menelaus.miz
begin
reserve A,B,C,A1,B1,C1,A2,B2,C2,C3 for
Point of (
TOP-REAL 2),
lambda,mu,nu,alpha,beta,gamma for
Real,
X,Y,Z for
Subset of (
TOP-REAL 2);
notation
let X, Y;
synonym X
is_parallel_to Y for X
misses Y;
end
definition
let X, Y, Z;
::
MENELAUS:def1
pred X,Y,Z
are_concurrent means ((X
is_parallel_to Y & Y
is_parallel_to Z & Z
is_parallel_to X) or ex A st (A
in X & A
in Y & A
in Z));
end
theorem ::
MENELAUS:1
Th1: ((A
+ B)
`1 )
= ((A
`1 )
+ (B
`1 )) & ((A
+ B)
`2 )
= ((A
`2 )
+ (B
`2 ))
proof
(A
+ B)
=
|[((A
`1 )
+ (B
`1 )), ((A
`2 )
+ (B
`2 ))]| by
EUCLID: 55;
hence thesis by
EUCLID: 52;
end;
theorem ::
MENELAUS:2
Th2: ((lambda
* A)
`1 )
= (lambda
* (A
`1 )) & ((lambda
* A)
`2 )
= (lambda
* (A
`2 ))
proof
(lambda
* A)
=
|[(lambda
* (A
`1 )), (lambda
* (A
`2 ))]| by
EUCLID: 57;
hence thesis by
EUCLID: 52;
end;
theorem ::
MENELAUS:3
Th3: ((
- A)
`1 )
= (
- (A
`1 )) & ((
- A)
`2 )
= (
- (A
`2 ))
proof
(
- A)
=
|[(
- (A
`1 )), (
- (A
`2 ))]| by
EUCLID: 59;
hence thesis by
EUCLID: 52;
end;
theorem ::
MENELAUS:4
Th4: (((lambda
* A)
+ (mu
* B))
`1 )
= ((lambda
* (A
`1 ))
+ (mu
* (B
`1 ))) & (((lambda
* A)
+ (mu
* B))
`2 )
= ((lambda
* (A
`2 ))
+ (mu
* (B
`2 )))
proof
(((lambda
* A)
+ (mu
* B))
`1 )
= (((lambda
* A)
`1 )
+ ((mu
* B)
`1 )) by
Th1
.= ((lambda
* (A
`1 ))
+ ((mu
* B)
`1 )) by
Th2;
hence (((lambda
* A)
+ (mu
* B))
`1 )
= ((lambda
* (A
`1 ))
+ (mu
* (B
`1 ))) by
Th2;
(((lambda
* A)
+ (mu
* B))
`2 )
= (((lambda
* A)
`2 )
+ ((mu
* B)
`2 )) by
Th1
.= ((lambda
* (A
`2 ))
+ ((mu
* B)
`2 )) by
Th2;
hence thesis by
Th2;
end;
theorem ::
MENELAUS:5
(((
- lambda)
* A)
`1 )
= (
- (lambda
* (A
`1 ))) & (((
- lambda)
* A)
`2 )
= (
- (lambda
* (A
`2 )))
proof
(((
- lambda)
* A)
`1 )
= ((
- (lambda
* A))
`1 ) by
RLVECT_1: 79
.= (
- ((lambda
* A)
`1 )) by
Th3;
hence (((
- lambda)
* A)
`1 )
= (
- (lambda
* (A
`1 ))) by
Th2;
(((
- lambda)
* A)
`2 )
= ((
- (lambda
* A))
`2 ) by
RLVECT_1: 79
.= (
- ((lambda
* A)
`2 )) by
Th3;
hence thesis by
Th2;
end;
theorem ::
MENELAUS:6
(((lambda
* A)
- (mu
* B))
`1 )
= ((lambda
* (A
`1 ))
- (mu
* (B
`1 ))) & (((lambda
* A)
- (mu
* B))
`2 )
= ((lambda
* (A
`2 ))
- (mu
* (B
`2 )))
proof
(((lambda
* A)
- (mu
* B))
`1 )
= (((lambda
* A)
`1 )
- ((mu
* B)
`1 )) by
EUCLID_6: 41
.= ((lambda
* (A
`1 ))
- ((mu
* B)
`1 )) by
Th2;
hence (((lambda
* A)
- (mu
* B))
`1 )
= ((lambda
* (A
`1 ))
- (mu
* (B
`1 ))) by
Th2;
(((lambda
* A)
- (mu
* B))
`2 )
= (((lambda
* A)
`2 )
- ((mu
* B)
`2 )) by
EUCLID_6: 41
.= ((lambda
* (A
`2 ))
- ((mu
* B)
`2 )) by
Th2;
hence thesis by
Th2;
end;
theorem ::
MENELAUS:7
Th7: (
the_area_of_polygon3 ((((1
- lambda)
* A)
+ (lambda
* A1)),B,C))
= (((1
- lambda)
* (
the_area_of_polygon3 (A,B,C)))
+ (lambda
* (
the_area_of_polygon3 (A1,B,C))))
proof
(
the_area_of_polygon3 ((((1
- lambda)
* A)
+ (lambda
* A1)),B,C))
= ((((((((1
- lambda)
* (A
`1 ))
+ (lambda
* (A1
`1 )))
* (B
`2 ))
- ((B
`1 )
* ((((1
- lambda)
* A)
+ (lambda
* A1))
`2 )))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
+ (((C
`1 )
* ((((1
- lambda)
* A)
+ (lambda
* A1))
`2 ))
- (((((1
- lambda)
* A)
+ (lambda
* A1))
`1 )
* (C
`2 ))))
/ 2) by
Th4
.= ((((((((1
- lambda)
* (A
`1 ))
+ (lambda
* (A1
`1 )))
* (B
`2 ))
- ((B
`1 )
* (((1
- lambda)
* (A
`2 ))
+ (lambda
* (A1
`2 )))))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
+ (((C
`1 )
* ((((1
- lambda)
* A)
+ (lambda
* A1))
`2 ))
- (((((1
- lambda)
* A)
+ (lambda
* A1))
`1 )
* (C
`2 ))))
/ 2) by
Th4
.= ((((((((1
- lambda)
* (A
`1 ))
+ (lambda
* (A1
`1 )))
* (B
`2 ))
- ((B
`1 )
* (((1
- lambda)
* (A
`2 ))
+ (lambda
* (A1
`2 )))))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
+ (((C
`1 )
* (((1
- lambda)
* (A
`2 ))
+ (lambda
* (A1
`2 ))))
- (((((1
- lambda)
* A)
+ (lambda
* A1))
`1 )
* (C
`2 ))))
/ 2) by
Th4
.= ((((((((1
- lambda)
* (A
`1 ))
+ (lambda
* (A1
`1 )))
* (B
`2 ))
- ((B
`1 )
* (((1
- lambda)
* (A
`2 ))
+ (lambda
* (A1
`2 )))))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
+ (((C
`1 )
* (((1
- lambda)
* (A
`2 ))
+ (lambda
* (A1
`2 ))))
- ((((1
- lambda)
* (A
`1 ))
+ (lambda
* (A1
`1 )))
* (C
`2 ))))
/ 2) by
Th4;
hence thesis;
end;
theorem ::
MENELAUS:8
Th8: ((
angle (A,B,C))
=
0 & (A,B,C)
are_mutually_distinct ) implies ((
angle (B,C,A))
=
PI or (
angle (B,A,C))
=
PI )
proof
set z1 = (
euc2cpx A);
set z2 = (
euc2cpx B);
set z3 = (
euc2cpx C);
assume that
A1: (
angle (A,B,C))
=
0 and
A2: (A,B,C)
are_mutually_distinct ;
A
<> B & A
<> C & B
<> C by
A2,
ZFMISC_1:def 5;
then
A3: z1
<> z2 & z1
<> z3 & z2
<> z3 by
EUCLID_3: 4;
per cases ;
suppose (
angle (z2,z3,z1))
=
0 & (
angle (z3,z1,z2))
=
PI ;
hence thesis by
COMPLEX2: 82;
end;
suppose not ((
angle (z2,z3,z1))
=
0 & (
angle (z3,z1,z2))
=
PI );
hence thesis by
A3,
A1,
COMPLEX2: 87;
end;
end;
theorem ::
MENELAUS:9
Th9: (A,B,C)
are_collinear iff (
the_area_of_polygon3 (A,B,C))
=
0
proof
hereby
assume (A,B,C)
are_collinear ;
per cases by
TOPREAL9: 67;
suppose A
in (
LSeg (B,C));
then
consider lambda such that
A1: A
= (((1
- lambda)
* B)
+ (lambda
* C)) &
0
<= lambda & lambda
<= 1;
(
the_area_of_polygon3 (A,B,C))
= (((1
- lambda)
* (
the_area_of_polygon3 (B,B,C)))
+ (lambda
* (
the_area_of_polygon3 (C,B,C)))) by
Th7,
A1;
hence (
the_area_of_polygon3 (A,B,C))
=
0 ;
end;
suppose B
in (
LSeg (C,A));
then
consider lambda such that
A2: B
= (((1
- lambda)
* C)
+ (lambda
* A)) &
0
<= lambda & lambda
<= 1;
(
the_area_of_polygon3 (A,B,C))
= (
- (
the_area_of_polygon3 ((((1
- lambda)
* C)
+ (lambda
* A)),A,C))) by
A2
.= ((
- ((1
- lambda)
* (
the_area_of_polygon3 (C,A,C))))
- (lambda
* (
the_area_of_polygon3 (A,A,C)))) by
Th7;
hence (
the_area_of_polygon3 (A,B,C))
=
0 ;
end;
suppose C
in (
LSeg (A,B));
then
consider lambda such that
A3: C
= (((1
- lambda)
* A)
+ (lambda
* B)) &
0
<= lambda & lambda
<= 1;
(
the_area_of_polygon3 (A,B,C))
= (
- (
the_area_of_polygon3 ((((1
- lambda)
* A)
+ (lambda
* B)),B,A))) by
A3
.= ((
- ((1
- lambda)
* (
the_area_of_polygon3 (A,B,A))))
- (lambda
* (
the_area_of_polygon3 (B,B,A)))) by
Th7;
hence (
the_area_of_polygon3 (A,B,C))
=
0 ;
end;
end;
assume (
the_area_of_polygon3 (A,B,C))
=
0 ;
then (((
|.(A
- B).|
*
|.(C
- B).|)
* (
sin (
angle (C,B,A))))
/ 2)
=
0 by
EUCLID_6: 5;
per cases ;
suppose
|.(A
- B).|
=
0 ;
then A
= B by
EUCLID_6: 42;
then not (A,B,C)
are_mutually_distinct by
ZFMISC_1:def 5;
hence (A,B,C)
are_collinear by
EUCLID_6: 20;
end;
suppose
|.(C
- B).|
=
0 ;
then C
= B by
EUCLID_6: 42;
then not (A,B,C)
are_mutually_distinct by
ZFMISC_1:def 5;
hence (A,B,C)
are_collinear by
EUCLID_6: 20;
end;
suppose
A4: (
sin (
angle (C,B,A)))
=
0 ;
((2
*
PI )
*
0 )
<= (
angle (C,B,A)) & (
angle (C,B,A))
< ((2
*
PI )
+ ((2
*
PI )
*
0 )) by
COMPLEX2: 70;
then (
angle (C,B,A))
= ((2
*
PI )
*
0 ) or (
angle (C,B,A))
= (
PI
+ ((2
*
PI )
*
0 )) by
A4,
SIN_COS6: 21;
per cases ;
suppose (
angle (C,B,A))
=
0 ;
then (
angle (B,C,A))
=
PI or (
angle (B,A,C))
=
PI or not (C,B,A)
are_mutually_distinct by
Th8;
then C
in (
LSeg (B,A)) or A
in (
LSeg (B,C)) or not (C
<> B & C
<> A & B
<> A) by
EUCLID_6: 11,
ZFMISC_1:def 5;
then C
in (
LSeg (B,A)) or A
in (
LSeg (B,C)) or not (A,B,C)
are_mutually_distinct by
ZFMISC_1:def 5;
hence thesis by
EUCLID_6: 20,
TOPREAL9: 67;
end;
suppose (
angle (C,B,A))
=
PI ;
then B
in (
LSeg (C,A)) by
EUCLID_6: 11;
hence thesis by
TOPREAL9: 67;
end;
end;
end;
theorem ::
MENELAUS:10
Th10: (
the_area_of_polygon3 ((
0. (
TOP-REAL 2)),B,C))
= ((((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 )))
/ 2)
proof
(
the_area_of_polygon3 ((
0. (
TOP-REAL 2)),B,C))
= (((((
0
* (B
`2 ))
- ((B
`1 )
* (
|[
0 ,
0 ]|
`2 )))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
+ (((C
`1 )
* (
|[
0 ,
0 ]|
`2 ))
- ((
|[
0 ,
0 ]|
`1 )
* (C
`2 ))))
/ 2) by
EUCLID: 52,
EUCLID: 54
.= ((((
0
- ((B
`1 )
*
0 ))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
+ (((C
`1 )
* (
|[
0 ,
0 ]|
`2 ))
- ((
|[
0 ,
0 ]|
`1 )
* (C
`2 ))))
/ 2) by
EUCLID: 52
.= (((((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 )))
+ (((C
`1 )
*
0 )
- ((
|[
0 ,
0 ]|
`1 )
* (C
`2 ))))
/ 2) by
EUCLID: 52
.= (((((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 )))
+ (
0
- (
0
* (C
`2 ))))
/ 2) by
EUCLID: 52;
hence thesis;
end;
theorem ::
MENELAUS:11
(
the_area_of_polygon3 ((A
+ A1),B,C))
= (((
the_area_of_polygon3 (A,B,C))
+ (
the_area_of_polygon3 (A1,B,C)))
- (
the_area_of_polygon3 ((
0. (
TOP-REAL 2)),B,C)))
proof
(
the_area_of_polygon3 ((A
+ A1),B,C))
= (((((((A
`1 )
+ (A1
`1 ))
* (B
`2 ))
- ((B
`1 )
* ((A
+ A1)
`2 )))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
+ (((C
`1 )
* ((A
+ A1)
`2 ))
- (((A
+ A1)
`1 )
* (C
`2 ))))
/ 2) by
Th1
.= (((((((A
`1 )
+ (A1
`1 ))
* (B
`2 ))
- ((B
`1 )
* ((A
`2 )
+ (A1
`2 ))))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
+ (((C
`1 )
* ((A
+ A1)
`2 ))
- (((A
+ A1)
`1 )
* (C
`2 ))))
/ 2) by
Th1
.= (((((((A
`1 )
+ (A1
`1 ))
* (B
`2 ))
- ((B
`1 )
* ((A
`2 )
+ (A1
`2 ))))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
+ (((C
`1 )
* ((A
`2 )
+ (A1
`2 )))
- (((A
+ A1)
`1 )
* (C
`2 ))))
/ 2) by
Th1
.= (((((((A
`1 )
+ (A1
`1 ))
* (B
`2 ))
- ((B
`1 )
* ((A
`2 )
+ (A1
`2 ))))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
+ (((C
`1 )
* ((A
`2 )
+ (A1
`2 )))
- (((A
`1 )
+ (A1
`1 ))
* (C
`2 ))))
/ 2) by
Th1
.= ((((((((A
`1 )
+ (A1
`1 ))
* (B
`2 ))
- ((B
`1 )
* ((A
`2 )
+ (A1
`2 ))))
+ (2
* (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 )))))
+ (((C
`1 )
* ((A
`2 )
+ (A1
`2 )))
- (((A
`1 )
+ (A1
`1 ))
* (C
`2 ))))
/ 2)
- ((((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 )))
/ 2));
hence thesis by
Th10;
end;
theorem ::
MENELAUS:12
Th12: A
in (
LSeg (B,C)) implies A
in (
Line (B,C))
proof
assume A
in (
LSeg (B,C));
then
consider lambda such that
A1: A
= (((1
- lambda)
* B)
+ (lambda
* C)) &
0
<= lambda & lambda
<= 1;
thus thesis by
A1;
end;
theorem ::
MENELAUS:13
Th13: B
<> C implies ((A,B,C)
are_collinear iff A
in (
Line (B,C)))
proof
assume
A1: B
<> C;
hereby
assume (A,B,C)
are_collinear ;
per cases by
TOPREAL9: 67;
suppose A
in (
LSeg (B,C));
hence A
in (
Line (B,C)) by
Th12;
end;
suppose B
in (
LSeg (C,A));
then
A2: B
in (
Line (C,A)) by
Th12;
A3: C
in (
Line (C,A)) & A
in (
Line (C,A)) by
EUCLID_4: 41;
then (
Line (C,A))
c= (
Line (B,C)) by
A2,
A1,
EUCLID_4: 43;
hence A
in (
Line (B,C)) by
A3;
end;
suppose C
in (
LSeg (A,B));
then
A4: C
in (
Line (A,B)) by
Th12;
A5: A
in (
Line (A,B)) & B
in (
Line (A,B)) by
EUCLID_4: 41;
then (
Line (A,B))
c= (
Line (B,C)) by
A4,
A1,
EUCLID_4: 43;
hence A
in (
Line (B,C)) by
A5;
end;
end;
assume A
in (
Line (B,C));
then
consider lambda such that
A6: A
= (((1
- lambda)
* B)
+ (lambda
* C));
(
the_area_of_polygon3 (A,B,C))
= (((1
- lambda)
* (
the_area_of_polygon3 (B,B,C)))
+ (lambda
* (
the_area_of_polygon3 (C,B,C)))) by
Th7,
A6;
hence thesis by
Th9;
end;
Lm1: (A1
= (((1
- lambda)
* B)
+ (lambda
* C)) & B1
= (((1
- mu)
* C)
+ (mu
* A)) & C2
= (((1
- alpha)
* A)
+ (alpha
* A1))) implies (
the_area_of_polygon3 (B,B1,C2))
= (((1
- mu)
- (alpha
* ((1
- mu)
+ (lambda
* mu))))
* (
the_area_of_polygon3 (A,B,C)))
proof
assume that
A1: A1
= (((1
- lambda)
* B)
+ (lambda
* C)) and
A2: B1
= (((1
- mu)
* C)
+ (mu
* A)) and
A3: C2
= (((1
- alpha)
* A)
+ (alpha
* A1));
(
the_area_of_polygon3 (B,B1,C2))
= (
the_area_of_polygon3 ((((1
- alpha)
* A)
+ (alpha
* A1)),B,B1)) by
A3
.= (((1
- alpha)
* (
the_area_of_polygon3 (A,B,B1)))
+ (alpha
* (
the_area_of_polygon3 (A1,B,B1)))) by
Th7
.= (((1
- alpha)
* (
the_area_of_polygon3 (B1,A,B)))
+ (alpha
* (((1
- lambda)
* (
the_area_of_polygon3 (B,B,B1)))
+ (lambda
* (
the_area_of_polygon3 (C,B,B1)))))) by
Th7,
A1
.= (((1
- alpha)
* (((1
- mu)
* (
the_area_of_polygon3 (C,A,B)))
+ (mu
* (
the_area_of_polygon3 (A,A,B)))))
+ ((alpha
* lambda)
* (
the_area_of_polygon3 (B1,C,B)))) by
Th7,
A2
.= ((((1
- alpha)
* (1
- mu))
* (
the_area_of_polygon3 (C,A,B)))
+ ((alpha
* lambda)
* (((1
- mu)
* (
the_area_of_polygon3 (C,C,B)))
+ (mu
* (
the_area_of_polygon3 (A,C,B)))))) by
Th7,
A2
.= ((((1
- alpha)
* (1
- mu))
* (
the_area_of_polygon3 (A,B,C)))
- (((alpha
* lambda)
* mu)
* (
the_area_of_polygon3 (A,B,C))));
hence thesis;
end;
theorem ::
MENELAUS:14
Th14: (A,B,C)
is_a_triangle & A1
= (((1
- lambda)
* B)
+ (lambda
* C)) implies A
<> A1
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: A1
= (((1
- lambda)
* B)
+ (lambda
* C));
(A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
then
A3: A
<> B & A
<> C & B
<> C by
ZFMISC_1:def 5;
hereby
assume A
= A1;
then A
in (
Line (B,C)) by
A2;
hence contradiction by
A3,
Th13,
A1;
end;
end;
theorem ::
MENELAUS:15
(A,B,C)
is_a_triangle implies (A,C,B)
is_a_triangle & (B,A,C)
is_a_triangle & (B,C,A)
is_a_triangle & (C,A,B)
is_a_triangle & (C,B,A)
is_a_triangle ;
Lm2: ((A,B,C)
is_a_triangle & A1
= (((1
- lambda)
* B)
+ (lambda
* C)) & B1
= (((1
- mu)
* C)
+ (mu
* A)) & mu
<> 1 & (A,A1,C2)
are_collinear & (B,B1,C2)
are_collinear ) implies ((1
- mu)
+ (lambda
* mu))
<>
0 & (ex alpha st (C2
= (((1
- alpha)
* A)
+ (alpha
* A1)) & alpha
= ((1
- mu)
/ ((1
- mu)
+ (lambda
* mu)))))
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: A1
= (((1
- lambda)
* B)
+ (lambda
* C)) and
A3: B1
= (((1
- mu)
* C)
+ (mu
* A)) and
A4: mu
<> 1 and
A5: (A,A1,C2)
are_collinear and
A6: (B,B1,C2)
are_collinear ;
A7: A
<> A1 by
Th14,
A1,
A2;
A8: (
the_area_of_polygon3 (A,B,C))
<>
0 by
A1,
Th9;
(C2,A,A1)
are_collinear by
A5;
then C2
in (
Line (A,A1)) by
A7,
Th13;
then
consider alpha such that
A9: C2
= (((1
- alpha)
* A)
+ (alpha
* A1));
0
= (
the_area_of_polygon3 (B,B1,C2)) by
A6,
Th9
.= (((1
- mu)
- (((1
- mu)
+ (lambda
* mu))
* alpha))
* (
the_area_of_polygon3 (A,B,C))) by
Lm1,
A9,
A2,
A3;
then
A10: ((1
- mu)
- (((1
- mu)
+ (lambda
* mu))
* alpha))
=
0 & (1
- mu)
<>
0 by
A8,
A4;
then ((1
- mu)
+ (lambda
* mu))
<>
0 ;
hence thesis by
A9,
A10,
XCMPLX_1: 89;
end;
Lm3: ((A,B,C)
is_a_triangle & A1
= (((1
- lambda)
* B)
+ (lambda
* C)) & B1
= (((1
- mu)
* C)
+ (mu
* A)) & ((1
- mu)
+ (lambda
* mu))
<>
0 ) implies (ex C2 st (A,A1,C2)
are_collinear & (B,B1,C2)
are_collinear )
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: A1
= (((1
- lambda)
* B)
+ (lambda
* C)) and
A3: B1
= (((1
- mu)
* C)
+ (mu
* A)) and
A4: ((1
- mu)
+ (lambda
* mu))
<>
0 ;
A5: A
<> A1 by
Th14,
A1,
A2;
consider alpha such that
A6: alpha
= ((1
- mu)
/ ((1
- mu)
+ (lambda
* mu)));
consider C2 such that
A7: C2
= (((1
- alpha)
* A)
+ (alpha
* A1));
take C2;
C2
in (
Line (A,A1)) by
A7;
then (C2,A,A1)
are_collinear by
A5,
Th13;
hence (A,A1,C2)
are_collinear ;
(
the_area_of_polygon3 (B,B1,C2))
= (((1
- mu)
- (((1
- mu)
/ ((1
- mu)
+ (lambda
* mu)))
* ((1
- mu)
+ (lambda
* mu))))
* (
the_area_of_polygon3 (A,B,C))) by
A6,
Lm1,
A2,
A3,
A7
.= (((1
- mu)
- (1
- mu))
* (
the_area_of_polygon3 (A,B,C))) by
A4,
XCMPLX_1: 87;
hence (B,B1,C2)
are_collinear by
Th9;
end;
Lm4: (lambda
<> 1 & mu
<> 1 & nu
<> 1) implies (
0
= (((lambda
* mu)
* nu)
- (((1
- lambda)
* (1
- mu))
* (1
- nu))) iff (((lambda
/ (1
- lambda))
* (mu
/ (1
- mu)))
* (nu
/ (1
- nu)))
= 1)
proof
set q = (((1
- lambda)
* (1
- mu))
* (1
- nu));
assume lambda
<> 1 & mu
<> 1 & nu
<> 1;
then
A1: (1
- lambda)
<>
0 & (1
- mu)
<>
0 & (1
- nu)
<>
0 ;
0
= (((lambda
* mu)
* nu)
- q) iff
0
= ((q
* 1)
+ (
- ((mu
* nu)
* lambda)));
then
0
= (((lambda
* mu)
* nu)
- q) iff (q
* (1
+ ((
- ((lambda
* mu)
* nu))
/ q)))
=
0 by
A1,
XCMPLX_1: 235;
then
0
= (((lambda
* mu)
* nu)
- q) iff (1
+ ((
- ((lambda
* mu)
* nu))
/ q))
=
0 by
A1;
then
0
= (((lambda
* mu)
* nu)
- q) iff (1
+ (
- (((lambda
* mu)
* nu)
/ q)))
=
0 by
XCMPLX_1: 187;
then
0
= (((lambda
* mu)
* nu)
- q) iff 1
= ((lambda
* (mu
* nu))
/ ((1
- lambda)
* ((1
- mu)
* (1
- nu))));
then
0
= (((lambda
* mu)
* nu)
- q) iff 1
= (((lambda
/ (1
- lambda))
* (mu
* nu))
/ ((1
- mu)
* (1
- nu))) by
XCMPLX_1: 83;
then
0
= (((lambda
* mu)
* nu)
- q) iff 1
= ((lambda
/ (1
- lambda))
* ((mu
* nu)
/ ((1
- mu)
* (1
- nu)))) by
XCMPLX_1: 74;
then
0
= (((lambda
* mu)
* nu)
- q) iff 1
= ((lambda
/ (1
- lambda))
* (((mu
/ (1
- mu))
* nu)
/ (1
- nu))) by
XCMPLX_1: 83;
then
0
= (((lambda
* mu)
* nu)
- q) iff 1
= ((lambda
/ (1
- lambda))
* ((mu
/ (1
- mu))
* (nu
/ (1
- nu)))) by
XCMPLX_1: 74;
hence thesis;
end;
Lm5: (mu
<> 1 &
0
= (((lambda
* mu)
* nu)
- (((1
- lambda)
* (1
- mu))
* (1
- nu)))) implies (((1
- mu)
+ (mu
* lambda))
=
0 implies ((1
- lambda)
+ (lambda
* nu))
=
0 )
proof
assume that
A1: mu
<> 1 and
A2:
0
= (((lambda
* mu)
* nu)
- (((1
- lambda)
* (1
- mu))
* (1
- nu))) and
A3: ((1
- mu)
+ (mu
* lambda))
=
0 ;
A4: (1
- mu)
<>
0 by
A1;
0
= (((
- (1
- mu))
* nu)
- (((1
- lambda)
* (1
- mu))
* (1
- nu))) by
A2,
A3;
then
0
= ((1
- mu)
* (nu
+ ((1
- lambda)
* (1
- nu))));
hence thesis by
A4;
end;
theorem ::
MENELAUS:16
Th16: ((A,B,C)
is_a_triangle & A1
= (((1
- lambda)
* B)
+ (lambda
* C)) & B1
= (((1
- mu)
* C)
+ (mu
* A)) & mu
<> 1) implies (((1
- mu)
+ (lambda
* mu))
<>
0 iff not (
Line (A,A1))
is_parallel_to (
Line (B,B1)))
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: A1
= (((1
- lambda)
* B)
+ (lambda
* C)) and
A3: B1
= (((1
- mu)
* C)
+ (mu
* A)) and
A4: mu
<> 1;
A5: A
<> A1 by
A1,
A2,
Th14;
(B,C,A)
is_a_triangle by
A1;
then
A6: B
<> B1 by
A3,
Th14;
hereby
assume ((1
- mu)
+ (lambda
* mu))
<>
0 ;
then
consider C2 such that
A7: (A,A1,C2)
are_collinear & (B,B1,C2)
are_collinear by
Lm3,
A1,
A2,
A3;
(C2,A,A1)
are_collinear & (C2,B,B1)
are_collinear by
A7;
then C2
in (
Line (A,A1)) & C2
in (
Line (B,B1)) by
A5,
A6,
Th13;
hence not (
Line (A,A1))
is_parallel_to (
Line (B,B1)) by
XBOOLE_0: 3;
end;
assume not (
Line (A,A1))
is_parallel_to (
Line (B,B1));
then
consider C2 be
object such that
A8: C2
in (
Line (A,A1)) & C2
in (
Line (B,B1)) by
XBOOLE_0: 3;
reconsider C2 as
Point of (
TOP-REAL 2) by
A8;
(C2,A,A1)
are_collinear & (C2,B,B1)
are_collinear by
A8,
A5,
A6,
Th13;
then (A,A1,C2)
are_collinear & (B,B1,C2)
are_collinear ;
hence thesis by
Lm2,
A1,
A2,
A3,
A4;
end;
Lm6: ((A,B,C)
is_a_triangle & A1
= (((1
- lambda)
* B)
+ (lambda
* C)) & B1
= (((1
- mu)
* C)
+ (mu
* A)) & C1
= (((1
- nu)
* A)
+ (nu
* B)) & lambda
<> 1 & mu
<> 1 & nu
<> 1 & not (((1
- mu)
+ (lambda
* mu))
<>
0 & ((1
- lambda)
+ (nu
* lambda))
<>
0 & ((1
- nu)
+ (mu
* nu))
<>
0 )) implies ((((lambda
/ (1
- lambda))
* (mu
/ (1
- mu)))
* (nu
/ (1
- nu)))
= 1 iff ((
Line (A,A1))
is_parallel_to (
Line (B,B1)) & (
Line (B,B1))
is_parallel_to (
Line (C,C1)) & (
Line (C,C1))
is_parallel_to (
Line (A,A1))))
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: A1
= (((1
- lambda)
* B)
+ (lambda
* C)) and
A3: B1
= (((1
- mu)
* C)
+ (mu
* A)) and
A4: C1
= (((1
- nu)
* A)
+ (nu
* B)) and
A5: lambda
<> 1 and
A6: mu
<> 1 and
A7: nu
<> 1 and
A8: not (((1
- mu)
+ (lambda
* mu))
<>
0 & ((1
- lambda)
+ (nu
* lambda))
<>
0 & ((1
- nu)
+ (mu
* nu))
<>
0 );
A9: (B,C,A)
is_a_triangle by
A1;
A10: (C,A,B)
is_a_triangle by
A1;
hereby
assume (((lambda
/ (1
- lambda))
* (mu
/ (1
- mu)))
* (nu
/ (1
- nu)))
= 1;
then
A11:
0
= (((lambda
* mu)
* nu)
- (((1
- lambda)
* (1
- mu))
* (1
- nu))) by
Lm4,
A5,
A6,
A7;
then
A12:
0
= (((nu
* lambda)
* mu)
- (((1
- nu)
* (1
- lambda))
* (1
- mu)));
A13:
0
= (((mu
* nu)
* lambda)
- (((1
- mu)
* (1
- nu))
* (1
- lambda))) by
A11;
((1
- mu)
+ (lambda
* mu))
=
0 & ((1
- nu)
+ (mu
* nu))
=
0 & ((1
- lambda)
+ (nu
* lambda))
=
0
proof
per cases by
A8;
suppose
A14: ((1
- mu)
+ (lambda
* mu))
=
0 ;
then ((1
- lambda)
+ (nu
* lambda))
=
0 by
Lm5,
A6,
A11;
hence thesis by
Lm5,
A5,
A12,
A14;
end;
suppose
A15: ((1
- lambda)
+ (nu
* lambda))
=
0 ;
then ((1
- nu)
+ (nu
* mu))
=
0 by
Lm5,
A5,
A12;
hence thesis by
Lm5,
A7,
A13,
A15;
end;
suppose
A16: ((1
- nu)
+ (mu
* nu))
=
0 ;
then ((1
- mu)
+ (lambda
* mu))
=
0 by
Lm5,
A7,
A13;
hence thesis by
Lm5,
A6,
A11,
A16;
end;
end;
hence (
Line (A,A1))
is_parallel_to (
Line (B,B1)) & (
Line (B,B1))
is_parallel_to (
Line (C,C1)) & (
Line (C,C1))
is_parallel_to (
Line (A,A1)) by
A1,
A9,
Th16,
A2,
A3,
A4,
A5,
A6,
A7,
A10;
end;
assume (
Line (A,A1))
is_parallel_to (
Line (B,B1)) & (
Line (B,B1))
is_parallel_to (
Line (C,C1));
then
A17: ((1
- mu)
+ (lambda
* mu))
=
0 & ((1
- nu)
+ (mu
* nu))
=
0 by
A1,
A9,
Th16,
A2,
A3,
A4,
A6,
A7;
then (((lambda
* mu)
* nu)
- (((1
- lambda)
* (1
- mu))
* (1
- nu)))
= (((lambda
* mu)
* nu)
- (((1
- lambda)
* (1
- mu))
* (
- (mu
* nu))))
.= (((lambda
+ ((1
- lambda)
* (1
- mu)))
* mu)
* nu)
.=
0 by
A17;
hence thesis by
Lm4,
A5,
A6,
A7;
end;
begin
::$Notion-Name
theorem ::
MENELAUS:17
Th17: (A1
= (((1
- lambda)
* B)
+ (lambda
* C)) & B1
= (((1
- mu)
* C)
+ (mu
* A)) & C1
= (((1
- nu)
* A)
+ (nu
* B))) implies (
the_area_of_polygon3 (A1,B1,C1))
= (((((1
- lambda)
* (1
- mu))
* (1
- nu))
+ ((lambda
* mu)
* nu))
* (
the_area_of_polygon3 (A,B,C)))
proof
assume that
A1: A1
= (((1
- lambda)
* B)
+ (lambda
* C)) and
A2: B1
= (((1
- mu)
* C)
+ (mu
* A)) and
A3: C1
= (((1
- nu)
* A)
+ (nu
* B));
(
the_area_of_polygon3 (A1,B1,C1))
= (((1
- lambda)
* (
the_area_of_polygon3 (B,B1,C1)))
+ (lambda
* (
the_area_of_polygon3 (C,B1,C1)))) by
Th7,
A1
.= ((
- ((1
- lambda)
* (
the_area_of_polygon3 ((((1
- mu)
* C)
+ (mu
* A)),B,C1))))
- (lambda
* (
the_area_of_polygon3 ((((1
- mu)
* C)
+ (mu
* A)),C,C1)))) by
A2
.= ((
- ((1
- lambda)
* (((1
- mu)
* (
the_area_of_polygon3 (C,B,C1)))
+ (mu
* (
the_area_of_polygon3 (A,B,C1))))))
- (lambda
* (
the_area_of_polygon3 ((((1
- mu)
* C)
+ (mu
* A)),C,C1)))) by
Th7
.= ((
- ((1
- lambda)
* (((1
- mu)
* (
the_area_of_polygon3 (C,B,C1)))
+ (mu
* (
the_area_of_polygon3 (A,B,C1))))))
- (lambda
* (((1
- mu)
* (
the_area_of_polygon3 (C,C,C1)))
+ (mu
* (
the_area_of_polygon3 (A,C,C1)))))) by
Th7
.= (((((1
- lambda)
* (1
- mu))
* (
the_area_of_polygon3 ((((1
- nu)
* A)
+ (nu
* B)),B,C)))
+ (((1
- lambda)
* mu)
* (
the_area_of_polygon3 ((((1
- nu)
* A)
+ (nu
* B)),B,A))))
+ ((lambda
* mu)
* (
the_area_of_polygon3 ((((1
- nu)
* A)
+ (nu
* B)),C,A)))) by
A3
.= (((((1
- lambda)
* (1
- mu))
* (((1
- nu)
* (
the_area_of_polygon3 (A,B,C)))
+ (nu
* (
the_area_of_polygon3 (B,B,C)))))
+ (((1
- lambda)
* mu)
* (
the_area_of_polygon3 ((((1
- nu)
* A)
+ (nu
* B)),B,A))))
+ ((lambda
* mu)
* (
the_area_of_polygon3 ((((1
- nu)
* A)
+ (nu
* B)),C,A)))) by
Th7
.= ((((((1
- lambda)
* (1
- mu))
* (1
- nu))
* (
the_area_of_polygon3 (A,B,C)))
+ (((1
- lambda)
* mu)
* (((1
- nu)
* (
the_area_of_polygon3 (A,B,A)))
+ (nu
* (
the_area_of_polygon3 (B,B,A))))))
+ ((lambda
* mu)
* (
the_area_of_polygon3 ((((1
- nu)
* A)
+ (nu
* B)),C,A)))) by
Th7
.= (((((1
- lambda)
* (1
- mu))
* (1
- nu))
* (
the_area_of_polygon3 (A,B,C)))
+ ((lambda
* mu)
* (((1
- nu)
* (
the_area_of_polygon3 (A,C,A)))
+ (nu
* (
the_area_of_polygon3 (B,C,A)))))) by
Th7;
hence thesis;
end;
::$Notion-Name
theorem ::
MENELAUS:18
((A,B,C)
is_a_triangle & A1
= (((1
- lambda)
* B)
+ (lambda
* C)) & B1
= (((1
- mu)
* C)
+ (mu
* A)) & C1
= (((1
- nu)
* A)
+ (nu
* B)) & lambda
<> 1 & mu
<> 1 & nu
<> 1) implies ((A1,B1,C1)
are_collinear iff (((lambda
/ (1
- lambda))
* (mu
/ (1
- mu)))
* (nu
/ (1
- nu)))
= (
- 1))
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: A1
= (((1
- lambda)
* B)
+ (lambda
* C)) and
A3: B1
= (((1
- mu)
* C)
+ (mu
* A)) and
A4: C1
= (((1
- nu)
* A)
+ (nu
* B)) and
A5: lambda
<> 1 & mu
<> 1 & nu
<> 1;
A6: (
the_area_of_polygon3 (A,B,C))
<>
0 by
Th9,
A1;
set q = (((1
- lambda)
* (1
- mu))
* (1
- nu));
A7: (1
- lambda)
<>
0 & (1
- mu)
<>
0 & (1
- nu)
<>
0 by
A5;
(A1,B1,C1)
are_collinear iff (
the_area_of_polygon3 (A1,B1,C1))
=
0 by
Th9;
then (A1,B1,C1)
are_collinear iff ((q
+ ((lambda
* mu)
* nu))
* (
the_area_of_polygon3 (A,B,C)))
=
0 by
Th17,
A2,
A3,
A4;
then (A1,B1,C1)
are_collinear iff ((1
* q)
+ ((lambda
* mu)
* nu))
=
0 by
A6;
then (A1,B1,C1)
are_collinear iff (q
* (1
+ (((lambda
* mu)
* nu)
/ q)))
=
0 by
A7,
XCMPLX_1: 235;
then (A1,B1,C1)
are_collinear iff (1
+ (((lambda
* mu)
* nu)
/ q))
=
0 by
A7;
then (A1,B1,C1)
are_collinear iff (
- 1)
= ((lambda
* (mu
* nu))
/ ((1
- lambda)
* ((1
- mu)
* (1
- nu))));
then (A1,B1,C1)
are_collinear iff (
- 1)
= (((lambda
/ (1
- lambda))
* (mu
* nu))
/ ((1
- mu)
* (1
- nu))) by
XCMPLX_1: 83;
then (A1,B1,C1)
are_collinear iff (
- 1)
= ((lambda
/ (1
- lambda))
* ((mu
* nu)
/ ((1
- mu)
* (1
- nu)))) by
XCMPLX_1: 74;
then (A1,B1,C1)
are_collinear iff (
- 1)
= ((lambda
/ (1
- lambda))
* (((mu
/ (1
- mu))
* nu)
/ (1
- nu))) by
XCMPLX_1: 83;
then (A1,B1,C1)
are_collinear iff (
- 1)
= ((lambda
/ (1
- lambda))
* ((mu
/ (1
- mu))
* (nu
/ (1
- nu)))) by
XCMPLX_1: 74;
hence thesis;
end;
::$Notion-Name
theorem ::
MENELAUS:19
Th19: ((A,B,C)
is_a_triangle & A1
= (((1
- lambda)
* B)
+ (lambda
* C)) & B1
= (((1
- mu)
* C)
+ (mu
* A)) & C1
= (((1
- nu)
* A)
+ (nu
* B)) & lambda
<> 1 & mu
<> 1 & nu
<> 1 & (A,A1,B2,C2)
are_collinear & (B,B1,A2,C2)
are_collinear & (C,C1,A2,B2)
are_collinear ) implies ((((1
- mu)
+ (lambda
* mu))
* ((1
- lambda)
+ (nu
* lambda)))
* ((1
- nu)
+ (mu
* nu)))
<>
0 & (
the_area_of_polygon3 (A2,B2,C2))
= ((((((mu
* nu)
* lambda)
- (((1
- mu)
* (1
- nu))
* (1
- lambda)))
^2 )
/ ((((1
- mu)
+ (lambda
* mu))
* ((1
- lambda)
+ (nu
* lambda)))
* ((1
- nu)
+ (mu
* nu))))
* (
the_area_of_polygon3 (A,B,C)))
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: A1
= (((1
- lambda)
* B)
+ (lambda
* C)) and
A3: B1
= (((1
- mu)
* C)
+ (mu
* A)) and
A4: C1
= (((1
- nu)
* A)
+ (nu
* B)) and
A5: lambda
<> 1 and
A6: mu
<> 1 and
A7: nu
<> 1 and
A8: (A,A1,B2,C2)
are_collinear and
A9: (B,B1,A2,C2)
are_collinear and
A10: (C,C1,A2,B2)
are_collinear ;
A11: (A,A1,C2)
are_collinear by
A8;
A12: (B,B1,C2)
are_collinear by
A9;
A13: (B,B1,A2)
are_collinear by
A9;
A14: (C,C1,A2)
are_collinear by
A10;
A15: (A,A1,B2)
are_collinear by
A8;
A16: (C,C1,B2)
are_collinear by
A10;
A17: (C,A,B)
is_a_triangle by
A1;
A18: (B,C,A)
is_a_triangle by
A1;
set q1 = ((1
- mu)
+ (lambda
* mu));
set q2 = ((1
- lambda)
+ (nu
* lambda));
set q3 = ((1
- nu)
+ (mu
* nu));
consider alpha such that
A19: C2
= (((1
- alpha)
* A)
+ (alpha
* A1)) and
A20: alpha
= ((1
- mu)
/ q1) by
Lm2,
A1,
A2,
A3,
A6,
A11,
A12;
A21: q1
<>
0 by
Lm2,
A1,
A2,
A3,
A6,
A11,
A12;
consider beta such that
A22: B2
= (((1
- beta)
* C)
+ (beta
* C1)) and
A23: beta
= ((1
- lambda)
/ q2) by
Lm2,
A17,
A4,
A2,
A5,
A16,
A15;
A24: q2
<>
0 by
Lm2,
A17,
A4,
A2,
A5,
A16,
A15;
consider gamma such that
A25: A2
= (((1
- gamma)
* B)
+ (gamma
* B1)) and
A26: gamma
= ((1
- nu)
/ q3) by
Lm2,
A18,
A3,
A4,
A7,
A13,
A14;
A27: q3
<>
0 by
Lm2,
A18,
A3,
A4,
A7,
A13,
A14;
(1
- alpha)
= (((1
* q1)
- (1
- mu))
/ q1) by
A20,
A21,
XCMPLX_1: 127;
then
A28: (1
- alpha)
= ((lambda
* mu)
* (1
/ q1)) by
XCMPLX_1: 99;
(1
- beta)
= (((1
* q2)
- (1
- lambda))
/ q2) by
A23,
A24,
XCMPLX_1: 127;
then
A29: (1
- beta)
= ((nu
* lambda)
* (1
/ q2)) by
XCMPLX_1: 99;
(1
- gamma)
= (((1
* q3)
- (1
- nu))
/ q3) by
A26,
A27,
XCMPLX_1: 127;
then
A30: (1
- gamma)
= ((mu
* nu)
* (1
/ q3)) by
XCMPLX_1: 99;
A31: alpha
= ((1
- mu)
* (1
/ q1)) by
A20,
XCMPLX_1: 99;
A32: beta
= ((1
- lambda)
* (1
/ q2)) by
A23,
XCMPLX_1: 99;
A33: gamma
= ((1
- nu)
* (1
/ q3)) by
A26,
XCMPLX_1: 99;
thus ((q1
* q2)
* q3)
<>
0 by
A21,
A24,
A27;
set S = (
the_area_of_polygon3 (A,B,C));
(
the_area_of_polygon3 (A2,B2,C2))
= (((1
- gamma)
* (
the_area_of_polygon3 (B,B2,C2)))
+ (gamma
* (
the_area_of_polygon3 ((((1
- mu)
* C)
+ (mu
* A)),B2,C2)))) by
A3,
Th7,
A25
.= (((1
- gamma)
* (
the_area_of_polygon3 (B,B2,C2)))
+ (gamma
* (((1
- mu)
* (
the_area_of_polygon3 (C,B2,C2)))
+ (mu
* (
the_area_of_polygon3 (A,B2,C2)))))) by
Th7
.= ((
- ((1
- gamma)
* (
the_area_of_polygon3 (C2,B2,B))))
- (gamma
* (((1
- mu)
* (
the_area_of_polygon3 ((((1
- beta)
* C)
+ (beta
* C1)),C,C2)))
+ (mu
* (
the_area_of_polygon3 (C2,B2,A)))))) by
A22
.= ((
- ((1
- gamma)
* (
the_area_of_polygon3 (C2,B2,B))))
- (gamma
* (((1
- mu)
* (((1
- beta)
* (
the_area_of_polygon3 (C,C,C2)))
+ (beta
* (
the_area_of_polygon3 (C1,C,C2)))))
+ (mu
* (
the_area_of_polygon3 (C2,B2,A)))))) by
Th7
.= (((
- ((1
- gamma)
* (
the_area_of_polygon3 ((((1
- alpha)
* A)
+ (alpha
* A1)),B2,B))))
- (((gamma
* (1
- mu))
* beta)
* (
the_area_of_polygon3 (C1,C,C2))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
A19
.= (((
- ((1
- gamma)
* (((1
- alpha)
* (
the_area_of_polygon3 (A,B2,B)))
+ (alpha
* (
the_area_of_polygon3 ((((1
- lambda)
* B)
+ (lambda
* C)),B2,B))))))
- (((gamma
* (1
- mu))
* beta)
* (
the_area_of_polygon3 (C1,C,C2))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
A2,
Th7
.= (((
- ((1
- gamma)
* (((1
- alpha)
* (
the_area_of_polygon3 (A,B2,B)))
+ (alpha
* (((1
- lambda)
* (
the_area_of_polygon3 (B,B2,B)))
+ (lambda
* (
the_area_of_polygon3 (C,B2,B))))))))
- (((gamma
* (1
- mu))
* beta)
* (
the_area_of_polygon3 (C1,C,C2))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
Th7
.= (((
- ((1
- gamma)
* (((1
- alpha)
* (
the_area_of_polygon3 (A,B2,B)))
- ((alpha
* lambda)
* (
the_area_of_polygon3 ((((1
- beta)
* C)
+ (beta
* C1)),C,B))))))
- (((gamma
* (1
- mu))
* beta)
* (
the_area_of_polygon3 (C1,C,C2))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
A22
.= (((
- ((1
- gamma)
* (((1
- alpha)
* (
the_area_of_polygon3 (A,B2,B)))
- ((alpha
* lambda)
* (((1
- beta)
* (
the_area_of_polygon3 (C,C,B)))
+ (beta
* (
the_area_of_polygon3 (C1,C,B))))))))
- (((gamma
* (1
- mu))
* beta)
* (
the_area_of_polygon3 (C1,C,C2))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
Th7
.= (((
- ((1
- gamma)
* (((1
- alpha)
* (
the_area_of_polygon3 (A,B2,B)))
- (((alpha
* lambda)
* beta)
* (
the_area_of_polygon3 ((((1
- nu)
* A)
+ (nu
* B)),C,B))))))
- (((gamma
* (1
- mu))
* beta)
* (
the_area_of_polygon3 (C1,C,C2))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
A4
.= (((
- ((1
- gamma)
* (((1
- alpha)
* (
the_area_of_polygon3 (A,B2,B)))
- (((alpha
* lambda)
* beta)
* (((1
- nu)
* (
the_area_of_polygon3 (A,C,B)))
+ (nu
* (
the_area_of_polygon3 (B,C,B))))))))
- (((gamma
* (1
- mu))
* beta)
* (
the_area_of_polygon3 (C1,C,C2))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
Th7
.= ((((1
- gamma)
* (((1
- alpha)
* (
the_area_of_polygon3 ((((1
- beta)
* C)
+ (beta
* C1)),A,B)))
- ((((alpha
* lambda)
* beta)
* (1
- nu))
* S)))
- (((gamma
* (1
- mu))
* beta)
* (
the_area_of_polygon3 (C1,C,C2))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
A22
.= ((((1
- gamma)
* (((1
- alpha)
* (((1
- beta)
* (
the_area_of_polygon3 (C,A,B)))
+ (beta
* (
the_area_of_polygon3 (C1,A,B)))))
- ((((alpha
* lambda)
* beta)
* (1
- nu))
* S)))
- (((gamma
* (1
- mu))
* beta)
* (
the_area_of_polygon3 (C1,C,C2))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
Th7
.= ((((1
- gamma)
* (((1
- alpha)
* (((1
- beta)
* S)
+ (beta
* (((1
- nu)
* (
the_area_of_polygon3 (A,A,B)))
+ (nu
* (
the_area_of_polygon3 (B,A,B)))))))
- ((((alpha
* lambda)
* beta)
* (1
- nu))
* S)))
- (((gamma
* (1
- mu))
* beta)
* (
the_area_of_polygon3 (C1,C,C2))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
Th7,
A4
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
- (((gamma
* (1
- mu))
* beta)
* (((1
- nu)
* (
the_area_of_polygon3 (A,C,C2)))
+ (nu
* (
the_area_of_polygon3 (B,C,C2))))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
Th7,
A4
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
- (((gamma
* (1
- mu))
* beta)
* (((1
- nu)
* (
the_area_of_polygon3 ((((1
- alpha)
* A)
+ (alpha
* A1)),A,C)))
+ (nu
* (
the_area_of_polygon3 (C2,B,C))))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
A19
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
- (((gamma
* (1
- mu))
* beta)
* (((1
- nu)
* (((1
- alpha)
* (
the_area_of_polygon3 (A,A,C)))
+ (alpha
* (
the_area_of_polygon3 (A1,A,C)))))
+ (nu
* (
the_area_of_polygon3 (C2,B,C))))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
Th7
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
- (((gamma
* (1
- mu))
* beta)
* ((((1
- nu)
* alpha)
* (
the_area_of_polygon3 ((((1
- lambda)
* B)
+ (lambda
* C)),A,C)))
+ (nu
* (
the_area_of_polygon3 (C2,B,C))))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
A2
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
- (((gamma
* (1
- mu))
* beta)
* ((((1
- nu)
* alpha)
* (((1
- lambda)
* (
the_area_of_polygon3 (B,A,C)))
+ (lambda
* (
the_area_of_polygon3 (C,A,C)))))
+ (nu
* (
the_area_of_polygon3 (C2,B,C))))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
Th7
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
- (((gamma
* (1
- mu))
* beta)
* ((
- ((((1
- nu)
* alpha)
* (1
- lambda))
* S))
+ (nu
* (((1
- alpha)
* S)
+ (alpha
* (
the_area_of_polygon3 ((((1
- lambda)
* B)
+ (lambda
* C)),B,C))))))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
A2,
Th7,
A19
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
- (((gamma
* (1
- mu))
* beta)
* ((
- ((((1
- nu)
* alpha)
* (1
- lambda))
* S))
+ (nu
* (((1
- alpha)
* S)
+ (alpha
* (((1
- lambda)
* (
the_area_of_polygon3 (B,B,C)))
+ (lambda
* (
the_area_of_polygon3 (C,B,C))))))))))
- ((gamma
* mu)
* (
the_area_of_polygon3 (C2,B2,A)))) by
Th7
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
+ (((((((gamma
* (1
- mu))
* beta)
* (1
- nu))
* alpha)
* (1
- lambda))
* S)
- (((((gamma
* (1
- mu))
* beta)
* nu)
* (1
- alpha))
* S)))
- ((gamma
* mu)
* (((1
- alpha)
* (
the_area_of_polygon3 (A,B2,A)))
+ (alpha
* (
the_area_of_polygon3 (A1,B2,A)))))) by
Th7,
A19
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
+ (((((((gamma
* (1
- mu))
* beta)
* (1
- nu))
* alpha)
* (1
- lambda))
* S)
- (((((gamma
* (1
- mu))
* beta)
* nu)
* (1
- alpha))
* S)))
- (((gamma
* mu)
* alpha)
* (
the_area_of_polygon3 ((((1
- lambda)
* B)
+ (lambda
* C)),B2,A)))) by
A2
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
+ (((((((gamma
* (1
- mu))
* beta)
* (1
- nu))
* alpha)
* (1
- lambda))
* S)
- (((((gamma
* (1
- mu))
* beta)
* nu)
* (1
- alpha))
* S)))
- (((gamma
* mu)
* alpha)
* (((1
- lambda)
* (
the_area_of_polygon3 (B,B2,A)))
+ (lambda
* (
the_area_of_polygon3 (C,B2,A)))))) by
Th7
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
+ (((((((gamma
* (1
- mu))
* beta)
* (1
- nu))
* alpha)
* (1
- lambda))
* S)
- (((((gamma
* (1
- mu))
* beta)
* nu)
* (1
- alpha))
* S)))
- (((gamma
* mu)
* alpha)
* (((1
- lambda)
* (
the_area_of_polygon3 ((((1
- beta)
* C)
+ (beta
* C1)),A,B)))
+ (lambda
* (
the_area_of_polygon3 (B2,A,C)))))) by
A22
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
+ (((((((gamma
* (1
- mu))
* beta)
* (1
- nu))
* alpha)
* (1
- lambda))
* S)
- (((((gamma
* (1
- mu))
* beta)
* nu)
* (1
- alpha))
* S)))
- (((gamma
* mu)
* alpha)
* (((1
- lambda)
* (((1
- beta)
* (
the_area_of_polygon3 (C,A,B)))
+ (beta
* (
the_area_of_polygon3 (C1,A,B)))))
+ (lambda
* (
the_area_of_polygon3 (B2,A,C)))))) by
Th7
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
+ (((((((gamma
* (1
- mu))
* beta)
* (1
- nu))
* alpha)
* (1
- lambda))
* S)
- (((((gamma
* (1
- mu))
* beta)
* nu)
* (1
- alpha))
* S)))
- (((gamma
* mu)
* alpha)
* (((1
- lambda)
* (((1
- beta)
* S)
+ (beta
* (((1
- nu)
* (
the_area_of_polygon3 (A,A,B)))
+ (nu
* (
the_area_of_polygon3 (B,A,B)))))))
+ (lambda
* (
the_area_of_polygon3 (B2,A,C)))))) by
Th7,
A4
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
+ (((((((gamma
* (1
- mu))
* beta)
* (1
- nu))
* alpha)
* (1
- lambda))
* S)
- (((((gamma
* (1
- mu))
* beta)
* nu)
* (1
- alpha))
* S)))
- (((gamma
* mu)
* alpha)
* ((((1
- lambda)
* (1
- beta))
* S)
+ (lambda
* (((1
- beta)
* (
the_area_of_polygon3 (C,A,C)))
+ (beta
* (
the_area_of_polygon3 (C1,A,C)))))))) by
Th7,
A22
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
+ (((((((gamma
* (1
- mu))
* beta)
* (1
- nu))
* alpha)
* (1
- lambda))
* S)
- (((((gamma
* (1
- mu))
* beta)
* nu)
* (1
- alpha))
* S)))
- (((gamma
* mu)
* alpha)
* ((((1
- lambda)
* (1
- beta))
* S)
+ ((lambda
* beta)
* (
the_area_of_polygon3 ((((1
- nu)
* A)
+ (nu
* B)),A,C)))))) by
A4
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
* S)
- ((((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu))
* S))
+ (((((((gamma
* (1
- mu))
* beta)
* (1
- nu))
* alpha)
* (1
- lambda))
* S)
- (((((gamma
* (1
- mu))
* beta)
* nu)
* (1
- alpha))
* S)))
- (((gamma
* mu)
* alpha)
* ((((1
- lambda)
* (1
- beta))
* S)
+ ((lambda
* beta)
* (((1
- nu)
* (
the_area_of_polygon3 (A,A,C)))
+ (nu
* (
the_area_of_polygon3 (B,A,C)))))))) by
Th7
.= (((((((1
- gamma)
* (1
- alpha))
* (1
- beta))
- (((((1
- gamma)
* alpha)
* lambda)
* beta)
* (1
- nu)))
+ ((((((gamma
* (1
- mu))
* beta)
* (1
- nu))
* alpha)
* (1
- lambda))
- ((((gamma
* (1
- mu))
* beta)
* nu)
* (1
- alpha))))
+ ((((((gamma
* mu)
* alpha)
* lambda)
* beta)
* nu)
- ((((gamma
* mu)
* alpha)
* (1
- lambda))
* (1
- beta))))
* S)
.= ((((((((mu
* nu)
* (1
/ q3))
* ((lambda
* mu)
* (1
/ q1)))
* ((nu
* lambda)
* (1
/ q2)))
- ((((((mu
* nu)
* (1
/ q3))
* ((1
- mu)
* (1
/ q1)))
* lambda)
* ((1
- lambda)
* (1
/ q2)))
* (1
- nu)))
+ ((((((((1
- nu)
* (1
/ q3))
* (1
- mu))
* ((1
- lambda)
* (1
/ q2)))
* (1
- nu))
* ((1
- mu)
* (1
/ q1)))
* (1
- lambda))
- ((((((1
- nu)
* (1
/ q3))
* (1
- mu))
* ((1
- lambda)
* (1
/ q2)))
* nu)
* ((lambda
* mu)
* (1
/ q1)))))
+ ((((((((1
- nu)
* (1
/ q3))
* mu)
* ((1
- mu)
* (1
/ q1)))
* lambda)
* ((1
- lambda)
* (1
/ q2)))
* nu)
- ((((((1
- nu)
* (1
/ q3))
* mu)
* ((1
- mu)
* (1
/ q1)))
* (1
- lambda))
* ((nu
* lambda)
* (1
/ q2)))))
* S) by
A28,
A31,
A29,
A32,
A30,
A33
.= ((((((mu
* nu)
* lambda)
- (((1
- mu)
* (1
- nu))
* (1
- lambda)))
^2 )
* (((1
/ q1)
* (1
/ q2))
* (1
/ q3)))
* S)
.= ((((((mu
* nu)
* lambda)
- (((1
- mu)
* (1
- nu))
* (1
- lambda)))
^2 )
* ((1
/ (q1
* q2))
* (1
/ q3)))
* S) by
XCMPLX_1: 102
.= ((((((mu
* nu)
* lambda)
- (((1
- mu)
* (1
- nu))
* (1
- lambda)))
^2 )
* (1
/ ((q1
* q2)
* q3)))
* S) by
XCMPLX_1: 102;
hence thesis by
XCMPLX_1: 99;
end;
::$Notion-Name
theorem ::
MENELAUS:20
((A,B,C)
is_a_triangle & A1
= (((2
/ 3)
* B)
+ ((1
/ 3)
* C)) & B1
= (((2
/ 3)
* C)
+ ((1
/ 3)
* A)) & C1
= (((2
/ 3)
* A)
+ ((1
/ 3)
* B)) & (A,A1,B2,C2)
are_collinear & (B,B1,A2,C2)
are_collinear & (C,C1,A2,B2)
are_collinear ) implies (
the_area_of_polygon3 (A2,B2,C2))
= ((
the_area_of_polygon3 (A,B,C))
/ 7)
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: A1
= (((2
/ 3)
* B)
+ ((1
/ 3)
* C)) & B1
= (((2
/ 3)
* C)
+ ((1
/ 3)
* A)) & C1
= (((2
/ 3)
* A)
+ ((1
/ 3)
* B)) and
A3: (A,A1,B2,C2)
are_collinear & (B,B1,A2,C2)
are_collinear & (C,C1,A2,B2)
are_collinear ;
consider lambda, mu, nu such that
A4: lambda
= (1
/ 3) & mu
= (1
/ 3) & nu
= (1
/ 3);
A1
= (((1
- lambda)
* B)
+ (lambda
* C)) & B1
= (((1
- mu)
* C)
+ (mu
* A)) & C1
= (((1
- nu)
* A)
+ (nu
* B)) & lambda
<> 1 & mu
<> 1 & nu
<> 1 & (1
- lambda)
= (2
/ 3) & (1
- mu)
= (2
/ 3) & (1
- nu)
= (2
/ 3) by
A2,
A4;
then (
the_area_of_polygon3 (A2,B2,C2))
= (((((((1
/ 3)
* (1
/ 3))
* (1
/ 3))
- (((2
/ 3)
* (2
/ 3))
* (2
/ 3)))
^2 )
/ ((((2
/ 3)
+ ((1
/ 3)
* (1
/ 3)))
* ((2
/ 3)
+ ((1
/ 3)
* (1
/ 3))))
* ((2
/ 3)
+ ((1
/ 3)
* (1
/ 3)))))
* (
the_area_of_polygon3 (A,B,C))) by
Th19,
A1,
A3;
hence thesis;
end;
Lm7: ((A,B,C)
is_a_triangle & A1
= (((1
- lambda)
* B)
+ (lambda
* C)) & B1
= (((1
- mu)
* C)
+ (mu
* A)) & C1
= (((1
- nu)
* A)
+ (nu
* B)) & lambda
<> 1 & mu
<> 1 & nu
<> 1 & (A,A1,B2,C2)
are_collinear & (B,B1,A2,C2)
are_collinear & (C,C1,A2,B2)
are_collinear ) implies ((((lambda
/ (1
- lambda))
* (mu
/ (1
- mu)))
* (nu
/ (1
- nu)))
= 1 iff (A2,B2,C2)
are_collinear )
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: A1
= (((1
- lambda)
* B)
+ (lambda
* C)) and
A3: B1
= (((1
- mu)
* C)
+ (mu
* A)) and
A4: C1
= (((1
- nu)
* A)
+ (nu
* B)) and
A5: lambda
<> 1 and
A6: mu
<> 1 and
A7: nu
<> 1 and
A8: (A,A1,B2,C2)
are_collinear and
A9: (B,B1,A2,C2)
are_collinear and
A10: (C,C1,A2,B2)
are_collinear ;
set q = (((1
- lambda)
* (1
- mu))
* (1
- nu));
A11:
0
= (((lambda
* mu)
* nu)
- q) iff (((lambda
/ (1
- lambda))
* (mu
/ (1
- mu)))
* (nu
/ (1
- nu)))
= 1 by
Lm4,
A5,
A6,
A7;
A12: ((((1
- mu)
+ (lambda
* mu))
* ((1
- lambda)
+ (nu
* lambda)))
* ((1
- nu)
+ (mu
* nu)))
<>
0 & (
the_area_of_polygon3 (A2,B2,C2))
= ((((((mu
* nu)
* lambda)
- (((1
- mu)
* (1
- nu))
* (1
- lambda)))
^2 )
/ ((((1
- mu)
+ (lambda
* mu))
* ((1
- lambda)
+ (nu
* lambda)))
* ((1
- nu)
+ (mu
* nu))))
* (
the_area_of_polygon3 (A,B,C))) by
Th19,
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A10;
(
the_area_of_polygon3 (A,B,C))
<>
0 by
Th9,
A1;
hence thesis by
A12,
Th9,
A11;
end;
::$Notion-Name
theorem ::
MENELAUS:21
Th21: ((A,B,C)
is_a_triangle & A1
= (((1
- lambda)
* B)
+ (lambda
* C)) & B1
= (((1
- mu)
* C)
+ (mu
* A)) & C1
= (((1
- nu)
* A)
+ (nu
* B)) & lambda
<> 1 & mu
<> 1 & nu
<> 1 & ((1
- mu)
+ (lambda
* mu))
<>
0 & ((1
- lambda)
+ (nu
* lambda))
<>
0 & ((1
- nu)
+ (mu
* nu))
<>
0 ) implies ((((lambda
/ (1
- lambda))
* (mu
/ (1
- mu)))
* (nu
/ (1
- nu)))
= 1 iff (ex A2 st (A,A1,A2)
are_collinear & (B,B1,A2)
are_collinear & (C,C1,A2)
are_collinear ))
proof
set q1 = ((1
- mu)
+ (lambda
* mu));
set q2 = ((1
- lambda)
+ (nu
* lambda));
set q3 = ((1
- nu)
+ (mu
* nu));
assume that
A1: (A,B,C)
is_a_triangle and
A2: A1
= (((1
- lambda)
* B)
+ (lambda
* C)) and
A3: B1
= (((1
- mu)
* C)
+ (mu
* A)) and
A4: C1
= (((1
- nu)
* A)
+ (nu
* B)) and
A5: lambda
<> 1 and
A6: mu
<> 1 and
A7: nu
<> 1 and
A8: q1
<>
0 and
A9: q2
<>
0 and
A10: q3
<>
0 ;
A11: (C,A,B)
is_a_triangle by
A1;
A12: (B,C,A)
is_a_triangle by
A1;
consider C2 such that
A13: (A,A1,C2)
are_collinear and
A14: (B,B1,C2)
are_collinear by
Lm3,
A1,
A2,
A3,
A8;
consider B2 such that
A15: (C,C1,B2)
are_collinear and
A16: (A,A1,B2)
are_collinear by
Lm3,
A11,
A4,
A2,
A9;
consider A2 such that
A17: (B,B1,A2)
are_collinear and
A18: (C,C1,A2)
are_collinear by
Lm3,
A12,
A3,
A4,
A10;
A19: A
<> A1 by
Th14,
A1,
A2;
(C2,A,A1)
are_collinear by
A13;
then
A20: C2
in (
Line (A,A1)) by
A19,
Th13;
(B2,A,A1)
are_collinear by
A16;
then
A21: B2
in (
Line (A,A1)) by
A19,
Th13;
A22: (A,A1,B2,C2)
are_collinear by
A13,
A16,
A19,
RLTOPSP1: 81;
(B,C,A)
is_a_triangle by
A1;
then B
<> B1 by
Th14,
A3;
then
A23: (B,B1,A2,C2)
are_collinear by
A14,
A17,
RLTOPSP1: 81;
(C,A,B)
is_a_triangle by
A1;
then C
<> C1 by
Th14,
A4;
then
A24: (C,C1,A2,B2)
are_collinear by
A15,
A18,
RLTOPSP1: 81;
hereby
assume
A25: (((lambda
/ (1
- lambda))
* (mu
/ (1
- mu)))
* (nu
/ (1
- nu)))
= 1;
per cases ;
suppose
A26: B2
<> C2;
take A2;
(A2,B2,C2)
are_collinear by
A25,
Lm7,
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A22,
A23,
A24;
then
A27: A2
in (
Line (B2,C2)) by
Th13,
A26;
(
Line (B2,C2))
c= (
Line (A,A1)) by
A20,
A21,
EUCLID_4: 42;
then (A2,A,A1)
are_collinear by
Th13,
A19,
A27;
hence (A,A1,A2)
are_collinear ;
thus (B,B1,A2)
are_collinear & (C,C1,A2)
are_collinear by
A17,
A18;
end;
suppose
A28: B2
= C2;
take B2;
thus (A,A1,B2)
are_collinear & (B,B1,B2)
are_collinear & (C,C1,B2)
are_collinear by
A28,
A14,
A15,
A16;
end;
end;
given C3 such that
A29: (A,A1,C3)
are_collinear and
A30: (B,B1,C3)
are_collinear and
A31: (C,C1,C3)
are_collinear ;
A32: (C3,B2,C2)
are_collinear
proof
per cases ;
suppose
A33: B2
<> C2;
(C3,A,A1)
are_collinear by
A29;
then
A34: C3
in (
Line (A,A1)) by
Th13,
A19;
(
Line (A,A1))
c= (
Line (B2,C2)) by
A20,
A21,
A33,
EUCLID_4: 43;
hence thesis by
A33,
Th13,
A34;
end;
suppose B2
= C2;
then not (C3,B2,C2)
are_mutually_distinct by
ZFMISC_1:def 5;
hence thesis by
EUCLID_6: 20;
end;
end;
C3
= A2
proof
assume
A35: C3
<> A2;
(C,A,B)
is_a_triangle by
A1;
then
A36: C
<> C1 by
Th14,
A4;
then
A37: (
Line (C,C1)) is
being_line;
(B,C,A)
is_a_triangle by
A1;
then
A38: B
<> B1 by
Th14,
A3;
then
A39: (
Line (B,B1)) is
being_line;
(C3,B,B1)
are_collinear by
A30;
then
A40: C3
in (
Line (B,B1)) by
Th13,
A38;
(A2,B,B1)
are_collinear by
A17;
then
A41: A2
in (
Line (B,B1)) by
Th13,
A38;
(A2,C,C1)
are_collinear by
A18;
then
A42: A2
in (
Line (C,C1)) by
Th13,
A36;
(C3,C,C1)
are_collinear by
A31;
then C3
in (
Line (C,C1)) by
Th13,
A36;
then
A43: (
Line (B,B1))
= (
Line (C,C1)) by
A40,
A35,
A41,
A42,
A39,
A37,
EUCLID_4: 44;
A44: (1
- nu)
<>
0 by
A7;
B
in (
Line (B,B1)) by
EUCLID_4: 41;
then (B,C,C1)
are_collinear by
Th13,
A36,
A43;
then (
the_area_of_polygon3 (B,C,C1))
=
0 by
Th9;
then (
the_area_of_polygon3 (C1,B,C))
=
0 ;
then (((1
- nu)
* (
the_area_of_polygon3 (A,B,C)))
+ (nu
* (
the_area_of_polygon3 (B,B,C))))
=
0 by
Th7,
A4;
then (
the_area_of_polygon3 (A,B,C))
=
0 by
A44;
hence contradiction by
Th9,
A1;
end;
hence thesis by
A32,
Lm7,
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A22,
A23,
A24;
end;
::$Notion-Name
theorem ::
MENELAUS:22
((A,B,C)
is_a_triangle & A1
= (((1
- lambda)
* B)
+ (lambda
* C)) & B1
= (((1
- mu)
* C)
+ (mu
* A)) & C1
= (((1
- nu)
* A)
+ (nu
* B)) & lambda
<> 1 & mu
<> 1 & nu
<> 1) implies ((((lambda
/ (1
- lambda))
* (mu
/ (1
- mu)))
* (nu
/ (1
- nu)))
= 1 iff ((
Line (A,A1)),(
Line (B,B1)),(
Line (C,C1)))
are_concurrent )
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: A1
= (((1
- lambda)
* B)
+ (lambda
* C)) and
A3: B1
= (((1
- mu)
* C)
+ (mu
* A)) and
A4: C1
= (((1
- nu)
* A)
+ (nu
* B)) and
A5: lambda
<> 1 and
A6: mu
<> 1 and
A7: nu
<> 1;
A8: A
<> A1 by
Th14,
A1,
A2;
A9: (B,C,A)
is_a_triangle by
A1;
then
A10: B
<> B1 by
Th14,
A3;
A11: (C,A,B)
is_a_triangle by
A1;
then
A12: C
<> C1 by
Th14,
A4;
hereby
assume
A13: (((lambda
/ (1
- lambda))
* (mu
/ (1
- mu)))
* (nu
/ (1
- nu)))
= 1;
per cases ;
suppose ((1
- mu)
+ (lambda
* mu))
<>
0 & ((1
- lambda)
+ (nu
* lambda))
<>
0 & ((1
- nu)
+ (mu
* nu))
<>
0 ;
then
consider A2 such that
A14: (A,A1,A2)
are_collinear & (B,B1,A2)
are_collinear & (C,C1,A2)
are_collinear by
A13,
Th21,
A1,
A2,
A3,
A4,
A5,
A6,
A7;
(A2,A,A1)
are_collinear & (A2,B,B1)
are_collinear & (A2,C,C1)
are_collinear by
A14;
then A2
in (
Line (A,A1)) & A2
in (
Line (B,B1)) & A2
in (
Line (C,C1)) by
Th13,
A8,
A10,
A12;
hence ((
Line (A,A1)),(
Line (B,B1)),(
Line (C,C1)))
are_concurrent ;
end;
suppose not (((1
- mu)
+ (lambda
* mu))
<>
0 & ((1
- lambda)
+ (nu
* lambda))
<>
0 & ((1
- nu)
+ (mu
* nu))
<>
0 );
then (
Line (A,A1))
is_parallel_to (
Line (B,B1)) & (
Line (B,B1))
is_parallel_to (
Line (C,C1)) & (
Line (C,C1))
is_parallel_to (
Line (A,A1)) by
A13,
Lm6,
A1,
A2,
A3,
A4,
A5,
A6,
A7;
hence ((
Line (A,A1)),(
Line (B,B1)),(
Line (C,C1)))
are_concurrent ;
end;
end;
assume ((
Line (A,A1)),(
Line (B,B1)),(
Line (C,C1)))
are_concurrent ;
per cases ;
suppose
A15: (
Line (A,A1))
is_parallel_to (
Line (B,B1)) & (
Line (B,B1))
is_parallel_to (
Line (C,C1)) & (
Line (C,C1))
is_parallel_to (
Line (A,A1));
then ((1
- mu)
+ (lambda
* mu))
=
0 & ((1
- nu)
+ (mu
* nu))
=
0 & ((1
- lambda)
+ (nu
* lambda))
=
0 by
Th16,
A1,
A9,
A11,
A2,
A3,
A4,
A5,
A6,
A7;
hence thesis by
Lm6,
A15,
A1,
A2,
A3,
A4,
A5,
A6,
A7;
end;
suppose ex C2 st (C2
in (
Line (A,A1)) & C2
in (
Line (B,B1)) & C2
in (
Line (C,C1)));
then
consider C2 such that
A16: C2
in (
Line (A,A1)) & C2
in (
Line (B,B1)) & C2
in (
Line (C,C1));
not (
Line (A,A1))
is_parallel_to (
Line (B,B1)) & not (
Line (B,B1))
is_parallel_to (
Line (C,C1)) & not (
Line (C,C1))
is_parallel_to (
Line (A,A1)) by
A16,
XBOOLE_0: 3;
then
A17: ((1
- mu)
+ (lambda
* mu))
<>
0 & ((1
- nu)
+ (mu
* nu))
<>
0 & ((1
- lambda)
+ (nu
* lambda))
<>
0 by
Th16,
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A9,
A11;
(C2,A,A1)
are_collinear & (C2,B,B1)
are_collinear & (C2,C,C1)
are_collinear by
A16,
Th13,
A8,
A10,
A12;
then (A,A1,C2)
are_collinear & (B,B1,C2)
are_collinear & (C,C1,C2)
are_collinear ;
hence thesis by
A17,
Th21,
A1,
A2,
A3,
A4,
A5,
A6,
A7;
end;
end;