*
|.p.|) & (p
`1 )
<=
0 };
reconsider KX = { p where p be
Point of (
TOP-REAL 2) :
Q[p] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A2: { p :
P[p] &
Q[p] }
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ { p1 where p1 be
Point of (
TOP-REAL 2) :
Q[p1] }) from
DOMAIN_1:sch 10;
K1 is
closed & KX is
closed by
Lm7,
JORDAN6: 5;
hence thesis by
A1,
A2,
TOPS_1: 8;
end;
Lm9: for sn be
Real, K1 be
Subset of (
TOP-REAL 2) st K1
= { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`2 )
<= (sn
*
|.p7.|) } holds K1 is
closed
proof
set K10 = (
[#] (
TOP-REAL 2));
reconsider g0 = ((2
NormF )
| K10) as
continuous
Function of ((
TOP-REAL 2)
| K10),
R^1 by
Lm5;
reconsider g1 = (
proj2
| K10) as
continuous
Function of ((
TOP-REAL 2)
| K10),
R^1 by
Lm3;
let sn be
Real, K1 be
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
<= (sn
*
|.$1.|));
consider g2 be
Function of ((
TOP-REAL 2)
| K10),
R^1 such that
A1: for q be
Point of ((
TOP-REAL 2)
| K10), r1 be
Real st (g0
. q)
= r1 holds (g2
. q)
= (sn
* r1) and
A2: g2 is
continuous by
JGRAPH_2: 23;
consider g3 be
Function of ((
TOP-REAL 2)
| K10),
R^1 such that
A3: for q be
Point of ((
TOP-REAL 2)
| K10), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r1
- r2) and
A4: g3 is
continuous by
A2,
JGRAPH_2: 21;
A5: ((
TOP-REAL 2)
| K10)
= the TopStruct of (
TOP-REAL 2) by
TSEP_1: 93;
then
reconsider g = g3 as
Function of (
TOP-REAL 2),
R^1 ;
reconsider K2 = K1 as
Subset of the TopStruct of (
TOP-REAL 2);
assume K1
= { p : (p
`2 )
<= (sn
*
|.p.|) };
then
A6: K1
= { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] };
A7: (K1
` )
= { p7 where p7 be
Point of (
TOP-REAL 2) : not
P[p7] } from
JGRAPH_2:sch 2(
A6);
A8: for p be
Point of (
TOP-REAL 2) holds (g3
. p)
= ((sn
*
|.p.|)
- (p
`2 ))
proof
let p be
Point of (
TOP-REAL 2);
(g0
. p)
= ((2
NormF )
. p) by
A5,
Lm5
.=
|.p.| by
Def1;
then
A9: (g2
. p)
= (sn
*
|.p.|) by
A1,
A5;
(g1
. p)
= (
proj2
. p) by
A5,
Lm3
.= (p
`2 ) by
PSCOMP_1:def 6;
hence thesis by
A3,
A5,
A9;
end;
A10: (K1
` )
c= { p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
<
0 }
proof
let x be
object;
assume x
in (K1
` );
then
consider p9 be
Point of (
TOP-REAL 2) such that
A11: x
= p9 and
A12: (p9
`2 )
> (sn
*
|.p9.|) by
A7;
A13: (g
/. p9)
= ((sn
*
|.p9.|)
- (p9
`2 )) by
A8;
((sn
*
|.p9.|)
- (p9
`2 ))
<
0 by
A12,
XREAL_1: 49;
hence thesis by
A11,
A13;
end;
{ p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
<
0 }
c= (K1
` )
proof
let x be
object;
assume x
in { p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
<
0 };
then
consider p7 be
Point of (
TOP-REAL 2) such that
A14: p7
= x and
A15: (g
/. p7)
<
0 ;
(g
/. p7)
= ((sn
*
|.p7.|)
- (p7
`2 )) by
A8;
then (((sn
*
|.p7.|)
- (p7
`2 ))
+ (p7
`2 ))
< (
0
+ (p7
`2 )) by
A15,
XREAL_1: 8;
hence thesis by
A7,
A14;
end;
then (K1
` )
= { p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
<
0 } by
A10,
XBOOLE_0:def 10;
then (K2
` ) is
open by
A4,
A5,
Th2;
then (K1
` ) is
open by
PRE_TOPC: 30;
hence thesis by
TOPS_1: 3;
end;
Lm10: for sn be
Real, K1 be
Subset of (
TOP-REAL 2) st K1
= { p7 where p7 be
Point of (
TOP-REAL 2) : (p7
`1 )
<= (sn
*
|.p7.|) } holds K1 is
closed
proof
set K10 = (
[#] (
TOP-REAL 2));
reconsider g0 = ((2
NormF )
| K10) as
continuous
Function of ((
TOP-REAL 2)
| K10),
R^1 by
Lm5;
reconsider g1 = (
proj1
| K10) as
continuous
Function of ((
TOP-REAL 2)
| K10),
R^1 by
Lm2;
let sn be
Real, K1 be
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
<= (sn
*
|.$1.|));
consider g2 be
Function of ((
TOP-REAL 2)
| K10),
R^1 such that
A1: for q be
Point of ((
TOP-REAL 2)
| K10), r1 be
Real st (g0
. q)
= r1 holds (g2
. q)
= (sn
* r1) and
A2: g2 is
continuous by
JGRAPH_2: 23;
consider g3 be
Function of ((
TOP-REAL 2)
| K10),
R^1 such that
A3: for q be
Point of ((
TOP-REAL 2)
| K10), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r1
- r2) and
A4: g3 is
continuous by
A2,
JGRAPH_2: 21;
A5: ((
TOP-REAL 2)
| K10)
= the TopStruct of (
TOP-REAL 2) by
TSEP_1: 93;
then
reconsider g = g3 as
Function of (
TOP-REAL 2),
R^1 ;
reconsider K2 = K1 as
Subset of the TopStruct of (
TOP-REAL 2);
assume K1
= { p : (p
`1 )
<= (sn
*
|.p.|) };
then
A6: K1
= { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] };
A7: (K1
` )
= { p7 where p7 be
Point of (
TOP-REAL 2) : not
P[p7] } from
JGRAPH_2:sch 2(
A6);
A8: for p be
Point of (
TOP-REAL 2) holds (g3
. p)
= ((sn
*
|.p.|)
- (p
`1 ))
proof
let p be
Point of (
TOP-REAL 2);
(g0
. p)
= ((2
NormF )
. p) by
A5,
Lm5
.=
|.p.| by
Def1;
then
A9: (g2
. p)
= (sn
*
|.p.|) by
A1,
A5;
(g1
. p)
= (
proj1
. p) by
A5,
Lm2
.= (p
`1 ) by
PSCOMP_1:def 5;
hence thesis by
A3,
A5,
A9;
end;
A10: (K1
` )
c= { p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
<
0 }
proof
let x be
object;
assume x
in (K1
` );
then
consider p9 be
Point of (
TOP-REAL 2) such that
A11: x
= p9 and
A12: (p9
`1 )
> (sn
*
|.p9.|) by
A7;
A13: (g
/. p9)
= ((sn
*
|.p9.|)
- (p9
`1 )) by
A8;
((sn
*
|.p9.|)
- (p9
`1 ))
<
0 by
A12,
XREAL_1: 49;
hence thesis by
A11,
A13;
end;
{ p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
<
0 }
c= (K1
` )
proof
let x be
object;
assume x
in { p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
<
0 };
then
consider p7 be
Point of (
TOP-REAL 2) such that
A14: p7
= x and
A15: (g
/. p7)
<
0 ;
(g
/. p7)
= ((sn
*
|.p7.|)
- (p7
`1 )) by
A8;
then (((sn
*
|.p7.|)
- (p7
`1 ))
+ (p7
`1 ))
< (
0
+ (p7
`1 )) by
A15,
XREAL_1: 8;
hence thesis by
A7,
A14;
end;
then (K1
` )
= { p7 where p7 be
Point of (
TOP-REAL 2) : (g
/. p7)
<
0 } by
A10,
XBOOLE_0:def 10;
then (K2
` ) is
open by
A4,
A5,
Th2;
then (K1
` ) is
open by
PRE_TOPC: 30;
hence thesis by
TOPS_1: 3;
end;
theorem ::
JGRAPH_4:26
Th26: for sn be
Real, K03 be
Subset of (
TOP-REAL 2) st K03
= { p : (p
`2 )
<= (sn
*
|.p.|) & (p
`1 )
<=
0 } holds K03 is
closed
proof
defpred
Q[
Point of (
TOP-REAL 2)] means ($1
`1 )
<=
0 ;
let sn be
Real, K003 be
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
<= (sn
*
|.$1.|));
assume
A1: K003
= { p :
P[p] &
Q[p] };
reconsider KX = { p where p be
Point of (
TOP-REAL 2) :
Q[p] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A2: { p :
P[p] &
Q[p] }
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ { p1 where p1 be
Point of (
TOP-REAL 2) :
Q[p1] }) from
DOMAIN_1:sch 10;
K1 is
closed & KX is
closed by
Lm9,
JORDAN6: 5;
hence thesis by
A1,
A2,
TOPS_1: 8;
end;
theorem ::
JGRAPH_4:27
Th27: for sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphW )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set cn = (
sqrt (1
- (sn
^2 )));
set p0 =
|[(
- cn), sn]|;
A1: (p0
`1 )
= (
- cn) by
EUCLID: 52;
(p0
`2 )
= sn by
EUCLID: 52;
then
A2:
|.p0.|
= (
sqrt (((
- cn)
^2 )
+ (sn
^2 ))) by
A1,
JGRAPH_3: 1
.= (
sqrt ((cn
^2 )
+ (sn
^2 )));
assume
A3: (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphW )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (sn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A4: (1
- (sn
^2 ))
>
0 by
XREAL_1: 50;
then
A5: (
- (
- cn))
>
0 by
SQUARE_1: 25;
A6:
now
assume p0
= (
0. (
TOP-REAL 2));
then (
- (
- cn))
= (
-
0 ) by
EUCLID: 52,
JGRAPH_2: 3;
hence contradiction by
A4,
SQUARE_1: 25;
end;
then p0
in K0 by
A3,
A1,
A5;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
(cn
^2 )
= (1
- (sn
^2 )) by
A4,
SQUARE_1:def 2;
then
A7: ((p0
`2 )
/
|.p0.|)
= sn by
A2,
EUCLID: 52,
SQUARE_1: 18;
then
A8: p0
in { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } by
A1,
A6,
A5;
not p0
in
{(
0. (
TOP-REAL 2))} by
A6,
TARSKI:def 1;
then
reconsider D = B0 as non
empty
Subset of (
TOP-REAL 2) by
A3,
XBOOLE_0:def 5;
K1
c= D
proof
let x be
object;
assume
A9: x
in K1;
then ex p6 be
Point of (
TOP-REAL 2) st p6
= x & (p6
`1 )
<=
0 & p6
<> (
0. (
TOP-REAL 2)) by
A3;
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A3,
A9,
XBOOLE_0:def 5;
end;
then D
= (K1
\/ D) by
XBOOLE_1: 12;
then
A10: ((
TOP-REAL 2)
| K1) is
SubSpace of ((
TOP-REAL 2)
| D) by
TOPMETR: 4;
A11: { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) }
c= K1
proof
let x be
object;
assume x
in { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then ex p st p
= x & ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2));
hence thesis by
A3;
end;
A12: { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) }
c= K1
proof
let x be
object;
assume x
in { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then ex p st p
= x & ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2));
hence thesis by
A3;
end;
then
reconsider K00 = { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| K1) by
A8,
PRE_TOPC: 8;
the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
then
A13: (
rng (f
| K00))
c= D;
p0
in { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } by
A1,
A6,
A5,
A7;
then
reconsider K11 = { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| K1) by
A11,
PRE_TOPC: 8;
the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
then
A14: (
rng (f
| K11))
c= D;
the
carrier of ((
TOP-REAL 2)
| B0)
= the
carrier of ((
TOP-REAL 2)
| D);
then
A15: (
dom f)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1
.= K1 by
PRE_TOPC: 8;
then (
dom (f
| K00))
= K00 by
A12,
RELAT_1: 62
.= the
carrier of (((
TOP-REAL 2)
| K1)
| K00) by
PRE_TOPC: 8;
then
reconsider f1 = (f
| K00) as
Function of (((
TOP-REAL 2)
| K1)
| K00), ((
TOP-REAL 2)
| D) by
A13,
FUNCT_2: 2;
(
dom (f
| K11))
= K11 by
A11,
A15,
RELAT_1: 62
.= the
carrier of (((
TOP-REAL 2)
| K1)
| K11) by
PRE_TOPC: 8;
then
reconsider f2 = (f
| K11) as
Function of (((
TOP-REAL 2)
| K1)
| K11), ((
TOP-REAL 2)
| D) by
A14,
FUNCT_2: 2;
A16: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
/
|.$1.|)
>= sn & ($1
`1 )
<=
0 & $1
<> (
0. (
TOP-REAL 2));
A17: (
dom f2)
= the
carrier of (((
TOP-REAL 2)
| K1)
| K11) by
FUNCT_2:def 1
.= K11 by
PRE_TOPC: 8;
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider K001 = { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of (
TOP-REAL 2) by
A8;
A18: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`2 )
>= (sn
*
|.$1.|) & ($1
`1 )
<=
0 ;
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider K003 = { p : (p
`2 )
>= (sn
*
|.p.|) & (p
`1 )
<=
0 } as
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
/
|.$1.|)
<= sn & ($1
`1 )
<=
0 & $1
<> (
0. (
TOP-REAL 2));
A19: { p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
A20: (
rng ((sn
-FanMorphW )
| K001))
c= K1
proof
let y be
object;
assume y
in (
rng ((sn
-FanMorphW )
| K001));
then
consider x be
object such that
A21: x
in (
dom ((sn
-FanMorphW )
| K001)) and
A22: y
= (((sn
-FanMorphW )
| K001)
. x) by
FUNCT_1:def 3;
x
in (
dom (sn
-FanMorphW )) by
A21,
RELAT_1: 57;
then
reconsider q = x as
Point of (
TOP-REAL 2);
A23: y
= ((sn
-FanMorphW )
. q) by
A21,
A22,
FUNCT_1: 47;
(
dom ((sn
-FanMorphW )
| K001))
= ((
dom (sn
-FanMorphW ))
/\ K001) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K001) by
FUNCT_2:def 1
.= K001 by
XBOOLE_1: 28;
then
A24: ex p2 be
Point of (
TOP-REAL 2) st p2
= q & ((p2
`2 )
/
|.p2.|)
>= sn & (p2
`1 )
<=
0 & p2
<> (
0. (
TOP-REAL 2)) by
A21;
then
A25: (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
XREAL_1: 48;
|.q.|
<>
0 by
A24,
TOPRNS_1: 24;
then
A26: (
|.q.|
^2 )
> (
0
^2 ) by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]|;
A27: (q4
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
A28: (1
- sn)
>
0 by
A3,
XREAL_1: 149;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then ((q
`2 )
^2 )
<= (
|.q.|
^2 ) by
JGRAPH_3: 1;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A26,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- sn)
>= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
<= (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A28,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A28,
XCMPLX_1: 197;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A28,
A25,
SQUARE_1: 49;
then
A29: (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A30: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )))
>=
0 by
A29,
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
^2 )
/ ((1
- sn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
^2 )
/ ((1
- sn)
^2 ))))
>=
0 ;
then
A31: (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
>=
0 by
XCMPLX_1: 76;
A32: (q4
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))) by
EUCLID: 52;
then
A33: ((q4
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))) by
A30,
SQUARE_1:def 2;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A27,
A33;
then
A34: q4
<> (
0. (
TOP-REAL 2)) by
A26,
TOPRNS_1: 23;
((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
A3,
A24,
Th18;
hence thesis by
A3,
A23,
A32,
A31,
A34;
end;
A35: (
dom (sn
-FanMorphW ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then (
dom ((sn
-FanMorphW )
| K001))
= K001 by
RELAT_1: 62
.= the
carrier of ((
TOP-REAL 2)
| K001) by
PRE_TOPC: 8;
then
reconsider f3 = ((sn
-FanMorphW )
| K001) as
Function of ((
TOP-REAL 2)
| K001), ((
TOP-REAL 2)
| K1) by
A18,
A20,
FUNCT_2: 2;
A36: K003 is
closed by
Th25;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`2 )
<= (sn
*
|.$1.|) & ($1
`1 )
<=
0 ;
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider K004 = { p : (p
`2 )
<= (sn
*
|.p.|) & (p
`1 )
<=
0 } as
Subset of (
TOP-REAL 2);
A37: (K004
/\ K1)
c= K11
proof
let x be
object;
assume
A38: x
in (K004
/\ K1);
then x
in K004 by
XBOOLE_0:def 4;
then
consider q1 be
Point of (
TOP-REAL 2) such that
A39: q1
= x and
A40: (q1
`2 )
<= (sn
*
|.q1.|) and (q1
`1 )
<=
0 ;
x
in K1 by
A38,
XBOOLE_0:def 4;
then
A41: ex q2 be
Point of (
TOP-REAL 2) st q2
= x & (q2
`1 )
<=
0 & q2
<> (
0. (
TOP-REAL 2)) by
A3;
((q1
`2 )
/
|.q1.|)
<= ((sn
*
|.q1.|)
/
|.q1.|) by
A40,
XREAL_1: 72;
then ((q1
`2 )
/
|.q1.|)
<= sn by
A39,
A41,
TOPRNS_1: 24,
XCMPLX_1: 89;
hence thesis by
A39,
A41;
end;
A42: K004 is
closed by
Th26;
the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then (((
TOP-REAL 2)
| K1)
| K00)
= ((
TOP-REAL 2)
| K001) & f1
= f3 by
A3,
FUNCT_1: 51,
GOBOARD9: 2;
then
A43: f1 is
continuous by
A3,
A10,
Th23,
PRE_TOPC: 26;
A44: (
[#] ((
TOP-REAL 2)
| K1))
= K1 by
PRE_TOPC:def 5;
p0
in { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } by
A1,
A6,
A5,
A7;
then
reconsider K111 = { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of (
TOP-REAL 2) by
A19;
A45: (
rng ((sn
-FanMorphW )
| K111))
c= K1
proof
let y be
object;
assume y
in (
rng ((sn
-FanMorphW )
| K111));
then
consider x be
object such that
A46: x
in (
dom ((sn
-FanMorphW )
| K111)) and
A47: y
= (((sn
-FanMorphW )
| K111)
. x) by
FUNCT_1:def 3;
x
in (
dom (sn
-FanMorphW )) by
A46,
RELAT_1: 57;
then
reconsider q = x as
Point of (
TOP-REAL 2);
A48: y
= ((sn
-FanMorphW )
. q) by
A46,
A47,
FUNCT_1: 47;
(
dom ((sn
-FanMorphW )
| K111))
= ((
dom (sn
-FanMorphW ))
/\ K111) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K111) by
FUNCT_2:def 1
.= K111 by
XBOOLE_1: 28;
then
A49: ex p2 be
Point of (
TOP-REAL 2) st p2
= q & ((p2
`2 )
/
|.p2.|)
<= sn & (p2
`1 )
<=
0 & p2
<> (
0. (
TOP-REAL 2)) by
A46;
then
A50: (((q
`2 )
/
|.q.|)
- sn)
<=
0 by
XREAL_1: 47;
|.q.|
<>
0 by
A49,
TOPRNS_1: 24;
then
A51: (
|.q.|
^2 )
> (
0
^2 ) by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]|;
A52: (q4
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
A53: (1
+ sn)
>
0 by
A3,
XREAL_1: 148;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A51,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then ((
- 1)
- sn)
<= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then ((
- (1
+ sn))
/ (1
+ sn))
<= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)) by
A53,
XREAL_1: 72;
then (
- 1)
<= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)) by
A53,
XCMPLX_1: 197;
then
A54: (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A53,
A50,
SQUARE_1: 49;
then
A55: (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
(1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))
^2 ))
>=
0 by
A54,
XREAL_1: 48;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 ))
>=
0 by
XCMPLX_1: 187;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
^2 )
/ ((1
+ sn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
^2 )
/ ((1
+ sn)
^2 ))))
>=
0 ;
then
A56: (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
>=
0 by
XCMPLX_1: 76;
A57: (q4
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))) by
EUCLID: 52;
then
A58: ((q4
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))) by
A55,
SQUARE_1:def 2;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A52,
A58;
then
A59: q4
<> (
0. (
TOP-REAL 2)) by
A51,
TOPRNS_1: 23;
((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]| by
A3,
A49,
Th18;
hence thesis by
A3,
A48,
A57,
A56,
A59;
end;
(
dom ((sn
-FanMorphW )
| K111))
= K111 by
A35,
RELAT_1: 62
.= the
carrier of ((
TOP-REAL 2)
| K111) by
PRE_TOPC: 8;
then
reconsider f4 = ((sn
-FanMorphW )
| K111) as
Function of ((
TOP-REAL 2)
| K111), ((
TOP-REAL 2)
| K1) by
A16,
A45,
FUNCT_2: 2;
the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then (((
TOP-REAL 2)
| K1)
| K11)
= ((
TOP-REAL 2)
| K111) & f2
= f4 by
A3,
FUNCT_1: 51,
GOBOARD9: 2;
then
A60: f2 is
continuous by
A3,
A10,
Th24,
PRE_TOPC: 26;
set T1 = (((
TOP-REAL 2)
| K1)
| K00), T2 = (((
TOP-REAL 2)
| K1)
| K11);
A61: (
[#] (((
TOP-REAL 2)
| K1)
| K11))
= K11 by
PRE_TOPC:def 5;
K11
c= (K004
/\ K1)
proof
let x be
object;
assume x
in K11;
then
consider p such that
A62: p
= x and
A63: ((p
`2 )
/
|.p.|)
<= sn and
A64: (p
`1 )
<=
0 and
A65: p
<> (
0. (
TOP-REAL 2));
(((p
`2 )
/
|.p.|)
*
|.p.|)
<= (sn
*
|.p.|) by
A63,
XREAL_1: 64;
then (p
`2 )
<= (sn
*
|.p.|) by
A65,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A66: x
in K004 by
A62,
A64;
x
in K1 by
A3,
A62,
A64,
A65;
hence thesis by
A66,
XBOOLE_0:def 4;
end;
then K11
= (K004
/\ (
[#] ((
TOP-REAL 2)
| K1))) by
A44,
A37,
XBOOLE_0:def 10;
then
A67: K11 is
closed by
A42,
PRE_TOPC: 13;
A68: (K003
/\ K1)
c= K00
proof
let x be
object;
assume
A69: x
in (K003
/\ K1);
then x
in K003 by
XBOOLE_0:def 4;
then
consider q1 be
Point of (
TOP-REAL 2) such that
A70: q1
= x and
A71: (q1
`2 )
>= (sn
*
|.q1.|) and (q1
`1 )
<=
0 ;
x
in K1 by
A69,
XBOOLE_0:def 4;
then
A72: ex q2 be
Point of (
TOP-REAL 2) st q2
= x & (q2
`1 )
<=
0 & q2
<> (
0. (
TOP-REAL 2)) by
A3;
((q1
`2 )
/
|.q1.|)
>= ((sn
*
|.q1.|)
/
|.q1.|) by
A71,
XREAL_1: 72;
then ((q1
`2 )
/
|.q1.|)
>= sn by
A70,
A72,
TOPRNS_1: 24,
XCMPLX_1: 89;
hence thesis by
A70,
A72;
end;
A73: the
carrier of ((
TOP-REAL 2)
| K1)
= K0 by
PRE_TOPC: 8;
A74: D
<>
{} ;
A75: (
[#] (((
TOP-REAL 2)
| K1)
| K00))
= K00 by
PRE_TOPC:def 5;
A76: for p be
object st p
in ((
[#] T1)
/\ (
[#] T2)) holds (f1
. p)
= (f2
. p)
proof
let p be
object;
assume
A77: p
in ((
[#] T1)
/\ (
[#] T2));
then p
in K00 by
A75,
XBOOLE_0:def 4;
hence (f1
. p)
= (f
. p) by
FUNCT_1: 49
.= (f2
. p) by
A61,
A77,
FUNCT_1: 49;
end;
K00
c= (K003
/\ K1)
proof
let x be
object;
assume x
in K00;
then
consider p such that
A78: p
= x and
A79: ((p
`2 )
/
|.p.|)
>= sn and
A80: (p
`1 )
<=
0 and
A81: p
<> (
0. (
TOP-REAL 2));
(((p
`2 )
/
|.p.|)
*
|.p.|)
>= (sn
*
|.p.|) by
A79,
XREAL_1: 64;
then (p
`2 )
>= (sn
*
|.p.|) by
A81,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A82: x
in K003 by
A78,
A80;
x
in K1 by
A3,
A78,
A80,
A81;
hence thesis by
A82,
XBOOLE_0:def 4;
end;
then K00
= (K003
/\ (
[#] ((
TOP-REAL 2)
| K1))) by
A44,
A68,
XBOOLE_0:def 10;
then
A83: K00 is
closed by
A36,
PRE_TOPC: 13;
A84: K1
c= (K00
\/ K11)
proof
let x be
object;
assume x
in K1;
then
consider p such that
A85: p
= x & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) by
A3;
per cases ;
suppose ((p
`2 )
/
|.p.|)
>= sn;
then x
in K00 by
A85;
hence thesis by
XBOOLE_0:def 3;
end;
suppose ((p
`2 )
/
|.p.|)
< sn;
then x
in K11 by
A85;
hence thesis by
XBOOLE_0:def 3;
end;
end;
then ((
[#] (((
TOP-REAL 2)
| K1)
| K00))
\/ (
[#] (((
TOP-REAL 2)
| K1)
| K11)))
= (
[#] ((
TOP-REAL 2)
| K1)) by
A75,
A61,
A44,
XBOOLE_0:def 10;
then
consider h be
Function of ((
TOP-REAL 2)
| K1), ((
TOP-REAL 2)
| D) such that
A86: h
= (f1
+* f2) and
A87: h is
continuous by
A75,
A61,
A83,
A67,
A43,
A60,
A76,
JGRAPH_2: 1;
A88: (
dom h)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
A89: (
dom f1)
= the
carrier of (((
TOP-REAL 2)
| K1)
| K00) by
FUNCT_2:def 1
.= K00 by
PRE_TOPC: 8;
A90: for y be
object st y
in (
dom h) holds (h
. y)
= (f
. y)
proof
let y be
object;
assume
A91: y
in (
dom h);
now
per cases by
A84,
A88,
A73,
A91,
XBOOLE_0:def 3;
case
A92: y
in K00 & not y
in K11;
then y
in ((
dom f1)
\/ (
dom f2)) by
A89,
XBOOLE_0:def 3;
hence (h
. y)
= (f1
. y) by
A17,
A86,
A92,
FUNCT_4:def 1
.= (f
. y) by
A92,
FUNCT_1: 49;
end;
case
A93: y
in K11;
then y
in ((
dom f1)
\/ (
dom f2)) by
A17,
XBOOLE_0:def 3;
hence (h
. y)
= (f2
. y) by
A17,
A86,
A93,
FUNCT_4:def 1
.= (f
. y) by
A93,
FUNCT_1: 49;
end;
end;
hence thesis;
end;
K0
= the
carrier of ((
TOP-REAL 2)
| K0) by
PRE_TOPC: 8
.= (
dom f) by
A74,
FUNCT_2:def 1;
hence thesis by
A87,
A88,
A90,
FUNCT_1: 2,
PRE_TOPC: 8;
end;
theorem ::
JGRAPH_4:28
Th28: for sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphW )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set cn = (
sqrt (1
- (sn
^2 )));
set p0 =
|[cn, (
- sn)]|;
assume
A1: (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphW )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (sn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A2: (p0
`1 )
= cn & (1
- (sn
^2 ))
>
0 by
EUCLID: 52,
XREAL_1: 50;
then p0
<> (
0. (
TOP-REAL 2)) by
JGRAPH_2: 3,
SQUARE_1: 25;
then not p0
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
then
reconsider D = B0 as non
empty
Subset of (
TOP-REAL 2) by
A1,
XBOOLE_0:def 5;
(p0
`1 )
>
0 by
A2,
SQUARE_1: 25;
then p0
in K0 by
A1,
JGRAPH_2: 3;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
A3: K1
c= D
proof
let x be
object;
assume x
in K1;
then
consider p2 be
Point of (
TOP-REAL 2) such that
A4: p2
= x and (p2
`1 )
>=
0 and
A5: p2
<> (
0. (
TOP-REAL 2)) by
A1;
not p2
in
{(
0. (
TOP-REAL 2))} by
A5,
TARSKI:def 1;
hence thesis by
A1,
A4,
XBOOLE_0:def 5;
end;
for p be
Point of ((
TOP-REAL 2)
| K1), V be
Subset of ((
TOP-REAL 2)
| D) st (f
. p)
in V & V is
open holds ex W be
Subset of ((
TOP-REAL 2)
| K1) st p
in W & W is
open & (f
.: W)
c= V
proof
let p be
Point of ((
TOP-REAL 2)
| K1), V be
Subset of ((
TOP-REAL 2)
| D);
assume that
A6: (f
. p)
in V and
A7: V is
open;
consider V2 be
Subset of (
TOP-REAL 2) such that
A8: V2 is
open and
A9: (V2
/\ (
[#] ((
TOP-REAL 2)
| D)))
= V by
A7,
TOPS_2: 24;
reconsider W2 = (V2
/\ (
[#] ((
TOP-REAL 2)
| K1))) as
Subset of ((
TOP-REAL 2)
| K1);
A10: (
[#] ((
TOP-REAL 2)
| K1))
= K1 by
PRE_TOPC:def 5;
then
A11: (f
. p)
= ((sn
-FanMorphW )
. p) by
A1,
FUNCT_1: 49;
A12: (f
.: W2)
c= V
proof
let y be
object;
assume y
in (f
.: W2);
then
consider x be
object such that
A13: x
in (
dom f) and
A14: x
in W2 and
A15: y
= (f
. x) by
FUNCT_1:def 6;
f is
Function of ((
TOP-REAL 2)
| K1), ((
TOP-REAL 2)
| D);
then (
dom f)
= K1 by
A10,
FUNCT_2:def 1;
then
consider p4 be
Point of (
TOP-REAL 2) such that
A16: x
= p4 and
A17: (p4
`1 )
>=
0 and p4
<> (
0. (
TOP-REAL 2)) by
A1,
A13;
A18: p4
in V2 by
A14,
A16,
XBOOLE_0:def 4;
p4
in (
[#] ((
TOP-REAL 2)
| K1)) by
A13,
A16;
then p4
in D by
A3,
A10;
then
A19: p4
in (
[#] ((
TOP-REAL 2)
| D)) by
PRE_TOPC:def 5;
(f
. p4)
= ((sn
-FanMorphW )
. p4) by
A1,
A10,
A13,
A16,
FUNCT_1: 49
.= p4 by
A17,
Th16;
hence thesis by
A9,
A15,
A16,
A18,
A19,
XBOOLE_0:def 4;
end;
p
in the
carrier of ((
TOP-REAL 2)
| K1);
then
consider q be
Point of (
TOP-REAL 2) such that
A20: q
= p and
A21: (q
`1 )
>=
0 and q
<> (
0. (
TOP-REAL 2)) by
A1,
A10;
((sn
-FanMorphW )
. q)
= q by
A21,
Th16;
then p
in V2 by
A6,
A9,
A11,
A20,
XBOOLE_0:def 4;
then
A22: p
in W2 by
XBOOLE_0:def 4;
W2 is
open by
A8,
TOPS_2: 24;
hence thesis by
A22,
A12;
end;
hence thesis by
JGRAPH_2: 10;
end;
theorem ::
JGRAPH_4:29
Th29: for B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0) st B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds K0 is
closed
proof
set J0 = (
NonZero (
TOP-REAL 2));
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`1 )
<=
0 ;
set I1 = { p :
P[p] & p
<> (
0. (
TOP-REAL 2)) };
let B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0);
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A1: I1
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ J0) from
JGRAPH_3:sch 2;
assume B0
= J0 & K0
= I1;
then K1 is
closed & K0
= (K1
/\ (
[#] ((
TOP-REAL 2)
| B0))) by
A1,
JORDAN6: 5,
PRE_TOPC:def 5;
hence thesis by
PRE_TOPC: 13;
end;
theorem ::
JGRAPH_4:30
Th30: for sn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphW )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`1 )
<=
0 & $1
<> (
0. (
TOP-REAL 2));
let sn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0);
reconsider K1 = { p :
P[p] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
assume
A1: (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphW )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
K0
c= B0
proof
let x be
object;
assume x
in K0;
then
A2: ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & (p8
`1 )
<=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A1;
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A1,
A2,
XBOOLE_0:def 5;
end;
then (((
TOP-REAL 2)
| B0)
| K0)
= ((
TOP-REAL 2)
| K1) by
A1,
PRE_TOPC: 7;
hence thesis by
A1,
Th27;
end;
theorem ::
JGRAPH_4:31
Th31: for B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0) st B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds K0 is
closed
proof
set J0 = (
NonZero (
TOP-REAL 2));
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`1 )
>=
0 ;
set I1 = { p :
P[p] & p
<> (
0. (
TOP-REAL 2)) };
let B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0);
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A1: I1
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ J0) from
JGRAPH_3:sch 2;
assume B0
= J0 & K0
= I1;
then K1 is
closed & K0
= (K1
/\ (
[#] ((
TOP-REAL 2)
| B0))) by
A1,
JORDAN6: 4,
PRE_TOPC:def 5;
hence thesis by
PRE_TOPC: 13;
end;
theorem ::
JGRAPH_4:32
Th32: for sn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphW )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let sn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0);
the
carrier of ((
TOP-REAL 2)
| B0)
= B0 by
PRE_TOPC: 8;
then
reconsider K1 = K0 as
Subset of (
TOP-REAL 2) by
XBOOLE_1: 1;
assume
A1: (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphW )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
K0
c= B0
proof
let x be
object;
assume x
in K0;
then
A2: ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & (p8
`1 )
>=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A1;
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A1,
A2,
XBOOLE_0:def 5;
end;
then (((
TOP-REAL 2)
| B0)
| K0)
= ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 7;
hence thesis by
A1,
Th28;
end;
theorem ::
JGRAPH_4:33
Th33: for sn be
Real, p be
Point of (
TOP-REAL 2) holds
|.((sn
-FanMorphW )
. p).|
=
|.p.|
proof
let sn be
Real, p be
Point of (
TOP-REAL 2);
set z = ((sn
-FanMorphW )
. p);
reconsider q = p, qz = z as
Point of (
TOP-REAL 2);
per cases ;
suppose
A1: ((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
<
0 ;
then
A2: ((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
Th16;
then
A3: (qz
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))) by
EUCLID: 52;
A4: (qz
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))) by
A2,
EUCLID: 52;
A5: (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A1,
XREAL_1: 48;
A6: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
|.q.|
<>
0 by
A1,
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A7: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A6,
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A7,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then
A8: (1
- sn)
>= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
per cases ;
suppose
A9: (1
- sn)
=
0 ;
A10: ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
= ((((q
`2 )
/
|.q.|)
- sn)
* ((1
- sn)
" )) by
XCMPLX_0:def 9
.= ((((q
`2 )
/
|.q.|)
- sn)
*
0 ) by
A9
.=
0 ;
then (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))
= (
- 1) by
SQUARE_1: 18;
then ((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- 1)), (
|.q.|
*
0 )]| by
A1,
A10,
Th16
.=
|[(
-
|.q.|),
0 ]|;
then (((sn
-FanMorphW )
. q)
`1 )
= (
-
|.q.|) & (((sn
-FanMorphW )
. q)
`2 )
=
0 by
EUCLID: 52;
then
|.((sn
-FanMorphW )
. p).|
= (
sqrt (((
-
|.q.|)
^2 )
+ (
0
^2 ))) by
JGRAPH_3: 1
.= (
sqrt (
|.q.|
^2 ))
.=
|.q.| by
SQUARE_1: 22;
hence thesis;
end;
suppose
A11: (1
- sn)
<>
0 ;
per cases by
A11;
suppose
A12: (1
- sn)
>
0 ;
(
- (1
- sn))
<= (
- (((q
`2 )
/
|.q.|)
- sn)) by
A8,
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A12,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A12,
XCMPLX_1: 197;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A5,
A12,
SQUARE_1: 49;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A13: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A14: ((qz
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
^2 )) by
A3
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))) by
A13,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A4,
A14;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
hence thesis by
SQUARE_1: 22;
end;
suppose
A15: (1
- sn)
<
0 ;
(
0
+ ((q
`2 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A1,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A7,
A6,
XREAL_1: 74;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A7,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then
A16: 1
> ((q
`2 )
/
|.p.|) by
SQUARE_1: 52;
(((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A1,
XREAL_1: 48;
hence thesis by
A15,
A16,
XREAL_1: 9;
end;
end;
end;
suppose
A17: ((q
`2 )
/
|.q.|)
< sn & (q
`1 )
<
0 ;
then
|.q.|
<>
0 by
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A18: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A19: (((q
`2 )
/
|.q.|)
- sn)
<
0 by
A17,
XREAL_1: 49;
A20: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A20,
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A18,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then
A21: ((
- 1)
- sn)
<= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
A22: ((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]| by
A17,
Th17;
then
A23: (qz
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))) by
EUCLID: 52;
A24: (qz
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
A22,
EUCLID: 52;
per cases ;
suppose
A25: (1
+ sn)
=
0 ;
((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
= ((((q
`2 )
/
|.q.|)
- sn)
* ((1
+ sn)
" )) by
XCMPLX_0:def 9
.= ((((q
`2 )
/
|.q.|)
- sn)
*
0 ) by
A25
.=
0 ;
then (((sn
-FanMorphW )
. q)
`1 )
= (
-
|.q.|) & (((sn
-FanMorphW )
. q)
`2 )
=
0 by
A22,
EUCLID: 52,
SQUARE_1: 18;
then
|.((sn
-FanMorphW )
. p).|
= (
sqrt (((
-
|.q.|)
^2 )
+ (
0
^2 ))) by
JGRAPH_3: 1
.= (
sqrt (
|.q.|
^2 ))
.=
|.q.| by
SQUARE_1: 22;
hence thesis;
end;
suppose
A26: (1
+ sn)
<>
0 ;
per cases by
A26;
suppose
A27: (1
+ sn)
>
0 ;
then ((
- (1
+ sn))
/ (1
+ sn))
<= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)) by
A21,
XREAL_1: 72;
then (
- 1)
<= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)) by
A27,
XCMPLX_1: 197;
then (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A19,
A27,
SQUARE_1: 49;
then
A28: (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
A29: ((qz
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
^2 )) by
A23
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))) by
A28,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A24,
A29;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
hence thesis by
SQUARE_1: 22;
end;
suppose
A30: (1
+ sn)
<
0 ;
(
0
+ ((q
`2 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A17,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A18,
A20,
XREAL_1: 74;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A18,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then (
- 1)
< ((q
`2 )
/
|.p.|) by
SQUARE_1: 52;
then
A31: (((q
`2 )
/
|.q.|)
- sn)
> ((
- 1)
- sn) by
XREAL_1: 9;
(
- (1
+ sn))
> (
-
0 ) by
A30,
XREAL_1: 24;
hence thesis by
A17,
A31,
XREAL_1: 49;
end;
end;
end;
suppose (q
`1 )
>=
0 ;
hence thesis by
Th16;
end;
end;
theorem ::
JGRAPH_4:34
Th34: for sn be
Real, x,K0 be
set st (
- 1)
< sn & sn
< 1 & x
in K0 & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds ((sn
-FanMorphW )
. x)
in K0
proof
let sn be
Real, x,K0 be
set;
assume
A1: (
- 1)
< sn & sn
< 1 & x
in K0 & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then
consider p such that
A2: p
= x and
A3: (p
`1 )
<=
0 and
A4: p
<> (
0. (
TOP-REAL 2));
A5:
now
assume
|.p.|
<=
0 ;
then
|.p.|
=
0 ;
hence contradiction by
A4,
TOPRNS_1: 24;
end;
then
A6: (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
per cases ;
suppose
A7: ((p
`2 )
/
|.p.|)
<= sn;
reconsider p9 = ((sn
-FanMorphW )
. p) as
Point of (
TOP-REAL 2);
((sn
-FanMorphW )
. p)
=
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]| by
A1,
A3,
A4,
A7,
Th18;
then
A8: (p9
`1 )
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))) by
EUCLID: 52;
A9: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
A10: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
per cases ;
suppose (p
`1 )
=
0 ;
hence thesis by
A1,
A2,
Th16;
end;
suppose (p
`1 )
<>
0 ;
then (
0
+ ((p
`2 )
^2 ))
< (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
SQUARE_1: 12,
XREAL_1: 8;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
< ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A6,
A9,
XREAL_1: 74;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
< 1 by
A6,
XCMPLX_1: 60;
then (((p
`2 )
/
|.p.|)
^2 )
< 1 by
XCMPLX_1: 76;
then (
- 1)
< ((p
`2 )
/
|.p.|) by
SQUARE_1: 52;
then ((
- 1)
- sn)
< (((p
`2 )
/
|.p.|)
- sn) by
XREAL_1: 9;
then (((
- 1)
* (1
+ sn))
/ (1
+ sn))
< ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)) by
A10,
XREAL_1: 74;
then
A11: (
- 1)
< ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)) by
A10,
XCMPLX_1: 89;
(((p
`2 )
/
|.p.|)
- sn)
<=
0 by
A7,
XREAL_1: 47;
then (1
^2 )
> (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ) by
A10,
A11,
SQUARE_1: 50;
then (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))
>
0 by
XREAL_1: 50;
then (
- (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))))
>
0 by
SQUARE_1: 25;
then (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))
<
0 ;
then (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))))
<
0 by
A5,
XREAL_1: 132;
hence thesis by
A1,
A2,
A8,
JGRAPH_2: 3;
end;
end;
suppose
A12: ((p
`2 )
/
|.p.|)
> sn;
reconsider p9 = ((sn
-FanMorphW )
. p) as
Point of (
TOP-REAL 2);
((sn
-FanMorphW )
. p)
=
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]| by
A1,
A3,
A4,
A12,
Th18;
then
A13: (p9
`1 )
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))) by
EUCLID: 52;
A14: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
A15: (1
- sn)
>
0 by
A1,
XREAL_1: 149;
per cases ;
suppose (p
`1 )
=
0 ;
hence thesis by
A1,
A2,
Th16;
end;
suppose (p
`1 )
<>
0 ;
then (
0
+ ((p
`2 )
^2 ))
< (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
SQUARE_1: 12,
XREAL_1: 8;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
< ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A6,
A14,
XREAL_1: 74;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
< 1 by
A6,
XCMPLX_1: 60;
then (((p
`2 )
/
|.p.|)
^2 )
< 1 by
XCMPLX_1: 76;
then ((p
`2 )
/
|.p.|)
< 1 by
SQUARE_1: 52;
then (((p
`2 )
/
|.p.|)
- sn)
< (1
- sn) by
XREAL_1: 9;
then ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
< ((1
- sn)
/ (1
- sn)) by
A15,
XREAL_1: 74;
then
A16: ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
< 1 by
A15,
XCMPLX_1: 60;
(
- (1
- sn))
< (
-
0 ) & (((p
`2 )
/
|.p.|)
- sn)
>= (sn
- sn) by
A12,
A15,
XREAL_1: 9,
XREAL_1: 24;
then (((
- 1)
* (1
- sn))
/ (1
- sn))
< ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)) by
A15,
XREAL_1: 74;
then (
- 1)
< ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)) by
A15,
XCMPLX_1: 89;
then (1
^2 )
> (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ) by
A16,
SQUARE_1: 50;
then (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))
>
0 by
XREAL_1: 50;
then (
- (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))))
>
0 by
SQUARE_1: 25;
then (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))
<
0 ;
then (p9
`1 )
<
0 by
A5,
A13,
XREAL_1: 132;
hence thesis by
A1,
A2,
JGRAPH_2: 3;
end;
end;
end;
theorem ::
JGRAPH_4:35
Th35: for sn be
Real, x,K0 be
set st (
- 1)
< sn & sn
< 1 & x
in K0 & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds ((sn
-FanMorphW )
. x)
in K0
proof
let sn be
Real, x,K0 be
set;
assume
A1: (
- 1)
< sn & sn
< 1 & x
in K0 & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then ex p st p
= x & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2));
hence thesis by
A1,
Th16;
end;
scheme ::
JGRAPH_4:sch1
InclSub { D() -> non
empty
Subset of (
TOP-REAL 2) , P[
set] } :
{ p : P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D())
provided
A1: D()
= (
NonZero (
TOP-REAL 2));
let x be
object;
assume x
in { p : P[p] & p
<> (
0. (
TOP-REAL 2)) };
then
A2: ex p st x
= p & P[p] & p
<> (
0. (
TOP-REAL 2));
A3: (D()
` )
=
{(
0. (
TOP-REAL 2))} by
A1,
JGRAPH_3: 20;
now
assume not x
in D();
then x
in (the
carrier of (
TOP-REAL 2)
\ D()) by
A2,
XBOOLE_0:def 5;
then x
in (D()
` ) by
SUBSET_1:def 4;
hence contradiction by
A3,
A2,
TARSKI:def 1;
end;
hence thesis by
PRE_TOPC: 8;
end;
theorem ::
JGRAPH_4:36
Th36: for sn be
Real, D be non
empty
Subset of (
TOP-REAL 2) st (
- 1)
< sn & sn
< 1 & (D
` )
=
{(
0. (
TOP-REAL 2))} holds ex h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) st h
= ((sn
-FanMorphW )
| D) & h is
continuous
proof
(
|[
0 , 1]|
`1 )
=
0 & (
|[
0 , 1]|
`2 )
= 1 by
EUCLID: 52;
then
A1:
|[
0 , 1]|
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } by
JGRAPH_2: 3;
set Y1 =
|[
0 , 1]|;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`1 )
<=
0 ;
reconsider B0 =
{(
0. (
TOP-REAL 2))} as
Subset of (
TOP-REAL 2);
let sn be
Real, D be non
empty
Subset of (
TOP-REAL 2);
assume that
A2: (
- 1)
< sn & sn
< 1 and
A3: (D
` )
=
{(
0. (
TOP-REAL 2))};
A4: the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
A5: D
= (B0
` ) by
A3
.= (
NonZero (
TOP-REAL 2)) by
SUBSET_1:def 4;
{ p :
P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D) from
InclSub(
A5);
then
reconsider K0 = { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| D) by
A1;
A6: K0
= the
carrier of (((
TOP-REAL 2)
| D)
| K0) by
PRE_TOPC: 8;
A7: the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
A8: (
rng ((sn
-FanMorphW )
| K0))
c= the
carrier of (((
TOP-REAL 2)
| D)
| K0)
proof
let y be
object;
assume y
in (
rng ((sn
-FanMorphW )
| K0));
then
consider x be
object such that
A9: x
in (
dom ((sn
-FanMorphW )
| K0)) and
A10: y
= (((sn
-FanMorphW )
| K0)
. x) by
FUNCT_1:def 3;
x
in ((
dom (sn
-FanMorphW ))
/\ K0) by
A9,
RELAT_1: 61;
then
A11: x
in K0 by
XBOOLE_0:def 4;
K0
c= the
carrier of (
TOP-REAL 2) by
A7,
XBOOLE_1: 1;
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A11;
((sn
-FanMorphW )
. p)
= y by
A10,
A11,
FUNCT_1: 49;
then y
in K0 by
A2,
A11,
Th34;
hence thesis by
PRE_TOPC: 8;
end;
A12: K0
c= the
carrier of (
TOP-REAL 2)
proof
let z be
object;
assume z
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st p8
= z & (p8
`1 )
<=
0 & p8
<> (
0. (
TOP-REAL 2));
hence thesis;
end;
(Y1
`1 )
=
0 & (Y1
`2 )
= 1 by
EUCLID: 52;
then
A13: Y1
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } by
JGRAPH_2: 3;
A14: the
carrier of ((
TOP-REAL 2)
| D)
= (
NonZero (
TOP-REAL 2)) by
A5,
PRE_TOPC: 8;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`1 )
>=
0 ;
{ p :
P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D) from
InclSub(
A5);
then
reconsider K1 = { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| D) by
A13;
A15: K0 is
closed & K1 is
closed by
A5,
Th29,
Th31;
(
dom ((sn
-FanMorphW )
| K0))
= ((
dom (sn
-FanMorphW ))
/\ K0) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K0) by
FUNCT_2:def 1
.= K0 by
A12,
XBOOLE_1: 28;
then
reconsider f = ((sn
-FanMorphW )
| K0) as
Function of (((
TOP-REAL 2)
| D)
| K0), ((
TOP-REAL 2)
| D) by
A6,
A8,
FUNCT_2: 2,
XBOOLE_1: 1;
A16: K1
= the
carrier of (((
TOP-REAL 2)
| D)
| K1) by
PRE_TOPC: 8;
A17: (
rng ((sn
-FanMorphW )
| K1))
c= the
carrier of (((
TOP-REAL 2)
| D)
| K1)
proof
let y be
object;
assume y
in (
rng ((sn
-FanMorphW )
| K1));
then
consider x be
object such that
A18: x
in (
dom ((sn
-FanMorphW )
| K1)) and
A19: y
= (((sn
-FanMorphW )
| K1)
. x) by
FUNCT_1:def 3;
x
in ((
dom (sn
-FanMorphW ))
/\ K1) by
A18,
RELAT_1: 61;
then
A20: x
in K1 by
XBOOLE_0:def 4;
K1
c= the
carrier of (
TOP-REAL 2) by
A7,
XBOOLE_1: 1;
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A20;
((sn
-FanMorphW )
. p)
= y by
A19,
A20,
FUNCT_1: 49;
then y
in K1 by
A2,
A20,
Th35;
hence thesis by
PRE_TOPC: 8;
end;
A21: K1
c= the
carrier of (
TOP-REAL 2)
proof
let z be
object;
assume z
in K1;
then ex p8 be
Point of (
TOP-REAL 2) st p8
= z & (p8
`1 )
>=
0 & p8
<> (
0. (
TOP-REAL 2));
hence thesis;
end;
(
dom ((sn
-FanMorphW )
| K1))
= ((
dom (sn
-FanMorphW ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
A21,
XBOOLE_1: 28;
then
reconsider g = ((sn
-FanMorphW )
| K1) as
Function of (((
TOP-REAL 2)
| D)
| K1), ((
TOP-REAL 2)
| D) by
A16,
A17,
FUNCT_2: 2,
XBOOLE_1: 1;
A22: K1
= (
[#] (((
TOP-REAL 2)
| D)
| K1)) by
PRE_TOPC:def 5;
A23: D
c= (K0
\/ K1)
proof
let x be
object;
assume
A24: x
in D;
then
reconsider px = x as
Point of (
TOP-REAL 2);
not x
in
{(
0. (
TOP-REAL 2))} by
A5,
A24,
XBOOLE_0:def 5;
then (px
`1 )
<=
0 & px
<> (
0. (
TOP-REAL 2)) or (px
`1 )
>=
0 & px
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
then x
in K0 or x
in K1;
hence thesis by
XBOOLE_0:def 3;
end;
A25: (
dom f)
= K0 by
A6,
FUNCT_2:def 1;
A26: K0
= (
[#] (((
TOP-REAL 2)
| D)
| K0)) by
PRE_TOPC:def 5;
A27: for x be
object st x
in ((
[#] (((
TOP-REAL 2)
| D)
| K0))
/\ (
[#] (((
TOP-REAL 2)
| D)
| K1))) holds (f
. x)
= (g
. x)
proof
let x be
object;
assume
A28: x
in ((
[#] (((
TOP-REAL 2)
| D)
| K0))
/\ (
[#] (((
TOP-REAL 2)
| D)
| K1)));
then x
in K0 by
A26,
XBOOLE_0:def 4;
then (f
. x)
= ((sn
-FanMorphW )
. x) by
FUNCT_1: 49;
hence thesis by
A22,
A28,
FUNCT_1: 49;
end;
D
= (
[#] ((
TOP-REAL 2)
| D)) by
PRE_TOPC:def 5;
then
A29: ((
[#] (((
TOP-REAL 2)
| D)
| K0))
\/ (
[#] (((
TOP-REAL 2)
| D)
| K1)))
= (
[#] ((
TOP-REAL 2)
| D)) by
A26,
A22,
A23,
XBOOLE_0:def 10;
A30: f is
continuous & g is
continuous by
A2,
A5,
Th30,
Th32;
then
consider h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) such that
A31: h
= (f
+* g) and h is
continuous by
A26,
A22,
A29,
A15,
A27,
JGRAPH_2: 1;
A32: (
dom h)
= the
carrier of ((
TOP-REAL 2)
| D) by
FUNCT_2:def 1;
A33: (
dom g)
= K1 by
A16,
FUNCT_2:def 1;
K0
= (
[#] (((
TOP-REAL 2)
| D)
| K0)) & K1
= (
[#] (((
TOP-REAL 2)
| D)
| K1)) by
PRE_TOPC:def 5;
then
A34: f
tolerates g by
A27,
A25,
A33,
PARTFUN1:def 4;
A35: for x be
object st x
in (
dom h) holds (h
. x)
= (((sn
-FanMorphW )
| D)
. x)
proof
let x be
object;
assume
A36: x
in (
dom h);
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A14,
XBOOLE_0:def 5;
A37: x
in ((D
` )
` ) by
A32,
A36,
PRE_TOPC: 8;
not x
in
{(
0. (
TOP-REAL 2))} by
A14,
A36,
XBOOLE_0:def 5;
then
A38: x
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
per cases ;
suppose
A39: x
in K0;
A40: (((sn
-FanMorphW )
| D)
. p)
= ((sn
-FanMorphW )
. p) by
A37,
FUNCT_1: 49
.= (f
. p) by
A39,
FUNCT_1: 49;
(h
. p)
= ((g
+* f)
. p) by
A31,
A34,
FUNCT_4: 34
.= (f
. p) by
A25,
A39,
FUNCT_4: 13;
hence thesis by
A40;
end;
suppose not x
in K0;
then not (p
`1 )
<=
0 by
A38;
then
A41: x
in K1 by
A38;
(((sn
-FanMorphW )
| D)
. p)
= ((sn
-FanMorphW )
. p) by
A37,
FUNCT_1: 49
.= (g
. p) by
A41,
FUNCT_1: 49;
hence thesis by
A31,
A33,
A41,
FUNCT_4: 13;
end;
end;
(
dom (sn
-FanMorphW ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then (
dom ((sn
-FanMorphW )
| D))
= (the
carrier of (
TOP-REAL 2)
/\ D) by
RELAT_1: 61
.= the
carrier of ((
TOP-REAL 2)
| D) by
A4,
XBOOLE_1: 28;
then (f
+* g)
= ((sn
-FanMorphW )
| D) by
A31,
A32,
A35,
FUNCT_1: 2;
hence thesis by
A26,
A22,
A29,
A30,
A15,
A27,
JGRAPH_2: 1;
end;
Lm11: the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
theorem ::
JGRAPH_4:37
Th37: for sn be
Real st (
- 1)
< sn & sn
< 1 holds ex h be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st h
= (sn
-FanMorphW ) & h is
continuous
proof
reconsider D = (
NonZero (
TOP-REAL 2)) as non
empty
Subset of (
TOP-REAL 2) by
JGRAPH_2: 9;
let sn be
Real;
assume that
A1: (
- 1)
< sn and
A2: sn
< 1;
reconsider f = (sn
-FanMorphW ) as
Function of (
TOP-REAL 2), (
TOP-REAL 2);
A3: (f
. (
0. (
TOP-REAL 2)))
= (
0. (
TOP-REAL 2)) by
Th16,
JGRAPH_2: 3;
A4: for p be
Point of ((
TOP-REAL 2)
| D) holds (f
. p)
<> (f
. (
0. (
TOP-REAL 2)))
proof
let p be
Point of ((
TOP-REAL 2)
| D);
A5: (
[#] ((
TOP-REAL 2)
| D))
= D by
PRE_TOPC:def 5;
then
reconsider q = p as
Point of (
TOP-REAL 2) by
XBOOLE_0:def 5;
not p
in
{(
0. (
TOP-REAL 2))} by
A5,
XBOOLE_0:def 5;
then
A6: p
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
per cases ;
suppose
A7: ((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
<=
0 ;
set q9 =
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]|;
A8: (q9
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
A9: (q9
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))) by
EUCLID: 52;
now
assume
A10: q9
= (
0. (
TOP-REAL 2));
A11:
|.q.|
<> (
0
^2 ) by
A6,
TOPRNS_1: 24;
then (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))
= (
- (
sqrt (1
-
0 ))) by
A8,
A10,
JGRAPH_2: 3,
XCMPLX_1: 6
.= (
- 1) by
SQUARE_1: 18;
hence contradiction by
A9,
A10,
A11,
JGRAPH_2: 3,
XCMPLX_1: 6;
end;
hence thesis by
A1,
A2,
A3,
A6,
A7,
Th18;
end;
suppose
A12: ((q
`2 )
/
|.q.|)
< sn & (q
`1 )
<=
0 ;
set q9 =
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]|;
A13: (q9
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
A14: (q9
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))) by
EUCLID: 52;
now
assume
A15: q9
= (
0. (
TOP-REAL 2));
A16:
|.q.|
<> (
0
^2 ) by
A6,
TOPRNS_1: 24;
then (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))
= (
- (
sqrt (1
-
0 ))) by
A13,
A15,
JGRAPH_2: 3,
XCMPLX_1: 6
.= (
- 1) by
SQUARE_1: 18;
hence contradiction by
A14,
A15,
A16,
JGRAPH_2: 3,
XCMPLX_1: 6;
end;
hence thesis by
A1,
A2,
A3,
A6,
A12,
Th18;
end;
suppose (q
`1 )
>
0 ;
then (f
. p)
= p by
Th16;
hence thesis by
A6,
Th16,
JGRAPH_2: 3;
end;
end;
A17: for V be
Subset of (
TOP-REAL 2) st (f
. (
0. (
TOP-REAL 2)))
in V & V is
open holds ex W be
Subset of (
TOP-REAL 2) st (
0. (
TOP-REAL 2))
in W & W is
open & (f
.: W)
c= V
proof
reconsider u0 = (
0. (
TOP-REAL 2)) as
Point of (
Euclid 2) by
EUCLID: 67;
let V be
Subset of (
TOP-REAL 2);
reconsider VV = V as
Subset of (
TopSpaceMetr (
Euclid 2)) by
Lm11;
assume that
A18: (f
. (
0. (
TOP-REAL 2)))
in V and
A19: V is
open;
VV is
open by
A19,
Lm11,
PRE_TOPC: 30;
then
consider r be
Real such that
A20: r
>
0 and
A21: (
Ball (u0,r))
c= V by
A3,
A18,
TOPMETR: 15;
reconsider r as
Real;
the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
then
reconsider W1 = (
Ball (u0,r)) as
Subset of (
TOP-REAL 2);
A22: W1 is
open by
GOBOARD6: 3;
A23: (f
.: W1)
c= W1
proof
let z be
object;
assume z
in (f
.: W1);
then
consider y be
object such that
A24: y
in (
dom f) and
A25: y
in W1 and
A26: z
= (f
. y) by
FUNCT_1:def 6;
z
in (
rng f) by
A24,
A26,
FUNCT_1:def 3;
then
reconsider qz = z as
Point of (
TOP-REAL 2);
reconsider pz = qz as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider q = y as
Point of (
TOP-REAL 2) by
A24;
reconsider qy = q as
Point of (
Euclid 2) by
EUCLID: 67;
(
dist (u0,qy))
< r by
A25,
METRIC_1: 11;
then
A27:
|.((
0. (
TOP-REAL 2))
- q).|
< r by
JGRAPH_1: 28;
per cases by
JGRAPH_2: 3;
suppose (q
`1 )
>=
0 ;
hence thesis by
A25,
A26,
Th16;
end;
suppose
A28: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
<=
0 ;
then
A29: (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
XREAL_1: 48;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A30: (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
A31: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
|.q.|
<>
0 by
A28,
TOPRNS_1: 24;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A30,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- sn)
>= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
<= (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A31,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A31,
XCMPLX_1: 197;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A31,
A29,
SQUARE_1: 49;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A32: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A33: ((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
A1,
A2,
A28,
Th18;
then
A34: (qz
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))) by
A26,
EUCLID: 52;
(qz
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))) by
A26,
A33,
EUCLID: 52;
then
A35: ((qz
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))) by
A32,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A34,
A35;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A36:
|.qz.|
=
|.q.| by
SQUARE_1: 22;
|.(
- q).|
< r by
A27,
RLVECT_1: 4;
then
|.q.|
< r by
TOPRNS_1: 26;
then
|.(
- qz).|
< r by
A36,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- qz).|
< r by
RLVECT_1: 4;
then (
dist (u0,pz))
< r by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 11;
end;
suppose
A37: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
/
|.q.|)
< sn & (q
`1 )
<=
0 ;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A38: (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
A39: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
|.q.|
<>
0 by
A37,
TOPRNS_1: 24;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A38,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then (
- (
- 1))
>= (
- ((q
`2 )
/
|.q.|)) by
XREAL_1: 24;
then (1
+ sn)
>= ((
- ((q
`2 )
/
|.q.|))
+ sn) by
XREAL_1: 7;
then
A40: ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
<= 1 by
A39,
XREAL_1: 185;
(sn
- ((q
`2 )
/
|.q.|))
>=
0 by
A37,
XREAL_1: 48;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn)) by
A39;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A40,
SQUARE_1: 49;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A41: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A42: ((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]| by
A1,
A2,
A37,
Th18;
then
A43: (qz
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
A26,
EUCLID: 52;
(qz
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))) by
A26,
A42,
EUCLID: 52;
then
A44: ((qz
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))) by
A41,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A43,
A44;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A45:
|.qz.|
=
|.q.| by
SQUARE_1: 22;
|.(
- q).|
< r by
A27,
RLVECT_1: 4;
then
|.q.|
< r by
TOPRNS_1: 26;
then
|.(
- qz).|
< r by
A45,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- qz).|
< r by
RLVECT_1: 4;
then (
dist (u0,pz))
< r by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 11;
end;
end;
u0
in W1 by
A20,
GOBOARD6: 1;
hence thesis by
A21,
A22,
A23,
XBOOLE_1: 1;
end;
A46: (D
` )
=
{(
0. (
TOP-REAL 2))} by
JGRAPH_3: 20;
then ex h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) st h
= ((sn
-FanMorphW )
| D) & h is
continuous by
A1,
A2,
Th36;
hence thesis by
A3,
A46,
A4,
A17,
JGRAPH_3: 3;
end;
theorem ::
JGRAPH_4:38
Th38: for sn be
Real st (
- 1)
< sn & sn
< 1 holds (sn
-FanMorphW ) is
one-to-one
proof
let sn be
Real;
assume that
A1: (
- 1)
< sn and
A2: sn
< 1;
for x1,x2 be
object st x1
in (
dom (sn
-FanMorphW )) & x2
in (
dom (sn
-FanMorphW )) & ((sn
-FanMorphW )
. x1)
= ((sn
-FanMorphW )
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume that
A3: x1
in (
dom (sn
-FanMorphW )) and
A4: x2
in (
dom (sn
-FanMorphW )) and
A5: ((sn
-FanMorphW )
. x1)
= ((sn
-FanMorphW )
. x2);
reconsider p2 = x2 as
Point of (
TOP-REAL 2) by
A4;
reconsider p1 = x1 as
Point of (
TOP-REAL 2) by
A3;
set q = p1, p = p2;
A6: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
now
per cases by
JGRAPH_2: 3;
case
A7: (q
`1 )
>=
0 ;
then
A8: ((sn
-FanMorphW )
. q)
= q by
Th16;
now
per cases by
JGRAPH_2: 3;
case (p
`1 )
>=
0 ;
hence thesis by
A5,
A8,
Th16;
end;
case
A9: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
<=
0 ;
set p4 =
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|;
A10: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
0
<= ((p
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((p
`2 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
XREAL_1: 7;
then
A11: (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A10,
XREAL_1: 72;
A12:
|.p.|
>
0 by
A9,
Lm1;
then (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A11,
XCMPLX_1: 60;
then (((p
`2 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((p
`2 )
/
|.p.|) by
SQUARE_1: 51;
then (1
- sn)
>= (((p
`2 )
/
|.p.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
<= (
- (((p
`2 )
/
|.p.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn)) by
A6,
XREAL_1: 72;
then
A13: (
- 1)
<= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn)) by
A6,
XCMPLX_1: 197;
A14: (((p
`2 )
/
|.p.|)
- sn)
>=
0 by
A9,
XREAL_1: 48;
A15: ((sn
-FanMorphW )
. p)
=
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]| by
A1,
A2,
A9,
Th18;
(((p
`2 )
/
|.p.|)
- sn)
>=
0 by
A9,
XREAL_1: 48;
then (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A6,
A13,
SQUARE_1: 49;
then
A16: (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then (
sqrt (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
^2 )
/ ((1
- sn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
^2 )
/ ((1
- sn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p4
`1 )
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))) & (q
`1 )
=
0 by
A5,
A7,
A8,
A15,
EUCLID: 52;
then
A17: (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))
=
0 by
A5,
A8,
A15,
A12,
XCMPLX_1: 6;
(1
- ((
- ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
A16,
XCMPLX_1: 187;
then (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))
=
0 by
A17,
SQUARE_1: 24;
then 1
= ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)) by
A6,
A14,
SQUARE_1: 18,
SQUARE_1: 22;
then (1
* (1
- sn))
= (((p
`2 )
/
|.p.|)
- sn) by
A6,
XCMPLX_1: 87;
then (1
*
|.p.|)
= (p
`2 ) by
A12,
XCMPLX_1: 87;
then (p
`1 )
=
0 by
A10,
XCMPLX_1: 6;
hence thesis by
A5,
A8,
Th16;
end;
case
A18: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
/
|.p.|)
< sn & (p
`1 )
<=
0 ;
then
A19: ((sn
-FanMorphW )
. p)
=
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]| by
A1,
A2,
Th18;
set p4 =
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|;
A20: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
0
<= ((p
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((p
`2 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
XREAL_1: 7;
then
A21: (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A20,
XREAL_1: 72;
A22: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
A23: (((p
`2 )
/
|.p.|)
- sn)
<=
0 by
A18,
XREAL_1: 47;
then
A24: (
- 1)
<= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn)) by
A22;
A25:
|.p.|
>
0 by
A18,
Lm1;
then (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A21,
XCMPLX_1: 60;
then (((p
`2 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((
- ((p
`2 )
/
|.p.|))
^2 )
<= 1;
then 1
>= (
- ((p
`2 )
/
|.p.|)) by
SQUARE_1: 51;
then (1
+ sn)
>= ((
- ((p
`2 )
/
|.p.|))
+ sn) by
XREAL_1: 7;
then ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
<= 1 by
A22,
XREAL_1: 185;
then (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A24,
SQUARE_1: 49;
then
A26: (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
then (
sqrt (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
^2 )
/ ((1
+ sn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
^2 )
/ ((1
+ sn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p4
`1 )
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))) & (q
`1 )
=
0 by
A5,
A7,
A8,
A19,
EUCLID: 52;
then
A27: (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))
=
0 by
A5,
A8,
A19,
A25,
XCMPLX_1: 6;
(1
- ((
- ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))
^2 ))
>=
0 by
A26,
XCMPLX_1: 187;
then (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))
=
0 by
A27,
SQUARE_1: 24;
then 1
= (
sqrt ((
- ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))
^2 )) by
SQUARE_1: 18;
then 1
= (
- ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))) by
A22,
A23,
SQUARE_1: 22;
then 1
= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn)) by
XCMPLX_1: 187;
then (1
* (1
+ sn))
= (
- (((p
`2 )
/
|.p.|)
- sn)) by
A22,
XCMPLX_1: 87;
then ((1
+ sn)
- sn)
= (
- ((p
`2 )
/
|.p.|));
then 1
= ((
- (p
`2 ))
/
|.p.|) by
XCMPLX_1: 187;
then (1
*
|.p.|)
= (
- (p
`2 )) by
A25,
XCMPLX_1: 87;
then (((p
`2 )
^2 )
- ((p
`2 )
^2 ))
= ((p
`1 )
^2 ) by
A20,
XCMPLX_1: 26;
then (p
`1 )
=
0 by
XCMPLX_1: 6;
hence thesis by
A5,
A8,
Th16;
end;
end;
hence thesis;
end;
case
A28: ((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
then
|.q.|
>
0 by
Lm1;
then
A29: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]|;
A30: (q4
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
A31: ((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
A1,
A2,
A28,
Th18;
A32: (q4
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))) by
EUCLID: 52;
now
per cases by
JGRAPH_2: 3;
case
A33: (p
`1 )
>=
0 ;
A34: (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A28,
XREAL_1: 48;
A35: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then
A36: (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A35,
XREAL_1: 72;
A37: ((sn
-FanMorphW )
. p)
= p by
A33,
Th16;
A38: (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A28,
XREAL_1: 48;
A39: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
A40:
|.q.|
>
0 by
A28,
Lm1;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A36,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- sn)
>= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
<= (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A39,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A39,
XCMPLX_1: 197;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A39,
A34,
SQUARE_1: 49;
then
A41: (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
^2 )
/ ((1
- sn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
^2 )
/ ((1
- sn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p
`1 )
=
0 by
A5,
A31,
A33,
A37,
EUCLID: 52;
then
A42: (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))
=
0 by
A5,
A31,
A32,
A37,
A40,
XCMPLX_1: 6;
(1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
A41,
XCMPLX_1: 187;
then (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))
=
0 by
A42,
SQUARE_1: 24;
then 1
= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)) by
A39,
A38,
SQUARE_1: 18,
SQUARE_1: 22;
then (1
* (1
- sn))
= (((q
`2 )
/
|.q.|)
- sn) by
A39,
XCMPLX_1: 87;
then (1
*
|.q.|)
= (q
`2 ) by
A40,
XCMPLX_1: 87;
then (q
`1 )
=
0 by
A35,
XCMPLX_1: 6;
hence thesis by
A5,
A37,
Th16;
end;
case
A43: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
<=
0 ;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A29,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- sn)
>= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
<= (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A6,
XREAL_1: 72;
then
A44: (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A6,
XCMPLX_1: 197;
(((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A28,
XREAL_1: 48;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A6,
A44,
SQUARE_1: 49;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A45: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(q4
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))) by
EUCLID: 52;
then
A46: ((q4
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))) by
A45,
SQUARE_1:def 2;
A47: (q4
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A47,
A46;
then (
sqrt (
|.q4.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A48:
|.q4.|
=
|.q.| by
SQUARE_1: 22;
0
<= ((p
`1 )
^2 ) by
XREAL_1: 63;
then (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
0
+ ((p
`2 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A49: (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
XREAL_1: 72;
A50:
|.p.|
>
0 by
A43,
Lm1;
then (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A49,
XCMPLX_1: 60;
then (((p
`2 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((p
`2 )
/
|.p.|) by
SQUARE_1: 51;
then (1
- sn)
>= (((p
`2 )
/
|.p.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
<= (
- (((p
`2 )
/
|.p.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn)) by
A6,
XREAL_1: 72;
then
A51: (
- 1)
<= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn)) by
A6,
XCMPLX_1: 197;
set p4 =
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|;
A52: (p4
`2 )
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
(((p
`2 )
/
|.p.|)
- sn)
>=
0 by
A43,
XREAL_1: 48;
then (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A6,
A51,
SQUARE_1: 49;
then (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A53: (1
- ((
- ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(p4
`1 )
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))) by
EUCLID: 52;
then
A54: ((p4
`1 )
^2 )
= ((
|.p.|
^2 )
* ((
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))
^2 ))
.= ((
|.p.|
^2 )
* (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))) by
A53,
SQUARE_1:def 2;
(
|.p4.|
^2 )
= (((p4
`1 )
^2 )
+ ((p4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.p.|
^2 ) by
A52,
A54;
then (
sqrt (
|.p4.|
^2 ))
=
|.p.| by
SQUARE_1: 22;
then
A55:
|.p4.|
=
|.p.| by
SQUARE_1: 22;
A56: ((sn
-FanMorphW )
. p)
=
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]| by
A1,
A2,
A43,
Th18;
then ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
= ((
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))
/
|.p.|) by
A5,
A31,
A30,
A52,
A50,
XCMPLX_1: 89;
then ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)) by
A5,
A31,
A56,
A48,
A50,
A55,
XCMPLX_1: 89;
then (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
* (1
- sn))
= (((q
`2 )
/
|.q.|)
- sn) by
A6,
XCMPLX_1: 87;
then (((p
`2 )
/
|.p.|)
- sn)
= (((q
`2 )
/
|.q.|)
- sn) by
A6,
XCMPLX_1: 87;
then (((p
`2 )
/
|.p.|)
*
|.p.|)
= (q
`2 ) by
A5,
A31,
A56,
A48,
A50,
A55,
XCMPLX_1: 87;
then
A57: (p
`2 )
= (q
`2 ) by
A50,
XCMPLX_1: 87;
(
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
then ((
- (p
`1 ))
^2 )
= ((q
`1 )
^2 ) by
A5,
A31,
A56,
A48,
A55,
A57;
then (
- (p
`1 ))
= (
sqrt ((
- (q
`1 ))
^2 )) by
A43,
SQUARE_1: 22;
then
A58: (
- (
- (p
`1 )))
= (
- (
- (q
`1 ))) by
A28,
SQUARE_1: 22;
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A57,
A58,
EUCLID: 53;
end;
case
A59: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
/
|.p.|)
< sn & (p
`1 )
<=
0 ;
then (((p
`2 )
/
|.p.|)
- sn)
<
0 by
XREAL_1: 49;
then
A60: ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
<
0 by
A1,
XREAL_1: 141,
XREAL_1: 148;
set p4 =
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|;
A61: (p4
`2 )
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))) & (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A28,
EUCLID: 52,
XREAL_1: 48;
A62: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
((sn
-FanMorphW )
. p)
=
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]| by
A1,
A2,
A59,
Th18;
hence thesis by
A5,
A31,
A30,
A59,
A60,
A61,
A62,
Lm1,
XREAL_1: 132;
end;
end;
hence thesis;
end;
case
A63: ((q
`2 )
/
|.q.|)
< sn & (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
then
A64:
|.q.|
>
0 by
Lm1;
then
A65: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]|;
A66: (q4
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))) by
EUCLID: 52;
A67: (q4
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
A68: ((sn
-FanMorphW )
. q)
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]| by
A1,
A2,
A63,
Th18;
per cases by
JGRAPH_2: 3;
suppose
A69: (p
`1 )
>=
0 ;
A70: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A71: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A70,
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A65,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((
- ((q
`2 )
/
|.q.|))
^2 )
<= 1;
then 1
>= (
- ((q
`2 )
/
|.q.|)) by
SQUARE_1: 51;
then (1
+ sn)
>= ((
- ((q
`2 )
/
|.q.|))
+ sn) by
XREAL_1: 7;
then
A72: ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
<= 1 by
A71,
XREAL_1: 185;
A73: (((q
`2 )
/
|.q.|)
- sn)
<=
0 by
A63,
XREAL_1: 47;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn)) by
A71;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A72,
SQUARE_1: 49;
then
A74: (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A75: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A76: ((sn
-FanMorphW )
. p)
= p by
A69,
Th16;
(
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )))
>=
0 by
A74,
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
^2 )
/ ((1
+ sn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
^2 )
/ ((1
+ sn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p
`1 )
=
0 by
A5,
A68,
A69,
A76,
EUCLID: 52;
then (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))
=
0 by
A5,
A68,
A66,
A64,
A76,
XCMPLX_1: 6;
then (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))
=
0 by
A75,
SQUARE_1: 24;
then 1
= (
sqrt ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))
^2 )) by
SQUARE_1: 18;
then 1
= (
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
A71,
A73,
SQUARE_1: 22;
then 1
= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn)) by
XCMPLX_1: 187;
then (1
* (1
+ sn))
= (
- (((q
`2 )
/
|.q.|)
- sn)) by
A71,
XCMPLX_1: 87;
then ((1
+ sn)
- sn)
= (
- ((q
`2 )
/
|.q.|));
then 1
= ((
- (q
`2 ))
/
|.q.|) by
XCMPLX_1: 187;
then (1
*
|.q.|)
= (
- (q
`2 )) by
A64,
XCMPLX_1: 87;
then (((q
`2 )
^2 )
- ((q
`2 )
^2 ))
= ((q
`1 )
^2 ) by
A70,
XCMPLX_1: 26;
then (q
`1 )
=
0 by
XCMPLX_1: 6;
hence thesis by
A5,
A76,
Th16;
end;
suppose
A77: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
<=
0 ;
set p4 =
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|;
A78: (p4
`2 )
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))) & (1
- sn)
>
0 by
A2,
EUCLID: 52,
XREAL_1: 149;
(((q
`2 )
/
|.q.|)
- sn)
<
0 by
A63,
XREAL_1: 49;
then
A79: ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
<
0 by
A1,
XREAL_1: 141,
XREAL_1: 148;
((sn
-FanMorphW )
. p)
=
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]| & (((p
`2 )
/
|.p.|)
- sn)
>=
0 by
A1,
A2,
A77,
Th18,
XREAL_1: 48;
hence thesis by
A5,
A63,
A68,
A67,
A79,
A78,
Lm1,
XREAL_1: 132;
end;
suppose
A80: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
/
|.p.|)
< sn & (p
`1 )
<=
0 ;
0
<= ((p
`1 )
^2 ) by
XREAL_1: 63;
then (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
0
+ ((p
`2 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A81: (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
XREAL_1: 72;
A82: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A65,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then ((
- 1)
- sn)
<= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- ((
- 1)
- sn))
>= (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then
A83: ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
<= 1 by
A82,
XREAL_1: 185;
(((q
`2 )
/
|.q.|)
- sn)
<=
0 by
A63,
XREAL_1: 47;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn)) by
A82;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A83,
SQUARE_1: 49;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A84: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(q4
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))) by
EUCLID: 52;
then
A85: ((q4
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))) by
A84,
SQUARE_1:def 2;
A86: (q4
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
set p4 =
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|;
A87: (p4
`2 )
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A86,
A85;
then (
sqrt (
|.q4.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A88:
|.q4.|
=
|.q.| by
SQUARE_1: 22;
(((p
`2 )
/
|.p.|)
- sn)
<=
0 by
A80,
XREAL_1: 47;
then
A89: (
- 1)
<= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn)) by
A82;
A90:
|.p.|
>
0 by
A80,
Lm1;
then (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A81,
XCMPLX_1: 60;
then (((p
`2 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((p
`2 )
/
|.p.|) by
SQUARE_1: 51;
then ((
- 1)
- sn)
<= (((p
`2 )
/
|.p.|)
- sn) by
XREAL_1: 9;
then (
- ((
- 1)
- sn))
>= (
- (((p
`2 )
/
|.p.|)
- sn)) by
XREAL_1: 24;
then ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
<= 1 by
A82,
XREAL_1: 185;
then (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A89,
SQUARE_1: 49;
then (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A91: (1
- ((
- ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(p4
`1 )
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))) by
EUCLID: 52;
then
A92: ((p4
`1 )
^2 )
= ((
|.p.|
^2 )
* ((
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))
^2 ))
.= ((
|.p.|
^2 )
* (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))) by
A91,
SQUARE_1:def 2;
(
|.p4.|
^2 )
= (((p4
`1 )
^2 )
+ ((p4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.p.|
^2 ) by
A87,
A92;
then (
sqrt (
|.p4.|
^2 ))
=
|.p.| by
SQUARE_1: 22;
then
A93:
|.p4.|
=
|.p.| by
SQUARE_1: 22;
A94: ((sn
-FanMorphW )
. p)
=
|[(
|.p.|
* (
- (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]| by
A1,
A2,
A80,
Th18;
then ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
= ((
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))
/
|.p.|) by
A5,
A68,
A67,
A87,
A90,
XCMPLX_1: 89;
then ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)) by
A5,
A68,
A94,
A88,
A90,
A93,
XCMPLX_1: 89;
then (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
* (1
+ sn))
= (((q
`2 )
/
|.q.|)
- sn) by
A82,
XCMPLX_1: 87;
then (((p
`2 )
/
|.p.|)
- sn)
= (((q
`2 )
/
|.q.|)
- sn) by
A82,
XCMPLX_1: 87;
then (((p
`2 )
/
|.p.|)
*
|.p.|)
= (q
`2 ) by
A5,
A68,
A94,
A88,
A90,
A93,
XCMPLX_1: 87;
then
A95: (p
`2 )
= (q
`2 ) by
A90,
XCMPLX_1: 87;
(
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
then ((
- (p
`1 ))
^2 )
= ((q
`1 )
^2 ) by
A5,
A68,
A94,
A88,
A93,
A95;
then (
- (p
`1 ))
= (
sqrt ((
- (q
`1 ))
^2 )) by
A80,
SQUARE_1: 22;
then
A96: (
- (
- (p
`1 )))
= (
- (
- (q
`1 ))) by
A63,
SQUARE_1: 22;
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A95,
A96,
EUCLID: 53;
end;
end;
end;
hence thesis;
end;
hence thesis by
FUNCT_1:def 4;
end;
theorem ::
JGRAPH_4:39
Th39: for sn be
Real st (
- 1)
< sn & sn
< 1 holds (sn
-FanMorphW ) is
Function of (
TOP-REAL 2), (
TOP-REAL 2) & (
rng (sn
-FanMorphW ))
= the
carrier of (
TOP-REAL 2)
proof
let sn be
Real;
assume that
A1: (
- 1)
< sn and
A2: sn
< 1;
thus (sn
-FanMorphW ) is
Function of (
TOP-REAL 2), (
TOP-REAL 2);
for f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
= (sn
-FanMorphW ) holds (
rng (sn
-FanMorphW ))
= the
carrier of (
TOP-REAL 2)
proof
let f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume
A3: f
= (sn
-FanMorphW );
A4: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
the
carrier of (
TOP-REAL 2)
c= (
rng f)
proof
let y be
object;
assume y
in the
carrier of (
TOP-REAL 2);
then
reconsider p2 = y as
Point of (
TOP-REAL 2);
set q = p2;
now
per cases by
JGRAPH_2: 3;
case (q
`1 )
>=
0 ;
then y
= ((sn
-FanMorphW )
. q) by
Th16;
hence ex x be
set st x
in (
dom (sn
-FanMorphW )) & y
= ((sn
-FanMorphW )
. x) by
A3,
A4;
end;
case
A5: ((q
`2 )
/
|.q.|)
>=
0 & (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
A6: (
- (
- (1
+ sn)))
>
0 by
A1,
XREAL_1: 148;
A7: (1
- sn)
>=
0 by
A2,
XREAL_1: 149;
then (((q
`2 )
/
|.q.|)
* (1
- sn))
>=
0 by
A5;
then (
- (1
+ sn))
<= (((q
`2 )
/
|.q.|)
* (1
- sn)) by
A6;
then
A8: (((
- 1)
- sn)
+ sn)
<= ((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn) by
XREAL_1: 7;
set px =
|[(
- (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn))]|;
A9: (px
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)) by
EUCLID: 52;
|.q.|
<>
0 by
A5,
TOPRNS_1: 24;
then
A10: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A11:
|.q.|
>
0 by
A5,
Lm1;
A12: (
dom (sn
-FanMorphW ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A13: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A10,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((q
`2 )
/
|.q.|)
<= 1 by
SQUARE_1: 51;
then (((q
`2 )
/
|.q.|)
* (1
- sn))
<= (1
* (1
- sn)) by
A13,
XREAL_1: 64;
then (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
- sn)
<= (1
- sn);
then ((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
<= 1 by
XREAL_1: 9;
then (1
^2 )
>= (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 ) by
A8,
SQUARE_1: 49;
then
A14: (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 ))
>=
0 by
XREAL_1: 48;
then
A15: (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 )))
>=
0 by
SQUARE_1:def 2;
A16: (px
`1 )
= (
- (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 ))))) by
EUCLID: 52;
then (
|.px.|
^2 )
= (((
- (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 )))))
^2 )
+ ((
|.q.|
* ((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn))
^2 )) by
A9,
JGRAPH_3: 1
.= (((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 )))
^2 ))
+ ((
|.q.|
^2 )
* (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 )));
then
A17: (
|.px.|
^2 )
= (((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 )))
+ ((
|.q.|
^2 )
* (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 ))) by
A14,
SQUARE_1:def 2
.= (
|.q.|
^2 );
then
A18:
|.px.|
= (
sqrt (
|.q.|
^2 )) by
SQUARE_1: 22
.=
|.q.| by
SQUARE_1: 22;
then
A19: px
<> (
0. (
TOP-REAL 2)) by
A5,
TOPRNS_1: 23,
TOPRNS_1: 24;
((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
>= (
0
+ sn) by
A5,
A7,
XREAL_1: 7;
then ((px
`2 )
/
|.px.|)
>= sn by
A5,
A9,
A18,
TOPRNS_1: 24,
XCMPLX_1: 89;
then
A20: ((sn
-FanMorphW )
. px)
=
|[(
|.px.|
* (
- (
sqrt (1
- (((((px
`2 )
/
|.px.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.px.|
* ((((px
`2 )
/
|.px.|)
- sn)
/ (1
- sn)))]| by
A1,
A2,
A16,
A15,
A19,
Th18;
A21: (
|.px.|
* (
- (
sqrt (((q
`1 )
/
|.q.|)
^2 ))))
= (
|.px.|
* (
- (
- ((q
`1 )
/
|.q.|)))) by
A5,
SQUARE_1: 23
.= (q
`1 ) by
A11,
A18,
XCMPLX_1: 87;
A22: (
|.px.|
* ((((px
`2 )
/
|.px.|)
- sn)
/ (1
- sn)))
= (
|.q.|
* ((((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
- sn)
/ (1
- sn))) by
A5,
A9,
A18,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.q.|
* ((q
`2 )
/
|.q.|)) by
A13,
XCMPLX_1: 89
.= (q
`2 ) by
A5,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (
|.px.|
* (
- (
sqrt (1
- (((((px
`2 )
/
|.px.|)
- sn)
/ (1
- sn))
^2 )))))
= (
|.px.|
* (
- (
sqrt (1
- (((q
`2 )
/
|.px.|)
^2 ))))) by
A5,
A18,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.px.|
* (
- (
sqrt (1
- (((q
`2 )
^2 )
/ (
|.px.|
^2 )))))) by
XCMPLX_1: 76
.= (
|.px.|
* (
- (
sqrt (((
|.px.|
^2 )
/ (
|.px.|
^2 ))
- (((q
`2 )
^2 )
/ (
|.px.|
^2 )))))) by
A10,
A17,
XCMPLX_1: 60
.= (
|.px.|
* (
- (
sqrt (((
|.px.|
^2 )
- ((q
`2 )
^2 ))
/ (
|.px.|
^2 ))))) by
XCMPLX_1: 120
.= (
|.px.|
* (
- (
sqrt (((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
- ((q
`2 )
^2 ))
/ (
|.px.|
^2 ))))) by
A17,
JGRAPH_3: 1
.= (
|.px.|
* (
- (
sqrt (((q
`1 )
/
|.q.|)
^2 )))) by
A18,
XCMPLX_1: 76;
hence ex x be
set st x
in (
dom (sn
-FanMorphW )) & y
= ((sn
-FanMorphW )
. x) by
A20,
A22,
A21,
A12,
EUCLID: 53;
end;
case
A23: ((q
`2 )
/
|.q.|)
<
0 & (q
`1 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
A24: (1
+ sn)
>=
0 by
A1,
XREAL_1: 148;
then (((q
`2 )
/
|.q.|)
* (1
+ sn))
<=
0 by
A23;
then (1
- sn)
>= (((q
`2 )
/
|.q.|)
* (1
+ sn)) by
A2,
XREAL_1: 149;
then
A25: ((1
- sn)
+ sn)
>= ((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn) by
XREAL_1: 7;
set px =
|[(
- (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn))]|;
A26: (px
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)) by
EUCLID: 52;
|.q.|
<>
0 by
A23,
TOPRNS_1: 24;
then
A27: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A28:
|.q.|
>
0 by
A23,
Lm1;
A29: (
dom (sn
-FanMorphW ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A30: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A27,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((q
`2 )
/
|.q.|)
>= (
- 1) by
SQUARE_1: 51;
then (((q
`2 )
/
|.q.|)
* (1
+ sn))
>= ((
- 1)
* (1
+ sn)) by
A30,
XREAL_1: 64;
then (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
- sn)
>= ((
- 1)
- sn);
then ((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
>= (
- 1) by
XREAL_1: 9;
then (1
^2 )
>= (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 ) by
A25,
SQUARE_1: 49;
then
A31: (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 ))
>=
0 by
XREAL_1: 48;
then
A32: (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 )))
>=
0 by
SQUARE_1:def 2;
A33: (px
`1 )
= (
- (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 ))))) by
EUCLID: 52;
then (
|.px.|
^2 )
= (((
- (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 )))))
^2 )
+ ((
|.q.|
* ((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn))
^2 )) by
A26,
JGRAPH_3: 1
.= (((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 )))
^2 ))
+ ((
|.q.|
^2 )
* (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 )));
then
A34: (
|.px.|
^2 )
= (((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 )))
+ ((
|.q.|
^2 )
* (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 ))) by
A31,
SQUARE_1:def 2
.= (
|.q.|
^2 );
then
A35:
|.px.|
= (
sqrt (
|.q.|
^2 )) by
SQUARE_1: 22
.=
|.q.| by
SQUARE_1: 22;
then
A36: px
<> (
0. (
TOP-REAL 2)) by
A23,
TOPRNS_1: 23,
TOPRNS_1: 24;
((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
<= (
0
+ sn) by
A23,
A24,
XREAL_1: 7;
then ((px
`2 )
/
|.px.|)
<= sn by
A23,
A26,
A35,
TOPRNS_1: 24,
XCMPLX_1: 89;
then
A37: ((sn
-FanMorphW )
. px)
=
|[(
|.px.|
* (
- (
sqrt (1
- (((((px
`2 )
/
|.px.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.px.|
* ((((px
`2 )
/
|.px.|)
- sn)
/ (1
+ sn)))]| by
A1,
A2,
A33,
A32,
A36,
Th18;
A38: (
|.px.|
* (
- (
sqrt (((q
`1 )
/
|.q.|)
^2 ))))
= (
|.px.|
* (
- (
- ((q
`1 )
/
|.q.|)))) by
A23,
SQUARE_1: 23
.= (q
`1 ) by
A28,
A35,
XCMPLX_1: 87;
A39: (
|.px.|
* ((((px
`2 )
/
|.px.|)
- sn)
/ (1
+ sn)))
= (
|.q.|
* ((((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
- sn)
/ (1
+ sn))) by
A23,
A26,
A35,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.q.|
* ((q
`2 )
/
|.q.|)) by
A30,
XCMPLX_1: 89
.= (q
`2 ) by
A23,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (
|.px.|
* (
- (
sqrt (1
- (((((px
`2 )
/
|.px.|)
- sn)
/ (1
+ sn))
^2 )))))
= (
|.px.|
* (
- (
sqrt (1
- (((q
`2 )
/
|.px.|)
^2 ))))) by
A23,
A35,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.px.|
* (
- (
sqrt (1
- (((q
`2 )
^2 )
/ (
|.px.|
^2 )))))) by
XCMPLX_1: 76
.= (
|.px.|
* (
- (
sqrt (((
|.px.|
^2 )
/ (
|.px.|
^2 ))
- (((q
`2 )
^2 )
/ (
|.px.|
^2 )))))) by
A27,
A34,
XCMPLX_1: 60
.= (
|.px.|
* (
- (
sqrt (((
|.px.|
^2 )
- ((q
`2 )
^2 ))
/ (
|.px.|
^2 ))))) by
XCMPLX_1: 120
.= (
|.px.|
* (
- (
sqrt (((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
- ((q
`2 )
^2 ))
/ (
|.px.|
^2 ))))) by
A34,
JGRAPH_3: 1
.= (
|.px.|
* (
- (
sqrt (((q
`1 )
/
|.q.|)
^2 )))) by
A35,
XCMPLX_1: 76;
hence ex x be
set st x
in (
dom (sn
-FanMorphW )) & y
= ((sn
-FanMorphW )
. x) by
A37,
A39,
A38,
A29,
EUCLID: 53;
end;
end;
hence thesis by
A3,
FUNCT_1:def 3;
end;
hence thesis by
A3,
XBOOLE_0:def 10;
end;
hence thesis;
end;
Lm12: for q4,q,p2 be
Point of (
TOP-REAL 2), O,u,uq be
Point of (
Euclid 2) st u
in (
cl_Ball (O,(
|.p2.|
+ 1))) & q
= uq & q4
= u & O
= (
0. (
TOP-REAL 2)) &
|.q4.|
=
|.q.| holds q
in (
cl_Ball (O,(
|.p2.|
+ 1)))
proof
let q4,q,p2 be
Point of (
TOP-REAL 2), O,u,uq be
Point of (
Euclid 2);
assume
A1: u
in (
cl_Ball (O,(
|.p2.|
+ 1)));
assume that
A2: q
= uq and
A3: q4
= u and
A4: O
= (
0. (
TOP-REAL 2));
assume
A5:
|.q4.|
=
|.q.|;
now
assume not q
in (
cl_Ball (O,(
|.p2.|
+ 1)));
then not (
dist (O,uq))
<= (
|.p2.|
+ 1) by
A2,
METRIC_1: 12;
then
|.((
0. (
TOP-REAL 2))
- q).|
> (
|.p2.|
+ 1) by
A2,
A4,
JGRAPH_1: 28;
then
|.(
- q).|
> (
|.p2.|
+ 1) by
RLVECT_1: 4;
then
|.q.|
> (
|.p2.|
+ 1) by
TOPRNS_1: 26;
then
|.(
- q4).|
> (
|.p2.|
+ 1) by
A5,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- q4).|
> (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u))
> (
|.p2.|
+ 1) by
A3,
A4,
JGRAPH_1: 28;
hence contradiction by
A1,
METRIC_1: 12;
end;
hence q
in (
cl_Ball (O,(
|.p2.|
+ 1)));
end;
theorem ::
JGRAPH_4:40
Th40: for sn be
Real, p2 be
Point of (
TOP-REAL 2) st (
- 1)
< sn & sn
< 1 holds ex K be non
empty
compact
Subset of (
TOP-REAL 2) st K
= ((sn
-FanMorphW )
.: K) & ex V2 be
Subset of (
TOP-REAL 2) st p2
in V2 & V2 is
open & V2
c= K & ((sn
-FanMorphW )
. p2)
in V2
proof
reconsider O = (
0. (
TOP-REAL 2)) as
Point of (
Euclid 2) by
EUCLID: 67;
let sn be
Real, p2 be
Point of (
TOP-REAL 2);
A1: the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
then
reconsider V0 = (
Ball (O,(
|.p2.|
+ 1))) as
Subset of (
TOP-REAL 2);
O
in V0 & V0
c= (
cl_Ball (O,(
|.p2.|
+ 1))) by
GOBOARD6: 1,
METRIC_1: 14;
then
reconsider K0 = (
cl_Ball (O,(
|.p2.|
+ 1))) as non
empty
compact
Subset of (
TOP-REAL 2) by
A1,
Th15;
set q3 = ((sn
-FanMorphW )
. p2);
reconsider VV0 = V0 as
Subset of (
TopSpaceMetr (
Euclid 2));
reconsider u2 = p2 as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider u3 = q3 as
Point of (
Euclid 2) by
EUCLID: 67;
A2: ((sn
-FanMorphW )
.: K0)
c= K0
proof
let y be
object;
assume y
in ((sn
-FanMorphW )
.: K0);
then
consider x be
object such that
A3: x
in (
dom (sn
-FanMorphW )) and
A4: x
in K0 and
A5: y
= ((sn
-FanMorphW )
. x) by
FUNCT_1:def 6;
reconsider q = x as
Point of (
TOP-REAL 2) by
A3;
reconsider uq = q as
Point of (
Euclid 2) by
EUCLID: 67;
(
dist (O,uq))
<= (
|.p2.|
+ 1) by
A4,
METRIC_1: 12;
then
|.((
0. (
TOP-REAL 2))
- q).|
<= (
|.p2.|
+ 1) by
JGRAPH_1: 28;
then
|.(
- q).|
<= (
|.p2.|
+ 1) by
RLVECT_1: 4;
then
A6:
|.q.|
<= (
|.p2.|
+ 1) by
TOPRNS_1: 26;
A7: y
in (
rng (sn
-FanMorphW )) by
A3,
A5,
FUNCT_1:def 3;
then
reconsider u = y as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider q4 = y as
Point of (
TOP-REAL 2) by
A7;
|.q4.|
=
|.q.| by
A5,
Th33;
then
|.(
- q4).|
<= (
|.p2.|
+ 1) by
A6,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- q4).|
<= (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u))
<= (
|.p2.|
+ 1) by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 12;
end;
VV0 is
open by
TOPMETR: 14;
then
A8: V0 is
open by
Lm11,
PRE_TOPC: 30;
A9:
|.p2.|
< (
|.p2.|
+ 1) by
XREAL_1: 29;
then
|.(
- p2).|
< (
|.p2.|
+ 1) by
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- p2).|
< (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u2))
< (
|.p2.|
+ 1) by
JGRAPH_1: 28;
then
A10: p2
in V0 by
METRIC_1: 11;
|.q3.|
=
|.p2.| by
Th33;
then
|.(
- q3).|
< (
|.p2.|
+ 1) by
A9,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- q3).|
< (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u3))
< (
|.p2.|
+ 1) by
JGRAPH_1: 28;
then
A11: ((sn
-FanMorphW )
. p2)
in V0 by
METRIC_1: 11;
assume
A12: (
- 1)
< sn & sn
< 1;
K0
c= ((sn
-FanMorphW )
.: K0)
proof
let y be
object;
assume
A13: y
in K0;
then
reconsider y as
Point of (
Euclid 2);
reconsider q4 = y as
Point of (
TOP-REAL 2) by
A13;
the
carrier of (
TOP-REAL 2)
c= (
rng (sn
-FanMorphW )) by
A12,
Th39;
then q4
in (
rng (sn
-FanMorphW ));
then
consider x be
object such that
A14: x
in (
dom (sn
-FanMorphW )) and
A15: y
= ((sn
-FanMorphW )
. x) by
FUNCT_1:def 3;
reconsider x as
Point of (
Euclid 2) by
A14,
Lm11;
reconsider q = x as
Point of (
TOP-REAL 2) by
A14;
|.q4.|
=
|.q.| by
A15,
Th33;
then q
in K0 by
A13,
Lm12;
hence thesis by
A14,
A15,
FUNCT_1:def 6;
end;
then K0
= ((sn
-FanMorphW )
.: K0) by
A2,
XBOOLE_0:def 10;
hence thesis by
A10,
A8,
A11,
METRIC_1: 14;
end;
theorem ::
JGRAPH_4:41
for sn be
Real st (
- 1)
< sn & sn
< 1 holds ex f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
= (sn
-FanMorphW ) & f is
being_homeomorphism
proof
let sn be
Real;
reconsider f = (sn
-FanMorphW ) as
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume
A1: (
- 1)
< sn & sn
< 1;
then
A2: for p2 be
Point of (
TOP-REAL 2) holds ex K be non
empty
compact
Subset of (
TOP-REAL 2) st K
= (f
.: K) & ex V2 be
Subset of (
TOP-REAL 2) st p2
in V2 & V2 is
open & V2
c= K & (f
. p2)
in V2 by
Th40;
(
rng (sn
-FanMorphW ))
= the
carrier of (
TOP-REAL 2) & ex h be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st h
= (sn
-FanMorphW ) & h is
continuous by
A1,
Th37,
Th39;
then f is
being_homeomorphism by
A1,
A2,
Th3,
Th38;
hence thesis;
end;
Lm13:
now
let q be
Point of (
TOP-REAL 2), sn,t be
Real;
assume (((
- ((t
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
< (1
^2 );
then (1
- (((
- ((t
/
|.q.|)
- sn))
/ (1
- sn))
^2 ))
>
0 by
XREAL_1: 50;
then (
sqrt (1
- (((
- ((t
/
|.q.|)
- sn))
/ (1
- sn))
^2 )))
>
0 by
SQUARE_1: 25;
then (
sqrt (1
- (((
- ((t
/
|.q.|)
- sn))
^2 )
/ ((1
- sn)
^2 ))))
>
0 by
XCMPLX_1: 76;
then (
sqrt (1
- ((((t
/
|.q.|)
- sn)
^2 )
/ ((1
- sn)
^2 ))))
>
0 ;
then (
sqrt (1
- ((((t
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
>
0 by
XCMPLX_1: 76;
hence (
- (
sqrt (1
- ((((t
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))
< (
-
0 ) by
XREAL_1: 24;
end;
theorem ::
JGRAPH_4:42
Th42: for sn be
Real, q be
Point of (
TOP-REAL 2) st sn
< 1 & (q
`1 )
<
0 & ((q
`2 )
/
|.q.|)
>= sn holds for p be
Point of (
TOP-REAL 2) st p
= ((sn
-FanMorphW )
. q) holds (p
`1 )
<
0 & (p
`2 )
>=
0
proof
let sn be
Real, q be
Point of (
TOP-REAL 2);
assume that
A1: sn
< 1 and
A2: (q
`1 )
<
0 and
A3: ((q
`2 )
/
|.q.|)
>= sn;
A4: (1
- sn)
>
0 by
A1,
XREAL_1: 149;
let p be
Point of (
TOP-REAL 2);
set qz = p;
assume p
= ((sn
-FanMorphW )
. q);
then
A5: p
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
A2,
A3,
Th16;
then
A6: (qz
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))) by
EUCLID: 52;
A7: (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A3,
XREAL_1: 48;
A8:
|.q.|
>
0 by
A2,
Lm1,
JGRAPH_2: 3;
then
A9: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
(
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A2,
JGRAPH_3: 1,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A9,
XREAL_1: 74;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A9,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then 1
> ((q
`2 )
/
|.q.|) by
SQUARE_1: 52;
then (1
- sn)
> (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
< (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
< ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A4,
XREAL_1: 74;
then (
- 1)
< ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A4,
XCMPLX_1: 197;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
< (1
^2 ) by
A4,
A7,
SQUARE_1: 50;
hence thesis by
A5,
A8,
A4,
A6,
A7,
Lm13,
EUCLID: 52,
XREAL_1: 132;
end;
theorem ::
JGRAPH_4:43
Th43: for sn be
Real, q be
Point of (
TOP-REAL 2) st (
- 1)
< sn & (q
`1 )
<
0 & ((q
`2 )
/
|.q.|)
< sn holds for p be
Point of (
TOP-REAL 2) st p
= ((sn
-FanMorphW )
. q) holds (p
`1 )
<
0 & (p
`2 )
<
0
proof
let sn be
Real, q be
Point of (
TOP-REAL 2);
assume that
A1: (
- 1)
< sn and
A2: (q
`1 )
<
0 and
A3: ((q
`2 )
/
|.q.|)
< sn;
A4: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
A5: (((q
`2 )
/
|.q.|)
- sn)
<
0 by
A3,
XREAL_1: 49;
then (
- (((q
`2 )
/
|.q.|)
- sn))
>
0 by
XREAL_1: 58;
then ((
- (1
+ sn))
/ (1
+ sn))
< ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn)) by
A4,
XREAL_1: 74;
then
A6: (
- 1)
< ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn)) by
A4,
XCMPLX_1: 197;
|.q.|
>
0 by
A2,
Lm1,
JGRAPH_2: 3;
then
A7: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
(
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A2,
JGRAPH_3: 1,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A7,
XREAL_1: 74;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A7,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then (
- 1)
< ((q
`2 )
/
|.q.|) by
SQUARE_1: 52;
then ((
- 1)
- sn)
< (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- (
- (1
+ sn)))
> (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
< 1 by
A4,
XREAL_1: 191;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )
< (1
^2 ) by
A6,
SQUARE_1: 50;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 ))
>
0 by
XREAL_1: 50;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )))
>
0 by
SQUARE_1: 25;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
^2 )
/ ((1
+ sn)
^2 ))))
>
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
^2 )
/ ((1
+ sn)
^2 ))))
>
0 ;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
>
0 by
XCMPLX_1: 76;
then
A8: (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))
< (
-
0 ) by
XREAL_1: 24;
let p be
Point of (
TOP-REAL 2);
set qz = p;
assume p
= ((sn
-FanMorphW )
. q);
then p
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]| by
A2,
A3,
Th17;
then
A9: (qz
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))))) & (qz
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
<
0 by
A1,
A5,
XREAL_1: 141,
XREAL_1: 148;
hence thesis by
A2,
A9,
A8,
Lm1,
JGRAPH_2: 3,
XREAL_1: 132;
end;
theorem ::
JGRAPH_4:44
Th44: for sn be
Real, q1,q2 be
Point of (
TOP-REAL 2) st sn
< 1 & (q1
`1 )
<
0 & ((q1
`2 )
/
|.q1.|)
>= sn & (q2
`1 )
<
0 & ((q2
`2 )
/
|.q2.|)
>= sn & ((q1
`2 )
/
|.q1.|)
< ((q2
`2 )
/
|.q2.|) holds for p1,p2 be
Point of (
TOP-REAL 2) st p1
= ((sn
-FanMorphW )
. q1) & p2
= ((sn
-FanMorphW )
. q2) holds ((p1
`2 )
/
|.p1.|)
< ((p2
`2 )
/
|.p2.|)
proof
let sn be
Real, q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: sn
< 1 and
A2: (q1
`1 )
<
0 and
A3: ((q1
`2 )
/
|.q1.|)
>= sn and
A4: (q2
`1 )
<
0 and
A5: ((q2
`2 )
/
|.q2.|)
>= sn and
A6: ((q1
`2 )
/
|.q1.|)
< ((q2
`2 )
/
|.q2.|);
A7: (((q1
`2 )
/
|.q1.|)
- sn)
< (((q2
`2 )
/
|.q2.|)
- sn) & (1
- sn)
>
0 by
A1,
A6,
XREAL_1: 9,
XREAL_1: 149;
let p1,p2 be
Point of (
TOP-REAL 2);
assume that
A8: p1
= ((sn
-FanMorphW )
. q1) and
A9: p2
= ((sn
-FanMorphW )
. q2);
A10:
|.p2.|
=
|.q2.| by
A9,
Th33;
p2
=
|[(
|.q2.|
* (
- (
sqrt (1
- (((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q2.|
* ((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
- sn)))]| by
A4,
A5,
A9,
Th16;
then
A11: (p2
`2 )
= (
|.q2.|
* ((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
|.q2.|
>
0 by
A4,
Lm1,
JGRAPH_2: 3;
then
A12: ((p2
`2 )
/
|.p2.|)
= ((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
- sn)) by
A11,
A10,
XCMPLX_1: 89;
p1
=
|[(
|.q1.|
* (
- (
sqrt (1
- (((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q1.|
* ((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
- sn)))]| by
A2,
A3,
A8,
Th16;
then
A13: (p1
`2 )
= (
|.q1.|
* ((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
A14:
|.p1.|
=
|.q1.| by
A8,
Th33;
|.q1.|
>
0 by
A2,
Lm1,
JGRAPH_2: 3;
then ((p1
`2 )
/
|.p1.|)
= ((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
- sn)) by
A13,
A14,
XCMPLX_1: 89;
hence thesis by
A12,
A7,
XREAL_1: 74;
end;
theorem ::
JGRAPH_4:45
Th45: for sn be
Real, q1,q2 be
Point of (
TOP-REAL 2) st (
- 1)
< sn & (q1
`1 )
<
0 & ((q1
`2 )
/
|.q1.|)
< sn & (q2
`1 )
<
0 & ((q2
`2 )
/
|.q2.|)
< sn & ((q1
`2 )
/
|.q1.|)
< ((q2
`2 )
/
|.q2.|) holds for p1,p2 be
Point of (
TOP-REAL 2) st p1
= ((sn
-FanMorphW )
. q1) & p2
= ((sn
-FanMorphW )
. q2) holds ((p1
`2 )
/
|.p1.|)
< ((p2
`2 )
/
|.p2.|)
proof
let sn be
Real, q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: (
- 1)
< sn and
A2: (q1
`1 )
<
0 and
A3: ((q1
`2 )
/
|.q1.|)
< sn and
A4: (q2
`1 )
<
0 and
A5: ((q2
`2 )
/
|.q2.|)
< sn and
A6: ((q1
`2 )
/
|.q1.|)
< ((q2
`2 )
/
|.q2.|);
A7: (((q1
`2 )
/
|.q1.|)
- sn)
< (((q2
`2 )
/
|.q2.|)
- sn) & (1
+ sn)
>
0 by
A1,
A6,
XREAL_1: 9,
XREAL_1: 148;
let p1,p2 be
Point of (
TOP-REAL 2);
assume that
A8: p1
= ((sn
-FanMorphW )
. q1) and
A9: p2
= ((sn
-FanMorphW )
. q2);
A10:
|.p2.|
=
|.q2.| by
A9,
Th33;
p2
=
|[(
|.q2.|
* (
- (
sqrt (1
- (((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q2.|
* ((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
+ sn)))]| by
A4,
A5,
A9,
Th17;
then
A11: (p2
`2 )
= (
|.q2.|
* ((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
|.q2.|
>
0 by
A4,
Lm1,
JGRAPH_2: 3;
then
A12: ((p2
`2 )
/
|.p2.|)
= ((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
+ sn)) by
A11,
A10,
XCMPLX_1: 89;
p1
=
|[(
|.q1.|
* (
- (
sqrt (1
- (((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
+ sn))
^2 ))))), (
|.q1.|
* ((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
+ sn)))]| by
A2,
A3,
A8,
Th17;
then
A13: (p1
`2 )
= (
|.q1.|
* ((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
A14:
|.p1.|
=
|.q1.| by
A8,
Th33;
|.q1.|
>
0 by
A2,
Lm1,
JGRAPH_2: 3;
then ((p1
`2 )
/
|.p1.|)
= ((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
+ sn)) by
A13,
A14,
XCMPLX_1: 89;
hence thesis by
A12,
A7,
XREAL_1: 74;
end;
theorem ::
JGRAPH_4:46
for sn be
Real, q1,q2 be
Point of (
TOP-REAL 2) st (
- 1)
< sn & sn
< 1 & (q1
`1 )
<
0 & (q2
`1 )
<
0 & ((q1
`2 )
/
|.q1.|)
< ((q2
`2 )
/
|.q2.|) holds for p1,p2 be
Point of (
TOP-REAL 2) st p1
= ((sn
-FanMorphW )
. q1) & p2
= ((sn
-FanMorphW )
. q2) holds ((p1
`2 )
/
|.p1.|)
< ((p2
`2 )
/
|.p2.|)
proof
let sn be
Real, q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: (
- 1)
< sn and
A2: sn
< 1 and
A3: (q1
`1 )
<
0 and
A4: (q2
`1 )
<
0 and
A5: ((q1
`2 )
/
|.q1.|)
< ((q2
`2 )
/
|.q2.|);
let p1,p2 be
Point of (
TOP-REAL 2);
assume that
A6: p1
= ((sn
-FanMorphW )
. q1) and
A7: p2
= ((sn
-FanMorphW )
. q2);
now
per cases ;
case ((q1
`2 )
/
|.q1.|)
>= sn & ((q2
`2 )
/
|.q2.|)
>= sn;
hence thesis by
A2,
A3,
A4,
A5,
A6,
A7,
Th44;
end;
case ((q1
`2 )
/
|.q1.|)
>= sn & ((q2
`2 )
/
|.q2.|)
< sn;
hence thesis by
A5,
XXREAL_0: 2;
end;
case
A8: ((q1
`2 )
/
|.q1.|)
< sn & ((q2
`2 )
/
|.q2.|)
>= sn;
then (p2
`2 )
>=
0 by
A2,
A4,
A7,
Th42;
then
A9: ((p2
`2 )
/
|.p2.|)
>=
0 ;
(p1
`2 )
<
0 by
A1,
A3,
A6,
A8,
Th43;
hence thesis by
A9,
Lm1,
JGRAPH_2: 3,
XREAL_1: 141;
end;
case ((q1
`2 )
/
|.q1.|)
< sn & ((q2
`2 )
/
|.q2.|)
< sn;
hence thesis by
A1,
A3,
A4,
A5,
A6,
A7,
Th45;
end;
end;
hence thesis;
end;
theorem ::
JGRAPH_4:47
for sn be
Real, q be
Point of (
TOP-REAL 2) st (q
`1 )
<
0 & ((q
`2 )
/
|.q.|)
= sn holds for p be
Point of (
TOP-REAL 2) st p
= ((sn
-FanMorphW )
. q) holds (p
`1 )
<
0 & (p
`2 )
=
0
proof
let sn be
Real, q be
Point of (
TOP-REAL 2);
assume that
A1: (q
`1 )
<
0 and
A2: ((q
`2 )
/
|.q.|)
= sn;
let p be
Point of (
TOP-REAL 2);
A3:
|.q.|
>
0 by
A1,
Lm1,
JGRAPH_2: 3;
assume p
= ((sn
-FanMorphW )
. q);
then
A4: p
=
|[(
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
A1,
A2,
Th16;
then (p
`1 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))))) by
EUCLID: 52;
hence thesis by
A2,
A4,
A3,
Lm13,
EUCLID: 52,
XREAL_1: 132;
end;
theorem ::
JGRAPH_4:48
for sn be
Real holds (
0. (
TOP-REAL 2))
= ((sn
-FanMorphW )
. (
0. (
TOP-REAL 2))) by
Th16,
JGRAPH_2: 3;
begin
definition
let s be
Real, q be
Point of (
TOP-REAL 2);
::
JGRAPH_4:def4
func
FanN (s,q) ->
Point of (
TOP-REAL 2) equals
:
Def4: (
|.q.|
*
|[((((q
`1 )
/
|.q.|)
- s)
/ (1
- s)), (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- s)
/ (1
- s))
^2 )))]|) if ((q
`1 )
/
|.q.|)
>= s & (q
`2 )
>
0 ,
(
|.q.|
*
|[((((q
`1 )
/
|.q.|)
- s)
/ (1
+ s)), (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- s)
/ (1
+ s))
^2 )))]|) if ((q
`1 )
/
|.q.|)
< s & (q
`2 )
>
0
otherwise q;
correctness ;
end
definition
let c be
Real;
::
JGRAPH_4:def5
func c
-FanMorphN ->
Function of (
TOP-REAL 2), (
TOP-REAL 2) means
:
Def5: for q be
Point of (
TOP-REAL 2) holds (it
. q)
= (
FanN (c,q));
existence
proof
deffunc
F(
Point of (
TOP-REAL 2)) = (
FanN (c,$1));
thus ex IT be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st for q be
Point of (
TOP-REAL 2) holds (IT
. q)
=
F(q) from
FUNCT_2:sch 4;
end;
uniqueness
proof
deffunc
F(
Point of (
TOP-REAL 2)) = (
FanN (c,$1));
thus for a,b be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st (for q be
Point of (
TOP-REAL 2) holds (a
. q)
=
F(q)) & (for q be
Point of (
TOP-REAL 2) holds (b
. q)
=
F(q)) holds a
= b from
BINOP_2:sch 1;
end;
end
theorem ::
JGRAPH_4:49
Th49: for cn be
Real holds (((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
>
0 implies ((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]|) & ((q
`2 )
<=
0 implies ((cn
-FanMorphN )
. q)
= q)
proof
let cn be
Real;
hereby
assume ((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
>
0 ;
then (
FanN (cn,q))
= (
|.q.|
*
|[((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)), (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))]|) by
Def4
.=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]| by
EUCLID: 58;
hence ((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]| by
Def5;
end;
assume
A1: (q
`2 )
<=
0 ;
((cn
-FanMorphN )
. q)
= (
FanN (cn,q)) by
Def5;
hence thesis by
A1,
Def4;
end;
theorem ::
JGRAPH_4:50
Th50: for cn be
Real holds (((q
`1 )
/
|.q.|)
<= cn & (q
`2 )
>
0 implies ((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]|)
proof
let cn be
Real;
assume that
A1: ((q
`1 )
/
|.q.|)
<= cn and
A2: (q
`2 )
>
0 ;
per cases by
A1,
XXREAL_0: 1;
suppose ((q
`1 )
/
|.q.|)
< cn;
then (
FanN (cn,q))
= (
|.q.|
*
|[((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)), (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))]|) by
A2,
Def4
.=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
EUCLID: 58;
hence thesis by
Def5;
end;
suppose
A3: ((q
`1 )
/
|.q.|)
= cn;
then ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
=
0 ;
hence thesis by
A2,
A3,
Th49;
end;
end;
theorem ::
JGRAPH_4:51
Th51: for cn be
Real st (
- 1)
< cn & cn
< 1 holds (((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2)) implies ((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]|) & (((q
`1 )
/
|.q.|)
<= cn & (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2)) implies ((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]|)
proof
let cn be
Real;
assume that
A1: (
- 1)
< cn and
A2: cn
< 1;
per cases ;
suppose
A3: ((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
per cases ;
suppose
A4: (q
`2 )
>
0 ;
then (
FanN (cn,q))
= (
|.q.|
*
|[((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)), (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))]|) by
A3,
Def4
.=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]| by
EUCLID: 58;
hence thesis by
A4,
Def5,
Th50;
end;
suppose
A5: (q
`2 )
<=
0 ;
then
A6: ((cn
-FanMorphN )
. q)
= q by
Th49;
A7: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A8: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
A9: (q
`2 )
=
0 by
A3,
A5;
|.q.|
<>
0 by
A3,
TOPRNS_1: 24;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
= (1
^2 ) by
A7,
A9,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
= (1
^2 ) by
XCMPLX_1: 76;
then
A10: (
sqrt (((q
`1 )
/
|.q.|)
^2 ))
= 1 by
SQUARE_1: 22;
A11:
now
assume (q
`1 )
<
0 ;
then (
- ((q
`1 )
/
|.q.|))
= 1 by
A10,
SQUARE_1: 23;
hence contradiction by
A1,
A3;
end;
(
sqrt (
|.q.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A12:
|.q.|
= (q
`1 ) by
A7,
A9,
A11,
SQUARE_1: 22;
then 1
= ((q
`1 )
/
|.q.|) by
A3,
TOPRNS_1: 24,
XCMPLX_1: 60;
then ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
= 1 by
A8,
XCMPLX_1: 60;
hence thesis by
A2,
A6,
A9,
A12,
EUCLID: 53,
SQUARE_1: 17,
TOPRNS_1: 24,
XCMPLX_1: 60;
end;
end;
suppose
A13: ((q
`1 )
/
|.q.|)
<= cn & (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
per cases ;
suppose (q
`2 )
>
0 ;
hence thesis by
Th49,
Th50;
end;
suppose
A14: (q
`2 )
<=
0 ;
A15: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
A16:
|.q.|
<>
0 by
A13,
TOPRNS_1: 24;
A17: (q
`2 )
=
0 by
A13,
A14;
|.q.|
>
0 & 1
> ((q
`1 )
/
|.q.|) by
A2,
A13,
Lm1,
XXREAL_0: 2;
then (1
*
|.q.|)
> (((q
`1 )
/
|.q.|)
*
|.q.|) by
XREAL_1: 68;
then
A18: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) &
|.q.|
> (q
`1 ) by
A13,
JGRAPH_3: 1,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A19: (q
`1 )
= (
-
|.q.|) by
A17,
SQUARE_1: 40;
then (
- 1)
= ((q
`1 )
/
|.q.|) by
A13,
TOPRNS_1: 24,
XCMPLX_1: 197;
then
A20: ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
= ((
- (1
+ cn))
/ (1
+ cn))
.= (
- 1) by
A15,
XCMPLX_1: 197;
|.q.|
= (
- (q
`1 )) by
A17,
A18,
SQUARE_1: 40;
then
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]|
= q by
A17,
A20,
EUCLID: 53,
SQUARE_1: 17;
hence thesis by
A1,
A14,
A16,
A19,
Th49,
XCMPLX_1: 197;
end;
end;
suppose (q
`2 )
<
0 or q
= (
0. (
TOP-REAL 2));
hence thesis;
end;
end;
theorem ::
JGRAPH_4:52
Th52: for cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st cn
< 1 & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = cn, b = (1
- cn);
reconsider g2 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm2;
assume that
A1: cn
< 1 and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then
A4: for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
b
>
0 by
A1,
XREAL_1: 149;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (((r1
/ r2)
- a)
/ b)) and
A6: g3 is
continuous by
A4,
Th5;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then
A8: (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A9: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in K1 by
A7,
A8,
A9,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A10: (
proj1
. r)
= (r
`1 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 5;
A11: (g2
. s)
= (
proj1
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm2,
Lm5;
(f
. r)
= (
|.r.|
* ((((r
`1 )
/
|.r.|)
- cn)
/ (1
- cn))) by
A2,
A9;
hence thesis by
A5,
A11,
A10;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:53
Th53: for cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (
- 1)
< cn & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = cn, b = (1
+ cn);
reconsider g2 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm2;
assume that
A1: (
- 1)
< cn and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then
A4: for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
(1
+ cn)
>
0 by
A1,
XREAL_1: 148;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (((r1
/ r2)
- a)
/ b)) and
A6: g3 is
continuous by
A4,
Th5;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
A8: for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A9: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in (
dom g3) by
A7,
A9;
then x
in K1 by
A7,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A10: (
proj1
. r)
= (r
`1 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 5;
A11: (g2
. s)
= (
proj1
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm2,
Lm5;
(f
. r)
= (
|.r.|
* ((((r
`1 )
/
|.r.|)
- cn)
/ (1
+ cn))) by
A2,
A9;
hence thesis by
A5,
A11,
A10;
end;
(
dom f)
= (
dom g3) by
A7,
FUNCT_2:def 1;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:54
Th54: for cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st cn
< 1 & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
>=
0 & ((q
`1 )
/
|.q.|)
>= cn & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = cn, b = (1
- cn);
reconsider g2 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm2;
assume that
A1: cn
< 1 and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
>=
0 & ((q
`1 )
/
|.q.|)
>= cn & q
<> (
0. (
TOP-REAL 2));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then
A4: for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
b
>
0 by
A1,
XREAL_1: 149;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|)) and
A6: g3 is
continuous by
A4,
Th10;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then
A8: (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
A9: (1
- cn)
>
0 by
A1,
XREAL_1: 149;
assume
A10: x
in (
dom f);
then x
in K1 by
A7,
A8,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A11:
|.r.|
<>
0 by
A3,
A10,
TOPRNS_1: 24;
(
|.r.|
^2 )
= (((r
`1 )
^2 )
+ ((r
`2 )
^2 )) by
JGRAPH_3: 1;
then
A12: (((r
`1 )
-
|.r.|)
* ((r
`1 )
+
|.r.|))
= (
- ((r
`2 )
^2 ));
((r
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then (r
`1 )
<=
|.r.| by
A12,
XREAL_1: 93;
then ((r
`1 )
/
|.r.|)
<= (
|.r.|
/
|.r.|) by
XREAL_1: 72;
then ((r
`1 )
/
|.r.|)
<= 1 by
A11,
XCMPLX_1: 60;
then
A13: (((r
`1 )
/
|.r.|)
- cn)
<= (1
- cn) by
XREAL_1: 9;
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1) by
A10;
A14:
now
assume ((1
- cn)
^2 )
=
0 ;
then ((1
- cn)
+ cn)
= (
0
+ cn) by
XCMPLX_1: 6;
hence contradiction by
A1;
end;
(cn
- ((r
`1 )
/
|.r.|))
<=
0 by
A3,
A10,
XREAL_1: 47;
then (
- (cn
- ((r
`1 )
/
|.r.|)))
>= (
- (1
- cn)) by
A9,
XREAL_1: 24;
then ((1
- cn)
^2 )
>=
0 & ((((r
`1 )
/
|.r.|)
- cn)
^2 )
<= ((1
- cn)
^2 ) by
A13,
SQUARE_1: 49,
XREAL_1: 63;
then (((((r
`1 )
/
|.r.|)
- cn)
^2 )
/ ((1
- cn)
^2 ))
<= (((1
- cn)
^2 )
/ ((1
- cn)
^2 )) by
XREAL_1: 72;
then (((((r
`1 )
/
|.r.|)
- cn)
^2 )
/ ((1
- cn)
^2 ))
<= 1 by
A14,
XCMPLX_1: 60;
then (((((r
`1 )
/
|.r.|)
- cn)
/ (1
- cn))
^2 )
<= 1 by
XCMPLX_1: 76;
then (1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
|.(1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
- cn))
^2 )).|
= (1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
- cn))
^2 )) by
ABSVALUE:def 1;
then
A15: (f
. r)
= (
|.r.|
* (
sqrt
|.(1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
- cn))
^2 )).|)) by
A2,
A10;
A16: (
proj1
. r)
= (r
`1 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 5;
(g2
. s)
= (
proj1
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm2,
Lm5;
hence thesis by
A5,
A15,
A16;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:55
Th55: for cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (
- 1)
< cn & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
>=
0 & ((q
`1 )
/
|.q.|)
<= cn & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = cn, b = (1
+ cn);
reconsider g2 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm2;
assume that
A1: (
- 1)
< cn and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
>=
0 & ((q
`1 )
/
|.q.|)
<= cn & q
<> (
0. (
TOP-REAL 2));
A4: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|)) and
A6: g3 is
continuous by
A4,
Th10;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then
A8: (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A9: x
in (
dom f);
then x
in K1 by
A7,
A8,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1) by
A9;
A10: ((1
+ cn)
^2 )
>
0 by
A4,
SQUARE_1: 12;
A11:
|.r.|
<>
0 by
A3,
A9,
TOPRNS_1: 24;
(
|.r.|
^2 )
= (((r
`1 )
^2 )
+ ((r
`2 )
^2 )) by
JGRAPH_3: 1;
then
A12: (((r
`1 )
-
|.r.|)
* ((r
`1 )
+
|.r.|))
= (
- ((r
`2 )
^2 ));
((r
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then (
-
|.r.|)
<= (r
`1 ) by
A12,
XREAL_1: 93;
then ((r
`1 )
/
|.r.|)
>= ((
-
|.r.|)
/
|.r.|) by
XREAL_1: 72;
then ((r
`1 )
/
|.r.|)
>= (
- 1) by
A11,
XCMPLX_1: 197;
then (((r
`1 )
/
|.r.|)
- cn)
>= ((
- 1)
- cn) by
XREAL_1: 9;
then
A13: (((r
`1 )
/
|.r.|)
- cn)
>= (
- (1
+ cn));
(cn
- ((r
`1 )
/
|.r.|))
>=
0 by
A3,
A9,
XREAL_1: 48;
then (
- (cn
- ((r
`1 )
/
|.r.|)))
<= (
-
0 );
then ((((r
`1 )
/
|.r.|)
- cn)
^2 )
<= ((1
+ cn)
^2 ) by
A4,
A13,
SQUARE_1: 49;
then (((((r
`1 )
/
|.r.|)
- cn)
^2 )
/ ((1
+ cn)
^2 ))
<= (((1
+ cn)
^2 )
/ ((1
+ cn)
^2 )) by
A4,
XREAL_1: 72;
then (((((r
`1 )
/
|.r.|)
- cn)
^2 )
/ ((1
+ cn)
^2 ))
<= 1 by
A10,
XCMPLX_1: 60;
then (((((r
`1 )
/
|.r.|)
- cn)
/ (1
+ cn))
^2 )
<= 1 by
XCMPLX_1: 76;
then (1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
|.(1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
+ cn))
^2 )).|
= (1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
+ cn))
^2 )) by
ABSVALUE:def 1;
then
A14: (f
. r)
= (
|.r.|
* (
sqrt
|.(1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
+ cn))
^2 )).|)) by
A2,
A9;
A15: (
proj1
. r)
= (r
`1 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 5;
(g2
. s)
= (
proj1
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm2,
Lm5;
hence thesis by
A5,
A14,
A15;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:56
Th56: for cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphN )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set sn = (
sqrt (1
- (cn
^2 )));
set p0 =
|[cn, sn]|;
A1: (p0
`2 )
= sn by
EUCLID: 52;
(p0
`1 )
= cn by
EUCLID: 52;
then
A2:
|.p0.|
= (
sqrt ((sn
^2 )
+ (cn
^2 ))) by
A1,
JGRAPH_3: 1;
assume
A3: (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphN )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (cn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A4: (1
- (cn
^2 ))
>
0 by
XREAL_1: 50;
then (sn
^2 )
= (1
- (cn
^2 )) by
SQUARE_1:def 2;
then
A5: ((p0
`1 )
/
|.p0.|)
= cn by
A2,
EUCLID: 52,
SQUARE_1: 18;
(p0
`2 )
>
0 by
A1,
A4,
SQUARE_1: 25;
then
A6: p0
in K0 by
A3,
A5,
JGRAPH_2: 3;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
A7: (
rng (
proj2
* ((cn
-FanMorphN )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
A8: K0
c= B0
proof
let x be
object;
assume x
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & ((p8
`1 )
/
|.p8.|)
>= cn & (p8
`2 )
>=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A3;
hence thesis by
A3;
end;
A9: (
dom ((cn
-FanMorphN )
| K1))
c= (
dom (
proj1
* ((cn
-FanMorphN )
| K1)))
proof
let x be
object;
assume
A10: x
in (
dom ((cn
-FanMorphN )
| K1));
then x
in ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (cn
-FanMorphN )) by
XBOOLE_0:def 4;
then
A11: (
dom
proj1 )
= the
carrier of (
TOP-REAL 2) & ((cn
-FanMorphN )
. x)
in (
rng (cn
-FanMorphN )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((cn
-FanMorphN )
| K1)
. x)
= ((cn
-FanMorphN )
. x) by
A10,
FUNCT_1: 47;
hence thesis by
A10,
A11,
FUNCT_1: 11;
end;
A12: (
rng (
proj1
* ((cn
-FanMorphN )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
(
dom (
proj1
* ((cn
-FanMorphN )
| K1)))
c= (
dom ((cn
-FanMorphN )
| K1)) by
RELAT_1: 25;
then (
dom (
proj1
* ((cn
-FanMorphN )
| K1)))
= (
dom ((cn
-FanMorphN )
| K1)) by
A9,
XBOOLE_0:def 10
.= ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g2 = (
proj1
* ((cn
-FanMorphN )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A12,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g2
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)))
proof
let p be
Point of (
TOP-REAL 2);
A13: (
dom ((cn
-FanMorphN )
| K1))
= ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A14: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A15: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`1 )
/
|.p3.|)
>= cn & (p3
`2 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A14;
then
A16: ((cn
-FanMorphN )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A3,
Th51;
(((cn
-FanMorphN )
| K1)
. p)
= ((cn
-FanMorphN )
. p) by
A15,
A14,
FUNCT_1: 49;
then (g2
. p)
= (
proj1
.
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]|) by
A15,
A13,
A14,
A16,
FUNCT_1: 13
.= (
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]|
`1 ) by
PSCOMP_1:def 5
.= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
hence thesis;
end;
then
consider f2 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A17: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f2
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)));
A18: (
dom ((cn
-FanMorphN )
| K1))
c= (
dom (
proj2
* ((cn
-FanMorphN )
| K1)))
proof
let x be
object;
assume
A19: x
in (
dom ((cn
-FanMorphN )
| K1));
then x
in ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (cn
-FanMorphN )) by
XBOOLE_0:def 4;
then
A20: (
dom
proj2 )
= the
carrier of (
TOP-REAL 2) & ((cn
-FanMorphN )
. x)
in (
rng (cn
-FanMorphN )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((cn
-FanMorphN )
| K1)
. x)
= ((cn
-FanMorphN )
. x) by
A19,
FUNCT_1: 47;
hence thesis by
A19,
A20,
FUNCT_1: 11;
end;
(
dom (
proj2
* ((cn
-FanMorphN )
| K1)))
c= (
dom ((cn
-FanMorphN )
| K1)) by
RELAT_1: 25;
then (
dom (
proj2
* ((cn
-FanMorphN )
| K1)))
= (
dom ((cn
-FanMorphN )
| K1)) by
A18,
XBOOLE_0:def 10
.= ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g1 = (
proj2
* ((cn
-FanMorphN )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A7,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g1
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))
proof
let p be
Point of (
TOP-REAL 2);
A21: (
dom ((cn
-FanMorphN )
| K1))
= ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A22: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A23: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`1 )
/
|.p3.|)
>= cn & (p3
`2 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A22;
then
A24: ((cn
-FanMorphN )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A3,
Th51;
(((cn
-FanMorphN )
| K1)
. p)
= ((cn
-FanMorphN )
. p) by
A23,
A22,
FUNCT_1: 49;
then (g1
. p)
= (
proj2
.
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]|) by
A23,
A21,
A22,
A24,
FUNCT_1: 13
.= (
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]|
`2 ) by
PSCOMP_1:def 6
.= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))) by
EUCLID: 52;
hence thesis;
end;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A25: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f1
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
>=
0 & ((q
`1 )
/
|.q.|)
>= cn & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A26: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`1 )
/
|.p3.|)
>= cn & (p3
`2 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A26;
hence thesis;
end;
then
A27: f1 is
continuous by
A3,
A25,
Th54;
A28: for x,y,s,r be
Real st
|[x, y]|
in K1 & s
= (f2
.
|[x, y]|) & r
= (f1
.
|[x, y]|) holds (f
.
|[x, y]|)
=
|[s, r]|
proof
let x,y,s,r be
Real;
assume that
A29:
|[x, y]|
in K1 and
A30: s
= (f2
.
|[x, y]|) & r
= (f1
.
|[x, y]|);
set p99 =
|[x, y]|;
A31: ex p3 be
Point of (
TOP-REAL 2) st p99
= p3 & ((p3
`1 )
/
|.p3.|)
>= cn & (p3
`2 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A29;
A32: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
A33: (f1
. p99)
= (
|.p99.|
* (
sqrt (1
- (((((p99
`1 )
/
|.p99.|)
- cn)
/ (1
- cn))
^2 )))) by
A25,
A29;
(((cn
-FanMorphN )
| K0)
.
|[x, y]|)
= ((cn
-FanMorphN )
.
|[x, y]|) by
A29,
FUNCT_1: 49
.=
|[(
|.p99.|
* ((((p99
`1 )
/
|.p99.|)
- cn)
/ (1
- cn))), (
|.p99.|
* (
sqrt (1
- (((((p99
`1 )
/
|.p99.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A3,
A31,
Th51
.=
|[s, r]| by
A17,
A29,
A30,
A32,
A33;
hence thesis by
A3;
end;
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A34: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`1 )
/
|.p3.|)
>= cn & (p3
`2 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A34;
hence thesis;
end;
then f2 is
continuous by
A3,
A17,
Th52;
hence thesis by
A6,
A8,
A27,
A28,
JGRAPH_2: 35;
end;
theorem ::
JGRAPH_4:57
Th57: for cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphN )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set sn = (
sqrt (1
- (cn
^2 )));
set p0 =
|[cn, sn]|;
A1: (p0
`2 )
= sn by
EUCLID: 52;
(p0
`1 )
= cn by
EUCLID: 52;
then
A2:
|.p0.|
= (
sqrt ((sn
^2 )
+ (cn
^2 ))) by
A1,
JGRAPH_3: 1;
assume
A3: (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphN )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (cn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A4: (1
- (cn
^2 ))
>
0 by
XREAL_1: 50;
then (sn
^2 )
= (1
- (cn
^2 )) by
SQUARE_1:def 2;
then
A5: ((p0
`1 )
/
|.p0.|)
= cn by
A2,
EUCLID: 52,
SQUARE_1: 18;
(p0
`2 )
>
0 by
A1,
A4,
SQUARE_1: 25;
then
A6: p0
in K0 by
A3,
A5,
JGRAPH_2: 3;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
A7: (
rng (
proj2
* ((cn
-FanMorphN )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
A8: K0
c= B0
proof
let x be
object;
assume x
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & ((p8
`1 )
/
|.p8.|)
<= cn & (p8
`2 )
>=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A3;
hence thesis by
A3;
end;
A9: (
dom ((cn
-FanMorphN )
| K1))
c= (
dom (
proj1
* ((cn
-FanMorphN )
| K1)))
proof
let x be
object;
assume
A10: x
in (
dom ((cn
-FanMorphN )
| K1));
then x
in ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (cn
-FanMorphN )) by
XBOOLE_0:def 4;
then
A11: (
dom
proj1 )
= the
carrier of (
TOP-REAL 2) & ((cn
-FanMorphN )
. x)
in (
rng (cn
-FanMorphN )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((cn
-FanMorphN )
| K1)
. x)
= ((cn
-FanMorphN )
. x) by
A10,
FUNCT_1: 47;
hence thesis by
A10,
A11,
FUNCT_1: 11;
end;
A12: (
rng (
proj1
* ((cn
-FanMorphN )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
(
dom (
proj1
* ((cn
-FanMorphN )
| K1)))
c= (
dom ((cn
-FanMorphN )
| K1)) by
RELAT_1: 25;
then (
dom (
proj1
* ((cn
-FanMorphN )
| K1)))
= (
dom ((cn
-FanMorphN )
| K1)) by
A9,
XBOOLE_0:def 10
.= ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g2 = (
proj1
* ((cn
-FanMorphN )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A12,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g2
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)))
proof
let p be
Point of (
TOP-REAL 2);
A13: (
dom ((cn
-FanMorphN )
| K1))
= ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A14: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A15: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`1 )
/
|.p3.|)
<= cn & (p3
`2 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A14;
then
A16: ((cn
-FanMorphN )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A3,
Th51;
(((cn
-FanMorphN )
| K1)
. p)
= ((cn
-FanMorphN )
. p) by
A15,
A14,
FUNCT_1: 49;
then (g2
. p)
= (
proj1
.
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]|) by
A15,
A13,
A14,
A16,
FUNCT_1: 13
.= (
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]|
`1 ) by
PSCOMP_1:def 5
.= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
hence thesis;
end;
then
consider f2 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A17: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f2
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)));
A18: (
dom ((cn
-FanMorphN )
| K1))
c= (
dom (
proj2
* ((cn
-FanMorphN )
| K1)))
proof
let x be
object;
assume
A19: x
in (
dom ((cn
-FanMorphN )
| K1));
then x
in ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (cn
-FanMorphN )) by
XBOOLE_0:def 4;
then
A20: (
dom
proj2 )
= the
carrier of (
TOP-REAL 2) & ((cn
-FanMorphN )
. x)
in (
rng (cn
-FanMorphN )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((cn
-FanMorphN )
| K1)
. x)
= ((cn
-FanMorphN )
. x) by
A19,
FUNCT_1: 47;
hence thesis by
A19,
A20,
FUNCT_1: 11;
end;
(
dom (
proj2
* ((cn
-FanMorphN )
| K1)))
c= (
dom ((cn
-FanMorphN )
| K1)) by
RELAT_1: 25;
then (
dom (
proj2
* ((cn
-FanMorphN )
| K1)))
= (
dom ((cn
-FanMorphN )
| K1)) by
A18,
XBOOLE_0:def 10
.= ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g1 = (
proj2
* ((cn
-FanMorphN )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A7,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g1
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))
proof
let p be
Point of (
TOP-REAL 2);
A21: (
dom ((cn
-FanMorphN )
| K1))
= ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A22: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A23: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`1 )
/
|.p3.|)
<= cn & (p3
`2 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A22;
then
A24: ((cn
-FanMorphN )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A3,
Th51;
(((cn
-FanMorphN )
| K1)
. p)
= ((cn
-FanMorphN )
. p) by
A23,
A22,
FUNCT_1: 49;
then (g1
. p)
= (
proj2
.
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]|) by
A23,
A21,
A22,
A24,
FUNCT_1: 13
.= (
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]|
`2 ) by
PSCOMP_1:def 6
.= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))) by
EUCLID: 52;
hence thesis;
end;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A25: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f1
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
>=
0 & ((q
`1 )
/
|.q.|)
<= cn & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A26: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`1 )
/
|.p3.|)
<= cn & (p3
`2 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A26;
hence thesis;
end;
then
A27: f1 is
continuous by
A3,
A25,
Th55;
A28: for x,y,s,r be
Real st
|[x, y]|
in K1 & s
= (f2
.
|[x, y]|) & r
= (f1
.
|[x, y]|) holds (f
.
|[x, y]|)
=
|[s, r]|
proof
let x,y,s,r be
Real;
assume that
A29:
|[x, y]|
in K1 and
A30: s
= (f2
.
|[x, y]|) & r
= (f1
.
|[x, y]|);
set p99 =
|[x, y]|;
A31: ex p3 be
Point of (
TOP-REAL 2) st p99
= p3 & ((p3
`1 )
/
|.p3.|)
<= cn & (p3
`2 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A29;
A32: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
A33: (f1
. p99)
= (
|.p99.|
* (
sqrt (1
- (((((p99
`1 )
/
|.p99.|)
- cn)
/ (1
+ cn))
^2 )))) by
A25,
A29;
(((cn
-FanMorphN )
| K0)
.
|[x, y]|)
= ((cn
-FanMorphN )
.
|[x, y]|) by
A29,
FUNCT_1: 49
.=
|[(
|.p99.|
* ((((p99
`1 )
/
|.p99.|)
- cn)
/ (1
+ cn))), (
|.p99.|
* (
sqrt (1
- (((((p99
`1 )
/
|.p99.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A3,
A31,
Th51
.=
|[s, r]| by
A17,
A29,
A30,
A32,
A33;
hence thesis by
A3;
end;
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A34: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`1 )
/
|.p3.|)
<= cn & (p3
`2 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A34;
hence thesis;
end;
then f2 is
continuous by
A3,
A17,
Th53;
hence thesis by
A6,
A8,
A27,
A28,
JGRAPH_2: 35;
end;
theorem ::
JGRAPH_4:58
Th58: for cn be
Real, K03 be
Subset of (
TOP-REAL 2) st K03
= { p : (p
`1 )
>= (cn
*
|.p.|) & (p
`2 )
>=
0 } holds K03 is
closed
proof
defpred
Q[
Point of (
TOP-REAL 2)] means ($1
`2 )
>=
0 ;
let sn be
Real, K003 be
Subset of (
TOP-REAL 2);
assume
A1: K003
= { p : (p
`1 )
>= (sn
*
|.p.|) & (p
`2 )
>=
0 };
reconsider KX = { p where p be
Point of (
TOP-REAL 2) :
Q[p] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
>= (sn
*
|.$1.|));
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A2: { p :
P[p] &
Q[p] }
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ { p1 where p1 be
Point of (
TOP-REAL 2) :
Q[p1] }) from
DOMAIN_1:sch 10;
K1 is
closed & KX is
closed by
Lm8,
JORDAN6: 7;
hence thesis by
A1,
A2,
TOPS_1: 8;
end;
theorem ::
JGRAPH_4:59
Th59: for cn be
Real, K03 be
Subset of (
TOP-REAL 2) st K03
= { p : (p
`1 )
<= (cn
*
|.p.|) & (p
`2 )
>=
0 } holds K03 is
closed
proof
defpred
Q[
Point of (
TOP-REAL 2)] means ($1
`2 )
>=
0 ;
let sn be
Real, K003 be
Subset of (
TOP-REAL 2);
assume
A1: K003
= { p : (p
`1 )
<= (sn
*
|.p.|) & (p
`2 )
>=
0 };
reconsider KX = { p where p be
Point of (
TOP-REAL 2) :
Q[p] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
<= (sn
*
|.$1.|));
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A2: { p :
P[p] &
Q[p] }
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ { p1 where p1 be
Point of (
TOP-REAL 2) :
Q[p1] }) from
DOMAIN_1:sch 10;
K1 is
closed & KX is
closed by
Lm10,
JORDAN6: 7;
hence thesis by
A1,
A2,
TOPS_1: 8;
end;
theorem ::
JGRAPH_4:60
Th60: for cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphN )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set sn = (
sqrt (1
- (cn
^2 )));
set p0 =
|[cn, sn]|;
A1: (p0
`2 )
= sn by
EUCLID: 52;
assume
A2: (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphN )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (cn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A3: (1
- (cn
^2 ))
>
0 by
XREAL_1: 50;
then
A4: (p0
`2 )
>
0 by
A1,
SQUARE_1: 25;
then p0
in K0 by
A2,
JGRAPH_2: 3;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
p0
<> (
0. (
TOP-REAL 2)) by
A1,
A3,
JGRAPH_2: 3,
SQUARE_1: 25;
then not p0
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
then
reconsider D = B0 as non
empty
Subset of (
TOP-REAL 2) by
A2,
XBOOLE_0:def 5;
A5: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
(p0
`1 )
= cn by
EUCLID: 52;
then
A6:
|.p0.|
= (
sqrt ((sn
^2 )
+ (cn
^2 ))) by
A1,
JGRAPH_3: 1;
A7: D
<>
{} ;
(sn
^2 )
= (1
- (cn
^2 )) by
A3,
SQUARE_1:def 2;
then
A8: ((p0
`1 )
/
|.p0.|)
= cn by
A6,
EUCLID: 52,
SQUARE_1: 18;
then
A9: p0
in { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } by
A4,
JGRAPH_2: 3;
A10: { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) }
c= K1
proof
let x be
object;
assume x
in { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then ex p st p
= x & ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2));
hence thesis by
A2;
end;
A11: { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) }
c= K1
proof
let x be
object;
assume x
in { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then ex p st p
= x & ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2));
hence thesis by
A2;
end;
then
reconsider K00 = { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| K1) by
A9,
PRE_TOPC: 8;
the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
then
A12: (
rng (f
| K00))
c= D;
p0
in { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } by
A4,
A8,
JGRAPH_2: 3;
then
reconsider K11 = { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| K1) by
A10,
PRE_TOPC: 8;
the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
then
A13: (
rng (f
| K11))
c= D;
the
carrier of ((
TOP-REAL 2)
| B0)
= the
carrier of ((
TOP-REAL 2)
| D);
then
A14: (
dom f)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1
.= K1 by
PRE_TOPC: 8;
then (
dom (f
| K00))
= K00 by
A11,
RELAT_1: 62
.= the
carrier of (((
TOP-REAL 2)
| K1)
| K00) by
PRE_TOPC: 8;
then
reconsider f1 = (f
| K00) as
Function of (((
TOP-REAL 2)
| K1)
| K00), ((
TOP-REAL 2)
| D) by
A12,
FUNCT_2: 2;
(
dom (f
| K11))
= K11 by
A10,
A14,
RELAT_1: 62
.= the
carrier of (((
TOP-REAL 2)
| K1)
| K11) by
PRE_TOPC: 8;
then
reconsider f2 = (f
| K11) as
Function of (((
TOP-REAL 2)
| K1)
| K11), ((
TOP-REAL 2)
| D) by
A13,
FUNCT_2: 2;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
/
|.$1.|)
>= cn & ($1
`2 )
>=
0 & $1
<> (
0. (
TOP-REAL 2));
A15: (
dom f2)
= the
carrier of (((
TOP-REAL 2)
| K1)
| K11) by
FUNCT_2:def 1
.= K11 by
PRE_TOPC: 8;
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider K001 = { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of (
TOP-REAL 2) by
A9;
A16: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`1 )
>= (cn
*
|.$1.|) & ($1
`2 )
>=
0 ;
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider K003 = { p : (p
`1 )
>= (cn
*
|.p.|) & (p
`2 )
>=
0 } as
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
/
|.$1.|)
<= cn & ($1
`2 )
>=
0 & $1
<> (
0. (
TOP-REAL 2));
A17: { p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
A18: (
rng ((cn
-FanMorphN )
| K001))
c= K1
proof
let y be
object;
assume y
in (
rng ((cn
-FanMorphN )
| K001));
then
consider x be
object such that
A19: x
in (
dom ((cn
-FanMorphN )
| K001)) and
A20: y
= (((cn
-FanMorphN )
| K001)
. x) by
FUNCT_1:def 3;
x
in (
dom (cn
-FanMorphN )) by
A19,
RELAT_1: 57;
then
reconsider q = x as
Point of (
TOP-REAL 2);
A21: y
= ((cn
-FanMorphN )
. q) by
A19,
A20,
FUNCT_1: 47;
(
dom ((cn
-FanMorphN )
| K001))
= ((
dom (cn
-FanMorphN ))
/\ K001) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K001) by
FUNCT_2:def 1
.= K001 by
XBOOLE_1: 28;
then
A22: ex p2 be
Point of (
TOP-REAL 2) st p2
= q & ((p2
`1 )
/
|.p2.|)
>= cn & (p2
`2 )
>=
0 & p2
<> (
0. (
TOP-REAL 2)) by
A19;
then
A23: (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
XREAL_1: 48;
|.q.|
<>
0 by
A22,
TOPRNS_1: 24;
then
A24: (
|.q.|
^2 )
> (
0
^2 ) by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]|;
A25: (q4
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
A26: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then ((q
`1 )
^2 )
<= (
|.q.|
^2 ) by
JGRAPH_3: 1;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A24,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- cn)
>= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
<= (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A26,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A26,
XCMPLX_1: 197;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A26,
A23,
SQUARE_1: 49;
then
A27: (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A28: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )))
>=
0 by
A27,
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
^2 )
/ ((1
- cn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
^2 )
/ ((1
- cn)
^2 ))))
>=
0 ;
then
A29: (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
>=
0 by
XCMPLX_1: 76;
A30: (q4
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))) by
EUCLID: 52;
then
A31: ((q4
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))) by
A28,
SQUARE_1:def 2;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A25,
A31;
then
A32: q4
<> (
0. (
TOP-REAL 2)) by
A24,
TOPRNS_1: 23;
((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A2,
A22,
Th51;
hence thesis by
A2,
A21,
A30,
A29,
A32;
end;
A33: (
dom (cn
-FanMorphN ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then (
dom ((cn
-FanMorphN )
| K001))
= K001 by
RELAT_1: 62
.= the
carrier of ((
TOP-REAL 2)
| K001) by
PRE_TOPC: 8;
then
reconsider f3 = ((cn
-FanMorphN )
| K001) as
Function of ((
TOP-REAL 2)
| K001), ((
TOP-REAL 2)
| K1) by
A5,
A18,
FUNCT_2: 2;
A34: K003 is
closed by
Th58;
K1
c= D
proof
let x be
object;
assume
A35: x
in K1;
then ex p6 be
Point of (
TOP-REAL 2) st p6
= x & (p6
`2 )
>=
0 & p6
<> (
0. (
TOP-REAL 2)) by
A2;
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A2,
A35,
XBOOLE_0:def 5;
end;
then D
= (K1
\/ D) by
XBOOLE_1: 12;
then
A36: ((
TOP-REAL 2)
| K1) is
SubSpace of ((
TOP-REAL 2)
| D) by
TOPMETR: 4;
p0
in { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } by
A4,
A8,
JGRAPH_2: 3;
then
reconsider K111 = { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of (
TOP-REAL 2) by
A17;
A37: (
rng ((cn
-FanMorphN )
| K111))
c= K1
proof
let y be
object;
assume y
in (
rng ((cn
-FanMorphN )
| K111));
then
consider x be
object such that
A38: x
in (
dom ((cn
-FanMorphN )
| K111)) and
A39: y
= (((cn
-FanMorphN )
| K111)
. x) by
FUNCT_1:def 3;
x
in (
dom (cn
-FanMorphN )) by
A38,
RELAT_1: 57;
then
reconsider q = x as
Point of (
TOP-REAL 2);
A40: y
= ((cn
-FanMorphN )
. q) by
A38,
A39,
FUNCT_1: 47;
(
dom ((cn
-FanMorphN )
| K111))
= ((
dom (cn
-FanMorphN ))
/\ K111) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K111) by
FUNCT_2:def 1
.= K111 by
XBOOLE_1: 28;
then
A41: ex p2 be
Point of (
TOP-REAL 2) st p2
= q & ((p2
`1 )
/
|.p2.|)
<= cn & (p2
`2 )
>=
0 & p2
<> (
0. (
TOP-REAL 2)) by
A38;
then
A42: (((q
`1 )
/
|.q.|)
- cn)
<=
0 by
XREAL_1: 47;
|.q.|
<>
0 by
A41,
TOPRNS_1: 24;
then
A43: (
|.q.|
^2 )
> (
0
^2 ) by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]|;
A44: (q4
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
A45: (1
+ cn)
>
0 by
A2,
XREAL_1: 148;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A43,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then ((
- 1)
- cn)
<= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then ((
- (1
+ cn))
/ (1
+ cn))
<= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)) by
A45,
XREAL_1: 72;
then (
- 1)
<= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)) by
A45,
XCMPLX_1: 197;
then
A46: (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A45,
A42,
SQUARE_1: 49;
then
A47: (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
(1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)))
^2 ))
>=
0 by
A46,
XREAL_1: 48;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 ))
>=
0 by
XCMPLX_1: 187;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
^2 )
/ ((1
+ cn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
^2 )
/ ((1
+ cn)
^2 ))))
>=
0 ;
then
A48: (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
>=
0 by
XCMPLX_1: 76;
A49: (q4
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))) by
EUCLID: 52;
then
A50: ((q4
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))) by
A47,
SQUARE_1:def 2;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A44,
A50;
then
A51: q4
<> (
0. (
TOP-REAL 2)) by
A43,
TOPRNS_1: 23;
((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A2,
A41,
Th51;
hence thesis by
A2,
A40,
A49,
A48,
A51;
end;
(
dom ((cn
-FanMorphN )
| K111))
= K111 by
A33,
RELAT_1: 62
.= the
carrier of ((
TOP-REAL 2)
| K111) by
PRE_TOPC: 8;
then
reconsider f4 = ((cn
-FanMorphN )
| K111) as
Function of ((
TOP-REAL 2)
| K111), ((
TOP-REAL 2)
| K1) by
A16,
A37,
FUNCT_2: 2;
the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then (((
TOP-REAL 2)
| K1)
| K11)
= ((
TOP-REAL 2)
| K111) & f2
= f4 by
A2,
FUNCT_1: 51,
GOBOARD9: 2;
then
A52: f2 is
continuous by
A2,
A36,
Th57,
PRE_TOPC: 26;
A53: the
carrier of ((
TOP-REAL 2)
| K1)
= K0 by
PRE_TOPC: 8;
set T1 = (((
TOP-REAL 2)
| K1)
| K00), T2 = (((
TOP-REAL 2)
| K1)
| K11);
A54: (
[#] (((
TOP-REAL 2)
| K1)
| K11))
= K11 by
PRE_TOPC:def 5;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`1 )
<= (cn
*
|.$1.|) & ($1
`2 )
>=
0 ;
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider K004 = { p : (p
`1 )
<= (cn
*
|.p.|) & (p
`2 )
>=
0 } as
Subset of (
TOP-REAL 2);
A55: (K004
/\ K1)
c= K11
proof
let x be
object;
assume
A56: x
in (K004
/\ K1);
then x
in K004 by
XBOOLE_0:def 4;
then
consider q1 be
Point of (
TOP-REAL 2) such that
A57: q1
= x and
A58: (q1
`1 )
<= (cn
*
|.q1.|) and (q1
`2 )
>=
0 ;
x
in K1 by
A56,
XBOOLE_0:def 4;
then
A59: ex q2 be
Point of (
TOP-REAL 2) st q2
= x & (q2
`2 )
>=
0 & q2
<> (
0. (
TOP-REAL 2)) by
A2;
((q1
`1 )
/
|.q1.|)
<= ((cn
*
|.q1.|)
/
|.q1.|) by
A58,
XREAL_1: 72;
then ((q1
`1 )
/
|.q1.|)
<= cn by
A57,
A59,
TOPRNS_1: 24,
XCMPLX_1: 89;
hence thesis by
A57,
A59;
end;
A60: K004 is
closed by
Th59;
the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then (((
TOP-REAL 2)
| K1)
| K00)
= ((
TOP-REAL 2)
| K001) & f1
= f3 by
A2,
FUNCT_1: 51,
GOBOARD9: 2;
then
A61: f1 is
continuous by
A2,
A36,
Th56,
PRE_TOPC: 26;
A62: (
[#] ((
TOP-REAL 2)
| K1))
= K1 by
PRE_TOPC:def 5;
K11
c= (K004
/\ K1)
proof
let x be
object;
assume x
in K11;
then
consider p such that
A63: p
= x and
A64: ((p
`1 )
/
|.p.|)
<= cn and
A65: (p
`2 )
>=
0 and
A66: p
<> (
0. (
TOP-REAL 2));
(((p
`1 )
/
|.p.|)
*
|.p.|)
<= (cn
*
|.p.|) by
A64,
XREAL_1: 64;
then (p
`1 )
<= (cn
*
|.p.|) by
A66,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A67: x
in K004 by
A63,
A65;
x
in K1 by
A2,
A63,
A65,
A66;
hence thesis by
A67,
XBOOLE_0:def 4;
end;
then K11
= (K004
/\ (
[#] ((
TOP-REAL 2)
| K1))) by
A62,
A55,
XBOOLE_0:def 10;
then
A68: K11 is
closed by
A60,
PRE_TOPC: 13;
A69: (K003
/\ K1)
c= K00
proof
let x be
object;
assume
A70: x
in (K003
/\ K1);
then x
in K003 by
XBOOLE_0:def 4;
then
consider q1 be
Point of (
TOP-REAL 2) such that
A71: q1
= x and
A72: (q1
`1 )
>= (cn
*
|.q1.|) and (q1
`2 )
>=
0 ;
x
in K1 by
A70,
XBOOLE_0:def 4;
then
A73: ex q2 be
Point of (
TOP-REAL 2) st q2
= x & (q2
`2 )
>=
0 & q2
<> (
0. (
TOP-REAL 2)) by
A2;
((q1
`1 )
/
|.q1.|)
>= ((cn
*
|.q1.|)
/
|.q1.|) by
A72,
XREAL_1: 72;
then ((q1
`1 )
/
|.q1.|)
>= cn by
A71,
A73,
TOPRNS_1: 24,
XCMPLX_1: 89;
hence thesis by
A71,
A73;
end;
K00
c= (K003
/\ K1)
proof
let x be
object;
assume x
in K00;
then
consider p such that
A74: p
= x and
A75: ((p
`1 )
/
|.p.|)
>= cn and
A76: (p
`2 )
>=
0 and
A77: p
<> (
0. (
TOP-REAL 2));
(((p
`1 )
/
|.p.|)
*
|.p.|)
>= (cn
*
|.p.|) by
A75,
XREAL_1: 64;
then (p
`1 )
>= (cn
*
|.p.|) by
A77,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A78: x
in K003 by
A74,
A76;
x
in K1 by
A2,
A74,
A76,
A77;
hence thesis by
A78,
XBOOLE_0:def 4;
end;
then K00
= (K003
/\ (
[#] ((
TOP-REAL 2)
| K1))) by
A62,
A69,
XBOOLE_0:def 10;
then
A79: K00 is
closed by
A34,
PRE_TOPC: 13;
A80: (
[#] (((
TOP-REAL 2)
| K1)
| K00))
= K00 by
PRE_TOPC:def 5;
A81: for p be
object st p
in ((
[#] T1)
/\ (
[#] T2)) holds (f1
. p)
= (f2
. p)
proof
let p be
object;
assume
A82: p
in ((
[#] T1)
/\ (
[#] T2));
then p
in K00 by
A80,
XBOOLE_0:def 4;
hence (f1
. p)
= (f
. p) by
FUNCT_1: 49
.= (f2
. p) by
A54,
A82,
FUNCT_1: 49;
end;
A83: K1
c= (K00
\/ K11)
proof
let x be
object;
assume x
in K1;
then
consider p such that
A84: p
= x & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) by
A2;
per cases ;
suppose ((p
`1 )
/
|.p.|)
>= cn;
then x
in K00 by
A84;
hence thesis by
XBOOLE_0:def 3;
end;
suppose ((p
`1 )
/
|.p.|)
< cn;
then x
in K11 by
A84;
hence thesis by
XBOOLE_0:def 3;
end;
end;
then ((
[#] (((
TOP-REAL 2)
| K1)
| K00))
\/ (
[#] (((
TOP-REAL 2)
| K1)
| K11)))
= (
[#] ((
TOP-REAL 2)
| K1)) by
A80,
A54,
A62,
XBOOLE_0:def 10;
then
consider h be
Function of ((
TOP-REAL 2)
| K1), ((
TOP-REAL 2)
| D) such that
A85: h
= (f1
+* f2) and
A86: h is
continuous by
A80,
A54,
A79,
A68,
A61,
A52,
A81,
JGRAPH_2: 1;
A87: (
dom h)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
A88: (
dom f1)
= the
carrier of (((
TOP-REAL 2)
| K1)
| K00) by
FUNCT_2:def 1
.= K00 by
PRE_TOPC: 8;
A89: for y be
object st y
in (
dom h) holds (h
. y)
= (f
. y)
proof
let y be
object;
assume
A90: y
in (
dom h);
per cases by
A83,
A87,
A53,
A90,
XBOOLE_0:def 3;
suppose
A91: y
in K00 & not y
in K11;
then y
in ((
dom f1)
\/ (
dom f2)) by
A88,
XBOOLE_0:def 3;
hence (h
. y)
= (f1
. y) by
A15,
A85,
A91,
FUNCT_4:def 1
.= (f
. y) by
A91,
FUNCT_1: 49;
end;
suppose
A92: y
in K11;
then y
in ((
dom f1)
\/ (
dom f2)) by
A15,
XBOOLE_0:def 3;
hence (h
. y)
= (f2
. y) by
A15,
A85,
A92,
FUNCT_4:def 1
.= (f
. y) by
A92,
FUNCT_1: 49;
end;
end;
K0
= the
carrier of ((
TOP-REAL 2)
| K0) by
PRE_TOPC: 8
.= (
dom f) by
A7,
FUNCT_2:def 1;
hence thesis by
A86,
A87,
A89,
FUNCT_1: 2,
PRE_TOPC: 8;
end;
theorem ::
JGRAPH_4:61
Th61: for cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphN )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set sn = (
sqrt (1
- (cn
^2 )));
set p0 =
|[cn, (
- sn)]|;
assume
A1: (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphN )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (cn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then (1
- (cn
^2 ))
>
0 by
XREAL_1: 50;
then (p0
`2 )
= (
- sn) & (
- (
- sn))
>
0 by
EUCLID: 52,
SQUARE_1: 25;
then
A2: (p0
`2 )
<
0 ;
then p0
in K0 by
A1,
JGRAPH_2: 3;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
not p0
in
{(
0. (
TOP-REAL 2))} by
A2,
JGRAPH_2: 3,
TARSKI:def 1;
then
reconsider D = B0 as non
empty
Subset of (
TOP-REAL 2) by
A1,
XBOOLE_0:def 5;
A3: K1
c= D
proof
let x be
object;
assume x
in K1;
then
consider p2 be
Point of (
TOP-REAL 2) such that
A4: p2
= x and (p2
`2 )
<=
0 and
A5: p2
<> (
0. (
TOP-REAL 2)) by
A1;
not p2
in
{(
0. (
TOP-REAL 2))} by
A5,
TARSKI:def 1;
hence thesis by
A1,
A4,
XBOOLE_0:def 5;
end;
for p be
Point of ((
TOP-REAL 2)
| K1), V be
Subset of ((
TOP-REAL 2)
| D) st (f
. p)
in V & V is
open holds ex W be
Subset of ((
TOP-REAL 2)
| K1) st p
in W & W is
open & (f
.: W)
c= V
proof
let p be
Point of ((
TOP-REAL 2)
| K1), V be
Subset of ((
TOP-REAL 2)
| D);
assume that
A6: (f
. p)
in V and
A7: V is
open;
consider V2 be
Subset of (
TOP-REAL 2) such that
A8: V2 is
open and
A9: (V2
/\ (
[#] ((
TOP-REAL 2)
| D)))
= V by
A7,
TOPS_2: 24;
reconsider W2 = (V2
/\ (
[#] ((
TOP-REAL 2)
| K1))) as
Subset of ((
TOP-REAL 2)
| K1);
A10: (
[#] ((
TOP-REAL 2)
| K1))
= K1 by
PRE_TOPC:def 5;
then
A11: (f
. p)
= ((cn
-FanMorphN )
. p) by
A1,
FUNCT_1: 49;
A12: (f
.: W2)
c= V
proof
let y be
object;
assume y
in (f
.: W2);
then
consider x be
object such that
A13: x
in (
dom f) and
A14: x
in W2 and
A15: y
= (f
. x) by
FUNCT_1:def 6;
f is
Function of ((
TOP-REAL 2)
| K1), ((
TOP-REAL 2)
| D);
then (
dom f)
= K1 by
A10,
FUNCT_2:def 1;
then
consider p4 be
Point of (
TOP-REAL 2) such that
A16: x
= p4 and
A17: (p4
`2 )
<=
0 and p4
<> (
0. (
TOP-REAL 2)) by
A1,
A13;
A18: p4
in V2 by
A14,
A16,
XBOOLE_0:def 4;
p4
in (
[#] ((
TOP-REAL 2)
| K1)) by
A13,
A16;
then p4
in D by
A3,
A10;
then
A19: p4
in (
[#] ((
TOP-REAL 2)
| D)) by
PRE_TOPC:def 5;
(f
. p4)
= ((cn
-FanMorphN )
. p4) by
A1,
A10,
A13,
A16,
FUNCT_1: 49
.= p4 by
A17,
Th49;
hence thesis by
A9,
A15,
A16,
A18,
A19,
XBOOLE_0:def 4;
end;
p
in the
carrier of ((
TOP-REAL 2)
| K1);
then
consider q be
Point of (
TOP-REAL 2) such that
A20: q
= p and
A21: (q
`2 )
<=
0 and q
<> (
0. (
TOP-REAL 2)) by
A1,
A10;
((cn
-FanMorphN )
. q)
= q by
A21,
Th49;
then p
in V2 by
A6,
A9,
A11,
A20,
XBOOLE_0:def 4;
then
A22: p
in W2 by
XBOOLE_0:def 4;
W2 is
open by
A8,
TOPS_2: 24;
hence thesis by
A22,
A12;
end;
hence thesis by
JGRAPH_2: 10;
end;
theorem ::
JGRAPH_4:62
Th62: for B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0) st B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds K0 is
closed
proof
set J0 = (
NonZero (
TOP-REAL 2));
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`2 )
>=
0 ;
set I1 = { p :
P[p] & p
<> (
0. (
TOP-REAL 2)) };
let B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0);
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A1: I1
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ J0) from
JGRAPH_3:sch 2;
assume B0
= J0 & K0
= I1;
then K1 is
closed & K0
= (K1
/\ (
[#] ((
TOP-REAL 2)
| B0))) by
A1,
JORDAN6: 7,
PRE_TOPC:def 5;
hence thesis by
PRE_TOPC: 13;
end;
theorem ::
JGRAPH_4:63
Th63: for B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0) st B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds K0 is
closed
proof
set J0 = (
NonZero (
TOP-REAL 2));
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`2 )
<=
0 ;
set I1 = { p :
P[p] & p
<> (
0. (
TOP-REAL 2)) };
let B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0);
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A1: I1
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ J0) from
JGRAPH_3:sch 2;
assume B0
= J0 & K0
= I1;
then K1 is
closed & K0
= (K1
/\ (
[#] ((
TOP-REAL 2)
| B0))) by
A1,
JORDAN6: 8,
PRE_TOPC:def 5;
hence thesis by
PRE_TOPC: 13;
end;
theorem ::
JGRAPH_4:64
Th64: for cn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphN )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let cn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0);
the
carrier of ((
TOP-REAL 2)
| B0)
= B0 by
PRE_TOPC: 8;
then
reconsider K1 = K0 as
Subset of (
TOP-REAL 2) by
XBOOLE_1: 1;
assume
A1: (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphN )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
K0
c= B0
proof
let x be
object;
assume x
in K0;
then
A2: ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & (p8
`2 )
>=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A1;
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A1,
A2,
XBOOLE_0:def 5;
end;
then (((
TOP-REAL 2)
| B0)
| K0)
= ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 7;
hence thesis by
A1,
Th60;
end;
theorem ::
JGRAPH_4:65
Th65: for cn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphN )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let cn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0);
the
carrier of ((
TOP-REAL 2)
| B0)
= B0 by
PRE_TOPC: 8;
then
reconsider K1 = K0 as
Subset of (
TOP-REAL 2) by
XBOOLE_1: 1;
assume
A1: (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphN )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
K0
c= B0
proof
let x be
object;
assume x
in K0;
then
A2: ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & (p8
`2 )
<=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A1;
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A1,
A2,
XBOOLE_0:def 5;
end;
then (((
TOP-REAL 2)
| B0)
| K0)
= ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 7;
hence thesis by
A1,
Th61;
end;
theorem ::
JGRAPH_4:66
Th66: for cn be
Real, p be
Point of (
TOP-REAL 2) holds
|.((cn
-FanMorphN )
. p).|
=
|.p.|
proof
let cn be
Real, p be
Point of (
TOP-REAL 2);
set f = (cn
-FanMorphN );
set z = (f
. p);
reconsider q = p as
Point of (
TOP-REAL 2);
reconsider qz = z as
Point of (
TOP-REAL 2);
per cases ;
suppose
A1: ((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
>
0 ;
then
A2: ((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]| by
Th49;
then
A3: (qz
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))) by
EUCLID: 52;
A4: (qz
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))) by
A2,
EUCLID: 52;
A5: (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A1,
XREAL_1: 48;
A6: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
|.q.|
<>
0 by
A1,
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A7: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A6,
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A7,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then
A8: (1
- cn)
>= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
per cases ;
suppose
A9: (1
- cn)
=
0 ;
A10: ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
= ((((q
`1 )
/
|.q.|)
- cn)
* ((1
- cn)
" )) by
XCMPLX_0:def 9
.= ((((q
`1 )
/
|.q.|)
- cn)
*
0 ) by
A9
.=
0 ;
then (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))
= 1;
then ((cn
-FanMorphN )
. q)
=
|[(
|.q.|
*
0 ), (
|.q.|
* 1)]| by
A1,
A10,
Th49,
SQUARE_1: 18
.=
|[
0 ,
|.q.|]|;
then (((cn
-FanMorphN )
. q)
`2 )
=
|.q.| & (((cn
-FanMorphN )
. q)
`1 )
=
0 by
EUCLID: 52;
then
|.((cn
-FanMorphN )
. p).|
= (
sqrt ((
|.q.|
^2 )
+ (
0
^2 ))) by
JGRAPH_3: 1
.=
|.q.| by
SQUARE_1: 22;
hence thesis;
end;
suppose
A11: (1
- cn)
<>
0 ;
per cases by
A11;
suppose
A12: (1
- cn)
>
0 ;
(
- (1
- cn))
<= (
- (((q
`1 )
/
|.q.|)
- cn)) by
A8,
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A12,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A12,
XCMPLX_1: 197;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A5,
A12,
SQUARE_1: 49;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A13: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A14: ((qz
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
^2 )) by
A3
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))) by
A13,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A4,
A14;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
hence thesis by
SQUARE_1: 22;
end;
suppose
A15: (1
- cn)
<
0 ;
(
0
+ ((q
`1 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A1,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A7,
A6,
XREAL_1: 74;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A7,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then
A16: 1
> ((q
`1 )
/
|.p.|) by
SQUARE_1: 52;
(((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A1,
XREAL_1: 48;
hence thesis by
A15,
A16,
XREAL_1: 9;
end;
end;
end;
suppose
A17: ((q
`1 )
/
|.q.|)
< cn & (q
`2 )
>
0 ;
then
|.q.|
<>
0 by
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A18: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A19: (((q
`1 )
/
|.q.|)
- cn)
<
0 by
A17,
XREAL_1: 49;
A20: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A20,
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A18,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then
A21: ((
- 1)
- cn)
<= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
A22: ((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A17,
Th50;
then
A23: (qz
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))) by
EUCLID: 52;
A24: (qz
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
A22,
EUCLID: 52;
per cases ;
suppose
A25: (1
+ cn)
=
0 ;
((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
= ((((q
`1 )
/
|.q.|)
- cn)
* ((1
+ cn)
" )) by
XCMPLX_0:def 9
.= ((((q
`1 )
/
|.q.|)
- cn)
*
0 ) by
A25
.=
0 ;
then (((cn
-FanMorphN )
. q)
`2 )
=
|.q.| & (((cn
-FanMorphN )
. q)
`1 )
=
0 by
A22,
EUCLID: 52,
SQUARE_1: 18;
then
|.((cn
-FanMorphN )
. p).|
= (
sqrt ((
|.q.|
^2 )
+ (
0
^2 ))) by
JGRAPH_3: 1
.=
|.q.| by
SQUARE_1: 22;
hence thesis;
end;
suppose
A26: (1
+ cn)
<>
0 ;
per cases by
A26;
suppose
A27: (1
+ cn)
>
0 ;
then ((
- (1
+ cn))
/ (1
+ cn))
<= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)) by
A21,
XREAL_1: 72;
then (
- 1)
<= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)) by
A27,
XCMPLX_1: 197;
then (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A19,
A27,
SQUARE_1: 49;
then
A28: (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
A29: ((qz
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
^2 )) by
A23
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))) by
A28,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A24,
A29;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
hence thesis by
SQUARE_1: 22;
end;
suppose
A30: (1
+ cn)
<
0 ;
(
0
+ ((q
`1 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A17,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A18,
A20,
XREAL_1: 74;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A18,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then (
- 1)
< ((q
`1 )
/
|.p.|) by
SQUARE_1: 52;
then
A31: (((q
`1 )
/
|.q.|)
- cn)
> ((
- 1)
- cn) by
XREAL_1: 9;
(
- (1
+ cn))
> (
-
0 ) by
A30,
XREAL_1: 24;
hence thesis by
A17,
A31,
XREAL_1: 49;
end;
end;
end;
suppose (q
`2 )
<=
0 ;
hence thesis by
Th49;
end;
end;
theorem ::
JGRAPH_4:67
Th67: for cn be
Real, x,K0 be
set st (
- 1)
< cn & cn
< 1 & x
in K0 & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds ((cn
-FanMorphN )
. x)
in K0
proof
let cn be
Real, x,K0 be
set;
assume
A1: (
- 1)
< cn & cn
< 1 & x
in K0 & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then
consider p such that
A2: p
= x and
A3: (p
`2 )
>=
0 and
A4: p
<> (
0. (
TOP-REAL 2));
A5:
now
assume
|.p.|
<=
0 ;
then
|.p.|
=
0 ;
hence contradiction by
A4,
TOPRNS_1: 24;
end;
then
A6: (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
per cases ;
suppose
A7: ((p
`1 )
/
|.p.|)
<= cn;
reconsider p9 = ((cn
-FanMorphN )
. p) as
Point of (
TOP-REAL 2);
((cn
-FanMorphN )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A1,
A3,
A4,
A7,
Th51;
then
A8: (p9
`2 )
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))) by
EUCLID: 52;
A9: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
A10: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
per cases ;
suppose (p
`2 )
=
0 ;
hence thesis by
A1,
A2,
Th49;
end;
suppose (p
`2 )
<>
0 ;
then (
0
+ ((p
`1 )
^2 ))
< (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
SQUARE_1: 12,
XREAL_1: 8;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
< ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A6,
A9,
XREAL_1: 74;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
< 1 by
A6,
XCMPLX_1: 60;
then (((p
`1 )
/
|.p.|)
^2 )
< 1 by
XCMPLX_1: 76;
then (
- 1)
< ((p
`1 )
/
|.p.|) by
SQUARE_1: 52;
then ((
- 1)
- cn)
< (((p
`1 )
/
|.p.|)
- cn) by
XREAL_1: 9;
then (((
- 1)
* (1
+ cn))
/ (1
+ cn))
< ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)) by
A10,
XREAL_1: 74;
then
A11: (
- 1)
< ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)) by
A10,
XCMPLX_1: 89;
(((p
`1 )
/
|.p.|)
- cn)
<=
0 by
A7,
XREAL_1: 47;
then (1
^2 )
> (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ) by
A10,
A11,
SQUARE_1: 50;
then (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))
>
0 by
XREAL_1: 50;
then (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))
>
0 by
SQUARE_1: 25;
then (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))
>
0 by
A5,
XREAL_1: 129;
hence thesis by
A1,
A2,
A8,
JGRAPH_2: 3;
end;
end;
suppose
A12: ((p
`1 )
/
|.p.|)
> cn;
reconsider p9 = ((cn
-FanMorphN )
. p) as
Point of (
TOP-REAL 2);
((cn
-FanMorphN )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A1,
A3,
A4,
A12,
Th51;
then
A13: (p9
`2 )
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))) by
EUCLID: 52;
A14: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
A15: (1
- cn)
>
0 by
A1,
XREAL_1: 149;
per cases ;
suppose (p
`2 )
=
0 ;
hence thesis by
A1,
A2,
Th49;
end;
suppose (p
`2 )
<>
0 ;
then (
0
+ ((p
`1 )
^2 ))
< (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
SQUARE_1: 12,
XREAL_1: 8;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
< ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A6,
A14,
XREAL_1: 74;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
< 1 by
A6,
XCMPLX_1: 60;
then (((p
`1 )
/
|.p.|)
^2 )
< 1 by
XCMPLX_1: 76;
then ((p
`1 )
/
|.p.|)
< 1 by
SQUARE_1: 52;
then (((p
`1 )
/
|.p.|)
- cn)
< (1
- cn) by
XREAL_1: 9;
then ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
< ((1
- cn)
/ (1
- cn)) by
A15,
XREAL_1: 74;
then
A16: ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
< 1 by
A15,
XCMPLX_1: 60;
(
- (1
- cn))
< (
-
0 ) & (((p
`1 )
/
|.p.|)
- cn)
>= (cn
- cn) by
A12,
A15,
XREAL_1: 9,
XREAL_1: 24;
then (((
- 1)
* (1
- cn))
/ (1
- cn))
< ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)) by
A15,
XREAL_1: 74;
then (
- 1)
< ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)) by
A15,
XCMPLX_1: 89;
then (1
^2 )
> (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ) by
A16,
SQUARE_1: 50;
then (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))
>
0 by
XREAL_1: 50;
then (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))
>
0 by
SQUARE_1: 25;
then (p9
`2 )
>
0 by
A5,
A13,
XREAL_1: 129;
hence thesis by
A1,
A2,
JGRAPH_2: 3;
end;
end;
end;
theorem ::
JGRAPH_4:68
Th68: for cn be
Real, x,K0 be
set st (
- 1)
< cn & cn
< 1 & x
in K0 & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds ((cn
-FanMorphN )
. x)
in K0
proof
let cn be
Real, x,K0 be
set;
assume
A1: (
- 1)
< cn & cn
< 1 & x
in K0 & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then ex p st p
= x & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2));
hence thesis by
A1,
Th49;
end;
theorem ::
JGRAPH_4:69
Th69: for cn be
Real, D be non
empty
Subset of (
TOP-REAL 2) st (
- 1)
< cn & cn
< 1 & (D
` )
=
{(
0. (
TOP-REAL 2))} holds ex h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) st h
= ((cn
-FanMorphN )
| D) & h is
continuous
proof
(
|[
0 , 1]|
`2 )
= 1 by
EUCLID: 52;
then
A1:
|[
0 , 1]|
in { p where p be
Point of (
TOP-REAL 2) : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } by
JGRAPH_2: 3;
set Y1 =
|[
0 , (
- 1)]|;
reconsider B0 =
{(
0. (
TOP-REAL 2))} as
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`2 )
>=
0 ;
let cn be
Real, D be non
empty
Subset of (
TOP-REAL 2);
assume that
A2: (
- 1)
< cn & cn
< 1 and
A3: (D
` )
=
{(
0. (
TOP-REAL 2))};
A4: the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
A5: D
= (B0
` ) by
A3
.= (
NonZero (
TOP-REAL 2)) by
SUBSET_1:def 4;
{ p :
P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D) from
InclSub(
A5);
then
reconsider K0 = { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| D) by
A1;
A6: K0
= the
carrier of (((
TOP-REAL 2)
| D)
| K0) by
PRE_TOPC: 8;
A7: the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
A8: (
rng ((cn
-FanMorphN )
| K0))
c= the
carrier of (((
TOP-REAL 2)
| D)
| K0)
proof
let y be
object;
assume y
in (
rng ((cn
-FanMorphN )
| K0));
then
consider x be
object such that
A9: x
in (
dom ((cn
-FanMorphN )
| K0)) and
A10: y
= (((cn
-FanMorphN )
| K0)
. x) by
FUNCT_1:def 3;
x
in ((
dom (cn
-FanMorphN ))
/\ K0) by
A9,
RELAT_1: 61;
then
A11: x
in K0 by
XBOOLE_0:def 4;
K0
c= the
carrier of (
TOP-REAL 2) by
A7,
XBOOLE_1: 1;
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A11;
((cn
-FanMorphN )
. p)
= y by
A10,
A11,
FUNCT_1: 49;
then y
in K0 by
A2,
A11,
Th67;
hence thesis by
PRE_TOPC: 8;
end;
A12: K0
c= the
carrier of (
TOP-REAL 2)
proof
let z be
object;
assume z
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st p8
= z & (p8
`2 )
>=
0 & p8
<> (
0. (
TOP-REAL 2));
hence thesis;
end;
(Y1
`2 )
= (
- 1) & (
0. (
TOP-REAL 2))
<> Y1 by
EUCLID: 52,
JGRAPH_2: 3;
then
A13: Y1
in { p where p be
Point of (
TOP-REAL 2) : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
A14: the
carrier of ((
TOP-REAL 2)
| D)
= (
NonZero (
TOP-REAL 2)) by
A5,
PRE_TOPC: 8;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`2 )
<=
0 ;
{ p :
P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D) from
InclSub(
A5);
then
reconsider K1 = { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| D) by
A13;
A15: K0 is
closed & K1 is
closed by
A5,
Th62,
Th63;
(
dom ((cn
-FanMorphN )
| K0))
= ((
dom (cn
-FanMorphN ))
/\ K0) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K0) by
FUNCT_2:def 1
.= K0 by
A12,
XBOOLE_1: 28;
then
reconsider f = ((cn
-FanMorphN )
| K0) as
Function of (((
TOP-REAL 2)
| D)
| K0), ((
TOP-REAL 2)
| D) by
A6,
A8,
FUNCT_2: 2,
XBOOLE_1: 1;
A16: K1
= the
carrier of (((
TOP-REAL 2)
| D)
| K1) by
PRE_TOPC: 8;
A17: (
rng ((cn
-FanMorphN )
| K1))
c= the
carrier of (((
TOP-REAL 2)
| D)
| K1)
proof
let y be
object;
assume y
in (
rng ((cn
-FanMorphN )
| K1));
then
consider x be
object such that
A18: x
in (
dom ((cn
-FanMorphN )
| K1)) and
A19: y
= (((cn
-FanMorphN )
| K1)
. x) by
FUNCT_1:def 3;
x
in ((
dom (cn
-FanMorphN ))
/\ K1) by
A18,
RELAT_1: 61;
then
A20: x
in K1 by
XBOOLE_0:def 4;
K1
c= the
carrier of (
TOP-REAL 2) by
A7,
XBOOLE_1: 1;
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A20;
((cn
-FanMorphN )
. p)
= y by
A19,
A20,
FUNCT_1: 49;
then y
in K1 by
A2,
A20,
Th68;
hence thesis by
PRE_TOPC: 8;
end;
A21: K1
c= the
carrier of (
TOP-REAL 2)
proof
let z be
object;
assume z
in K1;
then ex p8 be
Point of (
TOP-REAL 2) st p8
= z & (p8
`2 )
<=
0 & p8
<> (
0. (
TOP-REAL 2));
hence thesis;
end;
(
dom ((cn
-FanMorphN )
| K1))
= ((
dom (cn
-FanMorphN ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
A21,
XBOOLE_1: 28;
then
reconsider g = ((cn
-FanMorphN )
| K1) as
Function of (((
TOP-REAL 2)
| D)
| K1), ((
TOP-REAL 2)
| D) by
A16,
A17,
FUNCT_2: 2,
XBOOLE_1: 1;
A22: K1
= (
[#] (((
TOP-REAL 2)
| D)
| K1)) by
PRE_TOPC:def 5;
A23: D
c= (K0
\/ K1)
proof
let x be
object;
assume
A24: x
in D;
then
reconsider px = x as
Point of (
TOP-REAL 2);
not x
in
{(
0. (
TOP-REAL 2))} by
A5,
A24,
XBOOLE_0:def 5;
then (px
`2 )
>=
0 & px
<> (
0. (
TOP-REAL 2)) or (px
`2 )
<=
0 & px
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
then x
in K0 or x
in K1;
hence thesis by
XBOOLE_0:def 3;
end;
A25: (
dom f)
= K0 by
A6,
FUNCT_2:def 1;
A26: K0
= (
[#] (((
TOP-REAL 2)
| D)
| K0)) by
PRE_TOPC:def 5;
A27: for x be
object st x
in ((
[#] (((
TOP-REAL 2)
| D)
| K0))
/\ (
[#] (((
TOP-REAL 2)
| D)
| K1))) holds (f
. x)
= (g
. x)
proof
let x be
object;
assume
A28: x
in ((
[#] (((
TOP-REAL 2)
| D)
| K0))
/\ (
[#] (((
TOP-REAL 2)
| D)
| K1)));
then x
in K0 by
A26,
XBOOLE_0:def 4;
then (f
. x)
= ((cn
-FanMorphN )
. x) by
FUNCT_1: 49;
hence thesis by
A22,
A28,
FUNCT_1: 49;
end;
D
= (
[#] ((
TOP-REAL 2)
| D)) by
PRE_TOPC:def 5;
then
A29: ((
[#] (((
TOP-REAL 2)
| D)
| K0))
\/ (
[#] (((
TOP-REAL 2)
| D)
| K1)))
= (
[#] ((
TOP-REAL 2)
| D)) by
A26,
A22,
A23,
XBOOLE_0:def 10;
A30: f is
continuous & g is
continuous by
A2,
A5,
Th64,
Th65;
then
consider h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) such that
A31: h
= (f
+* g) and h is
continuous by
A26,
A22,
A29,
A15,
A27,
JGRAPH_2: 1;
A32: (
dom h)
= the
carrier of ((
TOP-REAL 2)
| D) by
FUNCT_2:def 1;
A33: (
dom g)
= K1 by
A16,
FUNCT_2:def 1;
K0
= (
[#] (((
TOP-REAL 2)
| D)
| K0)) & K1
= (
[#] (((
TOP-REAL 2)
| D)
| K1)) by
PRE_TOPC:def 5;
then
A34: f
tolerates g by
A27,
A25,
A33,
PARTFUN1:def 4;
A35: for x be
object st x
in (
dom h) holds (h
. x)
= (((cn
-FanMorphN )
| D)
. x)
proof
let x be
object;
assume
A36: x
in (
dom h);
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A14,
XBOOLE_0:def 5;
not x
in
{(
0. (
TOP-REAL 2))} by
A14,
A36,
XBOOLE_0:def 5;
then
A37: x
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
A38: x
in ((D
` )
` ) by
A32,
A36,
PRE_TOPC: 8;
now
per cases ;
case
A39: x
in K0;
A40: (((cn
-FanMorphN )
| D)
. p)
= ((cn
-FanMorphN )
. p) by
A38,
FUNCT_1: 49
.= (f
. p) by
A39,
FUNCT_1: 49;
(h
. p)
= ((g
+* f)
. p) by
A31,
A34,
FUNCT_4: 34
.= (f
. p) by
A25,
A39,
FUNCT_4: 13;
hence thesis by
A40;
end;
case not x
in K0;
then not (p
`2 )
>=
0 by
A37;
then
A41: x
in K1 by
A37;
(((cn
-FanMorphN )
| D)
. p)
= ((cn
-FanMorphN )
. p) by
A38,
FUNCT_1: 49
.= (g
. p) by
A41,
FUNCT_1: 49;
hence thesis by
A31,
A33,
A41,
FUNCT_4: 13;
end;
end;
hence thesis;
end;
(
dom (cn
-FanMorphN ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then (
dom ((cn
-FanMorphN )
| D))
= (the
carrier of (
TOP-REAL 2)
/\ D) by
RELAT_1: 61
.= the
carrier of ((
TOP-REAL 2)
| D) by
A4,
XBOOLE_1: 28;
then (f
+* g)
= ((cn
-FanMorphN )
| D) by
A31,
A32,
A35,
FUNCT_1: 2;
hence thesis by
A26,
A22,
A29,
A30,
A15,
A27,
JGRAPH_2: 1;
end;
theorem ::
JGRAPH_4:70
Th70: for cn be
Real st (
- 1)
< cn & cn
< 1 holds ex h be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st h
= (cn
-FanMorphN ) & h is
continuous
proof
reconsider D = (
NonZero (
TOP-REAL 2)) as non
empty
Subset of (
TOP-REAL 2) by
JGRAPH_2: 9;
let cn be
Real;
assume that
A1: (
- 1)
< cn and
A2: cn
< 1;
reconsider f = (cn
-FanMorphN ) as
Function of (
TOP-REAL 2), (
TOP-REAL 2);
A3: (f
. (
0. (
TOP-REAL 2)))
= (
0. (
TOP-REAL 2)) by
Th49,
JGRAPH_2: 3;
A4: for p be
Point of ((
TOP-REAL 2)
| D) holds (f
. p)
<> (f
. (
0. (
TOP-REAL 2)))
proof
let p be
Point of ((
TOP-REAL 2)
| D);
A5: (
[#] ((
TOP-REAL 2)
| D))
= D by
PRE_TOPC:def 5;
then
reconsider q = p as
Point of (
TOP-REAL 2) by
XBOOLE_0:def 5;
not p
in
{(
0. (
TOP-REAL 2))} by
A5,
XBOOLE_0:def 5;
then
A6: not p
= (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
now
per cases ;
case
A7: ((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
>=
0 ;
set q9 =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]|;
A8: (q9
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
now
assume
A9: q9
= (
0. (
TOP-REAL 2));
A10:
|.q.|
<> (
0
^2 ) by
A6,
TOPRNS_1: 24;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
= (
sqrt (1
-
0 )) by
A8,
A9,
JGRAPH_2: 3,
XCMPLX_1: 6
.= 1 by
SQUARE_1: 18;
hence contradiction by
A9,
A10,
EUCLID: 52,
JGRAPH_2: 3;
end;
hence thesis by
A1,
A2,
A3,
A6,
A7,
Th51;
end;
case
A11: ((q
`1 )
/
|.q.|)
< cn & (q
`2 )
>=
0 ;
set q9 =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]|;
A12: (q9
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
now
assume
A13: q9
= (
0. (
TOP-REAL 2));
A14:
|.q.|
<> (
0
^2 ) by
A6,
TOPRNS_1: 24;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
= (
sqrt (1
-
0 )) by
A12,
A13,
JGRAPH_2: 3,
XCMPLX_1: 6
.= 1 by
SQUARE_1: 18;
hence contradiction by
A13,
A14,
EUCLID: 52,
JGRAPH_2: 3;
end;
hence thesis by
A1,
A2,
A3,
A6,
A11,
Th51;
end;
case (q
`2 )
<
0 ;
then (f
. p)
= p by
Th49;
hence thesis by
A6,
Th49,
JGRAPH_2: 3;
end;
end;
hence thesis;
end;
A15: for V be
Subset of (
TOP-REAL 2) st (f
. (
0. (
TOP-REAL 2)))
in V & V is
open holds ex W be
Subset of (
TOP-REAL 2) st (
0. (
TOP-REAL 2))
in W & W is
open & (f
.: W)
c= V
proof
reconsider u0 = (
0. (
TOP-REAL 2)) as
Point of (
Euclid 2) by
EUCLID: 67;
let V be
Subset of (
TOP-REAL 2);
reconsider VV = V as
Subset of (
TopSpaceMetr (
Euclid 2)) by
Lm11;
assume that
A16: (f
. (
0. (
TOP-REAL 2)))
in V and
A17: V is
open;
VV is
open by
A17,
Lm11,
PRE_TOPC: 30;
then
consider r be
Real such that
A18: r
>
0 and
A19: (
Ball (u0,r))
c= V by
A3,
A16,
TOPMETR: 15;
reconsider r as
Real;
the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
then
reconsider W1 = (
Ball (u0,r)) as
Subset of (
TOP-REAL 2);
A20: W1 is
open by
GOBOARD6: 3;
A21: (f
.: W1)
c= W1
proof
let z be
object;
assume z
in (f
.: W1);
then
consider y be
object such that
A22: y
in (
dom f) and
A23: y
in W1 and
A24: z
= (f
. y) by
FUNCT_1:def 6;
z
in (
rng f) by
A22,
A24,
FUNCT_1:def 3;
then
reconsider qz = z as
Point of (
TOP-REAL 2);
reconsider q = y as
Point of (
TOP-REAL 2) by
A22;
reconsider qy = q as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider pz = qz as
Point of (
Euclid 2) by
EUCLID: 67;
(
dist (u0,qy))
< r by
A23,
METRIC_1: 11;
then
A25:
|.((
0. (
TOP-REAL 2))
- q).|
< r by
JGRAPH_1: 28;
now
per cases by
JGRAPH_2: 3;
case (q
`2 )
<=
0 ;
hence thesis by
A23,
A24,
Th49;
end;
case
A26: q
<> (
0. (
TOP-REAL 2)) & ((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
>=
0 ;
then
A27: (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
XREAL_1: 48;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A28: (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
A29: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
|.q.|
<>
0 by
A26,
TOPRNS_1: 24;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A28,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- cn)
>= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
<= (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A29,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A29,
XCMPLX_1: 197;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A29,
A27,
SQUARE_1: 49;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A30: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A31: ((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A1,
A2,
A26,
Th51;
then
A32: (qz
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))) by
A24,
EUCLID: 52;
(qz
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))) by
A24,
A31,
EUCLID: 52;
then
A33: ((qz
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))) by
A30,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A32,
A33;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A34:
|.qz.|
=
|.q.| by
SQUARE_1: 22;
|.(
- q).|
< r by
A25,
RLVECT_1: 4;
then
|.q.|
< r by
TOPRNS_1: 26;
then
|.(
- qz).|
< r by
A34,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- qz).|
< r by
RLVECT_1: 4;
then (
dist (u0,pz))
< r by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 11;
end;
case
A35: q
<> (
0. (
TOP-REAL 2)) & ((q
`1 )
/
|.q.|)
< cn & (q
`2 )
>=
0 ;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A36: (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
A37: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
|.q.|
<>
0 by
A35,
TOPRNS_1: 24;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A36,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then (
- (
- 1))
>= (
- ((q
`1 )
/
|.q.|)) by
XREAL_1: 24;
then (1
+ cn)
>= ((
- ((q
`1 )
/
|.q.|))
+ cn) by
XREAL_1: 7;
then
A38: ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
<= 1 by
A37,
XREAL_1: 185;
(cn
- ((q
`1 )
/
|.q.|))
>=
0 by
A35,
XREAL_1: 48;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn)) by
A37;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A38,
SQUARE_1: 49;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A39: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A40: ((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A1,
A2,
A35,
Th51;
then
A41: (qz
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
A24,
EUCLID: 52;
(qz
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))) by
A24,
A40,
EUCLID: 52;
then
A42: ((qz
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))) by
A39,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A41,
A42;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A43:
|.qz.|
=
|.q.| by
SQUARE_1: 22;
|.(
- q).|
< r by
A25,
RLVECT_1: 4;
then
|.q.|
< r by
TOPRNS_1: 26;
then
|.(
- qz).|
< r by
A43,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- qz).|
< r by
RLVECT_1: 4;
then (
dist (u0,pz))
< r by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 11;
end;
end;
hence thesis;
end;
u0
in W1 by
A18,
GOBOARD6: 1;
hence thesis by
A19,
A20,
A21,
XBOOLE_1: 1;
end;
A44: (D
` )
=
{(
0. (
TOP-REAL 2))} by
JGRAPH_3: 20;
then ex h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) st h
= ((cn
-FanMorphN )
| D) & h is
continuous by
A1,
A2,
Th69;
hence thesis by
A3,
A44,
A4,
A15,
JGRAPH_3: 3;
end;
theorem ::
JGRAPH_4:71
Th71: for cn be
Real st (
- 1)
< cn & cn
< 1 holds (cn
-FanMorphN ) is
one-to-one
proof
let cn be
Real;
assume that
A1: (
- 1)
< cn and
A2: cn
< 1;
for x1,x2 be
object st x1
in (
dom (cn
-FanMorphN )) & x2
in (
dom (cn
-FanMorphN )) & ((cn
-FanMorphN )
. x1)
= ((cn
-FanMorphN )
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume that
A3: x1
in (
dom (cn
-FanMorphN )) and
A4: x2
in (
dom (cn
-FanMorphN )) and
A5: ((cn
-FanMorphN )
. x1)
= ((cn
-FanMorphN )
. x2);
reconsider p2 = x2 as
Point of (
TOP-REAL 2) by
A4;
reconsider p1 = x1 as
Point of (
TOP-REAL 2) by
A3;
set q = p1, p = p2;
A6: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
now
per cases by
JGRAPH_2: 3;
case
A7: (q
`2 )
<=
0 ;
then
A8: ((cn
-FanMorphN )
. q)
= q by
Th49;
now
per cases by
JGRAPH_2: 3;
case (p
`2 )
<=
0 ;
hence thesis by
A5,
A8,
Th49;
end;
case
A9: p
<> (
0. (
TOP-REAL 2)) & ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
>=
0 ;
set p4 =
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]|;
A10: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
0
<= ((p
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((p
`1 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
XREAL_1: 7;
then
A11: (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A10,
XREAL_1: 72;
A12:
|.p.|
>
0 by
A9,
Lm1;
then (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A11,
XCMPLX_1: 60;
then (((p
`1 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((p
`1 )
/
|.p.|) by
SQUARE_1: 51;
then (1
- cn)
>= (((p
`1 )
/
|.p.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
<= (
- (((p
`1 )
/
|.p.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn)) by
A6,
XREAL_1: 72;
then
A13: (
- 1)
<= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn)) by
A6,
XCMPLX_1: 197;
A14: (((p
`1 )
/
|.p.|)
- cn)
>=
0 by
A9,
XREAL_1: 48;
A15: ((cn
-FanMorphN )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A1,
A2,
A9,
Th51;
(((p
`1 )
/
|.p.|)
- cn)
>=
0 by
A9,
XREAL_1: 48;
then (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A6,
A13,
SQUARE_1: 49;
then
A16: (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then (
sqrt (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
^2 )
/ ((1
- cn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
^2 )
/ ((1
- cn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p4
`2 )
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))) & (q
`2 )
=
0 by
A5,
A7,
A8,
A15,
EUCLID: 52;
then
A17: (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))
=
0 by
A5,
A8,
A15,
A12,
XCMPLX_1: 6;
(1
- ((
- ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
A16,
XCMPLX_1: 187;
then (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))
=
0 by
A17,
SQUARE_1: 24;
then 1
= ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)) by
A6,
A14,
SQUARE_1: 18,
SQUARE_1: 22;
then (1
* (1
- cn))
= (((p
`1 )
/
|.p.|)
- cn) by
A6,
XCMPLX_1: 87;
then (1
*
|.p.|)
= (p
`1 ) by
A12,
XCMPLX_1: 87;
then (p
`2 )
=
0 by
A10,
XCMPLX_1: 6;
hence thesis by
A5,
A8,
Th49;
end;
case
A18: p
<> (
0. (
TOP-REAL 2)) & ((p
`1 )
/
|.p.|)
< cn & (p
`2 )
>=
0 ;
then
A19:
|.p.|
<>
0 by
TOPRNS_1: 24;
then
A20: (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
set p4 =
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]|;
A21: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
A22: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
A23: (((p
`1 )
/
|.p.|)
- cn)
<=
0 by
A18,
XREAL_1: 47;
then
A24: (
- 1)
<= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn)) by
A22;
A25: ((cn
-FanMorphN )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A1,
A2,
A18,
Th51;
0
<= ((p
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((p
`1 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
XREAL_1: 7;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A21,
XREAL_1: 72;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A20,
XCMPLX_1: 60;
then (((p
`1 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((
- ((p
`1 )
/
|.p.|))
^2 )
<= 1;
then 1
>= (
- ((p
`1 )
/
|.p.|)) by
SQUARE_1: 51;
then (1
+ cn)
>= ((
- ((p
`1 )
/
|.p.|))
+ cn) by
XREAL_1: 7;
then ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
<= 1 by
A22,
XREAL_1: 185;
then (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A24,
SQUARE_1: 49;
then
A26: (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
then (
sqrt (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
^2 )
/ ((1
+ cn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
^2 )
/ ((1
+ cn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p4
`2 )
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))) & (q
`2 )
=
0 by
A5,
A7,
A8,
A25,
EUCLID: 52;
then
A27: (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))
=
0 by
A5,
A8,
A25,
A19,
XCMPLX_1: 6;
(1
- ((
- ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)))
^2 ))
>=
0 by
A26,
XCMPLX_1: 187;
then (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))
=
0 by
A27,
SQUARE_1: 24;
then 1
= (
sqrt ((
- ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)))
^2 )) by
SQUARE_1: 18;
then 1
= (
- ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))) by
A22,
A23,
SQUARE_1: 22;
then 1
= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn)) by
XCMPLX_1: 187;
then (1
* (1
+ cn))
= (
- (((p
`1 )
/
|.p.|)
- cn)) by
A22,
XCMPLX_1: 87;
then ((1
+ cn)
- cn)
= (
- ((p
`1 )
/
|.p.|));
then 1
= ((
- (p
`1 ))
/
|.p.|) by
XCMPLX_1: 187;
then (1
*
|.p.|)
= (
- (p
`1 )) by
A18,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (((p
`1 )
^2 )
- ((p
`1 )
^2 ))
= ((p
`2 )
^2 ) by
A21,
XCMPLX_1: 26;
then (p
`2 )
=
0 by
XCMPLX_1: 6;
hence thesis by
A5,
A8,
Th49;
end;
end;
hence thesis;
end;
case
A28: ((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
then
|.q.|
<>
0 by
TOPRNS_1: 24;
then
A29: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]|;
A30: (q4
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
A31: ((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A1,
A2,
A28,
Th51;
A32: (q4
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))) by
EUCLID: 52;
now
per cases by
JGRAPH_2: 3;
case
A33: (p
`2 )
<=
0 ;
then
A34: ((cn
-FanMorphN )
. p)
= p by
Th49;
A35:
|.q.|
<>
0 by
A28,
TOPRNS_1: 24;
then
A36: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A37: (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A28,
XREAL_1: 48;
A38: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A39: (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A28,
XREAL_1: 48;
A40: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A38,
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A36,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- cn)
>= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
<= (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A40,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A40,
XCMPLX_1: 197;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A40,
A37,
SQUARE_1: 49;
then
A41: (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
^2 )
/ ((1
- cn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
^2 )
/ ((1
- cn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p
`2 )
=
0 by
A5,
A31,
A33,
A34,
EUCLID: 52;
then
A42: (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
=
0 by
A5,
A31,
A32,
A34,
A35,
XCMPLX_1: 6;
(1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
A41,
XCMPLX_1: 187;
then (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))
=
0 by
A42,
SQUARE_1: 24;
then 1
= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)) by
A40,
A39,
SQUARE_1: 18,
SQUARE_1: 22;
then (1
* (1
- cn))
= (((q
`1 )
/
|.q.|)
- cn) by
A40,
XCMPLX_1: 87;
then (1
*
|.q.|)
= (q
`1 ) by
A28,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (q
`2 )
=
0 by
A38,
XCMPLX_1: 6;
hence thesis by
A5,
A34,
Th49;
end;
case
A43: p
<> (
0. (
TOP-REAL 2)) & ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
>=
0 ;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A29,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- cn)
>= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
<= (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A6,
XREAL_1: 72;
then
A44: (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A6,
XCMPLX_1: 197;
(((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A28,
XREAL_1: 48;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A6,
A44,
SQUARE_1: 49;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A45: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(q4
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))) by
EUCLID: 52;
then
A46: ((q4
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))) by
A45,
SQUARE_1:def 2;
A47: (q4
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A47,
A46;
then
A48: (
sqrt (
|.q4.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A49:
|.q4.|
=
|.q.| by
SQUARE_1: 22;
0
<= ((p
`2 )
^2 ) by
XREAL_1: 63;
then (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
0
+ ((p
`1 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A50: (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
XREAL_1: 72;
|.p.|
<>
0 by
A43,
TOPRNS_1: 24;
then (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A50,
XCMPLX_1: 60;
then (((p
`1 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((p
`1 )
/
|.p.|) by
SQUARE_1: 51;
then (1
- cn)
>= (((p
`1 )
/
|.p.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
<= (
- (((p
`1 )
/
|.p.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn)) by
A6,
XREAL_1: 72;
then
A51: (
- 1)
<= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn)) by
A6,
XCMPLX_1: 197;
(((p
`1 )
/
|.p.|)
- cn)
>=
0 by
A43,
XREAL_1: 48;
then (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A6,
A51,
SQUARE_1: 49;
then (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A52: (1
- ((
- ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
set p4 =
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]|;
A53: (p4
`1 )
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
(p4
`2 )
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))) by
EUCLID: 52;
then
A54: ((p4
`2 )
^2 )
= ((
|.p.|
^2 )
* ((
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))
^2 ))
.= ((
|.p.|
^2 )
* (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))) by
A52,
SQUARE_1:def 2;
(
|.p4.|
^2 )
= (((p4
`1 )
^2 )
+ ((p4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.p.|
^2 ) by
A53,
A54;
then
A55: (
sqrt (
|.p4.|
^2 ))
=
|.p.| by
SQUARE_1: 22;
then
A56:
|.p4.|
=
|.p.| by
SQUARE_1: 22;
A57: ((cn
-FanMorphN )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A1,
A2,
A43,
Th51;
then ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
= ((
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)))
/
|.p.|) by
A5,
A31,
A30,
A43,
A53,
TOPRNS_1: 24,
XCMPLX_1: 89;
then ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)) by
A5,
A31,
A43,
A57,
A48,
A55,
TOPRNS_1: 24,
XCMPLX_1: 89;
then (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
* (1
- cn))
= (((q
`1 )
/
|.q.|)
- cn) by
A6,
XCMPLX_1: 87;
then (((p
`1 )
/
|.p.|)
- cn)
= (((q
`1 )
/
|.q.|)
- cn) by
A6,
XCMPLX_1: 87;
then (((p
`1 )
/
|.p.|)
*
|.p.|)
= (q
`1 ) by
A5,
A31,
A43,
A57,
A49,
A56,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A58: (p
`1 )
= (q
`1 ) by
A43,
TOPRNS_1: 24,
XCMPLX_1: 87;
A59: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
(
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
then (p
`2 )
= (
sqrt ((q
`2 )
^2 )) by
A5,
A31,
A43,
A57,
A49,
A56,
A58,
SQUARE_1: 22;
then (p
`2 )
= (q
`2 ) by
A28,
SQUARE_1: 22;
hence thesis by
A58,
A59,
EUCLID: 53;
end;
case
A60: p
<> (
0. (
TOP-REAL 2)) & ((p
`1 )
/
|.p.|)
< cn & (p
`2 )
>=
0 ;
then (((p
`1 )
/
|.p.|)
- cn)
<
0 by
XREAL_1: 49;
then
A61: ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
<
0 by
A1,
XREAL_1: 141,
XREAL_1: 148;
set p4 =
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]|;
A62: (p4
`1 )
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))) & (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A28,
EUCLID: 52,
XREAL_1: 48;
A63: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
((cn
-FanMorphN )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]| &
|.p.|
<>
0 by
A1,
A2,
A60,
Th51,
TOPRNS_1: 24;
hence thesis by
A5,
A31,
A30,
A61,
A62,
A63,
XREAL_1: 132;
end;
end;
hence thesis;
end;
case
A64: ((q
`1 )
/
|.q.|)
< cn & (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
then
A65:
|.q.|
<>
0 by
TOPRNS_1: 24;
then
A66: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]|;
A67: (q4
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
A68: ((cn
-FanMorphN )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A1,
A2,
A64,
Th51;
A69: (q4
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))) by
EUCLID: 52;
now
per cases by
JGRAPH_2: 3;
case
A70: (p
`2 )
<=
0 ;
A71: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A72: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A71,
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A66,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((
- ((q
`1 )
/
|.q.|))
^2 )
<= 1;
then 1
>= (
- ((q
`1 )
/
|.q.|)) by
SQUARE_1: 51;
then (1
+ cn)
>= ((
- ((q
`1 )
/
|.q.|))
+ cn) by
XREAL_1: 7;
then
A73: ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
<= 1 by
A72,
XREAL_1: 185;
A74: (((q
`1 )
/
|.q.|)
- cn)
<=
0 by
A64,
XREAL_1: 47;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn)) by
A72;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A73,
SQUARE_1: 49;
then
A75: (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A76: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A77: ((cn
-FanMorphN )
. p)
= p by
A70,
Th49;
(
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )))
>=
0 by
A75,
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
^2 )
/ ((1
+ cn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
^2 )
/ ((1
+ cn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p
`2 )
=
0 by
A5,
A68,
A70,
A77,
EUCLID: 52;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
=
0 by
A5,
A68,
A69,
A65,
A77,
XCMPLX_1: 6;
then (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))
=
0 by
A76,
SQUARE_1: 24;
then 1
= (
sqrt ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)))
^2 )) by
SQUARE_1: 18;
then 1
= (
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
A72,
A74,
SQUARE_1: 22;
then 1
= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn)) by
XCMPLX_1: 187;
then (1
* (1
+ cn))
= (
- (((q
`1 )
/
|.q.|)
- cn)) by
A72,
XCMPLX_1: 87;
then ((1
+ cn)
- cn)
= (
- ((q
`1 )
/
|.q.|));
then 1
= ((
- (q
`1 ))
/
|.q.|) by
XCMPLX_1: 187;
then (1
*
|.q.|)
= (
- (q
`1 )) by
A64,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (((q
`1 )
^2 )
- ((q
`1 )
^2 ))
= ((q
`2 )
^2 ) by
A71,
XCMPLX_1: 26;
then (q
`2 )
=
0 by
XCMPLX_1: 6;
hence thesis by
A5,
A77,
Th49;
end;
case
A78: p
<> (
0. (
TOP-REAL 2)) & ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
>=
0 ;
set p4 =
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]|;
A79: (p4
`1 )
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))) &
|.q.|
<>
0 by
A64,
EUCLID: 52,
TOPRNS_1: 24;
(((q
`1 )
/
|.q.|)
- cn)
<
0 by
A64,
XREAL_1: 49;
then
A80: ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
<
0 by
A1,
XREAL_1: 141,
XREAL_1: 148;
A81: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
((cn
-FanMorphN )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))]| & (((p
`1 )
/
|.p.|)
- cn)
>=
0 by
A1,
A2,
A78,
Th51,
XREAL_1: 48;
hence thesis by
A5,
A68,
A67,
A80,
A79,
A81,
XREAL_1: 132;
end;
case
A82: p
<> (
0. (
TOP-REAL 2)) & ((p
`1 )
/
|.p.|)
< cn & (p
`2 )
>=
0 ;
0
<= ((p
`2 )
^2 ) by
XREAL_1: 63;
then (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
0
+ ((p
`1 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A83: (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
XREAL_1: 72;
A84: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A66,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then ((
- 1)
- cn)
<= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- ((
- 1)
- cn))
>= (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then
A85: ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
<= 1 by
A84,
XREAL_1: 185;
(((q
`1 )
/
|.q.|)
- cn)
<=
0 by
A64,
XREAL_1: 47;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn)) by
A84;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A85,
SQUARE_1: 49;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A86: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(q4
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))) by
EUCLID: 52;
then
A87: ((q4
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))) by
A86,
SQUARE_1:def 2;
A88: (q4
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
set p4 =
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]|;
A89: (p4
`1 )
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
|.p.|
<>
0 by
A82,
TOPRNS_1: 24;
then (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A83,
XCMPLX_1: 60;
then (((p
`1 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((p
`1 )
/
|.p.|) by
SQUARE_1: 51;
then ((
- 1)
- cn)
<= (((p
`1 )
/
|.p.|)
- cn) by
XREAL_1: 9;
then (
- ((
- 1)
- cn))
>= (
- (((p
`1 )
/
|.p.|)
- cn)) by
XREAL_1: 24;
then
A90: ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
<= 1 by
A84,
XREAL_1: 185;
(((p
`1 )
/
|.p.|)
- cn)
<=
0 by
A82,
XREAL_1: 47;
then (
- 1)
<= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn)) by
A84;
then (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A90,
SQUARE_1: 49;
then (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A91: (1
- ((
- ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(p4
`2 )
= (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))) by
EUCLID: 52;
then
A92: ((p4
`2 )
^2 )
= ((
|.p.|
^2 )
* ((
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))
^2 ))
.= ((
|.p.|
^2 )
* (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))) by
A91,
SQUARE_1:def 2;
(
|.p4.|
^2 )
= (((p4
`1 )
^2 )
+ ((p4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.p.|
^2 ) by
A89,
A92;
then
A93: (
sqrt (
|.p4.|
^2 ))
=
|.p.| by
SQUARE_1: 22;
then
A94:
|.p4.|
=
|.p.| by
SQUARE_1: 22;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A88,
A87;
then
A95: (
sqrt (
|.q4.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A96:
|.q4.|
=
|.q.| by
SQUARE_1: 22;
A97: ((cn
-FanMorphN )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A1,
A2,
A82,
Th51;
then ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
= ((
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)))
/
|.p.|) by
A5,
A68,
A67,
A82,
A89,
TOPRNS_1: 24,
XCMPLX_1: 89;
then ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)) by
A5,
A68,
A82,
A97,
A95,
A93,
TOPRNS_1: 24,
XCMPLX_1: 89;
then (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
* (1
+ cn))
= (((q
`1 )
/
|.q.|)
- cn) by
A84,
XCMPLX_1: 87;
then (((p
`1 )
/
|.p.|)
- cn)
= (((q
`1 )
/
|.q.|)
- cn) by
A84,
XCMPLX_1: 87;
then (((p
`1 )
/
|.p.|)
*
|.p.|)
= (q
`1 ) by
A5,
A68,
A82,
A97,
A96,
A94,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A98: (p
`1 )
= (q
`1 ) by
A82,
TOPRNS_1: 24,
XCMPLX_1: 87;
A99: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
(
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
then (p
`2 )
= (
sqrt ((q
`2 )
^2 )) by
A5,
A68,
A82,
A97,
A96,
A94,
A98,
SQUARE_1: 22;
then (p
`2 )
= (q
`2 ) by
A64,
SQUARE_1: 22;
hence thesis by
A98,
A99,
EUCLID: 53;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
hence thesis by
FUNCT_1:def 4;
end;
theorem ::
JGRAPH_4:72
Th72: for cn be
Real st (
- 1)
< cn & cn
< 1 holds (cn
-FanMorphN ) is
Function of (
TOP-REAL 2), (
TOP-REAL 2) & (
rng (cn
-FanMorphN ))
= the
carrier of (
TOP-REAL 2)
proof
let cn be
Real;
assume that
A1: (
- 1)
< cn and
A2: cn
< 1;
thus (cn
-FanMorphN ) is
Function of (
TOP-REAL 2), (
TOP-REAL 2);
for f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
= (cn
-FanMorphN ) holds (
rng (cn
-FanMorphN ))
= the
carrier of (
TOP-REAL 2)
proof
let f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume
A3: f
= (cn
-FanMorphN );
A4: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
the
carrier of (
TOP-REAL 2)
c= (
rng f)
proof
let y be
object;
assume y
in the
carrier of (
TOP-REAL 2);
then
reconsider p2 = y as
Point of (
TOP-REAL 2);
set q = p2;
now
per cases by
JGRAPH_2: 3;
case (q
`2 )
<=
0 ;
then y
= ((cn
-FanMorphN )
. q) by
Th49;
hence ex x be
set st x
in (
dom (cn
-FanMorphN )) & y
= ((cn
-FanMorphN )
. x) by
A3,
A4;
end;
case
A5: ((q
`1 )
/
|.q.|)
>=
0 & (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
(
- (
- (1
+ cn)))
>
0 by
A1,
XREAL_1: 148;
then
A6: (
- ((
- 1)
- cn))
>
0 ;
A7: (1
- cn)
>=
0 by
A2,
XREAL_1: 149;
then (((q
`1 )
/
|.q.|)
* (1
- cn))
>=
0 by
A5;
then ((
- 1)
- cn)
<= (((q
`1 )
/
|.q.|)
* (1
- cn)) by
A6;
then
A8: (((
- 1)
- cn)
+ cn)
<= ((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn) by
XREAL_1: 7;
set px =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 ))))]|;
A9: (px
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)) by
EUCLID: 52;
|.q.|
<>
0 by
A5,
TOPRNS_1: 24;
then
A10: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A11: (
dom (cn
-FanMorphN ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A12: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A10,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((q
`1 )
/
|.q.|)
<= 1 by
SQUARE_1: 51;
then (((q
`1 )
/
|.q.|)
* (1
- cn))
<= (1
* (1
- cn)) by
A12,
XREAL_1: 64;
then (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
- cn)
<= (1
- cn);
then ((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
<= 1 by
XREAL_1: 9;
then (1
^2 )
>= (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 ) by
A8,
SQUARE_1: 49;
then
A13: (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 ))
>=
0 by
XREAL_1: 48;
then
A14: (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 )))
>=
0 by
SQUARE_1:def 2;
A15: (px
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 )))) by
EUCLID: 52;
then (
|.px.|
^2 )
= (((
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 ))))
^2 )
+ ((
|.q.|
* ((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn))
^2 )) by
A9,
JGRAPH_3: 1
.= (((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 )))
^2 ))
+ ((
|.q.|
^2 )
* (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 )));
then
A16: (
|.px.|
^2 )
= (((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 )))
+ ((
|.q.|
^2 )
* (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 ))) by
A13,
SQUARE_1:def 2
.= (
|.q.|
^2 );
then
A17:
|.px.|
= (
sqrt (
|.q.|
^2 )) by
SQUARE_1: 22
.=
|.q.| by
SQUARE_1: 22;
then
A18: px
<> (
0. (
TOP-REAL 2)) by
A5,
TOPRNS_1: 23,
TOPRNS_1: 24;
((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
>= (
0
+ cn) by
A5,
A7,
XREAL_1: 7;
then ((px
`1 )
/
|.px.|)
>= cn by
A5,
A9,
A17,
TOPRNS_1: 24,
XCMPLX_1: 89;
then
A19: ((cn
-FanMorphN )
. px)
=
|[(
|.px.|
* ((((px
`1 )
/
|.px.|)
- cn)
/ (1
- cn))), (
|.px.|
* (
sqrt (1
- (((((px
`1 )
/
|.px.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A1,
A2,
A15,
A14,
A18,
Th51;
A20: (
|.px.|
* (
sqrt (((q
`2 )
/
|.q.|)
^2 )))
= (
|.q.|
* ((q
`2 )
/
|.q.|)) by
A5,
A17,
SQUARE_1: 22
.= (q
`2 ) by
A5,
TOPRNS_1: 24,
XCMPLX_1: 87;
A21: (
|.px.|
* ((((px
`1 )
/
|.px.|)
- cn)
/ (1
- cn)))
= (
|.q.|
* ((((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
- cn)
/ (1
- cn))) by
A5,
A9,
A17,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.q.|
* ((q
`1 )
/
|.q.|)) by
A12,
XCMPLX_1: 89
.= (q
`1 ) by
A5,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (
|.px.|
* (
sqrt (1
- (((((px
`1 )
/
|.px.|)
- cn)
/ (1
- cn))
^2 ))))
= (
|.px.|
* (
sqrt (1
- (((q
`1 )
/
|.px.|)
^2 )))) by
A5,
A17,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.px.|
* (
sqrt (1
- (((q
`1 )
^2 )
/ (
|.px.|
^2 ))))) by
XCMPLX_1: 76
.= (
|.px.|
* (
sqrt (((
|.px.|
^2 )
/ (
|.px.|
^2 ))
- (((q
`1 )
^2 )
/ (
|.px.|
^2 ))))) by
A10,
A16,
XCMPLX_1: 60
.= (
|.px.|
* (
sqrt (((
|.px.|
^2 )
- ((q
`1 )
^2 ))
/ (
|.px.|
^2 )))) by
XCMPLX_1: 120
.= (
|.px.|
* (
sqrt (((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
- ((q
`1 )
^2 ))
/ (
|.px.|
^2 )))) by
A16,
JGRAPH_3: 1
.= (
|.px.|
* (
sqrt (((q
`2 )
/
|.q.|)
^2 ))) by
A17,
XCMPLX_1: 76;
hence ex x be
set st x
in (
dom (cn
-FanMorphN )) & y
= ((cn
-FanMorphN )
. x) by
A19,
A21,
A20,
A11,
EUCLID: 53;
end;
case
A22: ((q
`1 )
/
|.q.|)
<
0 & (q
`2 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
A23: (1
+ cn)
>=
0 by
A1,
XREAL_1: 148;
(1
- cn)
>
0 by
A2,
XREAL_1: 149;
then
A24: ((1
- cn)
+ cn)
>= ((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn) by
A22,
A23,
XREAL_1: 7;
A25: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
|.q.|
<>
0 by
A22,
TOPRNS_1: 24;
then
A26: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A26,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((q
`1 )
/
|.q.|)
>= (
- 1) by
SQUARE_1: 51;
then (((q
`1 )
/
|.q.|)
* (1
+ cn))
>= ((
- 1)
* (1
+ cn)) by
A25,
XREAL_1: 64;
then (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
- cn)
>= ((
- 1)
- cn);
then ((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
>= (
- 1) by
XREAL_1: 9;
then (1
^2 )
>= (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 ) by
A24,
SQUARE_1: 49;
then
A27: (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 ))
>=
0 by
XREAL_1: 48;
then
A28: (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 )))
>=
0 by
SQUARE_1:def 2;
A29: (
dom (cn
-FanMorphN ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
set px =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 ))))]|;
A30: (px
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)) by
EUCLID: 52;
A31: (px
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 )))) by
EUCLID: 52;
then (
|.px.|
^2 )
= (((
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 ))))
^2 )
+ ((
|.q.|
* ((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn))
^2 )) by
A30,
JGRAPH_3: 1
.= (((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 )))
^2 ))
+ ((
|.q.|
^2 )
* (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 )));
then
A32: (
|.px.|
^2 )
= (((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 )))
+ ((
|.q.|
^2 )
* (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 ))) by
A27,
SQUARE_1:def 2
.= (
|.q.|
^2 );
then
A33:
|.px.|
= (
sqrt (
|.q.|
^2 )) by
SQUARE_1: 22
.=
|.q.| by
SQUARE_1: 22;
then
A34: px
<> (
0. (
TOP-REAL 2)) by
A22,
TOPRNS_1: 23,
TOPRNS_1: 24;
((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
<= (
0
+ cn) by
A22,
A23,
XREAL_1: 7;
then ((px
`1 )
/
|.px.|)
<= cn by
A22,
A30,
A33,
TOPRNS_1: 24,
XCMPLX_1: 89;
then
A35: ((cn
-FanMorphN )
. px)
=
|[(
|.px.|
* ((((px
`1 )
/
|.px.|)
- cn)
/ (1
+ cn))), (
|.px.|
* (
sqrt (1
- (((((px
`1 )
/
|.px.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A1,
A2,
A31,
A28,
A34,
Th51;
A36: (
|.px.|
* (
sqrt (((q
`2 )
/
|.q.|)
^2 )))
= (
|.q.|
* ((q
`2 )
/
|.q.|)) by
A22,
A33,
SQUARE_1: 22
.= (q
`2 ) by
A22,
TOPRNS_1: 24,
XCMPLX_1: 87;
A37: (
|.px.|
* ((((px
`1 )
/
|.px.|)
- cn)
/ (1
+ cn)))
= (
|.q.|
* ((((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
- cn)
/ (1
+ cn))) by
A22,
A30,
A33,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.q.|
* ((q
`1 )
/
|.q.|)) by
A25,
XCMPLX_1: 89
.= (q
`1 ) by
A22,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (
|.px.|
* (
sqrt (1
- (((((px
`1 )
/
|.px.|)
- cn)
/ (1
+ cn))
^2 ))))
= (
|.px.|
* (
sqrt (1
- (((q
`1 )
/
|.px.|)
^2 )))) by
A22,
A33,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.px.|
* (
sqrt (1
- (((q
`1 )
^2 )
/ (
|.px.|
^2 ))))) by
XCMPLX_1: 76
.= (
|.px.|
* (
sqrt (((
|.px.|
^2 )
/ (
|.px.|
^2 ))
- (((q
`1 )
^2 )
/ (
|.px.|
^2 ))))) by
A26,
A32,
XCMPLX_1: 60
.= (
|.px.|
* (
sqrt (((
|.px.|
^2 )
- ((q
`1 )
^2 ))
/ (
|.px.|
^2 )))) by
XCMPLX_1: 120
.= (
|.px.|
* (
sqrt (((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
- ((q
`1 )
^2 ))
/ (
|.px.|
^2 )))) by
A32,
JGRAPH_3: 1
.= (
|.px.|
* (
sqrt (((q
`2 )
/
|.q.|)
^2 ))) by
A33,
XCMPLX_1: 76;
hence ex x be
set st x
in (
dom (cn
-FanMorphN )) & y
= ((cn
-FanMorphN )
. x) by
A35,
A37,
A36,
A29,
EUCLID: 53;
end;
end;
hence thesis by
A3,
FUNCT_1:def 3;
end;
hence thesis by
A3,
XBOOLE_0:def 10;
end;
hence thesis;
end;
theorem ::
JGRAPH_4:73
Th73: for cn be
Real, p2 be
Point of (
TOP-REAL 2) st (
- 1)
< cn & cn
< 1 holds ex K be non
empty
compact
Subset of (
TOP-REAL 2) st K
= ((cn
-FanMorphN )
.: K) & ex V2 be
Subset of (
TOP-REAL 2) st p2
in V2 & V2 is
open & V2
c= K & ((cn
-FanMorphN )
. p2)
in V2
proof
reconsider O = (
0. (
TOP-REAL 2)) as
Point of (
Euclid 2) by
EUCLID: 67;
let cn be
Real, p2 be
Point of (
TOP-REAL 2);
A1: the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
then
reconsider V0 = (
Ball (O,(
|.p2.|
+ 1))) as
Subset of (
TOP-REAL 2);
O
in V0 & V0
c= (
cl_Ball (O,(
|.p2.|
+ 1))) by
GOBOARD6: 1,
METRIC_1: 14;
then
reconsider K0 = (
cl_Ball (O,(
|.p2.|
+ 1))) as non
empty
compact
Subset of (
TOP-REAL 2) by
A1,
Th15;
set q3 = ((cn
-FanMorphN )
. p2);
reconsider VV0 = V0 as
Subset of (
TopSpaceMetr (
Euclid 2));
reconsider u2 = p2 as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider u3 = q3 as
Point of (
Euclid 2) by
EUCLID: 67;
A2: ((cn
-FanMorphN )
.: K0)
c= K0
proof
let y be
object;
assume y
in ((cn
-FanMorphN )
.: K0);
then
consider x be
object such that
A3: x
in (
dom (cn
-FanMorphN )) and
A4: x
in K0 and
A5: y
= ((cn
-FanMorphN )
. x) by
FUNCT_1:def 6;
reconsider q = x as
Point of (
TOP-REAL 2) by
A3;
reconsider uq = q as
Point of (
Euclid 2) by
EUCLID: 67;
(
dist (O,uq))
<= (
|.p2.|
+ 1) by
A4,
METRIC_1: 12;
then
|.((
0. (
TOP-REAL 2))
- q).|
<= (
|.p2.|
+ 1) by
JGRAPH_1: 28;
then
|.(
- q).|
<= (
|.p2.|
+ 1) by
RLVECT_1: 4;
then
A6:
|.q.|
<= (
|.p2.|
+ 1) by
TOPRNS_1: 26;
A7: y
in (
rng (cn
-FanMorphN )) by
A3,
A5,
FUNCT_1:def 3;
then
reconsider u = y as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider q4 = y as
Point of (
TOP-REAL 2) by
A7;
|.q4.|
=
|.q.| by
A5,
Th66;
then
|.(
- q4).|
<= (
|.p2.|
+ 1) by
A6,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- q4).|
<= (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u))
<= (
|.p2.|
+ 1) by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 12;
end;
VV0 is
open by
TOPMETR: 14;
then
A8: V0 is
open by
Lm11,
PRE_TOPC: 30;
A9:
|.p2.|
< (
|.p2.|
+ 1) by
XREAL_1: 29;
then
|.(
- p2).|
< (
|.p2.|
+ 1) by
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- p2).|
< (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u2))
< (
|.p2.|
+ 1) by
JGRAPH_1: 28;
then
A10: p2
in V0 by
METRIC_1: 11;
|.q3.|
=
|.p2.| by
Th66;
then
|.(
- q3).|
< (
|.p2.|
+ 1) by
A9,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- q3).|
< (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u3))
< (
|.p2.|
+ 1) by
JGRAPH_1: 28;
then
A11: ((cn
-FanMorphN )
. p2)
in V0 by
METRIC_1: 11;
assume
A12: (
- 1)
< cn & cn
< 1;
K0
c= ((cn
-FanMorphN )
.: K0)
proof
let y be
object;
assume
A13: y
in K0;
then
reconsider q4 = y as
Point of (
TOP-REAL 2);
reconsider y as
Point of (
Euclid 2) by
A13;
the
carrier of (
TOP-REAL 2)
c= (
rng (cn
-FanMorphN )) by
A12,
Th72;
then q4
in (
rng (cn
-FanMorphN ));
then
consider x be
object such that
A14: x
in (
dom (cn
-FanMorphN )) and
A15: y
= ((cn
-FanMorphN )
. x) by
FUNCT_1:def 3;
reconsider x as
Point of (
Euclid 2) by
A14,
Lm11;
reconsider q = x as
Point of (
TOP-REAL 2) by
A14;
|.q4.|
=
|.q.| by
A15,
Th66;
then q
in K0 by
A13,
Lm12;
hence thesis by
A14,
A15,
FUNCT_1:def 6;
end;
then K0
= ((cn
-FanMorphN )
.: K0) by
A2,
XBOOLE_0:def 10;
hence thesis by
A10,
A8,
A11,
METRIC_1: 14;
end;
theorem ::
JGRAPH_4:74
for cn be
Real st (
- 1)
< cn & cn
< 1 holds ex f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
= (cn
-FanMorphN ) & f is
being_homeomorphism
proof
let cn be
Real;
reconsider f = (cn
-FanMorphN ) as
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume
A1: (
- 1)
< cn & cn
< 1;
then
A2: for p2 be
Point of (
TOP-REAL 2) holds ex K be non
empty
compact
Subset of (
TOP-REAL 2) st K
= (f
.: K) & ex V2 be
Subset of (
TOP-REAL 2) st p2
in V2 & V2 is
open & V2
c= K & (f
. p2)
in V2 by
Th73;
(
rng (cn
-FanMorphN ))
= the
carrier of (
TOP-REAL 2) & ex h be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st h
= (cn
-FanMorphN ) & h is
continuous by
A1,
Th70,
Th72;
then f is
being_homeomorphism by
A1,
A2,
Th3,
Th71;
hence thesis;
end;
theorem ::
JGRAPH_4:75
Th75: for cn be
Real, q be
Point of (
TOP-REAL 2) st cn
< 1 & (q
`2 )
>
0 & ((q
`1 )
/
|.q.|)
>= cn holds for p be
Point of (
TOP-REAL 2) st p
= ((cn
-FanMorphN )
. q) holds (p
`2 )
>
0 & (p
`1 )
>=
0
proof
let cn be
Real, q be
Point of (
TOP-REAL 2);
assume that
A1: cn
< 1 and
A2: (q
`2 )
>
0 and
A3: ((q
`1 )
/
|.q.|)
>= cn;
A4: (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A3,
XREAL_1: 48;
let p be
Point of (
TOP-REAL 2);
set qz = p;
A5: (1
- cn)
>
0 by
A1,
XREAL_1: 149;
A6:
|.q.|
<>
0 by
A2,
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A7: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
(
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A2,
JGRAPH_3: 1,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A7,
XREAL_1: 74;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A7,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then 1
> ((q
`1 )
/
|.q.|) by
SQUARE_1: 52;
then (1
- cn)
> (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
< (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
< ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A5,
XREAL_1: 74;
then (
- 1)
< ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A5,
XCMPLX_1: 197;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )
< (1
^2 ) by
A5,
A4,
SQUARE_1: 50;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 ))
>
0 by
XREAL_1: 50;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )))
>
0 by
SQUARE_1: 25;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
^2 )
/ ((1
- cn)
^2 ))))
>
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
^2 )
/ ((1
- cn)
^2 ))))
>
0 ;
then
A8: (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
>
0 by
XCMPLX_1: 76;
assume p
= ((cn
-FanMorphN )
. q);
then
A9: p
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A2,
A3,
Th49;
then (qz
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))) by
EUCLID: 52;
hence thesis by
A9,
A6,
A5,
A4,
A8,
EUCLID: 52,
XREAL_1: 129;
end;
theorem ::
JGRAPH_4:76
Th76: for cn be
Real, q be
Point of (
TOP-REAL 2) st (
- 1)
< cn & (q
`2 )
>
0 & ((q
`1 )
/
|.q.|)
< cn holds for p be
Point of (
TOP-REAL 2) st p
= ((cn
-FanMorphN )
. q) holds (p
`2 )
>
0 & (p
`1 )
<
0
proof
let cn be
Real, q be
Point of (
TOP-REAL 2);
assume that
A1: (
- 1)
< cn and
A2: (q
`2 )
>
0 and
A3: ((q
`1 )
/
|.q.|)
< cn;
A4: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
let p be
Point of (
TOP-REAL 2);
set qz = p;
assume p
= ((cn
-FanMorphN )
. q);
then p
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A2,
A3,
Th50;
then
A5: (qz
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))) & (qz
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
A6:
|.q.|
<>
0 by
A2,
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A7: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A8: (((q
`1 )
/
|.q.|)
- cn)
<
0 by
A3,
XREAL_1: 49;
then (
- (((q
`1 )
/
|.q.|)
- cn))
>
0 by
XREAL_1: 58;
then ((
- (1
+ cn))
/ (1
+ cn))
< ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn)) by
A4,
XREAL_1: 74;
then
A9: (
- 1)
< ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn)) by
A4,
XCMPLX_1: 197;
(
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A2,
JGRAPH_3: 1,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A7,
XREAL_1: 74;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A7,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then (
- 1)
< ((q
`1 )
/
|.q.|) by
SQUARE_1: 52;
then ((
- 1)
- cn)
< (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- (
- (1
+ cn)))
> (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
< 1 by
A4,
XREAL_1: 191;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )
< (1
^2 ) by
A9,
SQUARE_1: 50;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 ))
>
0 by
XREAL_1: 50;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )))
>
0 by
SQUARE_1: 25;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
^2 )
/ ((1
+ cn)
^2 ))))
>
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
^2 )
/ ((1
+ cn)
^2 ))))
>
0 ;
then
A10: (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
>
0 by
XCMPLX_1: 76;
((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
<
0 by
A1,
A8,
XREAL_1: 141,
XREAL_1: 148;
hence thesis by
A6,
A5,
A10,
XREAL_1: 129,
XREAL_1: 132;
end;
theorem ::
JGRAPH_4:77
Th77: for cn be
Real, q1,q2 be
Point of (
TOP-REAL 2) st cn
< 1 & (q1
`2 )
>
0 & ((q1
`1 )
/
|.q1.|)
>= cn & (q2
`2 )
>
0 & ((q2
`1 )
/
|.q2.|)
>= cn & ((q1
`1 )
/
|.q1.|)
< ((q2
`1 )
/
|.q2.|) holds for p1,p2 be
Point of (
TOP-REAL 2) st p1
= ((cn
-FanMorphN )
. q1) & p2
= ((cn
-FanMorphN )
. q2) holds ((p1
`1 )
/
|.p1.|)
< ((p2
`1 )
/
|.p2.|)
proof
let cn be
Real, q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: cn
< 1 and
A2: (q1
`2 )
>
0 and
A3: ((q1
`1 )
/
|.q1.|)
>= cn and
A4: (q2
`2 )
>
0 and
A5: ((q2
`1 )
/
|.q2.|)
>= cn and
A6: ((q1
`1 )
/
|.q1.|)
< ((q2
`1 )
/
|.q2.|);
A7: (((q1
`1 )
/
|.q1.|)
- cn)
< (((q2
`1 )
/
|.q2.|)
- cn) & (1
- cn)
>
0 by
A1,
A6,
XREAL_1: 9,
XREAL_1: 149;
let p1,p2 be
Point of (
TOP-REAL 2);
assume that
A8: p1
= ((cn
-FanMorphN )
. q1) and
A9: p2
= ((cn
-FanMorphN )
. q2);
A10:
|.p2.|
=
|.q2.| by
A9,
Th66;
p2
=
|[(
|.q2.|
* ((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
- cn))), (
|.q2.|
* (
sqrt (1
- (((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A4,
A5,
A9,
Th49;
then
A11: (p2
`1 )
= (
|.q2.|
* ((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
|.q2.|
>
0 by
A4,
Lm1,
JGRAPH_2: 3;
then
A12: ((p2
`1 )
/
|.p2.|)
= ((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
- cn)) by
A11,
A10,
XCMPLX_1: 89;
p1
=
|[(
|.q1.|
* ((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
- cn))), (
|.q1.|
* (
sqrt (1
- (((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A2,
A3,
A8,
Th49;
then
A13: (p1
`1 )
= (
|.q1.|
* ((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
A14:
|.p1.|
=
|.q1.| by
A8,
Th66;
|.q1.|
>
0 by
A2,
Lm1,
JGRAPH_2: 3;
then ((p1
`1 )
/
|.p1.|)
= ((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
- cn)) by
A13,
A14,
XCMPLX_1: 89;
hence thesis by
A12,
A7,
XREAL_1: 74;
end;
theorem ::
JGRAPH_4:78
Th78: for cn be
Real, q1,q2 be
Point of (
TOP-REAL 2) st (
- 1)
< cn & (q1
`2 )
>
0 & ((q1
`1 )
/
|.q1.|)
< cn & (q2
`2 )
>
0 & ((q2
`1 )
/
|.q2.|)
< cn & ((q1
`1 )
/
|.q1.|)
< ((q2
`1 )
/
|.q2.|) holds for p1,p2 be
Point of (
TOP-REAL 2) st p1
= ((cn
-FanMorphN )
. q1) & p2
= ((cn
-FanMorphN )
. q2) holds ((p1
`1 )
/
|.p1.|)
< ((p2
`1 )
/
|.p2.|)
proof
let cn be
Real, q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: (
- 1)
< cn and
A2: (q1
`2 )
>
0 and
A3: ((q1
`1 )
/
|.q1.|)
< cn and
A4: (q2
`2 )
>
0 and
A5: ((q2
`1 )
/
|.q2.|)
< cn and
A6: ((q1
`1 )
/
|.q1.|)
< ((q2
`1 )
/
|.q2.|);
A7: (((q1
`1 )
/
|.q1.|)
- cn)
< (((q2
`1 )
/
|.q2.|)
- cn) & (1
+ cn)
>
0 by
A1,
A6,
XREAL_1: 9,
XREAL_1: 148;
let p1,p2 be
Point of (
TOP-REAL 2);
assume that
A8: p1
= ((cn
-FanMorphN )
. q1) and
A9: p2
= ((cn
-FanMorphN )
. q2);
A10:
|.p2.|
=
|.q2.| by
A9,
Th66;
p2
=
|[(
|.q2.|
* ((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
+ cn))), (
|.q2.|
* (
sqrt (1
- (((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A4,
A5,
A9,
Th50;
then
A11: (p2
`1 )
= (
|.q2.|
* ((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
|.q2.|
>
0 by
A4,
Lm1,
JGRAPH_2: 3;
then
A12: ((p2
`1 )
/
|.p2.|)
= ((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
+ cn)) by
A11,
A10,
XCMPLX_1: 89;
p1
=
|[(
|.q1.|
* ((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
+ cn))), (
|.q1.|
* (
sqrt (1
- (((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
+ cn))
^2 ))))]| by
A2,
A3,
A8,
Th50;
then
A13: (p1
`1 )
= (
|.q1.|
* ((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
A14:
|.p1.|
=
|.q1.| by
A8,
Th66;
|.q1.|
>
0 by
A2,
Lm1,
JGRAPH_2: 3;
then ((p1
`1 )
/
|.p1.|)
= ((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
+ cn)) by
A13,
A14,
XCMPLX_1: 89;
hence thesis by
A12,
A7,
XREAL_1: 74;
end;
theorem ::
JGRAPH_4:79
for cn be
Real, q1,q2 be
Point of (
TOP-REAL 2) st (
- 1)
< cn & cn
< 1 & (q1
`2 )
>
0 & (q2
`2 )
>
0 & ((q1
`1 )
/
|.q1.|)
< ((q2
`1 )
/
|.q2.|) holds for p1,p2 be
Point of (
TOP-REAL 2) st p1
= ((cn
-FanMorphN )
. q1) & p2
= ((cn
-FanMorphN )
. q2) holds ((p1
`1 )
/
|.p1.|)
< ((p2
`1 )
/
|.p2.|)
proof
let cn be
Real, q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: (
- 1)
< cn and
A2: cn
< 1 and
A3: (q1
`2 )
>
0 and
A4: (q2
`2 )
>
0 and
A5: ((q1
`1 )
/
|.q1.|)
< ((q2
`1 )
/
|.q2.|);
let p1,p2 be
Point of (
TOP-REAL 2);
assume that
A6: p1
= ((cn
-FanMorphN )
. q1) and
A7: p2
= ((cn
-FanMorphN )
. q2);
per cases ;
suppose ((q1
`1 )
/
|.q1.|)
>= cn & ((q2
`1 )
/
|.q2.|)
>= cn;
hence thesis by
A2,
A3,
A4,
A5,
A6,
A7,
Th77;
end;
suppose ((q1
`1 )
/
|.q1.|)
>= cn & ((q2
`1 )
/
|.q2.|)
< cn;
hence thesis by
A5,
XXREAL_0: 2;
end;
suppose
A8: ((q1
`1 )
/
|.q1.|)
< cn & ((q2
`1 )
/
|.q2.|)
>= cn;
then (p2
`1 )
>=
0 by
A2,
A4,
A7,
Th75;
then
A9: ((p2
`1 )
/
|.p2.|)
>=
0 ;
(p1
`1 )
<
0 by
A1,
A3,
A6,
A8,
Th76;
hence thesis by
A9,
Lm1,
JGRAPH_2: 3,
XREAL_1: 141;
end;
suppose ((q1
`1 )
/
|.q1.|)
< cn & ((q2
`1 )
/
|.q2.|)
< cn;
hence thesis by
A1,
A3,
A4,
A5,
A6,
A7,
Th78;
end;
end;
theorem ::
JGRAPH_4:80
for cn be
Real, q be
Point of (
TOP-REAL 2) st (q
`2 )
>
0 & ((q
`1 )
/
|.q.|)
= cn holds for p be
Point of (
TOP-REAL 2) st p
= ((cn
-FanMorphN )
. q) holds (p
`2 )
>
0 & (p
`1 )
=
0
proof
let cn be
Real, q be
Point of (
TOP-REAL 2);
assume that
A1: (q
`2 )
>
0 and
A2: ((q
`1 )
/
|.q.|)
= cn;
A3:
|.q.|
<>
0 & (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )))
>
0 by
A1,
A2,
JGRAPH_2: 3,
SQUARE_1: 25,
TOPRNS_1: 24;
let p be
Point of (
TOP-REAL 2);
assume p
= ((cn
-FanMorphN )
. q);
then
A4: p
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]| by
A1,
A2,
Th49;
then (p
`2 )
= (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))) by
EUCLID: 52;
hence thesis by
A2,
A4,
A3,
EUCLID: 52,
XREAL_1: 129;
end;
theorem ::
JGRAPH_4:81
for cn be
Real holds (
0. (
TOP-REAL 2))
= ((cn
-FanMorphN )
. (
0. (
TOP-REAL 2))) by
Th49,
JGRAPH_2: 3;
begin
definition
let s be
Real, q be
Point of (
TOP-REAL 2);
::
JGRAPH_4:def6
func
FanE (s,q) ->
Point of (
TOP-REAL 2) equals
:
Def6: (
|.q.|
*
|[(
sqrt (1
- (((((q
`2 )
/
|.q.|)
- s)
/ (1
- s))
^2 ))), ((((q
`2 )
/
|.q.|)
- s)
/ (1
- s))]|) if ((q
`2 )
/
|.q.|)
>= s & (q
`1 )
>
0 ,
(
|.q.|
*
|[(
sqrt (1
- (((((q
`2 )
/
|.q.|)
- s)
/ (1
+ s))
^2 ))), ((((q
`2 )
/
|.q.|)
- s)
/ (1
+ s))]|) if ((q
`2 )
/
|.q.|)
< s & (q
`1 )
>
0
otherwise q;
correctness ;
end
definition
let s be
Real;
::
JGRAPH_4:def7
func s
-FanMorphE ->
Function of (
TOP-REAL 2), (
TOP-REAL 2) means
:
Def7: for q be
Point of (
TOP-REAL 2) holds (it
. q)
= (
FanE (s,q));
existence
proof
deffunc
F(
Point of (
TOP-REAL 2)) = (
FanE (s,$1));
thus ex IT be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st for q be
Point of (
TOP-REAL 2) holds (IT
. q)
=
F(q) from
FUNCT_2:sch 4;
end;
uniqueness
proof
deffunc
F(
Point of (
TOP-REAL 2)) = (
FanE (s,$1));
thus for a,b be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st (for q be
Point of (
TOP-REAL 2) holds (a
. q)
=
F(q)) & (for q be
Point of (
TOP-REAL 2) holds (b
. q)
=
F(q)) holds a
= b from
BINOP_2:sch 1;
end;
end
theorem ::
JGRAPH_4:82
Th82: for sn be
Real holds (((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
>
0 implies ((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]|) & ((q
`1 )
<=
0 implies ((sn
-FanMorphE )
. q)
= q)
proof
let sn be
Real;
hereby
assume ((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
>
0 ;
then (
FanE (sn,q))
= (
|.q.|
*
|[(
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))), ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))]|) by
Def6
.=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
EUCLID: 58;
hence ((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
Def7;
end;
assume
A1: (q
`1 )
<=
0 ;
((sn
-FanMorphE )
. q)
= (
FanE (sn,q)) by
Def7;
hence thesis by
A1,
Def6;
end;
theorem ::
JGRAPH_4:83
Th83: for sn be
Real holds (((q
`2 )
/
|.q.|)
<= sn & (q
`1 )
>
0 implies ((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]|)
proof
let sn be
Real;
assume that
A1: ((q
`2 )
/
|.q.|)
<= sn and
A2: (q
`1 )
>
0 ;
now
per cases by
A1,
XXREAL_0: 1;
case ((q
`2 )
/
|.q.|)
< sn;
then (
FanE (sn,q))
= (
|.q.|
*
|[(
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))), ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))]|) by
A2,
Def6
.=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]| by
EUCLID: 58;
hence thesis by
Def7;
end;
case
A3: ((q
`2 )
/
|.q.|)
= sn;
then ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
=
0 ;
hence thesis by
A2,
A3,
Th82;
end;
end;
hence thesis;
end;
theorem ::
JGRAPH_4:84
Th84: for sn be
Real st (
- 1)
< sn & sn
< 1 holds (((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2)) implies ((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]|) & (((q
`2 )
/
|.q.|)
<= sn & (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2)) implies ((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]|)
proof
let sn be
Real;
assume that
A1: (
- 1)
< sn and
A2: sn
< 1;
per cases ;
suppose
A3: ((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
per cases ;
suppose
A4: (q
`1 )
>
0 ;
then (
FanE (sn,q))
= (
|.q.|
*
|[(
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))), ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))]|) by
A3,
Def6
.=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
EUCLID: 58;
hence thesis by
A4,
Def7,
Th83;
end;
suppose
A5: (q
`1 )
<=
0 ;
then
A6: ((sn
-FanMorphE )
. q)
= q by
Th82;
A7: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A8: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
A9: (q
`1 )
=
0 by
A3,
A5;
|.q.|
<>
0 by
A3,
TOPRNS_1: 24;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
= (1
^2 ) by
A7,
A9,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
= (1
^2 ) by
XCMPLX_1: 76;
then
A10: (
sqrt (((q
`2 )
/
|.q.|)
^2 ))
= 1 by
SQUARE_1: 22;
A11:
now
assume (q
`2 )
<
0 ;
then (
- ((q
`2 )
/
|.q.|))
= 1 by
A10,
SQUARE_1: 23;
hence contradiction by
A1,
A3;
end;
(
sqrt (
|.q.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A12:
|.q.|
= (q
`2 ) by
A7,
A9,
A11,
SQUARE_1: 22;
then 1
= ((q
`2 )
/
|.q.|) by
A3,
TOPRNS_1: 24,
XCMPLX_1: 60;
then ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
= 1 by
A8,
XCMPLX_1: 60;
hence thesis by
A2,
A6,
A9,
A12,
EUCLID: 53,
SQUARE_1: 17,
TOPRNS_1: 24,
XCMPLX_1: 60;
end;
end;
suppose
A13: ((q
`2 )
/
|.q.|)
<= sn & (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
per cases ;
suppose (q
`1 )
>
0 ;
hence thesis by
Th82,
Th83;
end;
suppose
A14: (q
`1 )
<=
0 ;
then
A15: (q
`1 )
=
0 by
A13;
A16: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
A17:
|.q.|
<>
0 by
A13,
TOPRNS_1: 24;
1
> ((q
`2 )
/
|.q.|) by
A2,
A13,
XXREAL_0: 2;
then (1
*
|.q.|)
> (((q
`2 )
/
|.q.|)
*
|.q.|) by
A17,
XREAL_1: 68;
then
A18: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) &
|.q.|
> (q
`2 ) by
A13,
JGRAPH_3: 1,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A19:
|.q.|
= (
- (q
`2 )) by
A15,
SQUARE_1: 40;
A20: (q
`2 )
= (
-
|.q.|) by
A15,
A18,
SQUARE_1: 40;
then (
- 1)
= ((q
`2 )
/
|.q.|) by
A13,
TOPRNS_1: 24,
XCMPLX_1: 197;
then ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
= ((
- (1
+ sn))
/ (1
+ sn))
.= (
- 1) by
A16,
XCMPLX_1: 197;
then
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]|
= q by
A15,
A19,
EUCLID: 53,
SQUARE_1: 17;
hence thesis by
A1,
A14,
A17,
A20,
Th82,
XCMPLX_1: 197;
end;
end;
suppose (q
`1 )
<
0 or q
= (
0. (
TOP-REAL 2));
hence thesis;
end;
end;
theorem ::
JGRAPH_4:85
Th85: for sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st sn
< 1 & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = sn, b = (1
- sn);
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm3;
assume that
A1: sn
< 1 and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then
A4: for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
b
>
0 by
A1,
XREAL_1: 149;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (((r1
/ r2)
- a)
/ b)) and
A6: g3 is
continuous by
A4,
Th5;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then
A8: (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A9: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in K1 by
A7,
A8,
A9,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A10: (
proj2
. r)
= (r
`2 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 6;
A11: (g2
. s)
= (
proj2
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm3,
Lm5;
(f
. r)
= (
|.r.|
* ((((r
`2 )
/
|.r.|)
- sn)
/ (1
- sn))) by
A2,
A9;
hence thesis by
A5,
A11,
A10;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:86
Th86: for sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (
- 1)
< sn & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = sn, b = (1
+ sn);
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm3;
assume that
A1: (
- 1)
< sn and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then
A4: for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
(1
+ sn)
>
0 by
A1,
XREAL_1: 148;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (((r1
/ r2)
- a)
/ b)) and
A6: g3 is
continuous by
A4,
Th5;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
A8: for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A9: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in (
dom g3) by
A7,
A9;
then x
in K1 by
A7,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A10: (
proj2
. r)
= (r
`2 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 6;
A11: (g2
. s)
= (
proj2
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm3,
Lm5;
(f
. r)
= (
|.r.|
* ((((r
`2 )
/
|.r.|)
- sn)
/ (1
+ sn))) by
A2,
A9;
hence thesis by
A5,
A11,
A10;
end;
(
dom f)
= (
dom g3) by
A7,
FUNCT_2:def 1;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:87
Th87: for sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st sn
< 1 & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
>=
0 & ((q
`2 )
/
|.q.|)
>= sn & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = sn, b = (1
- sn);
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm3;
assume that
A1: sn
< 1 and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
>=
0 & ((q
`2 )
/
|.q.|)
>= sn & q
<> (
0. (
TOP-REAL 2));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then
A4: for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
b
>
0 by
A1,
XREAL_1: 149;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|)) and
A6: g3 is
continuous by
A4,
Th10;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then
A8: (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
A9: (1
- sn)
>
0 by
A1,
XREAL_1: 149;
assume
A10: x
in (
dom f);
then x
in K1 by
A7,
A8,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A11:
|.r.|
<>
0 by
A3,
A10,
TOPRNS_1: 24;
(
|.r.|
^2 )
= (((r
`1 )
^2 )
+ ((r
`2 )
^2 )) by
JGRAPH_3: 1;
then
A12: (((r
`2 )
-
|.r.|)
* ((r
`2 )
+
|.r.|))
= (
- ((r
`1 )
^2 ));
((r
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then (r
`2 )
<=
|.r.| by
A12,
XREAL_1: 93;
then ((r
`2 )
/
|.r.|)
<= (
|.r.|
/
|.r.|) by
XREAL_1: 72;
then ((r
`2 )
/
|.r.|)
<= 1 by
A11,
XCMPLX_1: 60;
then
A13: (((r
`2 )
/
|.r.|)
- sn)
<= (1
- sn) by
XREAL_1: 9;
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1) by
A10;
A14:
now
assume ((1
- sn)
^2 )
=
0 ;
then ((1
- sn)
+ sn)
= (
0
+ sn) by
XCMPLX_1: 6;
hence contradiction by
A1;
end;
(sn
- ((r
`2 )
/
|.r.|))
<=
0 by
A3,
A10,
XREAL_1: 47;
then (
- (sn
- ((r
`2 )
/
|.r.|)))
>= (
- (1
- sn)) by
A9,
XREAL_1: 24;
then ((1
- sn)
^2 )
>=
0 & ((((r
`2 )
/
|.r.|)
- sn)
^2 )
<= ((1
- sn)
^2 ) by
A13,
SQUARE_1: 49,
XREAL_1: 63;
then (((((r
`2 )
/
|.r.|)
- sn)
^2 )
/ ((1
- sn)
^2 ))
<= (((1
- sn)
^2 )
/ ((1
- sn)
^2 )) by
XREAL_1: 72;
then (((((r
`2 )
/
|.r.|)
- sn)
^2 )
/ ((1
- sn)
^2 ))
<= 1 by
A14,
XCMPLX_1: 60;
then (((((r
`2 )
/
|.r.|)
- sn)
/ (1
- sn))
^2 )
<= 1 by
XCMPLX_1: 76;
then (1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
|.(1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
- sn))
^2 )).|
= (1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
- sn))
^2 )) by
ABSVALUE:def 1;
then
A15: (f
. r)
= (
|.r.|
* (
sqrt
|.(1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
- sn))
^2 )).|)) by
A2,
A10;
A16: (
proj2
. r)
= (r
`2 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 6;
(g2
. s)
= (
proj2
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm3,
Lm5;
hence thesis by
A5,
A15,
A16;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:88
Th88: for sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (
- 1)
< sn & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
>=
0 & ((q
`2 )
/
|.q.|)
<= sn & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let sn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = sn, b = (1
+ sn);
reconsider g2 = (
proj2
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm3;
assume that
A1: (
- 1)
< sn and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
>=
0 & ((q
`2 )
/
|.q.|)
<= sn & q
<> (
0. (
TOP-REAL 2));
A4: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|)) and
A6: g3 is
continuous by
A4,
Th10;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then
A8: (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A9: x
in (
dom f);
then x
in K1 by
A7,
A8,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1) by
A9;
A10: ((1
+ sn)
^2 )
>
0 by
A4,
SQUARE_1: 12;
A11:
|.r.|
<>
0 by
A3,
A9,
TOPRNS_1: 24;
(
|.r.|
^2 )
= (((r
`1 )
^2 )
+ ((r
`2 )
^2 )) by
JGRAPH_3: 1;
then
A12: (((r
`2 )
-
|.r.|)
* ((r
`2 )
+
|.r.|))
= (
- ((r
`1 )
^2 ));
((r
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then (
-
|.r.|)
<= (r
`2 ) by
A12,
XREAL_1: 93;
then ((r
`2 )
/
|.r.|)
>= ((
-
|.r.|)
/
|.r.|) by
XREAL_1: 72;
then ((r
`2 )
/
|.r.|)
>= (
- 1) by
A11,
XCMPLX_1: 197;
then (((r
`2 )
/
|.r.|)
- sn)
>= ((
- 1)
- sn) by
XREAL_1: 9;
then
A13: (((r
`2 )
/
|.r.|)
- sn)
>= (
- (1
+ sn));
(sn
- ((r
`2 )
/
|.r.|))
>=
0 by
A3,
A9,
XREAL_1: 48;
then (
- (sn
- ((r
`2 )
/
|.r.|)))
<= (
-
0 );
then ((((r
`2 )
/
|.r.|)
- sn)
^2 )
<= ((1
+ sn)
^2 ) by
A4,
A13,
SQUARE_1: 49;
then (((((r
`2 )
/
|.r.|)
- sn)
^2 )
/ ((1
+ sn)
^2 ))
<= (((1
+ sn)
^2 )
/ ((1
+ sn)
^2 )) by
A4,
XREAL_1: 72;
then (((((r
`2 )
/
|.r.|)
- sn)
^2 )
/ ((1
+ sn)
^2 ))
<= 1 by
A10,
XCMPLX_1: 60;
then (((((r
`2 )
/
|.r.|)
- sn)
/ (1
+ sn))
^2 )
<= 1 by
XCMPLX_1: 76;
then (1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
|.(1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
+ sn))
^2 )).|
= (1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
+ sn))
^2 )) by
ABSVALUE:def 1;
then
A14: (f
. r)
= (
|.r.|
* (
sqrt
|.(1
- (((((r
`2 )
/
|.r.|)
- sn)
/ (1
+ sn))
^2 )).|)) by
A2,
A9;
A15: (
proj2
. r)
= (r
`2 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 6;
(g2
. s)
= (
proj2
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm3,
Lm5;
hence thesis by
A5,
A14,
A15;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:89
Th89: for sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphE )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set cn = (
sqrt (1
- (sn
^2 )));
set p0 =
|[cn, sn]|;
A1: (p0
`1 )
= cn by
EUCLID: 52;
(p0
`2 )
= sn by
EUCLID: 52;
then
A2:
|.p0.|
= (
sqrt ((cn
^2 )
+ (sn
^2 ))) by
A1,
JGRAPH_3: 1;
assume
A3: (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphE )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (sn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A4: (1
- (sn
^2 ))
>
0 by
XREAL_1: 50;
then
A5: (
- (
- cn))
>
0 by
SQUARE_1: 25;
(cn
^2 )
= (1
- (sn
^2 )) by
A4,
SQUARE_1:def 2;
then ((p0
`2 )
/
|.p0.|)
= sn by
A2,
EUCLID: 52,
SQUARE_1: 18;
then
A6: p0
in K0 by
A3,
A1,
A5,
JGRAPH_2: 3;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
A7: (
rng (
proj1
* ((sn
-FanMorphE )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
A8: K0
c= B0
proof
let x be
object;
assume x
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & ((p8
`2 )
/
|.p8.|)
>= sn & (p8
`1 )
>=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A3;
hence thesis by
A3;
end;
A9: (
dom ((sn
-FanMorphE )
| K1))
c= (
dom (
proj2
* ((sn
-FanMorphE )
| K1)))
proof
let x be
object;
assume
A10: x
in (
dom ((sn
-FanMorphE )
| K1));
then x
in ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (sn
-FanMorphE )) by
XBOOLE_0:def 4;
then
A11: (
dom
proj2 )
= the
carrier of (
TOP-REAL 2) & ((sn
-FanMorphE )
. x)
in (
rng (sn
-FanMorphE )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((sn
-FanMorphE )
| K1)
. x)
= ((sn
-FanMorphE )
. x) by
A10,
FUNCT_1: 47;
hence thesis by
A10,
A11,
FUNCT_1: 11;
end;
A12: (
rng (
proj2
* ((sn
-FanMorphE )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
(
dom (
proj2
* ((sn
-FanMorphE )
| K1)))
c= (
dom ((sn
-FanMorphE )
| K1)) by
RELAT_1: 25;
then (
dom (
proj2
* ((sn
-FanMorphE )
| K1)))
= (
dom ((sn
-FanMorphE )
| K1)) by
A9,
XBOOLE_0:def 10
.= ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g2 = (
proj2
* ((sn
-FanMorphE )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A12,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g2
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))
proof
let p be
Point of (
TOP-REAL 2);
A13: (
dom ((sn
-FanMorphE )
| K1))
= ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A14: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A15: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`2 )
/
|.p3.|)
>= sn & (p3
`1 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A14;
then
A16: ((sn
-FanMorphE )
. p)
=
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]| by
A3,
Th84;
(((sn
-FanMorphE )
| K1)
. p)
= ((sn
-FanMorphE )
. p) by
A15,
A14,
FUNCT_1: 49;
then (g2
. p)
= (
proj2
.
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|) by
A15,
A13,
A14,
A16,
FUNCT_1: 13
.= (
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|
`2 ) by
PSCOMP_1:def 6
.= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
hence thesis;
end;
then
consider f2 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A17: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f2
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)));
A18: (
dom ((sn
-FanMorphE )
| K1))
c= (
dom (
proj1
* ((sn
-FanMorphE )
| K1)))
proof
let x be
object;
assume
A19: x
in (
dom ((sn
-FanMorphE )
| K1));
then x
in ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (sn
-FanMorphE )) by
XBOOLE_0:def 4;
then
A20: (
dom
proj1 )
= the
carrier of (
TOP-REAL 2) & ((sn
-FanMorphE )
. x)
in (
rng (sn
-FanMorphE )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((sn
-FanMorphE )
| K1)
. x)
= ((sn
-FanMorphE )
. x) by
A19,
FUNCT_1: 47;
hence thesis by
A19,
A20,
FUNCT_1: 11;
end;
(
dom (
proj1
* ((sn
-FanMorphE )
| K1)))
c= (
dom ((sn
-FanMorphE )
| K1)) by
RELAT_1: 25;
then (
dom (
proj1
* ((sn
-FanMorphE )
| K1)))
= (
dom ((sn
-FanMorphE )
| K1)) by
A18,
XBOOLE_0:def 10
.= ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g1 = (
proj1
* ((sn
-FanMorphE )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A7,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g1
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))))
proof
let p be
Point of (
TOP-REAL 2);
A21: (
dom ((sn
-FanMorphE )
| K1))
= ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A22: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A23: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`2 )
/
|.p3.|)
>= sn & (p3
`1 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A22;
then
A24: ((sn
-FanMorphE )
. p)
=
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]| by
A3,
Th84;
(((sn
-FanMorphE )
| K1)
. p)
= ((sn
-FanMorphE )
. p) by
A23,
A22,
FUNCT_1: 49;
then (g1
. p)
= (
proj1
.
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|) by
A23,
A21,
A22,
A24,
FUNCT_1: 13
.= (
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|
`1 ) by
PSCOMP_1:def 5
.= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))) by
EUCLID: 52;
hence thesis;
end;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A25: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f1
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
>=
0 & ((q
`2 )
/
|.q.|)
>= sn & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A26: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`2 )
/
|.p3.|)
>= sn & (p3
`1 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A26;
hence thesis;
end;
then
A27: f1 is
continuous by
A3,
A25,
Th87;
A28: for x,y,r,s be
Real st
|[x, y]|
in K1 & r
= (f1
.
|[x, y]|) & s
= (f2
.
|[x, y]|) holds (f
.
|[x, y]|)
=
|[r, s]|
proof
let x,y,r,s be
Real;
assume that
A29:
|[x, y]|
in K1 and
A30: r
= (f1
.
|[x, y]|) & s
= (f2
.
|[x, y]|);
set p99 =
|[x, y]|;
A31: ex p3 be
Point of (
TOP-REAL 2) st p99
= p3 & ((p3
`2 )
/
|.p3.|)
>= sn & (p3
`1 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A29;
A32: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
A33: (f1
. p99)
= (
|.p99.|
* (
sqrt (1
- (((((p99
`2 )
/
|.p99.|)
- sn)
/ (1
- sn))
^2 )))) by
A25,
A29;
(((sn
-FanMorphE )
| K0)
.
|[x, y]|)
= ((sn
-FanMorphE )
.
|[x, y]|) by
A29,
FUNCT_1: 49
.=
|[(
|.p99.|
* (
sqrt (1
- (((((p99
`2 )
/
|.p99.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p99.|
* ((((p99
`2 )
/
|.p99.|)
- sn)
/ (1
- sn)))]| by
A3,
A31,
Th84
.=
|[r, s]| by
A17,
A29,
A30,
A32,
A33;
hence thesis by
A3;
end;
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A34: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`2 )
/
|.p3.|)
>= sn & (p3
`1 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A34;
hence thesis;
end;
then f2 is
continuous by
A3,
A17,
Th85;
hence thesis by
A6,
A8,
A27,
A28,
JGRAPH_2: 35;
end;
theorem ::
JGRAPH_4:90
Th90: for sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphE )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set cn = (
sqrt (1
- (sn
^2 )));
set p0 =
|[cn, sn]|;
A1: (p0
`1 )
= cn by
EUCLID: 52;
(p0
`2 )
= sn by
EUCLID: 52;
then
A2:
|.p0.|
= (
sqrt ((cn
^2 )
+ (sn
^2 ))) by
A1,
JGRAPH_3: 1;
assume
A3: (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphE )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (sn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A4: (1
- (sn
^2 ))
>
0 by
XREAL_1: 50;
then
A5: (
- (
- cn))
>
0 by
SQUARE_1: 25;
(cn
^2 )
= (1
- (sn
^2 )) by
A4,
SQUARE_1:def 2;
then ((p0
`2 )
/
|.p0.|)
= sn by
A2,
EUCLID: 52,
SQUARE_1: 18;
then
A6: p0
in K0 by
A3,
A1,
A5,
JGRAPH_2: 3;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
A7: (
rng (
proj1
* ((sn
-FanMorphE )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
A8: K0
c= B0
proof
let x be
object;
assume x
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & ((p8
`2 )
/
|.p8.|)
<= sn & (p8
`1 )
>=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A3;
hence thesis by
A3;
end;
A9: (
dom ((sn
-FanMorphE )
| K1))
c= (
dom (
proj2
* ((sn
-FanMorphE )
| K1)))
proof
let x be
object;
assume
A10: x
in (
dom ((sn
-FanMorphE )
| K1));
then x
in ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (sn
-FanMorphE )) by
XBOOLE_0:def 4;
then
A11: (
dom
proj2 )
= the
carrier of (
TOP-REAL 2) & ((sn
-FanMorphE )
. x)
in (
rng (sn
-FanMorphE )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((sn
-FanMorphE )
| K1)
. x)
= ((sn
-FanMorphE )
. x) by
A10,
FUNCT_1: 47;
hence thesis by
A10,
A11,
FUNCT_1: 11;
end;
A12: (
rng (
proj2
* ((sn
-FanMorphE )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
(
dom (
proj2
* ((sn
-FanMorphE )
| K1)))
c= (
dom ((sn
-FanMorphE )
| K1)) by
RELAT_1: 25;
then (
dom (
proj2
* ((sn
-FanMorphE )
| K1)))
= (
dom ((sn
-FanMorphE )
| K1)) by
A9,
XBOOLE_0:def 10
.= ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g2 = (
proj2
* ((sn
-FanMorphE )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A12,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g2
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))
proof
let p be
Point of (
TOP-REAL 2);
A13: (
dom ((sn
-FanMorphE )
| K1))
= ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A14: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A15: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`2 )
/
|.p3.|)
<= sn & (p3
`1 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A14;
then
A16: ((sn
-FanMorphE )
. p)
=
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]| by
A3,
Th84;
(((sn
-FanMorphE )
| K1)
. p)
= ((sn
-FanMorphE )
. p) by
A15,
A14,
FUNCT_1: 49;
then (g2
. p)
= (
proj2
.
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|) by
A15,
A13,
A14,
A16,
FUNCT_1: 13
.= (
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|
`2 ) by
PSCOMP_1:def 6
.= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
hence thesis;
end;
then
consider f2 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A17: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f2
. p)
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)));
A18: (
dom ((sn
-FanMorphE )
| K1))
c= (
dom (
proj1
* ((sn
-FanMorphE )
| K1)))
proof
let x be
object;
assume
A19: x
in (
dom ((sn
-FanMorphE )
| K1));
then x
in ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (sn
-FanMorphE )) by
XBOOLE_0:def 4;
then
A20: (
dom
proj1 )
= the
carrier of (
TOP-REAL 2) & ((sn
-FanMorphE )
. x)
in (
rng (sn
-FanMorphE )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((sn
-FanMorphE )
| K1)
. x)
= ((sn
-FanMorphE )
. x) by
A19,
FUNCT_1: 47;
hence thesis by
A19,
A20,
FUNCT_1: 11;
end;
(
dom (
proj1
* ((sn
-FanMorphE )
| K1)))
c= (
dom ((sn
-FanMorphE )
| K1)) by
RELAT_1: 25;
then (
dom (
proj1
* ((sn
-FanMorphE )
| K1)))
= (
dom ((sn
-FanMorphE )
| K1)) by
A18,
XBOOLE_0:def 10
.= ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g1 = (
proj1
* ((sn
-FanMorphE )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A7,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g1
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))
proof
let p be
Point of (
TOP-REAL 2);
A21: (
dom ((sn
-FanMorphE )
| K1))
= ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A22: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A23: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`2 )
/
|.p3.|)
<= sn & (p3
`1 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A22;
then
A24: ((sn
-FanMorphE )
. p)
=
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]| by
A3,
Th84;
(((sn
-FanMorphE )
| K1)
. p)
= ((sn
-FanMorphE )
. p) by
A23,
A22,
FUNCT_1: 49;
then (g1
. p)
= (
proj1
.
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|) by
A23,
A21,
A22,
A24,
FUNCT_1: 13
.= (
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|
`1 ) by
PSCOMP_1:def 5
.= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))) by
EUCLID: 52;
hence thesis;
end;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A25: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f1
. p)
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
>=
0 & ((q
`2 )
/
|.q.|)
<= sn & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A26: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`2 )
/
|.p3.|)
<= sn & (p3
`1 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A26;
hence thesis;
end;
then
A27: f1 is
continuous by
A3,
A25,
Th88;
A28: for x,y,r,s be
Real st
|[x, y]|
in K1 & r
= (f1
.
|[x, y]|) & s
= (f2
.
|[x, y]|) holds (f
.
|[x, y]|)
=
|[r, s]|
proof
let x,y,r,s be
Real;
assume that
A29:
|[x, y]|
in K1 and
A30: r
= (f1
.
|[x, y]|) & s
= (f2
.
|[x, y]|);
set p99 =
|[x, y]|;
A31: ex p3 be
Point of (
TOP-REAL 2) st p99
= p3 & ((p3
`2 )
/
|.p3.|)
<= sn & (p3
`1 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A29;
A32: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
A33: (f1
. p99)
= (
|.p99.|
* (
sqrt (1
- (((((p99
`2 )
/
|.p99.|)
- sn)
/ (1
+ sn))
^2 )))) by
A25,
A29;
(((sn
-FanMorphE )
| K0)
.
|[x, y]|)
= ((sn
-FanMorphE )
.
|[x, y]|) by
A29,
FUNCT_1: 49
.=
|[(
|.p99.|
* (
sqrt (1
- (((((p99
`2 )
/
|.p99.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p99.|
* ((((p99
`2 )
/
|.p99.|)
- sn)
/ (1
+ sn)))]| by
A3,
A31,
Th84
.=
|[r, s]| by
A17,
A29,
A30,
A32,
A33;
hence thesis by
A3;
end;
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A34: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`2 )
/
|.p3.|)
<= sn & (p3
`1 )
>=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A34;
hence thesis;
end;
then f2 is
continuous by
A3,
A17,
Th86;
hence thesis by
A6,
A8,
A27,
A28,
JGRAPH_2: 35;
end;
theorem ::
JGRAPH_4:91
Th91: for sn be
Real, K03 be
Subset of (
TOP-REAL 2) st K03
= { p : (p
`2 )
>= (sn
*
|.p.|) & (p
`1 )
>=
0 } holds K03 is
closed
proof
defpred
Q[
Point of (
TOP-REAL 2)] means ($1
`1 )
>=
0 ;
let sn be
Real, K003 be
Subset of (
TOP-REAL 2);
assume
A1: K003
= { p : (p
`2 )
>= (sn
*
|.p.|) & (p
`1 )
>=
0 };
reconsider KX = { p where p be
Point of (
TOP-REAL 2) :
Q[p] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
>= (sn
*
|.$1.|));
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A2: { p :
P[p] &
Q[p] }
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ { p1 where p1 be
Point of (
TOP-REAL 2) :
Q[p1] }) from
DOMAIN_1:sch 10;
K1 is
closed & KX is
closed by
Lm7,
JORDAN6: 4;
hence thesis by
A1,
A2,
TOPS_1: 8;
end;
theorem ::
JGRAPH_4:92
Th92: for sn be
Real, K03 be
Subset of (
TOP-REAL 2) st K03
= { p : (p
`2 )
<= (sn
*
|.p.|) & (p
`1 )
>=
0 } holds K03 is
closed
proof
defpred
Q[
Point of (
TOP-REAL 2)] means ($1
`1 )
>=
0 ;
let sn be
Real, K003 be
Subset of (
TOP-REAL 2);
assume
A1: K003
= { p : (p
`2 )
<= (sn
*
|.p.|) & (p
`1 )
>=
0 };
reconsider KX = { p where p be
Point of (
TOP-REAL 2) :
Q[p] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
<= (sn
*
|.$1.|));
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A2: { p :
P[p] &
Q[p] }
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ { p1 where p1 be
Point of (
TOP-REAL 2) :
Q[p1] }) from
DOMAIN_1:sch 10;
K1 is
closed & KX is
closed by
Lm9,
JORDAN6: 4;
hence thesis by
A1,
A2,
TOPS_1: 8;
end;
theorem ::
JGRAPH_4:93
Th93: for sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphE )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set cn = (
sqrt (1
- (sn
^2 )));
set p0 =
|[cn, sn]|;
A1: (p0
`1 )
= cn by
EUCLID: 52;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
/
|.$1.|)
>= sn & ($1
`1 )
>=
0 & $1
<> (
0. (
TOP-REAL 2));
(p0
`2 )
= sn by
EUCLID: 52;
then
A2:
|.p0.|
= (
sqrt ((cn
^2 )
+ (sn
^2 ))) by
A1,
JGRAPH_3: 1;
assume
A3: (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphE )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (sn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A4: (1
- (sn
^2 ))
>
0 by
XREAL_1: 50;
then
A5: (p0
`1 )
>
0 by
A1,
SQUARE_1: 25;
then p0
in K0 by
A3,
JGRAPH_2: 3;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
(cn
^2 )
= (1
- (sn
^2 )) by
A4,
SQUARE_1:def 2;
then
A6: ((p0
`2 )
/
|.p0.|)
= sn by
A2,
EUCLID: 52,
SQUARE_1: 18;
then
A7: p0
in { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } by
A5,
JGRAPH_2: 3;
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider K001 = { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of (
TOP-REAL 2) by
A7;
A8: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`2 )
>= (sn
*
|.$1.|) & ($1
`1 )
>=
0 ;
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider K003 = { p : (p
`2 )
>= (sn
*
|.p.|) & (p
`1 )
>=
0 } as
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`2 )
/
|.$1.|)
<= sn & ($1
`1 )
>=
0 & $1
<> (
0. (
TOP-REAL 2));
A9: { p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
A10: (
- (
- cn))
>
0 by
A4,
SQUARE_1: 25;
then p0
in { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } by
A1,
A6,
JGRAPH_2: 3;
then
reconsider K111 = { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of (
TOP-REAL 2) by
A9;
A11: (
[#] ((
TOP-REAL 2)
| K1))
= K1 by
PRE_TOPC:def 5;
A12: (
rng ((sn
-FanMorphE )
| K001))
c= K1
proof
let y be
object;
assume y
in (
rng ((sn
-FanMorphE )
| K001));
then
consider x be
object such that
A13: x
in (
dom ((sn
-FanMorphE )
| K001)) and
A14: y
= (((sn
-FanMorphE )
| K001)
. x) by
FUNCT_1:def 3;
x
in (
dom (sn
-FanMorphE )) by
A13,
RELAT_1: 57;
then
reconsider q = x as
Point of (
TOP-REAL 2);
A15: y
= ((sn
-FanMorphE )
. q) by
A13,
A14,
FUNCT_1: 47;
(
dom ((sn
-FanMorphE )
| K001))
= ((
dom (sn
-FanMorphE ))
/\ K001) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K001) by
FUNCT_2:def 1
.= K001 by
XBOOLE_1: 28;
then
A16: ex p2 be
Point of (
TOP-REAL 2) st p2
= q & ((p2
`2 )
/
|.p2.|)
>= sn & (p2
`1 )
>=
0 & p2
<> (
0. (
TOP-REAL 2)) by
A13;
then
A17: (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
XREAL_1: 48;
|.q.|
<>
0 by
A16,
TOPRNS_1: 24;
then
A18: (
|.q.|
^2 )
> (
0
^2 ) by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]|;
A19: (q4
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
A20: (1
- sn)
>
0 by
A3,
XREAL_1: 149;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then ((q
`2 )
^2 )
<= (
|.q.|
^2 ) by
JGRAPH_3: 1;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A18,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- sn)
>= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
<= (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A20,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A20,
XCMPLX_1: 197;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A20,
A17,
SQUARE_1: 49;
then
A21: (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A22: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )))
>=
0 by
A21,
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
^2 )
/ ((1
- sn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
^2 )
/ ((1
- sn)
^2 ))))
>=
0 ;
then
A23: (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
>=
0 by
XCMPLX_1: 76;
A24: (q4
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))) by
EUCLID: 52;
then
A25: ((q4
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))) by
A22,
SQUARE_1:def 2;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A19,
A25;
then
A26: q4
<> (
0. (
TOP-REAL 2)) by
A18,
TOPRNS_1: 23;
((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
A3,
A16,
Th84;
hence thesis by
A3,
A15,
A24,
A23,
A26;
end;
A27: { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) }
c= K1
proof
let x be
object;
assume x
in { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then ex p st p
= x & ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2));
hence thesis by
A3;
end;
p0
<> (
0. (
TOP-REAL 2)) by
A1,
A4,
JGRAPH_2: 3,
SQUARE_1: 25;
then not p0
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
then
reconsider D = B0 as non
empty
Subset of (
TOP-REAL 2) by
A3,
XBOOLE_0:def 5;
K1
c= D
proof
let x be
object;
assume
A28: x
in K1;
then ex p6 be
Point of (
TOP-REAL 2) st p6
= x & (p6
`1 )
>=
0 & p6
<> (
0. (
TOP-REAL 2)) by
A3;
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A3,
A28,
XBOOLE_0:def 5;
end;
then D
= (K1
\/ D) by
XBOOLE_1: 12;
then
A29: ((
TOP-REAL 2)
| K1) is
SubSpace of ((
TOP-REAL 2)
| D) by
TOPMETR: 4;
A30: { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) }
c= K1
proof
let x be
object;
assume x
in { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then ex p st p
= x & ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2));
hence thesis by
A3;
end;
then
reconsider K00 = { p : ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| K1) by
A7,
PRE_TOPC: 8;
A31: K003 is
closed by
Th91;
A32: (
rng ((sn
-FanMorphE )
| K111))
c= K1
proof
let y be
object;
assume y
in (
rng ((sn
-FanMorphE )
| K111));
then
consider x be
object such that
A33: x
in (
dom ((sn
-FanMorphE )
| K111)) and
A34: y
= (((sn
-FanMorphE )
| K111)
. x) by
FUNCT_1:def 3;
x
in (
dom (sn
-FanMorphE )) by
A33,
RELAT_1: 57;
then
reconsider q = x as
Point of (
TOP-REAL 2);
A35: y
= ((sn
-FanMorphE )
. q) by
A33,
A34,
FUNCT_1: 47;
(
dom ((sn
-FanMorphE )
| K111))
= ((
dom (sn
-FanMorphE ))
/\ K111) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K111) by
FUNCT_2:def 1
.= K111 by
XBOOLE_1: 28;
then
A36: ex p2 be
Point of (
TOP-REAL 2) st p2
= q & ((p2
`2 )
/
|.p2.|)
<= sn & (p2
`1 )
>=
0 & p2
<> (
0. (
TOP-REAL 2)) by
A33;
then
A37: (((q
`2 )
/
|.q.|)
- sn)
<=
0 by
XREAL_1: 47;
|.q.|
<>
0 by
A36,
TOPRNS_1: 24;
then
A38: (
|.q.|
^2 )
> (
0
^2 ) by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]|;
A39: (q4
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
A40: (1
+ sn)
>
0 by
A3,
XREAL_1: 148;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A38,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then ((
- 1)
- sn)
<= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then ((
- (1
+ sn))
/ (1
+ sn))
<= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)) by
A40,
XREAL_1: 72;
then (
- 1)
<= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)) by
A40,
XCMPLX_1: 197;
then
A41: (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A40,
A37,
SQUARE_1: 49;
then
A42: (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
(1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))
^2 ))
>=
0 by
A41,
XREAL_1: 48;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 ))
>=
0 by
XCMPLX_1: 187;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
^2 )
/ ((1
+ sn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
^2 )
/ ((1
+ sn)
^2 ))))
>=
0 ;
then
A43: (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
>=
0 by
XCMPLX_1: 76;
A44: (q4
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))) by
EUCLID: 52;
then
A45: ((q4
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))) by
A42,
SQUARE_1:def 2;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A39,
A45;
then
A46: q4
<> (
0. (
TOP-REAL 2)) by
A38,
TOPRNS_1: 23;
((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]| by
A3,
A36,
Th84;
hence thesis by
A3,
A35,
A44,
A43,
A46;
end;
the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
then
A47: (
rng (f
| K00))
c= D;
the
carrier of ((
TOP-REAL 2)
| B0)
= the
carrier of ((
TOP-REAL 2)
| D);
then
A48: (
dom f)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1
.= K1 by
PRE_TOPC: 8;
then (
dom (f
| K00))
= K00 by
A30,
RELAT_1: 62
.= the
carrier of (((
TOP-REAL 2)
| K1)
| K00) by
PRE_TOPC: 8;
then
reconsider f1 = (f
| K00) as
Function of (((
TOP-REAL 2)
| K1)
| K00), ((
TOP-REAL 2)
| D) by
A47,
FUNCT_2: 2;
A49: the
carrier of ((
TOP-REAL 2)
| K1)
= K0 by
PRE_TOPC: 8;
p0
in { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } by
A1,
A10,
A6,
JGRAPH_2: 3;
then
reconsider K11 = { p : ((p
`2 )
/
|.p.|)
<= sn & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| K1) by
A27,
PRE_TOPC: 8;
A50: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
A51: (
dom (sn
-FanMorphE ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then (
dom ((sn
-FanMorphE )
| K001))
= K001 by
RELAT_1: 62
.= the
carrier of ((
TOP-REAL 2)
| K001) by
PRE_TOPC: 8;
then
reconsider f3 = ((sn
-FanMorphE )
| K001) as
Function of ((
TOP-REAL 2)
| K001), ((
TOP-REAL 2)
| K1) by
A8,
A12,
FUNCT_2: 2;
A52: D
<>
{} ;
(
dom ((sn
-FanMorphE )
| K111))
= K111 by
A51,
RELAT_1: 62
.= the
carrier of ((
TOP-REAL 2)
| K111) by
PRE_TOPC: 8;
then
reconsider f4 = ((sn
-FanMorphE )
| K111) as
Function of ((
TOP-REAL 2)
| K111), ((
TOP-REAL 2)
| K1) by
A50,
A32,
FUNCT_2: 2;
the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
then
A53: (
rng (f
| K11))
c= D;
(
dom (f
| K11))
= K11 by
A27,
A48,
RELAT_1: 62
.= the
carrier of (((
TOP-REAL 2)
| K1)
| K11) by
PRE_TOPC: 8;
then
reconsider f2 = (f
| K11) as
Function of (((
TOP-REAL 2)
| K1)
| K11), ((
TOP-REAL 2)
| D) by
A53,
FUNCT_2: 2;
the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then (((
TOP-REAL 2)
| K1)
| K11)
= ((
TOP-REAL 2)
| K111) & f2
= f4 by
A3,
FUNCT_1: 51,
GOBOARD9: 2;
then
A54: f2 is
continuous by
A3,
A29,
Th90,
PRE_TOPC: 26;
the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then (((
TOP-REAL 2)
| K1)
| K00)
= ((
TOP-REAL 2)
| K001) & f1
= f3 by
A3,
FUNCT_1: 51,
GOBOARD9: 2;
then
A55: f1 is
continuous by
A3,
A29,
Th89,
PRE_TOPC: 26;
A56: (
dom f2)
= the
carrier of (((
TOP-REAL 2)
| K1)
| K11) by
FUNCT_2:def 1
.= K11 by
PRE_TOPC: 8;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`2 )
<= (sn
*
|.$1.|) & ($1
`1 )
>=
0 ;
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider K004 = { p : (p
`2 )
<= (sn
*
|.p.|) & (p
`1 )
>=
0 } as
Subset of (
TOP-REAL 2);
A57: (K004
/\ K1)
c= K11
proof
let x be
object;
assume
A58: x
in (K004
/\ K1);
then x
in K004 by
XBOOLE_0:def 4;
then
consider q1 be
Point of (
TOP-REAL 2) such that
A59: q1
= x and
A60: (q1
`2 )
<= (sn
*
|.q1.|) and (q1
`1 )
>=
0 ;
x
in K1 by
A58,
XBOOLE_0:def 4;
then
A61: ex q2 be
Point of (
TOP-REAL 2) st q2
= x & (q2
`1 )
>=
0 & q2
<> (
0. (
TOP-REAL 2)) by
A3;
((q1
`2 )
/
|.q1.|)
<= ((sn
*
|.q1.|)
/
|.q1.|) by
A60,
XREAL_1: 72;
then ((q1
`2 )
/
|.q1.|)
<= sn by
A59,
A61,
TOPRNS_1: 24,
XCMPLX_1: 89;
hence thesis by
A59,
A61;
end;
A62: K004 is
closed by
Th92;
K11
c= (K004
/\ K1)
proof
let x be
object;
assume x
in K11;
then
consider p such that
A63: p
= x and
A64: ((p
`2 )
/
|.p.|)
<= sn and
A65: (p
`1 )
>=
0 and
A66: p
<> (
0. (
TOP-REAL 2));
(((p
`2 )
/
|.p.|)
*
|.p.|)
<= (sn
*
|.p.|) by
A64,
XREAL_1: 64;
then (p
`2 )
<= (sn
*
|.p.|) by
A66,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A67: x
in K004 by
A63,
A65;
x
in K1 by
A3,
A63,
A65,
A66;
hence thesis by
A67,
XBOOLE_0:def 4;
end;
then K11
= (K004
/\ (
[#] ((
TOP-REAL 2)
| K1))) by
A11,
A57,
XBOOLE_0:def 10;
then
A68: K11 is
closed by
A62,
PRE_TOPC: 13;
A69: (K003
/\ K1)
c= K00
proof
let x be
object;
assume
A70: x
in (K003
/\ K1);
then x
in K003 by
XBOOLE_0:def 4;
then
consider q1 be
Point of (
TOP-REAL 2) such that
A71: q1
= x and
A72: (q1
`2 )
>= (sn
*
|.q1.|) and (q1
`1 )
>=
0 ;
x
in K1 by
A70,
XBOOLE_0:def 4;
then
A73: ex q2 be
Point of (
TOP-REAL 2) st q2
= x & (q2
`1 )
>=
0 & q2
<> (
0. (
TOP-REAL 2)) by
A3;
((q1
`2 )
/
|.q1.|)
>= ((sn
*
|.q1.|)
/
|.q1.|) by
A72,
XREAL_1: 72;
then ((q1
`2 )
/
|.q1.|)
>= sn by
A71,
A73,
TOPRNS_1: 24,
XCMPLX_1: 89;
hence thesis by
A71,
A73;
end;
K00
c= (K003
/\ K1)
proof
let x be
object;
assume x
in K00;
then
consider p such that
A74: p
= x and
A75: ((p
`2 )
/
|.p.|)
>= sn and
A76: (p
`1 )
>=
0 and
A77: p
<> (
0. (
TOP-REAL 2));
(((p
`2 )
/
|.p.|)
*
|.p.|)
>= (sn
*
|.p.|) by
A75,
XREAL_1: 64;
then (p
`2 )
>= (sn
*
|.p.|) by
A77,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A78: x
in K003 by
A74,
A76;
x
in K1 by
A3,
A74,
A76,
A77;
hence thesis by
A78,
XBOOLE_0:def 4;
end;
then K00
= (K003
/\ (
[#] ((
TOP-REAL 2)
| K1))) by
A11,
A69,
XBOOLE_0:def 10;
then
A79: K00 is
closed by
A31,
PRE_TOPC: 13;
set T1 = (((
TOP-REAL 2)
| K1)
| K00), T2 = (((
TOP-REAL 2)
| K1)
| K11);
A80: (
[#] (((
TOP-REAL 2)
| K1)
| K11))
= K11 by
PRE_TOPC:def 5;
A81: (
[#] (((
TOP-REAL 2)
| K1)
| K00))
= K00 by
PRE_TOPC:def 5;
A82: for p be
object st p
in ((
[#] T1)
/\ (
[#] T2)) holds (f1
. p)
= (f2
. p)
proof
let p be
object;
assume
A83: p
in ((
[#] T1)
/\ (
[#] T2));
then p
in K00 by
A81,
XBOOLE_0:def 4;
hence (f1
. p)
= (f
. p) by
FUNCT_1: 49
.= (f2
. p) by
A80,
A83,
FUNCT_1: 49;
end;
A84: K1
c= (K00
\/ K11)
proof
let x be
object;
assume x
in K1;
then
consider p such that
A85: p
= x & (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) by
A3;
per cases ;
suppose ((p
`2 )
/
|.p.|)
>= sn;
then x
in K00 by
A85;
hence thesis by
XBOOLE_0:def 3;
end;
suppose ((p
`2 )
/
|.p.|)
< sn;
then x
in K11 by
A85;
hence thesis by
XBOOLE_0:def 3;
end;
end;
then ((
[#] (((
TOP-REAL 2)
| K1)
| K00))
\/ (
[#] (((
TOP-REAL 2)
| K1)
| K11)))
= (
[#] ((
TOP-REAL 2)
| K1)) by
A81,
A80,
A11,
XBOOLE_0:def 10;
then
consider h be
Function of ((
TOP-REAL 2)
| K1), ((
TOP-REAL 2)
| D) such that
A86: h
= (f1
+* f2) and
A87: h is
continuous by
A81,
A80,
A79,
A68,
A55,
A54,
A82,
JGRAPH_2: 1;
A88: (
dom h)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
A89: (
dom f1)
= the
carrier of (((
TOP-REAL 2)
| K1)
| K00) by
FUNCT_2:def 1
.= K00 by
PRE_TOPC: 8;
A90: for y be
object st y
in (
dom h) holds (h
. y)
= (f
. y)
proof
let y be
object;
assume
A91: y
in (
dom h);
now
per cases by
A84,
A88,
A49,
A91,
XBOOLE_0:def 3;
suppose
A92: y
in K00 & not y
in K11;
then y
in ((
dom f1)
\/ (
dom f2)) by
A89,
XBOOLE_0:def 3;
hence (h
. y)
= (f1
. y) by
A56,
A86,
A92,
FUNCT_4:def 1
.= (f
. y) by
A92,
FUNCT_1: 49;
end;
suppose
A93: y
in K11;
then y
in ((
dom f1)
\/ (
dom f2)) by
A56,
XBOOLE_0:def 3;
hence (h
. y)
= (f2
. y) by
A56,
A86,
A93,
FUNCT_4:def 1
.= (f
. y) by
A93,
FUNCT_1: 49;
end;
end;
hence thesis;
end;
K0
= the
carrier of ((
TOP-REAL 2)
| K0) by
PRE_TOPC: 8
.= (
dom f) by
A52,
FUNCT_2:def 1;
hence thesis by
A87,
A88,
A90,
FUNCT_1: 2,
PRE_TOPC: 8;
end;
theorem ::
JGRAPH_4:94
Th94: for sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphE )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let sn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set cn = (
sqrt (1
- (sn
^2 )));
set p0 =
|[(
- cn), (
- sn)]|;
assume
A1: (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphE )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (sn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then (1
- (sn
^2 ))
>
0 by
XREAL_1: 50;
then (
- (
- cn))
>
0 by
SQUARE_1: 25;
then
A2: (p0
`1 )
= (
- cn) & (
- cn)
<
0 by
EUCLID: 52;
then p0
in K0 by
A1,
JGRAPH_2: 3;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
not p0
in
{(
0. (
TOP-REAL 2))} by
A2,
JGRAPH_2: 3,
TARSKI:def 1;
then
reconsider D = B0 as non
empty
Subset of (
TOP-REAL 2) by
A1,
XBOOLE_0:def 5;
A3: K1
c= D
proof
let x be
object;
assume x
in K1;
then
consider p2 be
Point of (
TOP-REAL 2) such that
A4: p2
= x and (p2
`1 )
<=
0 and
A5: p2
<> (
0. (
TOP-REAL 2)) by
A1;
not p2
in
{(
0. (
TOP-REAL 2))} by
A5,
TARSKI:def 1;
hence thesis by
A1,
A4,
XBOOLE_0:def 5;
end;
for p be
Point of ((
TOP-REAL 2)
| K1), V be
Subset of ((
TOP-REAL 2)
| D) st (f
. p)
in V & V is
open holds ex W be
Subset of ((
TOP-REAL 2)
| K1) st p
in W & W is
open & (f
.: W)
c= V
proof
let p be
Point of ((
TOP-REAL 2)
| K1), V be
Subset of ((
TOP-REAL 2)
| D);
assume that
A6: (f
. p)
in V and
A7: V is
open;
consider V2 be
Subset of (
TOP-REAL 2) such that
A8: V2 is
open and
A9: (V2
/\ (
[#] ((
TOP-REAL 2)
| D)))
= V by
A7,
TOPS_2: 24;
reconsider W2 = (V2
/\ (
[#] ((
TOP-REAL 2)
| K1))) as
Subset of ((
TOP-REAL 2)
| K1);
A10: (
[#] ((
TOP-REAL 2)
| K1))
= K1 by
PRE_TOPC:def 5;
then
A11: (f
. p)
= ((sn
-FanMorphE )
. p) by
A1,
FUNCT_1: 49;
A12: (f
.: W2)
c= V
proof
let y be
object;
assume y
in (f
.: W2);
then
consider x be
object such that
A13: x
in (
dom f) and
A14: x
in W2 and
A15: y
= (f
. x) by
FUNCT_1:def 6;
f is
Function of ((
TOP-REAL 2)
| K1), ((
TOP-REAL 2)
| D);
then (
dom f)
= K1 by
A10,
FUNCT_2:def 1;
then
consider p4 be
Point of (
TOP-REAL 2) such that
A16: x
= p4 and
A17: (p4
`1 )
<=
0 and p4
<> (
0. (
TOP-REAL 2)) by
A1,
A13;
A18: p4
in V2 by
A14,
A16,
XBOOLE_0:def 4;
p4
in (
[#] ((
TOP-REAL 2)
| K1)) by
A13,
A16;
then p4
in D by
A3,
A10;
then
A19: p4
in (
[#] ((
TOP-REAL 2)
| D)) by
PRE_TOPC:def 5;
(f
. p4)
= ((sn
-FanMorphE )
. p4) by
A1,
A10,
A13,
A16,
FUNCT_1: 49
.= p4 by
A17,
Th82;
hence thesis by
A9,
A15,
A16,
A18,
A19,
XBOOLE_0:def 4;
end;
p
in the
carrier of ((
TOP-REAL 2)
| K1);
then
consider q be
Point of (
TOP-REAL 2) such that
A20: q
= p and
A21: (q
`1 )
<=
0 and q
<> (
0. (
TOP-REAL 2)) by
A1,
A10;
((sn
-FanMorphE )
. q)
= q by
A21,
Th82;
then p
in V2 by
A6,
A9,
A11,
A20,
XBOOLE_0:def 4;
then
A22: p
in W2 by
XBOOLE_0:def 4;
W2 is
open by
A8,
TOPS_2: 24;
hence thesis by
A22,
A12;
end;
hence thesis by
JGRAPH_2: 10;
end;
theorem ::
JGRAPH_4:95
Th95: for sn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphE )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let sn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0);
the
carrier of ((
TOP-REAL 2)
| B0)
= B0 by
PRE_TOPC: 8;
then
reconsider K1 = K0 as
Subset of (
TOP-REAL 2) by
XBOOLE_1: 1;
assume
A1: (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphE )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
K0
c= B0
proof
let x be
object;
assume x
in K0;
then
A2: ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & (p8
`1 )
>=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A1;
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A1,
A2,
XBOOLE_0:def 5;
end;
then (((
TOP-REAL 2)
| B0)
| K0)
= ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 7;
hence thesis by
A1,
Th93;
end;
theorem ::
JGRAPH_4:96
Th96: for sn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphE )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let sn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0);
the
carrier of ((
TOP-REAL 2)
| B0)
= B0 by
PRE_TOPC: 8;
then
reconsider K1 = K0 as
Subset of (
TOP-REAL 2) by
XBOOLE_1: 1;
assume
A1: (
- 1)
< sn & sn
< 1 & f
= ((sn
-FanMorphE )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
K0
c= B0
proof
let x be
object;
assume x
in K0;
then
A2: ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & (p8
`1 )
<=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A1;
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A1,
A2,
XBOOLE_0:def 5;
end;
then (((
TOP-REAL 2)
| B0)
| K0)
= ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 7;
hence thesis by
A1,
Th94;
end;
theorem ::
JGRAPH_4:97
Th97: for sn be
Real, p be
Point of (
TOP-REAL 2) holds
|.((sn
-FanMorphE )
. p).|
=
|.p.|
proof
let sn be
Real, p be
Point of (
TOP-REAL 2);
set f = (sn
-FanMorphE );
set z = (f
. p);
reconsider q = p as
Point of (
TOP-REAL 2);
reconsider qz = z as
Point of (
TOP-REAL 2);
per cases ;
suppose
A1: ((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
>
0 ;
then
A2: ((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
Th82;
then
A3: (qz
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))) by
EUCLID: 52;
A4: (qz
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))) by
A2,
EUCLID: 52;
A5: (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A1,
XREAL_1: 48;
A6: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
|.q.|
<>
0 by
A1,
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A7: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A6,
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A7,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then
A8: (1
- sn)
>= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
per cases ;
suppose
A9: (1
- sn)
=
0 ;
A10: ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
= ((((q
`2 )
/
|.q.|)
- sn)
* ((1
- sn)
" )) by
XCMPLX_0:def 9
.= ((((q
`2 )
/
|.q.|)
- sn)
*
0 ) by
A9
.=
0 ;
then (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))
= 1;
then ((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* 1), (
|.q.|
*
0 )]| by
A1,
A10,
Th82,
SQUARE_1: 18
.=
|[
|.q.|,
0 ]|;
then (((sn
-FanMorphE )
. q)
`1 )
=
|.q.| & (((sn
-FanMorphE )
. q)
`2 )
=
0 by
EUCLID: 52;
then
|.((sn
-FanMorphE )
. p).|
= (
sqrt ((
|.q.|
^2 )
+ (
0
^2 ))) by
JGRAPH_3: 1
.=
|.q.| by
SQUARE_1: 22;
hence thesis;
end;
suppose
A11: (1
- sn)
<>
0 ;
per cases by
A11;
suppose
A12: (1
- sn)
>
0 ;
(
- (1
- sn))
<= (
- (((q
`2 )
/
|.q.|)
- sn)) by
A8,
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A12,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A12,
XCMPLX_1: 197;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A5,
A12,
SQUARE_1: 49;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A13: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A14: ((qz
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
^2 )) by
A3
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))) by
A13,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A4,
A14;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
hence thesis by
SQUARE_1: 22;
end;
suppose
A15: (1
- sn)
<
0 ;
(
0
+ ((q
`2 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A1,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A7,
A6,
XREAL_1: 74;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A7,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then
A16: 1
> ((q
`2 )
/
|.p.|) by
SQUARE_1: 52;
(((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A1,
XREAL_1: 48;
hence thesis by
A15,
A16,
XREAL_1: 9;
end;
end;
end;
suppose
A17: ((q
`2 )
/
|.q.|)
< sn & (q
`1 )
>
0 ;
then
|.q.|
<>
0 by
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A18: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A19: (((q
`2 )
/
|.q.|)
- sn)
<
0 by
A17,
XREAL_1: 49;
A20: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A20,
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A18,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then
A21: ((
- 1)
- sn)
<= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
A22: ((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]| by
A17,
Th83;
then
A23: (qz
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))) by
EUCLID: 52;
A24: (qz
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
A22,
EUCLID: 52;
per cases ;
suppose
A25: (1
+ sn)
=
0 ;
((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
= ((((q
`2 )
/
|.q.|)
- sn)
* ((1
+ sn)
" )) by
XCMPLX_0:def 9
.= ((((q
`2 )
/
|.q.|)
- sn)
*
0 ) by
A25
.=
0 ;
then (((sn
-FanMorphE )
. q)
`1 )
=
|.q.| & (((sn
-FanMorphE )
. q)
`2 )
=
0 by
A22,
EUCLID: 52,
SQUARE_1: 18;
then
|.((sn
-FanMorphE )
. p).|
= (
sqrt ((
|.q.|
^2 )
+ (
0
^2 ))) by
JGRAPH_3: 1
.=
|.q.| by
SQUARE_1: 22;
hence thesis;
end;
suppose
A26: (1
+ sn)
<>
0 ;
per cases by
A26;
suppose
A27: (1
+ sn)
>
0 ;
then ((
- (1
+ sn))
/ (1
+ sn))
<= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)) by
A21,
XREAL_1: 72;
then (
- 1)
<= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)) by
A27,
XCMPLX_1: 197;
then (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A19,
A27,
SQUARE_1: 49;
then
A28: (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
A29: ((qz
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
^2 )) by
A23
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))) by
A28,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A24,
A29;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
hence thesis by
SQUARE_1: 22;
end;
suppose
A30: (1
+ sn)
<
0 ;
(
0
+ ((q
`2 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A17,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A18,
A20,
XREAL_1: 74;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A18,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then (
- 1)
< ((q
`2 )
/
|.p.|) by
SQUARE_1: 52;
then
A31: (((q
`2 )
/
|.q.|)
- sn)
> ((
- 1)
- sn) by
XREAL_1: 9;
(
- (1
+ sn))
> (
-
0 ) by
A30,
XREAL_1: 24;
hence thesis by
A17,
A31,
XREAL_1: 49;
end;
end;
end;
suppose (q
`1 )
<=
0 ;
hence thesis by
Th82;
end;
end;
theorem ::
JGRAPH_4:98
Th98: for sn be
Real, x,K0 be
set st (
- 1)
< sn & sn
< 1 & x
in K0 & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds ((sn
-FanMorphE )
. x)
in K0
proof
let sn be
Real, x,K0 be
set;
assume
A1: (
- 1)
< sn & sn
< 1 & x
in K0 & K0
= { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then
consider p such that
A2: p
= x and
A3: (p
`1 )
>=
0 and
A4: p
<> (
0. (
TOP-REAL 2));
A5:
now
assume
|.p.|
<=
0 ;
then
|.p.|
=
0 ;
hence contradiction by
A4,
TOPRNS_1: 24;
end;
then
A6: (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
per cases ;
suppose
A7: ((p
`2 )
/
|.p.|)
<= sn;
reconsider p9 = ((sn
-FanMorphE )
. p) as
Point of (
TOP-REAL 2);
((sn
-FanMorphE )
. p)
=
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]| by
A1,
A3,
A4,
A7,
Th84;
then
A8: (p9
`1 )
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))) by
EUCLID: 52;
A9: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
A10: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
per cases ;
suppose (p
`1 )
=
0 ;
hence thesis by
A1,
A2,
Th82;
end;
suppose (p
`1 )
<>
0 ;
then (
0
+ ((p
`2 )
^2 ))
< (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
SQUARE_1: 12,
XREAL_1: 8;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
< ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A6,
A9,
XREAL_1: 74;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
< 1 by
A6,
XCMPLX_1: 60;
then (((p
`2 )
/
|.p.|)
^2 )
< 1 by
XCMPLX_1: 76;
then (
- 1)
< ((p
`2 )
/
|.p.|) by
SQUARE_1: 52;
then ((
- 1)
- sn)
< (((p
`2 )
/
|.p.|)
- sn) by
XREAL_1: 9;
then (((
- 1)
* (1
+ sn))
/ (1
+ sn))
< ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)) by
A10,
XREAL_1: 74;
then
A11: (
- 1)
< ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)) by
A10,
XCMPLX_1: 89;
(((p
`2 )
/
|.p.|)
- sn)
<=
0 by
A7,
XREAL_1: 47;
then (1
^2 )
> (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ) by
A10,
A11,
SQUARE_1: 50;
then (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))
>
0 by
XREAL_1: 50;
then (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))
>
0 by
SQUARE_1: 25;
then (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))))
>
0 by
A5,
XREAL_1: 129;
hence thesis by
A1,
A2,
A8,
JGRAPH_2: 3;
end;
end;
suppose
A12: ((p
`2 )
/
|.p.|)
> sn;
reconsider p9 = ((sn
-FanMorphE )
. p) as
Point of (
TOP-REAL 2);
((sn
-FanMorphE )
. p)
=
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]| by
A1,
A3,
A4,
A12,
Th84;
then
A13: (p9
`1 )
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))) by
EUCLID: 52;
A14: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
A15: (1
- sn)
>
0 by
A1,
XREAL_1: 149;
per cases ;
suppose (p
`1 )
=
0 ;
hence thesis by
A1,
A2,
Th82;
end;
suppose (p
`1 )
<>
0 ;
then (
0
+ ((p
`2 )
^2 ))
< (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
SQUARE_1: 12,
XREAL_1: 8;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
< ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A6,
A14,
XREAL_1: 74;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
< 1 by
A6,
XCMPLX_1: 60;
then (((p
`2 )
/
|.p.|)
^2 )
< 1 by
XCMPLX_1: 76;
then ((p
`2 )
/
|.p.|)
< 1 by
SQUARE_1: 52;
then (((p
`2 )
/
|.p.|)
- sn)
< (1
- sn) by
XREAL_1: 9;
then ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
< ((1
- sn)
/ (1
- sn)) by
A15,
XREAL_1: 74;
then
A16: ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
< 1 by
A15,
XCMPLX_1: 60;
(
- (1
- sn))
< (
-
0 ) & (((p
`2 )
/
|.p.|)
- sn)
>= (sn
- sn) by
A12,
A15,
XREAL_1: 9,
XREAL_1: 24;
then (((
- 1)
* (1
- sn))
/ (1
- sn))
< ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)) by
A15,
XREAL_1: 74;
then (
- 1)
< ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)) by
A15,
XCMPLX_1: 89;
then (1
^2 )
> (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ) by
A16,
SQUARE_1: 50;
then (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))
>
0 by
XREAL_1: 50;
then (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))
>
0 by
SQUARE_1: 25;
then (p9
`1 )
>
0 by
A5,
A13,
XREAL_1: 129;
hence thesis by
A1,
A2,
JGRAPH_2: 3;
end;
end;
end;
theorem ::
JGRAPH_4:99
Th99: for sn be
Real, x,K0 be
set st (
- 1)
< sn & sn
< 1 & x
in K0 & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds ((sn
-FanMorphE )
. x)
in K0
proof
let sn be
Real, x,K0 be
set;
assume
A1: (
- 1)
< sn & sn
< 1 & x
in K0 & K0
= { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then ex p st p
= x & (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2));
hence thesis by
A1,
Th82;
end;
theorem ::
JGRAPH_4:100
Th100: for sn be
Real, D be non
empty
Subset of (
TOP-REAL 2) st (
- 1)
< sn & sn
< 1 & (D
` )
=
{(
0. (
TOP-REAL 2))} holds ex h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) st h
= ((sn
-FanMorphE )
| D) & h is
continuous
proof
(
|[
0 , 1]|
`1 )
=
0 & (
|[
0 , 1]|
`2 )
= 1 by
EUCLID: 52;
then
A1:
|[
0 , 1]|
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } by
JGRAPH_2: 3;
set Y1 =
|[
0 , 1]|;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`1 )
>=
0 ;
reconsider B0 =
{(
0. (
TOP-REAL 2))} as
Subset of (
TOP-REAL 2);
let sn be
Real, D be non
empty
Subset of (
TOP-REAL 2);
assume that
A2: (
- 1)
< sn & sn
< 1 and
A3: (D
` )
=
{(
0. (
TOP-REAL 2))};
A4: the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
A5: D
= (B0
` ) by
A3
.= (
NonZero (
TOP-REAL 2)) by
SUBSET_1:def 4;
{ p :
P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D) from
InclSub(
A5);
then
reconsider K0 = { p : (p
`1 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| D) by
A1;
A6: K0
= the
carrier of (((
TOP-REAL 2)
| D)
| K0) by
PRE_TOPC: 8;
A7: the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
A8: (
rng ((sn
-FanMorphE )
| K0))
c= the
carrier of (((
TOP-REAL 2)
| D)
| K0)
proof
let y be
object;
assume y
in (
rng ((sn
-FanMorphE )
| K0));
then
consider x be
object such that
A9: x
in (
dom ((sn
-FanMorphE )
| K0)) and
A10: y
= (((sn
-FanMorphE )
| K0)
. x) by
FUNCT_1:def 3;
x
in ((
dom (sn
-FanMorphE ))
/\ K0) by
A9,
RELAT_1: 61;
then
A11: x
in K0 by
XBOOLE_0:def 4;
K0
c= the
carrier of (
TOP-REAL 2) by
A7,
XBOOLE_1: 1;
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A11;
((sn
-FanMorphE )
. p)
= y by
A10,
A11,
FUNCT_1: 49;
then y
in K0 by
A2,
A11,
Th98;
hence thesis by
PRE_TOPC: 8;
end;
A12: K0
c= the
carrier of (
TOP-REAL 2)
proof
let z be
object;
assume z
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st p8
= z & (p8
`1 )
>=
0 & p8
<> (
0. (
TOP-REAL 2));
hence thesis;
end;
(Y1
`1 )
=
0 & (Y1
`2 )
= 1 by
EUCLID: 52;
then
A13: Y1
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } by
JGRAPH_2: 3;
A14: the
carrier of ((
TOP-REAL 2)
| D)
= (
NonZero (
TOP-REAL 2)) by
A5,
PRE_TOPC: 8;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`1 )
<=
0 ;
{ p :
P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D) from
InclSub(
A5);
then
reconsider K1 = { p : (p
`1 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| D) by
A13;
A15: K0 is
closed & K1 is
closed by
A5,
Th29,
Th31;
(
dom ((sn
-FanMorphE )
| K0))
= ((
dom (sn
-FanMorphE ))
/\ K0) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K0) by
FUNCT_2:def 1
.= K0 by
A12,
XBOOLE_1: 28;
then
reconsider f = ((sn
-FanMorphE )
| K0) as
Function of (((
TOP-REAL 2)
| D)
| K0), ((
TOP-REAL 2)
| D) by
A6,
A8,
FUNCT_2: 2,
XBOOLE_1: 1;
A16: K1
= the
carrier of (((
TOP-REAL 2)
| D)
| K1) by
PRE_TOPC: 8;
A17: (
rng ((sn
-FanMorphE )
| K1))
c= the
carrier of (((
TOP-REAL 2)
| D)
| K1)
proof
let y be
object;
assume y
in (
rng ((sn
-FanMorphE )
| K1));
then
consider x be
object such that
A18: x
in (
dom ((sn
-FanMorphE )
| K1)) and
A19: y
= (((sn
-FanMorphE )
| K1)
. x) by
FUNCT_1:def 3;
x
in ((
dom (sn
-FanMorphE ))
/\ K1) by
A18,
RELAT_1: 61;
then
A20: x
in K1 by
XBOOLE_0:def 4;
K1
c= the
carrier of (
TOP-REAL 2) by
A7,
XBOOLE_1: 1;
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A20;
((sn
-FanMorphE )
. p)
= y by
A19,
A20,
FUNCT_1: 49;
then y
in K1 by
A2,
A20,
Th99;
hence thesis by
PRE_TOPC: 8;
end;
A21: K1
c= the
carrier of (
TOP-REAL 2)
proof
let z be
object;
assume z
in K1;
then ex p8 be
Point of (
TOP-REAL 2) st p8
= z & (p8
`1 )
<=
0 & p8
<> (
0. (
TOP-REAL 2));
hence thesis;
end;
(
dom ((sn
-FanMorphE )
| K1))
= ((
dom (sn
-FanMorphE ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
A21,
XBOOLE_1: 28;
then
reconsider g = ((sn
-FanMorphE )
| K1) as
Function of (((
TOP-REAL 2)
| D)
| K1), ((
TOP-REAL 2)
| D) by
A16,
A17,
FUNCT_2: 2,
XBOOLE_1: 1;
A22: K1
= (
[#] (((
TOP-REAL 2)
| D)
| K1)) by
PRE_TOPC:def 5;
A23: D
c= (K0
\/ K1)
proof
let x be
object;
assume
A24: x
in D;
then
reconsider px = x as
Point of (
TOP-REAL 2);
not x
in
{(
0. (
TOP-REAL 2))} by
A5,
A24,
XBOOLE_0:def 5;
then (px
`1 )
>=
0 & px
<> (
0. (
TOP-REAL 2)) or (px
`1 )
<=
0 & px
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
then x
in K0 or x
in K1;
hence thesis by
XBOOLE_0:def 3;
end;
A25: (
dom f)
= K0 by
A6,
FUNCT_2:def 1;
A26: K0
= (
[#] (((
TOP-REAL 2)
| D)
| K0)) by
PRE_TOPC:def 5;
A27: for x be
object st x
in ((
[#] (((
TOP-REAL 2)
| D)
| K0))
/\ (
[#] (((
TOP-REAL 2)
| D)
| K1))) holds (f
. x)
= (g
. x)
proof
let x be
object;
assume
A28: x
in ((
[#] (((
TOP-REAL 2)
| D)
| K0))
/\ (
[#] (((
TOP-REAL 2)
| D)
| K1)));
then x
in K0 by
A26,
XBOOLE_0:def 4;
then (f
. x)
= ((sn
-FanMorphE )
. x) by
FUNCT_1: 49;
hence thesis by
A22,
A28,
FUNCT_1: 49;
end;
D
= (
[#] ((
TOP-REAL 2)
| D)) by
PRE_TOPC:def 5;
then
A29: ((
[#] (((
TOP-REAL 2)
| D)
| K0))
\/ (
[#] (((
TOP-REAL 2)
| D)
| K1)))
= (
[#] ((
TOP-REAL 2)
| D)) by
A26,
A22,
A23,
XBOOLE_0:def 10;
A30: f is
continuous & g is
continuous by
A2,
A5,
Th95,
Th96;
then
consider h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) such that
A31: h
= (f
+* g) and h is
continuous by
A26,
A22,
A29,
A15,
A27,
JGRAPH_2: 1;
A32: (
dom h)
= the
carrier of ((
TOP-REAL 2)
| D) by
FUNCT_2:def 1;
A33: (
dom g)
= K1 by
A16,
FUNCT_2:def 1;
K0
= (
[#] (((
TOP-REAL 2)
| D)
| K0)) & K1
= (
[#] (((
TOP-REAL 2)
| D)
| K1)) by
PRE_TOPC:def 5;
then
A34: f
tolerates g by
A27,
A25,
A33,
PARTFUN1:def 4;
A35: for x be
object st x
in (
dom h) holds (h
. x)
= (((sn
-FanMorphE )
| D)
. x)
proof
let x be
object;
assume
A36: x
in (
dom h);
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A14,
XBOOLE_0:def 5;
not x
in
{(
0. (
TOP-REAL 2))} by
A14,
A36,
XBOOLE_0:def 5;
then
A37: x
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
A38: x
in ((D
` )
` ) by
A32,
A36,
PRE_TOPC: 8;
now
per cases ;
case
A39: x
in K0;
A40: (((sn
-FanMorphE )
| D)
. p)
= ((sn
-FanMorphE )
. p) by
A38,
FUNCT_1: 49
.= (f
. p) by
A39,
FUNCT_1: 49;
(h
. p)
= ((g
+* f)
. p) by
A31,
A34,
FUNCT_4: 34
.= (f
. p) by
A25,
A39,
FUNCT_4: 13;
hence thesis by
A40;
end;
case not x
in K0;
then not (p
`1 )
>=
0 by
A37;
then
A41: x
in K1 by
A37;
(((sn
-FanMorphE )
| D)
. p)
= ((sn
-FanMorphE )
. p) by
A38,
FUNCT_1: 49
.= (g
. p) by
A41,
FUNCT_1: 49;
hence thesis by
A31,
A33,
A41,
FUNCT_4: 13;
end;
end;
hence thesis;
end;
(
dom (sn
-FanMorphE ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then (
dom ((sn
-FanMorphE )
| D))
= (the
carrier of (
TOP-REAL 2)
/\ D) by
RELAT_1: 61
.= the
carrier of ((
TOP-REAL 2)
| D) by
A4,
XBOOLE_1: 28;
then (f
+* g)
= ((sn
-FanMorphE )
| D) by
A31,
A32,
A35,
FUNCT_1: 2;
hence thesis by
A26,
A22,
A29,
A30,
A15,
A27,
JGRAPH_2: 1;
end;
theorem ::
JGRAPH_4:101
Th101: for sn be
Real st (
- 1)
< sn & sn
< 1 holds ex h be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st h
= (sn
-FanMorphE ) & h is
continuous
proof
reconsider D = (
NonZero (
TOP-REAL 2)) as non
empty
Subset of (
TOP-REAL 2) by
JGRAPH_2: 9;
let sn be
Real;
assume that
A1: (
- 1)
< sn and
A2: sn
< 1;
reconsider f = (sn
-FanMorphE ) as
Function of (
TOP-REAL 2), (
TOP-REAL 2);
A3: (f
. (
0. (
TOP-REAL 2)))
= (
0. (
TOP-REAL 2)) by
Th82,
JGRAPH_2: 3;
A4: for p be
Point of ((
TOP-REAL 2)
| D) holds (f
. p)
<> (f
. (
0. (
TOP-REAL 2)))
proof
let p be
Point of ((
TOP-REAL 2)
| D);
A5: (
[#] ((
TOP-REAL 2)
| D))
= D by
PRE_TOPC:def 5;
then
reconsider q = p as
Point of (
TOP-REAL 2) by
XBOOLE_0:def 5;
not p
in
{(
0. (
TOP-REAL 2))} by
A5,
XBOOLE_0:def 5;
then
A6: not p
= (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
now
per cases ;
case
A7: ((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
>=
0 ;
set q9 =
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]|;
A8: (q9
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
now
assume
A9: q9
= (
0. (
TOP-REAL 2));
A10:
|.q.|
<>
0 by
A6,
TOPRNS_1: 24;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
= (
sqrt (1
- (
0
^2 ))) by
A8,
A9,
JGRAPH_2: 3,
XCMPLX_1: 6
.= 1 by
SQUARE_1: 18;
hence contradiction by
A9,
A10,
EUCLID: 52,
JGRAPH_2: 3;
end;
hence thesis by
A1,
A2,
A3,
A6,
A7,
Th84;
end;
case
A11: ((q
`2 )
/
|.q.|)
< sn & (q
`1 )
>=
0 ;
set q9 =
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]|;
A12: (q9
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
now
assume
A13: q9
= (
0. (
TOP-REAL 2));
A14:
|.q.|
<>
0 by
A6,
TOPRNS_1: 24;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
= (
sqrt (1
- (
0
^2 ))) by
A12,
A13,
JGRAPH_2: 3,
XCMPLX_1: 6
.= 1 by
SQUARE_1: 18;
hence contradiction by
A13,
A14,
EUCLID: 52,
JGRAPH_2: 3;
end;
hence thesis by
A1,
A2,
A3,
A6,
A11,
Th84;
end;
case (q
`1 )
<
0 ;
then (f
. p)
= p by
Th82;
hence thesis by
A6,
Th82,
JGRAPH_2: 3;
end;
end;
hence thesis;
end;
A15: for V be
Subset of (
TOP-REAL 2) st (f
. (
0. (
TOP-REAL 2)))
in V & V is
open holds ex W be
Subset of (
TOP-REAL 2) st (
0. (
TOP-REAL 2))
in W & W is
open & (f
.: W)
c= V
proof
reconsider u0 = (
0. (
TOP-REAL 2)) as
Point of (
Euclid 2) by
EUCLID: 67;
let V be
Subset of (
TOP-REAL 2);
reconsider VV = V as
Subset of (
TopSpaceMetr (
Euclid 2)) by
Lm11;
assume that
A16: (f
. (
0. (
TOP-REAL 2)))
in V and
A17: V is
open;
VV is
open by
A17,
Lm11,
PRE_TOPC: 30;
then
consider r be
Real such that
A18: r
>
0 and
A19: (
Ball (u0,r))
c= V by
A3,
A16,
TOPMETR: 15;
reconsider r as
Real;
the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
then
reconsider W1 = (
Ball (u0,r)) as
Subset of (
TOP-REAL 2);
A20: W1 is
open by
GOBOARD6: 3;
A21: (f
.: W1)
c= W1
proof
let z be
object;
assume z
in (f
.: W1);
then
consider y be
object such that
A22: y
in (
dom f) and
A23: y
in W1 and
A24: z
= (f
. y) by
FUNCT_1:def 6;
z
in (
rng f) by
A22,
A24,
FUNCT_1:def 3;
then
reconsider qz = z as
Point of (
TOP-REAL 2);
reconsider q = y as
Point of (
TOP-REAL 2) by
A22;
reconsider qy = q as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider pz = qz as
Point of (
Euclid 2) by
EUCLID: 67;
(
dist (u0,qy))
< r by
A23,
METRIC_1: 11;
then
A25:
|.((
0. (
TOP-REAL 2))
- q).|
< r by
JGRAPH_1: 28;
now
per cases by
JGRAPH_2: 3;
case (q
`1 )
<=
0 ;
hence thesis by
A23,
A24,
Th82;
end;
case
A26: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
>=
0 ;
then
A27: (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
XREAL_1: 48;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A28: (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
A29: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
|.q.|
<>
0 by
A26,
TOPRNS_1: 24;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A28,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- sn)
>= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
<= (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A29,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A29,
XCMPLX_1: 197;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A29,
A27,
SQUARE_1: 49;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A30: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A31: ((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
A1,
A2,
A26,
Th84;
then
A32: (qz
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))) by
A24,
EUCLID: 52;
(qz
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))) by
A24,
A31,
EUCLID: 52;
then
A33: ((qz
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))) by
A30,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A32,
A33;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A34:
|.qz.|
=
|.q.| by
SQUARE_1: 22;
|.(
- q).|
< r by
A25,
RLVECT_1: 4;
then
|.q.|
< r by
TOPRNS_1: 26;
then
|.(
- qz).|
< r by
A34,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- qz).|
< r by
RLVECT_1: 4;
then (
dist (u0,pz))
< r by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 11;
end;
case
A35: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
/
|.q.|)
< sn & (q
`1 )
>=
0 ;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A36: (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
A37: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
|.q.|
<>
0 by
A35,
TOPRNS_1: 24;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A36,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then (
- (
- 1))
>= (
- ((q
`2 )
/
|.q.|)) by
XREAL_1: 24;
then (1
+ sn)
>= ((
- ((q
`2 )
/
|.q.|))
+ sn) by
XREAL_1: 7;
then
A38: ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
<= 1 by
A37,
XREAL_1: 185;
(sn
- ((q
`2 )
/
|.q.|))
>=
0 by
A35,
XREAL_1: 48;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn)) by
A37;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A38,
SQUARE_1: 49;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A39: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A40: ((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]| by
A1,
A2,
A35,
Th84;
then
A41: (qz
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
A24,
EUCLID: 52;
(qz
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))) by
A24,
A40,
EUCLID: 52;
then
A42: ((qz
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))) by
A39,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A41,
A42;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A43:
|.qz.|
=
|.q.| by
SQUARE_1: 22;
|.(
- q).|
< r by
A25,
RLVECT_1: 4;
then
|.q.|
< r by
TOPRNS_1: 26;
then
|.(
- qz).|
< r by
A43,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- qz).|
< r by
RLVECT_1: 4;
then (
dist (u0,pz))
< r by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 11;
end;
end;
hence thesis;
end;
u0
in W1 by
A18,
GOBOARD6: 1;
hence thesis by
A19,
A20,
A21,
XBOOLE_1: 1;
end;
A44: (D
` )
=
{(
0. (
TOP-REAL 2))} by
JGRAPH_3: 20;
then ex h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) st h
= ((sn
-FanMorphE )
| D) & h is
continuous by
A1,
A2,
Th100;
hence thesis by
A3,
A44,
A4,
A15,
JGRAPH_3: 3;
end;
theorem ::
JGRAPH_4:102
Th102: for sn be
Real st (
- 1)
< sn & sn
< 1 holds (sn
-FanMorphE ) is
one-to-one
proof
let sn be
Real;
assume that
A1: (
- 1)
< sn and
A2: sn
< 1;
for x1,x2 be
object st x1
in (
dom (sn
-FanMorphE )) & x2
in (
dom (sn
-FanMorphE )) & ((sn
-FanMorphE )
. x1)
= ((sn
-FanMorphE )
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume that
A3: x1
in (
dom (sn
-FanMorphE )) and
A4: x2
in (
dom (sn
-FanMorphE )) and
A5: ((sn
-FanMorphE )
. x1)
= ((sn
-FanMorphE )
. x2);
reconsider p2 = x2 as
Point of (
TOP-REAL 2) by
A4;
reconsider p1 = x1 as
Point of (
TOP-REAL 2) by
A3;
set q = p1, p = p2;
A6: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
now
per cases by
JGRAPH_2: 3;
case
A7: (q
`1 )
<=
0 ;
then
A8: ((sn
-FanMorphE )
. q)
= q by
Th82;
now
per cases by
JGRAPH_2: 3;
case (p
`1 )
<=
0 ;
hence thesis by
A5,
A8,
Th82;
end;
case
A9: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
>=
0 ;
then
A10: (((p
`2 )
/
|.p.|)
- sn)
>=
0 by
XREAL_1: 48;
set p4 =
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|;
A11: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
A12:
|.p.|
<>
0 by
A9,
TOPRNS_1: 24;
then
A13: (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
0
<= ((p
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((p
`2 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
XREAL_1: 7;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A11,
XREAL_1: 72;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A13,
XCMPLX_1: 60;
then (((p
`2 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((p
`2 )
/
|.p.|) by
SQUARE_1: 51;
then (1
- sn)
>= (((p
`2 )
/
|.p.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
<= (
- (((p
`2 )
/
|.p.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn)) by
A6,
XREAL_1: 72;
then
A14: (
- 1)
<= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn)) by
A6,
XCMPLX_1: 197;
A15: ((sn
-FanMorphE )
. p)
=
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]| by
A1,
A2,
A9,
Th84;
(((p
`2 )
/
|.p.|)
- sn)
>=
0 by
A9,
XREAL_1: 48;
then (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A6,
A14,
SQUARE_1: 49;
then
A16: (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then (
sqrt (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
^2 )
/ ((1
- sn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
^2 )
/ ((1
- sn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p4
`1 )
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))) & (q
`1 )
=
0 by
A5,
A7,
A8,
A15,
EUCLID: 52;
then
A17: (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))
=
0 by
A5,
A8,
A15,
A12,
XCMPLX_1: 6;
(1
- ((
- ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
A16,
XCMPLX_1: 187;
then (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))
=
0 by
A17,
SQUARE_1: 24;
then 1
= ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)) by
A6,
A10,
SQUARE_1: 18,
SQUARE_1: 22;
then (1
* (1
- sn))
= (((p
`2 )
/
|.p.|)
- sn) by
A6,
XCMPLX_1: 87;
then (1
*
|.p.|)
= (p
`2 ) by
A9,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (p
`1 )
=
0 by
A11,
XCMPLX_1: 6;
hence thesis by
A5,
A8,
Th82;
end;
case
A18: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
/
|.p.|)
< sn & (p
`1 )
>=
0 ;
then
A19:
|.p.|
<>
0 by
TOPRNS_1: 24;
then
A20: (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
set p4 =
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|;
A21: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
A22: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
A23: (((p
`2 )
/
|.p.|)
- sn)
<=
0 by
A18,
XREAL_1: 47;
then
A24: (
- 1)
<= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn)) by
A22;
A25: ((sn
-FanMorphE )
. p)
=
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]| by
A1,
A2,
A18,
Th84;
0
<= ((p
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((p
`2 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
XREAL_1: 7;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A21,
XREAL_1: 72;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A20,
XCMPLX_1: 60;
then (((p
`2 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((
- ((p
`2 )
/
|.p.|))
^2 )
<= 1;
then 1
>= (
- ((p
`2 )
/
|.p.|)) by
SQUARE_1: 51;
then (1
+ sn)
>= ((
- ((p
`2 )
/
|.p.|))
+ sn) by
XREAL_1: 7;
then ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
<= 1 by
A22,
XREAL_1: 185;
then (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A24,
SQUARE_1: 49;
then
A26: (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
then (
sqrt (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
^2 )
/ ((1
+ sn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
^2 )
/ ((1
+ sn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p4
`1 )
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))) & (q
`1 )
=
0 by
A5,
A7,
A8,
A25,
EUCLID: 52;
then
A27: (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))
=
0 by
A5,
A8,
A25,
A19,
XCMPLX_1: 6;
(1
- ((
- ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))
^2 ))
>=
0 by
A26,
XCMPLX_1: 187;
then (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))
=
0 by
A27,
SQUARE_1: 24;
then 1
= (
sqrt ((
- ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))
^2 )) by
SQUARE_1: 18;
then 1
= (
- ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))) by
A22,
A23,
SQUARE_1: 22;
then 1
= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn)) by
XCMPLX_1: 187;
then (1
* (1
+ sn))
= (
- (((p
`2 )
/
|.p.|)
- sn)) by
A22,
XCMPLX_1: 87;
then ((1
+ sn)
- sn)
= (
- ((p
`2 )
/
|.p.|));
then 1
= ((
- (p
`2 ))
/
|.p.|) by
XCMPLX_1: 187;
then (1
*
|.p.|)
= (
- (p
`2 )) by
A18,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (((p
`2 )
^2 )
- ((p
`2 )
^2 ))
= ((p
`1 )
^2 ) by
A21,
XCMPLX_1: 26;
then (p
`1 )
=
0 by
XCMPLX_1: 6;
hence thesis by
A5,
A8,
Th82;
end;
end;
hence thesis;
end;
case
A28: ((q
`2 )
/
|.q.|)
>= sn & (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
then
|.q.|
<>
0 by
TOPRNS_1: 24;
then
A29: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]|;
A30: (q4
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
A31: ((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
A1,
A2,
A28,
Th84;
A32: (q4
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))) by
EUCLID: 52;
now
per cases by
JGRAPH_2: 3;
case
A33: (p
`1 )
<=
0 ;
then
A34: ((sn
-FanMorphE )
. p)
= p by
Th82;
A35:
|.q.|
<>
0 by
A28,
TOPRNS_1: 24;
then
A36: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A37: (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A28,
XREAL_1: 48;
A38: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A39: (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A28,
XREAL_1: 48;
A40: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A38,
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A36,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- sn)
>= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
<= (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A40,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A40,
XCMPLX_1: 197;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A40,
A37,
SQUARE_1: 49;
then
A41: (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
^2 )
/ ((1
- sn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
^2 )
/ ((1
- sn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p
`1 )
=
0 by
A5,
A31,
A33,
A34,
EUCLID: 52;
then
A42: (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
=
0 by
A5,
A31,
A32,
A34,
A35,
XCMPLX_1: 6;
(1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
A41,
XCMPLX_1: 187;
then (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))
=
0 by
A42,
SQUARE_1: 24;
then 1
= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)) by
A40,
A39,
SQUARE_1: 18,
SQUARE_1: 22;
then (1
* (1
- sn))
= (((q
`2 )
/
|.q.|)
- sn) by
A40,
XCMPLX_1: 87;
then (1
*
|.q.|)
= (q
`2 ) by
A28,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (q
`1 )
=
0 by
A38,
XCMPLX_1: 6;
hence thesis by
A5,
A34,
Th82;
end;
case
A43: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
>=
0 ;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A29,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- sn)
>= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
<= (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A6,
XREAL_1: 72;
then
A44: (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A6,
XCMPLX_1: 197;
(((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A28,
XREAL_1: 48;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A6,
A44,
SQUARE_1: 49;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A45: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(q4
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))) by
EUCLID: 52;
then
A46: ((q4
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 ))) by
A45,
SQUARE_1:def 2;
A47: (q4
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A47,
A46;
then
A48: (
sqrt (
|.q4.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A49:
|.q4.|
=
|.q.| by
SQUARE_1: 22;
0
<= ((p
`1 )
^2 ) by
XREAL_1: 63;
then (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
0
+ ((p
`2 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A50: (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
XREAL_1: 72;
|.p.|
<>
0 by
A43,
TOPRNS_1: 24;
then (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A50,
XCMPLX_1: 60;
then (((p
`2 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((p
`2 )
/
|.p.|) by
SQUARE_1: 51;
then (1
- sn)
>= (((p
`2 )
/
|.p.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
<= (
- (((p
`2 )
/
|.p.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
<= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn)) by
A6,
XREAL_1: 72;
then
A51: (
- 1)
<= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn)) by
A6,
XCMPLX_1: 197;
(((p
`2 )
/
|.p.|)
- sn)
>=
0 by
A43,
XREAL_1: 48;
then (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn))
^2 )
<= (1
^2 ) by
A6,
A51,
SQUARE_1: 49;
then (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
- sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A52: (1
- ((
- ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
set p4 =
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|;
A53: (p4
`2 )
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
(p4
`1 )
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))) by
EUCLID: 52;
then
A54: ((p4
`1 )
^2 )
= ((
|.p.|
^2 )
* ((
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))
^2 ))
.= ((
|.p.|
^2 )
* (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 ))) by
A52,
SQUARE_1:def 2;
(
|.p4.|
^2 )
= (((p4
`1 )
^2 )
+ ((p4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.p.|
^2 ) by
A53,
A54;
then
A55: (
sqrt (
|.p4.|
^2 ))
=
|.p.| by
SQUARE_1: 22;
then
A56:
|.p4.|
=
|.p.| by
SQUARE_1: 22;
A57: ((sn
-FanMorphE )
. p)
=
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]| by
A1,
A2,
A43,
Th84;
then ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
= ((
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))
/
|.p.|) by
A5,
A31,
A30,
A43,
A53,
TOPRNS_1: 24,
XCMPLX_1: 89;
then ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)) by
A5,
A31,
A43,
A57,
A48,
A55,
TOPRNS_1: 24,
XCMPLX_1: 89;
then (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
* (1
- sn))
= (((q
`2 )
/
|.q.|)
- sn) by
A6,
XCMPLX_1: 87;
then (((p
`2 )
/
|.p.|)
- sn)
= (((q
`2 )
/
|.q.|)
- sn) by
A6,
XCMPLX_1: 87;
then (((p
`2 )
/
|.p.|)
*
|.p.|)
= (q
`2 ) by
A5,
A31,
A43,
A57,
A49,
A56,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A58: (p
`2 )
= (q
`2 ) by
A43,
TOPRNS_1: 24,
XCMPLX_1: 87;
A59: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
(
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
then (p
`1 )
= (
sqrt ((q
`1 )
^2 )) by
A5,
A31,
A43,
A57,
A49,
A56,
A58,
SQUARE_1: 22;
then (p
`1 )
= (q
`1 ) by
A28,
SQUARE_1: 22;
hence thesis by
A58,
A59,
EUCLID: 53;
end;
case
A60: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
/
|.p.|)
< sn & (p
`1 )
>=
0 ;
then (((p
`2 )
/
|.p.|)
- sn)
<
0 by
XREAL_1: 49;
then
A61: ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
<
0 by
A1,
XREAL_1: 141,
XREAL_1: 148;
set p4 =
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|;
A62: (p4
`2 )
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))) & (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A28,
EUCLID: 52,
XREAL_1: 48;
A63: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
((sn
-FanMorphE )
. p)
=
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]| &
|.p.|
<>
0 by
A1,
A2,
A60,
Th84,
TOPRNS_1: 24;
hence thesis by
A5,
A31,
A30,
A61,
A62,
A63,
XREAL_1: 132;
end;
end;
hence thesis;
end;
case
A64: ((q
`2 )
/
|.q.|)
< sn & (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
then
A65:
|.q.|
<>
0 by
TOPRNS_1: 24;
then
A66: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]|;
A67: (q4
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
A68: ((sn
-FanMorphE )
. q)
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]| by
A1,
A2,
A64,
Th84;
A69: (q4
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))) by
EUCLID: 52;
now
per cases by
JGRAPH_2: 3;
case
A70: (p
`1 )
<=
0 ;
A71: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A72: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A71,
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A66,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((
- ((q
`2 )
/
|.q.|))
^2 )
<= 1;
then 1
>= (
- ((q
`2 )
/
|.q.|)) by
SQUARE_1: 51;
then (1
+ sn)
>= ((
- ((q
`2 )
/
|.q.|))
+ sn) by
XREAL_1: 7;
then
A73: ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
<= 1 by
A72,
XREAL_1: 185;
A74: (((q
`2 )
/
|.q.|)
- sn)
<=
0 by
A64,
XREAL_1: 47;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn)) by
A72;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A73,
SQUARE_1: 49;
then
A75: (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A76: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A77: ((sn
-FanMorphE )
. p)
= p by
A70,
Th82;
(
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )))
>=
0 by
A75,
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
^2 )
/ ((1
+ sn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
^2 )
/ ((1
+ sn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p
`1 )
=
0 by
A5,
A68,
A70,
A77,
EUCLID: 52;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
=
0 by
A5,
A68,
A69,
A65,
A77,
XCMPLX_1: 6;
then (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))
=
0 by
A76,
SQUARE_1: 24;
then 1
= (
sqrt ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))
^2 )) by
SQUARE_1: 18;
then 1
= (
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
A72,
A74,
SQUARE_1: 22;
then 1
= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn)) by
XCMPLX_1: 187;
then (1
* (1
+ sn))
= (
- (((q
`2 )
/
|.q.|)
- sn)) by
A72,
XCMPLX_1: 87;
then ((1
+ sn)
- sn)
= (
- ((q
`2 )
/
|.q.|));
then 1
= ((
- (q
`2 ))
/
|.q.|) by
XCMPLX_1: 187;
then (1
*
|.q.|)
= (
- (q
`2 )) by
A64,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (((q
`2 )
^2 )
- ((q
`2 )
^2 ))
= ((q
`1 )
^2 ) by
A71,
XCMPLX_1: 26;
then (q
`1 )
=
0 by
XCMPLX_1: 6;
hence thesis by
A5,
A77,
Th82;
end;
case
A78: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
/
|.p.|)
>= sn & (p
`1 )
>=
0 ;
set p4 =
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]|;
A79: (p4
`2 )
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))) &
|.q.|
<>
0 by
A64,
EUCLID: 52,
TOPRNS_1: 24;
(((q
`2 )
/
|.q.|)
- sn)
<
0 by
A64,
XREAL_1: 49;
then
A80: ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
<
0 by
A1,
XREAL_1: 141,
XREAL_1: 148;
A81: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
((sn
-FanMorphE )
. p)
=
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
- sn)))]| & (((p
`2 )
/
|.p.|)
- sn)
>=
0 by
A1,
A2,
A78,
Th84,
XREAL_1: 48;
hence thesis by
A5,
A68,
A67,
A80,
A79,
A81,
XREAL_1: 132;
end;
case
A82: p
<> (
0. (
TOP-REAL 2)) & ((p
`2 )
/
|.p.|)
< sn & (p
`1 )
>=
0 ;
0
<= ((p
`1 )
^2 ) by
XREAL_1: 63;
then (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
0
+ ((p
`2 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A83: (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
XREAL_1: 72;
A84: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A66,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`2 )
/
|.q.|) by
SQUARE_1: 51;
then ((
- 1)
- sn)
<= (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- ((
- 1)
- sn))
>= (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then
A85: ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
<= 1 by
A84,
XREAL_1: 185;
(((q
`2 )
/
|.q.|)
- sn)
<=
0 by
A64,
XREAL_1: 47;
then (
- 1)
<= ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn)) by
A84;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A85,
SQUARE_1: 49;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A86: (1
- ((
- ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(q4
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))) by
EUCLID: 52;
then
A87: ((q4
`1 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 ))) by
A86,
SQUARE_1:def 2;
A88: (q4
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
set p4 =
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]|;
A89: (p4
`2 )
= (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
|.p.|
<>
0 by
A82,
TOPRNS_1: 24;
then (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
then (((p
`2 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A83,
XCMPLX_1: 60;
then (((p
`2 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((p
`2 )
/
|.p.|) by
SQUARE_1: 51;
then ((
- 1)
- sn)
<= (((p
`2 )
/
|.p.|)
- sn) by
XREAL_1: 9;
then (
- ((
- 1)
- sn))
>= (
- (((p
`2 )
/
|.p.|)
- sn)) by
XREAL_1: 24;
then
A90: ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
<= 1 by
A84,
XREAL_1: 185;
(((p
`2 )
/
|.p.|)
- sn)
<=
0 by
A82,
XREAL_1: 47;
then (
- 1)
<= ((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn)) by
A84;
then (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
^2 )
<= (1
^2 ) by
A90,
SQUARE_1: 49;
then (1
- (((
- (((p
`2 )
/
|.p.|)
- sn))
/ (1
+ sn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A91: (1
- ((
- ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(p4
`1 )
= (
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))) by
EUCLID: 52;
then
A92: ((p4
`1 )
^2 )
= ((
|.p.|
^2 )
* ((
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))
^2 ))
.= ((
|.p.|
^2 )
* (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 ))) by
A91,
SQUARE_1:def 2;
(
|.p4.|
^2 )
= (((p4
`1 )
^2 )
+ ((p4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.p.|
^2 ) by
A89,
A92;
then
A93: (
sqrt (
|.p4.|
^2 ))
=
|.p.| by
SQUARE_1: 22;
then
A94:
|.p4.|
=
|.p.| by
SQUARE_1: 22;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A88,
A87;
then
A95: (
sqrt (
|.q4.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A96:
|.q4.|
=
|.q.| by
SQUARE_1: 22;
A97: ((sn
-FanMorphE )
. p)
=
|[(
|.p.|
* (
sqrt (1
- (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.p.|
* ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn)))]| by
A1,
A2,
A82,
Th84;
then ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
= ((
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))
/
|.p.|) by
A5,
A68,
A67,
A82,
A89,
TOPRNS_1: 24,
XCMPLX_1: 89;
then ((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
= ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)) by
A5,
A68,
A82,
A97,
A95,
A93,
TOPRNS_1: 24,
XCMPLX_1: 89;
then (((((p
`2 )
/
|.p.|)
- sn)
/ (1
+ sn))
* (1
+ sn))
= (((q
`2 )
/
|.q.|)
- sn) by
A84,
XCMPLX_1: 87;
then (((p
`2 )
/
|.p.|)
- sn)
= (((q
`2 )
/
|.q.|)
- sn) by
A84,
XCMPLX_1: 87;
then (((p
`2 )
/
|.p.|)
*
|.p.|)
= (q
`2 ) by
A5,
A68,
A82,
A97,
A96,
A94,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A98: (p
`2 )
= (q
`2 ) by
A82,
TOPRNS_1: 24,
XCMPLX_1: 87;
A99: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
(
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
then (p
`1 )
= (
sqrt ((q
`1 )
^2 )) by
A5,
A68,
A82,
A97,
A96,
A94,
A98,
SQUARE_1: 22;
then (p
`1 )
= (q
`1 ) by
A64,
SQUARE_1: 22;
hence thesis by
A98,
A99,
EUCLID: 53;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
hence thesis by
FUNCT_1:def 4;
end;
theorem ::
JGRAPH_4:103
Th103: for sn be
Real st (
- 1)
< sn & sn
< 1 holds (sn
-FanMorphE ) is
Function of (
TOP-REAL 2), (
TOP-REAL 2) & (
rng (sn
-FanMorphE ))
= the
carrier of (
TOP-REAL 2)
proof
let sn be
Real;
assume that
A1: (
- 1)
< sn and
A2: sn
< 1;
thus (sn
-FanMorphE ) is
Function of (
TOP-REAL 2), (
TOP-REAL 2);
for f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
= (sn
-FanMorphE ) holds (
rng (sn
-FanMorphE ))
= the
carrier of (
TOP-REAL 2)
proof
let f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume
A3: f
= (sn
-FanMorphE );
A4: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
the
carrier of (
TOP-REAL 2)
c= (
rng f)
proof
let y be
object;
assume y
in the
carrier of (
TOP-REAL 2);
then
reconsider p2 = y as
Point of (
TOP-REAL 2);
set q = p2;
now
per cases by
JGRAPH_2: 3;
suppose (q
`1 )
<=
0 ;
then y
= ((sn
-FanMorphE )
. q) by
Th82;
hence ex x be
set st x
in (
dom (sn
-FanMorphE )) & y
= ((sn
-FanMorphE )
. x) by
A3,
A4;
end;
suppose
A5: ((q
`2 )
/
|.q.|)
>=
0 & (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
(
- (
- (1
+ sn)))
>
0 by
A1,
XREAL_1: 148;
then
A6: (
- ((
- 1)
- sn))
>
0 ;
A7: (1
- sn)
>=
0 by
A2,
XREAL_1: 149;
then (((q
`2 )
/
|.q.|)
* (1
- sn))
>=
0 by
A5;
then ((
- 1)
- sn)
<= (((q
`2 )
/
|.q.|)
* (1
- sn)) by
A6;
then
A8: (((
- 1)
- sn)
+ sn)
<= ((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn) by
XREAL_1: 7;
set px =
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn))]|;
A9: (px
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)) by
EUCLID: 52;
|.q.|
<>
0 by
A5,
TOPRNS_1: 24;
then
A10: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A11: (
dom (sn
-FanMorphE ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A12: (1
- sn)
>
0 by
A2,
XREAL_1: 149;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A10,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((q
`2 )
/
|.q.|)
<= 1 by
SQUARE_1: 51;
then (((q
`2 )
/
|.q.|)
* (1
- sn))
<= (1
* (1
- sn)) by
A12,
XREAL_1: 64;
then (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
- sn)
<= (1
- sn);
then ((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
<= 1 by
XREAL_1: 9;
then (1
^2 )
>= (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 ) by
A8,
SQUARE_1: 49;
then
A13: (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 ))
>=
0 by
XREAL_1: 48;
then
A14: (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 )))
>=
0 by
SQUARE_1:def 2;
A15: (px
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 )))) by
EUCLID: 52;
then (
|.px.|
^2 )
= (((
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 ))))
^2 )
+ ((
|.q.|
* ((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn))
^2 )) by
A9,
JGRAPH_3: 1
.= (((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 )))
^2 ))
+ ((
|.q.|
^2 )
* (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 )));
then
A16: (
|.px.|
^2 )
= (((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 )))
+ ((
|.q.|
^2 )
* (((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
^2 ))) by
A13,
SQUARE_1:def 2
.= (
|.q.|
^2 );
then
A17:
|.px.|
= (
sqrt (
|.q.|
^2 )) by
SQUARE_1: 22
.=
|.q.| by
SQUARE_1: 22;
then
A18: px
<> (
0. (
TOP-REAL 2)) by
A5,
TOPRNS_1: 23,
TOPRNS_1: 24;
((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
>= (
0
+ sn) by
A5,
A7,
XREAL_1: 7;
then ((px
`2 )
/
|.px.|)
>= sn by
A5,
A9,
A17,
TOPRNS_1: 24,
XCMPLX_1: 89;
then
A19: ((sn
-FanMorphE )
. px)
=
|[(
|.px.|
* (
sqrt (1
- (((((px
`2 )
/
|.px.|)
- sn)
/ (1
- sn))
^2 )))), (
|.px.|
* ((((px
`2 )
/
|.px.|)
- sn)
/ (1
- sn)))]| by
A1,
A2,
A15,
A14,
A18,
Th84;
A20: (
|.px.|
* (
sqrt (((q
`1 )
/
|.q.|)
^2 )))
= (
|.q.|
* ((q
`1 )
/
|.q.|)) by
A5,
A17,
SQUARE_1: 22
.= (q
`1 ) by
A5,
TOPRNS_1: 24,
XCMPLX_1: 87;
A21: (
|.px.|
* ((((px
`2 )
/
|.px.|)
- sn)
/ (1
- sn)))
= (
|.q.|
* ((((((q
`2 )
/
|.q.|)
* (1
- sn))
+ sn)
- sn)
/ (1
- sn))) by
A5,
A9,
A17,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.q.|
* ((q
`2 )
/
|.q.|)) by
A12,
XCMPLX_1: 89
.= (q
`2 ) by
A5,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (
|.px.|
* (
sqrt (1
- (((((px
`2 )
/
|.px.|)
- sn)
/ (1
- sn))
^2 ))))
= (
|.px.|
* (
sqrt (1
- (((q
`2 )
/
|.px.|)
^2 )))) by
A5,
A17,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.px.|
* (
sqrt (1
- (((q
`2 )
^2 )
/ (
|.px.|
^2 ))))) by
XCMPLX_1: 76
.= (
|.px.|
* (
sqrt (((
|.px.|
^2 )
/ (
|.px.|
^2 ))
- (((q
`2 )
^2 )
/ (
|.px.|
^2 ))))) by
A10,
A16,
XCMPLX_1: 60
.= (
|.px.|
* (
sqrt (((
|.px.|
^2 )
- ((q
`2 )
^2 ))
/ (
|.px.|
^2 )))) by
XCMPLX_1: 120
.= (
|.px.|
* (
sqrt (((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
- ((q
`2 )
^2 ))
/ (
|.px.|
^2 )))) by
A16,
JGRAPH_3: 1
.= (
|.px.|
* (
sqrt (((q
`1 )
/
|.q.|)
^2 ))) by
A17,
XCMPLX_1: 76;
hence ex x be
set st x
in (
dom (sn
-FanMorphE )) & y
= ((sn
-FanMorphE )
. x) by
A19,
A21,
A20,
A11,
EUCLID: 53;
end;
suppose
A22: ((q
`2 )
/
|.q.|)
<
0 & (q
`1 )
>=
0 & q
<> (
0. (
TOP-REAL 2));
A23: (1
+ sn)
>=
0 by
A1,
XREAL_1: 148;
(1
- sn)
>
0 by
A2,
XREAL_1: 149;
then
A24: ((1
- sn)
+ sn)
>= ((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn) by
A22,
A23,
XREAL_1: 7;
A25: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
|.q.|
<>
0 by
A22,
TOPRNS_1: 24;
then
A26: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
0
<= ((q
`1 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A26,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((q
`2 )
/
|.q.|)
>= (
- 1) by
SQUARE_1: 51;
then (((q
`2 )
/
|.q.|)
* (1
+ sn))
>= ((
- 1)
* (1
+ sn)) by
A25,
XREAL_1: 64;
then (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
- sn)
>= ((
- 1)
- sn);
then ((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
>= (
- 1) by
XREAL_1: 9;
then (1
^2 )
>= (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 ) by
A24,
SQUARE_1: 49;
then
A27: (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 ))
>=
0 by
XREAL_1: 48;
then
A28: (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 )))
>=
0 by
SQUARE_1:def 2;
A29: (
dom (sn
-FanMorphE ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
set px =
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn))]|;
A30: (px
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)) by
EUCLID: 52;
A31: (px
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 )))) by
EUCLID: 52;
then (
|.px.|
^2 )
= (((
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 ))))
^2 )
+ ((
|.q.|
* ((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn))
^2 )) by
A30,
JGRAPH_3: 1
.= (((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 )))
^2 ))
+ ((
|.q.|
^2 )
* (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 )));
then
A32: (
|.px.|
^2 )
= (((
|.q.|
^2 )
* (1
- (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 )))
+ ((
|.q.|
^2 )
* (((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
^2 ))) by
A27,
SQUARE_1:def 2
.= (
|.q.|
^2 );
then
A33:
|.px.|
= (
sqrt (
|.q.|
^2 )) by
SQUARE_1: 22
.=
|.q.| by
SQUARE_1: 22;
then
A34: px
<> (
0. (
TOP-REAL 2)) by
A22,
TOPRNS_1: 23,
TOPRNS_1: 24;
((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
<= (
0
+ sn) by
A22,
A23,
XREAL_1: 7;
then ((px
`2 )
/
|.px.|)
<= sn by
A22,
A30,
A33,
TOPRNS_1: 24,
XCMPLX_1: 89;
then
A35: ((sn
-FanMorphE )
. px)
=
|[(
|.px.|
* (
sqrt (1
- (((((px
`2 )
/
|.px.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.px.|
* ((((px
`2 )
/
|.px.|)
- sn)
/ (1
+ sn)))]| by
A1,
A2,
A31,
A28,
A34,
Th84;
A36: (
|.px.|
* (
sqrt (((q
`1 )
/
|.q.|)
^2 )))
= (
|.q.|
* ((q
`1 )
/
|.q.|)) by
A22,
A33,
SQUARE_1: 22
.= (q
`1 ) by
A22,
TOPRNS_1: 24,
XCMPLX_1: 87;
A37: (
|.px.|
* ((((px
`2 )
/
|.px.|)
- sn)
/ (1
+ sn)))
= (
|.q.|
* ((((((q
`2 )
/
|.q.|)
* (1
+ sn))
+ sn)
- sn)
/ (1
+ sn))) by
A22,
A30,
A33,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.q.|
* ((q
`2 )
/
|.q.|)) by
A25,
XCMPLX_1: 89
.= (q
`2 ) by
A22,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (
|.px.|
* (
sqrt (1
- (((((px
`2 )
/
|.px.|)
- sn)
/ (1
+ sn))
^2 ))))
= (
|.px.|
* (
sqrt (1
- (((q
`2 )
/
|.px.|)
^2 )))) by
A22,
A33,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.px.|
* (
sqrt (1
- (((q
`2 )
^2 )
/ (
|.px.|
^2 ))))) by
XCMPLX_1: 76
.= (
|.px.|
* (
sqrt (((
|.px.|
^2 )
/ (
|.px.|
^2 ))
- (((q
`2 )
^2 )
/ (
|.px.|
^2 ))))) by
A26,
A32,
XCMPLX_1: 60
.= (
|.px.|
* (
sqrt (((
|.px.|
^2 )
- ((q
`2 )
^2 ))
/ (
|.px.|
^2 )))) by
XCMPLX_1: 120
.= (
|.px.|
* (
sqrt (((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
- ((q
`2 )
^2 ))
/ (
|.px.|
^2 )))) by
A32,
JGRAPH_3: 1
.= (
|.px.|
* (
sqrt (((q
`1 )
/
|.q.|)
^2 ))) by
A33,
XCMPLX_1: 76;
hence ex x be
set st x
in (
dom (sn
-FanMorphE )) & y
= ((sn
-FanMorphE )
. x) by
A35,
A37,
A36,
A29,
EUCLID: 53;
end;
end;
hence thesis by
A3,
FUNCT_1:def 3;
end;
hence thesis by
A3,
XBOOLE_0:def 10;
end;
hence thesis;
end;
theorem ::
JGRAPH_4:104
Th104: for sn be
Real, p2 be
Point of (
TOP-REAL 2) st (
- 1)
< sn & sn
< 1 holds ex K be non
empty
compact
Subset of (
TOP-REAL 2) st K
= ((sn
-FanMorphE )
.: K) & ex V2 be
Subset of (
TOP-REAL 2) st p2
in V2 & V2 is
open & V2
c= K & ((sn
-FanMorphE )
. p2)
in V2
proof
reconsider O = (
0. (
TOP-REAL 2)) as
Point of (
Euclid 2) by
EUCLID: 67;
let sn be
Real, p2 be
Point of (
TOP-REAL 2);
A1: the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
then
reconsider V0 = (
Ball (O,(
|.p2.|
+ 1))) as
Subset of (
TOP-REAL 2);
O
in V0 & V0
c= (
cl_Ball (O,(
|.p2.|
+ 1))) by
GOBOARD6: 1,
METRIC_1: 14;
then
reconsider K0 = (
cl_Ball (O,(
|.p2.|
+ 1))) as non
empty
compact
Subset of (
TOP-REAL 2) by
A1,
Th15;
set q3 = ((sn
-FanMorphE )
. p2);
reconsider VV0 = V0 as
Subset of (
TopSpaceMetr (
Euclid 2));
reconsider u2 = p2 as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider u3 = q3 as
Point of (
Euclid 2) by
EUCLID: 67;
A2: ((sn
-FanMorphE )
.: K0)
c= K0
proof
let y be
object;
assume y
in ((sn
-FanMorphE )
.: K0);
then
consider x be
object such that
A3: x
in (
dom (sn
-FanMorphE )) and
A4: x
in K0 and
A5: y
= ((sn
-FanMorphE )
. x) by
FUNCT_1:def 6;
reconsider q = x as
Point of (
TOP-REAL 2) by
A3;
reconsider uq = q as
Point of (
Euclid 2) by
EUCLID: 67;
(
dist (O,uq))
<= (
|.p2.|
+ 1) by
A4,
METRIC_1: 12;
then
|.((
0. (
TOP-REAL 2))
- q).|
<= (
|.p2.|
+ 1) by
JGRAPH_1: 28;
then
|.(
- q).|
<= (
|.p2.|
+ 1) by
RLVECT_1: 4;
then
A6:
|.q.|
<= (
|.p2.|
+ 1) by
TOPRNS_1: 26;
A7: y
in (
rng (sn
-FanMorphE )) by
A3,
A5,
FUNCT_1:def 3;
then
reconsider u = y as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider q4 = y as
Point of (
TOP-REAL 2) by
A7;
|.q4.|
=
|.q.| by
A5,
Th97;
then
|.(
- q4).|
<= (
|.p2.|
+ 1) by
A6,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- q4).|
<= (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u))
<= (
|.p2.|
+ 1) by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 12;
end;
VV0 is
open by
TOPMETR: 14;
then
A8: V0 is
open by
Lm11,
PRE_TOPC: 30;
A9:
|.p2.|
< (
|.p2.|
+ 1) by
XREAL_1: 29;
then
|.(
- p2).|
< (
|.p2.|
+ 1) by
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- p2).|
< (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u2))
< (
|.p2.|
+ 1) by
JGRAPH_1: 28;
then
A10: p2
in V0 by
METRIC_1: 11;
|.q3.|
=
|.p2.| by
Th97;
then
|.(
- q3).|
< (
|.p2.|
+ 1) by
A9,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- q3).|
< (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u3))
< (
|.p2.|
+ 1) by
JGRAPH_1: 28;
then
A11: ((sn
-FanMorphE )
. p2)
in V0 by
METRIC_1: 11;
assume
A12: (
- 1)
< sn & sn
< 1;
K0
c= ((sn
-FanMorphE )
.: K0)
proof
let y be
object;
assume
A13: y
in K0;
then
reconsider q4 = y as
Point of (
TOP-REAL 2);
reconsider y as
Point of (
Euclid 2) by
A13;
the
carrier of (
TOP-REAL 2)
c= (
rng (sn
-FanMorphE )) by
A12,
Th103;
then q4
in (
rng (sn
-FanMorphE ));
then
consider x be
object such that
A14: x
in (
dom (sn
-FanMorphE )) and
A15: y
= ((sn
-FanMorphE )
. x) by
FUNCT_1:def 3;
reconsider x as
Point of (
Euclid 2) by
A14,
Lm11;
reconsider q = x as
Point of (
TOP-REAL 2) by
A14;
|.q4.|
=
|.q.| by
A15,
Th97;
then q
in K0 by
A13,
Lm12;
hence thesis by
A14,
A15,
FUNCT_1:def 6;
end;
then K0
= ((sn
-FanMorphE )
.: K0) by
A2,
XBOOLE_0:def 10;
hence thesis by
A10,
A8,
A11,
METRIC_1: 14;
end;
theorem ::
JGRAPH_4:105
for sn be
Real st (
- 1)
< sn & sn
< 1 holds ex f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
= (sn
-FanMorphE ) & f is
being_homeomorphism
proof
let sn be
Real;
reconsider f = (sn
-FanMorphE ) as
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume
A1: (
- 1)
< sn & sn
< 1;
then
A2: for p2 be
Point of (
TOP-REAL 2) holds ex K be non
empty
compact
Subset of (
TOP-REAL 2) st K
= (f
.: K) & ex V2 be
Subset of (
TOP-REAL 2) st p2
in V2 & V2 is
open & V2
c= K & (f
. p2)
in V2 by
Th104;
(
rng (sn
-FanMorphE ))
= the
carrier of (
TOP-REAL 2) & ex h be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st h
= (sn
-FanMorphE ) & h is
continuous by
A1,
Th101,
Th103;
then f is
being_homeomorphism by
A1,
A2,
Th3,
Th102;
hence thesis;
end;
theorem ::
JGRAPH_4:106
Th106: for sn be
Real, q be
Point of (
TOP-REAL 2) st sn
< 1 & (q
`1 )
>
0 & ((q
`2 )
/
|.q.|)
>= sn holds for p be
Point of (
TOP-REAL 2) st p
= ((sn
-FanMorphE )
. q) holds (p
`1 )
>
0 & (p
`2 )
>=
0
proof
let sn be
Real, q be
Point of (
TOP-REAL 2);
assume that
A1: sn
< 1 and
A2: (q
`1 )
>
0 and
A3: ((q
`2 )
/
|.q.|)
>= sn;
A4: (((q
`2 )
/
|.q.|)
- sn)
>=
0 by
A3,
XREAL_1: 48;
let p be
Point of (
TOP-REAL 2);
set qz = p;
A5: (1
- sn)
>
0 by
A1,
XREAL_1: 149;
A6:
|.q.|
<>
0 by
A2,
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A7: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
(
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A2,
JGRAPH_3: 1,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A7,
XREAL_1: 74;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A7,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then 1
> ((q
`2 )
/
|.q.|) by
SQUARE_1: 52;
then (1
- sn)
> (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- (1
- sn))
< (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then ((
- (1
- sn))
/ (1
- sn))
< ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A5,
XREAL_1: 74;
then (
- 1)
< ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn)) by
A5,
XCMPLX_1: 197;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )
< (1
^2 ) by
A5,
A4,
SQUARE_1: 50;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 ))
>
0 by
XREAL_1: 50;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )))
>
0 by
SQUARE_1: 25;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
^2 )
/ ((1
- sn)
^2 ))))
>
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
^2 )
/ ((1
- sn)
^2 ))))
>
0 ;
then
A8: (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))
>
0 by
XCMPLX_1: 76;
assume p
= ((sn
-FanMorphE )
. q);
then
A9: p
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
A2,
A3,
Th82;
then (qz
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))) by
EUCLID: 52;
hence thesis by
A9,
A6,
A5,
A4,
A8,
EUCLID: 52,
XREAL_1: 129;
end;
theorem ::
JGRAPH_4:107
Th107: for sn be
Real, q be
Point of (
TOP-REAL 2) st (
- 1)
< sn & (q
`1 )
>
0 & ((q
`2 )
/
|.q.|)
< sn holds for p be
Point of (
TOP-REAL 2) st p
= ((sn
-FanMorphE )
. q) holds (p
`1 )
>
0 & (p
`2 )
<
0
proof
let sn be
Real, q be
Point of (
TOP-REAL 2);
assume that
A1: (
- 1)
< sn and
A2: (q
`1 )
>
0 and
A3: ((q
`2 )
/
|.q.|)
< sn;
A4: (1
+ sn)
>
0 by
A1,
XREAL_1: 148;
let p be
Point of (
TOP-REAL 2);
set qz = p;
assume p
= ((sn
-FanMorphE )
. q);
then p
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn)))]| by
A2,
A3,
Th83;
then
A5: (qz
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))) & (qz
`2 )
= (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
A6:
|.q.|
<>
0 by
A2,
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A7: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A8: (((q
`2 )
/
|.q.|)
- sn)
<
0 by
A3,
XREAL_1: 49;
then (
- (((q
`2 )
/
|.q.|)
- sn))
>
0 by
XREAL_1: 58;
then ((
- (1
+ sn))
/ (1
+ sn))
< ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn)) by
A4,
XREAL_1: 74;
then
A9: (
- 1)
< ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn)) by
A4,
XCMPLX_1: 197;
(
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`2 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A2,
JGRAPH_3: 1,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A7,
XREAL_1: 74;
then (((q
`2 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A7,
XCMPLX_1: 60;
then (((q
`2 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then (
- 1)
< ((q
`2 )
/
|.q.|) by
SQUARE_1: 52;
then ((
- 1)
- sn)
< (((q
`2 )
/
|.q.|)
- sn) by
XREAL_1: 9;
then (
- (
- (1
+ sn)))
> (
- (((q
`2 )
/
|.q.|)
- sn)) by
XREAL_1: 24;
then ((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
< 1 by
A4,
XREAL_1: 191;
then (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )
< (1
^2 ) by
A9,
SQUARE_1: 50;
then (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 ))
>
0 by
XREAL_1: 50;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
+ sn))
^2 )))
>
0 by
SQUARE_1: 25;
then (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
^2 )
/ ((1
+ sn)
^2 ))))
>
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
^2 )
/ ((1
+ sn)
^2 ))))
>
0 ;
then
A10: (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
^2 )))
>
0 by
XCMPLX_1: 76;
((((q
`2 )
/
|.q.|)
- sn)
/ (1
+ sn))
<
0 by
A1,
A8,
XREAL_1: 141,
XREAL_1: 148;
hence thesis by
A6,
A5,
A10,
XREAL_1: 129,
XREAL_1: 132;
end;
theorem ::
JGRAPH_4:108
Th108: for sn be
Real, q1,q2 be
Point of (
TOP-REAL 2) st sn
< 1 & (q1
`1 )
>
0 & ((q1
`2 )
/
|.q1.|)
>= sn & (q2
`1 )
>
0 & ((q2
`2 )
/
|.q2.|)
>= sn & ((q1
`2 )
/
|.q1.|)
< ((q2
`2 )
/
|.q2.|) holds for p1,p2 be
Point of (
TOP-REAL 2) st p1
= ((sn
-FanMorphE )
. q1) & p2
= ((sn
-FanMorphE )
. q2) holds ((p1
`2 )
/
|.p1.|)
< ((p2
`2 )
/
|.p2.|)
proof
let sn be
Real, q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: sn
< 1 and
A2: (q1
`1 )
>
0 and
A3: ((q1
`2 )
/
|.q1.|)
>= sn and
A4: (q2
`1 )
>
0 and
A5: ((q2
`2 )
/
|.q2.|)
>= sn and
A6: ((q1
`2 )
/
|.q1.|)
< ((q2
`2 )
/
|.q2.|);
A7: (((q1
`2 )
/
|.q1.|)
- sn)
< (((q2
`2 )
/
|.q2.|)
- sn) & (1
- sn)
>
0 by
A1,
A6,
XREAL_1: 9,
XREAL_1: 149;
let p1,p2 be
Point of (
TOP-REAL 2);
assume that
A8: p1
= ((sn
-FanMorphE )
. q1) and
A9: p2
= ((sn
-FanMorphE )
. q2);
A10:
|.p2.|
=
|.q2.| by
A9,
Th97;
p2
=
|[(
|.q2.|
* (
sqrt (1
- (((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q2.|
* ((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
- sn)))]| by
A4,
A5,
A9,
Th82;
then
A11: (p2
`2 )
= (
|.q2.|
* ((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
|.q2.|
>
0 by
A4,
Lm1,
JGRAPH_2: 3;
then
A12: ((p2
`2 )
/
|.p2.|)
= ((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
- sn)) by
A11,
A10,
XCMPLX_1: 89;
p1
=
|[(
|.q1.|
* (
sqrt (1
- (((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q1.|
* ((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
- sn)))]| by
A2,
A3,
A8,
Th82;
then
A13: (p1
`2 )
= (
|.q1.|
* ((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
- sn))) by
EUCLID: 52;
A14:
|.p1.|
=
|.q1.| by
A8,
Th97;
|.q1.|
>
0 by
A2,
Lm1,
JGRAPH_2: 3;
then ((p1
`2 )
/
|.p1.|)
= ((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
- sn)) by
A13,
A14,
XCMPLX_1: 89;
hence thesis by
A12,
A7,
XREAL_1: 74;
end;
theorem ::
JGRAPH_4:109
Th109: for sn be
Real, q1,q2 be
Point of (
TOP-REAL 2) st (
- 1)
< sn & (q1
`1 )
>
0 & ((q1
`2 )
/
|.q1.|)
< sn & (q2
`1 )
>
0 & ((q2
`2 )
/
|.q2.|)
< sn & ((q1
`2 )
/
|.q1.|)
< ((q2
`2 )
/
|.q2.|) holds for p1,p2 be
Point of (
TOP-REAL 2) st p1
= ((sn
-FanMorphE )
. q1) & p2
= ((sn
-FanMorphE )
. q2) holds ((p1
`2 )
/
|.p1.|)
< ((p2
`2 )
/
|.p2.|)
proof
let sn be
Real, q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: (
- 1)
< sn and
A2: (q1
`1 )
>
0 and
A3: ((q1
`2 )
/
|.q1.|)
< sn and
A4: (q2
`1 )
>
0 and
A5: ((q2
`2 )
/
|.q2.|)
< sn and
A6: ((q1
`2 )
/
|.q1.|)
< ((q2
`2 )
/
|.q2.|);
A7: (((q1
`2 )
/
|.q1.|)
- sn)
< (((q2
`2 )
/
|.q2.|)
- sn) & (1
+ sn)
>
0 by
A1,
A6,
XREAL_1: 9,
XREAL_1: 148;
let p1,p2 be
Point of (
TOP-REAL 2);
assume that
A8: p1
= ((sn
-FanMorphE )
. q1) and
A9: p2
= ((sn
-FanMorphE )
. q2);
A10:
|.p2.|
=
|.q2.| by
A9,
Th97;
p2
=
|[(
|.q2.|
* (
sqrt (1
- (((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q2.|
* ((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
+ sn)))]| by
A4,
A5,
A9,
Th83;
then
A11: (p2
`2 )
= (
|.q2.|
* ((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
|.q2.|
>
0 by
A4,
Lm1,
JGRAPH_2: 3;
then
A12: ((p2
`2 )
/
|.p2.|)
= ((((q2
`2 )
/
|.q2.|)
- sn)
/ (1
+ sn)) by
A11,
A10,
XCMPLX_1: 89;
p1
=
|[(
|.q1.|
* (
sqrt (1
- (((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
+ sn))
^2 )))), (
|.q1.|
* ((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
+ sn)))]| by
A2,
A3,
A8,
Th83;
then
A13: (p1
`2 )
= (
|.q1.|
* ((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
+ sn))) by
EUCLID: 52;
A14:
|.p1.|
=
|.q1.| by
A8,
Th97;
|.q1.|
>
0 by
A2,
Lm1,
JGRAPH_2: 3;
then ((p1
`2 )
/
|.p1.|)
= ((((q1
`2 )
/
|.q1.|)
- sn)
/ (1
+ sn)) by
A13,
A14,
XCMPLX_1: 89;
hence thesis by
A12,
A7,
XREAL_1: 74;
end;
theorem ::
JGRAPH_4:110
for sn be
Real, q1,q2 be
Point of (
TOP-REAL 2) st (
- 1)
< sn & sn
< 1 & (q1
`1 )
>
0 & (q2
`1 )
>
0 & ((q1
`2 )
/
|.q1.|)
< ((q2
`2 )
/
|.q2.|) holds for p1,p2 be
Point of (
TOP-REAL 2) st p1
= ((sn
-FanMorphE )
. q1) & p2
= ((sn
-FanMorphE )
. q2) holds ((p1
`2 )
/
|.p1.|)
< ((p2
`2 )
/
|.p2.|)
proof
let sn be
Real, q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: (
- 1)
< sn and
A2: sn
< 1 and
A3: (q1
`1 )
>
0 and
A4: (q2
`1 )
>
0 and
A5: ((q1
`2 )
/
|.q1.|)
< ((q2
`2 )
/
|.q2.|);
let p1,p2 be
Point of (
TOP-REAL 2);
assume that
A6: p1
= ((sn
-FanMorphE )
. q1) and
A7: p2
= ((sn
-FanMorphE )
. q2);
per cases ;
suppose ((q1
`2 )
/
|.q1.|)
>= sn & ((q2
`2 )
/
|.q2.|)
>= sn;
hence thesis by
A2,
A3,
A4,
A5,
A6,
A7,
Th108;
end;
suppose ((q1
`2 )
/
|.q1.|)
>= sn & ((q2
`2 )
/
|.q2.|)
< sn;
hence thesis by
A5,
XXREAL_0: 2;
end;
suppose
A8: ((q1
`2 )
/
|.q1.|)
< sn & ((q2
`2 )
/
|.q2.|)
>= sn;
then (p2
`2 )
>=
0 by
A2,
A4,
A7,
Th106;
then
A9: ((p2
`2 )
/
|.p2.|)
>=
0 ;
(p1
`2 )
<
0 by
A1,
A3,
A6,
A8,
Th107;
hence thesis by
A9,
Lm1,
JGRAPH_2: 3,
XREAL_1: 141;
end;
suppose ((q1
`2 )
/
|.q1.|)
< sn & ((q2
`2 )
/
|.q2.|)
< sn;
hence thesis by
A1,
A3,
A4,
A5,
A6,
A7,
Th109;
end;
end;
theorem ::
JGRAPH_4:111
for sn be
Real, q be
Point of (
TOP-REAL 2) st (q
`1 )
>
0 & ((q
`2 )
/
|.q.|)
= sn holds for p be
Point of (
TOP-REAL 2) st p
= ((sn
-FanMorphE )
. q) holds (p
`1 )
>
0 & (p
`2 )
=
0
proof
let sn be
Real, q be
Point of (
TOP-REAL 2);
assume that
A1: (q
`1 )
>
0 and
A2: ((q
`2 )
/
|.q.|)
= sn;
A3:
|.q.|
<>
0 & (
sqrt (1
- (((
- (((q
`2 )
/
|.q.|)
- sn))
/ (1
- sn))
^2 )))
>
0 by
A1,
A2,
JGRAPH_2: 3,
SQUARE_1: 25,
TOPRNS_1: 24;
let p be
Point of (
TOP-REAL 2);
assume p
= ((sn
-FanMorphE )
. q);
then
A4: p
=
|[(
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))), (
|.q.|
* ((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn)))]| by
A1,
A2,
Th82;
then (p
`1 )
= (
|.q.|
* (
sqrt (1
- (((((q
`2 )
/
|.q.|)
- sn)
/ (1
- sn))
^2 )))) by
EUCLID: 52;
hence thesis by
A2,
A4,
A3,
EUCLID: 52,
XREAL_1: 129;
end;
theorem ::
JGRAPH_4:112
for sn be
Real holds (
0. (
TOP-REAL 2))
= ((sn
-FanMorphE )
. (
0. (
TOP-REAL 2))) by
Th82,
JGRAPH_2: 3;
begin
definition
let s be
Real, q be
Point of (
TOP-REAL 2);
::
JGRAPH_4:def8
func
FanS (s,q) ->
Point of (
TOP-REAL 2) equals
:
Def8: (
|.q.|
*
|[((((q
`1 )
/
|.q.|)
- s)
/ (1
- s)), (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- s)
/ (1
- s))
^2 ))))]|) if ((q
`1 )
/
|.q.|)
>= s & (q
`2 )
<
0 ,
(
|.q.|
*
|[((((q
`1 )
/
|.q.|)
- s)
/ (1
+ s)), (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- s)
/ (1
+ s))
^2 ))))]|) if ((q
`1 )
/
|.q.|)
< s & (q
`2 )
<
0
otherwise q;
correctness ;
end
definition
let c be
Real;
::
JGRAPH_4:def9
func c
-FanMorphS ->
Function of (
TOP-REAL 2), (
TOP-REAL 2) means
:
Def9: for q be
Point of (
TOP-REAL 2) holds (it
. q)
= (
FanS (c,q));
existence
proof
deffunc
F(
Point of (
TOP-REAL 2)) = (
FanS (c,$1));
thus ex IT be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st for q be
Point of (
TOP-REAL 2) holds (IT
. q)
=
F(q) from
FUNCT_2:sch 4;
end;
uniqueness
proof
deffunc
F(
Point of (
TOP-REAL 2)) = (
FanS (c,$1));
thus for a,b be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st (for q be
Point of (
TOP-REAL 2) holds (a
. q)
=
F(q)) & (for q be
Point of (
TOP-REAL 2) holds (b
. q)
=
F(q)) holds a
= b from
BINOP_2:sch 1;
end;
end
theorem ::
JGRAPH_4:113
Th113: for cn be
Real holds (((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
<
0 implies ((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]|) & ((q
`2 )
>=
0 implies ((cn
-FanMorphS )
. q)
= q)
proof
let cn be
Real;
hereby
assume ((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
<
0 ;
then (
FanS (cn,q))
= (
|.q.|
*
|[((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)), (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]|) by
Def8
.=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]| by
EUCLID: 58;
hence ((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]| by
Def9;
end;
assume
A1: (q
`2 )
>=
0 ;
((cn
-FanMorphS )
. q)
= (
FanS (cn,q)) by
Def9;
hence thesis by
A1,
Def8;
end;
theorem ::
JGRAPH_4:114
Th114: for cn be
Real holds (((q
`1 )
/
|.q.|)
<= cn & (q
`2 )
<
0 implies ((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))]|)
proof
let cn be
Real;
assume that
A1: ((q
`1 )
/
|.q.|)
<= cn and
A2: (q
`2 )
<
0 ;
per cases by
A1,
XXREAL_0: 1;
suppose ((q
`1 )
/
|.q.|)
< cn;
then (
FanS (cn,q))
= (
|.q.|
*
|[((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)), (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))]|) by
A2,
Def8
.=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
EUCLID: 58;
hence thesis by
Def9;
end;
suppose
A3: ((q
`1 )
/
|.q.|)
= cn;
then ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
=
0 ;
hence thesis by
A2,
A3,
Th113;
end;
end;
theorem ::
JGRAPH_4:115
Th115: for cn be
Real st (
- 1)
< cn & cn
< 1 holds (((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2)) implies ((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]|) & (((q
`1 )
/
|.q.|)
<= cn & (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2)) implies ((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))]|)
proof
let cn be
Real;
assume that
A1: (
- 1)
< cn and
A2: cn
< 1;
per cases ;
suppose
A3: ((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
per cases ;
suppose
A4: (q
`2 )
<
0 ;
then (
FanS (cn,q))
= (
|.q.|
*
|[((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)), (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))]|) by
A3,
Def8
.=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]| by
EUCLID: 58;
hence thesis by
A4,
Def9,
Th114;
end;
suppose
A5: (q
`2 )
>=
0 ;
then
A6: ((cn
-FanMorphS )
. q)
= q by
Th113;
A7: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A8: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
A9: (q
`2 )
=
0 by
A3,
A5;
|.q.|
<>
0 by
A3,
TOPRNS_1: 24;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
= (1
^2 ) by
A7,
A9,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
= (1
^2 ) by
XCMPLX_1: 76;
then
A10: (
sqrt (((q
`1 )
/
|.q.|)
^2 ))
= 1 by
SQUARE_1: 22;
A11:
now
assume (q
`1 )
<
0 ;
then (
- ((q
`1 )
/
|.q.|))
= 1 by
A10,
SQUARE_1: 23;
hence contradiction by
A1,
A3;
end;
(
sqrt (
|.q.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A12:
|.q.|
= (q
`1 ) by
A7,
A9,
A11,
SQUARE_1: 22;
then 1
= ((q
`1 )
/
|.q.|) by
A3,
TOPRNS_1: 24,
XCMPLX_1: 60;
then ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
= 1 by
A8,
XCMPLX_1: 60;
hence thesis by
A2,
A6,
A9,
A12,
EUCLID: 53,
SQUARE_1: 17,
TOPRNS_1: 24,
XCMPLX_1: 60;
end;
end;
suppose
A13: ((q
`1 )
/
|.q.|)
<= cn & (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
per cases ;
suppose (q
`2 )
<
0 ;
hence thesis by
Th113,
Th114;
end;
suppose
A14: (q
`2 )
>=
0 ;
then
A15: (q
`2 )
=
0 by
A13;
A16: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
A17:
|.q.|
<>
0 by
A13,
TOPRNS_1: 24;
1
> ((q
`1 )
/
|.q.|) by
A2,
A13,
XXREAL_0: 2;
then (1
*
|.q.|)
> (((q
`1 )
/
|.q.|)
*
|.q.|) by
A17,
XREAL_1: 68;
then
A18: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) &
|.q.|
> (q
`1 ) by
A13,
JGRAPH_3: 1,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A19:
|.q.|
= (
- (q
`1 )) by
A15,
SQUARE_1: 40;
A20: (q
`1 )
= (
-
|.q.|) by
A15,
A18,
SQUARE_1: 40;
then (
- 1)
= ((q
`1 )
/
|.q.|) by
A13,
TOPRNS_1: 24,
XCMPLX_1: 197;
then ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
= ((
- (1
+ cn))
/ (1
+ cn))
.= (
- 1) by
A16,
XCMPLX_1: 197;
then
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))]|
= q by
A15,
A19,
EUCLID: 53,
SQUARE_1: 17;
hence thesis by
A1,
A14,
A17,
A20,
Th113,
XCMPLX_1: 197;
end;
end;
suppose (q
`2 )
>
0 or q
= (
0. (
TOP-REAL 2));
hence thesis;
end;
end;
theorem ::
JGRAPH_4:116
Th116: for cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st cn
< 1 & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = cn, b = (1
- cn);
reconsider g2 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm2;
assume that
A1: cn
< 1 and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then
A4: for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
b
>
0 by
A1,
XREAL_1: 149;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (((r1
/ r2)
- a)
/ b)) and
A6: g3 is
continuous by
A4,
Th5;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then
A8: (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A9: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in K1 by
A7,
A8,
A9,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A10: (
proj1
. r)
= (r
`1 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 5;
A11: (g2
. s)
= (
proj1
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm2,
Lm5;
(f
. r)
= (
|.r.|
* ((((r
`1 )
/
|.r.|)
- cn)
/ (1
- cn))) by
A2,
A9;
hence thesis by
A5,
A11,
A10;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:117
Th117: for cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (
- 1)
< cn & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = cn, b = (1
+ cn);
reconsider g2 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm2;
assume that
A1: (
- 1)
< cn and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then
A4: for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
(1
+ cn)
>
0 by
A1,
XREAL_1: 148;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (((r1
/ r2)
- a)
/ b)) and
A6: g3 is
continuous by
A4,
Th5;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
A8: for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A9: x
in (
dom f);
then
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1);
x
in (
dom g3) by
A7,
A9;
then x
in K1 by
A7,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A10: (
proj1
. r)
= (r
`1 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 5;
A11: (g2
. s)
= (
proj1
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm2,
Lm5;
(f
. r)
= (
|.r.|
* ((((r
`1 )
/
|.r.|)
- cn)
/ (1
+ cn))) by
A2,
A9;
hence thesis by
A5,
A11,
A10;
end;
(
dom f)
= (
dom g3) by
A7,
FUNCT_2:def 1;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:118
Th118: for cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st cn
< 1 & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<=
0 & ((q
`1 )
/
|.q.|)
>= cn & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = cn, b = (1
- cn);
reconsider g2 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm2;
assume that
A1: cn
< 1 and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<=
0 & ((q
`1 )
/
|.q.|)
>= cn & q
<> (
0. (
TOP-REAL 2));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then
A4: for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
b
>
0 by
A1,
XREAL_1: 149;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (
- (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|))) and
A6: g3 is
continuous by
A4,
Th9;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then
A8: (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
A9: (1
- cn)
>
0 by
A1,
XREAL_1: 149;
assume
A10: x
in (
dom f);
then x
in K1 by
A7,
A8,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
A11:
|.r.|
<>
0 by
A3,
A10,
TOPRNS_1: 24;
(
|.r.|
^2 )
= (((r
`1 )
^2 )
+ ((r
`2 )
^2 )) by
JGRAPH_3: 1;
then
A12: (((r
`1 )
-
|.r.|)
* ((r
`1 )
+
|.r.|))
= (
- ((r
`2 )
^2 ));
((r
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then (r
`1 )
<=
|.r.| by
A12,
XREAL_1: 93;
then ((r
`1 )
/
|.r.|)
<= (
|.r.|
/
|.r.|) by
XREAL_1: 72;
then ((r
`1 )
/
|.r.|)
<= 1 by
A11,
XCMPLX_1: 60;
then
A13: (((r
`1 )
/
|.r.|)
- cn)
<= (1
- cn) by
XREAL_1: 9;
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1) by
A10;
A14:
now
assume ((1
- cn)
^2 )
=
0 ;
then ((1
- cn)
+ cn)
= (
0
+ cn) by
XCMPLX_1: 6;
hence contradiction by
A1;
end;
(cn
- ((r
`1 )
/
|.r.|))
<=
0 by
A3,
A10,
XREAL_1: 47;
then (
- (cn
- ((r
`1 )
/
|.r.|)))
>= (
- (1
- cn)) by
A9,
XREAL_1: 24;
then ((1
- cn)
^2 )
>=
0 & ((((r
`1 )
/
|.r.|)
- cn)
^2 )
<= ((1
- cn)
^2 ) by
A13,
SQUARE_1: 49,
XREAL_1: 63;
then (((((r
`1 )
/
|.r.|)
- cn)
^2 )
/ ((1
- cn)
^2 ))
<= (((1
- cn)
^2 )
/ ((1
- cn)
^2 )) by
XREAL_1: 72;
then (((((r
`1 )
/
|.r.|)
- cn)
^2 )
/ ((1
- cn)
^2 ))
<= 1 by
A14,
XCMPLX_1: 60;
then (((((r
`1 )
/
|.r.|)
- cn)
/ (1
- cn))
^2 )
<= 1 by
XCMPLX_1: 76;
then (1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
|.(1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
- cn))
^2 )).|
= (1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
- cn))
^2 )) by
ABSVALUE:def 1;
then
A15: (f
. r)
= (
|.r.|
* (
- (
sqrt
|.(1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
- cn))
^2 )).|))) by
A2,
A10;
A16: (
proj1
. r)
= (r
`1 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 5;
(g2
. s)
= (
proj1
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm2,
Lm5;
hence thesis by
A5,
A15,
A16;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:119
Th119: for cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 st (
- 1)
< cn & (for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))) & (for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<=
0 & ((q
`1 )
/
|.q.|)
<= cn & q
<> (
0. (
TOP-REAL 2))) holds f is
continuous
proof
let cn be
Real, K1 be non
empty
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K1),
R^1 ;
reconsider g1 = ((2
NormF )
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm5;
set a = cn, b = (1
+ cn);
reconsider g2 = (
proj1
| K1) as
continuous
Function of ((
TOP-REAL 2)
| K1),
R^1 by
Lm2;
assume that
A1: (
- 1)
< cn and
A2: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))) and
A3: for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<=
0 & ((q
`1 )
/
|.q.|)
<= cn & q
<> (
0. (
TOP-REAL 2));
A4: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds q
<> (
0. (
TOP-REAL 2)) by
A3;
then for q be
Point of ((
TOP-REAL 2)
| K1) holds (g1
. q)
<>
0 by
Lm6;
then
consider g3 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A5: for q be
Point of ((
TOP-REAL 2)
| K1), r1,r2 be
Real st (g2
. q)
= r1 & (g1
. q)
= r2 holds (g3
. q)
= (r2
* (
- (
sqrt
|.(1
- ((((r1
/ r2)
- a)
/ b)
^2 )).|))) and
A6: g3 is
continuous by
A4,
Th9;
A7: (
dom g3)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
then
A8: (
dom f)
= (
dom g3) by
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds (f
. x)
= (g3
. x)
proof
let x be
object;
assume
A9: x
in (
dom f);
then x
in K1 by
A7,
A8,
PRE_TOPC: 8;
then
reconsider r = x as
Point of (
TOP-REAL 2);
reconsider s = x as
Point of ((
TOP-REAL 2)
| K1) by
A9;
A10: ((1
+ cn)
^2 )
>
0 by
A4,
SQUARE_1: 12;
A11:
|.r.|
<>
0 by
A3,
A9,
TOPRNS_1: 24;
(
|.r.|
^2 )
= (((r
`1 )
^2 )
+ ((r
`2 )
^2 )) by
JGRAPH_3: 1;
then
A12: (((r
`1 )
-
|.r.|)
* ((r
`1 )
+
|.r.|))
= (
- ((r
`2 )
^2 ));
((r
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then (
-
|.r.|)
<= (r
`1 ) by
A12,
XREAL_1: 93;
then ((r
`1 )
/
|.r.|)
>= ((
-
|.r.|)
/
|.r.|) by
XREAL_1: 72;
then ((r
`1 )
/
|.r.|)
>= (
- 1) by
A11,
XCMPLX_1: 197;
then (((r
`1 )
/
|.r.|)
- cn)
>= ((
- 1)
- cn) by
XREAL_1: 9;
then
A13: (((r
`1 )
/
|.r.|)
- cn)
>= (
- (1
+ cn));
(cn
- ((r
`1 )
/
|.r.|))
>=
0 by
A3,
A9,
XREAL_1: 48;
then (
- (cn
- ((r
`1 )
/
|.r.|)))
<= (
-
0 );
then ((((r
`1 )
/
|.r.|)
- cn)
^2 )
<= ((1
+ cn)
^2 ) by
A4,
A13,
SQUARE_1: 49;
then (((((r
`1 )
/
|.r.|)
- cn)
^2 )
/ ((1
+ cn)
^2 ))
<= (((1
+ cn)
^2 )
/ ((1
+ cn)
^2 )) by
A4,
XREAL_1: 72;
then (((((r
`1 )
/
|.r.|)
- cn)
^2 )
/ ((1
+ cn)
^2 ))
<= 1 by
A10,
XCMPLX_1: 60;
then (((((r
`1 )
/
|.r.|)
- cn)
/ (1
+ cn))
^2 )
<= 1 by
XCMPLX_1: 76;
then (1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
|.(1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
+ cn))
^2 )).|
= (1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
+ cn))
^2 )) by
ABSVALUE:def 1;
then
A14: (f
. r)
= (
|.r.|
* (
- (
sqrt
|.(1
- (((((r
`1 )
/
|.r.|)
- cn)
/ (1
+ cn))
^2 )).|))) by
A2,
A9;
A15: (
proj1
. r)
= (r
`1 ) & ((2
NormF )
. r)
=
|.r.| by
Def1,
PSCOMP_1:def 5;
(g2
. s)
= (
proj1
. s) & (g1
. s)
= ((2
NormF )
. s) by
Lm2,
Lm5;
hence thesis by
A5,
A14,
A15;
end;
hence thesis by
A6,
A8,
FUNCT_1: 2;
end;
theorem ::
JGRAPH_4:120
Th120: for cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphS )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set sn = (
- (
sqrt (1
- (cn
^2 ))));
set p0 =
|[cn, sn]|;
A1: (p0
`2 )
= sn by
EUCLID: 52;
(p0
`1 )
= cn by
EUCLID: 52;
then
A2:
|.p0.|
= (
sqrt ((sn
^2 )
+ (cn
^2 ))) by
A1,
JGRAPH_3: 1;
assume
A3: (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphS )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (cn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A4: (1
- (cn
^2 ))
>
0 by
XREAL_1: 50;
then
A5: (
- sn)
>
0 by
SQUARE_1: 25;
A6:
now
assume p0
= (
0. (
TOP-REAL 2));
then (
- (
- sn))
= (
-
0 ) by
EUCLID: 52,
JGRAPH_2: 3;
hence contradiction by
A4,
SQUARE_1: 25;
end;
((
- sn)
^2 )
= (1
- (cn
^2 )) by
A4,
SQUARE_1:def 2;
then ((p0
`1 )
/
|.p0.|)
= cn by
A2,
EUCLID: 52,
SQUARE_1: 18;
then
A7: p0
in K0 by
A3,
A1,
A6,
A5;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
A8: (
rng (
proj2
* ((cn
-FanMorphS )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
A9: K0
c= B0
proof
let x be
object;
assume x
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & ((p8
`1 )
/
|.p8.|)
>= cn & (p8
`2 )
<=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A3;
hence thesis by
A3;
end;
A10: (
dom ((cn
-FanMorphS )
| K1))
c= (
dom (
proj1
* ((cn
-FanMorphS )
| K1)))
proof
let x be
object;
assume
A11: x
in (
dom ((cn
-FanMorphS )
| K1));
then x
in ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (cn
-FanMorphS )) by
XBOOLE_0:def 4;
then
A12: (
dom
proj1 )
= the
carrier of (
TOP-REAL 2) & ((cn
-FanMorphS )
. x)
in (
rng (cn
-FanMorphS )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((cn
-FanMorphS )
| K1)
. x)
= ((cn
-FanMorphS )
. x) by
A11,
FUNCT_1: 47;
hence thesis by
A11,
A12,
FUNCT_1: 11;
end;
A13: (
rng (
proj1
* ((cn
-FanMorphS )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
(
dom (
proj1
* ((cn
-FanMorphS )
| K1)))
c= (
dom ((cn
-FanMorphS )
| K1)) by
RELAT_1: 25;
then (
dom (
proj1
* ((cn
-FanMorphS )
| K1)))
= (
dom ((cn
-FanMorphS )
| K1)) by
A10,
XBOOLE_0:def 10
.= ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g2 = (
proj1
* ((cn
-FanMorphS )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A13,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g2
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)))
proof
let p be
Point of (
TOP-REAL 2);
A14: (
dom ((cn
-FanMorphS )
| K1))
= ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A15: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A16: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`1 )
/
|.p3.|)
>= cn & (p3
`2 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A15;
then
A17: ((cn
-FanMorphS )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A3,
Th115;
(((cn
-FanMorphS )
| K1)
. p)
= ((cn
-FanMorphS )
. p) by
A16,
A15,
FUNCT_1: 49;
then (g2
. p)
= (
proj1
.
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))]|) by
A16,
A14,
A15,
A17,
FUNCT_1: 13
.= (
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))]|
`1 ) by
PSCOMP_1:def 5
.= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
hence thesis;
end;
then
consider f2 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A18: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f2
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)));
A19: (
dom ((cn
-FanMorphS )
| K1))
c= (
dom (
proj2
* ((cn
-FanMorphS )
| K1)))
proof
let x be
object;
assume
A20: x
in (
dom ((cn
-FanMorphS )
| K1));
then x
in ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (cn
-FanMorphS )) by
XBOOLE_0:def 4;
then
A21: (
dom
proj2 )
= the
carrier of (
TOP-REAL 2) & ((cn
-FanMorphS )
. x)
in (
rng (cn
-FanMorphS )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((cn
-FanMorphS )
| K1)
. x)
= ((cn
-FanMorphS )
. x) by
A20,
FUNCT_1: 47;
hence thesis by
A20,
A21,
FUNCT_1: 11;
end;
(
dom (
proj2
* ((cn
-FanMorphS )
| K1)))
c= (
dom ((cn
-FanMorphS )
| K1)) by
RELAT_1: 25;
then (
dom (
proj2
* ((cn
-FanMorphS )
| K1)))
= (
dom ((cn
-FanMorphS )
| K1)) by
A19,
XBOOLE_0:def 10
.= ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g1 = (
proj2
* ((cn
-FanMorphS )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A8,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g1
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))
proof
let p be
Point of (
TOP-REAL 2);
A22: (
dom ((cn
-FanMorphS )
| K1))
= ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A23: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A24: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`1 )
/
|.p3.|)
>= cn & (p3
`2 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A23;
then
A25: ((cn
-FanMorphS )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A3,
Th115;
(((cn
-FanMorphS )
| K1)
. p)
= ((cn
-FanMorphS )
. p) by
A24,
A23,
FUNCT_1: 49;
then (g1
. p)
= (
proj2
.
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))]|) by
A24,
A22,
A23,
A25,
FUNCT_1: 13
.= (
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))]|
`2 ) by
PSCOMP_1:def 6
.= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))) by
EUCLID: 52;
hence thesis;
end;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A26: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f1
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<=
0 & ((q
`1 )
/
|.q.|)
>= cn & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A27: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`1 )
/
|.p3.|)
>= cn & (p3
`2 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A27;
hence thesis;
end;
then
A28: f1 is
continuous by
A3,
A26,
Th118;
A29: for x,y,s,r be
Real st
|[x, y]|
in K1 & s
= (f2
.
|[x, y]|) & r
= (f1
.
|[x, y]|) holds (f
.
|[x, y]|)
=
|[s, r]|
proof
let x,y,s,r be
Real;
assume that
A30:
|[x, y]|
in K1 and
A31: s
= (f2
.
|[x, y]|) & r
= (f1
.
|[x, y]|);
set p99 =
|[x, y]|;
A32: ex p3 be
Point of (
TOP-REAL 2) st p99
= p3 & ((p3
`1 )
/
|.p3.|)
>= cn & (p3
`2 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A30;
A33: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
A34: (f1
. p99)
= (
|.p99.|
* (
- (
sqrt (1
- (((((p99
`1 )
/
|.p99.|)
- cn)
/ (1
- cn))
^2 ))))) by
A26,
A30;
(((cn
-FanMorphS )
| K0)
.
|[x, y]|)
= ((cn
-FanMorphS )
.
|[x, y]|) by
A30,
FUNCT_1: 49
.=
|[(
|.p99.|
* ((((p99
`1 )
/
|.p99.|)
- cn)
/ (1
- cn))), (
|.p99.|
* (
- (
sqrt (1
- (((((p99
`1 )
/
|.p99.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A3,
A32,
Th115
.=
|[s, r]| by
A18,
A30,
A31,
A33,
A34;
hence thesis by
A3;
end;
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A35: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`1 )
/
|.p3.|)
>= cn & (p3
`2 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A35;
hence thesis;
end;
then f2 is
continuous by
A3,
A18,
Th116;
hence thesis by
A7,
A9,
A28,
A29,
JGRAPH_2: 35;
end;
theorem ::
JGRAPH_4:121
Th121: for cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphS )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set sn = (
- (
sqrt (1
- (cn
^2 ))));
set p0 =
|[cn, sn]|;
A1: (p0
`2 )
= sn by
EUCLID: 52;
(p0
`1 )
= cn by
EUCLID: 52;
then
A2:
|.p0.|
= (
sqrt ((sn
^2 )
+ (cn
^2 ))) by
A1,
JGRAPH_3: 1;
assume
A3: (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphS )
| K0) & B0
= { q where q be
Point of (
TOP-REAL 2) : (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2)) } & K0
= { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (cn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A4: (1
- (cn
^2 ))
>
0 by
XREAL_1: 50;
then
A5: (
- sn)
>
0 by
SQUARE_1: 25;
A6:
now
assume p0
= (
0. (
TOP-REAL 2));
then (
- (
- sn))
= (
-
0 ) by
EUCLID: 52,
JGRAPH_2: 3;
hence contradiction by
A4,
SQUARE_1: 25;
end;
((
- sn)
^2 )
= (1
- (cn
^2 )) by
A4,
SQUARE_1:def 2;
then ((p0
`1 )
/
|.p0.|)
= cn by
A2,
EUCLID: 52,
SQUARE_1: 18;
then
A7: p0
in K0 by
A3,
A1,
A6,
A5;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
A8: (
rng (
proj2
* ((cn
-FanMorphS )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
A9: K0
c= B0
proof
let x be
object;
assume x
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & ((p8
`1 )
/
|.p8.|)
<= cn & (p8
`2 )
<=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A3;
hence thesis by
A3;
end;
A10: (
dom ((cn
-FanMorphS )
| K1))
c= (
dom (
proj1
* ((cn
-FanMorphS )
| K1)))
proof
let x be
object;
assume
A11: x
in (
dom ((cn
-FanMorphS )
| K1));
then x
in ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (cn
-FanMorphS )) by
XBOOLE_0:def 4;
then
A12: (
dom
proj1 )
= the
carrier of (
TOP-REAL 2) & ((cn
-FanMorphS )
. x)
in (
rng (cn
-FanMorphS )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((cn
-FanMorphS )
| K1)
. x)
= ((cn
-FanMorphS )
. x) by
A11,
FUNCT_1: 47;
hence thesis by
A11,
A12,
FUNCT_1: 11;
end;
A13: (
rng (
proj1
* ((cn
-FanMorphS )
| K1)))
c= the
carrier of
R^1 by
TOPMETR: 17;
(
dom (
proj1
* ((cn
-FanMorphS )
| K1)))
c= (
dom ((cn
-FanMorphS )
| K1)) by
RELAT_1: 25;
then (
dom (
proj1
* ((cn
-FanMorphS )
| K1)))
= (
dom ((cn
-FanMorphS )
| K1)) by
A10,
XBOOLE_0:def 10
.= ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g2 = (
proj1
* ((cn
-FanMorphS )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A13,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g2
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)))
proof
let p be
Point of (
TOP-REAL 2);
A14: (
dom ((cn
-FanMorphS )
| K1))
= ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A15: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A16: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`1 )
/
|.p3.|)
<= cn & (p3
`2 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A15;
then
A17: ((cn
-FanMorphS )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A3,
Th115;
(((cn
-FanMorphS )
| K1)
. p)
= ((cn
-FanMorphS )
. p) by
A16,
A15,
FUNCT_1: 49;
then (g2
. p)
= (
proj1
.
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))]|) by
A16,
A14,
A15,
A17,
FUNCT_1: 13
.= (
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))]|
`1 ) by
PSCOMP_1:def 5
.= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
hence thesis;
end;
then
consider f2 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A18: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f2
. p)
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)));
A19: (
dom ((cn
-FanMorphS )
| K1))
c= (
dom (
proj2
* ((cn
-FanMorphS )
| K1)))
proof
let x be
object;
assume
A20: x
in (
dom ((cn
-FanMorphS )
| K1));
then x
in ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61;
then x
in (
dom (cn
-FanMorphS )) by
XBOOLE_0:def 4;
then
A21: (
dom
proj2 )
= the
carrier of (
TOP-REAL 2) & ((cn
-FanMorphS )
. x)
in (
rng (cn
-FanMorphS )) by
FUNCT_1: 3,
FUNCT_2:def 1;
(((cn
-FanMorphS )
| K1)
. x)
= ((cn
-FanMorphS )
. x) by
A20,
FUNCT_1: 47;
hence thesis by
A20,
A21,
FUNCT_1: 11;
end;
(
dom (
proj2
* ((cn
-FanMorphS )
| K1)))
c= (
dom ((cn
-FanMorphS )
| K1)) by
RELAT_1: 25;
then (
dom (
proj2
* ((cn
-FanMorphS )
| K1)))
= (
dom ((cn
-FanMorphS )
| K1)) by
A19,
XBOOLE_0:def 10
.= ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28
.= the
carrier of ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 8;
then
reconsider g1 = (
proj2
* ((cn
-FanMorphS )
| K1)) as
Function of ((
TOP-REAL 2)
| K1),
R^1 by
A8,
FUNCT_2: 2;
for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (g1
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))
proof
let p be
Point of (
TOP-REAL 2);
A22: (
dom ((cn
-FanMorphS )
| K1))
= ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
XBOOLE_1: 28;
A23: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume
A24: p
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st p
= p3 & ((p3
`1 )
/
|.p3.|)
<= cn & (p3
`2 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A23;
then
A25: ((cn
-FanMorphS )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A3,
Th115;
(((cn
-FanMorphS )
| K1)
. p)
= ((cn
-FanMorphS )
. p) by
A24,
A23,
FUNCT_1: 49;
then (g1
. p)
= (
proj2
.
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))]|) by
A24,
A22,
A23,
A25,
FUNCT_1: 13
.= (
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))]|
`2 ) by
PSCOMP_1:def 6
.= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))) by
EUCLID: 52;
hence thesis;
end;
then
consider f1 be
Function of ((
TOP-REAL 2)
| K1),
R^1 such that
A26: for p be
Point of (
TOP-REAL 2) st p
in the
carrier of ((
TOP-REAL 2)
| K1) holds (f1
. p)
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))));
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<=
0 & ((q
`1 )
/
|.q.|)
<= cn & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A27: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`1 )
/
|.p3.|)
<= cn & (p3
`2 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A27;
hence thesis;
end;
then
A28: f1 is
continuous by
A3,
A26,
Th119;
A29: for x,y,s,r be
Real st
|[x, y]|
in K1 & s
= (f2
.
|[x, y]|) & r
= (f1
.
|[x, y]|) holds (f
.
|[x, y]|)
=
|[s, r]|
proof
let x,y,s,r be
Real;
assume that
A30:
|[x, y]|
in K1 and
A31: s
= (f2
.
|[x, y]|) & r
= (f1
.
|[x, y]|);
set p99 =
|[x, y]|;
A32: ex p3 be
Point of (
TOP-REAL 2) st p99
= p3 & ((p3
`1 )
/
|.p3.|)
<= cn & (p3
`2 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A30;
A33: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then
A34: (f1
. p99)
= (
|.p99.|
* (
- (
sqrt (1
- (((((p99
`1 )
/
|.p99.|)
- cn)
/ (1
+ cn))
^2 ))))) by
A26,
A30;
(((cn
-FanMorphS )
| K0)
.
|[x, y]|)
= ((cn
-FanMorphS )
.
|[x, y]|) by
A30,
FUNCT_1: 49
.=
|[(
|.p99.|
* ((((p99
`1 )
/
|.p99.|)
- cn)
/ (1
+ cn))), (
|.p99.|
* (
- (
sqrt (1
- (((((p99
`1 )
/
|.p99.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A3,
A32,
Th115
.=
|[s, r]| by
A18,
A30,
A31,
A33,
A34;
hence thesis by
A3;
end;
for q be
Point of (
TOP-REAL 2) st q
in the
carrier of ((
TOP-REAL 2)
| K1) holds (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2))
proof
let q be
Point of (
TOP-REAL 2);
A35: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
assume q
in the
carrier of ((
TOP-REAL 2)
| K1);
then ex p3 be
Point of (
TOP-REAL 2) st q
= p3 & ((p3
`1 )
/
|.p3.|)
<= cn & (p3
`2 )
<=
0 & p3
<> (
0. (
TOP-REAL 2)) by
A3,
A35;
hence thesis;
end;
then f2 is
continuous by
A3,
A18,
Th117;
hence thesis by
A7,
A9,
A28,
A29,
JGRAPH_2: 35;
end;
theorem ::
JGRAPH_4:122
Th122: for cn be
Real, K03 be
Subset of (
TOP-REAL 2) st K03
= { p : (p
`1 )
>= (cn
*
|.p.|) & (p
`2 )
<=
0 } holds K03 is
closed
proof
defpred
Q[
Point of (
TOP-REAL 2)] means ($1
`2 )
<=
0 ;
let sn be
Real, K003 be
Subset of (
TOP-REAL 2);
assume
A1: K003
= { p : (p
`1 )
>= (sn
*
|.p.|) & (p
`2 )
<=
0 };
reconsider KX = { p where p be
Point of (
TOP-REAL 2) :
Q[p] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
>= (sn
*
|.$1.|));
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A2: { p :
P[p] &
Q[p] }
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ { p1 where p1 be
Point of (
TOP-REAL 2) :
Q[p1] }) from
DOMAIN_1:sch 10;
K1 is
closed & KX is
closed by
Lm8,
JORDAN6: 8;
hence thesis by
A1,
A2,
TOPS_1: 8;
end;
theorem ::
JGRAPH_4:123
Th123: for cn be
Real, K03 be
Subset of (
TOP-REAL 2) st K03
= { p : (p
`1 )
<= (cn
*
|.p.|) & (p
`2 )
<=
0 } holds K03 is
closed
proof
defpred
Q[
Point of (
TOP-REAL 2)] means ($1
`2 )
<=
0 ;
let sn be
Real, K003 be
Subset of (
TOP-REAL 2);
assume
A1: K003
= { p : (p
`1 )
<= (sn
*
|.p.|) & (p
`2 )
<=
0 };
reconsider KX = { p where p be
Point of (
TOP-REAL 2) :
Q[p] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
<= (sn
*
|.$1.|));
reconsider K1 = { p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] } as
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
A2: { p :
P[p] &
Q[p] }
= ({ p7 where p7 be
Point of (
TOP-REAL 2) :
P[p7] }
/\ { p1 where p1 be
Point of (
TOP-REAL 2) :
Q[p1] }) from
DOMAIN_1:sch 10;
K1 is
closed & KX is
closed by
Lm10,
JORDAN6: 8;
hence thesis by
A1,
A2,
TOPS_1: 8;
end;
theorem ::
JGRAPH_4:124
Th124: for cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphS )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set sn = (
- (
sqrt (1
- (cn
^2 ))));
set p0 =
|[cn, sn]|;
A1: (p0
`2 )
= sn by
EUCLID: 52;
(p0
`1 )
= cn by
EUCLID: 52;
then
A2:
|.p0.|
= (
sqrt ((sn
^2 )
+ (cn
^2 ))) by
A1,
JGRAPH_3: 1;
assume
A3: (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphS )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (cn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A4: (1
- (cn
^2 ))
>
0 by
XREAL_1: 50;
then
A5: (
- sn)
>
0 by
SQUARE_1: 25;
A6:
now
assume p0
= (
0. (
TOP-REAL 2));
then (
- (
- sn))
= (
-
0 ) by
EUCLID: 52,
JGRAPH_2: 3;
hence contradiction by
A4,
SQUARE_1: 25;
end;
then p0
in K0 by
A3,
A1,
A5;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
((
- sn)
^2 )
= (1
- (cn
^2 )) by
A4,
SQUARE_1:def 2;
then
A7: ((p0
`1 )
/
|.p0.|)
= cn by
A2,
EUCLID: 52,
SQUARE_1: 18;
then
A8: p0
in { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } by
A1,
A6,
A5;
not p0
in
{(
0. (
TOP-REAL 2))} by
A6,
TARSKI:def 1;
then
reconsider D = B0 as non
empty
Subset of (
TOP-REAL 2) by
A3,
XBOOLE_0:def 5;
K1
c= D
proof
let x be
object;
assume
A9: x
in K1;
then ex p6 be
Point of (
TOP-REAL 2) st p6
= x & (p6
`2 )
<=
0 & p6
<> (
0. (
TOP-REAL 2)) by
A3;
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A3,
A9,
XBOOLE_0:def 5;
end;
then D
= (K1
\/ D) by
XBOOLE_1: 12;
then
A10: ((
TOP-REAL 2)
| K1) is
SubSpace of ((
TOP-REAL 2)
| D) by
TOPMETR: 4;
A11: { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) }
c= K1
proof
let x be
object;
assume x
in { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then ex p st p
= x & ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2));
hence thesis by
A3;
end;
A12: { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) }
c= K1
proof
let x be
object;
assume x
in { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then ex p st p
= x & ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2));
hence thesis by
A3;
end;
then
reconsider K00 = { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| K1) by
A8,
PRE_TOPC: 8;
the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
then
A13: (
rng (f
| K00))
c= D;
p0
in { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } by
A1,
A6,
A5,
A7;
then
reconsider K11 = { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| K1) by
A11,
PRE_TOPC: 8;
the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
then
A14: (
rng (f
| K11))
c= D;
the
carrier of ((
TOP-REAL 2)
| B0)
= the
carrier of ((
TOP-REAL 2)
| D);
then
A15: (
dom f)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1
.= K1 by
PRE_TOPC: 8;
then (
dom (f
| K00))
= K00 by
A12,
RELAT_1: 62
.= the
carrier of (((
TOP-REAL 2)
| K1)
| K00) by
PRE_TOPC: 8;
then
reconsider f1 = (f
| K00) as
Function of (((
TOP-REAL 2)
| K1)
| K00), ((
TOP-REAL 2)
| D) by
A13,
FUNCT_2: 2;
(
dom (f
| K11))
= K11 by
A11,
A15,
RELAT_1: 62
.= the
carrier of (((
TOP-REAL 2)
| K1)
| K11) by
PRE_TOPC: 8;
then
reconsider f2 = (f
| K11) as
Function of (((
TOP-REAL 2)
| K1)
| K11), ((
TOP-REAL 2)
| D) by
A14,
FUNCT_2: 2;
A16: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
/
|.$1.|)
>= cn & ($1
`2 )
<=
0 & $1
<> (
0. (
TOP-REAL 2));
A17: (
dom f2)
= the
carrier of (((
TOP-REAL 2)
| K1)
| K11) by
FUNCT_2:def 1
.= K11 by
PRE_TOPC: 8;
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider K001 = { p : ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of (
TOP-REAL 2) by
A8;
A18: the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`1 )
>= (cn
*
|.$1.|) & ($1
`2 )
<=
0 ;
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider K003 = { p : (p
`1 )
>= (cn
*
|.p.|) & (p
`2 )
<=
0 } as
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means (($1
`1 )
/
|.$1.|)
<= cn & ($1
`2 )
<=
0 & $1
<> (
0. (
TOP-REAL 2));
A19: { p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
A20: (
rng ((cn
-FanMorphS )
| K001))
c= K1
proof
let y be
object;
assume y
in (
rng ((cn
-FanMorphS )
| K001));
then
consider x be
object such that
A21: x
in (
dom ((cn
-FanMorphS )
| K001)) and
A22: y
= (((cn
-FanMorphS )
| K001)
. x) by
FUNCT_1:def 3;
x
in (
dom (cn
-FanMorphS )) by
A21,
RELAT_1: 57;
then
reconsider q = x as
Point of (
TOP-REAL 2);
A23: y
= ((cn
-FanMorphS )
. q) by
A21,
A22,
FUNCT_1: 47;
(
dom ((cn
-FanMorphS )
| K001))
= ((
dom (cn
-FanMorphS ))
/\ K001) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K001) by
FUNCT_2:def 1
.= K001 by
XBOOLE_1: 28;
then
A24: ex p2 be
Point of (
TOP-REAL 2) st p2
= q & ((p2
`1 )
/
|.p2.|)
>= cn & (p2
`2 )
<=
0 & p2
<> (
0. (
TOP-REAL 2)) by
A21;
then
A25: (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
XREAL_1: 48;
|.q.|
<>
0 by
A24,
TOPRNS_1: 24;
then
A26: (
|.q.|
^2 )
> (
0
^2 ) by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]|;
A27: (q4
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
A28: (1
- cn)
>
0 by
A3,
XREAL_1: 149;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then ((q
`1 )
^2 )
<= (
|.q.|
^2 ) by
JGRAPH_3: 1;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A26,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- cn)
>= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
<= (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A28,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A28,
XCMPLX_1: 197;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A28,
A25,
SQUARE_1: 49;
then
A29: (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A30: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )))
>=
0 by
A29,
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
^2 )
/ ((1
- cn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
^2 )
/ ((1
- cn)
^2 ))))
>=
0 ;
then
A31: (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
>=
0 by
XCMPLX_1: 76;
A32: (q4
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))) by
EUCLID: 52;
then
A33: ((q4
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))) by
A30,
SQUARE_1:def 2;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A27,
A33;
then
A34: q4
<> (
0. (
TOP-REAL 2)) by
A26,
TOPRNS_1: 23;
((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A3,
A24,
Th115;
hence thesis by
A3,
A23,
A32,
A31,
A34;
end;
A35: (
dom (cn
-FanMorphS ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then (
dom ((cn
-FanMorphS )
| K001))
= K001 by
RELAT_1: 62
.= the
carrier of ((
TOP-REAL 2)
| K001) by
PRE_TOPC: 8;
then
reconsider f3 = ((cn
-FanMorphS )
| K001) as
Function of ((
TOP-REAL 2)
| K001), ((
TOP-REAL 2)
| K1) by
A18,
A20,
FUNCT_2: 2;
A36: K003 is
closed by
Th122;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`1 )
<= (cn
*
|.$1.|) & ($1
`2 )
<=
0 ;
{ p :
P[p] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider K004 = { p : (p
`1 )
<= (cn
*
|.p.|) & (p
`2 )
<=
0 } as
Subset of (
TOP-REAL 2);
A37: (K004
/\ K1)
c= K11
proof
let x be
object;
assume
A38: x
in (K004
/\ K1);
then x
in K004 by
XBOOLE_0:def 4;
then
consider q1 be
Point of (
TOP-REAL 2) such that
A39: q1
= x and
A40: (q1
`1 )
<= (cn
*
|.q1.|) and (q1
`2 )
<=
0 ;
x
in K1 by
A38,
XBOOLE_0:def 4;
then
A41: ex q2 be
Point of (
TOP-REAL 2) st q2
= x & (q2
`2 )
<=
0 & q2
<> (
0. (
TOP-REAL 2)) by
A3;
((q1
`1 )
/
|.q1.|)
<= ((cn
*
|.q1.|)
/
|.q1.|) by
A40,
XREAL_1: 72;
then ((q1
`1 )
/
|.q1.|)
<= cn by
A39,
A41,
TOPRNS_1: 24,
XCMPLX_1: 89;
hence thesis by
A39,
A41;
end;
A42: K004 is
closed by
Th123;
the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then (((
TOP-REAL 2)
| K1)
| K00)
= ((
TOP-REAL 2)
| K001) & f1
= f3 by
A3,
FUNCT_1: 51,
GOBOARD9: 2;
then
A43: f1 is
continuous by
A3,
A10,
Th120,
PRE_TOPC: 26;
A44: (
[#] ((
TOP-REAL 2)
| K1))
= K1 by
PRE_TOPC:def 5;
p0
in { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } by
A1,
A6,
A5,
A7;
then
reconsider K111 = { p : ((p
`1 )
/
|.p.|)
<= cn & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of (
TOP-REAL 2) by
A19;
A45: (
rng ((cn
-FanMorphS )
| K111))
c= K1
proof
let y be
object;
assume y
in (
rng ((cn
-FanMorphS )
| K111));
then
consider x be
object such that
A46: x
in (
dom ((cn
-FanMorphS )
| K111)) and
A47: y
= (((cn
-FanMorphS )
| K111)
. x) by
FUNCT_1:def 3;
x
in (
dom (cn
-FanMorphS )) by
A46,
RELAT_1: 57;
then
reconsider q = x as
Point of (
TOP-REAL 2);
A48: y
= ((cn
-FanMorphS )
. q) by
A46,
A47,
FUNCT_1: 47;
(
dom ((cn
-FanMorphS )
| K111))
= ((
dom (cn
-FanMorphS ))
/\ K111) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K111) by
FUNCT_2:def 1
.= K111 by
XBOOLE_1: 28;
then
A49: ex p2 be
Point of (
TOP-REAL 2) st p2
= q & ((p2
`1 )
/
|.p2.|)
<= cn & (p2
`2 )
<=
0 & p2
<> (
0. (
TOP-REAL 2)) by
A46;
then
A50: (((q
`1 )
/
|.q.|)
- cn)
<=
0 by
XREAL_1: 47;
|.q.|
<>
0 by
A49,
TOPRNS_1: 24;
then
A51: (
|.q.|
^2 )
> (
0
^2 ) by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))]|;
A52: (q4
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
A53: (1
+ cn)
>
0 by
A3,
XREAL_1: 148;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A51,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then ((
- 1)
- cn)
<= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then ((
- (1
+ cn))
/ (1
+ cn))
<= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)) by
A53,
XREAL_1: 72;
then (
- 1)
<= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)) by
A53,
XCMPLX_1: 197;
then
A54: (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A53,
A50,
SQUARE_1: 49;
then
A55: (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
(1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)))
^2 ))
>=
0 by
A54,
XREAL_1: 48;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 ))
>=
0 by
XCMPLX_1: 187;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
^2 )
/ ((1
+ cn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
^2 )
/ ((1
+ cn)
^2 ))))
>=
0 ;
then
A56: (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
>=
0 by
XCMPLX_1: 76;
A57: (q4
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))) by
EUCLID: 52;
then
A58: ((q4
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))) by
A55,
SQUARE_1:def 2;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A52,
A58;
then
A59: q4
<> (
0. (
TOP-REAL 2)) by
A51,
TOPRNS_1: 23;
((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A3,
A49,
Th115;
hence thesis by
A3,
A48,
A57,
A56,
A59;
end;
(
dom ((cn
-FanMorphS )
| K111))
= K111 by
A35,
RELAT_1: 62
.= the
carrier of ((
TOP-REAL 2)
| K111) by
PRE_TOPC: 8;
then
reconsider f4 = ((cn
-FanMorphS )
| K111) as
Function of ((
TOP-REAL 2)
| K111), ((
TOP-REAL 2)
| K1) by
A16,
A45,
FUNCT_2: 2;
the
carrier of ((
TOP-REAL 2)
| K1)
= K1 by
PRE_TOPC: 8;
then (((
TOP-REAL 2)
| K1)
| K11)
= ((
TOP-REAL 2)
| K111) & f2
= f4 by
A3,
FUNCT_1: 51,
GOBOARD9: 2;
then
A60: f2 is
continuous by
A3,
A10,
Th121,
PRE_TOPC: 26;
set T1 = (((
TOP-REAL 2)
| K1)
| K00), T2 = (((
TOP-REAL 2)
| K1)
| K11);
A61: (
[#] (((
TOP-REAL 2)
| K1)
| K11))
= K11 by
PRE_TOPC:def 5;
K11
c= (K004
/\ K1)
proof
let x be
object;
assume x
in K11;
then
consider p such that
A62: p
= x and
A63: ((p
`1 )
/
|.p.|)
<= cn and
A64: (p
`2 )
<=
0 and
A65: p
<> (
0. (
TOP-REAL 2));
(((p
`1 )
/
|.p.|)
*
|.p.|)
<= (cn
*
|.p.|) by
A63,
XREAL_1: 64;
then (p
`1 )
<= (cn
*
|.p.|) by
A65,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A66: x
in K004 by
A62,
A64;
x
in K1 by
A3,
A62,
A64,
A65;
hence thesis by
A66,
XBOOLE_0:def 4;
end;
then K11
= (K004
/\ (
[#] ((
TOP-REAL 2)
| K1))) by
A44,
A37,
XBOOLE_0:def 10;
then
A67: K11 is
closed by
A42,
PRE_TOPC: 13;
A68: (K003
/\ K1)
c= K00
proof
let x be
object;
assume
A69: x
in (K003
/\ K1);
then x
in K003 by
XBOOLE_0:def 4;
then
consider q1 be
Point of (
TOP-REAL 2) such that
A70: q1
= x and
A71: (q1
`1 )
>= (cn
*
|.q1.|) and (q1
`2 )
<=
0 ;
x
in K1 by
A69,
XBOOLE_0:def 4;
then
A72: ex q2 be
Point of (
TOP-REAL 2) st q2
= x & (q2
`2 )
<=
0 & q2
<> (
0. (
TOP-REAL 2)) by
A3;
((q1
`1 )
/
|.q1.|)
>= ((cn
*
|.q1.|)
/
|.q1.|) by
A71,
XREAL_1: 72;
then ((q1
`1 )
/
|.q1.|)
>= cn by
A70,
A72,
TOPRNS_1: 24,
XCMPLX_1: 89;
hence thesis by
A70,
A72;
end;
A73: the
carrier of ((
TOP-REAL 2)
| K1)
= K0 by
PRE_TOPC: 8;
A74: D
<>
{} ;
A75: (
[#] (((
TOP-REAL 2)
| K1)
| K00))
= K00 by
PRE_TOPC:def 5;
A76: for p be
object st p
in ((
[#] T1)
/\ (
[#] T2)) holds (f1
. p)
= (f2
. p)
proof
let p be
object;
assume
A77: p
in ((
[#] T1)
/\ (
[#] T2));
then p
in K00 by
A75,
XBOOLE_0:def 4;
hence (f1
. p)
= (f
. p) by
FUNCT_1: 49
.= (f2
. p) by
A61,
A77,
FUNCT_1: 49;
end;
K00
c= (K003
/\ K1)
proof
let x be
object;
assume x
in K00;
then
consider p such that
A78: p
= x and
A79: ((p
`1 )
/
|.p.|)
>= cn and
A80: (p
`2 )
<=
0 and
A81: p
<> (
0. (
TOP-REAL 2));
(((p
`1 )
/
|.p.|)
*
|.p.|)
>= (cn
*
|.p.|) by
A79,
XREAL_1: 64;
then (p
`1 )
>= (cn
*
|.p.|) by
A81,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A82: x
in K003 by
A78,
A80;
x
in K1 by
A3,
A78,
A80,
A81;
hence thesis by
A82,
XBOOLE_0:def 4;
end;
then K00
= (K003
/\ (
[#] ((
TOP-REAL 2)
| K1))) by
A44,
A68,
XBOOLE_0:def 10;
then
A83: K00 is
closed by
A36,
PRE_TOPC: 13;
A84: K1
c= (K00
\/ K11)
proof
let x be
object;
assume x
in K1;
then
consider p such that
A85: p
= x & (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) by
A3;
per cases ;
suppose ((p
`1 )
/
|.p.|)
>= cn;
then x
in K00 by
A85;
hence thesis by
XBOOLE_0:def 3;
end;
suppose ((p
`1 )
/
|.p.|)
< cn;
then x
in K11 by
A85;
hence thesis by
XBOOLE_0:def 3;
end;
end;
then ((
[#] (((
TOP-REAL 2)
| K1)
| K00))
\/ (
[#] (((
TOP-REAL 2)
| K1)
| K11)))
= (
[#] ((
TOP-REAL 2)
| K1)) by
A75,
A61,
A44,
XBOOLE_0:def 10;
then
consider h be
Function of ((
TOP-REAL 2)
| K1), ((
TOP-REAL 2)
| D) such that
A86: h
= (f1
+* f2) and
A87: h is
continuous by
A75,
A61,
A83,
A67,
A43,
A60,
A76,
JGRAPH_2: 1;
A88: (
dom h)
= the
carrier of ((
TOP-REAL 2)
| K1) by
FUNCT_2:def 1;
A89: (
dom f1)
= the
carrier of (((
TOP-REAL 2)
| K1)
| K00) by
FUNCT_2:def 1
.= K00 by
PRE_TOPC: 8;
A90: for y be
object st y
in (
dom h) holds (h
. y)
= (f
. y)
proof
let y be
object;
assume
A91: y
in (
dom h);
per cases by
A84,
A88,
A73,
A91,
XBOOLE_0:def 3;
suppose
A92: y
in K00 & not y
in K11;
then y
in ((
dom f1)
\/ (
dom f2)) by
A89,
XBOOLE_0:def 3;
hence (h
. y)
= (f1
. y) by
A17,
A86,
A92,
FUNCT_4:def 1
.= (f
. y) by
A92,
FUNCT_1: 49;
end;
suppose
A93: y
in K11;
then y
in ((
dom f1)
\/ (
dom f2)) by
A17,
XBOOLE_0:def 3;
hence (h
. y)
= (f2
. y) by
A17,
A86,
A93,
FUNCT_4:def 1
.= (f
. y) by
A93,
FUNCT_1: 49;
end;
end;
K0
= the
carrier of ((
TOP-REAL 2)
| K0) by
PRE_TOPC: 8
.= (
dom f) by
A74,
FUNCT_2:def 1;
hence thesis by
A87,
A88,
A90,
FUNCT_1: 2,
PRE_TOPC: 8;
end;
theorem ::
JGRAPH_4:125
Th125: for cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphS )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let cn be
Real, K0,B0 be
Subset of (
TOP-REAL 2), f be
Function of ((
TOP-REAL 2)
| K0), ((
TOP-REAL 2)
| B0);
set sn = (
sqrt (1
- (cn
^2 )));
set p0 =
|[cn, sn]|;
A1: (p0
`2 )
= sn by
EUCLID: 52;
assume
A2: (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphS )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then (cn
^2 )
< (1
^2 ) by
SQUARE_1: 50;
then
A3: (1
- (cn
^2 ))
>
0 by
XREAL_1: 50;
then sn
>
0 by
SQUARE_1: 25;
then p0
in K0 by
A2,
A1,
JGRAPH_2: 3;
then
reconsider K1 = K0 as non
empty
Subset of (
TOP-REAL 2);
(p0
`2 )
>
0 by
A1,
A3,
SQUARE_1: 25;
then not p0
in
{(
0. (
TOP-REAL 2))} by
JGRAPH_2: 3,
TARSKI:def 1;
then
reconsider D = B0 as non
empty
Subset of (
TOP-REAL 2) by
A2,
XBOOLE_0:def 5;
A4: K1
c= D
proof
let x be
object;
assume x
in K1;
then
consider p2 be
Point of (
TOP-REAL 2) such that
A5: p2
= x and (p2
`2 )
>=
0 and
A6: p2
<> (
0. (
TOP-REAL 2)) by
A2;
not p2
in
{(
0. (
TOP-REAL 2))} by
A6,
TARSKI:def 1;
hence thesis by
A2,
A5,
XBOOLE_0:def 5;
end;
for p be
Point of ((
TOP-REAL 2)
| K1), V be
Subset of ((
TOP-REAL 2)
| D) st (f
. p)
in V & V is
open holds ex W be
Subset of ((
TOP-REAL 2)
| K1) st p
in W & W is
open & (f
.: W)
c= V
proof
let p be
Point of ((
TOP-REAL 2)
| K1), V be
Subset of ((
TOP-REAL 2)
| D);
assume that
A7: (f
. p)
in V and
A8: V is
open;
consider V2 be
Subset of (
TOP-REAL 2) such that
A9: V2 is
open and
A10: (V2
/\ (
[#] ((
TOP-REAL 2)
| D)))
= V by
A8,
TOPS_2: 24;
reconsider W2 = (V2
/\ (
[#] ((
TOP-REAL 2)
| K1))) as
Subset of ((
TOP-REAL 2)
| K1);
A11: (
[#] ((
TOP-REAL 2)
| K1))
= K1 by
PRE_TOPC:def 5;
then
A12: (f
. p)
= ((cn
-FanMorphS )
. p) by
A2,
FUNCT_1: 49;
A13: (f
.: W2)
c= V
proof
let y be
object;
assume y
in (f
.: W2);
then
consider x be
object such that
A14: x
in (
dom f) and
A15: x
in W2 and
A16: y
= (f
. x) by
FUNCT_1:def 6;
f is
Function of ((
TOP-REAL 2)
| K1), ((
TOP-REAL 2)
| D);
then (
dom f)
= K1 by
A11,
FUNCT_2:def 1;
then
consider p4 be
Point of (
TOP-REAL 2) such that
A17: x
= p4 and
A18: (p4
`2 )
>=
0 and p4
<> (
0. (
TOP-REAL 2)) by
A2,
A14;
A19: p4
in V2 by
A15,
A17,
XBOOLE_0:def 4;
p4
in (
[#] ((
TOP-REAL 2)
| K1)) by
A14,
A17;
then p4
in D by
A4,
A11;
then
A20: p4
in (
[#] ((
TOP-REAL 2)
| D)) by
PRE_TOPC:def 5;
(f
. p4)
= ((cn
-FanMorphS )
. p4) by
A2,
A11,
A14,
A17,
FUNCT_1: 49
.= p4 by
A18,
Th113;
hence thesis by
A10,
A16,
A17,
A19,
A20,
XBOOLE_0:def 4;
end;
p
in the
carrier of ((
TOP-REAL 2)
| K1);
then
consider q be
Point of (
TOP-REAL 2) such that
A21: q
= p and
A22: (q
`2 )
>=
0 and q
<> (
0. (
TOP-REAL 2)) by
A2,
A11;
((cn
-FanMorphS )
. q)
= q by
A22,
Th113;
then p
in V2 by
A7,
A10,
A12,
A21,
XBOOLE_0:def 4;
then
A23: p
in W2 by
XBOOLE_0:def 4;
W2 is
open by
A9,
TOPS_2: 24;
hence thesis by
A23,
A13;
end;
hence thesis by
JGRAPH_2: 10;
end;
theorem ::
JGRAPH_4:126
Th126: for cn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphS )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let cn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0);
the
carrier of ((
TOP-REAL 2)
| B0)
= B0 by
PRE_TOPC: 8;
then
reconsider K1 = K0 as
Subset of (
TOP-REAL 2) by
XBOOLE_1: 1;
assume
A1: (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphS )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
K0
c= B0
proof
let x be
object;
assume x
in K0;
then
A2: ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & (p8
`2 )
<=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A1;
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A1,
A2,
XBOOLE_0:def 5;
end;
then (((
TOP-REAL 2)
| B0)
| K0)
= ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 7;
hence thesis by
A1,
Th124;
end;
theorem ::
JGRAPH_4:127
Th127: for cn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0) st (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphS )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds f is
continuous
proof
let cn be
Real, B0 be
Subset of (
TOP-REAL 2), K0 be
Subset of ((
TOP-REAL 2)
| B0), f be
Function of (((
TOP-REAL 2)
| B0)
| K0), ((
TOP-REAL 2)
| B0);
the
carrier of ((
TOP-REAL 2)
| B0)
= B0 by
PRE_TOPC: 8;
then
reconsider K1 = K0 as
Subset of (
TOP-REAL 2) by
XBOOLE_1: 1;
assume
A1: (
- 1)
< cn & cn
< 1 & f
= ((cn
-FanMorphS )
| K0) & B0
= (
NonZero (
TOP-REAL 2)) & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
K0
c= B0
proof
let x be
object;
assume x
in K0;
then
A2: ex p8 be
Point of (
TOP-REAL 2) st x
= p8 & (p8
`2 )
>=
0 & p8
<> (
0. (
TOP-REAL 2)) by
A1;
then not x
in
{(
0. (
TOP-REAL 2))} by
TARSKI:def 1;
hence thesis by
A1,
A2,
XBOOLE_0:def 5;
end;
then (((
TOP-REAL 2)
| B0)
| K0)
= ((
TOP-REAL 2)
| K1) by
PRE_TOPC: 7;
hence thesis by
A1,
Th125;
end;
theorem ::
JGRAPH_4:128
Th128: for cn be
Real, p be
Point of (
TOP-REAL 2) holds
|.((cn
-FanMorphS )
. p).|
=
|.p.|
proof
let cn be
Real, p be
Point of (
TOP-REAL 2);
set f = (cn
-FanMorphS );
set z = (f
. p);
set q = p;
reconsider qz = z as
Point of (
TOP-REAL 2);
per cases ;
suppose
A1: ((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
<
0 ;
then
A2: ((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]| by
Th113;
then
A3: (qz
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))) by
EUCLID: 52;
A4: (qz
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))) by
A2,
EUCLID: 52;
A5: (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A1,
XREAL_1: 48;
A6: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
|.q.|
<>
0 by
A1,
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A7: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A6,
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A7,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then
A8: (1
- cn)
>= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
per cases ;
suppose
A9: (1
- cn)
=
0 ;
A10: ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
= ((((q
`1 )
/
|.q.|)
- cn)
* ((1
- cn)
" )) by
XCMPLX_0:def 9
.= ((((q
`1 )
/
|.q.|)
- cn)
*
0 ) by
A9
.=
0 ;
then (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))
= 1;
then ((cn
-FanMorphS )
. q)
=
|[(
|.q.|
*
0 ), (
|.q.|
* (
- 1))]| by
A1,
A10,
Th113,
SQUARE_1: 18
.=
|[
0 , (
-
|.q.|)]|;
then (((cn
-FanMorphS )
. q)
`2 )
= (
-
|.q.|) & (((cn
-FanMorphS )
. q)
`1 )
=
0 by
EUCLID: 52;
then
|.((cn
-FanMorphS )
. p).|
= (
sqrt (((
-
|.q.|)
^2 )
+ (
0
^2 ))) by
JGRAPH_3: 1
.= (
sqrt (
|.q.|
^2 ))
.=
|.q.| by
SQUARE_1: 22;
hence thesis;
end;
suppose
A11: (1
- cn)
<>
0 ;
per cases by
A11;
suppose
A12: (1
- cn)
>
0 ;
(
- (1
- cn))
<= (
- (((q
`1 )
/
|.q.|)
- cn)) by
A8,
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A12,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A12,
XCMPLX_1: 197;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A5,
A12,
SQUARE_1: 49;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A13: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A14: ((qz
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
^2 )) by
A3
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))) by
A13,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A4,
A14;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
hence thesis by
SQUARE_1: 22;
end;
suppose
A15: (1
- cn)
<
0 ;
(
0
+ ((q
`1 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A1,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A7,
A6,
XREAL_1: 74;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A7,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then
A16: 1
> ((q
`1 )
/
|.p.|) by
SQUARE_1: 52;
(((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A1,
XREAL_1: 48;
hence thesis by
A15,
A16,
XREAL_1: 9;
end;
end;
end;
suppose
A17: ((q
`1 )
/
|.q.|)
< cn & (q
`2 )
<
0 ;
then
|.q.|
<>
0 by
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A18: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A19: (((q
`1 )
/
|.q.|)
- cn)
<
0 by
A17,
XREAL_1: 49;
A20: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A20,
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A18,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then
A21: ((
- 1)
- cn)
<= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
A22: ((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A17,
Th114;
then
A23: (qz
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))) by
EUCLID: 52;
A24: (qz
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
A22,
EUCLID: 52;
per cases ;
suppose
A25: (1
+ cn)
=
0 ;
((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
= ((((q
`1 )
/
|.q.|)
- cn)
* ((1
+ cn)
" )) by
XCMPLX_0:def 9
.= ((((q
`1 )
/
|.q.|)
- cn)
*
0 ) by
A25
.=
0 ;
then (((cn
-FanMorphS )
. q)
`2 )
= (
-
|.q.|) & (((cn
-FanMorphS )
. q)
`1 )
=
0 by
A22,
EUCLID: 52,
SQUARE_1: 18;
then
|.((cn
-FanMorphS )
. p).|
= (
sqrt (((
-
|.q.|)
^2 )
+ (
0
^2 ))) by
JGRAPH_3: 1
.= (
sqrt (
|.q.|
^2 ))
.=
|.q.| by
SQUARE_1: 22;
hence thesis;
end;
suppose
A26: (1
+ cn)
<>
0 ;
per cases by
A26;
suppose
A27: (1
+ cn)
>
0 ;
then ((
- (1
+ cn))
/ (1
+ cn))
<= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)) by
A21,
XREAL_1: 72;
then (
- 1)
<= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)) by
A27,
XCMPLX_1: 197;
then (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A19,
A27,
SQUARE_1: 49;
then
A28: (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
A29: ((qz
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
^2 )) by
A23
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))) by
A28,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A24,
A29;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
hence thesis by
SQUARE_1: 22;
end;
suppose
A30: (1
+ cn)
<
0 ;
(
0
+ ((q
`1 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A17,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A18,
A20,
XREAL_1: 74;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A18,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then (
- 1)
< ((q
`1 )
/
|.p.|) by
SQUARE_1: 52;
then
A31: (((q
`1 )
/
|.q.|)
- cn)
> ((
- 1)
- cn) by
XREAL_1: 9;
(
- (1
+ cn))
> (
-
0 ) by
A30,
XREAL_1: 24;
hence thesis by
A17,
A31,
XREAL_1: 49;
end;
end;
end;
suppose (q
`2 )
>=
0 ;
hence thesis by
Th113;
end;
end;
theorem ::
JGRAPH_4:129
Th129: for cn be
Real, x,K0 be
set st (
- 1)
< cn & cn
< 1 & x
in K0 & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } holds ((cn
-FanMorphS )
. x)
in K0
proof
let cn be
Real, x,K0 be
set;
assume
A1: (
- 1)
< cn & cn
< 1 & x
in K0 & K0
= { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
then
consider p such that
A2: p
= x and
A3: (p
`2 )
<=
0 and
A4: p
<> (
0. (
TOP-REAL 2));
A5:
now
assume
|.p.|
<=
0 ;
then
|.p.|
=
0 ;
hence contradiction by
A4,
TOPRNS_1: 24;
end;
then
A6: (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
per cases ;
suppose
A7: ((p
`1 )
/
|.p.|)
<= cn;
reconsider p9 = ((cn
-FanMorphS )
. p) as
Point of (
TOP-REAL 2);
((cn
-FanMorphS )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A1,
A3,
A4,
A7,
Th115;
then
A8: (p9
`2 )
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))) by
EUCLID: 52;
A9: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
A10: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
per cases ;
suppose (p
`2 )
=
0 ;
hence thesis by
A1,
A2,
Th113;
end;
suppose (p
`2 )
<>
0 ;
then (
0
+ ((p
`1 )
^2 ))
< (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
SQUARE_1: 12,
XREAL_1: 8;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
< ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A6,
A9,
XREAL_1: 74;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
< 1 by
A6,
XCMPLX_1: 60;
then (((p
`1 )
/
|.p.|)
^2 )
< 1 by
XCMPLX_1: 76;
then (
- 1)
< ((p
`1 )
/
|.p.|) by
SQUARE_1: 52;
then ((
- 1)
- cn)
< (((p
`1 )
/
|.p.|)
- cn) by
XREAL_1: 9;
then (((
- 1)
* (1
+ cn))
/ (1
+ cn))
< ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)) by
A10,
XREAL_1: 74;
then
A11: (
- 1)
< ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)) by
A10,
XCMPLX_1: 89;
(((p
`1 )
/
|.p.|)
- cn)
<=
0 by
A7,
XREAL_1: 47;
then (1
^2 )
> (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ) by
A10,
A11,
SQUARE_1: 50;
then (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))
>
0 by
XREAL_1: 50;
then (
- (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))
>
0 by
SQUARE_1: 25;
then (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))
<
0 ;
then (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))
<
0 by
A5,
XREAL_1: 132;
hence thesis by
A1,
A2,
A8,
JGRAPH_2: 3;
end;
end;
suppose
A12: ((p
`1 )
/
|.p.|)
> cn;
reconsider p9 = ((cn
-FanMorphS )
. p) as
Point of (
TOP-REAL 2);
((cn
-FanMorphS )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A1,
A3,
A4,
A12,
Th115;
then
A13: (p9
`2 )
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))) by
EUCLID: 52;
A14: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
A15: (1
- cn)
>
0 by
A1,
XREAL_1: 149;
per cases ;
suppose (p
`2 )
=
0 ;
hence thesis by
A1,
A2,
Th113;
end;
suppose (p
`2 )
<>
0 ;
then (
0
+ ((p
`1 )
^2 ))
< (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
SQUARE_1: 12,
XREAL_1: 8;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
< ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A6,
A14,
XREAL_1: 74;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
< 1 by
A6,
XCMPLX_1: 60;
then (((p
`1 )
/
|.p.|)
^2 )
< 1 by
XCMPLX_1: 76;
then ((p
`1 )
/
|.p.|)
< 1 by
SQUARE_1: 52;
then (((p
`1 )
/
|.p.|)
- cn)
< (1
- cn) by
XREAL_1: 9;
then ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
< ((1
- cn)
/ (1
- cn)) by
A15,
XREAL_1: 74;
then
A16: ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
< 1 by
A15,
XCMPLX_1: 60;
(
- (1
- cn))
< (
-
0 ) & (((p
`1 )
/
|.p.|)
- cn)
>= (cn
- cn) by
A12,
A15,
XREAL_1: 9,
XREAL_1: 24;
then (((
- 1)
* (1
- cn))
/ (1
- cn))
< ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)) by
A15,
XREAL_1: 74;
then (
- 1)
< ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)) by
A15,
XCMPLX_1: 89;
then (1
^2 )
> (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ) by
A16,
SQUARE_1: 50;
then (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))
>
0 by
XREAL_1: 50;
then (
- (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))
>
0 by
SQUARE_1: 25;
then (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))
<
0 ;
then (p9
`2 )
<
0 by
A5,
A13,
XREAL_1: 132;
hence thesis by
A1,
A2,
JGRAPH_2: 3;
end;
end;
end;
theorem ::
JGRAPH_4:130
Th130: for cn be
Real, x,K0 be
set st (
- 1)
< cn & cn
< 1 & x
in K0 & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } holds ((cn
-FanMorphS )
. x)
in K0
proof
let cn be
Real, x,K0 be
set;
assume
A1: (
- 1)
< cn & cn
< 1 & x
in K0 & K0
= { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) };
then ex p st p
= x & (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2));
hence thesis by
A1,
Th113;
end;
theorem ::
JGRAPH_4:131
Th131: for cn be
Real, D be non
empty
Subset of (
TOP-REAL 2) st (
- 1)
< cn & cn
< 1 & (D
` )
=
{(
0. (
TOP-REAL 2))} holds ex h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) st h
= ((cn
-FanMorphS )
| D) & h is
continuous
proof
set Y1 =
|[
0 , 1]|;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`2 )
<=
0 ;
reconsider B0 =
{(
0. (
TOP-REAL 2))} as
Subset of (
TOP-REAL 2);
let cn be
Real, D be non
empty
Subset of (
TOP-REAL 2);
assume that
A1: (
- 1)
< cn & cn
< 1 and
A2: (D
` )
=
{(
0. (
TOP-REAL 2))};
A3: the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
(
dom (cn
-FanMorphS ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A4: (
dom ((cn
-FanMorphS )
| D))
= (the
carrier of (
TOP-REAL 2)
/\ D) by
RELAT_1: 61
.= the
carrier of ((
TOP-REAL 2)
| D) by
A3,
XBOOLE_1: 28;
(
|[
0 , (
- 1)]|
`2 )
= (
- 1) &
|[
0 , (
- 1)]|
<> (
0. (
TOP-REAL 2)) by
EUCLID: 52,
JGRAPH_2: 3;
then
A5:
|[
0 , (
- 1)]|
in { p where p be
Point of (
TOP-REAL 2) : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) };
(Y1
`2 )
= 1 by
EUCLID: 52;
then
A6: Y1
in { p where p be
Point of (
TOP-REAL 2) : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } by
JGRAPH_2: 3;
A7: D
= (B0
` ) by
A2
.= (
NonZero (
TOP-REAL 2)) by
SUBSET_1:def 4;
{ p :
P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D) from
InclSub(
A7);
then
reconsider K0 = { p : (p
`2 )
<=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| D) by
A5;
A8: K0
= the
carrier of (((
TOP-REAL 2)
| D)
| K0) by
PRE_TOPC: 8;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`2 )
>=
0 ;
{ p :
P[p] & p
<> (
0. (
TOP-REAL 2)) }
c= the
carrier of ((
TOP-REAL 2)
| D) from
InclSub(
A7);
then
reconsider K1 = { p : (p
`2 )
>=
0 & p
<> (
0. (
TOP-REAL 2)) } as non
empty
Subset of ((
TOP-REAL 2)
| D) by
A6;
A9: K0 is
closed & K1 is
closed by
A7,
Th62,
Th63;
A10: the
carrier of ((
TOP-REAL 2)
| D)
= D by
PRE_TOPC: 8;
A11: (
rng ((cn
-FanMorphS )
| K0))
c= the
carrier of (((
TOP-REAL 2)
| D)
| K0)
proof
let y be
object;
assume y
in (
rng ((cn
-FanMorphS )
| K0));
then
consider x be
object such that
A12: x
in (
dom ((cn
-FanMorphS )
| K0)) and
A13: y
= (((cn
-FanMorphS )
| K0)
. x) by
FUNCT_1:def 3;
x
in ((
dom (cn
-FanMorphS ))
/\ K0) by
A12,
RELAT_1: 61;
then
A14: x
in K0 by
XBOOLE_0:def 4;
K0
c= the
carrier of (
TOP-REAL 2) by
A10,
XBOOLE_1: 1;
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A14;
((cn
-FanMorphS )
. p)
= y by
A13,
A14,
FUNCT_1: 49;
then y
in K0 by
A1,
A14,
Th129;
hence thesis by
PRE_TOPC: 8;
end;
A15: K0
c= the
carrier of (
TOP-REAL 2)
proof
let z be
object;
assume z
in K0;
then ex p8 be
Point of (
TOP-REAL 2) st p8
= z & (p8
`2 )
<=
0 & p8
<> (
0. (
TOP-REAL 2));
hence thesis;
end;
(
dom ((cn
-FanMorphS )
| K0))
= ((
dom (cn
-FanMorphS ))
/\ K0) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K0) by
FUNCT_2:def 1
.= K0 by
A15,
XBOOLE_1: 28;
then
reconsider f = ((cn
-FanMorphS )
| K0) as
Function of (((
TOP-REAL 2)
| D)
| K0), ((
TOP-REAL 2)
| D) by
A8,
A11,
FUNCT_2: 2,
XBOOLE_1: 1;
A16: K1
= the
carrier of (((
TOP-REAL 2)
| D)
| K1) by
PRE_TOPC: 8;
A17: (
rng ((cn
-FanMorphS )
| K1))
c= the
carrier of (((
TOP-REAL 2)
| D)
| K1)
proof
let y be
object;
assume y
in (
rng ((cn
-FanMorphS )
| K1));
then
consider x be
object such that
A18: x
in (
dom ((cn
-FanMorphS )
| K1)) and
A19: y
= (((cn
-FanMorphS )
| K1)
. x) by
FUNCT_1:def 3;
x
in ((
dom (cn
-FanMorphS ))
/\ K1) by
A18,
RELAT_1: 61;
then
A20: x
in K1 by
XBOOLE_0:def 4;
K1
c= the
carrier of (
TOP-REAL 2) by
A10,
XBOOLE_1: 1;
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A20;
((cn
-FanMorphS )
. p)
= y by
A19,
A20,
FUNCT_1: 49;
then y
in K1 by
A1,
A20,
Th130;
hence thesis by
PRE_TOPC: 8;
end;
A21: K1
c= the
carrier of (
TOP-REAL 2)
proof
let z be
object;
assume z
in K1;
then ex p8 be
Point of (
TOP-REAL 2) st p8
= z & (p8
`2 )
>=
0 & p8
<> (
0. (
TOP-REAL 2));
hence thesis;
end;
(
dom ((cn
-FanMorphS )
| K1))
= ((
dom (cn
-FanMorphS ))
/\ K1) by
RELAT_1: 61
.= (the
carrier of (
TOP-REAL 2)
/\ K1) by
FUNCT_2:def 1
.= K1 by
A21,
XBOOLE_1: 28;
then
reconsider g = ((cn
-FanMorphS )
| K1) as
Function of (((
TOP-REAL 2)
| D)
| K1), ((
TOP-REAL 2)
| D) by
A16,
A17,
FUNCT_2: 2,
XBOOLE_1: 1;
A22: K1
= (
[#] (((
TOP-REAL 2)
| D)
| K1)) by
PRE_TOPC:def 5;
A23: D
c= (K0
\/ K1)
proof
let x be
object;
assume
A24: x
in D;
then
reconsider px = x as
Point of (
TOP-REAL 2);
not x
in
{(
0. (
TOP-REAL 2))} by
A7,
A24,
XBOOLE_0:def 5;
then (px
`2 )
>=
0 & px
<> (
0. (
TOP-REAL 2)) or (px
`2 )
<=
0 & px
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
then x
in K1 or x
in K0;
hence thesis by
XBOOLE_0:def 3;
end;
A25: (
dom f)
= K0 by
A8,
FUNCT_2:def 1;
A26: K0
= (
[#] (((
TOP-REAL 2)
| D)
| K0)) by
PRE_TOPC:def 5;
A27: for x be
object st x
in ((
[#] (((
TOP-REAL 2)
| D)
| K0))
/\ (
[#] (((
TOP-REAL 2)
| D)
| K1))) holds (f
. x)
= (g
. x)
proof
let x be
object;
assume
A28: x
in ((
[#] (((
TOP-REAL 2)
| D)
| K0))
/\ (
[#] (((
TOP-REAL 2)
| D)
| K1)));
then x
in K0 by
A26,
XBOOLE_0:def 4;
then (f
. x)
= ((cn
-FanMorphS )
. x) by
FUNCT_1: 49;
hence thesis by
A22,
A28,
FUNCT_1: 49;
end;
D
= (
[#] ((
TOP-REAL 2)
| D)) by
PRE_TOPC:def 5;
then
A29: ((
[#] (((
TOP-REAL 2)
| D)
| K0))
\/ (
[#] (((
TOP-REAL 2)
| D)
| K1)))
= (
[#] ((
TOP-REAL 2)
| D)) by
A26,
A22,
A23,
XBOOLE_0:def 10;
A30: f is
continuous & g is
continuous by
A1,
A7,
Th126,
Th127;
then
consider h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) such that
A31: h
= (f
+* g) and h is
continuous by
A26,
A22,
A29,
A9,
A27,
JGRAPH_2: 1;
A32: (
dom g)
= K1 by
A16,
FUNCT_2:def 1;
K0
= (
[#] (((
TOP-REAL 2)
| D)
| K0)) & K1
= (
[#] (((
TOP-REAL 2)
| D)
| K1)) by
PRE_TOPC:def 5;
then
A33: f
tolerates g by
A27,
A25,
A32,
PARTFUN1:def 4;
A34: the
carrier of ((
TOP-REAL 2)
| D)
= (
NonZero (
TOP-REAL 2)) by
A7,
PRE_TOPC: 8;
A35: for x be
object st x
in (
dom h) holds (h
. x)
= (((cn
-FanMorphS )
| D)
. x)
proof
let x be
object;
assume
A36: x
in (
dom h);
then
reconsider p = x as
Point of (
TOP-REAL 2) by
A34,
XBOOLE_0:def 5;
not x
in
{(
0. (
TOP-REAL 2))} by
A7,
A3,
A36,
XBOOLE_0:def 5;
then
A37: x
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
per cases ;
suppose
A38: x
in K0;
A39: (((cn
-FanMorphS )
| D)
. p)
= ((cn
-FanMorphS )
. p) by
A3,
A36,
FUNCT_1: 49
.= (f
. p) by
A38,
FUNCT_1: 49;
(h
. p)
= ((g
+* f)
. p) by
A31,
A33,
FUNCT_4: 34
.= (f
. p) by
A25,
A38,
FUNCT_4: 13;
hence thesis by
A39;
end;
suppose not x
in K0;
then not (p
`2 )
<=
0 by
A37;
then
A40: x
in K1 by
A37;
(((cn
-FanMorphS )
| D)
. p)
= ((cn
-FanMorphS )
. p) by
A3,
A36,
FUNCT_1: 49
.= (g
. p) by
A40,
FUNCT_1: 49;
hence thesis by
A31,
A32,
A40,
FUNCT_4: 13;
end;
end;
(
dom h)
= the
carrier of ((
TOP-REAL 2)
| D) by
FUNCT_2:def 1;
then (f
+* g)
= ((cn
-FanMorphS )
| D) by
A31,
A4,
A35,
FUNCT_1: 2;
hence thesis by
A26,
A22,
A29,
A30,
A9,
A27,
JGRAPH_2: 1;
end;
theorem ::
JGRAPH_4:132
Th132: for cn be
Real st (
- 1)
< cn & cn
< 1 holds (cn
-FanMorphS ) is
continuous
proof
reconsider D = (
NonZero (
TOP-REAL 2)) as non
empty
Subset of (
TOP-REAL 2) by
JGRAPH_2: 9;
let cn be
Real;
assume that
A1: (
- 1)
< cn and
A2: cn
< 1;
reconsider f = (cn
-FanMorphS ) as
Function of (
TOP-REAL 2), (
TOP-REAL 2);
A3: (f
. (
0. (
TOP-REAL 2)))
= (
0. (
TOP-REAL 2)) by
Th113,
JGRAPH_2: 3;
A4: for p be
Point of ((
TOP-REAL 2)
| D) holds (f
. p)
<> (f
. (
0. (
TOP-REAL 2)))
proof
let p be
Point of ((
TOP-REAL 2)
| D);
A5: (
[#] ((
TOP-REAL 2)
| D))
= D by
PRE_TOPC:def 5;
then
reconsider q = p as
Point of (
TOP-REAL 2) by
XBOOLE_0:def 5;
not p
in
{(
0. (
TOP-REAL 2))} by
A5,
XBOOLE_0:def 5;
then
A6: p
<> (
0. (
TOP-REAL 2)) by
TARSKI:def 1;
per cases ;
suppose
A7: ((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
<=
0 ;
set q9 =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]|;
A8: (q9
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
A9: (q9
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))) by
EUCLID: 52;
now
assume
A10: q9
= (
0. (
TOP-REAL 2));
A11:
|.q.|
<> (
0
^2 ) by
A6,
TOPRNS_1: 24;
then (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))
= (
- (
sqrt (1
-
0 ))) by
A8,
A10,
JGRAPH_2: 3,
XCMPLX_1: 6
.= (
- 1) by
SQUARE_1: 18;
hence contradiction by
A9,
A10,
A11,
JGRAPH_2: 3,
XCMPLX_1: 6;
end;
hence thesis by
A1,
A2,
A3,
A6,
A7,
Th115;
end;
suppose
A12: ((q
`1 )
/
|.q.|)
< cn & (q
`2 )
<=
0 ;
set q9 =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))]|;
A13: (q9
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
A14: (q9
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))) by
EUCLID: 52;
now
assume
A15: q9
= (
0. (
TOP-REAL 2));
A16:
|.q.|
<> (
0
^2 ) by
A6,
TOPRNS_1: 24;
then (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))
= (
- (
sqrt (1
-
0 ))) by
A13,
A15,
JGRAPH_2: 3,
XCMPLX_1: 6
.= (
- 1) by
SQUARE_1: 18;
hence contradiction by
A14,
A15,
A16,
JGRAPH_2: 3,
XCMPLX_1: 6;
end;
hence thesis by
A1,
A2,
A3,
A6,
A12,
Th115;
end;
suppose (q
`2 )
>
0 ;
then (f
. p)
= p by
Th113;
hence thesis by
A6,
Th113,
JGRAPH_2: 3;
end;
end;
A17: for V be
Subset of (
TOP-REAL 2) st (f
. (
0. (
TOP-REAL 2)))
in V & V is
open holds ex W be
Subset of (
TOP-REAL 2) st (
0. (
TOP-REAL 2))
in W & W is
open & (f
.: W)
c= V
proof
reconsider u0 = (
0. (
TOP-REAL 2)) as
Point of (
Euclid 2) by
EUCLID: 67;
let V be
Subset of (
TOP-REAL 2);
reconsider VV = V as
Subset of (
TopSpaceMetr (
Euclid 2)) by
Lm11;
assume that
A18: (f
. (
0. (
TOP-REAL 2)))
in V and
A19: V is
open;
VV is
open by
A19,
Lm11,
PRE_TOPC: 30;
then
consider r be
Real such that
A20: r
>
0 and
A21: (
Ball (u0,r))
c= V by
A3,
A18,
TOPMETR: 15;
reconsider r as
Real;
the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
then
reconsider W1 = (
Ball (u0,r)) as
Subset of (
TOP-REAL 2);
A22: W1 is
open by
GOBOARD6: 3;
A23: (f
.: W1)
c= W1
proof
let z be
object;
assume z
in (f
.: W1);
then
consider y be
object such that
A24: y
in (
dom f) and
A25: y
in W1 and
A26: z
= (f
. y) by
FUNCT_1:def 6;
z
in (
rng f) by
A24,
A26,
FUNCT_1:def 3;
then
reconsider qz = z as
Point of (
TOP-REAL 2);
reconsider pz = qz as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider q = y as
Point of (
TOP-REAL 2) by
A24;
reconsider qy = q as
Point of (
Euclid 2) by
EUCLID: 67;
(
dist (u0,qy))
< r by
A25,
METRIC_1: 11;
then
A27:
|.((
0. (
TOP-REAL 2))
- q).|
< r by
JGRAPH_1: 28;
per cases by
JGRAPH_2: 3;
suppose (q
`2 )
>=
0 ;
hence thesis by
A25,
A26,
Th113;
end;
suppose
A28: q
<> (
0. (
TOP-REAL 2)) & ((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
<=
0 ;
then
A29: (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
XREAL_1: 48;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A30: (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
A31: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
|.q.|
<>
0 by
A28,
TOPRNS_1: 24;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A30,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- cn)
>= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
<= (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A31,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A31,
XCMPLX_1: 197;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A31,
A29,
SQUARE_1: 49;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A32: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A33: ((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A1,
A2,
A28,
Th115;
then
A34: (qz
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))) by
A26,
EUCLID: 52;
(qz
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))) by
A26,
A33,
EUCLID: 52;
then
A35: ((qz
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))) by
A32,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A34,
A35;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A36:
|.qz.|
=
|.q.| by
SQUARE_1: 22;
|.(
- q).|
< r by
A27,
RLVECT_1: 4;
then
|.q.|
< r by
TOPRNS_1: 26;
then
|.(
- qz).|
< r by
A36,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- qz).|
< r by
RLVECT_1: 4;
then (
dist (u0,pz))
< r by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 11;
end;
suppose
A37: q
<> (
0. (
TOP-REAL 2)) & ((q
`1 )
/
|.q.|)
< cn & (q
`2 )
<=
0 ;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A38: (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
A39: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
|.q.|
<>
0 by
A37,
TOPRNS_1: 24;
then (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A38,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then (
- (
- 1))
>= (
- ((q
`1 )
/
|.q.|)) by
XREAL_1: 24;
then (1
+ cn)
>= ((
- ((q
`1 )
/
|.q.|))
+ cn) by
XREAL_1: 7;
then
A40: ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
<= 1 by
A39,
XREAL_1: 185;
(cn
- ((q
`1 )
/
|.q.|))
>=
0 by
A37,
XREAL_1: 48;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn)) by
A39;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A40,
SQUARE_1: 49;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A41: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
A42: ((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A1,
A2,
A37,
Th115;
then
A43: (qz
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
A26,
EUCLID: 52;
(qz
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))) by
A26,
A42,
EUCLID: 52;
then
A44: ((qz
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))) by
A41,
SQUARE_1:def 2;
(
|.qz.|
^2 )
= (((qz
`1 )
^2 )
+ ((qz
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A43,
A44;
then (
sqrt (
|.qz.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A45:
|.qz.|
=
|.q.| by
SQUARE_1: 22;
|.(
- q).|
< r by
A27,
RLVECT_1: 4;
then
|.q.|
< r by
TOPRNS_1: 26;
then
|.(
- qz).|
< r by
A45,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- qz).|
< r by
RLVECT_1: 4;
then (
dist (u0,pz))
< r by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 11;
end;
end;
u0
in W1 by
A20,
GOBOARD6: 1;
hence thesis by
A21,
A22,
A23,
XBOOLE_1: 1;
end;
A46: (D
` )
=
{(
0. (
TOP-REAL 2))} by
JGRAPH_3: 20;
then ex h be
Function of ((
TOP-REAL 2)
| D), ((
TOP-REAL 2)
| D) st h
= ((cn
-FanMorphS )
| D) & h is
continuous by
A1,
A2,
Th131;
hence thesis by
A3,
A46,
A4,
A17,
JGRAPH_3: 3;
end;
theorem ::
JGRAPH_4:133
Th133: for cn be
Real st (
- 1)
< cn & cn
< 1 holds (cn
-FanMorphS ) is
one-to-one
proof
let cn be
Real;
assume that
A1: (
- 1)
< cn and
A2: cn
< 1;
for x1,x2 be
object st x1
in (
dom (cn
-FanMorphS )) & x2
in (
dom (cn
-FanMorphS )) & ((cn
-FanMorphS )
. x1)
= ((cn
-FanMorphS )
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume that
A3: x1
in (
dom (cn
-FanMorphS )) and
A4: x2
in (
dom (cn
-FanMorphS )) and
A5: ((cn
-FanMorphS )
. x1)
= ((cn
-FanMorphS )
. x2);
reconsider p2 = x2 as
Point of (
TOP-REAL 2) by
A4;
reconsider p1 = x1 as
Point of (
TOP-REAL 2) by
A3;
set q = p1, p = p2;
A6: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
per cases by
JGRAPH_2: 3;
suppose
A7: (q
`2 )
>=
0 ;
then
A8: ((cn
-FanMorphS )
. q)
= q by
Th113;
per cases by
JGRAPH_2: 3;
suppose (p
`2 )
>=
0 ;
hence thesis by
A5,
A8,
Th113;
end;
suppose
A9: p
<> (
0. (
TOP-REAL 2)) & ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
<=
0 ;
then
A10:
|.p.|
<>
0 by
TOPRNS_1: 24;
then
A11: (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
A12: (((p
`1 )
/
|.p.|)
- cn)
>=
0 by
A9,
XREAL_1: 48;
A13: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
0
<= ((p
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((p
`1 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
XREAL_1: 7;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A13,
XREAL_1: 72;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A11,
XCMPLX_1: 60;
then (((p
`1 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((p
`1 )
/
|.p.|) by
SQUARE_1: 51;
then (1
- cn)
>= (((p
`1 )
/
|.p.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
<= (
- (((p
`1 )
/
|.p.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn)) by
A6,
XREAL_1: 72;
then
A14: (
- 1)
<= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn)) by
A6,
XCMPLX_1: 197;
A15: ((cn
-FanMorphS )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A1,
A2,
A9,
Th115;
then
A16: (q
`2 )
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))) by
A5,
A8,
EUCLID: 52;
(((p
`1 )
/
|.p.|)
- cn)
>=
0 by
A9,
XREAL_1: 48;
then (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A6,
A14,
SQUARE_1: 49;
then
A17: (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then (
sqrt (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
^2 )
/ ((1
- cn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
^2 )
/ ((1
- cn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (q
`2 )
=
0 by
A5,
A7,
A8,
A15,
EUCLID: 52;
then
A18: (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))
= (
-
0 ) by
A16,
A10,
XCMPLX_1: 6;
(1
- ((
- ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
A17,
XCMPLX_1: 187;
then (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))
=
0 by
A18,
SQUARE_1: 24;
then 1
= ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)) by
A6,
A12,
SQUARE_1: 18,
SQUARE_1: 22;
then (1
* (1
- cn))
= (((p
`1 )
/
|.p.|)
- cn) by
A6,
XCMPLX_1: 87;
then (1
*
|.p.|)
= (p
`1 ) by
A9,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (p
`2 )
=
0 by
A13,
XCMPLX_1: 6;
hence thesis by
A5,
A8,
Th113;
end;
suppose
A19: p
<> (
0. (
TOP-REAL 2)) & ((p
`1 )
/
|.p.|)
< cn & (p
`2 )
<=
0 ;
then
A20: ((cn
-FanMorphS )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A1,
A2,
Th115;
then
A21: (q
`2 )
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))) by
A5,
A8,
EUCLID: 52;
A22: (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1;
A23:
|.p.|
<>
0 by
A19,
TOPRNS_1: 24;
then
A24: (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
A25: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
A26: (((p
`1 )
/
|.p.|)
- cn)
<=
0 by
A19,
XREAL_1: 47;
then
A27: (
- 1)
<= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn)) by
A25;
0
<= ((p
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((p
`1 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
XREAL_1: 7;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
A22,
XREAL_1: 72;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A24,
XCMPLX_1: 60;
then (((p
`1 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((
- ((p
`1 )
/
|.p.|))
^2 )
<= 1;
then 1
>= (
- ((p
`1 )
/
|.p.|)) by
SQUARE_1: 51;
then (1
+ cn)
>= ((
- ((p
`1 )
/
|.p.|))
+ cn) by
XREAL_1: 7;
then ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
<= 1 by
A25,
XREAL_1: 185;
then (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A27,
SQUARE_1: 49;
then
A28: (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
then (
sqrt (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
^2 )
/ ((1
+ cn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
^2 )
/ ((1
+ cn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (q
`2 )
=
0 by
A5,
A7,
A8,
A20,
EUCLID: 52;
then
A29: (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))
= (
-
0 ) by
A21,
A23,
XCMPLX_1: 6;
(1
- ((
- ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)))
^2 ))
>=
0 by
A28,
XCMPLX_1: 187;
then (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))
=
0 by
A29,
SQUARE_1: 24;
then 1
= ((
- ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)))
^2 );
then 1
= (
- ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))) by
A25,
A26,
SQUARE_1: 18,
SQUARE_1: 22;
then 1
= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn)) by
XCMPLX_1: 187;
then (1
* (1
+ cn))
= (
- (((p
`1 )
/
|.p.|)
- cn)) by
A25,
XCMPLX_1: 87;
then ((1
+ cn)
- cn)
= (
- ((p
`1 )
/
|.p.|));
then 1
= ((
- (p
`1 ))
/
|.p.|) by
XCMPLX_1: 187;
then (1
*
|.p.|)
= (
- (p
`1 )) by
A19,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (((p
`1 )
^2 )
- ((p
`1 )
^2 ))
= ((p
`2 )
^2 ) by
A22,
XCMPLX_1: 26;
then (p
`2 )
=
0 by
XCMPLX_1: 6;
hence thesis by
A5,
A8,
Th113;
end;
end;
suppose
A30: ((q
`1 )
/
|.q.|)
>= cn & (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
then
|.q.|
<>
0 by
TOPRNS_1: 24;
then
A31: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]|;
A32: (q4
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
A33: ((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A1,
A2,
A30,
Th115;
per cases by
JGRAPH_2: 3;
suppose
A34: (p
`2 )
>=
0 ;
then
A35: ((cn
-FanMorphS )
. p)
= p by
Th113;
then
A36: (p
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))) by
A5,
A33,
EUCLID: 52;
A37: (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A30,
XREAL_1: 48;
A38: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
A39:
|.q.|
<>
0 by
A30,
TOPRNS_1: 24;
then
A40: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A41: (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A30,
XREAL_1: 48;
A42: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A42,
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A40,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- cn)
>= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
<= (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A38,
XREAL_1: 72;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A38,
XCMPLX_1: 197;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A38,
A41,
SQUARE_1: 49;
then
A43: (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )))
>=
0 by
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
^2 )
/ ((1
- cn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
^2 )
/ ((1
- cn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p
`2 )
=
0 by
A5,
A33,
A34,
A35,
EUCLID: 52;
then
A44: (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))
= (
-
0 ) by
A36,
A39,
XCMPLX_1: 6;
(1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
A43,
XCMPLX_1: 187;
then (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))
=
0 by
A44,
SQUARE_1: 24;
then 1
= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)) by
A38,
A37,
SQUARE_1: 18,
SQUARE_1: 22;
then (1
* (1
- cn))
= (((q
`1 )
/
|.q.|)
- cn) by
A38,
XCMPLX_1: 87;
then (1
*
|.q.|)
= (q
`1 ) by
A30,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (q
`2 )
=
0 by
A42,
XCMPLX_1: 6;
hence thesis by
A5,
A35,
Th113;
end;
suppose
A45: p
<> (
0. (
TOP-REAL 2)) & ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
<=
0 ;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A31,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then (1
- cn)
>= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
<= (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A6,
XREAL_1: 72;
then
A46: (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A6,
XCMPLX_1: 197;
(((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A30,
XREAL_1: 48;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A6,
A46,
SQUARE_1: 49;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A47: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(q4
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))) by
EUCLID: 52;
then
A48: ((q4
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))) by
A47,
SQUARE_1:def 2;
A49: (q4
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A49,
A48;
then
A50: (
sqrt (
|.q4.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A51:
|.q4.|
=
|.q.| by
SQUARE_1: 22;
0
<= ((p
`2 )
^2 ) by
XREAL_1: 63;
then (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
0
+ ((p
`1 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A52: (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
XREAL_1: 72;
|.p.|
<>
0 by
A45,
TOPRNS_1: 24;
then (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A52,
XCMPLX_1: 60;
then (((p
`1 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then 1
>= ((p
`1 )
/
|.p.|) by
SQUARE_1: 51;
then (1
- cn)
>= (((p
`1 )
/
|.p.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
<= (
- (((p
`1 )
/
|.p.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
<= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn)) by
A6,
XREAL_1: 72;
then
A53: (
- 1)
<= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn)) by
A6,
XCMPLX_1: 197;
(((p
`1 )
/
|.p.|)
- cn)
>=
0 by
A45,
XREAL_1: 48;
then (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn))
^2 )
<= (1
^2 ) by
A6,
A53,
SQUARE_1: 49;
then (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
- cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A54: (1
- ((
- ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
set p4 =
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))]|;
A55: (p4
`1 )
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
(p4
`2 )
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))))) by
EUCLID: 52;
then
A56: ((p4
`2 )
^2 )
= ((
|.p.|
^2 )
* ((
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))
^2 ))
.= ((
|.p.|
^2 )
* (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 ))) by
A54,
SQUARE_1:def 2;
(
|.p4.|
^2 )
= (((p4
`1 )
^2 )
+ ((p4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.p.|
^2 ) by
A55,
A56;
then
A57: (
sqrt (
|.p4.|
^2 ))
=
|.p.| by
SQUARE_1: 22;
then
A58:
|.p4.|
=
|.p.| by
SQUARE_1: 22;
A59: ((cn
-FanMorphS )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A1,
A2,
A45,
Th115;
then ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
= ((
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)))
/
|.p.|) by
A5,
A33,
A32,
A45,
A55,
TOPRNS_1: 24,
XCMPLX_1: 89;
then ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn)) by
A5,
A33,
A45,
A59,
A50,
A57,
TOPRNS_1: 24,
XCMPLX_1: 89;
then (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
* (1
- cn))
= (((q
`1 )
/
|.q.|)
- cn) by
A6,
XCMPLX_1: 87;
then (((p
`1 )
/
|.p.|)
- cn)
= (((q
`1 )
/
|.q.|)
- cn) by
A6,
XCMPLX_1: 87;
then (((p
`1 )
/
|.p.|)
*
|.p.|)
= (q
`1 ) by
A5,
A33,
A45,
A59,
A51,
A58,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A60: (p
`1 )
= (q
`1 ) by
A45,
TOPRNS_1: 24,
XCMPLX_1: 87;
(
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
then ((
- (p
`2 ))
^2 )
= ((q
`2 )
^2 ) by
A5,
A33,
A59,
A51,
A58,
A60;
then (
- (p
`2 ))
= (
sqrt ((
- (q
`2 ))
^2 )) by
A45,
SQUARE_1: 22;
then
A61: (
- (
- (p
`2 )))
= (
- (
- (q
`2 ))) by
A30,
SQUARE_1: 22;
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A60,
A61,
EUCLID: 53;
end;
suppose
A62: p
<> (
0. (
TOP-REAL 2)) & ((p
`1 )
/
|.p.|)
< cn & (p
`2 )
<=
0 ;
then (((p
`1 )
/
|.p.|)
- cn)
<
0 by
XREAL_1: 49;
then
A63: ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
<
0 by
A1,
XREAL_1: 141,
XREAL_1: 148;
set p4 =
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))]|;
A64: (p4
`1 )
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))) & (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A30,
EUCLID: 52,
XREAL_1: 48;
A65: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
((cn
-FanMorphS )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))]| &
|.p.|
<>
0 by
A1,
A2,
A62,
Th115,
TOPRNS_1: 24;
hence thesis by
A5,
A33,
A32,
A63,
A64,
A65,
XREAL_1: 132;
end;
end;
suppose
A66: ((q
`1 )
/
|.q.|)
< cn & (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
then
A67:
|.q.|
<>
0 by
TOPRNS_1: 24;
then
A68: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
set q4 =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))]|;
A69: (q4
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
A70: ((cn
-FanMorphS )
. q)
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A1,
A2,
A66,
Th115;
per cases by
JGRAPH_2: 3;
suppose
A71: (p
`2 )
>=
0 ;
then
A72: ((cn
-FanMorphS )
. p)
= p by
Th113;
then
A73: (p
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))) by
A5,
A70,
EUCLID: 52;
A74: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A75: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A74,
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A68,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((
- ((q
`1 )
/
|.q.|))
^2 )
<= 1;
then 1
>= (
- ((q
`1 )
/
|.q.|)) by
SQUARE_1: 51;
then (1
+ cn)
>= ((
- ((q
`1 )
/
|.q.|))
+ cn) by
XREAL_1: 7;
then
A76: ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
<= 1 by
A75,
XREAL_1: 185;
A77: (((q
`1 )
/
|.q.|)
- cn)
<=
0 by
A66,
XREAL_1: 47;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn)) by
A75;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A76,
SQUARE_1: 49;
then
A78: (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A79: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )))
>=
0 by
A78,
SQUARE_1:def 2;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
^2 )
/ ((1
+ cn)
^2 ))))
>=
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
^2 )
/ ((1
+ cn)
^2 ))))
>=
0 ;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
>=
0 by
XCMPLX_1: 76;
then (p
`2 )
=
0 by
A5,
A70,
A71,
A72,
EUCLID: 52;
then (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))
= (
-
0 ) by
A67,
A73,
XCMPLX_1: 6;
then (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))
=
0 by
A79,
SQUARE_1: 24;
then 1
= ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)))
^2 );
then 1
= (
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
A75,
A77,
SQUARE_1: 18,
SQUARE_1: 22;
then 1
= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn)) by
XCMPLX_1: 187;
then (1
* (1
+ cn))
= (
- (((q
`1 )
/
|.q.|)
- cn)) by
A75,
XCMPLX_1: 87;
then ((1
+ cn)
- cn)
= (
- ((q
`1 )
/
|.q.|));
then 1
= ((
- (q
`1 ))
/
|.q.|) by
XCMPLX_1: 187;
then (1
*
|.q.|)
= (
- (q
`1 )) by
A66,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (((q
`1 )
^2 )
- ((q
`1 )
^2 ))
= ((q
`2 )
^2 ) by
A74,
XCMPLX_1: 26;
then (q
`2 )
=
0 by
XCMPLX_1: 6;
hence thesis by
A5,
A72,
Th113;
end;
suppose
A80: p
<> (
0. (
TOP-REAL 2)) & ((p
`1 )
/
|.p.|)
>= cn & (p
`2 )
<=
0 ;
set p4 =
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))]|;
A81: (p4
`1 )
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))) &
|.q.|
<>
0 by
A66,
EUCLID: 52,
TOPRNS_1: 24;
(((q
`1 )
/
|.q.|)
- cn)
<
0 by
A66,
XREAL_1: 49;
then
A82: ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
<
0 by
A1,
XREAL_1: 141,
XREAL_1: 148;
A83: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
((cn
-FanMorphS )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
- cn))
^2 )))))]| & (((p
`1 )
/
|.p.|)
- cn)
>=
0 by
A1,
A2,
A80,
Th115,
XREAL_1: 48;
hence thesis by
A5,
A70,
A69,
A82,
A81,
A83,
XREAL_1: 132;
end;
suppose
A84: p
<> (
0. (
TOP-REAL 2)) & ((p
`1 )
/
|.p.|)
< cn & (p
`2 )
<=
0 ;
0
<= ((p
`2 )
^2 ) by
XREAL_1: 63;
then (
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
0
+ ((p
`1 )
^2 ))
<= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then
A85: (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= ((
|.p.|
^2 )
/ (
|.p.|
^2 )) by
XREAL_1: 72;
A86: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A68,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((q
`1 )
/
|.q.|) by
SQUARE_1: 51;
then ((
- 1)
- cn)
<= (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- ((
- 1)
- cn))
>= (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then
A87: ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
<= 1 by
A86,
XREAL_1: 185;
(((q
`1 )
/
|.q.|)
- cn)
<=
0 by
A66,
XREAL_1: 47;
then (
- 1)
<= ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn)) by
A86;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A87,
SQUARE_1: 49;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A88: (1
- ((
- ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(q4
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))) by
EUCLID: 52;
then
A89: ((q4
`2 )
^2 )
= ((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))
^2 ))
.= ((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))) by
A88,
SQUARE_1:def 2;
A90: (q4
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
set p4 =
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))]|;
A91: (p4
`1 )
= (
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
|.p.|
<>
0 by
A84,
TOPRNS_1: 24;
then (
|.p.|
^2 )
>
0 by
SQUARE_1: 12;
then (((p
`1 )
^2 )
/ (
|.p.|
^2 ))
<= 1 by
A85,
XCMPLX_1: 60;
then (((p
`1 )
/
|.p.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then (
- 1)
<= ((p
`1 )
/
|.p.|) by
SQUARE_1: 51;
then ((
- 1)
- cn)
<= (((p
`1 )
/
|.p.|)
- cn) by
XREAL_1: 9;
then (
- ((
- 1)
- cn))
>= (
- (((p
`1 )
/
|.p.|)
- cn)) by
XREAL_1: 24;
then
A92: ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
<= 1 by
A86,
XREAL_1: 185;
(((p
`1 )
/
|.p.|)
- cn)
<=
0 by
A84,
XREAL_1: 47;
then (
- 1)
<= ((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn)) by
A86;
then (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
^2 )
<= (1
^2 ) by
A92,
SQUARE_1: 49;
then (1
- (((
- (((p
`1 )
/
|.p.|)
- cn))
/ (1
+ cn))
^2 ))
>=
0 by
XREAL_1: 48;
then
A93: (1
- ((
- ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn)))
^2 ))
>=
0 by
XCMPLX_1: 187;
(p4
`2 )
= (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))))) by
EUCLID: 52;
then
A94: ((p4
`2 )
^2 )
= ((
|.p.|
^2 )
* ((
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))
^2 ))
.= ((
|.p.|
^2 )
* (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 ))) by
A93,
SQUARE_1:def 2;
(
|.p4.|
^2 )
= (((p4
`1 )
^2 )
+ ((p4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.p.|
^2 ) by
A91,
A94;
then
A95: (
sqrt (
|.p4.|
^2 ))
=
|.p.| by
SQUARE_1: 22;
then
A96:
|.p4.|
=
|.p.| by
SQUARE_1: 22;
(
|.q4.|
^2 )
= (((q4
`1 )
^2 )
+ ((q4
`2 )
^2 )) by
JGRAPH_3: 1
.= (
|.q.|
^2 ) by
A90,
A89;
then
A97: (
sqrt (
|.q4.|
^2 ))
=
|.q.| by
SQUARE_1: 22;
then
A98:
|.q4.|
=
|.q.| by
SQUARE_1: 22;
A99: ((cn
-FanMorphS )
. p)
=
|[(
|.p.|
* ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))), (
|.p.|
* (
- (
sqrt (1
- (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A1,
A2,
A84,
Th115;
then ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
= ((
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)))
/
|.p.|) by
A5,
A70,
A69,
A84,
A91,
TOPRNS_1: 24,
XCMPLX_1: 89;
then ((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
= ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn)) by
A5,
A70,
A84,
A99,
A97,
A95,
TOPRNS_1: 24,
XCMPLX_1: 89;
then (((((p
`1 )
/
|.p.|)
- cn)
/ (1
+ cn))
* (1
+ cn))
= (((q
`1 )
/
|.q.|)
- cn) by
A86,
XCMPLX_1: 87;
then (((p
`1 )
/
|.p.|)
- cn)
= (((q
`1 )
/
|.q.|)
- cn) by
A86,
XCMPLX_1: 87;
then (((p
`1 )
/
|.p.|)
*
|.p.|)
= (q
`1 ) by
A5,
A70,
A84,
A99,
A98,
A96,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A100: (p
`1 )
= (q
`1 ) by
A84,
TOPRNS_1: 24,
XCMPLX_1: 87;
(
|.p.|
^2 )
= (((p
`1 )
^2 )
+ ((p
`2 )
^2 )) & (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
then ((
- (p
`2 ))
^2 )
= ((q
`2 )
^2 ) by
A5,
A70,
A99,
A98,
A96,
A100;
then (
- (p
`2 ))
= (
sqrt ((
- (q
`2 ))
^2 )) by
A84,
SQUARE_1: 22;
then
A101: (
- (
- (p
`2 )))
= (
- (
- (q
`2 ))) by
A66,
SQUARE_1: 22;
p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
hence thesis by
A100,
A101,
EUCLID: 53;
end;
end;
end;
hence thesis by
FUNCT_1:def 4;
end;
theorem ::
JGRAPH_4:134
Th134: for cn be
Real st (
- 1)
< cn & cn
< 1 holds (cn
-FanMorphS ) is
Function of (
TOP-REAL 2), (
TOP-REAL 2) & (
rng (cn
-FanMorphS ))
= the
carrier of (
TOP-REAL 2)
proof
let cn be
Real;
assume that
A1: (
- 1)
< cn and
A2: cn
< 1;
thus (cn
-FanMorphS ) is
Function of (
TOP-REAL 2), (
TOP-REAL 2);
for f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
= (cn
-FanMorphS ) holds (
rng (cn
-FanMorphS ))
= the
carrier of (
TOP-REAL 2)
proof
let f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume
A3: f
= (cn
-FanMorphS );
A4: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
the
carrier of (
TOP-REAL 2)
c= (
rng f)
proof
let y be
object;
assume y
in the
carrier of (
TOP-REAL 2);
then
reconsider p2 = y as
Point of (
TOP-REAL 2);
set q = p2;
now
per cases by
JGRAPH_2: 3;
case (q
`2 )
>=
0 ;
then y
= ((cn
-FanMorphS )
. q) by
Th113;
hence ex x be
set st x
in (
dom (cn
-FanMorphS )) & y
= ((cn
-FanMorphS )
. x) by
A3,
A4;
end;
case
A5: ((q
`1 )
/
|.q.|)
>=
0 & (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
(
- (
- (1
+ cn)))
>
0 by
A1,
XREAL_1: 148;
then
A6: (
- ((
- 1)
- cn))
>
0 ;
A7: (1
- cn)
>=
0 by
A2,
XREAL_1: 149;
then (((q
`1 )
/
|.q.|)
* (1
- cn))
>=
0 by
A5;
then ((
- 1)
- cn)
<= (((q
`1 )
/
|.q.|)
* (1
- cn)) by
A6;
then
A8: (((
- 1)
- cn)
+ cn)
<= ((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn) by
XREAL_1: 7;
set px =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)), (
- (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 )))))]|;
A9: (px
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)) by
EUCLID: 52;
|.q.|
<>
0 by
A5,
TOPRNS_1: 24;
then
A10: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
A11: (
dom (cn
-FanMorphS ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A12: (1
- cn)
>
0 by
A2,
XREAL_1: 149;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A10,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((q
`1 )
/
|.q.|)
<= 1 by
SQUARE_1: 51;
then (((q
`1 )
/
|.q.|)
* (1
- cn))
<= (1
* (1
- cn)) by
A12,
XREAL_1: 64;
then (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
- cn)
<= (1
- cn);
then ((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
<= 1 by
XREAL_1: 9;
then (1
^2 )
>= (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 ) by
A8,
SQUARE_1: 49;
then
A13: (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 ))
>=
0 by
XREAL_1: 48;
then
A14: (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 )))
>=
0 by
SQUARE_1:def 2;
A15: (px
`2 )
= (
- (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 ))))) by
EUCLID: 52;
then (
|.px.|
^2 )
= ((((
-
|.q.|)
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 ))))
^2 )
+ ((
|.q.|
* ((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn))
^2 )) by
A9,
JGRAPH_3: 1
.= (((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 )))
^2 ))
+ ((
|.q.|
^2 )
* (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 )));
then
A16: (
|.px.|
^2 )
= (((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 )))
+ ((
|.q.|
^2 )
* (((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
^2 ))) by
A13,
SQUARE_1:def 2
.= (
|.q.|
^2 );
then
A17:
|.px.|
= (
sqrt (
|.q.|
^2 )) by
SQUARE_1: 22
.=
|.q.| by
SQUARE_1: 22;
then
A18: px
<> (
0. (
TOP-REAL 2)) by
A5,
TOPRNS_1: 23,
TOPRNS_1: 24;
((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
>= (
0
+ cn) by
A5,
A7,
XREAL_1: 7;
then ((px
`1 )
/
|.px.|)
>= cn by
A5,
A9,
A17,
TOPRNS_1: 24,
XCMPLX_1: 89;
then
A19: ((cn
-FanMorphS )
. px)
=
|[(
|.px.|
* ((((px
`1 )
/
|.px.|)
- cn)
/ (1
- cn))), (
|.px.|
* (
- (
sqrt (1
- (((((px
`1 )
/
|.px.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A1,
A2,
A15,
A14,
A18,
Th115;
(
|.px.|
* (
sqrt ((
- ((q
`2 )
/
|.q.|))
^2 )))
= (
|.q.|
* (
- ((q
`2 )
/
|.q.|))) by
A5,
A17,
SQUARE_1: 22
.= (((
- (q
`2 ))
/
|.q.|)
*
|.q.|) by
XCMPLX_1: 187
.= (
- (q
`2 )) by
A5,
TOPRNS_1: 24,
XCMPLX_1: 87;
then
A20: (
|.px.|
* (
- (
sqrt ((
- ((q
`2 )
/
|.q.|))
^2 ))))
= (q
`2 );
A21: (
|.px.|
* ((((px
`1 )
/
|.px.|)
- cn)
/ (1
- cn)))
= (
|.q.|
* ((((((q
`1 )
/
|.q.|)
* (1
- cn))
+ cn)
- cn)
/ (1
- cn))) by
A5,
A9,
A17,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.q.|
* ((q
`1 )
/
|.q.|)) by
A12,
XCMPLX_1: 89
.= (q
`1 ) by
A5,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (
|.px.|
* (
- (
sqrt (1
- (((((px
`1 )
/
|.px.|)
- cn)
/ (1
- cn))
^2 )))))
= (
|.px.|
* (
- (
sqrt (1
- (((q
`1 )
/
|.px.|)
^2 ))))) by
A5,
A17,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.px.|
* (
- (
sqrt (1
- (((q
`1 )
^2 )
/ (
|.px.|
^2 )))))) by
XCMPLX_1: 76
.= (
|.px.|
* (
- (
sqrt (((
|.px.|
^2 )
/ (
|.px.|
^2 ))
- (((q
`1 )
^2 )
/ (
|.px.|
^2 )))))) by
A10,
A16,
XCMPLX_1: 60
.= (
|.px.|
* (
- (
sqrt (((
|.px.|
^2 )
- ((q
`1 )
^2 ))
/ (
|.px.|
^2 ))))) by
XCMPLX_1: 120
.= (
|.px.|
* (
- (
sqrt (((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
- ((q
`1 )
^2 ))
/ (
|.px.|
^2 ))))) by
A16,
JGRAPH_3: 1
.= (
|.px.|
* (
- (
sqrt (((q
`2 )
/
|.q.|)
^2 )))) by
A17,
XCMPLX_1: 76;
hence ex x be
set st x
in (
dom (cn
-FanMorphS )) & y
= ((cn
-FanMorphS )
. x) by
A19,
A21,
A20,
A11,
EUCLID: 53;
end;
case
A22: ((q
`1 )
/
|.q.|)
<
0 & (q
`2 )
<=
0 & q
<> (
0. (
TOP-REAL 2));
A23: (1
+ cn)
>=
0 by
A1,
XREAL_1: 148;
(1
- cn)
>
0 by
A2,
XREAL_1: 149;
then
A24: ((1
- cn)
+ cn)
>= ((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn) by
A22,
A23,
XREAL_1: 7;
A25: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
|.q.|
<>
0 by
A22,
TOPRNS_1: 24;
then
A26: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
0
<= ((q
`2 )
^2 ) by
XREAL_1: 63;
then (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
<= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1,
XREAL_1: 7;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
XREAL_1: 72;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
<= 1 by
A26,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
<= 1 by
XCMPLX_1: 76;
then ((q
`1 )
/
|.q.|)
>= (
- 1) by
SQUARE_1: 51;
then (((q
`1 )
/
|.q.|)
* (1
+ cn))
>= ((
- 1)
* (1
+ cn)) by
A25,
XREAL_1: 64;
then (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
- cn)
>= ((
- 1)
- cn);
then ((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
>= (
- 1) by
XREAL_1: 9;
then (1
^2 )
>= (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 ) by
A24,
SQUARE_1: 49;
then
A27: (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 ))
>=
0 by
XREAL_1: 48;
then
A28: (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 )))
>=
0 by
SQUARE_1:def 2;
A29: (
dom (cn
-FanMorphS ))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
set px =
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)), (
- (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 )))))]|;
A30: (px
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)) by
EUCLID: 52;
A31: (px
`2 )
= (
- (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 ))))) by
EUCLID: 52;
then (
|.px.|
^2 )
= (((
- (
|.q.|
* (
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 )))))
^2 )
+ ((
|.q.|
* ((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn))
^2 )) by
A30,
JGRAPH_3: 1
.= (((
|.q.|
^2 )
* ((
sqrt (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 )))
^2 ))
+ ((
|.q.|
^2 )
* (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 )));
then
A32: (
|.px.|
^2 )
= (((
|.q.|
^2 )
* (1
- (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 )))
+ ((
|.q.|
^2 )
* (((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
^2 ))) by
A27,
SQUARE_1:def 2
.= (
|.q.|
^2 );
then
A33:
|.px.|
= (
sqrt (
|.q.|
^2 )) by
SQUARE_1: 22
.=
|.q.| by
SQUARE_1: 22;
then
A34: px
<> (
0. (
TOP-REAL 2)) by
A22,
TOPRNS_1: 23,
TOPRNS_1: 24;
((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
<= (
0
+ cn) by
A22,
A23,
XREAL_1: 7;
then ((px
`1 )
/
|.px.|)
<= cn by
A22,
A30,
A33,
TOPRNS_1: 24,
XCMPLX_1: 89;
then
A35: ((cn
-FanMorphS )
. px)
=
|[(
|.px.|
* ((((px
`1 )
/
|.px.|)
- cn)
/ (1
+ cn))), (
|.px.|
* (
- (
sqrt (1
- (((((px
`1 )
/
|.px.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A1,
A2,
A31,
A28,
A34,
Th115;
A36: (
|.px.|
* (
- (
sqrt (((q
`2 )
/
|.q.|)
^2 ))))
= (
|.px.|
* (
- (
sqrt ((
- ((q
`2 )
/
|.q.|))
^2 ))))
.= (
|.px.|
* (
- (
- ((q
`2 )
/
|.q.|)))) by
A22,
SQUARE_1: 22
.= (q
`2 ) by
A22,
A33,
TOPRNS_1: 24,
XCMPLX_1: 87;
A37: (
|.px.|
* ((((px
`1 )
/
|.px.|)
- cn)
/ (1
+ cn)))
= (
|.q.|
* ((((((q
`1 )
/
|.q.|)
* (1
+ cn))
+ cn)
- cn)
/ (1
+ cn))) by
A22,
A30,
A33,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.q.|
* ((q
`1 )
/
|.q.|)) by
A25,
XCMPLX_1: 89
.= (q
`1 ) by
A22,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (
|.px.|
* (
- (
sqrt (1
- (((((px
`1 )
/
|.px.|)
- cn)
/ (1
+ cn))
^2 )))))
= (
|.px.|
* (
- (
sqrt (1
- (((q
`1 )
/
|.px.|)
^2 ))))) by
A22,
A33,
TOPRNS_1: 24,
XCMPLX_1: 89
.= (
|.px.|
* (
- (
sqrt (1
- (((q
`1 )
^2 )
/ (
|.px.|
^2 )))))) by
XCMPLX_1: 76
.= (
|.px.|
* (
- (
sqrt (((
|.px.|
^2 )
/ (
|.px.|
^2 ))
- (((q
`1 )
^2 )
/ (
|.px.|
^2 )))))) by
A26,
A32,
XCMPLX_1: 60
.= (
|.px.|
* (
- (
sqrt (((
|.px.|
^2 )
- ((q
`1 )
^2 ))
/ (
|.px.|
^2 ))))) by
XCMPLX_1: 120
.= (
|.px.|
* (
- (
sqrt (((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
- ((q
`1 )
^2 ))
/ (
|.px.|
^2 ))))) by
A32,
JGRAPH_3: 1
.= (
|.px.|
* (
- (
sqrt (((q
`2 )
/
|.q.|)
^2 )))) by
A33,
XCMPLX_1: 76;
hence ex x be
set st x
in (
dom (cn
-FanMorphS )) & y
= ((cn
-FanMorphS )
. x) by
A35,
A37,
A36,
A29,
EUCLID: 53;
end;
end;
hence thesis by
A3,
FUNCT_1:def 3;
end;
hence thesis by
A3,
XBOOLE_0:def 10;
end;
hence thesis;
end;
theorem ::
JGRAPH_4:135
Th135: for cn be
Real, p2 be
Point of (
TOP-REAL 2) st (
- 1)
< cn & cn
< 1 holds ex K be non
empty
compact
Subset of (
TOP-REAL 2) st K
= ((cn
-FanMorphS )
.: K) & ex V2 be
Subset of (
TOP-REAL 2) st p2
in V2 & V2 is
open & V2
c= K & ((cn
-FanMorphS )
. p2)
in V2
proof
reconsider O = (
0. (
TOP-REAL 2)) as
Point of (
Euclid 2) by
EUCLID: 67;
let cn be
Real, p2 be
Point of (
TOP-REAL 2);
A1: the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
then
reconsider V0 = (
Ball (O,(
|.p2.|
+ 1))) as
Subset of (
TOP-REAL 2);
O
in V0 & V0
c= (
cl_Ball (O,(
|.p2.|
+ 1))) by
GOBOARD6: 1,
METRIC_1: 14;
then
reconsider K0 = (
cl_Ball (O,(
|.p2.|
+ 1))) as non
empty
compact
Subset of (
TOP-REAL 2) by
A1,
Th15;
set q3 = ((cn
-FanMorphS )
. p2);
reconsider VV0 = V0 as
Subset of (
TopSpaceMetr (
Euclid 2));
reconsider u2 = p2 as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider u3 = q3 as
Point of (
Euclid 2) by
EUCLID: 67;
A2: ((cn
-FanMorphS )
.: K0)
c= K0
proof
let y be
object;
assume y
in ((cn
-FanMorphS )
.: K0);
then
consider x be
object such that
A3: x
in (
dom (cn
-FanMorphS )) and
A4: x
in K0 and
A5: y
= ((cn
-FanMorphS )
. x) by
FUNCT_1:def 6;
reconsider q = x as
Point of (
TOP-REAL 2) by
A3;
reconsider uq = q as
Point of (
Euclid 2) by
EUCLID: 67;
(
dist (O,uq))
<= (
|.p2.|
+ 1) by
A4,
METRIC_1: 12;
then
|.((
0. (
TOP-REAL 2))
- q).|
<= (
|.p2.|
+ 1) by
JGRAPH_1: 28;
then
|.(
- q).|
<= (
|.p2.|
+ 1) by
RLVECT_1: 4;
then
A6:
|.q.|
<= (
|.p2.|
+ 1) by
TOPRNS_1: 26;
A7: y
in (
rng (cn
-FanMorphS )) by
A3,
A5,
FUNCT_1:def 3;
then
reconsider u = y as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider q4 = y as
Point of (
TOP-REAL 2) by
A7;
|.q4.|
=
|.q.| by
A5,
Th128;
then
|.(
- q4).|
<= (
|.p2.|
+ 1) by
A6,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- q4).|
<= (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u))
<= (
|.p2.|
+ 1) by
JGRAPH_1: 28;
hence thesis by
METRIC_1: 12;
end;
VV0 is
open by
TOPMETR: 14;
then
A8: V0 is
open by
Lm11,
PRE_TOPC: 30;
A9:
|.p2.|
< (
|.p2.|
+ 1) by
XREAL_1: 29;
then
|.(
- p2).|
< (
|.p2.|
+ 1) by
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- p2).|
< (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u2))
< (
|.p2.|
+ 1) by
JGRAPH_1: 28;
then
A10: p2
in V0 by
METRIC_1: 11;
|.q3.|
=
|.p2.| by
Th128;
then
|.(
- q3).|
< (
|.p2.|
+ 1) by
A9,
TOPRNS_1: 26;
then
|.((
0. (
TOP-REAL 2))
- q3).|
< (
|.p2.|
+ 1) by
RLVECT_1: 4;
then (
dist (O,u3))
< (
|.p2.|
+ 1) by
JGRAPH_1: 28;
then
A11: ((cn
-FanMorphS )
. p2)
in V0 by
METRIC_1: 11;
assume
A12: (
- 1)
< cn & cn
< 1;
K0
c= ((cn
-FanMorphS )
.: K0)
proof
let y be
object;
assume
A13: y
in K0;
then
reconsider q4 = y as
Point of (
TOP-REAL 2);
reconsider y as
Point of (
Euclid 2) by
A13;
the
carrier of (
TOP-REAL 2)
c= (
rng (cn
-FanMorphS )) by
A12,
Th134;
then q4
in (
rng (cn
-FanMorphS ));
then
consider x be
object such that
A14: x
in (
dom (cn
-FanMorphS )) and
A15: y
= ((cn
-FanMorphS )
. x) by
FUNCT_1:def 3;
reconsider x as
Point of (
Euclid 2) by
A14,
Lm11;
reconsider q = x as
Point of (
TOP-REAL 2) by
A14;
|.q4.|
=
|.q.| by
A15,
Th128;
then q
in K0 by
A13,
Lm12;
hence thesis by
A14,
A15,
FUNCT_1:def 6;
end;
then K0
= ((cn
-FanMorphS )
.: K0) by
A2,
XBOOLE_0:def 10;
hence thesis by
A10,
A8,
A11,
METRIC_1: 14;
end;
theorem ::
JGRAPH_4:136
for cn be
Real st (
- 1)
< cn & cn
< 1 holds ex f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
= (cn
-FanMorphS ) & f is
being_homeomorphism
proof
let cn be
Real;
set f = (cn
-FanMorphS );
assume
A1: (
- 1)
< cn & cn
< 1;
then
A2: for p2 be
Point of (
TOP-REAL 2) holds ex K be non
empty
compact
Subset of (
TOP-REAL 2) st K
= (f
.: K) & ex V2 be
Subset of (
TOP-REAL 2) st p2
in V2 & V2 is
open & V2
c= K & (f
. p2)
in V2 by
Th135;
(
rng (cn
-FanMorphS ))
= the
carrier of (
TOP-REAL 2) & (cn
-FanMorphS ) is
continuous by
A1,
Th132,
Th134;
then f is
being_homeomorphism by
A1,
A2,
Th3,
Th133;
hence thesis;
end;
theorem ::
JGRAPH_4:137
Th137: for cn be
Real, q be
Point of (
TOP-REAL 2) st cn
< 1 & (q
`2 )
<
0 & ((q
`1 )
/
|.q.|)
>= cn holds for p be
Point of (
TOP-REAL 2) st p
= ((cn
-FanMorphS )
. q) holds (p
`2 )
<
0 & (p
`1 )
>=
0
proof
let cn be
Real, q be
Point of (
TOP-REAL 2);
assume that
A1: cn
< 1 and
A2: (q
`2 )
<
0 and
A3: ((q
`1 )
/
|.q.|)
>= cn;
A4: (1
- cn)
>
0 by
A1,
XREAL_1: 149;
let p be
Point of (
TOP-REAL 2);
set qz = p;
assume p
= ((cn
-FanMorphS )
. q);
then
A5: p
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A2,
A3,
Th113;
then
A6: (qz
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))) by
EUCLID: 52;
A7: (((q
`1 )
/
|.q.|)
- cn)
>=
0 by
A3,
XREAL_1: 48;
A8:
|.q.|
<>
0 by
A2,
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A9: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
(
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A2,
JGRAPH_3: 1,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A9,
XREAL_1: 74;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A9,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then 1
> ((q
`1 )
/
|.q.|) by
SQUARE_1: 52;
then (1
- cn)
> (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- (1
- cn))
< (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then ((
- (1
- cn))
/ (1
- cn))
< ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A4,
XREAL_1: 74;
then (
- 1)
< ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn)) by
A4,
XCMPLX_1: 197;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
- cn))
^2 )
< (1
^2 ) by
A4,
A7,
SQUARE_1: 50;
hence thesis by
A5,
A8,
A4,
A6,
A7,
Lm13,
EUCLID: 52,
XREAL_1: 132;
end;
theorem ::
JGRAPH_4:138
Th138: for cn be
Real, q be
Point of (
TOP-REAL 2) st (
- 1)
< cn & (q
`2 )
<
0 & ((q
`1 )
/
|.q.|)
< cn holds for p be
Point of (
TOP-REAL 2) st p
= ((cn
-FanMorphS )
. q) holds (p
`2 )
<
0 & (p
`1 )
<
0
proof
let cn be
Real, q be
Point of (
TOP-REAL 2);
assume that
A1: (
- 1)
< cn and
A2: (q
`2 )
<
0 and
A3: ((q
`1 )
/
|.q.|)
< cn;
A4: (1
+ cn)
>
0 by
A1,
XREAL_1: 148;
A5: (((q
`1 )
/
|.q.|)
- cn)
<
0 by
A3,
XREAL_1: 49;
then (
- (((q
`1 )
/
|.q.|)
- cn))
>
0 by
XREAL_1: 58;
then ((
- (1
+ cn))
/ (1
+ cn))
< ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn)) by
A4,
XREAL_1: 74;
then
A6: (
- 1)
< ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn)) by
A4,
XCMPLX_1: 197;
A7:
|.q.|
<>
0 by
A2,
JGRAPH_2: 3,
TOPRNS_1: 24;
then
A8: (
|.q.|
^2 )
>
0 by
SQUARE_1: 12;
(
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) & (
0
+ ((q
`1 )
^2 ))
< (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
A2,
JGRAPH_3: 1,
SQUARE_1: 12,
XREAL_1: 8;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< ((
|.q.|
^2 )
/ (
|.q.|
^2 )) by
A8,
XREAL_1: 74;
then (((q
`1 )
^2 )
/ (
|.q.|
^2 ))
< 1 by
A8,
XCMPLX_1: 60;
then (((q
`1 )
/
|.q.|)
^2 )
< 1 by
XCMPLX_1: 76;
then (
- 1)
< ((q
`1 )
/
|.q.|) by
SQUARE_1: 52;
then ((
- 1)
- cn)
< (((q
`1 )
/
|.q.|)
- cn) by
XREAL_1: 9;
then (
- (
- (1
+ cn)))
> (
- (((q
`1 )
/
|.q.|)
- cn)) by
XREAL_1: 24;
then ((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
< 1 by
A4,
XREAL_1: 191;
then (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )
< (1
^2 ) by
A6,
SQUARE_1: 50;
then (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 ))
>
0 by
XREAL_1: 50;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
/ (1
+ cn))
^2 )))
>
0 by
SQUARE_1: 25;
then (
sqrt (1
- (((
- (((q
`1 )
/
|.q.|)
- cn))
^2 )
/ ((1
+ cn)
^2 ))))
>
0 by
XCMPLX_1: 76;
then (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
^2 )
/ ((1
+ cn)
^2 ))))
>
0 ;
then (
- (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))
>
0 by
XCMPLX_1: 76;
then
A9: (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))
<
0 ;
let p be
Point of (
TOP-REAL 2);
set qz = p;
assume p
= ((cn
-FanMorphS )
. q);
then p
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A2,
A3,
Th114;
then
A10: (qz
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
^2 ))))) & (qz
`1 )
= (
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
((((q
`1 )
/
|.q.|)
- cn)
/ (1
+ cn))
<
0 by
A1,
A5,
XREAL_1: 141,
XREAL_1: 148;
hence thesis by
A7,
A10,
A9,
XREAL_1: 132;
end;
theorem ::
JGRAPH_4:139
Th139: for cn be
Real, q1,q2 be
Point of (
TOP-REAL 2) st cn
< 1 & (q1
`2 )
<
0 & ((q1
`1 )
/
|.q1.|)
>= cn & (q2
`2 )
<
0 & ((q2
`1 )
/
|.q2.|)
>= cn & ((q1
`1 )
/
|.q1.|)
< ((q2
`1 )
/
|.q2.|) holds for p1,p2 be
Point of (
TOP-REAL 2) st p1
= ((cn
-FanMorphS )
. q1) & p2
= ((cn
-FanMorphS )
. q2) holds ((p1
`1 )
/
|.p1.|)
< ((p2
`1 )
/
|.p2.|)
proof
let cn be
Real, q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: cn
< 1 and
A2: (q1
`2 )
<
0 and
A3: ((q1
`1 )
/
|.q1.|)
>= cn and
A4: (q2
`2 )
<
0 and
A5: ((q2
`1 )
/
|.q2.|)
>= cn and
A6: ((q1
`1 )
/
|.q1.|)
< ((q2
`1 )
/
|.q2.|);
A7: (((q1
`1 )
/
|.q1.|)
- cn)
< (((q2
`1 )
/
|.q2.|)
- cn) & (1
- cn)
>
0 by
A1,
A6,
XREAL_1: 9,
XREAL_1: 149;
let p1,p2 be
Point of (
TOP-REAL 2);
assume that
A8: p1
= ((cn
-FanMorphS )
. q1) and
A9: p2
= ((cn
-FanMorphS )
. q2);
A10:
|.p2.|
=
|.q2.| by
A9,
Th128;
p2
=
|[(
|.q2.|
* ((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
- cn))), (
|.q2.|
* (
- (
sqrt (1
- (((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A4,
A5,
A9,
Th113;
then
A11: (p2
`1 )
= (
|.q2.|
* ((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
|.q2.|
>
0 by
A4,
Lm1,
JGRAPH_2: 3;
then
A12: ((p2
`1 )
/
|.p2.|)
= ((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
- cn)) by
A11,
A10,
XCMPLX_1: 89;
p1
=
|[(
|.q1.|
* ((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
- cn))), (
|.q1.|
* (
- (
sqrt (1
- (((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A2,
A3,
A8,
Th113;
then
A13: (p1
`1 )
= (
|.q1.|
* ((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
- cn))) by
EUCLID: 52;
A14:
|.p1.|
=
|.q1.| by
A8,
Th128;
|.q1.|
>
0 by
A2,
Lm1,
JGRAPH_2: 3;
then ((p1
`1 )
/
|.p1.|)
= ((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
- cn)) by
A13,
A14,
XCMPLX_1: 89;
hence thesis by
A12,
A7,
XREAL_1: 74;
end;
theorem ::
JGRAPH_4:140
Th140: for cn be
Real, q1,q2 be
Point of (
TOP-REAL 2) st (
- 1)
< cn & (q1
`2 )
<
0 & ((q1
`1 )
/
|.q1.|)
< cn & (q2
`2 )
<
0 & ((q2
`1 )
/
|.q2.|)
< cn & ((q1
`1 )
/
|.q1.|)
< ((q2
`1 )
/
|.q2.|) holds for p1,p2 be
Point of (
TOP-REAL 2) st p1
= ((cn
-FanMorphS )
. q1) & p2
= ((cn
-FanMorphS )
. q2) holds ((p1
`1 )
/
|.p1.|)
< ((p2
`1 )
/
|.p2.|)
proof
let cn be
Real, q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: (
- 1)
< cn and
A2: (q1
`2 )
<
0 and
A3: ((q1
`1 )
/
|.q1.|)
< cn and
A4: (q2
`2 )
<
0 and
A5: ((q2
`1 )
/
|.q2.|)
< cn and
A6: ((q1
`1 )
/
|.q1.|)
< ((q2
`1 )
/
|.q2.|);
A7: (((q1
`1 )
/
|.q1.|)
- cn)
< (((q2
`1 )
/
|.q2.|)
- cn) & (1
+ cn)
>
0 by
A1,
A6,
XREAL_1: 9,
XREAL_1: 148;
let p1,p2 be
Point of (
TOP-REAL 2);
assume that
A8: p1
= ((cn
-FanMorphS )
. q1) and
A9: p2
= ((cn
-FanMorphS )
. q2);
A10:
|.p2.|
=
|.q2.| by
A9,
Th128;
p2
=
|[(
|.q2.|
* ((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
+ cn))), (
|.q2.|
* (
- (
sqrt (1
- (((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A4,
A5,
A9,
Th114;
then
A11: (p2
`1 )
= (
|.q2.|
* ((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
|.q2.|
>
0 by
A4,
Lm1,
JGRAPH_2: 3;
then
A12: ((p2
`1 )
/
|.p2.|)
= ((((q2
`1 )
/
|.q2.|)
- cn)
/ (1
+ cn)) by
A11,
A10,
XCMPLX_1: 89;
p1
=
|[(
|.q1.|
* ((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
+ cn))), (
|.q1.|
* (
- (
sqrt (1
- (((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
+ cn))
^2 )))))]| by
A2,
A3,
A8,
Th114;
then
A13: (p1
`1 )
= (
|.q1.|
* ((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
+ cn))) by
EUCLID: 52;
A14:
|.p1.|
=
|.q1.| by
A8,
Th128;
|.q1.|
>
0 by
A2,
Lm1,
JGRAPH_2: 3;
then ((p1
`1 )
/
|.p1.|)
= ((((q1
`1 )
/
|.q1.|)
- cn)
/ (1
+ cn)) by
A13,
A14,
XCMPLX_1: 89;
hence thesis by
A12,
A7,
XREAL_1: 74;
end;
theorem ::
JGRAPH_4:141
for cn be
Real, q1,q2 be
Point of (
TOP-REAL 2) st (
- 1)
< cn & cn
< 1 & (q1
`2 )
<
0 & (q2
`2 )
<
0 & ((q1
`1 )
/
|.q1.|)
< ((q2
`1 )
/
|.q2.|) holds for p1,p2 be
Point of (
TOP-REAL 2) st p1
= ((cn
-FanMorphS )
. q1) & p2
= ((cn
-FanMorphS )
. q2) holds ((p1
`1 )
/
|.p1.|)
< ((p2
`1 )
/
|.p2.|)
proof
let cn be
Real, q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: (
- 1)
< cn and
A2: cn
< 1 and
A3: (q1
`2 )
<
0 and
A4: (q2
`2 )
<
0 and
A5: ((q1
`1 )
/
|.q1.|)
< ((q2
`1 )
/
|.q2.|);
let p1,p2 be
Point of (
TOP-REAL 2);
assume that
A6: p1
= ((cn
-FanMorphS )
. q1) and
A7: p2
= ((cn
-FanMorphS )
. q2);
per cases ;
suppose ((q1
`1 )
/
|.q1.|)
>= cn & ((q2
`1 )
/
|.q2.|)
>= cn;
hence thesis by
A2,
A3,
A4,
A5,
A6,
A7,
Th139;
end;
suppose ((q1
`1 )
/
|.q1.|)
>= cn & ((q2
`1 )
/
|.q2.|)
< cn;
hence thesis by
A5,
XXREAL_0: 2;
end;
suppose
A8: ((q1
`1 )
/
|.q1.|)
< cn & ((q2
`1 )
/
|.q2.|)
>= cn;
then (p2
`1 )
>=
0 by
A2,
A4,
A7,
Th137;
then
A9: ((p2
`1 )
/
|.p2.|)
>=
0 ;
(p1
`1 )
<
0 by
A1,
A3,
A6,
A8,
Th138;
hence thesis by
A9,
Lm1,
JGRAPH_2: 3,
XREAL_1: 141;
end;
suppose ((q1
`1 )
/
|.q1.|)
< cn & ((q2
`1 )
/
|.q2.|)
< cn;
hence thesis by
A1,
A3,
A4,
A5,
A6,
A7,
Th140;
end;
end;
theorem ::
JGRAPH_4:142
for cn be
Real, q be
Point of (
TOP-REAL 2) st (q
`2 )
<
0 & ((q
`1 )
/
|.q.|)
= cn holds for p be
Point of (
TOP-REAL 2) st p
= ((cn
-FanMorphS )
. q) holds (p
`2 )
<
0 & (p
`1 )
=
0
proof
let cn be
Real, q be
Point of (
TOP-REAL 2);
assume that
A1: (q
`2 )
<
0 and
A2: ((q
`1 )
/
|.q.|)
= cn;
let p be
Point of (
TOP-REAL 2);
A3:
|.q.|
<>
0 by
A1,
JGRAPH_2: 3,
TOPRNS_1: 24;
assume p
= ((cn
-FanMorphS )
. q);
then
A4: p
=
|[(
|.q.|
* ((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))), (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 )))))]| by
A1,
A2,
Th113;
then (p
`2 )
= (
|.q.|
* (
- (
sqrt (1
- (((((q
`1 )
/
|.q.|)
- cn)
/ (1
- cn))
^2 ))))) by
EUCLID: 52;
hence thesis by
A2,
A4,
A3,
Lm13,
EUCLID: 52,
XREAL_1: 132;
end;
theorem ::
JGRAPH_4:143
(
0. (
TOP-REAL 2))
= ((a
-FanMorphS )
. (
0. (
TOP-REAL 2))) by
Th113,
JGRAPH_2: 3;