jordan1k.miz
    
    begin
    
    reserve X for
    set, 
    
Y for non
    empty  
    set;
    
    theorem :: 
    
    JORDAN1K:1
    
    
    
    
    
    Th1: for f be 
    Function of X, Y st f is 
    onto holds for y be 
    Element of Y holds ex x be 
    object st x 
    in X & y 
    = (f 
    . x) by 
    FUNCT_2: 11;
    
    theorem :: 
    
    JORDAN1K:2
    
    for f be
    Function of X, Y st f is 
    onto holds for y be 
    Element of Y holds ex x be 
    Element of X st y 
    = (f 
    . x) 
    
    proof
    
      let f be
    Function of X, Y such that 
    
      
    
    A1: f is 
    onto;
    
      let y be
    Element of Y; 
    
      ex x be
    object st x 
    in X & (f 
    . x) 
    = y by 
    A1,
    Th1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    JORDAN1K:3
    
    
    
    
    
    Th3: for f be 
    Function of X, Y, A be 
    Subset of X st f is 
    onto holds ((f 
    .: A) 
    ` ) 
    c= (f 
    .: (A 
    ` )) 
    
    proof
    
      let f be
    Function of X, Y, A be 
    Subset of X such that 
    
      
    
    A1: f is 
    onto;
    
      let e be
    object;
    
      assume
    
      
    
    A2: e 
    in ((f 
    .: A) 
    ` ); 
    
      then
    
      reconsider y = e as
    Element of Y; 
    
      consider u be
    object such that 
    
      
    
    A3: u 
    in X and 
    
      
    
    A4: y 
    = (f 
    . u) by 
    A1,
    Th1;
    
      reconsider x = u as
    Element of X by 
    A3;
    
      now
    
        assume x
    in A; 
    
        then y
    in (f 
    .: A) by 
    A4,
    FUNCT_2: 35;
    
        hence contradiction by
    A2,
    XBOOLE_0:def 5;
    
      end;
    
      then x
    in (A 
    ` ) by 
    A3,
    SUBSET_1: 29;
    
      hence thesis by
    A4,
    FUNCT_2: 35;
    
    end;
    
    theorem :: 
    
    JORDAN1K:4
    
    
    
    
    
    Th4: for f be 
    Function of X, Y, A be 
    Subset of X st f is 
    one-to-one holds (f 
    .: (A 
    ` )) 
    c= ((f 
    .: A) 
    ` ) 
    
    proof
    
      let f be
    Function of X, Y, A be 
    Subset of X such that 
    
      
    
    A1: f is 
    one-to-one;
    
      let e be
    object;
    
      assume
    
      
    
    A2: e 
    in (f 
    .: (A 
    ` )); 
    
      then
    
      reconsider y = e as
    Element of Y; 
    
      consider x1 be
    object such that 
    
      
    
    A3: x1 
    in X and 
    
      
    
    A4: x1 
    in (A 
    ` ) and 
    
      
    
    A5: y 
    = (f 
    . x1) by 
    A2,
    FUNCT_2: 64;
    
      assume not e
    in ((f 
    .: A) 
    ` ); 
    
      then
    
      
    
    A6: ex x2 be 
    object st x2 
    in X & x2 
    in A & y 
    = (f 
    . x2) by 
    FUNCT_2: 64,
    SUBSET_1: 29;
    
       not x1
    in A by 
    A4,
    XBOOLE_0:def 5;
    
      hence contradiction by
    A1,
    A3,
    A5,
    A6,
    FUNCT_2: 19;
    
    end;
    
    theorem :: 
    
    JORDAN1K:5
    
    
    
    
    
    Th5: for f be 
    Function of X, Y, A be 
    Subset of X st f is 
    bijective holds ((f 
    .: A) 
    ` ) 
    = (f 
    .: (A 
    ` )) by 
    Th3,
    Th4;
    
    begin
    
    theorem :: 
    
    JORDAN1K:6
    
    
    
    
    
    Th6: for T be 
    TopSpace holds for A be 
    Subset of T holds A 
    is_a_component_of ( 
    {} T) iff A is 
    empty
    
    proof
    
      let T be
    TopSpace;
    
      let A be
    Subset of T; 
    
      thus A
    is_a_component_of ( 
    {} T) implies A is 
    empty by 
    SPRECT_1: 5,
    XBOOLE_1: 3;
    
      assume
    
      
    
    A1: A is 
    empty;
    
      then
    
      reconsider B = A as
    Subset of (T 
    | ( 
    {} T)) by 
    XBOOLE_1: 2;
    
      for C be
    Subset of (T 
    | ( 
    {} T)) st C is 
    connected holds B 
    c= C implies B 
    = C by 
    A1;
    
      then B is
    a_component by 
    A1,
    CONNSP_1:def 5;
    
      hence thesis by
    CONNSP_1:def 6;
    
    end;
    
    theorem :: 
    
    JORDAN1K:7
    
    
    
    
    
    Th7: for T be non 
    empty  
    TopSpace holds for A,B,C be 
    Subset of T st A 
    c= B & A 
    is_a_component_of C & B 
    is_a_component_of C holds A 
    = B 
    
    proof
    
      let T be non
    empty  
    TopSpace;
    
      let A,B,C be
    Subset of T such that 
    
      
    
    A1: A 
    c= B and 
    
      
    
    A2: A 
    is_a_component_of C and 
    
      
    
    A3: B 
    is_a_component_of C; 
    
      per cases ;
    
        suppose C
    =  
    {} ; 
    
        then
    
        
    
    A4: C 
    = ( 
    {} T); 
    
        then A
    =  
    {} by 
    A2,
    Th6;
    
        hence thesis by
    A3,
    A4,
    Th6;
    
      end;
    
        suppose C is non
    empty;
    
        then A
    <>  
    {} by 
    A2,
    SPRECT_1: 4;
    
        hence thesis by
    A1,
    A2,
    A3,
    GOBOARD9: 1,
    XBOOLE_1: 69;
    
      end;
    
    end;
    
    reserve n for
    Nat;
    
    theorem :: 
    
    JORDAN1K:8
    
    n
    >= 1 implies for P be 
    Subset of ( 
    Euclid n) holds P is 
    bounded implies not (P 
    ` ) is 
    bounded
    
    proof
    
      assume
    
      
    
    A1: n 
    >= 1; 
    
      (
    REAL n) 
    c= the 
    carrier of ( 
    Euclid n); 
    
      then
    
      reconsider W = (
    REAL n) as 
    Subset of ( 
    Euclid n); 
    
      let P be
    Subset of ( 
    Euclid n); 
    
      
    
      
    
    A2: (P 
    \/ (P 
    ` )) 
    = ( 
    [#] ( 
    Euclid n)) by 
    PRE_TOPC: 2
    
      .= W;
    
      assume P is
    bounded & (P 
    ` ) is 
    bounded;
    
      hence contradiction by
    A1,
    A2,
    JORDAN2C: 33,
    TBSP_1: 13;
    
    end;
    
    reserve r for
    Real, 
    
M for non
    empty  
    MetrSpace;
    
    theorem :: 
    
    JORDAN1K:9
    
    
    
    
    
    Th9: for C be non 
    empty  
    Subset of ( 
    TopSpaceMetr M), p be 
    Point of ( 
    TopSpaceMetr M) holds (( 
    dist_min C) 
    . p) 
    >=  
    0  
    
    proof
    
      let C be non
    empty  
    Subset of ( 
    TopSpaceMetr M), p be 
    Point of ( 
    TopSpaceMetr M); 
    
      
    
      
    
    A1: ( 
    TopSpaceMetr M) 
    =  
    TopStruct (# the 
    carrier of M, ( 
    Family_open_set M) #) by 
    PCOMPS_1:def 5;
    
      then
    
      reconsider x = p as
    Point of M; 
    
      set B = (
    [#] (( 
    dist x) 
    .: C)); 
    
      
    
      
    
    A2: B 
    = (( 
    dist x) 
    .: C) by 
    WEIERSTR:def 1;
    
      
    
      
    
    A3: for r be 
    Real st r 
    in B holds 
    0  
    <= r 
    
      proof
    
        let r be
    Real;
    
        assume r
    in B; 
    
        then
    
        consider y be
    object such that y 
    in ( 
    dom ( 
    dist x)) and 
    
        
    
    A4: y 
    in C and 
    
        
    
    A5: r 
    = (( 
    dist x) 
    . y) by 
    A2,
    FUNCT_1:def 6;
    
        reconsider y9 = y as
    Point of M by 
    A1,
    A4;
    
        r
    = ( 
    dist (x,y9)) by 
    A5,
    WEIERSTR:def 4;
    
        hence thesis by
    METRIC_1: 5;
    
      end;
    
      (
    dom ( 
    dist x)) 
    = the 
    carrier of ( 
    TopSpaceMetr M) by 
    FUNCT_2:def 1;
    
      then (
    lower_bound B) 
    >=  
    0 by 
    A2,
    A3,
    SEQ_4: 43;
    
      then (
    lower_bound (( 
    dist x) 
    .: C)) 
    >=  
    0 by 
    WEIERSTR:def 3;
    
      hence thesis by
    WEIERSTR:def 6;
    
    end;
    
    theorem :: 
    
    JORDAN1K:10
    
    
    
    
    
    Th10: for C be non 
    empty  
    Subset of ( 
    TopSpaceMetr M), p be 
    Point of M st for q be 
    Point of M st q 
    in C holds ( 
    dist (p,q)) 
    >= r holds (( 
    dist_min C) 
    . p) 
    >= r 
    
    proof
    
      let C be non
    empty  
    Subset of ( 
    TopSpaceMetr M), p be 
    Point of M such that 
    
      
    
    A1: for q be 
    Point of M st q 
    in C holds ( 
    dist (p,q)) 
    >= r; 
    
      set B = (
    [#] (( 
    dist p) 
    .: C)); 
    
      
    
      
    
    A2: B 
    = (( 
    dist p) 
    .: C) by 
    WEIERSTR:def 1;
    
      
    
      
    
    A3: ( 
    TopSpaceMetr M) 
    =  
    TopStruct (# the 
    carrier of M, ( 
    Family_open_set M) #) by 
    PCOMPS_1:def 5;
    
      
    
      
    
    A4: for s be 
    Real st s 
    in B holds r 
    <= s 
    
      proof
    
        let s be
    Real;
    
        assume s
    in B; 
    
        then
    
        consider y be
    object such that y 
    in ( 
    dom ( 
    dist p)) and 
    
        
    
    A5: y 
    in C and 
    
        
    
    A6: s 
    = (( 
    dist p) 
    . y) by 
    A2,
    FUNCT_1:def 6;
    
        reconsider y9 = y as
    Point of M by 
    A3,
    A5;
    
        s
    = ( 
    dist (p,y9)) by 
    A6,
    WEIERSTR:def 4;
    
        hence thesis by
    A1,
    A5;
    
      end;
    
      (
    dom ( 
    dist p)) 
    = the 
    carrier of ( 
    TopSpaceMetr M) by 
    FUNCT_2:def 1;
    
      then (
    lower_bound B) 
    >= r by 
    A2,
    A4,
    SEQ_4: 43;
    
      then (
    lower_bound (( 
    dist p) 
    .: C)) 
    >= r by 
    WEIERSTR:def 3;
    
      hence thesis by
    WEIERSTR:def 6;
    
    end;
    
    theorem :: 
    
    JORDAN1K:11
    
    
    
    
    
    Th11: for A,B be non 
    empty  
    Subset of ( 
    TopSpaceMetr M) holds ( 
    min_dist_min (A,B)) 
    >=  
    0  
    
    proof
    
      let A,B be non
    empty  
    Subset of ( 
    TopSpaceMetr M); 
    
      set X = (
    [#] (( 
    dist_min A) 
    .: B)); 
    
      
    
      
    
    A1: X 
    = (( 
    dist_min A) 
    .: B) by 
    WEIERSTR:def 1;
    
      
    
      
    
    A2: for r be 
    Real st r 
    in X holds 
    0  
    <= r 
    
      proof
    
        let r be
    Real;
    
        assume r
    in X; 
    
        then
    
        consider y be
    object such that y 
    in ( 
    dom ( 
    dist_min A)) and 
    
        
    
    A3: y 
    in B and 
    
        
    
    A4: r 
    = (( 
    dist_min A) 
    . y) by 
    A1,
    FUNCT_1:def 6;
    
        reconsider y as
    Point of ( 
    TopSpaceMetr M) by 
    A3;
    
        ((
    dist_min A) 
    . y) 
    >=  
    0 by 
    Th9;
    
        hence thesis by
    A4;
    
      end;
    
      (
    dom ( 
    dist_min A)) 
    = the 
    carrier of ( 
    TopSpaceMetr M) by 
    FUNCT_2:def 1;
    
      then (
    lower_bound X) 
    >=  
    0 by 
    A1,
    A2,
    SEQ_4: 43;
    
      then (
    lower_bound (( 
    dist_min A) 
    .: B)) 
    >=  
    0 by 
    WEIERSTR:def 3;
    
      hence thesis by
    WEIERSTR:def 7;
    
    end;
    
    theorem :: 
    
    JORDAN1K:12
    
    
    
    
    
    Th12: for A,B be 
    compact  
    Subset of ( 
    TopSpaceMetr M) st A 
    meets B holds ( 
    min_dist_min (A,B)) 
    =  
    0  
    
    proof
    
      let A,B be
    compact  
    Subset of ( 
    TopSpaceMetr M); 
    
      assume A
    meets B; 
    
      then
    
      consider p be
    object such that 
    
      
    
    A1: p 
    in A and 
    
      
    
    A2: p 
    in B by 
    XBOOLE_0: 3;
    
      (
    TopSpaceMetr M) 
    =  
    TopStruct (# the 
    carrier of M, ( 
    Family_open_set M) #) by 
    PCOMPS_1:def 5;
    
      then
    
      reconsider p as
    Point of M by 
    A1;
    
      (
    min_dist_min (A,B)) 
    >=  
    0 & ( 
    min_dist_min (A,B)) 
    <= ( 
    dist (p,p)) by 
    A1,
    A2,
    Th11,
    WEIERSTR: 34;
    
      hence thesis by
    METRIC_1: 1;
    
    end;
    
    theorem :: 
    
    JORDAN1K:13
    
    
    
    
    
    Th13: for A,B be non 
    empty  
    Subset of ( 
    TopSpaceMetr M) st for p,q be 
    Point of M st p 
    in A & q 
    in B holds ( 
    dist (p,q)) 
    >= r holds ( 
    min_dist_min (A,B)) 
    >= r 
    
    proof
    
      let A,B be non
    empty  
    Subset of ( 
    TopSpaceMetr M) such that 
    
      
    
    A1: for p,q be 
    Point of M st p 
    in A & q 
    in B holds ( 
    dist (p,q)) 
    >= r; 
    
      set X = (
    [#] (( 
    dist_min A) 
    .: B)); 
    
      
    
      
    
    A2: X 
    = (( 
    dist_min A) 
    .: B) by 
    WEIERSTR:def 1;
    
      
    
      
    
    A3: for s be 
    Real st s 
    in X holds r 
    <= s 
    
      proof
    
        let s be
    Real;
    
        assume s
    in X; 
    
        then
    
        consider y be
    object such that y 
    in ( 
    dom ( 
    dist_min A)) and 
    
        
    
    A4: y 
    in B and 
    
        
    
    A5: s 
    = (( 
    dist_min A) 
    . y) by 
    A2,
    FUNCT_1:def 6;
    
        reconsider y as
    Point of ( 
    TopSpaceMetr M) by 
    A4;
    
        reconsider p = y as
    Point of M by 
    TOPMETR: 12;
    
        for q be
    Point of M st q 
    in A holds ( 
    dist (p,q)) 
    >= r by 
    A1,
    A4;
    
        hence thesis by
    A5,
    Th10;
    
      end;
    
      (
    dom ( 
    dist_min A)) 
    = the 
    carrier of ( 
    TopSpaceMetr M) by 
    FUNCT_2:def 1;
    
      then (
    lower_bound X) 
    >= r by 
    A2,
    A3,
    SEQ_4: 43;
    
      then (
    lower_bound (( 
    dist_min A) 
    .: B)) 
    >= r by 
    WEIERSTR:def 3;
    
      hence thesis by
    WEIERSTR:def 7;
    
    end;
    
    begin
    
    theorem :: 
    
    JORDAN1K:14
    
    
    
    
    
    Th14: for P,Q be 
    Subset of ( 
    TOP-REAL n) st P 
    is_a_component_of (Q 
    ` ) holds P 
    is_inside_component_of Q or P 
    is_outside_component_of Q by 
    JORDAN2C:def 2,
    JORDAN2C:def 3;
    
    theorem :: 
    
    JORDAN1K:15
    
    n
    >= 1 implies ( 
    BDD ( 
    {} ( 
    TOP-REAL n))) 
    = ( 
    {} ( 
    TOP-REAL n)) 
    
    proof
    
      set X = { B where B be
    Subset of ( 
    TOP-REAL n) : B 
    is_inside_component_of ( 
    {} ( 
    TOP-REAL n)) }; 
    
      assume n
    >= 1; 
    
      then
    
      
    
    A1: not ( 
    [#] ( 
    TOP-REAL n)) is 
    bounded by 
    JORDAN2C: 35;
    
      now
    
        (
    [#] ( 
    TOP-REAL n)) is 
    a_component;
    
        then
    
        
    
    A2: ( 
    [#] the TopStruct of ( 
    TOP-REAL n)) is 
    a_component by 
    CONNSP_1: 45;
    
        ((
    TOP-REAL n) 
    | ( 
    [#] ( 
    TOP-REAL n))) 
    = the TopStruct of ( 
    TOP-REAL n) by 
    TSEP_1: 93;
    
        then
    
        
    
    A3: ( 
    [#] ( 
    TOP-REAL n)) 
    is_a_component_of ( 
    [#] ( 
    TOP-REAL n)) by 
    A2,
    CONNSP_1:def 6;
    
        assume X
    <>  
    {} ; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A4: x 
    in X by 
    XBOOLE_0:def 1;
    
        consider B be
    Subset of ( 
    TOP-REAL n) such that x 
    = B and 
    
        
    
    A5: B 
    is_inside_component_of ( 
    {} ( 
    TOP-REAL n)) by 
    A4;
    
        B
    is_a_component_of (( 
    {} ( 
    TOP-REAL n)) 
    ` ) by 
    A5,
    JORDAN2C:def 2;
    
        then B
    = ( 
    [#] ( 
    TOP-REAL n)) by 
    A3,
    Th7;
    
        hence contradiction by
    A1,
    A5,
    JORDAN2C:def 2;
    
      end;
    
      hence thesis by
    JORDAN2C:def 4,
    ZFMISC_1: 2;
    
    end;
    
    theorem :: 
    
    JORDAN1K:16
    
    (
    BDD ( 
    [#] ( 
    TOP-REAL n))) 
    = ( 
    {} ( 
    TOP-REAL n)) 
    
    proof
    
      (
    BDD ( 
    [#] ( 
    TOP-REAL n))) 
    c= (( 
    [#] ( 
    TOP-REAL n)) 
    ` ) by 
    JORDAN2C: 25;
    
      then (
    BDD ( 
    [#] ( 
    TOP-REAL n))) 
    c= ( 
    {} ( 
    TOP-REAL n)) by 
    XBOOLE_1: 37;
    
      hence thesis by
    XBOOLE_1: 3;
    
    end;
    
    theorem :: 
    
    JORDAN1K:17
    
    n
    >= 1 implies ( 
    UBD ( 
    {} ( 
    TOP-REAL n))) 
    = ( 
    [#] ( 
    TOP-REAL n)) 
    
    proof
    
      set X = { B where B be
    Subset of ( 
    TOP-REAL n) : B 
    is_outside_component_of ( 
    {} ( 
    TOP-REAL n)) }; 
    
      assume n
    >= 1; 
    
      then
    
      
    
    A1: not ( 
    [#] ( 
    TOP-REAL n)) is 
    bounded by 
    JORDAN2C: 35;
    
      thus (
    UBD ( 
    {} ( 
    TOP-REAL n))) 
    c= ( 
    [#] ( 
    TOP-REAL n)); 
    
      (
    [#] ( 
    TOP-REAL n)) is 
    a_component;
    
      then
    
      
    
    A2: ( 
    [#] the TopStruct of ( 
    TOP-REAL n)) is 
    a_component by 
    CONNSP_1: 45;
    
      ((
    TOP-REAL n) 
    | ( 
    [#] ( 
    TOP-REAL n))) 
    = the TopStruct of ( 
    TOP-REAL n) by 
    TSEP_1: 93;
    
      then
    
      
    
    A3: ( 
    [#] ( 
    TOP-REAL n)) 
    is_a_component_of ( 
    [#] ( 
    TOP-REAL n)) by 
    A2,
    CONNSP_1:def 6;
    
      (
    [#] ( 
    TOP-REAL n)) 
    = (( 
    {} ( 
    TOP-REAL n)) 
    ` ); 
    
      then (
    [#] ( 
    TOP-REAL n)) 
    is_outside_component_of ( 
    {} ( 
    TOP-REAL n)) by 
    A1,
    A3,
    JORDAN2C:def 3;
    
      then (
    [#] ( 
    TOP-REAL n)) 
    in X; 
    
      then (
    [#] ( 
    TOP-REAL n)) 
    c= ( 
    union X) by 
    ZFMISC_1: 74;
    
      hence thesis by
    JORDAN2C:def 5;
    
    end;
    
    theorem :: 
    
    JORDAN1K:18
    
    (
    UBD ( 
    [#] ( 
    TOP-REAL n))) 
    = ( 
    {} ( 
    TOP-REAL n)) 
    
    proof
    
      (
    UBD ( 
    [#] ( 
    TOP-REAL n))) 
    c= (( 
    [#] ( 
    TOP-REAL n)) 
    ` ) by 
    JORDAN2C: 26;
    
      then (
    UBD ( 
    [#] ( 
    TOP-REAL n))) 
    c= ( 
    {} ( 
    TOP-REAL n)) by 
    XBOOLE_1: 37;
    
      hence thesis by
    XBOOLE_1: 3;
    
    end;
    
    theorem :: 
    
    JORDAN1K:19
    
    for P be
    connected  
    Subset of ( 
    TOP-REAL n), Q be 
    Subset of ( 
    TOP-REAL n) st P 
    misses Q holds P 
    c= ( 
    UBD Q) or P 
    c= ( 
    BDD Q) 
    
    proof
    
      let P be
    connected  
    Subset of ( 
    TOP-REAL n), Q be 
    Subset of ( 
    TOP-REAL n) such that 
    
      
    
    A1: P 
    misses Q; 
    
      per cases ;
    
        suppose P is
    empty;
    
        hence thesis;
    
      end;
    
        suppose Q
    = ( 
    [#] ( 
    TOP-REAL n)); 
    
        then P
    =  
    {} by 
    A1,
    XBOOLE_1: 67;
    
        hence thesis;
    
      end;
    
        suppose that
    
        
    
    A2: not P is 
    empty and Q 
    <> ( 
    [#] ( 
    TOP-REAL n)); 
    
        P
    c= (Q 
    ` ) by 
    A1,
    SUBSET_1: 23;
    
        then
    
        consider C be
    Subset of ( 
    TOP-REAL n) such that 
    
        
    
    A3: C 
    is_a_component_of (Q 
    ` ) and 
    
        
    
    A4: P 
    c= C by 
    A2,
    GOBOARD9: 3;
    
        C
    is_inside_component_of Q or C 
    is_outside_component_of Q by 
    A3,
    Th14;
    
        then C
    c= ( 
    UBD Q) or C 
    c= ( 
    BDD Q) by 
    JORDAN2C: 22,
    JORDAN2C: 23;
    
        hence thesis by
    A4;
    
      end;
    
    end;
    
    begin
    
    reserve n for
    Nat, 
    
p,q,q1,q2 for
    Point of ( 
    TOP-REAL 2), 
    
r,s1,s2,t1,t2 for
    Real, 
    
x,y for
    Point of ( 
    Euclid 2); 
    
    theorem :: 
    
    JORDAN1K:20
    
    
    
    
    
    Th20: ( 
    dist ( 
    |[
    0 , 
    0 ]|,(r 
    * q))) 
    = ( 
    |.r.|
    * ( 
    dist ( 
    |[
    0 , 
    0 ]|,q))) 
    
    proof
    
      
    
      
    
    A1: (r 
    ^2 ) 
    >=  
    0 & ((q 
    `1 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
      
    
      
    
    A2: ((q 
    `2 ) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
      
    
      
    
    A3: ( 
    |[
    0 , 
    0 ]| 
    `1 ) 
    =  
    0 & ( 
    |[
    0 , 
    0 ]| 
    `2 ) 
    =  
    0 by 
    EUCLID: 52;
    
      
    
      then
    
      
    
    A4: ( 
    dist ( 
    |[
    0 , 
    0 ]|,q)) 
    = ( 
    sqrt ((( 
    0  
    - (q 
    `1 )) 
    ^2 ) 
    + (( 
    0  
    - (q 
    `2 )) 
    ^2 ))) by 
    TOPREAL6: 92
    
      .= (
    sqrt (((q 
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 ))); 
    
      
    
      thus (
    dist ( 
    |[
    0 , 
    0 ]|,(r 
    * q))) 
    = ( 
    sqrt ((( 
    0  
    - ((r 
    * q) 
    `1 )) 
    ^2 ) 
    + (( 
    0  
    - ((r 
    * q) 
    `2 )) 
    ^2 ))) by 
    A3,
    TOPREAL6: 92
    
      .= (
    sqrt ((((r 
    * q) 
    `1 ) 
    ^2 ) 
    + (( 
    - ((r 
    * q) 
    `2 )) 
    ^2 ))) 
    
      .= (
    sqrt (((r 
    * (q 
    `1 )) 
    ^2 ) 
    + (((r 
    * q) 
    `2 ) 
    ^2 ))) by 
    TOPREAL3: 4
    
      .= (
    sqrt (((r 
    ^2 ) 
    * ((q 
    `1 ) 
    ^2 )) 
    + ((r 
    * (q 
    `2 )) 
    ^2 ))) by 
    TOPREAL3: 4
    
      .= (
    sqrt ((r 
    ^2 ) 
    * (((q 
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )))) 
    
      .= ((
    sqrt (r 
    ^2 )) 
    * ( 
    sqrt (((q 
    `1 ) 
    ^2 ) 
    + ((q 
    `2 ) 
    ^2 )))) by 
    A1,
    A2,
    SQUARE_1: 29
    
      .= (
    |.r.|
    * ( 
    dist ( 
    |[
    0 , 
    0 ]|,q))) by 
    A4,
    COMPLEX1: 72;
    
    end;
    
    theorem :: 
    
    JORDAN1K:21
    
    
    
    
    
    Th21: ( 
    dist ((q1 
    + q),(q2 
    + q))) 
    = ( 
    dist (q1,q2)) 
    
    proof
    
      
    
      
    
    A1: (((q1 
    + q) 
    `1 ) 
    - ((q2 
    + q) 
    `1 )) 
    = (((q1 
    `1 ) 
    + (q 
    `1 )) 
    - ((q2 
    + q) 
    `1 )) by 
    TOPREAL3: 2
    
      .= (((q1
    `1 ) 
    + (q 
    `1 )) 
    - ((q2 
    `1 ) 
    + (q 
    `1 ))) by 
    TOPREAL3: 2
    
      .= (((q1
    `1 ) 
    - (q2 
    `1 )) 
    +  
    0 ); 
    
      
    
      
    
    A2: (((q1 
    + q) 
    `2 ) 
    - ((q2 
    + q) 
    `2 )) 
    = (((q1 
    `2 ) 
    + (q 
    `2 )) 
    - ((q2 
    + q) 
    `2 )) by 
    TOPREAL3: 2
    
      .= (((q1
    `2 ) 
    + (q 
    `2 )) 
    - ((q2 
    `2 ) 
    + (q 
    `2 ))) by 
    TOPREAL3: 2
    
      .= (((q1
    `2 ) 
    - (q2 
    `2 )) 
    +  
    0 ); 
    
      
    
      thus (
    dist ((q1 
    + q),(q2 
    + q))) 
    = ( 
    sqrt (((((q1 
    + q) 
    `1 ) 
    - ((q2 
    + q) 
    `1 )) 
    ^2 ) 
    + ((((q1 
    + q) 
    `2 ) 
    - ((q2 
    + q) 
    `2 )) 
    ^2 ))) by 
    TOPREAL6: 92
    
      .= (
    dist (q1,q2)) by 
    A1,
    A2,
    TOPREAL6: 92;
    
    end;
    
    theorem :: 
    
    JORDAN1K:22
    
    
    
    
    
    Th22: p 
    <> q implies ( 
    dist (p,q)) 
    >  
    0  
    
    proof
    
      ex p9,q9 be
    Point of ( 
    Euclid 2) st p9 
    = p & q9 
    = q & ( 
    dist (p,q)) 
    = ( 
    dist (p9,q9)) by 
    TOPREAL6:def 1;
    
      hence thesis by
    METRIC_1: 7;
    
    end;
    
    theorem :: 
    
    JORDAN1K:23
    
    
    
    
    
    Th23: ( 
    dist ((q1 
    - q),(q2 
    - q))) 
    = ( 
    dist (q1,q2)) by 
    Th21;
    
    theorem :: 
    
    JORDAN1K:24
    
    
    
    
    
    Th24: ( 
    dist (p,q)) 
    = ( 
    dist (( 
    - p),( 
    - q))) 
    
    proof
    
      
    
      thus (
    dist (p,q)) 
    = ( 
    dist ((q 
    - q),(p 
    - q))) by 
    Th23
    
      .= (
    dist ((q 
    - q),(p 
    + ( 
    - q)))) 
    
      .= (
    dist ( 
    |[
    0 , 
    0 ]|,(p 
    + ( 
    - q)))) by 
    EUCLID: 54,
    RLVECT_1: 5
    
      .= (
    dist ((p 
    - p),(p 
    + ( 
    - q)))) by 
    EUCLID: 54,
    RLVECT_1: 5
    
      .= (
    dist ((p 
    + ( 
    - p)),(p 
    + ( 
    - q)))) 
    
      .= (
    dist (( 
    - p),( 
    - q))) by 
    Th21;
    
    end;
    
    theorem :: 
    
    JORDAN1K:25
    
    
    
    
    
    Th25: ( 
    dist ((q 
    - q1),(q 
    - q2))) 
    = ( 
    dist (q1,q2)) 
    
    proof
    
      (
    - (q 
    - q1)) 
    = (q1 
    - q) & ( 
    - (q 
    - q2)) 
    = (q2 
    - q) by 
    RLVECT_1: 33;
    
      
    
      hence (
    dist ((q 
    - q1),(q 
    - q2))) 
    = ( 
    dist ((q1 
    - q),(q2 
    - q))) by 
    Th24
    
      .= (
    dist (q1,q2)) by 
    Th23;
    
    end;
    
    theorem :: 
    
    JORDAN1K:26
    
    
    
    
    
    Th26: ( 
    dist ((r 
    * p),(r 
    * q))) 
    = ( 
    |.r.|
    * ( 
    dist (p,q))) 
    
    proof
    
      
    
      thus (
    dist ((r 
    * p),(r 
    * q))) 
    = ( 
    dist (((r 
    * p) 
    - (r 
    * p)),((r 
    * p) 
    - (r 
    * q)))) by 
    Th25
    
      .= (
    dist ( 
    |[
    0 , 
    0 ]|,((r 
    * p) 
    - (r 
    * q)))) by 
    EUCLID: 54,
    RLVECT_1: 5
    
      .= (
    dist ( 
    |[
    0 , 
    0 ]|,(r 
    * (p 
    - q)))) by 
    RLVECT_1: 34
    
      .= (
    |.r.|
    * ( 
    dist ( 
    |[
    0 , 
    0 ]|,(p 
    - q)))) by 
    Th20
    
      .= (
    |.r.|
    * ( 
    dist ((p 
    - p),(p 
    - q)))) by 
    EUCLID: 54,
    RLVECT_1: 5
    
      .= (
    |.r.|
    * ( 
    dist (p,q))) by 
    Th25;
    
    end;
    
    theorem :: 
    
    JORDAN1K:27
    
    
    
    
    
    Th27: r 
    <= 1 implies ( 
    dist (p,((r 
    * p) 
    + ((1 
    - r) 
    * q)))) 
    = ((1 
    - r) 
    * ( 
    dist (p,q))) 
    
    proof
    
      assume r
    <= 1; 
    
      then (1
    + r) 
    <= (1 
    + 1) by 
    XREAL_1: 6;
    
      then (1
    - r) 
    >= (1 
    - 1) by 
    XREAL_1: 21;
    
      then
    
      
    
    A1: 
    |.(1
    - r).| 
    = (1 
    - r) by 
    ABSVALUE:def 1;
    
      
    
      thus (
    dist (p,((r 
    * p) 
    + ((1 
    - r) 
    * q)))) 
    = ( 
    dist (((r 
    + (1 
    - r)) 
    * p),((r 
    * p) 
    + ((1 
    - r) 
    * q)))) by 
    RLVECT_1:def 8
    
      .= (
    dist (((r 
    * p) 
    + ((1 
    - r) 
    * p)),((r 
    * p) 
    + ((1 
    - r) 
    * q)))) by 
    RLVECT_1:def 6
    
      .= (
    dist (((1 
    - r) 
    * p),((1 
    - r) 
    * q))) by 
    Th21
    
      .= ((1
    - r) 
    * ( 
    dist (p,q))) by 
    A1,
    Th26;
    
    end;
    
    theorem :: 
    
    JORDAN1K:28
    
    
    
    
    
    Th28: 
    0  
    <= r implies ( 
    dist (q,((r 
    * p) 
    + ((1 
    - r) 
    * q)))) 
    = (r 
    * ( 
    dist (p,q))) 
    
    proof
    
      assume
    0  
    <= r; 
    
      then
    
      
    
    A1: 
    |.r.|
    = r by 
    ABSVALUE:def 1;
    
      
    
      thus (
    dist (q,((r 
    * p) 
    + ((1 
    - r) 
    * q)))) 
    = ( 
    dist (((r 
    * p) 
    + ((1 
    - r) 
    * q)),((r 
    + (1 
    - r)) 
    * q))) by 
    RLVECT_1:def 8
    
      .= (
    dist (((r 
    * q) 
    + ((1 
    - r) 
    * q)),((r 
    * p) 
    + ((1 
    - r) 
    * q)))) by 
    RLVECT_1:def 6
    
      .= (
    dist ((r 
    * q),(r 
    * p))) by 
    Th21
    
      .= (r
    * ( 
    dist (p,q))) by 
    A1,
    Th26;
    
    end;
    
    theorem :: 
    
    JORDAN1K:29
    
    
    
    
    
    Th29: p 
    in ( 
    LSeg (q1,q2)) implies (( 
    dist (q1,p)) 
    + ( 
    dist (p,q2))) 
    = ( 
    dist (q1,q2)) 
    
    proof
    
      assume p
    in ( 
    LSeg (q1,q2)); 
    
      then
    
      consider r such that
    
      
    
    A1: p 
    = (((1 
    - r) 
    * q1) 
    + (r 
    * q2)) & 
    0  
    <= r & r 
    <= 1; 
    
      (
    dist (q1,p)) 
    = (r 
    * ( 
    dist (q1,q2))) & ( 
    dist (q2,p)) 
    = ((1 
    - r) 
    * ( 
    dist (q1,q2))) by 
    A1,
    Th27,
    Th28;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    JORDAN1K:30
    
    q1
    in ( 
    LSeg (q2,p)) & q1 
    <> q2 implies ( 
    dist (q1,p)) 
    < ( 
    dist (q2,p)) 
    
    proof
    
      assume that
    
      
    
    A1: q1 
    in ( 
    LSeg (q2,p)) and 
    
      
    
    A2: q1 
    <> q2; 
    
      ((
    dist (q2,q1)) 
    + ( 
    dist (q1,p))) 
    = ( 
    dist (q2,p)) by 
    A1,
    Th29;
    
      hence thesis by
    A2,
    Th22,
    XREAL_1: 29;
    
    end;
    
    theorem :: 
    
    JORDAN1K:31
    
    
    
    
    
    Th31: y 
    =  
    |[
    0 , 
    0 ]| implies ( 
    Ball (y,r)) 
    = { q : 
    |.q.|
    < r } 
    
    proof
    
      set X = { q :
    |.(
    |[
    0 , 
    0 ]| 
    - q).| 
    < r }, Y = { q : 
    |.q.|
    < r }; 
    
      
    
      
    
    A1: X 
    c= Y 
    
      proof
    
        let u be
    object;
    
        assume u
    in X; 
    
        then
    
        consider q such that
    
        
    
    A2: u 
    = q & 
    |.(
    |[
    0 , 
    0 ]| 
    - q).| 
    < r; 
    
        
    |.(
    |[
    0 , 
    0 ]| 
    - q).| 
    =  
    |.(q
    -  
    |[
    0 , 
    0 ]|).| by 
    TOPRNS_1: 27
    
        .=
    |.q.| by
    EUCLID: 54,
    RLVECT_1: 13;
    
        hence thesis by
    A2;
    
      end;
    
      
    
      
    
    A3: Y 
    c= X 
    
      proof
    
        let u be
    object;
    
        assume u
    in Y; 
    
        then
    
        consider q such that
    
        
    
    A4: u 
    = q & 
    |.q.|
    < r; 
    
        
    |.(
    |[
    0 , 
    0 ]| 
    - q).| 
    =  
    |.(q
    -  
    |[
    0 , 
    0 ]|).| by 
    TOPRNS_1: 27
    
        .=
    |.q.| by
    EUCLID: 54,
    RLVECT_1: 13;
    
        hence thesis by
    A4;
    
      end;
    
      assume y
    =  
    |[
    0 , 
    0 ]|; 
    
      
    
      hence (
    Ball (y,r)) 
    = { q : 
    |.(
    |[
    0 , 
    0 ]| 
    - q).| 
    < r } by 
    JGRAPH_2: 2
    
      .= { q :
    |.q.|
    < r } by 
    A1,
    A3;
    
    end;
    
    begin
    
    theorem :: 
    
    JORDAN1K:32
    
    
    
    
    
    Th32: (( 
    AffineMap (r,s1,r,s2)) 
    . p) 
    = ((r 
    * p) 
    +  
    |[s1, s2]|)
    
    proof
    
      
    
      thus ((
    AffineMap (r,s1,r,s2)) 
    . p) 
    =  
    |[((r
    * (p 
    `1 )) 
    + s1), ((r 
    * (p 
    `2 )) 
    + s2)]| by 
    JGRAPH_2:def 2
    
      .=
    |[(((r
    * p) 
    `1 ) 
    + s1), ((r 
    * (p 
    `2 )) 
    + s2)]| by 
    TOPREAL3: 4
    
      .=
    |[(((r
    * p) 
    `1 ) 
    + s1), (((r 
    * p) 
    `2 ) 
    + s2)]| by 
    TOPREAL3: 4
    
      .= (
    |[((r
    * p) 
    `1 ), ((r 
    * p) 
    `2 )]| 
    +  
    |[s1, s2]|) by
    EUCLID: 56
    
      .= ((r
    * p) 
    +  
    |[s1, s2]|) by
    EUCLID: 53;
    
    end;
    
    theorem :: 
    
    JORDAN1K:33
    
    
    
    
    
    Th33: (( 
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    . p) 
    = ((r 
    * p) 
    + q) 
    
    proof
    
      
    
      thus ((
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    . p) 
    = ((r 
    * p) 
    +  
    |[(q
    `1 ), (q 
    `2 )]|) by 
    Th32
    
      .= ((r
    * p) 
    + q) by 
    EUCLID: 53;
    
    end;
    
    theorem :: 
    
    JORDAN1K:34
    
    
    
    
    
    Th34: s1 
    >  
    0 & s2 
    >  
    0 implies (( 
    AffineMap (s1,t1,s2,t2)) 
    * ( 
    AffineMap ((1 
    / s1),( 
    - (t1 
    / s1)),(1 
    / s2),( 
    - (t2 
    / s2))))) 
    = ( 
    id ( 
    REAL 2)) 
    
    proof
    
      the
    carrier of ( 
    TOP-REAL 2) 
    = ( 
    REAL 2) by 
    EUCLID: 22;
    
      then
    
      reconsider f = (
    id ( 
    REAL 2)) as 
    Function of the 
    carrier of ( 
    TOP-REAL 2), the 
    carrier of ( 
    TOP-REAL 2); 
    
      assume that
    
      
    
    A1: s1 
    >  
    0 and 
    
      
    
    A2: s2 
    >  
    0 ; 
    
      now
    
        let p be
    Point of ( 
    TOP-REAL 2); 
    
        set q =
    |[(((1
    / s1) 
    * (p 
    `1 )) 
    - (t1 
    / s1)), (((1 
    / s2) 
    * (p 
    `2 )) 
    - (t2 
    / s2))]|; 
    
        
    
        
    
    A3: (q 
    `2 ) 
    = (((1 
    / s2) 
    * (p 
    `2 )) 
    - (t2 
    / s2)) by 
    EUCLID: 52;
    
        p
    in the 
    carrier of ( 
    TOP-REAL 2); 
    
        then
    
        
    
    A4: p 
    in ( 
    REAL 2) by 
    EUCLID: 22;
    
        
    
        
    
    A5: (s1 
    * (1 
    / s1)) 
    = 1 by 
    A1,
    XCMPLX_1: 106;
    
        
    
        thus (((
    AffineMap (s1,t1,s2,t2)) 
    * ( 
    AffineMap ((1 
    / s1),( 
    - (t1 
    / s1)),(1 
    / s2),( 
    - (t2 
    / s2))))) 
    . p) 
    = (( 
    AffineMap (s1,t1,s2,t2)) 
    . (( 
    AffineMap ((1 
    / s1),( 
    - (t1 
    / s1)),(1 
    / s2),( 
    - (t2 
    / s2)))) 
    . p)) by 
    FUNCT_2: 15
    
        .= ((
    AffineMap (s1,t1,s2,t2)) 
    .  
    |[(((1
    / s1) 
    * (p 
    `1 )) 
    + ( 
    - (t1 
    / s1))), (((1 
    / s2) 
    * (p 
    `2 )) 
    + ( 
    - (t2 
    / s2)))]|) by 
    JGRAPH_2:def 2
    
        .=
    |[((s1
    * (q 
    `1 )) 
    + t1), ((s2 
    * (q 
    `2 )) 
    + t2)]| by 
    JGRAPH_2:def 2
    
        .=
    |[((s1
    * (((1 
    / s1) 
    * (p 
    `1 )) 
    - (t1 
    / s1))) 
    + t1), ((s2 
    * (q 
    `2 )) 
    + t2)]| by 
    EUCLID: 52
    
        .=
    |[((((s1
    * (1 
    / s1)) 
    * (p 
    `1 )) 
    - (s1 
    * (t1 
    / s1))) 
    + t1), ((s2 
    * (q 
    `2 )) 
    + t2)]| 
    
        .=
    |[(((1
    * (p 
    `1 )) 
    - (1 
    * t1)) 
    + t1), ((s2 
    * (q 
    `2 )) 
    + t2)]| by 
    A1,
    A5,
    XCMPLX_1: 87
    
        .=
    |[(p
    `1 ), (((s2 
    * ((1 
    / s2) 
    * (p 
    `2 ))) 
    - (s2 
    * (t2 
    / s2))) 
    + t2)]| by 
    A3
    
        .=
    |[(p
    `1 ), ((((s2 
    * (1 
    / s2)) 
    * (p 
    `2 )) 
    - t2) 
    + t2)]| by 
    A2,
    XCMPLX_1: 87
    
        .=
    |[(p
    `1 ), (((1 
    * (p 
    `2 )) 
    - (1 
    * t2)) 
    + t2)]| by 
    A2,
    XCMPLX_1: 106
    
        .= p by
    EUCLID: 53
    
        .= (f
    . p) by 
    A4,
    FUNCT_1: 18;
    
      end;
    
      hence thesis by
    FUNCT_2: 63;
    
    end;
    
    theorem :: 
    
    JORDAN1K:35
    
    
    
    
    
    Th35: y 
    =  
    |[
    0 , 
    0 ]| & x 
    = q & r 
    >  
    0 implies (( 
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    .: ( 
    Ball (y,1))) 
    = ( 
    Ball (x,r)) 
    
    proof
    
      assume that
    
      
    
    A1: y 
    =  
    |[
    0 , 
    0 ]| and 
    
      
    
    A2: x 
    = q and 
    
      
    
    A3: r 
    >  
    0 ; 
    
      reconsider A = (
    Ball (y,1)), B = ( 
    Ball (x,r)) as 
    Subset of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
      
    
      
    
    A4: B 
    c= (( 
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    .: A) 
    
      proof
    
        let u be
    object;
    
        assume
    
        
    
    A5: u 
    in B; 
    
        then
    
        reconsider q1 = u as
    Point of ( 
    TOP-REAL 2); 
    
        reconsider x1 = q1 as
    Element of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
        set q2 = ((
    AffineMap ((1 
    / r),( 
    - ((q 
    `1 ) 
    / r)),(1 
    / r),( 
    - ((q 
    `2 ) 
    / r)))) 
    . q1); 
    
        consider z1,z2 be
    Point of ( 
    Euclid 2) such that 
    
        
    
    A6: z1 
    = q and 
    
        
    
    A7: z2 
    = ((r 
    * q2) 
    + q) and 
    
        
    
    A8: ( 
    dist (q,((r 
    * q2) 
    + q))) 
    = ( 
    dist (z1,z2)) by 
    TOPREAL6:def 1;
    
        consider z3,z4 be
    Point of ( 
    Euclid 2) such that 
    
        
    
    A9: z3 
    =  
    |[
    0 , 
    0 ]| and 
    
        
    
    A10: z4 
    = q2 and 
    
        
    
    A11: ( 
    dist ( 
    |[
    0 , 
    0 ]|,q2)) 
    = ( 
    dist (z3,z4)) by 
    TOPREAL6:def 1;
    
        z2
    = (( 
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    . q2) by 
    A7,
    Th33
    
        .= (((
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    * ( 
    AffineMap ((1 
    / r),( 
    - ((q 
    `1 ) 
    / r)),(1 
    / r),( 
    - ((q 
    `2 ) 
    / r))))) 
    . q1) by 
    FUNCT_2: 15
    
        .= ((
    id ( 
    REAL 2)) 
    . q1) by 
    A3,
    Th34
    
        .= x1;
    
        
    
        then (
    dist (x,x1)) 
    = ( 
    dist (( 
    |[
    0 , 
    0 ]| 
    + q),((r 
    * q2) 
    + q))) by 
    A2,
    A6,
    A8,
    EUCLID: 54,
    RLVECT_1: 4
    
        .= (
    dist ( 
    |[
    0 , 
    0 ]|,(r 
    * q2))) by 
    Th21
    
        .= (
    |.r.|
    * ( 
    dist ( 
    |[
    0 , 
    0 ]|,q2))) by 
    Th20
    
        .= (r
    * ( 
    dist (y,z4))) by 
    A1,
    A3,
    A9,
    A11,
    ABSVALUE:def 1;
    
        then (r
    * ( 
    dist (y,z4))) 
    < (1 
    * r) by 
    A5,
    METRIC_1: 11;
    
        then (
    dist (y,z4)) 
    < 1 by 
    A3,
    XREAL_1: 64;
    
        then
    
        
    
    A12: q2 
    in A by 
    A10,
    METRIC_1: 11;
    
        ((
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    . q2) 
    = ((( 
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    * ( 
    AffineMap ((1 
    / r),( 
    - ((q 
    `1 ) 
    / r)),(1 
    / r),( 
    - ((q 
    `2 ) 
    / r))))) 
    . q1) by 
    FUNCT_2: 15
    
        .= ((
    id ( 
    REAL 2)) 
    . q1) by 
    A3,
    Th34
    
        .= ((
    id ( 
    TOP-REAL 2)) 
    . q1) by 
    EUCLID: 22
    
        .= q1;
    
        hence thesis by
    A12,
    FUNCT_2: 35;
    
      end;
    
      ((
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    .: A) 
    c= B 
    
      proof
    
        let u be
    object;
    
        assume
    
        
    
    A13: u 
    in (( 
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    .: A); 
    
        then
    
        reconsider q1 = u as
    Point of ( 
    TOP-REAL 2); 
    
        consider q2 such that
    
        
    
    A14: q2 
    in A and 
    
        
    
    A15: q1 
    = (( 
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    . q2) by 
    A13,
    FUNCT_2: 65;
    
        reconsider x1 = q1, x2 = q2 as
    Element of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
        
    
        
    
    A16: ( 
    dist (y,x2)) 
    < 1 by 
    A14,
    METRIC_1: 11;
    
        
    
        
    
    A17: ex z3,z4 be 
    Point of ( 
    Euclid 2) st z3 
    =  
    |[
    0 , 
    0 ]| & z4 
    = q2 & ( 
    dist ( 
    |[
    0 , 
    0 ]|,q2)) 
    = ( 
    dist (z3,z4)) by 
    TOPREAL6:def 1;
    
        
    
        
    
    A18: ex z1,z2 be 
    Point of ( 
    Euclid 2) st z1 
    = q & z2 
    = ((r 
    * q2) 
    + q) & ( 
    dist (q,((r 
    * q2) 
    + q))) 
    = ( 
    dist (z1,z2)) by 
    TOPREAL6:def 1;
    
        q1
    = ((r 
    * q2) 
    + q) by 
    A15,
    Th33;
    
        
    
        then (
    dist (x,x1)) 
    = ( 
    dist (( 
    |[
    0 , 
    0 ]| 
    + q),((r 
    * q2) 
    + q))) by 
    A2,
    A18,
    EUCLID: 54,
    RLVECT_1: 4
    
        .= (
    dist ( 
    |[
    0 , 
    0 ]|,(r 
    * q2))) by 
    Th21
    
        .= (
    |.r.|
    * ( 
    dist ( 
    |[
    0 , 
    0 ]|,q2))) by 
    Th20
    
        .= (r
    * ( 
    dist (y,x2))) by 
    A1,
    A3,
    A17,
    ABSVALUE:def 1;
    
        then (
    dist (x,x1)) 
    < r by 
    A3,
    A16,
    XREAL_1: 157;
    
        hence thesis by
    METRIC_1: 11;
    
      end;
    
      hence thesis by
    A4;
    
    end;
    
    theorem :: 
    
    JORDAN1K:36
    
    
    
    
    
    Th36: for A,B,C,D be 
    Real st A 
    >  
    0 & C 
    >  
    0 holds ( 
    AffineMap (A,B,C,D)) is 
    onto
    
    proof
    
      let A,B,C,D be
    Real such that 
    
      
    
    A1: A 
    >  
    0 & C 
    >  
    0 ; 
    
      thus (
    rng ( 
    AffineMap (A,B,C,D))) 
    c= the 
    carrier of ( 
    TOP-REAL 2); 
    
      let e be
    object;
    
      assume e
    in the 
    carrier of ( 
    TOP-REAL 2); 
    
      then
    
      reconsider q1 = e as
    Point of ( 
    TOP-REAL 2); 
    
      set q2 = ((
    AffineMap ((1 
    / A),( 
    - (B 
    / A)),(1 
    / C),( 
    - (D 
    / C)))) 
    . q1); 
    
      
    
      
    
    A2: the 
    carrier of ( 
    TOP-REAL 2) 
    = ( 
    REAL 2) by 
    EUCLID: 22;
    
      ((
    AffineMap (A,B,C,D)) 
    . q2) 
    = ((( 
    AffineMap (A,B,C,D)) 
    * ( 
    AffineMap ((1 
    / A),( 
    - (B 
    / A)),(1 
    / C),( 
    - (D 
    / C))))) 
    . q1) by 
    FUNCT_2: 15
    
      .= ((
    id ( 
    REAL 2)) 
    . q1) by 
    A1,
    Th34
    
      .= q1 by
    A2;
    
      hence thesis by
    FUNCT_2: 4;
    
    end;
    
    theorem :: 
    
    JORDAN1K:37
    
    ((
    Ball (x,r)) 
    ` ) is 
    connected  
    Subset of ( 
    TOP-REAL 2) 
    
    proof
    
      set C = ((
    Ball (x,r)) 
    ` ); 
    
      per cases ;
    
        suppose r
    <=  
    0 ; 
    
        then (
    Ball (x,r)) 
    = ( 
    {} ( 
    TOP-REAL 2)) by 
    TBSP_1: 12;
    
        then
    
        
    
    A1: C 
    = ( 
    [#] ( 
    TOP-REAL 2)) by 
    TOPREAL3: 8;
    
        thus thesis by
    A1;
    
      end;
    
        suppose
    
        
    
    A2: r 
    >  
    0 ; 
    
        reconsider q = x as
    Point of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
        reconsider y =
    |[
    0 , 
    0 ]| as 
    Point of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
        reconsider Q = (
    Ball (x,r)), J = ( 
    Ball (y,1)) as 
    Subset of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
        
    
        
    
    A3: Q 
    = (( 
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    .: J) by 
    A2,
    Th35;
    
        reconsider P = (Q
    ` ), K = (J 
    ` ) as 
    Subset of ( 
    TOP-REAL 2); 
    
        
    
        
    
    A4: K 
    = (( 
    REAL 2) 
    \ ( 
    Ball (y,1))) by 
    TOPREAL3: 8
    
        .= ((
    REAL 2) 
    \ { q1 : 
    |.q1.|
    < 1 }) by 
    Th31;
    
        (
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) is 
    one-to-one & ( 
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) is 
    onto by 
    A2,
    Th36,
    JGRAPH_2: 44;
    
        then the
    carrier of ( 
    TOP-REAL 2) 
    = the 
    carrier of ( 
    Euclid 2) & P 
    = (( 
    AffineMap (r,(q 
    `1 ),r,(q 
    `2 ))) 
    .: K) by 
    A3,
    Th5,
    TOPREAL3: 8;
    
        hence thesis by
    A4,
    JORDAN2C: 53,
    TOPS_2: 61;
    
      end;
    
    end;
    
    begin
    
    definition
    
      let n;
    
      let A,B be
    Subset of ( 
    TOP-REAL n); 
    
      :: 
    
    JORDAN1K:def1
    
      func
    
    dist_min (A,B) -> 
    Real means 
    
      :
    
    Def1: ex A9,B9 be 
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)) st A 
    = A9 & B 
    = B9 & it 
    = ( 
    min_dist_min (A9,B9)); 
    
      existence
    
      proof
    
         the TopStruct of (
    TOP-REAL n) 
    = ( 
    TopSpaceMetr ( 
    Euclid n)) by 
    EUCLID:def 8;
    
        then
    
        reconsider A9 = A, B9 = B as
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)); 
    
        take (
    min_dist_min (A9,B9)), A9, B9; 
    
        thus thesis;
    
      end;
    
      uniqueness ;
    
    end
    
    definition
    
      let M be non
    empty  
    MetrSpace;
    
      let P,Q be non
    empty
    compact  
    Subset of ( 
    TopSpaceMetr M); 
    
      :: original:
    min_dist_min
    
      redefine
    
      func
    
    min_dist_min (P,Q); 
    
      commutativity
    
      proof
    
        let P,Q be non
    empty
    compact  
    Subset of ( 
    TopSpaceMetr M); 
    
        consider y1,y2 be
    Point of M such that 
    
        
    
    A1: y1 
    in Q & y2 
    in P and 
    
        
    
    A2: ( 
    dist (y1,y2)) 
    = ( 
    min_dist_min (Q,P)) by 
    WEIERSTR: 30;
    
        consider x1,x2 be
    Point of M such that 
    
        
    
    A3: x1 
    in P & x2 
    in Q and 
    
        
    
    A4: ( 
    dist (x1,x2)) 
    = ( 
    min_dist_min (P,Q)) by 
    WEIERSTR: 30;
    
        (
    dist (x1,x2)) 
    <= ( 
    dist (y1,y2)) & ( 
    dist (y1,y2)) 
    <= ( 
    dist (x1,x2)) by 
    A1,
    A2,
    A3,
    A4,
    WEIERSTR: 34;
    
        hence thesis by
    A2,
    A4,
    XXREAL_0: 1;
    
      end;
    
      :: original:
    max_dist_max
    
      redefine
    
      func
    
    max_dist_max (P,Q); 
    
      commutativity
    
      proof
    
        let P,Q be non
    empty
    compact  
    Subset of ( 
    TopSpaceMetr M); 
    
        consider y1,y2 be
    Point of M such that 
    
        
    
    A5: y1 
    in Q & y2 
    in P and 
    
        
    
    A6: ( 
    dist (y1,y2)) 
    = ( 
    max_dist_max (Q,P)) by 
    WEIERSTR: 33;
    
        consider x1,x2 be
    Point of M such that 
    
        
    
    A7: x1 
    in P & x2 
    in Q and 
    
        
    
    A8: ( 
    dist (x1,x2)) 
    = ( 
    max_dist_max (P,Q)) by 
    WEIERSTR: 33;
    
        (
    dist (x1,x2)) 
    <= ( 
    dist (y1,y2)) & ( 
    dist (y1,y2)) 
    <= ( 
    dist (x1,x2)) by 
    A5,
    A6,
    A7,
    A8,
    WEIERSTR: 34;
    
        hence thesis by
    A6,
    A8,
    XXREAL_0: 1;
    
      end;
    
    end
    
    definition
    
      let n;
    
      let A,B be non
    empty
    compact  
    Subset of ( 
    TOP-REAL n); 
    
      :: original:
    dist_min
    
      redefine
    
      func
    
    dist_min (A,B); 
    
      commutativity
    
      proof
    
        let A,B be non
    empty
    compact  
    Subset of ( 
    TOP-REAL n); 
    
        consider A9,B9 be
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)) such that 
    
        
    
    A1: A 
    = A9 & B 
    = B9 and 
    
        
    
    A2: ( 
    dist_min (A,B)) 
    = ( 
    min_dist_min (A9,B9)) by 
    Def1;
    
         the TopStruct of (
    TOP-REAL n) 
    = ( 
    TopSpaceMetr ( 
    Euclid n)) by 
    EUCLID:def 8;
    
        then
    
        reconsider A9, B9 as non
    empty
    compact  
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)) by 
    A1,
    COMPTS_1: 23;
    
        (
    dist_min (A,B)) 
    = ( 
    min_dist_min (B9,A9)) by 
    A2;
    
        hence thesis by
    A1,
    Def1;
    
      end;
    
    end
    
    theorem :: 
    
    JORDAN1K:38
    
    
    
    
    
    Th38: for A,B be non 
    empty  
    Subset of ( 
    TOP-REAL n) holds ( 
    dist_min (A,B)) 
    >=  
    0  
    
    proof
    
      let A,B be non
    empty  
    Subset of ( 
    TOP-REAL n); 
    
      ex A9,B9 be
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)) st A 
    = A9 & B 
    = B9 & ( 
    dist_min (A,B)) 
    = ( 
    min_dist_min (A9,B9)) by 
    Def1;
    
      hence thesis by
    Th11;
    
    end;
    
    theorem :: 
    
    JORDAN1K:39
    
    
    
    
    
    Th39: for A,B be 
    compact  
    Subset of ( 
    TOP-REAL n) st A 
    meets B holds ( 
    dist_min (A,B)) 
    =  
    0  
    
    proof
    
      let A,B be
    compact  
    Subset of ( 
    TOP-REAL n) such that 
    
      
    
    A1: A 
    meets B; 
    
      consider A9,B9 be
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)) such that 
    
      
    
    A2: A 
    = A9 & B 
    = B9 and 
    
      
    
    A3: ( 
    dist_min (A,B)) 
    = ( 
    min_dist_min (A9,B9)) by 
    Def1;
    
       the TopStruct of (
    TOP-REAL n) 
    = ( 
    TopSpaceMetr ( 
    Euclid n)) by 
    EUCLID:def 8;
    
      then A9 is
    compact & B9 is 
    compact by 
    A2,
    COMPTS_1: 23;
    
      hence thesis by
    A1,
    A2,
    A3,
    Th12;
    
    end;
    
    theorem :: 
    
    JORDAN1K:40
    
    
    
    
    
    Th40: for A,B be non 
    empty  
    Subset of ( 
    TOP-REAL n) st for p,q be 
    Point of ( 
    TOP-REAL n) st p 
    in A & q 
    in B holds ( 
    dist (p,q)) 
    >= r holds ( 
    dist_min (A,B)) 
    >= r 
    
    proof
    
      let A,B be non
    empty  
    Subset of ( 
    TOP-REAL n) such that 
    
      
    
    A1: for p,q be 
    Point of ( 
    TOP-REAL n) st p 
    in A & q 
    in B holds ( 
    dist (p,q)) 
    >= r; 
    
      
    
      
    
    A2: for p,q be 
    Point of ( 
    Euclid n) st p 
    in A & q 
    in B holds ( 
    dist (p,q)) 
    >= r 
    
      proof
    
        let a,b be
    Point of ( 
    Euclid n) such that 
    
        
    
    A3: a 
    in A & b 
    in B; 
    
        reconsider p = a, q = b as
    Point of ( 
    TOP-REAL n) by 
    TOPREAL3: 8;
    
        ex a,b be
    Point of ( 
    Euclid n) st p 
    = a & q 
    = b & ( 
    dist (p,q)) 
    = ( 
    dist (a,b)) by 
    TOPREAL6:def 1;
    
        hence thesis by
    A1,
    A3;
    
      end;
    
      ex A9,B9 be
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)) st A 
    = A9 & B 
    = B9 & ( 
    dist_min (A,B)) 
    = ( 
    min_dist_min (A9,B9)) by 
    Def1;
    
      hence thesis by
    A2,
    Th13;
    
    end;
    
    theorem :: 
    
    JORDAN1K:41
    
    
    
    
    
    Th41: for D be 
    Subset of ( 
    TOP-REAL n), A,C be non 
    empty  
    Subset of ( 
    TOP-REAL n) st C 
    c= D holds ( 
    dist_min (A,D)) 
    <= ( 
    dist_min (A,C)) 
    
    proof
    
      let D be
    Subset of ( 
    TOP-REAL n); 
    
      let A,C be non
    empty  
    Subset of ( 
    TOP-REAL n) such that 
    
      
    
    A1: C 
    c= D; 
    
      consider A9,D9 be
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)) such that 
    
      
    
    A2: A 
    = A9 and 
    
      
    
    A3: D 
    = D9 & ( 
    dist_min (A,D)) 
    = ( 
    min_dist_min (A9,D9)) by 
    Def1;
    
      reconsider f = (
    dist_min A9) as 
    Function of the 
    carrier of ( 
    TopSpaceMetr ( 
    Euclid n)), 
    REAL by 
    TOPMETR: 17;
    
      reconsider Y = (f
    .: D9) as 
    Subset of 
    REAL ; 
    
      
    
      
    
    A4: Y is 
    bounded_below
    
      proof
    
        take
    0 ; 
    
        let r be
    ExtReal;
    
        assume r
    in Y; 
    
        then ex c be
    Element of ( 
    TopSpaceMetr ( 
    Euclid n)) st c 
    in D9 & r 
    = (f 
    . c) by 
    FUNCT_2: 65;
    
        hence thesis by
    A2,
    Th9;
    
      end;
    
      
    
      
    
    A5: ( 
    lower_bound Y) 
    = ( 
    lower_bound ( 
    [#] (( 
    dist_min A9) 
    .: D9))) by 
    WEIERSTR:def 1
    
      .= (
    lower_bound (( 
    dist_min A9) 
    .: D9)) by 
    WEIERSTR:def 3
    
      .= (
    min_dist_min (A9,D9)) by 
    WEIERSTR:def 7;
    
      consider A99,C9 be
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)) such that 
    
      
    
    A6: A 
    = A99 and 
    
      
    
    A7: C 
    = C9 and 
    
      
    
    A8: ( 
    dist_min (A,C)) 
    = ( 
    min_dist_min (A99,C9)) by 
    Def1;
    
      (
    dom f) 
    = the 
    carrier of ( 
    TopSpaceMetr ( 
    Euclid n)) by 
    FUNCT_2:def 1;
    
      then
    
      reconsider X = (f
    .: C9) as non 
    empty  
    Subset of 
    REAL by 
    A7;
    
      (
    lower_bound X) 
    = ( 
    lower_bound ( 
    [#] (( 
    dist_min A9) 
    .: C9))) by 
    WEIERSTR:def 1
    
      .= (
    lower_bound (( 
    dist_min A9) 
    .: C9)) by 
    WEIERSTR:def 3
    
      .= (
    min_dist_min (A9,C9)) by 
    WEIERSTR:def 7;
    
      hence thesis by
    A1,
    A2,
    A3,
    A6,
    A7,
    A8,
    A5,
    A4,
    RELAT_1: 123,
    SEQ_4: 47;
    
    end;
    
    theorem :: 
    
    JORDAN1K:42
    
    
    
    
    
    Th42: for A,B be non 
    empty
    compact  
    Subset of ( 
    TOP-REAL n) holds ex p,q be 
    Point of ( 
    TOP-REAL n) st p 
    in A & q 
    in B & ( 
    dist_min (A,B)) 
    = ( 
    dist (p,q)) 
    
    proof
    
      let A,B be non
    empty
    compact  
    Subset of ( 
    TOP-REAL n); 
    
      consider A9,B9 be
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)) such that 
    
      
    
    A1: A 
    = A9 & B 
    = B9 and 
    
      
    
    A2: ( 
    dist_min (A,B)) 
    = ( 
    min_dist_min (A9,B9)) by 
    Def1;
    
       the TopStruct of (
    TOP-REAL n) 
    = ( 
    TopSpaceMetr ( 
    Euclid n)) by 
    EUCLID:def 8;
    
      then A9 is
    compact & B9 is 
    compact by 
    A1,
    COMPTS_1: 23;
    
      then
    
      consider x1,x2 be
    Point of ( 
    Euclid n) such that 
    
      
    
    A3: x1 
    in A9 & x2 
    in B9 and 
    
      
    
    A4: ( 
    dist (x1,x2)) 
    = ( 
    min_dist_min (A9,B9)) by 
    A1,
    WEIERSTR: 30;
    
      reconsider p = x1, q = x2 as
    Point of ( 
    TOP-REAL n) by 
    TOPREAL3: 8;
    
      take p, q;
    
      thus p
    in A & q 
    in B by 
    A1,
    A3;
    
      thus thesis by
    A2,
    A4,
    TOPREAL6:def 1;
    
    end;
    
    theorem :: 
    
    JORDAN1K:43
    
    
    
    
    
    Th43: for p,q be 
    Point of ( 
    TOP-REAL n) holds ( 
    dist_min ( 
    {p},
    {q}))
    = ( 
    dist (p,q)) 
    
    proof
    
      let p,q be
    Point of ( 
    TOP-REAL n); 
    
      consider p9,q9 be
    Point of ( 
    TOP-REAL n) such that 
    
      
    
    A1: p9 
    in  
    {p} and
    
      
    
    A2: q9 
    in  
    {q} & (
    dist_min ( 
    {p},
    {q}))
    = ( 
    dist (p9,q9)) by 
    Th42;
    
      p
    = p9 by 
    A1,
    TARSKI:def 1;
    
      hence thesis by
    A2,
    TARSKI:def 1;
    
    end;
    
    definition
    
      let n;
    
      let p be
    Point of ( 
    TOP-REAL n); 
    
      let B be
    Subset of ( 
    TOP-REAL n); 
    
      :: 
    
    JORDAN1K:def2
    
      func
    
    dist (p,B) -> 
    Real equals ( 
    dist_min ( 
    {p},B));
    
      coherence ;
    
    end
    
    theorem :: 
    
    JORDAN1K:44
    
    for A be non
    empty  
    Subset of ( 
    TOP-REAL n), p be 
    Point of ( 
    TOP-REAL n) holds ( 
    dist (p,A)) 
    >=  
    0 by 
    Th38;
    
    theorem :: 
    
    JORDAN1K:45
    
    for A be
    compact  
    Subset of ( 
    TOP-REAL n), p be 
    Point of ( 
    TOP-REAL n) st p 
    in A holds ( 
    dist (p,A)) 
    =  
    0 by 
    Th39,
    ZFMISC_1: 48;
    
    theorem :: 
    
    JORDAN1K:46
    
    
    
    
    
    Th46: for A be non 
    empty
    compact  
    Subset of ( 
    TOP-REAL n), p be 
    Point of ( 
    TOP-REAL n) holds ex q be 
    Point of ( 
    TOP-REAL n) st q 
    in A & ( 
    dist (p,A)) 
    = ( 
    dist (p,q)) 
    
    proof
    
      let A be non
    empty
    compact  
    Subset of ( 
    TOP-REAL n); 
    
      let p be
    Point of ( 
    TOP-REAL n); 
    
      consider q,p9 be
    Point of ( 
    TOP-REAL n) such that 
    
      
    
    A1: q 
    in A and 
    
      
    
    A2: p9 
    in  
    {p} & (
    dist_min (A, 
    {p}))
    = ( 
    dist (q,p9)) by 
    Th42;
    
      take q;
    
      thus q
    in A by 
    A1;
    
      thus thesis by
    A2,
    TARSKI:def 1;
    
    end;
    
    theorem :: 
    
    JORDAN1K:47
    
    for C be non
    empty  
    Subset of ( 
    TOP-REAL n) holds for D be 
    Subset of ( 
    TOP-REAL n) st C 
    c= D holds for q be 
    Point of ( 
    TOP-REAL n) holds ( 
    dist (q,D)) 
    <= ( 
    dist (q,C)) by 
    Th41;
    
    theorem :: 
    
    JORDAN1K:48
    
    for A be non
    empty  
    Subset of ( 
    TOP-REAL n), p be 
    Point of ( 
    TOP-REAL n) st for q be 
    Point of ( 
    TOP-REAL n) st q 
    in A holds ( 
    dist (p,q)) 
    >= r holds ( 
    dist (p,A)) 
    >= r 
    
    proof
    
      let A be non
    empty  
    Subset of ( 
    TOP-REAL n), p9 be 
    Point of ( 
    TOP-REAL n) such that 
    
      
    
    A1: for q be 
    Point of ( 
    TOP-REAL n) st q 
    in A holds ( 
    dist (p9,q)) 
    >= r; 
    
      for p,q be
    Point of ( 
    TOP-REAL n) st p 
    in  
    {p9} & q
    in A holds ( 
    dist (p,q)) 
    >= r 
    
      proof
    
        let p,q be
    Point of ( 
    TOP-REAL n) such that 
    
        
    
    A2: p 
    in  
    {p9} and
    
        
    
    A3: q 
    in A; 
    
        p
    = p9 by 
    A2,
    TARSKI:def 1;
    
        hence thesis by
    A1,
    A3;
    
      end;
    
      hence thesis by
    Th40;
    
    end;
    
    theorem :: 
    
    JORDAN1K:49
    
    for p,q be
    Point of ( 
    TOP-REAL n) holds ( 
    dist (p, 
    {q}))
    = ( 
    dist (p,q)) by 
    Th43;
    
    theorem :: 
    
    JORDAN1K:50
    
    
    
    
    
    Th50: for A be non 
    empty  
    Subset of ( 
    TOP-REAL n), p,q be 
    Point of ( 
    TOP-REAL n) st q 
    in A holds ( 
    dist (p,A)) 
    <= ( 
    dist (p,q)) 
    
    proof
    
      let A be non
    empty  
    Subset of ( 
    TOP-REAL n); 
    
      let p,q be
    Point of ( 
    TOP-REAL n); 
    
      assume q
    in A; 
    
      then
    {q}
    c= A by 
    ZFMISC_1: 31;
    
      then (
    dist (p,A)) 
    <= ( 
    dist (p, 
    {q})) by
    Th41;
    
      hence thesis by
    Th43;
    
    end;
    
    theorem :: 
    
    JORDAN1K:51
    
    for A be
    compact non 
    empty  
    Subset of ( 
    TOP-REAL 2), B be 
    open  
    Subset of ( 
    TOP-REAL 2) st A 
    c= B holds for p be 
    Point of ( 
    TOP-REAL 2) st not p 
    in B holds ( 
    dist (p,B)) 
    < ( 
    dist (p,A)) 
    
    proof
    
      let A be
    compact non 
    empty  
    Subset of ( 
    TOP-REAL 2), B be 
    open  
    Subset of ( 
    TOP-REAL 2) such that 
    
      
    
    A1: A 
    c= B; 
    
       the TopStruct of (
    TOP-REAL 2) 
    = ( 
    TopSpaceMetr ( 
    Euclid 2)) by 
    EUCLID:def 8;
    
      then
    
      reconsider P = B as
    open  
    Subset of ( 
    TopSpaceMetr ( 
    Euclid 2)) by 
    PRE_TOPC: 30;
    
      let p be
    Point of ( 
    TOP-REAL 2) such that 
    
      
    
    A2: not p 
    in B; 
    
      assume
    
      
    
    A3: ( 
    dist (p,B)) 
    >= ( 
    dist (p,A)); 
    
      (
    dist (p,B)) 
    <= ( 
    dist (p,A)) by 
    A1,
    Th41;
    
      then
    
      
    
    A4: ( 
    dist (p,B)) 
    = ( 
    dist (p,A)) by 
    A3,
    XXREAL_0: 1;
    
      consider q be
    Point of ( 
    TOP-REAL 2) such that 
    
      
    
    A5: q 
    in A and 
    
      
    
    A6: ( 
    dist (p,A)) 
    = ( 
    dist (p,q)) by 
    Th46;
    
      reconsider a = q as
    Point of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
      consider r be
    Real such that 
    
      
    
    A7: r 
    >  
    0 and 
    
      
    
    A8: ( 
    Ball (a,r)) 
    c= P by 
    A1,
    A5,
    TOPMETR: 15;
    
      reconsider r as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      set s = (r
    / (2 
    * ( 
    dist (p,q)))), q9 = (((1 
    - s) 
    * q) 
    + (s 
    * p)); 
    
      a
    in P by 
    A1,
    A5;
    
      then
    
      
    
    A9: ( 
    dist (p,q)) 
    >  
    0 by 
    A2,
    Th22;
    
      then
    
      
    
    A10: (2 
    * ( 
    dist (p,q))) 
    >  
    0 by 
    XREAL_1: 129;
    
      then
    0  
    < s by 
    A7,
    XREAL_1: 139;
    
      then
    
      
    
    A11: (1 
    - s) 
    < (1 
    -  
    0 ) by 
    XREAL_1: 10;
    
      
    
      
    
    A12: ex p1,q1 be 
    Point of ( 
    Euclid 2) st p1 
    = q & q1 
    = q9 & ( 
    dist (q,q9)) 
    = ( 
    dist (p1,q1)) by 
    TOPREAL6:def 1;
    
      (
    dist (q,q9)) 
    = (((1 
    * r) 
    / (2 
    * ( 
    dist (p,q)))) 
    * ( 
    dist (p,q))) by 
    A7,
    A9,
    Th28
    
      .= (((r
    / 2) 
    / (( 
    dist (p,q)) 
    / 1)) 
    * ( 
    dist (p,q))) by 
    XCMPLX_1: 84
    
      .= (r
    / 2) by 
    A9,
    XCMPLX_1: 87;
    
      then (
    dist (q,q9)) 
    < (r 
    / 1) by 
    A7,
    XREAL_1: 76;
    
      then
    
      
    
    A13: q9 
    in ( 
    Ball (a,r)) by 
    A12,
    METRIC_1: 11;
    
      now
    
        
    
        
    
    A14: ex p1,q1 be 
    Point of ( 
    Euclid 2) st p1 
    = p & q1 
    = q & ( 
    dist (p,q)) 
    = ( 
    dist (p1,q1)) by 
    TOPREAL6:def 1;
    
        assume r
    > ( 
    dist (p,q)); 
    
        then p
    in ( 
    Ball (a,r)) by 
    A14,
    METRIC_1: 11;
    
        hence contradiction by
    A2,
    A8;
    
      end;
    
      then (1
    * r) 
    < (2 
    * ( 
    dist (p,q))) by 
    A7,
    XREAL_1: 98;
    
      then s
    < 1 by 
    A10,
    XREAL_1: 191;
    
      then (
    dist (p,q9)) 
    = ((1 
    - s) 
    * ( 
    dist (p,q))) by 
    Th27;
    
      hence contradiction by
    A4,
    A6,
    A8,
    A9,
    A13,
    A11,
    Th50,
    XREAL_1: 157;
    
    end;