l_hospit.miz
begin
reserve f,g for
PartFunc of
REAL ,
REAL ,
r,r1,r2,g1,g2,g3,g4,g5,g6,x,x0,t,c for
Real,
a,b,s for
Real_Sequence,
n,k for
Element of
NAT ;
theorem ::
L_HOSPIT:1
f
is_continuous_in x0 & (for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)) implies f
is_convergent_in x0
proof
assume that
A1: f
is_continuous_in x0 and
A2: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f);
now
let s such that
A3: s is
convergent & (
lim s)
= x0 and
A4: (
rng s)
c= ((
dom f)
\
{x0});
((
dom f)
\
{x0})
c= (
dom f) by
XBOOLE_1: 36;
then (
rng s)
c= (
dom f) by
A4;
hence (f
/* s) is
convergent & (
lim (f
/* s))
= (f
. x0) by
A1,
A3,
FCONT_1:def 1;
end;
hence thesis by
A2,
LIMFUNC3:def 1;
end;
theorem ::
L_HOSPIT:2
Th2: f
is_right_convergent_in x0 & (
lim_right (f,x0))
= t iff (for r st x0
< r holds ex t st t
< r & x0
< t & t
in (
dom f)) & for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom f)
/\ (
right_open_halfline x0)) holds (f
/* a) is
convergent & (
lim (f
/* a))
= t
proof
thus f
is_right_convergent_in x0 & (
lim_right (f,x0))
= t implies (for r st x0
< r holds ex t st t
< r & x0
< t & t
in (
dom f)) & for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom f)
/\ (
right_open_halfline x0)) holds (f
/* a) is
convergent & (
lim (f
/* a))
= t by
LIMFUNC2:def 4,
LIMFUNC2:def 8;
reconsider t as
Real;
(for r st x0
< r holds ex t st t
< r & x0
< t & t
in (
dom f)) & (for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom f)
/\ (
right_open_halfline x0)) holds (f
/* a) is
convergent & (
lim (f
/* a))
= t) implies f
is_right_convergent_in x0 & (
lim_right (f,x0))
= t
proof
assume that
A1: for r st x0
< r holds ex t st t
< r & x0
< t & t
in (
dom f) and
A2: for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom f)
/\ (
right_open_halfline x0)) holds (f
/* a) is
convergent & (
lim (f
/* a))
= t;
thus f
is_right_convergent_in x0 by
A1,
A2,
LIMFUNC2:def 4;
hence thesis by
A2,
LIMFUNC2:def 8;
end;
hence thesis;
end;
theorem ::
L_HOSPIT:3
Th3: f
is_left_convergent_in x0 & (
lim_left (f,x0))
= t iff (for r st r
< x0 holds ex t st r
< t & t
< x0 & t
in (
dom f)) & for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom f)
/\ (
left_open_halfline x0)) holds (f
/* a) is
convergent & (
lim (f
/* a))
= t
proof
thus f
is_left_convergent_in x0 & (
lim_left (f,x0))
= t implies (for r st r
< x0 holds ex t st r
< t & t
< x0 & t
in (
dom f)) & for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom f)
/\ (
left_open_halfline x0)) holds (f
/* a) is
convergent & (
lim (f
/* a))
= t by
LIMFUNC2:def 1,
LIMFUNC2:def 7;
reconsider t as
Real;
(for r st r
< x0 holds ex t st r
< t & t
< x0 & t
in (
dom f)) & (for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom f)
/\ (
left_open_halfline x0)) holds (f
/* a) is
convergent & (
lim (f
/* a))
= t) implies f
is_left_convergent_in x0 & (
lim_left (f,x0))
= t
proof
assume that
A1: for r st r
< x0 holds ex t st r
< t & t
< x0 & t
in (
dom f) and
A2: for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom f)
/\ (
left_open_halfline x0)) holds (f
/* a) is
convergent & (
lim (f
/* a))
= t;
thus f
is_left_convergent_in x0 by
A1,
A2,
LIMFUNC2:def 1;
hence thesis by
A2,
LIMFUNC2:def 7;
end;
hence thesis;
end;
theorem ::
L_HOSPIT:4
Th4: (ex N be
Neighbourhood of x0 st (N
\
{x0})
c= (
dom f)) implies for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom f) & g2
< r2 & x0
< g2 & g2
in (
dom f)
proof
given N be
Neighbourhood of x0 such that
A1: (N
\
{x0})
c= (
dom f);
consider r be
Real such that
A2:
0
< r and
A3: N
=
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 6;
(N
\
{x0})
= (
].(x0
- r), x0.[
\/
].x0, (x0
+ r).[) by
A2,
A3,
LIMFUNC3: 4;
hence thesis by
A1,
A2,
LIMFUNC3: 5;
end;
theorem ::
L_HOSPIT:5
(ex N be
Neighbourhood of x0 st N
c= (
dom f) & N
c= (
dom g) & f
is_differentiable_on N & g
is_differentiable_on N & (N
\
{x0})
c= (
dom (f
/ g)) & N
c= (
dom ((f
`| N)
/ (g
`| N))) & (f
. x0)
=
0 & (g
. x0)
=
0 & ((f
`| N)
/ (g
`| N))
is_divergent_to+infty_in x0) implies (f
/ g)
is_divergent_to+infty_in x0
proof
given N be
Neighbourhood of x0 such that
A1: N
c= (
dom f) and
A2: N
c= (
dom g) and
A3: f
is_differentiable_on N and
A4: g
is_differentiable_on N and
A5: (N
\
{x0})
c= (
dom (f
/ g)) and
A6: N
c= (
dom ((f
`| N)
/ (g
`| N))) and
A7: (f
. x0)
=
0 & (g
. x0)
=
0 and
A8: ((f
`| N)
/ (g
`| N))
is_divergent_to+infty_in x0;
consider r be
Real such that
A9:
0
< r and
A10: N
=
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 6;
A11: for x st (x0
- r)
< x & x
< x0 holds ex c st c
in
].x, x0.[ & ((f
/ g)
. x)
= (((f
`| N)
/ (g
`| N))
. c)
proof
A12: (x0
+
0 )
< (x0
+ r) by
A9,
XREAL_1: 8;
(x0
- r)
< x0 by
A9,
XREAL_1: 44;
then x0
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A12;
then
A13: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A14: ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })))
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
XBOOLE_1: 17;
A15: ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 })))
c= ((
dom g)
\ (g
"
{
0 })) by
XBOOLE_1: 17;
let x such that
A16: (x0
- r)
< x and
A17: x
< x0;
set f1 = (((f
. x)
(#) g)
- ((g
. x)
(#) f));
A18: (
dom ((f
. x)
(#) g))
= (
dom g) & (
dom ((g
. x)
(#) f))
= (
dom f) by
VALUED_1:def 5;
then
A19: (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f)))
= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
x
< (x0
+ r) by
A17,
A12,
XXREAL_0: 2;
then x
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A16;
then x
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
A20:
[.x, x0.]
c= N by
A10,
A13,
XXREAL_2:def 12;
then
A21:
[.x, x0.]
c= (
dom f) &
[.x, x0.]
c= (
dom g) by
A1,
A2;
then
A22:
[.x, x0.]
c= (
dom f1) by
A19,
XBOOLE_1: 19;
(g
| N) is
continuous by
A4,
FDIFF_1: 25;
then (g
|
[.x, x0.]) is
continuous by
A20,
FCONT_1: 16;
then
A23: (((f
. x)
(#) g)
|
[.x, x0.]) is
continuous by
A2,
A20,
FCONT_1: 20,
XBOOLE_1: 1;
(f
| N) is
continuous by
A3,
FDIFF_1: 25;
then (f
|
[.x, x0.]) is
continuous by
A20,
FCONT_1: 16;
then
A24: (((g
. x)
(#) f)
|
[.x, x0.]) is
continuous by
A1,
A20,
FCONT_1: 20,
XBOOLE_1: 1;
[.x, x0.]
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
A21,
A19,
XBOOLE_1: 19;
then
A25: ((((f
. x)
(#) g)
- ((g
. x)
(#) f))
|
[.x, x0.]) is
continuous by
A24,
A18,
A19,
A23,
FCONT_1: 18;
A26:
].x, x0.[
c=
[.x, x0.] by
XXREAL_1: 25;
then
A27:
].x, x0.[
c= N by
A20;
A28: x
in
[.x, x0.] by
A17,
XXREAL_1: 1;
then x
in (
dom f1) by
A22;
then
A29: x
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A30: x
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A31: x0
in
[.x, x0.] by
A17,
XXREAL_1: 1;
then x0
in (
dom f1) by
A22;
then
A32: x0
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A33: x0
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A34: x
in (
dom ((g
. x)
(#) f)) by
A29,
XBOOLE_0:def 4;
A35: (f1
. x)
= ((((f
. x)
(#) g)
. x)
- (((g
. x)
(#) f)
. x)) by
A22,
A28,
VALUED_1: 13
.= (((f
. x)
* (g
. x))
- (((g
. x)
(#) f)
. x)) by
A30,
VALUED_1:def 5
.= (((g
. x)
* (f
. x))
- ((g
. x)
* (f
. x))) by
A34,
VALUED_1:def 5
.=
0 ;
A36: x0
in (
dom ((g
. x)
(#) f)) by
A32,
XBOOLE_0:def 4;
not x
in
{x0} by
A17,
TARSKI:def 1;
then
A37: x
in (
[.x, x0.]
\
{x0}) by
A28,
XBOOLE_0:def 5;
N
c= (
dom ((f
. x)
(#) g)) by
A2,
VALUED_1:def 5;
then
A38:
].x, x0.[
c= (
dom ((f
. x)
(#) g)) by
A27;
N
c= (
dom ((g
. x)
(#) f)) by
A1,
VALUED_1:def 5;
then
A39:
].x, x0.[
c= (
dom ((g
. x)
(#) f)) by
A27;
then
].x, x0.[
c= ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
A38,
XBOOLE_1: 19;
then
A40:
].x, x0.[
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
VALUED_1: 12;
f
is_differentiable_on
].x, x0.[ by
A3,
A20,
A26,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A41: ((g
. x)
(#) f)
is_differentiable_on
].x, x0.[ by
A39,
FDIFF_1: 20;
g
is_differentiable_on
].x, x0.[ by
A4,
A20,
A26,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A42: ((f
. x)
(#) g)
is_differentiable_on
].x, x0.[ by
A38,
FDIFF_1: 20;
(f1
. x0)
= ((((f
. x)
(#) g)
. x0)
- (((g
. x)
(#) f)
. x0)) by
A22,
A31,
VALUED_1: 13
.= (((f
. x)
* (g
. x0))
- (((g
. x)
(#) f)
. x0)) by
A33,
VALUED_1:def 5
.= (
0
- ((g
. x)
*
0 )) by
A7,
A36,
VALUED_1:def 5
.=
0 ;
then
consider t such that
A43: t
in
].x, x0.[ and
A44: (
diff (f1,t))
=
0 by
A17,
A25,
A41,
A40,
A42,
A22,
A35,
FDIFF_1: 19,
ROLLE: 1;
A45: ((g
. x)
(#) f)
is_differentiable_in t by
A41,
A43,
FDIFF_1: 9;
A46: f
is_differentiable_in t by
A3,
A27,
A43,
FDIFF_1: 9;
((f
. x)
(#) g)
is_differentiable_in t by
A42,
A43,
FDIFF_1: 9;
then
0
= ((
diff (((f
. x)
(#) g),t))
- (
diff (((g
. x)
(#) f),t))) by
A44,
A45,
FDIFF_1: 14;
then
A47:
0
= ((
diff (((f
. x)
(#) g),t))
- ((g
. x)
* (
diff (f,t)))) by
A46,
FDIFF_1: 15;
take t;
A48: t
in
[.x, x0.] by
A26,
A43;
(
[.x, x0.]
\
{x0})
c= (N
\
{x0}) by
A20,
XBOOLE_1: 33;
then
A49: (
[.x, x0.]
\
{x0})
c= (
dom (f
/ g)) by
A5;
then (
[.x, x0.]
\
{x0})
c= ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 }))) by
RFUNCT_1:def 1;
then (
[.x, x0.]
\
{x0})
c= ((
dom g)
\ (g
"
{
0 })) by
A15;
then
A50: x
in (
dom g) & not x
in (g
"
{
0 }) by
A37,
XBOOLE_0:def 5;
A51:
now
assume (g
. x)
=
0 ;
then (g
. x)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A50,
FUNCT_1:def 7;
end;
A52:
[.x, x0.]
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A20;
then
[.x, x0.]
c= ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 }))) by
RFUNCT_1:def 1;
then
[.x, x0.]
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
A14;
then
A53: t
in (
dom (g
`| N)) & not t
in ((g
`| N)
"
{
0 }) by
A48,
XBOOLE_0:def 5;
A54:
now
assume (
diff (g,t))
=
0 ;
then ((g
`| N)
. t)
=
0 by
A4,
A20,
A48,
FDIFF_1:def 7;
then ((g
`| N)
. t)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A53,
FUNCT_1:def 7;
end;
g
is_differentiable_in t by
A4,
A27,
A43,
FDIFF_1: 9;
then
0
= (((f
. x)
* (
diff (g,t)))
- ((g
. x)
* (
diff (f,t)))) by
A47,
FDIFF_1: 15;
then ((f
. x)
/ (g
. x))
= ((
diff (f,t))
/ (
diff (g,t))) by
A51,
A54,
XCMPLX_1: 94;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
/ (
diff (g,t))) by
XCMPLX_0:def 9;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
XCMPLX_0:def 9;
then ((f
/ g)
. x)
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
A49,
A37,
RFUNCT_1:def 1;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* ((
diff (g,t))
" )) by
A3,
A20,
A48,
FDIFF_1:def 7;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* (((g
`| N)
. t)
" )) by
A4,
A20,
A48,
FDIFF_1:def 7;
hence thesis by
A43,
A52,
A48,
RFUNCT_1:def 1;
end;
A55: for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom (f
/ g))
/\ (
left_open_halfline x0)) holds ((f
/ g)
/* a) is
divergent_to+infty
proof
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set d = (
seq_const x0);
let a;
assume that
A56: a is
convergent and
A57: (
lim a)
= x0 and
A58: (
rng a)
c= ((
dom (f
/ g))
/\ (
left_open_halfline x0));
consider k such that
A59: for n st k
<= n holds (x0
- r)
< (a
. n) & (a
. n)
< (x0
+ r) by
A9,
A56,
A57,
LIMFUNC3: 7;
set a1 = (a
^\ k);
defpred
X[
Element of
NAT ,
Real] means $2
in
].(a1
. $1), x0.[ & ((((f
/ g)
/* a)
^\ k)
. $1)
= (((f
`| N)
/ (g
`| N))
. $2);
A60:
now
let n;
(a
. (n
+ k))
in (
rng a) by
VALUED_0: 28;
then (a
. (n
+ k))
in (
left_open_halfline x0) by
A58,
XBOOLE_0:def 4;
then (a
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st (a
. (n
+ k))
= g1 & g1
< x0;
hence (a1
. n)
< x0 by
NAT_1:def 3;
(a1
. n)
= (a
. (n
+ k)) & k
<= (n
+ k) by
NAT_1: 12,
NAT_1:def 3;
hence (x0
- r)
< (a1
. n) by
A59;
end;
A61: for n holds ex c be
Element of
REAL st
X[n, c]
proof
let n;
A62: (
rng a1)
c= (
rng a) by
VALUED_0: 21;
(x0
- r)
< (a1
. n) & (a1
. n)
< x0 by
A60;
then
consider c such that
A63: c
in
].(a1
. n), x0.[ and
A64: ((f
/ g)
. (a1
. n))
= (((f
`| N)
/ (g
`| N))
. c) by
A11;
take c;
A65: ((
dom (f
/ g))
/\ (
left_open_halfline x0))
c= (
dom (f
/ g)) by
XBOOLE_1: 17;
then (
rng a)
c= (
dom (f
/ g)) by
A58;
then (((f
/ g)
/* (a
^\ k))
. n)
= (((f
`| N)
/ (g
`| N))
. c) by
A64,
A62,
FUNCT_2: 108,
XBOOLE_1: 1;
hence thesis by
A58,
A63,
A65,
VALUED_0: 27,
XBOOLE_1: 1;
end;
consider b such that
A66: for n holds
X[n, (b
. n)] from
FUNCT_2:sch 3(
A61);
A67:
now
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
then (b
. n)
in
].(a1
. n), x0.[ by
A66;
then (b
. n)
in { g1 : (a1
. n)
< g1 & g1
< x0 } by
RCOMP_1:def 2;
then ex g1 st g1
= (b
. n) & (a1
. n)
< g1 & g1
< x0;
hence (a1
. n)
<= (b
. n) & (b
. n)
<= (d
. n) by
SEQ_1: 57;
end;
A68: (
lim d)
= (d
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
A69: x0
< (x0
+ r) by
A9,
XREAL_1: 29;
(x0
- r)
< x0 by
A9,
XREAL_1: 44;
then x0
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
A69;
then
A70: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A71: (
rng b)
c= ((
dom ((f
`| N)
/ (g
`| N)))
\
{x0})
proof
let x be
object;
assume x
in (
rng b);
then
consider n such that
A72: x
= (b
. n) by
FUNCT_2: 113;
(a1
. n)
< x0 by
A60;
then
A73: (a1
. n)
< (x0
+ r) by
A69,
XXREAL_0: 2;
(x0
- r)
< (a1
. n) by
A60;
then (a1
. n)
in { g3 : (x0
- r)
< g3 & g3
< (x0
+ r) } by
A73;
then (a1
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
].(a1
. n), x0.[
c=
[.(a1
. n), x0.] &
[.(a1
. n), x0.]
c=
].(x0
- r), (x0
+ r).[ by
A70,
XXREAL_1: 25,
XXREAL_2:def 12;
then
].(a1
. n), x0.[
c=
].(x0
- r), (x0
+ r).[;
then
A74:
].(a1
. n), x0.[
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A10;
A75: x
in
].(a1
. n), x0.[ by
A66,
A72;
then x
in { g1 : (a1
. n)
< g1 & g1
< x0 } by
RCOMP_1:def 2;
then ex g1 st g1
= x & (a1
. n)
< g1 & g1
< x0;
then not x
in
{x0} by
TARSKI:def 1;
hence thesis by
A75,
A74,
XBOOLE_0:def 5;
end;
A76: ((
dom ((f
`| N)
/ (g
`| N)))
\
{x0})
c= (
dom ((f
`| N)
/ (g
`| N))) by
XBOOLE_1: 36;
A77:
now
let n be
Nat;
A78: n
in
NAT by
ORDINAL1:def 12;
((((f
/ g)
/* a)
^\ k)
. n)
= (((f
`| N)
/ (g
`| N))
. (b
. n)) by
A66,
A78;
hence ((((f
`| N)
/ (g
`| N))
/* b)
. n)
<= ((((f
/ g)
/* a)
^\ k)
. n) by
A71,
A76,
FUNCT_2: 108,
XBOOLE_1: 1,
A78;
end;
(
lim a1)
= x0 by
A56,
A57,
SEQ_4: 20;
then b is
convergent & (
lim b)
= x0 by
A56,
A68,
A67,
SEQ_2: 19,
SEQ_2: 20;
then (((f
`| N)
/ (g
`| N))
/* b) is
divergent_to+infty by
A8,
A71,
LIMFUNC3:def 2;
then (((f
/ g)
/* a)
^\ k) is
divergent_to+infty by
A77,
LIMFUNC1: 42;
hence thesis by
LIMFUNC1: 7;
end;
A79: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f
/ g)) & g2
< r2 & x0
< g2 & g2
in (
dom (f
/ g)) by
A5,
Th4;
then for r1 st r1
< x0 holds ex t st r1
< t & t
< x0 & t
in (
dom (f
/ g)) by
LIMFUNC3: 8;
then
A80: (f
/ g)
is_left_divergent_to+infty_in x0 by
A55,
LIMFUNC2:def 2;
A81: for x st x0
< x & x
< (x0
+ r) holds ex c st c
in
].x0, x.[ & ((f
/ g)
. x)
= (((f
`| N)
/ (g
`| N))
. c)
proof
A82: (x0
- r)
< x0 by
A9,
XREAL_1: 44;
(x0
+
0 )
< (x0
+ r) by
A9,
XREAL_1: 8;
then x0
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A82;
then
A83: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A84: ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })))
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
XBOOLE_1: 17;
A85: ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 })))
c= ((
dom g)
\ (g
"
{
0 })) by
XBOOLE_1: 17;
let x such that
A86: x0
< x and
A87: x
< (x0
+ r);
set f1 = (((f
. x)
(#) g)
- ((g
. x)
(#) f));
A88: (
dom ((f
. x)
(#) g))
= (
dom g) & (
dom ((g
. x)
(#) f))
= (
dom f) by
VALUED_1:def 5;
(x0
- r)
< x by
A86,
A82,
XXREAL_0: 2;
then x
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A87;
then x
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
A89:
[.x0, x.]
c= N by
A10,
A83,
XXREAL_2:def 12;
then
[.x0, x.]
c= (
dom f) &
[.x0, x.]
c= (
dom g) by
A1,
A2;
then
A90:
[.x0, x.]
c= ((
dom f)
/\ (
dom g)) by
XBOOLE_1: 19;
then
A91:
[.x0, x.]
c= (
dom f1) by
A88,
VALUED_1: 12;
(g
| N) is
continuous by
A4,
FDIFF_1: 25;
then (g
|
[.x0, x.]) is
continuous by
A89,
FCONT_1: 16;
then
A92: (((f
. x)
(#) g)
|
[.x0, x.]) is
continuous by
A2,
A89,
FCONT_1: 20,
XBOOLE_1: 1;
(f
| N) is
continuous by
A3,
FDIFF_1: 25;
then (f
|
[.x0, x.]) is
continuous by
A89,
FCONT_1: 16;
then (((g
. x)
(#) f)
|
[.x0, x.]) is
continuous by
A1,
A89,
FCONT_1: 20,
XBOOLE_1: 1;
then
A93: ((((f
. x)
(#) g)
- ((g
. x)
(#) f))
|
[.x0, x.]) is
continuous by
A90,
A88,
A92,
FCONT_1: 18;
A94:
].x0, x.[
c=
[.x0, x.] by
XXREAL_1: 25;
then
A95:
].x0, x.[
c= N by
A89;
A96: x
in
[.x0, x.] by
A86,
XXREAL_1: 1;
then x
in (
dom f1) by
A91;
then
A97: x
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A98: x
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A99: x0
in
[.x0, x.] by
A86,
XXREAL_1: 1;
then x0
in (
dom f1) by
A91;
then
A100: x0
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A101: x0
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A102: x
in (
dom ((g
. x)
(#) f)) by
A97,
XBOOLE_0:def 4;
A103: (f1
. x)
= ((((f
. x)
(#) g)
. x)
- (((g
. x)
(#) f)
. x)) by
A91,
A96,
VALUED_1: 13
.= (((f
. x)
* (g
. x))
- (((g
. x)
(#) f)
. x)) by
A98,
VALUED_1:def 5
.= (((g
. x)
* (f
. x))
- ((g
. x)
* (f
. x))) by
A102,
VALUED_1:def 5
.=
0 ;
A104: x0
in (
dom ((g
. x)
(#) f)) by
A100,
XBOOLE_0:def 4;
not x
in
{x0} by
A86,
TARSKI:def 1;
then
A105: x
in (
[.x0, x.]
\
{x0}) by
A96,
XBOOLE_0:def 5;
N
c= (
dom ((f
. x)
(#) g)) by
A2,
VALUED_1:def 5;
then
A106:
].x0, x.[
c= (
dom ((f
. x)
(#) g)) by
A95;
N
c= (
dom ((g
. x)
(#) f)) by
A1,
VALUED_1:def 5;
then
A107:
].x0, x.[
c= (
dom ((g
. x)
(#) f)) by
A95;
then
].x0, x.[
c= ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
A106,
XBOOLE_1: 19;
then
A108:
].x0, x.[
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
VALUED_1: 12;
f
is_differentiable_on
].x0, x.[ by
A3,
A89,
A94,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A109: ((g
. x)
(#) f)
is_differentiable_on
].x0, x.[ by
A107,
FDIFF_1: 20;
g
is_differentiable_on
].x0, x.[ by
A4,
A89,
A94,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A110: ((f
. x)
(#) g)
is_differentiable_on
].x0, x.[ by
A106,
FDIFF_1: 20;
(f1
. x0)
= ((((f
. x)
(#) g)
. x0)
- (((g
. x)
(#) f)
. x0)) by
A91,
A99,
VALUED_1: 13
.= (((f
. x)
* (g
. x0))
- (((g
. x)
(#) f)
. x0)) by
A101,
VALUED_1:def 5
.= (
0
- ((g
. x)
*
0 )) by
A7,
A104,
VALUED_1:def 5
.=
0 ;
then
consider t such that
A111: t
in
].x0, x.[ and
A112: (
diff (f1,t))
=
0 by
A86,
A93,
A109,
A108,
A110,
A91,
A103,
FDIFF_1: 19,
ROLLE: 1;
A113: ((g
. x)
(#) f)
is_differentiable_in t by
A109,
A111,
FDIFF_1: 9;
A114: f
is_differentiable_in t by
A3,
A95,
A111,
FDIFF_1: 9;
((f
. x)
(#) g)
is_differentiable_in t by
A110,
A111,
FDIFF_1: 9;
then
0
= ((
diff (((f
. x)
(#) g),t))
- (
diff (((g
. x)
(#) f),t))) by
A112,
A113,
FDIFF_1: 14;
then
A115:
0
= ((
diff (((f
. x)
(#) g),t))
- ((g
. x)
* (
diff (f,t)))) by
A114,
FDIFF_1: 15;
take t;
A116: t
in
[.x0, x.] by
A94,
A111;
(
[.x0, x.]
\
{x0})
c= (N
\
{x0}) by
A89,
XBOOLE_1: 33;
then
A117: (
[.x0, x.]
\
{x0})
c= (
dom (f
/ g)) by
A5;
then (
[.x0, x.]
\
{x0})
c= ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 }))) by
RFUNCT_1:def 1;
then (
[.x0, x.]
\
{x0})
c= ((
dom g)
\ (g
"
{
0 })) by
A85;
then
A118: x
in (
dom g) & not x
in (g
"
{
0 }) by
A105,
XBOOLE_0:def 5;
A119:
now
assume (g
. x)
=
0 ;
then (g
. x)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A118,
FUNCT_1:def 7;
end;
A120:
[.x0, x.]
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A89;
then
[.x0, x.]
c= ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 }))) by
RFUNCT_1:def 1;
then
[.x0, x.]
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
A84;
then
A121: t
in (
dom (g
`| N)) & not t
in ((g
`| N)
"
{
0 }) by
A116,
XBOOLE_0:def 5;
A122:
now
assume (
diff (g,t))
=
0 ;
then ((g
`| N)
. t)
=
0 by
A4,
A89,
A116,
FDIFF_1:def 7;
then ((g
`| N)
. t)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A121,
FUNCT_1:def 7;
end;
g
is_differentiable_in t by
A4,
A95,
A111,
FDIFF_1: 9;
then
0
= (((f
. x)
* (
diff (g,t)))
- ((g
. x)
* (
diff (f,t)))) by
A115,
FDIFF_1: 15;
then ((f
. x)
/ (g
. x))
= ((
diff (f,t))
/ (
diff (g,t))) by
A119,
A122,
XCMPLX_1: 94;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
/ (
diff (g,t))) by
XCMPLX_0:def 9;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
XCMPLX_0:def 9;
then ((f
/ g)
. x)
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
A117,
A105,
RFUNCT_1:def 1;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* ((
diff (g,t))
" )) by
A3,
A89,
A116,
FDIFF_1:def 7;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* (((g
`| N)
. t)
" )) by
A4,
A89,
A116,
FDIFF_1:def 7;
hence thesis by
A111,
A120,
A116,
RFUNCT_1:def 1;
end;
A123: for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom (f
/ g))
/\ (
right_open_halfline x0)) holds ((f
/ g)
/* a) is
divergent_to+infty
proof
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set d = (
seq_const x0);
let a;
assume that
A124: a is
convergent and
A125: (
lim a)
= x0 and
A126: (
rng a)
c= ((
dom (f
/ g))
/\ (
right_open_halfline x0));
consider k such that
A127: for n st k
<= n holds (x0
- r)
< (a
. n) & (a
. n)
< (x0
+ r) by
A9,
A124,
A125,
LIMFUNC3: 7;
set a1 = (a
^\ k);
defpred
X[
Element of
NAT ,
Real] means $2
in
].x0, (a1
. $1).[ & ((((f
/ g)
/* a)
^\ k)
. $1)
= (((f
`| N)
/ (g
`| N))
. $2);
A128:
now
let n;
(a
. (n
+ k))
in (
rng a) by
VALUED_0: 28;
then (a
. (n
+ k))
in (
right_open_halfline x0) by
A126,
XBOOLE_0:def 4;
then (a
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st (a
. (n
+ k))
= g1 & x0
< g1;
hence x0
< (a1
. n) by
NAT_1:def 3;
(a1
. n)
= (a
. (n
+ k)) & k
<= (n
+ k) by
NAT_1: 12,
NAT_1:def 3;
hence (a1
. n)
< (x0
+ r) by
A127;
end;
A129: for n holds ex c be
Element of
REAL st
X[n, c]
proof
let n;
A130: (
rng a1)
c= (
rng a) by
VALUED_0: 21;
x0
< (a1
. n) & (a1
. n)
< (x0
+ r) by
A128;
then
consider c such that
A131: c
in
].x0, (a1
. n).[ and
A132: ((f
/ g)
. (a1
. n))
= (((f
`| N)
/ (g
`| N))
. c) by
A81;
take c;
A133: ((
dom (f
/ g))
/\ (
right_open_halfline x0))
c= (
dom (f
/ g)) by
XBOOLE_1: 17;
then (
rng a)
c= (
dom (f
/ g)) by
A126;
then (((f
/ g)
/* (a
^\ k))
. n)
= (((f
`| N)
/ (g
`| N))
. c) by
A132,
A130,
FUNCT_2: 108,
XBOOLE_1: 1;
hence thesis by
A126,
A131,
A133,
VALUED_0: 27,
XBOOLE_1: 1;
end;
consider b such that
A134: for n holds
X[n, (b
. n)] from
FUNCT_2:sch 3(
A129);
A135:
now
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
then (b
. n)
in
].x0, (a1
. n).[ by
A134;
then (b
. n)
in { g1 : x0
< g1 & g1
< (a1
. n) } by
RCOMP_1:def 2;
then ex g1 st g1
= (b
. n) & x0
< g1 & g1
< (a1
. n);
hence (d
. n)
<= (b
. n) & (b
. n)
<= (a1
. n) by
SEQ_1: 57;
end;
A136: (
lim d)
= (d
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
A137: (x0
- r)
< x0 by
A9,
XREAL_1: 44;
x0
< (x0
+ r) by
A9,
XREAL_1: 29;
then x0
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
A137;
then
A138: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A139: (
rng b)
c= ((
dom ((f
`| N)
/ (g
`| N)))
\
{x0})
proof
let x be
object;
assume x
in (
rng b);
then
consider n such that
A140: x
= (b
. n) by
FUNCT_2: 113;
x0
< (a1
. n) by
A128;
then
A141: (x0
- r)
< (a1
. n) by
A137,
XXREAL_0: 2;
(a1
. n)
< (x0
+ r) by
A128;
then (a1
. n)
in { g3 : (x0
- r)
< g3 & g3
< (x0
+ r) } by
A141;
then (a1
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
].x0, (a1
. n).[
c=
[.x0, (a1
. n).] &
[.x0, (a1
. n).]
c=
].(x0
- r), (x0
+ r).[ by
A138,
XXREAL_1: 25,
XXREAL_2:def 12;
then
].x0, (a1
. n).[
c=
].(x0
- r), (x0
+ r).[;
then
A142:
].x0, (a1
. n).[
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A10;
A143: x
in
].x0, (a1
. n).[ by
A134,
A140;
then x
in { g1 : x0
< g1 & g1
< (a1
. n) } by
RCOMP_1:def 2;
then ex g1 st g1
= x & x0
< g1 & g1
< (a1
. n);
then not x
in
{x0} by
TARSKI:def 1;
hence thesis by
A143,
A142,
XBOOLE_0:def 5;
end;
A144: ((
dom ((f
`| N)
/ (g
`| N)))
\
{x0})
c= (
dom ((f
`| N)
/ (g
`| N))) by
XBOOLE_1: 36;
A145:
now
let n be
Nat;
A146: n
in
NAT by
ORDINAL1:def 12;
((((f
/ g)
/* a)
^\ k)
. n)
= (((f
`| N)
/ (g
`| N))
. (b
. n)) by
A134,
A146;
hence ((((f
`| N)
/ (g
`| N))
/* b)
. n)
<= ((((f
/ g)
/* a)
^\ k)
. n) by
A139,
A144,
FUNCT_2: 108,
XBOOLE_1: 1,
A146;
end;
(
lim a1)
= x0 by
A124,
A125,
SEQ_4: 20;
then b is
convergent & (
lim b)
= x0 by
A124,
A136,
A135,
SEQ_2: 19,
SEQ_2: 20;
then (((f
`| N)
/ (g
`| N))
/* b) is
divergent_to+infty by
A8,
A139,
LIMFUNC3:def 2;
then (((f
/ g)
/* a)
^\ k) is
divergent_to+infty by
A145,
LIMFUNC1: 42;
hence thesis by
LIMFUNC1: 7;
end;
for r1 st x0
< r1 holds ex t st t
< r1 & x0
< t & t
in (
dom (f
/ g)) by
A79,
LIMFUNC3: 8;
then (f
/ g)
is_right_divergent_to+infty_in x0 by
A123,
LIMFUNC2:def 5;
hence thesis by
A80,
LIMFUNC3: 12;
end;
theorem ::
L_HOSPIT:6
(ex N be
Neighbourhood of x0 st N
c= (
dom f) & N
c= (
dom g) & f
is_differentiable_on N & g
is_differentiable_on N & (N
\
{x0})
c= (
dom (f
/ g)) & N
c= (
dom ((f
`| N)
/ (g
`| N))) & (f
. x0)
=
0 & (g
. x0)
=
0 & ((f
`| N)
/ (g
`| N))
is_divergent_to-infty_in x0) implies (f
/ g)
is_divergent_to-infty_in x0
proof
given N be
Neighbourhood of x0 such that
A1: N
c= (
dom f) and
A2: N
c= (
dom g) and
A3: f
is_differentiable_on N and
A4: g
is_differentiable_on N and
A5: (N
\
{x0})
c= (
dom (f
/ g)) and
A6: N
c= (
dom ((f
`| N)
/ (g
`| N))) and
A7: (f
. x0)
=
0 & (g
. x0)
=
0 and
A8: ((f
`| N)
/ (g
`| N))
is_divergent_to-infty_in x0;
consider r be
Real such that
A9:
0
< r and
A10: N
=
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 6;
A11: for x st (x0
- r)
< x & x
< x0 holds ex c st c
in
].x, x0.[ & ((f
/ g)
. x)
= (((f
`| N)
/ (g
`| N))
. c)
proof
A12: (x0
+
0 )
< (x0
+ r) by
A9,
XREAL_1: 8;
(x0
- r)
< x0 by
A9,
XREAL_1: 44;
then x0
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A12;
then
A13: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A14: ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })))
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
XBOOLE_1: 17;
A15: ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 })))
c= ((
dom g)
\ (g
"
{
0 })) by
XBOOLE_1: 17;
let x such that
A16: (x0
- r)
< x and
A17: x
< x0;
set f1 = (((f
. x)
(#) g)
- ((g
. x)
(#) f));
A18: (
dom ((f
. x)
(#) g))
= (
dom g) & (
dom ((g
. x)
(#) f))
= (
dom f) by
VALUED_1:def 5;
then
A19: (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f)))
= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
x
< (x0
+ r) by
A17,
A12,
XXREAL_0: 2;
then x
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A16;
then x
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
A20:
[.x, x0.]
c= N by
A10,
A13,
XXREAL_2:def 12;
then
A21:
[.x, x0.]
c= (
dom f) &
[.x, x0.]
c= (
dom g) by
A1,
A2;
then
A22:
[.x, x0.]
c= (
dom f1) by
A19,
XBOOLE_1: 19;
(g
| N) is
continuous by
A4,
FDIFF_1: 25;
then (g
|
[.x, x0.]) is
continuous by
A20,
FCONT_1: 16;
then
A23: (((f
. x)
(#) g)
|
[.x, x0.]) is
continuous by
A2,
A20,
FCONT_1: 20,
XBOOLE_1: 1;
(f
| N) is
continuous by
A3,
FDIFF_1: 25;
then (f
|
[.x, x0.]) is
continuous by
A20,
FCONT_1: 16;
then
A24: (((g
. x)
(#) f)
|
[.x, x0.]) is
continuous by
A1,
A20,
FCONT_1: 20,
XBOOLE_1: 1;
[.x, x0.]
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
A21,
A19,
XBOOLE_1: 19;
then
A25: ((((f
. x)
(#) g)
- ((g
. x)
(#) f))
|
[.x, x0.]) is
continuous by
A18,
A19,
A24,
A23,
FCONT_1: 18;
A26:
].x, x0.[
c=
[.x, x0.] by
XXREAL_1: 25;
then
A27:
].x, x0.[
c= N by
A20;
A28: x
in
[.x, x0.] by
A17,
XXREAL_1: 1;
then x
in (
dom f1) by
A22;
then
A29: x
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A30: x
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A31: x0
in
[.x, x0.] by
A17,
XXREAL_1: 1;
then x0
in (
dom f1) by
A22;
then
A32: x0
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A33: x0
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A34: x
in (
dom ((g
. x)
(#) f)) by
A29,
XBOOLE_0:def 4;
A35: (f1
. x)
= ((((f
. x)
(#) g)
. x)
- (((g
. x)
(#) f)
. x)) by
A22,
A28,
VALUED_1: 13
.= (((f
. x)
* (g
. x))
- (((g
. x)
(#) f)
. x)) by
A30,
VALUED_1:def 5
.= (((g
. x)
* (f
. x))
- ((g
. x)
* (f
. x))) by
A34,
VALUED_1:def 5
.=
0 ;
A36: x0
in (
dom ((g
. x)
(#) f)) by
A32,
XBOOLE_0:def 4;
not x
in
{x0} by
A17,
TARSKI:def 1;
then
A37: x
in (
[.x, x0.]
\
{x0}) by
A28,
XBOOLE_0:def 5;
N
c= (
dom ((f
. x)
(#) g)) by
A2,
VALUED_1:def 5;
then
A38:
].x, x0.[
c= (
dom ((f
. x)
(#) g)) by
A27;
N
c= (
dom ((g
. x)
(#) f)) by
A1,
VALUED_1:def 5;
then
A39:
].x, x0.[
c= (
dom ((g
. x)
(#) f)) by
A27;
then
].x, x0.[
c= ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
A38,
XBOOLE_1: 19;
then
A40:
].x, x0.[
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
VALUED_1: 12;
f
is_differentiable_on
].x, x0.[ by
A3,
A20,
A26,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A41: ((g
. x)
(#) f)
is_differentiable_on
].x, x0.[ by
A39,
FDIFF_1: 20;
g
is_differentiable_on
].x, x0.[ by
A4,
A20,
A26,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A42: ((f
. x)
(#) g)
is_differentiable_on
].x, x0.[ by
A38,
FDIFF_1: 20;
(f1
. x0)
= ((((f
. x)
(#) g)
. x0)
- (((g
. x)
(#) f)
. x0)) by
A22,
A31,
VALUED_1: 13
.= (((f
. x)
* (g
. x0))
- (((g
. x)
(#) f)
. x0)) by
A33,
VALUED_1:def 5
.= (
0
- ((g
. x)
*
0 )) by
A7,
A36,
VALUED_1:def 5
.=
0 ;
then
consider t such that
A43: t
in
].x, x0.[ and
A44: (
diff (f1,t))
=
0 by
A17,
A25,
A41,
A40,
A42,
A22,
A35,
FDIFF_1: 19,
ROLLE: 1;
A45: ((g
. x)
(#) f)
is_differentiable_in t by
A41,
A43,
FDIFF_1: 9;
A46: f
is_differentiable_in t by
A3,
A27,
A43,
FDIFF_1: 9;
((f
. x)
(#) g)
is_differentiable_in t by
A42,
A43,
FDIFF_1: 9;
then
0
= ((
diff (((f
. x)
(#) g),t))
- (
diff (((g
. x)
(#) f),t))) by
A44,
A45,
FDIFF_1: 14;
then
A47:
0
= ((
diff (((f
. x)
(#) g),t))
- ((g
. x)
* (
diff (f,t)))) by
A46,
FDIFF_1: 15;
take t;
A48: t
in
[.x, x0.] by
A26,
A43;
(
[.x, x0.]
\
{x0})
c= (N
\
{x0}) by
A20,
XBOOLE_1: 33;
then
A49: (
[.x, x0.]
\
{x0})
c= (
dom (f
/ g)) by
A5;
then (
[.x, x0.]
\
{x0})
c= ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 }))) by
RFUNCT_1:def 1;
then (
[.x, x0.]
\
{x0})
c= ((
dom g)
\ (g
"
{
0 })) by
A15;
then
A50: x
in (
dom g) & not x
in (g
"
{
0 }) by
A37,
XBOOLE_0:def 5;
A51:
now
assume (g
. x)
=
0 ;
then (g
. x)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A50,
FUNCT_1:def 7;
end;
A52:
[.x, x0.]
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A20;
then
[.x, x0.]
c= ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 }))) by
RFUNCT_1:def 1;
then
[.x, x0.]
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
A14;
then
A53: t
in (
dom (g
`| N)) & not t
in ((g
`| N)
"
{
0 }) by
A48,
XBOOLE_0:def 5;
A54:
now
assume (
diff (g,t))
=
0 ;
then ((g
`| N)
. t)
=
0 by
A4,
A20,
A48,
FDIFF_1:def 7;
then ((g
`| N)
. t)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A53,
FUNCT_1:def 7;
end;
g
is_differentiable_in t by
A4,
A27,
A43,
FDIFF_1: 9;
then
0
= (((f
. x)
* (
diff (g,t)))
- ((g
. x)
* (
diff (f,t)))) by
A47,
FDIFF_1: 15;
then ((f
. x)
/ (g
. x))
= ((
diff (f,t))
/ (
diff (g,t))) by
A51,
A54,
XCMPLX_1: 94;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
/ (
diff (g,t))) by
XCMPLX_0:def 9;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
XCMPLX_0:def 9;
then ((f
/ g)
. x)
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
A49,
A37,
RFUNCT_1:def 1;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* ((
diff (g,t))
" )) by
A3,
A20,
A48,
FDIFF_1:def 7;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* (((g
`| N)
. t)
" )) by
A4,
A20,
A48,
FDIFF_1:def 7;
hence thesis by
A43,
A52,
A48,
RFUNCT_1:def 1;
end;
A55: for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom (f
/ g))
/\ (
left_open_halfline x0)) holds ((f
/ g)
/* a) is
divergent_to-infty
proof
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set d = (
seq_const x0);
let a;
assume that
A56: a is
convergent and
A57: (
lim a)
= x0 and
A58: (
rng a)
c= ((
dom (f
/ g))
/\ (
left_open_halfline x0));
consider k such that
A59: for n st k
<= n holds (x0
- r)
< (a
. n) & (a
. n)
< (x0
+ r) by
A9,
A56,
A57,
LIMFUNC3: 7;
set a1 = (a
^\ k);
defpred
X[
Element of
NAT ,
Real] means $2
in
].(a1
. $1), x0.[ & ((((f
/ g)
/* a)
^\ k)
. $1)
= (((f
`| N)
/ (g
`| N))
. $2);
A60:
now
let n;
(a
. (n
+ k))
in (
rng a) by
VALUED_0: 28;
then (a
. (n
+ k))
in (
left_open_halfline x0) by
A58,
XBOOLE_0:def 4;
then (a
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st (a
. (n
+ k))
= g1 & g1
< x0;
hence (a1
. n)
< x0 by
NAT_1:def 3;
(a1
. n)
= (a
. (n
+ k)) & k
<= (n
+ k) by
NAT_1: 12,
NAT_1:def 3;
hence (x0
- r)
< (a1
. n) by
A59;
end;
A61: for n holds ex c be
Element of
REAL st
X[n, c]
proof
let n;
A62: (
rng a1)
c= (
rng a) by
VALUED_0: 21;
(x0
- r)
< (a1
. n) & (a1
. n)
< x0 by
A60;
then
consider c such that
A63: c
in
].(a1
. n), x0.[ and
A64: ((f
/ g)
. (a1
. n))
= (((f
`| N)
/ (g
`| N))
. c) by
A11;
take c;
A65: ((
dom (f
/ g))
/\ (
left_open_halfline x0))
c= (
dom (f
/ g)) by
XBOOLE_1: 17;
then (
rng a)
c= (
dom (f
/ g)) by
A58;
then (((f
/ g)
/* (a
^\ k))
. n)
= (((f
`| N)
/ (g
`| N))
. c) by
A64,
A62,
FUNCT_2: 108,
XBOOLE_1: 1;
hence thesis by
A58,
A63,
A65,
VALUED_0: 27,
XBOOLE_1: 1;
end;
consider b such that
A66: for n holds
X[n, (b
. n)] from
FUNCT_2:sch 3(
A61);
A67:
now
let n be
Nat;
A68: n
in
NAT by
ORDINAL1:def 12;
(b
. n)
in
].(a1
. n), x0.[ by
A66,
A68;
then (b
. n)
in { g1 : (a1
. n)
< g1 & g1
< x0 } by
RCOMP_1:def 2;
then ex g1 st g1
= (b
. n) & (a1
. n)
< g1 & g1
< x0;
hence (a1
. n)
<= (b
. n) & (b
. n)
<= (d
. n) by
SEQ_1: 57;
end;
A69: (
lim d)
= (d
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
A70: x0
< (x0
+ r) by
A9,
XREAL_1: 29;
(x0
- r)
< x0 by
A9,
XREAL_1: 44;
then x0
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
A70;
then
A71: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A72: (
rng b)
c= ((
dom ((f
`| N)
/ (g
`| N)))
\
{x0})
proof
let x be
object;
assume x
in (
rng b);
then
consider n such that
A73: x
= (b
. n) by
FUNCT_2: 113;
(a1
. n)
< x0 by
A60;
then
A74: (a1
. n)
< (x0
+ r) by
A70,
XXREAL_0: 2;
(x0
- r)
< (a1
. n) by
A60;
then (a1
. n)
in { g3 : (x0
- r)
< g3 & g3
< (x0
+ r) } by
A74;
then (a1
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
].(a1
. n), x0.[
c=
[.(a1
. n), x0.] &
[.(a1
. n), x0.]
c=
].(x0
- r), (x0
+ r).[ by
A71,
XXREAL_1: 25,
XXREAL_2:def 12;
then
].(a1
. n), x0.[
c=
].(x0
- r), (x0
+ r).[;
then
A75:
].(a1
. n), x0.[
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A10;
A76: x
in
].(a1
. n), x0.[ by
A66,
A73;
then x
in { g1 : (a1
. n)
< g1 & g1
< x0 } by
RCOMP_1:def 2;
then ex g1 st g1
= x & (a1
. n)
< g1 & g1
< x0;
then not x
in
{x0} by
TARSKI:def 1;
hence thesis by
A76,
A75,
XBOOLE_0:def 5;
end;
A77: ((
dom ((f
`| N)
/ (g
`| N)))
\
{x0})
c= (
dom ((f
`| N)
/ (g
`| N))) by
XBOOLE_1: 36;
A78:
now
let n be
Nat;
A79: n
in
NAT by
ORDINAL1:def 12;
((((f
/ g)
/* a)
^\ k)
. n)
= (((f
`| N)
/ (g
`| N))
. (b
. n)) by
A66,
A79;
hence ((((f
/ g)
/* a)
^\ k)
. n)
<= ((((f
`| N)
/ (g
`| N))
/* b)
. n) by
A72,
A77,
FUNCT_2: 108,
XBOOLE_1: 1,
A79;
end;
(
lim a1)
= x0 by
A56,
A57,
SEQ_4: 20;
then b is
convergent & (
lim b)
= x0 by
A56,
A69,
A67,
SEQ_2: 19,
SEQ_2: 20;
then (((f
`| N)
/ (g
`| N))
/* b) is
divergent_to-infty by
A8,
A72,
LIMFUNC3:def 3;
then (((f
/ g)
/* a)
^\ k) is
divergent_to-infty by
A78,
LIMFUNC1: 43;
hence thesis by
LIMFUNC1: 7;
end;
A80: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f
/ g)) & g2
< r2 & x0
< g2 & g2
in (
dom (f
/ g)) by
A5,
Th4;
then for r1 st r1
< x0 holds ex t st r1
< t & t
< x0 & t
in (
dom (f
/ g)) by
LIMFUNC3: 8;
then
A81: (f
/ g)
is_left_divergent_to-infty_in x0 by
A55,
LIMFUNC2:def 3;
A82: for x st x0
< x & x
< (x0
+ r) holds ex c st c
in
].x0, x.[ & ((f
/ g)
. x)
= (((f
`| N)
/ (g
`| N))
. c)
proof
A83: ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })))
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
XBOOLE_1: 17;
A84: (x0
- r)
< x0 by
A9,
XREAL_1: 44;
(x0
+
0 )
< (x0
+ r) by
A9,
XREAL_1: 8;
then x0
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A84;
then
A85: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
let x such that
A86: x0
< x and
A87: x
< (x0
+ r);
(x0
- r)
< x by
A86,
A84,
XXREAL_0: 2;
then x
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A87;
then x
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
A88:
[.x0, x.]
c= N by
A10,
A85,
XXREAL_2:def 12;
then
A89:
[.x0, x.]
c= (
dom f) &
[.x0, x.]
c= (
dom g) by
A1,
A2;
(g
| N) is
continuous by
A4,
FDIFF_1: 25;
then (g
|
[.x0, x.]) is
continuous by
A88,
FCONT_1: 16;
then
A90: (((f
. x)
(#) g)
|
[.x0, x.]) is
continuous by
A2,
A88,
FCONT_1: 20,
XBOOLE_1: 1;
(f
| N) is
continuous by
A3,
FDIFF_1: 25;
then (f
|
[.x0, x.]) is
continuous by
A88,
FCONT_1: 16;
then
A91: (((g
. x)
(#) f)
|
[.x0, x.]) is
continuous by
A1,
A88,
FCONT_1: 20,
XBOOLE_1: 1;
A92: (
dom ((f
. x)
(#) g))
= (
dom g) & (
dom ((g
. x)
(#) f))
= (
dom f) by
VALUED_1:def 5;
then
A93: (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f)))
= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
then
[.x0, x.]
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
A89,
XBOOLE_1: 19;
then
A94: ((((f
. x)
(#) g)
- ((g
. x)
(#) f))
|
[.x0, x.]) is
continuous by
A92,
A93,
A91,
A90,
FCONT_1: 18;
A95:
].x0, x.[
c=
[.x0, x.] by
XXREAL_1: 25;
then
A96:
].x0, x.[
c= N by
A88;
N
c= (
dom ((f
. x)
(#) g)) by
A2,
VALUED_1:def 5;
then
A97:
].x0, x.[
c= (
dom ((f
. x)
(#) g)) by
A96;
g
is_differentiable_on
].x0, x.[ by
A4,
A88,
A95,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A98: ((f
. x)
(#) g)
is_differentiable_on
].x0, x.[ by
A97,
FDIFF_1: 20;
N
c= (
dom ((g
. x)
(#) f)) by
A1,
VALUED_1:def 5;
then
A99:
].x0, x.[
c= (
dom ((g
. x)
(#) f)) by
A96;
then
].x0, x.[
c= ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
A97,
XBOOLE_1: 19;
then
A100:
].x0, x.[
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
VALUED_1: 12;
f
is_differentiable_on
].x0, x.[ by
A3,
A88,
A95,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A101: ((g
. x)
(#) f)
is_differentiable_on
].x0, x.[ by
A99,
FDIFF_1: 20;
set f1 = (((f
. x)
(#) g)
- ((g
. x)
(#) f));
A102: ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 })))
c= ((
dom g)
\ (g
"
{
0 })) by
XBOOLE_1: 17;
(
dom ((f
. x)
(#) g))
= (
dom g) & (
dom ((g
. x)
(#) f))
= (
dom f) by
VALUED_1:def 5;
then (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f)))
= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
then
A103:
[.x0, x.]
c= (
dom f1) by
A89,
XBOOLE_1: 19;
A104: x
in
[.x0, x.] by
A86,
XXREAL_1: 1;
then x
in (
dom f1) by
A103;
then
A105: x
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A106: x
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A107: x0
in
[.x0, x.] by
A86,
XXREAL_1: 1;
then x0
in (
dom f1) by
A103;
then
A108: x0
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A109: x0
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A110: x
in (
dom ((g
. x)
(#) f)) by
A105,
XBOOLE_0:def 4;
A111: (f1
. x)
= ((((f
. x)
(#) g)
. x)
- (((g
. x)
(#) f)
. x)) by
A103,
A104,
VALUED_1: 13
.= (((f
. x)
* (g
. x))
- (((g
. x)
(#) f)
. x)) by
A106,
VALUED_1:def 5
.= (((g
. x)
* (f
. x))
- ((g
. x)
* (f
. x))) by
A110,
VALUED_1:def 5
.=
0 ;
A112: x0
in (
dom ((g
. x)
(#) f)) by
A108,
XBOOLE_0:def 4;
not x
in
{x0} by
A86,
TARSKI:def 1;
then
A113: x
in (
[.x0, x.]
\
{x0}) by
A104,
XBOOLE_0:def 5;
(f1
. x0)
= ((((f
. x)
(#) g)
. x0)
- (((g
. x)
(#) f)
. x0)) by
A103,
A107,
VALUED_1: 13
.= (((f
. x)
* (g
. x0))
- (((g
. x)
(#) f)
. x0)) by
A109,
VALUED_1:def 5
.= (
0
- ((g
. x)
*
0 )) by
A7,
A112,
VALUED_1:def 5
.=
0 ;
then
consider t such that
A114: t
in
].x0, x.[ and
A115: (
diff (f1,t))
=
0 by
A86,
A94,
A101,
A100,
A98,
A103,
A111,
FDIFF_1: 19,
ROLLE: 1;
A116: ((g
. x)
(#) f)
is_differentiable_in t by
A101,
A114,
FDIFF_1: 9;
A117: f
is_differentiable_in t by
A3,
A96,
A114,
FDIFF_1: 9;
((f
. x)
(#) g)
is_differentiable_in t by
A98,
A114,
FDIFF_1: 9;
then
0
= ((
diff (((f
. x)
(#) g),t))
- (
diff (((g
. x)
(#) f),t))) by
A115,
A116,
FDIFF_1: 14;
then
A118:
0
= ((
diff (((f
. x)
(#) g),t))
- ((g
. x)
* (
diff (f,t)))) by
A117,
FDIFF_1: 15;
take t;
A119: t
in
[.x0, x.] by
A95,
A114;
(
[.x0, x.]
\
{x0})
c= (N
\
{x0}) by
A88,
XBOOLE_1: 33;
then
A120: (
[.x0, x.]
\
{x0})
c= (
dom (f
/ g)) by
A5;
then (
[.x0, x.]
\
{x0})
c= ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 }))) by
RFUNCT_1:def 1;
then (
[.x0, x.]
\
{x0})
c= ((
dom g)
\ (g
"
{
0 })) by
A102;
then
A121: x
in (
dom g) & not x
in (g
"
{
0 }) by
A113,
XBOOLE_0:def 5;
A122:
now
assume (g
. x)
=
0 ;
then (g
. x)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A121,
FUNCT_1:def 7;
end;
A123:
[.x0, x.]
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A88;
then
[.x0, x.]
c= ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 }))) by
RFUNCT_1:def 1;
then
[.x0, x.]
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
A83;
then
A124: t
in (
dom (g
`| N)) & not t
in ((g
`| N)
"
{
0 }) by
A119,
XBOOLE_0:def 5;
A125:
now
assume (
diff (g,t))
=
0 ;
then ((g
`| N)
. t)
=
0 by
A4,
A88,
A119,
FDIFF_1:def 7;
then ((g
`| N)
. t)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A124,
FUNCT_1:def 7;
end;
g
is_differentiable_in t by
A4,
A96,
A114,
FDIFF_1: 9;
then
0
= (((f
. x)
* (
diff (g,t)))
- ((g
. x)
* (
diff (f,t)))) by
A118,
FDIFF_1: 15;
then ((f
. x)
/ (g
. x))
= ((
diff (f,t))
/ (
diff (g,t))) by
A122,
A125,
XCMPLX_1: 94;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
/ (
diff (g,t))) by
XCMPLX_0:def 9;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
XCMPLX_0:def 9;
then ((f
/ g)
. x)
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
A120,
A113,
RFUNCT_1:def 1;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* ((
diff (g,t))
" )) by
A3,
A88,
A119,
FDIFF_1:def 7;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* (((g
`| N)
. t)
" )) by
A4,
A88,
A119,
FDIFF_1:def 7;
hence thesis by
A114,
A123,
A119,
RFUNCT_1:def 1;
end;
A126: for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom (f
/ g))
/\ (
right_open_halfline x0)) holds ((f
/ g)
/* a) is
divergent_to-infty
proof
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set d = (
seq_const x0);
let a;
assume that
A127: a is
convergent and
A128: (
lim a)
= x0 and
A129: (
rng a)
c= ((
dom (f
/ g))
/\ (
right_open_halfline x0));
consider k such that
A130: for n st k
<= n holds (x0
- r)
< (a
. n) & (a
. n)
< (x0
+ r) by
A9,
A127,
A128,
LIMFUNC3: 7;
set a1 = (a
^\ k);
defpred
X[
Element of
NAT ,
Real] means $2
in
].x0, (a1
. $1).[ & ((((f
/ g)
/* a)
^\ k)
. $1)
= (((f
`| N)
/ (g
`| N))
. $2);
A131:
now
let n;
(a
. (n
+ k))
in (
rng a) by
VALUED_0: 28;
then (a
. (n
+ k))
in (
right_open_halfline x0) by
A129,
XBOOLE_0:def 4;
then (a
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st (a
. (n
+ k))
= g1 & x0
< g1;
hence x0
< (a1
. n) by
NAT_1:def 3;
(a1
. n)
= (a
. (n
+ k)) & k
<= (n
+ k) by
NAT_1: 12,
NAT_1:def 3;
hence (a1
. n)
< (x0
+ r) by
A130;
end;
A132: for n holds ex c be
Element of
REAL st
X[n, c]
proof
let n;
A133: (
rng a1)
c= (
rng a) by
VALUED_0: 21;
x0
< (a1
. n) & (a1
. n)
< (x0
+ r) by
A131;
then
consider c such that
A134: c
in
].x0, (a1
. n).[ and
A135: ((f
/ g)
. (a1
. n))
= (((f
`| N)
/ (g
`| N))
. c) by
A82;
take c;
A136: ((
dom (f
/ g))
/\ (
right_open_halfline x0))
c= (
dom (f
/ g)) by
XBOOLE_1: 17;
then (
rng a)
c= (
dom (f
/ g)) by
A129;
then (((f
/ g)
/* (a
^\ k))
. n)
= (((f
`| N)
/ (g
`| N))
. c) by
A135,
A133,
FUNCT_2: 108,
XBOOLE_1: 1;
hence thesis by
A129,
A134,
A136,
VALUED_0: 27,
XBOOLE_1: 1;
end;
consider b such that
A137: for n holds
X[n, (b
. n)] from
FUNCT_2:sch 3(
A132);
A138:
now
let n be
Nat;
A139: n
in
NAT by
ORDINAL1:def 12;
(b
. n)
in
].x0, (a1
. n).[ by
A137,
A139;
then (b
. n)
in { g1 : x0
< g1 & g1
< (a1
. n) } by
RCOMP_1:def 2;
then ex g1 st g1
= (b
. n) & x0
< g1 & g1
< (a1
. n);
hence (d
. n)
<= (b
. n) & (b
. n)
<= (a1
. n) by
SEQ_1: 57;
end;
A140: (
lim d)
= (d
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
A141: (x0
- r)
< x0 by
A9,
XREAL_1: 44;
x0
< (x0
+ r) by
A9,
XREAL_1: 29;
then x0
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
A141;
then
A142: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A143: (
rng b)
c= ((
dom ((f
`| N)
/ (g
`| N)))
\
{x0})
proof
let x be
object;
assume x
in (
rng b);
then
consider n such that
A144: x
= (b
. n) by
FUNCT_2: 113;
x0
< (a1
. n) by
A131;
then
A145: (x0
- r)
< (a1
. n) by
A141,
XXREAL_0: 2;
(a1
. n)
< (x0
+ r) by
A131;
then (a1
. n)
in { g3 : (x0
- r)
< g3 & g3
< (x0
+ r) } by
A145;
then (a1
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
].x0, (a1
. n).[
c=
[.x0, (a1
. n).] &
[.x0, (a1
. n).]
c=
].(x0
- r), (x0
+ r).[ by
A142,
XXREAL_1: 25,
XXREAL_2:def 12;
then
].x0, (a1
. n).[
c=
].(x0
- r), (x0
+ r).[;
then
A146:
].x0, (a1
. n).[
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A10;
A147: x
in
].x0, (a1
. n).[ by
A137,
A144;
then x
in { g1 : x0
< g1 & g1
< (a1
. n) } by
RCOMP_1:def 2;
then ex g1 st g1
= x & x0
< g1 & g1
< (a1
. n);
then not x
in
{x0} by
TARSKI:def 1;
hence thesis by
A147,
A146,
XBOOLE_0:def 5;
end;
A148: ((
dom ((f
`| N)
/ (g
`| N)))
\
{x0})
c= (
dom ((f
`| N)
/ (g
`| N))) by
XBOOLE_1: 36;
A149:
now
let n be
Nat;
A150: n
in
NAT by
ORDINAL1:def 12;
((((f
/ g)
/* a)
^\ k)
. n)
= (((f
`| N)
/ (g
`| N))
. (b
. n)) by
A137,
A150;
hence ((((f
/ g)
/* a)
^\ k)
. n)
<= ((((f
`| N)
/ (g
`| N))
/* b)
. n) by
A143,
A148,
FUNCT_2: 108,
XBOOLE_1: 1,
A150;
end;
(
lim a1)
= x0 by
A127,
A128,
SEQ_4: 20;
then b is
convergent & (
lim b)
= x0 by
A127,
A140,
A138,
SEQ_2: 19,
SEQ_2: 20;
then (((f
`| N)
/ (g
`| N))
/* b) is
divergent_to-infty by
A8,
A143,
LIMFUNC3:def 3;
then (((f
/ g)
/* a)
^\ k) is
divergent_to-infty by
A149,
LIMFUNC1: 43;
hence thesis by
LIMFUNC1: 7;
end;
for r1 st x0
< r1 holds ex t st t
< r1 & x0
< t & t
in (
dom (f
/ g)) by
A80,
LIMFUNC3: 8;
then (f
/ g)
is_right_divergent_to-infty_in x0 by
A126,
LIMFUNC2:def 6;
hence thesis by
A81,
LIMFUNC3: 13;
end;
theorem ::
L_HOSPIT:7
x0
in ((
dom f)
/\ (
dom g)) & (ex r st r
>
0 &
[.x0, (x0
+ r).]
c= (
dom f) &
[.x0, (x0
+ r).]
c= (
dom g) & f
is_differentiable_on
].x0, (x0
+ r).[ & g
is_differentiable_on
].x0, (x0
+ r).[ &
].x0, (x0
+ r).[
c= (
dom (f
/ g)) &
[.x0, (x0
+ r).]
c= (
dom ((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))) & (f
. x0)
=
0 & (g
. x0)
=
0 & f
is_continuous_in x0 & g
is_continuous_in x0 & ((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))
is_right_convergent_in x0) implies (f
/ g)
is_right_convergent_in x0 & ex r st r
>
0 & (
lim_right ((f
/ g),x0))
= (
lim_right (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[)),x0))
proof
assume
A1: x0
in ((
dom f)
/\ (
dom g));
given r such that
A2: r
>
0 and
A3:
[.x0, (x0
+ r).]
c= (
dom f) and
A4:
[.x0, (x0
+ r).]
c= (
dom g) and
A5: f
is_differentiable_on
].x0, (x0
+ r).[ and
A6: g
is_differentiable_on
].x0, (x0
+ r).[ and
A7:
].x0, (x0
+ r).[
c= (
dom (f
/ g)) and
A8:
[.x0, (x0
+ r).]
c= (
dom ((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))) and
A9: (f
. x0)
=
0 & (g
. x0)
=
0 and
A10: f
is_continuous_in x0 and
A11: g
is_continuous_in x0 and
A12: ((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))
is_right_convergent_in x0;
A13:
].x0, (x0
+ r).[
c=
[.x0, (x0
+ r).] by
XXREAL_1: 25;
then
A14:
].x0, (x0
+ r).[
c= (
dom g) by
A4;
A15:
].x0, (x0
+ r).[
c= (
dom f) by
A3,
A13;
A16: for x st x0
< x & x
< (x0
+ r) holds ex c st c
in
].x0, x.[ & ((f
/ g)
. x)
= (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))
. c)
proof
let x;
assume that
A17: x0
< x and
A18: x
< (x0
+ r);
set f1 = (((f
. x)
(#) g)
- ((g
. x)
(#) f));
A19: (
dom ((g
. x)
(#) f))
= (
dom f) by
VALUED_1:def 5;
A20: (
dom ((f
. x)
(#) g))
= (
dom g) by
VALUED_1:def 5;
then
A21: (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f)))
= ((
dom f)
/\ (
dom g)) by
A19,
VALUED_1: 12;
A22:
[.x0, x.]
c=
[.x0, (x0
+ r).]
proof
let y be
object;
assume
A23: y
in
[.x0, x.];
then
reconsider y as
Real;
y
<= x by
A23,
XXREAL_1: 1;
then
A24: y
<= (x0
+ r) by
A18,
XXREAL_0: 2;
x0
<= y by
A23,
XXREAL_1: 1;
hence thesis by
A24,
XXREAL_1: 1;
end;
then
A25:
[.x0, x.]
c= (
dom f) &
[.x0, x.]
c= (
dom g) by
A3,
A4;
then
A26:
[.x0, x.]
c= (
dom f1) by
A21,
XBOOLE_1: 19;
A27: x
in
[.x0, x.] by
A17,
XXREAL_1: 1;
then x
in (
dom f1) by
A26;
then
A28: x
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A29: x
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A30: x
in (
dom ((g
. x)
(#) f)) by
A28,
XBOOLE_0:def 4;
A31: (f1
. x)
= ((((f
. x)
(#) g)
. x)
- (((g
. x)
(#) f)
. x)) by
A26,
A27,
VALUED_1: 13
.= (((f
. x)
* (g
. x))
- (((g
. x)
(#) f)
. x)) by
A29,
VALUED_1:def 5
.= (((g
. x)
* (f
. x))
- ((g
. x)
* (f
. x))) by
A30,
VALUED_1:def 5
.=
0 ;
A32:
].x0, (x0
+ r).[
c= (
dom f) by
A3,
A13;
not x
in
{x0} by
A17,
TARSKI:def 1;
then
A33: x
in (
[.x0, x.]
\
{x0}) by
A27,
XBOOLE_0:def 5;
x
in { g1 : x0
< g1 & g1
< (x0
+ r) } by
A17,
A18;
then
A34: x
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
A35: x0
in
[.x0, x.] by
A17,
XXREAL_1: 1;
then x0
in (
dom f1) by
A26;
then
A36: x0
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A37: x0
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A38:
[.x0, x.]
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
A25,
A21,
XBOOLE_1: 19;
A39: x0
in (
dom ((g
. x)
(#) f)) by
A36,
XBOOLE_0:def 4;
A40:
].x0, (x0
+ r).[
c= (
dom g) by
A4,
A13;
A41:
].x0, x.[
c=
].x0, (x0
+ r).[
proof
let y be
object;
assume y
in
].x0, x.[;
then y
in { g2 : x0
< g2 & g2
< x } by
RCOMP_1:def 2;
then
consider g2 such that
A42: g2
= y & x0
< g2 and
A43: g2
< x;
g2
< (x0
+ r) by
A18,
A43,
XXREAL_0: 2;
then y
in { g3 : x0
< g3 & g3
< (x0
+ r) } by
A42;
hence thesis by
RCOMP_1:def 2;
end;
then
A44:
].x0, x.[
c= (
dom ((f
. x)
(#) g)) by
A14,
A20;
x0
in (
dom f) by
A1,
XBOOLE_0:def 4;
then
A45:
{x0, x}
c= (
dom f) by
A34,
A32,
ZFMISC_1: 32;
].x0, x.[
c= (
dom f) by
A41,
A32;
then (
].x0, x.[
\/
{x0, x})
c= (
dom f) by
A45,
XBOOLE_1: 8;
then
A46:
[.x0, x.]
c= (
dom f) by
A17,
XXREAL_1: 128;
x0
in (
dom g) by
A1,
XBOOLE_0:def 4;
then
A47:
{x0, x}
c= (
dom g) by
A34,
A40,
ZFMISC_1: 32;
].x0, x.[
c= (
dom g) by
A41,
A40;
then (
].x0, x.[
\/
{x0, x})
c= (
dom g) by
A47,
XBOOLE_1: 8;
then
A48:
[.x0, x.]
c= (
dom g) by
A17,
XXREAL_1: 128;
g
is_differentiable_in x by
A6,
A34,
FDIFF_1: 9;
then
A49: g
is_continuous_in x by
FDIFF_1: 24;
for s st (
rng s)
c=
[.x0, x.] & s is
convergent & (
lim s)
in
[.x0, x.] holds (g
/* s) is
convergent & (g
. (
lim s))
= (
lim (g
/* s))
proof
let s such that
A50: (
rng s)
c=
[.x0, x.] and
A51: s is
convergent and
A52: (
lim s)
in
[.x0, x.];
set z = (
lim s);
A53: (
rng s)
c= (
dom g) by
A48,
A50;
A54: z
in (
].x0, x.[
\/
{x0, x}) by
A17,
A52,
XXREAL_1: 128;
now
per cases by
A54,
XBOOLE_0:def 3;
suppose z
in
].x0, x.[;
then g
is_differentiable_in z by
A6,
A41,
FDIFF_1: 9;
then g
is_continuous_in z by
FDIFF_1: 24;
hence thesis by
A51,
A53,
FCONT_1:def 1;
end;
suppose
A55: z
in
{x0, x};
now
per cases by
A55,
TARSKI:def 2;
suppose z
= x0;
hence thesis by
A11,
A51,
A53,
FCONT_1:def 1;
end;
suppose z
= x;
hence thesis by
A49,
A51,
A53,
FCONT_1:def 1;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
then (g
|
[.x0, x.]) is
continuous by
A48,
FCONT_1: 13;
then
A56: (((f
. x)
(#) g)
|
[.x0, x.]) is
continuous by
A4,
A22,
FCONT_1: 20,
XBOOLE_1: 1;
f
is_differentiable_in x by
A5,
A34,
FDIFF_1: 9;
then
A57: f
is_continuous_in x by
FDIFF_1: 24;
for s st (
rng s)
c=
[.x0, x.] & s is
convergent & (
lim s)
in
[.x0, x.] holds (f
/* s) is
convergent & (f
. (
lim s))
= (
lim (f
/* s))
proof
let s;
assume that
A58: (
rng s)
c=
[.x0, x.] and
A59: s is
convergent and
A60: (
lim s)
in
[.x0, x.];
set z = (
lim s);
A61: (
rng s)
c= (
dom f) by
A46,
A58;
A62: z
in (
].x0, x.[
\/
{x0, x}) by
A17,
A60,
XXREAL_1: 128;
now
per cases by
A62,
XBOOLE_0:def 3;
suppose z
in
].x0, x.[;
then f
is_differentiable_in z by
A5,
A41,
FDIFF_1: 9;
then f
is_continuous_in z by
FDIFF_1: 24;
hence thesis by
A59,
A61,
FCONT_1:def 1;
end;
suppose
A63: z
in
{x0, x};
now
per cases by
A63,
TARSKI:def 2;
suppose z
= x0;
hence thesis by
A10,
A59,
A61,
FCONT_1:def 1;
end;
suppose z
= x;
hence thesis by
A57,
A59,
A61,
FCONT_1:def 1;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
then (f
|
[.x0, x.]) is
continuous by
A46,
FCONT_1: 13;
then (((g
. x)
(#) f)
|
[.x0, x.]) is
continuous by
A3,
A22,
FCONT_1: 20,
XBOOLE_1: 1;
then
A64: ((((f
. x)
(#) g)
- ((g
. x)
(#) f))
|
[.x0, x.]) is
continuous by
A20,
A19,
A21,
A38,
A56,
FCONT_1: 18;
g
is_differentiable_on
].x0, x.[ by
A6,
A41,
FDIFF_1: 26;
then
A65: ((f
. x)
(#) g)
is_differentiable_on
].x0, x.[ by
A44,
FDIFF_1: 20;
A66:
].x0, x.[
c= (
dom ((g
. x)
(#) f)) by
A15,
A41,
A19;
then
].x0, x.[
c= ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
A44,
XBOOLE_1: 19;
then
A67:
].x0, x.[
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
VALUED_1: 12;
f
is_differentiable_on
].x0, x.[ by
A5,
A41,
FDIFF_1: 26;
then
A68: ((g
. x)
(#) f)
is_differentiable_on
].x0, x.[ by
A66,
FDIFF_1: 20;
(f1
. x0)
= ((((f
. x)
(#) g)
. x0)
- (((g
. x)
(#) f)
. x0)) by
A26,
A35,
VALUED_1: 13
.= (((f
. x)
* (g
. x0))
- (((g
. x)
(#) f)
. x0)) by
A37,
VALUED_1:def 5
.= (
0
- ((g
. x)
*
0 )) by
A9,
A39,
VALUED_1:def 5
.=
0 ;
then
consider t such that
A69: t
in
].x0, x.[ and
A70: (
diff (f1,t))
=
0 by
A17,
A64,
A68,
A67,
A65,
A26,
A31,
FDIFF_1: 19,
ROLLE: 1;
A71: ((g
. x)
(#) f)
is_differentiable_in t by
A68,
A69,
FDIFF_1: 9;
A72: f
is_differentiable_in t by
A5,
A41,
A69,
FDIFF_1: 9;
((f
. x)
(#) g)
is_differentiable_in t by
A65,
A69,
FDIFF_1: 9;
then
0
= ((
diff (((f
. x)
(#) g),t))
- (
diff (((g
. x)
(#) f),t))) by
A70,
A71,
FDIFF_1: 14;
then
A73:
0
= ((
diff (((f
. x)
(#) g),t))
- ((g
. x)
* (
diff (f,t)))) by
A72,
FDIFF_1: 15;
A74: ((
dom (f
`|
].x0, (x0
+ r).[))
/\ ((
dom (g
`|
].x0, (x0
+ r).[))
\ ((g
`|
].x0, (x0
+ r).[)
"
{
0 })))
c= ((
dom (g
`|
].x0, (x0
+ r).[))
\ ((g
`|
].x0, (x0
+ r).[)
"
{
0 })) by
XBOOLE_1: 17;
A75: ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 })))
c= ((
dom g)
\ (g
"
{
0 })) by
XBOOLE_1: 17;
now
let y be
object;
assume
A76: y
in (
[.x0, x.]
\
{x0});
then y
in
[.x0, x.] by
XBOOLE_0:def 5;
then y
in { g4 : x0
<= g4 & g4
<= x } by
RCOMP_1:def 1;
then
consider g4 such that
A77: g4
= y and
A78: x0
<= g4 and
A79: g4
<= x;
not y
in
{x0} by
A76,
XBOOLE_0:def 5;
then x0
<> g4 by
A77,
TARSKI:def 1;
then
A80: x0
< g4 by
A78,
XXREAL_0: 1;
g4
< (x0
+ r) by
A18,
A79,
XXREAL_0: 2;
then y
in { g5 : x0
< g5 & g5
< (x0
+ r) } by
A77,
A80;
hence y
in
].x0, (x0
+ r).[ by
RCOMP_1:def 2;
end;
then (
[.x0, x.]
\
{x0})
c=
].x0, (x0
+ r).[;
then
A81: (
[.x0, x.]
\
{x0})
c= (
dom (f
/ g)) by
A7;
then (
[.x0, x.]
\
{x0})
c= ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 }))) by
RFUNCT_1:def 1;
then (
[.x0, x.]
\
{x0})
c= ((
dom g)
\ (g
"
{
0 })) by
A75;
then
A82: x
in (
dom g) & not x
in (g
"
{
0 }) by
A33,
XBOOLE_0:def 5;
A83:
now
assume (g
. x)
=
0 ;
then (g
. x)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A82,
FUNCT_1:def 7;
end;
take t;
].x0, x.[
c=
[.x0, x.] by
XXREAL_1: 25;
then
A84: t
in
[.x0, x.] by
A69;
x0
<= (x0
+ r) by
A2,
XREAL_1: 29;
then x0
in { g6 : x0
<= g6 & g6
<= (x0
+ r) };
then
].x0, (x0
+ r).[
c=
[.x0, (x0
+ r).] & x0
in
[.x0, (x0
+ r).] by
RCOMP_1:def 1,
XXREAL_1: 25;
then
[.x0, x.]
c=
[.x0, (x0
+ r).] by
A34,
XXREAL_2:def 12;
then
A85:
[.x0, x.]
c= (
dom ((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))) by
A8;
then
[.x0, x.]
c= ((
dom (f
`|
].x0, (x0
+ r).[))
/\ ((
dom (g
`|
].x0, (x0
+ r).[))
\ ((g
`|
].x0, (x0
+ r).[)
"
{
0 }))) by
RFUNCT_1:def 1;
then
[.x0, x.]
c= ((
dom (g
`|
].x0, (x0
+ r).[))
\ ((g
`|
].x0, (x0
+ r).[)
"
{
0 })) by
A74;
then
A86: t
in (
dom (g
`|
].x0, (x0
+ r).[)) & not t
in ((g
`|
].x0, (x0
+ r).[)
"
{
0 }) by
A84,
XBOOLE_0:def 5;
A87:
now
assume (
diff (g,t))
=
0 ;
then ((g
`|
].x0, (x0
+ r).[)
. t)
=
0 by
A6,
A41,
A69,
FDIFF_1:def 7;
then ((g
`|
].x0, (x0
+ r).[)
. t)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A86,
FUNCT_1:def 7;
end;
g
is_differentiable_in t by
A6,
A41,
A69,
FDIFF_1: 9;
then
0
= (((f
. x)
* (
diff (g,t)))
- ((g
. x)
* (
diff (f,t)))) by
A73,
FDIFF_1: 15;
then ((f
. x)
/ (g
. x))
= ((
diff (f,t))
/ (
diff (g,t))) by
A83,
A87,
XCMPLX_1: 94;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
/ (
diff (g,t))) by
XCMPLX_0:def 9;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
XCMPLX_0:def 9;
then ((f
/ g)
. x)
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
A81,
A33,
RFUNCT_1:def 1;
then ((f
/ g)
. x)
= (((f
`|
].x0, (x0
+ r).[)
. t)
* ((
diff (g,t))
" )) by
A5,
A41,
A69,
FDIFF_1:def 7;
then ((f
/ g)
. x)
= (((f
`|
].x0, (x0
+ r).[)
. t)
* (((g
`|
].x0, (x0
+ r).[)
. t)
" )) by
A6,
A41,
A69,
FDIFF_1:def 7;
hence thesis by
A69,
A85,
A84,
RFUNCT_1:def 1;
end;
A88: for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom (f
/ g))
/\ (
right_open_halfline x0)) holds ((f
/ g)
/* a) is
convergent & (
lim ((f
/ g)
/* a))
= (
lim_right (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[)),x0))
proof
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set d = (
seq_const x0);
let a;
assume that
A89: a is
convergent and
A90: (
lim a)
= x0 and
A91: (
rng a)
c= ((
dom (f
/ g))
/\ (
right_open_halfline x0));
consider k such that
A92: for n st k
<= n holds (x0
- r)
< (a
. n) & (a
. n)
< (x0
+ r) by
A2,
A89,
A90,
LIMFUNC3: 7;
set a1 = (a
^\ k);
defpred
X[
Element of
NAT ,
Real] means $2
in
].x0, (a1
. $1).[ & ((((f
/ g)
/* a)
^\ k)
. $1)
= (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))
. $2);
A93:
now
let n;
(a
. (n
+ k))
in (
rng a) by
VALUED_0: 28;
then (a
. (n
+ k))
in (
right_open_halfline x0) by
A91,
XBOOLE_0:def 4;
then (a
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st (a
. (n
+ k))
= g1 & x0
< g1;
hence x0
< (a1
. n) by
NAT_1:def 3;
(a1
. n)
= (a
. (n
+ k)) & k
<= (n
+ k) by
NAT_1: 12,
NAT_1:def 3;
hence (a1
. n)
< (x0
+ r) by
A92;
end;
A94: for n holds ex c be
Element of
REAL st
X[n, c]
proof
let n;
A95: (
rng a1)
c= (
rng a) by
VALUED_0: 21;
x0
< (a1
. n) & (a1
. n)
< (x0
+ r) by
A93;
then
consider c such that
A96: c
in
].x0, (a1
. n).[ and
A97: ((f
/ g)
. (a1
. n))
= (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))
. c) by
A16;
take c;
A98: ((
dom (f
/ g))
/\ (
right_open_halfline x0))
c= (
dom (f
/ g)) by
XBOOLE_1: 17;
then (
rng a)
c= (
dom (f
/ g)) by
A91;
then (((f
/ g)
/* (a
^\ k))
. n)
= (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))
. c) by
A97,
A95,
FUNCT_2: 108,
XBOOLE_1: 1;
hence thesis by
A91,
A96,
A98,
VALUED_0: 27,
XBOOLE_1: 1;
end;
consider b such that
A99: for n holds
X[n, (b
. n)] from
FUNCT_2:sch 3(
A94);
A100: (
rng b)
c= ((
dom ((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[)))
/\ (
right_open_halfline x0))
proof
let x be
object;
assume x
in (
rng b);
then
consider n such that
A101: x
= (b
. n) by
FUNCT_2: 113;
x0
<= (x0
+ r) by
A2,
XREAL_1: 29;
then x0
in { g3 : x0
<= g3 & g3
<= (x0
+ r) };
then
A102: x0
in
[.x0, (x0
+ r).] by
RCOMP_1:def 1;
x0
< (a1
. n) & (a1
. n)
< (x0
+ r) by
A93;
then (a1
. n)
in { g4 : x0
<= g4 & g4
<= (x0
+ r) };
then (a1
. n)
in
[.x0, (x0
+ r).] by
RCOMP_1:def 1;
then
].x0, (a1
. n).[
c=
[.x0, (a1
. n).] &
[.x0, (a1
. n).]
c=
[.x0, (x0
+ r).] by
A102,
XXREAL_1: 25,
XXREAL_2:def 12;
then
].x0, (a1
. n).[
c=
[.x0, (x0
+ r).];
then
A103:
].x0, (a1
. n).[
c= (
dom ((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))) by
A8;
A104: x
in
].x0, (a1
. n).[ by
A99,
A101;
then x
in { g1 : x0
< g1 & g1
< (a1
. n) } by
RCOMP_1:def 2;
then ex g1 st g1
= x & x0
< g1 & g1
< (a1
. n);
then x
in { g2 : x0
< g2 };
then x
in (
right_open_halfline x0) by
XXREAL_1: 230;
hence thesis by
A104,
A103,
XBOOLE_0:def 4;
end;
A105:
now
let n be
Nat;
A106: n
in
NAT by
ORDINAL1:def 12;
(b
. n)
in
].x0, (a1
. n).[ by
A99,
A106;
then (b
. n)
in { g1 : x0
< g1 & g1
< (a1
. n) } by
RCOMP_1:def 2;
then ex g1 st g1
= (b
. n) & x0
< g1 & g1
< (a1
. n);
hence (d
. n)
<= (b
. n) & (b
. n)
<= (a1
. n) by
SEQ_1: 57;
end;
A107: (
lim d)
= (d
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
(
lim a1)
= x0 by
A89,
A90,
SEQ_4: 20;
then
A108: b is
convergent & (
lim b)
= x0 by
A89,
A107,
A105,
SEQ_2: 19,
SEQ_2: 20;
A109: ((
dom ((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[)))
/\ (
right_open_halfline x0))
c= (
dom ((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))) by
XBOOLE_1: 17;
A110:
now
reconsider m =
0 as
Nat;
take m;
let n be
Nat such that m
<= n;
A111: n
in
NAT by
ORDINAL1:def 12;
((((f
/ g)
/* a)
^\ k)
. n)
= (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))
. (b
. n)) by
A99,
A111;
hence ((((f
/ g)
/* a)
^\ k)
. n)
= ((((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))
/* b)
. n) by
A100,
A109,
FUNCT_2: 108,
XBOOLE_1: 1,
A111;
end;
(
lim_right (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[)),x0))
= (
lim_right (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[)),x0));
then
A112: (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))
/* b) is
convergent by
A12,
A108,
A100,
LIMFUNC2:def 8;
then
A113: (((f
/ g)
/* a)
^\ k) is
convergent by
A110,
SEQ_4: 18;
(
lim (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[))
/* b))
= (
lim_right (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[)),x0)) by
A12,
A108,
A100,
LIMFUNC2:def 8;
then (
lim (((f
/ g)
/* a)
^\ k))
= (
lim_right (((f
`|
].x0, (x0
+ r).[)
/ (g
`|
].x0, (x0
+ r).[)),x0)) by
A112,
A110,
SEQ_4: 19;
hence thesis by
A113,
SEQ_4: 21,
SEQ_4: 22;
end;
A114: for r1 st x0
< r1 holds ex t st t
< r1 & x0
< t & t
in (
dom (f
/ g)) by
A2,
A7,
LIMFUNC2: 4;
hence (f
/ g)
is_right_convergent_in x0 by
A88,
Th2;
take r;
thus r
>
0 by
A2;
thus thesis by
A114,
A88,
Th2;
end;
theorem ::
L_HOSPIT:8
x0
in ((
dom f)
/\ (
dom g)) & (ex r st r
>
0 &
[.(x0
- r), x0.]
c= (
dom f) &
[.(x0
- r), x0.]
c= (
dom g) & f
is_differentiable_on
].(x0
- r), x0.[ & g
is_differentiable_on
].(x0
- r), x0.[ &
].(x0
- r), x0.[
c= (
dom (f
/ g)) &
[.(x0
- r), x0.]
c= (
dom ((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))) & (f
. x0)
=
0 & (g
. x0)
=
0 & f
is_continuous_in x0 & g
is_continuous_in x0 & ((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))
is_left_convergent_in x0) implies (f
/ g)
is_left_convergent_in x0 & ex r st r
>
0 & (
lim_left ((f
/ g),x0))
= (
lim_left (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[)),x0))
proof
assume
A1: x0
in ((
dom f)
/\ (
dom g));
given r such that
A2: r
>
0 and
A3:
[.(x0
- r), x0.]
c= (
dom f) and
A4:
[.(x0
- r), x0.]
c= (
dom g) and
A5: f
is_differentiable_on
].(x0
- r), x0.[ and
A6: g
is_differentiable_on
].(x0
- r), x0.[ and
A7:
].(x0
- r), x0.[
c= (
dom (f
/ g)) and
A8:
[.(x0
- r), x0.]
c= (
dom ((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))) and
A9: (f
. x0)
=
0 & (g
. x0)
=
0 and
A10: f
is_continuous_in x0 and
A11: g
is_continuous_in x0 and
A12: ((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))
is_left_convergent_in x0;
A13:
].(x0
- r), x0.[
c=
[.(x0
- r), x0.] by
XXREAL_1: 25;
then
A14:
].(x0
- r), x0.[
c= (
dom g) by
A4;
A15:
].(x0
- r), x0.[
c= (
dom f) by
A3,
A13;
A16: for x st (x0
- r)
< x & x
< x0 holds ex c st c
in
].x, x0.[ & ((f
/ g)
. x)
= (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))
. c)
proof
let x;
assume that
A17: (x0
- r)
< x and
A18: x
< x0;
x
in { g1 : (x0
- r)
< g1 & g1
< x0 } by
A17,
A18;
then
A19: x
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
].(x0
- r), x0.[
c= (
dom f) & x0
in (
dom f) by
A1,
A3,
A13,
XBOOLE_0:def 4;
then
A20:
{x, x0}
c= (
dom f) by
A19,
ZFMISC_1: 32;
A21:
].x, x0.[
c=
].(x0
- r), x0.[
proof
let y be
object;
assume y
in
].x, x0.[;
then y
in { g2 : x
< g2 & g2
< x0 } by
RCOMP_1:def 2;
then
consider g2 such that
A22: g2
= y and
A23: x
< g2 and
A24: g2
< x0;
(x0
- r)
< g2 by
A17,
A23,
XXREAL_0: 2;
then y
in { g3 : (x0
- r)
< g3 & g3
< x0 } by
A22,
A24;
hence thesis by
RCOMP_1:def 2;
end;
then
].x, x0.[
c= (
dom f) by
A15;
then (
].x, x0.[
\/
{x, x0})
c= (
dom f) by
A20,
XBOOLE_1: 8;
then
A25:
[.x, x0.]
c= (
dom f) by
A18,
XXREAL_1: 128;
].(x0
- r), x0.[
c= (
dom ((f
. x)
(#) g)) by
A14,
VALUED_1:def 5;
then
A26:
].x, x0.[
c= (
dom ((f
. x)
(#) g)) by
A21;
].(x0
- r), x0.[
c= (
dom ((g
. x)
(#) f)) by
A15,
VALUED_1:def 5;
then
A27:
].x, x0.[
c= (
dom ((g
. x)
(#) f)) by
A21;
then
].x, x0.[
c= ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
A26,
XBOOLE_1: 19;
then
A28:
].x, x0.[
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
VALUED_1: 12;
f
is_differentiable_on
].x, x0.[ by
A5,
A21,
FDIFF_1: 26;
then
A29: ((g
. x)
(#) f)
is_differentiable_on
].x, x0.[ by
A27,
FDIFF_1: 20;
].(x0
- r), x0.[
c= (
dom g) & x0
in (
dom g) by
A1,
A4,
A13,
XBOOLE_0:def 4;
then
A30:
{x, x0}
c= (
dom g) by
A19,
ZFMISC_1: 32;
set f1 = (((f
. x)
(#) g)
- ((g
. x)
(#) f));
A31: (
dom ((f
. x)
(#) g))
= (
dom g) & (
dom ((g
. x)
(#) f))
= (
dom f) by
VALUED_1:def 5;
then
A32: (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f)))
= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
A33:
[.x, x0.]
c=
[.(x0
- r), x0.]
proof
let y be
object;
assume
A34: y
in
[.x, x0.];
then
reconsider y as
Real;
x
<= y by
A34,
XXREAL_1: 1;
then
A35: (x0
- r)
<= y by
A17,
XXREAL_0: 2;
y
<= x0 by
A34,
XXREAL_1: 1;
hence thesis by
A35,
XXREAL_1: 1;
end;
then
A36:
[.x, x0.]
c= (
dom f) &
[.x, x0.]
c= (
dom g) by
A3,
A4;
then
A37:
[.x, x0.]
c= (
dom f1) by
A32,
XBOOLE_1: 19;
A38: x
in
[.x, x0.] by
A18,
XXREAL_1: 1;
then x
in (
dom f1) by
A37;
then
A39: x
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A40: x
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A41: x0
in
[.x, x0.] by
A18,
XXREAL_1: 1;
then x0
in (
dom f1) by
A37;
then
A42: x0
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A43: x0
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A44: x
in (
dom ((g
. x)
(#) f)) by
A39,
XBOOLE_0:def 4;
A45: (f1
. x)
= ((((f
. x)
(#) g)
. x)
- (((g
. x)
(#) f)
. x)) by
A37,
A38,
VALUED_1: 13
.= (((f
. x)
* (g
. x))
- (((g
. x)
(#) f)
. x)) by
A40,
VALUED_1:def 5
.= (((g
. x)
* (f
. x))
- ((g
. x)
* (f
. x))) by
A44,
VALUED_1:def 5
.=
0 ;
A46: x0
in (
dom ((g
. x)
(#) f)) by
A42,
XBOOLE_0:def 4;
not x
in
{x0} by
A18,
TARSKI:def 1;
then
A47: x
in (
[.x, x0.]
\
{x0}) by
A38,
XBOOLE_0:def 5;
].x, x0.[
c= (
dom g) by
A14,
A21;
then (
].x, x0.[
\/
{x, x0})
c= (
dom g) by
A30,
XBOOLE_1: 8;
then
A48:
[.x, x0.]
c= (
dom g) by
A18,
XXREAL_1: 128;
g
is_differentiable_in x by
A6,
A19,
FDIFF_1: 9;
then
A49: g
is_continuous_in x by
FDIFF_1: 24;
for s st (
rng s)
c=
[.x, x0.] & s is
convergent & (
lim s)
in
[.x, x0.] holds (g
/* s) is
convergent & (g
. (
lim s))
= (
lim (g
/* s))
proof
let s such that
A50: (
rng s)
c=
[.x, x0.] and
A51: s is
convergent and
A52: (
lim s)
in
[.x, x0.];
set z = (
lim s);
A53: (
rng s)
c= (
dom g) by
A48,
A50;
A54: z
in (
].x, x0.[
\/
{x, x0}) by
A18,
A52,
XXREAL_1: 128;
now
per cases by
A54,
XBOOLE_0:def 3;
suppose z
in
].x, x0.[;
then g
is_differentiable_in z by
A6,
A21,
FDIFF_1: 9;
then g
is_continuous_in z by
FDIFF_1: 24;
hence thesis by
A51,
A53,
FCONT_1:def 1;
end;
suppose
A55: z
in
{x, x0};
now
per cases by
A55,
TARSKI:def 2;
suppose z
= x0;
hence thesis by
A11,
A51,
A53,
FCONT_1:def 1;
end;
suppose z
= x;
hence thesis by
A49,
A51,
A53,
FCONT_1:def 1;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
then (g
|
[.x, x0.]) is
continuous by
A48,
FCONT_1: 13;
then
A56: (((f
. x)
(#) g)
|
[.x, x0.]) is
continuous by
A4,
A33,
FCONT_1: 20,
XBOOLE_1: 1;
A57:
[.x, x0.]
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
A36,
A32,
XBOOLE_1: 19;
f
is_differentiable_in x by
A5,
A19,
FDIFF_1: 9;
then
A58: f
is_continuous_in x by
FDIFF_1: 24;
for s st (
rng s)
c=
[.x, x0.] & s is
convergent & (
lim s)
in
[.x, x0.] holds (f
/* s) is
convergent & (f
. (
lim s))
= (
lim (f
/* s))
proof
let s;
assume that
A59: (
rng s)
c=
[.x, x0.] and
A60: s is
convergent and
A61: (
lim s)
in
[.x, x0.];
set z = (
lim s);
A62: (
rng s)
c= (
dom f) by
A25,
A59;
A63: z
in (
].x, x0.[
\/
{x, x0}) by
A18,
A61,
XXREAL_1: 128;
now
per cases by
A63,
XBOOLE_0:def 3;
suppose z
in
].x, x0.[;
then f
is_differentiable_in z by
A5,
A21,
FDIFF_1: 9;
then f
is_continuous_in z by
FDIFF_1: 24;
hence thesis by
A60,
A62,
FCONT_1:def 1;
end;
suppose
A64: z
in
{x, x0};
now
per cases by
A64,
TARSKI:def 2;
suppose z
= x0;
hence thesis by
A10,
A60,
A62,
FCONT_1:def 1;
end;
suppose z
= x;
hence thesis by
A58,
A60,
A62,
FCONT_1:def 1;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
then (f
|
[.x, x0.]) is
continuous by
A25,
FCONT_1: 13;
then (((g
. x)
(#) f)
|
[.x, x0.]) is
continuous by
A3,
A33,
FCONT_1: 20,
XBOOLE_1: 1;
then
A65: ((((f
. x)
(#) g)
- ((g
. x)
(#) f))
|
[.x, x0.]) is
continuous by
A31,
A32,
A57,
A56,
FCONT_1: 18;
g
is_differentiable_on
].x, x0.[ by
A6,
A21,
FDIFF_1: 26;
then
A66: ((f
. x)
(#) g)
is_differentiable_on
].x, x0.[ by
A26,
FDIFF_1: 20;
(f1
. x0)
= ((((f
. x)
(#) g)
. x0)
- (((g
. x)
(#) f)
. x0)) by
A37,
A41,
VALUED_1: 13
.= (((f
. x)
* (g
. x0))
- (((g
. x)
(#) f)
. x0)) by
A43,
VALUED_1:def 5
.= (
0
- ((g
. x)
*
0 )) by
A9,
A46,
VALUED_1:def 5
.=
0 ;
then
consider t such that
A67: t
in
].x, x0.[ and
A68: (
diff (f1,t))
=
0 by
A18,
A65,
A29,
A28,
A66,
A37,
A45,
FDIFF_1: 19,
ROLLE: 1;
A69: ((g
. x)
(#) f)
is_differentiable_in t by
A29,
A67,
FDIFF_1: 9;
A70: f
is_differentiable_in t by
A5,
A21,
A67,
FDIFF_1: 9;
((f
. x)
(#) g)
is_differentiable_in t by
A66,
A67,
FDIFF_1: 9;
then
0
= ((
diff (((f
. x)
(#) g),t))
- (
diff (((g
. x)
(#) f),t))) by
A68,
A69,
FDIFF_1: 14;
then
A71:
0
= ((
diff (((f
. x)
(#) g),t))
- ((g
. x)
* (
diff (f,t)))) by
A70,
FDIFF_1: 15;
A72: ((
dom (f
`|
].(x0
- r), x0.[))
/\ ((
dom (g
`|
].(x0
- r), x0.[))
\ ((g
`|
].(x0
- r), x0.[)
"
{
0 })))
c= ((
dom (g
`|
].(x0
- r), x0.[))
\ ((g
`|
].(x0
- r), x0.[)
"
{
0 })) by
XBOOLE_1: 17;
A73: ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 })))
c= ((
dom g)
\ (g
"
{
0 })) by
XBOOLE_1: 17;
now
let y be
object;
assume
A74: y
in (
[.x, x0.]
\
{x0});
then y
in
[.x, x0.] by
XBOOLE_0:def 5;
then y
in { g4 : x
<= g4 & g4
<= x0 } by
RCOMP_1:def 1;
then
consider g4 such that
A75: g4
= y and
A76: x
<= g4 and
A77: g4
<= x0;
not y
in
{x0} by
A74,
XBOOLE_0:def 5;
then x0
<> g4 by
A75,
TARSKI:def 1;
then
A78: g4
< x0 by
A77,
XXREAL_0: 1;
(x0
- r)
< g4 by
A17,
A76,
XXREAL_0: 2;
then y
in { g5 : (x0
- r)
< g5 & g5
< x0 } by
A75,
A78;
hence y
in
].(x0
- r), x0.[ by
RCOMP_1:def 2;
end;
then (
[.x, x0.]
\
{x0})
c=
].(x0
- r), x0.[;
then
A79: (
[.x, x0.]
\
{x0})
c= (
dom (f
/ g)) by
A7;
then (
[.x, x0.]
\
{x0})
c= ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 }))) by
RFUNCT_1:def 1;
then (
[.x, x0.]
\
{x0})
c= ((
dom g)
\ (g
"
{
0 })) by
A73;
then
A80: x
in (
dom g) & not x
in (g
"
{
0 }) by
A47,
XBOOLE_0:def 5;
A81:
now
assume (g
. x)
=
0 ;
then (g
. x)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A80,
FUNCT_1:def 7;
end;
take t;
].x, x0.[
c=
[.x, x0.] by
XXREAL_1: 25;
then
A82: t
in
[.x, x0.] by
A67;
(x0
- r)
<= x0 by
A2,
XREAL_1: 44;
then x0
in { g6 : (x0
- r)
<= g6 & g6
<= x0 };
then
].(x0
- r), x0.[
c=
[.(x0
- r), x0.] & x0
in
[.(x0
- r), x0.] by
RCOMP_1:def 1,
XXREAL_1: 25;
then
[.x, x0.]
c=
[.(x0
- r), x0.] by
A19,
XXREAL_2:def 12;
then
A83:
[.x, x0.]
c= (
dom ((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))) by
A8;
then
[.x, x0.]
c= ((
dom (f
`|
].(x0
- r), x0.[))
/\ ((
dom (g
`|
].(x0
- r), x0.[))
\ ((g
`|
].(x0
- r), x0.[)
"
{
0 }))) by
RFUNCT_1:def 1;
then
[.x, x0.]
c= ((
dom (g
`|
].(x0
- r), x0.[))
\ ((g
`|
].(x0
- r), x0.[)
"
{
0 })) by
A72;
then
A84: t
in (
dom (g
`|
].(x0
- r), x0.[)) & not t
in ((g
`|
].(x0
- r), x0.[)
"
{
0 }) by
A82,
XBOOLE_0:def 5;
A85:
now
assume (
diff (g,t))
=
0 ;
then ((g
`|
].(x0
- r), x0.[)
. t)
=
0 by
A6,
A21,
A67,
FDIFF_1:def 7;
then ((g
`|
].(x0
- r), x0.[)
. t)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A84,
FUNCT_1:def 7;
end;
g
is_differentiable_in t by
A6,
A21,
A67,
FDIFF_1: 9;
then
0
= (((f
. x)
* (
diff (g,t)))
- ((g
. x)
* (
diff (f,t)))) by
A71,
FDIFF_1: 15;
then ((f
. x)
/ (g
. x))
= ((
diff (f,t))
/ (
diff (g,t))) by
A81,
A85,
XCMPLX_1: 94;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
/ (
diff (g,t))) by
XCMPLX_0:def 9;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
XCMPLX_0:def 9;
then ((f
/ g)
. x)
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
A79,
A47,
RFUNCT_1:def 1;
then ((f
/ g)
. x)
= (((f
`|
].(x0
- r), x0.[)
. t)
* ((
diff (g,t))
" )) by
A5,
A21,
A67,
FDIFF_1:def 7;
then ((f
/ g)
. x)
= (((f
`|
].(x0
- r), x0.[)
. t)
* (((g
`|
].(x0
- r), x0.[)
. t)
" )) by
A6,
A21,
A67,
FDIFF_1:def 7;
hence thesis by
A67,
A83,
A82,
RFUNCT_1:def 1;
end;
A86: for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom (f
/ g))
/\ (
left_open_halfline x0)) holds ((f
/ g)
/* a) is
convergent & (
lim ((f
/ g)
/* a))
= (
lim_left (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[)),x0))
proof
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set d = (
seq_const x0);
let a;
assume that
A87: a is
convergent and
A88: (
lim a)
= x0 and
A89: (
rng a)
c= ((
dom (f
/ g))
/\ (
left_open_halfline x0));
consider k such that
A90: for n st k
<= n holds (x0
- r)
< (a
. n) & (a
. n)
< (x0
+ r) by
A2,
A87,
A88,
LIMFUNC3: 7;
set a1 = (a
^\ k);
defpred
X[
Element of
NAT ,
Real] means $2
in
].(a1
. $1), x0.[ & ((((f
/ g)
/* a)
^\ k)
. $1)
= (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))
. $2);
A91:
now
let n;
(a
. (n
+ k))
in (
rng a) by
VALUED_0: 28;
then (a
. (n
+ k))
in (
left_open_halfline x0) by
A89,
XBOOLE_0:def 4;
then (a
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st (a
. (n
+ k))
= g1 & g1
< x0;
hence (a1
. n)
< x0 by
NAT_1:def 3;
(a1
. n)
= (a
. (n
+ k)) & k
<= (n
+ k) by
NAT_1: 12,
NAT_1:def 3;
hence (x0
- r)
< (a1
. n) by
A90;
end;
A92: for n holds ex c be
Element of
REAL st
X[n, c]
proof
let n;
A93: (
rng a1)
c= (
rng a) by
VALUED_0: 21;
(x0
- r)
< (a1
. n) & (a1
. n)
< x0 by
A91;
then
consider c such that
A94: c
in
].(a1
. n), x0.[ and
A95: ((f
/ g)
. (a1
. n))
= (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))
. c) by
A16;
take c;
A96: ((
dom (f
/ g))
/\ (
left_open_halfline x0))
c= (
dom (f
/ g)) by
XBOOLE_1: 17;
then (
rng a)
c= (
dom (f
/ g)) by
A89;
then (((f
/ g)
/* (a
^\ k))
. n)
= (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))
. c) by
A95,
A93,
FUNCT_2: 108,
XBOOLE_1: 1;
hence thesis by
A89,
A94,
A96,
VALUED_0: 27,
XBOOLE_1: 1;
end;
consider b such that
A97: for n holds
X[n, (b
. n)] from
FUNCT_2:sch 3(
A92);
A98: (
rng b)
c= ((
dom ((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[)))
/\ (
left_open_halfline x0))
proof
let x be
object;
assume x
in (
rng b);
then
consider n such that
A99: x
= (b
. n) by
FUNCT_2: 113;
(x0
- r)
<= x0 by
A2,
XREAL_1: 44;
then x0
in { g3 : (x0
- r)
<= g3 & g3
<= x0 };
then
A100: x0
in
[.(x0
- r), x0.] by
RCOMP_1:def 1;
(x0
- r)
< (a1
. n) & (a1
. n)
< x0 by
A91;
then (a1
. n)
in { g4 : (x0
- r)
<= g4 & g4
<= x0 };
then (a1
. n)
in
[.(x0
- r), x0.] by
RCOMP_1:def 1;
then
].(a1
. n), x0.[
c=
[.(a1
. n), x0.] &
[.(a1
. n), x0.]
c=
[.(x0
- r), x0.] by
A100,
XXREAL_1: 25,
XXREAL_2:def 12;
then
].(a1
. n), x0.[
c=
[.(x0
- r), x0.];
then
A101:
].(a1
. n), x0.[
c= (
dom ((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))) by
A8;
A102: x
in
].(a1
. n), x0.[ by
A97,
A99;
then x
in { g1 : (a1
. n)
< g1 & g1
< x0 } by
RCOMP_1:def 2;
then ex g1 st g1
= x & (a1
. n)
< g1 & g1
< x0;
then x
in { g2 : g2
< x0 };
then x
in (
left_open_halfline x0) by
XXREAL_1: 229;
hence thesis by
A102,
A101,
XBOOLE_0:def 4;
end;
A103:
now
let n be
Nat;
A104: n
in
NAT by
ORDINAL1:def 12;
(b
. n)
in
].(a1
. n), x0.[ by
A97,
A104;
then (b
. n)
in { g1 : (a1
. n)
< g1 & g1
< x0 } by
RCOMP_1:def 2;
then ex g1 st g1
= (b
. n) & (a1
. n)
< g1 & g1
< x0;
hence (a1
. n)
<= (b
. n) & (b
. n)
<= (d
. n) by
SEQ_1: 57;
end;
A105: (
lim d)
= (d
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
(
lim a1)
= x0 by
A87,
A88,
SEQ_4: 20;
then
A106: b is
convergent & (
lim b)
= x0 by
A87,
A105,
A103,
SEQ_2: 19,
SEQ_2: 20;
A107: ((
dom ((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[)))
/\ (
left_open_halfline x0))
c= (
dom ((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))) by
XBOOLE_1: 17;
A108:
now
reconsider m =
0 as
Nat;
take m;
let n be
Nat such that m
<= n;
A109: n
in
NAT by
ORDINAL1:def 12;
((((f
/ g)
/* a)
^\ k)
. n)
= (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))
. (b
. n)) by
A97,
A109;
hence ((((f
/ g)
/* a)
^\ k)
. n)
= ((((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))
/* b)
. n) by
A98,
A107,
FUNCT_2: 108,
XBOOLE_1: 1,
A109;
end;
(
lim_left (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[)),x0))
= (
lim_left (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[)),x0));
then
A110: (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))
/* b) is
convergent by
A12,
A106,
A98,
LIMFUNC2:def 7;
then
A111: (((f
/ g)
/* a)
^\ k) is
convergent by
A108,
SEQ_4: 18;
(
lim (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[))
/* b))
= (
lim_left (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[)),x0)) by
A12,
A106,
A98,
LIMFUNC2:def 7;
then (
lim (((f
/ g)
/* a)
^\ k))
= (
lim_left (((f
`|
].(x0
- r), x0.[)
/ (g
`|
].(x0
- r), x0.[)),x0)) by
A110,
A108,
SEQ_4: 19;
hence thesis by
A111,
SEQ_4: 21,
SEQ_4: 22;
end;
A112: for r1 st r1
< x0 holds ex t st r1
< t & t
< x0 & t
in (
dom (f
/ g)) by
A2,
A7,
LIMFUNC2: 3;
hence (f
/ g)
is_left_convergent_in x0 by
A86,
Th3;
take r;
thus r
>
0 by
A2;
thus thesis by
A112,
A86,
Th3;
end;
theorem ::
L_HOSPIT:9
(ex N be
Neighbourhood of x0 st N
c= (
dom f) & N
c= (
dom g) & f
is_differentiable_on N & g
is_differentiable_on N & (N
\
{x0})
c= (
dom (f
/ g)) & N
c= (
dom ((f
`| N)
/ (g
`| N))) & (f
. x0)
=
0 & (g
. x0)
=
0 & ((f
`| N)
/ (g
`| N))
is_convergent_in x0) implies (f
/ g)
is_convergent_in x0 & ex N be
Neighbourhood of x0 st (
lim ((f
/ g),x0))
= (
lim (((f
`| N)
/ (g
`| N)),x0))
proof
given N be
Neighbourhood of x0 such that
A1: N
c= (
dom f) and
A2: N
c= (
dom g) and
A3: f
is_differentiable_on N and
A4: g
is_differentiable_on N and
A5: (N
\
{x0})
c= (
dom (f
/ g)) and
A6: N
c= (
dom ((f
`| N)
/ (g
`| N))) and
A7: (f
. x0)
=
0 & (g
. x0)
=
0 and
A8: ((f
`| N)
/ (g
`| N))
is_convergent_in x0;
consider r be
Real such that
A9:
0
< r and
A10: N
=
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 6;
A11: for x st x0
< x & x
< (x0
+ r) holds ex c st c
in
].x0, x.[ & ((f
/ g)
. x)
= (((f
`| N)
/ (g
`| N))
. c)
proof
A12: (x0
- r)
< x0 by
A9,
XREAL_1: 44;
(x0
+
0 )
< (x0
+ r) by
A9,
XREAL_1: 8;
then x0
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A12;
then
A13: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A14: ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })))
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
XBOOLE_1: 17;
A15: ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 })))
c= ((
dom g)
\ (g
"
{
0 })) by
XBOOLE_1: 17;
let x such that
A16: x0
< x and
A17: x
< (x0
+ r);
set f1 = (((f
. x)
(#) g)
- ((g
. x)
(#) f));
A18: (
dom ((f
. x)
(#) g))
= (
dom g) & (
dom ((g
. x)
(#) f))
= (
dom f) by
VALUED_1:def 5;
then
A19: (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f)))
= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
(x0
- r)
< x by
A16,
A12,
XXREAL_0: 2;
then x
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A17;
then x
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
A20:
[.x0, x.]
c= N by
A10,
A13,
XXREAL_2:def 12;
then
A21:
[.x0, x.]
c= (
dom f) &
[.x0, x.]
c= (
dom g) by
A1,
A2;
then
A22:
[.x0, x.]
c= (
dom f1) by
A19,
XBOOLE_1: 19;
(g
| N) is
continuous by
A4,
FDIFF_1: 25;
then (g
|
[.x0, x.]) is
continuous by
A20,
FCONT_1: 16;
then
A23: (((f
. x)
(#) g)
|
[.x0, x.]) is
continuous by
A2,
A20,
FCONT_1: 20,
XBOOLE_1: 1;
(f
| N) is
continuous by
A3,
FDIFF_1: 25;
then (f
|
[.x0, x.]) is
continuous by
A20,
FCONT_1: 16;
then
A24: (((g
. x)
(#) f)
|
[.x0, x.]) is
continuous by
A1,
A20,
FCONT_1: 20,
XBOOLE_1: 1;
[.x0, x.]
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
A21,
A19,
XBOOLE_1: 19;
then
A25: ((((f
. x)
(#) g)
- ((g
. x)
(#) f))
|
[.x0, x.]) is
continuous by
A18,
A19,
A24,
A23,
FCONT_1: 18;
A26:
].x0, x.[
c=
[.x0, x.] by
XXREAL_1: 25;
then
A27:
].x0, x.[
c= N by
A20;
A28: x
in
[.x0, x.] by
A16,
XXREAL_1: 1;
then x
in (
dom f1) by
A22;
then
A29: x
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A30: x
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A31: x0
in
[.x0, x.] by
A16,
XXREAL_1: 1;
then x0
in (
dom f1) by
A22;
then
A32: x0
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A33: x0
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A34: x
in (
dom ((g
. x)
(#) f)) by
A29,
XBOOLE_0:def 4;
A35: (f1
. x)
= ((((f
. x)
(#) g)
. x)
- (((g
. x)
(#) f)
. x)) by
A22,
A28,
VALUED_1: 13
.= (((f
. x)
* (g
. x))
- (((g
. x)
(#) f)
. x)) by
A30,
VALUED_1:def 5
.= (((g
. x)
* (f
. x))
- ((g
. x)
* (f
. x))) by
A34,
VALUED_1:def 5
.=
0 ;
A36: x0
in (
dom ((g
. x)
(#) f)) by
A32,
XBOOLE_0:def 4;
not x
in
{x0} by
A16,
TARSKI:def 1;
then
A37: x
in (
[.x0, x.]
\
{x0}) by
A28,
XBOOLE_0:def 5;
N
c= (
dom ((f
. x)
(#) g)) by
A2,
VALUED_1:def 5;
then
A38:
].x0, x.[
c= (
dom ((f
. x)
(#) g)) by
A27;
N
c= (
dom ((g
. x)
(#) f)) by
A1,
VALUED_1:def 5;
then
A39:
].x0, x.[
c= (
dom ((g
. x)
(#) f)) by
A27;
then
].x0, x.[
c= ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
A38,
XBOOLE_1: 19;
then
A40:
].x0, x.[
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
VALUED_1: 12;
f
is_differentiable_on
].x0, x.[ by
A3,
A20,
A26,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A41: ((g
. x)
(#) f)
is_differentiable_on
].x0, x.[ by
A39,
FDIFF_1: 20;
g
is_differentiable_on
].x0, x.[ by
A4,
A20,
A26,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A42: ((f
. x)
(#) g)
is_differentiable_on
].x0, x.[ by
A38,
FDIFF_1: 20;
(f1
. x0)
= ((((f
. x)
(#) g)
. x0)
- (((g
. x)
(#) f)
. x0)) by
A22,
A31,
VALUED_1: 13
.= (((f
. x)
* (g
. x0))
- (((g
. x)
(#) f)
. x0)) by
A33,
VALUED_1:def 5
.= (
0
- ((g
. x)
*
0 )) by
A7,
A36,
VALUED_1:def 5
.=
0 ;
then
consider t such that
A43: t
in
].x0, x.[ and
A44: (
diff (f1,t))
=
0 by
A16,
A25,
A41,
A40,
A42,
A22,
A35,
FDIFF_1: 19,
ROLLE: 1;
A45: ((g
. x)
(#) f)
is_differentiable_in t by
A41,
A43,
FDIFF_1: 9;
A46: f
is_differentiable_in t by
A3,
A27,
A43,
FDIFF_1: 9;
((f
. x)
(#) g)
is_differentiable_in t by
A42,
A43,
FDIFF_1: 9;
then
0
= ((
diff (((f
. x)
(#) g),t))
- (
diff (((g
. x)
(#) f),t))) by
A44,
A45,
FDIFF_1: 14;
then
A47:
0
= ((
diff (((f
. x)
(#) g),t))
- ((g
. x)
* (
diff (f,t)))) by
A46,
FDIFF_1: 15;
take t;
A48: t
in
[.x0, x.] by
A26,
A43;
(
[.x0, x.]
\
{x0})
c= (N
\
{x0}) by
A20,
XBOOLE_1: 33;
then
A49: (
[.x0, x.]
\
{x0})
c= (
dom (f
/ g)) by
A5;
then (
[.x0, x.]
\
{x0})
c= ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 }))) by
RFUNCT_1:def 1;
then (
[.x0, x.]
\
{x0})
c= ((
dom g)
\ (g
"
{
0 })) by
A15;
then
A50: x
in (
dom g) & not x
in (g
"
{
0 }) by
A37,
XBOOLE_0:def 5;
A51:
now
assume (g
. x)
=
0 ;
then (g
. x)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A50,
FUNCT_1:def 7;
end;
A52:
[.x0, x.]
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A20;
then
[.x0, x.]
c= ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 }))) by
RFUNCT_1:def 1;
then
[.x0, x.]
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
A14;
then
A53: t
in (
dom (g
`| N)) & not t
in ((g
`| N)
"
{
0 }) by
A48,
XBOOLE_0:def 5;
A54:
now
assume (
diff (g,t))
=
0 ;
then ((g
`| N)
. t)
=
0 by
A4,
A20,
A48,
FDIFF_1:def 7;
then ((g
`| N)
. t)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A53,
FUNCT_1:def 7;
end;
g
is_differentiable_in t by
A4,
A27,
A43,
FDIFF_1: 9;
then
0
= (((f
. x)
* (
diff (g,t)))
- ((g
. x)
* (
diff (f,t)))) by
A47,
FDIFF_1: 15;
then ((f
. x)
/ (g
. x))
= ((
diff (f,t))
/ (
diff (g,t))) by
A51,
A54,
XCMPLX_1: 94;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
/ (
diff (g,t))) by
XCMPLX_0:def 9;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
XCMPLX_0:def 9;
then ((f
/ g)
. x)
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
A49,
A37,
RFUNCT_1:def 1;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* ((
diff (g,t))
" )) by
A3,
A20,
A48,
FDIFF_1:def 7;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* (((g
`| N)
. t)
" )) by
A4,
A20,
A48,
FDIFF_1:def 7;
hence thesis by
A43,
A52,
A48,
RFUNCT_1:def 1;
end;
A55: for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom (f
/ g))
/\ (
right_open_halfline x0)) holds ((f
/ g)
/* a) is
convergent & (
lim ((f
/ g)
/* a))
= (
lim (((f
`| N)
/ (g
`| N)),x0))
proof
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set d = (
seq_const x0);
let a;
assume that
A56: a is
convergent and
A57: (
lim a)
= x0 and
A58: (
rng a)
c= ((
dom (f
/ g))
/\ (
right_open_halfline x0));
consider k such that
A59: for n st k
<= n holds (x0
- r)
< (a
. n) & (a
. n)
< (x0
+ r) by
A9,
A56,
A57,
LIMFUNC3: 7;
set a1 = (a
^\ k);
defpred
X[
Element of
NAT ,
Real] means $2
in
].x0, (a1
. $1).[ & ((((f
/ g)
/* a)
^\ k)
. $1)
= (((f
`| N)
/ (g
`| N))
. $2);
A60:
now
let n;
(a
. (n
+ k))
in (
rng a) by
VALUED_0: 28;
then (a
. (n
+ k))
in (
right_open_halfline x0) by
A58,
XBOOLE_0:def 4;
then (a
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st (a
. (n
+ k))
= g1 & x0
< g1;
hence x0
< (a1
. n) by
NAT_1:def 3;
(a1
. n)
= (a
. (n
+ k)) & k
<= (n
+ k) by
NAT_1: 12,
NAT_1:def 3;
hence (a1
. n)
< (x0
+ r) by
A59;
end;
A61: for n holds ex c be
Element of
REAL st
X[n, c]
proof
let n;
A62: (
rng a1)
c= (
rng a) by
VALUED_0: 21;
x0
< (a1
. n) & (a1
. n)
< (x0
+ r) by
A60;
then
consider c such that
A63: c
in
].x0, (a1
. n).[ and
A64: ((f
/ g)
. (a1
. n))
= (((f
`| N)
/ (g
`| N))
. c) by
A11;
take c;
A65: ((
dom (f
/ g))
/\ (
right_open_halfline x0))
c= (
dom (f
/ g)) by
XBOOLE_1: 17;
then (
rng a)
c= (
dom (f
/ g)) by
A58;
then (((f
/ g)
/* (a
^\ k))
. n)
= (((f
`| N)
/ (g
`| N))
. c) by
A64,
A62,
FUNCT_2: 108,
XBOOLE_1: 1;
hence thesis by
A58,
A63,
A65,
VALUED_0: 27,
XBOOLE_1: 1;
end;
consider b such that
A66: for n holds
X[n, (b
. n)] from
FUNCT_2:sch 3(
A61);
A67:
now
let n be
Nat;
A68: n
in
NAT by
ORDINAL1:def 12;
(b
. n)
in
].x0, (a1
. n).[ by
A66,
A68;
then (b
. n)
in { g1 : x0
< g1 & g1
< (a1
. n) } by
RCOMP_1:def 2;
then ex g1 st g1
= (b
. n) & x0
< g1 & g1
< (a1
. n);
hence (d
. n)
<= (b
. n) & (b
. n)
<= (a1
. n) by
SEQ_1: 57;
end;
A69: (
lim d)
= (d
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
(
lim a1)
= x0 by
A56,
A57,
SEQ_4: 20;
then
A70: b is
convergent & (
lim b)
= x0 by
A56,
A69,
A67,
SEQ_2: 19,
SEQ_2: 20;
A71: (x0
- r)
< x0 by
A9,
XREAL_1: 44;
x0
< (x0
+ r) by
A9,
XREAL_1: 29;
then x0
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
A71;
then
A72: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A73: (
rng b)
c= ((
dom ((f
`| N)
/ (g
`| N)))
\
{x0})
proof
let x be
object;
assume x
in (
rng b);
then
consider n such that
A74: x
= (b
. n) by
FUNCT_2: 113;
x0
< (a1
. n) by
A60;
then
A75: (x0
- r)
< (a1
. n) by
A71,
XXREAL_0: 2;
(a1
. n)
< (x0
+ r) by
A60;
then (a1
. n)
in { g3 : (x0
- r)
< g3 & g3
< (x0
+ r) } by
A75;
then (a1
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
].x0, (a1
. n).[
c=
[.x0, (a1
. n).] &
[.x0, (a1
. n).]
c=
].(x0
- r), (x0
+ r).[ by
A72,
XXREAL_1: 25,
XXREAL_2:def 12;
then
].x0, (a1
. n).[
c=
].(x0
- r), (x0
+ r).[;
then
A76:
].x0, (a1
. n).[
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A10;
A77: x
in
].x0, (a1
. n).[ by
A66,
A74;
then x
in { g1 : x0
< g1 & g1
< (a1
. n) } by
RCOMP_1:def 2;
then ex g1 st g1
= x & x0
< g1 & g1
< (a1
. n);
then not x
in
{x0} by
TARSKI:def 1;
hence thesis by
A77,
A76,
XBOOLE_0:def 5;
end;
A78: ((
dom ((f
`| N)
/ (g
`| N)))
\
{x0})
c= (
dom ((f
`| N)
/ (g
`| N))) by
XBOOLE_1: 36;
A79:
now
reconsider m =
0 as
Nat;
take m;
let n be
Nat such that m
<= n;
A80: n
in
NAT by
ORDINAL1:def 12;
((((f
/ g)
/* a)
^\ k)
. n)
= (((f
`| N)
/ (g
`| N))
. (b
. n)) by
A66,
A80;
hence ((((f
/ g)
/* a)
^\ k)
. n)
= ((((f
`| N)
/ (g
`| N))
/* b)
. n) by
A73,
A78,
FUNCT_2: 108,
XBOOLE_1: 1,
A80;
end;
(
lim (((f
`| N)
/ (g
`| N)),x0))
= (
lim (((f
`| N)
/ (g
`| N)),x0));
then
A81: (((f
`| N)
/ (g
`| N))
/* b) is
convergent by
A8,
A70,
A73,
LIMFUNC3:def 4;
then
A82: (((f
/ g)
/* a)
^\ k) is
convergent by
A79,
SEQ_4: 18;
(
lim (((f
`| N)
/ (g
`| N))
/* b))
= (
lim (((f
`| N)
/ (g
`| N)),x0)) by
A8,
A70,
A73,
LIMFUNC3:def 4;
then (
lim (((f
/ g)
/* a)
^\ k))
= (
lim (((f
`| N)
/ (g
`| N)),x0)) by
A81,
A79,
SEQ_4: 19;
hence thesis by
A82,
SEQ_4: 21,
SEQ_4: 22;
end;
A83: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f
/ g)) & g2
< r2 & x0
< g2 & g2
in (
dom (f
/ g)) by
A5,
Th4;
then for r1 st x0
< r1 holds ex t st t
< r1 & x0
< t & t
in (
dom (f
/ g)) by
LIMFUNC3: 8;
then
A84: (f
/ g)
is_right_convergent_in x0 & (
lim_right ((f
/ g),x0))
= (
lim (((f
`| N)
/ (g
`| N)),x0)) by
A55,
Th2;
A85: for x st (x0
- r)
< x & x
< x0 holds ex c st c
in
].x, x0.[ & ((f
/ g)
. x)
= (((f
`| N)
/ (g
`| N))
. c)
proof
A86: (x0
+
0 )
< (x0
+ r) by
A9,
XREAL_1: 8;
(x0
- r)
< x0 by
A9,
XREAL_1: 44;
then x0
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A86;
then
A87: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A88: ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })))
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
XBOOLE_1: 17;
A89: ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 })))
c= ((
dom g)
\ (g
"
{
0 })) by
XBOOLE_1: 17;
let x such that
A90: (x0
- r)
< x and
A91: x
< x0;
set f1 = (((f
. x)
(#) g)
- ((g
. x)
(#) f));
A92: (
dom ((f
. x)
(#) g))
= (
dom g) & (
dom ((g
. x)
(#) f))
= (
dom f) by
VALUED_1:def 5;
then
A93: (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f)))
= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
x
< (x0
+ r) by
A91,
A86,
XXREAL_0: 2;
then x
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A90;
then x
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
A94:
[.x, x0.]
c= N by
A10,
A87,
XXREAL_2:def 12;
then
A95:
[.x, x0.]
c= (
dom f) &
[.x, x0.]
c= (
dom g) by
A1,
A2;
then
A96:
[.x, x0.]
c= (
dom f1) by
A93,
XBOOLE_1: 19;
(g
| N) is
continuous by
A4,
FDIFF_1: 25;
then (g
|
[.x, x0.]) is
continuous by
A94,
FCONT_1: 16;
then
A97: (((f
. x)
(#) g)
|
[.x, x0.]) is
continuous by
A2,
A94,
FCONT_1: 20,
XBOOLE_1: 1;
(f
| N) is
continuous by
A3,
FDIFF_1: 25;
then (f
|
[.x, x0.]) is
continuous by
A94,
FCONT_1: 16;
then
A98: (((g
. x)
(#) f)
|
[.x, x0.]) is
continuous by
A1,
A94,
FCONT_1: 20,
XBOOLE_1: 1;
[.x, x0.]
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
A95,
A93,
XBOOLE_1: 19;
then
A99: ((((f
. x)
(#) g)
- ((g
. x)
(#) f))
|
[.x, x0.]) is
continuous by
A92,
A93,
A98,
A97,
FCONT_1: 18;
A100:
].x, x0.[
c=
[.x, x0.] by
XXREAL_1: 25;
then
A101:
].x, x0.[
c= N by
A94;
A102: x
in
[.x, x0.] by
A91,
XXREAL_1: 1;
then x
in (
dom f1) by
A96;
then
A103: x
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A104: x
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A105: x0
in
[.x, x0.] by
A91,
XXREAL_1: 1;
then x0
in (
dom f1) by
A96;
then
A106: x0
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A107: x0
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A108: x
in (
dom ((g
. x)
(#) f)) by
A103,
XBOOLE_0:def 4;
A109: (f1
. x)
= ((((f
. x)
(#) g)
. x)
- (((g
. x)
(#) f)
. x)) by
A96,
A102,
VALUED_1: 13
.= (((f
. x)
* (g
. x))
- (((g
. x)
(#) f)
. x)) by
A104,
VALUED_1:def 5
.= (((g
. x)
* (f
. x))
- ((g
. x)
* (f
. x))) by
A108,
VALUED_1:def 5
.=
0 ;
A110: x0
in (
dom ((g
. x)
(#) f)) by
A106,
XBOOLE_0:def 4;
not x
in
{x0} by
A91,
TARSKI:def 1;
then
A111: x
in (
[.x, x0.]
\
{x0}) by
A102,
XBOOLE_0:def 5;
N
c= (
dom ((f
. x)
(#) g)) by
A2,
VALUED_1:def 5;
then
A112:
].x, x0.[
c= (
dom ((f
. x)
(#) g)) by
A101;
N
c= (
dom ((g
. x)
(#) f)) by
A1,
VALUED_1:def 5;
then
A113:
].x, x0.[
c= (
dom ((g
. x)
(#) f)) by
A101;
then
].x, x0.[
c= ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
A112,
XBOOLE_1: 19;
then
A114:
].x, x0.[
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
VALUED_1: 12;
f
is_differentiable_on
].x, x0.[ by
A3,
A94,
A100,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A115: ((g
. x)
(#) f)
is_differentiable_on
].x, x0.[ by
A113,
FDIFF_1: 20;
g
is_differentiable_on
].x, x0.[ by
A4,
A94,
A100,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A116: ((f
. x)
(#) g)
is_differentiable_on
].x, x0.[ by
A112,
FDIFF_1: 20;
(f1
. x0)
= ((((f
. x)
(#) g)
. x0)
- (((g
. x)
(#) f)
. x0)) by
A96,
A105,
VALUED_1: 13
.= (((f
. x)
* (g
. x0))
- (((g
. x)
(#) f)
. x0)) by
A107,
VALUED_1:def 5
.= (
0
- ((g
. x)
*
0 )) by
A7,
A110,
VALUED_1:def 5
.=
0 ;
then
consider t such that
A117: t
in
].x, x0.[ and
A118: (
diff (f1,t))
=
0 by
A91,
A99,
A115,
A114,
A116,
A96,
A109,
FDIFF_1: 19,
ROLLE: 1;
A119: ((g
. x)
(#) f)
is_differentiable_in t by
A115,
A117,
FDIFF_1: 9;
A120: f
is_differentiable_in t by
A3,
A101,
A117,
FDIFF_1: 9;
((f
. x)
(#) g)
is_differentiable_in t by
A116,
A117,
FDIFF_1: 9;
then
0
= ((
diff (((f
. x)
(#) g),t))
- (
diff (((g
. x)
(#) f),t))) by
A118,
A119,
FDIFF_1: 14;
then
A121:
0
= ((
diff (((f
. x)
(#) g),t))
- ((g
. x)
* (
diff (f,t)))) by
A120,
FDIFF_1: 15;
take t;
A122: t
in
[.x, x0.] by
A100,
A117;
(
[.x, x0.]
\
{x0})
c= (N
\
{x0}) by
A94,
XBOOLE_1: 33;
then
A123: (
[.x, x0.]
\
{x0})
c= (
dom (f
/ g)) by
A5;
then (
[.x, x0.]
\
{x0})
c= ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 }))) by
RFUNCT_1:def 1;
then (
[.x, x0.]
\
{x0})
c= ((
dom g)
\ (g
"
{
0 })) by
A89;
then
A124: x
in (
dom g) & not x
in (g
"
{
0 }) by
A111,
XBOOLE_0:def 5;
A125:
now
assume (g
. x)
=
0 ;
then (g
. x)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A124,
FUNCT_1:def 7;
end;
A126:
[.x, x0.]
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A94;
then
[.x, x0.]
c= ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 }))) by
RFUNCT_1:def 1;
then
[.x, x0.]
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
A88;
then
A127: t
in (
dom (g
`| N)) & not t
in ((g
`| N)
"
{
0 }) by
A122,
XBOOLE_0:def 5;
A128:
now
assume (
diff (g,t))
=
0 ;
then ((g
`| N)
. t)
=
0 by
A4,
A94,
A122,
FDIFF_1:def 7;
then ((g
`| N)
. t)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A127,
FUNCT_1:def 7;
end;
g
is_differentiable_in t by
A4,
A101,
A117,
FDIFF_1: 9;
then
0
= (((f
. x)
* (
diff (g,t)))
- ((g
. x)
* (
diff (f,t)))) by
A121,
FDIFF_1: 15;
then ((f
. x)
/ (g
. x))
= ((
diff (f,t))
/ (
diff (g,t))) by
A125,
A128,
XCMPLX_1: 94;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
/ (
diff (g,t))) by
XCMPLX_0:def 9;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
XCMPLX_0:def 9;
then ((f
/ g)
. x)
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
A123,
A111,
RFUNCT_1:def 1;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* ((
diff (g,t))
" )) by
A3,
A94,
A122,
FDIFF_1:def 7;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* (((g
`| N)
. t)
" )) by
A4,
A94,
A122,
FDIFF_1:def 7;
hence thesis by
A117,
A126,
A122,
RFUNCT_1:def 1;
end;
A129: for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom (f
/ g))
/\ (
left_open_halfline x0)) holds ((f
/ g)
/* a) is
convergent & (
lim ((f
/ g)
/* a))
= (
lim (((f
`| N)
/ (g
`| N)),x0))
proof
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set d = (
seq_const x0);
let a;
assume that
A130: a is
convergent and
A131: (
lim a)
= x0 and
A132: (
rng a)
c= ((
dom (f
/ g))
/\ (
left_open_halfline x0));
consider k such that
A133: for n st k
<= n holds (x0
- r)
< (a
. n) & (a
. n)
< (x0
+ r) by
A9,
A130,
A131,
LIMFUNC3: 7;
set a1 = (a
^\ k);
defpred
X[
Element of
NAT ,
Real] means $2
in
].(a1
. $1), x0.[ & ((((f
/ g)
/* a)
^\ k)
. $1)
= (((f
`| N)
/ (g
`| N))
. $2);
A134:
now
let n;
(a
. (n
+ k))
in (
rng a) by
VALUED_0: 28;
then (a
. (n
+ k))
in (
left_open_halfline x0) by
A132,
XBOOLE_0:def 4;
then (a
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st (a
. (n
+ k))
= g1 & g1
< x0;
hence (a1
. n)
< x0 by
NAT_1:def 3;
(a1
. n)
= (a
. (n
+ k)) & k
<= (n
+ k) by
NAT_1: 12,
NAT_1:def 3;
hence (x0
- r)
< (a1
. n) by
A133;
end;
A135: for n holds ex c be
Element of
REAL st
X[n, c]
proof
let n;
A136: (
rng a1)
c= (
rng a) by
VALUED_0: 21;
(x0
- r)
< (a1
. n) & (a1
. n)
< x0 by
A134;
then
consider c such that
A137: c
in
].(a1
. n), x0.[ and
A138: ((f
/ g)
. (a1
. n))
= (((f
`| N)
/ (g
`| N))
. c) by
A85;
take c;
A139: ((
dom (f
/ g))
/\ (
left_open_halfline x0))
c= (
dom (f
/ g)) by
XBOOLE_1: 17;
then (
rng a)
c= (
dom (f
/ g)) by
A132;
then (((f
/ g)
/* (a
^\ k))
. n)
= (((f
`| N)
/ (g
`| N))
. c) by
A138,
A136,
FUNCT_2: 108,
XBOOLE_1: 1;
hence thesis by
A132,
A137,
A139,
VALUED_0: 27,
XBOOLE_1: 1;
end;
consider b such that
A140: for n holds
X[n, (b
. n)] from
FUNCT_2:sch 3(
A135);
A141:
now
let n be
Nat;
A142: n
in
NAT by
ORDINAL1:def 12;
(b
. n)
in
].(a1
. n), x0.[ by
A140,
A142;
then (b
. n)
in { g1 : (a1
. n)
< g1 & g1
< x0 } by
RCOMP_1:def 2;
then ex g1 st g1
= (b
. n) & (a1
. n)
< g1 & g1
< x0;
hence (a1
. n)
<= (b
. n) & (b
. n)
<= (d
. n) by
SEQ_1: 57;
end;
A143: (
lim d)
= (d
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
(
lim a1)
= x0 by
A130,
A131,
SEQ_4: 20;
then
A144: b is
convergent & (
lim b)
= x0 by
A130,
A143,
A141,
SEQ_2: 19,
SEQ_2: 20;
A145: x0
< (x0
+ r) by
A9,
XREAL_1: 29;
(x0
- r)
< x0 by
A9,
XREAL_1: 44;
then x0
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
A145;
then
A146: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A147: (
rng b)
c= ((
dom ((f
`| N)
/ (g
`| N)))
\
{x0})
proof
let x be
object;
assume x
in (
rng b);
then
consider n such that
A148: x
= (b
. n) by
FUNCT_2: 113;
(a1
. n)
< x0 by
A134;
then
A149: (a1
. n)
< (x0
+ r) by
A145,
XXREAL_0: 2;
(x0
- r)
< (a1
. n) by
A134;
then (a1
. n)
in { g3 : (x0
- r)
< g3 & g3
< (x0
+ r) } by
A149;
then (a1
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
].(a1
. n), x0.[
c=
[.(a1
. n), x0.] &
[.(a1
. n), x0.]
c=
].(x0
- r), (x0
+ r).[ by
A146,
XXREAL_1: 25,
XXREAL_2:def 12;
then
].(a1
. n), x0.[
c=
].(x0
- r), (x0
+ r).[;
then
A150:
].(a1
. n), x0.[
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A10;
A151: x
in
].(a1
. n), x0.[ by
A140,
A148;
then x
in { g1 : (a1
. n)
< g1 & g1
< x0 } by
RCOMP_1:def 2;
then ex g1 st g1
= x & (a1
. n)
< g1 & g1
< x0;
then not x
in
{x0} by
TARSKI:def 1;
hence thesis by
A151,
A150,
XBOOLE_0:def 5;
end;
A152: ((
dom ((f
`| N)
/ (g
`| N)))
\
{x0})
c= (
dom ((f
`| N)
/ (g
`| N))) by
XBOOLE_1: 36;
A153:
now
reconsider m =
0 as
Nat;
take m;
let n be
Nat such that m
<= n;
A154: n
in
NAT by
ORDINAL1:def 12;
((((f
/ g)
/* a)
^\ k)
. n)
= (((f
`| N)
/ (g
`| N))
. (b
. n)) by
A140,
A154;
hence ((((f
/ g)
/* a)
^\ k)
. n)
= ((((f
`| N)
/ (g
`| N))
/* b)
. n) by
A147,
A152,
FUNCT_2: 108,
XBOOLE_1: 1,
A154;
end;
(
lim (((f
`| N)
/ (g
`| N)),x0))
= (
lim (((f
`| N)
/ (g
`| N)),x0));
then
A155: (((f
`| N)
/ (g
`| N))
/* b) is
convergent by
A8,
A144,
A147,
LIMFUNC3:def 4;
then
A156: (((f
/ g)
/* a)
^\ k) is
convergent by
A153,
SEQ_4: 18;
(
lim (((f
`| N)
/ (g
`| N))
/* b))
= (
lim (((f
`| N)
/ (g
`| N)),x0)) by
A8,
A144,
A147,
LIMFUNC3:def 4;
then (
lim (((f
/ g)
/* a)
^\ k))
= (
lim (((f
`| N)
/ (g
`| N)),x0)) by
A155,
A153,
SEQ_4: 19;
hence thesis by
A156,
SEQ_4: 21,
SEQ_4: 22;
end;
for r1 st r1
< x0 holds ex t st r1
< t & t
< x0 & t
in (
dom (f
/ g)) by
A83,
LIMFUNC3: 8;
then
A157: (f
/ g)
is_left_convergent_in x0 & (
lim_left ((f
/ g),x0))
= (
lim (((f
`| N)
/ (g
`| N)),x0)) by
A129,
Th3;
hence (f
/ g)
is_convergent_in x0 by
A84,
LIMFUNC3: 30;
take N;
thus thesis by
A84,
A157,
LIMFUNC3: 30;
end;
::$Notion-Name
theorem ::
L_HOSPIT:10
(ex N be
Neighbourhood of x0 st N
c= (
dom f) & N
c= (
dom g) & f
is_differentiable_on N & g
is_differentiable_on N & (N
\
{x0})
c= (
dom (f
/ g)) & N
c= (
dom ((f
`| N)
/ (g
`| N))) & (f
. x0)
=
0 & (g
. x0)
=
0 & ((f
`| N)
/ (g
`| N))
is_continuous_in x0) implies (f
/ g)
is_convergent_in x0 & (
lim ((f
/ g),x0))
= ((
diff (f,x0))
/ (
diff (g,x0)))
proof
given N be
Neighbourhood of x0 such that
A1: N
c= (
dom f) and
A2: N
c= (
dom g) and
A3: f
is_differentiable_on N and
A4: g
is_differentiable_on N and
A5: (N
\
{x0})
c= (
dom (f
/ g)) and
A6: N
c= (
dom ((f
`| N)
/ (g
`| N))) and
A7: (f
. x0)
=
0 & (g
. x0)
=
0 and
A8: ((f
`| N)
/ (g
`| N))
is_continuous_in x0;
consider r be
Real such that
A9:
0
< r and
A10: N
=
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 6;
A11: for x st (x0
- r)
< x & x
< x0 holds ex c st c
in
].x, x0.[ & ((f
/ g)
. x)
= (((f
`| N)
/ (g
`| N))
. c)
proof
A12: (x0
+
0 )
< (x0
+ r) by
A9,
XREAL_1: 8;
(x0
- r)
< x0 by
A9,
XREAL_1: 44;
then x0
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A12;
then
A13: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A14: ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })))
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
XBOOLE_1: 17;
A15: ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 })))
c= ((
dom g)
\ (g
"
{
0 })) by
XBOOLE_1: 17;
let x such that
A16: (x0
- r)
< x and
A17: x
< x0;
set f1 = (((f
. x)
(#) g)
- ((g
. x)
(#) f));
A18: (
dom ((f
. x)
(#) g))
= (
dom g) & (
dom ((g
. x)
(#) f))
= (
dom f) by
VALUED_1:def 5;
then
A19: (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f)))
= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
x
< (x0
+ r) by
A17,
A12,
XXREAL_0: 2;
then x
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A16;
then x
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
A20:
[.x, x0.]
c= N by
A10,
A13,
XXREAL_2:def 12;
then
A21:
[.x, x0.]
c= (
dom f) &
[.x, x0.]
c= (
dom g) by
A1,
A2;
then
A22:
[.x, x0.]
c= (
dom f1) by
A19,
XBOOLE_1: 19;
(g
| N) is
continuous by
A4,
FDIFF_1: 25;
then (g
|
[.x, x0.]) is
continuous by
A20,
FCONT_1: 16;
then
A23: (((f
. x)
(#) g)
|
[.x, x0.]) is
continuous by
A2,
A20,
FCONT_1: 20,
XBOOLE_1: 1;
(f
| N) is
continuous by
A3,
FDIFF_1: 25;
then (f
|
[.x, x0.]) is
continuous by
A20,
FCONT_1: 16;
then
A24: (((g
. x)
(#) f)
|
[.x, x0.]) is
continuous by
A1,
A20,
FCONT_1: 20,
XBOOLE_1: 1;
[.x, x0.]
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
A21,
A19,
XBOOLE_1: 19;
then
A25: ((((f
. x)
(#) g)
- ((g
. x)
(#) f))
|
[.x, x0.]) is
continuous by
A18,
A19,
A24,
A23,
FCONT_1: 18;
A26:
].x, x0.[
c=
[.x, x0.] by
XXREAL_1: 25;
then
A27:
].x, x0.[
c= N by
A20;
A28: x
in
[.x, x0.] by
A17,
XXREAL_1: 1;
then x
in (
dom f1) by
A22;
then
A29: x
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A30: x
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A31: x0
in
[.x, x0.] by
A17,
XXREAL_1: 1;
then x0
in (
dom f1) by
A22;
then
A32: x0
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A33: x0
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A34: x
in (
dom ((g
. x)
(#) f)) by
A29,
XBOOLE_0:def 4;
A35: (f1
. x)
= ((((f
. x)
(#) g)
. x)
- (((g
. x)
(#) f)
. x)) by
A22,
A28,
VALUED_1: 13
.= (((f
. x)
* (g
. x))
- (((g
. x)
(#) f)
. x)) by
A30,
VALUED_1:def 5
.= (((g
. x)
* (f
. x))
- ((g
. x)
* (f
. x))) by
A34,
VALUED_1:def 5
.=
0 ;
A36: x0
in (
dom ((g
. x)
(#) f)) by
A32,
XBOOLE_0:def 4;
not x
in
{x0} by
A17,
TARSKI:def 1;
then
A37: x
in (
[.x, x0.]
\
{x0}) by
A28,
XBOOLE_0:def 5;
N
c= (
dom ((f
. x)
(#) g)) by
A2,
VALUED_1:def 5;
then
A38:
].x, x0.[
c= (
dom ((f
. x)
(#) g)) by
A27;
N
c= (
dom ((g
. x)
(#) f)) by
A1,
VALUED_1:def 5;
then
A39:
].x, x0.[
c= (
dom ((g
. x)
(#) f)) by
A27;
then
].x, x0.[
c= ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
A38,
XBOOLE_1: 19;
then
A40:
].x, x0.[
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
VALUED_1: 12;
f
is_differentiable_on
].x, x0.[ by
A3,
A20,
A26,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A41: ((g
. x)
(#) f)
is_differentiable_on
].x, x0.[ by
A39,
FDIFF_1: 20;
g
is_differentiable_on
].x, x0.[ by
A4,
A20,
A26,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A42: ((f
. x)
(#) g)
is_differentiable_on
].x, x0.[ by
A38,
FDIFF_1: 20;
(f1
. x0)
= ((((f
. x)
(#) g)
. x0)
- (((g
. x)
(#) f)
. x0)) by
A22,
A31,
VALUED_1: 13
.= (((f
. x)
* (g
. x0))
- (((g
. x)
(#) f)
. x0)) by
A33,
VALUED_1:def 5
.= (
0
- ((g
. x)
*
0 )) by
A7,
A36,
VALUED_1:def 5
.=
0 ;
then
consider t such that
A43: t
in
].x, x0.[ and
A44: (
diff (f1,t))
=
0 by
A17,
A25,
A41,
A40,
A42,
A22,
A35,
FDIFF_1: 19,
ROLLE: 1;
A45: ((g
. x)
(#) f)
is_differentiable_in t by
A41,
A43,
FDIFF_1: 9;
A46: f
is_differentiable_in t by
A3,
A27,
A43,
FDIFF_1: 9;
((f
. x)
(#) g)
is_differentiable_in t by
A42,
A43,
FDIFF_1: 9;
then
0
= ((
diff (((f
. x)
(#) g),t))
- (
diff (((g
. x)
(#) f),t))) by
A44,
A45,
FDIFF_1: 14;
then
A47:
0
= ((
diff (((f
. x)
(#) g),t))
- ((g
. x)
* (
diff (f,t)))) by
A46,
FDIFF_1: 15;
take t;
A48: t
in
[.x, x0.] by
A26,
A43;
(
[.x, x0.]
\
{x0})
c= (N
\
{x0}) by
A20,
XBOOLE_1: 33;
then
A49: (
[.x, x0.]
\
{x0})
c= (
dom (f
/ g)) by
A5;
then (
[.x, x0.]
\
{x0})
c= ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 }))) by
RFUNCT_1:def 1;
then (
[.x, x0.]
\
{x0})
c= ((
dom g)
\ (g
"
{
0 })) by
A15;
then
A50: x
in (
dom g) & not x
in (g
"
{
0 }) by
A37,
XBOOLE_0:def 5;
A51:
now
assume (g
. x)
=
0 ;
then (g
. x)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A50,
FUNCT_1:def 7;
end;
A52:
[.x, x0.]
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A20;
then
[.x, x0.]
c= ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 }))) by
RFUNCT_1:def 1;
then
[.x, x0.]
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
A14;
then
A53: t
in (
dom (g
`| N)) & not t
in ((g
`| N)
"
{
0 }) by
A48,
XBOOLE_0:def 5;
A54:
now
assume (
diff (g,t))
=
0 ;
then ((g
`| N)
. t)
=
0 by
A4,
A20,
A48,
FDIFF_1:def 7;
then ((g
`| N)
. t)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A53,
FUNCT_1:def 7;
end;
g
is_differentiable_in t by
A4,
A27,
A43,
FDIFF_1: 9;
then
0
= (((f
. x)
* (
diff (g,t)))
- ((g
. x)
* (
diff (f,t)))) by
A47,
FDIFF_1: 15;
then ((f
. x)
/ (g
. x))
= ((
diff (f,t))
/ (
diff (g,t))) by
A51,
A54,
XCMPLX_1: 94;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
/ (
diff (g,t))) by
XCMPLX_0:def 9;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
XCMPLX_0:def 9;
then ((f
/ g)
. x)
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
A49,
A37,
RFUNCT_1:def 1;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* ((
diff (g,t))
" )) by
A3,
A20,
A48,
FDIFF_1:def 7;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* (((g
`| N)
. t)
" )) by
A4,
A20,
A48,
FDIFF_1:def 7;
hence thesis by
A43,
A52,
A48,
RFUNCT_1:def 1;
end;
A55: for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom (f
/ g))
/\ (
left_open_halfline x0)) holds ((f
/ g)
/* a) is
convergent & (
lim ((f
/ g)
/* a))
= ((
diff (f,x0))
/ (
diff (g,x0)))
proof
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set d = (
seq_const x0);
let a;
assume that
A56: a is
convergent and
A57: (
lim a)
= x0 and
A58: (
rng a)
c= ((
dom (f
/ g))
/\ (
left_open_halfline x0));
consider k such that
A59: for n st k
<= n holds (x0
- r)
< (a
. n) & (a
. n)
< (x0
+ r) by
A9,
A56,
A57,
LIMFUNC3: 7;
set a1 = (a
^\ k);
defpred
X[
Element of
NAT ,
Real] means $2
in
].(a1
. $1), x0.[ & ((((f
/ g)
/* a)
^\ k)
. $1)
= (((f
`| N)
/ (g
`| N))
. $2);
A60:
now
let n;
(a
. (n
+ k))
in (
rng a) by
VALUED_0: 28;
then (a
. (n
+ k))
in (
left_open_halfline x0) by
A58,
XBOOLE_0:def 4;
then (a
. (n
+ k))
in { g1 : g1
< x0 } by
XXREAL_1: 229;
then ex g1 st (a
. (n
+ k))
= g1 & g1
< x0;
hence (a1
. n)
< x0 by
NAT_1:def 3;
(a1
. n)
= (a
. (n
+ k)) & k
<= (n
+ k) by
NAT_1: 12,
NAT_1:def 3;
hence (x0
- r)
< (a1
. n) by
A59;
end;
A61: for n holds ex c be
Element of
REAL st
X[n, c]
proof
let n;
A62: (
rng a1)
c= (
rng a) by
VALUED_0: 21;
(x0
- r)
< (a1
. n) & (a1
. n)
< x0 by
A60;
then
consider c such that
A63: c
in
].(a1
. n), x0.[ and
A64: ((f
/ g)
. (a1
. n))
= (((f
`| N)
/ (g
`| N))
. c) by
A11;
take c;
A65: ((
dom (f
/ g))
/\ (
left_open_halfline x0))
c= (
dom (f
/ g)) by
XBOOLE_1: 17;
then (
rng a)
c= (
dom (f
/ g)) by
A58;
then (((f
/ g)
/* (a
^\ k))
. n)
= (((f
`| N)
/ (g
`| N))
. c) by
A64,
A62,
FUNCT_2: 108,
XBOOLE_1: 1;
hence thesis by
A58,
A63,
A65,
VALUED_0: 27,
XBOOLE_1: 1;
end;
consider b such that
A66: for n holds
X[n, (b
. n)] from
FUNCT_2:sch 3(
A61);
A67: x0
< (x0
+ r) by
A9,
XREAL_1: 29;
(x0
- r)
< x0 by
A9,
XREAL_1: 44;
then x0
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
A67;
then
A68: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A69: (
rng b)
c= ((
dom ((f
`| N)
/ (g
`| N)))
/\ (
left_open_halfline x0))
proof
let x be
object;
assume x
in (
rng b);
then
consider n such that
A70: x
= (b
. n) by
FUNCT_2: 113;
(a1
. n)
< x0 by
A60;
then
A71: (a1
. n)
< (x0
+ r) by
A67,
XXREAL_0: 2;
(x0
- r)
< (a1
. n) by
A60;
then (a1
. n)
in { g3 : (x0
- r)
< g3 & g3
< (x0
+ r) } by
A71;
then (a1
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
].(a1
. n), x0.[
c=
[.(a1
. n), x0.] &
[.(a1
. n), x0.]
c=
].(x0
- r), (x0
+ r).[ by
A68,
XXREAL_1: 25,
XXREAL_2:def 12;
then
].(a1
. n), x0.[
c=
].(x0
- r), (x0
+ r).[;
then
A72:
].(a1
. n), x0.[
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A10;
A73: x
in
].(a1
. n), x0.[ by
A66,
A70;
then x
in { g1 : (a1
. n)
< g1 & g1
< x0 } by
RCOMP_1:def 2;
then ex g1 st g1
= x & (a1
. n)
< g1 & g1
< x0;
then x
in { g2 : g2
< x0 };
then x
in (
left_open_halfline x0) by
XXREAL_1: 229;
hence thesis by
A73,
A72,
XBOOLE_0:def 4;
end;
A74:
now
let n be
Nat;
A75: n
in
NAT by
ORDINAL1:def 12;
(b
. n)
in
].(a1
. n), x0.[ by
A66,
A75;
then (b
. n)
in { g1 : (a1
. n)
< g1 & g1
< x0 } by
RCOMP_1:def 2;
then ex g1 st g1
= (b
. n) & (a1
. n)
< g1 & g1
< x0;
hence (a1
. n)
<= (b
. n) & (b
. n)
<= (d
. n) by
SEQ_1: 57;
end;
A76: (
lim d)
= (d
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
(
lim a1)
= x0 by
A56,
A57,
SEQ_4: 20;
then
A77: b is
convergent & (
lim b)
= x0 by
A56,
A76,
A74,
SEQ_2: 19,
SEQ_2: 20;
A78: ((
dom ((f
`| N)
/ (g
`| N)))
/\ (
left_open_halfline x0))
c= (
dom ((f
`| N)
/ (g
`| N))) by
XBOOLE_1: 17;
then
A79: (
rng b)
c= (
dom ((f
`| N)
/ (g
`| N))) by
A69;
then
A80: (((f
`| N)
/ (g
`| N))
/* b) is
convergent by
A8,
A77,
FCONT_1:def 1;
A81:
now
reconsider m =
0 as
Nat;
take m;
let n be
Nat such that m
<= n;
A82: n
in
NAT by
ORDINAL1:def 12;
((((f
/ g)
/* a)
^\ k)
. n)
= (((f
`| N)
/ (g
`| N))
. (b
. n)) by
A66,
A82;
hence ((((f
/ g)
/* a)
^\ k)
. n)
= ((((f
`| N)
/ (g
`| N))
/* b)
. n) by
A69,
A78,
FUNCT_2: 108,
XBOOLE_1: 1,
A82;
end;
(
lim (((f
`| N)
/ (g
`| N))
/* b))
= (((f
`| N)
/ (g
`| N))
. x0) by
A8,
A77,
A79,
FCONT_1:def 1;
then (
lim (((f
`| N)
/ (g
`| N))
/* b))
= (((f
`| N)
. x0)
* (((g
`| N)
. x0)
" )) by
A6,
A10,
A68,
RFUNCT_1:def 1
.= ((
diff (f,x0))
* (((g
`| N)
. x0)
" )) by
A3,
A10,
A68,
FDIFF_1:def 7
.= ((
diff (f,x0))
* ((
diff (g,x0))
" )) by
A4,
A10,
A68,
FDIFF_1:def 7;
then (
lim (((f
/ g)
/* a)
^\ k))
= ((
diff (f,x0))
* ((
diff (g,x0))
" )) by
A80,
A81,
SEQ_4: 19;
then
A83: (
lim (((f
/ g)
/* a)
^\ k))
= ((
diff (f,x0))
/ (
diff (g,x0))) by
XCMPLX_0:def 9;
(((f
/ g)
/* a)
^\ k) is
convergent by
A80,
A81,
SEQ_4: 18;
hence thesis by
A83,
SEQ_4: 21,
SEQ_4: 22;
end;
A84: for r1, r2 st r1
< x0 & x0
< r2 holds ex g1, g2 st r1
< g1 & g1
< x0 & g1
in (
dom (f
/ g)) & g2
< r2 & x0
< g2 & g2
in (
dom (f
/ g)) by
A5,
Th4;
then for r1 st r1
< x0 holds ex t st r1
< t & t
< x0 & t
in (
dom (f
/ g)) by
LIMFUNC3: 8;
then
A85: (f
/ g)
is_left_convergent_in x0 & (
lim_left ((f
/ g),x0))
= ((
diff (f,x0))
/ (
diff (g,x0))) by
A55,
Th3;
A86: for x st x0
< x & x
< (x0
+ r) holds ex c st c
in
].x0, x.[ & ((f
/ g)
. x)
= (((f
`| N)
/ (g
`| N))
. c)
proof
A87: (x0
- r)
< x0 by
A9,
XREAL_1: 44;
(x0
+
0 )
< (x0
+ r) by
A9,
XREAL_1: 8;
then x0
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A87;
then
A88: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A89: ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })))
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
XBOOLE_1: 17;
A90: ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 })))
c= ((
dom g)
\ (g
"
{
0 })) by
XBOOLE_1: 17;
let x such that
A91: x0
< x and
A92: x
< (x0
+ r);
set f1 = (((f
. x)
(#) g)
- ((g
. x)
(#) f));
A93: (
dom ((f
. x)
(#) g))
= (
dom g) & (
dom ((g
. x)
(#) f))
= (
dom f) by
VALUED_1:def 5;
then
A94: (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f)))
= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
(x0
- r)
< x by
A91,
A87,
XXREAL_0: 2;
then x
in { g1 : (x0
- r)
< g1 & g1
< (x0
+ r) } by
A92;
then x
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
A95:
[.x0, x.]
c= N by
A10,
A88,
XXREAL_2:def 12;
then
A96:
[.x0, x.]
c= (
dom f) &
[.x0, x.]
c= (
dom g) by
A1,
A2;
then
A97:
[.x0, x.]
c= (
dom f1) by
A94,
XBOOLE_1: 19;
(g
| N) is
continuous by
A4,
FDIFF_1: 25;
then (g
|
[.x0, x.]) is
continuous by
A95,
FCONT_1: 16;
then
A98: (((f
. x)
(#) g)
|
[.x0, x.]) is
continuous by
A2,
A95,
FCONT_1: 20,
XBOOLE_1: 1;
(f
| N) is
continuous by
A3,
FDIFF_1: 25;
then (f
|
[.x0, x.]) is
continuous by
A95,
FCONT_1: 16;
then
A99: (((g
. x)
(#) f)
|
[.x0, x.]) is
continuous by
A1,
A95,
FCONT_1: 20,
XBOOLE_1: 1;
[.x0, x.]
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
A96,
A94,
XBOOLE_1: 19;
then
A100: ((((f
. x)
(#) g)
- ((g
. x)
(#) f))
|
[.x0, x.]) is
continuous by
A93,
A94,
A99,
A98,
FCONT_1: 18;
A101:
].x0, x.[
c=
[.x0, x.] by
XXREAL_1: 25;
then
A102:
].x0, x.[
c= N by
A95;
A103: x
in
[.x0, x.] by
A91,
XXREAL_1: 1;
then x
in (
dom f1) by
A97;
then
A104: x
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A105: x
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A106: x0
in
[.x0, x.] by
A91,
XXREAL_1: 1;
then x0
in (
dom f1) by
A97;
then
A107: x0
in ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
VALUED_1: 12;
then
A108: x0
in (
dom ((f
. x)
(#) g)) by
XBOOLE_0:def 4;
A109: x
in (
dom ((g
. x)
(#) f)) by
A104,
XBOOLE_0:def 4;
A110: (f1
. x)
= ((((f
. x)
(#) g)
. x)
- (((g
. x)
(#) f)
. x)) by
A97,
A103,
VALUED_1: 13
.= (((f
. x)
* (g
. x))
- (((g
. x)
(#) f)
. x)) by
A105,
VALUED_1:def 5
.= (((g
. x)
* (f
. x))
- ((g
. x)
* (f
. x))) by
A109,
VALUED_1:def 5
.=
0 ;
A111: x0
in (
dom ((g
. x)
(#) f)) by
A107,
XBOOLE_0:def 4;
not x
in
{x0} by
A91,
TARSKI:def 1;
then
A112: x
in (
[.x0, x.]
\
{x0}) by
A103,
XBOOLE_0:def 5;
N
c= (
dom ((f
. x)
(#) g)) by
A2,
VALUED_1:def 5;
then
A113:
].x0, x.[
c= (
dom ((f
. x)
(#) g)) by
A102;
N
c= (
dom ((g
. x)
(#) f)) by
A1,
VALUED_1:def 5;
then
A114:
].x0, x.[
c= (
dom ((g
. x)
(#) f)) by
A102;
then
].x0, x.[
c= ((
dom ((f
. x)
(#) g))
/\ (
dom ((g
. x)
(#) f))) by
A113,
XBOOLE_1: 19;
then
A115:
].x0, x.[
c= (
dom (((f
. x)
(#) g)
- ((g
. x)
(#) f))) by
VALUED_1: 12;
f
is_differentiable_on
].x0, x.[ by
A3,
A95,
A101,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A116: ((g
. x)
(#) f)
is_differentiable_on
].x0, x.[ by
A114,
FDIFF_1: 20;
g
is_differentiable_on
].x0, x.[ by
A4,
A95,
A101,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A117: ((f
. x)
(#) g)
is_differentiable_on
].x0, x.[ by
A113,
FDIFF_1: 20;
(f1
. x0)
= ((((f
. x)
(#) g)
. x0)
- (((g
. x)
(#) f)
. x0)) by
A97,
A106,
VALUED_1: 13
.= (((f
. x)
* (g
. x0))
- (((g
. x)
(#) f)
. x0)) by
A108,
VALUED_1:def 5
.= (
0
- ((g
. x)
*
0 )) by
A7,
A111,
VALUED_1:def 5
.=
0 ;
then
consider t such that
A118: t
in
].x0, x.[ and
A119: (
diff (f1,t))
=
0 by
A91,
A100,
A116,
A115,
A117,
A97,
A110,
FDIFF_1: 19,
ROLLE: 1;
A120: ((g
. x)
(#) f)
is_differentiable_in t by
A116,
A118,
FDIFF_1: 9;
A121: f
is_differentiable_in t by
A3,
A102,
A118,
FDIFF_1: 9;
((f
. x)
(#) g)
is_differentiable_in t by
A117,
A118,
FDIFF_1: 9;
then
0
= ((
diff (((f
. x)
(#) g),t))
- (
diff (((g
. x)
(#) f),t))) by
A119,
A120,
FDIFF_1: 14;
then
A122:
0
= ((
diff (((f
. x)
(#) g),t))
- ((g
. x)
* (
diff (f,t)))) by
A121,
FDIFF_1: 15;
take t;
A123: t
in
[.x0, x.] by
A101,
A118;
(
[.x0, x.]
\
{x0})
c= (N
\
{x0}) by
A95,
XBOOLE_1: 33;
then
A124: (
[.x0, x.]
\
{x0})
c= (
dom (f
/ g)) by
A5;
then (
[.x0, x.]
\
{x0})
c= ((
dom f)
/\ ((
dom g)
\ (g
"
{
0 }))) by
RFUNCT_1:def 1;
then (
[.x0, x.]
\
{x0})
c= ((
dom g)
\ (g
"
{
0 })) by
A90;
then
A125: x
in (
dom g) & not x
in (g
"
{
0 }) by
A112,
XBOOLE_0:def 5;
A126:
now
assume (g
. x)
=
0 ;
then (g
. x)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A125,
FUNCT_1:def 7;
end;
A127:
[.x0, x.]
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A95;
then
[.x0, x.]
c= ((
dom (f
`| N))
/\ ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 }))) by
RFUNCT_1:def 1;
then
[.x0, x.]
c= ((
dom (g
`| N))
\ ((g
`| N)
"
{
0 })) by
A89;
then
A128: t
in (
dom (g
`| N)) & not t
in ((g
`| N)
"
{
0 }) by
A123,
XBOOLE_0:def 5;
A129:
now
assume (
diff (g,t))
=
0 ;
then ((g
`| N)
. t)
=
0 by
A4,
A95,
A123,
FDIFF_1:def 7;
then ((g
`| N)
. t)
in
{
0 } by
TARSKI:def 1;
hence contradiction by
A128,
FUNCT_1:def 7;
end;
g
is_differentiable_in t by
A4,
A102,
A118,
FDIFF_1: 9;
then
0
= (((f
. x)
* (
diff (g,t)))
- ((g
. x)
* (
diff (f,t)))) by
A122,
FDIFF_1: 15;
then ((f
. x)
/ (g
. x))
= ((
diff (f,t))
/ (
diff (g,t))) by
A126,
A129,
XCMPLX_1: 94;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
/ (
diff (g,t))) by
XCMPLX_0:def 9;
then ((f
. x)
* ((g
. x)
" ))
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
XCMPLX_0:def 9;
then ((f
/ g)
. x)
= ((
diff (f,t))
* ((
diff (g,t))
" )) by
A124,
A112,
RFUNCT_1:def 1;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* ((
diff (g,t))
" )) by
A3,
A95,
A123,
FDIFF_1:def 7;
then ((f
/ g)
. x)
= (((f
`| N)
. t)
* (((g
`| N)
. t)
" )) by
A4,
A95,
A123,
FDIFF_1:def 7;
hence thesis by
A118,
A127,
A123,
RFUNCT_1:def 1;
end;
A130: for a st a is
convergent & (
lim a)
= x0 & (
rng a)
c= ((
dom (f
/ g))
/\ (
right_open_halfline x0)) holds ((f
/ g)
/* a) is
convergent & (
lim ((f
/ g)
/* a))
= ((
diff (f,x0))
/ (
diff (g,x0)))
proof
reconsider xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
set d = (
seq_const x0);
let a;
assume that
A131: a is
convergent and
A132: (
lim a)
= x0 and
A133: (
rng a)
c= ((
dom (f
/ g))
/\ (
right_open_halfline x0));
consider k such that
A134: for n st k
<= n holds (x0
- r)
< (a
. n) & (a
. n)
< (x0
+ r) by
A9,
A131,
A132,
LIMFUNC3: 7;
set a1 = (a
^\ k);
defpred
X[
Element of
NAT ,
Real] means $2
in
].x0, (a1
. $1).[ & ((((f
/ g)
/* a)
^\ k)
. $1)
= (((f
`| N)
/ (g
`| N))
. $2);
A135:
now
let n;
(a
. (n
+ k))
in (
rng a) by
VALUED_0: 28;
then (a
. (n
+ k))
in (
right_open_halfline x0) by
A133,
XBOOLE_0:def 4;
then (a
. (n
+ k))
in { g1 : x0
< g1 } by
XXREAL_1: 230;
then ex g1 st (a
. (n
+ k))
= g1 & x0
< g1;
hence x0
< (a1
. n) by
NAT_1:def 3;
(a1
. n)
= (a
. (n
+ k)) & k
<= (n
+ k) by
NAT_1: 12,
NAT_1:def 3;
hence (a1
. n)
< (x0
+ r) by
A134;
end;
A136: for n holds ex c be
Element of
REAL st
X[n, c]
proof
let n;
A137: (
rng a1)
c= (
rng a) by
VALUED_0: 21;
x0
< (a1
. n) & (a1
. n)
< (x0
+ r) by
A135;
then
consider c such that
A138: c
in
].x0, (a1
. n).[ and
A139: ((f
/ g)
. (a1
. n))
= (((f
`| N)
/ (g
`| N))
. c) by
A86;
take c;
A140: ((
dom (f
/ g))
/\ (
right_open_halfline x0))
c= (
dom (f
/ g)) by
XBOOLE_1: 17;
then (
rng a)
c= (
dom (f
/ g)) by
A133;
then (((f
/ g)
/* (a
^\ k))
. n)
= (((f
`| N)
/ (g
`| N))
. c) by
A139,
A137,
FUNCT_2: 108,
XBOOLE_1: 1;
hence thesis by
A133,
A138,
A140,
VALUED_0: 27,
XBOOLE_1: 1;
end;
consider b such that
A141: for n holds
X[n, (b
. n)] from
FUNCT_2:sch 3(
A136);
A142: (x0
- r)
< x0 by
A9,
XREAL_1: 44;
x0
< (x0
+ r) by
A9,
XREAL_1: 29;
then x0
in { g2 : (x0
- r)
< g2 & g2
< (x0
+ r) } by
A142;
then
A143: x0
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
A144: (
rng b)
c= ((
dom ((f
`| N)
/ (g
`| N)))
/\ (
right_open_halfline x0))
proof
let x be
object;
assume x
in (
rng b);
then
consider n such that
A145: x
= (b
. n) by
FUNCT_2: 113;
x0
< (a1
. n) by
A135;
then
A146: (x0
- r)
< (a1
. n) by
A142,
XXREAL_0: 2;
(a1
. n)
< (x0
+ r) by
A135;
then (a1
. n)
in { g3 : (x0
- r)
< g3 & g3
< (x0
+ r) } by
A146;
then (a1
. n)
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1:def 2;
then
].x0, (a1
. n).[
c=
[.x0, (a1
. n).] &
[.x0, (a1
. n).]
c=
].(x0
- r), (x0
+ r).[ by
A143,
XXREAL_1: 25,
XXREAL_2:def 12;
then
].x0, (a1
. n).[
c=
].(x0
- r), (x0
+ r).[;
then
A147:
].x0, (a1
. n).[
c= (
dom ((f
`| N)
/ (g
`| N))) by
A6,
A10;
A148: x
in
].x0, (a1
. n).[ by
A141,
A145;
then x
in { g1 : x0
< g1 & g1
< (a1
. n) } by
RCOMP_1:def 2;
then ex g1 st g1
= x & x0
< g1 & g1
< (a1
. n);
then x
in { g2 : x0
< g2 };
then x
in (
right_open_halfline x0) by
XXREAL_1: 230;
hence thesis by
A148,
A147,
XBOOLE_0:def 4;
end;
A149:
now
let n be
Nat;
A150: n
in
NAT by
ORDINAL1:def 12;
(b
. n)
in
].x0, (a1
. n).[ by
A141,
A150;
then (b
. n)
in { g1 : x0
< g1 & g1
< (a1
. n) } by
RCOMP_1:def 2;
then ex g1 st g1
= (b
. n) & x0
< g1 & g1
< (a1
. n);
hence (d
. n)
<= (b
. n) & (b
. n)
<= (a1
. n) by
SEQ_1: 57;
end;
A151: (
lim d)
= (d
.
0 ) by
SEQ_4: 26
.= x0 by
SEQ_1: 57;
(
lim a1)
= x0 by
A131,
A132,
SEQ_4: 20;
then
A152: b is
convergent & (
lim b)
= x0 by
A131,
A151,
A149,
SEQ_2: 19,
SEQ_2: 20;
A153: ((
dom ((f
`| N)
/ (g
`| N)))
/\ (
right_open_halfline x0))
c= (
dom ((f
`| N)
/ (g
`| N))) by
XBOOLE_1: 17;
then
A154: (
rng b)
c= (
dom ((f
`| N)
/ (g
`| N))) by
A144;
then
A155: (((f
`| N)
/ (g
`| N))
/* b) is
convergent by
A8,
A152,
FCONT_1:def 1;
A156:
now
reconsider m =
0 as
Nat;
take m;
let n be
Nat such that m
<= n;
A157: n
in
NAT by
ORDINAL1:def 12;
((((f
/ g)
/* a)
^\ k)
. n)
= (((f
`| N)
/ (g
`| N))
. (b
. n)) by
A141,
A157;
hence ((((f
/ g)
/* a)
^\ k)
. n)
= ((((f
`| N)
/ (g
`| N))
/* b)
. n) by
A144,
A153,
FUNCT_2: 108,
XBOOLE_1: 1,
A157;
end;
(
lim (((f
`| N)
/ (g
`| N))
/* b))
= (((f
`| N)
/ (g
`| N))
. x0) by
A8,
A152,
A154,
FCONT_1:def 1;
then (
lim (((f
`| N)
/ (g
`| N))
/* b))
= (((f
`| N)
. x0)
* (((g
`| N)
. x0)
" )) by
A6,
A10,
A143,
RFUNCT_1:def 1
.= ((
diff (f,x0))
* (((g
`| N)
. x0)
" )) by
A3,
A10,
A143,
FDIFF_1:def 7
.= ((
diff (f,x0))
* ((
diff (g,x0))
" )) by
A4,
A10,
A143,
FDIFF_1:def 7;
then (
lim (((f
/ g)
/* a)
^\ k))
= ((
diff (f,x0))
* ((
diff (g,x0))
" )) by
A155,
A156,
SEQ_4: 19;
then
A158: (
lim (((f
/ g)
/* a)
^\ k))
= ((
diff (f,x0))
/ (
diff (g,x0))) by
XCMPLX_0:def 9;
(((f
/ g)
/* a)
^\ k) is
convergent by
A155,
A156,
SEQ_4: 18;
hence thesis by
A158,
SEQ_4: 21,
SEQ_4: 22;
end;
for r1 st x0
< r1 holds ex t st t
< r1 & x0
< t & t
in (
dom (f
/ g)) by
A84,
LIMFUNC3: 8;
then (f
/ g)
is_right_convergent_in x0 & (
lim_right ((f
/ g),x0))
= ((
diff (f,x0))
/ (
diff (g,x0))) by
A130,
Th2;
hence thesis by
A85,
LIMFUNC3: 30;
end;