jordan1e.miz
begin
reserve n for
Nat;
theorem ::
JORDAN1E:1
Th1: for f,g be
FinSequence of (
TOP-REAL 2) st f
is_in_the_area_of g holds for p be
Element of (
TOP-REAL 2) st p
in (
rng f) holds (f
-: p)
is_in_the_area_of g
proof
let f,g be
FinSequence of (
TOP-REAL 2);
assume
A1: f
is_in_the_area_of g;
let p be
Element of (
TOP-REAL 2);
assume
A2: p
in (
rng f);
then
A3: (p
.. f)
<= (
len f) by
FINSEQ_4: 21;
let n be
Nat;
assume
A4: n
in (
dom (f
-: p));
A5: (
len (f
-: p))
= (p
.. f) by
A2,
FINSEQ_5: 42;
then n
in (
Seg (p
.. f)) by
A4,
FINSEQ_1:def 3;
then
A6: ((f
-: p)
/. n)
= (f
/. n) by
A2,
FINSEQ_5: 43;
A7: n
in (
Seg (
len (f
-: p))) by
A4,
FINSEQ_1:def 3;
then n
<= (p
.. f) by
A5,
FINSEQ_1: 1;
then
A8: n
<= (
len f) by
A3,
XXREAL_0: 2;
1
<= n by
A7,
FINSEQ_1: 1;
then n
in (
dom f) by
A8,
FINSEQ_3: 25;
hence thesis by
A1,
A6;
end;
theorem ::
JORDAN1E:2
Th2: for f,g be
FinSequence of (
TOP-REAL 2) st f
is_in_the_area_of g holds for p be
Element of (
TOP-REAL 2) st p
in (
rng f) holds (f
:- p)
is_in_the_area_of g
proof
let f,g be
FinSequence of (
TOP-REAL 2);
assume
A1: f
is_in_the_area_of g;
let p be
Element of (
TOP-REAL 2);
assume
A2: p
in (
rng f);
let n be
Nat;
1
<= (p
.. f) by
A2,
FINSEQ_4: 21;
then
A3: (
0
+ 1)
<= ((n
-' 1)
+ (p
.. f)) by
XREAL_1: 7;
assume
A4: n
in (
dom (f
:- p));
then
A5: n
in (
Seg (
len (f
:- p))) by
FINSEQ_1:def 3;
then
A6: (
0
+ 1)
<= n by
FINSEQ_1: 1;
then ((n
-' 1)
+ 1)
= n by
XREAL_1: 235;
then
A7: ((f
:- p)
/. n)
= (f
/. ((n
-' 1)
+ (p
.. f))) by
A2,
A4,
FINSEQ_5: 52;
(
len (f
:- p))
= (((
len f)
- (p
.. f))
+ 1) by
A2,
FINSEQ_5: 50;
then n
<= (((
len f)
- (p
.. f))
+ 1) by
A5,
FINSEQ_1: 1;
then (n
- 1)
<= ((
len f)
- (p
.. f)) by
XREAL_1: 20;
then
A8: ((n
- 1)
+ (p
.. f))
<= (
len f) by
XREAL_1: 19;
(n
- 1)
>=
0 by
A6,
XREAL_1: 19;
then ((n
-' 1)
+ (p
.. f))
<= (
len f) by
A8,
XREAL_0:def 2;
then ((n
-' 1)
+ (p
.. f))
in (
dom f) by
A3,
FINSEQ_3: 25;
hence thesis by
A1,
A7;
end;
theorem ::
JORDAN1E:3
for f be
FinSequence of (
TOP-REAL 2) holds for p be
Point of (
TOP-REAL 2) st p
in (
L~ f) holds (
L_Cut (f,p))
<>
{}
proof
let f be
FinSequence of (
TOP-REAL 2);
let p be
Point of (
TOP-REAL 2);
assume that
A1: p
in (
L~ f) and
A2: (
L_Cut (f,p))
=
{} ;
(
len f)
<>
0 by
A1,
TOPREAL1: 22;
then f
<>
{} ;
then
A3: (
len f)
in (
dom f) by
FINSEQ_5: 6;
A4: p
<> (f
. ((
Index (p,f))
+ 1)) or p
= (f
. ((
Index (p,f))
+ 1));
(
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f)))) is non
empty;
then (
L_Cut (f,p))
= (
mid (f,((
Index (p,f))
+ 1),(
len f))) by
A2,
A4,
JORDAN3:def 3;
then not ((
Index (p,f))
+ 1)
in (
dom f) by
A2,
A3,
SPRECT_2: 7;
then ((
Index (p,f))
+ 1)
< 1 or ((
Index (p,f))
+ 1)
> (
len f) by
FINSEQ_3: 25;
then (
Index (p,f))
>= (
len f) by
NAT_1: 11,
NAT_1: 13;
hence contradiction by
A1,
JORDAN3: 8;
end;
theorem ::
JORDAN1E:4
for f be
FinSequence of (
TOP-REAL 2) holds for p be
Point of (
TOP-REAL 2) st p
in (
L~ f) & (
len (
R_Cut (f,p)))
>= 2 holds (f
. 1)
in (
L~ (
R_Cut (f,p)))
proof
let f be
FinSequence of (
TOP-REAL 2);
let p be
Point of (
TOP-REAL 2);
assume
A1: p
in (
L~ f);
then (
len f)
<>
0 by
TOPREAL1: 22;
then (
len f)
>
0 ;
then (
0
+ 1)
<= (
len f) by
NAT_1: 13;
then
A2: ((
R_Cut (f,p))
. 1)
= (f
. 1) by
A1,
JORDAN1B: 3;
assume 2
<= (
len (
R_Cut (f,p)));
hence thesis by
A2,
JORDAN3: 1;
end;
theorem ::
JORDAN1E:5
Th5: for f be
FinSequence of (
TOP-REAL 2) st f is
being_S-Seq holds for p be
Point of (
TOP-REAL 2) st p
in (
L~ f) holds not (f
. 1)
in (
L~ (
mid (f,((
Index (p,f))
+ 1),(
len f))))
proof
let f be
FinSequence of (
TOP-REAL 2) such that
A1: f is
being_S-Seq;
let p be
Point of (
TOP-REAL 2) such that
A2: p
in (
L~ f) and
A3: (f
. 1)
in (
L~ (
mid (f,((
Index (p,f))
+ 1),(
len f))));
(
len f)
<>
0 by
A2,
TOPREAL1: 22;
then f
<>
{} ;
then 1
in (
dom f) by
FINSEQ_5: 6;
then
A4: (f
/. 1)
in (
L~ (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
A3,
PARTFUN1:def 6;
(
Index (p,f))
< (
len f) by
A2,
JORDAN3: 8;
then ((
Index (p,f))
+ 1)
<= (
len f) by
NAT_1: 13;
then ((
Index (p,f))
+ 1)
= (
0
+ 1) by
A1,
A4,
JORDAN5B: 16,
NAT_1: 11;
hence contradiction by
A2,
JORDAN3: 8;
end;
theorem ::
JORDAN1E:6
Th6: for i,j,m,n be
Nat holds (i
+ j)
= (m
+ n) & i
<= m & j
<= n implies i
= m
proof
let i,j,m,n be
Nat;
assume that
A1: (i
+ j)
= (m
+ n) and
A2: i
<= m and
A3: j
<= n;
consider k be
Nat such that
A4: m
= (i
+ k) by
A2,
NAT_1: 10;
consider l be
Nat such that
A5: n
= (j
+ l) by
A3,
NAT_1: 10;
(j
+ (l
+ k))
= (j
+
0 ) by
A1,
A4,
A5;
then k
=
0 ;
hence thesis by
A4;
end;
theorem ::
JORDAN1E:7
for f be
FinSequence of (
TOP-REAL 2) st f is
being_S-Seq holds for p be
Point of (
TOP-REAL 2) st p
in (
L~ f) & (f
. 1)
in (
L~ (
L_Cut (f,p))) holds (f
. 1)
= p
proof
let f be
FinSequence of (
TOP-REAL 2);
assume
A1: f is
being_S-Seq;
A2: (
len f)
in (
dom f) by
A1,
FINSEQ_5: 6;
1
in (
dom f) by
A1,
FINSEQ_5: 6;
then
A3: (f
/. 1)
= (f
. 1) by
PARTFUN1:def 6;
let p be
Point of (
TOP-REAL 2) such that
A4: p
in (
L~ f) and
A5: (f
. 1)
in (
L~ (
L_Cut (f,p))) and
A6: (f
. 1)
<> p;
set g = (
mid (f,((
Index (p,f))
+ 1),(
len f)));
A7: not (f
. 1)
in (
L~ g) by
A1,
A4,
Th5;
then p
<> (f
. ((
Index (p,f))
+ 1)) by
A5,
JORDAN3:def 3;
then
A8: (
L_Cut (f,p))
= (
<*p*>
^ g) by
JORDAN3:def 3;
per cases ;
suppose g is
empty;
then (
L_Cut (f,p))
=
<*p*> by
A8,
FINSEQ_1: 34;
then (
len (
L_Cut (f,p)))
= 1 by
FINSEQ_1: 39;
hence contradiction by
A5,
TOPREAL1: 22;
end;
suppose g is non
empty;
then (
L~ (
L_Cut (f,p)))
= ((
LSeg (p,(g
/. 1)))
\/ (
L~ g)) by
A8,
SPPOL_2: 20;
then
A9: (f
. 1)
in (
LSeg (p,(g
/. 1))) by
A5,
A7,
XBOOLE_0:def 3;
A10: (1
+ 1)
<= (
len f) by
A1;
then
A11: 2
in (
dom f) by
FINSEQ_3: 25;
consider i be
Nat such that
A12: 1
<= i and
A13: (i
+ 1)
<= (
len (
<*p*>
^ g)) and
A14: (f
/. 1)
in (
LSeg ((
<*p*>
^ g),i)) by
A5,
A3,
A8,
SPPOL_2: 13;
(
LSeg ((
<*p*>
^ g),i))
c= (
LSeg (f,(((
Index (p,f))
+ i)
-' 1))) by
A4,
A12,
A13,
JORDAN3: 16;
then
A15: (((
Index (p,f))
+ i)
-' 1)
= 1 by
A1,
A14,
JORDAN5B: 30;
A16: 1
<= (
Index (p,f)) by
A4,
JORDAN3: 8;
then (1
+ 1)
<= ((
Index (p,f))
+ i) by
A12,
XREAL_1: 7;
then
A17: ((
Index (p,f))
+ i)
= (1
+ 1) by
A15,
XREAL_1: 235,
XXREAL_0: 2;
then (
Index (p,f))
= 1 by
A12,
A16,
Th6;
then p
in (
LSeg (f,1)) by
A4,
JORDAN3: 9;
then
A18: p
in (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A10,
TOPREAL1:def 3;
i
= 1 by
A12,
A16,
A17,
Th6;
then (g
/. 1)
= (f
/. (1
+ 1)) by
A2,
A17,
A11,
SPRECT_2: 8;
hence contradiction by
A6,
A3,
A9,
A18,
SPRECT_3: 6;
end;
end;
begin
definition
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
::
JORDAN1E:def1
func
Upper_Seq (C,n) ->
FinSequence of (
TOP-REAL 2) equals ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n)))));
coherence ;
end
theorem ::
JORDAN1E:8
Th8: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat holds (
len (
Upper_Seq (C,n)))
= ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
proof
let C be
compact non
vertical non
horizontal non
empty
Subset of (
TOP-REAL 2);
let n be
Nat;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
hence thesis by
FINSEQ_5: 42;
end;
definition
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
::
JORDAN1E:def2
func
Lower_Seq (C,n) ->
FinSequence of (
TOP-REAL 2) equals ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n)))));
coherence ;
end
theorem ::
JORDAN1E:9
Th9: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat holds (
len (
Lower_Seq (C,n)))
= (((
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
- ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))))
+ 1)
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
hence thesis by
FINSEQ_5: 50;
end;
registration
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
cluster (
Upper_Seq (C,n)) -> non
empty;
coherence
proof
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A1: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
(
len (
Upper_Seq (C,n)))
= ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
Th8;
hence thesis by
A1,
FINSEQ_4: 21;
end;
cluster (
Lower_Seq (C,n)) -> non
empty;
coherence
proof
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A2: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
(
len (
Lower_Seq (C,n)))
= (((
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
- ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))))
+ 1) by
Th9;
then (((
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
- (
len (
Lower_Seq (C,n))))
+ 1)
<= (
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
A2,
FINSEQ_4: 21;
then ((
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
- (
len (
Lower_Seq (C,n))))
<= ((
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
- 1) by
XREAL_1: 19;
hence thesis by
XREAL_1: 10;
end;
end
registration
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
cluster (
Upper_Seq (C,n)) ->
one-to-one
special
unfolded
s.n.c.;
coherence
proof
set f = (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))));
A1: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A2: (
E-max (
L~ (
Cage (C,n))))
in (
rng f) by
FINSEQ_6: 90,
SPRECT_2: 43;
A3: (
len (
Upper_Seq (C,n)))
= ((
E-max (
L~ (
Cage (C,n))))
.. f) by
Th8;
now
let i1,j1 be
object;
assume that
A4: i1
in (
dom (
Upper_Seq (C,n))) and
A5: j1
in (
dom (
Upper_Seq (C,n))) and
A6: ((
Upper_Seq (C,n))
. i1)
= ((
Upper_Seq (C,n))
. j1) and
A7: i1
<> j1;
reconsider i2 = i1, j2 = j1 as
Nat by
A4,
A5;
A8: i2
in (
Seg ((
E-max (
L~ (
Cage (C,n))))
.. f)) by
A3,
A4,
FINSEQ_1:def 3;
then
A9: 1
<= i2 by
FINSEQ_1: 1;
A10: (
L~ (
Cage (C,n)))
= (
L~ f) by
REVROT_1: 33;
A11: j2
in (
Seg ((
E-max (
L~ (
Cage (C,n))))
.. f)) by
A3,
A5,
FINSEQ_1:def 3;
then
A12: 1
<= j2 by
FINSEQ_1: 1;
j2
<= ((
E-max (
L~ (
Cage (C,n))))
.. f) by
A11,
FINSEQ_1: 1;
then
A13: j2
< (
len f) by
A10,
SPRECT_5: 16,
XXREAL_0: 2;
A14: ((
Upper_Seq (C,n))
. j1)
= ((
Upper_Seq (C,n))
/. j2) by
A5,
PARTFUN1:def 6
.= (f
/. j2) by
A2,
A11,
FINSEQ_5: 43;
i2
<= ((
E-max (
L~ (
Cage (C,n))))
.. f) by
A8,
FINSEQ_1: 1;
then
A15: i2
< (
len f) by
A10,
SPRECT_5: 16,
XXREAL_0: 2;
A16: ((
Upper_Seq (C,n))
. i1)
= ((
Upper_Seq (C,n))
/. i2) by
A4,
PARTFUN1:def 6
.= (f
/. i2) by
A2,
A8,
FINSEQ_5: 43;
per cases by
A7,
XXREAL_0: 1;
suppose i2
< j2;
hence contradiction by
A6,
A16,
A14,
A9,
A13,
GOBOARD7: 36;
end;
suppose j2
< i2;
hence contradiction by
A6,
A16,
A14,
A12,
A15,
GOBOARD7: 36;
end;
end;
hence (
Upper_Seq (C,n)) is
one-to-one by
FUNCT_1:def 4;
thus (
Upper_Seq (C,n)) is
special;
thus (
Upper_Seq (C,n)) is
unfolded;
let i,j be
Nat;
assume
A17: (i
+ 1)
< j;
(
0
+ 1)
<= (
len f) by
NAT_1: 13;
then
A18: (
len f)
in (
dom f) by
FINSEQ_3: 25;
now
per cases ;
suppose
A19: (j
+ 1)
<= (
len (
Upper_Seq (C,n)));
A20: ((
E-max (
L~ (
Cage (C,n))))
.. f)
<= (
len f) by
A2,
FINSEQ_4: 21;
A21: (j
+ 1)
<= ((
E-max (
L~ (
Cage (C,n))))
.. f) by
A2,
A19,
FINSEQ_5: 42;
A22:
now
per cases by
A21,
XXREAL_0: 1;
suppose (j
+ 1)
< ((
E-max (
L~ (
Cage (C,n))))
.. f);
hence (j
+ 1)
< (
len f) by
A20,
XXREAL_0: 2;
end;
suppose
A23: (j
+ 1)
= ((
E-max (
L~ (
Cage (C,n))))
.. f);
assume (j
+ 1)
>= (
len f);
then ((
E-max (
L~ (
Cage (C,n))))
.. f)
= (
len f) by
A20,
A23,
XXREAL_0: 1;
then (
E-max (
L~ (
Cage (C,n))))
= (f
. (
len f)) by
A2,
FINSEQ_4: 19
.= (f
/. (
len f)) by
A18,
PARTFUN1:def 6
.= (f
/. 1) by
FINSEQ_6:def 1
.= (
W-min (
L~ (
Cage (C,n)))) by
A1,
FINSEQ_6: 92;
hence contradiction by
TOPREAL5: 19;
end;
end;
j
< (
len (
Upper_Seq (C,n))) by
A19,
NAT_1: 13;
then
A24: (
LSeg ((
Upper_Seq (C,n)),i))
= (
LSeg (f,i)) by
A17,
SPPOL_2: 9,
XXREAL_0: 2;
(
LSeg ((
Upper_Seq (C,n)),j))
= (
LSeg (f,j)) by
A19,
SPPOL_2: 9;
hence thesis by
A17,
A24,
A22,
GOBOARD5:def 4;
end;
suppose (j
+ 1)
> (
len (
Upper_Seq (C,n)));
then (
LSeg ((
Upper_Seq (C,n)),j))
=
{} by
TOPREAL1:def 3;
then ((
LSeg ((
Upper_Seq (C,n)),i))
/\ (
LSeg ((
Upper_Seq (C,n)),j)))
=
{} ;
hence thesis;
end;
end;
hence thesis;
end;
cluster (
Lower_Seq (C,n)) ->
one-to-one
special
unfolded
s.n.c.;
coherence
proof
set f = (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))));
A25: (
L~ (
Cage (C,n)))
= (
L~ f) by
REVROT_1: 33;
(
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
then
A26: (f
/. 1)
= (
W-min (
L~ f)) by
A25,
FINSEQ_6: 92;
then ((
W-max (
L~ (
Cage (C,n))))
.. f)
<= ((
N-min (
L~ (
Cage (C,n))))
.. f) by
A25,
SPRECT_5: 23;
then ((
N-min (
L~ (
Cage (C,n))))
.. f)
> 1 by
A25,
A26,
SPRECT_5: 22,
XXREAL_0: 2;
then ((
N-max (
L~ (
Cage (C,n))))
.. f)
> 1 by
A25,
A26,
SPRECT_5: 24,
XXREAL_0: 2;
then
A27: ((
E-max (
L~ (
Cage (C,n))))
.. f)
> 1 by
A25,
A26,
SPRECT_5: 25,
XXREAL_0: 2;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A28: (
E-max (
L~ (
Cage (C,n))))
in (
rng f) by
FINSEQ_6: 90,
SPRECT_2: 43;
A29: (
len (
Lower_Seq (C,n)))
= (((
len f)
- ((
E-max (
L~ (
Cage (C,n))))
.. f))
+ 1) by
Th9;
now
let i1,j1 be
object;
assume that
A30: i1
in (
dom (
Lower_Seq (C,n))) and
A31: j1
in (
dom (
Lower_Seq (C,n))) and
A32: ((
Lower_Seq (C,n))
. i1)
= ((
Lower_Seq (C,n))
. j1) and
A33: i1
<> j1;
reconsider i2 = i1, j2 = j1 as
Nat by
A30,
A31;
A34: i2
in (
Seg (
len (
Lower_Seq (C,n)))) by
A30,
FINSEQ_1:def 3;
then i2
>= 1 by
FINSEQ_1: 1;
then
A35: i2
= ((i2
-' 1)
+ 1) by
XREAL_1: 235;
A36: ((
Lower_Seq (C,n))
. i1)
= ((
Lower_Seq (C,n))
/. i2) by
A30,
PARTFUN1:def 6
.= (f
/. ((i2
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))) by
A28,
A30,
A35,
FINSEQ_5: 52;
A37: j2
in (
Seg (
len (
Lower_Seq (C,n)))) by
A31,
FINSEQ_1:def 3;
then j2
>= 1 by
FINSEQ_1: 1;
then
A38: j2
= ((j2
-' 1)
+ 1) by
XREAL_1: 235;
A39: ((
Lower_Seq (C,n))
. j1)
= ((
Lower_Seq (C,n))
/. j2) by
A31,
PARTFUN1:def 6
.= (f
/. ((j2
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))) by
A28,
A31,
A38,
FINSEQ_5: 52;
(
0
+ 1)
<= i2 by
A34,
FINSEQ_1: 1;
then
A40: (i2
- 1)
>=
0 by
XREAL_1: 19;
i2
<= (((
len f)
- ((
E-max (
L~ (
Cage (C,n))))
.. f))
+ 1) by
A29,
A34,
FINSEQ_1: 1;
then (i2
- 1)
<= ((
len f)
- ((
E-max (
L~ (
Cage (C,n))))
.. f)) by
XREAL_1: 20;
then ((i2
- 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
<= (
len f) by
XREAL_1: 19;
then
A41: ((i2
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
<= (
len f) by
A40,
XREAL_0:def 2;
(
0
+ 1)
<= j2 by
A37,
FINSEQ_1: 1;
then
A42: (j2
- 1)
>=
0 by
XREAL_1: 19;
j2
<= (((
len f)
- ((
E-max (
L~ (
Cage (C,n))))
.. f))
+ 1) by
A29,
A37,
FINSEQ_1: 1;
then (j2
- 1)
<= ((
len f)
- ((
E-max (
L~ (
Cage (C,n))))
.. f)) by
XREAL_1: 20;
then ((j2
- 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
<= (
len f) by
XREAL_1: 19;
then
A43: ((j2
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
<= (
len f) by
A42,
XREAL_0:def 2;
((j2
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
>= ((
E-max (
L~ (
Cage (C,n))))
.. f) by
NAT_1: 11;
then
A44: 1
< ((j2
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f)) by
A27,
XXREAL_0: 2;
((i2
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
>= ((
E-max (
L~ (
Cage (C,n))))
.. f) by
NAT_1: 11;
then
A45: 1
< ((i2
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f)) by
A27,
XXREAL_0: 2;
per cases by
A33,
XXREAL_0: 1;
suppose i2
< j2;
then (i2
- 1)
< (j2
- 1) by
XREAL_1: 9;
then (i2
- 1)
< (j2
-' 1) by
XREAL_0:def 2;
then (i2
-' 1)
< (j2
-' 1) by
A40,
XREAL_0:def 2;
then ((i2
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
< ((j2
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f)) by
XREAL_1: 6;
hence contradiction by
A32,
A36,
A39,
A43,
A45,
GOBOARD7: 37;
end;
suppose j2
< i2;
then (j2
- 1)
< (i2
- 1) by
XREAL_1: 9;
then (j2
- 1)
< (i2
-' 1) by
XREAL_0:def 2;
then (j2
-' 1)
< (i2
-' 1) by
A42,
XREAL_0:def 2;
then ((j2
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
< ((i2
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f)) by
XREAL_1: 6;
hence contradiction by
A32,
A36,
A39,
A41,
A44,
GOBOARD7: 37;
end;
end;
hence (
Lower_Seq (C,n)) is
one-to-one by
FUNCT_1:def 4;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A46: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
hence (
Lower_Seq (C,n)) is
special by
SPPOL_2: 39;
thus (
Lower_Seq (C,n)) is
unfolded by
A46,
SPPOL_2: 27;
let i,j be
Nat;
assume
A47: (i
+ 1)
< j;
(i
+ 1)
>= 1 by
NAT_1: 11;
then j
= ((j
-' 1)
+ 1) by
A47,
XREAL_1: 235,
XXREAL_0: 2;
then
A48: (
LSeg ((
Lower_Seq (C,n)),j))
= (
LSeg (f,((j
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f)))) by
A46,
SPPOL_2: 10;
now
per cases ;
suppose i
>
0 ;
then
A49: i
>= (
0
+ 1) by
NAT_1: 13;
then i
= ((i
-' 1)
+ 1) by
XREAL_1: 235;
then
A50: (
LSeg ((
Lower_Seq (C,n)),i))
= (
LSeg (f,((i
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f)))) by
A28,
SPPOL_2: 10;
((i
+ 1)
- 1)
< (j
- 1) by
A47,
XREAL_1: 9;
then
A51: ((i
- 1)
+ 1)
< (j
-' 1) by
XREAL_0:def 2;
(i
- 1)
>=
0 by
A49,
XREAL_1: 19;
then ((i
-' 1)
+ 1)
< (j
-' 1) by
A51,
XREAL_0:def 2;
then (((i
-' 1)
+ 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
< ((j
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f)) by
XREAL_1: 6;
then
A52: (((i
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
+ 1)
< ((j
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f));
A53: ((i
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
> (
0
+ 1) by
A27,
XREAL_1: 8;
now
per cases ;
suppose (((j
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
+ 1)
<= (
len f);
then ((j
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
< (
len f) by
NAT_1: 13;
then (
LSeg ((
Lower_Seq (C,n)),i))
misses (
LSeg ((
Lower_Seq (C,n)),j)) by
A48,
A50,
A52,
A53,
GOBOARD5:def 4;
hence ((
LSeg ((
Lower_Seq (C,n)),i))
/\ (
LSeg ((
Lower_Seq (C,n)),j)))
=
{} ;
end;
suppose (((j
-' 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. f))
+ 1)
> (
len f);
then (
LSeg ((
Lower_Seq (C,n)),j))
=
{} by
A48,
TOPREAL1:def 3;
hence ((
LSeg ((
Lower_Seq (C,n)),i))
/\ (
LSeg ((
Lower_Seq (C,n)),j)))
=
{} ;
end;
end;
hence ((
LSeg ((
Lower_Seq (C,n)),i))
/\ (
LSeg ((
Lower_Seq (C,n)),j)))
=
{} ;
end;
suppose i
=
0 ;
then (
LSeg ((
Lower_Seq (C,n)),i))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg ((
Lower_Seq (C,n)),i))
/\ (
LSeg ((
Lower_Seq (C,n)),j)))
=
{} ;
end;
end;
hence thesis;
end;
end
theorem ::
JORDAN1E:10
Th10: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat holds ((
len (
Upper_Seq (C,n)))
+ (
len (
Lower_Seq (C,n))))
= ((
len (
Cage (C,n)))
+ 1)
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
thus ((
len (
Upper_Seq (C,n)))
+ (
len (
Lower_Seq (C,n))))
= (((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
+ (
len (
Lower_Seq (C,n)))) by
Th8
.= (((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
+ (((
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
- ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))))
+ 1)) by
Th9
.= (((((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
+ (
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))))
- ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))))
+ 1)
.= ((
len (
Cage (C,n)))
+ 1) by
FINSEQ_6: 179;
end;
theorem ::
JORDAN1E:11
Th11: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat holds (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
= ((
Upper_Seq (C,n))
^' (
Lower_Seq (C,n)))
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
A1: (
dom (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
= (
Seg (
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
FINSEQ_1:def 3;
A2: ((
len ((
Upper_Seq (C,n))
^' (
Lower_Seq (C,n))))
+ 1)
= ((
len (
Upper_Seq (C,n)))
+ (
len (
Lower_Seq (C,n)))) by
FINSEQ_6: 139
.= ((
len (
Cage (C,n)))
+ 1) by
Th10
.= ((
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
+ 1) by
FINSEQ_6: 179;
now
let i be
Nat;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A3: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
assume
A4: i
in (
dom (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))));
then
A5: 1
<= i by
A1,
FINSEQ_1: 1;
A6: i
<= (
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
A1,
A4,
FINSEQ_1: 1;
per cases ;
suppose
A7: i
<= (
len (
Upper_Seq (C,n)));
then i
<= ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
Th8;
then
A8: i
in (
Seg ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
A5,
FINSEQ_1: 1;
(
len ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n))))))
= ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
A3,
FINSEQ_5: 42;
then
A9: i
in (
dom ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n)))))) by
A8,
FINSEQ_1:def 3;
thus (((
Upper_Seq (C,n))
^' (
Lower_Seq (C,n)))
. i)
= (((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n)))))
. i) by
A5,
A7,
FINSEQ_6: 140
.= (((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n)))))
/. i) by
A9,
PARTFUN1:def 6
.= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. i) by
A3,
A8,
FINSEQ_5: 43
.= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
. i) by
A4,
PARTFUN1:def 6;
end;
suppose i
> (
len (
Upper_Seq (C,n)));
then i
>= ((
len (
Upper_Seq (C,n)))
+ 1) by
NAT_1: 13;
then
consider j be
Nat such that
A10: i
= (((
len (
Upper_Seq (C,n)))
+ 1)
+ j) by
NAT_1: 10;
reconsider j as
Nat;
A11: i
= ((
len (
Upper_Seq (C,n)))
+ (j
+ 1)) by
A10;
then
A12: i
= (((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
+ (j
+ 1)) by
Th8;
A13: (
len ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n))))))
= (((
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
- ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))))
+ 1) by
A3,
FINSEQ_5: 50;
((j
+ 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))))
<= (
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
A6,
A11,
Th8;
then (j
+ 1)
<= ((
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
- ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
XREAL_1: 19;
then ((j
+ 1)
+ 1)
>= 1 & ((j
+ 1)
+ 1)
<= (
len ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n)))))) by
A13,
NAT_1: 11,
XREAL_1: 7;
then
A14: ((j
+ 1)
+ 1)
in (
dom ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n)))))) by
FINSEQ_3: 25;
i
< ((
len ((
Upper_Seq (C,n))
^' (
Lower_Seq (C,n))))
+ 1) by
A2,
A6,
NAT_1: 13;
then i
< ((
len (
Lower_Seq (C,n)))
+ (
len (
Upper_Seq (C,n)))) by
FINSEQ_6: 139;
then (i
- (
len (
Upper_Seq (C,n))))
< (
len (
Lower_Seq (C,n))) by
XREAL_1: 19;
hence (((
Upper_Seq (C,n))
^' (
Lower_Seq (C,n)))
. i)
= (((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n)))))
. ((j
+ 1)
+ 1)) by
A11,
FINSEQ_6: 141,
NAT_1: 11
.= (((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n)))))
/. ((j
+ 1)
+ 1)) by
A14,
PARTFUN1:def 6
.= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. ((j
+ 1)
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))))) by
A3,
A14,
FINSEQ_5: 52
.= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
. i) by
A4,
A12,
PARTFUN1:def 6;
end;
end;
hence thesis by
A2,
FINSEQ_2: 9;
end;
theorem ::
JORDAN1E:12
for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat holds (
L~ (
Cage (C,n)))
= (
L~ ((
Upper_Seq (C,n))
^' (
Lower_Seq (C,n))))
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
(
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
= ((
Upper_Seq (C,n))
^' (
Lower_Seq (C,n))) by
Th11;
hence thesis by
REVROT_1: 33;
end;
theorem ::
JORDAN1E:13
for C be
compact non
vertical non
horizontal non
empty
Subset of (
TOP-REAL 2) holds for n be
Nat holds (
L~ (
Cage (C,n)))
= ((
L~ (
Upper_Seq (C,n)))
\/ (
L~ (
Lower_Seq (C,n))))
proof
let C be
compact non
vertical non
horizontal non
empty
Subset of (
TOP-REAL 2);
let n be
Nat;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
then (
L~ (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
= ((
L~ (
Upper_Seq (C,n)))
\/ (
L~ (
Lower_Seq (C,n)))) by
SPPOL_2: 24;
hence thesis by
REVROT_1: 33;
end;
theorem ::
JORDAN1E:14
Th14: for P be
Simple_closed_curve holds (
W-min P)
<> (
E-min P)
proof
let P be
Simple_closed_curve;
now
assume (
W-min P)
= (
E-min P);
then (
W-bound P)
= (
E-bound P) by
SPPOL_2: 1;
hence contradiction by
TOPREAL5: 17;
end;
hence thesis;
end;
theorem ::
JORDAN1E:15
Th15: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat holds (
len (
Upper_Seq (C,n)))
>= 3 & (
len (
Lower_Seq (C,n)))
>= 3
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
set pWi = (
W-min (
L~ (
Cage (C,n))));
set pWa = (
W-max (
L~ (
Cage (C,n))));
set pEi = (
E-min (
L~ (
Cage (C,n))));
set pEa = (
E-max (
L~ (
Cage (C,n))));
A1: pWi
<> pEa by
TOPREAL5: 19;
set f = (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))));
A2: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A3: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
then ((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. (
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
FINSEQ_5: 54
.= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. 1) by
FINSEQ_6:def 1
.= (
W-min (
L~ (
Cage (C,n)))) by
A2,
FINSEQ_6: 92;
then
A4: pEa
in (
rng (
Lower_Seq (C,n))) & pWi
in (
rng (
Lower_Seq (C,n))) by
FINSEQ_6: 61,
FINSEQ_6: 168;
((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
<= ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))));
then
A5: pEa
in (
rng (
Upper_Seq (C,n))) by
A3,
FINSEQ_5: 46;
pWa
in (
rng (
Cage (C,n))) by
SPRECT_2: 44;
then
A6: pWa
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
A7: ((
Upper_Seq (C,n))
/. 1)
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. 1) by
A3,
FINSEQ_5: 44;
then
A8: ((
Upper_Seq (C,n))
/. 1)
= (
W-min (
L~ (
Cage (C,n)))) by
A2,
FINSEQ_6: 92;
then
A9: pWi
in (
rng (
Upper_Seq (C,n))) by
FINSEQ_6: 42;
A10: (
L~ (
Cage (C,n)))
= (
L~ f) by
REVROT_1: 33;
then ((
W-max (
L~ f))
.. f)
<= ((
N-min (
L~ f))
.. f) by
A2,
A7,
FINSEQ_6: 92,
SPRECT_5: 23;
then
A11: ((
W-max (
L~ f))
.. f)
< ((
N-max (
L~ f))
.. f) by
A7,
A8,
A10,
SPRECT_5: 24,
XXREAL_0: 2;
((
N-max (
L~ f))
.. f)
<= ((
E-max (
L~ f))
.. f) by
A2,
A7,
A10,
FINSEQ_6: 92,
SPRECT_5: 25;
then
A12: pWa
in (
rng (
Upper_Seq (C,n))) by
A3,
A6,
A10,
A11,
FINSEQ_5: 46,
XXREAL_0: 2;
{pWi, pWa, pEa}
c= (
rng (
Upper_Seq (C,n))) by
A5,
A9,
A12,
ENUMSET1:def 1;
then
A13: (
card
{pWi, pWa, pEa})
c= (
card (
rng (
Upper_Seq (C,n)))) by
CARD_1: 11;
(
card (
rng (
Upper_Seq (C,n))))
c= (
card (
dom (
Upper_Seq (C,n)))) by
CARD_2: 61;
then
A14: (
card (
rng (
Upper_Seq (C,n))))
c= (
len (
Upper_Seq (C,n))) by
CARD_1: 62;
pWi
<> pWa & pWa
<> pEa by
JORDAN1B: 5,
SPRECT_2: 58;
then (
card
{pWi, pWa, pEa})
= 3 by
A1,
CARD_2: 58;
then (
Segm 3)
c= (
Segm (
len (
Upper_Seq (C,n)))) by
A13,
A14;
hence (
len (
Upper_Seq (C,n)))
>= 3 by
NAT_1: 39;
A15: pWi
<> pEa by
TOPREAL5: 19;
pEi
in (
rng (
Cage (C,n))) by
SPRECT_2: 45;
then
A16: pEi
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
(pEi
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
> (pEa
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
A2,
A7,
A10,
FINSEQ_6: 92,
SPRECT_5: 26;
then
A17: pEi
in (
rng (
Lower_Seq (C,n))) by
A3,
A16,
FINSEQ_6: 62;
{pWi, pEi, pEa}
c= (
rng (
Lower_Seq (C,n))) by
A4,
A17,
ENUMSET1:def 1;
then
A18: (
card
{pWi, pEi, pEa})
c= (
card (
rng (
Lower_Seq (C,n)))) by
CARD_1: 11;
(
card (
rng (
Lower_Seq (C,n))))
c= (
card (
dom (
Lower_Seq (C,n)))) by
CARD_2: 61;
then
A19: (
card (
rng (
Lower_Seq (C,n))))
c= (
len (
Lower_Seq (C,n))) by
CARD_1: 62;
pWi
<> pEi & pEi
<> pEa by
Th14,
SPRECT_2: 54;
then (
card
{pWi, pEi, pEa})
= 3 by
A15,
CARD_2: 58;
then (
Segm 3)
c= (
Segm (
len (
Lower_Seq (C,n)))) by
A18,
A19;
hence thesis by
NAT_1: 39;
end;
registration
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
cluster (
Upper_Seq (C,n)) ->
being_S-Seq;
coherence
proof
(
len (
Upper_Seq (C,n)))
>= 3 by
Th15;
then (
len (
Upper_Seq (C,n)))
>= 2 by
XXREAL_0: 2;
hence thesis;
end;
cluster (
Lower_Seq (C,n)) ->
being_S-Seq;
coherence
proof
(
len (
Lower_Seq (C,n)))
>= 3 by
Th15;
then (
len (
Lower_Seq (C,n)))
>= 2 by
XXREAL_0: 2;
hence thesis;
end;
end
theorem ::
JORDAN1E:16
for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat holds ((
L~ (
Upper_Seq (C,n)))
/\ (
L~ (
Lower_Seq (C,n))))
=
{(
W-min (
L~ (
Cage (C,n)))), (
E-max (
L~ (
Cage (C,n))))}
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A1: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
A2: (
len (
Upper_Seq (C,n)))
>= 3 by
Th15;
then
A3: (
rng (
Upper_Seq (C,n)))
c= (
L~ (
Upper_Seq (C,n))) by
SPPOL_2: 18,
XXREAL_0: 2;
A4: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
thus ((
L~ (
Upper_Seq (C,n)))
/\ (
L~ (
Lower_Seq (C,n))))
c=
{(
W-min (
L~ (
Cage (C,n)))), (
E-max (
L~ (
Cage (C,n))))}
proof
set pW = (
W-min (
L~ (
Cage (C,n))));
set pE = (
E-max (
L~ (
Cage (C,n))));
set f = (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))));
let x be
object;
assume
A5: x
in ((
L~ (
Upper_Seq (C,n)))
/\ (
L~ (
Lower_Seq (C,n))));
then
reconsider x1 = x as
Point of (
TOP-REAL 2);
assume
A6: not x
in
{(
W-min (
L~ (
Cage (C,n)))), (
E-max (
L~ (
Cage (C,n))))};
x
in (
L~ (
Upper_Seq (C,n))) by
A5,
XBOOLE_0:def 4;
then
consider i1 be
Nat such that
A7: 1
<= i1 and
A8: (i1
+ 1)
<= (
len (
Upper_Seq (C,n))) and
A9: x1
in (
LSeg ((
Upper_Seq (C,n)),i1)) by
SPPOL_2: 13;
A10: (
LSeg ((
Upper_Seq (C,n)),i1))
= (
LSeg (f,i1)) by
A8,
SPPOL_2: 9;
x
in (
L~ (
Lower_Seq (C,n))) by
A5,
XBOOLE_0:def 4;
then
consider i2 be
Nat such that
A11: 1
<= i2 and
A12: (i2
+ 1)
<= (
len (
Lower_Seq (C,n))) and
A13: x1
in (
LSeg ((
Lower_Seq (C,n)),i2)) by
SPPOL_2: 13;
set i3 = (i2
-' 1);
A14: (i3
+ 1)
= i2 by
A11,
XREAL_1: 235;
then
A15: (1
+ (pE
.. f))
<= ((i3
+ 1)
+ (pE
.. f)) by
A11,
XREAL_1: 7;
A16: (
len (
Lower_Seq (C,n)))
= (((
len f)
- (pE
.. f))
+ 1) by
Th9;
then i2
< (((
len f)
- (pE
.. f))
+ 1) by
A12,
NAT_1: 13;
then (i2
- 1)
< ((
len f)
- (pE
.. f)) by
XREAL_1: 19;
then
A17: ((i2
- 1)
+ (pE
.. f))
< (
len f) by
XREAL_1: 20;
(i2
- 1)
>= (1
- 1) by
A11,
XREAL_1: 9;
then
A18: (i3
+ (pE
.. f))
< (
len f) by
A17,
XREAL_0:def 2;
A19: (
LSeg ((
Lower_Seq (C,n)),i2))
= (
LSeg (f,(i3
+ (pE
.. f)))) by
A1,
A14,
SPPOL_2: 10;
A20: (
len (
Upper_Seq (C,n)))
= (pE
.. f) by
Th8;
then (i1
+ 1)
< ((pE
.. f)
+ 1) by
A8,
NAT_1: 13;
then (i1
+ 1)
< ((i3
+ (pE
.. f))
+ 1) by
A15,
XXREAL_0: 2;
then
A21: (i1
+ 1)
<= (i3
+ (pE
.. f)) by
NAT_1: 13;
A22: (((pE
.. f)
-' 1)
+ 1)
= (pE
.. f) by
A1,
FINSEQ_4: 21,
XREAL_1: 235;
(i3
+ 1)
< (((
len f)
- (pE
.. f))
+ 1) by
A12,
A14,
A16,
NAT_1: 13;
then i3
< ((
len f)
- (pE
.. f)) by
XREAL_1: 7;
then
A23: (i3
+ (pE
.. f))
< (
len f) by
XREAL_1: 20;
then
A24: ((i3
+ (pE
.. f))
+ 1)
<= (
len f) by
NAT_1: 13;
now
per cases by
A7,
A21,
XXREAL_0: 1;
suppose (i1
+ 1)
< (i3
+ (pE
.. f)) & i1
> 1;
then (
LSeg (f,i1))
misses (
LSeg (f,(i3
+ (pE
.. f)))) by
A23,
GOBOARD5:def 4;
then ((
LSeg (f,i1))
/\ (
LSeg (f,(i3
+ (pE
.. f)))))
=
{} ;
hence contradiction by
A9,
A13,
A10,
A19,
XBOOLE_0:def 4;
end;
suppose
A25: i1
= 1;
(i3
+ (pE
.. f))
>= (
0
+ 3) by
A2,
A20,
XREAL_1: 7;
then
A26: (i1
+ 1)
< (i3
+ (pE
.. f)) by
A25,
XXREAL_0: 2;
now
per cases by
A24,
XXREAL_0: 1;
suppose ((i3
+ (pE
.. f))
+ 1)
< (
len f);
then (
LSeg (f,i1))
misses (
LSeg (f,(i3
+ (pE
.. f)))) by
A26,
GOBOARD5:def 4;
then ((
LSeg (f,i1))
/\ (
LSeg (f,(i3
+ (pE
.. f)))))
=
{} ;
hence contradiction by
A9,
A13,
A10,
A19,
XBOOLE_0:def 4;
end;
suppose ((i3
+ (pE
.. f))
+ 1)
= (
len f);
then (i3
+ (pE
.. f))
= ((
len f)
- 1);
then (i3
+ (pE
.. f))
= ((
len f)
-' 1) by
XREAL_0:def 2;
then ((
LSeg (f,i1))
/\ (
LSeg (f,(i3
+ (pE
.. f)))))
=
{(f
/. 1)} by
A25,
GOBOARD7: 34,
REVROT_1: 30;
then x1
in
{(f
/. 1)} by
A9,
A13,
A10,
A19,
XBOOLE_0:def 4;
then x1
= (f
/. 1) by
TARSKI:def 1
.= pW by
A4,
FINSEQ_6: 92;
hence contradiction by
A6,
TARSKI:def 2;
end;
end;
hence contradiction;
end;
suppose
A27: (i1
+ 1)
= (i3
+ (pE
.. f));
(i3
+ (pE
.. f))
>= (pE
.. f) by
NAT_1: 11;
then (pE
.. f)
< (
len f) by
A18,
XXREAL_0: 2;
then ((pE
.. f)
+ 1)
<= (
len f) by
NAT_1: 13;
then
A28: (((pE
.. f)
-' 1)
+ (1
+ 1))
<= (
len f) by
A22;
(
0
+ (pE
.. f))
<= (i3
+ (pE
.. f)) by
XREAL_1: 7;
then (pE
.. f)
= (i1
+ 1) by
A8,
A20,
A27,
XXREAL_0: 1;
then ((
LSeg (f,i1))
/\ (
LSeg (f,(i3
+ (pE
.. f)))))
=
{(f
/. (pE
.. f))} by
A7,
A22,
A27,
A28,
TOPREAL1:def 6;
then x1
in
{(f
/. (pE
.. f))} by
A9,
A13,
A10,
A19,
XBOOLE_0:def 4;
then x1
= (f
/. (pE
.. f)) by
TARSKI:def 1
.= pE by
A1,
FINSEQ_5: 38;
hence contradiction by
A6,
TARSKI:def 2;
end;
end;
hence contradiction;
end;
((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. (
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
A1,
FINSEQ_5: 54
.= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. 1) by
FINSEQ_6:def 1
.= (
W-min (
L~ (
Cage (C,n)))) by
A4,
FINSEQ_6: 92;
then
A29: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Lower_Seq (C,n))) by
FINSEQ_6: 168;
((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
<= ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))));
then
A30: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Lower_Seq (C,n))) & (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Upper_Seq (C,n))) by
A1,
FINSEQ_5: 46,
FINSEQ_6: 61;
(
len (
Lower_Seq (C,n)))
>= 3 by
Th15;
then
A31: (
rng (
Lower_Seq (C,n)))
c= (
L~ (
Lower_Seq (C,n))) by
SPPOL_2: 18,
XXREAL_0: 2;
((
Upper_Seq (C,n))
/. 1)
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. 1) by
A1,
FINSEQ_5: 44
.= (
W-min (
L~ (
Cage (C,n)))) by
A4,
FINSEQ_6: 92;
then
A32: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Upper_Seq (C,n))) by
FINSEQ_6: 42;
thus
{(
W-min (
L~ (
Cage (C,n)))), (
E-max (
L~ (
Cage (C,n))))}
c= ((
L~ (
Upper_Seq (C,n)))
/\ (
L~ (
Lower_Seq (C,n))))
proof
let x be
object;
assume
A33: x
in
{(
W-min (
L~ (
Cage (C,n)))), (
E-max (
L~ (
Cage (C,n))))};
per cases by
A33,
TARSKI:def 2;
suppose x
= (
W-min (
L~ (
Cage (C,n))));
hence thesis by
A31,
A3,
A32,
A29,
XBOOLE_0:def 4;
end;
suppose x
= (
E-max (
L~ (
Cage (C,n))));
hence thesis by
A31,
A3,
A30,
XBOOLE_0:def 4;
end;
end;
end;
theorem ::
JORDAN1E:17
for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds (
Upper_Seq (C,n))
is_in_the_area_of (
Cage (C,n))
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
hence thesis by
Th1,
JORDAN1B: 10;
end;
theorem ::
JORDAN1E:18
for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds (
Lower_Seq (C,n))
is_in_the_area_of (
Cage (C,n))
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
hence thesis by
Th2,
JORDAN1B: 10;
end;
theorem ::
JORDAN1E:19
for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds (((
Cage (C,n))
/. 2)
`2 )
= (
N-bound (
L~ (
Cage (C,n))))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
((
Cage (C,n))
/. 1)
= (
N-min (
L~ (
Cage (C,n)))) by
JORDAN9: 32;
then ((
Cage (C,n))
/. 2)
in (
N-most (
L~ (
Cage (C,n)))) by
SPRECT_2: 30;
then (((
Cage (C,n))
/. 2)
`2 )
= ((
N-min (
L~ (
Cage (C,n))))
`2 ) by
PSCOMP_1: 39;
hence thesis by
EUCLID: 52;
end;
theorem ::
JORDAN1E:20
for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for k be
Nat st 1
<= k & (k
+ 1)
<= (
len (
Cage (C,n))) & ((
Cage (C,n))
/. k)
= (
E-max (
L~ (
Cage (C,n)))) holds (((
Cage (C,n))
/. (k
+ 1))
`1 )
= (
E-bound (
L~ (
Cage (C,n))))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
A1: (
Cage (C,n))
is_sequence_on (
Gauge (C,n)) by
JORDAN9:def 1;
A2: (
len (
Gauge (C,n)))
= (
width (
Gauge (C,n))) by
JORDAN8:def 1;
A3: ((
Cage (C,n))
/. 1)
= (
N-min (
L~ (
Cage (C,n)))) by
JORDAN9: 32;
then 1
< ((
N-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
SPRECT_2: 69;
then
A4: ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
> 1 by
A3,
SPRECT_2: 70,
XXREAL_0: 2;
let k be
Nat;
assume that
A5: 1
<= k and
A6: (k
+ 1)
<= (
len (
Cage (C,n))) and
A7: ((
Cage (C,n))
/. k)
= (
E-max (
L~ (
Cage (C,n))));
A8: k
< (
len (
Cage (C,n))) by
A6,
NAT_1: 13;
then
A9: k
in (
dom (
Cage (C,n))) by
A5,
FINSEQ_3: 25;
then
reconsider k9 = (k
- 1) as
Nat by
FINSEQ_3: 26;
((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
<= k by
A7,
A9,
FINSEQ_5: 39;
then
A10: k
> 1 by
A4,
XXREAL_0: 2;
then
consider i1,j1,i2,j2 be
Nat such that
A11:
[i1, j1]
in (
Indices (
Gauge (C,n))) and
A12: ((
Cage (C,n))
/. k)
= ((
Gauge (C,n))
* (i1,j1)) and
A13:
[i2, j2]
in (
Indices (
Gauge (C,n))) and
A14: ((
Cage (C,n))
/. (k
+ 1))
= ((
Gauge (C,n))
* (i2,j2)) and
A15: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A1,
A6,
JORDAN8: 3;
A16: 1
<= i1 by
A11,
MATRIX_0: 32;
A17: (k9
+ 1)
< (
len (
Cage (C,n))) by
A6,
NAT_1: 13;
A18: 1
<= j1 by
A11,
MATRIX_0: 32;
A19: j2
<= (
width (
Gauge (C,n))) by
A13,
MATRIX_0: 32;
A20: i2
<= (
len (
Gauge (C,n))) by
A13,
MATRIX_0: 32;
A21: j1
<= (
width (
Gauge (C,n))) by
A11,
MATRIX_0: 32;
(((
Gauge (C,n))
* (i1,j1))
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) by
A7,
A12,
EUCLID: 52
.= (((
Gauge (C,n))
* ((
len (
Gauge (C,n))),j1))
`1 ) by
A18,
A21,
A2,
JORDAN1A: 71;
then
A22: i1
>= (
len (
Gauge (C,n))) by
A16,
A18,
A21,
GOBOARD5: 3;
k
>= (1
+ 1) by
A10,
NAT_1: 13;
then
A23: k9
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
then
consider i3,j3,i4,j4 be
Nat such that
A24:
[i3, j3]
in (
Indices (
Gauge (C,n))) and
A25: ((
Cage (C,n))
/. k9)
= ((
Gauge (C,n))
* (i3,j3)) and
A26:
[i4, j4]
in (
Indices (
Gauge (C,n))) and
A27: ((
Cage (C,n))
/. (k9
+ 1))
= ((
Gauge (C,n))
* (i4,j4)) and
A28: i3
= i4 & (j3
+ 1)
= j4 or (i3
+ 1)
= i4 & j3
= j4 or i3
= (i4
+ 1) & j3
= j4 or i3
= i4 & j3
= (j4
+ 1) by
A1,
A8,
JORDAN8: 3;
A29: i1
= i4 by
A11,
A12,
A26,
A27,
GOBOARD1: 5;
A30: j1
= j4 by
A11,
A12,
A26,
A27,
GOBOARD1: 5;
A31: 1
<= j3 by
A24,
MATRIX_0: 32;
A32: j3
<= (
width (
Gauge (C,n))) by
A24,
MATRIX_0: 32;
A33: i1
<= (
len (
Gauge (C,n))) by
A11,
MATRIX_0: 32;
then
A34: i1
= (
len (
Gauge (C,n))) by
A22,
XXREAL_0: 1;
A35: j3
= j4
proof
assume
A36: j3
<> j4;
per cases by
A28,
A36;
suppose i3
= i4 & (j3
+ 1)
= j4;
hence contradiction by
A8,
A22,
A23,
A24,
A25,
A26,
A27,
A29,
JORDAN10: 1;
end;
suppose
A37: i3
= i4 & j3
= (j4
+ 1);
k9
< (
len (
Cage (C,n))) by
A17,
NAT_1: 13;
then ((
Gauge (C,n))
* (i3,j3))
in (
E-most (
L~ (
Cage (C,n)))) by
A34,
A23,
A25,
A29,
A31,
A32,
A37,
JORDAN1A: 61;
then
A38: (((
Gauge (C,n))
* (i4,(j4
+ 1)))
`2 )
<= (((
Gauge (C,n))
* (i4,j4))
`2 ) by
A7,
A27,
A37,
PSCOMP_1: 47;
j4
< (j4
+ 1) by
NAT_1: 13;
hence contradiction by
A16,
A33,
A18,
A29,
A30,
A32,
A37,
A38,
GOBOARD5: 4;
end;
end;
A39: 1
<= i2 & 1
<= j2 by
A13,
MATRIX_0: 32;
A40: (k9
+ 1)
= k;
A41: i3
<= (
len (
Gauge (C,n))) by
A24,
MATRIX_0: 32;
i1
= i2
proof
assume
A42: i1
<> i2;
per cases by
A15,
A42;
suppose (i1
+ 1)
= i2 & j1
= j2;
hence contradiction by
A20,
A22,
NAT_1: 13;
end;
suppose
A43: i1
= (i2
+ 1) & j1
= j2;
(k9
+ (1
+ 1))
<= (
len (
Cage (C,n))) by
A6;
then
A44: ((
LSeg ((
Cage (C,n)),k9))
/\ (
LSeg ((
Cage (C,n)),k)))
=
{((
Cage (C,n))
/. k)} by
A23,
A40,
TOPREAL1:def 6;
((
Cage (C,n))
/. k9)
in (
LSeg ((
Cage (C,n)),k9)) & ((
Cage (C,n))
/. (k
+ 1))
in (
LSeg ((
Cage (C,n)),k)) by
A5,
A6,
A8,
A23,
A40,
TOPREAL1: 21;
then ((
Cage (C,n))
/. (k
+ 1))
in
{((
Cage (C,n))
/. k)} by
A14,
A22,
A25,
A28,
A29,
A30,
A41,
A35,
A43,
A44,
NAT_1: 13,
XBOOLE_0:def 4;
then ((
Cage (C,n))
/. (k
+ 1))
= ((
Cage (C,n))
/. k) by
TARSKI:def 1;
hence contradiction by
A11,
A12,
A13,
A14,
A42,
GOBOARD1: 5;
end;
end;
then (((
Gauge (C,n))
* (i1,j1))
`1 )
= (((
Gauge (C,n))
* (i2,1))
`1 ) by
A16,
A33,
A18,
A21,
GOBOARD5: 2
.= (((
Gauge (C,n))
* (i2,j2))
`1 ) by
A20,
A39,
A19,
GOBOARD5: 2;
hence thesis by
A7,
A12,
A14,
EUCLID: 52;
end;
theorem ::
JORDAN1E:21
for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for k be
Nat st 1
<= k & (k
+ 1)
<= (
len (
Cage (C,n))) & ((
Cage (C,n))
/. k)
= (
S-max (
L~ (
Cage (C,n)))) holds (((
Cage (C,n))
/. (k
+ 1))
`2 )
= (
S-bound (
L~ (
Cage (C,n))))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
A1: (
Cage (C,n))
is_sequence_on (
Gauge (C,n)) by
JORDAN9:def 1;
A2: ((
Cage (C,n))
/. 1)
= (
N-min (
L~ (
Cage (C,n)))) by
JORDAN9: 32;
then 1
< ((
N-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
SPRECT_2: 69;
then 1
< ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A2,
SPRECT_2: 70,
XXREAL_0: 2;
then 1
< ((
E-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A2,
SPRECT_2: 71,
XXREAL_0: 2;
then
A3: ((
S-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
> 1 by
A2,
SPRECT_2: 72,
XXREAL_0: 2;
let k be
Nat;
assume that
A4: 1
<= k and
A5: (k
+ 1)
<= (
len (
Cage (C,n))) and
A6: ((
Cage (C,n))
/. k)
= (
S-max (
L~ (
Cage (C,n))));
A7: k
< (
len (
Cage (C,n))) by
A5,
NAT_1: 13;
then
A8: k
in (
dom (
Cage (C,n))) by
A4,
FINSEQ_3: 25;
then
reconsider k9 = (k
- 1) as
Nat by
FINSEQ_3: 26;
((
S-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
<= k by
A6,
A8,
FINSEQ_5: 39;
then
A9: k
> 1 by
A3,
XXREAL_0: 2;
then
consider i1,j1,i2,j2 be
Nat such that
A10:
[i1, j1]
in (
Indices (
Gauge (C,n))) and
A11: ((
Cage (C,n))
/. k)
= ((
Gauge (C,n))
* (i1,j1)) and
A12:
[i2, j2]
in (
Indices (
Gauge (C,n))) and
A13: ((
Cage (C,n))
/. (k
+ 1))
= ((
Gauge (C,n))
* (i2,j2)) and
A14: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A1,
A5,
JORDAN8: 3;
A15: 1
<= i1 by
A10,
MATRIX_0: 32;
A16: j2
<= (
width (
Gauge (C,n))) by
A12,
MATRIX_0: 32;
A17: 1
<= j2 by
A12,
MATRIX_0: 32;
A18: j1
<= (
width (
Gauge (C,n))) by
A10,
MATRIX_0: 32;
A19: (k9
+ 1)
< (
len (
Cage (C,n))) by
A5,
NAT_1: 13;
A20: i1
<= (
len (
Gauge (C,n))) by
A10,
MATRIX_0: 32;
(((
Gauge (C,n))
* (i1,j1))
`2 )
= (
S-bound (
L~ (
Cage (C,n)))) by
A6,
A11,
EUCLID: 52
.= (((
Gauge (C,n))
* (i1,1))
`2 ) by
A15,
A20,
JORDAN1A: 72;
then
A21: j1
<= 1 by
A15,
A20,
A18,
GOBOARD5: 4;
k
>= (1
+ 1) by
A9,
NAT_1: 13;
then
A22: k9
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
then
consider i3,j3,i4,j4 be
Nat such that
A23:
[i3, j3]
in (
Indices (
Gauge (C,n))) and
A24: ((
Cage (C,n))
/. k9)
= ((
Gauge (C,n))
* (i3,j3)) and
A25:
[i4, j4]
in (
Indices (
Gauge (C,n))) and
A26: ((
Cage (C,n))
/. (k9
+ 1))
= ((
Gauge (C,n))
* (i4,j4)) and
A27: i3
= i4 & (j3
+ 1)
= j4 or (i3
+ 1)
= i4 & j3
= j4 or i3
= (i4
+ 1) & j3
= j4 or i3
= i4 & j3
= (j4
+ 1) by
A1,
A7,
JORDAN8: 3;
A28: i1
= i4 by
A10,
A11,
A25,
A26,
GOBOARD1: 5;
A29: j1
= j4 by
A10,
A11,
A25,
A26,
GOBOARD1: 5;
A30: 1
<= i3 by
A23,
MATRIX_0: 32;
A31: i3
<= (
len (
Gauge (C,n))) by
A23,
MATRIX_0: 32;
A32: 1
<= j1 by
A10,
MATRIX_0: 32;
then
A33: j1
= 1 by
A21,
XXREAL_0: 1;
A34: i3
= i4
proof
assume
A35: i3
<> i4;
per cases by
A27,
A35;
suppose j3
= j4 & (i3
+ 1)
= i4;
hence contradiction by
A7,
A21,
A22,
A23,
A24,
A25,
A26,
A29,
JORDAN10: 3;
end;
suppose
A36: j3
= j4 & i3
= (i4
+ 1);
k9
< (
len (
Cage (C,n))) by
A19,
NAT_1: 13;
then ((
Gauge (C,n))
* (i3,j3))
in (
S-most (
L~ (
Cage (C,n)))) by
A33,
A22,
A24,
A29,
A30,
A31,
A36,
JORDAN1A: 60;
then
A37: (((
Gauge (C,n))
* ((i4
+ 1),j4))
`1 )
<= (((
Gauge (C,n))
* (i4,j4))
`1 ) by
A6,
A26,
A36,
PSCOMP_1: 55;
i4
< (i4
+ 1) by
NAT_1: 13;
hence contradiction by
A15,
A32,
A18,
A28,
A29,
A31,
A36,
A37,
GOBOARD5: 3;
end;
end;
A38: 1
<= i2 & i2
<= (
len (
Gauge (C,n))) by
A12,
MATRIX_0: 32;
A39: (k9
+ 1)
= k;
A40: 1
<= j3 by
A23,
MATRIX_0: 32;
j1
= j2
proof
assume
A41: j1
<> j2;
per cases by
A14,
A41;
suppose j1
= (j2
+ 1) & i1
= i2;
hence contradiction by
A17,
A21,
NAT_1: 13;
end;
suppose
A42: (j1
+ 1)
= j2 & i1
= i2;
(k9
+ (1
+ 1))
<= (
len (
Cage (C,n))) by
A5;
then
A43: ((
LSeg ((
Cage (C,n)),k9))
/\ (
LSeg ((
Cage (C,n)),k)))
=
{((
Cage (C,n))
/. k)} by
A22,
A39,
TOPREAL1:def 6;
((
Cage (C,n))
/. k9)
in (
LSeg ((
Cage (C,n)),k9)) & ((
Cage (C,n))
/. (k
+ 1))
in (
LSeg ((
Cage (C,n)),k)) by
A4,
A5,
A7,
A22,
A39,
TOPREAL1: 21;
then ((
Cage (C,n))
/. (k
+ 1))
in
{((
Cage (C,n))
/. k)} by
A13,
A21,
A24,
A27,
A28,
A29,
A40,
A34,
A42,
A43,
NAT_1: 13,
XBOOLE_0:def 4;
then ((
Cage (C,n))
/. (k
+ 1))
= ((
Cage (C,n))
/. k) by
TARSKI:def 1;
hence contradiction by
A10,
A11,
A12,
A13,
A41,
GOBOARD1: 5;
end;
end;
then (((
Gauge (C,n))
* (i1,j1))
`2 )
= (((
Gauge (C,n))
* (1,j2))
`2 ) by
A15,
A20,
A32,
A18,
GOBOARD5: 1
.= (((
Gauge (C,n))
* (i2,j2))
`2 ) by
A38,
A17,
A16,
GOBOARD5: 1;
hence thesis by
A6,
A11,
A13,
EUCLID: 52;
end;
theorem ::
JORDAN1E:22
for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for k be
Nat st 1
<= k & (k
+ 1)
<= (
len (
Cage (C,n))) & ((
Cage (C,n))
/. k)
= (
W-min (
L~ (
Cage (C,n)))) holds (((
Cage (C,n))
/. (k
+ 1))
`1 )
= (
W-bound (
L~ (
Cage (C,n))))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
A1: (
Cage (C,n))
is_sequence_on (
Gauge (C,n)) by
JORDAN9:def 1;
A2: ((
Cage (C,n))
/. 1)
= (
N-min (
L~ (
Cage (C,n)))) by
JORDAN9: 32;
then 1
< ((
N-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
SPRECT_2: 69;
then 1
< ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A2,
SPRECT_2: 70,
XXREAL_0: 2;
then 1
< ((
E-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A2,
SPRECT_2: 71,
XXREAL_0: 2;
then 1
< ((
S-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A2,
SPRECT_2: 72,
XXREAL_0: 2;
then 1
< ((
S-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A2,
SPRECT_2: 73,
XXREAL_0: 2;
then
A3: ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
> 1 by
A2,
SPRECT_2: 74,
XXREAL_0: 2;
let k be
Nat;
assume that
A4: 1
<= k and
A5: (k
+ 1)
<= (
len (
Cage (C,n))) and
A6: ((
Cage (C,n))
/. k)
= (
W-min (
L~ (
Cage (C,n))));
A7: k
< (
len (
Cage (C,n))) by
A5,
NAT_1: 13;
then
A8: k
in (
dom (
Cage (C,n))) by
A4,
FINSEQ_3: 25;
then
reconsider k9 = (k
- 1) as
Nat by
FINSEQ_3: 26;
((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
<= k by
A6,
A8,
FINSEQ_5: 39;
then
A9: k
> 1 by
A3,
XXREAL_0: 2;
then
consider i1,j1,i2,j2 be
Nat such that
A10:
[i1, j1]
in (
Indices (
Gauge (C,n))) and
A11: ((
Cage (C,n))
/. k)
= ((
Gauge (C,n))
* (i1,j1)) and
A12:
[i2, j2]
in (
Indices (
Gauge (C,n))) and
A13: ((
Cage (C,n))
/. (k
+ 1))
= ((
Gauge (C,n))
* (i2,j2)) and
A14: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A1,
A5,
JORDAN8: 3;
A15: i1
<= (
len (
Gauge (C,n))) by
A10,
MATRIX_0: 32;
A16: j2
<= (
width (
Gauge (C,n))) by
A12,
MATRIX_0: 32;
A17: 1
<= i2 by
A12,
MATRIX_0: 32;
A18: j1
<= (
width (
Gauge (C,n))) by
A10,
MATRIX_0: 32;
A19: (
len (
Gauge (C,n)))
= (
width (
Gauge (C,n))) by
JORDAN8:def 1;
A20: i2
<= (
len (
Gauge (C,n))) & 1
<= j2 by
A12,
MATRIX_0: 32;
A21: (k9
+ 1)
= k;
A22: (k9
+ 1)
< (
len (
Cage (C,n))) by
A5,
NAT_1: 13;
A23: 1
<= j1 by
A10,
MATRIX_0: 32;
(((
Gauge (C,n))
* (i1,j1))
`1 )
= (
W-bound (
L~ (
Cage (C,n)))) by
A6,
A11,
EUCLID: 52
.= (((
Gauge (C,n))
* (1,j1))
`1 ) by
A23,
A18,
A19,
JORDAN1A: 73;
then
A24: i1
<= 1 by
A15,
A23,
A18,
GOBOARD5: 3;
k
>= (1
+ 1) by
A9,
NAT_1: 13;
then
A25: k9
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
then
consider i3,j3,i4,j4 be
Nat such that
A26:
[i3, j3]
in (
Indices (
Gauge (C,n))) and
A27: ((
Cage (C,n))
/. k9)
= ((
Gauge (C,n))
* (i3,j3)) and
A28:
[i4, j4]
in (
Indices (
Gauge (C,n))) and
A29: ((
Cage (C,n))
/. (k9
+ 1))
= ((
Gauge (C,n))
* (i4,j4)) and
A30: i3
= i4 & (j3
+ 1)
= j4 or (i3
+ 1)
= i4 & j3
= j4 or i3
= (i4
+ 1) & j3
= j4 or i3
= i4 & j3
= (j4
+ 1) by
A1,
A7,
JORDAN8: 3;
A31: i1
= i4 by
A10,
A11,
A28,
A29,
GOBOARD1: 5;
A32: j1
= j4 by
A10,
A11,
A28,
A29,
GOBOARD1: 5;
A33: j3
<= (
width (
Gauge (C,n))) by
A26,
MATRIX_0: 32;
A34: 1
<= j3 by
A26,
MATRIX_0: 32;
A35: 1
<= i1 by
A10,
MATRIX_0: 32;
then
A36: i1
= 1 by
A24,
XXREAL_0: 1;
A37: j3
= j4
proof
assume
A38: j3
<> j4;
per cases by
A30,
A38;
suppose i3
= i4 & j3
= (j4
+ 1);
hence contradiction by
A7,
A24,
A25,
A26,
A27,
A28,
A29,
A31,
JORDAN10: 2;
end;
suppose
A39: i3
= i4 & (j3
+ 1)
= j4;
k9
< (
len (
Cage (C,n))) by
A22,
NAT_1: 13;
then ((
Gauge (C,n))
* (i3,j3))
in (
W-most (
L~ (
Cage (C,n)))) by
A36,
A25,
A27,
A31,
A34,
A33,
A39,
JORDAN1A: 59;
then
A40: (((
Gauge (C,n))
* (i3,(j3
+ 1)))
`2 )
<= (((
Gauge (C,n))
* (i3,j3))
`2 ) by
A6,
A29,
A39,
PSCOMP_1: 31;
j3
< (j3
+ 1) by
NAT_1: 13;
hence contradiction by
A35,
A15,
A18,
A31,
A32,
A34,
A39,
A40,
GOBOARD5: 4;
end;
end;
A41: 1
<= i3 by
A26,
MATRIX_0: 32;
i1
= i2
proof
assume
A42: i1
<> i2;
per cases by
A14,
A42;
suppose i1
= (i2
+ 1) & j1
= j2;
hence contradiction by
A17,
A24,
NAT_1: 13;
end;
suppose
A43: (i1
+ 1)
= i2 & j1
= j2;
(k9
+ (1
+ 1))
<= (
len (
Cage (C,n))) by
A5;
then
A44: ((
LSeg ((
Cage (C,n)),k9))
/\ (
LSeg ((
Cage (C,n)),k)))
=
{((
Cage (C,n))
/. k)} by
A25,
A21,
TOPREAL1:def 6;
((
Cage (C,n))
/. k9)
in (
LSeg ((
Cage (C,n)),k9)) & ((
Cage (C,n))
/. (k
+ 1))
in (
LSeg ((
Cage (C,n)),k)) by
A4,
A5,
A7,
A25,
A21,
TOPREAL1: 21;
then ((
Cage (C,n))
/. (k
+ 1))
in
{((
Cage (C,n))
/. k)} by
A13,
A24,
A27,
A30,
A31,
A32,
A41,
A37,
A43,
A44,
NAT_1: 13,
XBOOLE_0:def 4;
then ((
Cage (C,n))
/. (k
+ 1))
= ((
Cage (C,n))
/. k) by
TARSKI:def 1;
hence contradiction by
A10,
A11,
A12,
A13,
A42,
GOBOARD1: 5;
end;
end;
then (((
Gauge (C,n))
* (i1,j1))
`1 )
= (((
Gauge (C,n))
* (i2,1))
`1 ) by
A35,
A15,
A23,
A18,
GOBOARD5: 2
.= (((
Gauge (C,n))
* (i2,j2))
`1 ) by
A17,
A20,
A16,
GOBOARD5: 2;
hence thesis by
A6,
A11,
A13,
EUCLID: 52;
end;