jordan9.miz
begin
reserve i,j,k,n for
Nat,
D for non
empty
set,
f,g for
FinSequence of D;
Lm1: for n st 1
<= n holds ((n
-' 1)
+ 2)
= (n
+ 1)
proof
let n;
assume 1
<= n;
hence ((n
-' 1)
+ 2)
= ((n
+ 2)
-' 1) by
NAT_D: 38
.= (((n
+ 1)
+ 1)
- 1) by
NAT_D: 37
.= (n
+ 1);
end;
theorem ::
JORDAN9:1
Th1: for T be non
empty
TopSpace holds for B,C1,C2,D be
Subset of T st B is
connected & C1
is_a_component_of D & C2
is_a_component_of D & B
meets C1 & B
meets C2 & B
c= D holds C1
= C2
proof
let T be non
empty
TopSpace;
let B,C1,C2,D be
Subset of T;
assume that
A1: B is
connected and
A2: C1
is_a_component_of D & C2
is_a_component_of D and
A3: B
meets C1 and
A4: B
meets C2 & B
c= D;
A5: B
<>
{} by
A3,
XBOOLE_1: 65;
B
c= C1 & B
c= C2 by
A1,
A2,
A3,
A4,
GOBOARD9: 4;
hence thesis by
A2,
A5,
GOBOARD9: 1,
XBOOLE_1: 68;
end;
theorem ::
JORDAN9:2
Th2: (for n holds (f
| n)
= (g
| n)) implies f
= g
proof
assume
A1: for n holds (f
| n)
= (g
| n);
A2:
now
assume
A3: (
len f)
<> (
len g);
per cases by
A3,
XXREAL_0: 1;
suppose
A4: (
len f)
< (
len g);
A5: (g
| (
len g))
= g by
FINSEQ_1: 58;
(f
| (
len g))
= f by
A4,
FINSEQ_1: 58;
hence contradiction by
A1,
A4,
A5;
end;
suppose
A6: (
len g)
< (
len f);
then (f
| (
len f))
= f & (g
| (
len f))
= g by
FINSEQ_1: 58;
hence contradiction by
A1,
A6;
end;
end;
(f
| (
len f))
= f & (g
| (
len g))
= g by
FINSEQ_1: 58;
hence thesis by
A1,
A2;
end;
theorem ::
JORDAN9:3
Th3: n
in (
dom f) implies ex k st k
in (
dom (
Rev f)) & (n
+ k)
= ((
len f)
+ 1) & (f
/. n)
= ((
Rev f)
/. k)
proof
assume
A1: n
in (
dom f);
take k = (((
len f)
+ 1)
-' n);
1
<= n by
A1,
FINSEQ_3: 25;
then (k
+ 1)
<= (k
+ n) by
XREAL_1: 6;
then
A2: ((k
+ 1)
-' 1)
<= ((k
+ n)
-' 1) by
NAT_D: 42;
A3: n
<= (
len f) by
A1,
FINSEQ_3: 25;
then (n
+ 1)
<= ((
len f)
+ 1) by
XREAL_1: 6;
then
A4: 1
<= k by
NAT_D: 55;
n
<= ((
len f)
+ 1) by
A3,
XREAL_1: 145;
then
A5: (k
+ n)
= ((
len f)
+ 1) by
XREAL_1: 235;
then ((k
+ n)
-' 1)
= (
len f) by
NAT_D: 34;
then k
<= (
len f) by
A2,
NAT_D: 34;
then k
in (
dom f) by
A4,
FINSEQ_3: 25;
hence thesis by
A1,
A5,
FINSEQ_5: 57,
FINSEQ_5: 66;
end;
theorem ::
JORDAN9:4
Th4: n
in (
dom (
Rev f)) implies ex k st k
in (
dom f) & (n
+ k)
= ((
len f)
+ 1) & ((
Rev f)
/. n)
= (f
/. k)
proof
assume n
in (
dom (
Rev f));
then n
in (
dom f) by
FINSEQ_5: 57;
then
consider k such that
A1: k
in (
dom (
Rev f)) & (n
+ k)
= ((
len f)
+ 1) and (f
/. n)
= ((
Rev f)
/. k) by
Th3;
A2: (
dom f)
= (
dom (
Rev f)) by
FINSEQ_5: 57;
then ((
Rev f)
/. n)
= (f
/. k) by
A1,
FINSEQ_5: 66;
hence thesis by
A1,
A2;
end;
begin
reserve G for
Go-board,
f,g for
FinSequence of (
TOP-REAL 2),
p for
Point of (
TOP-REAL 2),
r,s for
Real,
x for
set;
theorem ::
JORDAN9:5
Th5: for D be non
empty
set holds for G be
Matrix of D holds for f be
FinSequence of D holds f
is_sequence_on G iff (
Rev f)
is_sequence_on G
proof
let D be non
empty
set;
let G be
Matrix of D;
let f be
FinSequence of D;
hereby
assume
A1: f
is_sequence_on G;
A2: for n be
Nat st n
in (
dom (
Rev f)) & (n
+ 1)
in (
dom (
Rev f)) holds for m,k,i,j be
Nat st
[m, k]
in (
Indices G) &
[i, j]
in (
Indices G) & ((
Rev f)
/. n)
= (G
* (m,k)) & ((
Rev f)
/. (n
+ 1))
= (G
* (i,j)) holds (
|.(m
- i).|
+
|.(k
- j).|)
= 1
proof
let n be
Nat such that
A3: n
in (
dom (
Rev f)) and
A4: (n
+ 1)
in (
dom (
Rev f));
consider l be
Nat such that
A5: l
in (
dom f) and
A6: (n
+ l)
= ((
len f)
+ 1) and
A7: ((
Rev f)
/. n)
= (f
/. l) by
A3,
Th4;
let m,k,i,j be
Nat such that
A8:
[m, k]
in (
Indices G) &
[i, j]
in (
Indices G) & ((
Rev f)
/. n)
= (G
* (m,k)) & ((
Rev f)
/. (n
+ 1))
= (G
* (i,j));
A9:
|.(i
- m).|
=
|.(m
- i).| &
|.(j
- k).|
=
|.(k
- j).| by
UNIFORM1: 11;
consider l9 be
Nat such that
A10: l9
in (
dom f) and
A11: ((n
+ 1)
+ l9)
= ((
len f)
+ 1) and
A12: ((
Rev f)
/. (n
+ 1))
= (f
/. l9) by
A4,
Th4;
(n
+ (1
+ l9))
= (n
+ l) by
A6,
A11;
hence thesis by
A1,
A8,
A5,
A7,
A10,
A12,
A9,
GOBOARD1:def 9;
end;
for n be
Nat st n
in (
dom (
Rev f)) holds ex i,j be
Nat st
[i, j]
in (
Indices G) & ((
Rev f)
/. n)
= (G
* (i,j))
proof
let n be
Nat;
assume n
in (
dom (
Rev f));
then
consider k such that
A13: k
in (
dom f) and (n
+ k)
= ((
len f)
+ 1) and
A14: ((
Rev f)
/. n)
= (f
/. k) by
Th4;
consider i,j be
Nat such that
A15:
[i, j]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) by
A1,
A13,
GOBOARD1:def 9;
take i, j;
thus thesis by
A14,
A15;
end;
hence (
Rev f)
is_sequence_on G by
A2,
GOBOARD1:def 9;
end;
assume
A16: (
Rev f)
is_sequence_on G;
A17: for n be
Nat st n
in (
dom f) & (n
+ 1)
in (
dom f) holds for m,k,i,j be
Nat st
[m, k]
in (
Indices G) &
[i, j]
in (
Indices G) & (f
/. n)
= (G
* (m,k)) & (f
/. (n
+ 1))
= (G
* (i,j)) holds (
|.(m
- i).|
+
|.(k
- j).|)
= 1
proof
let n be
Nat such that
A18: n
in (
dom f) and
A19: (n
+ 1)
in (
dom f);
consider l be
Nat such that
A20: l
in (
dom (
Rev f)) and
A21: (n
+ l)
= ((
len f)
+ 1) and
A22: (f
/. n)
= ((
Rev f)
/. l) by
A18,
Th3;
let m,k,i,j be
Nat such that
A23:
[m, k]
in (
Indices G) &
[i, j]
in (
Indices G) & (f
/. n)
= (G
* (m,k)) & (f
/. (n
+ 1))
= (G
* (i,j));
A24:
|.(i
- m).|
=
|.(m
- i).| &
|.(j
- k).|
=
|.(k
- j).| by
UNIFORM1: 11;
consider l9 be
Nat such that
A25: l9
in (
dom (
Rev f)) and
A26: ((n
+ 1)
+ l9)
= ((
len f)
+ 1) and
A27: (f
/. (n
+ 1))
= ((
Rev f)
/. l9) by
A19,
Th3;
(n
+ (1
+ l9))
= (n
+ l) by
A21,
A26;
hence thesis by
A16,
A23,
A20,
A22,
A25,
A27,
A24,
GOBOARD1:def 9;
end;
for n be
Nat st n
in (
dom f) holds ex i,j be
Nat st
[i, j]
in (
Indices G) & (f
/. n)
= (G
* (i,j))
proof
let n be
Nat;
assume n
in (
dom f);
then
consider k such that
A28: k
in (
dom (
Rev f)) and (n
+ k)
= ((
len f)
+ 1) and
A29: (f
/. n)
= ((
Rev f)
/. k) by
Th3;
consider i,j be
Nat such that
A30:
[i, j]
in (
Indices G) & ((
Rev f)
/. k)
= (G
* (i,j)) by
A16,
A28,
GOBOARD1:def 9;
take i, j;
thus thesis by
A29,
A30;
end;
hence thesis by
A17,
GOBOARD1:def 9;
end;
theorem ::
JORDAN9:6
Th6: for G be
Matrix of (
TOP-REAL 2) holds for f be
FinSequence of (
TOP-REAL 2) st f
is_sequence_on G holds for k be
Nat st 1
<= k & k
<= (
len f) holds (f
/. k)
in (
Values G)
proof
let G be
Matrix of (
TOP-REAL 2);
let f be
FinSequence of (
TOP-REAL 2);
assume that
A1: f
is_sequence_on G;
let k be
Nat such that
A2: 1
<= k & k
<= (
len f);
A3: k
in (
dom f) by
A2,
FINSEQ_3: 25;
then (f
/. k)
= (f
. k) by
PARTFUN1:def 6;
then
A4: (f
/. k)
in (
rng f) by
A3,
FUNCT_1:def 3;
(
rng f)
c= (
Values G) by
A1,
GOBRD13: 8;
hence thesis by
A4;
end;
Lm2: f
is_sequence_on G & 1
<= k & k
<= (
len f) implies ex i,j be
Nat st
[i, j]
in (
Indices G) & (f
/. k)
= (G
* (i,j))
proof
assume that
A1: f
is_sequence_on G and
A2: 1
<= k & k
<= (
len f);
k
in (
dom f) by
A2,
FINSEQ_3: 25;
then
consider i,j be
Nat such that
A3:
[i, j]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) by
A1,
GOBOARD1:def 9;
take i, j;
thus thesis by
A3;
end;
theorem ::
JORDAN9:7
Th7: n
<= (
len f) & x
in (
L~ (f
/^ n)) implies ex i be
Nat st (n
+ 1)
<= i & (i
+ 1)
<= (
len f) & x
in (
LSeg (f,i))
proof
assume that
A1: n
<= (
len f) and
A2: x
in (
L~ (f
/^ n));
consider j be
Nat such that
A3: 1
<= j and
A4: (j
+ 1)
<= (
len (f
/^ n)) and
A5: x
in (
LSeg ((f
/^ n),j)) by
A2,
SPPOL_2: 13;
(j
+ 1)
<= ((
len f)
- n) by
A1,
A4,
RFINSEQ:def 1;
then
A6: (n
+ (j
+ 1))
<= (
len f) by
XREAL_1: 19;
take (n
+ j);
(j
+ 1)
<= ((
len f)
- n) by
A1,
A4,
RFINSEQ:def 1;
hence thesis by
A3,
A5,
A6,
SPPOL_2: 5,
XREAL_1: 6;
end;
theorem ::
JORDAN9:8
Th8: f
is_sequence_on G implies for k be
Nat st 1
<= k & (k
+ 1)
<= (
len f) holds (f
/. k)
in (
left_cell (f,k,G)) & (f
/. k)
in (
right_cell (f,k,G))
proof
assume that
A1: f
is_sequence_on G;
let k be
Nat such that
A2: 1
<= k & (k
+ 1)
<= (
len f);
set p = (f
/. k);
(
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A2,
TOPREAL1:def 3;
then p
in (
LSeg (f,k)) by
RLTOPSP1: 68;
then p
in ((
left_cell (f,k,G))
/\ (
right_cell (f,k,G))) by
A1,
A2,
GOBRD13: 29;
hence thesis by
XBOOLE_0:def 4;
end;
theorem ::
JORDAN9:9
Th9: f
is_sequence_on G implies for k be
Nat st 1
<= k & (k
+ 1)
<= (
len f) holds (
Int (
left_cell (f,k,G)))
<>
{} & (
Int (
right_cell (f,k,G)))
<>
{}
proof
assume
A1: f
is_sequence_on G;
let k be
Nat;
assume
A2: 1
<= k & (k
+ 1)
<= (
len f);
then
consider i1,j1,i2,j2 be
Nat such that
A3:
[i1, j1]
in (
Indices G) and
A4: (f
/. k)
= (G
* (i1,j1)) and
A5:
[i2, j2]
in (
Indices G) and
A6: (f
/. (k
+ 1))
= (G
* (i2,j2)) and
A7: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A1,
JORDAN8: 3;
A8: i2
<= (
len G) by
A5,
MATRIX_0: 32;
A9: i1
<= (
len G) by
A3,
MATRIX_0: 32;
then
A10: (i1
-' 1)
<= (
len G) by
NAT_D: 44;
A11: j2
<= (
width G) by
A5,
MATRIX_0: 32;
then
A12: (j2
-' 1)
<= (
width G) by
NAT_D: 44;
A13: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A14: j1
<= (
width G) by
A3,
MATRIX_0: 32;
then
A15: (j1
-' 1)
<= (
width G) by
NAT_D: 44;
A16: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
per cases by
A7;
suppose i1
= i2 & (j1
+ 1)
= j2;
then (
right_cell (f,k,G))
= (
cell (G,i1,j1)) & (
left_cell (f,k,G))
= (
cell (G,(i1
-' 1),j1)) by
A1,
A3,
A4,
A5,
A6,
A13,
GOBRD13:def 2,
GOBRD13:def 3,
A2;
hence thesis by
A9,
A14,
A10,
GOBOARD9: 14;
end;
suppose (i1
+ 1)
= i2 & j1
= j2;
then (
right_cell (f,k,G))
= (
cell (G,i1,(j1
-' 1))) & (
left_cell (f,k,G))
= (
cell (G,i1,j1)) by
A1,
A3,
A4,
A5,
A6,
A16,
GOBRD13:def 2,
GOBRD13:def 3,
A2;
hence thesis by
A9,
A14,
A15,
GOBOARD9: 14;
end;
suppose i1
= (i2
+ 1) & j1
= j2;
then (
right_cell (f,k,G))
= (
cell (G,i2,j2)) & (
left_cell (f,k,G))
= (
cell (G,i2,(j2
-' 1))) by
A1,
A3,
A4,
A5,
A6,
A16,
GOBRD13:def 2,
GOBRD13:def 3,
A2;
hence thesis by
A8,
A11,
A12,
GOBOARD9: 14;
end;
suppose i1
= i2 & j1
= (j2
+ 1);
then (
right_cell (f,k,G))
= (
cell (G,(i1
-' 1),j2)) & (
left_cell (f,k,G))
= (
cell (G,i1,j2)) by
A1,
A3,
A4,
A5,
A6,
A13,
GOBRD13:def 2,
GOBRD13:def 3,
A2;
hence thesis by
A9,
A11,
A10,
GOBOARD9: 14;
end;
end;
theorem ::
JORDAN9:10
Th10: f
is_sequence_on G implies for k be
Nat st 1
<= k & (k
+ 1)
<= (
len f) holds (
Int (
left_cell (f,k,G))) is
convex & (
Int (
right_cell (f,k,G))) is
convex
proof
assume
A1: f
is_sequence_on G;
let k be
Nat;
assume
A2: 1
<= k & (k
+ 1)
<= (
len f);
then
consider i1,j1,i2,j2 be
Nat such that
A3:
[i1, j1]
in (
Indices G) and
A4: (f
/. k)
= (G
* (i1,j1)) and
A5:
[i2, j2]
in (
Indices G) and
A6: (f
/. (k
+ 1))
= (G
* (i2,j2)) and
A7: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A1,
JORDAN8: 3;
A8: i2
<= (
len G) by
A5,
MATRIX_0: 32;
A9: i1
<= (
len G) by
A3,
MATRIX_0: 32;
then
A10: (i1
-' 1)
<= (
len G) by
NAT_D: 44;
A11: j2
<= (
width G) by
A5,
MATRIX_0: 32;
then
A12: (j2
-' 1)
<= (
width G) by
NAT_D: 44;
A13: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A14: j1
<= (
width G) by
A3,
MATRIX_0: 32;
then
A15: (j1
-' 1)
<= (
width G) by
NAT_D: 44;
A16: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
per cases by
A7;
suppose i1
= i2 & (j1
+ 1)
= j2;
then (
right_cell (f,k,G))
= (
cell (G,i1,j1)) & (
left_cell (f,k,G))
= (
cell (G,(i1
-' 1),j1)) by
A1,
A3,
A4,
A5,
A6,
A13,
GOBRD13:def 2,
GOBRD13:def 3,
A2;
hence thesis by
A9,
A14,
A10,
GOBOARD9: 17;
end;
suppose (i1
+ 1)
= i2 & j1
= j2;
then (
right_cell (f,k,G))
= (
cell (G,i1,(j1
-' 1))) & (
left_cell (f,k,G))
= (
cell (G,i1,j1)) by
A1,
A3,
A4,
A5,
A6,
A16,
GOBRD13:def 2,
GOBRD13:def 3,
A2;
hence thesis by
A9,
A14,
A15,
GOBOARD9: 17;
end;
suppose i1
= (i2
+ 1) & j1
= j2;
then (
right_cell (f,k,G))
= (
cell (G,i2,j2)) & (
left_cell (f,k,G))
= (
cell (G,i2,(j2
-' 1))) by
A1,
A3,
A4,
A5,
A6,
A16,
GOBRD13:def 2,
GOBRD13:def 3,
A2;
hence thesis by
A8,
A11,
A12,
GOBOARD9: 17;
end;
suppose i1
= i2 & j1
= (j2
+ 1);
then (
right_cell (f,k,G))
= (
cell (G,(i1
-' 1),j2)) & (
left_cell (f,k,G))
= (
cell (G,i1,j2)) by
A1,
A3,
A4,
A5,
A6,
A13,
GOBRD13:def 2,
GOBRD13:def 3,
A2;
hence thesis by
A9,
A11,
A10,
GOBOARD9: 17;
end;
end;
theorem ::
JORDAN9:11
Th11: f
is_sequence_on G & 1
<= k & (k
+ 1)
<= (
len f) implies (
Cl (
Int (
left_cell (f,k,G))))
= (
left_cell (f,k,G)) & (
Cl (
Int (
right_cell (f,k,G))))
= (
right_cell (f,k,G))
proof
assume
A1: f
is_sequence_on G & 1
<= k & (k
+ 1)
<= (
len f);
then
consider i1,j1,i2,j2 be
Nat such that
A2:
[i1, j1]
in (
Indices G) and
A3: (f
/. k)
= (G
* (i1,j1)) and
A4:
[i2, j2]
in (
Indices G) and
A5: (f
/. (k
+ 1))
= (G
* (i2,j2)) and
A6: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
JORDAN8: 3;
A7: i2
<= (
len G) by
A4,
MATRIX_0: 32;
A8: i1
<= (
len G) by
A2,
MATRIX_0: 32;
then
A9: (i1
-' 1)
<= (
len G) by
NAT_D: 44;
A10: j2
<= (
width G) by
A4,
MATRIX_0: 32;
then
A11: (j2
-' 1)
<= (
width G) by
NAT_D: 44;
A12: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A13: j1
<= (
width G) by
A2,
MATRIX_0: 32;
then
A14: (j1
-' 1)
<= (
width G) by
NAT_D: 44;
A15: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
per cases by
A6;
suppose i1
= i2 & (j1
+ 1)
= j2;
then (
right_cell (f,k,G))
= (
cell (G,i1,j1)) & (
left_cell (f,k,G))
= (
cell (G,(i1
-' 1),j1)) by
A1,
A2,
A3,
A4,
A5,
A12,
GOBRD13:def 2,
GOBRD13:def 3;
hence thesis by
A8,
A13,
A9,
GOBRD11: 35;
end;
suppose (i1
+ 1)
= i2 & j1
= j2;
then (
right_cell (f,k,G))
= (
cell (G,i1,(j1
-' 1))) & (
left_cell (f,k,G))
= (
cell (G,i1,j1)) by
A1,
A2,
A3,
A4,
A5,
A15,
GOBRD13:def 2,
GOBRD13:def 3;
hence thesis by
A8,
A13,
A14,
GOBRD11: 35;
end;
suppose i1
= (i2
+ 1) & j1
= j2;
then (
right_cell (f,k,G))
= (
cell (G,i2,j2)) & (
left_cell (f,k,G))
= (
cell (G,i2,(j2
-' 1))) by
A1,
A2,
A3,
A4,
A5,
A15,
GOBRD13:def 2,
GOBRD13:def 3;
hence thesis by
A7,
A10,
A11,
GOBRD11: 35;
end;
suppose i1
= i2 & j1
= (j2
+ 1);
then (
right_cell (f,k,G))
= (
cell (G,(i1
-' 1),j2)) & (
left_cell (f,k,G))
= (
cell (G,i1,j2)) by
A1,
A2,
A3,
A4,
A5,
A12,
GOBRD13:def 2,
GOBRD13:def 3;
hence thesis by
A8,
A10,
A9,
GOBRD11: 35;
end;
end;
theorem ::
JORDAN9:12
Th12: f
is_sequence_on G & (
LSeg (f,k)) is
horizontal implies ex j st 1
<= j & j
<= (
width G) & for p st p
in (
LSeg (f,k)) holds (p
`2 )
= ((G
* (1,j))
`2 )
proof
assume that
A1: f
is_sequence_on G and
A2: (
LSeg (f,k)) is
horizontal;
per cases ;
suppose
A3: 1
<= k & (k
+ 1)
<= (
len f);
k
<= (k
+ 1) by
NAT_1: 11;
then k
<= (
len f) by
A3,
XXREAL_0: 2;
then
consider i,j be
Nat such that
A4:
[i, j]
in (
Indices G) and
A5: (f
/. k)
= (G
* (i,j)) by
A1,
A3,
Lm2;
reconsider j as
Nat;
take j;
thus
A6: 1
<= j & j
<= (
width G) by
A4,
MATRIX_0: 32;
A7: (f
/. k)
in (
LSeg (f,k)) by
A3,
TOPREAL1: 21;
let p;
A8: 1
<= i & i
<= (
len G) by
A4,
MATRIX_0: 32;
assume p
in (
LSeg (f,k));
hence (p
`2 )
= ((f
/. k)
`2 ) by
A2,
A7,
SPPOL_1:def 2
.= ((G
* (1,j))
`2 ) by
A5,
A6,
A8,
GOBOARD5: 1;
end;
suppose
A9: not (1
<= k & (k
+ 1)
<= (
len f));
take 1;
(
width G)
<>
0 by
MATRIX_0:def 10;
hence 1
<= 1 & 1
<= (
width G) by
NAT_1: 14;
thus thesis by
A9,
TOPREAL1:def 3;
end;
end;
theorem ::
JORDAN9:13
Th13: f
is_sequence_on G & (
LSeg (f,k)) is
vertical implies ex i st 1
<= i & i
<= (
len G) & for p st p
in (
LSeg (f,k)) holds (p
`1 )
= ((G
* (i,1))
`1 )
proof
assume that
A1: f
is_sequence_on G and
A2: (
LSeg (f,k)) is
vertical;
per cases ;
suppose
A3: 1
<= k & (k
+ 1)
<= (
len f);
k
<= (k
+ 1) by
NAT_1: 11;
then k
<= (
len f) by
A3,
XXREAL_0: 2;
then
consider i,j be
Nat such that
A4:
[i, j]
in (
Indices G) and
A5: (f
/. k)
= (G
* (i,j)) by
A1,
A3,
Lm2;
reconsider i as
Nat;
take i;
thus
A6: 1
<= i & i
<= (
len G) by
A4,
MATRIX_0: 32;
A7: (f
/. k)
in (
LSeg (f,k)) by
A3,
TOPREAL1: 21;
let p;
A8: 1
<= j & j
<= (
width G) by
A4,
MATRIX_0: 32;
assume p
in (
LSeg (f,k));
hence (p
`1 )
= ((f
/. k)
`1 ) by
A2,
A7,
SPPOL_1:def 3
.= ((G
* (i,1))
`1 ) by
A5,
A6,
A8,
GOBOARD5: 2;
end;
suppose
A9: not (1
<= k & (k
+ 1)
<= (
len f));
take 1;
0
<> (
len G) by
MATRIX_0:def 10;
hence 1
<= 1 & 1
<= (
len G) by
NAT_1: 14;
thus thesis by
A9,
TOPREAL1:def 3;
end;
end;
theorem ::
JORDAN9:14
Th14: f
is_sequence_on G & f is
special implies for i,j be
Nat st i
<= (
len G) & j
<= (
width G) holds (
Int (
cell (G,i,j)))
misses (
L~ f)
proof
assume that
A1: f
is_sequence_on G and
A2: f is
special;
let i,j be
Nat such that
A3: i
<= (
len G) and
A4: j
<= (
width G);
A5: (
Int (
cell (G,i,j)))
= ((
Int (
v_strip (G,i)))
/\ (
Int (
h_strip (G,j)))) by
TOPS_1: 17;
assume (
Int (
cell (G,i,j)))
meets (
L~ f);
then
consider x be
object such that
A6: x
in (
Int (
cell (G,i,j))) and
A7: x
in (
L~ f) by
XBOOLE_0: 3;
(
L~ f)
= (
union { (
LSeg (f,k)) where k be
Nat : 1
<= k & (k
+ 1)
<= (
len f) }) by
TOPREAL1:def 4;
then
consider X be
set such that
A8: x
in X and
A9: X
in { (
LSeg (f,k)) where k be
Nat : 1
<= k & (k
+ 1)
<= (
len f) } by
A7,
TARSKI:def 4;
consider k be
Nat such that
A10: X
= (
LSeg (f,k)) and 1
<= k and (k
+ 1)
<= (
len f) by
A9;
reconsider p = x as
Point of (
TOP-REAL 2) by
A8,
A10;
per cases by
A2,
SPPOL_1: 19;
suppose (
LSeg (f,k)) is
horizontal;
then
consider j0 be
Nat such that
A11: 1
<= j0 and
A12: j0
<= (
width G) and
A13: for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (f,k)) holds (p
`2 )
= ((G
* (1,j0))
`2 ) by
A1,
Th12;
now
A14: j0
> j implies j0
>= (j
+ 1) by
NAT_1: 13;
assume
A15: p
in (
Int (
h_strip (G,j)));
per cases by
A14,
XXREAL_0: 1;
suppose
A16: j0
< j;
0
<> (
len G) by
MATRIX_0:def 10;
then 1
<= (
len G) by
NAT_1: 14;
then
A17: ((G
* (1,j))
`2 )
> ((G
* (1,j0))
`2 ) by
A4,
A11,
A16,
GOBOARD5: 4;
j
>= 1 by
A11,
A16,
XXREAL_0: 2;
then (p
`2 )
> ((G
* (1,j))
`2 ) by
A4,
A15,
GOBOARD6: 27;
hence contradiction by
A8,
A10,
A13,
A17;
end;
suppose j0
= j;
then (p
`2 )
> ((G
* (1,j0))
`2 ) by
A11,
A12,
A15,
GOBOARD6: 27;
hence contradiction by
A8,
A10,
A13;
end;
suppose
A18: j0
> (j
+ 1);
then (j
+ 1)
<= (
width G) by
A12,
XXREAL_0: 2;
then j
< (
width G) by
NAT_1: 13;
then
A19: (p
`2 )
< ((G
* (1,(j
+ 1)))
`2 ) by
A15,
GOBOARD6: 28;
0
<> (
len G) by
MATRIX_0:def 10;
then
A20: 1
<= (
len G) by
NAT_1: 14;
(j
+ 1)
>= 1 by
NAT_1: 14;
then ((G
* (1,(j
+ 1)))
`2 )
< ((G
* (1,j0))
`2 ) by
A12,
A18,
A20,
GOBOARD5: 4;
hence contradiction by
A8,
A10,
A13,
A19;
end;
suppose
A21: j0
= (j
+ 1);
then j
< (
width G) by
A12,
NAT_1: 13;
then (p
`2 )
< ((G
* (1,j0))
`2 ) by
A15,
A21,
GOBOARD6: 28;
hence contradiction by
A8,
A10,
A13;
end;
end;
hence contradiction by
A6,
A5,
XBOOLE_0:def 4;
end;
suppose (
LSeg (f,k)) is
vertical;
then
consider i0 be
Nat such that
A22: 1
<= i0 and
A23: i0
<= (
len G) and
A24: for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (f,k)) holds (p
`1 )
= ((G
* (i0,1))
`1 ) by
A1,
Th13;
now
A25: i0
> i implies i0
>= (i
+ 1) by
NAT_1: 13;
assume
A26: p
in (
Int (
v_strip (G,i)));
per cases by
A25,
XXREAL_0: 1;
suppose
A27: i0
< i;
0
<> (
width G) by
MATRIX_0:def 10;
then 1
<= (
width G) by
NAT_1: 14;
then
A28: ((G
* (i,1))
`1 )
> ((G
* (i0,1))
`1 ) by
A3,
A22,
A27,
GOBOARD5: 3;
i
>= 1 by
A22,
A27,
XXREAL_0: 2;
then (p
`1 )
> ((G
* (i,1))
`1 ) by
A3,
A26,
GOBOARD6: 29;
hence contradiction by
A8,
A10,
A24,
A28;
end;
suppose i0
= i;
then (p
`1 )
> ((G
* (i0,1))
`1 ) by
A22,
A23,
A26,
GOBOARD6: 29;
hence contradiction by
A8,
A10,
A24;
end;
suppose
A29: i0
> (i
+ 1);
then (i
+ 1)
<= (
len G) by
A23,
XXREAL_0: 2;
then i
< (
len G) by
NAT_1: 13;
then
A30: (p
`1 )
< ((G
* ((i
+ 1),1))
`1 ) by
A26,
GOBOARD6: 30;
0
<> (
width G) by
MATRIX_0:def 10;
then
A31: 1
<= (
width G) by
NAT_1: 14;
(i
+ 1)
>= 1 by
NAT_1: 14;
then ((G
* ((i
+ 1),1))
`1 )
< ((G
* (i0,1))
`1 ) by
A23,
A29,
A31,
GOBOARD5: 3;
hence contradiction by
A8,
A10,
A24,
A30;
end;
suppose
A32: i0
= (i
+ 1);
then i
< (
len G) by
A23,
NAT_1: 13;
then (p
`1 )
< ((G
* (i0,1))
`1 ) by
A26,
A32,
GOBOARD6: 30;
hence contradiction by
A8,
A10,
A24;
end;
end;
hence contradiction by
A6,
A5,
XBOOLE_0:def 4;
end;
end;
theorem ::
JORDAN9:15
Th15: f
is_sequence_on G & f is
special implies for k be
Nat st 1
<= k & (k
+ 1)
<= (
len f) holds (
Int (
left_cell (f,k,G)))
misses (
L~ f) & (
Int (
right_cell (f,k,G)))
misses (
L~ f)
proof
assume that
A1: f
is_sequence_on G and
A2: f is
special;
let k be
Nat such that
A3: 1
<= k & (k
+ 1)
<= (
len f);
consider i1,j1,i2,j2 be
Nat such that
A4:
[i1, j1]
in (
Indices G) and
A5: (f
/. k)
= (G
* (i1,j1)) and
A6:
[i2, j2]
in (
Indices G) and
A7: (f
/. (k
+ 1))
= (G
* (i2,j2)) and
A8: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A1,
A3,
JORDAN8: 3;
A9: i2
<= (
len G) by
A6,
MATRIX_0: 32;
A10: i1
<= (
len G) by
A4,
MATRIX_0: 32;
then
A11: (i1
-' 1)
<= (
len G) by
NAT_D: 44;
A12: j2
<= (
width G) by
A6,
MATRIX_0: 32;
then
A13: (j2
-' 1)
<= (
width G) by
NAT_D: 44;
A14: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A15: j1
<= (
width G) by
A4,
MATRIX_0: 32;
then
A16: (j1
-' 1)
<= (
width G) by
NAT_D: 44;
A17: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
per cases by
A8;
suppose i1
= i2 & (j1
+ 1)
= j2;
then (
right_cell (f,k,G))
= (
cell (G,i1,j1)) & (
left_cell (f,k,G))
= (
cell (G,(i1
-' 1),j1)) by
A1,
A3,
A4,
A5,
A6,
A7,
A14,
GOBRD13:def 2,
GOBRD13:def 3;
hence thesis by
A1,
A2,
A10,
A15,
A11,
Th14;
end;
suppose (i1
+ 1)
= i2 & j1
= j2;
then (
right_cell (f,k,G))
= (
cell (G,i1,(j1
-' 1))) & (
left_cell (f,k,G))
= (
cell (G,i1,j1)) by
A1,
A3,
A4,
A5,
A6,
A7,
A17,
GOBRD13:def 2,
GOBRD13:def 3;
hence thesis by
A1,
A2,
A10,
A15,
A16,
Th14;
end;
suppose i1
= (i2
+ 1) & j1
= j2;
then (
right_cell (f,k,G))
= (
cell (G,i2,j2)) & (
left_cell (f,k,G))
= (
cell (G,i2,(j2
-' 1))) by
A1,
A3,
A4,
A5,
A6,
A7,
A17,
GOBRD13:def 2,
GOBRD13:def 3;
hence thesis by
A1,
A2,
A9,
A12,
A13,
Th14;
end;
suppose i1
= i2 & j1
= (j2
+ 1);
then (
right_cell (f,k,G))
= (
cell (G,(i1
-' 1),j2)) & (
left_cell (f,k,G))
= (
cell (G,i1,j2)) by
A1,
A3,
A4,
A5,
A6,
A7,
A14,
GOBRD13:def 2,
GOBRD13:def 3;
hence thesis by
A1,
A2,
A10,
A12,
A11,
Th14;
end;
end;
theorem ::
JORDAN9:16
Th16: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) implies ((G
* (i,j))
`1 )
= ((G
* (i,(j
+ 1)))
`1 ) & ((G
* (i,j))
`2 )
= ((G
* ((i
+ 1),j))
`2 ) & ((G
* ((i
+ 1),(j
+ 1)))
`1 )
= ((G
* ((i
+ 1),j))
`1 ) & ((G
* ((i
+ 1),(j
+ 1)))
`2 )
= ((G
* (i,(j
+ 1)))
`2 )
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len G) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width G);
A5: j
< (
width G) by
A4,
NAT_1: 13;
A6: 1
<= (j
+ 1) by
NAT_1: 11;
A7: i
< (
len G) by
A2,
NAT_1: 13;
hence ((G
* (i,j))
`1 )
= ((G
* (i,1))
`1 ) by
A1,
A3,
A5,
GOBOARD5: 2
.= ((G
* (i,(j
+ 1)))
`1 ) by
A1,
A4,
A7,
A6,
GOBOARD5: 2;
A8: 1
<= (i
+ 1) by
NAT_1: 11;
thus ((G
* (i,j))
`2 )
= ((G
* (1,j))
`2 ) by
A1,
A3,
A7,
A5,
GOBOARD5: 1
.= ((G
* ((i
+ 1),j))
`2 ) by
A2,
A3,
A5,
A8,
GOBOARD5: 1;
thus ((G
* ((i
+ 1),(j
+ 1)))
`1 )
= ((G
* ((i
+ 1),1))
`1 ) by
A2,
A4,
A8,
A6,
GOBOARD5: 2
.= ((G
* ((i
+ 1),j))
`1 ) by
A2,
A3,
A5,
A8,
GOBOARD5: 2;
thus ((G
* ((i
+ 1),(j
+ 1)))
`2 )
= ((G
* (1,(j
+ 1)))
`2 ) by
A2,
A4,
A8,
A6,
GOBOARD5: 1
.= ((G
* (i,(j
+ 1)))
`2 ) by
A1,
A4,
A7,
A6,
GOBOARD5: 1;
end;
theorem ::
JORDAN9:17
Th17: for i,j be
Nat st 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) holds p
in (
cell (G,i,j)) iff ((G
* (i,j))
`1 )
<= (p
`1 ) & (p
`1 )
<= ((G
* ((i
+ 1),j))
`1 ) & ((G
* (i,j))
`2 )
<= (p
`2 ) & (p
`2 )
<= ((G
* (i,(j
+ 1)))
`2 )
proof
let i,j be
Nat such that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len G) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width G);
A5: i
< (
len G) & j
< (
width G) by
A2,
A4,
NAT_1: 13;
then
A6: (
h_strip (G,j))
= {
|[r, s]| : ((G
* (i,j))
`2 )
<= s & s
<= ((G
* (i,(j
+ 1)))
`2 ) } by
A1,
A3,
GOBOARD5: 5;
A7: (
v_strip (G,i))
= {
|[r, s]| : ((G
* (i,j))
`1 )
<= r & r
<= ((G
* ((i
+ 1),j))
`1 ) } by
A1,
A3,
A5,
GOBOARD5: 8;
hereby
assume
A8: p
in (
cell (G,i,j));
then p
in (
v_strip (G,i)) by
XBOOLE_0:def 4;
then ex r, s st
|[r, s]|
= p & ((G
* (i,j))
`1 )
<= r & r
<= ((G
* ((i
+ 1),j))
`1 ) by
A7;
hence ((G
* (i,j))
`1 )
<= (p
`1 ) & (p
`1 )
<= ((G
* ((i
+ 1),j))
`1 ) by
EUCLID: 52;
p
in (
h_strip (G,j)) by
A8,
XBOOLE_0:def 4;
then ex r, s st
|[r, s]|
= p & ((G
* (i,j))
`2 )
<= s & s
<= ((G
* (i,(j
+ 1)))
`2 ) by
A6;
hence ((G
* (i,j))
`2 )
<= (p
`2 ) & (p
`2 )
<= ((G
* (i,(j
+ 1)))
`2 ) by
EUCLID: 52;
end;
assume that
A9: ((G
* (i,j))
`1 )
<= (p
`1 ) & (p
`1 )
<= ((G
* ((i
+ 1),j))
`1 ) and
A10: ((G
* (i,j))
`2 )
<= (p
`2 ) & (p
`2 )
<= ((G
* (i,(j
+ 1)))
`2 );
A11: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
then
A12: p
in (
h_strip (G,j)) by
A6,
A10;
p
in (
v_strip (G,i)) by
A7,
A9,
A11;
hence thesis by
A12,
XBOOLE_0:def 4;
end;
theorem ::
JORDAN9:18
1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) implies (
cell (G,i,j))
= {
|[r, s]| : ((G
* (i,j))
`1 )
<= r & r
<= ((G
* ((i
+ 1),j))
`1 ) & ((G
* (i,j))
`2 )
<= s & s
<= ((G
* (i,(j
+ 1)))
`2 ) }
proof
set A = {
|[r, s]| : ((G
* (i,j))
`1 )
<= r & r
<= ((G
* ((i
+ 1),j))
`1 ) & ((G
* (i,j))
`2 )
<= s & s
<= ((G
* (i,(j
+ 1)))
`2 ) };
assume
A1: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G);
now
let p be
object;
assume
A2: p
in (
cell (G,i,j));
then
reconsider q = p as
Point of (
TOP-REAL 2);
A3: ((G
* (i,j))
`2 )
<= (q
`2 ) & (q
`2 )
<= ((G
* (i,(j
+ 1)))
`2 ) by
A1,
A2,
Th17;
A4: p
=
|[(q
`1 ), (q
`2 )]| by
EUCLID: 53;
((G
* (i,j))
`1 )
<= (q
`1 ) & (q
`1 )
<= ((G
* ((i
+ 1),j))
`1 ) by
A1,
A2,
Th17;
hence p
in A by
A4,
A3;
end;
hence (
cell (G,i,j))
c= A;
now
let p be
object;
assume p
in A;
then
consider r, s such that
A5:
|[r, s]|
= p and
A6: ((G
* (i,j))
`1 )
<= r & r
<= ((G
* ((i
+ 1),j))
`1 ) & ((G
* (i,j))
`2 )
<= s & s
<= ((G
* (i,(j
+ 1)))
`2 );
reconsider q = p as
Point of (
TOP-REAL 2) by
A5;
r
= (q
`1 ) & s
= (q
`2 ) by
A5,
EUCLID: 52;
hence p
in (
cell (G,i,j)) by
A1,
A6,
Th17;
end;
hence thesis;
end;
theorem ::
JORDAN9:19
Th19: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) & p
in (
Values G) & p
in (
cell (G,i,j)) implies p
= (G
* (i,j)) or p
= (G
* (i,(j
+ 1))) or p
= (G
* ((i
+ 1),(j
+ 1))) or p
= (G
* ((i
+ 1),j))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len G) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width G) and
A5: p
in (
Values G) and
A6: p
in (
cell (G,i,j));
A7: (
Values G)
= { (G
* (k,l)) where k,l be
Nat :
[k, l]
in (
Indices G) } by
MATRIX_0: 39;
A8: i
< (
len G) by
A2,
NAT_1: 13;
A9: j
< (
width G) by
A4,
NAT_1: 13;
consider k,l be
Nat such that
A10: p
= (G
* (k,l)) and
A11:
[k, l]
in (
Indices G) by
A5,
A7;
A12: 1
<= k by
A11,
MATRIX_0: 32;
A13: l
<= (
width G) by
A11,
MATRIX_0: 32;
A14: 1
<= l by
A11,
MATRIX_0: 32;
A15: k
<= (
len G) by
A11,
MATRIX_0: 32;
A16: 1
<= (j
+ 1) by
NAT_1: 11;
A17:
now
assume
A18: l
<> j & l
<> (j
+ 1);
per cases by
A18,
NAT_1: 9;
suppose l
< j;
then ((G
* (k,l))
`2 )
< ((G
* (k,j))
`2 ) by
A9,
A12,
A15,
A14,
GOBOARD5: 4;
then ((G
* (k,l))
`2 )
< ((G
* (1,j))
`2 ) by
A3,
A9,
A12,
A15,
GOBOARD5: 1;
then ((G
* (k,l))
`2 )
< ((G
* (i,j))
`2 ) by
A1,
A3,
A8,
A9,
GOBOARD5: 1;
hence contradiction by
A1,
A2,
A3,
A4,
A6,
A10,
Th17;
end;
suppose (j
+ 1)
< l;
then ((G
* (k,(j
+ 1)))
`2 )
< ((G
* (k,l))
`2 ) by
A16,
A12,
A15,
A13,
GOBOARD5: 4;
then ((G
* (1,(j
+ 1)))
`2 )
< ((G
* (k,l))
`2 ) by
A4,
A16,
A12,
A15,
GOBOARD5: 1;
then ((G
* (i,(j
+ 1)))
`2 )
< ((G
* (k,l))
`2 ) by
A1,
A4,
A8,
A16,
GOBOARD5: 1;
hence contradiction by
A1,
A2,
A3,
A4,
A6,
A10,
Th17;
end;
end;
A19: 1
<= (i
+ 1) by
NAT_1: 11;
now
assume
A20: k
<> i & k
<> (i
+ 1);
per cases by
A20,
NAT_1: 9;
suppose k
< i;
then ((G
* (k,l))
`1 )
< ((G
* (i,l))
`1 ) by
A8,
A12,
A14,
A13,
GOBOARD5: 3;
then ((G
* (k,l))
`1 )
< ((G
* (i,1))
`1 ) by
A1,
A8,
A14,
A13,
GOBOARD5: 2;
then ((G
* (k,l))
`1 )
< ((G
* (i,j))
`1 ) by
A1,
A3,
A8,
A9,
GOBOARD5: 2;
hence contradiction by
A1,
A2,
A3,
A4,
A6,
A10,
Th17;
end;
suppose (i
+ 1)
< k;
then ((G
* ((i
+ 1),l))
`1 )
< ((G
* (k,l))
`1 ) by
A19,
A15,
A14,
A13,
GOBOARD5: 3;
then ((G
* ((i
+ 1),1))
`1 )
< ((G
* (k,l))
`1 ) by
A2,
A19,
A14,
A13,
GOBOARD5: 2;
then ((G
* ((i
+ 1),j))
`1 )
< ((G
* (k,l))
`1 ) by
A2,
A3,
A9,
A19,
GOBOARD5: 2;
hence contradiction by
A1,
A2,
A3,
A4,
A6,
A10,
Th17;
end;
end;
hence thesis by
A10,
A17;
end;
theorem ::
JORDAN9:20
Th20: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) implies (G
* (i,j))
in (
cell (G,i,j)) & (G
* (i,(j
+ 1)))
in (
cell (G,i,j)) & (G
* ((i
+ 1),(j
+ 1)))
in (
cell (G,i,j)) & (G
* ((i
+ 1),j))
in (
cell (G,i,j))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len G) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width G);
A5: i
< (i
+ 1) & j
< (
width G) by
A4,
NAT_1: 13;
then
A6: ((G
* (i,j))
`1 )
<= ((G
* ((i
+ 1),j))
`1 ) by
A1,
A2,
A3,
GOBOARD5: 3;
A7: ((G
* (i,j))
`1 )
<= ((G
* ((i
+ 1),j))
`1 ) by
A1,
A2,
A3,
A5,
GOBOARD5: 3;
A8: j
< (j
+ 1) & i
< (
len G) by
A2,
NAT_1: 13;
then
A9: ((G
* (i,j))
`2 )
<= ((G
* (i,(j
+ 1)))
`2 ) by
A1,
A3,
A4,
GOBOARD5: 4;
A10: ((G
* ((i
+ 1),(j
+ 1)))
`1 )
= ((G
* ((i
+ 1),j))
`1 ) by
A1,
A2,
A3,
A4,
Th16;
then
A11: ((G
* (i,j))
`1 )
<= ((G
* ((i
+ 1),(j
+ 1)))
`1 ) by
A1,
A2,
A3,
A5,
GOBOARD5: 3;
((G
* (i,j))
`2 )
<= ((G
* (i,(j
+ 1)))
`2 ) by
A1,
A3,
A4,
A8,
GOBOARD5: 4;
hence (G
* (i,j))
in (
cell (G,i,j)) by
A1,
A2,
A3,
A4,
A6,
Th17;
A12: ((G
* (i,j))
`1 )
= ((G
* (i,(j
+ 1)))
`1 ) by
A1,
A2,
A3,
A4,
Th16;
then ((G
* (i,(j
+ 1)))
`1 )
<= ((G
* ((i
+ 1),j))
`1 ) by
A1,
A2,
A3,
A5,
GOBOARD5: 3;
hence (G
* (i,(j
+ 1)))
in (
cell (G,i,j)) by
A1,
A2,
A3,
A4,
A12,
A9,
Th17;
A13: ((G
* ((i
+ 1),(j
+ 1)))
`2 )
= ((G
* (i,(j
+ 1)))
`2 ) by
A1,
A2,
A3,
A4,
Th16;
then ((G
* (i,j))
`2 )
<= ((G
* ((i
+ 1),(j
+ 1)))
`2 ) by
A1,
A3,
A4,
A8,
GOBOARD5: 4;
hence (G
* ((i
+ 1),(j
+ 1)))
in (
cell (G,i,j)) by
A1,
A2,
A3,
A4,
A10,
A11,
A13,
Th17;
A14: ((G
* (i,j))
`2 )
= ((G
* ((i
+ 1),j))
`2 ) by
A1,
A2,
A3,
A4,
Th16;
then ((G
* ((i
+ 1),j))
`2 )
<= ((G
* (i,(j
+ 1)))
`2 ) by
A1,
A3,
A4,
A8,
GOBOARD5: 4;
hence thesis by
A1,
A2,
A3,
A4,
A7,
A14,
Th17;
end;
theorem ::
JORDAN9:21
Th21: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) & p
in (
Values G) & p
in (
cell (G,i,j)) implies p
is_extremal_in (
cell (G,i,j))
proof
assume that
A1: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) and
A2: p
in (
Values G) and
A3: p
in (
cell (G,i,j));
for a,b be
Point of (
TOP-REAL 2) st p
in (
LSeg (a,b)) & (
LSeg (a,b))
c= (
cell (G,i,j)) holds p
= a or p
= b
proof
let a,b be
Point of (
TOP-REAL 2) such that
A4: p
in (
LSeg (a,b)) and
A5: (
LSeg (a,b))
c= (
cell (G,i,j));
A6: a
in (
LSeg (a,b)) by
RLTOPSP1: 68;
A7: b
in (
LSeg (a,b)) by
RLTOPSP1: 68;
assume that
A8: a
<> p and
A9: b
<> p;
per cases by
A1,
A2,
A3,
Th19;
suppose
A10: p
= (G
* (i,j));
then
A11: (p
`2 )
<= (b
`2 ) by
A1,
A5,
A7,
Th17;
A12: (p
`1 )
<= (a
`1 ) by
A1,
A5,
A6,
A10,
Th17;
A13: (p
`1 )
<= (b
`1 ) by
A1,
A5,
A7,
A10,
Th17;
A14: (p
`2 )
<= (a
`2 ) by
A1,
A5,
A6,
A10,
Th17;
now
per cases ;
suppose
A15: (a
`1 )
<= (b
`1 ) & (a
`2 )
<= (b
`2 );
then (a
`2 )
<= (p
`2 ) by
A4,
TOPREAL1: 4;
then
A16: (a
`2 )
= (p
`2 ) by
A14,
XXREAL_0: 1;
(a
`1 )
<= (p
`1 ) by
A4,
A15,
TOPREAL1: 3;
then (a
`1 )
= (p
`1 ) by
A12,
XXREAL_0: 1;
hence contradiction by
A8,
A16,
TOPREAL3: 6;
end;
suppose
A17: (a
`1 )
<= (b
`1 ) & (b
`2 )
< (a
`2 );
then (b
`2 )
<= (p
`2 ) by
A4,
TOPREAL1: 4;
then
A18: (b
`2 )
= (p
`2 ) by
A11,
XXREAL_0: 1;
A19: (a
`1 )
<= (p
`1 ) by
A4,
A17,
TOPREAL1: 3;
then
A20: (a
`1 )
= (p
`1 ) by
A12,
XXREAL_0: 1;
then (a
`2 )
<> (p
`2 ) by
A8,
TOPREAL3: 6;
then (
LSeg (a,b)) is
vertical by
A4,
A6,
A12,
A19,
SPPOL_1: 18,
XXREAL_0: 1;
then (a
`1 )
= (b
`1 ) by
SPPOL_1: 16;
hence contradiction by
A9,
A20,
A18,
TOPREAL3: 6;
end;
suppose
A21: (b
`1 )
< (a
`1 ) & (a
`2 )
<= (b
`2 );
then (a
`2 )
<= (p
`2 ) by
A4,
TOPREAL1: 4;
then
A22: (a
`2 )
= (p
`2 ) by
A14,
XXREAL_0: 1;
A23: (b
`1 )
<= (p
`1 ) by
A4,
A21,
TOPREAL1: 3;
then
A24: (b
`1 )
= (p
`1 ) by
A13,
XXREAL_0: 1;
then (b
`2 )
<> (p
`2 ) by
A9,
TOPREAL3: 6;
then (
LSeg (a,b)) is
vertical by
A4,
A7,
A13,
A23,
SPPOL_1: 18,
XXREAL_0: 1;
then (a
`1 )
= (b
`1 ) by
SPPOL_1: 16;
hence contradiction by
A8,
A24,
A22,
TOPREAL3: 6;
end;
suppose
A25: (b
`1 )
< (a
`1 ) & (b
`2 )
< (a
`2 );
then (b
`2 )
<= (p
`2 ) by
A4,
TOPREAL1: 4;
then
A26: (b
`2 )
= (p
`2 ) by
A11,
XXREAL_0: 1;
(b
`1 )
<= (p
`1 ) by
A4,
A25,
TOPREAL1: 3;
then (b
`1 )
= (p
`1 ) by
A13,
XXREAL_0: 1;
hence contradiction by
A9,
A26,
TOPREAL3: 6;
end;
end;
hence contradiction;
end;
suppose
A27: p
= (G
* (i,(j
+ 1)));
then
A28: (b
`2 )
<= (p
`2 ) by
A1,
A5,
A7,
Th17;
A29: (p
`1 )
= ((G
* (i,j))
`1 ) by
A1,
A27,
Th16;
then
A30: (p
`1 )
<= (a
`1 ) by
A1,
A5,
A6,
Th17;
A31: (p
`1 )
<= (b
`1 ) by
A1,
A5,
A7,
A29,
Th17;
A32: (a
`2 )
<= (p
`2 ) by
A1,
A5,
A6,
A27,
Th17;
now
per cases ;
suppose
A33: (a
`1 )
<= (b
`1 ) & (a
`2 )
<= (b
`2 );
then (p
`2 )
<= (b
`2 ) by
A4,
TOPREAL1: 4;
then
A34: (b
`2 )
= (p
`2 ) by
A28,
XXREAL_0: 1;
A35: (a
`1 )
<= (p
`1 ) by
A4,
A33,
TOPREAL1: 3;
then
A36: (a
`1 )
= (p
`1 ) by
A30,
XXREAL_0: 1;
then (a
`2 )
<> (p
`2 ) by
A8,
TOPREAL3: 6;
then (
LSeg (a,b)) is
vertical by
A4,
A6,
A30,
A35,
SPPOL_1: 18,
XXREAL_0: 1;
then (a
`1 )
= (b
`1 ) by
SPPOL_1: 16;
hence contradiction by
A9,
A36,
A34,
TOPREAL3: 6;
end;
suppose
A37: (a
`1 )
<= (b
`1 ) & (b
`2 )
< (a
`2 );
then (p
`2 )
<= (a
`2 ) by
A4,
TOPREAL1: 4;
then
A38: (a
`2 )
= (p
`2 ) by
A32,
XXREAL_0: 1;
(a
`1 )
<= (p
`1 ) by
A4,
A37,
TOPREAL1: 3;
then (a
`1 )
= (p
`1 ) by
A30,
XXREAL_0: 1;
hence contradiction by
A8,
A38,
TOPREAL3: 6;
end;
suppose
A39: (b
`1 )
< (a
`1 ) & (a
`2 )
<= (b
`2 );
then (p
`2 )
<= (b
`2 ) by
A4,
TOPREAL1: 4;
then
A40: (b
`2 )
= (p
`2 ) by
A28,
XXREAL_0: 1;
(b
`1 )
<= (p
`1 ) by
A4,
A39,
TOPREAL1: 3;
then (b
`1 )
= (p
`1 ) by
A31,
XXREAL_0: 1;
hence contradiction by
A9,
A40,
TOPREAL3: 6;
end;
suppose
A41: (b
`1 )
< (a
`1 ) & (b
`2 )
< (a
`2 );
then (p
`2 )
<= (a
`2 ) by
A4,
TOPREAL1: 4;
then
A42: (a
`2 )
= (p
`2 ) by
A32,
XXREAL_0: 1;
A43: (b
`1 )
<= (p
`1 ) by
A4,
A41,
TOPREAL1: 3;
then
A44: (b
`1 )
= (p
`1 ) by
A31,
XXREAL_0: 1;
then (b
`2 )
<> (p
`2 ) by
A9,
TOPREAL3: 6;
then (
LSeg (a,b)) is
vertical by
A4,
A7,
A31,
A43,
SPPOL_1: 18,
XXREAL_0: 1;
then (a
`1 )
= (b
`1 ) by
SPPOL_1: 16;
hence contradiction by
A8,
A44,
A42,
TOPREAL3: 6;
end;
end;
hence contradiction;
end;
suppose
A45: p
= (G
* ((i
+ 1),(j
+ 1)));
then
A46: (p
`1 )
= ((G
* ((i
+ 1),j))
`1 ) by
A1,
Th16;
then
A47: (a
`1 )
<= (p
`1 ) by
A1,
A5,
A6,
Th17;
A48: (p
`2 )
= ((G
* (i,(j
+ 1)))
`2 ) by
A1,
A45,
Th16;
then
A49: (b
`2 )
<= (p
`2 ) by
A1,
A5,
A7,
Th17;
A50: (b
`1 )
<= (p
`1 ) by
A1,
A5,
A7,
A46,
Th17;
A51: (a
`2 )
<= (p
`2 ) by
A1,
A5,
A6,
A48,
Th17;
now
per cases ;
suppose
A52: (a
`1 )
<= (b
`1 ) & (a
`2 )
<= (b
`2 );
then (p
`2 )
<= (b
`2 ) by
A4,
TOPREAL1: 4;
then
A53: (b
`2 )
= (p
`2 ) by
A49,
XXREAL_0: 1;
(p
`1 )
<= (b
`1 ) by
A4,
A52,
TOPREAL1: 3;
then (b
`1 )
= (p
`1 ) by
A50,
XXREAL_0: 1;
hence contradiction by
A9,
A53,
TOPREAL3: 6;
end;
suppose
A54: (a
`1 )
<= (b
`1 ) & (b
`2 )
< (a
`2 );
then (p
`2 )
<= (a
`2 ) by
A4,
TOPREAL1: 4;
then
A55: (a
`2 )
= (p
`2 ) by
A51,
XXREAL_0: 1;
A56: (p
`1 )
<= (b
`1 ) by
A4,
A54,
TOPREAL1: 3;
then
A57: (b
`1 )
= (p
`1 ) by
A50,
XXREAL_0: 1;
then (b
`2 )
<> (p
`2 ) by
A9,
TOPREAL3: 6;
then (
LSeg (a,b)) is
vertical by
A4,
A7,
A50,
A56,
SPPOL_1: 18,
XXREAL_0: 1;
then (a
`1 )
= (b
`1 ) by
SPPOL_1: 16;
hence contradiction by
A8,
A57,
A55,
TOPREAL3: 6;
end;
suppose
A58: (b
`1 )
< (a
`1 ) & (a
`2 )
<= (b
`2 );
then (p
`2 )
<= (b
`2 ) by
A4,
TOPREAL1: 4;
then
A59: (b
`2 )
= (p
`2 ) by
A49,
XXREAL_0: 1;
A60: (p
`1 )
<= (a
`1 ) by
A4,
A58,
TOPREAL1: 3;
then
A61: (a
`1 )
= (p
`1 ) by
A47,
XXREAL_0: 1;
then (a
`2 )
<> (p
`2 ) by
A8,
TOPREAL3: 6;
then (
LSeg (a,b)) is
vertical by
A4,
A6,
A47,
A60,
SPPOL_1: 18,
XXREAL_0: 1;
then (a
`1 )
= (b
`1 ) by
SPPOL_1: 16;
hence contradiction by
A9,
A61,
A59,
TOPREAL3: 6;
end;
suppose
A62: (b
`1 )
< (a
`1 ) & (b
`2 )
< (a
`2 );
then (p
`2 )
<= (a
`2 ) by
A4,
TOPREAL1: 4;
then
A63: (a
`2 )
= (p
`2 ) by
A51,
XXREAL_0: 1;
(p
`1 )
<= (a
`1 ) by
A4,
A62,
TOPREAL1: 3;
then (a
`1 )
= (p
`1 ) by
A47,
XXREAL_0: 1;
hence contradiction by
A8,
A63,
TOPREAL3: 6;
end;
end;
hence contradiction;
end;
suppose
A64: p
= (G
* ((i
+ 1),j));
then
A65: (p
`2 )
= ((G
* (i,j))
`2 ) by
A1,
Th16;
then
A66: (p
`2 )
<= (b
`2 ) by
A1,
A5,
A7,
Th17;
A67: (a
`1 )
<= (p
`1 ) by
A1,
A5,
A6,
A64,
Th17;
A68: (b
`1 )
<= (p
`1 ) by
A1,
A5,
A7,
A64,
Th17;
A69: (p
`2 )
<= (a
`2 ) by
A1,
A5,
A6,
A65,
Th17;
now
per cases ;
suppose
A70: (a
`1 )
<= (b
`1 ) & (a
`2 )
<= (b
`2 );
then (a
`2 )
<= (p
`2 ) by
A4,
TOPREAL1: 4;
then
A71: (a
`2 )
= (p
`2 ) by
A69,
XXREAL_0: 1;
A72: (p
`1 )
<= (b
`1 ) by
A4,
A70,
TOPREAL1: 3;
then
A73: (b
`1 )
= (p
`1 ) by
A68,
XXREAL_0: 1;
then (b
`2 )
<> (p
`2 ) by
A9,
TOPREAL3: 6;
then (
LSeg (a,b)) is
vertical by
A4,
A7,
A68,
A72,
SPPOL_1: 18,
XXREAL_0: 1;
then (a
`1 )
= (b
`1 ) by
SPPOL_1: 16;
hence contradiction by
A8,
A73,
A71,
TOPREAL3: 6;
end;
suppose
A74: (a
`1 )
<= (b
`1 ) & (b
`2 )
< (a
`2 );
then (b
`2 )
<= (p
`2 ) by
A4,
TOPREAL1: 4;
then
A75: (b
`2 )
= (p
`2 ) by
A66,
XXREAL_0: 1;
(p
`1 )
<= (b
`1 ) by
A4,
A74,
TOPREAL1: 3;
then (b
`1 )
= (p
`1 ) by
A68,
XXREAL_0: 1;
hence contradiction by
A9,
A75,
TOPREAL3: 6;
end;
suppose
A76: (b
`1 )
< (a
`1 ) & (a
`2 )
<= (b
`2 );
then (a
`2 )
<= (p
`2 ) by
A4,
TOPREAL1: 4;
then
A77: (a
`2 )
= (p
`2 ) by
A69,
XXREAL_0: 1;
(p
`1 )
<= (a
`1 ) by
A4,
A76,
TOPREAL1: 3;
then (a
`1 )
= (p
`1 ) by
A67,
XXREAL_0: 1;
hence contradiction by
A8,
A77,
TOPREAL3: 6;
end;
suppose
A78: (b
`1 )
< (a
`1 ) & (b
`2 )
< (a
`2 );
then (b
`2 )
<= (p
`2 ) by
A4,
TOPREAL1: 4;
then
A79: (b
`2 )
= (p
`2 ) by
A66,
XXREAL_0: 1;
A80: (p
`1 )
<= (a
`1 ) by
A4,
A78,
TOPREAL1: 3;
then
A81: (a
`1 )
= (p
`1 ) by
A67,
XXREAL_0: 1;
then (a
`2 )
<> (p
`2 ) by
A8,
TOPREAL3: 6;
then (
LSeg (a,b)) is
vertical by
A4,
A6,
A67,
A80,
SPPOL_1: 18,
XXREAL_0: 1;
then (a
`1 )
= (b
`1 ) by
SPPOL_1: 16;
hence contradiction by
A9,
A81,
A79,
TOPREAL3: 6;
end;
end;
hence contradiction;
end;
end;
hence thesis by
A3,
SPPOL_1:def 1;
end;
theorem ::
JORDAN9:22
Th22: 2
<= (
len G) & 2
<= (
width G) & f
is_sequence_on G & 1
<= k & (k
+ 1)
<= (
len f) implies ex i,j be
Nat st 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) & (
LSeg (f,k))
c= (
cell (G,i,j))
proof
assume that
A1: 2
<= (
len G) and
A2: 2
<= (
width G) and
A3: f
is_sequence_on G and
A4: 1
<= k & (k
+ 1)
<= (
len f);
consider i1,j1,i2,j2 be
Nat such that
A5:
[i1, j1]
in (
Indices G) and
A6: (f
/. k)
= (G
* (i1,j1)) and
A7:
[i2, j2]
in (
Indices G) and
A8: (f
/. (k
+ 1))
= (G
* (i2,j2)) and
A9: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A3,
A4,
JORDAN8: 3;
A10: (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A4,
TOPREAL1:def 3;
A11: 1
<= i2 by
A7,
MATRIX_0: 32;
A12: 1
<= i1 by
A5,
MATRIX_0: 32;
A13: 1
<= j2 by
A7,
MATRIX_0: 32;
A14: 1
<= j1 by
A5,
MATRIX_0: 32;
A15: i2
<= (
len G) by
A7,
MATRIX_0: 32;
A16: i1
<= (
len G) by
A5,
MATRIX_0: 32;
A17: j2
<= (
width G) by
A7,
MATRIX_0: 32;
A18: j1
<= (
width G) by
A5,
MATRIX_0: 32;
per cases by
A9;
suppose
A19: i1
= i2 & (j1
+ 1)
= j2;
then
A20: j1
< (
width G) by
A17,
XREAL_1: 145;
now
per cases by
A16,
XXREAL_0: 1;
suppose
A21: i1
< (
len G);
take i1, j1;
A22: (i1
+ 1)
<= (
len G) by
A21,
NAT_1: 13;
(
LSeg (f,k))
c= (
cell (G,i1,j1)) by
A10,
A6,
A8,
A12,
A16,
A14,
A17,
A19,
GOBOARD5: 19,
XREAL_1: 145;
hence thesis by
A12,
A14,
A17,
A19,
A22;
end;
suppose
A23: i1
= (
len G);
reconsider i19 = (i1
-' 1), j1 as
Nat;
take i19, j1;
(2
- 1)
<= (2
-' 1) & (2
-' 1)
<= i19 by
A1,
A23,
NAT_D: 42,
XREAL_0:def 2;
then
A24: 1
<= i19 by
XXREAL_0: 2;
A25: (i19
+ 1)
= i1 by
A12,
XREAL_1: 235;
then i19
< (
len G) by
A16,
NAT_1: 13;
then (
LSeg (f,k))
c= (
cell (G,i19,j1)) by
A10,
A6,
A8,
A14,
A19,
A20,
A25,
GOBOARD5: 18;
hence thesis by
A16,
A14,
A17,
A19,
A24,
A25;
end;
end;
hence thesis;
end;
suppose
A26: (i1
+ 1)
= i2 & j1
= j2;
then
A27: i1
< (
len G) by
A15,
XREAL_1: 145;
now
per cases by
A18,
XXREAL_0: 1;
suppose
A28: j1
< (
width G);
take i1, j1;
A29: (j1
+ 1)
<= (
width G) by
A28,
NAT_1: 13;
(
LSeg (f,k))
c= (
cell (G,i1,j1)) by
A10,
A6,
A8,
A12,
A14,
A18,
A15,
A26,
GOBOARD5: 22,
XREAL_1: 145;
hence thesis by
A12,
A14,
A15,
A26,
A29;
end;
suppose
A30: j1
= (
width G);
reconsider i1, j19 = (j1
-' 1) as
Nat;
take i1, j19;
(2
- 1)
<= (2
-' 1) & (2
-' 1)
<= j19 by
A2,
A30,
NAT_D: 42,
XREAL_0:def 2;
then
A31: 1
<= j19 by
XXREAL_0: 2;
A32: (j19
+ 1)
= j1 by
A14,
XREAL_1: 235;
then j19
< (
width G) by
A30,
NAT_1: 13;
then (
LSeg (f,k))
c= (
cell (G,i1,j19)) by
A10,
A6,
A8,
A12,
A26,
A27,
A32,
GOBOARD5: 21;
hence thesis by
A12,
A18,
A15,
A26,
A31,
A32;
end;
end;
hence thesis;
end;
suppose
A33: i1
= (i2
+ 1) & j1
= j2;
then
A34: i2
< (
len G) by
A16,
XREAL_1: 145;
now
per cases by
A18,
XXREAL_0: 1;
suppose
A35: j1
< (
width G);
take i2, j1;
A36: (j1
+ 1)
<= (
width G) by
A35,
NAT_1: 13;
(
LSeg (f,k))
c= (
cell (G,i2,j1)) by
A10,
A6,
A8,
A16,
A11,
A13,
A17,
A33,
GOBOARD5: 22,
XREAL_1: 145;
hence thesis by
A16,
A14,
A11,
A33,
A36;
end;
suppose
A37: j1
= (
width G);
reconsider i2, j19 = (j1
-' 1) as
Nat;
take i2, j19;
(2
- 1)
<= (2
-' 1) & (2
-' 1)
<= j19 by
A2,
A37,
NAT_D: 42,
XREAL_0:def 2;
then
A38: 1
<= j19 by
XXREAL_0: 2;
A39: (j19
+ 1)
= j1 by
A14,
XREAL_1: 235;
then j19
< (
width G) by
A37,
NAT_1: 13;
then (
LSeg (f,k))
c= (
cell (G,i2,j19)) by
A10,
A6,
A8,
A11,
A33,
A34,
A39,
GOBOARD5: 21;
hence thesis by
A16,
A18,
A11,
A33,
A38,
A39;
end;
end;
hence thesis;
end;
suppose
A40: i1
= i2 & j1
= (j2
+ 1);
then
A41: j2
< (
width G) by
A18,
XREAL_1: 145;
now
per cases by
A16,
XXREAL_0: 1;
suppose
A42: i1
< (
len G);
take i1, j2;
A43: (i1
+ 1)
<= (
len G) by
A42,
NAT_1: 13;
(
LSeg (f,k))
c= (
cell (G,i1,j2)) by
A10,
A6,
A8,
A18,
A11,
A15,
A13,
A40,
GOBOARD5: 19,
XREAL_1: 145;
hence thesis by
A12,
A18,
A13,
A40,
A43;
end;
suppose
A44: i1
= (
len G);
reconsider i19 = (i1
-' 1), j2 as
Nat;
take i19, j2;
(2
- 1)
<= (2
-' 1) & (2
-' 1)
<= i19 by
A1,
A44,
NAT_D: 42,
XREAL_0:def 2;
then
A45: 1
<= i19 by
XXREAL_0: 2;
A46: (i19
+ 1)
= i1 by
A12,
XREAL_1: 235;
then i19
< (
len G) by
A16,
NAT_1: 13;
then (
LSeg (f,k))
c= (
cell (G,i19,j2)) by
A10,
A6,
A8,
A13,
A40,
A41,
A46,
GOBOARD5: 18;
hence thesis by
A16,
A18,
A13,
A40,
A45,
A46;
end;
end;
hence thesis;
end;
end;
theorem ::
JORDAN9:23
Th23: 2
<= (
len G) & 2
<= (
width G) & f
is_sequence_on G & 1
<= k & (k
+ 1)
<= (
len f) & p
in (
Values G) & p
in (
LSeg (f,k)) implies p
= (f
/. k) or p
= (f
/. (k
+ 1))
proof
assume that
A1: 2
<= (
len G) & 2
<= (
width G) & f
is_sequence_on G and
A2: 1
<= k & (k
+ 1)
<= (
len f) and
A3: p
in (
Values G) and
A4: p
in (
LSeg (f,k));
A5: (
LSeg (f,k))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A2,
TOPREAL1:def 3;
consider i,j be
Nat such that
A6: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) and
A7: (
LSeg (f,k))
c= (
cell (G,i,j)) by
A1,
A2,
Th22;
p
is_extremal_in (
cell (G,i,j)) by
A3,
A4,
A6,
A7,
Th21;
hence thesis by
A4,
A7,
A5,
SPPOL_1:def 1;
end;
theorem ::
JORDAN9:24
[i, j]
in (
Indices G) & 1
<= k & k
<= (
width G) implies ((G
* (i,j))
`1 )
<= ((G
* ((
len G),k))
`1 )
proof
assume that
A1:
[i, j]
in (
Indices G) and
A2: 1
<= k & k
<= (
width G);
A3: 1
<= i by
A1,
MATRIX_0: 32;
A4: i
<= (
len G) by
A1,
MATRIX_0: 32;
then
A5: i
< (
len G) or i
= (
len G) by
XXREAL_0: 1;
1
<= j & j
<= (
width G) by
A1,
MATRIX_0: 32;
then ((G
* (i,j))
`1 )
= ((G
* (i,1))
`1 ) by
A3,
A4,
GOBOARD5: 2
.= ((G
* (i,k))
`1 ) by
A2,
A3,
A4,
GOBOARD5: 2;
hence thesis by
A2,
A3,
A5,
GOBOARD5: 3;
end;
theorem ::
JORDAN9:25
[i, j]
in (
Indices G) & 1
<= k & k
<= (
len G) implies ((G
* (i,j))
`2 )
<= ((G
* (k,(
width G)))
`2 )
proof
assume that
A1:
[i, j]
in (
Indices G) and
A2: 1
<= k & k
<= (
len G);
A3: 1
<= j by
A1,
MATRIX_0: 32;
A4: j
<= (
width G) by
A1,
MATRIX_0: 32;
then
A5: j
< (
width G) or j
= (
width G) by
XXREAL_0: 1;
1
<= i & i
<= (
len G) by
A1,
MATRIX_0: 32;
then ((G
* (i,j))
`2 )
= ((G
* (1,j))
`2 ) by
A3,
A4,
GOBOARD5: 1
.= ((G
* (k,j))
`2 ) by
A2,
A3,
A4,
GOBOARD5: 1;
hence thesis by
A2,
A3,
A5,
GOBOARD5: 4;
end;
theorem ::
JORDAN9:26
Th26: f
is_sequence_on G & f is
special & (
L~ g)
c= (
L~ f) & 1
<= k & (k
+ 1)
<= (
len f) implies for A be
Subset of (
TOP-REAL 2) st A
= ((
right_cell (f,k,G))
\ (
L~ g)) or A
= ((
left_cell (f,k,G))
\ (
L~ g)) holds A is
connected
proof
assume that
A1: f
is_sequence_on G and
A2: f is
special and
A3: (
L~ g)
c= (
L~ f) and
A4: 1
<= k & (k
+ 1)
<= (
len f);
let A be
Subset of (
TOP-REAL 2) such that
A5: A
= ((
right_cell (f,k,G))
\ (
L~ g)) or A
= ((
left_cell (f,k,G))
\ (
L~ g));
per cases by
A5;
suppose
A6: A
= ((
right_cell (f,k,G))
\ (
L~ g));
(
Int (
right_cell (f,k,G)))
misses (
L~ f) by
A1,
A2,
A4,
Th15;
then (
Int (
right_cell (f,k,G)))
misses (
L~ g) by
A3,
XBOOLE_1: 63;
then
A7: (
Int (
right_cell (f,k,G)))
c= ((
L~ g)
` ) by
SUBSET_1: 23;
A
c= (
right_cell (f,k,G)) by
A6,
XBOOLE_1: 36;
then
A8: A
c= (
Cl (
Int (
right_cell (f,k,G)))) by
A1,
A4,
Th11;
A9: A
= ((
right_cell (f,k,G))
/\ ((
L~ g)
` )) by
A6,
SUBSET_1: 13;
(
Int (
right_cell (f,k,G))) is
convex & (
Int (
right_cell (f,k,G)))
c= (
right_cell (f,k,G)) by
A1,
A4,
Th10,
TOPS_1: 16;
hence thesis by
A9,
A7,
A8,
CONNSP_1: 18,
XBOOLE_1: 19;
end;
suppose
A10: A
= ((
left_cell (f,k,G))
\ (
L~ g));
(
Int (
left_cell (f,k,G)))
misses (
L~ f) by
A1,
A2,
A4,
Th15;
then (
Int (
left_cell (f,k,G)))
misses (
L~ g) by
A3,
XBOOLE_1: 63;
then
A11: (
Int (
left_cell (f,k,G)))
c= ((
L~ g)
` ) by
SUBSET_1: 23;
A
c= (
left_cell (f,k,G)) by
A10,
XBOOLE_1: 36;
then
A12: A
c= (
Cl (
Int (
left_cell (f,k,G)))) by
A1,
A4,
Th11;
A13: A
= ((
left_cell (f,k,G))
/\ ((
L~ g)
` )) by
A10,
SUBSET_1: 13;
(
Int (
left_cell (f,k,G))) is
convex & (
Int (
left_cell (f,k,G)))
c= (
left_cell (f,k,G)) by
A1,
A4,
Th10,
TOPS_1: 16;
hence thesis by
A13,
A11,
A12,
CONNSP_1: 18,
XBOOLE_1: 19;
end;
end;
theorem ::
JORDAN9:27
Th27: for f be non
constant
standard
special_circular_sequence st f
is_sequence_on G holds for k st 1
<= k & (k
+ 1)
<= (
len f) holds ((
right_cell (f,k,G))
\ (
L~ f))
c= (
RightComp f) & ((
left_cell (f,k,G))
\ (
L~ f))
c= (
LeftComp f)
proof
let f be non
constant
standard
special_circular_sequence such that
A1: f
is_sequence_on G;
let k such that
A2: 1
<= k & (k
+ 1)
<= (
len f);
A3: (
Int (
right_cell (f,k,G)))
<>
{} by
A1,
A2,
Th9;
set rc = ((
right_cell (f,k,G))
\ (
L~ f));
(rc
\/ (
L~ f))
= ((
right_cell (f,k,G))
\/ (
L~ f)) by
XBOOLE_1: 39;
then (
Int (
right_cell (f,k,G)))
c= (
right_cell (f,k,G)) & (
right_cell (f,k,G))
c= (rc
\/ (
L~ f)) by
TOPS_1: 16,
XBOOLE_1: 7;
then
A4: (
Int (
right_cell (f,k,G)))
c= (rc
\/ (
L~ f));
set lc = ((
left_cell (f,k,G))
\ (
L~ f));
rc
= ((
right_cell (f,k,G))
/\ ((
L~ f)
` )) by
SUBSET_1: 13;
then
A5: (
RightComp f)
is_a_component_of ((
L~ f)
` ) & rc
c= ((
L~ f)
` ) by
GOBOARD9:def 2,
XBOOLE_1: 17;
rc
c= (
right_cell (f,k,G)) & (
right_cell (f,k,G))
c= (
right_cell (f,k)) by
A1,
A2,
GOBRD13: 33,
XBOOLE_1: 36;
then rc
c= (
right_cell (f,k));
then
A6: (
Int rc)
c= (
Int (
right_cell (f,k))) by
TOPS_1: 19;
(
Int (
right_cell (f,k)))
c= (
RightComp f) by
A2,
GOBOARD9: 25;
then
A7: (
Int rc)
c= (
RightComp f) by
A6;
(
Int (
right_cell (f,k,G)))
misses (
L~ f) by
A1,
A2,
Th15;
then
A8: (
Int (
Int (
right_cell (f,k,G))))
c= (
Int rc) by
A4,
TOPS_1: 19,
XBOOLE_1: 73;
(
Int (
right_cell (f,k,G)))
c= rc by
A1,
A2,
A4,
Th15,
XBOOLE_1: 73;
then
A9: rc
meets (
Int rc) by
A3,
A8,
XBOOLE_1: 68;
rc is
connected by
A1,
A2,
Th26;
hence ((
right_cell (f,k,G))
\ (
L~ f))
c= (
RightComp f) by
A7,
A9,
A5,
GOBOARD9: 4;
lc
= ((
left_cell (f,k,G))
/\ ((
L~ f)
` )) by
SUBSET_1: 13;
then
A10: (
LeftComp f)
is_a_component_of ((
L~ f)
` ) & lc
c= ((
L~ f)
` ) by
GOBOARD9:def 1,
XBOOLE_1: 17;
(lc
\/ (
L~ f))
= ((
left_cell (f,k,G))
\/ (
L~ f)) by
XBOOLE_1: 39;
then (
Int (
left_cell (f,k,G)))
c= (
left_cell (f,k,G)) & (
left_cell (f,k,G))
c= (lc
\/ (
L~ f)) by
TOPS_1: 16,
XBOOLE_1: 7;
then
A11: (
Int (
left_cell (f,k,G)))
c= (lc
\/ (
L~ f));
lc
c= (
left_cell (f,k,G)) & (
left_cell (f,k,G))
c= (
left_cell (f,k)) by
A1,
A2,
GOBRD13: 33,
XBOOLE_1: 36;
then lc
c= (
left_cell (f,k));
then
A12: (
Int lc)
c= (
Int (
left_cell (f,k))) by
TOPS_1: 19;
(
Int (
left_cell (f,k)))
c= (
LeftComp f) by
A2,
GOBOARD9: 21;
then
A13: (
Int lc)
c= (
LeftComp f) by
A12;
A14: (
Int (
left_cell (f,k,G)))
<>
{} by
A1,
A2,
Th9;
(
Int (
left_cell (f,k,G)))
misses (
L~ f) by
A1,
A2,
Th15;
then
A15: (
Int (
Int (
left_cell (f,k,G))))
c= (
Int lc) by
A11,
TOPS_1: 19,
XBOOLE_1: 73;
(
Int (
left_cell (f,k,G)))
c= lc by
A1,
A2,
A11,
Th15,
XBOOLE_1: 73;
then
A16: lc
meets (
Int lc) by
A14,
A15,
XBOOLE_1: 68;
lc is
connected by
A1,
A2,
Th26;
hence thesis by
A13,
A16,
A10,
GOBOARD9: 4;
end;
begin
reserve C for
compact non
vertical non
horizontal non
empty
Subset of (
TOP-REAL 2),
l,m,i1,i2,j1,j2 for
Nat;
theorem ::
JORDAN9:28
Th28: for n be
Nat holds ex i st 1
<= i & (i
+ 1)
<= (
len (
Gauge (C,n))) & (
N-min C)
in (
cell ((
Gauge (C,n)),i,((
width (
Gauge (C,n)))
-' 1))) & (
N-min C)
<> ((
Gauge (C,n))
* (i,((
width (
Gauge (C,n)))
-' 1)))
proof
let n be
Nat;
set G = (
Gauge (C,n));
defpred
P[
Nat] means 1
<= $1 & $1
< (
len G) & ((G
* ($1,((
width G)
-' 1)))
`1 )
< ((
N-min C)
`1 );
A1: for k be
Nat st
P[k] holds k
<= (
len G);
A2: (
len G)
= (
width G) by
JORDAN8:def 1;
((
NW-corner C)
`1 )
<= ((
N-min C)
`1 ) by
PSCOMP_1: 38;
then
A3: (
W-bound C)
<= ((
N-min C)
`1 ) by
EUCLID: 52;
A4: (
len G)
>= 4 by
JORDAN8: 10;
then
A5: ((
len G)
-' 1)
<= (
len G) & 2
<= (
len G) by
NAT_D: 35,
XXREAL_0: 2;
A6: 1
< (
len G) by
A4,
XXREAL_0: 2;
then
A7: 1
<= ((
len G)
-' 1) by
NAT_D: 49;
A8: n
in
NAT & (
len G)
= (
width G) by
JORDAN8:def 1,
ORDINAL1:def 12;
then ((G
* (2,((
width G)
-' 1)))
`1 )
= (
W-bound C) by
A7,
JORDAN8: 11,
NAT_D: 35;
then ((G
* (1,((
width G)
-' 1)))
`1 )
< (
W-bound C) by
A2,
A7,
A5,
GOBOARD5: 3;
then ((G
* (1,((
width G)
-' 1)))
`1 )
< ((
N-min C)
`1 ) by
A3,
XXREAL_0: 2;
then
A9: ex k be
Nat st
P[k] by
A6;
ex i be
Nat st
P[i] & for n be
Nat st
P[n] holds n
<= i from
NAT_1:sch 6(
A1,
A9);
then
consider i be
Nat such that
A10: 1
<= i and
A11: i
< (
len G) and
A12: ((G
* (i,((
width G)
-' 1)))
`1 )
< ((
N-min C)
`1 ) and
A13: for n be
Nat st
P[n] holds n
<= i;
reconsider i as
Nat;
A14: 1
<= (i
+ 1) & i
< (i
+ 1) by
NAT_1: 12,
NAT_1: 13;
A15: ((
N-min C)
`2 )
= (
N-bound C) by
EUCLID: 52;
A16: (i
+ 1)
<= (
len G) by
A11,
NAT_1: 13;
then
A17: ((
N-min C)
`2 )
= ((G
* ((i
+ 1),((
width G)
-' 1)))
`2 ) by
A8,
A15,
JORDAN8: 14,
NAT_1: 12;
now
assume (i
+ 1)
= (
len G);
then ((
len G)
-' 1)
= i by
NAT_D: 34;
then
A18: ((G
* (i,((
width G)
-' 1)))
`1 )
= (
E-bound C) by
A8,
A7,
JORDAN8: 12,
NAT_D: 35;
((
NE-corner C)
`1 )
>= ((
N-min C)
`1 ) by
PSCOMP_1: 38;
hence contradiction by
A12,
A18,
EUCLID: 52;
end;
then (i
+ 1)
< (
len G) by
A16,
XXREAL_0: 1;
then
A19: ((
N-min C)
`1 )
<= ((G
* ((i
+ 1),((
width G)
-' 1)))
`1 ) by
A13,
A14;
((G
* (i,((
width G)
-' 1)))
`2 )
= ((
N-min C)
`2 ) by
A8,
A10,
A11,
A15,
JORDAN8: 14;
then
A20: (
N-min C)
in (
LSeg ((G
* (i,((
width G)
-' 1))),(G
* ((i
+ 1),((
width G)
-' 1))))) by
A12,
A17,
A19,
GOBOARD7: 8;
take i;
thus 1
<= i & (i
+ 1)
<= (
len G) by
A10,
A11,
NAT_1: 13;
(
LSeg ((G
* (i,((
width G)
-' 1))),(G
* ((i
+ 1),((
width G)
-' 1)))))
c= (
cell (G,i,((
width G)
-' 1))) by
A2,
A7,
A10,
A11,
GOBOARD5: 22,
NAT_D: 35;
hence (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) by
A20;
thus thesis by
A12;
end;
theorem ::
JORDAN9:29
Th29: for n,i1,i2 be
Nat holds 1
<= i1 & (i1
+ 1)
<= (
len (
Gauge (C,n))) & (
N-min C)
in (
cell ((
Gauge (C,n)),i1,((
width (
Gauge (C,n)))
-' 1))) & (
N-min C)
<> ((
Gauge (C,n))
* (i1,((
width (
Gauge (C,n)))
-' 1))) & 1
<= i2 & (i2
+ 1)
<= (
len (
Gauge (C,n))) & (
N-min C)
in (
cell ((
Gauge (C,n)),i2,((
width (
Gauge (C,n)))
-' 1))) & (
N-min C)
<> ((
Gauge (C,n))
* (i2,((
width (
Gauge (C,n)))
-' 1))) implies i1
= i2
proof
let n,i1,i2 be
Nat;
set G = (
Gauge (C,n)), j = ((
width G)
-' 1);
A1: (2
|^ n)
>= (n
+ 1) by
NEWTON: 85;
A2: (1
+ (n
+ 3))
> (1
+
0 ) by
XREAL_1: 6;
A3: (
len G)
= (
width G) by
JORDAN8:def 1;
A4: (
len G)
= ((2
|^ n)
+ 3) by
JORDAN8:def 1;
then
A5: (
len G)
>= ((n
+ 1)
+ 3) by
A1,
XREAL_1: 6;
then (
len G)
> 1 by
A2,
XXREAL_0: 2;
then
A6: (
len G)
>= (1
+ 1) by
NAT_1: 13;
then
A7: 1
<= j by
A3,
JORDAN5B: 2;
A8: (j
+ 1)
= (
len G) by
A3,
A5,
A2,
XREAL_1: 235,
XXREAL_0: 2;
then
A9: j
< (
len G) by
NAT_1: 13;
assume that
A10: 1
<= i1 and
A11: (i1
+ 1)
<= (
len G) and
A12: (
N-min C)
in (
cell (G,i1,j)) and
A13: (
N-min C)
<> (G
* (i1,j)) and
A14: 1
<= i2 and
A15: (i2
+ 1)
<= (
len G) and
A16: (
N-min C)
in (
cell (G,i2,j)) and
A17: (
N-min C)
<> (G
* (i2,j)) and
A18: i1
<> i2;
A19: (
cell (G,i1,j))
meets (
cell (G,i2,j)) by
A12,
A16,
XBOOLE_0: 3;
A20: i1
< (
len G) by
A11,
NAT_1: 13;
A21: i2
< (
len G) by
A15,
NAT_1: 13;
per cases by
A18,
XXREAL_0: 1;
suppose
A22: i1
< i2;
then
A23: ((i2
-' i1)
+ i1)
= i2 by
XREAL_1: 235;
then (i2
-' i1)
<= 1 by
A21,
A3,
A19,
A7,
A9,
JORDAN8: 7;
then (i2
-' i1)
< 1 or (i2
-' i1)
= 1 by
XXREAL_0: 1;
then (i2
-' i1)
=
0 or (i2
-' i1)
= 1 by
NAT_1: 14;
then ((
cell (G,i1,j))
/\ (
cell (G,i2,j)))
= (
LSeg ((G
* (i2,j)),(G
* (i2,(j
+ 1))))) by
A20,
A3,
A6,
A9,
A22,
A23,
GOBOARD5: 25,
JORDAN5B: 2;
then
A24: (
N-min C)
in (
LSeg ((G
* (i2,j)),(G
* (i2,(j
+ 1))))) by
A12,
A16,
XBOOLE_0:def 4;
1
<= (j
+ 1) by
NAT_1: 12;
then
A25:
[i2, (j
+ 1)]
in (
Indices G) by
A14,
A21,
A3,
A8,
MATRIX_0: 30;
set y2 = ((
S-bound C)
+ ((((
N-bound C)
- (
S-bound C))
/ (2
|^ n))
* (j
- 1)));
set y1 = ((
S-bound C)
+ ((((
N-bound C)
- (
S-bound C))
/ (2
|^ n))
* (j
- 2)));
set x = ((
W-bound C)
+ ((((
E-bound C)
- (
W-bound C))
/ (2
|^ n))
* (i2
- 2)));
j
= ((((2
|^ n)
+ 2)
+ 1)
-' 1) by
A4,
JORDAN8:def 1
.= ((2
|^ n)
+ 2) by
NAT_D: 34;
then
A26: ((((
N-bound C)
- (
S-bound C))
/ (2
|^ n))
* (j
- 2))
= ((
N-bound C)
- (
S-bound C)) by
A1,
XCMPLX_1: 87;
[i2, j]
in (
Indices G) by
A14,
A21,
A3,
A7,
A9,
MATRIX_0: 30;
then
A27: (G
* (i2,j))
=
|[x, y1]| by
JORDAN8:def 1;
then
A28: ((G
* (i2,j))
`1 )
= x by
EUCLID: 52;
((j
+ 1)
- (1
+ 1))
= (j
- 1);
then (G
* (i2,(j
+ 1)))
=
|[x, y2]| by
A25,
JORDAN8:def 1;
then ((G
* (i2,(j
+ 1)))
`1 )
= x by
EUCLID: 52;
then (
LSeg ((G
* (i2,j)),(G
* (i2,(j
+ 1))))) is
vertical by
A28,
SPPOL_1: 16;
then ((
N-min C)
`1 )
= ((G
* (i2,j))
`1 ) by
A24,
SPPOL_1: 41;
hence contradiction by
A17,
A27,
A28,
A26,
EUCLID: 52;
end;
suppose
A29: i2
< i1;
then
A30: ((i1
-' i2)
+ i2)
= i1 by
XREAL_1: 235;
then (i1
-' i2)
<= 1 by
A20,
A3,
A19,
A7,
A9,
JORDAN8: 7;
then (i1
-' i2)
< 1 or (i1
-' i2)
= 1 by
XXREAL_0: 1;
then (i1
-' i2)
=
0 or (i1
-' i2)
= 1 by
NAT_1: 14;
then ((
cell (G,i2,j))
/\ (
cell (G,i1,j)))
= (
LSeg ((G
* (i1,j)),(G
* (i1,(j
+ 1))))) by
A21,
A3,
A6,
A9,
A29,
A30,
GOBOARD5: 25,
JORDAN5B: 2;
then
A31: (
N-min C)
in (
LSeg ((G
* (i1,j)),(G
* (i1,(j
+ 1))))) by
A12,
A16,
XBOOLE_0:def 4;
1
<= (j
+ 1) by
NAT_1: 12;
then
A32:
[i1, (j
+ 1)]
in (
Indices G) by
A10,
A20,
A3,
A8,
MATRIX_0: 30;
set y2 = ((
S-bound C)
+ ((((
N-bound C)
- (
S-bound C))
/ (2
|^ n))
* (j
- 1)));
set y1 = ((
S-bound C)
+ ((((
N-bound C)
- (
S-bound C))
/ (2
|^ n))
* (j
- 2)));
set x = ((
W-bound C)
+ ((((
E-bound C)
- (
W-bound C))
/ (2
|^ n))
* (i1
- 2)));
j
= ((((2
|^ n)
+ 2)
+ 1)
-' 1) by
A4,
JORDAN8:def 1
.= ((2
|^ n)
+ 2) by
NAT_D: 34;
then
A33: ((((
N-bound C)
- (
S-bound C))
/ (2
|^ n))
* (j
- 2))
= ((
N-bound C)
- (
S-bound C)) by
A1,
XCMPLX_1: 87;
[i1, j]
in (
Indices G) by
A10,
A20,
A3,
A7,
A9,
MATRIX_0: 30;
then
A34: (G
* (i1,j))
=
|[x, y1]| by
JORDAN8:def 1;
then
A35: ((G
* (i1,j))
`1 )
= x by
EUCLID: 52;
((j
+ 1)
- (1
+ 1))
= (j
- 1);
then (G
* (i1,(j
+ 1)))
=
|[x, y2]| by
A32,
JORDAN8:def 1;
then ((G
* (i1,(j
+ 1)))
`1 )
= x by
EUCLID: 52;
then (
LSeg ((G
* (i1,j)),(G
* (i1,(j
+ 1))))) is
vertical by
A35,
SPPOL_1: 16;
then ((
N-min C)
`1 )
= ((G
* (i1,j))
`1 ) by
A31,
SPPOL_1: 41;
hence contradiction by
A13,
A34,
A35,
A33,
EUCLID: 52;
end;
end;
theorem ::
JORDAN9:30
Th30: for n be
Nat holds for f be
standard non
constant
special_circular_sequence st f
is_sequence_on (
Gauge (C,n)) & (for k be
Nat st 1
<= k & (k
+ 1)
<= (
len f) holds (
left_cell (f,k,(
Gauge (C,n))))
misses C & (
right_cell (f,k,(
Gauge (C,n))))
meets C) & (ex i be
Nat st 1
<= i & (i
+ 1)
<= (
len (
Gauge (C,n))) & (f
/. 1)
= ((
Gauge (C,n))
* (i,(
width (
Gauge (C,n))))) & (f
/. 2)
= ((
Gauge (C,n))
* ((i
+ 1),(
width (
Gauge (C,n))))) & (
N-min C)
in (
cell ((
Gauge (C,n)),i,((
width (
Gauge (C,n)))
-' 1))) & (
N-min C)
<> ((
Gauge (C,n))
* (i,((
width (
Gauge (C,n)))
-' 1)))) holds (
N-min (
L~ f))
= (f
/. 1)
proof
let n be
Nat;
set G = (
Gauge (C,n));
let f be
standard non
constant
special_circular_sequence such that
A1: f
is_sequence_on G and
A2: for k be
Nat st 1
<= k & (k
+ 1)
<= (
len f) holds (
left_cell (f,k,G))
misses C & (
right_cell (f,k,G))
meets C;
(
N-min (
L~ f))
in (
rng f) by
SPRECT_2: 39;
then
consider m be
Nat such that
A3: m
in (
dom f) and
A4: (f
. m)
= (
N-min (
L~ f)) by
FINSEQ_2: 10;
reconsider m as
Nat;
consider i,j be
Nat such that
A5:
[i, j]
in (
Indices G) and
A6: (f
/. m)
= (G
* (i,j)) by
A1,
A3,
GOBOARD1:def 9;
A7: (f
/. m)
= (f
. m) by
A3,
PARTFUN1:def 6;
A8: ((
N-min (
L~ f))
`2 )
= (
N-bound (
L~ f)) by
EUCLID: 52;
set W = (
W-bound C), S = (
S-bound C), E = (
E-bound C), N = (
N-bound C);
given i9 be
Nat such that
A9: 1
<= i9 and
A10: (i9
+ 1)
<= (
len G) and
A11: (f
/. 1)
= (G
* (i9,(
width G))) and
A12: (f
/. 2)
= (G
* ((i9
+ 1),(
width G))) and
A13: (
N-min C)
in (
cell (G,i9,((
width G)
-' 1))) and
A14: (
N-min C)
<> (G
* (i9,((
width G)
-' 1)));
A15: (G
* (i9,((
len G)
-' 1)))
=
|[((G
* (i9,((
len G)
-' 1)))
`1 ), ((G
* (i9,((
len G)
-' 1)))
`2 )]| & ((
N-min C)
`2 )
= N by
EUCLID: 52,
EUCLID: 53;
(G
* (i,j))
=
|[(W
+ (((E
- W)
/ (2
|^ n))
* (i
- 2))), (S
+ (((N
- S)
/ (2
|^ n))
* (j
- 2)))]| by
A5,
JORDAN8:def 1;
then
A16: (S
+ (((N
- S)
/ (2
|^ n))
* (j
- 2)))
= (
N-bound (
L~ f)) by
A4,
A7,
A8,
A6,
EUCLID: 52;
N
> S by
JORDAN8: 9;
then (2
|^ n)
>
0 & (N
- S)
>
0 by
NEWTON: 83,
XREAL_1: 50;
then
A17: ((N
- S)
/ (2
|^ n))
>
0 by
XREAL_1: 139;
A18: ((
NW-corner (
L~ f))
`1 )
= (
W-bound (
L~ f)) & ((
NE-corner (
L~ f))
`1 )
= (
E-bound (
L~ f)) by
EUCLID: 52;
A19: 1
<= i by
A5,
MATRIX_0: 32;
A20: ((
NW-corner (
L~ f))
`2 )
= (
N-bound (
L~ f)) & ((
NE-corner (
L~ f))
`2 )
= (
N-bound (
L~ f)) by
EUCLID: 52;
A21: m
<= (
len f) by
A3,
FINSEQ_3: 25;
A22: 1
<= j by
A5,
MATRIX_0: 32;
(
len G)
= ((2
|^ n)
+ 3) by
JORDAN8:def 1;
then
A23: (
len G)
>= 3 by
NAT_1: 12;
then
A24: 1
< (
len G) by
XXREAL_0: 2;
then
A25: 1
<= ((
len G)
-' 1) by
NAT_D: 49;
then
A26: ((
len G)
-' 1)
< (
len G) by
NAT_D: 51;
A27: i
<= (
len G) by
A5,
MATRIX_0: 32;
A28: j
<= (
width G) by
A5,
MATRIX_0: 32;
then
A29: ((G
* (i,j))
`2 )
= ((G
* (1,j))
`2 ) by
A19,
A27,
A22,
GOBOARD5: 1;
A30: (
len f)
> 4 by
GOBOARD7: 34;
1
in (
dom f) by
FINSEQ_5: 6;
then
A31: (f
/. 1)
in (
L~ f) by
A30,
GOBOARD1: 1,
XXREAL_0: 2;
then
A32: (
N-bound (
L~ f))
>= ((f
/. 1)
`2 ) by
PSCOMP_1: 24;
A33: (
len G)
= (
width G) by
JORDAN8:def 1;
A34: i9
< (
len G) by
A10,
NAT_1: 13;
then ((G
* (i9,j))
`2 )
= ((G
* (1,j))
`2 ) by
A9,
A22,
A28,
GOBOARD5: 1;
then ((G
* (i,j))
`2 )
<= ((G
* (i9,(
len G)))
`2 ) by
A9,
A34,
A33,
A22,
A28,
A29,
SPRECT_3: 12;
then
A35: (
N-bound (
L~ f))
= ((f
/. 1)
`2 ) by
A11,
A33,
A4,
A7,
A8,
A6,
A32,
XXREAL_0: 1;
[i9, (
len G)]
in (
Indices G) by
A9,
A34,
A33,
A24,
MATRIX_0: 30;
then (G
* (i9,(
len G)))
=
|[(W
+ (((E
- W)
/ (2
|^ n))
* (i9
- 2))), (S
+ (((N
- S)
/ (2
|^ n))
* ((
len G)
- 2)))]| by
JORDAN8:def 1;
then (S
+ (((N
- S)
/ (2
|^ n))
* ((
len G)
- 2)))
= (
N-bound (
L~ f)) by
A11,
A33,
A35,
EUCLID: 52;
then
A36: ((
len G)
- 2)
= (j
- 2) by
A17,
A16,
XCMPLX_1: 5;
then
A37: ((G
* (i9,(
len G)))
`1 )
= ((G
* (i9,1))
`1 ) by
A9,
A34,
A33,
A22,
GOBOARD5: 2;
(
W-bound (
L~ f))
<= ((f
/. 1)
`1 ) & ((f
/. 1)
`1 )
<= (
E-bound (
L~ f)) by
A31,
PSCOMP_1: 24;
then (f
/. 1)
in (
LSeg ((
NW-corner (
L~ f)),(
NE-corner (
L~ f)))) by
A35,
A18,
A20,
GOBOARD7: 8;
then (f
/. 1)
in ((
LSeg ((
NW-corner (
L~ f)),(
NE-corner (
L~ f))))
/\ (
L~ f)) by
A31,
XBOOLE_0:def 4;
then
A38: ((
N-min (
L~ f))
`1 )
<= ((f
/. 1)
`1 ) by
PSCOMP_1: 39;
then
A39: i
<= i9 by
A9,
A11,
A33,
A4,
A7,
A6,
A27,
A22,
A36,
GOBOARD5: 3;
then
A40: i
< (
len G) by
A34,
XXREAL_0: 2;
then
A41: (i
+ 1)
<= (
len G) by
NAT_1: 13;
A42: (((
len G)
-' 1)
+ 1)
= (
len G) by
A23,
XREAL_1: 235,
XXREAL_0: 2;
then (
N-min C)
in {
|[r9, s9]| where r9,s9 be
Real : ((G
* (i9,1))
`1 )
<= r9 & r9
<= ((G
* ((i9
+ 1),1))
`1 ) & ((G
* (1,((
len G)
-' 1)))
`2 )
<= s9 & s9
<= ((G
* (1,(
len G)))
`2 ) } by
A9,
A13,
A34,
A33,
A25,
A26,
GOBRD11: 32;
then ex r9,s9 be
Real st (
N-min C)
=
|[r9, s9]| & ((G
* (i9,1))
`1 )
<= r9 & r9
<= ((G
* ((i9
+ 1),1))
`1 ) & ((G
* (1,((
len G)
-' 1)))
`2 )
<= s9 & s9
<= ((G
* (1,(
len G)))
`2 );
then
A43: ((f
/. 1)
`1 )
<= ((
N-min C)
`1 ) by
A11,
A33,
A37,
EUCLID: 52;
then
A44: ((
N-min (
L~ f))
`1 )
<= ((
N-min C)
`1 ) by
A38,
XXREAL_0: 2;
A45: 1
<= m by
A3,
FINSEQ_3: 25;
A46: ((G
* (i9,((
len G)
-' 1)))
`2 )
= N by
A9,
A34,
JORDAN8: 14;
A47: (
N-min C)
=
|[((
N-min C)
`1 ), ((
N-min C)
`2 )]| by
EUCLID: 53;
A48: ((
NW-corner C)
`2 )
= N & ((
NE-corner C)
`2 )
= N by
EUCLID: 52;
A49: ((
NW-corner C)
`1 )
= W & ((
NE-corner C)
`1 )
= E by
EUCLID: 52;
A50: (
len G)
= (
width G) by
JORDAN8:def 1;
((G
* (i9,((
len G)
-' 1)))
`1 )
= ((G
* (i9,1))
`1 ) by
A9,
A34,
A33,
A25,
A26,
GOBOARD5: 2;
then
A51: ((G
* (i9,((
len G)
-' 1)))
`1 )
< ((
N-min C)
`1 ) by
A11,
A14,
A33,
A37,
A43,
A47,
A15,
A46,
XXREAL_0: 1;
A52: ((G
* (i,(
len G)))
`1 )
= ((G
* (i,1))
`1 ) by
A19,
A27,
A22,
A28,
A36,
GOBOARD5: 2;
per cases by
A21,
XXREAL_0: 1;
suppose m
= (
len f);
hence thesis by
A4,
A7,
FINSEQ_6:def 1;
end;
suppose m
< (
len f);
then
A53: (m
+ 1)
<= (
len f) by
NAT_1: 13;
then
consider i1,j1,i2,j2 be
Nat such that
A54:
[i1, j1]
in (
Indices G) & (f
/. m)
= (G
* (i1,j1)) and
A55:
[i2, j2]
in (
Indices G) and
A56: (f
/. (m
+ 1))
= (G
* (i2,j2)) and
A57: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A1,
A45,
JORDAN8: 3;
A58: (
right_cell (f,m,G))
meets C by
A2,
A45,
A53;
then
consider p be
object such that
A59: p
in (
right_cell (f,m,G)) and
A60: p
in C by
XBOOLE_0: 3;
reconsider p as
Point of (
TOP-REAL 2) by
A59;
A61: W
<= (p
`1 ) & (p
`1 )
<= E by
A60,
PSCOMP_1: 24;
A62: ((
N-min C)
`2 )
= N by
EUCLID: 52;
then
A63: (p
`2 )
<= ((
N-min C)
`2 ) by
A60,
PSCOMP_1: 24;
A64: ((G
* (1,((
len G)
-' 1)))
`2 )
< ((G
* (1,(
len G)))
`2 ) by
A50,
A24,
A25,
A26,
GOBOARD5: 4;
A65: ((G
* (1,((
len G)
-' 1)))
`2 )
= N by
A24,
JORDAN8: 14;
A66: j2
<= (
len G) by
A50,
A55,
MATRIX_0: 32;
now
per cases by
A5,
A6,
A36,
A54,
A57,
GOBOARD1: 5;
suppose i
= i2 & ((
len G)
+ 1)
= j2;
hence thesis by
A66,
NAT_1: 13;
end;
suppose
A67: (i
+ 1)
= i2 & (
len G)
= j2;
A68: (
cell (G,i,((
len G)
-' 1)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
<= r & r
<= ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,((
len G)
-' 1)))
`2 )
<= s & s
<= ((G
* (1,(((
len G)
-' 1)
+ 1)))
`2 ) } by
A50,
A19,
A25,
A26,
A40,
GOBRD11: 32;
(
right_cell (f,m,G))
= (
cell (G,i,((
len G)
-' 1))) by
A1,
A45,
A5,
A6,
A36,
A53,
A55,
A56,
A67,
GOBRD13: 24;
then
consider r, s such that
A69: p
=
|[r, s]| and ((G
* (i,1))
`1 )
<= r and
A70: r
<= ((G
* ((i
+ 1),1))
`1 ) and
A71: ((G
* (1,((
len G)
-' 1)))
`2 )
<= s and s
<= ((G
* (1,(((
len G)
-' 1)
+ 1)))
`2 ) by
A59,
A68;
(p
`2 )
= s by
A69,
EUCLID: 52;
then (p
`2 )
= N by
A62,
A63,
A65,
A71,
XXREAL_0: 1;
then p
in (
LSeg ((
NW-corner C),(
NE-corner C))) by
A49,
A48,
A61,
GOBOARD7: 8;
then p
in ((
LSeg ((
NW-corner C),(
NE-corner C)))
/\ C) by
A60,
XBOOLE_0:def 4;
then
A72: ((
N-min C)
`1 )
<= (p
`1 ) by
PSCOMP_1: 39;
(p
`1 )
= r by
A69,
EUCLID: 52;
then ((
N-min C)
`1 )
<= ((G
* ((i
+ 1),1))
`1 ) by
A70,
A72,
XXREAL_0: 2;
then
A73: (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) by
A33,
A4,
A7,
A6,
A36,
A52,
A42,
A44,
A47,
A62,
A65,
A64,
A68;
(
N-min C)
<> (G
* (i,((
len G)
-' 1))) by
A34,
A33,
A19,
A25,
A26,
A51,
A39,
SPRECT_3: 13;
hence thesis by
A9,
A10,
A11,
A13,
A14,
A33,
A4,
A7,
A6,
A19,
A36,
A41,
A73,
Th29;
end;
suppose i
= (i2
+ 1) & (
len G)
= j2;
then (
right_cell (f,m,G))
= (
cell (G,i2,(
len G))) & i2
< (
len G) by
A1,
A45,
A5,
A6,
A27,
A36,
A53,
A55,
A56,
GOBRD13: 26,
NAT_1: 13;
hence thesis by
A2,
A45,
A53,
JORDAN8: 15;
end;
suppose
A74: i
= i2 & (
len G)
= (j2
+ 1);
then
A75: j2
= ((
len G)
-' 1) by
NAT_D: 34;
then
A76: (
right_cell (f,m,G))
= (
cell (G,(i
-' 1),((
len G)
-' 1))) by
A1,
A45,
A5,
A6,
A36,
A53,
A55,
A56,
A74,
GOBRD13: 28;
(m
-' 1)
<= m by
NAT_D: 35;
then
A77: (m
-' 1)
<= (
len f) by
A21,
XXREAL_0: 2;
now
1
<= (i9
+ 1) by
A9,
NAT_1: 13;
then
A78: ((G
* ((i9
+ 1),(
len G)))
`2 )
= ((G
* (1,(
len G)))
`2 ) by
A10,
A33,
A24,
GOBOARD5: 1;
assume
A79: m
= 1;
((G
* (i9,(
len G)))
`2 )
= ((G
* (1,(
len G)))
`2 ) by
A9,
A34,
A33,
A24,
GOBOARD5: 1;
hence contradiction by
A11,
A12,
A33,
A6,
A19,
A27,
A36,
A25,
A26,
A56,
A74,
A75,
A79,
A78,
GOBOARD5: 4;
end;
then m
> 1 by
A45,
XXREAL_0: 1;
then
A80: (m
-' 1)
>= 1 by
NAT_D: 49;
A81: ((m
-' 1)
+ 1)
= m by
A45,
XREAL_1: 235;
then
consider i19,j19,i29,j29 be
Nat such that
A82:
[i19, j19]
in (
Indices G) and
A83: (f
/. (m
-' 1))
= (G
* (i19,j19)) and
A84:
[i29, j29]
in (
Indices G) & (f
/. m)
= (G
* (i29,j29)) & (i19
= i29 & (j19
+ 1)
= j29 or (i19
+ 1)
= i29 & j19
= j29 or i19
= (i29
+ 1) & j19
= j29 or i19
= i29 & j19
= (j29
+ 1)) by
A1,
A21,
A80,
JORDAN8: 3;
A85: 1
<= i19 by
A82,
MATRIX_0: 32;
A86: i19
<= (
len G) by
A82,
MATRIX_0: 32;
now
per cases by
A5,
A6,
A36,
A84,
GOBOARD1: 5;
suppose
A87: i19
= i & (j19
+ 1)
= (
len G);
then j19
= ((
len G)
-' 1) by
NAT_D: 34;
then (
left_cell (f,(m
-' 1),G))
= (
cell (G,(i
-' 1),((
len G)
-' 1))) by
A1,
A21,
A5,
A6,
A36,
A80,
A81,
A82,
A83,
A87,
GOBRD13: 21;
hence contradiction by
A2,
A21,
A58,
A76,
A80,
A81;
end;
suppose
A88: (i19
+ 1)
= i & j19
= (
len G);
A89: ((G
* (i19,j))
`2 )
= ((G
* (1,j))
`2 ) & ((G
* (i,j))
`2 )
= ((G
* (1,j))
`2 ) by
A19,
A27,
A22,
A28,
A85,
A86,
GOBOARD5: 1;
(m
-' 1)
in (
dom f) by
A80,
A77,
FINSEQ_3: 25;
then
A90: (f
/. (m
-' 1))
in (
L~ f) by
A30,
GOBOARD1: 1,
XXREAL_0: 2;
then (
W-bound (
L~ f))
<= ((f
/. (m
-' 1))
`1 ) & ((f
/. (m
-' 1))
`1 )
<= (
E-bound (
L~ f)) by
PSCOMP_1: 24;
then (f
/. (m
-' 1))
in (
LSeg ((
NW-corner (
L~ f)),(
NE-corner (
L~ f)))) by
A4,
A7,
A8,
A6,
A36,
A18,
A20,
A83,
A88,
A89,
GOBOARD7: 8;
then
A91: (f
/. (m
-' 1))
in ((
LSeg ((
NW-corner (
L~ f)),(
NE-corner (
L~ f))))
/\ (
L~ f)) by
A90,
XBOOLE_0:def 4;
i19
< i by
A88,
NAT_1: 13;
then ((f
/. (m
-' 1))
`1 )
< ((f
/. m)
`1 ) by
A6,
A27,
A22,
A28,
A36,
A83,
A85,
A88,
GOBOARD5: 3;
hence contradiction by
A4,
A7,
A91,
PSCOMP_1: 39;
end;
suppose i19
= (i
+ 1) & j19
= (
len G);
then (
right_cell (f,(m
-' 1),G))
= (
cell (G,i,(
len G))) by
A1,
A21,
A5,
A6,
A36,
A80,
A81,
A82,
A83,
GOBRD13: 26;
hence contradiction by
A2,
A21,
A27,
A80,
A81,
JORDAN8: 15;
end;
suppose i19
= i & j19
= ((
len G)
+ 1);
then ((
len G)
+ 1)
<= ((
len G)
+
0 ) by
A50,
A82,
MATRIX_0: 32;
hence contradiction by
XREAL_1: 6;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
definition
let C be
compact non
vertical non
horizontal non
empty
Subset of (
TOP-REAL 2);
let n be
Nat;
assume
A1: C is
connected;
::
JORDAN9:def1
func
Cage (C,n) ->
clockwise_oriented
standard non
constant
special_circular_sequence means
:
Def1: it
is_sequence_on (
Gauge (C,n)) & (ex i be
Nat st 1
<= i & (i
+ 1)
<= (
len (
Gauge (C,n))) & (it
/. 1)
= ((
Gauge (C,n))
* (i,(
width (
Gauge (C,n))))) & (it
/. 2)
= ((
Gauge (C,n))
* ((i
+ 1),(
width (
Gauge (C,n))))) & (
N-min C)
in (
cell ((
Gauge (C,n)),i,((
width (
Gauge (C,n)))
-' 1))) & (
N-min C)
<> ((
Gauge (C,n))
* (i,((
width (
Gauge (C,n)))
-' 1)))) & for k be
Nat st 1
<= k & (k
+ 2)
<= (
len it ) holds ((
front_left_cell (it ,k,(
Gauge (C,n))))
misses C & (
front_right_cell (it ,k,(
Gauge (C,n))))
misses C implies it
turns_right (k,(
Gauge (C,n)))) & ((
front_left_cell (it ,k,(
Gauge (C,n))))
misses C & (
front_right_cell (it ,k,(
Gauge (C,n))))
meets C implies it
goes_straight (k,(
Gauge (C,n)))) & ((
front_left_cell (it ,k,(
Gauge (C,n))))
meets C implies it
turns_left (k,(
Gauge (C,n))));
existence
proof
set W = (
W-bound C), E = (
E-bound C), S = (
S-bound C), N = (
N-bound C);
set G = (
Gauge (C,n));
defpred
P[
Nat,
set,
set] means ($1
=
0 implies ex i st 1
<= i & (i
+ 1)
<= (
len G) & (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) & (
N-min C)
<> (G
* (i,((
width G)
-' 1))) & $3
=
<*(G
* (i,(
width G)))*>) & ($1
= 1 implies ex i st 1
<= i & (i
+ 1)
<= (
len G) & (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) & (
N-min C)
<> (G
* (i,((
width G)
-' 1))) & $3
=
<*(G
* (i,(
width G))), (G
* ((i
+ 1),(
width G)))*>) & ($1
> 1 & $2 is
FinSequence of (
TOP-REAL 2) implies for f be
FinSequence of (
TOP-REAL 2) st $2
= f holds ((
len f)
= $1 implies (f
is_sequence_on G & (
right_cell (f,((
len f)
-' 1),G))
meets C implies ((
front_left_cell (f,((
len f)
-' 1),G))
misses C & (
front_right_cell (f,((
len f)
-' 1),G))
misses C implies ex i, j st (f
^
<*(G
* (i,j))*>)
turns_right (((
len f)
-' 1),G) & $3
= (f
^
<*(G
* (i,j))*>)) & ((
front_left_cell (f,((
len f)
-' 1),G))
misses C & (
front_right_cell (f,((
len f)
-' 1),G))
meets C implies ex i, j st (f
^
<*(G
* (i,j))*>)
goes_straight (((
len f)
-' 1),G) & $3
= (f
^
<*(G
* (i,j))*>)) & ((
front_left_cell (f,((
len f)
-' 1),G))
meets C implies ex i, j st (f
^
<*(G
* (i,j))*>)
turns_left (((
len f)
-' 1),G) & $3
= (f
^
<*(G
* (i,j))*>))) & ( not f
is_sequence_on G or (
right_cell (f,((
len f)
-' 1),G))
misses C implies $3
= (f
^
<*(G
* (1,1))*>))) & ((
len f)
<> $1 implies $3
=
{} )) & ($1
> 1 & not $2 is
FinSequence of (
TOP-REAL 2) implies $3
=
{} );
A2: (
len G)
= (
width G) by
JORDAN8:def 1;
A3: for k be
Nat, x be
set holds ex y be
set st
P[k, x, y]
proof
let k be
Nat, x be
set;
consider m be
Nat such that
A4: 1
<= m & (m
+ 1)
<= (
len G) & (
N-min C)
in (
cell (G,m,((
width G)
-' 1))) & (
N-min C)
<> (G
* (m,((
width G)
-' 1))) by
Th28;
per cases by
NAT_1: 25;
suppose
A5: k
=
0 ;
take
<*(G
* (m,(
width G)))*>;
thus thesis by
A4,
A5;
end;
suppose
A6: k
= 1;
take
<*(G
* (m,(
width G))), (G
* ((m
+ 1),(
width G)))*>;
thus thesis by
A4,
A6;
end;
suppose that
A7: k
> 1 and
A8: x is
FinSequence of (
TOP-REAL 2);
reconsider f = x as
FinSequence of (
TOP-REAL 2) by
A8;
per cases ;
suppose
A9: (
len f)
= k;
per cases ;
suppose
A10: f
is_sequence_on G & (
right_cell (f,((
len f)
-' 1),G))
meets C;
A11: (((
len f)
-' 1)
+ 1)
= (
len f) by
A7,
A9,
XREAL_1: 235;
then
A12: (((
len f)
-' 1)
+ (1
+ 1))
= ((
len f)
+ 1);
A13: (((
len f)
-' 1)
+ 1)
in (
dom f) by
A7,
A9,
A11,
FINSEQ_3: 25;
A14: 1
<= ((
len f)
-' 1) by
A7,
A9,
NAT_D: 49;
then
consider i1,j1,i2,j2 be
Nat such that
A15:
[i1, j1]
in (
Indices G) and
A16: (f
/. ((
len f)
-' 1))
= (G
* (i1,j1)) and
A17:
[i2, j2]
in (
Indices G) and
A18: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i2,j2)) and
A19: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A10,
A11,
JORDAN8: 3;
A20: i1
<= (
len G) by
A15,
MATRIX_0: 32;
A21: 1
<= (j2
+ 1) by
NAT_1: 12;
A22: 1
<= i2 by
A17,
MATRIX_0: 32;
A23: j1
<= (
width G) by
A15,
MATRIX_0: 32;
A24: 1
<= (i2
+ 1) by
NAT_1: 12;
A25: 1
<= j2 by
A17,
MATRIX_0: 32;
((
len f)
-' 1)
<= (
len f) by
NAT_D: 35;
then
A26: ((
len f)
-' 1)
in (
dom f) by
A14,
FINSEQ_3: 25;
A27: j2
<= (
width G) by
A17,
MATRIX_0: 32;
then
A28: (j2
-' 1)
<= (
width G) by
NAT_D: 44;
A29: i2
<= (
len G) by
A17,
MATRIX_0: 32;
then
A30: (i2
-' 1)
<= (
len G) by
NAT_D: 44;
per cases ;
suppose
A31: (
front_left_cell (f,((
len f)
-' 1),G))
misses C & (
front_right_cell (f,((
len f)
-' 1),G))
misses C;
per cases by
A19;
suppose
A32: i1
= i2 & (j1
+ 1)
= j2;
take f1 = (f
^
<*(G
* ((i2
+ 1),j2))*>);
now
take i = (i2
+ 1), j = j2;
thus f1
turns_right (((
len f)
-' 1),G)
proof
let i19,j19,i29,j29 be
Nat;
assume that
A33:
[i19, j19]
in (
Indices G) and
A34:
[i29, j29]
in (
Indices G) and
A35: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A36: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A37: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A26,
A35,
FINSEQ_4: 68;
then
A38: i1
= i19 by
A15,
A16,
A33,
GOBOARD1: 5;
A39: j1
= j19 by
A15,
A16,
A33,
A37,
GOBOARD1: 5;
A40: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A13,
A36,
FINSEQ_4: 68;
then
A41: i2
= i29 by
A17,
A18,
A34,
GOBOARD1: 5;
A42: j2
= j29 by
A17,
A18,
A34,
A40,
GOBOARD1: 5;
per cases by
A15,
A16,
A19,
A33,
A37,
A41,
A42,
GOBOARD1: 5;
case i19
= i29 & (j19
+ 1)
= j29;
now
assume (i2
+ 1)
> (
len G);
then
A43: ((
len G)
+ 1)
<= (i2
+ 1) by
NAT_1: 13;
(i2
+ 1)
<= ((
len G)
+ 1) by
A29,
XREAL_1: 6;
then (i2
+ 1)
= ((
len G)
+ 1) by
A43,
XXREAL_0: 1;
then (
cell (G,(
len G),j1))
meets C by
A10,
A14,
A11,
A15,
A16,
A17,
A18,
A32,
GOBRD13: 22;
hence contradiction by
A2,
A23,
JORDAN8: 16;
end;
hence
[(i29
+ 1), j29]
in (
Indices G) by
A25,
A27,
A24,
A41,
A42,
MATRIX_0: 30;
thus thesis by
A12,
A41,
A42,
FINSEQ_4: 67;
end;
case (i19
+ 1)
= i29 & j19
= j29;
hence thesis by
A32,
A38,
A41;
end;
case i19
= (i29
+ 1) & j19
= j29;
hence thesis by
A32,
A38,
A41;
end;
case i19
= i29 & j19
= (j29
+ 1);
hence thesis by
A32,
A39,
A42;
end;
end;
end;
hence thesis by
A7,
A9,
A10,
A31;
end;
suppose
A44: (i1
+ 1)
= i2 & j1
= j2;
take f1 = (f
^
<*(G
* (i2,(j2
-' 1)))*>);
now
take i = i2, j = (j2
-' 1);
thus f1
turns_right (((
len f)
-' 1),G)
proof
let i19,j19,i29,j29 be
Nat;
assume that
A45:
[i19, j19]
in (
Indices G) and
A46:
[i29, j29]
in (
Indices G) and
A47: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A48: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A49: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A13,
A48,
FINSEQ_4: 68;
then
A50: i2
= i29 by
A17,
A18,
A46,
GOBOARD1: 5;
A51: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A26,
A47,
FINSEQ_4: 68;
then
A52: i1
= i19 by
A15,
A16,
A45,
GOBOARD1: 5;
A53: j2
= j29 by
A17,
A18,
A46,
A49,
GOBOARD1: 5;
per cases by
A15,
A16,
A19,
A45,
A51,
A50,
A53,
GOBOARD1: 5;
case i19
= i29 & (j19
+ 1)
= j29;
hence thesis by
A44,
A52,
A50;
end;
case (i19
+ 1)
= i29 & j19
= j29;
now
assume (j2
-' 1)
< 1;
then j2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then j2
= 1 by
A25,
XXREAL_0: 1;
then (
cell (G,i1,(1
-' 1)))
meets C by
A10,
A14,
A11,
A15,
A16,
A17,
A18,
A44,
GOBRD13: 24;
then (
cell (G,i1,
0 ))
meets C by
XREAL_1: 232;
hence contradiction by
A20,
JORDAN8: 17;
end;
hence
[i29, (j29
-' 1)]
in (
Indices G) by
A22,
A29,
A28,
A50,
A53,
MATRIX_0: 30;
thus thesis by
A12,
A50,
A53,
FINSEQ_4: 67;
end;
case i19
= (i29
+ 1) & j19
= j29;
hence thesis by
A44,
A52,
A50;
end;
case i19
= i29 & j19
= (j29
+ 1);
hence thesis by
A44,
A52,
A50;
end;
end;
end;
hence thesis by
A7,
A9,
A10,
A31;
end;
suppose
A54: i1
= (i2
+ 1) & j1
= j2;
take f1 = (f
^
<*(G
* (i2,(j2
+ 1)))*>);
now
take i = i2, j = (j2
+ 1);
thus f1
turns_right (((
len f)
-' 1),G)
proof
let i19,j19,i29,j29 be
Nat;
assume that
A55:
[i19, j19]
in (
Indices G) and
A56:
[i29, j29]
in (
Indices G) and
A57: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A58: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A59: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A13,
A58,
FINSEQ_4: 68;
then
A60: i2
= i29 by
A17,
A18,
A56,
GOBOARD1: 5;
A61: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A26,
A57,
FINSEQ_4: 68;
then
A62: i1
= i19 by
A15,
A16,
A55,
GOBOARD1: 5;
A63: j2
= j29 by
A17,
A18,
A56,
A59,
GOBOARD1: 5;
per cases by
A15,
A16,
A19,
A55,
A61,
A60,
A63,
GOBOARD1: 5;
case i19
= i29 & (j19
+ 1)
= j29;
hence thesis by
A54,
A62,
A60;
end;
case (i19
+ 1)
= i29 & j19
= j29;
hence thesis by
A54,
A62,
A60;
end;
case i19
= (i29
+ 1) & j19
= j29;
now
assume (j2
+ 1)
> (
len G);
then
A64: ((
len G)
+ 1)
<= (j2
+ 1) by
NAT_1: 13;
(j2
+ 1)
<= ((
len G)
+ 1) by
A2,
A27,
XREAL_1: 6;
then (j2
+ 1)
= ((
len G)
+ 1) by
A64,
XXREAL_0: 1;
then (
cell (G,i2,(
len G)))
meets C by
A10,
A14,
A11,
A15,
A16,
A17,
A18,
A54,
GOBRD13: 26;
hence contradiction by
A29,
JORDAN8: 15;
end;
hence
[i29, (j29
+ 1)]
in (
Indices G) by
A2,
A22,
A29,
A21,
A60,
A63,
MATRIX_0: 30;
thus thesis by
A12,
A60,
A63,
FINSEQ_4: 67;
end;
case i19
= i29 & j19
= (j29
+ 1);
hence thesis by
A54,
A62,
A60;
end;
end;
end;
hence thesis by
A7,
A9,
A10,
A31;
end;
suppose
A65: i1
= i2 & j1
= (j2
+ 1);
take f1 = (f
^
<*(G
* ((i2
-' 1),j2))*>);
now
reconsider i = (i2
-' 1), j = j2 as
Nat;
take i, j;
thus f1
turns_right (((
len f)
-' 1),G)
proof
let i19,j19,i29,j29 be
Nat;
assume that
A66:
[i19, j19]
in (
Indices G) and
A67:
[i29, j29]
in (
Indices G) and
A68: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A69: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A70: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A26,
A68,
FINSEQ_4: 68;
then
A71: i1
= i19 by
A15,
A16,
A66,
GOBOARD1: 5;
A72: j1
= j19 by
A15,
A16,
A66,
A70,
GOBOARD1: 5;
A73: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A13,
A69,
FINSEQ_4: 68;
then
A74: i2
= i29 by
A17,
A18,
A67,
GOBOARD1: 5;
A75: j2
= j29 by
A17,
A18,
A67,
A73,
GOBOARD1: 5;
per cases by
A15,
A16,
A19,
A66,
A70,
A74,
A75,
GOBOARD1: 5;
case i19
= i29 & (j19
+ 1)
= j29;
hence thesis by
A65,
A72,
A75;
end;
case (i19
+ 1)
= i29 & j19
= j29;
hence thesis by
A65,
A71,
A74;
end;
case i19
= (i29
+ 1) & j19
= j29;
hence thesis by
A65,
A71,
A74;
end;
case i19
= i29 & j19
= (j29
+ 1);
now
assume (i2
-' 1)
< 1;
then i2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then i2
= 1 by
A22,
XXREAL_0: 1;
then (
cell (G,(1
-' 1),j2))
meets C by
A10,
A14,
A11,
A15,
A16,
A17,
A18,
A65,
GOBRD13: 28;
then (
cell (G,
0 ,j2))
meets C by
XREAL_1: 232;
hence contradiction by
A2,
A27,
JORDAN8: 18;
end;
hence
[(i29
-' 1), j29]
in (
Indices G) by
A25,
A27,
A30,
A74,
A75,
MATRIX_0: 30;
thus thesis by
A12,
A74,
A75,
FINSEQ_4: 67;
end;
end;
end;
hence thesis by
A7,
A9,
A10,
A31;
end;
end;
suppose
A76: (
front_left_cell (f,((
len f)
-' 1),G))
misses C & (
front_right_cell (f,((
len f)
-' 1),G))
meets C;
per cases by
A19;
suppose
A77: i1
= i2 & (j1
+ 1)
= j2;
take f1 = (f
^
<*(G
* (i2,(j2
+ 1)))*>);
now
take i = i2, j = (j2
+ 1);
thus f1
goes_straight (((
len f)
-' 1),G)
proof
let i19,j19,i29,j29 be
Nat;
assume that
A78:
[i19, j19]
in (
Indices G) and
A79:
[i29, j29]
in (
Indices G) and
A80: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A81: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A82: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A26,
A80,
FINSEQ_4: 68;
then
A83: i1
= i19 by
A15,
A16,
A78,
GOBOARD1: 5;
A84: j1
= j19 by
A15,
A16,
A78,
A82,
GOBOARD1: 5;
A85: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A13,
A81,
FINSEQ_4: 68;
then
A86: i2
= i29 by
A17,
A18,
A79,
GOBOARD1: 5;
A87: j2
= j29 by
A17,
A18,
A79,
A85,
GOBOARD1: 5;
per cases by
A15,
A16,
A19,
A78,
A82,
A86,
A87,
GOBOARD1: 5;
case i19
= i29 & (j19
+ 1)
= j29;
now
assume (j2
+ 1)
> (
len G);
then
A88: ((
len G)
+ 1)
<= (j2
+ 1) by
NAT_1: 13;
(j2
+ 1)
<= ((
len G)
+ 1) by
A2,
A27,
XREAL_1: 6;
then (j2
+ 1)
= ((
len G)
+ 1) by
A88,
XXREAL_0: 1;
then (
cell (G,i1,(
len G)))
meets C by
A10,
A14,
A11,
A15,
A16,
A17,
A18,
A76,
A77,
GOBRD13: 35;
hence contradiction by
A20,
JORDAN8: 15;
end;
hence
[i29, (j29
+ 1)]
in (
Indices G) by
A2,
A22,
A29,
A21,
A86,
A87,
MATRIX_0: 30;
thus thesis by
A12,
A86,
A87,
FINSEQ_4: 67;
end;
case (i19
+ 1)
= i29 & j19
= j29;
hence thesis by
A77,
A83,
A86;
end;
case i19
= (i29
+ 1) & j19
= j29;
hence thesis by
A77,
A83,
A86;
end;
case i19
= i29 & j19
= (j29
+ 1);
hence thesis by
A77,
A84,
A87;
end;
end;
end;
hence thesis by
A7,
A9,
A10,
A76;
end;
suppose
A89: (i1
+ 1)
= i2 & j1
= j2;
take f1 = (f
^
<*(G
* ((i2
+ 1),j2))*>);
now
take i = (i2
+ 1), j = j2;
thus f1
goes_straight (((
len f)
-' 1),G)
proof
let i19,j19,i29,j29 be
Nat;
assume that
A90:
[i19, j19]
in (
Indices G) and
A91:
[i29, j29]
in (
Indices G) and
A92: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A93: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A94: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A13,
A93,
FINSEQ_4: 68;
then
A95: i2
= i29 by
A17,
A18,
A91,
GOBOARD1: 5;
A96: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A26,
A92,
FINSEQ_4: 68;
then
A97: i1
= i19 by
A15,
A16,
A90,
GOBOARD1: 5;
A98: j2
= j29 by
A17,
A18,
A91,
A94,
GOBOARD1: 5;
per cases by
A15,
A16,
A19,
A90,
A96,
A95,
A98,
GOBOARD1: 5;
case i19
= i29 & (j19
+ 1)
= j29;
hence thesis by
A89,
A97,
A95;
end;
case (i19
+ 1)
= i29 & j19
= j29;
now
assume (i2
+ 1)
> (
len G);
then
A99: ((
len G)
+ 1)
<= (i2
+ 1) by
NAT_1: 13;
(i2
+ 1)
<= ((
len G)
+ 1) by
A29,
XREAL_1: 6;
then (i2
+ 1)
= ((
len G)
+ 1) by
A99,
XXREAL_0: 1;
then (
cell (G,(
len G),(j1
-' 1)))
meets C by
A10,
A14,
A11,
A15,
A16,
A17,
A18,
A76,
A89,
GOBRD13: 37;
hence contradiction by
A2,
A23,
JORDAN8: 16,
NAT_D: 44;
end;
hence
[(i29
+ 1), j29]
in (
Indices G) by
A25,
A27,
A24,
A95,
A98,
MATRIX_0: 30;
thus thesis by
A12,
A95,
A98,
FINSEQ_4: 67;
end;
case i19
= (i29
+ 1) & j19
= j29;
hence thesis by
A89,
A97,
A95;
end;
case i19
= i29 & j19
= (j29
+ 1);
hence thesis by
A89,
A97,
A95;
end;
end;
end;
hence thesis by
A7,
A9,
A10,
A76;
end;
suppose
A100: i1
= (i2
+ 1) & j1
= j2;
take f1 = (f
^
<*(G
* ((i2
-' 1),j2))*>);
now
take i = (i2
-' 1), j = j2;
thus f1
goes_straight (((
len f)
-' 1),G)
proof
let i19,j19,i29,j29 be
Nat;
assume that
A101:
[i19, j19]
in (
Indices G) and
A102:
[i29, j29]
in (
Indices G) and
A103: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A104: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A105: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A13,
A104,
FINSEQ_4: 68;
then
A106: i2
= i29 by
A17,
A18,
A102,
GOBOARD1: 5;
A107: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A26,
A103,
FINSEQ_4: 68;
then
A108: i1
= i19 by
A15,
A16,
A101,
GOBOARD1: 5;
A109: j2
= j29 by
A17,
A18,
A102,
A105,
GOBOARD1: 5;
per cases by
A15,
A16,
A19,
A101,
A107,
A106,
A109,
GOBOARD1: 5;
case i19
= i29 & (j19
+ 1)
= j29;
hence thesis by
A100,
A108,
A106;
end;
case (i19
+ 1)
= i29 & j19
= j29;
hence thesis by
A100,
A108,
A106;
end;
case i19
= (i29
+ 1) & j19
= j29;
now
assume (i2
-' 1)
< 1;
then i2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then i2
= 1 by
A22,
XXREAL_0: 1;
then (
cell (G,(1
-' 1),j1))
meets C by
A10,
A14,
A11,
A15,
A16,
A17,
A18,
A76,
A100,
GOBRD13: 39;
then (
cell (G,
0 ,j1))
meets C by
XREAL_1: 232;
hence contradiction by
A2,
A23,
JORDAN8: 18;
end;
hence
[(i29
-' 1), j29]
in (
Indices G) by
A25,
A27,
A30,
A106,
A109,
MATRIX_0: 30;
thus thesis by
A12,
A106,
A109,
FINSEQ_4: 67;
end;
case i19
= i29 & j19
= (j29
+ 1);
hence thesis by
A100,
A108,
A106;
end;
end;
end;
hence thesis by
A7,
A9,
A10,
A76;
end;
suppose
A110: i1
= i2 & j1
= (j2
+ 1);
take f1 = (f
^
<*(G
* (i2,(j2
-' 1)))*>);
now
take i = i2, j = (j2
-' 1);
thus f1
goes_straight (((
len f)
-' 1),G)
proof
let i19,j19,i29,j29 be
Nat;
assume that
A111:
[i19, j19]
in (
Indices G) and
A112:
[i29, j29]
in (
Indices G) and
A113: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A114: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A115: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A26,
A113,
FINSEQ_4: 68;
then
A116: i1
= i19 by
A15,
A16,
A111,
GOBOARD1: 5;
A117: j1
= j19 by
A15,
A16,
A111,
A115,
GOBOARD1: 5;
A118: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A13,
A114,
FINSEQ_4: 68;
then
A119: i2
= i29 by
A17,
A18,
A112,
GOBOARD1: 5;
A120: j2
= j29 by
A17,
A18,
A112,
A118,
GOBOARD1: 5;
per cases by
A15,
A16,
A19,
A111,
A115,
A119,
A120,
GOBOARD1: 5;
case i19
= i29 & (j19
+ 1)
= j29;
hence thesis by
A110,
A117,
A120;
end;
case (i19
+ 1)
= i29 & j19
= j29;
hence thesis by
A110,
A116,
A119;
end;
case i19
= (i29
+ 1) & j19
= j29;
hence thesis by
A110,
A116,
A119;
end;
case i19
= i29 & j19
= (j29
+ 1);
now
assume (j2
-' 1)
< 1;
then j2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then j2
= 1 by
A25,
XXREAL_0: 1;
then (
cell (G,(i1
-' 1),(1
-' 1)))
meets C by
A10,
A14,
A11,
A15,
A16,
A17,
A18,
A76,
A110,
GOBRD13: 41;
then (
cell (G,(i1
-' 1),
0 ))
meets C by
XREAL_1: 232;
hence contradiction by
A20,
JORDAN8: 17,
NAT_D: 44;
end;
hence
[i29, (j29
-' 1)]
in (
Indices G) by
A22,
A29,
A28,
A119,
A120,
MATRIX_0: 30;
thus thesis by
A12,
A119,
A120,
FINSEQ_4: 67;
end;
end;
end;
hence thesis by
A7,
A9,
A10,
A76;
end;
end;
suppose
A121: (
front_left_cell (f,((
len f)
-' 1),G))
meets C;
per cases by
A19;
suppose
A122: i1
= i2 & (j1
+ 1)
= j2;
take f1 = (f
^
<*(G
* ((i2
-' 1),j2))*>);
now
take i = (i2
-' 1), j = j2;
thus f1
turns_left (((
len f)
-' 1),G)
proof
let i19,j19,i29,j29 be
Nat;
assume that
A123:
[i19, j19]
in (
Indices G) and
A124:
[i29, j29]
in (
Indices G) and
A125: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A126: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A127: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A26,
A125,
FINSEQ_4: 68;
then
A128: i1
= i19 by
A15,
A16,
A123,
GOBOARD1: 5;
A129: j1
= j19 by
A15,
A16,
A123,
A127,
GOBOARD1: 5;
A130: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A13,
A126,
FINSEQ_4: 68;
then
A131: i2
= i29 by
A17,
A18,
A124,
GOBOARD1: 5;
A132: j2
= j29 by
A17,
A18,
A124,
A130,
GOBOARD1: 5;
per cases by
A15,
A16,
A19,
A123,
A127,
A131,
A132,
GOBOARD1: 5;
case i19
= i29 & (j19
+ 1)
= j29;
now
assume (i2
-' 1)
< 1;
then i2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then i2
= 1 by
A22,
XXREAL_0: 1;
then (
cell (G,(1
-' 1),j2))
meets C by
A10,
A14,
A11,
A15,
A16,
A17,
A18,
A121,
A122,
GOBRD13: 34;
then (
cell (G,
0 ,j2))
meets C by
XREAL_1: 232;
hence contradiction by
A2,
A27,
JORDAN8: 18;
end;
hence
[(i29
-' 1), j29]
in (
Indices G) by
A25,
A27,
A30,
A131,
A132,
MATRIX_0: 30;
thus thesis by
A12,
A131,
A132,
FINSEQ_4: 67;
end;
case (i19
+ 1)
= i29 & j19
= j29;
hence thesis by
A122,
A128,
A131;
end;
case i19
= (i29
+ 1) & j19
= j29;
hence thesis by
A122,
A128,
A131;
end;
case i19
= i29 & j19
= (j29
+ 1);
hence thesis by
A122,
A129,
A132;
end;
end;
end;
hence thesis by
A7,
A9,
A10,
A121;
end;
suppose
A133: (i1
+ 1)
= i2 & j1
= j2;
take f1 = (f
^
<*(G
* (i2,(j2
+ 1)))*>);
now
take i = i2, j = (j2
+ 1);
thus f1
turns_left (((
len f)
-' 1),G)
proof
let i19,j19,i29,j29 be
Nat;
assume that
A134:
[i19, j19]
in (
Indices G) and
A135:
[i29, j29]
in (
Indices G) and
A136: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A137: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A138: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A13,
A137,
FINSEQ_4: 68;
then
A139: i2
= i29 by
A17,
A18,
A135,
GOBOARD1: 5;
A140: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A26,
A136,
FINSEQ_4: 68;
then
A141: i1
= i19 by
A15,
A16,
A134,
GOBOARD1: 5;
A142: j2
= j29 by
A17,
A18,
A135,
A138,
GOBOARD1: 5;
per cases by
A15,
A16,
A19,
A134,
A140,
A139,
A142,
GOBOARD1: 5;
case i19
= i29 & (j19
+ 1)
= j29;
hence thesis by
A133,
A141,
A139;
end;
case (i19
+ 1)
= i29 & j19
= j29;
now
assume (j2
+ 1)
> (
len G);
then
A143: ((
len G)
+ 1)
<= (j2
+ 1) by
NAT_1: 13;
(j2
+ 1)
<= ((
len G)
+ 1) by
A2,
A27,
XREAL_1: 6;
then (j2
+ 1)
= ((
len G)
+ 1) by
A143,
XXREAL_0: 1;
then (
cell (G,i2,(
len G)))
meets C by
A10,
A14,
A11,
A15,
A16,
A17,
A18,
A121,
A133,
GOBRD13: 36;
hence contradiction by
A29,
JORDAN8: 15;
end;
hence
[i29, (j29
+ 1)]
in (
Indices G) by
A2,
A22,
A29,
A21,
A139,
A142,
MATRIX_0: 30;
thus thesis by
A12,
A139,
A142,
FINSEQ_4: 67;
end;
case i19
= (i29
+ 1) & j19
= j29;
hence thesis by
A133,
A141,
A139;
end;
case i19
= i29 & j19
= (j29
+ 1);
hence thesis by
A133,
A141,
A139;
end;
end;
end;
hence thesis by
A7,
A9,
A10,
A121;
end;
suppose
A144: i1
= (i2
+ 1) & j1
= j2;
take f1 = (f
^
<*(G
* (i2,(j2
-' 1)))*>);
now
take i = i2, j = (j2
-' 1);
thus f1
turns_left (((
len f)
-' 1),G)
proof
let i19,j19,i29,j29 be
Nat;
assume that
A145:
[i19, j19]
in (
Indices G) and
A146:
[i29, j29]
in (
Indices G) and
A147: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A148: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A149: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A13,
A148,
FINSEQ_4: 68;
then
A150: i2
= i29 by
A17,
A18,
A146,
GOBOARD1: 5;
A151: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A26,
A147,
FINSEQ_4: 68;
then
A152: i1
= i19 by
A15,
A16,
A145,
GOBOARD1: 5;
A153: j2
= j29 by
A17,
A18,
A146,
A149,
GOBOARD1: 5;
per cases by
A15,
A16,
A19,
A145,
A151,
A150,
A153,
GOBOARD1: 5;
case i19
= i29 & (j19
+ 1)
= j29;
hence thesis by
A144,
A152,
A150;
end;
case (i19
+ 1)
= i29 & j19
= j29;
hence thesis by
A144,
A152,
A150;
end;
case i19
= (i29
+ 1) & j19
= j29;
now
assume (j2
-' 1)
< 1;
then j2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then j2
= 1 by
A25,
XXREAL_0: 1;
then (
cell (G,(i2
-' 1),(1
-' 1)))
meets C by
A10,
A14,
A11,
A15,
A16,
A17,
A18,
A121,
A144,
GOBRD13: 38;
then (
cell (G,(i2
-' 1),
0 ))
meets C by
XREAL_1: 232;
hence contradiction by
A29,
JORDAN8: 17,
NAT_D: 44;
end;
hence
[i29, (j29
-' 1)]
in (
Indices G) by
A22,
A29,
A28,
A150,
A153,
MATRIX_0: 30;
thus thesis by
A12,
A150,
A153,
FINSEQ_4: 67;
end;
case i19
= i29 & j19
= (j29
+ 1);
hence thesis by
A144,
A152,
A150;
end;
end;
end;
hence thesis by
A7,
A9,
A10,
A121;
end;
suppose
A154: i1
= i2 & j1
= (j2
+ 1);
take f1 = (f
^
<*(G
* ((i2
+ 1),j2))*>);
now
take i = (i2
+ 1), j = j2;
thus f1
turns_left (((
len f)
-' 1),G)
proof
let i19,j19,i29,j29 be
Nat;
assume that
A155:
[i19, j19]
in (
Indices G) and
A156:
[i29, j29]
in (
Indices G) and
A157: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A158: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A159: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A26,
A157,
FINSEQ_4: 68;
then
A160: i1
= i19 by
A15,
A16,
A155,
GOBOARD1: 5;
A161: j1
= j19 by
A15,
A16,
A155,
A159,
GOBOARD1: 5;
A162: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A13,
A158,
FINSEQ_4: 68;
then
A163: i2
= i29 by
A17,
A18,
A156,
GOBOARD1: 5;
A164: j2
= j29 by
A17,
A18,
A156,
A162,
GOBOARD1: 5;
per cases by
A15,
A16,
A19,
A155,
A159,
A163,
A164,
GOBOARD1: 5;
case i19
= i29 & (j19
+ 1)
= j29;
hence thesis by
A154,
A161,
A164;
end;
case (i19
+ 1)
= i29 & j19
= j29;
hence thesis by
A154,
A160,
A163;
end;
case i19
= (i29
+ 1) & j19
= j29;
hence thesis by
A154,
A160,
A163;
end;
case i19
= i29 & j19
= (j29
+ 1);
now
assume (i2
+ 1)
> (
len G);
then
A165: ((
len G)
+ 1)
<= (i2
+ 1) by
NAT_1: 13;
(i2
+ 1)
<= ((
len G)
+ 1) by
A29,
XREAL_1: 6;
then (i2
+ 1)
= ((
len G)
+ 1) by
A165,
XXREAL_0: 1;
then (
cell (G,(
len G),(j2
-' 1)))
meets C by
A10,
A14,
A11,
A15,
A16,
A17,
A18,
A121,
A154,
GOBRD13: 40;
hence contradiction by
A2,
A27,
JORDAN8: 16,
NAT_D: 44;
end;
hence
[(i29
+ 1), j29]
in (
Indices G) by
A25,
A27,
A24,
A163,
A164,
MATRIX_0: 30;
thus thesis by
A12,
A163,
A164,
FINSEQ_4: 67;
end;
end;
end;
hence thesis by
A7,
A9,
A10,
A121;
end;
end;
end;
suppose
A166: not f
is_sequence_on G or (
right_cell (f,((
len f)
-' 1),G))
misses C;
take (f
^
<*(G
* (1,1))*>);
thus thesis by
A7,
A9,
A166;
end;
end;
suppose
A167: (
len f)
<> k;
take
{} ;
thus thesis by
A7,
A167;
end;
end;
suppose
A168: k
> 1 & not x is
FinSequence of (
TOP-REAL 2);
take
{} ;
thus thesis by
A168;
end;
end;
consider F be
Function such that
A169: (
dom F)
=
NAT and
A170: (F
.
0 )
=
{} and
A171: for k be
Nat holds
P[k, (F
. k), (F
. (k
+ 1))] from
RECDEF_1:sch 1(
A3);
defpred
P[
Nat] means (F
. $1) is
FinSequence of (
TOP-REAL 2);
A172:
{}
= (
<*> the
carrier of (
TOP-REAL 2));
A173: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A174: (F
. k) is
FinSequence of (
TOP-REAL 2);
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
A175:
P[k, (F
. k), (F
. (k
+ 1))] by
A171;
per cases by
NAT_1: 25;
suppose k
=
0 ;
hence thesis by
A175;
end;
suppose k
= 1;
hence thesis by
A175;
end;
suppose
A176: k
> 1;
reconsider f = (F
. k) as
FinSequence of (
TOP-REAL 2) by
A174;
per cases ;
suppose
A177: (
len f)
= k;
per cases ;
suppose
A178: f
is_sequence_on G & (
right_cell (f,((
len f)
-' 1),G))
meets C;
then
A179: (
front_left_cell (f,((
len f)
-' 1),G))
meets C implies ex i, j st (f
^
<*(G
* (i,j))*>)
turns_left (((
len f)
-' 1),G) & (F
. (k
+ 1))
= (f
^
<*(G
* (i,j))*>) by
A171,
A176,
A177;
A180: (
front_left_cell (f,((
len f)
-' 1),G))
misses C & (
front_right_cell (f,((
len f)
-' 1),G))
meets C implies ex i, j st (f
^
<*(G
* (i,j))*>)
goes_straight (((
len f)
-' 1),G) & (F
. (k
+ 1))
= (f
^
<*(G
* (i,j))*>) by
A171,
A176,
A177,
A178;
(
front_left_cell (f,((
len f)
-' 1),G))
misses C & (
front_right_cell (f,((
len f)
-' 1),G))
misses C implies ex i, j st (f
^
<*(G
* (i,j))*>)
turns_right (((
len f)
-' 1),G) & (F
. (k
+ 1))
= (f
^
<*(G
* (i,j))*>) by
A171,
A176,
A177,
A178;
hence thesis by
A180,
A179;
end;
suppose
A181: not f
is_sequence_on G or (
right_cell (f,((
len f)
-' 1),G))
misses C;
(f
^
<*(G
* (1,1))*>) is
FinSequence of (
TOP-REAL 2);
hence thesis by
A171,
A176,
A177,
A181;
end;
end;
suppose (
len f)
<> k;
hence thesis by
A171,
A172,
A176;
end;
end;
end;
A182:
P[
0 ] by
A170,
A172;
A183: for k holds
P[k] from
NAT_1:sch 2(
A182,
A173);
(
rng F)
c= (the
carrier of (
TOP-REAL 2)
* )
proof
let y be
object;
assume y
in (
rng F);
then ex x be
object st x
in (
dom F) & (F
. x)
= y by
FUNCT_1:def 3;
then y is
FinSequence of (
TOP-REAL 2) by
A169,
A183;
hence thesis by
FINSEQ_1:def 11;
end;
then
reconsider F as
sequence of (the
carrier of (
TOP-REAL 2)
* ) by
A169,
FUNCT_2:def 1,
RELSET_1: 4;
defpred
P[
Nat] means (
len (F
. $1))
= $1;
A184: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A185: (
len (F
. k))
= k;
A186:
P[k, (F
. k), (F
. (k
+ 1))] by
A171;
per cases by
NAT_1: 25;
suppose k
=
0 ;
hence thesis by
A186,
FINSEQ_1: 39;
end;
suppose k
= 1;
hence thesis by
A186,
FINSEQ_1: 44;
end;
suppose
A187: k
> 1;
thus thesis
proof
per cases ;
suppose
A188: (F
. k)
is_sequence_on G & (
right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
A189: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C implies ex i, j st ((F
. k)
^
<*(G
* (i,j))*>)
turns_left (((
len (F
. k))
-' 1),G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A185,
A187;
A190: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C implies ex i, j st ((F
. k)
^
<*(G
* (i,j))*>)
goes_straight (((
len (F
. k))
-' 1),G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A185,
A187,
A188;
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C implies ex i, j st ((F
. k)
^
<*(G
* (i,j))*>)
turns_right (((
len (F
. k))
-' 1),G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A185,
A187,
A188;
hence thesis by
A185,
A190,
A189,
FINSEQ_2: 16;
end;
suppose not (F
. k)
is_sequence_on G or (
right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
then (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (1,1))*>) by
A171,
A185,
A187;
hence thesis by
A185,
FINSEQ_2: 16;
end;
end;
end;
end;
A191:
P[
0 ] by
A170,
CARD_1: 27;
A192: for k holds
P[k] from
NAT_1:sch 2(
A191,
A184);
A193:
now
let k such that
A194: (F
. k)
is_sequence_on G and
A195: for m st 1
<= m & (m
+ 1)
<= (
len (F
. k)) holds (
left_cell ((F
. k),m,G))
misses C & (
right_cell ((F
. k),m,G))
meets C and
A196: k
> 1;
(
len (F
. k))
= k by
A192;
then
A197: 1
<= ((
len (F
. k))
-' 1) & (((
len (F
. k))
-' 1)
+ 1)
= (
len (F
. k)) by
A196,
NAT_D: 49,
XREAL_1: 235;
then
A198: (
right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C by
A195;
let i1,j1,i2,j2 be
Nat such that
A199:
[i1, j1]
in (
Indices G) and
A200: ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) and
A201:
[i2, j2]
in (
Indices G) and
A202: ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2));
A203: i2
<= (
len G) by
A201,
MATRIX_0: 32;
A204: 1
<= (i2
+ 1) by
NAT_1: 12;
A205: 1
<= j2 by
A201,
MATRIX_0: 32;
A206: j2
<= (
width G) by
A201,
MATRIX_0: 32;
A207: j1
<= (
width G) by
A199,
MATRIX_0: 32;
hereby
assume
A208: i1
= i2 & (j1
+ 1)
= j2;
now
assume (i2
+ 1)
> (
len G);
then
A209: ((
len G)
+ 1)
<= (i2
+ 1) by
NAT_1: 13;
(i2
+ 1)
<= ((
len G)
+ 1) by
A203,
XREAL_1: 6;
then (i2
+ 1)
= ((
len G)
+ 1) by
A209,
XXREAL_0: 1;
then (
cell (G,(
len G),j1))
meets C by
A194,
A199,
A200,
A201,
A202,
A197,
A198,
A208,
GOBRD13: 22;
hence contradiction by
A2,
A207,
JORDAN8: 16;
end;
hence
[(i2
+ 1), j2]
in (
Indices G) by
A205,
A206,
A204,
MATRIX_0: 30;
end;
A210: i1
<= (
len G) by
A199,
MATRIX_0: 32;
A211: 1
<= i2 by
A201,
MATRIX_0: 32;
A212: (j2
-' 1)
<= (
width G) by
A206,
NAT_D: 44;
hereby
assume
A213: (i1
+ 1)
= i2 & j1
= j2;
now
assume (j2
-' 1)
< 1;
then j2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then j2
= 1 by
A205,
XXREAL_0: 1;
then (
cell (G,i1,(1
-' 1)))
meets C by
A194,
A199,
A200,
A201,
A202,
A197,
A198,
A213,
GOBRD13: 24;
then (
cell (G,i1,
0 ))
meets C by
XREAL_1: 232;
hence contradiction by
A210,
JORDAN8: 17;
end;
hence
[i2, (j2
-' 1)]
in (
Indices G) by
A211,
A203,
A212,
MATRIX_0: 30;
end;
A214: 1
<= (j2
+ 1) by
NAT_1: 12;
hereby
assume
A215: i1
= (i2
+ 1) & j1
= j2;
now
assume (j2
+ 1)
> (
len G);
then
A216: ((
len G)
+ 1)
<= (j2
+ 1) by
NAT_1: 13;
(j2
+ 1)
<= ((
len G)
+ 1) by
A2,
A206,
XREAL_1: 6;
then (j2
+ 1)
= ((
len G)
+ 1) by
A216,
XXREAL_0: 1;
then (
cell (G,i2,(
len G)))
meets C by
A194,
A199,
A200,
A201,
A202,
A197,
A198,
A215,
GOBRD13: 26;
hence contradiction by
A203,
JORDAN8: 15;
end;
hence
[i2, (j2
+ 1)]
in (
Indices G) by
A2,
A211,
A203,
A214,
MATRIX_0: 30;
end;
A217: (i2
-' 1)
<= (
len G) by
A203,
NAT_D: 44;
hereby
assume
A218: i1
= i2 & j1
= (j2
+ 1);
now
assume (i2
-' 1)
< 1;
then i2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then i2
= 1 by
A211,
XXREAL_0: 1;
then (
cell (G,(1
-' 1),j2))
meets C by
A194,
A199,
A200,
A201,
A202,
A197,
A198,
A218,
GOBRD13: 28;
then (
cell (G,
0 ,j2))
meets C by
XREAL_1: 232;
hence contradiction by
A2,
A206,
JORDAN8: 18;
end;
hence
[(i2
-' 1), j2]
in (
Indices G) by
A205,
A206,
A217,
MATRIX_0: 30;
end;
hereby
assume
A219: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= i2 & (j1
+ 1)
= j2;
now
assume (j2
+ 1)
> (
len G);
then
A220: ((
len G)
+ 1)
<= (j2
+ 1) by
NAT_1: 13;
(j2
+ 1)
<= ((
len G)
+ 1) by
A2,
A206,
XREAL_1: 6;
then (j2
+ 1)
= ((
len G)
+ 1) by
A220,
XXREAL_0: 1;
then (
cell (G,i1,(
len G)))
meets C by
A194,
A199,
A200,
A201,
A202,
A197,
A219,
GOBRD13: 35;
hence contradiction by
A210,
JORDAN8: 15;
end;
hence
[i2, (j2
+ 1)]
in (
Indices G) by
A2,
A211,
A203,
A214,
MATRIX_0: 30;
end;
hereby
assume
A221: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & (i1
+ 1)
= i2 & j1
= j2;
now
assume (i2
+ 1)
> (
len G);
then
A222: ((
len G)
+ 1)
<= (i2
+ 1) by
NAT_1: 13;
(i2
+ 1)
<= ((
len G)
+ 1) by
A203,
XREAL_1: 6;
then (i2
+ 1)
= ((
len G)
+ 1) by
A222,
XXREAL_0: 1;
then (
cell (G,(
len G),(j1
-' 1)))
meets C by
A194,
A199,
A200,
A201,
A202,
A197,
A221,
GOBRD13: 37;
hence contradiction by
A2,
A207,
JORDAN8: 16,
NAT_D: 44;
end;
hence
[(i2
+ 1), j2]
in (
Indices G) by
A205,
A206,
A204,
MATRIX_0: 30;
end;
hereby
assume
A223: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= (i2
+ 1) & j1
= j2;
now
assume (i2
-' 1)
< 1;
then i2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then i2
= 1 by
A211,
XXREAL_0: 1;
then (
cell (G,(1
-' 1),j1))
meets C by
A194,
A199,
A200,
A201,
A202,
A197,
A223,
GOBRD13: 39;
then (
cell (G,
0 ,j1))
meets C by
XREAL_1: 232;
hence contradiction by
A2,
A207,
JORDAN8: 18;
end;
hence
[(i2
-' 1), j2]
in (
Indices G) by
A205,
A206,
A217,
MATRIX_0: 30;
end;
hereby
assume
A224: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= i2 & j1
= (j2
+ 1);
now
assume (j2
-' 1)
< 1;
then j2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then j2
= 1 by
A205,
XXREAL_0: 1;
then (
cell (G,(i1
-' 1),(1
-' 1)))
meets C by
A194,
A199,
A200,
A201,
A202,
A197,
A224,
GOBRD13: 41;
then (
cell (G,(i1
-' 1),
0 ))
meets C by
XREAL_1: 232;
hence contradiction by
A210,
JORDAN8: 17,
NAT_D: 44;
end;
hence
[i2, (j2
-' 1)]
in (
Indices G) by
A211,
A203,
A212,
MATRIX_0: 30;
end;
hereby
assume
A225: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= i2 & (j1
+ 1)
= j2;
now
assume (i2
-' 1)
< 1;
then i2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then i2
= 1 by
A211,
XXREAL_0: 1;
then (
cell (G,(1
-' 1),j2))
meets C by
A194,
A199,
A200,
A201,
A202,
A197,
A225,
GOBRD13: 34;
then (
cell (G,
0 ,j2))
meets C by
XREAL_1: 232;
hence contradiction by
A2,
A206,
JORDAN8: 18;
end;
hence
[(i2
-' 1), j2]
in (
Indices G) by
A205,
A206,
A217,
MATRIX_0: 30;
end;
hereby
assume
A226: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & (i1
+ 1)
= i2 & j1
= j2;
now
assume (j2
+ 1)
> (
len G);
then
A227: ((
len G)
+ 1)
<= (j2
+ 1) by
NAT_1: 13;
(j2
+ 1)
<= ((
len G)
+ 1) by
A2,
A206,
XREAL_1: 6;
then (j2
+ 1)
= ((
len G)
+ 1) by
A227,
XXREAL_0: 1;
then (
cell (G,i2,(
len G)))
meets C by
A194,
A199,
A200,
A201,
A202,
A197,
A226,
GOBRD13: 36;
hence contradiction by
A203,
JORDAN8: 15;
end;
hence
[i2, (j2
+ 1)]
in (
Indices G) by
A2,
A211,
A203,
A214,
MATRIX_0: 30;
end;
hereby
assume
A228: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= (i2
+ 1) & j1
= j2;
now
assume (j2
-' 1)
< 1;
then j2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then j2
= 1 by
A205,
XXREAL_0: 1;
then (
cell (G,(i2
-' 1),(1
-' 1)))
meets C by
A194,
A199,
A200,
A201,
A202,
A197,
A228,
GOBRD13: 38;
then (
cell (G,(i2
-' 1),
0 ))
meets C by
XREAL_1: 232;
hence contradiction by
A203,
JORDAN8: 17,
NAT_D: 44;
end;
hence
[i2, (j2
-' 1)]
in (
Indices G) by
A211,
A203,
A212,
MATRIX_0: 30;
end;
hereby
assume
A229: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= i2 & j1
= (j2
+ 1);
now
assume (i2
+ 1)
> (
len G);
then
A230: ((
len G)
+ 1)
<= (i2
+ 1) by
NAT_1: 13;
(i2
+ 1)
<= ((
len G)
+ 1) by
A203,
XREAL_1: 6;
then (i2
+ 1)
= ((
len G)
+ 1) by
A230,
XXREAL_0: 1;
then (
cell (G,(
len G),(j2
-' 1)))
meets C by
A194,
A199,
A200,
A201,
A202,
A197,
A229,
GOBRD13: 40;
hence contradiction by
A2,
A206,
JORDAN8: 16,
NAT_D: 44;
end;
hence
[(i2
+ 1), j2]
in (
Indices G) by
A205,
A206,
A204,
MATRIX_0: 30;
end;
end;
defpred
P[
Nat] means (F
. $1)
is_sequence_on G & for m st 1
<= m & (m
+ 1)
<= (
len (F
. $1)) holds (
left_cell ((F
. $1),m,G))
misses C & (
right_cell ((F
. $1),m,G))
meets C;
A231: (
len G)
= ((2
|^ n)
+ 3) by
JORDAN8:def 1;
A232: for k st
P[k] holds
P[(k
+ 1)]
proof
A233: (2
|^ n)
>
0 by
NEWTON: 83;
A234: 1
<= (
len G) by
A231,
NAT_1: 12;
let k such that
A235: (F
. k)
is_sequence_on G and
A236: for m st 1
<= m & (m
+ 1)
<= (
len (F
. k)) holds (
left_cell ((F
. k),m,G))
misses C & (
right_cell ((F
. k),m,G))
meets C;
A237: (
len (F
. k))
= k by
A192;
A238: (
len (F
. (k
+ 1)))
= (k
+ 1) by
A192;
per cases by
NAT_1: 25;
suppose
A239: k
=
0 ;
then
consider i such that
A240: 1
<= i and
A241: (i
+ 1)
<= (
len G) and (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) and (
N-min C)
<> (G
* (i,((
width G)
-' 1))) and
A242: (F
. (k
+ 1))
=
<*(G
* (i,(
width G)))*> by
A171;
i
< (
len G) by
A241,
NAT_1: 13;
then
A243:
[i, (
len G)]
in (
Indices G) by
A2,
A234,
A240,
MATRIX_0: 30;
A244:
now
let l;
assume l
in (
dom (F
. (k
+ 1)));
then 1
<= l & l
<= 1 by
A238,
A239,
FINSEQ_3: 25;
then l
= 1 by
XXREAL_0: 1;
hence ex i, j st
[i, j]
in (
Indices G) & ((F
. (k
+ 1))
/. l)
= (G
* (i,j)) by
A2,
A242,
A243,
FINSEQ_4: 16;
end;
now
let l;
assume that
A245: l
in (
dom (F
. (k
+ 1))) and
A246: (l
+ 1)
in (
dom (F
. (k
+ 1)));
1
<= l & l
<= 1 by
A238,
A239,
A245,
FINSEQ_3: 25;
then l
= 1 by
XXREAL_0: 1;
hence for i1, j1, i2, j2 st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & ((F
. (k
+ 1))
/. l)
= (G
* (i1,j1)) & ((F
. (k
+ 1))
/. (l
+ 1))
= (G
* (i2,j2)) holds (
|.(i1
- i2).|
+
|.(j1
- j2).|)
= 1 by
A238,
A239,
A246,
FINSEQ_3: 25;
end;
hence (F
. (k
+ 1))
is_sequence_on G by
A244,
GOBOARD1:def 9;
let m;
assume that
A247: 1
<= m and
A248: (m
+ 1)
<= (
len (F
. (k
+ 1)));
1
<= (m
+ 1) by
NAT_1: 12;
then (m
+ 1)
= (
0
+ 1) by
A238,
A239,
A248,
XXREAL_0: 1;
hence thesis by
A247;
end;
suppose
A249: k
= 1;
then
consider i such that
A250: 1
<= i and
A251: (i
+ 1)
<= (
len G) and
A252: (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) and (
N-min C)
<> (G
* (i,((
width G)
-' 1))) and
A253: (F
. (k
+ 1))
=
<*(G
* (i,(
width G))), (G
* ((i
+ 1),(
width G)))*> by
A171;
A254: i
< (
len G) by
A251,
NAT_1: 13;
then
A255:
[i, (
len G)]
in (
Indices G) by
A2,
A234,
A250,
MATRIX_0: 30;
1
<= (i
+ 1) by
A250,
NAT_1: 13;
then
A256:
[(i
+ 1), (
len G)]
in (
Indices G) by
A2,
A234,
A251,
MATRIX_0: 30;
A257: ((F
. (k
+ 1))
/. 1)
= (G
* (i,(
width G))) & ((F
. (k
+ 1))
/. 2)
= (G
* ((i
+ 1),(
width G))) by
A253,
FINSEQ_4: 17;
A258:
now
let l;
assume that
A259: l
in (
dom (F
. (k
+ 1))) and
A260: (l
+ 1)
in (
dom (F
. (k
+ 1)));
l
<= 2 by
A238,
A249,
A259,
FINSEQ_3: 25;
then
A261: l
=
0 or ... or l
= 2;
let i1, j1, i2, j2 such that
A262:
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & ((F
. (k
+ 1))
/. l)
= (G
* (i1,j1)) & ((F
. (k
+ 1))
/. (l
+ 1))
= (G
* (i2,j2));
j1
= (
len G) & j2
= (
len G) by
A2,
A238,
A249,
A257,
A255,
A256,
A259,
A260,
A261,
A262,
FINSEQ_3: 25,
GOBOARD1: 5;
then
A263:
|.(j1
- j2).|
=
0 by
ABSVALUE:def 1;
i1
= i & i2
= (i
+ 1) by
A2,
A238,
A249,
A257,
A255,
A256,
A259,
A260,
A261,
A262,
FINSEQ_3: 25,
GOBOARD1: 5;
then
|.(i2
- i1).|
= 1 by
ABSVALUE:def 1;
hence (
|.(i1
- i2).|
+
|.(j1
- j2).|)
= 1 by
A263,
UNIFORM1: 11;
end;
now
let l;
assume
A264: l
in (
dom (F
. (k
+ 1)));
then l
<= 2 by
A238,
A249,
FINSEQ_3: 25;
then l
=
0 or ... or l
= 2;
hence ex i, j st
[i, j]
in (
Indices G) & ((F
. (k
+ 1))
/. l)
= (G
* (i,j)) by
A2,
A257,
A255,
A256,
A264,
FINSEQ_3: 25;
end;
hence
A265: (F
. (k
+ 1))
is_sequence_on G by
A258,
GOBOARD1:def 9;
A266: i
< (i
+ 1) & (i
+ 1)
< ((i
+ 1)
+ 1) by
NAT_1: 13;
let m;
assume that
A267: 1
<= m and
A268: (m
+ 1)
<= (
len (F
. (k
+ 1)));
(1
+ 1)
<= (m
+ 1) by
A267,
XREAL_1: 6;
then
A269: (m
+ 1)
= (1
+ 1) by
A238,
A249,
A268,
XXREAL_0: 1;
then
A270: (
left_cell ((F
. (k
+ 1)),m,G))
= (
cell (G,i,(
len G))) by
A2,
A257,
A255,
A256,
A265,
A268,
A266,
GOBRD13:def 3;
now
N
> S by
JORDAN8: 9;
then (N
- S)
> (S
- S) by
XREAL_1: 9;
then ((N
- S)
/ (2
|^ n))
>
0 by
A233,
XREAL_1: 139;
then
A271: (N
+
0 )
< (N
+ ((N
- S)
/ (2
|^ n))) by
XREAL_1: 6;
[1, (
len G)]
in (
Indices G) by
A2,
A234,
MATRIX_0: 30;
then (G
* (1,(
len G)))
=
|[(W
+ (((E
- W)
/ (2
|^ n))
* (1
- 2))), (S
+ (((N
- S)
/ (2
|^ n))
* ((
len G)
- 2)))]| by
JORDAN8:def 1;
then
A272: ((G
* (1,(
len G)))
`2 )
= (S
+ (((N
- S)
/ (2
|^ n))
* ((
len G)
- 2))) by
EUCLID: 52;
A273: (
cell (G,i,(
len G)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
<= r & r
<= ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,(
len G)))
`2 )
<= s } by
A2,
A250,
A254,
GOBRD11: 31;
assume (
left_cell ((F
. (k
+ 1)),m,G))
meets C;
then
consider p be
object such that
A274: p
in (
cell (G,i,(
len G))) and
A275: p
in C by
A270,
XBOOLE_0: 3;
reconsider p as
Point of (
TOP-REAL 2) by
A274;
reconsider p as
Element of (
TOP-REAL 2);
A276: (p
`2 )
<= N by
A275,
PSCOMP_1: 24;
consider r, s such that
A277: p
=
|[r, s]| and ((G
* (i,1))
`1 )
<= r and r
<= ((G
* ((i
+ 1),1))
`1 ) and
A278: ((G
* (1,(
len G)))
`2 )
<= s by
A274,
A273;
(((N
- S)
/ (2
|^ n))
* ((
len G)
- 2))
= ((((N
- S)
/ (2
|^ n))
* (2
|^ n))
+ (((N
- S)
/ (2
|^ n))
* 1)) by
A231
.= ((N
- S)
+ ((N
- S)
/ (2
|^ n))) by
A233,
XCMPLX_1: 87;
then N
< s by
A278,
A272,
A271,
XXREAL_0: 2;
hence contradiction by
A277,
A276,
EUCLID: 52;
end;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C;
(
N-min C)
in C & (
N-min C)
in (
right_cell ((F
. (k
+ 1)),m,G)) by
A2,
A252,
A257,
A255,
A256,
A265,
A268,
A269,
A266,
GOBRD13:def 2,
SPRECT_1: 11;
hence thesis by
XBOOLE_0: 3;
end;
suppose
A279: k
> 1;
then
A280: (
len (F
. k))
in (
dom (F
. k)) by
A237,
FINSEQ_3: 25;
A281: (((
len (F
. k))
-' 1)
+ 1)
= (
len (F
. k)) by
A237,
A279,
XREAL_1: 235;
A282: 1
<= ((
len (F
. k))
-' 1) by
A237,
A279,
NAT_D: 49;
then
consider i1,j1,i2,j2 be
Nat such that
A283:
[i1, j1]
in (
Indices G) and
A284: ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) and
A285:
[i2, j2]
in (
Indices G) and
A286: ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2)) and i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A235,
A281,
JORDAN8: 3;
A287: i1
= i2 & (j1
+ 1)
= j2 implies
[(i2
+ 1), j2]
in (
Indices G) by
A193,
A235,
A236,
A279,
A283,
A284,
A285,
A286;
A288: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= (i2
+ 1) & j1
= j2 implies
[i2, (j2
-' 1)]
in (
Indices G) by
A193,
A235,
A236,
A279,
A283,
A284,
A285,
A286;
A289: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & (i1
+ 1)
= i2 & j1
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) by
A193,
A235,
A236,
A279,
A283,
A284,
A285,
A286;
A290: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= i2 & (j1
+ 1)
= j2 implies
[(i2
-' 1), j2]
in (
Indices G) by
A193,
A235,
A236,
A279,
A283,
A284,
A285,
A286;
A291: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= i2 & j1
= (j2
+ 1) implies
[i2, (j2
-' 1)]
in (
Indices G) by
A193,
A235,
A236,
A279,
A283,
A284,
A285,
A286;
A292: i1
= (i2
+ 1) & j1
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) by
A193,
A235,
A236,
A279,
A283,
A284,
A285,
A286;
A293: (i1
+ 1)
= i2 & j1
= j2 implies
[i2, (j2
-' 1)]
in (
Indices G) by
A193,
A235,
A236,
A279,
A283,
A284,
A285,
A286;
A294: 1
<= j2 by
A285,
MATRIX_0: 32;
A295: (
right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C by
A236,
A282,
A281;
A296: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= (i2
+ 1) & j1
= j2 implies
[(i2
-' 1), j2]
in (
Indices G) by
A193,
A235,
A236,
A279,
A283,
A284,
A285,
A286;
A297: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & (i1
+ 1)
= i2 & j1
= j2 implies
[(i2
+ 1), j2]
in (
Indices G) by
A193,
A235,
A236,
A279,
A283,
A284,
A285,
A286;
A298: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= i2 & (j1
+ 1)
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) by
A193,
A235,
A236,
A279,
A283,
A284,
A285,
A286;
A299: i1
= i2 & j1
= (j2
+ 1) implies
[(i2
-' 1), j2]
in (
Indices G) by
A193,
A235,
A236,
A279,
A283,
A284,
A285,
A286;
A300: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= i2 & j1
= (j2
+ 1) implies
[(i2
+ 1), j2]
in (
Indices G) by
A193,
A235,
A236,
A279,
A283,
A284,
A285,
A286;
((
len (F
. k))
-' 1)
<= (
len (F
. k)) by
NAT_D: 35;
then
A301: ((
len (F
. k))
-' 1)
in (
dom (F
. k)) by
A282,
FINSEQ_3: 25;
A302: 1
<= i2 by
A285,
MATRIX_0: 32;
thus
A303: (F
. (k
+ 1))
is_sequence_on G
proof
per cases ;
suppose (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
then
consider i, j such that
A304: ((F
. k)
^
<*(G
* (i,j))*>)
turns_right (((
len (F
. k))
-' 1),G) and
A305: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A235,
A237,
A279,
A295;
thus thesis
proof
set f = ((F
. k)
^
<*(G
* (i,j))*>);
A306: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i,j)) by
FINSEQ_4: 67;
A307: (f
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) & (f
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A284,
A286,
A301,
A280,
FINSEQ_4: 68;
per cases by
A281,
A283,
A285,
A304,
A307;
suppose that
A308: i1
= i2 & (j1
+ 1)
= j2 and
A309: (f
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
+ 1),j2));
now
let i19,j19,i29,j29 be
Nat;
assume
A310:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) & (G
* ((i2
+ 1),j2))
= (G
* (i29,j29));
then j2
= j19 & j2
= j29 by
A285,
A286,
A287,
A308,
GOBOARD1: 5;
then
A311:
|.(j29
- j19).|
=
0 by
ABSVALUE:def 1;
i2
= i19 & (i2
+ 1)
= i29 by
A285,
A286,
A287,
A308,
A310,
GOBOARD1: 5;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A311,
ABSVALUE:def 1;
end;
hence thesis by
A235,
A237,
A279,
A287,
A305,
A306,
A308,
A309,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A312: (i1
+ 1)
= i2 & j1
= j2 and
A313: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
-' 1)));
now
let i19,j19,i29,j29 be
Nat;
assume
A314:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) & (G
* (i2,(j2
-' 1)))
= (G
* (i29,j29));
then j2
= j19 & (j2
-' 1)
= j29 by
A285,
A286,
A293,
A312,
GOBOARD1: 5;
then (j19
- j29)
= (j2
- (j2
- 1)) by
A294,
XREAL_1: 233;
then
A315:
|.(j19
- j29).|
= 1 by
ABSVALUE:def 1;
i2
= i19 & i2
= i29 by
A285,
A286,
A293,
A312,
A314,
GOBOARD1: 5;
then
|.(i29
- i19).|
=
0 by
ABSVALUE:def 1;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A315,
UNIFORM1: 11;
end;
hence thesis by
A235,
A237,
A279,
A293,
A305,
A306,
A312,
A313,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A316: i1
= (i2
+ 1) & j1
= j2 and
A317: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
+ 1)));
now
let i19,j19,i29,j29 be
Nat;
assume
A318:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) & (G
* (i2,(j2
+ 1)))
= (G
* (i29,j29));
then i2
= i19 & i2
= i29 by
A285,
A286,
A292,
A316,
GOBOARD1: 5;
then
A319:
|.(i29
- i19).|
=
0 by
ABSVALUE:def 1;
j2
= j19 & (j2
+ 1)
= j29 by
A285,
A286,
A292,
A316,
A318,
GOBOARD1: 5;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A319,
ABSVALUE:def 1;
end;
hence thesis by
A235,
A237,
A279,
A292,
A305,
A306,
A316,
A317,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A320: i1
= i2 & j1
= (j2
+ 1) and
A321: (f
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
-' 1),j2));
now
let i19,j19,i29,j29 be
Nat;
assume
A322:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) & (G
* ((i2
-' 1),j2))
= (G
* (i29,j29));
then i2
= i19 & (i2
-' 1)
= i29 by
A285,
A286,
A299,
A320,
GOBOARD1: 5;
then (i19
- i29)
= (i2
- (i2
- 1)) by
A302,
XREAL_1: 233;
then
A323:
|.(i19
- i29).|
= 1 by
ABSVALUE:def 1;
j2
= j19 & j2
= j29 by
A285,
A286,
A299,
A320,
A322,
GOBOARD1: 5;
then
|.(j29
- j19).|
=
0 by
ABSVALUE:def 1;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A323,
UNIFORM1: 11;
end;
hence thesis by
A235,
A237,
A279,
A299,
A305,
A306,
A320,
A321,
CARD_1: 27,
JORDAN8: 6;
end;
end;
end;
suppose
A324: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
consider i, j such that
A325: ((F
. k)
^
<*(G
* (i,j))*>)
goes_straight (((
len (F
. k))
-' 1),G) and
A326: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A235,
A237,
A279,
A295;
thus thesis
proof
set f = ((F
. k)
^
<*(G
* (i,j))*>);
A327: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i,j)) by
FINSEQ_4: 67;
A328: (f
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) & (f
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A284,
A286,
A301,
A280,
FINSEQ_4: 68;
per cases by
A281,
A283,
A285,
A325,
A328;
suppose that
A329: i1
= i2 & (j1
+ 1)
= j2 and
A330: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
+ 1)));
now
let i19,j19,i29,j29 be
Nat;
assume
A331:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) & (G
* (i2,(j2
+ 1)))
= (G
* (i29,j29));
then i2
= i19 & i2
= i29 by
A285,
A286,
A298,
A324,
A329,
GOBOARD1: 5;
then
A332:
|.(i29
- i19).|
=
0 by
ABSVALUE:def 1;
j2
= j19 & (j2
+ 1)
= j29 by
A285,
A286,
A298,
A324,
A329,
A331,
GOBOARD1: 5;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A332,
ABSVALUE:def 1;
end;
hence thesis by
A235,
A237,
A279,
A298,
A324,
A326,
A327,
A329,
A330,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A333: (i1
+ 1)
= i2 & j1
= j2 and
A334: (f
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
+ 1),j2));
now
let i19,j19,i29,j29 be
Nat;
assume
A335:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) & (G
* ((i2
+ 1),j2))
= (G
* (i29,j29));
then j2
= j19 & j2
= j29 by
A285,
A286,
A297,
A324,
A333,
GOBOARD1: 5;
then
A336:
|.(j29
- j19).|
=
0 by
ABSVALUE:def 1;
i2
= i19 & (i2
+ 1)
= i29 by
A285,
A286,
A297,
A324,
A333,
A335,
GOBOARD1: 5;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A336,
ABSVALUE:def 1;
end;
hence thesis by
A235,
A237,
A279,
A297,
A324,
A326,
A327,
A333,
A334,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A337: i1
= (i2
+ 1) & j1
= j2 and
A338: (f
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
-' 1),j2));
now
let i19,j19,i29,j29 be
Nat;
assume
A339:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) & (G
* ((i2
-' 1),j2))
= (G
* (i29,j29));
then i2
= i19 & (i2
-' 1)
= i29 by
A285,
A286,
A296,
A324,
A337,
GOBOARD1: 5;
then (i19
- i29)
= (i2
- (i2
- 1)) by
A302,
XREAL_1: 233;
then
A340:
|.(i19
- i29).|
= 1 by
ABSVALUE:def 1;
j2
= j19 & j2
= j29 by
A285,
A286,
A296,
A324,
A337,
A339,
GOBOARD1: 5;
then
|.(j29
- j19).|
=
0 by
ABSVALUE:def 1;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A340,
UNIFORM1: 11;
end;
hence thesis by
A235,
A237,
A279,
A296,
A324,
A326,
A327,
A337,
A338,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A341: i1
= i2 & j1
= (j2
+ 1) and
A342: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
-' 1)));
now
let i19,j19,i29,j29 be
Nat;
assume
A343:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) & (G
* (i2,(j2
-' 1)))
= (G
* (i29,j29));
then j2
= j19 & (j2
-' 1)
= j29 by
A285,
A286,
A291,
A324,
A341,
GOBOARD1: 5;
then (j19
- j29)
= (j2
- (j2
- 1)) by
A294,
XREAL_1: 233;
then
A344:
|.(j19
- j29).|
= 1 by
ABSVALUE:def 1;
i2
= i19 & i2
= i29 by
A285,
A286,
A291,
A324,
A341,
A343,
GOBOARD1: 5;
then
|.(i29
- i19).|
=
0 by
ABSVALUE:def 1;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A344,
UNIFORM1: 11;
end;
hence thesis by
A235,
A237,
A279,
A291,
A324,
A326,
A327,
A341,
A342,
CARD_1: 27,
JORDAN8: 6;
end;
end;
end;
suppose
A345: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
consider i, j such that
A346: ((F
. k)
^
<*(G
* (i,j))*>)
turns_left (((
len (F
. k))
-' 1),G) and
A347: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A235,
A237,
A279,
A295;
thus thesis
proof
set f = ((F
. k)
^
<*(G
* (i,j))*>);
A348: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i,j)) by
FINSEQ_4: 67;
A349: (f
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) & (f
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A284,
A286,
A301,
A280,
FINSEQ_4: 68;
per cases by
A281,
A283,
A285,
A346,
A349;
suppose that
A350: i1
= i2 & (j1
+ 1)
= j2 and
A351: (f
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
-' 1),j2));
now
let i19,j19,i29,j29 be
Nat;
assume
A352:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) & (G
* ((i2
-' 1),j2))
= (G
* (i29,j29));
then i2
= i19 & (i2
-' 1)
= i29 by
A285,
A286,
A290,
A345,
A350,
GOBOARD1: 5;
then (i19
- i29)
= (i2
- (i2
- 1)) by
A302,
XREAL_1: 233;
then
A353:
|.(i19
- i29).|
= 1 by
ABSVALUE:def 1;
j2
= j19 & j2
= j29 by
A285,
A286,
A290,
A345,
A350,
A352,
GOBOARD1: 5;
then
|.(j29
- j19).|
=
0 by
ABSVALUE:def 1;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A353,
UNIFORM1: 11;
end;
hence thesis by
A235,
A237,
A279,
A290,
A345,
A347,
A348,
A350,
A351,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A354: (i1
+ 1)
= i2 & j1
= j2 and
A355: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
+ 1)));
now
let i19,j19,i29,j29 be
Nat;
assume
A356:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) & (G
* (i2,(j2
+ 1)))
= (G
* (i29,j29));
then i2
= i19 & i2
= i29 by
A285,
A286,
A289,
A345,
A354,
GOBOARD1: 5;
then
A357:
|.(i29
- i19).|
=
0 by
ABSVALUE:def 1;
j2
= j19 & (j2
+ 1)
= j29 by
A285,
A286,
A289,
A345,
A354,
A356,
GOBOARD1: 5;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A357,
ABSVALUE:def 1;
end;
hence thesis by
A235,
A237,
A279,
A289,
A345,
A347,
A348,
A354,
A355,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A358: i1
= (i2
+ 1) & j1
= j2 and
A359: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
-' 1)));
now
let i19,j19,i29,j29 be
Nat;
assume
A360:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) & (G
* (i2,(j2
-' 1)))
= (G
* (i29,j29));
then j2
= j19 & (j2
-' 1)
= j29 by
A285,
A286,
A288,
A345,
A358,
GOBOARD1: 5;
then (j19
- j29)
= (j2
- (j2
- 1)) by
A294,
XREAL_1: 233;
then
A361:
|.(j19
- j29).|
= 1 by
ABSVALUE:def 1;
i2
= i19 & i2
= i29 by
A285,
A286,
A288,
A345,
A358,
A360,
GOBOARD1: 5;
then
|.(i29
- i19).|
=
0 by
ABSVALUE:def 1;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A361,
UNIFORM1: 11;
end;
hence thesis by
A235,
A237,
A279,
A288,
A345,
A347,
A348,
A358,
A359,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A362: i1
= i2 & j1
= (j2
+ 1) and
A363: (f
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
+ 1),j2));
now
let i19,j19,i29,j29 be
Nat;
assume
A364:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) & (G
* ((i2
+ 1),j2))
= (G
* (i29,j29));
then j2
= j19 & j2
= j29 by
A285,
A286,
A300,
A345,
A362,
GOBOARD1: 5;
then
A365:
|.(j29
- j19).|
=
0 by
ABSVALUE:def 1;
i2
= i19 & (i2
+ 1)
= i29 by
A285,
A286,
A300,
A345,
A362,
A364,
GOBOARD1: 5;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A365,
ABSVALUE:def 1;
end;
hence thesis by
A235,
A237,
A279,
A300,
A345,
A347,
A348,
A362,
A363,
CARD_1: 27,
JORDAN8: 6;
end;
end;
end;
end;
let m such that
A366: 1
<= m and
A367: (m
+ 1)
<= (
len (F
. (k
+ 1)));
A368: (
left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C by
A236,
A282,
A281;
now
per cases ;
suppose
A369: (m
+ 1)
= (
len (F
. (k
+ 1)));
A370: ((j2
-' 1)
+ 1)
= j2 by
A294,
XREAL_1: 235;
A371: ((i2
-' 1)
+ 1)
= i2 by
A302,
XREAL_1: 235;
thus thesis
proof
per cases ;
suppose
A372: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
then
A373: ex i, j st ((F
. k)
^
<*(G
* (i,j))*>)
turns_right (((
len (F
. k))
-' 1),G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A235,
A237,
A279,
A295;
then
A374: ((F
. (k
+ 1))
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A286,
A280,
FINSEQ_4: 68;
A375: ((F
. (k
+ 1))
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A284,
A301,
A373,
FINSEQ_4: 68;
now
per cases by
A281,
A283,
A285,
A373,
A375,
A374;
suppose that
A376: i1
= i2 & (j1
+ 1)
= j2 and
A377: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
+ 1),j2));
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i1,j2)) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A376,
GOBRD13: 35;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C by
A237,
A238,
A285,
A287,
A303,
A366,
A369,
A372,
A374,
A376,
A377,
GOBRD13: 23;
(j2
-' 1)
= j1 & (
cell (G,i1,j1))
meets C by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A295,
A376,
GOBRD13: 22,
NAT_D: 34;
hence (
right_cell ((F
. (k
+ 1)),m,G))
meets C by
A237,
A238,
A285,
A287,
A303,
A366,
A369,
A374,
A376,
A377,
GOBRD13: 24;
end;
suppose that
A378: (i1
+ 1)
= i2 & j1
= j2 and
A379: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
-' 1)));
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,(j2
-' 1))) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A378,
GOBRD13: 37;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C by
A237,
A238,
A285,
A293,
A303,
A366,
A369,
A370,
A372,
A374,
A378,
A379,
GOBRD13: 27;
(i2
-' 1)
= i1 & (
cell (G,i1,(j1
-' 1)))
meets C by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A295,
A378,
GOBRD13: 24,
NAT_D: 34;
hence (
right_cell ((F
. (k
+ 1)),m,G))
meets C by
A237,
A238,
A285,
A293,
A303,
A366,
A369,
A370,
A374,
A378,
A379,
GOBRD13: 28;
end;
suppose that
A380: i1
= (i2
+ 1) & j1
= j2 and
A381: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
+ 1)));
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i2
-' 1),j2)) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A380,
GOBRD13: 39;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C by
A237,
A238,
A285,
A292,
A303,
A366,
A369,
A372,
A374,
A380,
A381,
GOBRD13: 21;
(
cell (G,i2,j2))
meets C by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A295,
A380,
GOBRD13: 26;
hence (
right_cell ((F
. (k
+ 1)),m,G))
meets C by
A237,
A238,
A285,
A292,
A303,
A366,
A369,
A374,
A380,
A381,
GOBRD13: 22;
end;
suppose that
A382: i1
= i2 & j1
= (j2
+ 1) and
A383: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
-' 1),j2));
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A382,
GOBRD13: 41;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C by
A237,
A238,
A285,
A299,
A303,
A366,
A369,
A371,
A372,
A374,
A382,
A383,
GOBRD13: 25;
(
cell (G,(i2
-' 1),j2))
meets C by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A295,
A382,
GOBRD13: 28;
hence (
right_cell ((F
. (k
+ 1)),m,G))
meets C by
A237,
A238,
A285,
A299,
A303,
A366,
A369,
A371,
A374,
A382,
A383,
GOBRD13: 26;
end;
end;
hence thesis;
end;
suppose
A384: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
A385: ex i, j st ((F
. k)
^
<*(G
* (i,j))*>)
goes_straight (((
len (F
. k))
-' 1),G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A235,
A237,
A279,
A295;
then
A386: ((F
. (k
+ 1))
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A286,
A280,
FINSEQ_4: 68;
A387: ((F
. (k
+ 1))
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A284,
A301,
A385,
FINSEQ_4: 68;
now
per cases by
A281,
A283,
A285,
A385,
A387,
A386;
suppose that
A388: i1
= i2 & (j1
+ 1)
= j2 and
A389: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
+ 1)));
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i1
-' 1),j2)) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A388,
GOBRD13: 34;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C by
A237,
A238,
A285,
A298,
A303,
A366,
A369,
A384,
A386,
A388,
A389,
GOBRD13: 21;
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i1,j2)) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A388,
GOBRD13: 35;
hence (
right_cell ((F
. (k
+ 1)),m,G))
meets C by
A237,
A238,
A285,
A298,
A303,
A366,
A369,
A384,
A386,
A388,
A389,
GOBRD13: 22;
end;
suppose that
A390: (i1
+ 1)
= i2 & j1
= j2 and
A391: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
+ 1),j2));
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,j2)) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A390,
GOBRD13: 36;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C by
A237,
A238,
A285,
A297,
A303,
A366,
A369,
A384,
A386,
A390,
A391,
GOBRD13: 23;
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,(j2
-' 1))) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A390,
GOBRD13: 37;
hence (
right_cell ((F
. (k
+ 1)),m,G))
meets C by
A237,
A238,
A285,
A297,
A303,
A366,
A369,
A384,
A386,
A390,
A391,
GOBRD13: 24;
end;
suppose that
A392: i1
= (i2
+ 1) & j1
= j2 and
A393: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
-' 1),j2));
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A392,
GOBRD13: 38;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C by
A237,
A238,
A285,
A296,
A303,
A366,
A369,
A371,
A384,
A386,
A392,
A393,
GOBRD13: 25;
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i2
-' 1),j2)) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A392,
GOBRD13: 39;
hence (
right_cell ((F
. (k
+ 1)),m,G))
meets C by
A237,
A238,
A285,
A296,
A303,
A366,
A369,
A371,
A384,
A386,
A392,
A393,
GOBRD13: 26;
end;
suppose that
A394: i1
= i2 & j1
= (j2
+ 1) and
A395: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
-' 1)));
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,(j2
-' 1))) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A394,
GOBRD13: 40;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C by
A237,
A238,
A285,
A291,
A303,
A366,
A369,
A370,
A384,
A386,
A394,
A395,
GOBRD13: 27;
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A394,
GOBRD13: 41;
hence (
right_cell ((F
. (k
+ 1)),m,G))
meets C by
A237,
A238,
A285,
A291,
A303,
A366,
A369,
A370,
A384,
A386,
A394,
A395,
GOBRD13: 28;
end;
end;
hence thesis;
end;
suppose
A396: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
A397: ex i, j st ((F
. k)
^
<*(G
* (i,j))*>)
turns_left (((
len (F
. k))
-' 1),G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A235,
A237,
A279,
A295;
then
A398: ((F
. (k
+ 1))
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A286,
A280,
FINSEQ_4: 68;
A399: ((F
. (k
+ 1))
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A284,
A301,
A397,
FINSEQ_4: 68;
now
per cases by
A281,
A283,
A285,
A397,
A399,
A398;
suppose that
A400: i1
= i2 & (j1
+ 1)
= j2 and
A401: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
-' 1),j2));
(j2
-' 1)
= j1 & (
cell (G,(i1
-' 1),j1))
misses C by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A368,
A400,
GOBRD13: 21,
NAT_D: 34;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C by
A237,
A238,
A285,
A290,
A303,
A366,
A369,
A371,
A396,
A398,
A400,
A401,
GOBRD13: 25;
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i1
-' 1),j2)) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A400,
GOBRD13: 34;
hence (
right_cell ((F
. (k
+ 1)),m,G))
meets C by
A237,
A238,
A285,
A290,
A303,
A366,
A369,
A371,
A396,
A398,
A400,
A401,
GOBRD13: 26;
end;
suppose that
A402: (i1
+ 1)
= i2 & j1
= j2 and
A403: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
+ 1)));
(i2
-' 1)
= i1 & (
cell (G,i1,j1))
misses C by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A368,
A402,
GOBRD13: 23,
NAT_D: 34;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C by
A237,
A238,
A285,
A289,
A303,
A366,
A369,
A396,
A398,
A402,
A403,
GOBRD13: 21;
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,j2)) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A402,
GOBRD13: 36;
hence (
right_cell ((F
. (k
+ 1)),m,G))
meets C by
A237,
A238,
A285,
A289,
A303,
A366,
A369,
A396,
A398,
A402,
A403,
GOBRD13: 22;
end;
suppose that
A404: i1
= (i2
+ 1) & j1
= j2 and
A405: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
-' 1)));
(
cell (G,i2,(j2
-' 1)))
misses C by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A368,
A404,
GOBRD13: 25;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C by
A237,
A238,
A285,
A288,
A303,
A366,
A369,
A370,
A396,
A398,
A404,
A405,
GOBRD13: 27;
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A404,
GOBRD13: 38;
hence (
right_cell ((F
. (k
+ 1)),m,G))
meets C by
A237,
A238,
A285,
A288,
A303,
A366,
A369,
A370,
A396,
A398,
A404,
A405,
GOBRD13: 28;
end;
suppose that
A406: i1
= i2 & j1
= (j2
+ 1) and
A407: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
+ 1),j2));
(
cell (G,i2,j2))
misses C by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A368,
A406,
GOBRD13: 27;
hence (
left_cell ((F
. (k
+ 1)),m,G))
misses C by
A237,
A238,
A285,
A300,
A303,
A366,
A369,
A396,
A398,
A406,
A407,
GOBRD13: 23;
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,(j2
-' 1))) by
A235,
A282,
A281,
A283,
A284,
A285,
A286,
A406,
GOBRD13: 40;
hence (
right_cell ((F
. (k
+ 1)),m,G))
meets C by
A237,
A238,
A285,
A300,
A303,
A366,
A369,
A396,
A398,
A406,
A407,
GOBRD13: 24;
end;
end;
hence thesis;
end;
end;
end;
suppose (m
+ 1)
<> (
len (F
. (k
+ 1)));
then (m
+ 1)
< (
len (F
. (k
+ 1))) by
A367,
XXREAL_0: 1;
then
A408: (m
+ 1)
<= (
len (F
. k)) by
A237,
A238,
NAT_1: 13;
then
consider i1,j1,i2,j2 be
Nat such that
A409:
[i1, j1]
in (
Indices G) and
A410: ((F
. k)
/. m)
= (G
* (i1,j1)) and
A411:
[i2, j2]
in (
Indices G) and
A412: ((F
. k)
/. (m
+ 1))
= (G
* (i2,j2)) and
A413: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A235,
A366,
JORDAN8: 3;
A414: (
left_cell ((F
. k),m,G))
misses C & (
right_cell ((F
. k),m,G))
meets C by
A236,
A366,
A408;
A415:
now
per cases ;
suppose (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
then
consider i, j such that ((F
. k)
^
<*(G
* (i,j))*>)
turns_right (((
len (F
. k))
-' 1),G) and
A416: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A235,
A237,
A279,
A295;
take i, j;
thus (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A416;
end;
suppose (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
consider i, j such that ((F
. k)
^
<*(G
* (i,j))*>)
goes_straight (((
len (F
. k))
-' 1),G) and
A417: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A235,
A237,
A279,
A295;
take i, j;
thus (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A417;
end;
suppose (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
consider i, j such that ((F
. k)
^
<*(G
* (i,j))*>)
turns_left (((
len (F
. k))
-' 1),G) and
A418: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A235,
A237,
A279,
A295;
take i, j;
thus (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A418;
end;
end;
1
<= (m
+ 1) by
NAT_1: 12;
then (m
+ 1)
in (
dom (F
. k)) by
A408,
FINSEQ_3: 25;
then
A419: ((F
. (k
+ 1))
/. (m
+ 1))
= (G
* (i2,j2)) by
A412,
A415,
FINSEQ_4: 68;
m
<= (
len (F
. k)) by
A408,
NAT_1: 13;
then m
in (
dom (F
. k)) by
A366,
FINSEQ_3: 25;
then
A420: ((F
. (k
+ 1))
/. m)
= (G
* (i1,j1)) by
A410,
A415,
FINSEQ_4: 68;
now
per cases by
A413;
suppose
A421: i1
= i2 & (j1
+ 1)
= j2;
then (
left_cell ((F
. k),m,G))
= (
cell (G,(i1
-' 1),j1)) & (
right_cell ((F
. k),m,G))
= (
cell (G,i1,j1)) by
A235,
A366,
A408,
A409,
A410,
A411,
A412,
GOBRD13: 21,
GOBRD13: 22;
hence thesis by
A303,
A366,
A367,
A409,
A411,
A414,
A420,
A419,
A421,
GOBRD13: 21,
GOBRD13: 22;
end;
suppose
A422: (i1
+ 1)
= i2 & j1
= j2;
then (
left_cell ((F
. k),m,G))
= (
cell (G,i1,j1)) & (
right_cell ((F
. k),m,G))
= (
cell (G,i1,(j1
-' 1))) by
A235,
A366,
A408,
A409,
A410,
A411,
A412,
GOBRD13: 23,
GOBRD13: 24;
hence thesis by
A303,
A366,
A367,
A409,
A411,
A414,
A420,
A419,
A422,
GOBRD13: 23,
GOBRD13: 24;
end;
suppose
A423: i1
= (i2
+ 1) & j1
= j2;
then (
left_cell ((F
. k),m,G))
= (
cell (G,i2,(j2
-' 1))) & (
right_cell ((F
. k),m,G))
= (
cell (G,i2,j2)) by
A235,
A366,
A408,
A409,
A410,
A411,
A412,
GOBRD13: 25,
GOBRD13: 26;
hence thesis by
A303,
A366,
A367,
A409,
A411,
A414,
A420,
A419,
A423,
GOBRD13: 25,
GOBRD13: 26;
end;
suppose
A424: i1
= i2 & j1
= (j2
+ 1);
then (
left_cell ((F
. k),m,G))
= (
cell (G,i2,j2)) & (
right_cell ((F
. k),m,G))
= (
cell (G,(i1
-' 1),j2)) by
A235,
A366,
A408,
A409,
A410,
A411,
A412,
GOBRD13: 27,
GOBRD13: 28;
hence thesis by
A303,
A366,
A367,
A409,
A411,
A414,
A420,
A419,
A424,
GOBRD13: 27,
GOBRD13: 28;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
defpred
Q[
Nat] means ex w be
Nat st w
= $1 & $1
>= 1 & ex m st m
in (
dom (F
. w)) & m
<> (
len (F
. w)) & ((F
. w)
/. m)
= ((F
. w)
/. (
len (F
. w)));
A425:
P[
0 ]
proof
(for n st n
in (
dom (F
.
0 )) holds ex i, j st
[i, j]
in (
Indices G) & ((F
.
0 )
/. n)
= (G
* (i,j))) & for n st n
in (
dom (F
.
0 )) & (n
+ 1)
in (
dom (F
.
0 )) holds for m, k, i, j st
[m, k]
in (
Indices G) &
[i, j]
in (
Indices G) & ((F
.
0 )
/. n)
= (G
* (m,k)) & ((F
.
0 )
/. (n
+ 1))
= (G
* (i,j)) holds (
|.(m
- i).|
+
|.(k
- j).|)
= 1 by
A170;
hence (F
.
0 )
is_sequence_on G by
GOBOARD1:def 9;
let m;
assume that 1
<= m and
A426: (m
+ 1)
<= (
len (F
.
0 ));
thus thesis by
A170,
A426,
CARD_1: 27;
end;
A427: for k holds
P[k] from
NAT_1:sch 2(
A425,
A232);
A428: for k, i1, i2, j1, j2 st k
> 1 &
[i1, j1]
in (
Indices G) & ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2)) holds ((
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C implies (F
. (k
+ 1))
turns_right (((
len (F
. k))
-' 1),G) & (i1
= i2 & (j1
+ 1)
= j2 implies
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>)) & ((i1
+ 1)
= i2 & j1
= j2 implies
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>)) & (i1
= (i2
+ 1) & j1
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>)) & (i1
= i2 & j1
= (j2
+ 1) implies
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>))) & ((
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C implies (F
. (k
+ 1))
goes_straight (((
len (F
. k))
-' 1),G) & (i1
= i2 & (j1
+ 1)
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>)) & ((i1
+ 1)
= i2 & j1
= j2 implies
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>)) & (i1
= (i2
+ 1) & j1
= j2 implies
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>)) & (i1
= i2 & j1
= (j2
+ 1) implies
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>))) & ((
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C implies (F
. (k
+ 1))
turns_left (((
len (F
. k))
-' 1),G) & (i1
= i2 & (j1
+ 1)
= j2 implies
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>)) & ((i1
+ 1)
= i2 & j1
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>)) & (i1
= (i2
+ 1) & j1
= j2 implies
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>)) & (i1
= i2 & j1
= (j2
+ 1) implies
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>)))
proof
let k, i1, i2, j1, j2 such that
A429: k
> 1 and
A430:
[i1, j1]
in (
Indices G) and
A431: ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) and
A432:
[i2, j2]
in (
Indices G) and
A433: ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2));
A434: (
len (F
. k))
= k by
A192;
then
A435: (((
len (F
. k))
-' 1)
+ 1)
= (
len (F
. k)) by
A429,
XREAL_1: 235;
A436: 1
<= ((
len (F
. k))
-' 1) by
A429,
A434,
NAT_D: 49;
then
A437: (
right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C by
A427,
A435;
((
len (F
. k))
-' 1)
<= (
len (F
. k)) by
NAT_D: 35;
then
A438: ((
len (F
. k))
-' 1)
in (
dom (F
. k)) by
A436,
FINSEQ_3: 25;
A439: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A440: (F
. k)
is_sequence_on G by
A427;
A441: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
A442: (
len (F
. k))
in (
dom (F
. k)) by
A429,
A434,
FINSEQ_3: 25;
hereby
assume (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
then
consider i, j such that
A443: ((F
. k)
^
<*(G
* (i,j))*>)
turns_right (((
len (F
. k))
-' 1),G) and
A444: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A429,
A440,
A434,
A437;
thus (F
. (k
+ 1))
turns_right (((
len (F
. k))
-' 1),G) by
A443,
A444;
A445: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i,j)) by
A444,
FINSEQ_4: 67;
A446: ((F
. (k
+ 1))
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) & ((F
. (k
+ 1))
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A431,
A433,
A438,
A442,
A444,
FINSEQ_4: 68;
hence i1
= i2 & (j1
+ 1)
= j2 implies
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A430,
A432,
A435,
A439,
A443,
A444,
A445;
thus (i1
+ 1)
= i2 & j1
= j2 implies
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A430,
A432,
A435,
A441,
A443,
A444,
A446,
A445;
thus i1
= (i2
+ 1) & j1
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A430,
A432,
A435,
A441,
A443,
A444,
A446,
A445;
thus i1
= i2 & j1
= (j2
+ 1) implies
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A430,
A432,
A435,
A439,
A443,
A444,
A446,
A445;
end;
hereby
assume (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
consider i, j such that
A447: ((F
. k)
^
<*(G
* (i,j))*>)
goes_straight (((
len (F
. k))
-' 1),G) and
A448: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A429,
A440,
A434,
A437;
thus (F
. (k
+ 1))
goes_straight (((
len (F
. k))
-' 1),G) by
A447,
A448;
A449: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i,j)) by
A448,
FINSEQ_4: 67;
A450: ((F
. (k
+ 1))
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) & ((F
. (k
+ 1))
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A431,
A433,
A438,
A442,
A448,
FINSEQ_4: 68;
hence i1
= i2 & (j1
+ 1)
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A430,
A432,
A435,
A439,
A447,
A448,
A449;
thus (i1
+ 1)
= i2 & j1
= j2 implies
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A430,
A432,
A435,
A441,
A447,
A448,
A450,
A449;
thus i1
= (i2
+ 1) & j1
= j2 implies
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A430,
A432,
A435,
A441,
A447,
A448,
A450,
A449;
thus i1
= i2 & j1
= (j2
+ 1) implies
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A430,
A432,
A435,
A439,
A447,
A448,
A450,
A449;
end;
assume (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
consider i, j such that
A451: ((F
. k)
^
<*(G
* (i,j))*>)
turns_left (((
len (F
. k))
-' 1),G) and
A452: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A171,
A429,
A440,
A434,
A437;
A453: ((F
. (k
+ 1))
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A433,
A442,
A452,
FINSEQ_4: 68;
thus (F
. (k
+ 1))
turns_left (((
len (F
. k))
-' 1),G) by
A451,
A452;
A454: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i,j)) by
A452,
FINSEQ_4: 67;
A455: ((F
. (k
+ 1))
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A431,
A438,
A452,
FINSEQ_4: 68;
hence i1
= i2 & (j1
+ 1)
= j2 implies
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A430,
A432,
A435,
A439,
A451,
A452,
A453,
A454;
thus (i1
+ 1)
= i2 & j1
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A430,
A432,
A435,
A441,
A451,
A452,
A455,
A453,
A454;
thus i1
= (i2
+ 1) & j1
= j2 implies
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A430,
A432,
A435,
A441,
A451,
A452,
A455,
A453,
A454;
thus thesis by
A430,
A432,
A435,
A439,
A451,
A452,
A455,
A453,
A454;
end;
A456: for k st k
> 1 holds ((
front_left_cell ((F
. k),(k
-' 1),(
Gauge (C,n))))
misses C & (
front_right_cell ((F
. k),(k
-' 1),(
Gauge (C,n))))
misses C implies (F
. (k
+ 1))
turns_right ((k
-' 1),(
Gauge (C,n)))) & ((
front_left_cell ((F
. k),(k
-' 1),(
Gauge (C,n))))
misses C & (
front_right_cell ((F
. k),(k
-' 1),(
Gauge (C,n))))
meets C implies (F
. (k
+ 1))
goes_straight ((k
-' 1),(
Gauge (C,n)))) & ((
front_left_cell ((F
. k),(k
-' 1),(
Gauge (C,n))))
meets C implies (F
. (k
+ 1))
turns_left ((k
-' 1),(
Gauge (C,n))))
proof
let k such that
A457: k
> 1;
A458: (F
. k)
is_sequence_on G by
A427;
A459: (
len (F
. k))
= k by
A192;
then 1
<= ((
len (F
. k))
-' 1) & (((
len (F
. k))
-' 1)
+ 1)
= (
len (F
. k)) by
A457,
NAT_D: 49,
XREAL_1: 235;
then ex i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) & ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2)) & (i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1)) by
A458,
JORDAN8: 3;
hence thesis by
A428,
A457,
A459;
end;
defpred
P[
Nat] means for m st m
<= $1 holds ((F
. $1)
| m)
= (F
. m);
A460:
P[
0 ]
proof
let m;
assume
A461: m
<=
0 ;
then ((F
.
0 )
|
0 )
= ((F
.
0 )
| m);
hence thesis by
A170,
A461;
end;
A462: for k holds ex i, j st
[i, j]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>)
proof
let k;
A463: (F
. k)
is_sequence_on G by
A427;
A464: (
len (F
. k))
= k by
A192;
(
len G)
>= 4 by
JORDAN8: 10;
then
A465: (
len G)
= (
width G) & 1
< (
len G) by
JORDAN8:def 1,
XXREAL_0: 2;
per cases by
XXREAL_0: 1;
suppose
A466: k
< 1;
consider i such that
A467: 1
<= i and
A468: (i
+ 1)
<= (
len G) and (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) and (
N-min C)
<> (G
* (i,((
width G)
-' 1))) and
A469: (F
. (
0
+ 1))
=
<*(G
* (i,(
width G)))*> by
A171;
take i, j = (
width G);
i
< (
len G) by
A468,
NAT_1: 13;
hence
[i, j]
in (
Indices G) by
A465,
A467,
MATRIX_0: 30;
k
=
0 by
A466,
NAT_1: 14;
hence thesis by
A170,
A469,
FINSEQ_1: 34;
end;
suppose
A470: k
= 1;
consider i such that
A471: 1
<= i and
A472: (i
+ 1)
<= (
len G) and
A473: (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) & (
N-min C)
<> (G
* (i,((
width G)
-' 1))) and
A474: (F
. (
0
+ 1))
=
<*(G
* (i,(
width G)))*> by
A171;
take (i
+ 1), j = (
width G);
1
<= (i
+ 1) by
A471,
NAT_1: 13;
hence
[(i
+ 1), j]
in (
Indices G) by
A465,
A472,
MATRIX_0: 30;
consider i9 be
Nat such that
A475: 1
<= i9 & (i9
+ 1)
<= (
len G) & (
N-min C)
in (
cell (G,i9,((
width G)
-' 1))) & (
N-min C)
<> (G
* (i9,((
width G)
-' 1))) and
A476: (F
. (1
+ 1))
=
<*(G
* (i9,(
width G))), (G
* ((i9
+ 1),(
width G)))*> by
A171;
i
= i9 by
A471,
A472,
A473,
A475,
Th29;
hence thesis by
A470,
A474,
A476,
FINSEQ_1:def 9;
end;
suppose
A477: k
> 1;
then 1
<= ((
len (F
. k))
-' 1) & (((
len (F
. k))
-' 1)
+ 1)
= (
len (F
. k)) by
A464,
NAT_D: 49,
XREAL_1: 235;
then
consider i1,j1,i2,j2 be
Nat such that
A478:
[i1, j1]
in (
Indices G) & ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2)) and
A479: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A463,
JORDAN8: 3;
now
per cases ;
suppose
A480: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
now
per cases by
A479;
suppose i1
= i2 & (j1
+ 1)
= j2;
then
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A428,
A477,
A478,
A480;
hence thesis;
end;
suppose (i1
+ 1)
= i2 & j1
= j2;
then
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A428,
A477,
A478,
A480;
hence thesis;
end;
suppose i1
= (i2
+ 1) & j1
= j2;
then
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A428,
A477,
A478,
A480;
hence thesis;
end;
suppose i1
= i2 & j1
= (j2
+ 1);
then
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A428,
A477,
A478,
A480;
hence thesis;
end;
end;
hence thesis;
end;
suppose
A481: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
now
per cases by
A479;
suppose i1
= i2 & (j1
+ 1)
= j2;
then
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A428,
A477,
A478,
A481;
hence thesis;
end;
suppose (i1
+ 1)
= i2 & j1
= j2;
then
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A428,
A477,
A478,
A481;
hence thesis;
end;
suppose i1
= (i2
+ 1) & j1
= j2;
then
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A428,
A477,
A478,
A481;
hence thesis;
end;
suppose i1
= i2 & j1
= (j2
+ 1);
then
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A428,
A477,
A478,
A481;
hence thesis;
end;
end;
hence thesis;
end;
suppose
A482: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
now
per cases by
A479;
suppose i1
= i2 & (j1
+ 1)
= j2;
then
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A428,
A477,
A478,
A482;
hence thesis;
end;
suppose (i1
+ 1)
= i2 & j1
= j2;
then
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A428,
A477,
A478,
A482;
hence thesis;
end;
suppose i1
= (i2
+ 1) & j1
= j2;
then
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A428,
A477,
A478,
A482;
hence thesis;
end;
suppose i1
= i2 & j1
= (j2
+ 1);
then
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A428,
A477,
A478,
A482;
hence thesis;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
A483: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A484: for m st m
<= k holds ((F
. k)
| m)
= (F
. m);
let m such that
A485: m
<= (k
+ 1);
per cases by
A485,
XXREAL_0: 1;
suppose m
< (k
+ 1);
then
A486: m
<= k by
NAT_1: 13;
(
len (F
. k))
= k & ex i, j st
[i, j]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A192,
A462;
then ((F
. (k
+ 1))
| m)
= ((F
. k)
| m) by
A486,
FINSEQ_5: 22;
hence thesis by
A484,
A486;
end;
suppose
A487: m
= (k
+ 1);
(
len (F
. (k
+ 1)))
= (k
+ 1) by
A192;
hence thesis by
A487,
FINSEQ_1: 58;
end;
end;
A488: for k holds
P[k] from
NAT_1:sch 2(
A460,
A483);
defpred
P[
Nat] means (F
. $1) is
unfolded;
A489: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A490: (F
. k) is
unfolded;
A491: (F
. k)
is_sequence_on G by
A427;
per cases ;
suppose k
<= 1;
then (k
+ 1)
<= (1
+ 1) by
XREAL_1: 6;
then (
len (F
. (k
+ 1)))
<= 2 by
A192;
hence thesis by
SPPOL_2: 26;
end;
suppose
A492: k
> 1;
set m = (k
-' 1);
A493: (m
+ 1)
= k by
A492,
XREAL_1: 235;
A494: (
len (F
. k))
= k by
A192;
A495: 1
<= m by
A492,
NAT_D: 49;
then
consider i1,j1,i2,j2 be
Nat such that
A496:
[i1, j1]
in (
Indices G) and
A497: ((F
. k)
/. m)
= (G
* (i1,j1)) and
A498:
[i2, j2]
in (
Indices G) and
A499: ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2)) and
A500: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A491,
A493,
A494,
JORDAN8: 3;
A501: (
LSeg ((F
. k),m))
= (
LSeg ((G
* (i1,j1)),(G
* (i2,j2)))) by
A495,
A493,
A494,
A497,
A499,
TOPREAL1:def 3;
A502: 1
<= j2 by
A498,
MATRIX_0: 32;
then
A503: ((j2
-' 1)
+ 1)
= j2 by
XREAL_1: 235;
A504: 1
<= j1 by
A496,
MATRIX_0: 32;
A505: 1
<= i2 by
A498,
MATRIX_0: 32;
then
A506: ((i2
-' 1)
+ 1)
= i2 by
XREAL_1: 235;
A507: i1
<= (
len G) by
A496,
MATRIX_0: 32;
A508: j2
<= (
width G) by
A498,
MATRIX_0: 32;
A509: 1
<= i1 by
A496,
MATRIX_0: 32;
A510: j1
<= (
width G) by
A496,
MATRIX_0: 32;
A511: i2
<= (
len G) by
A498,
MATRIX_0: 32;
now
per cases ;
suppose
A512: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
now
per cases by
A500;
suppose
A513: i1
= i2 & (j1
+ 1)
= j2;
then
[(i2
+ 1), j2]
in (
Indices G) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A512;
then (i2
+ 1)
<= (
len G) by
MATRIX_0: 32;
then
A514: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* ((i2
+ 1),j2)))))
=
{((F
. k)
/. (
len (F
. k)))} by
A499,
A509,
A504,
A508,
A501,
A513,
GOBOARD7: 15;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A512,
A513;
hence thesis by
A490,
A493,
A494,
A514,
SPPOL_2: 30;
end;
suppose
A515: (i1
+ 1)
= i2 & j1
= j2;
then
[i2, (j2
-' 1)]
in (
Indices G) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A512;
then 1
<= (j2
-' 1) by
MATRIX_0: 32;
then
A516: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* (i2,(j2
-' 1))))))
=
{((F
. k)
/. (
len (F
. k)))} by
A499,
A509,
A510,
A511,
A503,
A501,
A515,
GOBOARD7: 16;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A512,
A515;
hence thesis by
A490,
A493,
A494,
A516,
SPPOL_2: 30;
end;
suppose
A517: i1
= (i2
+ 1) & j1
= j2;
then
[i2, (j2
+ 1)]
in (
Indices G) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A512;
then (j2
+ 1)
<= (
width G) by
MATRIX_0: 32;
then
A518: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* (i2,(j2
+ 1))))))
=
{((F
. k)
/. (
len (F
. k)))} by
A499,
A507,
A504,
A505,
A501,
A517,
GOBOARD7: 17;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A512,
A517;
hence thesis by
A490,
A493,
A494,
A518,
SPPOL_2: 30;
end;
suppose
A519: i1
= i2 & j1
= (j2
+ 1);
then
[(i2
-' 1), j2]
in (
Indices G) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A512;
then 1
<= (i2
-' 1) by
MATRIX_0: 32;
then
A520: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* ((i2
-' 1),j2)))))
=
{((F
. k)
/. (
len (F
. k)))} by
A499,
A507,
A510,
A502,
A506,
A501,
A519,
GOBOARD7: 18;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A512,
A519;
hence thesis by
A490,
A493,
A494,
A520,
SPPOL_2: 30;
end;
end;
hence thesis;
end;
suppose
A521: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
now
per cases by
A500;
suppose
A522: i1
= i2 & (j1
+ 1)
= j2;
then
[i2, (j2
+ 1)]
in (
Indices G) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A521;
then
A523: (j2
+ 1)
<= (
width G) by
MATRIX_0: 32;
(j2
+ 1)
= (j1
+ (1
+ 1)) by
A522;
then
A524: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* (i2,(j2
+ 1))))))
=
{((F
. k)
/. (
len (F
. k)))} by
A499,
A509,
A507,
A504,
A501,
A522,
A523,
GOBOARD7: 13;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A521,
A522;
hence thesis by
A490,
A493,
A494,
A524,
SPPOL_2: 30;
end;
suppose
A525: (i1
+ 1)
= i2 & j1
= j2;
then
[(i2
+ 1), j2]
in (
Indices G) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A521;
then
A526: (i2
+ 1)
<= (
len G) by
MATRIX_0: 32;
(i2
+ 1)
= (i1
+ (1
+ 1)) by
A525;
then
A527: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* ((i2
+ 1),j2)))))
=
{((F
. k)
/. (
len (F
. k)))} by
A499,
A509,
A504,
A510,
A501,
A525,
A526,
GOBOARD7: 14;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A521,
A525;
hence thesis by
A490,
A493,
A494,
A527,
SPPOL_2: 30;
end;
suppose
A528: i1
= (i2
+ 1) & j1
= j2;
then
[(i2
-' 1), j2]
in (
Indices G) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A521;
then
A529: 1
<= (i2
-' 1) by
MATRIX_0: 32;
(((i2
-' 1)
+ 1)
+ 1)
= ((i2
-' 1)
+ (1
+ 1));
then
A530: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* ((i2
-' 1),j2)))))
=
{((F
. k)
/. (
len (F
. k)))} by
A499,
A507,
A504,
A510,
A506,
A501,
A528,
A529,
GOBOARD7: 14;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A521,
A528;
hence thesis by
A490,
A493,
A494,
A530,
SPPOL_2: 30;
end;
suppose
A531: i1
= i2 & j1
= (j2
+ 1);
then
[i2, (j2
-' 1)]
in (
Indices G) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A521;
then
A532: 1
<= (j2
-' 1) by
MATRIX_0: 32;
(((j2
-' 1)
+ 1)
+ 1)
= ((j2
-' 1)
+ (1
+ 1));
then
A533: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* (i2,(j2
-' 1))))))
=
{((F
. k)
/. (
len (F
. k)))} by
A499,
A509,
A507,
A510,
A503,
A501,
A531,
A532,
GOBOARD7: 13;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A521,
A531;
hence thesis by
A490,
A493,
A494,
A533,
SPPOL_2: 30;
end;
end;
hence thesis;
end;
suppose
A534: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
now
per cases by
A500;
suppose
A535: i1
= i2 & (j1
+ 1)
= j2;
then
[(i2
-' 1), j2]
in (
Indices G) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A534;
then 1
<= (i2
-' 1) by
MATRIX_0: 32;
then
A536: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* ((i2
-' 1),j2)))))
=
{((F
. k)
/. (
len (F
. k)))} by
A499,
A507,
A504,
A508,
A506,
A501,
A535,
GOBOARD7: 16;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A534,
A535;
hence thesis by
A490,
A493,
A494,
A536,
SPPOL_2: 30;
end;
suppose
A537: (i1
+ 1)
= i2 & j1
= j2;
then
[i2, (j2
+ 1)]
in (
Indices G) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A534;
then (j2
+ 1)
<= (
width G) by
MATRIX_0: 32;
then
A538: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* (i2,(j2
+ 1))))))
=
{((F
. k)
/. (
len (F
. k)))} by
A499,
A509,
A504,
A511,
A501,
A537,
GOBOARD7: 18;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A534,
A537;
hence thesis by
A490,
A493,
A494,
A538,
SPPOL_2: 30;
end;
suppose
A539: i1
= (i2
+ 1) & j1
= j2;
then
[i2, (j2
-' 1)]
in (
Indices G) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A534;
then 1
<= (j2
-' 1) by
MATRIX_0: 32;
then
A540: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* (i2,(j2
-' 1))))))
=
{((F
. k)
/. (
len (F
. k)))} by
A499,
A507,
A510,
A505,
A503,
A501,
A539,
GOBOARD7: 15;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A534,
A539;
hence thesis by
A490,
A493,
A494,
A540,
SPPOL_2: 30;
end;
suppose
A541: i1
= i2 & j1
= (j2
+ 1);
then
[(i2
+ 1), j2]
in (
Indices G) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A534;
then (i2
+ 1)
<= (
len G) by
MATRIX_0: 32;
then
A542: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* ((i2
+ 1),j2)))))
=
{((F
. k)
/. (
len (F
. k)))} by
A499,
A509,
A510,
A502,
A501,
A541,
GOBOARD7: 17;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A428,
A492,
A494,
A496,
A497,
A498,
A499,
A534,
A541;
hence thesis by
A490,
A493,
A494,
A542,
SPPOL_2: 30;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
now
defpred
P[
Nat] means (F
. $1) is
one-to-one;
assume
A543: for k st k
>= 1 holds for m st m
in (
dom (F
. k)) & m
<> (
len (F
. k)) holds ((F
. k)
/. m)
<> ((F
. k)
/. (
len (F
. k)));
A544: for k st
P[k] holds
P[(k
+ 1)]
proof
let k;
assume
A545: (F
. k) is
one-to-one;
now
let n,m be
Element of
NAT such that
A546: n
in (
dom (F
. (k
+ 1))) and
A547: m
in (
dom (F
. (k
+ 1))) and
A548: ((F
. (k
+ 1))
/. n)
= ((F
. (k
+ 1))
/. m);
A549: n
<= (
len (F
. (k
+ 1))) & m
<= (
len (F
. (k
+ 1))) by
A546,
A547,
FINSEQ_3: 25;
A550: 1
<= m by
A547,
FINSEQ_3: 25;
A551: 1
<= n by
A546,
FINSEQ_3: 25;
A552: ex i, j st
[i, j]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A462;
A553: (
len (F
. k))
= k by
A192;
A554: (
len (F
. (k
+ 1)))
= (k
+ 1) by
A192;
per cases by
A549,
A554,
NAT_1: 8;
suppose
A555: n
<= k & m
<= k;
then
A556: m
in (
dom (F
. k)) by
A550,
A553,
FINSEQ_3: 25;
then
A557: ((F
. (k
+ 1))
/. m)
= ((F
. k)
/. m) by
A552,
FINSEQ_4: 68;
A558: n
in (
dom (F
. k)) by
A551,
A553,
A555,
FINSEQ_3: 25;
then ((F
. (k
+ 1))
/. n)
= ((F
. k)
/. n) by
A552,
FINSEQ_4: 68;
hence n
= m by
A545,
A548,
A558,
A556,
A557,
PARTFUN2: 10;
end;
suppose n
= (k
+ 1) & m
<= k;
hence n
= m by
A543,
A547,
A548,
A554,
NAT_1: 12;
end;
suppose n
<= k & m
= (k
+ 1);
hence n
= m by
A543,
A546,
A548,
A554,
NAT_1: 12;
end;
suppose n
= (k
+ 1) & m
= (k
+ 1);
hence n
= m;
end;
end;
hence thesis by
PARTFUN2: 9;
end;
A559:
P[
0 ] by
A170;
A560: for k holds
P[k] from
NAT_1:sch 2(
A559,
A544);
A561: for k holds (
card (
rng (F
. k)))
= k
proof
let k;
(F
. k) is
one-to-one by
A560;
hence (
card (
rng (F
. k)))
= (
len (F
. k)) by
FINSEQ_4: 62
.= k by
A192;
end;
set k = (((
len G)
* (
width G))
+ 1);
(F
. k)
is_sequence_on G by
A427;
then (
card (
Values G))
<= ((
len G)
* (
width G)) & (
card (
rng (F
. k)))
<= (
card (
Values G)) by
GOBRD13: 8,
MATRIX_0: 40,
NAT_1: 43;
then k
> ((
len G)
* (
width G)) & (
card (
rng (F
. k)))
<= ((
len G)
* (
width G)) by
NAT_1: 13,
XXREAL_0: 2;
hence contradiction by
A561;
end;
then
A562: ex k be
Nat st
Q[k];
consider k be
Nat such that
A563:
Q[k] and
A564: for l be
Nat st
Q[l] holds k
<= l from
NAT_1:sch 5(
A562);
reconsider k as
Nat;
consider m such that
A565: m
in (
dom (F
. k)) and
A566: m
<> (
len (F
. k)) and
A567: ((F
. k)
/. m)
= ((F
. k)
/. (
len (F
. k))) by
A563;
A568: 1
<= m by
A565,
FINSEQ_3: 25;
reconsider f = (F
. k) as non
empty
FinSequence of (
TOP-REAL 2) by
A563;
A569: f
is_sequence_on G by
A427;
A570: m
<= (
len f) by
A565,
FINSEQ_3: 25;
then
A571: m
< (
len f) by
A566,
XXREAL_0: 1;
then 1
< (
len f) by
A568,
XXREAL_0: 2;
then
A572: (
len f)
>= (1
+ 1) by
NAT_1: 13;
A573:
P[
0 ] by
A170,
CARD_1: 27,
SPPOL_2: 26;
for k holds
P[k] from
NAT_1:sch 2(
A573,
A489);
then
reconsider f as non
constant
special
unfolded non
empty
FinSequence of (
TOP-REAL 2) by
A569,
A572,
JORDAN8: 4,
JORDAN8: 5;
A574: (m
+ 1)
<= (
len f) by
A571,
NAT_1: 13;
set g = (f
/^ (m
-' 1));
(m
-' 1)
<= m by
NAT_D: 44;
then (m
-' 1)
< (m
+ 1) by
NAT_1: 13;
then
A575: (m
-' 1)
< (
len f) by
A574,
XXREAL_0: 2;
then
A576: (
len g)
= ((
len f)
- (m
-' 1)) by
RFINSEQ:def 1;
then ((m
-' 1)
- (m
-' 1))
< (
len g) by
A575,
XREAL_1: 9;
then
reconsider g as non
empty
FinSequence of (
TOP-REAL 2) by
CARD_1: 27;
(
len g)
in (
dom g) by
FINSEQ_5: 6;
then
A577: (g
/. (
len g))
= (f
/. ((m
-' 1)
+ (
len g))) by
FINSEQ_5: 27
.= (f
/. (
len f)) by
A576;
A578: (
len (F
. k))
= k by
A192;
A579: for i st 1
<= i & i
< (
len g) & 1
<= j & j
< (
len g) & (g
/. i)
= (g
/. j) holds i
= j
proof
let i such that
A580: 1
<= i and
A581: i
< (
len g) and
A582: 1
<= j and
A583: j
< (
len g) and
A584: (g
/. i)
= (g
/. j) and
A585: i
<> j;
A586: i
in (
dom g) by
A580,
A581,
FINSEQ_3: 25;
then
A587: (g
/. i)
= (f
/. ((m
-' 1)
+ i)) by
FINSEQ_5: 27;
A588: j
in (
dom g) by
A582,
A583,
FINSEQ_3: 25;
then
A589: (g
/. j)
= (f
/. ((m
-' 1)
+ j)) by
FINSEQ_5: 27;
per cases by
A585,
XXREAL_0: 1;
suppose
A590: i
< j;
set l = ((m
-' 1)
+ j), m9 = ((m
-' 1)
+ i);
A591: m9
< l by
A590,
XREAL_1: 6;
A592: (
len (F
. l))
= l by
A192;
A593: l
< k by
A578,
A576,
A583,
XREAL_1: 20;
then
A594: (f
| l)
= (F
. l) by
A488;
(
0
+ j)
<= l by
XREAL_1: 6;
then
A595: 1
<= l by
A582,
XXREAL_0: 2;
then l
in (
dom (F
. l)) by
A592,
FINSEQ_3: 25;
then
A596: ((F
. l)
/. l)
= (f
/. l) by
A594,
FINSEQ_4: 70;
(
0
+ i)
<= m9 by
XREAL_1: 6;
then 1
<= m9 by
A580,
XXREAL_0: 2;
then
A597: m9
in (
dom (F
. l)) by
A591,
A592,
FINSEQ_3: 25;
then ((F
. l)
/. m9)
= (f
/. m9) by
A594,
FINSEQ_4: 70;
hence contradiction by
A564,
A584,
A587,
A588,
A591,
A593,
A595,
A592,
A597,
A596,
FINSEQ_5: 27;
end;
suppose
A598: j
< i;
set l = ((m
-' 1)
+ i), m9 = ((m
-' 1)
+ j);
A599: m9
< l by
A598,
XREAL_1: 6;
A600: (
len (F
. l))
= l by
A192;
A601: l
< k by
A578,
A576,
A581,
XREAL_1: 20;
then
A602: (f
| l)
= (F
. l) by
A488;
(
0
+ i)
<= l by
XREAL_1: 6;
then
A603: 1
<= l by
A580,
XXREAL_0: 2;
then l
in (
dom (F
. l)) by
A600,
FINSEQ_3: 25;
then
A604: ((F
. l)
/. l)
= (f
/. l) by
A602,
FINSEQ_4: 70;
(
0
+ j)
<= m9 by
XREAL_1: 6;
then 1
<= m9 by
A582,
XXREAL_0: 2;
then
A605: m9
in (
dom (F
. l)) by
A599,
A600,
FINSEQ_3: 25;
then ((F
. l)
/. m9)
= (f
/. m9) by
A602,
FINSEQ_4: 70;
hence contradiction by
A564,
A584,
A586,
A589,
A599,
A601,
A603,
A600,
A605,
A604,
FINSEQ_5: 27;
end;
end;
A606:
now
consider i such that
A607: 1
<= i & (i
+ 1)
<= (
len G) and
A608: (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) & (
N-min C)
<> (G
* (i,((
width G)
-' 1))) and
A609: (F
. (1
+ 1))
=
<*(G
* (i,(
width G))), (G
* ((i
+ 1),(
width G)))*> by
A171;
take i;
thus 1
<= i & (i
+ 1)
<= (
len G) by
A607;
A610: (f
| 2)
= (F
. 2) by
A488,
A578,
A572;
A611: (
len (f
| 2))
= 2 by
A572,
FINSEQ_1: 59;
then 1
in (
dom (f
| 2)) by
FINSEQ_3: 25;
hence (f
/. 1)
= ((f
| 2)
/. 1) by
FINSEQ_4: 70
.= (G
* (i,(
width G))) by
A609,
A610,
FINSEQ_4: 17;
2
in (
dom (f
| 2)) by
A611,
FINSEQ_3: 25;
hence (f
/. 2)
= ((f
| 2)
/. 2) by
FINSEQ_4: 70
.= (G
* ((i
+ 1),(
width G))) by
A609,
A610,
FINSEQ_4: 17;
thus (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) & (
N-min C)
<> (G
* (i,((
width G)
-' 1))) by
A608;
end;
1
in (
dom g) by
FINSEQ_5: 6;
then
A612: (g
/. 1)
= (f
/. ((m
-' 1)
+ 1)) by
FINSEQ_5: 27
.= (f
/. m) by
A568,
XREAL_1: 235;
A613: for i st 1
< i & i
< j & j
<= (
len g) holds (g
/. i)
<> (g
/. j)
proof
let i such that
A614: 1
< i and
A615: i
< j and
A616: j
<= (
len g) and
A617: (g
/. i)
= (g
/. j);
A618: 1
< j by
A614,
A615,
XXREAL_0: 2;
A619: i
< (
len g) by
A615,
A616,
XXREAL_0: 2;
then
A620: 1
< (
len g) by
A614,
XXREAL_0: 2;
per cases ;
suppose j
<> (
len g);
then j
< (
len g) by
A616,
XXREAL_0: 1;
hence contradiction by
A579,
A614,
A615,
A617,
A618,
A619;
end;
suppose j
= (
len g);
hence contradiction by
A567,
A612,
A577,
A579,
A614,
A615,
A617,
A620;
end;
end;
((m
+ 1)
- (m
-' 1))
<= (
len g) by
A574,
A576,
XREAL_1: 9;
then
A621: ((m
+ 1)
- (m
- 1))
<= (
len g) by
A568,
XREAL_1: 233;
then
A622: (((1
+ m)
- m)
+ 1)
<= (
len g);
A623: g
is_sequence_on G by
A427,
JORDAN8: 2;
then
A624: g is
standard by
JORDAN8: 4;
A625: g is non
constant
proof
take 1, 2;
thus
A626: 1
in (
dom g) by
FINSEQ_5: 6;
thus
A627: 2
in (
dom g) by
A621,
FINSEQ_3: 25;
then (g
/. 1)
<> (g
/. (1
+ 1)) by
A624,
FINSEQ_5: 6,
GOBOARD7: 29;
then (g
. 1)
<> (g
/. (1
+ 1)) by
A626,
PARTFUN1:def 6;
hence thesis by
A627,
PARTFUN1:def 6;
end;
A628: for i st 1
<= i & i
< j & j
< (
len g) holds (g
/. i)
<> (g
/. j)
proof
let i such that
A629: 1
<= i & i
< j & j
< (
len g) and
A630: (g
/. i)
= (g
/. j);
1
< j & i
< (
len g) by
A629,
XXREAL_0: 2;
hence contradiction by
A579,
A629,
A630;
end;
g is
s.c.c.
proof
let i, j such that
A631: (i
+ 1)
< j and
A632: i
> 1 & j
< (
len g) or (j
+ 1)
< (
len g);
A633: 1
< j by
A631,
NAT_1: 12;
A634: 1
<= (i
+ 1) by
NAT_1: 12;
A635: j
<= (j
+ 1) by
NAT_1: 12;
then
A636: (i
+ 1)
< (j
+ 1) by
A631,
XXREAL_0: 2;
i
< j by
A631,
NAT_1: 13;
then
A637: i
< (j
+ 1) by
A635,
XXREAL_0: 2;
per cases by
A632,
NAT_1: 14;
suppose
A638: i
> 1 & j
< (
len g);
then
A639: (j
+ 1)
<= (
len g) by
NAT_1: 13;
then
A640: (
LSeg (g,j))
= (
LSeg ((g
/. j),(g
/. (j
+ 1)))) by
A633,
TOPREAL1:def 3;
consider i19,j19,i29,j29 be
Nat such that
A641:
[i19, j19]
in (
Indices G) and
A642: (g
/. j)
= (G
* (i19,j19)) and
A643:
[i29, j29]
in (
Indices G) and
A644: (g
/. (j
+ 1))
= (G
* (i29,j29)) and
A645: i19
= i29 & (j19
+ 1)
= j29 or (i19
+ 1)
= i29 & j19
= j29 or i19
= (i29
+ 1) & j19
= j29 or i19
= i29 & j19
= (j29
+ 1) by
A623,
A633,
A639,
JORDAN8: 3;
A646: 1
<= i19 by
A641,
MATRIX_0: 32;
A647: j29
<= (
width G) by
A643,
MATRIX_0: 32;
A648: 1
<= i29 by
A643,
MATRIX_0: 32;
A649: i19
<= (
len G) by
A641,
MATRIX_0: 32;
A650: 1
<= j29 by
A643,
MATRIX_0: 32;
A651: j19
<= (
width G) by
A641,
MATRIX_0: 32;
A652: i29
<= (
len G) by
A643,
MATRIX_0: 32;
A653: 1
<= j19 by
A641,
MATRIX_0: 32;
A654: (i
+ 1)
< (
len g) by
A631,
A638,
XXREAL_0: 2;
then
A655: (
LSeg (g,i))
= (
LSeg ((g
/. i),(g
/. (i
+ 1)))) by
A638,
TOPREAL1:def 3;
A656: i
< (
len g) by
A654,
NAT_1: 13;
consider i1, j1, i2, j2 such that
A657:
[i1, j1]
in (
Indices G) and
A658: (g
/. i)
= (G
* (i1,j1)) and
A659:
[i2, j2]
in (
Indices G) and
A660: (g
/. (i
+ 1))
= (G
* (i2,j2)) and
A661: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A623,
A638,
A654,
JORDAN8: 3;
A662: 1
<= i1 by
A657,
MATRIX_0: 32;
A663: j2
<= (
width G) by
A659,
MATRIX_0: 32;
A664: j1
<= (
width G) by
A657,
MATRIX_0: 32;
A665: 1
<= j2 by
A659,
MATRIX_0: 32;
A666: 1
<= j1 by
A657,
MATRIX_0: 32;
A667: i2
<= (
len G) by
A659,
MATRIX_0: 32;
A668: i1
<= (
len G) by
A657,
MATRIX_0: 32;
A669: 1
< (i
+ 1) by
A638,
NAT_1: 13;
assume
A670: (
LSeg (g,i))
meets (
LSeg (g,j));
A671: 1
<= i2 by
A659,
MATRIX_0: 32;
now
per cases by
A661,
A645;
suppose
A672: i1
= i2 & (j1
+ 1)
= j2 & i19
= i29 & (j19
+ 1)
= j29;
then
A673: j1
= j19 or j1
= (j19
+ 1) or (j1
+ 1)
= j19 by
A655,
A658,
A660,
A662,
A668,
A666,
A663,
A640,
A642,
A644,
A646,
A649,
A653,
A647,
A670,
GOBOARD7: 22;
i1
= i19 by
A655,
A658,
A660,
A662,
A668,
A666,
A663,
A640,
A642,
A644,
A646,
A649,
A653,
A647,
A670,
A672,
GOBOARD7: 19;
hence contradiction by
A579,
A613,
A631,
A635,
A634,
A633,
A637,
A638,
A654,
A656,
A658,
A660,
A639,
A642,
A644,
A672,
A673;
end;
suppose
A674: i1
= i2 & (j1
+ 1)
= j2 & (i19
+ 1)
= i29 & j19
= j29;
then i1
= i19 & j1
= j19 or i1
= i19 & (j1
+ 1)
= j19 or i1
= (i19
+ 1) & j1
= j19 or i1
= (i19
+ 1) & (j1
+ 1)
= j19 by
A655,
A658,
A660,
A662,
A668,
A666,
A663,
A640,
A642,
A644,
A646,
A653,
A651,
A652,
A670,
GOBOARD7: 21;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A637,
A638,
A669,
A656,
A658,
A660,
A639,
A642,
A644,
A674;
end;
suppose
A675: i1
= i2 & (j1
+ 1)
= j2 & i19
= (i29
+ 1) & j19
= j29;
then i1
= i29 & j19
= j1 or i1
= i29 & (j1
+ 1)
= j19 or i1
= (i29
+ 1) & j19
= j1 or i1
= (i29
+ 1) & (j1
+ 1)
= j19 by
A655,
A658,
A660,
A662,
A668,
A666,
A663,
A640,
A642,
A644,
A649,
A653,
A651,
A648,
A670,
GOBOARD7: 21;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A637,
A638,
A669,
A656,
A658,
A660,
A639,
A642,
A644,
A675;
end;
suppose
A676: i1
= i2 & (j1
+ 1)
= j2 & i19
= i29 & j19
= (j29
+ 1);
then
A677: j1
= j29 or j1
= (j29
+ 1) or (j1
+ 1)
= j29 by
A655,
A658,
A660,
A662,
A668,
A666,
A663,
A640,
A642,
A644,
A646,
A649,
A651,
A650,
A670,
GOBOARD7: 22;
i1
= i19 by
A655,
A658,
A660,
A662,
A668,
A666,
A663,
A640,
A642,
A644,
A646,
A649,
A651,
A650,
A670,
A676,
GOBOARD7: 19;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A638,
A669,
A656,
A658,
A660,
A639,
A642,
A644,
A676,
A677;
end;
suppose
A678: (i1
+ 1)
= i2 & j1
= j2 & i19
= i29 & (j19
+ 1)
= j29;
then i19
= i1 & j1
= j19 or i19
= i1 & (j19
+ 1)
= j1 or i19
= (i1
+ 1) & j1
= j19 or i19
= (i1
+ 1) & (j19
+ 1)
= j1 by
A655,
A658,
A660,
A662,
A666,
A664,
A667,
A640,
A642,
A644,
A646,
A649,
A653,
A647,
A670,
GOBOARD7: 21;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A637,
A638,
A669,
A656,
A658,
A660,
A639,
A642,
A644,
A678;
end;
suppose
A679: (i1
+ 1)
= i2 & j1
= j2 & (i19
+ 1)
= i29 & j19
= j29;
then
A680: i1
= i19 or i1
= (i19
+ 1) or (i1
+ 1)
= i19 by
A655,
A658,
A660,
A662,
A666,
A664,
A667,
A640,
A642,
A644,
A646,
A653,
A651,
A652,
A670,
GOBOARD7: 23;
j1
= j19 by
A655,
A658,
A660,
A662,
A666,
A664,
A667,
A640,
A642,
A644,
A646,
A653,
A651,
A652,
A670,
A679,
GOBOARD7: 20;
hence contradiction by
A579,
A613,
A631,
A635,
A634,
A633,
A637,
A638,
A654,
A656,
A658,
A660,
A639,
A642,
A644,
A679,
A680;
end;
suppose
A681: (i1
+ 1)
= i2 & j1
= j2 & i19
= (i29
+ 1) & j19
= j29;
then
A682: i1
= i29 or i1
= (i29
+ 1) or (i1
+ 1)
= i29 by
A655,
A658,
A660,
A662,
A666,
A664,
A667,
A640,
A642,
A644,
A649,
A653,
A651,
A648,
A670,
GOBOARD7: 23;
j1
= j19 by
A655,
A658,
A660,
A662,
A666,
A664,
A667,
A640,
A642,
A644,
A649,
A653,
A651,
A648,
A670,
A681,
GOBOARD7: 20;
hence contradiction by
A579,
A613,
A636,
A633,
A637,
A638,
A669,
A656,
A658,
A660,
A639,
A642,
A644,
A681,
A682;
end;
suppose
A683: (i1
+ 1)
= i2 & j1
= j2 & i19
= i29 & j19
= (j29
+ 1);
then i19
= i1 & j1
= j29 or i19
= i1 & (j29
+ 1)
= j1 or i19
= (i1
+ 1) & j1
= j29 or i19
= (i1
+ 1) & (j29
+ 1)
= j1 by
A655,
A658,
A660,
A662,
A666,
A664,
A667,
A640,
A642,
A644,
A646,
A649,
A651,
A650,
A670,
GOBOARD7: 21;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A637,
A638,
A669,
A656,
A658,
A660,
A639,
A642,
A644,
A683;
end;
suppose
A684: i1
= (i2
+ 1) & j1
= j2 & i19
= i29 & (j19
+ 1)
= j29;
then i19
= i2 & j19
= j1 or i19
= i2 & (j19
+ 1)
= j1 or i19
= (i2
+ 1) & j19
= j1 or i19
= (i2
+ 1) & (j19
+ 1)
= j1 by
A655,
A658,
A660,
A668,
A666,
A664,
A671,
A640,
A642,
A644,
A646,
A649,
A653,
A647,
A670,
GOBOARD7: 21;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A637,
A638,
A669,
A656,
A658,
A660,
A639,
A642,
A644,
A684;
end;
suppose
A685: i1
= (i2
+ 1) & j1
= j2 & (i19
+ 1)
= i29 & j19
= j29;
then
A686: i2
= i19 or i2
= (i19
+ 1) or (i2
+ 1)
= i19 by
A655,
A658,
A660,
A668,
A666,
A664,
A671,
A640,
A642,
A644,
A646,
A653,
A651,
A652,
A670,
GOBOARD7: 23;
j1
= j19 by
A655,
A658,
A660,
A668,
A666,
A664,
A671,
A640,
A642,
A644,
A646,
A653,
A651,
A652,
A670,
A685,
GOBOARD7: 20;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A638,
A669,
A656,
A658,
A660,
A639,
A642,
A644,
A685,
A686;
end;
suppose
A687: i1
= (i2
+ 1) & j1
= j2 & i19
= (i29
+ 1) & j19
= j29;
then
A688: i2
= i29 or i2
= (i29
+ 1) or (i2
+ 1)
= i29 by
A655,
A658,
A660,
A668,
A666,
A664,
A671,
A640,
A642,
A644,
A649,
A653,
A651,
A648,
A670,
GOBOARD7: 23;
j1
= j19 by
A655,
A658,
A660,
A668,
A666,
A664,
A671,
A640,
A642,
A644,
A649,
A653,
A651,
A648,
A670,
A687,
GOBOARD7: 20;
hence contradiction by
A613,
A631,
A636,
A637,
A638,
A669,
A658,
A660,
A639,
A642,
A644,
A687,
A688;
end;
suppose
A689: i1
= (i2
+ 1) & j1
= j2 & i19
= i29 & j19
= (j29
+ 1);
then i19
= i2 & j29
= j1 or i19
= i2 & (j29
+ 1)
= j1 or i19
= (i2
+ 1) & j29
= j1 or i19
= (i2
+ 1) & (j29
+ 1)
= j1 by
A655,
A658,
A660,
A668,
A666,
A664,
A671,
A640,
A642,
A644,
A646,
A649,
A651,
A650,
A670,
GOBOARD7: 21;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A637,
A638,
A669,
A656,
A658,
A660,
A639,
A642,
A644,
A689;
end;
suppose
A690: i1
= i2 & j1
= (j2
+ 1) & i19
= i29 & (j19
+ 1)
= j29;
then
A691: j2
= j19 or j2
= (j19
+ 1) or (j2
+ 1)
= j19 by
A655,
A658,
A660,
A662,
A668,
A664,
A665,
A640,
A642,
A644,
A646,
A649,
A653,
A647,
A670,
GOBOARD7: 22;
i1
= i19 by
A655,
A658,
A660,
A662,
A668,
A664,
A665,
A640,
A642,
A644,
A646,
A649,
A653,
A647,
A670,
A690,
GOBOARD7: 19;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A638,
A669,
A656,
A658,
A660,
A639,
A642,
A644,
A690,
A691;
end;
suppose
A692: i1
= i2 & j1
= (j2
+ 1) & (i19
+ 1)
= i29 & j19
= j29;
then i1
= i19 & j2
= j19 or i1
= i19 & (j2
+ 1)
= j19 or i1
= (i19
+ 1) & j2
= j19 or i1
= (i19
+ 1) & (j2
+ 1)
= j19 by
A655,
A658,
A660,
A662,
A668,
A664,
A665,
A640,
A642,
A644,
A646,
A653,
A651,
A652,
A670,
GOBOARD7: 21;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A637,
A638,
A669,
A656,
A658,
A660,
A639,
A642,
A644,
A692;
end;
suppose
A693: i1
= i2 & j1
= (j2
+ 1) & i19
= (i29
+ 1) & j19
= j29;
then i1
= i29 & j2
= j19 or i1
= i29 & (j2
+ 1)
= j19 or i1
= (i29
+ 1) & j2
= j19 or i1
= (i29
+ 1) & (j2
+ 1)
= j19 by
A655,
A658,
A660,
A662,
A668,
A664,
A665,
A640,
A642,
A644,
A649,
A653,
A651,
A648,
A670,
GOBOARD7: 21;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A637,
A638,
A669,
A656,
A658,
A660,
A639,
A642,
A644,
A693;
end;
suppose
A694: i1
= i2 & j1
= (j2
+ 1) & i19
= i29 & j19
= (j29
+ 1);
then
A695: j2
= j29 or j2
= (j29
+ 1) or (j2
+ 1)
= j29 by
A655,
A658,
A660,
A662,
A668,
A664,
A665,
A640,
A642,
A644,
A646,
A649,
A651,
A650,
A670,
GOBOARD7: 22;
i1
= i19 by
A655,
A658,
A660,
A662,
A668,
A664,
A665,
A640,
A642,
A644,
A646,
A649,
A651,
A650,
A670,
A694,
GOBOARD7: 19;
hence contradiction by
A613,
A631,
A636,
A637,
A638,
A669,
A658,
A660,
A639,
A642,
A644,
A694,
A695;
end;
end;
hence contradiction;
end;
suppose i
=
0 & (j
+ 1)
< (
len g);
then (
LSeg (g,i))
=
{} by
TOPREAL1:def 3;
hence thesis by
XBOOLE_1: 65;
end;
suppose
A696: 1
<= i & (j
+ 1)
< (
len g);
then
A697: (i
+ 1)
< (
len g) by
A636,
XXREAL_0: 2;
then
A698: (
LSeg (g,i))
= (
LSeg ((g
/. i),(g
/. (i
+ 1)))) by
A696,
TOPREAL1:def 3;
A699: i
< (
len g) by
A697,
NAT_1: 13;
consider i1, j1, i2, j2 such that
A700:
[i1, j1]
in (
Indices G) and
A701: (g
/. i)
= (G
* (i1,j1)) and
A702:
[i2, j2]
in (
Indices G) and
A703: (g
/. (i
+ 1))
= (G
* (i2,j2)) and
A704: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A623,
A696,
A697,
JORDAN8: 3;
A705: 1
<= i1 by
A700,
MATRIX_0: 32;
A706: j2
<= (
width G) by
A702,
MATRIX_0: 32;
A707: j1
<= (
width G) by
A700,
MATRIX_0: 32;
A708: 1
<= j2 by
A702,
MATRIX_0: 32;
A709: 1
<= j1 by
A700,
MATRIX_0: 32;
A710: i2
<= (
len G) by
A702,
MATRIX_0: 32;
A711: i1
<= (
len G) by
A700,
MATRIX_0: 32;
A712: 1
< (i
+ 1) by
A696,
NAT_1: 13;
assume
A713: (
LSeg (g,i))
meets (
LSeg (g,j));
consider i19,j19,i29,j29 be
Nat such that
A714:
[i19, j19]
in (
Indices G) and
A715: (g
/. j)
= (G
* (i19,j19)) and
A716:
[i29, j29]
in (
Indices G) and
A717: (g
/. (j
+ 1))
= (G
* (i29,j29)) and
A718: i19
= i29 & (j19
+ 1)
= j29 or (i19
+ 1)
= i29 & j19
= j29 or i19
= (i29
+ 1) & j19
= j29 or i19
= i29 & j19
= (j29
+ 1) by
A623,
A633,
A696,
JORDAN8: 3;
A719: 1
<= i19 by
A714,
MATRIX_0: 32;
A720: j29
<= (
width G) by
A716,
MATRIX_0: 32;
A721: 1
<= i29 by
A716,
MATRIX_0: 32;
A722: i19
<= (
len G) by
A714,
MATRIX_0: 32;
A723: 1
<= j29 by
A716,
MATRIX_0: 32;
A724: j19
<= (
width G) by
A714,
MATRIX_0: 32;
A725: i29
<= (
len G) by
A716,
MATRIX_0: 32;
A726: 1
<= j19 by
A714,
MATRIX_0: 32;
A727: j
< (
len g) by
A696,
NAT_1: 12;
A728: (
LSeg (g,j))
= (
LSeg ((g
/. j),(g
/. (j
+ 1)))) by
A633,
A696,
TOPREAL1:def 3;
A729: 1
<= i2 by
A702,
MATRIX_0: 32;
now
per cases by
A704,
A718;
suppose
A730: i1
= i2 & (j1
+ 1)
= j2 & i19
= i29 & (j19
+ 1)
= j29;
then
A731: j1
= j19 or j1
= (j19
+ 1) or (j1
+ 1)
= j19 by
A698,
A701,
A703,
A705,
A711,
A709,
A706,
A728,
A715,
A717,
A719,
A722,
A726,
A720,
A713,
GOBOARD7: 22;
i1
= i19 by
A698,
A701,
A703,
A705,
A711,
A709,
A706,
A728,
A715,
A717,
A719,
A722,
A726,
A720,
A713,
A730,
GOBOARD7: 19;
hence contradiction by
A628,
A631,
A636,
A634,
A637,
A696,
A727,
A701,
A703,
A715,
A717,
A730,
A731;
end;
suppose
A732: i1
= i2 & (j1
+ 1)
= j2 & (i19
+ 1)
= i29 & j19
= j29;
then i1
= i19 & j1
= j19 or i1
= i19 & (j1
+ 1)
= j19 or i1
= (i19
+ 1) & j1
= j19 or i1
= (i19
+ 1) & (j1
+ 1)
= j19 by
A698,
A701,
A703,
A705,
A711,
A709,
A706,
A728,
A715,
A717,
A719,
A726,
A724,
A725,
A713,
GOBOARD7: 21;
hence contradiction by
A579,
A628,
A631,
A636,
A633,
A637,
A696,
A712,
A699,
A727,
A701,
A703,
A715,
A717,
A732;
end;
suppose
A733: i1
= i2 & (j1
+ 1)
= j2 & i19
= (i29
+ 1) & j19
= j29;
then i1
= i29 & j19
= j1 or i1
= i29 & (j1
+ 1)
= j19 or i1
= (i29
+ 1) & j19
= j1 or i1
= (i29
+ 1) & (j1
+ 1)
= j19 by
A698,
A701,
A703,
A705,
A711,
A709,
A706,
A728,
A715,
A717,
A722,
A726,
A724,
A721,
A713,
GOBOARD7: 21;
hence contradiction by
A579,
A628,
A631,
A636,
A633,
A637,
A696,
A712,
A699,
A727,
A701,
A703,
A715,
A717,
A733;
end;
suppose
A734: i1
= i2 & (j1
+ 1)
= j2 & i19
= i29 & j19
= (j29
+ 1);
then
A735: j1
= j29 or j1
= (j29
+ 1) or (j1
+ 1)
= j29 by
A698,
A701,
A703,
A705,
A711,
A709,
A706,
A728,
A715,
A717,
A719,
A722,
A724,
A723,
A713,
GOBOARD7: 22;
i1
= i19 by
A698,
A701,
A703,
A705,
A711,
A709,
A706,
A728,
A715,
A717,
A719,
A722,
A724,
A723,
A713,
A734,
GOBOARD7: 19;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A696,
A712,
A699,
A727,
A701,
A703,
A715,
A717,
A734,
A735;
end;
suppose
A736: (i1
+ 1)
= i2 & j1
= j2 & i19
= i29 & (j19
+ 1)
= j29;
then i19
= i1 & j1
= j19 or i19
= i1 & (j19
+ 1)
= j1 or i19
= (i1
+ 1) & j1
= j19 or i19
= (i1
+ 1) & (j19
+ 1)
= j1 by
A698,
A701,
A703,
A705,
A709,
A707,
A710,
A728,
A715,
A717,
A719,
A722,
A726,
A720,
A713,
GOBOARD7: 21;
hence contradiction by
A579,
A628,
A631,
A636,
A634,
A633,
A637,
A696,
A699,
A727,
A701,
A703,
A715,
A717,
A736;
end;
suppose
A737: (i1
+ 1)
= i2 & j1
= j2 & (i19
+ 1)
= i29 & j19
= j29;
then
A738: i1
= i19 or i1
= (i19
+ 1) or (i1
+ 1)
= i19 by
A698,
A701,
A703,
A705,
A709,
A707,
A710,
A728,
A715,
A717,
A719,
A726,
A724,
A725,
A713,
GOBOARD7: 23;
j1
= j19 by
A698,
A701,
A703,
A705,
A709,
A707,
A710,
A728,
A715,
A717,
A719,
A726,
A724,
A725,
A713,
A737,
GOBOARD7: 20;
hence contradiction by
A628,
A631,
A636,
A634,
A637,
A696,
A727,
A701,
A703,
A715,
A717,
A737,
A738;
end;
suppose
A739: (i1
+ 1)
= i2 & j1
= j2 & i19
= (i29
+ 1) & j19
= j29;
then
A740: i1
= i29 or i1
= (i29
+ 1) or (i1
+ 1)
= i29 by
A698,
A701,
A703,
A705,
A709,
A707,
A710,
A728,
A715,
A717,
A722,
A726,
A724,
A721,
A713,
GOBOARD7: 23;
j1
= j19 by
A698,
A701,
A703,
A705,
A709,
A707,
A710,
A728,
A715,
A717,
A722,
A726,
A724,
A721,
A713,
A739,
GOBOARD7: 20;
hence contradiction by
A579,
A628,
A636,
A633,
A637,
A696,
A712,
A699,
A727,
A701,
A703,
A715,
A717,
A739,
A740;
end;
suppose
A741: (i1
+ 1)
= i2 & j1
= j2 & i19
= i29 & j19
= (j29
+ 1);
then i19
= i1 & j1
= j29 or i19
= i1 & (j29
+ 1)
= j1 or i19
= (i1
+ 1) & j1
= j29 or i19
= (i1
+ 1) & (j29
+ 1)
= j1 by
A698,
A701,
A703,
A705,
A709,
A707,
A710,
A728,
A715,
A717,
A719,
A722,
A724,
A723,
A713,
GOBOARD7: 21;
hence contradiction by
A579,
A628,
A631,
A636,
A633,
A637,
A696,
A712,
A699,
A727,
A701,
A703,
A715,
A717,
A741;
end;
suppose
A742: i1
= (i2
+ 1) & j1
= j2 & i19
= i29 & (j19
+ 1)
= j29;
then i19
= i2 & j19
= j1 or i19
= i2 & (j19
+ 1)
= j1 or i19
= (i2
+ 1) & j19
= j1 or i19
= (i2
+ 1) & (j19
+ 1)
= j1 by
A698,
A701,
A703,
A711,
A709,
A707,
A729,
A728,
A715,
A717,
A719,
A722,
A726,
A720,
A713,
GOBOARD7: 21;
hence contradiction by
A579,
A628,
A631,
A636,
A633,
A637,
A696,
A712,
A699,
A727,
A701,
A703,
A715,
A717,
A742;
end;
suppose
A743: i1
= (i2
+ 1) & j1
= j2 & (i19
+ 1)
= i29 & j19
= j29;
then
A744: i2
= i19 or i2
= (i19
+ 1) or (i2
+ 1)
= i19 by
A698,
A701,
A703,
A711,
A709,
A707,
A729,
A728,
A715,
A717,
A719,
A726,
A724,
A725,
A713,
GOBOARD7: 23;
j1
= j19 by
A698,
A701,
A703,
A711,
A709,
A707,
A729,
A728,
A715,
A717,
A719,
A726,
A724,
A725,
A713,
A743,
GOBOARD7: 20;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A696,
A712,
A699,
A727,
A701,
A703,
A715,
A717,
A743,
A744;
end;
suppose
A745: i1
= (i2
+ 1) & j1
= j2 & i19
= (i29
+ 1) & j19
= j29;
then
A746: i2
= i29 or i2
= (i29
+ 1) or (i2
+ 1)
= i29 by
A698,
A701,
A703,
A711,
A709,
A707,
A729,
A728,
A715,
A717,
A722,
A726,
A724,
A721,
A713,
GOBOARD7: 23;
j1
= j19 by
A698,
A701,
A703,
A711,
A709,
A707,
A729,
A728,
A715,
A717,
A722,
A726,
A724,
A721,
A713,
A745,
GOBOARD7: 20;
hence contradiction by
A628,
A631,
A636,
A637,
A696,
A712,
A727,
A701,
A703,
A715,
A717,
A745,
A746;
end;
suppose
A747: i1
= (i2
+ 1) & j1
= j2 & i19
= i29 & j19
= (j29
+ 1);
then i19
= i2 & j29
= j1 or i19
= i2 & (j29
+ 1)
= j1 or i19
= (i2
+ 1) & j29
= j1 or i19
= (i2
+ 1) & (j29
+ 1)
= j1 by
A698,
A701,
A703,
A711,
A709,
A707,
A729,
A728,
A715,
A717,
A719,
A722,
A724,
A723,
A713,
GOBOARD7: 21;
hence contradiction by
A579,
A628,
A631,
A636,
A633,
A637,
A696,
A712,
A699,
A727,
A701,
A703,
A715,
A717,
A747;
end;
suppose
A748: i1
= i2 & j1
= (j2
+ 1) & i19
= i29 & (j19
+ 1)
= j29;
then
A749: j2
= j19 or j2
= (j19
+ 1) or (j2
+ 1)
= j19 by
A698,
A701,
A703,
A705,
A711,
A707,
A708,
A728,
A715,
A717,
A719,
A722,
A726,
A720,
A713,
GOBOARD7: 22;
i1
= i19 by
A698,
A701,
A703,
A705,
A711,
A707,
A708,
A728,
A715,
A717,
A719,
A722,
A726,
A720,
A713,
A748,
GOBOARD7: 19;
hence contradiction by
A579,
A613,
A631,
A636,
A633,
A696,
A712,
A699,
A727,
A701,
A703,
A715,
A717,
A748,
A749;
end;
suppose
A750: i1
= i2 & j1
= (j2
+ 1) & (i19
+ 1)
= i29 & j19
= j29;
then i1
= i19 & j2
= j19 or i1
= i19 & (j2
+ 1)
= j19 or i1
= (i19
+ 1) & j2
= j19 or i1
= (i19
+ 1) & (j2
+ 1)
= j19 by
A698,
A701,
A703,
A705,
A711,
A707,
A708,
A728,
A715,
A717,
A719,
A726,
A724,
A725,
A713,
GOBOARD7: 21;
hence contradiction by
A579,
A628,
A631,
A636,
A633,
A637,
A696,
A712,
A699,
A727,
A701,
A703,
A715,
A717,
A750;
end;
suppose
A751: i1
= i2 & j1
= (j2
+ 1) & i19
= (i29
+ 1) & j19
= j29;
then i1
= i29 & j2
= j19 or i1
= i29 & (j2
+ 1)
= j19 or i1
= (i29
+ 1) & j2
= j19 or i1
= (i29
+ 1) & (j2
+ 1)
= j19 by
A698,
A701,
A703,
A705,
A711,
A707,
A708,
A728,
A715,
A717,
A722,
A726,
A724,
A721,
A713,
GOBOARD7: 21;
hence contradiction by
A579,
A628,
A631,
A636,
A633,
A637,
A696,
A712,
A699,
A727,
A701,
A703,
A715,
A717,
A751;
end;
suppose
A752: i1
= i2 & j1
= (j2
+ 1) & i19
= i29 & j19
= (j29
+ 1);
then
A753: j2
= j29 or j2
= (j29
+ 1) or (j2
+ 1)
= j29 by
A698,
A701,
A703,
A705,
A711,
A707,
A708,
A728,
A715,
A717,
A719,
A722,
A724,
A723,
A713,
GOBOARD7: 22;
i1
= i19 by
A698,
A701,
A703,
A705,
A711,
A707,
A708,
A728,
A715,
A717,
A719,
A722,
A724,
A723,
A713,
A752,
GOBOARD7: 19;
hence contradiction by
A628,
A631,
A636,
A637,
A696,
A712,
A727,
A701,
A703,
A715,
A717,
A752,
A753;
end;
end;
hence contradiction;
end;
end;
then
reconsider g as
standard non
constant
special_circular_sequence by
A567,
A612,
A577,
A623,
A625,
FINSEQ_6:def 1,
JORDAN8: 4;
A754: for i st 1
<= i & (i
+ 1)
<= (
len f) holds (
right_cell (f,i,G))
= (
Cl (
Int (
right_cell (f,i,G))))
proof
let i such that
A755: 1
<= i & (i
+ 1)
<= (
len f);
consider i1, j1, i2, j2 such that
A756:
[i1, j1]
in (
Indices G) and
A757: (f
/. i)
= (G
* (i1,j1)) and
A758:
[i2, j2]
in (
Indices G) and
A759: (f
/. (i
+ 1))
= (G
* (i2,j2)) and
A760: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A569,
A755,
JORDAN8: 3;
A761: i1
<= (
len G) by
A756,
MATRIX_0: 32;
A762: j2
<= (
width G) by
A758,
MATRIX_0: 32;
A763: j1
<= (
width G) by
A756,
MATRIX_0: 32;
A764: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A765: i2
<= (
len G) by
A758,
MATRIX_0: 32;
A766: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
per cases by
A760;
suppose i1
= i2 & (j1
+ 1)
= j2;
then (
right_cell (f,i,G))
= (
cell (G,i1,j1)) by
A569,
A755,
A756,
A757,
A758,
A759,
A764,
GOBRD13:def 2;
hence thesis by
A761,
A763,
GOBRD11: 35;
end;
suppose
A767: (i1
+ 1)
= i2 & j1
= j2;
A768: (j1
-' 1)
<= (
width G) by
A763,
NAT_D: 44;
(
right_cell (f,i,G))
= (
cell (G,i1,(j1
-' 1))) by
A569,
A755,
A756,
A757,
A758,
A759,
A766,
A767,
GOBRD13:def 2;
hence thesis by
A761,
A768,
GOBRD11: 35;
end;
suppose i1
= (i2
+ 1) & j1
= j2;
then (
right_cell (f,i,G))
= (
cell (G,i2,j2)) by
A569,
A755,
A756,
A757,
A758,
A759,
A766,
GOBRD13:def 2;
hence thesis by
A765,
A762,
GOBRD11: 35;
end;
suppose
A769: i1
= i2 & j1
= (j2
+ 1);
A770: (i1
-' 1)
<= (
len G) by
A761,
NAT_D: 44;
(
right_cell (f,i,G))
= (
cell (G,(i1
-' 1),j2)) by
A569,
A755,
A756,
A757,
A758,
A759,
A764,
A769,
GOBRD13:def 2;
hence thesis by
A762,
A770,
GOBRD11: 35;
end;
end;
now
A771: for h be
standard non
constant
special_circular_sequence st (
L~ h)
c= (
L~ f) holds for Comp be
Subset of (
TOP-REAL 2) st Comp
is_a_component_of ((
L~ h)
` ) holds for n st 1
<= n & (n
+ 1)
<= (
len f) & (f
/. n)
in Comp & not (f
/. n)
in (
L~ h) holds C
meets Comp
proof
let h be
standard non
constant
special_circular_sequence such that
A772: (
L~ h)
c= (
L~ f);
let Comp be
Subset of (
TOP-REAL 2) such that
A773: Comp
is_a_component_of ((
L~ h)
` );
let n such that
A774: 1
<= n & (n
+ 1)
<= (
len f) and
A775: (f
/. n)
in Comp and
A776: not (f
/. n)
in (
L~ h);
reconsider rc = ((
right_cell (f,n,G))
\ (
L~ h)) as
Subset of (
TOP-REAL 2);
(f
/. n)
in (
right_cell (f,n,G)) by
A569,
A774,
Th8;
then (f
/. n)
in rc by
A776,
XBOOLE_0:def 5;
then
A777: rc
meets Comp by
A775,
XBOOLE_0: 3;
A778: rc
meets C
proof
(
right_cell (f,n,G))
meets C by
A427,
A774;
then
consider p be
object such that
A779: p
in (
right_cell (f,n,G)) and
A780: p
in C by
XBOOLE_0: 3;
reconsider p as
Element of (
TOP-REAL 2) by
A779;
now
take a = p;
now
assume p
in (
L~ h);
then
consider j such that
A781: 1
<= j & (j
+ 1)
<= (
len f) and
A782: p
in (
LSeg (f,j)) by
A772,
SPPOL_2: 13;
p
in ((
left_cell (f,j,G))
/\ (
right_cell (f,j,G))) by
A427,
A781,
A782,
GOBRD13: 29;
then
A783: p
in (
left_cell (f,j,G)) by
XBOOLE_0:def 4;
(
left_cell (f,j,G))
misses C by
A427,
A781;
hence contradiction by
A780,
A783,
XBOOLE_0: 3;
end;
hence a
in rc by
A779,
XBOOLE_0:def 5;
thus a
in C by
A780;
end;
hence thesis by
XBOOLE_0: 3;
end;
(
Int (
right_cell (f,n,G)))
misses (
L~ f) by
A569,
A774,
Th15;
then (
Int (
right_cell (f,n,G)))
misses (
L~ h) by
A772,
XBOOLE_1: 63;
then
A784: (
Int (
right_cell (f,n,G)))
c= ((
L~ h)
` ) by
SUBSET_1: 23;
A785: rc
= ((
right_cell (f,n,G))
/\ ((
L~ h)
` )) by
SUBSET_1: 13;
then
A786: rc
c= ((
L~ h)
` ) by
XBOOLE_1: 17;
rc
c= (
right_cell (f,n,G)) by
XBOOLE_1: 36;
then
A787: (
Int (
right_cell (f,n,G)))
c= (
right_cell (f,n,G)) & rc
c= (
Cl (
Int (
right_cell (f,n,G)))) by
A569,
A774,
Th11,
TOPS_1: 16;
(
Int (
right_cell (f,n,G))) is
convex by
A569,
A774,
Th10;
then rc is
connected by
A785,
A784,
A787,
CONNSP_1: 18,
XBOOLE_1: 19;
then rc
c= Comp by
A773,
A777,
A786,
GOBOARD9: 4;
hence thesis by
A778,
XBOOLE_1: 63;
end;
((
L~ g)
` ) is
open by
TOPS_1: 3;
then
A788: ((
L~ g)
` )
= (
Int ((
L~ g)
` )) by
TOPS_1: 23;
A789: (
L~ g)
c= (
L~ f) by
JORDAN3: 40;
A790: for j, k st 1
<= j & j
<= k holds ((F
. k)
/. j)
= ((F
. j)
/. j)
proof
let j, k;
assume that
A791: 1
<= j and
A792: j
<= k;
j
<= (
len (F
. k)) by
A192,
A792;
then (
len ((F
. k)
| j))
= j by
FINSEQ_1: 59;
then
A793: j
in (
dom ((F
. k)
| j)) by
A791,
FINSEQ_3: 25;
((F
. k)
| j)
= (F
. j) by
A488,
A792;
hence thesis by
A793,
FINSEQ_4: 70;
end;
assume m
<> 1;
then
A794: 1
< m by
A568,
XXREAL_0: 1;
A795: for n st 1
<= n & n
<= (m
-' 1) holds not (f
/. n)
in (
L~ g)
proof
A796: 2
<= (
len G) by
A231,
NAT_1: 12;
let n such that
A797: 1
<= n and
A798: n
<= (m
-' 1);
set p = (f
/. n);
A799: n
<= (
len f) by
A575,
A798,
XXREAL_0: 2;
then
A800: p
in (
Values G) by
A427,
A797,
Th6;
assume p
in (
L~ g);
then
consider j such that
A801: ((m
-' 1)
+ 1)
<= j and
A802: (j
+ 1)
<= (
len f) and
A803: p
in (
LSeg (f,j)) by
A575,
Th7;
A804: j
< k by
A578,
A802,
NAT_1: 13;
A805: n
< ((m
-' 1)
+ 1) by
A798,
NAT_1: 13;
then
A806: n
< j by
A801,
XXREAL_0: 2;
A807: ((m
-' 1)
+ 1)
= m by
A568,
XREAL_1: 235;
then
A808: 1
< j by
A794,
A801,
XXREAL_0: 2;
per cases by
A2,
A427,
A802,
A803,
A808,
A796,
A800,
Th23;
suppose
A809: p
= (f
/. j);
A810: n
<> (
len (F
. j)) by
A192,
A801,
A805;
n
<= (
len (F
. j)) by
A192,
A806;
then
A811: n
in (
dom (F
. j)) by
A797,
FINSEQ_3: 25;
((F
. j)
/. n)
= ((F
. n)
/. n) by
A790,
A797,
A806
.= p by
A578,
A790,
A797,
A799
.= ((F
. j)
/. j) by
A790,
A808,
A804,
A809
.= ((F
. j)
/. (
len (F
. j))) by
A192;
hence contradiction by
A564,
A808,
A804,
A811,
A810;
end;
suppose
A812: p
= (f
/. (j
+ 1));
now
per cases by
A578,
A802,
XXREAL_0: 1;
suppose
A813: (j
+ 1)
= k;
A814: n
<> (
len (F
. m)) by
A192,
A805,
A807;
n
<= (
len (F
. m)) by
A192,
A805,
A807;
then
A815: n
in (
dom (F
. m)) by
A797,
FINSEQ_3: 25;
((F
. m)
/. n)
= ((F
. n)
/. n) by
A790,
A797,
A805,
A807
.= ((F
. k)
/. k) by
A578,
A790,
A797,
A799,
A812,
A813
.= ((F
. m)
/. m) by
A567,
A578,
A568,
A570,
A790
.= ((F
. m)
/. (
len (F
. m))) by
A192;
hence contradiction by
A564,
A578,
A568,
A571,
A815,
A814;
end;
suppose
A816: (j
+ 1)
< k;
set l = (j
+ 1);
A817: 1
<= l by
NAT_1: 11;
A818: n
< (n
+ 1) & (n
+ 1)
< l by
A806,
XREAL_1: 6,
XREAL_1: 29;
then
A819: n
<> (
len (F
. l)) by
A192;
A820: n
< l by
A818,
XXREAL_0: 2;
then n
<= (
len (F
. l)) by
A192;
then
A821: n
in (
dom (F
. l)) by
A797,
FINSEQ_3: 25;
((F
. l)
/. n)
= ((F
. n)
/. n) by
A790,
A797,
A820
.= p by
A578,
A790,
A797,
A799
.= ((F
. l)
/. l) by
A790,
A812,
A816,
A817
.= ((F
. l)
/. (
len (F
. l))) by
A192;
hence contradiction by
A564,
A816,
A821,
A819,
NAT_1: 11;
end;
end;
hence contradiction;
end;
end;
C
meets (
RightComp (
Rev g))
proof
1
<= (
len g) by
A622,
XREAL_1: 145;
then
A822: (((
len g)
-' 1)
+ 2)
= ((
len g)
+ 1) by
Lm1;
A823: (1
- 1)
< (m
- 1) by
A794,
XREAL_1: 9;
A824: ((m
-' 1)
+ 2)
= (m
+ 1) by
A568,
Lm1;
set l = ((m
-' 1)
+ ((
len g)
-' 1));
set a = (f
/. (m
-' 1));
set rg = (
Rev g);
set p = (rg
/. 1), q = (rg
/. 2);
A825: ((1
+ 1)
- 1)
<= ((
len g)
- 1) by
A621,
XREAL_1: 9;
((1
+ 1)
-' 1)
<= ((
len g)
-' 1) by
A621,
NAT_D: 42;
then
A826: 1
<= ((
len g)
-' 1) by
NAT_D: 34;
then ((m
-' 1)
+ 1)
<= l by
XREAL_1: 6;
then (m
-' 1)
< l by
NAT_1: 13;
then
A827: (m
-' 1)
<> (
len (F
. l)) by
A192;
A828: (1
+ 1)
<= (
len rg) by
A621,
FINSEQ_5:def 3;
then ((1
+ 1)
-' 1)
<= ((
len rg)
-' 1) by
NAT_D: 42;
then
A829: 1
<= ((
len rg)
-' 1) by
NAT_D: 34;
1
< (
len rg) by
A828,
NAT_1: 13;
then
A830: (((
len rg)
-' 1)
+ 1)
= (
len rg) by
XREAL_1: 235;
A831: rg
is_sequence_on G by
A623,
Th5;
then
consider p1,p2,q1,q2 be
Nat such that
A832:
[p1, p2]
in (
Indices G) and
A833: p
= (G
* (p1,p2)) and
A834:
[q1, q2]
in (
Indices G) and
A835: q
= (G
* (q1,q2)) and
A836: p1
= q1 & (p2
+ 1)
= q2 or (p1
+ 1)
= q1 & p2
= q2 or p1
= (q1
+ 1) & p2
= q2 or p1
= q1 & p2
= (q2
+ 1) by
A828,
JORDAN8: 3;
A837: 1
<= p1 by
A832,
MATRIX_0: 32;
A838: p2
<= (
width G) by
A832,
MATRIX_0: 32;
A839: p1
<= (
len G) by
A832,
MATRIX_0: 32;
A840: 1
<= p2 by
A832,
MATRIX_0: 32;
A841: p
= (f
/. m) by
A567,
A577,
FINSEQ_5: 65;
((
len g)
-' 1)
<= (
len g) by
NAT_D: 44;
then
A842: ((
len g)
-' 1)
in (
dom g) by
A826,
FINSEQ_3: 25;
then
A843: q
= (g
/. ((
len g)
-' 1)) by
A822,
FINSEQ_5: 66
.= (f
/. l) by
A842,
FINSEQ_5: 27;
l
= ((m
+ ((
len g)
-' 1))
-' 1) by
A568,
NAT_D: 38
.= ((((
len g)
-' 1)
+ m)
- 1) by
A826,
NAT_D: 37
.= ((((
len g)
- 1)
+ m)
- 1) by
A825,
XREAL_0:def 2
.= ((((k
- (m
- 1))
- 1)
+ m)
- 1) by
A578,
A576,
A823,
XREAL_0:def 2
.= (k
- 1);
then
A844: k
= (l
+ 1);
then
A845: l
< k by
XREAL_1: 29;
((
len g)
-' 1)
<= l by
NAT_1: 11;
then
A846: 1
<= l by
A826,
XXREAL_0: 2;
then
A847: (
right_cell (f,l,G))
meets C by
A427,
A578,
A844;
A848: ((m
-' 1)
+ 1)
= m by
A568,
XREAL_1: 235;
then
A849: 1
<= (m
-' 1) by
A794,
NAT_1: 13;
then
A850: (
right_cell (f,(m
-' 1),G))
meets C by
A427,
A570,
A848;
(m
-' 1)
<= l by
NAT_1: 11;
then (m
-' 1)
<= (
len (F
. l)) by
A192;
then
A851: (m
-' 1)
in (
dom (F
. l)) by
A849,
FINSEQ_3: 25;
not a
in (
L~ g) by
A795,
A849;
then
A852: not a
in (
L~ rg) by
SPPOL_2: 22;
per cases by
A836;
suppose
A853: p1
= q1 & (p2
+ 1)
= q2;
consider a1,a2,p91,p92 be
Nat such that
A854:
[a1, a2]
in (
Indices G) and
A855: a
= (G
* (a1,a2)) and
A856:
[p91, p92]
in (
Indices G) & p
= (G
* (p91,p92)) and
A857: a1
= p91 & (a2
+ 1)
= p92 or (a1
+ 1)
= p91 & a2
= p92 or a1
= (p91
+ 1) & a2
= p92 or a1
= p91 & a2
= (p92
+ 1) by
A569,
A570,
A841,
A848,
A849,
JORDAN8: 3;
A858: 1
<= a2 by
A854,
MATRIX_0: 32;
thus thesis
proof
per cases by
A857;
suppose
A859: a1
= p91 & (a2
+ 1)
= p92;
A860: ((m
-' 1)
+ 1)
<= (
len (F
. m)) & (f
/. ((m
-' 1)
+ 1))
= ((F
. m)
/. m) by
A192,
A578,
A568,
A570,
A790,
A848;
A861: ((F
. k)
| (m
+ 1))
= (F
. (m
+ 1)) by
A488,
A578,
A574;
A862: a1
= p1 by
A832,
A833,
A856,
A859,
GOBOARD1: 5;
A863: (m
-' 1)
<= m by
A848,
NAT_1: 11;
A864: (f
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A578,
A575,
A790,
A849
.= ((F
. m)
/. (m
-' 1)) by
A790,
A849,
A863;
A865: 2
in (
dom g) by
A621,
FINSEQ_3: 25;
A866: (a2
+ 1)
= p2 by
A832,
A833,
A856,
A859,
GOBOARD1: 5;
then
A867: (p2
-' 1)
= a2 by
NAT_D: 34;
(
right_cell (f,l,G))
= (
cell (G,(p1
-' 1),p2)) by
A427,
A567,
A578,
A841,
A844,
A846,
A843,
A832,
A833,
A834,
A835,
A853,
GOBRD13: 28
.= (
front_left_cell ((F
. m),(m
-' 1),G)) by
A427,
A841,
A848,
A849,
A832,
A833,
A854,
A855,
A862,
A866,
A864,
A860,
GOBRD13: 34;
then (F
. (m
+ 1))
turns_left ((m
-' 1),G) by
A456,
A794,
A847;
then
A868: (a2
+ 1)
> a2 & f
turns_left ((m
-' 1),G) by
A849,
A824,
A861,
GOBRD13: 44,
NAT_1: 13;
(((
len rg)
-' 1)
+ 2)
= ((
len g)
+ 1) by
A822,
FINSEQ_5:def 3;
then
A869: (rg
/. ((
len rg)
-' 1))
= (g
/. 2) by
A865,
FINSEQ_5: 66
.= (f
/. (m
+ 1)) by
A824,
A865,
FINSEQ_5: 27;
A870: p
= (g
/. 1) by
A567,
A612,
A577,
FINSEQ_5: 65
.= (rg
/. (
len g)) by
FINSEQ_5: 65
.= (rg
/. (
len rg)) by
FINSEQ_5:def 3;
set rc = ((
right_cell (rg,((
len rg)
-' 1),G))
\ (
L~ rg));
A871: (
RightComp rg)
is_a_component_of ((
L~ rg)
` ) by
GOBOARD9:def 2;
A872: ((p1
-' 1)
+ 1)
= p1 by
A837,
XREAL_1: 235;
A873: (p2
+ 1)
> (a2
+ 1) by
A866,
NAT_1: 13;
then
A874:
[(p1
-' 1), p2]
in (
Indices G) by
A841,
A848,
A832,
A833,
A854,
A855,
A868;
then
A875: 1
<= (p1
-' 1) by
MATRIX_0: 32;
(f
/. (m
+ 1))
= (G
* ((p1
-' 1),p2)) by
A841,
A848,
A832,
A833,
A854,
A855,
A873,
A868;
then (
right_cell (rg,((
len rg)
-' 1),G))
= (
cell (G,(p1
-' 1),a2)) by
A831,
A829,
A830,
A832,
A833,
A874,
A867,
A872,
A869,
A870,
GOBRD13: 24;
then a
in (
right_cell (rg,((
len rg)
-' 1),G)) by
A839,
A838,
A855,
A858,
A862,
A866,
A875,
A872,
Th20;
then
A876: a
in rc by
A852,
XBOOLE_0:def 5;
rc
c= (
RightComp rg) & (
L~ rg)
c= (
L~ f) by
A789,
A831,
A829,
A830,
Th27,
SPPOL_2: 22;
hence thesis by
A570,
A771,
A848,
A849,
A852,
A876,
A871;
end;
suppose
A877: (a1
+ 1)
= p91 & a2
= p92;
then (a1
+ 1)
= p1 by
A832,
A833,
A856,
GOBOARD1: 5;
then
A878: (q1
-' 1)
= a1 by
A853,
NAT_D: 34;
a2
= p2 by
A832,
A833,
A856,
A877,
GOBOARD1: 5;
then (
right_cell (f,l,G))
= (
cell (G,a1,a2)) by
A427,
A567,
A578,
A841,
A844,
A846,
A843,
A832,
A833,
A834,
A835,
A853,
A878,
GOBRD13: 28
.= (
left_cell (f,(m
-' 1),G)) by
A427,
A570,
A841,
A848,
A849,
A854,
A855,
A856,
A877,
GOBRD13: 23;
hence thesis by
A427,
A570,
A848,
A849,
A847;
end;
suppose a1
= (p91
+ 1) & a2
= p92;
then a1
= (p1
+ 1) & a2
= p2 by
A832,
A833,
A856,
GOBOARD1: 5;
then (
right_cell (f,(m
-' 1),G))
= (
cell (G,p1,p2)) by
A427,
A570,
A841,
A848,
A849,
A832,
A833,
A854,
A855,
GOBRD13: 26
.= (
left_cell (f,l,G)) by
A427,
A567,
A578,
A841,
A844,
A846,
A843,
A832,
A833,
A834,
A835,
A853,
GOBRD13: 27;
hence thesis by
A427,
A578,
A844,
A846,
A850;
end;
suppose a1
= p91 & a2
= (p92
+ 1);
then
A879: a1
= q1 & a2
= q2 by
A832,
A833,
A853,
A856,
GOBOARD1: 5;
((F
. l)
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A790,
A849,
NAT_1: 11
.= q by
A578,
A575,
A790,
A849,
A835,
A855,
A879
.= ((F
. l)
/. l) by
A790,
A845,
A846,
A843
.= ((F
. l)
/. (
len (F
. l))) by
A192;
hence thesis by
A564,
A845,
A846,
A851,
A827;
end;
end;
end;
suppose
A880: (p1
+ 1)
= q1 & p2
= q2;
consider a1,a2,p91,p92 be
Nat such that
A881:
[a1, a2]
in (
Indices G) and
A882: a
= (G
* (a1,a2)) and
A883:
[p91, p92]
in (
Indices G) & p
= (G
* (p91,p92)) and
A884: a1
= p91 & (a2
+ 1)
= p92 or (a1
+ 1)
= p91 & a2
= p92 or a1
= (p91
+ 1) & a2
= p92 or a1
= p91 & a2
= (p92
+ 1) by
A569,
A570,
A841,
A848,
A849,
JORDAN8: 3;
A885: 1
<= a1 by
A881,
MATRIX_0: 32;
thus thesis
proof
per cases by
A884;
suppose
A886: a1
= p91 & (a2
+ 1)
= p92;
then (a2
+ 1)
= p2 by
A832,
A833,
A883,
GOBOARD1: 5;
then
A887: (q2
-' 1)
= a2 by
A880,
NAT_D: 34;
A888: a1
= p1 by
A832,
A833,
A883,
A886,
GOBOARD1: 5;
(
right_cell (f,(m
-' 1),G))
= (
cell (G,a1,a2)) by
A427,
A570,
A841,
A848,
A849,
A881,
A882,
A883,
A886,
GOBRD13: 22
.= (
left_cell (f,l,G)) by
A427,
A567,
A578,
A841,
A844,
A846,
A843,
A832,
A833,
A834,
A835,
A880,
A888,
A887,
GOBRD13: 25;
hence thesis by
A427,
A578,
A844,
A846,
A850;
end;
suppose
A889: (a1
+ 1)
= p91 & a2
= p92;
A890: (m
-' 1)
<= m by
A848,
NAT_1: 11;
A891: (f
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A578,
A575,
A790,
A849
.= ((F
. m)
/. (m
-' 1)) by
A790,
A849,
A890;
A892: 2
in (
dom g) by
A621,
FINSEQ_3: 25;
(((
len rg)
-' 1)
+ 2)
= ((
len g)
+ 1) by
A822,
FINSEQ_5:def 3;
then
A893: (rg
/. ((
len rg)
-' 1))
= (g
/. 2) by
A892,
FINSEQ_5: 66
.= (f
/. (m
+ 1)) by
A824,
A892,
FINSEQ_5: 27;
A894: p
= (g
/. 1) by
A567,
A612,
A577,
FINSEQ_5: 65
.= (rg
/. (
len g)) by
FINSEQ_5: 65
.= (rg
/. (
len rg)) by
FINSEQ_5:def 3;
A895: a2
= p2 by
A832,
A833,
A883,
A889,
GOBOARD1: 5;
A896: ((m
-' 1)
+ 1)
<= (
len (F
. m)) & (f
/. ((m
-' 1)
+ 1))
= ((F
. m)
/. m) by
A192,
A578,
A568,
A570,
A790,
A848;
A897: ((F
. k)
| (m
+ 1))
= (F
. (m
+ 1)) by
A488,
A578,
A574;
set rc = ((
right_cell (rg,((
len rg)
-' 1),G))
\ (
L~ rg));
A898: a1
< (a1
+ 1) & p1
< (p1
+ 1) by
XREAL_1: 29;
A899: (a1
+ 1)
= p1 by
A832,
A833,
A883,
A889,
GOBOARD1: 5;
then
A900: a1
= (p1
-' 1) by
NAT_D: 34;
(
right_cell (f,l,G))
= (
cell (G,p1,p2)) by
A427,
A567,
A578,
A841,
A844,
A846,
A843,
A832,
A833,
A834,
A835,
A880,
GOBRD13: 26
.= (
front_left_cell ((F
. m),(m
-' 1),G)) by
A427,
A841,
A848,
A849,
A832,
A833,
A881,
A882,
A899,
A895,
A891,
A896,
GOBRD13: 36;
then (F
. (m
+ 1))
turns_left ((m
-' 1),G) by
A456,
A794,
A847;
then
A901: f
turns_left ((m
-' 1),G) by
A849,
A824,
A897,
GOBRD13: 44;
then
A902:
[p1, (p2
+ 1)]
in (
Indices G) by
A841,
A848,
A832,
A833,
A881,
A882,
A899,
A898;
then
A903: (p2
+ 1)
<= (
width G) by
MATRIX_0: 32;
(f
/. (m
+ 1))
= (G
* (p1,(p2
+ 1))) by
A841,
A848,
A832,
A833,
A881,
A882,
A899,
A898,
A901;
then (
right_cell (rg,((
len rg)
-' 1),G))
= (
cell (G,(p1
-' 1),a2)) by
A831,
A829,
A830,
A832,
A833,
A895,
A902,
A893,
A894,
GOBRD13: 28;
then a
in (
right_cell (rg,((
len rg)
-' 1),G)) by
A839,
A840,
A882,
A885,
A899,
A895,
A903,
A900,
Th20;
then
A904: a
in rc by
A852,
XBOOLE_0:def 5;
A905: (
RightComp rg)
is_a_component_of ((
L~ rg)
` ) by
GOBOARD9:def 2;
rc
c= (
RightComp rg) & (
L~ rg)
c= (
L~ f) by
A789,
A831,
A829,
A830,
Th27,
SPPOL_2: 22;
hence thesis by
A570,
A771,
A848,
A849,
A852,
A904,
A905;
end;
suppose a1
= (p91
+ 1) & a2
= p92;
then
A906: a1
= q1 & a2
= q2 by
A832,
A833,
A880,
A883,
GOBOARD1: 5;
((F
. l)
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A790,
A849,
NAT_1: 11
.= q by
A578,
A575,
A790,
A849,
A835,
A882,
A906
.= ((F
. l)
/. l) by
A790,
A845,
A846,
A843
.= ((F
. l)
/. (
len (F
. l))) by
A192;
hence thesis by
A564,
A845,
A846,
A851,
A827;
end;
suppose a1
= p91 & a2
= (p92
+ 1);
then
A907: a1
= p1 & a2
= (p2
+ 1) by
A832,
A833,
A883,
GOBOARD1: 5;
(
right_cell (f,l,G))
= (
cell (G,p1,p2)) by
A427,
A567,
A578,
A841,
A844,
A846,
A843,
A832,
A833,
A834,
A835,
A880,
GOBRD13: 26
.= (
left_cell (f,(m
-' 1),G)) by
A427,
A570,
A841,
A848,
A849,
A832,
A833,
A881,
A882,
A907,
GOBRD13: 27;
hence thesis by
A427,
A570,
A848,
A849,
A847;
end;
end;
end;
suppose
A908: p1
= (q1
+ 1) & p2
= q2;
consider a1,a2,p91,p92 be
Nat such that
A909:
[a1, a2]
in (
Indices G) and
A910: a
= (G
* (a1,a2)) and
A911:
[p91, p92]
in (
Indices G) & p
= (G
* (p91,p92)) and
A912: a1
= p91 & (a2
+ 1)
= p92 or (a1
+ 1)
= p91 & a2
= p92 or a1
= (p91
+ 1) & a2
= p92 or a1
= p91 & a2
= (p92
+ 1) by
A569,
A570,
A841,
A848,
A849,
JORDAN8: 3;
A913: a1
<= (
len G) by
A909,
MATRIX_0: 32;
thus thesis
proof
per cases by
A912;
suppose
A914: a1
= p91 & (a2
+ 1)
= p92;
then (a2
+ 1)
= p2 by
A832,
A833,
A911,
GOBOARD1: 5;
then
A915: (q2
-' 1)
= a2 by
A908,
NAT_D: 34;
a1
= p1 by
A832,
A833,
A911,
A914,
GOBOARD1: 5;
then
A916: q1
= (a1
-' 1) by
A908,
NAT_D: 34;
(
right_cell (f,l,G))
= (
cell (G,q1,(q2
-' 1))) by
A427,
A567,
A578,
A841,
A844,
A846,
A843,
A832,
A833,
A834,
A835,
A908,
GOBRD13: 24
.= (
left_cell (f,(m
-' 1),G)) by
A427,
A570,
A841,
A848,
A849,
A909,
A910,
A911,
A914,
A916,
A915,
GOBRD13: 21;
hence thesis by
A427,
A570,
A848,
A849,
A847;
end;
suppose (a1
+ 1)
= p91 & a2
= p92;
then
A917: (a1
+ 1)
= p1 & a2
= p2 by
A832,
A833,
A911,
GOBOARD1: 5;
((F
. l)
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A790,
A849,
NAT_1: 11
.= q by
A578,
A575,
A790,
A849,
A835,
A908,
A910,
A917
.= ((F
. l)
/. l) by
A790,
A845,
A846,
A843
.= ((F
. l)
/. (
len (F
. l))) by
A192;
hence thesis by
A564,
A845,
A846,
A851,
A827;
end;
suppose
A918: a1
= (p91
+ 1) & a2
= p92;
A919: p
= (g
/. 1) by
A567,
A612,
A577,
FINSEQ_5: 65
.= (rg
/. (
len g)) by
FINSEQ_5: 65
.= (rg
/. (
len rg)) by
FINSEQ_5:def 3;
A920: a1
= (p1
+ 1) by
A832,
A833,
A911,
A918,
GOBOARD1: 5;
(p1
+ 1)
> p1 by
XREAL_1: 29;
then
A921: (a1
+ 1)
> p1 by
A920,
NAT_1: 13;
A922: (m
-' 1)
<= m by
A848,
NAT_1: 11;
A923: (f
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A578,
A575,
A790,
A849
.= ((F
. m)
/. (m
-' 1)) by
A790,
A849,
A922;
A924: 2
in (
dom g) by
A621,
FINSEQ_3: 25;
(((
len rg)
-' 1)
+ 2)
= ((
len g)
+ 1) by
A822,
FINSEQ_5:def 3;
then
A925: (rg
/. ((
len rg)
-' 1))
= (g
/. 2) by
A924,
FINSEQ_5: 66
.= (f
/. (m
+ 1)) by
A824,
A924,
FINSEQ_5: 27;
A926: ((F
. k)
| (m
+ 1))
= (F
. (m
+ 1)) by
A488,
A578,
A574;
set rc = ((
right_cell (rg,((
len rg)
-' 1),G))
\ (
L~ rg));
A927: (
RightComp rg)
is_a_component_of ((
L~ rg)
` ) by
GOBOARD9:def 2;
A928: ((p2
-' 1)
+ 1)
= p2 by
A840,
XREAL_1: 235;
A929: (f
/. ((m
-' 1)
+ 1))
= ((F
. m)
/. m) by
A578,
A568,
A570,
A790,
A848;
A930: (p1
-' 1)
= q1 & ((m
-' 1)
+ 1)
<= (
len (F
. m)) by
A192,
A848,
A908,
NAT_D: 34;
A931: a2
= p2 by
A832,
A833,
A911,
A918,
GOBOARD1: 5;
(
right_cell (f,l,G))
= (
cell (G,q1,(q2
-' 1))) by
A427,
A567,
A578,
A841,
A844,
A846,
A843,
A832,
A833,
A834,
A835,
A908,
GOBRD13: 24
.= (
front_left_cell ((F
. m),(m
-' 1),G)) by
A427,
A841,
A848,
A849,
A832,
A833,
A908,
A909,
A910,
A920,
A931,
A930,
A923,
A929,
GOBRD13: 38;
then (F
. (m
+ 1))
turns_left ((m
-' 1),G) by
A456,
A794,
A847;
then
A932: f
turns_left ((m
-' 1),G) by
A849,
A824,
A926,
GOBRD13: 44;
A933: (a2
+ 1)
> p2 by
A931,
NAT_1: 13;
then
A934:
[p1, (p2
-' 1)]
in (
Indices G) by
A841,
A848,
A832,
A833,
A909,
A910,
A931,
A921,
A932;
then
A935: 1
<= (p2
-' 1) by
MATRIX_0: 32;
(f
/. (m
+ 1))
= (G
* (p1,(p2
-' 1))) by
A841,
A848,
A832,
A833,
A909,
A910,
A931,
A933,
A921,
A932;
then (
right_cell (rg,((
len rg)
-' 1),G))
= (
cell (G,p1,(p2
-' 1))) by
A831,
A829,
A830,
A832,
A833,
A934,
A928,
A925,
A919,
GOBRD13: 22;
then a
in (
right_cell (rg,((
len rg)
-' 1),G)) by
A837,
A838,
A910,
A913,
A920,
A931,
A935,
A928,
Th20;
then
A936: a
in rc by
A852,
XBOOLE_0:def 5;
rc
c= (
RightComp rg) & (
L~ rg)
c= (
L~ f) by
A789,
A831,
A829,
A830,
Th27,
SPPOL_2: 22;
hence thesis by
A570,
A771,
A848,
A849,
A852,
A936,
A927;
end;
suppose
A937: a1
= p91 & a2
= (p92
+ 1);
then a1
= p1 by
A832,
A833,
A911,
GOBOARD1: 5;
then
A938: q1
= (a1
-' 1) by
A908,
NAT_D: 34;
a2
= (p2
+ 1) by
A832,
A833,
A911,
A937,
GOBOARD1: 5;
then (
right_cell (f,(m
-' 1),G))
= (
cell (G,q1,q2)) by
A427,
A570,
A841,
A848,
A849,
A908,
A909,
A910,
A911,
A937,
A938,
GOBRD13: 28
.= (
left_cell (f,l,G)) by
A427,
A567,
A578,
A841,
A844,
A846,
A843,
A832,
A833,
A834,
A835,
A908,
GOBRD13: 23;
hence thesis by
A427,
A578,
A844,
A846,
A850;
end;
end;
end;
suppose
A939: p1
= q1 & p2
= (q2
+ 1);
consider a1,a2,p91,p92 be
Nat such that
A940:
[a1, a2]
in (
Indices G) and
A941: a
= (G
* (a1,a2)) and
A942:
[p91, p92]
in (
Indices G) & p
= (G
* (p91,p92)) and
A943: a1
= p91 & (a2
+ 1)
= p92 or (a1
+ 1)
= p91 & a2
= p92 or a1
= (p91
+ 1) & a2
= p92 or a1
= p91 & a2
= (p92
+ 1) by
A569,
A570,
A841,
A848,
A849,
JORDAN8: 3;
A944: a2
<= (
width G) by
A940,
MATRIX_0: 32;
thus thesis
proof
per cases by
A943;
suppose a1
= p91 & (a2
+ 1)
= p92;
then
A945: a1
= p1 & (a2
+ 1)
= p2 by
A832,
A833,
A942,
GOBOARD1: 5;
((F
. l)
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A790,
A849,
NAT_1: 11
.= q by
A578,
A575,
A790,
A849,
A835,
A939,
A941,
A945
.= ((F
. l)
/. l) by
A790,
A845,
A846,
A843
.= ((F
. l)
/. (
len (F
. l))) by
A192;
hence thesis by
A564,
A845,
A846,
A851,
A827;
end;
suppose
A946: (a1
+ 1)
= p91 & a2
= p92;
then a2
= p2 by
A832,
A833,
A942,
GOBOARD1: 5;
then
A947: (a2
-' 1)
= q2 by
A939,
NAT_D: 34;
(a1
+ 1)
= p1 by
A832,
A833,
A942,
A946,
GOBOARD1: 5;
then
A948: a1
= (q1
-' 1) by
A939,
NAT_D: 34;
(
right_cell (f,(m
-' 1),G))
= (
cell (G,a1,(a2
-' 1))) by
A427,
A570,
A841,
A848,
A849,
A940,
A941,
A942,
A946,
GOBRD13: 24
.= (
left_cell (f,l,G)) by
A427,
A567,
A578,
A841,
A844,
A846,
A843,
A832,
A833,
A834,
A835,
A939,
A948,
A947,
GOBRD13: 21;
hence thesis by
A427,
A578,
A844,
A846,
A850;
end;
suppose
A949: a1
= (p91
+ 1) & a2
= p92;
then a2
= p2 by
A832,
A833,
A942,
GOBOARD1: 5;
then
A950: (a2
-' 1)
= q2 by
A939,
NAT_D: 34;
A951: a1
= (p1
+ 1) by
A832,
A833,
A942,
A949,
GOBOARD1: 5;
(
right_cell (f,l,G))
= (
cell (G,q1,q2)) by
A427,
A567,
A578,
A841,
A844,
A846,
A843,
A832,
A833,
A834,
A835,
A939,
GOBRD13: 22
.= (
left_cell (f,(m
-' 1),G)) by
A427,
A570,
A841,
A848,
A849,
A939,
A940,
A941,
A942,
A949,
A951,
A950,
GOBRD13: 25;
hence thesis by
A427,
A570,
A848,
A849,
A847;
end;
suppose
A952: a1
= p91 & a2
= (p92
+ 1);
set rc = ((
right_cell (rg,((
len rg)
-' 1),G))
\ (
L~ rg));
A953: (
RightComp rg)
is_a_component_of ((
L~ rg)
` ) by
GOBOARD9:def 2;
A954: 2
in (
dom g) by
A621,
FINSEQ_3: 25;
(((
len rg)
-' 1)
+ 2)
= ((
len g)
+ 1) by
A822,
FINSEQ_5:def 3;
then
A955: (rg
/. ((
len rg)
-' 1))
= (g
/. 2) by
A954,
FINSEQ_5: 66
.= (f
/. (m
+ 1)) by
A824,
A954,
FINSEQ_5: 27;
A956: p
= (g
/. 1) by
A567,
A612,
A577,
FINSEQ_5: 65
.= (rg
/. (
len g)) by
FINSEQ_5: 65
.= (rg
/. (
len rg)) by
FINSEQ_5:def 3;
A957: a1
= p1 by
A832,
A833,
A942,
A952,
GOBOARD1: 5;
A958: (m
-' 1)
<= m by
A848,
NAT_1: 11;
A959: (f
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A578,
A575,
A790,
A849
.= ((F
. m)
/. (m
-' 1)) by
A790,
A849,
A958;
A960: (p2
-' 1)
= q2 & ((m
-' 1)
+ 1)
<= (
len (F
. m)) by
A192,
A848,
A939,
NAT_D: 34;
A961: (f
/. ((m
-' 1)
+ 1))
= ((F
. m)
/. m) by
A578,
A568,
A570,
A790,
A848;
A962: ((F
. k)
| (m
+ 1))
= (F
. (m
+ 1)) by
A488,
A578,
A574;
A963: a2
= (p2
+ 1) by
A832,
A833,
A942,
A952,
GOBOARD1: 5;
(
right_cell (f,l,G))
= (
cell (G,q1,q2)) by
A427,
A567,
A578,
A841,
A844,
A846,
A843,
A832,
A833,
A834,
A835,
A939,
GOBRD13: 22
.= (
front_left_cell ((F
. m),(m
-' 1),G)) by
A427,
A841,
A848,
A849,
A832,
A833,
A939,
A940,
A941,
A957,
A963,
A960,
A959,
A961,
GOBRD13: 40;
then (F
. (m
+ 1))
turns_left ((m
-' 1),G) by
A456,
A794,
A847;
then
A964: (p2
+ 1)
> p2 & f
turns_left ((m
-' 1),G) by
A849,
A824,
A962,
GOBRD13: 44,
NAT_1: 13;
A965: (a2
+ 1)
> (p2
+ 1) by
A963,
NAT_1: 13;
then
A966:
[(p1
+ 1), p2]
in (
Indices G) by
A841,
A848,
A832,
A833,
A940,
A941,
A964;
then
A967: (p1
+ 1)
<= (
len G) by
MATRIX_0: 32;
(f
/. (m
+ 1))
= (G
* ((p1
+ 1),p2)) by
A841,
A848,
A832,
A833,
A940,
A941,
A965,
A964;
then (
right_cell (rg,((
len rg)
-' 1),G))
= (
cell (G,p1,p2)) by
A831,
A829,
A830,
A832,
A833,
A966,
A955,
A956,
GOBRD13: 26;
then a
in (
right_cell (rg,((
len rg)
-' 1),G)) by
A837,
A840,
A941,
A944,
A957,
A963,
A967,
Th20;
then
A968: a
in rc by
A852,
XBOOLE_0:def 5;
rc
c= (
RightComp rg) & (
L~ rg)
c= (
L~ f) by
A789,
A831,
A829,
A830,
Th27,
SPPOL_2: 22;
hence thesis by
A570,
A771,
A848,
A849,
A852,
A968,
A953;
end;
end;
end;
end;
then
A969: (
LeftComp g)
is_a_component_of ((
L~ g)
` ) & C
meets (
LeftComp g) by
GOBOARD9: 24,
GOBOARD9:def 1;
reconsider Lg9 = ((
L~ g)
` ) as
Subset of (
TOP-REAL 2);
A970: (
RightComp g)
is_a_component_of ((
L~ g)
` ) by
GOBOARD9:def 2;
A971: C
c= Lg9
proof
let c be
object;
assume that
A972: c
in C and
A973: not c
in Lg9;
reconsider c as
Point of (
TOP-REAL 2) by
A972;
consider i such that
A974: 1
<= i and
A975: (i
+ 1)
<= (
len g) and
A976: c
in (
LSeg ((g
/. i),(g
/. (i
+ 1)))) by
A973,
SPPOL_2: 14,
SUBSET_1: 29;
A977: 1
<= (i
+ (m
-' 1)) by
A974,
NAT_1: 12;
(i
+ 1)
in (
dom g) by
A974,
A975,
SEQ_4: 134;
then
A978: (g
/. (i
+ 1))
= (f
/. ((i
+ 1)
+ (m
-' 1))) by
FINSEQ_5: 27;
((i
+ 1)
+ (m
-' 1))
= ((i
+ (m
-' 1))
+ 1);
then
A979: ((i
+ (m
-' 1))
+ 1)
<= ((
len g)
+ (m
-' 1)) by
A975,
XREAL_1: 6;
i
in (
dom g) by
A974,
A975,
SEQ_4: 134;
then (g
/. i)
= (f
/. (i
+ (m
-' 1))) by
FINSEQ_5: 27;
then c
in (
LSeg (f,(i
+ (m
-' 1)))) by
A576,
A976,
A978,
A977,
A979,
TOPREAL1:def 3;
then c
in ((
left_cell (f,(i
+ (m
-' 1)),G))
/\ (
right_cell (f,(i
+ (m
-' 1)),G))) by
A427,
A576,
A977,
A979,
GOBRD13: 29;
then c
in (
left_cell (f,(i
+ (m
-' 1)),G)) by
XBOOLE_0:def 4;
then (
left_cell (f,(i
+ (m
-' 1)),G))
meets C by
A972,
XBOOLE_0: 3;
hence contradiction by
A427,
A576,
A977,
A979;
end;
A980: the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
C
meets (
RightComp g)
proof
(
right_cell (f,m,G))
meets C by
A427,
A568,
A574;
then
consider p be
object such that
A981: p
in (
right_cell (f,m,G)) and
A982: p
in C by
XBOOLE_0: 3;
reconsider p as
Element of (
TOP-REAL 2) by
A981;
now
reconsider u = p as
Element of (
Euclid 2) by
TOPREAL3: 8;
take a = p;
thus a
in C by
A982;
consider r be
Real such that
A983: r
>
0 and
A984: (
Ball (u,r))
c= ((
L~ g)
` ) by
A971,
A788,
A982,
GOBOARD6: 5;
reconsider r as
Real;
A985: p
in (
Ball (u,r)) by
A983,
GOBOARD6: 1;
reconsider B = (
Ball (u,r)) as non
empty
Subset of (
TOP-REAL 2) by
A980,
A983,
GOBOARD6: 1,
TOPMETR: 12;
A986: p
in B by
A983,
GOBOARD6: 1;
(
right_cell (f,m,G))
= (
Cl (
Int (
right_cell (f,m,G)))) & B is
open by
A568,
A574,
A754,
GOBOARD6: 3;
then
A987: (
Int (
right_cell (f,m,G)))
meets B by
A981,
A985,
TOPS_1: 12;
(
Int (
right_cell (g,1,G)))
c= (
Int (
right_cell (g,1))) & (
Int (
right_cell (g,1)))
c= (
RightComp g) by
A623,
A622,
GOBOARD9: 25,
GOBRD13: 33,
TOPS_1: 19;
then (
Int (
right_cell (g,1,G)))
c= (
RightComp g);
then (
Int (
right_cell (f,((m
-' 1)
+ 1),G)))
c= (
RightComp g) by
A569,
A575,
A622,
GOBRD13: 32;
then B is
connected & (
Int (
right_cell (f,m,G)))
c= (
RightComp g) by
A568,
SPRECT_3: 7,
XREAL_1: 235;
then B
c= (
RightComp g) by
A970,
A984,
A987,
GOBOARD9: 4;
hence a
in (
RightComp g) by
A986;
end;
hence thesis by
XBOOLE_0: 3;
end;
hence contradiction by
A1,
A970,
A971,
A969,
Th1,
SPRECT_4: 6;
end;
then g
= (f
/^
0 ) by
XREAL_1: 232
.= f by
FINSEQ_5: 28;
then
reconsider f as
standard non
constant
special_circular_sequence;
f is
clockwise_oriented
proof
(f
/. 2)
in (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
RLTOPSP1: 68;
then
A988: (f
/. 2)
in (
L~ f) by
A572,
SPPOL_2: 15;
((
NW-corner (
L~ f))
`1 )
= (
W-bound (
L~ f)) by
EUCLID: 52;
then
A989: ((
NW-corner (
L~ f))
`1 )
<= ((f
/. 2)
`1 ) by
A988,
PSCOMP_1: 24;
(
len G)
>= 3 by
A231,
NAT_1: 12;
then
A990: 1
< (
len G) by
XXREAL_0: 2;
((
NE-corner (
L~ f))
`1 )
= (
E-bound (
L~ f)) by
EUCLID: 52;
then
A991: ((f
/. 2)
`1 )
<= ((
NE-corner (
L~ f))
`1 ) by
A988,
PSCOMP_1: 24;
for k st 1
<= k & (k
+ 1)
<= (
len f) holds (
left_cell (f,k,G))
misses C & (
right_cell (f,k,G))
meets C by
A427;
then
A992: (
N-min (
L~ f))
= (f
/. 1) by
A569,
A606,
Th30;
consider i such that
A993: 1
<= i and
A994: (i
+ 1)
<= (
len G) and
A995: (f
/. 1)
= (G
* (i,(
width G))) & (f
/. 2)
= (G
* ((i
+ 1),(
width G))) and (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) and (
N-min C)
<> (G
* (i,((
width G)
-' 1))) by
A606;
i
< (
len G) by
A994,
NAT_1: 13;
then
A996: ((
N-min (
L~ f))
`2 )
= (
N-bound (
L~ f)) & ((G
* (i,(
width G)))
`2 )
= ((G
* (1,(
width G)))
`2 ) by
A2,
A990,
A993,
EUCLID: 52,
GOBOARD5: 1;
1
<= (i
+ 1) by
NAT_1: 12;
then
A997: ((G
* ((i
+ 1),(
width G)))
`2 )
= ((G
* (1,(
width G)))
`2 ) by
A2,
A990,
A994,
GOBOARD5: 1;
((
NW-corner (
L~ f))
`2 )
= ((
NE-corner (
L~ f))
`2 ) & ((
NE-corner (
L~ f))
`2 )
= (
N-bound (
L~ f)) by
EUCLID: 52,
PSCOMP_1: 27;
then (f
/. 2)
in (
LSeg ((
NW-corner (
L~ f)),(
NE-corner (
L~ f)))) by
A992,
A995,
A996,
A997,
A989,
A991,
GOBOARD7: 8;
then (f
/. 2)
in ((
LSeg ((
NW-corner (
L~ f)),(
NE-corner (
L~ f))))
/\ (
L~ f)) by
A988,
XBOOLE_0:def 4;
hence thesis by
A992,
SPRECT_2: 30;
end;
then
reconsider f as
clockwise_oriented
standard non
constant
special_circular_sequence;
take f;
thus f
is_sequence_on G by
A427;
thus ex i st 1
<= i & (i
+ 1)
<= (
len G) & (f
/. 1)
= (G
* (i,(
width G))) & (f
/. 2)
= (G
* ((i
+ 1),(
width G))) & (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) & (
N-min C)
<> (G
* (i,((
width G)
-' 1))) by
A606;
let m such that
A998: 1
<= m and
A999: (m
+ 2)
<= (
len f);
A1000: (F
. ((m
+ 1)
+ 1))
= (f
| ((m
+ 1)
+ 1)) by
A488,
A578,
A999;
A1001: (m
+ 1)
< (m
+ 2) by
XREAL_1: 6;
then
A1002: (f
| (m
+ 1))
= (F
. (m
+ 1)) by
A488,
A578,
A999,
XXREAL_0: 2;
A1003: (m
+ 1)
<= (
len f) by
A999,
A1001,
XXREAL_0: 2;
then
A1004: (
front_left_cell ((F
. (m
+ 1)),m,G))
= (
front_left_cell (f,m,G)) by
A569,
A998,
A1002,
GOBRD13: 42;
A1005: m
= ((m
+ 1)
-' 1) & (m
+ 1)
> 1 by
A998,
NAT_1: 13,
NAT_D: 34;
A1006: (
front_right_cell ((F
. (m
+ 1)),m,G))
= (
front_right_cell (f,m,G)) by
A569,
A998,
A1003,
A1002,
GOBRD13: 42;
hereby
assume (
front_left_cell (f,m,G))
misses C & (
front_right_cell (f,m,G))
misses C;
then (F
. ((m
+ 1)
+ 1))
turns_right (m,G) by
A456,
A1005,
A1004,
A1006;
hence f
turns_right (m,G) by
A998,
A1000,
GOBRD13: 43;
end;
hereby
assume (
front_left_cell (f,m,G))
misses C & (
front_right_cell (f,m,G))
meets C;
then (F
. ((m
+ 1)
+ 1))
goes_straight (m,G) by
A456,
A1005,
A1004,
A1006;
hence f
goes_straight (m,G) by
A998,
A1000,
GOBRD13: 45;
end;
assume (
front_left_cell (f,m,G))
meets C;
then (F
. ((m
+ 1)
+ 1))
turns_left (m,G) by
A456,
A1005,
A1004;
hence thesis by
A998,
A1000,
GOBRD13: 44;
end;
uniqueness
proof
let f1,f2 be
clockwise_oriented
standard non
constant
special_circular_sequence such that
A1007: f1
is_sequence_on (
Gauge (C,n));
defpred
P[
Nat] means (f1
| $1)
= (f2
| $1);
given i1 such that
A1008: 1
<= i1 & (i1
+ 1)
<= (
len (
Gauge (C,n))) and
A1009: (f1
/. 1)
= ((
Gauge (C,n))
* (i1,(
width (
Gauge (C,n))))) and
A1010: (f1
/. 2)
= ((
Gauge (C,n))
* ((i1
+ 1),(
width (
Gauge (C,n))))) and
A1011: (
N-min C)
in (
cell ((
Gauge (C,n)),i1,((
width (
Gauge (C,n)))
-' 1))) & (
N-min C)
<> ((
Gauge (C,n))
* (i1,((
width (
Gauge (C,n)))
-' 1)));
assume that
A1012: for k st 1
<= k & (k
+ 2)
<= (
len f1) holds ((
front_left_cell (f1,k,(
Gauge (C,n))))
misses C & (
front_right_cell (f1,k,(
Gauge (C,n))))
misses C implies f1
turns_right (k,(
Gauge (C,n)))) & ((
front_left_cell (f1,k,(
Gauge (C,n))))
misses C & (
front_right_cell (f1,k,(
Gauge (C,n))))
meets C implies f1
goes_straight (k,(
Gauge (C,n)))) & ((
front_left_cell (f1,k,(
Gauge (C,n))))
meets C implies f1
turns_left (k,(
Gauge (C,n)))) and
A1013: f2
is_sequence_on (
Gauge (C,n));
given i2 such that
A1014: 1
<= i2 & (i2
+ 1)
<= (
len (
Gauge (C,n))) and
A1015: (f2
/. 1)
= ((
Gauge (C,n))
* (i2,(
width (
Gauge (C,n))))) and
A1016: (f2
/. 2)
= ((
Gauge (C,n))
* ((i2
+ 1),(
width (
Gauge (C,n))))) and
A1017: (
N-min C)
in (
cell ((
Gauge (C,n)),i2,((
width (
Gauge (C,n)))
-' 1))) & (
N-min C)
<> ((
Gauge (C,n))
* (i2,((
width (
Gauge (C,n)))
-' 1)));
assume
A1018: for k st 1
<= k & (k
+ 2)
<= (
len f2) holds ((
front_left_cell (f2,k,(
Gauge (C,n))))
misses C & (
front_right_cell (f2,k,(
Gauge (C,n))))
misses C implies f2
turns_right (k,(
Gauge (C,n)))) & ((
front_left_cell (f2,k,(
Gauge (C,n))))
misses C & (
front_right_cell (f2,k,(
Gauge (C,n))))
meets C implies f2
goes_straight (k,(
Gauge (C,n)))) & ((
front_left_cell (f2,k,(
Gauge (C,n))))
meets C implies f2
turns_left (k,(
Gauge (C,n))));
A1019: for k st
P[k] holds
P[(k
+ 1)]
proof
A1020: (
len f1)
> 4 by
GOBOARD7: 34;
A1021: (f1
| 1)
=
<*(f1
. 1)*> & (f2
| 1)
=
<*(f2
. 1)*> by
FINSEQ_5: 20;
A1022: i1
= i2 & (
len f2)
> 4 by
A1008,
A1011,
A1014,
A1017,
Th29,
GOBOARD7: 34;
1
<= (
len f1) & 1
<= (
len f2) by
A1020,
A1022,
XXREAL_0: 2;
then 1
in (
dom f1) & 1
in (
dom f2) by
FINSEQ_3: 25;
then
S: (f1
. 1)
= (f1
/. 1) & (f2
. 1)
= (f2
/. 1) by
PARTFUN1:def 6;
let k such that
A1023: (f1
| k)
= (f2
| k);
per cases by
NAT_1: 25;
suppose k
=
0 ;
hence thesis by
S,
A1008,
A1009,
A1011,
A1014,
A1015,
A1017,
A1021,
Th29;
end;
suppose
A1024: k
= 1;
(f1
| 2)
=
<*(f1
/. 1), (f1
/. 2)*> by
A1020,
FINSEQ_5: 81,
XXREAL_0: 2;
hence thesis by
A1009,
A1010,
A1015,
A1016,
A1022,
A1024,
FINSEQ_5: 81,
XXREAL_0: 2;
end;
suppose
A1025: k
> 1;
A1026: (f1
/. 1)
= (f1
/. (
len f1)) & (f2
/. 1)
= (f2
/. (
len f2)) by
FINSEQ_6:def 1;
now
per cases ;
suppose
A1027: (
len f1)
> k;
set m = (k
-' 1);
A1028: 1
<= m by
A1025,
NAT_D: 49;
then
A1029: (m
+ 1)
= k by
NAT_D: 43;
then
A1030: (
front_left_cell (f1,m,(
Gauge (C,n))))
= (
front_left_cell ((f1
| k),m,(
Gauge (C,n)))) by
A1007,
A1027,
A1028,
GOBRD13: 42;
A1031: (m
+ (1
+ 1))
= (k
+ 1) by
A1029;
A1032: (k
+ 1)
<= (
len f1) by
A1027,
NAT_1: 13;
A1033:
now
A1034: 1
< (
len f2) by
GOBOARD7: 34,
XXREAL_0: 2;
assume
A1035: (
len f2)
<= k;
then
A1036: f2
= (f2
| k) by
FINSEQ_1: 58;
then (
len f2)
in (
dom (f2
| k)) by
FINSEQ_5: 6;
then
A1037: ((f1
| k)
/. (
len f2))
= (f1
/. (
len f2)) by
A1023,
FINSEQ_4: 70;
1
in (
dom (f2
| k)) & (
len f2)
<= (
len f1) by
A1023,
A1036,
FINSEQ_5: 6,
FINSEQ_5: 16;
hence contradiction by
A1023,
A1026,
A1027,
A1035,
A1036,
A1037,
A1034,
FINSEQ_4: 70,
GOBOARD7: 38;
end;
then
A1038: (k
+ 1)
<= (
len f2) by
NAT_1: 13;
A1039: (
front_right_cell (f2,m,(
Gauge (C,n))))
= (
front_right_cell ((f2
| k),m,(
Gauge (C,n)))) by
A1013,
A1028,
A1029,
A1033,
GOBRD13: 42;
A1040: (
front_left_cell (f2,m,(
Gauge (C,n))))
= (
front_left_cell ((f2
| k),m,(
Gauge (C,n)))) by
A1013,
A1028,
A1029,
A1033,
GOBRD13: 42;
A1041: (
front_right_cell (f1,m,(
Gauge (C,n))))
= (
front_right_cell ((f1
| k),m,(
Gauge (C,n)))) by
A1007,
A1027,
A1028,
A1029,
GOBRD13: 42;
now
per cases ;
suppose (
front_left_cell (f1,m,(
Gauge (C,n))))
misses C & (
front_right_cell (f1,m,(
Gauge (C,n))))
misses C;
then f1
turns_right (m,(
Gauge (C,n))) & f2
turns_right (m,(
Gauge (C,n))) by
A1012,
A1018,
A1023,
A1028,
A1038,
A1032,
A1030,
A1041,
A1040,
A1039,
A1031;
hence thesis by
A1013,
A1023,
A1025,
A1038,
A1032,
GOBRD13: 46;
end;
suppose (
front_left_cell (f1,m,(
Gauge (C,n))))
misses C & (
front_right_cell (f1,m,(
Gauge (C,n))))
meets C;
then f1
goes_straight (m,(
Gauge (C,n))) & f2
goes_straight (m,(
Gauge (C,n))) by
A1012,
A1018,
A1023,
A1028,
A1038,
A1032,
A1030,
A1041,
A1040,
A1039,
A1031;
hence thesis by
A1013,
A1023,
A1025,
A1038,
A1032,
GOBRD13: 48;
end;
suppose (
front_left_cell (f1,m,(
Gauge (C,n))))
meets C;
then f1
turns_left (m,(
Gauge (C,n))) & f2
turns_left (m,(
Gauge (C,n))) by
A1012,
A1018,
A1023,
A1028,
A1038,
A1032,
A1030,
A1040,
A1031;
hence thesis by
A1013,
A1023,
A1025,
A1038,
A1032,
GOBRD13: 47;
end;
end;
hence thesis;
end;
suppose
A1042: k
>= (
len f1);
A1043: 1
< (
len f1) by
GOBOARD7: 34,
XXREAL_0: 2;
A1044: f1
= (f1
| k) by
A1042,
FINSEQ_1: 58;
then (
len f1)
in (
dom (f1
| k)) by
FINSEQ_5: 6;
then
A1045: ((f2
| k)
/. (
len f1))
= (f2
/. (
len f1)) by
A1023,
FINSEQ_4: 70;
1
in (
dom (f1
| k)) & (
len f1)
<= (
len f2) by
A1023,
A1044,
FINSEQ_5: 6,
FINSEQ_5: 16;
then
A1046: (
len f2)
= (
len f1) by
A1023,
A1026,
A1044,
A1045,
A1043,
FINSEQ_4: 70,
GOBOARD7: 38;
A1047: (k
+ 1)
> (
len f1) by
A1042,
NAT_1: 13;
hence (f1
| (k
+ 1))
= f1 by
FINSEQ_1: 58
.= f2 by
A1023,
A1042,
A1044,
A1046,
FINSEQ_1: 58
.= (f2
| (k
+ 1)) by
A1046,
A1047,
FINSEQ_1: 58;
end;
end;
hence thesis;
end;
end;
A1048:
P[
0 ];
for k holds
P[k] from
NAT_1:sch 2(
A1048,
A1019);
hence thesis by
Th2;
end;
end
theorem ::
JORDAN9:31
Th31: C is
connected implies for n,k be
Nat st 1
<= k & (k
+ 1)
<= (
len (
Cage (C,n))) holds (
left_cell ((
Cage (C,n)),k,(
Gauge (C,n))))
misses C & (
right_cell ((
Cage (C,n)),k,(
Gauge (C,n))))
meets C
proof
assume
A1: C is
connected;
let n be
Nat;
set G = (
Gauge (C,n)), f = (
Cage (C,n));
set W = (
W-bound C), E = (
E-bound C), S = (
S-bound C), N = (
N-bound C);
A2: f
is_sequence_on G by
A1,
Def1;
defpred
P[
Nat] means for m be
Nat st 1
<= m & (m
+ 1)
<= (
len (f
| $1)) holds (
left_cell ((f
| $1),m,G))
misses C & (
right_cell ((f
| $1),m,G))
meets C;
A3: (
len G)
= (
width G) by
JORDAN8:def 1;
A4: (
len G)
= ((2
|^ n)
+ 3) by
JORDAN8:def 1;
A5: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A6: for m be
Nat st 1
<= m & (m
+ 1)
<= (
len (f
| k)) holds (
left_cell ((f
| k),m,G))
misses C & (
right_cell ((f
| k),m,G))
meets C;
per cases ;
suppose k
>= (
len f);
then (f
| k)
= f & (f
| (k
+ 1))
= f by
FINSEQ_1: 58,
NAT_1: 12;
hence thesis by
A6;
end;
suppose
A7: k
< (
len f);
then
A8: (
len (f
| k))
= k by
FINSEQ_1: 59;
A9: 1
<= (
len G) by
A4,
NAT_1: 12;
A10: (f
| k)
is_sequence_on G by
A2,
GOBOARD1: 22;
A11: (f
| (k
+ 1))
is_sequence_on G by
A2,
GOBOARD1: 22;
consider i be
Nat such that
A12: 1
<= i and
A13: (i
+ 1)
<= (
len G) and
A14: (f
/. 1)
= (G
* (i,(
width G))) & (f
/. 2)
= (G
* ((i
+ 1),(
width G))) and
A15: (
N-min C)
in (
cell (G,i,((
width G)
-' 1))) and (
N-min C)
<> (G
* (i,((
width G)
-' 1))) by
A1,
Def1;
let m be
Nat such that
A16: 1
<= m and
A17: (m
+ 1)
<= (
len (f
| (k
+ 1)));
A18: (k
+ 1)
<= (
len f) by
A7,
NAT_1: 13;
then
A19: (
len (f
| (k
+ 1)))
= (k
+ 1) by
FINSEQ_1: 59;
A20: (2
|^ n)
>= (n
+ 1) by
NEWTON: 85;
now
per cases by
NAT_1: 25;
suppose
A21: k
=
0 ;
1
<= (m
+ 1) by
NAT_1: 12;
then (m
+ 1)
= (
0
+ 1) by
A17,
A21,
XXREAL_0: 1;
hence thesis by
A16;
end;
suppose
A22: k
= 1;
(1
+ 1)
<= (m
+ 1) by
A16,
XREAL_1: 6;
then
A23: (m
+ 1)
= (1
+ 1) by
A19,
A17,
A22,
XXREAL_0: 1;
(f
| (k
+ 1))
=
<*(G
* (i,(
width G))), (G
* ((i
+ 1),(
width G)))*> by
A18,
A14,
A22,
FINSEQ_5: 81;
then
A24: ((f
| (k
+ 1))
/. 1)
= (G
* (i,(
width G))) & ((f
| (k
+ 1))
/. 2)
= (G
* ((i
+ 1),(
width G))) by
FINSEQ_4: 17;
1
<= (i
+ 1) by
A12,
NAT_1: 13;
then
A25:
[(i
+ 1), (
len G)]
in (
Indices G) by
A3,
A13,
A9,
MATRIX_0: 30;
A26: i
< (
len G) by
A13,
NAT_1: 13;
then
A27:
[i, (
len G)]
in (
Indices G) by
A3,
A12,
A9,
MATRIX_0: 30;
A28: i
< (i
+ 1) & (i
+ 1)
< ((i
+ 1)
+ 1) by
NAT_1: 13;
then
A29: (
left_cell ((f
| (k
+ 1)),m,G))
= (
cell (G,i,(
len G))) by
A3,
A11,
A17,
A24,
A27,
A25,
A23,
GOBRD13:def 3;
now
N
> S by
JORDAN8: 9;
then (N
- S)
> (S
- S) by
XREAL_1: 9;
then ((N
- S)
/ (2
|^ n))
>
0 by
A20,
XREAL_1: 139;
then
A30: (N
+
0 )
< (N
+ ((N
- S)
/ (2
|^ n))) by
XREAL_1: 6;
assume (
left_cell ((f
| (k
+ 1)),m,G))
meets C;
then
consider p be
object such that
A31: p
in (
cell (G,i,(
len G))) and
A32: p
in C by
A29,
XBOOLE_0: 3;
reconsider p as
Element of (
TOP-REAL 2) by
A31;
A33: (p
`2 )
<= N by
A32,
PSCOMP_1: 24;
[1, (
len G)]
in (
Indices G) by
A3,
A9,
MATRIX_0: 30;
then (G
* (1,(
len G)))
=
|[(W
+ (((E
- W)
/ (2
|^ n))
* (1
- 2))), (S
+ (((N
- S)
/ (2
|^ n))
* ((
len G)
- 2)))]| by
JORDAN8:def 1;
then
A34: ((G
* (1,(
len G)))
`2 )
= (S
+ (((N
- S)
/ (2
|^ n))
* ((
len G)
- 2))) by
EUCLID: 52;
(
cell (G,i,(
len G)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
<= r & r
<= ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,(
len G)))
`2 )
<= s } by
A3,
A12,
A26,
GOBRD11: 31;
then
consider r, s such that
A35: p
=
|[r, s]| and ((G
* (i,1))
`1 )
<= r and r
<= ((G
* ((i
+ 1),1))
`1 ) and
A36: ((G
* (1,(
len G)))
`2 )
<= s by
A31;
(((N
- S)
/ (2
|^ n))
* ((
len G)
- 2))
= ((((N
- S)
/ (2
|^ n))
* (2
|^ n))
+ (((N
- S)
/ (2
|^ n))
* 1)) by
A4
.= ((N
- S)
+ ((N
- S)
/ (2
|^ n))) by
A20,
XCMPLX_1: 87;
then N
< s by
A36,
A34,
A30,
XXREAL_0: 2;
hence contradiction by
A35,
A33,
EUCLID: 52;
end;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C;
(
N-min C)
in C & (
N-min C)
in (
right_cell ((f
| (k
+ 1)),m,G)) by
A3,
A11,
A15,
A17,
A24,
A27,
A25,
A23,
A28,
GOBRD13:def 2,
SPRECT_1: 11;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
XBOOLE_0: 3;
end;
suppose
A37: k
> 1;
then
A38: (((
len (f
| k))
-' 1)
+ 1)
= (
len (f
| k)) by
A8,
XREAL_1: 235;
A39: 1
<= ((
len (f
| k))
-' 1) by
A8,
A37,
NAT_D: 49;
now
per cases ;
suppose
A40: (m
+ 1)
= (
len (f
| (k
+ 1)));
A41: (
len (f
| k))
<= (
len f) by
FINSEQ_5: 16;
now
(
left_cell ((f
| k),((
len (f
| k))
-' 1),G))
misses C by
A6,
A39,
A38;
then
A42: (
left_cell (f,((
len (f
| k))
-' 1),G))
misses C by
A2,
A8,
A39,
A38,
A41,
GOBRD13: 31;
A43: (((
len (f
| k))
-' 1)
+ (1
+ 1))
= ((
len (f
| k))
+ 1) by
A38;
(
right_cell ((f
| k),((
len (f
| k))
-' 1),G))
meets C by
A6,
A39,
A38;
then
A44: (
right_cell (f,((
len (f
| k))
-' 1),G))
meets C by
A2,
A8,
A39,
A38,
A41,
GOBRD13: 31;
consider i1,j1,i2,j2 be
Nat such that
A45:
[i1, j1]
in (
Indices G) & (f
/. ((
len (f
| k))
-' 1))
= (G
* (i1,j1)) and
A46:
[i2, j2]
in (
Indices G) and
A47: (f
/. (
len (f
| k)))
= (G
* (i2,j2)) and i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A2,
A7,
A8,
A39,
A38,
JORDAN8: 3;
1
<= i2 by
A46,
MATRIX_0: 32;
then
A48: ((i2
-' 1)
+ 1)
= i2 by
XREAL_1: 235;
1
<= j2 by
A46,
MATRIX_0: 32;
then
A49: ((j2
-' 1)
+ 1)
= j2 by
XREAL_1: 235;
per cases ;
suppose
A50: (
front_left_cell (f,((
len (f
| k))
-' 1),G))
misses C & (
front_right_cell (f,((
len (f
| k))
-' 1),G))
misses C;
then
A51: f
turns_right (((
len (f
| k))
-' 1),G) by
A1,
A18,
A8,
A39,
A43,
Def1;
now
per cases by
A38,
A45,
A46,
A47,
A51;
suppose that
A52: i1
= i2 & (j1
+ 1)
= j2 and
A53:
[(i2
+ 1), j2]
in (
Indices G) & (f
/. ((
len (f
| k))
+ 1))
= (G
* ((i2
+ 1),j2));
(
front_right_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,i1,j2)) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A52,
GOBRD13: 35;
then (
left_cell (f,m,G))
misses C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A50,
A52,
A53,
GOBRD13: 23;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
(j2
-' 1)
= j1 & (
cell (G,i1,j1))
meets C by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A44,
A52,
GOBRD13: 22,
NAT_D: 34;
then (
right_cell (f,m,G))
meets C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A52,
A53,
GOBRD13: 24;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
end;
suppose that
A54: (i1
+ 1)
= i2 & j1
= j2 and
A55:
[i2, (j2
-' 1)]
in (
Indices G) & (f
/. ((
len (f
| k))
+ 1))
= (G
* (i2,(j2
-' 1)));
(
front_right_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,i2,(j2
-' 1))) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A54,
GOBRD13: 37;
then (
left_cell (f,m,G))
misses C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A49,
A50,
A55,
GOBRD13: 27;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
(i2
-' 1)
= i1 & (
cell (G,i1,(j1
-' 1)))
meets C by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A44,
A54,
GOBRD13: 24,
NAT_D: 34;
then (
right_cell (f,m,G))
meets C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A49,
A54,
A55,
GOBRD13: 28;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
end;
suppose that
A56: i1
= (i2
+ 1) & j1
= j2 and
A57:
[i2, (j2
+ 1)]
in (
Indices G) & (f
/. ((
len (f
| k))
+ 1))
= (G
* (i2,(j2
+ 1)));
(
front_right_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,(i2
-' 1),j2)) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A56,
GOBRD13: 39;
then (
left_cell (f,m,G))
misses C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A50,
A57,
GOBRD13: 21;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
(
cell (G,i2,j2))
meets C by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A44,
A56,
GOBRD13: 26;
then (
right_cell (f,m,G))
meets C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A57,
GOBRD13: 22;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
end;
suppose that
A58: i1
= i2 & j1
= (j2
+ 1) and
A59:
[(i2
-' 1), j2]
in (
Indices G) & (f
/. ((
len (f
| k))
+ 1))
= (G
* ((i2
-' 1),j2));
(
front_right_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A58,
GOBRD13: 41;
then (
left_cell (f,m,G))
misses C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A48,
A50,
A59,
GOBRD13: 25;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
(
cell (G,(i2
-' 1),j2))
meets C by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A44,
A58,
GOBRD13: 28;
then (
right_cell (f,m,G))
meets C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A48,
A59,
GOBRD13: 26;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
end;
end;
hence thesis;
end;
suppose
A60: (
front_left_cell (f,((
len (f
| k))
-' 1),G))
misses C & (
front_right_cell (f,((
len (f
| k))
-' 1),G))
meets C;
then
A61: f
goes_straight (((
len (f
| k))
-' 1),G) by
A1,
A18,
A8,
A39,
A43,
Def1;
now
per cases by
A38,
A45,
A46,
A47,
A61;
suppose that
A62: i1
= i2 & (j1
+ 1)
= j2 and
A63:
[i2, (j2
+ 1)]
in (
Indices G) & (f
/. ((
len (f
| k))
+ 1))
= (G
* (i2,(j2
+ 1)));
(
front_left_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,(i1
-' 1),j2)) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A62,
GOBRD13: 34;
then (
left_cell (f,m,G))
misses C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A60,
A62,
A63,
GOBRD13: 21;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
(
front_right_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,i1,j2)) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A62,
GOBRD13: 35;
then (
right_cell (f,m,G))
meets C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A60,
A62,
A63,
GOBRD13: 22;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
end;
suppose that
A64: (i1
+ 1)
= i2 & j1
= j2 and
A65:
[(i2
+ 1), j2]
in (
Indices G) & (f
/. ((
len (f
| k))
+ 1))
= (G
* ((i2
+ 1),j2));
(
front_left_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,i2,j2)) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A64,
GOBRD13: 36;
then (
left_cell (f,m,G))
misses C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A60,
A65,
GOBRD13: 23;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
(
front_right_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,i2,(j2
-' 1))) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A64,
GOBRD13: 37;
then (
right_cell (f,m,G))
meets C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A60,
A65,
GOBRD13: 24;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
end;
suppose that
A66: i1
= (i2
+ 1) & j1
= j2 and
A67:
[(i2
-' 1), j2]
in (
Indices G) & (f
/. ((
len (f
| k))
+ 1))
= (G
* ((i2
-' 1),j2));
(
front_left_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A66,
GOBRD13: 38;
then (
left_cell (f,m,G))
misses C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A48,
A60,
A67,
GOBRD13: 25;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
(
front_right_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,(i2
-' 1),j2)) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A66,
GOBRD13: 39;
then (
right_cell (f,m,G))
meets C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A48,
A60,
A67,
GOBRD13: 26;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
end;
suppose that
A68: i1
= i2 & j1
= (j2
+ 1) and
A69:
[i2, (j2
-' 1)]
in (
Indices G) & (f
/. ((
len (f
| k))
+ 1))
= (G
* (i2,(j2
-' 1)));
(
front_left_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,i2,(j2
-' 1))) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A68,
GOBRD13: 40;
then (
left_cell (f,m,G))
misses C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A49,
A60,
A69,
GOBRD13: 27;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
(
front_right_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A68,
GOBRD13: 41;
then (
right_cell (f,m,G))
meets C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A49,
A60,
A69,
GOBRD13: 28;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
end;
end;
hence thesis;
end;
suppose
A70: (
front_left_cell (f,((
len (f
| k))
-' 1),G))
meets C;
then
A71: f
turns_left (((
len (f
| k))
-' 1),G) by
A1,
A18,
A8,
A39,
A43,
Def1;
now
per cases by
A38,
A45,
A46,
A47,
A71;
suppose that
A72: i1
= i2 & (j1
+ 1)
= j2 and
A73:
[(i2
-' 1), j2]
in (
Indices G) & (f
/. ((
len (f
| k))
+ 1))
= (G
* ((i2
-' 1),j2));
(j2
-' 1)
= j1 & (
cell (G,(i1
-' 1),j1))
misses C by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A42,
A72,
GOBRD13: 21,
NAT_D: 34;
then (
left_cell (f,m,G))
misses C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A48,
A72,
A73,
GOBRD13: 25;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
(
front_left_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,(i1
-' 1),j2)) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A72,
GOBRD13: 34;
then (
right_cell (f,m,G))
meets C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A48,
A70,
A72,
A73,
GOBRD13: 26;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
end;
suppose that
A74: (i1
+ 1)
= i2 & j1
= j2 and
A75:
[i2, (j2
+ 1)]
in (
Indices G) & (f
/. ((
len (f
| k))
+ 1))
= (G
* (i2,(j2
+ 1)));
(i2
-' 1)
= i1 & (
cell (G,i1,j1))
misses C by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A42,
A74,
GOBRD13: 23,
NAT_D: 34;
then (
left_cell (f,m,G))
misses C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A74,
A75,
GOBRD13: 21;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
(
front_left_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,i2,j2)) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A74,
GOBRD13: 36;
then (
right_cell (f,m,G))
meets C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A70,
A75,
GOBRD13: 22;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
end;
suppose that
A76: i1
= (i2
+ 1) & j1
= j2 and
A77:
[i2, (j2
-' 1)]
in (
Indices G) & (f
/. ((
len (f
| k))
+ 1))
= (G
* (i2,(j2
-' 1)));
(
cell (G,i2,(j2
-' 1)))
misses C by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A42,
A76,
GOBRD13: 25;
then (
left_cell (f,m,G))
misses C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A49,
A77,
GOBRD13: 27;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
(
front_left_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A76,
GOBRD13: 38;
then (
right_cell (f,m,G))
meets C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A49,
A70,
A77,
GOBRD13: 28;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
end;
suppose that
A78: i1
= i2 & j1
= (j2
+ 1) and
A79:
[(i2
+ 1), j2]
in (
Indices G) & (f
/. ((
len (f
| k))
+ 1))
= (G
* ((i2
+ 1),j2));
(
cell (G,i2,j2))
misses C by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A42,
A78,
GOBRD13: 27;
then (
left_cell (f,m,G))
misses C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A79,
GOBRD13: 23;
hence (
left_cell ((f
| (k
+ 1)),m,G))
misses C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
(
front_left_cell (f,((
len (f
| k))
-' 1),G))
= (
cell (G,i2,(j2
-' 1))) by
A2,
A39,
A38,
A41,
A45,
A46,
A47,
A78,
GOBRD13: 40;
then (
right_cell (f,m,G))
meets C by
A2,
A18,
A8,
A19,
A16,
A40,
A46,
A47,
A70,
A79,
GOBRD13: 24;
hence (
right_cell ((f
| (k
+ 1)),m,G))
meets C by
A2,
A18,
A19,
A16,
A40,
GOBRD13: 31;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
suppose (m
+ 1)
<> (
len (f
| (k
+ 1)));
then (m
+ 1)
< (
len (f
| (k
+ 1))) by
A17,
XXREAL_0: 1;
then
A80: (m
+ 1)
<= (
len (f
| k)) by
A8,
A19,
NAT_1: 13;
then
consider i1,j1,i2,j2 be
Nat such that
A81:
[i1, j1]
in (
Indices G) and
A82: ((f
| k)
/. m)
= (G
* (i1,j1)) and
A83:
[i2, j2]
in (
Indices G) and
A84: ((f
| k)
/. (m
+ 1))
= (G
* (i2,j2)) and
A85: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A10,
A16,
JORDAN8: 3;
A86: (
left_cell ((f
| k),m,G))
misses C & (
right_cell ((f
| k),m,G))
meets C by
A6,
A16,
A80;
A87: (f
| (k
+ 1))
= ((f
| k)
^
<*(f
/. (k
+ 1))*>) by
A18,
FINSEQ_5: 82;
1
<= (m
+ 1) by
NAT_1: 12;
then (m
+ 1)
in (
dom (f
| k)) by
A80,
FINSEQ_3: 25;
then
A88: ((f
| (k
+ 1))
/. (m
+ 1))
= (G
* (i2,j2)) by
A84,
A87,
FINSEQ_4: 68;
m
<= (
len (f
| k)) by
A80,
NAT_1: 13;
then m
in (
dom (f
| k)) by
A16,
FINSEQ_3: 25;
then
A89: ((f
| (k
+ 1))
/. m)
= (G
* (i1,j1)) by
A82,
A87,
FINSEQ_4: 68;
now
per cases by
A85;
suppose
A90: i1
= i2 & (j1
+ 1)
= j2;
then (
left_cell ((f
| k),m,G))
= (
cell (G,(i1
-' 1),j1)) & (
right_cell ((f
| k),m,G))
= (
cell (G,i1,j1)) by
A10,
A16,
A80,
A81,
A82,
A83,
A84,
GOBRD13: 21,
GOBRD13: 22;
hence thesis by
A11,
A16,
A17,
A81,
A83,
A86,
A89,
A88,
A90,
GOBRD13: 21,
GOBRD13: 22;
end;
suppose
A91: (i1
+ 1)
= i2 & j1
= j2;
then (
left_cell ((f
| k),m,G))
= (
cell (G,i1,j1)) & (
right_cell ((f
| k),m,G))
= (
cell (G,i1,(j1
-' 1))) by
A10,
A16,
A80,
A81,
A82,
A83,
A84,
GOBRD13: 23,
GOBRD13: 24;
hence thesis by
A11,
A16,
A17,
A81,
A83,
A86,
A89,
A88,
A91,
GOBRD13: 23,
GOBRD13: 24;
end;
suppose
A92: i1
= (i2
+ 1) & j1
= j2;
then (
left_cell ((f
| k),m,G))
= (
cell (G,i2,(j2
-' 1))) & (
right_cell ((f
| k),m,G))
= (
cell (G,i2,j2)) by
A10,
A16,
A80,
A81,
A82,
A83,
A84,
GOBRD13: 25,
GOBRD13: 26;
hence thesis by
A11,
A16,
A17,
A81,
A83,
A86,
A89,
A88,
A92,
GOBRD13: 25,
GOBRD13: 26;
end;
suppose
A93: i1
= i2 & j1
= (j2
+ 1);
then (
left_cell ((f
| k),m,G))
= (
cell (G,i2,j2)) & (
right_cell ((f
| k),m,G))
= (
cell (G,(i1
-' 1),j2)) by
A10,
A16,
A80,
A81,
A82,
A83,
A84,
GOBRD13: 27,
GOBRD13: 28;
hence thesis by
A11,
A16,
A17,
A81,
A83,
A86,
A89,
A88,
A93,
GOBRD13: 27,
GOBRD13: 28;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
A94: (f
| (
len f))
= f by
FINSEQ_1: 58;
A95:
P[
0 ] by
CARD_1: 27;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A95,
A5);
hence thesis by
A94;
end;
theorem ::
JORDAN9:32
C is
connected implies for n be
Nat holds (
N-min (
L~ (
Cage (C,n))))
= ((
Cage (C,n))
/. 1)
proof
assume
A1: C is
connected;
let n be
Nat;
set f = (
Cage (C,n));
A2: for k be
Nat st 1
<= k & (k
+ 1)
<= (
len f) holds (
left_cell (f,k,(
Gauge (C,n))))
misses C & (
right_cell (f,k,(
Gauge (C,n))))
meets C by
A1,
Th31;
f
is_sequence_on (
Gauge (C,n)) & ex i be
Nat st 1
<= i & (i
+ 1)
<= (
len (
Gauge (C,n))) & (f
/. 1)
= ((
Gauge (C,n))
* (i,(
width (
Gauge (C,n))))) & (f
/. 2)
= ((
Gauge (C,n))
* ((i
+ 1),(
width (
Gauge (C,n))))) & (
N-min C)
in (
cell ((
Gauge (C,n)),i,((
width (
Gauge (C,n)))
-' 1))) & (
N-min C)
<> ((
Gauge (C,n))
* (i,((
width (
Gauge (C,n)))
-' 1))) by
A1,
Def1;
hence thesis by
A2,
Th30;
end;