euclid_6.miz
begin
reserve p1,p2,p3,p4,p5,p6,p,pc for
Point of (
TOP-REAL 2);
reserve a,b,c,r,s for
Real;
Lm1:
|.(p1
- p2).|
=
0 iff p1
= p2
proof
hereby
assume
|.(p1
- p2).|
=
0 ;
then (p1
- p2)
= (
0. (
TOP-REAL 2)) by
EUCLID_2: 42;
hence p1
= p2 by
RLVECT_1: 21;
end;
assume p1
= p2;
then (p1
- p2)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 5;
hence thesis by
EUCLID_2: 39;
end;
Lm2:
|.(p1
- p2).|
=
|.(p2
- p1).|
proof
reconsider q = (p1
- p2) as
Element of (
REAL 2) by
EUCLID: 22;
thus
|.(p1
- p2).|
=
|.q qua
real-valued
FinSequence.|
.=
|.(
- q).| by
EUCLID: 10
.=
|.(
- (p1
- p2)).|
.=
|.(p2
- p1).| by
RLVECT_1: 33;
end;
theorem ::
EUCLID_6:1
Th1: (
sin (
angle (p1,p2,p3)))
= (
sin (
angle (p4,p5,p6))) & (
cos (
angle (p1,p2,p3)))
= (
cos (
angle (p4,p5,p6))) implies (
angle (p1,p2,p3))
= (
angle (p4,p5,p6))
proof
A1: ((2
*
PI )
*
0 )
<= (
angle (p1,p2,p3)) & (
angle (p1,p2,p3))
< ((2
*
PI )
+ ((2
*
PI )
*
0 )) by
COMPLEX2: 70;
A2: ((2
*
PI )
*
0 )
<= (
angle (p4,p5,p6)) & (
angle (p4,p5,p6))
< ((2
*
PI )
+ ((2
*
PI )
*
0 )) by
COMPLEX2: 70;
assume (
sin (
angle (p1,p2,p3)))
= (
sin (
angle (p4,p5,p6))) & (
cos (
angle (p1,p2,p3)))
= (
cos (
angle (p4,p5,p6)));
hence thesis by
A1,
A2,
SIN_COS6: 61;
end;
theorem ::
EUCLID_6:2
Th2: (
sin (
angle (p1,p2,p3)))
= (
- (
sin (
angle (p3,p2,p1))))
proof
per cases ;
suppose
A1: (
angle (p1,p2,p3))
=
0 ;
then (
angle (p3,p2,p1))
=
0 by
EUCLID_3: 36;
hence thesis by
A1,
SIN_COS: 31;
end;
suppose (
angle (p1,p2,p3))
<>
0 ;
then (
angle (p3,p2,p1))
= ((2
*
PI )
- (
angle (p1,p2,p3))) by
EUCLID_3: 37;
then (
sin (
angle (p1,p2,p3)))
= (
sin ((
- (
angle (p3,p2,p1)))
+ (2
*
PI )))
.= (
sin (
- (
angle (p3,p2,p1)))) by
SIN_COS: 79
.= (
- (
sin (
angle (p3,p2,p1)))) by
SIN_COS: 31;
hence thesis;
end;
end;
theorem ::
EUCLID_6:3
Th3: (
cos (
angle (p1,p2,p3)))
= (
cos (
angle (p3,p2,p1)))
proof
per cases ;
suppose (
angle (p1,p2,p3))
=
0 ;
hence thesis by
EUCLID_3: 36;
end;
suppose (
angle (p1,p2,p3))
<>
0 ;
then (
angle (p3,p2,p1))
= ((2
*
PI )
- (
angle (p1,p2,p3))) by
EUCLID_3: 37;
then (
cos (
angle (p1,p2,p3)))
= (
cos ((
- (
angle (p3,p2,p1)))
+ (2
*
PI )))
.= (
cos (
- (
angle (p3,p2,p1)))) by
SIN_COS: 79
.= (
cos (
angle (p3,p2,p1))) by
SIN_COS: 31;
hence thesis;
end;
end;
Lm3: not (
angle (p1,p2,p3))
= ((2
* (
angle (p4,p5,p6)))
+ (2
*
PI ))
proof
(
angle (p4,p5,p6))
>=
0 by
COMPLEX2: 70;
then
A1: (((
angle (p4,p5,p6))
* 2)
+ (2
*
PI ))
>= (
0
+ (2
*
PI )) by
XREAL_1: 7;
assume (
angle (p1,p2,p3))
= ((2
* (
angle (p4,p5,p6)))
+ (2
*
PI ));
hence contradiction by
A1,
COMPLEX2: 70;
end;
Lm4: not (
angle (p1,p2,p3))
= ((2
* (
angle (p4,p5,p6)))
+ (4
*
PI ))
proof
(
angle (p4,p5,p6))
>=
0 by
COMPLEX2: 70;
then (4
*
PI )
>= (2
*
PI ) & (((
angle (p4,p5,p6))
* 2)
+ (4
*
PI ))
>= (
0
+ (4
*
PI )) by
XREAL_1: 7,
XREAL_1: 64;
then
A1: (((
angle (p4,p5,p6))
* 2)
+ (4
*
PI ))
>= (2
*
PI ) by
XXREAL_0: 2;
assume (
angle (p1,p2,p3))
= ((2
* (
angle (p4,p5,p6)))
+ (4
*
PI ));
hence contradiction by
A1,
COMPLEX2: 70;
end;
Lm5: not (
angle (p1,p2,p3))
= ((2
* (
angle (p4,p5,p6)))
- (4
*
PI ))
proof
((
angle (p4,p5,p6))
* 2)
< ((2
*
PI )
* 2) by
COMPLEX2: 70,
XREAL_1: 68;
then
A1: (((
angle (p4,p5,p6))
* 2)
- (4
*
PI ))
< ((4
*
PI )
- (4
*
PI )) by
XREAL_1: 9;
assume (
angle (p1,p2,p3))
= ((2
* (
angle (p4,p5,p6)))
- (4
*
PI ));
hence contradiction by
A1,
COMPLEX2: 70;
end;
Lm6: not (
angle (p1,p2,p3))
= ((2
* (
angle (p4,p5,p6)))
- (6
*
PI ))
proof
((
angle (p4,p5,p6))
* 2)
< ((2
*
PI )
* 2) by
COMPLEX2: 70,
XREAL_1: 68;
then
A1: (
PI
* (
- 2))
<= (
0 qua
Real
* (
- 2)) & (((
angle (p4,p5,p6))
* 2)
- (6
*
PI ))
< ((4
*
PI )
- (6
*
PI )) by
XREAL_1: 9;
assume (
angle (p1,p2,p3))
= ((2
* (
angle (p4,p5,p6)))
- (6
*
PI ));
hence contradiction by
A1,
COMPLEX2: 70;
end;
Lm7: for c1,c2 be
Element of
COMPLEX st c1
= (
euc2cpx (p1
- p2)) & c2
= (
euc2cpx (p3
- p2)) holds (
angle (p1,p2,p3))
= (
angle (c1,c2))
proof
let c1,c2 be
Element of
COMPLEX ;
assume
A1: c1
= (
euc2cpx (p1
- p2)) & c2
= (
euc2cpx (p3
- p2));
thus (
angle (p1,p2,p3))
= (
angle ((p1
- p2),(
0. (
TOP-REAL 2)),(p3
- p2))) by
EUCLID_3: 35
.= (
angle (c1,c2)) by
A1,
COMPLEX2: 73,
EUCLID_3: 17;
end;
Lm8: for c1,c2 be
Element of
COMPLEX st c2
=
0 holds (
Arg (
Rotate (c2,(
- (
Arg c1)))))
=
0
proof
let c1,c2 be
Element of
COMPLEX ;
assume c2
=
0 ;
then (
Rotate (c2,(
- (
Arg c1))))
=
0 by
COMPLEX2: 52;
hence thesis by
COMPTRIG:def 1;
end;
Lm9: for c1,c2 be
Element of
COMPLEX st c2
=
0 & (
Arg c1)
=
0 holds (
angle (c1,c2))
=
0
proof
let c1,c2 be
Element of
COMPLEX ;
assume that
A1: c2
=
0 and
A2: (
Arg c1)
=
0 ;
thus (
angle (c1,c2))
= (
Arg (
Rotate (c2,(
- (
Arg c1))))) by
A2,
COMPLEX2:def 3
.=
0 by
A1,
Lm8;
end;
Lm10: for c1,c2 be
Complex st c2
<>
0 & ((
Arg c2)
- (
Arg c1))
>=
0 holds (
Arg (
Rotate (c2,(
- (
Arg c1)))))
= ((
Arg c2)
- (
Arg c1))
proof
let c1,c2 be
Complex;
assume that
A1: c2
<>
0 and
A2: ((
Arg c2)
- (
Arg c1))
>=
0 ;
set a = ((
- (
Arg c1))
+ (
Arg c2));
set z = (
Rotate (c2,(
- (
Arg c1))));
(
Arg c2)
< (2
*
PI ) &
0
<= (
Arg c1) by
COMPTRIG: 34;
then ((
Arg c2)
+
0 )
< ((2
*
PI )
+ (
Arg c1)) by
XREAL_1: 8;
then
A3: z
= ((
|.c2.|
* (
cos a))
+ ((
|.c2.|
* (
sin a))
*
<i> )) & ((
Arg c2)
- (
Arg c1))
< (((2
*
PI )
+ (
Arg c1))
- (
Arg c1)) by
COMPLEX2:def 2,
XREAL_1: 9;
A4:
|.z.|
=
|.c2.| by
COMPLEX2: 53;
then z
<>
0 by
A1,
COMPLEX1: 44,
COMPLEX1: 45;
hence thesis by
A2,
A3,
A4,
COMPTRIG:def 1;
end;
Lm11: for c1,c2 be
Complex st c2
<>
0 & ((
Arg c2)
- (
Arg c1))
>=
0 holds (
angle (c1,c2))
= ((
Arg c2)
- (
Arg c1))
proof
let c1,c2 be
Complex;
assume that
A1: c2
<>
0 and
A2: ((
Arg c2)
- (
Arg c1))
>=
0 ;
thus (
angle (c1,c2))
= (
Arg (
Rotate (c2,(
- (
Arg c1))))) by
A1,
COMPLEX2:def 3
.= ((
Arg c2)
- (
Arg c1)) by
A1,
A2,
Lm10;
end;
Lm12: for c1,c2 be
Element of
COMPLEX st c2
<>
0 & ((
Arg c2)
- (
Arg c1))
<
0 holds (
Arg (
Rotate (c2,(
- (
Arg c1)))))
= (((2
*
PI )
- (
Arg c1))
+ (
Arg c2))
proof
let c1,c2 be
Element of
COMPLEX ;
assume that
A1: c2
<>
0 and
A2: ((
Arg c2)
- (
Arg c1))
<
0 ;
set a = ((
- (
Arg c1))
+ (
Arg c2));
A3: (a
+ (2
*
PI ))
< (
0
+ (2
*
PI )) by
A2,
XREAL_1: 6;
set z = (
Rotate (c2,(
- (
Arg c1))));
z
= ((
|.c2.|
* (
cos a))
+ ((
|.c2.|
* (
sin a))
*
<i> )) by
COMPLEX2:def 2;
then
A4: z
= ((
|.c2.|
* (
cos (((2
*
PI )
* 1)
+ a)))
+ ((
|.c2.|
* (
sin a))
*
<i> )) by
COMPLEX2: 9
.= ((
|.c2.|
* (
cos ((2
*
PI )
+ a)))
+ ((
|.c2.|
* (
sin (((2
*
PI )
* 1)
+ a)))
*
<i> )) by
COMPLEX2: 8;
0
<= (
Arg c2) & (
Arg c1)
<= (2
*
PI ) by
COMPTRIG: 34;
then ((
Arg c1)
+
0 )
<= ((2
*
PI )
+ (
Arg c2)) by
XREAL_1: 7;
then
A5: ((
Arg c1)
- (
Arg c1))
<= (((2
*
PI )
+ (
Arg c2))
- (
Arg c1)) by
XREAL_1: 9;
A6:
|.z.|
=
|.c2.| by
COMPLEX2: 53;
then z
<>
0 by
A1,
COMPLEX1: 44,
COMPLEX1: 45;
hence thesis by
A4,
A5,
A3,
A6,
COMPTRIG:def 1;
end;
Lm13: for c1,c2 be
Element of
COMPLEX st c2
<>
0 & ((
Arg c2)
- (
Arg c1))
<
0 holds (
angle (c1,c2))
= (((2
*
PI )
- (
Arg c1))
+ (
Arg c2))
proof
let c1,c2 be
Element of
COMPLEX ;
assume that
A1: c2
<>
0 and
A2: ((
Arg c2)
- (
Arg c1))
<
0 ;
thus (
angle (c1,c2))
= (
Arg (
Rotate (c2,(
- (
Arg c1))))) by
A1,
COMPLEX2:def 3
.= (((2
*
PI )
- (
Arg c1))
+ (
Arg c2)) by
A1,
A2,
Lm12;
end;
Lm14: for c1,c2,c3 be
Element of
COMPLEX holds ((
angle (c1,c2))
+ (
angle (c2,c3)))
= (
angle (c1,c3)) or ((
angle (c1,c2))
+ (
angle (c2,c3)))
= ((
angle (c1,c3))
+ (2
*
PI ))
proof
let c1,c2,c3 be
Element of
COMPLEX ;
per cases ;
suppose
A1: c2
=
0 & c3
=
0 ;
then
A2: (
Arg c2)
=
0 by
COMPTRIG:def 1;
per cases ;
suppose (
Arg c1)
=
0 ;
then ((
angle (c1,c2))
+ (
angle (c2,c3)))
= (
0
+ (
angle (c2,c3))) by
A1,
Lm9;
hence thesis by
A1,
A2,
Lm9;
end;
suppose
A3: (
Arg c1)
<>
0 ;
then ((
angle (c1,c2))
+ (
angle (c2,c3)))
= (((2
*
PI )
- (
Arg c1))
+ (
angle (c2,c3))) by
A1,
COMPLEX2:def 3
.= (((2
*
PI )
- (
Arg c1))
+
0 ) by
A1,
A2,
Lm9;
hence thesis by
A1,
A3,
COMPLEX2:def 3;
end;
end;
suppose
A4: c2
<>
0 & c3
=
0 ;
per cases ;
suppose
A5: (
Arg c1)
=
0 & (
Arg c2)
=
0 ;
per cases ;
suppose ((
Arg c2)
- (
Arg c1))
<
0 ;
hence thesis by
A5;
end;
suppose ((
Arg c2)
- (
Arg c1))
>=
0 ;
then ((
angle (c1,c2))
+ (
angle (c2,c3)))
= (((
Arg c2)
- (
Arg c1))
+ (
angle (c2,c3))) by
A4,
Lm11
.=
0 by
A4,
A5,
Lm9;
hence thesis by
A4,
A5,
Lm9;
end;
end;
suppose
A6: (
Arg c1)
<>
0 & (
Arg c2)
=
0 ;
per cases ;
suppose ((
Arg c2)
- (
Arg c1))
<
0 ;
then ((
angle (c1,c2))
+ (
angle (c2,c3)))
= ((((2
*
PI )
- (
Arg c1))
+ (
Arg c2))
+ (
angle (c2,c3))) by
A4,
Lm13
.= ((2
*
PI )
- (
Arg c1)) by
A4,
A6,
Lm9;
hence thesis by
A4,
A6,
COMPLEX2:def 3;
end;
suppose ((
Arg c2)
- (
Arg c1))
>=
0 ;
then (
- (
- (
Arg c1)))
<= (
-
0 ) by
A6;
hence thesis by
A6,
COMPTRIG: 34;
end;
end;
suppose
A7: (
Arg c1)
=
0 & (
Arg c2)
<>
0 ;
per cases ;
suppose ((
Arg c2)
- (
Arg c1))
<
0 ;
hence thesis by
A7,
COMPTRIG: 34;
end;
suppose
A8: ((
Arg c2)
- (
Arg c1))
>=
0 ;
A9: (
angle (c1,c3))
=
0 by
A4,
A7,
Lm9;
((
angle (c1,c2))
+ (
angle (c2,c3)))
= (((
Arg c2)
- (
Arg c1))
+ (
angle (c2,c3))) by
A4,
A8,
Lm11
.= ((
Arg c2)
+ ((2
*
PI )
- (
Arg c2))) by
A4,
A7,
COMPLEX2:def 3;
hence thesis by
A9;
end;
end;
suppose
A10: (
Arg c1)
<>
0 & (
Arg c2)
<>
0 ;
per cases ;
suppose
A11: ((
Arg c2)
- (
Arg c1))
<
0 ;
A12: (
angle (c1,c3))
= ((2
*
PI )
- (
Arg c1)) by
A4,
A10,
COMPLEX2:def 3;
((
angle (c1,c2))
+ (
angle (c2,c3)))
= ((((2
*
PI )
- (
Arg c1))
+ (
Arg c2))
+ (
angle (c2,c3))) by
A4,
A11,
Lm13
.= ((((2
*
PI )
- (
Arg c1))
+ (
Arg c2))
+ ((2
*
PI )
- (
Arg c2))) by
A4,
A10,
COMPLEX2:def 3
.= (((2
*
PI )
+ (2
*
PI ))
- (
Arg c1));
hence thesis by
A12;
end;
suppose
A13: ((
Arg c2)
- (
Arg c1))
>=
0 ;
A14: (
angle (c1,c3))
= ((2
*
PI )
- (
Arg c1)) by
A4,
A10,
COMPLEX2:def 3;
((
angle (c1,c2))
+ (
angle (c2,c3)))
= (((
Arg c2)
- (
Arg c1))
+ (
angle (c2,c3))) by
A4,
A13,
Lm11
.= (((
Arg c2)
- (
Arg c1))
+ ((2
*
PI )
- (
Arg c2))) by
A4,
A10,
COMPLEX2:def 3;
hence thesis by
A14;
end;
end;
end;
suppose
A15: c2
=
0 & c3
<>
0 ;
per cases ;
suppose ((
Arg c3)
- (
Arg c2))
<
0 & ((
Arg c3)
- (
Arg c1))
<
0 ;
then ((
Arg c3)
-
0 )
<
0 by
A15,
COMPTRIG:def 1;
hence thesis by
COMPTRIG: 34;
end;
suppose
A16: ((
Arg c3)
- (
Arg c2))
>=
0 & ((
Arg c3)
- (
Arg c1))
<
0 ;
per cases ;
suppose (
Arg c1)
=
0 ;
hence thesis by
A16,
COMPTRIG: 34;
end;
suppose (
Arg c1)
<>
0 ;
then ((
angle (c1,c2))
+ (
angle (c2,c3)))
= (((2
*
PI )
- (
Arg c1))
+ (
angle (c2,c3))) by
A15,
COMPLEX2:def 3
.= (((2
*
PI )
- (
Arg c1))
+ ((
Arg c3)
- (
Arg c2))) by
A15,
A16,
Lm11
.= (((2
*
PI )
- (
Arg c1))
+ ((
Arg c3)
-
0 )) by
A15,
COMPTRIG:def 1
.= (((2
*
PI )
- (
Arg c1))
+ (
Arg c3));
hence thesis by
A15,
A16,
Lm13;
end;
end;
suppose ((
Arg c3)
- (
Arg c2))
<
0 & ((
Arg c3)
- (
Arg c1))
>=
0 ;
then ((
Arg c3)
-
0 )
<
0 by
A15,
COMPTRIG:def 1;
hence thesis by
COMPTRIG: 34;
end;
suppose
A17: ((
Arg c3)
- (
Arg c2))
>=
0 & ((
Arg c3)
- (
Arg c1))
>=
0 ;
per cases ;
suppose
A18: (
Arg c1)
=
0 ;
then ((
angle (c1,c2))
+ (
angle (c2,c3)))
= (
0
+ (
angle (c2,c3))) by
A15,
Lm9
.= (
0
+ ((
Arg c3)
- (
Arg c2))) by
A15,
A17,
Lm11
.= (
0
+ ((
Arg c3)
-
0 )) by
A15,
COMPTRIG:def 1;
hence thesis by
A15,
A17,
A18,
Lm11;
end;
suppose
A19: (
Arg c1)
<>
0 ;
A20: (
angle (c1,c3))
= ((
Arg c3)
- (
Arg c1)) by
A15,
A17,
Lm11;
((
angle (c1,c2))
+ (
angle (c2,c3)))
= (((2
*
PI )
- (
Arg c1))
+ (
angle (c2,c3))) by
A15,
A19,
COMPLEX2:def 3
.= (((2
*
PI )
- (
Arg c1))
+ ((
Arg c3)
- (
Arg c2))) by
A15,
A17,
Lm11
.= (((2
*
PI )
- (
Arg c1))
+ ((
Arg c3)
-
0 )) by
A15,
COMPTRIG:def 1;
hence thesis by
A20;
end;
end;
end;
suppose
A21: c2
<>
0 & c3
<>
0 ;
per cases ;
suppose
A22: ((
Arg c3)
- (
Arg c2))
<
0 & ((
Arg c3)
- (
Arg c1))
<
0 ;
per cases ;
suppose
A23: ((
Arg c2)
- (
Arg c1))
<
0 ;
A24: (
angle (c1,c3))
= (((2
*
PI )
- (
Arg c1))
+ (
Arg c3)) by
A21,
A22,
Lm13;
((
angle (c1,c2))
+ (
angle (c2,c3)))
= ((((2
*
PI )
- (
Arg c1))
+ (
Arg c2))
+ (
angle (c2,c3))) by
A21,
A23,
Lm13
.= ((((2
*
PI )
- (
Arg c1))
+ (
Arg c2))
+ (((2
*
PI )
- (
Arg c2))
+ (
Arg c3))) by
A21,
A22,
Lm13
.= ((((2
*
PI )
+ (2
*
PI ))
- (
Arg c1))
+ (
Arg c3));
hence thesis by
A24;
end;
suppose ((
Arg c2)
- (
Arg c1))
>=
0 ;
then ((
angle (c1,c2))
+ (
angle (c2,c3)))
= (((
Arg c2)
- (
Arg c1))
+ (
angle (c2,c3))) by
A21,
Lm11
.= (((
Arg c2)
- (
Arg c1))
+ (((2
*
PI )
- (
Arg c2))
+ (
Arg c3))) by
A21,
A22,
Lm13
.= (((2
*
PI )
- (
Arg c1))
+ (
Arg c3));
hence thesis by
A21,
A22,
Lm13;
end;
end;
suppose
A25: ((
Arg c3)
- (
Arg c2))
>=
0 & ((
Arg c3)
- (
Arg c1))
<
0 ;
per cases ;
suppose ((
Arg c2)
- (
Arg c1))
<
0 ;
then ((
angle (c1,c2))
+ (
angle (c2,c3)))
= ((((2
*
PI )
- (
Arg c1))
+ (
Arg c2))
+ (
angle (c2,c3))) by
A21,
Lm13
.= ((((2
*
PI )
- (
Arg c1))
+ (
Arg c2))
+ ((
Arg c3)
- (
Arg c2))) by
A21,
A25,
Lm11
.= (((2
*
PI )
- (
Arg c1))
+ (
Arg c3));
hence thesis by
A21,
A25,
Lm13;
end;
suppose ((
Arg c2)
- (
Arg c1))
>=
0 ;
then (((
Arg c2)
- (
Arg c1))
+ ((
Arg c3)
- (
Arg c2)))
>= (
0
+
0 ) by
A25;
hence thesis by
A25;
end;
end;
suppose
A26: ((
Arg c3)
- (
Arg c2))
<
0 & ((
Arg c3)
- (
Arg c1))
>=
0 ;
per cases ;
suppose ((
Arg c2)
- (
Arg c1))
<
0 ;
then (((
Arg c2)
- (
Arg c1))
+ ((
Arg c3)
- (
Arg c2)))
< (
0
+
0 ) by
A26;
hence thesis by
A26;
end;
suppose
A27: ((
Arg c2)
- (
Arg c1))
>=
0 ;
A28: (
angle (c1,c3))
= ((
Arg c3)
- (
Arg c1)) by
A21,
A26,
Lm11;
((
angle (c1,c2))
+ (
angle (c2,c3)))
= (((
Arg c2)
- (
Arg c1))
+ (
angle (c2,c3))) by
A21,
A27,
Lm11
.= (((
Arg c2)
- (
Arg c1))
+ (((2
*
PI )
- (
Arg c2))
+ (
Arg c3))) by
A21,
A26,
Lm13
.= (((2
*
PI )
- (
Arg c1))
+ (
Arg c3));
hence thesis by
A28;
end;
end;
suppose
A29: ((
Arg c3)
- (
Arg c2))
>=
0 & ((
Arg c3)
- (
Arg c1))
>=
0 ;
per cases ;
suppose
A30: ((
Arg c2)
- (
Arg c1))
<
0 ;
A31: (
angle (c1,c3))
= ((
Arg c3)
- (
Arg c1)) by
A21,
A29,
Lm11;
((
angle (c1,c2))
+ (
angle (c2,c3)))
= ((((2
*
PI )
- (
Arg c1))
+ (
Arg c2))
+ (
angle (c2,c3))) by
A21,
A30,
Lm13
.= ((((2
*
PI )
+ (
Arg c2))
- (
Arg c1))
+ ((
Arg c3)
- (
Arg c2))) by
A21,
A29,
Lm11
.= (((2
*
PI )
- (
Arg c1))
+ (
Arg c3));
hence thesis by
A31;
end;
suppose ((
Arg c2)
- (
Arg c1))
>=
0 ;
then ((
angle (c1,c2))
+ (
angle (c2,c3)))
= (((
Arg c2)
- (
Arg c1))
+ (
angle (c2,c3))) by
A21,
Lm11
.= (((
Arg c2)
- (
Arg c1))
+ ((
Arg c3)
- (
Arg c2))) by
A21,
A29,
Lm11
.= ((
- (
Arg c1))
+ (
Arg c3));
hence thesis by
A21,
A29,
Lm11;
end;
end;
end;
end;
theorem ::
EUCLID_6:4
Th4: ((
angle (p1,p4,p2))
+ (
angle (p2,p4,p3)))
= (
angle (p1,p4,p3)) or ((
angle (p1,p4,p2))
+ (
angle (p2,p4,p3)))
= ((
angle (p1,p4,p3))
+ (2
*
PI ))
proof
set c1 = (
euc2cpx (p1
- p4));
set c2 = (
euc2cpx (p2
- p4));
set c3 = (
euc2cpx (p3
- p4));
A1: ((
angle (c1,c2))
+ (
angle (c2,c3)))
= (
angle (c1,c3)) or ((
angle (c1,c2))
+ (
angle (c2,c3)))
= ((
angle (c1,c3))
+ (2
*
PI )) by
Lm14;
((
angle (p1,p4,p2))
+ (
angle (p2,p4,p3)))
= ((
angle (c1,c2))
+ (
angle (p2,p4,p3))) by
Lm7
.= ((
angle (c1,c2))
+ (
angle (c2,c3))) by
Lm7;
hence thesis by
A1,
Lm7;
end;
Lm15: ((p1
- p2)
`1 )
= ((p1
`1 )
- (p2
`1 )) & ((p1
- p2)
`2 )
= ((p1
`2 )
- (p2
`2 ))
proof
reconsider pp = p2 as
Element of (
REAL 2) by
EUCLID: 22;
A1: ((
- p2)
`1 )
= ((
- pp)
. 1)
.= (
- (pp
. 1)) by
VALUED_1: 8
.= (
- (p2
`1 ));
A2: (
euc2cpx (p1
- p2))
= ((
euc2cpx p1)
- (
euc2cpx p2)) by
EUCLID_3: 15
.= ((
euc2cpx p1)
+ (
- (
euc2cpx p2)))
.= ((
euc2cpx p1)
+ (
euc2cpx (
- p2))) by
EUCLID_3: 13;
hence ((p1
- p2)
`1 )
= (
Re ((
euc2cpx p1)
+ (
euc2cpx (
- p2)))) by
COMPLEX1: 12
.= ((
Re (
euc2cpx p1))
+ (
Re (
euc2cpx (
- p2)))) by
COMPLEX1: 8
.= ((p1
`1 )
+ (
Re (
euc2cpx (
- p2)))) by
COMPLEX1: 12
.= ((p1
`1 )
+ ((
- p2)
`1 )) by
COMPLEX1: 12
.= ((p1
`1 )
- (p2
`1 )) by
A1;
A3: ((
- p2)
`2 )
= ((
- pp)
. 2)
.= (
- (pp
. 2)) by
VALUED_1: 8
.= (
- (p2
`2 ));
thus ((p1
- p2)
`2 )
= (
Im ((
euc2cpx p1)
+ (
euc2cpx (
- p2)))) by
A2,
COMPLEX1: 12
.= ((
Im (
euc2cpx p1))
+ (
Im (
euc2cpx (
- p2)))) by
COMPLEX1: 8
.= ((p1
`2 )
+ (
Im (
euc2cpx (
- p2)))) by
COMPLEX1: 12
.= ((p1
`2 )
+ ((
- p2)
`2 )) by
COMPLEX1: 12
.= ((p1
`2 )
- (p2
`2 )) by
A3;
end;
Lm16: for c1,c2 be
Element of
COMPLEX st c1
= (
euc2cpx (p1
- p2)) & c2
= (
euc2cpx (p3
- p2)) holds (
Re (c1
.|. c2))
= ((((p1
`1 )
- (p2
`1 ))
* ((p3
`1 )
- (p2
`1 )))
+ (((p1
`2 )
- (p2
`2 ))
* ((p3
`2 )
- (p2
`2 )))) & (
Im (c1
.|. c2))
= ((
- (((p1
`1 )
- (p2
`1 ))
* ((p3
`2 )
- (p2
`2 ))))
+ (((p1
`2 )
- (p2
`2 ))
* ((p3
`1 )
- (p2
`1 )))) &
|.c1.|
= (
sqrt ((((p1
`1 )
- (p2
`1 ))
^2 )
+ (((p1
`2 )
- (p2
`2 ))
^2 ))) &
|.(p1
- p2).|
=
|.c1.|
proof
let c1,c2 be
Element of
COMPLEX ;
assume that
A1: c1
= (
euc2cpx (p1
- p2)) and
A2: c2
= (
euc2cpx (p3
- p2));
A3: (
Re c2)
= ((p3
- p2)
`1 ) by
A2,
COMPLEX1: 12
.= ((p3
`1 )
- (p2
`1 )) by
Lm15;
A4: (
Im c2)
= ((p3
- p2)
`2 ) by
A2,
COMPLEX1: 12
.= ((p3
`2 )
- (p2
`2 )) by
Lm15;
A5: (
Im c1)
= ((p1
- p2)
`2 ) by
A1,
COMPLEX1: 12
.= ((p1
`2 )
- (p2
`2 )) by
Lm15;
A6: (
Re c1)
= ((p1
- p2)
`1 ) by
A1,
COMPLEX1: 12
.= ((p1
`1 )
- (p2
`1 )) by
Lm15;
hence (
Re (c1
.|. c2))
= ((((p1
`1 )
- (p2
`1 ))
* ((p3
`1 )
- (p2
`1 )))
+ (((p1
`2 )
- (p2
`2 ))
* ((p3
`2 )
- (p2
`2 )))) by
A3,
A5,
A4,
EUCLID_3: 39;
thus (
Im (c1
.|. c2))
= ((
- (((p1
`1 )
- (p2
`1 ))
* ((p3
`2 )
- (p2
`2 ))))
+ (((p1
`2 )
- (p2
`2 ))
* ((p3
`1 )
- (p2
`1 )))) by
A6,
A3,
A5,
A4,
EUCLID_3: 40;
thus
|.c1.|
= (
sqrt ((((p1
- p2)
`1 )
^2 )
+ ((
Im c1)
^2 ))) by
A1,
COMPLEX1: 12
.= (
sqrt ((((p1
- p2)
`1 )
^2 )
+ (((p1
- p2)
`2 )
^2 ))) by
A1,
COMPLEX1: 12
.= (
sqrt ((((p1
`1 )
- (p2
`1 ))
^2 )
+ (((p1
- p2)
`2 )
^2 ))) by
Lm15
.= (
sqrt ((((p1
`1 )
- (p2
`1 ))
^2 )
+ (((p1
`2 )
- (p2
`2 ))
^2 ))) by
Lm15;
thus thesis by
A1,
EUCLID_3: 25;
end;
definition
let p1, p2, p3;
::$Notion-Name
::
EUCLID_6:def1
func
the_area_of_polygon3 (p1,p2,p3) ->
Real equals ((((((p1
`1 )
* (p2
`2 ))
- ((p2
`1 )
* (p1
`2 )))
+ (((p2
`1 )
* (p3
`2 ))
- ((p3
`1 )
* (p2
`2 ))))
+ (((p3
`1 )
* (p1
`2 ))
- ((p1
`1 )
* (p3
`2 ))))
/ 2);
correctness ;
end
definition
let p1, p2, p3;
::
EUCLID_6:def2
func
the_perimeter_of_polygon3 (p1,p2,p3) ->
Real equals ((
|.(p2
- p1).|
+
|.(p3
- p2).|)
+
|.(p1
- p3).|);
correctness ;
end
theorem ::
EUCLID_6:5
Th5: (
the_area_of_polygon3 (p1,p2,p3))
= (((
|.(p1
- p2).|
*
|.(p3
- p2).|)
* (
sin (
angle (p3,p2,p1))))
/ 2)
proof
per cases ;
suppose
A1: p1
= p2;
then
|.(p1
- p2).|
=
|.(
0. (
TOP-REAL 2)).| by
RLVECT_1: 5
.=
0 by
EUCLID_2: 39;
hence thesis by
A1;
end;
suppose
A2: p1
<> p2;
per cases ;
suppose
A3: p2
= p3;
then
|.(p3
- p2).|
=
|.(
0. (
TOP-REAL 2)).| by
RLVECT_1: 5
.=
0 by
EUCLID_2: 39;
hence thesis by
A3;
end;
suppose
A4: p2
<> p3;
set b = (
euc2cpx (p3
- p2));
set a = (
euc2cpx (p1
- p2));
A5:
now
assume
A6: a
=
0 or b
=
0 ;
per cases by
A6;
suppose a
=
0 ;
hence contradiction by
A2,
EUCLID_3: 18,
RLVECT_1: 21;
end;
suppose b
=
0 ;
hence contradiction by
A4,
EUCLID_3: 18,
RLVECT_1: 21;
end;
end;
A7:
now
assume
A8: (
|.a.|
*
|.b.|)
=
0 ;
per cases by
A8;
suppose
|.a.|
=
0 ;
hence contradiction by
A5,
COMPLEX1: 45;
end;
suppose
|.b.|
=
0 ;
hence contradiction by
A5,
COMPLEX1: 45;
end;
end;
(((
|.(p1
- p2).|
*
|.(p3
- p2).|)
* (
sin (
angle (p3,p2,p1))))
/ 2)
= (((
|.(p1
- p2).|
*
|.(p3
- p2).|)
* (
- (
sin (
angle (p1,p2,p3)))))
/ 2) by
Th2
.= (((
|.(p1
- p2).|
*
|.(p3
- p2).|)
* (
- (
sin (
angle (a,b)))))
/ 2) by
Lm7
.= (((
|.(p1
- p2).|
*
|.(p3
- p2).|)
* (
- (
- ((
Im (a
.|. b))
/ (
|.a.|
*
|.b.|)))))
/ 2) by
A5,
COMPLEX2: 69
.= (((
|.a.|
*
|.(p3
- p2).|)
* ((
Im (a
.|. b))
/ (
|.a.|
*
|.b.|)))
/ 2) by
Lm16
.= (((
|.a.|
*
|.b.|)
* ((
Im (a
.|. b))
/ (
|.a.|
*
|.b.|)))
/ 2) by
Lm16
.= (((
Im (a
.|. b))
/ ((
|.a.|
*
|.b.|)
/ (
|.a.|
*
|.b.|)))
/ 2) by
XCMPLX_1: 81
.= (((
Im (a
.|. b))
/ 1)
/ 2) by
A7,
XCMPLX_1: 60
.= (((
- (((p1
`1 )
- (p2
`1 ))
* ((p3
`2 )
- (p2
`2 ))))
+ (((p1
`2 )
- (p2
`2 ))
* ((p3
`1 )
- (p2
`1 ))))
/ 2) by
Lm16
.= ((((((p1
`1 )
* (p2
`2 ))
- ((p2
`1 )
* (p1
`2 )))
+ (((p2
`1 )
* (p3
`2 ))
- ((p3
`1 )
* (p2
`2 ))))
+ (((p3
`1 )
* (p1
`2 ))
- ((p1
`1 )
* (p3
`2 ))))
/ 2);
hence thesis;
end;
end;
end;
theorem ::
EUCLID_6:6
Th6: p2
<> p1 implies (
|.(p3
- p2).|
* (
sin (
angle (p3,p2,p1))))
= (
|.(p3
- p1).|
* (
sin (
angle (p2,p1,p3))))
proof
(
the_area_of_polygon3 (p1,p2,p3))
= (
the_area_of_polygon3 (p3,p1,p2));
then (((
|.(p1
- p2).|
*
|.(p3
- p2).|)
* (
sin (
angle (p3,p2,p1))))
/ 2)
= (
the_area_of_polygon3 (p3,p1,p2)) by
Th5;
then (((
|.(p1
- p2).|
*
|.(p3
- p2).|)
* (
sin (
angle (p3,p2,p1))))
/ 2)
= (((
|.(p3
- p1).|
*
|.(p2
- p1).|)
* (
sin (
angle (p2,p1,p3))))
/ 2) by
Th5;
then ((
|.(p1
- p2).|
*
|.(p3
- p2).|)
* (
sin (
angle (p3,p2,p1))))
= ((
|.(p3
- p1).|
*
|.(p1
- p2).|)
* (
sin (
angle (p2,p1,p3)))) by
Lm2;
then
A1: ((
|.(p3
- p2).|
* (
sin (
angle (p3,p2,p1))))
*
|.(p1
- p2).|)
= ((
|.(p3
- p1).|
* (
sin (
angle (p2,p1,p3))))
*
|.(p1
- p2).|);
assume p2
<> p1;
then
|.(p1
- p2).|
<>
0 by
Lm1;
hence thesis by
A1,
XCMPLX_1: 5;
end;
::$Notion-Name
theorem ::
EUCLID_6:7
Th7: a
=
|.(p1
- p2).| & b
=
|.(p3
- p2).| & c
=
|.(p3
- p1).| implies (c
^2 )
= (((a
^2 )
+ (b
^2 ))
- (((2
* a)
* b)
* (
cos (
angle (p1,p2,p3)))))
proof
assume that
A1: a
=
|.(p1
- p2).| & b
=
|.(p3
- p2).| and
A2: c
=
|.(p3
- p1).|;
per cases ;
suppose
A3: p1
= p2;
then
|.(p1
- p2).|
=
|.(
0. (
TOP-REAL 2)).| by
RLVECT_1: 5
.=
0 by
EUCLID_2: 39;
hence thesis by
A1,
A2,
A3;
end;
suppose
A4: p1
<> p2;
per cases ;
suppose
A5: p2
= p3;
then
|.(p3
- p2).|
=
|.(
0. (
TOP-REAL 2)).| by
RLVECT_1: 5
.=
0 by
EUCLID_2: 39;
then (((
|.(p1
- p2).|
^2 )
+ (
|.(p3
- p2).|
^2 ))
- (((2
*
|.(p1
- p2).|)
*
|.(p3
- p2).|)
* (
cos (
angle (p1,p2,p3)))))
= (
|.(
- (p1
- p2)).|
^2 ) by
EUCLID: 71
.= (
|.(p2
- p1).|
^2 ) by
RLVECT_1: 33;
hence thesis by
A1,
A2,
A5;
end;
suppose
A6: p2
<> p3;
set c2 = (
euc2cpx (p3
- p2));
set c1 = (
euc2cpx (p1
- p2));
A7:
now
assume
A8: c1
=
0 or c2
=
0 ;
per cases by
A8;
suppose c1
=
0 ;
hence contradiction by
A4,
EUCLID_3: 18,
RLVECT_1: 21;
end;
suppose c2
=
0 ;
hence contradiction by
A6,
EUCLID_3: 18,
RLVECT_1: 21;
end;
end;
A9:
now
assume
A10: (
|.c1.|
*
|.c2.|)
=
0 ;
per cases by
A10;
suppose
|.c1.|
=
0 ;
hence contradiction by
A7,
COMPLEX1: 45;
end;
suppose
|.c2.|
=
0 ;
hence contradiction by
A7,
COMPLEX1: 45;
end;
end;
A11: (((a
^2 )
+ (b
^2 ))
- (c
^2 ))
= (((((
|.p1.|
^2 )
- (2
*
|(p2, p1)|))
+ (
|.p2.|
^2 ))
+ (
|.(p3
- p2).|
^2 ))
- (
|.(p3
- p1).|
^2 )) by
A1,
A2,
EUCLID_2: 46
.= (((((
|.p1.|
^2 )
- (2
*
|(p2, p1)|))
+ (
|.p2.|
^2 ))
+ (
|.(p3
- p2).|
^2 ))
- (((
|.p3.|
^2 )
- (2
*
|(p1, p3)|))
+ (
|.p1.|
^2 ))) by
EUCLID_2: 46
.= (((((
- (2
*
|(p2, p1)|))
+ (
|.p2.|
^2 ))
+ (
|.(p3
- p2).|
^2 ))
- (
|.p3.|
^2 ))
+ (2
*
|(p1, p3)|))
.= (((((
- (2
*
|(p2, p1)|))
+ (
|.p2.|
^2 ))
+ (((
|.p3.|
^2 )
- (2
*
|(p2, p3)|))
+ (
|.p2.|
^2 )))
- (
|.p3.|
^2 ))
+ (2
*
|(p1, p3)|)) by
EUCLID_2: 46
.= (2
* ((((
-
|(p2, p1)|)
+ (
|.p2.|
^2 ))
-
|(p2, p3)|)
+
|(p1, p3)|));
((
|.(p1
- p2).|
*
|.(p3
- p2).|)
* (
cos (
angle (p1,p2,p3))))
= ((
|.(p1
- p2).|
*
|.(p3
- p2).|)
* (
cos (
angle (c1,c2)))) by
Lm7
.= ((
|.c1.|
*
|.(p3
- p2).|)
* (
cos (
angle (c1,c2)))) by
Lm16
.= ((
|.c1.|
*
|.c2.|)
* (
cos (
angle (c1,c2)))) by
Lm16
.= ((
|.c1.|
*
|.c2.|)
* ((
Re (c1
.|. c2))
/ (
|.c1.|
*
|.c2.|))) by
A7,
COMPLEX2: 69
.= ((
Re (c1
.|. c2))
/ ((
|.c1.|
*
|.c2.|)
/ (
|.c1.|
*
|.c2.|))) by
XCMPLX_1: 81
.= ((
Re (c1
.|. c2))
/ 1) by
A9,
XCMPLX_1: 60
.= ((((p1
`1 )
- (p2
`1 ))
* ((p3
`1 )
- (p2
`1 )))
+ (((p1
`2 )
- (p2
`2 ))
* ((p3
`2 )
- (p2
`2 )))) by
Lm16
.= (((((((p1
`1 )
* (p3
`1 ))
+ ((p1
`2 )
* (p3
`2 )))
- ((p1
`1 )
* (p2
`1 )))
- ((p2
`1 )
* (p3
`1 )))
+ ((p2
`1 )
* (p2
`1 )))
+ (((
- ((p1
`2 )
* (p2
`2 )))
- ((p2
`2 )
* (p3
`2 )))
+ ((p2
`2 )
* (p2
`2 ))))
.= ((((
|(p1, p3)|
- ((p1
`1 )
* (p2
`1 )))
- ((p2
`1 )
* (p3
`1 )))
+ ((p2
`1 )
* (p2
`1 )))
+ (((
- ((p1
`2 )
* (p2
`2 )))
- ((p2
`2 )
* (p3
`2 )))
+ ((p2
`2 )
* (p2
`2 )))) by
EUCLID_3: 41
.= ((((
|(p1, p3)|
- (((p1
`1 )
* (p2
`1 ))
+ ((p1
`2 )
* (p2
`2 ))))
- ((p2
`1 )
* (p3
`1 )))
+ ((p2
`1 )
* (p2
`1 )))
+ ((
- ((p2
`2 )
* (p3
`2 )))
+ ((p2
`2 )
* (p2
`2 ))))
.= ((((
|(p1, p3)|
-
|(p1, p2)|)
- ((p2
`1 )
* (p3
`1 )))
+ ((p2
`1 )
* (p2
`1 )))
+ ((
- ((p2
`2 )
* (p3
`2 )))
+ ((p2
`2 )
* (p2
`2 )))) by
EUCLID_3: 41
.= ((((
|(p1, p3)|
-
|(p1, p2)|)
- (((p2
`1 )
* (p3
`1 ))
+ ((p2
`2 )
* (p3
`2 ))))
+ ((p2
`1 )
* (p2
`1 )))
+ ((p2
`2 )
* (p2
`2 )))
.= ((((
|(p1, p3)|
-
|(p1, p2)|)
-
|(p2, p3)|)
+ ((p2
`1 )
* (p2
`1 )))
+ ((p2
`2 )
* (p2
`2 ))) by
EUCLID_3: 41
.= (((
|(p1, p3)|
-
|(p1, p2)|)
-
|(p2, p3)|)
+ (((p2
`1 )
* (p2
`1 ))
+ ((p2
`2 )
* (p2
`2 ))))
.= (((
|(p1, p3)|
-
|(p1, p2)|)
-
|(p2, p3)|)
+
|(p2, p2)|) by
EUCLID_3: 41
.= (((
|(p1, p3)|
-
|(p1, p2)|)
-
|(p2, p3)|)
+ (
|.p2.|
^2 )) by
EUCLID_2: 36;
hence thesis by
A1,
A11;
end;
end;
end;
begin
theorem ::
EUCLID_6:8
Th8: p
in (
LSeg (p1,p2)) & p
<> p1 & p
<> p2 implies (
angle (p1,p,p2))
=
PI
proof
set c1 = (
euc2cpx (p1
- p));
set c2 = (
euc2cpx (p2
- p));
assume p
in (
LSeg (p1,p2));
then
consider l be
Real such that
A1: p
= (((1
- l)
* p1)
+ (l
* p2)) and
A2:
0
<= l and
A3: l
<= 1;
reconsider l as
Real;
A4: (p2
- p)
= (p2
- (((1
+ (
- l))
* p1)
+ (l
* p2))) by
A1
.= (p2
- (((1
* p1)
+ ((
- l)
* p1))
+ (l
* p2))) by
RLVECT_1:def 6
.= (p2
+ ((
- 1)
* (((1
* p1)
+ ((
- l)
* p1))
+ (l
* p2))))
.= (p2
+ (((
- 1)
* ((1
* p1)
+ ((
- l)
* p1)))
+ ((
- 1)
* (l
* p2)))) by
RLVECT_1:def 5
.= (p2
+ (((
- 1)
* (p1
+ ((
- l)
* p1)))
+ ((
- 1)
* (l
* p2)))) by
RLVECT_1:def 8
.= (p2
+ (((
- 1)
* (p1
+ ((
- l)
* p1)))
+ (((
- 1)
* l)
* p2))) by
RLVECT_1:def 7
.= (p2
+ ((((
- 1)
* p1)
+ ((
- 1)
* ((
- l)
* p1)))
+ ((
- l)
* p2))) by
RLVECT_1:def 5
.= (p2
+ ((((
- 1)
* p1)
+ (((
- 1)
* (
- l))
* p1))
+ ((
- l)
* p2))) by
RLVECT_1:def 7
.= (p2
+ (((
- 1)
* p1)
+ ((l
* p1)
+ ((
- l)
* p2)))) by
RLVECT_1:def 3
.= (p2
+ ((
- p1)
+ ((l
* p1)
+ ((
- l)
* p2))))
.= (((
- p1)
+ p2)
+ ((l
* p1)
+ ((
- l)
* p2))) by
RLVECT_1:def 3
.= (((
- p1)
+ p2)
+ ((l
* (
- (
- p1)))
+ ((
- l)
* p2)))
.= (((
- p1)
+ p2)
+ ((l
* ((
- 1)
* (
- p1)))
+ ((
- l)
* p2)))
.= (((
- p1)
+ p2)
+ (((l
* (
- 1))
* (
- p1))
+ ((
- l)
* p2))) by
RLVECT_1:def 7
.= (((
- p1)
+ p2)
+ ((
- l)
* ((
- p1)
+ p2))) by
RLVECT_1:def 5
.= ((1
* ((
- p1)
+ p2))
+ ((
- l)
* ((
- p1)
+ p2))) by
RLVECT_1:def 8
.= ((1
+ (
- l))
* ((
- p1)
+ p2)) by
RLVECT_1:def 6
.= ((1
- l)
* ((
- p1)
+ p2));
assume
A5: p
<> p1;
A6: l
<>
0
proof
assume l
=
0 ;
then p
= ((1
* p1)
+ (
0. (
TOP-REAL 2))) by
A1,
RLVECT_1: 10
.= (1
* p1) by
RLVECT_1: 4
.= p1 by
RLVECT_1:def 8;
hence contradiction by
A5;
end;
assume
A7: p
<> p2;
l
<> 1
proof
assume l
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* p2)) by
A1,
RLVECT_1: 10
.= (1
* p2) by
RLVECT_1: 4
.= p2 by
RLVECT_1:def 8;
hence contradiction by
A7;
end;
then l
< 1 by
A3,
XXREAL_0: 1;
then (
- 1)
< (
- l) by
XREAL_1: 24;
then
A8: ((
- 1)
+ 1)
< ((
- l)
+ 1) by
XREAL_1: 6;
A9: (
- c2)
<>
0
proof
assume (
- c2)
=
0 ;
then
|.(p2
- p).|
=
0 by
COMPLEX1: 44,
EUCLID_3: 25;
then (p2
- p)
= (
0. (
TOP-REAL 2)) by
EUCLID_2: 42;
hence contradiction by
A7,
RLVECT_1: 21;
end;
set r = (
- (l
/ (1
- l)));
A10: (p1
- p)
= (p1
- (((1
+ (
- l))
* p1)
+ (l
* p2))) by
A1
.= (p1
- (((1
* p1)
+ ((
- l)
* p1))
+ (l
* p2))) by
RLVECT_1:def 6
.= (p1
+ ((
- 1)
* (((1
* p1)
+ ((
- l)
* p1))
+ (l
* p2))))
.= (p1
+ (((
- 1)
* ((1
* p1)
+ ((
- l)
* p1)))
+ ((
- 1)
* (l
* p2)))) by
RLVECT_1:def 5
.= (p1
+ (((
- 1)
* (p1
+ ((
- l)
* p1)))
+ ((
- 1)
* (l
* p2)))) by
RLVECT_1:def 8
.= (p1
+ (((
- 1)
* (p1
+ ((
- l)
* p1)))
+ (((
- 1)
* l)
* p2))) by
RLVECT_1:def 7
.= (p1
+ ((((
- 1)
* p1)
+ ((
- 1)
* ((
- l)
* p1)))
+ ((
- l)
* p2))) by
RLVECT_1:def 5
.= (p1
+ ((((
- 1)
* p1)
+ (((
- 1)
* (
- l))
* p1))
+ ((
- l)
* p2))) by
RLVECT_1:def 7
.= (p1
+ (((
- 1)
* p1)
+ ((l
* p1)
+ ((
- l)
* p2)))) by
RLVECT_1:def 3
.= (p1
+ ((
- p1)
+ ((l
* p1)
+ ((
- l)
* p2))))
.= ((p1
+ (
- p1))
+ ((l
* p1)
+ ((
- l)
* p2))) by
RLVECT_1:def 3
.= ((
0. (
TOP-REAL 2))
+ ((l
* p1)
+ ((
- l)
* p2))) by
RLVECT_1: 5
.= ((l
* p1)
+ ((l
* (
- 1))
* p2)) by
RLVECT_1: 4
.= ((l
* p1)
+ (l
* ((
- 1)
* p2))) by
RLVECT_1:def 7
.= ((l
* p1)
+ (l
* (
- p2)))
.= (l
* (p1
- p2)) by
RLVECT_1:def 5;
(
cpx2euc (c2
* r))
= (r
* (
cpx2euc c2)) by
EUCLID_3: 19
.= ((
- (l
/ (1
- l)))
* ((1
- l)
* ((
- p1)
+ p2))) by
A4,
EUCLID_3: 2
.= (((
- (l
/ (1
- l)))
* (1
- l))
* ((
- p1)
+ p2)) by
RLVECT_1:def 7
.= ((((
- l)
/ (1
- l))
* (1
- l))
* ((
- p1)
+ p2)) by
XCMPLX_1: 187
.= ((((1
- l)
/ (1
- l))
* (
- l))
* ((
- p1)
+ p2)) by
XCMPLX_1: 75
.= ((1
* (
- l))
* ((
- p1)
+ p2)) by
A8,
XCMPLX_1: 60
.= ((l
* (
- 1))
* ((
- p1)
+ p2))
.= (l
* ((
- 1)
* ((
- p1)
+ p2))) by
RLVECT_1:def 7
.= (l
* (((
- 1)
* (
- p1))
+ ((
- 1)
* p2))) by
RLVECT_1:def 5
.= (l
* ((
- (
- p1))
+ ((
- 1)
* p2)))
.= (l
* ((
- (
- p1))
+ (
- p2)))
.= (l
* ((
- (
- p1))
+ (
- p2)))
.= (l
* (p1
+ (
- p2)))
.= (
cpx2euc c1) by
A10,
EUCLID_3: 2;
then c1
= (c2
* r) by
EUCLID_3: 3;
then
A11: (
Arg (
- c2))
= (
Arg c1) by
A2,
A6,
A8,
COMPLEX2: 28;
(
angle (c1,(
- c2)))
=
0
proof
per cases ;
suppose ((
Arg (
- c2))
- (
Arg c1))
<
0 ;
hence thesis by
A11;
end;
suppose ((
Arg (
- c2))
- (
Arg c1))
>=
0 ;
hence thesis by
A11,
A9,
Lm11;
end;
end;
then (
angle (c1,(
- (
- c2))))
=
PI by
A9,
COMPLEX2: 68;
hence thesis by
Lm7;
end;
theorem ::
EUCLID_6:9
Th9: p
in (
LSeg (p2,p3)) & p
<> p2 implies (
angle (p3,p2,p1))
= (
angle (p,p2,p1))
proof
set c = (
euc2cpx (p
- p2));
set c1 = (
euc2cpx (p1
- p2));
set c3 = (
euc2cpx (p3
- p2));
assume p
in (
LSeg (p2,p3));
then
consider l be
Real such that
A1: p
= (((1
- l)
* p2)
+ (l
* p3)) and
A2:
0
<= l and l
<= 1;
reconsider l as
Real;
A3: (p
- p2)
= ((((1
+ (
- l))
* p2)
+ (l
* p3))
- p2) by
A1
.= ((((1
* p2)
+ ((
- l)
* p2))
+ (l
* p3))
- p2) by
RLVECT_1:def 6
.= (((p2
+ ((
- l)
* p2))
+ (l
* p3))
- p2) by
RLVECT_1:def 8
.= ((p2
+ ((
- l)
* p2))
+ ((l
* p3)
+ (
- p2))) by
RLVECT_1:def 3
.= (p2
+ (((
- l)
* p2)
+ ((l
* p3)
+ (
- p2)))) by
RLVECT_1:def 3
.= (p2
+ ((
- p2)
+ (((
- l)
* p2)
+ (l
* p3)))) by
RLVECT_1:def 3
.= ((p2
+ (
- p2))
+ (((
- l)
* p2)
+ (l
* p3))) by
RLVECT_1:def 3
.= ((
0. (
TOP-REAL 2))
+ (((
- l)
* p2)
+ (l
* p3))) by
RLVECT_1: 5
.= (((l
* (
- 1))
* p2)
+ (l
* p3)) by
RLVECT_1: 4
.= ((l
* ((
- 1)
* p2))
+ (l
* p3)) by
RLVECT_1:def 7
.= ((l
* (
- p2))
+ (l
* p3))
.= (l
* (p3
- p2)) by
RLVECT_1:def 5;
assume
A4: p
<> p2;
A5: l
<>
0
proof
assume l
=
0 ;
then p
= ((1
* p2)
+ (
0. (
TOP-REAL 2))) by
A1,
RLVECT_1: 10
.= (1
* p2) by
RLVECT_1: 4
.= p2 by
RLVECT_1:def 8;
hence contradiction by
A4;
end;
(
cpx2euc (c3
* l))
= (l
* (
cpx2euc c3)) by
EUCLID_3: 19
.= (l
* (p3
- p2)) by
EUCLID_3: 2
.= (
cpx2euc c) by
A3,
EUCLID_3: 2;
then c
= (c3
* l) by
EUCLID_3: 3;
then
A6: (
Arg c)
= (
Arg c3) by
A2,
A5,
COMPLEX2: 27;
(
angle (c3,c1))
= (
angle (c,c1))
proof
per cases ;
suppose
A7: (
Arg c3)
=
0 or c1
<>
0 ;
then (
angle (c3,c1))
= (
Arg (
Rotate (c1,(
- (
Arg c3))))) by
COMPLEX2:def 3
.= (
angle (c,c1)) by
A6,
A7,
COMPLEX2:def 3;
hence thesis;
end;
suppose
A8: not ((
Arg c3)
=
0 or c1
<>
0 );
then (
angle (c3,c1))
= ((2
*
PI )
- (
Arg c3)) by
COMPLEX2:def 3
.= (
angle (c,c1)) by
A6,
A8,
COMPLEX2:def 3;
hence thesis;
end;
end;
hence (
angle (p3,p2,p1))
= (
angle (c,c1)) by
Lm7
.= (
angle (p,p2,p1)) by
Lm7;
end;
theorem ::
EUCLID_6:10
Th10: p
in (
LSeg (p2,p3)) & p
<> p2 implies (
angle (p1,p2,p3))
= (
angle (p1,p2,p))
proof
assume
A1: p
in (
LSeg (p2,p3));
assume
A2: p
<> p2;
then
A3: (
angle (p3,p2,p1))
= (
angle (p,p2,p1)) by
A1,
Th9;
per cases ;
suppose
A4: (
angle (p1,p2,p3))
=
0 ;
then (
angle (p3,p2,p1))
=
0 by
EUCLID_3: 36;
then
A5: (
angle (p,p2,p1))
=
0 by
A1,
A2,
Th9;
thus (
angle (p1,p2,p3))
= (
angle (p3,p2,p1)) by
A4,
EUCLID_3: 36
.= (
angle (p,p2,p1)) by
A1,
A2,
Th9
.= (
angle (p1,p2,p)) by
A5,
EUCLID_3: 36;
end;
suppose
A6: (
angle (p1,p2,p3))
<>
0 ;
then
A7: (
angle (p,p2,p1))
<>
0 by
A3,
EUCLID_3: 36;
thus (
angle (p1,p2,p3))
= ((2
*
PI )
- (
angle (p3,p2,p1))) by
A6,
EUCLID_3: 38
.= ((2
*
PI )
- (
angle (p,p2,p1))) by
A1,
A2,
Th9
.= (
angle (p1,p2,p)) by
A7,
EUCLID_3: 37;
end;
end;
Lm17: p1
in (
inside_of_circle (a,b,r)) & p2
in (
outside_of_circle (a,b,r)) implies ex p st p
in ((
LSeg (p1,p2))
/\ (
circle (a,b,r)))
proof
set pc1 = (p1
-
|[a, b]|);
set pc2 = (p2
-
|[a, b]|);
reconsider r9 = r as
Real;
assume p1
in (
inside_of_circle (a,b,r));
then p1
in { p :
|.(p
-
|[a, b]|).|
< r } by
JGRAPH_6:def 6;
then
A1: ex p19 be
Point of (
TOP-REAL 2) st p1
= p19 &
|.(p19
-
|[a, b]|).|
< r;
assume p2
in (
outside_of_circle (a,b,r));
then p2
in { p :
|.(p
-
|[a, b]|).|
> r } by
JGRAPH_6:def 8;
then
A2: ex p29 be
Point of (
TOP-REAL 2) st p2
= p29 &
|.(p29
-
|[a, b]|).|
> r;
then
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| (
LSeg (pc1,pc2))) such that
A3: for x be
Real st x
in
[.
0 , 1.] holds (f
. x)
= (((1
- x)
* pc1)
+ (x
* pc2)) and
A4: f is
being_homeomorphism and
A5: (f
.
0 )
= pc1 and
A6: (f
. 1)
= pc2 by
A1,
JORDAN5A: 3;
reconsider g = f as
Function of
I[01] , (
TOP-REAL 2) by
JORDAN6: 3;
0
in the
carrier of
I[01] by
BORSUK_1: 40,
XXREAL_1: 1;
then
0
in (
dom g) by
FUNCT_2:def 1;
then
A7: (g
/.
0 )
= pc1 by
A5,
PARTFUN1:def 6;
1
in the
carrier of
I[01] by
BORSUK_1: 40,
XXREAL_1: 1;
then 1
in (
dom g) by
FUNCT_2:def 1;
then
A8: (g
/. 1)
= pc2 by
A6,
PARTFUN1:def 6;
f is
continuous by
A4,
TOPS_2:def 5;
then
consider s be
Point of
I[01] such that
A9:
|.(g
/. s).|
= r9 by
A1,
A2,
A7,
A8,
JORDAN2C: 86,
JORDAN6: 3;
A10: s
in the
carrier of
I[01] ;
s
in
[.
0 , 1.] by
BORSUK_1: 40;
then s
in { s9 where s9 be
Element of
ExtREAL :
0
<= s9 & s9
<= 1 } by
XXREAL_1:def 1;
then
A11: ex s9 be
Element of
ExtREAL st s
= s9 &
0
<= s9 & s9
<= 1;
reconsider s as
Real;
set p9 = (f
. s);
s
in (
dom g) by
A10,
FUNCT_2:def 1;
then (
rng g)
c= the
carrier of (
TOP-REAL 2) & (g
. s)
in (
rng g) by
FUNCT_1: 3,
RELAT_1:def 19;
then
reconsider p9 as
Point of (
TOP-REAL 2);
set p = (p9
+
|[a, b]|);
take p;
(f
. s)
= (((1
- s)
* pc1)
+ (s
* pc2)) by
A3,
BORSUK_1: 40
.= ((((1
- s)
* p1)
- ((1
- s)
*
|[a, b]|))
+ (s
* (p2
-
|[a, b]|))) by
RLVECT_1: 34
.= ((((1
- s)
* p1)
- ((1
- s)
*
|[a, b]|))
+ ((s
* p2)
- (s
*
|[a, b]|))) by
RLVECT_1: 34
.= ((((1
- s)
* p1)
+ ((
- (1
- s))
*
|[a, b]|))
+ ((s
* p2)
- (s
*
|[a, b]|))) by
RLVECT_1: 79
.= ((((1
- s)
* p1)
+ (((
- 1)
+ s)
*
|[a, b]|))
+ ((s
* p2)
- (s
*
|[a, b]|)))
.= ((((1
- s)
* p1)
+ (((
- 1)
*
|[a, b]|)
+ (s
*
|[a, b]|)))
+ ((s
* p2)
- (s
*
|[a, b]|))) by
RLVECT_1:def 6
.= (((((1
- s)
* p1)
+ ((
- 1)
*
|[a, b]|))
+ (s
*
|[a, b]|))
+ ((s
* p2)
+ (
- (s
*
|[a, b]|)))) by
RLVECT_1:def 3
.= ((((1
- s)
* p1)
+ ((
- 1)
*
|[a, b]|))
+ ((s
*
|[a, b]|)
+ ((s
* p2)
+ (
- (s
*
|[a, b]|))))) by
RLVECT_1:def 3
.= ((((1
- s)
* p1)
+ ((
- 1)
*
|[a, b]|))
+ (((s
*
|[a, b]|)
+ (
- (s
*
|[a, b]|)))
+ (s
* p2))) by
RLVECT_1:def 3
.= ((((1
- s)
* p1)
+ ((
- 1)
*
|[a, b]|))
+ (((s
*
|[a, b]|)
+ ((
- s)
*
|[a, b]|))
+ (s
* p2))) by
RLVECT_1: 79
.= ((((1
- s)
* p1)
+ ((
- 1)
*
|[a, b]|))
+ (((s
+ (
- s))
*
|[a, b]|)
+ (s
* p2))) by
RLVECT_1:def 6
.= ((((1
- s)
* p1)
+ ((
- 1)
*
|[a, b]|))
+ ((
0. (
TOP-REAL 2))
+ (s
* p2))) by
RLVECT_1: 10
.= ((((1
- s)
* p1)
+ ((
- 1)
*
|[a, b]|))
+ (s
* p2)) by
RLVECT_1: 4
.= ((((1
- s)
* p1)
+ (s
* p2))
+ ((
- 1)
*
|[a, b]|)) by
RLVECT_1:def 3;
then
A12: p
= (((((1
- s)
* p1)
+ (s
* p2))
+ ((
- 1)
*
|[a, b]|))
+
|[a, b]|)
.= (((((1
- s)
* p1)
+ (s
* p2))
+ (
-
|[a, b]|))
+
|[a, b]|)
.= ((((1
- s)
* p1)
+ (s
* p2))
+ ((
-
|[a, b]|)
+
|[a, b]|)) by
RLVECT_1:def 3
.= ((((1
- s)
* p1)
+ (s
* p2))
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 5
.= (((1
- s)
* p1)
+ (s
* p2)) by
RLVECT_1: 4;
r
=
|.(p9
+ (
0. (
TOP-REAL 2))).| by
A9,
RLVECT_1: 4
.=
|.(p9
+ (
|[a, b]|
-
|[a, b]|)).| by
RLVECT_1: 5
.=
|.((p9
+
|[a, b]|)
+ (
-
|[a, b]|)).| by
RLVECT_1:def 3
.=
|.(p
-
|[a, b]|).|;
then p
in { p99 where p99 be
Point of (
TOP-REAL 2) :
|.(p99
-
|[a, b]|).|
= r };
then
A13: p
in (
circle (a,b,r)) by
JGRAPH_6:def 5;
(((1
- s)
* p1)
+ (s
* p2))
in (
LSeg (p1,p2)) by
A11;
hence thesis by
A12,
A13,
XBOOLE_0:def 4;
end;
theorem ::
EUCLID_6:11
Th11: (
angle (p1,p,p2))
=
PI implies p
in (
LSeg (p1,p2))
proof
assume
A1: (
angle (p1,p,p2))
=
PI ;
set r =
|.(p
- p1).|;
set b = (p1
`2 );
set a = (p1
`1 );
A2: p1
=
|[a, b]| by
EUCLID: 53;
per cases ;
suppose p
= p1 or p
= p2;
hence thesis by
RLTOPSP1: 68;
end;
suppose
A3: p
<> p1 & p
<> p2;
A4: (
|.(p2
- p1).|
^2 )
= (((
|.(p1
- p).|
^2 )
+ (
|.(p2
- p).|
^2 ))
- (((2
*
|.(p1
- p).|)
*
|.(p2
- p).|)
* (
- 1))) by
A1,
Th7,
SIN_COS: 77
.= ((
|.(p1
- p).|
+
|.(p2
- p).|)
^2 );
|.(p2
- p1).|
> r
proof
assume
|.(p2
- p1).|
<= r;
then (
|.(p2
- p1).|
^2 )
<= (r
^2 ) by
SQUARE_1: 15;
then ((r
+
|.(p2
- p).|)
^2 )
<= (r
^2 ) by
A4,
Lm2;
then ((((r
^2 )
+ ((2
* r)
*
|.(p2
- p).|))
+ (
|.(p2
- p).|
^2 ))
- (r
^2 ))
<= ((r
^2 )
- (r
^2 )) by
XREAL_1: 9;
then
A5: (((2
* r)
+
|.(p2
- p).|)
*
|.(p2
- p).|)
<=
0 ;
|.(p2
- p).|
<>
0 by
A3,
Lm1;
hence contradiction by
A5;
end;
then p2
in { p4 :
|.(p4
-
|[a, b]|).|
> r } by
A2;
then
A6: p2
in (
outside_of_circle (a,b,r)) by
JGRAPH_6:def 8;
A7:
|.(p1
-
|[a, b]|).|
=
0 by
A2,
Lm1;
r
<>
0 by
A3,
Lm1;
then p1
in { p4 :
|.(p4
-
|[a, b]|).|
< r } by
A7;
then p1
in (
inside_of_circle (a,b,r)) by
JGRAPH_6:def 6;
then
consider p3 such that
A8: p3
in ((
LSeg (p1,p2))
/\ (
circle (a,b,r))) by
A6,
Lm17;
A9: (
euc2cpx p1)
<> (
euc2cpx p2) by
A1,
COMPLEX2: 79;
A10: (
euc2cpx p)
<> (
euc2cpx p1) & (
euc2cpx p)
<> (
euc2cpx p2) by
A3,
EUCLID_3: 4;
A11: (
angle (p,p1,p2))
=
0
proof
assume (
angle (p,p1,p2))
<>
0 ;
then
A12: (
angle (p,p1,p2))
>
0 by
COMPLEX2: 70;
A13: (
angle (p,p1,p2))
< (2
*
PI ) by
COMPLEX2: 70;
per cases by
A10,
A9,
COMPLEX2: 88;
suppose
A14: (((
angle (p,p1,p2))
+ (
angle (p1,p2,p)))
+ (
angle (p2,p,p1)))
=
PI ;
A15: (
angle (p1,p2,p))
>=
0 by
COMPLEX2: 70;
(((
angle (p,p1,p2))
+ (
angle (p1,p2,p)))
+
PI )
=
PI by
A1,
A14,
COMPLEX2: 82;
hence contradiction by
A12,
A15;
end;
suppose
A16: (((
angle (p,p1,p2))
+ (
angle (p1,p2,p)))
+ (
angle (p2,p,p1)))
= (5
*
PI );
(
angle (p1,p2,p))
< (2
*
PI ) by
COMPLEX2: 70;
then
A17: ((
angle (p,p1,p2))
+ (
angle (p1,p2,p)))
< ((2
*
PI )
+ (2
*
PI )) by
A13,
XREAL_1: 8;
(((
angle (p,p1,p2))
+ (
angle (p1,p2,p)))
+
PI )
= (5
*
PI ) by
A1,
A16,
COMPLEX2: 82;
hence contradiction by
A17;
end;
end;
p3
in (
circle (a,b,r)) by
A8,
XBOOLE_0:def 4;
then p3
in { p4 :
|.(p4
-
|[a, b]|).|
= r } by
JGRAPH_6:def 5;
then
A18: ex p4 st p3
= p4 &
|.(p4
-
|[a, b]|).|
= r;
then
A19:
|.(p3
- p1).|
= r by
EUCLID: 53;
r
<>
0 by
A3,
Lm1;
then
A20: p3
<> p1 by
A2,
A18,
Lm1;
A21: p3
in (
LSeg (p1,p2)) by
A8,
XBOOLE_0:def 4;
(
|.(p3
- p).|
^2 )
= (((
|.(p
- p1).|
^2 )
+ (
|.(p3
- p1).|
^2 ))
- (((2
*
|.(p
- p1).|)
*
|.(p3
- p1).|)
* (
cos (
angle (p,p1,p3))))) by
Th7
.= (((r
^2 )
+ (r
^2 ))
- (((2
* r)
* r)
* (
cos
0 ))) by
A21,
A19,
A20,
A11,
Th10
.=
0 by
SIN_COS: 31;
then
|.(p3
- p).|
=
0 ;
hence thesis by
A21,
Lm1;
end;
end;
theorem ::
EUCLID_6:12
Th12: p
in (
LSeg (p1,p3)) & p
in (
LSeg (p1,p4)) & p3
<> p4 & p
<> p1 implies p3
in (
LSeg (p1,p4)) or p4
in (
LSeg (p1,p3))
proof
assume p
in (
LSeg (p1,p3));
then
consider l1 be
Real such that
A1: p
= (((1
- l1)
* p1)
+ (l1
* p3)) and
A2:
0
<= l1 and l1
<= 1;
assume p
in (
LSeg (p1,p4));
then
consider l2 be
Real such that
A3: p
= (((1
- l2)
* p1)
+ (l2
* p4)) and
A4:
0
<= l2 and l2
<= 1;
(((1
+ (
- l1))
* p1)
+ (l1
* p3))
= (((1
+ (
- l2))
* p1)
+ (l2
* p4)) by
A1,
A3;
then (((1
* p1)
+ ((
- l1)
* p1))
+ (l1
* p3))
= (((1
+ (
- l2))
* p1)
+ (l2
* p4)) by
RLVECT_1:def 6;
then (((1
* p1)
+ ((
- l1)
* p1))
+ (l1
* p3))
= (((1
* p1)
+ ((
- l2)
* p1))
+ (l2
* p4)) by
RLVECT_1:def 6;
then ((p1
+ ((
- l1)
* p1))
+ (l1
* p3))
= (((1
* p1)
+ ((
- l2)
* p1))
+ (l2
* p4)) by
RLVECT_1:def 8;
then ((p1
+ ((
- l1)
* p1))
+ (l1
* p3))
= ((p1
+ ((
- l2)
* p1))
+ (l2
* p4)) by
RLVECT_1:def 8;
then ((
- p1)
+ (p1
+ (((
- l1)
* p1)
+ (l1
* p3))))
= ((
- p1)
+ ((p1
+ ((
- l2)
* p1))
+ (l2
* p4))) by
RLVECT_1:def 3;
then (((
- p1)
+ p1)
+ (((
- l1)
* p1)
+ (l1
* p3)))
= ((
- p1)
+ ((p1
+ ((
- l2)
* p1))
+ (l2
* p4))) by
RLVECT_1:def 3;
then ((
0. (
TOP-REAL 2))
+ (((
- l1)
* p1)
+ (l1
* p3)))
= ((
- p1)
+ ((p1
+ ((
- l2)
* p1))
+ (l2
* p4))) by
RLVECT_1: 5;
then (((
- l1)
* p1)
+ (l1
* p3))
= ((
- p1)
+ ((p1
+ ((
- l2)
* p1))
+ (l2
* p4))) by
RLVECT_1: 4;
then (((
- l1)
* p1)
+ (l1
* p3))
= ((
- p1)
+ (p1
+ (((
- l2)
* p1)
+ (l2
* p4)))) by
RLVECT_1:def 3;
then (((
- l1)
* p1)
+ (l1
* p3))
= (((
- p1)
+ p1)
+ (((
- l2)
* p1)
+ (l2
* p4))) by
RLVECT_1:def 3;
then (((
- l1)
* p1)
+ (l1
* p3))
= ((
0. (
TOP-REAL 2))
+ (((
- l2)
* p1)
+ (l2
* p4))) by
RLVECT_1: 5;
then
A5: (((
- l1)
* p1)
+ (l1
* p3))
= (((
- l2)
* p1)
+ (l2
* p4)) by
RLVECT_1: 4;
assume that
A6: p3
<> p4 and
A7: p
<> p1;
per cases ;
suppose
A8: l1
<= l2;
per cases by
A8,
XXREAL_0: 1;
suppose
A9: l1
< l2;
(((1
/ l2)
* ((
- l1)
* p1))
+ ((1
/ l2)
* (l1
* p3)))
= ((1
/ l2)
* (((
- l2)
* p1)
+ (l2
* p4))) by
A5,
RLVECT_1:def 5;
then ((((1
/ l2)
* (
- l1))
* p1)
+ ((1
/ l2)
* (l1
* p3)))
= ((1
/ l2)
* (((
- l2)
* p1)
+ (l2
* p4))) by
RLVECT_1:def 7;
then ((((
- 1)
* ((1
/ l2)
* l1))
* p1)
+ (((1
/ l2)
* l1)
* p3))
= ((1
/ l2)
* (((
- l2)
* p1)
+ (l2
* p4))) by
RLVECT_1:def 7;
then ((((
- 1)
* ((l1
/ l2)
* 1))
* p1)
+ (((1
/ l2)
* l1)
* p3))
= ((1
/ l2)
* (((
- l2)
* p1)
+ (l2
* p4))) by
XCMPLX_1: 75;
then (((
- (l1
/ l2))
* p1)
+ (((l1
/ l2)
* 1)
* p3))
= ((1
/ l2)
* (((
- l2)
* p1)
+ (l2
* p4))) by
XCMPLX_1: 75;
then (((
- (l1
/ l2))
* p1)
+ ((l1
/ l2)
* p3))
= (((1
/ l2)
* ((
- l2)
* p1))
+ ((1
/ l2)
* (l2
* p4))) by
RLVECT_1:def 5;
then (((
- (l1
/ l2))
* p1)
+ ((l1
/ l2)
* p3))
= ((((1
/ l2)
* (
- l2))
* p1)
+ ((1
/ l2)
* (l2
* p4))) by
RLVECT_1:def 7;
then (((
- (l1
/ l2))
* p1)
+ ((l1
/ l2)
* p3))
= ((((
- 1)
* ((1
/ l2)
* l2))
* p1)
+ (((1
/ l2)
* l2)
* p4)) by
RLVECT_1:def 7;
then (((
- (l1
/ l2))
* p1)
+ ((l1
/ l2)
* p3))
= ((((
- 1)
* ((l2
/ l2)
* 1))
* p1)
+ (((1
/ l2)
* l2)
* p4)) by
XCMPLX_1: 75;
then (((
- (l1
/ l2))
* p1)
+ ((l1
/ l2)
* p3))
= ((((
- 1)
* (l2
/ l2))
* p1)
+ (((l2
/ l2)
* 1)
* p4)) by
XCMPLX_1: 75;
then (((
- (l1
/ l2))
* p1)
+ ((l1
/ l2)
* p3))
= ((((
- 1)
* 1)
* p1)
+ ((l2
/ l2)
* p4)) by
A2,
A9,
XCMPLX_1: 60;
then (((
- (l1
/ l2))
* p1)
+ ((l1
/ l2)
* p3))
= (((
- 1)
* p1)
+ (1
* p4)) by
A2,
A9,
XCMPLX_1: 60;
then (((
- (l1
/ l2))
* p1)
+ ((l1
/ l2)
* p3))
= ((
- p1)
+ (1
* p4));
then
A10: (((
- (l1
/ l2))
* p1)
+ ((l1
/ l2)
* p3))
= (p4
+ (
- p1)) by
RLVECT_1:def 8;
(l1
/ l2)
< (l2
/ l2) by
A2,
A9,
XREAL_1: 74;
then
A11: (l1
/ l2)
< 1 by
A2,
A9,
XCMPLX_1: 60;
p4
= ((p4
- p1)
+ p1) by
RLVECT_4: 1
.= ((p1
+ ((
- (l1
/ l2))
* p1))
+ ((l1
/ l2)
* p3)) by
A10,
RLVECT_1:def 3
.= (((1
* p1)
+ ((
- (l1
/ l2))
* p1))
+ ((l1
/ l2)
* p3)) by
RLVECT_1:def 8
.= (((1
+ (
- (l1
/ l2)))
* p1)
+ ((l1
/ l2)
* p3)) by
RLVECT_1:def 6
.= (((1
- (l1
/ l2))
* p1)
+ ((l1
/ l2)
* p3));
hence thesis by
A2,
A4,
A11;
end;
suppose l1
= l2;
then (((l1
* p1)
+ ((
- l1)
* p1))
+ (l1
* p3))
= ((l1
* p1)
+ (((
- l1)
* p1)
+ (l1
* p4))) by
A5,
RLVECT_1:def 3;
then (((l1
+ (
- l1))
* p1)
+ (l1
* p3))
= ((l1
* p1)
+ (((
- l1)
* p1)
+ (l1
* p4))) by
RLVECT_1:def 6;
then ((
0. (
TOP-REAL 2))
+ (l1
* p3))
= ((l1
* p1)
+ (((
- l1)
* p1)
+ (l1
* p4))) by
RLVECT_1: 10;
then (l1
* p3)
= ((l1
* p1)
+ (((
- l1)
* p1)
+ (l1
* p4))) by
RLVECT_1: 4;
then (l1
* p3)
= (((l1
* p1)
+ ((
- l1)
* p1))
+ (l1
* p4)) by
RLVECT_1:def 3;
then (l1
* p3)
= (((l1
+ (
- l1))
* p1)
+ (l1
* p4)) by
RLVECT_1:def 6;
then (l1
* p3)
= ((
0. (
TOP-REAL 2))
+ (l1
* p4)) by
RLVECT_1: 10;
then
A12: (l1
* p3)
= (l1
* p4) by
RLVECT_1: 4;
per cases by
A12,
RLVECT_1: 36;
suppose l1
=
0 ;
then p
= (p1
+ (
0 qua
Real
* p3)) by
A1,
RLVECT_1:def 8
.= (p1
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 10
.= p1 by
RLVECT_1: 4;
hence thesis by
A7;
end;
suppose p3
= p4;
hence thesis by
A6;
end;
end;
end;
suppose
A13: l1
> l2;
(((1
/ l1)
* ((
- l1)
* p1))
+ ((1
/ l1)
* (l1
* p3)))
= ((1
/ l1)
* (((
- l2)
* p1)
+ (l2
* p4))) by
A5,
RLVECT_1:def 5;
then ((((1
/ l1)
* (
- l1))
* p1)
+ ((1
/ l1)
* (l1
* p3)))
= ((1
/ l1)
* (((
- l2)
* p1)
+ (l2
* p4))) by
RLVECT_1:def 7;
then ((((
- 1)
* ((1
/ l1)
* l1))
* p1)
+ (((1
/ l1)
* l1)
* p3))
= ((1
/ l1)
* (((
- l2)
* p1)
+ (l2
* p4))) by
RLVECT_1:def 7;
then ((((
- 1)
* ((l1
/ l1)
* 1))
* p1)
+ (((1
/ l1)
* l1)
* p3))
= ((1
/ l1)
* (((
- l2)
* p1)
+ (l2
* p4))) by
XCMPLX_1: 75;
then (((
- (l1
/ l1))
* p1)
+ (((l1
/ l1)
* 1)
* p3))
= ((1
/ l1)
* (((
- l2)
* p1)
+ (l2
* p4))) by
XCMPLX_1: 75;
then (((
- 1)
* p1)
+ (((l1
/ l1)
* 1)
* p3))
= ((1
/ l1)
* (((
- l2)
* p1)
+ (l2
* p4))) by
A4,
A13,
XCMPLX_1: 60;
then ((1
* p3)
+ ((
- 1)
* p1))
= ((1
/ l1)
* (((
- l2)
* p1)
+ (l2
* p4))) by
A4,
A13,
XCMPLX_1: 60;
then ((1
* p3)
+ (
- p1))
= ((1
/ l1)
* (((
- l2)
* p1)
+ (l2
* p4)));
then (p3
+ (
- p1))
= ((1
/ l1)
* (((
- l2)
* p1)
+ (l2
* p4))) by
RLVECT_1:def 8;
then (p3
- p1)
= (((1
/ l1)
* ((
- l2)
* p1))
+ ((1
/ l1)
* (l2
* p4))) by
RLVECT_1:def 5;
then (p3
- p1)
= ((((1
/ l1)
* (
- l2))
* p1)
+ ((1
/ l1)
* (l2
* p4))) by
RLVECT_1:def 7;
then (p3
- p1)
= ((((
- 1)
* ((1
/ l1)
* l2))
* p1)
+ (((1
/ l1)
* l2)
* p4)) by
RLVECT_1:def 7;
then
A14: (p3
- p1)
= ((((
- 1)
* ((l2
/ l1)
* 1))
* p1)
+ (((1
/ l1)
* l2)
* p4)) by
XCMPLX_1: 75;
(l2
/ l1)
< (l1
/ l1) by
A4,
A13,
XREAL_1: 74;
then
A15: (l2
/ l1)
< 1 by
A4,
A13,
XCMPLX_1: 60;
p3
= ((p3
- p1)
+ p1) by
RLVECT_4: 1
.= ((((
- (l2
/ l1))
* p1)
+ ((l2
/ l1)
* p4))
+ p1) by
A14,
XCMPLX_1: 75
.= ((p1
+ ((
- (l2
/ l1))
* p1))
+ ((l2
/ l1)
* p4)) by
RLVECT_1:def 3
.= (((1
* p1)
+ ((
- (l2
/ l1))
* p1))
+ ((l2
/ l1)
* p4)) by
RLVECT_1:def 8
.= (((1
+ (
- (l2
/ l1)))
* p1)
+ ((l2
/ l1)
* p4)) by
RLVECT_1:def 6
.= (((1
- (l2
/ l1))
* p1)
+ ((l2
/ l1)
* p4));
hence thesis by
A2,
A4,
A15;
end;
end;
theorem ::
EUCLID_6:13
Th13: p
in (
LSeg (p1,p3)) & p
<> p1 & p
<> p3 implies ((
angle (p1,p,p2))
+ (
angle (p2,p,p3)))
=
PI or ((
angle (p1,p,p2))
+ (
angle (p2,p,p3)))
= (3
*
PI )
proof
assume p
in (
LSeg (p1,p3)) & p
<> p1 & p
<> p3;
then
A1: (
angle (p1,p,p3))
=
PI by
Th8;
((
angle (p1,p,p2))
+ (
angle (p2,p,p3)))
= (
angle (p1,p,p3)) or ((
angle (p1,p,p2))
+ (
angle (p2,p,p3)))
= ((
angle (p1,p,p3))
+ (2
*
PI )) by
Th4;
hence thesis by
A1;
end;
theorem ::
EUCLID_6:14
Th14: p
in (
LSeg (p1,p2)) & p
<> p1 & p
<> p2 & ((
angle (p3,p,p1))
= (
PI
/ 2) or (
angle (p3,p,p1))
= ((3
/ 2)
*
PI )) implies (
angle (p1,p,p3))
= (
angle (p3,p,p2))
proof
assume
A1: p
in (
LSeg (p1,p2)) & p
<> p1 & p
<> p2;
assume
A2: (
angle (p3,p,p1))
= (
PI
/ 2) or (
angle (p3,p,p1))
= ((3
/ 2)
*
PI );
A3: (
angle (p3,p,p1))
= (
angle (p2,p,p3))
proof
per cases by
A1,
A2,
Th13;
suppose ((
angle (p2,p,p3))
+ (
angle (p3,p,p1)))
=
PI & (
angle (p3,p,p1))
= (
PI
/ 2) or ((
angle (p2,p,p3))
+ (
angle (p3,p,p1)))
= (3
*
PI ) & (
angle (p3,p,p1))
= ((3
/ 2)
*
PI );
hence thesis;
end;
suppose
A4: ((
angle (p2,p,p3))
+ (
angle (p3,p,p1)))
=
PI & (
angle (p3,p,p1))
= ((3
/ 2)
*
PI );
((
-
PI )
/ 2)
< (
0
/ 2);
hence thesis by
A4,
COMPLEX2: 70;
end;
suppose
A5: ((
angle (p2,p,p3))
+ (
angle (p3,p,p1)))
= (3
*
PI ) & (
angle (p3,p,p1))
= (
PI
/ 2);
(
0
+ (2
*
PI ))
< ((
PI
/ 2)
+ (2
*
PI )) by
XREAL_1: 6;
hence thesis by
A5,
COMPLEX2: 70;
end;
end;
per cases ;
suppose
A6: (
angle (p3,p,p1))
=
0 ;
then (
angle (p1,p,p3))
=
0 by
EUCLID_3: 36;
hence thesis by
A3,
A6,
EUCLID_3: 36;
end;
suppose
A7: (
angle (p3,p,p1))
<>
0 ;
then (
angle (p1,p,p3))
= ((2
*
PI )
- (
angle (p3,p,p1))) by
EUCLID_3: 37;
hence thesis by
A3,
A7,
EUCLID_3: 37;
end;
end;
theorem ::
EUCLID_6:15
Th15: p
in (
LSeg (p1,p3)) & p
in (
LSeg (p2,p4)) & p
<> p1 & p
<> p2 & p
<> p3 & p
<> p4 implies (
angle (p1,p,p2))
= (
angle (p3,p,p4))
proof
assume
A1: p
in (
LSeg (p1,p3));
assume
A2: p
in (
LSeg (p2,p4));
assume
A3: p
<> p1;
assume
A4: p
<> p2;
assume
A5: p
<> p3;
assume
A6: p
<> p4;
per cases by
A1,
A2,
A3,
A4,
A5,
A6,
Th13;
suppose ((
angle (p1,p,p2))
+ (
angle (p2,p,p3)))
=
PI & ((
angle (p2,p,p3))
+ (
angle (p3,p,p4)))
=
PI ;
hence thesis;
end;
suppose
A7: ((
angle (p1,p,p2))
+ (
angle (p2,p,p3)))
= (3
*
PI ) & ((
angle (p2,p,p3))
+ (
angle (p3,p,p4)))
=
PI ;
(
angle (p3,p,p4))
>=
0 by
COMPLEX2: 70;
then ((
angle (p3,p,p4))
+ (2
*
PI ))
>= (
0
+ (2
*
PI )) by
XREAL_1: 6;
hence thesis by
A7,
COMPLEX2: 70;
end;
suppose
A8: ((
angle (p1,p,p2))
+ (
angle (p2,p,p3)))
=
PI & ((
angle (p2,p,p3))
+ (
angle (p3,p,p4)))
= (3
*
PI );
(
angle (p3,p,p4))
< (2
*
PI ) by
COMPLEX2: 70;
then ((
angle (p3,p,p4))
- (2
*
PI ))
< ((2
*
PI )
- (2
*
PI )) by
XREAL_1: 9;
hence thesis by
A8,
COMPLEX2: 70;
end;
suppose ((
angle (p1,p,p2))
+ (
angle (p2,p,p3)))
= (3
*
PI ) & ((
angle (p2,p,p3))
+ (
angle (p3,p,p4)))
= (3
*
PI );
hence thesis;
end;
end;
theorem ::
EUCLID_6:16
Th16:
|.(p3
- p1).|
=
|.(p2
- p3).| & p1
<> p2 implies (
angle (p3,p1,p2))
= (
angle (p1,p2,p3))
proof
assume
A1:
|.(p3
- p1).|
=
|.(p2
- p3).|;
assume
A2: p1
<> p2;
per cases ;
suppose
A3: (p1,p2,p3)
are_mutually_distinct ;
(
|.(p3
- p1).|
^2 )
= (((
|.(p1
- p2).|
^2 )
+ (
|.(p3
- p2).|
^2 ))
- (((2
*
|.(p1
- p2).|)
*
|.(p3
- p2).|)
* (
cos (
angle (p1,p2,p3))))) by
Th7;
then (((
|.(p1
- p2).|
^2 )
+ (
|.(p3
- p2).|
^2 ))
- (((2
*
|.(p1
- p2).|)
*
|.(p3
- p2).|)
* (
cos (
angle (p1,p2,p3)))))
= (((
|.(p3
- p1).|
^2 )
+ (
|.(p2
- p1).|
^2 ))
- (((2
*
|.(p3
- p1).|)
*
|.(p2
- p1).|)
* (
cos (
angle (p3,p1,p2))))) by
A1,
Th7;
then (((
|.(p3
- p2).|
^2 )
- (((2
*
|.(p1
- p2).|)
*
|.(p3
- p2).|)
* (
cos (
angle (p1,p2,p3)))))
+ (
|.(p1
- p2).|
^2 ))
= (((
|.(p3
- p1).|
^2 )
- (((2
*
|.(p3
- p1).|)
*
|.(p2
- p1).|)
* (
cos (
angle (p3,p1,p2)))))
+ (
|.(p2
- p1).|
^2 ));
then (((
|.(p3
- p2).|
^2 )
- (((2
*
|.(p1
- p2).|)
*
|.(p3
- p2).|)
* (
cos (
angle (p1,p2,p3)))))
+ (
|.(p1
- p2).|
^2 ))
= (((
|.(p3
- p1).|
^2 )
- (((2
*
|.(p3
- p1).|)
*
|.(p2
- p1).|)
* (
cos (
angle (p3,p1,p2)))))
+ (
|.(p1
- p2).|
^2 )) by
Lm2;
then ((
- (((2
*
|.(p1
- p2).|)
*
|.(p3
- p2).|)
* (
cos (
angle (p1,p2,p3)))))
+ (
|.(p3
- p2).|
^2 ))
= ((
- (((2
*
|.(p2
- p3).|)
*
|.(p2
- p1).|)
* (
cos (
angle (p3,p1,p2)))))
+ (
|.(p2
- p3).|
^2 )) by
A1;
then ((
- (((2
*
|.(p1
- p2).|)
*
|.(p3
- p2).|)
* (
cos (
angle (p1,p2,p3)))))
+ (
|.(p3
- p2).|
^2 ))
= ((
- (((2
*
|.(p2
- p3).|)
*
|.(p2
- p1).|)
* (
cos (
angle (p3,p1,p2)))))
+ (
|.(p3
- p2).|
^2 )) by
Lm2;
then ((
|.(p1
- p2).|
*
|.(p3
- p2).|)
* (
cos (
angle (p1,p2,p3))))
= ((
|.(p2
- p3).|
*
|.(p2
- p1).|)
* (
cos (
angle (p3,p1,p2))));
then ((
|.(p1
- p2).|
*
|.(p3
- p2).|)
* (
cos (
angle (p1,p2,p3))))
= ((
|.(p2
- p3).|
*
|.(p1
- p2).|)
* (
cos (
angle (p3,p1,p2)))) by
Lm2;
then
A4: ((
|.(p3
- p2).|
* (
cos (
angle (p1,p2,p3))))
*
|.(p1
- p2).|)
= ((
|.(p2
- p3).|
* (
cos (
angle (p3,p1,p2))))
*
|.(p1
- p2).|);
p1
<> p2 by
A3,
ZFMISC_1:def 5;
then
|.(p1
- p2).|
<>
0 by
Lm1;
then (
|.(p3
- p2).|
* (
cos (
angle (p1,p2,p3))))
= (
|.(p2
- p3).|
* (
cos (
angle (p3,p1,p2)))) by
A4,
XCMPLX_1: 5;
then
A5: (
|.(p2
- p3).|
* (
cos (
angle (p1,p2,p3))))
= (
|.(p2
- p3).|
* (
cos (
angle (p3,p1,p2)))) by
Lm2;
p1
<> p3 by
A3,
ZFMISC_1:def 5;
then
A6:
|.(p3
- p1).|
<>
0 by
Lm1;
(
|.(p3
- p1).|
* (
sin (
angle (p3,p1,p2))))
= (
|.(p3
- p2).|
* (
sin (
angle (p1,p2,p3)))) by
A2,
Th6
.= (
|.(p3
- p1).|
* (
sin (
angle (p1,p2,p3)))) by
A1,
Lm2;
then
A7: (
sin (
angle (p3,p1,p2)))
= (
sin (
angle (p1,p2,p3))) by
A6,
XCMPLX_1: 5;
p2
<> p3 by
A3,
ZFMISC_1:def 5;
then
|.(p2
- p3).|
<>
0 by
Lm1;
then (
cos (
angle (p1,p2,p3)))
= (
cos (
angle (p3,p1,p2))) by
A5,
XCMPLX_1: 5;
hence thesis by
A7,
Th1;
end;
suppose
A8: not (p1,p2,p3)
are_mutually_distinct ;
per cases by
A8,
ZFMISC_1:def 5;
suppose p1
= p2;
hence thesis by
A2;
end;
suppose
A9: p1
= p3;
then
|.(p2
- p3).|
=
0 by
A1,
Lm1;
then p2
= p3 by
Lm1;
hence thesis by
A9;
end;
suppose
A10: p2
= p3;
then
|.(p3
- p1).|
=
0 by
A1,
Lm1;
then p3
= p1 by
Lm1;
hence thesis by
A10;
end;
end;
end;
theorem ::
EUCLID_6:17
Th17: for p1, p2, p3, p st p
in (
LSeg (p1,p2)) & p
<> p2 holds
|((p3
- p), (p2
- p1))|
=
0 iff
|((p3
- p), (p2
- p))|
=
0
proof
let p1, p2, p3, p;
assume p
in (
LSeg (p1,p2));
then p
in (
LSeg (p2,p1));
then
consider l be
Real such that
A1: p
= (((1
- l)
* p2)
+ (l
* p1)) and
0
<= l and l
<= 1;
assume
A2: p
<> p2;
A3: (p2
- p)
= ((p2
- ((1
- l)
* p2))
- (l
* p1)) by
A1,
RLVECT_1: 27
.= ((p2
- ((1
* p2)
- (l
* p2)))
- (l
* p1)) by
RLVECT_1: 35
.= ((p2
- (p2
- (l
* p2)))
- (l
* p1)) by
RLVECT_1:def 8
.= (((p2
- p2)
+ (l
* p2))
- (l
* p1)) by
RLVECT_1: 29
.= (((
0. (
TOP-REAL 2))
+ (l
* p2))
- (l
* p1)) by
RLVECT_1: 5
.= ((l
* p2)
- (l
* p1)) by
RLVECT_1: 4
.= (l
* (p2
- p1)) by
RLVECT_1: 34;
hereby
assume
A4:
|((p3
- p), (p2
- p1))|
=
0 ;
thus
|((p3
- p), (p2
- p))|
= (l
*
|((p3
- p), (p2
- p1))|) by
A3,
EUCLID_2: 20
.=
0 by
A4;
end;
assume
|((p3
- p), (p2
- p))|
=
0 ;
then
A5: (l
*
|((p3
- p), (p2
- p1))|)
=
0 by
A3,
EUCLID_2: 20;
per cases by
A5;
suppose l
=
0 ;
then p
= ((1
* p2)
+ (
0. (
TOP-REAL 2))) by
A1,
RLVECT_1: 10
.= (1
* p2) by
RLVECT_1: 4
.= p2 by
RLVECT_1:def 8;
hence thesis by
A2;
end;
suppose
|((p3
- p), (p2
- p1))|
=
0 ;
hence thesis;
end;
end;
theorem ::
EUCLID_6:18
Th18:
|.(p1
- p3).|
=
|.(p2
- p3).| & p
in (
LSeg (p1,p2)) & p
<> p3 & p
<> p1 & ((
angle (p3,p,p1))
= (
PI
/ 2) or (
angle (p3,p,p1))
= ((3
/ 2)
*
PI )) implies (
angle (p1,p3,p))
= (
angle (p,p3,p2))
proof
assume
A1:
|.(p1
- p3).|
=
|.(p2
- p3).|;
then
A2:
|.(p3
- p1).|
=
|.(p2
- p3).| by
Lm2;
assume
A3: p
in (
LSeg (p1,p2));
assume that
A4: p
<> p3 and
A5: p
<> p1;
assume
A6: (
angle (p3,p,p1))
= (
PI
/ 2) or (
angle (p3,p,p1))
= ((3
/ 2)
*
PI );
per cases ;
suppose
A7: p1
= p2;
then (
LSeg (p1,p2))
=
{p1} by
RLTOPSP1: 70;
then p
= p1 by
A3,
TARSKI:def 1;
hence thesis by
A7;
end;
suppose
A8: p1
<> p2;
per cases ;
suppose
A9: p
<> p2;
p2
<> p3
proof
assume
A10: p2
= p3;
then
|.(p3
- p1).|
=
0 by
A2,
Lm1;
hence contradiction by
A8,
A10,
Lm1;
end;
then
A11: (
euc2cpx p2)
<> (
euc2cpx p3) by
EUCLID_3: 4;
p1
<> p3
proof
assume
A12: p1
= p3;
then
|.(p2
- p3).|
=
0 by
A1,
Lm1;
hence contradiction by
A8,
A12,
Lm1;
end;
then
A13: (
euc2cpx p1)
<> (
euc2cpx p3) by
EUCLID_3: 4;
A14: (
euc2cpx p)
<> (
euc2cpx p1) & (
euc2cpx p)
<> (
euc2cpx p3) by
A4,
A5,
EUCLID_3: 4;
A15: (
angle (p1,p,p3))
= (
angle (p3,p,p2)) & (
euc2cpx p)
<> (
euc2cpx p2) by
A3,
A5,
A6,
A9,
Th14,
EUCLID_3: 4;
A16: (
angle (p3,p1,p))
= (
angle (p3,p1,p2)) by
A3,
A5,
Th10
.= (
angle (p1,p2,p3)) by
A2,
A8,
Th16
.= (
angle (p,p2,p3)) by
A3,
A9,
Th9;
A17: (
angle (p,p3,p1))
= (
angle (p2,p3,p))
proof
per cases by
A16,
A14,
A13,
A11,
A15,
COMPLEX2: 88;
suppose (((
angle (p,p2,p3))
+ (
angle (p,p3,p1)))
+ (
angle (p3,p,p2)))
=
PI & (((
angle (p,p2,p3))
+ (
angle (p2,p3,p)))
+ (
angle (p3,p,p2)))
=
PI or (((
angle (p,p2,p3))
+ (
angle (p,p3,p1)))
+ (
angle (p3,p,p2)))
= (5
*
PI ) & (((
angle (p,p2,p3))
+ (
angle (p2,p3,p)))
+ (
angle (p3,p,p2)))
= (5
*
PI );
hence thesis;
end;
suppose
A18: (((
angle (p,p2,p3))
+ (
angle (p,p3,p1)))
+ (
angle (p3,p,p2)))
=
PI & (((
angle (p,p2,p3))
+ (
angle (p2,p3,p)))
+ (
angle (p3,p,p2)))
= (5
*
PI );
(
angle (p2,p3,p))
< (2
*
PI ) & (
angle (p,p3,p1))
>=
0 by
COMPLEX2: 70;
then
A19: ((
angle (p2,p3,p))
- (
angle (p,p3,p1)))
< ((2
*
PI )
-
0 ) by
XREAL_1: 14;
((
angle (p2,p3,p))
- (
angle (p,p3,p1)))
= (4
*
PI ) by
A18;
hence thesis by
A19,
XREAL_1: 64;
end;
suppose
A20: (((
angle (p,p2,p3))
+ (
angle (p,p3,p1)))
+ (
angle (p3,p,p2)))
= (5
*
PI ) & (((
angle (p,p2,p3))
+ (
angle (p2,p3,p)))
+ (
angle (p3,p,p2)))
=
PI ;
(
angle (p,p3,p1))
< (2
*
PI ) & (
angle (p2,p3,p))
>=
0 by
COMPLEX2: 70;
then
A21: ((
angle (p,p3,p1))
- (
angle (p2,p3,p)))
< ((2
*
PI )
-
0 ) by
XREAL_1: 14;
((
angle (p,p3,p1))
- (
angle (p2,p3,p)))
= (4
*
PI ) by
A20;
hence thesis by
A21,
XREAL_1: 64;
end;
end;
per cases ;
suppose
A22: (
angle (p,p3,p1))
=
0 ;
then (
angle (p1,p3,p))
=
0 by
EUCLID_3: 36;
hence thesis by
A17,
A22,
EUCLID_3: 36;
end;
suppose
A23: (
angle (p,p3,p1))
<>
0 ;
then (
angle (p1,p3,p))
= ((2
*
PI )
- (
angle (p,p3,p1))) by
EUCLID_3: 37;
hence thesis by
A17,
A23,
EUCLID_3: 37;
end;
end;
suppose
A24: p
= p2;
then
|.(p3
- p1).|
=
|.(p
- p3).| by
A1,
Lm2
.=
|.(p3
- p).| by
Lm2;
then ((
|.(p3
- p1).|
^2 )
+ (
|.(p1
- p).|
^2 ))
= (
|.(p3
- p1).|
^2 ) by
A4,
A5,
A6,
EUCLID_3: 46;
then
|.(p1
- p).|
=
0 ;
hence thesis by
A24,
Lm1;
end;
end;
end;
::$Notion-Name
theorem ::
EUCLID_6:19
for p1, p2, p3, p st
|.(p1
- p3).|
=
|.(p2
- p3).| & p
in (
LSeg (p1,p2)) & p
<> p3 holds ((
angle (p1,p3,p))
= (
angle (p,p3,p2)) implies
|.(p1
- p).|
=
|.(p
- p2).|) & (
|.(p1
- p).|
=
|.(p
- p2).| implies
|((p3
- p), (p2
- p1))|
=
0 ) & (
|((p3
- p), (p2
- p1))|
=
0 implies (
angle (p1,p3,p))
= (
angle (p,p3,p2)))
proof
let p1, p2, p3, p;
assume
A1:
|.(p1
- p3).|
=
|.(p2
- p3).|;
assume
A2: p
in (
LSeg (p1,p2));
assume
A3: p
<> p3;
thus (
angle (p1,p3,p))
= (
angle (p,p3,p2)) implies
|.(p1
- p).|
=
|.(p
- p2).|
proof
assume
A4: (
angle (p1,p3,p))
= (
angle (p,p3,p2));
A5: (
|.(p
- p1).|
^2 )
= (((
|.(p1
- p3).|
^2 )
+ (
|.(p
- p3).|
^2 ))
- (((2
*
|.(p1
- p3).|)
*
|.(p
- p3).|)
* (
cos (
angle (p1,p3,p))))) by
Th7
.= (((
|.(p
- p3).|
^2 )
+ (
|.(p2
- p3).|
^2 ))
- (((2
*
|.(p
- p3).|)
*
|.(p2
- p3).|)
* (
cos (
angle (p,p3,p2))))) by
A1,
A4
.= (
|.(p2
- p).|
^2 ) by
Th7;
thus
|.(p1
- p).|
=
|.(p
- p1).| by
Lm2
.= (
sqrt (
|.(p2
- p).|
^2 )) by
A5,
SQUARE_1: 22
.=
|.(p2
- p).| by
SQUARE_1: 22
.=
|.(p
- p2).| by
Lm2;
end;
thus
|.(p1
- p).|
=
|.(p
- p2).| implies
|((p3
- p), (p2
- p1))|
=
0
proof
assume
A6:
|.(p1
- p).|
=
|.(p
- p2).|;
per cases ;
suppose
A7: p
= p2;
then
|.(p1
- p).|
=
0 by
A6,
Lm1;
hence
|((p3
- p), (p2
- p1))|
=
|((p3
- p), (p
- p))| by
A7,
Lm1
.=
|((p3
- p), (
0. (
TOP-REAL 2)))| by
RLVECT_1: 5
.=
0 by
EUCLID_2: 32;
end;
suppose
A8: p
<> p2;
then
|.(p1
- p).|
<>
0 by
A6,
Lm1;
then
A9: p
<> p1 by
Lm1;
A10: (
cos (
angle (p1,p,p3)))
= (
- (
cos (
angle (p3,p,p2))))
proof
per cases by
A2,
A8,
A9,
Th13;
suppose ((
angle (p1,p,p3))
+ (
angle (p3,p,p2)))
=
PI ;
hence (
cos (
angle (p1,p,p3)))
= (
cos (
PI
+ (
- (
angle (p3,p,p2)))))
.= (
- (
cos (
- (
angle (p3,p,p2))))) by
SIN_COS: 79
.= (
- (
cos (
angle (p3,p,p2)))) by
SIN_COS: 31;
end;
suppose ((
angle (p1,p,p3))
+ (
angle (p3,p,p2)))
= (3
*
PI );
hence (
cos (
angle (p1,p,p3)))
= (
cos ((
PI
- (
angle (p3,p,p2)))
+ (2
*
PI )))
.= (
cos (
PI
+ (
- (
angle (p3,p,p2))))) by
SIN_COS: 79
.= (
- (
cos (
- (
angle (p3,p,p2))))) by
SIN_COS: 79
.= (
- (
cos (
angle (p3,p,p2)))) by
SIN_COS: 31;
end;
end;
A11: (
|.(p3
- p1).|
^2 )
= (((
|.(p1
- p).|
^2 )
+ (
|.(p3
- p).|
^2 ))
- (((2
*
|.(p1
- p).|)
*
|.(p3
- p).|)
* (
cos (
angle (p1,p,p3))))) & (
|.(p2
- p3).|
^2 )
= (((
|.(p3
- p).|
^2 )
+ (
|.(p2
- p).|
^2 ))
- (((2
*
|.(p3
- p).|)
*
|.(p2
- p).|)
* (
cos (
angle (p3,p,p2))))) by
Th7;
A12:
|.(p1
- p).|
=
|.(p2
- p).| by
A6,
Lm2;
A13:
|.(p2
- p).|
<>
0 by
A8,
Lm1;
A14:
|.(p3
- p).|
<>
0 by
A3,
Lm1;
|.(p3
- p1).|
=
|.(p2
- p3).| by
A1,
Lm2;
then (((2
*
|.(p1
- p).|)
* (
cos (
angle (p1,p,p3))))
*
|.(p3
- p).|)
= (((2
*
|.(p2
- p).|)
* (
cos (
angle (p3,p,p2))))
*
|.(p3
- p).|) by
A11,
A12;
then ((2
* (
cos (
angle (p1,p,p3))))
*
|.(p2
- p).|)
= ((2
* (
cos (
angle (p3,p,p2))))
*
|.(p2
- p).|) by
A14,
A12,
XCMPLX_1: 5;
then
A15: (2
* (
cos (
angle (p1,p,p3))))
= (2
* (
cos (
angle (p3,p,p2)))) by
A13,
XCMPLX_1: 5;
0
<= (
angle (p3,p,p2)) & (
angle (p3,p,p2))
< (2
*
PI ) by
COMPLEX2: 70;
then (
angle (p3,p,p2))
= (
PI
/ 2) or (
angle (p3,p,p2))
= ((3
/ 2)
*
PI ) by
A15,
A10,
COMPTRIG: 18;
then
|((p3
- p), (p2
- p))|
=
0 by
A3,
A8,
EUCLID_3: 45;
hence thesis by
A2,
A8,
Th17;
end;
end;
thus
|((p3
- p), (p2
- p1))|
=
0 implies (
angle (p1,p3,p))
= (
angle (p,p3,p2))
proof
assume
A16:
|((p3
- p), (p2
- p1))|
=
0 ;
then
A17:
0
= (
-
|((p3
- p), (p2
- p1))|)
.=
|((p3
- p), (
- (p2
- p1)))| by
EUCLID_2: 22
.=
|((p3
- p), (p1
- p2))| by
RLVECT_1: 33;
per cases ;
suppose p2
= p & p1
= p;
hence thesis;
end;
suppose
A18: p1
<> p;
then
|((p3
- p), (p1
- p))|
=
0 by
A2,
A17,
Th17;
then (
angle (p3,p,p1))
= (
PI
/ 2) or (
angle (p3,p,p1))
= ((3
/ 2)
*
PI ) by
A3,
A18,
EUCLID_3: 45;
hence thesis by
A1,
A2,
A3,
A18,
Th18;
end;
suppose
A19: p2
<> p;
then
|((p3
- p), (p2
- p))|
=
0 by
A2,
A16,
Th17;
then (
angle (p3,p,p2))
= (
PI
/ 2) or (
angle (p3,p,p2))
= ((3
/ 2)
*
PI ) by
A3,
A19,
EUCLID_3: 45;
then
A20: (
angle (p2,p3,p))
= (
angle (p,p3,p1)) by
A1,
A2,
A3,
A19,
Th18;
per cases ;
suppose
A21: (
angle (p2,p3,p))
=
0 ;
then (
angle (p,p3,p2))
=
0 by
EUCLID_3: 36;
hence thesis by
A20,
A21,
EUCLID_3: 36;
end;
suppose
A22: (
angle (p2,p3,p))
<>
0 ;
then (
angle (p,p3,p2))
= ((2
*
PI )
- (
angle (p2,p3,p))) by
EUCLID_3: 37;
hence thesis by
A20,
A22,
EUCLID_3: 37;
end;
end;
end;
end;
definition
let V be
RealLinearSpace;
::$Canceled
end
notation
let V be
RealLinearSpace;
let p1,p2,p3 be
Element of V;
antonym p1,p2,p3
is_a_triangle for p1,p2,p3
are_collinear ;
end
theorem ::
EUCLID_6:20
Th20: (p1,p2,p3)
is_a_triangle iff (p1,p2,p3)
are_mutually_distinct & (
angle (p1,p2,p3))
<>
PI & (
angle (p2,p3,p1))
<>
PI & (
angle (p3,p1,p2))
<>
PI
proof
hereby
assume
A1: (p1,p2,p3)
is_a_triangle ;
then
A2: not p2
in (
LSeg (p3,p1)) by
TOPREAL9: 67;
then
A3: p2
<> p3 by
RLTOPSP1: 68;
A4: not p1
in (
LSeg (p2,p3)) by
A1,
TOPREAL9: 67;
then p1
<> p2 & p1
<> p3 by
RLTOPSP1: 68;
hence (p1,p2,p3)
are_mutually_distinct by
A3,
ZFMISC_1:def 5;
not p3
in (
LSeg (p1,p2)) by
A1,
TOPREAL9: 67;
hence (
angle (p1,p2,p3))
<>
PI & (
angle (p2,p3,p1))
<>
PI & (
angle (p3,p1,p2))
<>
PI by
A4,
A2,
Th11;
end;
assume
A5: (p1,p2,p3)
are_mutually_distinct ;
then
A6: p1
<> p2 by
ZFMISC_1:def 5;
assume
A7: (
angle (p1,p2,p3))
<>
PI ;
A8: p1
<> p3 by
A5,
ZFMISC_1:def 5;
A9: p2
<> p3 by
A5,
ZFMISC_1:def 5;
assume (
angle (p2,p3,p1))
<>
PI ;
then
A10: not p3
in (
LSeg (p2,p1)) by
A8,
A9,
Th8;
assume (
angle (p3,p1,p2))
<>
PI ;
then
A11: not p1
in (
LSeg (p3,p2)) by
A6,
A8,
Th8;
not p2
in (
LSeg (p1,p3)) by
A6,
A9,
A7,
Th8;
hence thesis by
A10,
A11,
TOPREAL9: 67;
end;
Lm18: p3
<> p2 & p3
<> p1 & p2
<> p1 & p5
<> p6 & p5
<> p4 & p6
<> p4 & (
angle (p1,p2,p3))
<>
PI & (
angle (p2,p3,p1))
<>
PI & (
angle (p3,p1,p2))
<>
PI & (
angle (p4,p5,p6))
<>
PI & (
angle (p5,p6,p4))
<>
PI & (
angle (p6,p4,p5))
<>
PI & (
angle (p1,p2,p3))
= (
angle (p4,p5,p6)) & (
angle (p3,p1,p2))
= (
angle (p6,p4,p5)) implies (
|.(p3
- p2).|
*
|.(p4
- p6).|)
= (
|.(p1
- p3).|
*
|.(p6
- p5).|)
proof
assume that
A1: p3
<> p2 & p3
<> p1 and
A2: p2
<> p1;
A3: (
euc2cpx p3)
<> (
euc2cpx p2) & (
euc2cpx p3)
<> (
euc2cpx p1) by
A1,
EUCLID_3: 4;
A4: (
euc2cpx p2)
<> (
euc2cpx p1) by
A2,
EUCLID_3: 4;
assume that
A5: p5
<> p6 and
A6: p5
<> p4 and
A7: p6
<> p4;
A8: (
euc2cpx p5)
<> (
euc2cpx p6) & (
euc2cpx p5)
<> (
euc2cpx p4) by
A5,
A6,
EUCLID_3: 4;
A9: (
euc2cpx p6)
<> (
euc2cpx p4) by
A7,
EUCLID_3: 4;
assume
A10: (
angle (p1,p2,p3))
<>
PI & (
angle (p2,p3,p1))
<>
PI & (
angle (p3,p1,p2))
<>
PI ;
assume
A11: (
angle (p4,p5,p6))
<>
PI & (
angle (p5,p6,p4))
<>
PI & (
angle (p6,p4,p5))
<>
PI ;
assume that
A12: (
angle (p1,p2,p3))
= (
angle (p4,p5,p6)) and
A13: (
angle (p3,p1,p2))
= (
angle (p6,p4,p5));
A14: ((
sin (
angle (p2,p1,p3)))
* (
sin (
angle (p6,p5,p4))))
= ((
sin (
angle (p2,p1,p3)))
* (
- (
sin (
angle (p1,p2,p3))))) by
A12,
Th2
.= ((
- (
sin (
angle (p6,p4,p5))))
* (
- (
sin (
angle (p1,p2,p3))))) by
A13,
Th2
.= ((
sin (
angle (p5,p4,p6)))
* (
- (
sin (
angle (p1,p2,p3))))) by
Th2
.= ((
sin (
angle (p3,p2,p1)))
* (
sin (
angle (p5,p4,p6)))) by
Th2;
per cases ;
suppose
A15: ((
sin (
angle (p3,p2,p1)))
* (
sin (
angle (p5,p4,p6))))
<>
0 ;
A16: (((
|.(p3
- p2).|
*
|.(p4
- p6).|)
* (
sin (
angle (p3,p2,p1))))
* (
sin (
angle (p5,p4,p6))))
= ((
|.(p3
- p2).|
* (
sin (
angle (p3,p2,p1))))
* (
|.(p4
- p6).|
* (
sin (
angle (p5,p4,p6)))))
.= ((
|.(p3
- p1).|
* (
sin (
angle (p2,p1,p3))))
* (
|.(p4
- p6).|
* (
sin (
angle (p5,p4,p6))))) by
A2,
Th6
.= ((
|.(p3
- p1).|
* (
sin (
angle (p2,p1,p3))))
* (
|.(p6
- p4).|
* (
sin (
angle (p5,p4,p6))))) by
Lm2
.= ((
|.(p3
- p1).|
* (
sin (
angle (p2,p1,p3))))
* (
|.(p6
- p5).|
* (
sin (
angle (p6,p5,p4))))) by
A6,
Th6
.= (((
|.(p3
- p1).|
*
|.(p6
- p5).|)
* (
sin (
angle (p2,p1,p3))))
* (
sin (
angle (p6,p5,p4))));
thus (
|.(p3
- p2).|
*
|.(p4
- p6).|)
= (((
|.(p3
- p2).|
*
|.(p4
- p6).|)
* ((
sin (
angle (p3,p2,p1)))
* (
sin (
angle (p5,p4,p6)))))
/ ((
sin (
angle (p3,p2,p1)))
* (
sin (
angle (p5,p4,p6))))) by
A15,
XCMPLX_1: 89
.= (((
|.(p3
- p1).|
*
|.(p6
- p5).|)
* ((
sin (
angle (p2,p1,p3)))
* (
sin (
angle (p6,p5,p4)))))
/ ((
sin (
angle (p3,p2,p1)))
* (
sin (
angle (p5,p4,p6))))) by
A16
.= (
|.(p3
- p1).|
*
|.(p6
- p5).|) by
A14,
A15,
XCMPLX_1: 89
.= (
|.(p1
- p3).|
*
|.(p6
- p5).|) by
Lm2;
end;
suppose
A17: ((
sin (
angle (p3,p2,p1)))
* (
sin (
angle (p5,p4,p6))))
=
0 ;
per cases by
A17;
suppose
A18: (
sin (
angle (p3,p2,p1)))
=
0 ;
A19: ((2
*
PI )
*
0 )
<= (
angle (p1,p2,p3)) & (
angle (p1,p2,p3))
< ((2
*
PI )
+ ((2
*
PI )
*
0 )) by
COMPLEX2: 70;
(
- (
sin (
angle (p1,p2,p3))))
=
0 by
A18,
Th2;
then (
angle (p1,p2,p3))
= ((2
*
PI )
*
0 ) or (
angle (p1,p2,p3))
= (
PI
+ ((2
*
PI )
*
0 )) by
A19,
SIN_COS6: 21;
hence thesis by
A3,
A4,
A10,
COMPLEX2: 87;
end;
suppose
A20: (
sin (
angle (p5,p4,p6)))
=
0 ;
A21: ((2
*
PI )
*
0 )
<= (
angle (p6,p4,p5)) & (
angle (p6,p4,p5))
< ((2
*
PI )
+ ((2
*
PI )
*
0 )) by
COMPLEX2: 70;
(
- (
sin (
angle (p6,p4,p5))))
=
0 by
A20,
Th2;
then (
angle (p6,p4,p5))
= ((2
*
PI )
*
0 ) or (
angle (p6,p4,p5))
= (
PI
+ ((2
*
PI )
*
0 )) by
A21,
SIN_COS6: 21;
hence thesis by
A8,
A9,
A11,
COMPLEX2: 87;
end;
end;
end;
theorem ::
EUCLID_6:21
Th21: (p1,p2,p3)
is_a_triangle & (p4,p5,p6)
is_a_triangle & (
angle (p1,p2,p3))
= (
angle (p4,p5,p6)) & (
angle (p3,p1,p2))
= (
angle (p6,p4,p5)) implies (
|.(p3
- p2).|
*
|.(p4
- p6).|)
= (
|.(p1
- p3).|
*
|.(p6
- p5).|) & (
|.(p3
- p2).|
*
|.(p5
- p4).|)
= (
|.(p2
- p1).|
*
|.(p6
- p5).|) & (
|.(p1
- p3).|
*
|.(p5
- p4).|)
= (
|.(p2
- p1).|
*
|.(p4
- p6).|)
proof
assume (p1,p2,p3)
is_a_triangle ;
then
A1: (p1,p2,p3)
are_mutually_distinct by
Th20;
then
A2: p3
<> p2 by
ZFMISC_1:def 5;
A3: p2
<> p1 by
A1,
ZFMISC_1:def 5;
then
A4: (
euc2cpx p2)
<> (
euc2cpx p1) by
EUCLID_3: 4;
A5: p3
<> p1 by
A1,
ZFMISC_1:def 5;
then
A6: (
euc2cpx p3)
<> (
euc2cpx p1) by
EUCLID_3: 4;
assume
A7: (p4,p5,p6)
is_a_triangle ;
then
A8: (
angle (p4,p5,p6))
<>
PI & (
angle (p5,p6,p4))
<>
PI by
Th20;
A9: (p4,p5,p6)
are_mutually_distinct by
A7,
Th20;
then
A10: p5
<> p6 by
ZFMISC_1:def 5;
then
A11: (
euc2cpx p5)
<> (
euc2cpx p6) by
EUCLID_3: 4;
A12: p6
<> p4 by
A9,
ZFMISC_1:def 5;
then
A13: (
euc2cpx p6)
<> (
euc2cpx p4) by
EUCLID_3: 4;
A14: p5
<> p4 by
A9,
ZFMISC_1:def 5;
then
A15: (
euc2cpx p5)
<> (
euc2cpx p4) by
EUCLID_3: 4;
assume
A16: (
angle (p1,p2,p3))
= (
angle (p4,p5,p6)) & (
angle (p3,p1,p2))
= (
angle (p6,p4,p5));
A17: (
euc2cpx p3)
<> (
euc2cpx p2) by
A2,
EUCLID_3: 4;
A18: (
angle (p2,p3,p1))
= (
angle (p5,p6,p4))
proof
per cases by
A17,
A6,
A4,
A11,
A15,
A13,
COMPLEX2: 88;
suppose (((
angle (p3,p1,p2))
+ (
angle (p1,p2,p3)))
+ (
angle (p2,p3,p1)))
=
PI & (((
angle (p6,p4,p5))
+ (
angle (p4,p5,p6)))
+ (
angle (p5,p6,p4)))
=
PI ;
hence thesis by
A16;
end;
suppose (((
angle (p3,p1,p2))
+ (
angle (p1,p2,p3)))
+ (
angle (p2,p3,p1)))
= (5
*
PI ) & (((
angle (p6,p4,p5))
+ (
angle (p4,p5,p6)))
+ (
angle (p5,p6,p4)))
= (5
*
PI );
hence thesis by
A16;
end;
suppose
A19: (((
angle (p3,p1,p2))
+ (
angle (p1,p2,p3)))
+ (
angle (p2,p3,p1)))
=
PI & (((
angle (p6,p4,p5))
+ (
angle (p4,p5,p6)))
+ (
angle (p5,p6,p4)))
= (5
*
PI );
(
angle (p2,p3,p1))
>=
0 & (
- (
angle (p5,p6,p4)))
> (
- (2
*
PI )) by
COMPLEX2: 70,
XREAL_1: 24;
then
A20: ((
angle (p2,p3,p1))
+ (
- (
angle (p5,p6,p4))))
> (
0
+ (
- (2
*
PI ))) by
XREAL_1: 8;
((
angle (p2,p3,p1))
- (
angle (p5,p6,p4)))
= (
- (4
*
PI )) by
A16,
A19;
then (4
*
PI )
< (2
*
PI ) by
A20,
XREAL_1: 24;
then ((4
*
PI )
/
PI )
< ((2
*
PI )
/
PI ) by
XREAL_1: 74;
then 4
< ((2
*
PI )
/
PI ) by
XCMPLX_1: 89;
then 4
< 2 by
XCMPLX_1: 89;
hence thesis;
end;
suppose
A21: (((
angle (p3,p1,p2))
+ (
angle (p1,p2,p3)))
+ (
angle (p2,p3,p1)))
= (5
*
PI ) & (((
angle (p6,p4,p5))
+ (
angle (p4,p5,p6)))
+ (
angle (p5,p6,p4)))
=
PI ;
(
angle (p2,p3,p1))
< (2
*
PI ) & (
angle (p5,p6,p4))
>=
0 by
COMPLEX2: 70;
then ((
angle (p2,p3,p1))
+ (
- (
angle (p5,p6,p4))))
< ((2
*
PI )
+ (
-
0 )) by
XREAL_1: 8;
then ((4
*
PI )
/
PI )
< ((2
*
PI )
/
PI ) by
A16,
A21,
XREAL_1: 74;
then 4
< ((2
*
PI )
/
PI ) by
XCMPLX_1: 89;
then 4
< 2 by
XCMPLX_1: 89;
hence thesis;
end;
end;
A22: (
angle (p6,p4,p5))
<>
PI by
A7,
Th20;
hence (
|.(p3
- p2).|
*
|.(p4
- p6).|)
= (
|.(p1
- p3).|
*
|.(p6
- p5).|) by
A2,
A5,
A3,
A8,
A10,
A14,
A12,
A16,
A18,
Lm18;
thus (
|.(p3
- p2).|
*
|.(p5
- p4).|)
= (
|.(p2
- p1).|
*
|.(p6
- p5).|) by
A2,
A5,
A3,
A8,
A22,
A10,
A14,
A12,
A16,
A18,
Lm18;
thus thesis by
A2,
A5,
A3,
A8,
A22,
A10,
A14,
A12,
A16,
A18,
Lm18;
end;
Lm19: p3
<> p2 & p3
<> p1 & p2
<> p1 & p4
<> p5 & p4
<> p6 & p5
<> p6 & (
angle (p1,p2,p3))
<>
PI & (
angle (p2,p3,p1))
<>
PI & (
angle (p3,p1,p2))
<>
PI & (
angle (p4,p5,p6))
<>
PI & (
angle (p5,p6,p4))
<>
PI & (
angle (p6,p4,p5))
<>
PI & (
angle (p1,p2,p3))
= (
angle (p4,p5,p6)) & (
angle (p3,p1,p2))
= (
angle (p5,p6,p4)) implies (
|.(p2
- p3).|
*
|.(p4
- p6).|)
= (
|.(p3
- p1).|
*
|.(p5
- p4).|)
proof
assume that
A1: p3
<> p2 & p3
<> p1 and
A2: p2
<> p1;
A3: (
euc2cpx p3)
<> (
euc2cpx p2) & (
euc2cpx p3)
<> (
euc2cpx p1) by
A1,
EUCLID_3: 4;
A4: (
euc2cpx p2)
<> (
euc2cpx p1) by
A2,
EUCLID_3: 4;
assume that
A5: p4
<> p5 & p4
<> p6 and
A6: p5
<> p6;
A7: (
euc2cpx p4)
<> (
euc2cpx p5) & (
euc2cpx p4)
<> (
euc2cpx p6) by
A5,
EUCLID_3: 4;
A8: (
euc2cpx p5)
<> (
euc2cpx p6) by
A6,
EUCLID_3: 4;
assume
A9: (
angle (p1,p2,p3))
<>
PI & (
angle (p2,p3,p1))
<>
PI & (
angle (p3,p1,p2))
<>
PI ;
assume that
A10: (
angle (p4,p5,p6))
<>
PI and
A11: (
angle (p5,p6,p4))
<>
PI and
A12: (
angle (p6,p4,p5))
<>
PI ;
assume that
A13: (
angle (p1,p2,p3))
= (
angle (p4,p5,p6)) and
A14: (
angle (p3,p1,p2))
= (
angle (p5,p6,p4));
A15: ((
sin (
angle (p1,p2,p3)))
* (
sin (
angle (p4,p6,p5))))
= ((
sin (
angle (p4,p5,p6)))
* (
- (
sin (
angle (p5,p6,p4))))) by
A13,
Th2
.= ((
- (
sin (
angle (p6,p5,p4))))
* (
- (
sin (
angle (p3,p1,p2))))) by
A14,
Th2
.= ((
sin (
angle (p6,p5,p4)))
* (
sin (
angle (p3,p1,p2))));
per cases ;
suppose
A16: ((
sin (
angle (p1,p2,p3)))
* (
sin (
angle (p4,p6,p5))))
<>
0 ;
A17: (
|.(p4
- p5).|
* (
sin (
angle (p6,p5,p4))))
= (
|.(p4
- p6).|
* (
sin (
angle (p4,p6,p5)))) by
A6,
Th6;
A18: (((
|.(p3
- p2).|
*
|.(p4
- p6).|)
* (
sin (
angle (p1,p2,p3))))
* (
sin (
angle (p4,p6,p5))))
= ((
|.(p3
- p2).|
* (
sin (
angle (p1,p2,p3))))
* (
|.(p4
- p6).|
* (
sin (
angle (p4,p6,p5)))))
.= ((
|.(p3
- p1).|
* (
sin (
angle (p3,p1,p2))))
* (
|.(p4
- p5).|
* (
sin (
angle (p6,p5,p4))))) by
A2,
A17,
Th6
.= (((
|.(p3
- p1).|
*
|.(p4
- p5).|)
* (
sin (
angle (p6,p5,p4))))
* (
sin (
angle (p3,p1,p2))));
thus (
|.(p2
- p3).|
*
|.(p4
- p6).|)
= (
|.(p3
- p2).|
*
|.(p4
- p6).|) by
Lm2
.= (((
|.(p3
- p2).|
*
|.(p4
- p6).|)
* ((
sin (
angle (p1,p2,p3)))
* (
sin (
angle (p4,p6,p5)))))
/ ((
sin (
angle (p1,p2,p3)))
* (
sin (
angle (p4,p6,p5))))) by
A16,
XCMPLX_1: 89
.= (((
|.(p3
- p1).|
*
|.(p4
- p5).|)
* ((
sin (
angle (p6,p5,p4)))
* (
sin (
angle (p3,p1,p2)))))
/ ((
sin (
angle (p6,p5,p4)))
* (
sin (
angle (p3,p1,p2))))) by
A15,
A18
.= (
|.(p3
- p1).|
*
|.(p4
- p5).|) by
A15,
A16,
XCMPLX_1: 89
.= (
|.(p3
- p1).|
*
|.(p5
- p4).|) by
Lm2;
end;
suppose
A19: ((
sin (
angle (p1,p2,p3)))
* (
sin (
angle (p4,p6,p5))))
=
0 ;
per cases by
A19;
suppose
A20: (
sin (
angle (p1,p2,p3)))
=
0 ;
((2
*
PI )
*
0 )
<= (
angle (p1,p2,p3)) & (
angle (p1,p2,p3))
< ((2
*
PI )
+ ((2
*
PI )
*
0 )) by
COMPLEX2: 70;
then (
angle (p1,p2,p3))
= ((2
*
PI )
*
0 ) or (
angle (p1,p2,p3))
= (
PI
+ ((2
*
PI )
*
0 )) by
A20,
SIN_COS6: 21;
hence thesis by
A3,
A4,
A9,
COMPLEX2: 87;
end;
suppose
A21: (
sin (
angle (p4,p6,p5)))
=
0 ;
((2
*
PI )
*
0 )
<= (
angle (p4,p6,p5)) & (
angle (p4,p6,p5))
< ((2
*
PI )
+ ((2
*
PI )
*
0 )) by
COMPLEX2: 70;
then (
angle (p4,p6,p5))
= ((2
*
PI )
*
0 ) or (
angle (p4,p6,p5))
= (
PI
+ ((2
*
PI )
*
0 )) by
A21,
SIN_COS6: 21;
then (
angle (p6,p5,p4))
=
0 & (
angle (p5,p4,p6))
=
PI or (
angle (p6,p5,p4))
=
PI & (
angle (p5,p4,p6))
=
0 by
A7,
A8,
A11,
COMPLEX2: 82,
COMPLEX2: 87;
hence thesis by
A10,
A12,
COMPLEX2: 82;
end;
end;
end;
theorem ::
EUCLID_6:22
Th22: (p1,p2,p3)
is_a_triangle & (p4,p5,p6)
is_a_triangle & (
angle (p1,p2,p3))
= (
angle (p4,p5,p6)) & (
angle (p3,p1,p2))
= (
angle (p5,p6,p4)) implies (
|.(p2
- p3).|
*
|.(p4
- p6).|)
= (
|.(p3
- p1).|
*
|.(p5
- p4).|) & (
|.(p2
- p3).|
*
|.(p6
- p5).|)
= (
|.(p1
- p2).|
*
|.(p5
- p4).|) & (
|.(p3
- p1).|
*
|.(p6
- p5).|)
= (
|.(p1
- p2).|
*
|.(p4
- p6).|)
proof
assume
A1: (p1,p2,p3)
is_a_triangle ;
then
A2: (p1,p2,p3)
are_mutually_distinct by
Th20;
then
A3: p3
<> p2 by
ZFMISC_1:def 5;
A4: (
angle (p3,p1,p2))
<>
PI by
A1,
Th20;
A5: p3
<> p1 by
A2,
ZFMISC_1:def 5;
then
A6: (
euc2cpx p3)
<> (
euc2cpx p1) by
EUCLID_3: 4;
A7: p2
<> p1 by
A2,
ZFMISC_1:def 5;
then
A8: (
euc2cpx p2)
<> (
euc2cpx p1) by
EUCLID_3: 4;
assume
A9: (p4,p5,p6)
is_a_triangle ;
then
A10: (p4,p5,p6)
are_mutually_distinct by
Th20;
then
A11: p4
<> p5 by
ZFMISC_1:def 5;
then
A12: (
euc2cpx p4)
<> (
euc2cpx p5) by
EUCLID_3: 4;
A13: p5
<> p6 by
A10,
ZFMISC_1:def 5;
then
A14: (
euc2cpx p5)
<> (
euc2cpx p6) by
EUCLID_3: 4;
A15: (
angle (p6,p4,p5))
<>
PI by
A9,
Th20;
A16: p4
<> p6 by
A10,
ZFMISC_1:def 5;
then
A17: (
euc2cpx p4)
<> (
euc2cpx p6) by
EUCLID_3: 4;
assume
A18: (
angle (p1,p2,p3))
= (
angle (p4,p5,p6)) & (
angle (p3,p1,p2))
= (
angle (p5,p6,p4));
A19: (
euc2cpx p3)
<> (
euc2cpx p2) by
A3,
EUCLID_3: 4;
A20: (
angle (p2,p3,p1))
= (
angle (p6,p4,p5))
proof
per cases by
A19,
A6,
A8,
A12,
A17,
A14,
COMPLEX2: 88;
suppose (((
angle (p3,p1,p2))
+ (
angle (p1,p2,p3)))
+ (
angle (p2,p3,p1)))
=
PI & (((
angle (p5,p6,p4))
+ (
angle (p6,p4,p5)))
+ (
angle (p4,p5,p6)))
=
PI ;
hence thesis by
A18;
end;
suppose (((
angle (p3,p1,p2))
+ (
angle (p1,p2,p3)))
+ (
angle (p2,p3,p1)))
= (5
*
PI ) & (((
angle (p5,p6,p4))
+ (
angle (p6,p4,p5)))
+ (
angle (p4,p5,p6)))
= (5
*
PI );
hence thesis by
A18;
end;
suppose
A21: (((
angle (p3,p1,p2))
+ (
angle (p1,p2,p3)))
+ (
angle (p2,p3,p1)))
=
PI & (((
angle (p5,p6,p4))
+ (
angle (p6,p4,p5)))
+ (
angle (p4,p5,p6)))
= (5
*
PI );
(
angle (p2,p3,p1))
>=
0 & (
- (
angle (p6,p4,p5)))
> (
- (2
*
PI )) by
COMPLEX2: 70,
XREAL_1: 24;
then
A22: ((
angle (p2,p3,p1))
+ (
- (
angle (p6,p4,p5))))
> (
0
+ (
- (2
*
PI ))) by
XREAL_1: 8;
((
angle (p2,p3,p1))
- (
angle (p6,p4,p5)))
= (
- (4
*
PI )) by
A18,
A21;
then (4
*
PI )
< (2
*
PI ) by
A22,
XREAL_1: 24;
then ((4
*
PI )
/
PI )
< ((2
*
PI )
/
PI ) by
XREAL_1: 74;
then 4
< ((2
*
PI )
/
PI ) by
XCMPLX_1: 89;
then 4
< 2 by
XCMPLX_1: 89;
hence thesis;
end;
suppose
A23: (((
angle (p3,p1,p2))
+ (
angle (p1,p2,p3)))
+ (
angle (p2,p3,p1)))
= (5
*
PI ) & (((
angle (p5,p6,p4))
+ (
angle (p6,p4,p5)))
+ (
angle (p4,p5,p6)))
=
PI ;
(
angle (p2,p3,p1))
< (2
*
PI ) & (
angle (p6,p4,p5))
>=
0 by
COMPLEX2: 70;
then ((
angle (p2,p3,p1))
+ (
- (
angle (p6,p4,p5))))
< ((2
*
PI )
+ (
-
0 )) by
XREAL_1: 8;
then ((4
*
PI )
/
PI )
< ((2
*
PI )
/
PI ) by
A18,
A23,
XREAL_1: 74;
then 4
< ((2
*
PI )
/
PI ) by
XCMPLX_1: 89;
then 4
< 2 by
XCMPLX_1: 89;
hence thesis;
end;
end;
(
angle (p1,p2,p3))
<>
PI & (
angle (p2,p3,p1))
<>
PI by
A1,
Th20;
hence (
|.(p2
- p3).|
*
|.(p4
- p6).|)
= (
|.(p3
- p1).|
*
|.(p5
- p4).|) by
A4,
A3,
A5,
A7,
A15,
A11,
A16,
A13,
A18,
Lm19;
A24: (
angle (p4,p5,p6))
<>
PI & (
angle (p5,p6,p4))
<>
PI by
A9,
Th20;
hence (
|.(p2
- p3).|
*
|.(p6
- p5).|)
= (
|.(p1
- p2).|
*
|.(p5
- p4).|) by
A3,
A5,
A7,
A15,
A11,
A16,
A13,
A18,
A20,
Lm19;
thus thesis by
A3,
A5,
A7,
A24,
A15,
A11,
A16,
A13,
A18,
A20,
Lm19;
end;
theorem ::
EUCLID_6:23
Th23: (p1,p2,p3)
are_mutually_distinct & (
angle (p1,p2,p3))
<=
PI implies (
angle (p2,p3,p1))
<=
PI & (
angle (p3,p1,p2))
<=
PI
proof
A1: (
angle (p1,p2,p3))
>=
0 by
COMPLEX2: 70;
assume
A2: (p1,p2,p3)
are_mutually_distinct ;
then p1
<> p3 by
ZFMISC_1:def 5;
then
A3: (
euc2cpx p1)
<> (
euc2cpx p3) by
EUCLID_3: 4;
p2
<> p3 by
A2,
ZFMISC_1:def 5;
then
A4: (
euc2cpx p2)
<> (
euc2cpx p3) by
EUCLID_3: 4;
p1
<> p2 by
A2,
ZFMISC_1:def 5;
then (
euc2cpx p1)
<> (
euc2cpx p2) by
EUCLID_3: 4;
then
A5: (((
angle (p1,p2,p3))
+ (
angle (p2,p3,p1)))
+ (
angle (p3,p1,p2)))
=
PI or (((
angle (p1,p2,p3))
+ (
angle (p2,p3,p1)))
+ (
angle (p3,p1,p2)))
= (5
*
PI ) by
A3,
A4,
COMPLEX2: 88;
(
angle (p2,p3,p1))
< (2
*
PI ) & (
angle (p3,p1,p2))
< (2
*
PI ) by
COMPLEX2: 70;
then
A6: ((
angle (p2,p3,p1))
+ (
angle (p3,p1,p2)))
< ((2
*
PI )
+ (2
*
PI )) by
XREAL_1: 8;
assume (
angle (p1,p2,p3))
<=
PI ;
then
A7: ((
angle (p1,p2,p3))
+ ((
angle (p2,p3,p1))
+ (
angle (p3,p1,p2))))
< (
PI
+ (4
*
PI )) by
A6,
XREAL_1: 8;
A8: (
angle (p3,p1,p2))
>=
0 by
COMPLEX2: 70;
thus (
angle (p2,p3,p1))
<=
PI
proof
assume (
angle (p2,p3,p1))
>
PI ;
then ((
angle (p1,p2,p3))
+ (
angle (p2,p3,p1)))
> (
0
+
PI ) by
A1,
XREAL_1: 8;
hence contradiction by
A5,
A7,
A8,
XREAL_1: 8;
end;
A9: (
angle (p2,p3,p1))
>=
0 by
COMPLEX2: 70;
thus (
angle (p3,p1,p2))
<=
PI
proof
assume (
angle (p3,p1,p2))
>
PI ;
then ((
angle (p2,p3,p1))
+ (
angle (p3,p1,p2)))
> (
0
+
PI ) by
A9,
XREAL_1: 8;
hence contradiction by
A5,
A7,
A1,
XREAL_1: 8;
end;
end;
theorem ::
EUCLID_6:24
Th24: (p1,p2,p3)
are_mutually_distinct & (
angle (p1,p2,p3))
>
PI implies (
angle (p2,p3,p1))
>
PI & (
angle (p3,p1,p2))
>
PI
proof
assume
A1: (p1,p2,p3)
are_mutually_distinct ;
then
A2: p1
<> p2 & p1
<> p3 by
ZFMISC_1:def 5;
assume
A3: (
angle (p1,p2,p3))
>
PI ;
A4: p2
<> p3 by
A1,
ZFMISC_1:def 5;
then (p2,p3,p1)
are_mutually_distinct by
A2,
ZFMISC_1:def 5;
hence (
angle (p2,p3,p1))
>
PI by
A3,
Th23;
(p3,p1,p2)
are_mutually_distinct by
A2,
A4,
ZFMISC_1:def 5;
hence thesis by
A3,
Th23;
end;
Lm20: for n be
Element of
NAT , q1 be
Point of (
TOP-REAL n) holds for f be
Function of (
TOP-REAL n),
R^1 st (for q be
Point of (
TOP-REAL n) holds (f
. q)
=
|.(q
- q1).|) holds f is
continuous
proof
let n be
Element of
NAT ;
let q1 be
Point of (
TOP-REAL n);
let f be
Function of (
TOP-REAL n),
R^1 ;
A1: the TopStruct of (
TOP-REAL n)
= (
TopSpaceMetr (
Euclid n)) by
EUCLID:def 8;
then
reconsider f1 = f as
Function of (
TopSpaceMetr (
Euclid n)), (
TopSpaceMetr
RealSpace ) by
TOPMETR:def 6;
assume
A2: for q be
Point of (
TOP-REAL n) holds (f
. q)
=
|.(q
- q1).|;
now
let r be
Real, u be
Element of (
Euclid n), u1 be
Element of
RealSpace ;
assume that
A3: r
>
0 and
A4: u1
= (f1
. u);
set s1 = r;
for w be
Element of (
Euclid n), w1 be
Element of
RealSpace st w1
= (f1
. w) & (
dist (u,w))
< s1 holds (
dist (u1,w1))
< r
proof
let w be
Element of (
Euclid n), w1 be
Element of
RealSpace ;
assume that
A5: w1
= (f1
. w) and
A6: (
dist (u,w))
< s1;
reconsider tu = u1, tw = w1 as
Real;
reconsider qw = w, qu = u as
Point of (
TOP-REAL n) by
TOPREAL3: 8;
A7: (
dist (u1,w1))
= (the
distance of
RealSpace
. (u1,w1)) by
METRIC_1:def 1
.=
|.(tu
- tw).| by
METRIC_1:def 12,
METRIC_1:def 13;
A8: tu
=
|.(qu
- q1).| by
A2,
A4;
A9:
|.((qu
- q1)
- (qw
- q1)).|
=
|.((qu
- q1)
- ((
- q1)
+ qw)).|
.=
|.(((qu
- q1)
- (
- q1))
- qw).| by
RLVECT_1: 27
.=
|.(((qu
+ (
- q1))
+ q1)
- qw).|
.=
|.((qu
+ (q1
- q1))
- qw).| by
RLVECT_1:def 3
.=
|.((qu
+ (
0. (
TOP-REAL n)))
- qw).| by
RLVECT_1: 5
.=
|.(qu
- qw).| by
RLVECT_1: 4;
w1
=
|.(qw
- q1).| by
A2,
A5;
then (
dist (u,w))
=
|.(qu
- qw).| & (
dist (u1,w1))
<=
|.((qu
- q1)
- (qw
- q1)).| by
A7,
A8,
JGRAPH_1: 28,
JORDAN2C: 9;
hence thesis by
A6,
A9,
XXREAL_0: 2;
end;
hence ex s be
Real st s
>
0 & for w be
Element of (
Euclid n), w1 be
Element of
RealSpace st w1
= (f1
. w) & (
dist (u,w))
< s holds (
dist (u1,w1))
< r by
A3;
end;
then f1 is
continuous by
UNIFORM1: 3;
hence f is
continuous by
A1,
PRE_TOPC: 32,
TOPMETR:def 6;
end;
Lm21: for n be
Element of
NAT , q1 be
Point of (
TOP-REAL n) holds ex f be
Function of (
TOP-REAL n),
R^1 st (for q be
Point of (
TOP-REAL n) holds (f
. q)
=
|.(q
- q1).|) & f is
continuous
proof
let n be
Element of
NAT ;
let q1 be
Point of (
TOP-REAL n);
defpred
P[
object,
object] means ex q be
Point of (
TOP-REAL n) st q
= $1 & $2
=
|.(q
- q1).|;
A1: for x be
object st x
in the
carrier of (
TOP-REAL n) holds ex y be
object st
P[x, y]
proof
let x be
object;
assume x
in the
carrier of (
TOP-REAL n);
then
reconsider q3 = x as
Point of (
TOP-REAL n);
take
|.(q3
- q1).|;
thus thesis;
end;
consider f1 be
Function such that
A2: (
dom f1)
= the
carrier of (
TOP-REAL n) & for x be
object st x
in the
carrier of (
TOP-REAL n) holds
P[x, (f1
. x)] from
CLASSES1:sch 1(
A1);
(
rng f1)
c= the
carrier of
R^1
proof
let z be
object;
assume z
in (
rng f1);
then
consider xz be
object such that
A3: xz
in (
dom f1) and
A4: z
= (f1
. xz) by
FUNCT_1:def 3;
consider q4 be
Point of (
TOP-REAL n) such that
A5: q4
= xz & (f1
. xz)
=
|.(q4
- q1).| by
A2,
A3;
(f1
. xz)
in
REAL by
A5,
XREAL_0:def 1;
hence thesis by
A4,
TOPMETR: 17;
end;
then
reconsider f2 = f1 as
Function of (
TOP-REAL n),
R^1 by
A2,
FUNCT_2:def 1,
RELSET_1: 4;
A6: for q be
Point of (
TOP-REAL n) holds (f1
. q)
=
|.(q
- q1).|
proof
let q be
Point of (
TOP-REAL n);
ex q2 be
Point of (
TOP-REAL n) st q2
= q & (f1
. q)
=
|.(q2
- q1).| by
A2;
hence thesis;
end;
then f2 is
continuous by
Lm20;
hence thesis by
A6;
end;
theorem ::
EUCLID_6:25
Th25: p
in (
LSeg (p1,p2)) & (p1,p2,p3)
is_a_triangle & (
angle (p1,p3,p2))
= (
angle (p,p3,p2)) implies p
= p1
proof
assume
A1: p
in (
LSeg (p1,p2));
assume
A2: (p1,p2,p3)
is_a_triangle ;
then
A3: (
angle (p3,p1,p2))
<>
PI by
Th20;
A4: (p1,p2,p3)
are_mutually_distinct by
A2,
Th20;
then p1
<> p2 by
ZFMISC_1:def 5;
then
A5: (
euc2cpx p2)
<> (
euc2cpx p1) by
EUCLID_3: 4;
A6: not p3
in (
LSeg (p1,p2)) by
A2,
TOPREAL9: 67;
( not p1
in (
LSeg (p2,p3))) & not p2
in (
LSeg (p3,p1)) by
A2,
TOPREAL9: 67;
then
A7: (p1,p3,p2)
is_a_triangle by
A6,
TOPREAL9: 67;
p2
<> p3 by
A4,
ZFMISC_1:def 5;
then
A8:
|.(p2
- p3).|
<>
0 by
Lm1;
A9: p2
<> p3 by
A4,
ZFMISC_1:def 5;
then
A10: (
euc2cpx p3)
<> (
euc2cpx p2) by
EUCLID_3: 4;
assume
A11: (
angle (p1,p3,p2))
= (
angle (p,p3,p2));
(
angle (p2,p3,p1))
<>
PI by
A2,
Th20;
then
A12: (
angle (p,p3,p2))
<>
PI by
A11,
COMPLEX2: 82;
A13: p
<> p3 by
A1,
A2,
TOPREAL9: 67;
then
A14: (
euc2cpx p)
<> (
euc2cpx p3) by
EUCLID_3: 4;
p1
<> p3 by
A4,
ZFMISC_1:def 5;
then
A15: (
euc2cpx p3)
<> (
euc2cpx p1) by
EUCLID_3: 4;
A16: (
angle (p1,p2,p3))
<>
PI by
A2,
Th20;
A17: p
<> p2
proof
assume p
= p2;
then (
angle (p1,p3,p2))
=
0 by
A11,
COMPLEX2: 79;
then (
angle (p3,p2,p1))
=
0 & (
angle (p2,p1,p3))
=
PI or (
angle (p3,p2,p1))
=
PI & (
angle (p2,p1,p3))
=
0 by
A10,
A15,
A5,
COMPLEX2: 87;
hence contradiction by
A16,
A3,
COMPLEX2: 82;
end;
then
A18: (
angle (p3,p2,p1))
= (
angle (p3,p2,p)) by
A1,
Th10;
then
A19: (
angle (p3,p2,p))
<>
PI by
A16,
COMPLEX2: 82;
A20: (p,p3,p2)
are_mutually_distinct by
A9,
A17,
A13,
ZFMISC_1:def 5;
A21: (
euc2cpx p)
<> (
euc2cpx p2) by
A17,
EUCLID_3: 4;
A22: (
angle (p2,p1,p3))
= (
angle (p2,p,p3))
proof
per cases by
A10,
A15,
A5,
A14,
A21,
COMPLEX2: 88;
suppose (((
angle (p1,p3,p2))
+ (
angle (p3,p2,p1)))
+ (
angle (p2,p1,p3)))
=
PI & (((
angle (p,p3,p2))
+ (
angle (p3,p2,p)))
+ (
angle (p2,p,p3)))
=
PI ;
hence thesis by
A11,
A18;
end;
suppose (((
angle (p1,p3,p2))
+ (
angle (p3,p2,p1)))
+ (
angle (p2,p1,p3)))
= (5
*
PI ) & (((
angle (p,p3,p2))
+ (
angle (p3,p2,p)))
+ (
angle (p2,p,p3)))
= (5
*
PI );
hence thesis by
A11,
A18;
end;
suppose
A23: (((
angle (p1,p3,p2))
+ (
angle (p3,p2,p1)))
+ (
angle (p2,p1,p3)))
=
PI & (((
angle (p,p3,p2))
+ (
angle (p3,p2,p)))
+ (
angle (p2,p,p3)))
= (5
*
PI );
(
angle (p2,p1,p3))
>=
0 & (
- (
angle (p2,p,p3)))
> (
- (2
*
PI )) by
COMPLEX2: 70,
XREAL_1: 24;
then
A24: ((
angle (p2,p1,p3))
+ (
- (
angle (p2,p,p3))))
> (
0
+ (
- (2
*
PI ))) by
XREAL_1: 8;
((
angle (p2,p1,p3))
- (
angle (p2,p,p3)))
= (
- (4
*
PI )) by
A11,
A18,
A23;
then (4
*
PI )
< (2
*
PI ) by
A24,
XREAL_1: 24;
then ((4
*
PI )
/
PI )
< ((2
*
PI )
/
PI ) by
XREAL_1: 74;
then 4
< ((2
*
PI )
/
PI ) by
XCMPLX_1: 89;
then 4
< 2 by
XCMPLX_1: 89;
hence thesis;
end;
suppose
A25: (((
angle (p1,p3,p2))
+ (
angle (p3,p2,p1)))
+ (
angle (p2,p1,p3)))
= (5
*
PI ) & (((
angle (p,p3,p2))
+ (
angle (p3,p2,p)))
+ (
angle (p2,p,p3)))
=
PI ;
(
angle (p2,p1,p3))
< (2
*
PI ) & (
angle (p2,p,p3))
>=
0 by
COMPLEX2: 70;
then ((
angle (p2,p1,p3))
+ (
- (
angle (p2,p,p3))))
< ((2
*
PI )
+ (
-
0 )) by
XREAL_1: 8;
then ((4
*
PI )
/
PI )
< ((2
*
PI )
/
PI ) by
A11,
A18,
A25,
XREAL_1: 74;
then 4
< ((2
*
PI )
/
PI ) by
XCMPLX_1: 89;
then 4
< 2 by
XCMPLX_1: 89;
hence thesis;
end;
end;
then (
angle (p2,p,p3))
<>
PI by
A3,
COMPLEX2: 82;
then (p,p3,p2)
is_a_triangle by
A20,
A12,
A19,
Th20;
then (
|.(p2
- p3).|
*
|.(p
- p2).|)
= (
|.(p1
- p2).|
*
|.(p2
- p3).|) by
A7,
A11,
A22,
Th21;
then
|.(p
- p2).|
=
|.(p1
- p2).| by
A8,
XCMPLX_1: 5;
then
A26:
|.(p2
- p).|
=
|.(p1
- p2).| by
Lm2
.=
|.(p2
- p1).| by
Lm2;
assume
A27: p1
<> p;
A28: (
|.(p2
- p1).|
^2 )
= (((
|.(p1
- p).|
^2 )
+ (
|.(p2
- p).|
^2 ))
- (((2
*
|.(p1
- p).|)
*
|.(p2
- p).|)
* (
cos (
angle (p1,p,p2))))) by
Th7
.= (((
|.(p1
- p).|
^2 )
+ (
|.(p2
- p).|
^2 ))
- (((2
*
|.(p1
- p).|)
*
|.(p2
- p).|)
* (
- 1))) by
A1,
A27,
A17,
Th8,
SIN_COS: 77;
per cases by
A26,
A28;
suppose
|.(p1
- p).|
=
0 ;
hence contradiction by
A27,
Lm1;
end;
suppose (
|.(p1
- p).|
+ (2
*
|.(p2
- p).|))
=
0 ;
then
|.(p1
- p).|
=
0 ;
hence contradiction by
A27,
Lm1;
end;
end;
theorem ::
EUCLID_6:26
Th26: p
in (
LSeg (p1,p2)) & not p3
in (
LSeg (p1,p2)) & (
angle (p1,p3,p2))
<=
PI implies (
angle (p,p3,p2))
<= (
angle (p1,p3,p2))
proof
assume
A1: p
in (
LSeg (p1,p2));
assume
A2: not p3
in (
LSeg (p1,p2));
assume
A3: (
angle (p1,p3,p2))
<=
PI ;
assume
A4: (
angle (p,p3,p2))
> (
angle (p1,p3,p2));
per cases ;
suppose p
= p1;
hence contradiction by
A4;
end;
suppose p
= p2;
then (
angle (p,p3,p2))
=
0 by
COMPLEX2: 79;
hence contradiction by
A4,
COMPLEX2: 70;
end;
suppose
A5: p1
= p2;
then p
in
{p2} by
A1,
RLTOPSP1: 70;
hence contradiction by
A4,
A5,
TARSKI:def 1;
end;
suppose
A6: p
<> p2 & p1
<> p2 & p
<> p1;
then
A7: (
euc2cpx p)
<> (
euc2cpx p1) by
EUCLID_3: 4;
A8: p3
<> p1 by
A2,
RLTOPSP1: 68;
then
A9: (
euc2cpx p3)
<> (
euc2cpx p1) by
EUCLID_3: 4;
A10: (
euc2cpx p2)
<> (
euc2cpx p1) & (
euc2cpx p)
<> (
euc2cpx p2) by
A6,
EUCLID_3: 4;
A11: (
euc2cpx p)
<> (
euc2cpx p3) by
A1,
A2,
EUCLID_3: 4;
A12: (
angle (p3,p2,p1))
= (
angle (p3,p2,p)) by
A1,
A6,
Th10;
A13: p3
<> p2 by
A2,
RLTOPSP1: 68;
then
A14: (
euc2cpx p3)
<> (
euc2cpx p2) by
EUCLID_3: 4;
((
angle (p1,p3,p2))
+ (
angle (p2,p1,p3)))
= ((
angle (p,p3,p2))
+ (
angle (p2,p,p3)))
proof
per cases by
A14,
A9,
A11,
A10,
COMPLEX2: 88;
suppose (((
angle (p1,p3,p2))
+ (
angle (p3,p2,p1)))
+ (
angle (p2,p1,p3)))
=
PI & (((
angle (p,p3,p2))
+ (
angle (p3,p2,p)))
+ (
angle (p2,p,p3)))
=
PI ;
hence thesis by
A12;
end;
suppose (((
angle (p1,p3,p2))
+ (
angle (p3,p2,p1)))
+ (
angle (p2,p1,p3)))
= (5
*
PI ) & (((
angle (p,p3,p2))
+ (
angle (p3,p2,p)))
+ (
angle (p2,p,p3)))
= (5
*
PI );
hence thesis by
A12;
end;
suppose
A15: (((
angle (p1,p3,p2))
+ (
angle (p3,p2,p1)))
+ (
angle (p2,p1,p3)))
=
PI & (((
angle (p,p3,p2))
+ (
angle (p3,p2,p)))
+ (
angle (p2,p,p3)))
= (5
*
PI );
A16: (
angle (p1,p3,p2))
>=
0 & (
angle (p2,p1,p3))
>=
0 by
COMPLEX2: 70;
(
angle (p2,p,p3))
< (2
*
PI ) by
COMPLEX2: 70;
then
A17: (
- (
angle (p2,p,p3)))
> (
- (2
*
PI )) by
XREAL_1: 24;
(
angle (p,p3,p2))
< (2
*
PI ) by
COMPLEX2: 70;
then (
- (
angle (p,p3,p2)))
> (
- (2
*
PI )) by
XREAL_1: 24;
then ((
- (
angle (p,p3,p2)))
+ (
- (
angle (p2,p,p3))))
> ((
- (2
*
PI ))
+ (
- (2
*
PI ))) by
A17,
XREAL_1: 8;
then (((
angle (p1,p3,p2))
+ (
angle (p2,p1,p3)))
+ ((
- (
angle (p,p3,p2)))
- (
angle (p2,p,p3))))
> ((
0
+
0 )
+ ((
- (2
*
PI ))
- (2
*
PI ))) by
A16,
XREAL_1: 8;
hence thesis by
A12,
A15;
end;
suppose
A18: (((
angle (p1,p3,p2))
+ (
angle (p3,p2,p1)))
+ (
angle (p2,p1,p3)))
= (5
*
PI ) & (((
angle (p,p3,p2))
+ (
angle (p3,p2,p)))
+ (
angle (p2,p,p3)))
=
PI ;
(
angle (p2,p1,p3))
< (2
*
PI ) & (
angle (p1,p3,p2))
< (2
*
PI ) by
COMPLEX2: 70;
then
A19: ((
angle (p2,p1,p3))
+ (
angle (p1,p3,p2)))
< ((2
*
PI )
+ (2
*
PI )) by
XREAL_1: 8;
(
angle (p,p3,p2))
>=
0 & (
angle (p2,p,p3))
>=
0 by
COMPLEX2: 70;
then (((
angle (p2,p1,p3))
+ (
angle (p1,p3,p2)))
+ ((
- (
angle (p,p3,p2)))
- (
angle (p2,p,p3))))
< (((2
*
PI )
+ (2
*
PI ))
+ (
0
+
0 )) by
A19,
XREAL_1: 8;
hence thesis by
A12,
A18;
end;
end;
then
A20: (
angle (p2,p1,p3))
> (
angle (p2,p,p3)) by
A4,
XREAL_1: 8;
per cases by
A1,
A6,
A9,
A11,
A7,
Th13,
COMPLEX2: 88;
suppose ((
angle (p2,p,p3))
+ (
angle (p3,p,p1)))
=
PI & (((
angle (p3,p,p1))
+ (
angle (p,p1,p3)))
+ (
angle (p1,p3,p)))
=
PI ;
then ((
angle (p1,p3,p))
+ (
angle (p,p1,p3)))
< (
0
+ (
angle (p,p1,p3))) by
A1,
A20,
Th9;
then (
angle (p1,p3,p))
<
0 by
XREAL_1: 6;
hence contradiction by
COMPLEX2: 70;
end;
suppose
A21: ((
angle (p2,p,p3))
+ (
angle (p3,p,p1)))
= (3
*
PI ) & (((
angle (p3,p,p1))
+ (
angle (p,p1,p3)))
+ (
angle (p1,p3,p)))
=
PI ;
A22: (
angle (p,p1,p3))
>=
0 & (
angle (p1,p3,p))
>=
0 by
COMPLEX2: 70;
(
angle (p2,p,p3))
= (((
angle (p,p1,p3))
+ (
angle (p1,p3,p)))
+ (2
*
PI )) by
A21;
then (
angle (p2,p,p3))
>= (
0
+ (2
*
PI )) by
A22,
XREAL_1: 6;
hence contradiction by
COMPLEX2: 70;
end;
suppose
A23: ((
angle (p2,p,p3))
+ (
angle (p3,p,p1)))
=
PI & (((
angle (p3,p,p1))
+ (
angle (p,p1,p3)))
+ (
angle (p1,p3,p)))
= (5
*
PI );
(
angle (p,p1,p3))
< (2
*
PI ) & (
angle (p1,p3,p))
< (2
*
PI ) by
COMPLEX2: 70;
then ((
angle (p,p1,p3))
+ (
angle (p1,p3,p)))
< ((2
*
PI )
+ (2
*
PI )) by
XREAL_1: 8;
then ((
angle (p2,p,p3))
+ (4
*
PI ))
< (
0
+ (4
*
PI )) by
A23;
then (
angle (p2,p,p3))
<
0 by
XREAL_1: 6;
hence contradiction by
COMPLEX2: 70;
end;
suppose
A24: ((
angle (p2,p,p3))
+ (
angle (p3,p,p1)))
= (3
*
PI ) & (((
angle (p3,p,p1))
+ (
angle (p,p1,p3)))
+ (
angle (p1,p3,p)))
= (5
*
PI );
(p1,p3,p2)
are_mutually_distinct by
A6,
A8,
A13,
ZFMISC_1:def 5;
then (
angle (p2,p1,p3))
<=
PI by
A3,
Th23;
then
A25: (
angle (p,p1,p3))
<=
PI by
A1,
A6,
Th9;
(p,p1,p3)
are_mutually_distinct by
A1,
A2,
A6,
A8,
ZFMISC_1:def 5;
then (
angle (p1,p3,p))
<=
PI & (
angle (p3,p,p1))
<=
PI by
A25,
Th23;
then ((
angle (p3,p,p1))
+ (
angle (p1,p3,p)))
<= (
PI
+
PI ) by
XREAL_1: 7;
then (((
angle (p3,p,p1))
+ (
angle (p1,p3,p)))
+ (
angle (p,p1,p3)))
<= ((2
*
PI )
+
PI ) by
A25,
XREAL_1: 7;
hence contradiction by
A24,
XREAL_1: 68;
end;
end;
end;
theorem ::
EUCLID_6:27
Th27: p
in (
LSeg (p1,p2)) & not p3
in (
LSeg (p1,p2)) & (
angle (p1,p3,p2))
>
PI & p
<> p2 implies (
angle (p,p3,p2))
>= (
angle (p1,p3,p2))
proof
assume
A1: p
in (
LSeg (p1,p2));
assume
A2: not p3
in (
LSeg (p1,p2));
assume
A3: (
angle (p1,p3,p2))
>
PI ;
assume
A4: p
<> p2;
assume
A5: (
angle (p,p3,p2))
< (
angle (p1,p3,p2));
per cases ;
suppose p
= p1;
hence contradiction by
A5;
end;
suppose
A6: p1
= p2;
then p
in
{p2} by
A1,
RLTOPSP1: 70;
hence contradiction by
A5,
A6,
TARSKI:def 1;
end;
suppose
A7: p1
<> p2 & p
<> p1;
then
A8: (
euc2cpx p2)
<> (
euc2cpx p1) by
EUCLID_3: 4;
A9: (
euc2cpx p)
<> (
euc2cpx p2) by
A4,
EUCLID_3: 4;
A10: (
angle (p3,p2,p1))
= (
angle (p3,p2,p)) by
A1,
A4,
Th10;
A11: (
euc2cpx p)
<> (
euc2cpx p1) by
A7,
EUCLID_3: 4;
A12: (
euc2cpx p)
<> (
euc2cpx p3) by
A1,
A2,
EUCLID_3: 4;
A13: p3
<> p1 by
A2,
RLTOPSP1: 68;
then
A14: (
euc2cpx p3)
<> (
euc2cpx p1) by
EUCLID_3: 4;
A15: p3
<> p2 by
A2,
RLTOPSP1: 68;
then
A16: (
euc2cpx p3)
<> (
euc2cpx p2) by
EUCLID_3: 4;
((
angle (p1,p3,p2))
+ (
angle (p2,p1,p3)))
= ((
angle (p,p3,p2))
+ (
angle (p2,p,p3)))
proof
per cases by
A16,
A14,
A8,
A12,
A9,
COMPLEX2: 88;
suppose (((
angle (p1,p3,p2))
+ (
angle (p3,p2,p1)))
+ (
angle (p2,p1,p3)))
=
PI & (((
angle (p,p3,p2))
+ (
angle (p3,p2,p)))
+ (
angle (p2,p,p3)))
=
PI ;
hence thesis by
A10;
end;
suppose (((
angle (p1,p3,p2))
+ (
angle (p3,p2,p1)))
+ (
angle (p2,p1,p3)))
= (5
*
PI ) & (((
angle (p,p3,p2))
+ (
angle (p3,p2,p)))
+ (
angle (p2,p,p3)))
= (5
*
PI );
hence thesis by
A10;
end;
suppose
A17: (((
angle (p1,p3,p2))
+ (
angle (p3,p2,p1)))
+ (
angle (p2,p1,p3)))
=
PI & (((
angle (p,p3,p2))
+ (
angle (p3,p2,p)))
+ (
angle (p2,p,p3)))
= (5
*
PI );
A18: (
angle (p1,p3,p2))
>=
0 & (
angle (p2,p1,p3))
>=
0 by
COMPLEX2: 70;
(
angle (p2,p,p3))
< (2
*
PI ) by
COMPLEX2: 70;
then
A19: (
- (
angle (p2,p,p3)))
> (
- (2
*
PI )) by
XREAL_1: 24;
(
angle (p,p3,p2))
< (2
*
PI ) by
COMPLEX2: 70;
then (
- (
angle (p,p3,p2)))
> (
- (2
*
PI )) by
XREAL_1: 24;
then ((
- (
angle (p,p3,p2)))
+ (
- (
angle (p2,p,p3))))
> ((
- (2
*
PI ))
+ (
- (2
*
PI ))) by
A19,
XREAL_1: 8;
then (((
angle (p1,p3,p2))
+ (
angle (p2,p1,p3)))
+ ((
- (
angle (p,p3,p2)))
- (
angle (p2,p,p3))))
> ((
0
+
0 )
+ ((
- (2
*
PI ))
- (2
*
PI ))) by
A18,
XREAL_1: 8;
hence thesis by
A10,
A17;
end;
suppose
A20: (((
angle (p1,p3,p2))
+ (
angle (p3,p2,p1)))
+ (
angle (p2,p1,p3)))
= (5
*
PI ) & (((
angle (p,p3,p2))
+ (
angle (p3,p2,p)))
+ (
angle (p2,p,p3)))
=
PI ;
(
angle (p2,p1,p3))
< (2
*
PI ) & (
angle (p1,p3,p2))
< (2
*
PI ) by
COMPLEX2: 70;
then
A21: ((
angle (p2,p1,p3))
+ (
angle (p1,p3,p2)))
< ((2
*
PI )
+ (2
*
PI )) by
XREAL_1: 8;
(
angle (p,p3,p2))
>=
0 & (
angle (p2,p,p3))
>=
0 by
COMPLEX2: 70;
then (((
angle (p2,p1,p3))
+ (
angle (p1,p3,p2)))
+ ((
- (
angle (p,p3,p2)))
- (
angle (p2,p,p3))))
< (((2
*
PI )
+ (2
*
PI ))
+ (
0
+
0 )) by
A21,
XREAL_1: 8;
hence thesis by
A10,
A20;
end;
end;
then (
angle (p2,p1,p3))
< (
angle (p2,p,p3)) by
A5,
XREAL_1: 8;
then
A22: (
angle (p,p1,p3))
< (
angle (p2,p,p3)) by
A1,
Th9;
per cases by
A1,
A4,
A14,
A12,
A11,
Th13,
COMPLEX2: 88;
suppose
A23: ((
angle (p2,p,p3))
+ (
angle (p3,p,p1)))
=
PI & (((
angle (p3,p,p1))
+ (
angle (p,p1,p3)))
+ (
angle (p1,p3,p)))
=
PI ;
(p1,p3,p2)
are_mutually_distinct by
A7,
A13,
A15,
ZFMISC_1:def 5;
then (
angle (p2,p1,p3))
>
PI by
A3,
Th24;
then
A24: (
angle (p,p1,p3))
>
PI by
A1,
A7,
Th9;
(p,p1,p3)
are_mutually_distinct by
A1,
A2,
A7,
A13,
ZFMISC_1:def 5;
then (
angle (p1,p3,p))
>
PI & (
angle (p3,p,p1))
>
PI by
A24,
Th24;
then ((
angle (p3,p,p1))
+ (
angle (p1,p3,p)))
> (
PI
+
PI ) by
XREAL_1: 8;
then
A25: (((
angle (p3,p,p1))
+ (
angle (p1,p3,p)))
+ (
angle (p,p1,p3)))
> ((2
*
PI )
+
PI ) by
A24,
XREAL_1: 8;
(1
*
PI )
< (3
*
PI ) by
XREAL_1: 68;
hence contradiction by
A23,
A25;
end;
suppose
A26: ((
angle (p2,p,p3))
+ (
angle (p3,p,p1)))
= (3
*
PI ) & (((
angle (p3,p,p1))
+ (
angle (p,p1,p3)))
+ (
angle (p1,p3,p)))
=
PI ;
A27: (
angle (p,p1,p3))
>=
0 & (
angle (p1,p3,p))
>=
0 by
COMPLEX2: 70;
(
angle (p2,p,p3))
= (((
angle (p,p1,p3))
+ (
angle (p1,p3,p)))
+ (2
*
PI )) by
A26;
then (
angle (p2,p,p3))
>= (
0
+ (2
*
PI )) by
A27,
XREAL_1: 6;
hence contradiction by
COMPLEX2: 70;
end;
suppose
A28: ((
angle (p2,p,p3))
+ (
angle (p3,p,p1)))
=
PI & (((
angle (p3,p,p1))
+ (
angle (p,p1,p3)))
+ (
angle (p1,p3,p)))
= (5
*
PI );
(
angle (p,p1,p3))
< (2
*
PI ) & (
angle (p1,p3,p))
< (2
*
PI ) by
COMPLEX2: 70;
then ((
angle (p,p1,p3))
+ (
angle (p1,p3,p)))
< ((2
*
PI )
+ (2
*
PI )) by
XREAL_1: 8;
then ((
angle (p2,p,p3))
+ (4
*
PI ))
< (
0
+ (4
*
PI )) by
A28;
then (
angle (p2,p,p3))
<
0 by
XREAL_1: 6;
hence contradiction by
COMPLEX2: 70;
end;
suppose ((
angle (p2,p,p3))
+ (
angle (p3,p,p1)))
= (3
*
PI ) & (((
angle (p3,p,p1))
+ (
angle (p,p1,p3)))
+ (
angle (p1,p3,p)))
= (5
*
PI );
then ((
angle (p2,p,p3))
+ (2
*
PI ))
= ((
angle (p,p1,p3))
+ (
angle (p1,p3,p)));
then ((
angle (p2,p,p3))
+ (2
*
PI ))
< ((
angle (p2,p,p3))
+ (
angle (p1,p3,p))) by
A22,
XREAL_1: 6;
then (2
*
PI )
< (
angle (p1,p3,p)) by
XREAL_1: 6;
hence contradiction by
COMPLEX2: 70;
end;
end;
end;
theorem ::
EUCLID_6:28
Th28: p
in (
LSeg (p1,p2)) & not p3
in (
LSeg (p1,p2)) implies ex p4 st p4
in (
LSeg (p1,p2)) & (
angle (p1,p3,p4))
= (
angle (p,p3,p2))
proof
assume
A1: p
in (
LSeg (p1,p2));
assume
A2: not p3
in (
LSeg (p1,p2));
per cases ;
suppose
A3: p1
= p2;
set p4 = p;
take p4;
thus p4
in (
LSeg (p1,p2)) by
A1;
(
LSeg (p1,p2))
=
{p1} by
A3,
RLTOPSP1: 70;
then p
= p1 by
A1,
TARSKI:def 1;
hence thesis by
A3;
end;
suppose
A4: p
= p2 or p1
in (
LSeg (p2,p3));
set p4 = p1;
take p4;
thus p4
in (
LSeg (p1,p2)) by
RLTOPSP1: 68;
per cases by
A4;
suppose
A5: p
= p2;
thus (
angle (p1,p3,p4))
=
0 by
COMPLEX2: 79
.= (
angle (p,p3,p2)) by
A5,
COMPLEX2: 79;
end;
suppose
A6: p1
in (
LSeg (p2,p3));
p2
in (
LSeg (p3,p2)) by
RLTOPSP1: 68;
then
A7: (
LSeg (p1,p2))
c= (
LSeg (p3,p2)) by
A6,
TOPREAL1: 6;
thus (
angle (p1,p3,p4))
=
0 by
COMPLEX2: 79
.= (
angle (p2,p3,p2)) by
COMPLEX2: 79
.= (
angle (p,p3,p2)) by
A1,
A2,
A7,
Th9;
end;
end;
suppose
A8: p
= p1 or p2
in (
LSeg (p1,p3));
set p4 = p2;
take p4;
thus p4
in (
LSeg (p1,p2)) by
RLTOPSP1: 68;
per cases by
A8;
suppose p
= p1;
hence thesis;
end;
suppose
A9: p2
in (
LSeg (p1,p3));
p1
in (
LSeg (p1,p3)) by
RLTOPSP1: 68;
then (
LSeg (p1,p2))
c= (
LSeg (p1,p3)) by
A9,
TOPREAL1: 6;
hence thesis by
A1,
A2,
Th9;
end;
end;
suppose
A10: p1
<> p2 & p
<> p1 & p
<> p2 & not p1
in (
LSeg (p2,p3)) & not p2
in (
LSeg (p1,p3));
p1
in (
LSeg (p1,p2)) by
RLTOPSP1: 68;
then
reconsider q1 = p1 as
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2))) by
PRE_TOPC: 8;
A11: (1
* (
- 2))
<= ((
cos (
angle (p,p3,p2)))
* (
- 2)) by
SIN_COS6: 6,
XREAL_1: 65;
consider f1 be
Function of (
TOP-REAL 2),
R^1 such that
A12: for q be
Point of (
TOP-REAL 2) holds (f1
. q)
=
|.(q
- p1).| and
A13: f1 is
continuous by
Lm21;
consider f12 be
Function of (
TOP-REAL 2),
R^1 such that
A14: for q be
Point of (
TOP-REAL 2), r1,r2 be
Real st (f1
. q)
= r1 & (f1
. q)
= r2 holds (f12
. q)
= (r1
* r2) and
A15: f12 is
continuous by
A13,
JGRAPH_2: 25;
consider f3 be
Function of (
TOP-REAL 2),
R^1 such that
A16: for q be
Point of (
TOP-REAL 2) holds (f3
. q)
=
|.(q
- p3).| and
A17: f3 is
continuous by
Lm21;
consider f32 be
Function of (
TOP-REAL 2),
R^1 such that
A18: for q be
Point of (
TOP-REAL 2), r1,r2 be
Real st (f3
. q)
= r1 & (f3
. q)
= r2 holds (f32
. q)
= (r1
* r2) and
A19: f32 is
continuous by
A17,
JGRAPH_2: 25;
A20: (
|.(p2
- p1).|
^2 )
= (((
|.(p1
- p3).|
^2 )
+ (
|.(p2
- p3).|
^2 ))
- (((2
*
|.(p1
- p3).|)
*
|.(p2
- p3).|)
* (
cos (
angle (p1,p3,p2))))) by
Th7;
A21: p2
<> p3 by
A2,
RLTOPSP1: 68;
then
A22:
|.(p2
- p3).|
<>
0 by
Lm1;
p2
in (
LSeg (p1,p2)) by
RLTOPSP1: 68;
then
reconsider q2 = p2 as
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2))) by
PRE_TOPC: 8;
consider f0 be
Function of ((
TOP-REAL 2)
| (
LSeg (p1,p2))), (
TOP-REAL 2) such that
A23: for q be
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2))) holds (f0
. q)
= q and
A24: f0 is
continuous by
JGRAPH_6: 6;
set d = ((((
|.(p2
- p).|
^2 )
- (
|.(p
- p3).|
^2 ))
- (
|.(p2
- p3).|
^2 ))
/ (
|.(p
- p3).|
*
|.(p2
- p3).|));
consider f2 be
Function of (
TOP-REAL 2),
R^1 such that
A25: for q be
Point of (
TOP-REAL 2) holds (f2
. q)
=
|.(p1
- p3).| and
A26: f2 is
continuous by
JGRAPH_2: 20;
A27: p1
<> p3 by
A2,
RLTOPSP1: 68;
then
A28:
|.(p1
- p3).|
<>
0 by
Lm1;
A29: (
cos (
angle (p,p3,p2)))
<> 1
proof
A30:
0
<= (
angle (p,p3,p2)) & (
angle (p,p3,p2))
< (2
*
PI ) by
COMPLEX2: 70;
assume (
cos (
angle (p,p3,p2)))
= 1;
then
A31: (
angle (p,p3,p2))
=
0 by
A30,
COMPTRIG: 61;
A32: (
euc2cpx p)
<> (
euc2cpx p3) & (
euc2cpx p)
<> (
euc2cpx p2) by
A1,
A2,
A10,
EUCLID_3: 4;
A33: (
euc2cpx p3)
<> (
euc2cpx p2) by
A21,
EUCLID_3: 4;
per cases by
A31,
A32,
A33,
COMPLEX2: 87;
suppose (
angle (p3,p2,p))
=
0 & (
angle (p2,p,p3))
=
PI ;
then p
in (
LSeg (p2,p3)) by
Th11;
hence contradiction by
A1,
A2,
A10,
A27,
Th12;
end;
suppose (
angle (p3,p2,p))
=
PI & (
angle (p2,p,p3))
=
0 ;
then (
angle (p3,p2,p1))
=
PI by
A1,
A10,
Th10;
hence contradiction by
A10,
Th11;
end;
end;
A34: for q be
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2))) holds q is
Point of (
TOP-REAL 2) & q
in (
LSeg (p1,p2))
proof
let q be
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2)));
A35: q
in the
carrier of ((
TOP-REAL 2)
| (
LSeg (p1,p2)));
then q
in (
LSeg (p1,p2)) by
PRE_TOPC: 8;
hence q is
Point of (
TOP-REAL 2);
thus thesis by
A35,
PRE_TOPC: 8;
end;
consider f6 be
Function of (
TOP-REAL 2),
R^1 such that
A36: for q be
Point of (
TOP-REAL 2), r1,r2 be
Real st (f2
. q)
= r1 & (f3
. q)
= r2 holds (f6
. q)
= (r1
* r2) and
A37: f6 is
continuous by
A26,
A17,
JGRAPH_2: 25;
reconsider f8 = (f6
* f0) as
continuous
Function of ((
TOP-REAL 2)
| (
LSeg (p1,p2))),
R^1 by
A24,
A37;
consider f22 be
Function of (
TOP-REAL 2),
R^1 such that
A38: for q be
Point of (
TOP-REAL 2), r1,r2 be
Real st (f2
. q)
= r1 & (f2
. q)
= r2 holds (f22
. q)
= (r1
* r2) and
A39: f22 is
continuous by
A26,
JGRAPH_2: 25;
consider f4 be
Function of (
TOP-REAL 2),
R^1 such that
A40: for q be
Point of (
TOP-REAL 2), r1,r2 be
Real st (f12
. q)
= r1 & (f22
. q)
= r2 holds (f4
. q)
= (r1
- r2) and
A41: f4 is
continuous by
A15,
A39,
JGRAPH_2: 21;
consider f5 be
Function of (
TOP-REAL 2),
R^1 such that
A42: for q be
Point of (
TOP-REAL 2), r1,r2 be
Real st (f4
. q)
= r1 & (f32
. q)
= r2 holds (f5
. q)
= (r1
- r2) and
A43: f5 is
continuous by
A19,
A41,
JGRAPH_2: 21;
A44:
|.(p
- p3).|
<>
0 by
A1,
A2,
Lm1;
reconsider f7 = (f5
* f0) as
continuous
Function of ((
TOP-REAL 2)
| (
LSeg (p1,p2))),
R^1 by
A24,
A43;
A45: for q be
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2))), q1 be
Point of (
TOP-REAL 2) st q
= q1 holds (f8
. q)
= (
|.(p1
- p3).|
*
|.(q1
- p3).|)
proof
let q be
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2)));
let q1 be
Point of (
TOP-REAL 2);
(
dom f8)
= the
carrier of ((
TOP-REAL 2)
| (
LSeg (p1,p2))) by
FUNCT_2:def 1;
then
A46: (f8
. q)
= (f6
. (f0
. q)) by
FUNCT_1: 12
.= (f6
. q) by
A23;
assume
A47: q
= q1;
then (f6
. q)
= ((f2
. q)
* (f3
. q)) & (f2
. q)
=
|.(p1
- p3).| by
A25,
A36;
hence thesis by
A16,
A47,
A46;
end;
for q be
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2))) holds (f8
. q)
<>
0
proof
let q be
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2)));
reconsider q1 = q as
Point of (
TOP-REAL 2) by
A34;
A48: (f8
. q)
= (
|.(p1
- p3).|
*
|.(q1
- p3).|) by
A45;
assume
A49: (f8
. q)
=
0 ;
per cases by
A48,
A49;
suppose
|.(p1
- p3).|
=
0 ;
hence contradiction by
A27,
Lm1;
end;
suppose
|.(q1
- p3).|
=
0 ;
then q
= p3 by
Lm1;
hence contradiction by
A2,
A34;
end;
end;
then
consider f9 be
Function of ((
TOP-REAL 2)
| (
LSeg (p1,p2))),
R^1 such that
A50: for q be
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2))), r1,r2 be
Real st (f7
. q)
= r1 & (f8
. q)
= r2 holds (f9
. q)
= (r1
/ r2) and
A51: f9 is
continuous by
JGRAPH_2: 27;
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| (
LSeg (p1,p2))) such that
A52: for x be
Real st x
in
[.
0 , 1.] holds (f
. x)
= (((1
- x)
* p1)
+ (x
* p2)) and
A53: f is
being_homeomorphism and
A54: (f
.
0 )
= p1 and
A55: (f
. 1)
= p2 by
A10,
JORDAN5A: 3;
f is
continuous by
A53,
TOPS_2:def 5;
then
reconsider g = (f9
* f) as
continuous
Function of (
Closed-Interval-TSpace (
0 ,1)),
R^1 by
A51,
TOPMETR: 20;
A56: (
dom g)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
set b = (g
. 1);
1
in { r where r be
Real :
0
<= r & r
<= 1 };
then 1
in (
dom g) by
A56,
RCOMP_1:def 1;
then
A57: (g
. 1)
= (f9
. p2) by
A55,
FUNCT_1: 12;
(
|.(p2
- p).|
^2 )
= (((
|.(p
- p3).|
^2 )
+ (
|.(p2
- p3).|
^2 ))
- (((2
*
|.(p
- p3).|)
*
|.(p2
- p3).|)
* (
cos (
angle (p,p3,p2))))) by
Th7;
then
A58: d
= (((
- 2)
* ((
|.(p
- p3).|
*
|.(p2
- p3).|)
* (
cos (
angle (p,p3,p2)))))
/ (
|.(p
- p3).|
*
|.(p2
- p3).|))
.= ((
- 2)
* (((
|.(p
- p3).|
*
|.(p2
- p3).|)
* (
cos (
angle (p,p3,p2))))
/ (
|.(p
- p3).|
*
|.(p2
- p3).|))) by
XCMPLX_1: 74
.= ((
- 2)
* (
cos (
angle (p,p3,p2)))) by
A22,
A44,
XCMPLX_1: 89;
A59: for q be
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2))), q1 be
Point of (
TOP-REAL 2) st q
= q1 holds (f9
. q)
= ((((
|.(q1
- p1).|
^2 )
- (
|.(p1
- p3).|
^2 ))
- (
|.(q1
- p3).|
^2 ))
/ (
|.(p1
- p3).|
*
|.(q1
- p3).|))
proof
let q be
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2)));
let q1 be
Point of (
TOP-REAL 2);
A60: q is
Point of (
TOP-REAL 2) by
A34;
(
dom f7)
= the
carrier of ((
TOP-REAL 2)
| (
LSeg (p1,p2))) by
FUNCT_2:def 1;
then
A61: (f7
. q)
= (f5
. (f0
. q)) by
FUNCT_1: 12
.= (f5
. q) by
A23
.= ((f4
. q)
- (f32
. q)) by
A42,
A60
.= (((f12
. q)
- (f22
. q))
- (f32
. q)) by
A40,
A60
.= (((f12
. q)
- (f22
. q))
- ((f3
. q)
* (f3
. q))) by
A18,
A60
.= ((((f1
. q)
* (f1
. q))
- (f22
. q))
- ((f3
. q)
* (f3
. q))) by
A14,
A60
.= ((((f1
. q)
* (f1
. q))
- ((f2
. q)
* (f2
. q)))
- ((f3
. q)
* (f3
. q))) by
A38,
A60;
A62: (f9
. q)
= ((f7
. q)
/ (f8
. q)) by
A50;
assume
A63: q
= q1;
then
A64: (f3
. q)
=
|.(q1
- p3).| by
A16;
(f1
. q)
=
|.(q1
- p1).| & (f2
. q)
=
|.(p1
- p3).| by
A12,
A25,
A63;
hence thesis by
A45,
A63,
A62,
A61,
A64;
end;
then (f9
. q2)
= ((((
|.(p2
- p1).|
^2 )
- (
|.(p1
- p3).|
^2 ))
- (
|.(p2
- p3).|
^2 ))
/ (
|.(p1
- p3).|
*
|.(p2
- p3).|));
then
A65: (f9
. q2)
= (((
- 2)
* ((
|.(p1
- p3).|
*
|.(p2
- p3).|)
* (
cos (
angle (p1,p3,p2)))))
/ (
|.(p1
- p3).|
*
|.(p2
- p3).|)) by
A20
.= ((
- 2)
* (((
|.(p1
- p3).|
*
|.(p2
- p3).|)
* (
cos (
angle (p1,p3,p2))))
/ (
|.(p1
- p3).|
*
|.(p2
- p3).|))) by
XCMPLX_1: 74
.= ((
- 2)
* (
cos (
angle (p1,p3,p2)))) by
A28,
A22,
XCMPLX_1: 89;
A66: d
< b
proof
per cases ;
suppose
A67: (
angle (p1,p3,p2))
<=
PI ;
A68: (
[.
0 ,
PI .]
/\ (
dom
cos ))
=
[.
0 ,
PI .] by
SIN_COS: 24,
XBOOLE_1: 28;
0
<= (
angle (p1,p3,p2)) by
COMPLEX2: 70;
then
A69: (
angle (p1,p3,p2))
in (
[.
0 ,
PI .]
/\ (
dom
cos )) by
A67,
A68,
XXREAL_1: 1;
A70: (
cos
. (
angle (p1,p3,p2)))
= (
cos (
angle (p1,p3,p2))) & (
cos
. (
angle (p,p3,p2)))
= (
cos (
angle (p,p3,p2))) by
SIN_COS:def 19;
A71: (
angle (p,p3,p2))
<= (
angle (p1,p3,p2)) by
A1,
A2,
A67,
Th26;
then
0
<= (
angle (p,p3,p2)) & (
angle (p,p3,p2))
<=
PI by
A67,
COMPLEX2: 70,
XXREAL_0: 2;
then
A72: (
angle (p,p3,p2))
in (
[.
0 ,
PI .]
/\ (
dom
cos )) by
A68,
XXREAL_1: 1;
(p1,p2,p3)
is_a_triangle by
A2,
A10,
TOPREAL9: 67;
then
A73: (
angle (p,p3,p2))
< (
angle (p1,p3,p2)) by
A1,
A10,
A71,
Th25,
XXREAL_0: 1;
(
cos
|
[.((2
*
PI )
*
0 ), (
PI
+ ((2
*
PI )
*
0 )).]) is
decreasing by
SIN_COS6: 55;
then (
cos
. (
angle (p1,p3,p2)))
< (
cos
. (
angle (p,p3,p2))) by
A73,
A72,
A69,
RFUNCT_2: 21;
hence thesis by
A57,
A65,
A58,
A70,
XREAL_1: 69;
end;
suppose
A74: (
angle (p1,p3,p2))
>
PI ;
A75: (
[.
PI , (2
*
PI ).]
/\ (
dom
cos ))
=
[.
PI , (2
*
PI ).] by
SIN_COS: 24,
XBOOLE_1: 28;
A76: (
angle (p,p3,p2))
<= (2
*
PI ) by
COMPLEX2: 70;
A77: (
angle (p,p3,p2))
>= (
angle (p1,p3,p2)) by
A1,
A2,
A10,
A74,
Th27;
then
PI
<= (
angle (p,p3,p2)) by
A74,
XXREAL_0: 2;
then
A78: (
angle (p,p3,p2))
in (
[.
PI , (2
*
PI ).]
/\ (
dom
cos )) by
A75,
A76,
XXREAL_1: 1;
(
angle (p1,p3,p2))
<= (2
*
PI ) by
COMPLEX2: 70;
then
A79: (
angle (p1,p3,p2))
in (
[.
PI , (2
*
PI ).]
/\ (
dom
cos )) by
A74,
A75,
XXREAL_1: 1;
A80: (
cos
. (
angle (p1,p3,p2)))
= (
cos (
angle (p1,p3,p2))) & (
cos
. (
angle (p,p3,p2)))
= (
cos (
angle (p,p3,p2))) by
SIN_COS:def 19;
(p1,p2,p3)
is_a_triangle by
A2,
A10,
TOPREAL9: 67;
then
A81: (
angle (p,p3,p2))
> (
angle (p1,p3,p2)) by
A1,
A10,
A77,
Th25,
XXREAL_0: 1;
(
cos
|
[.(
PI
+ ((2
*
PI )
*
0 )), ((2
*
PI )
+ ((2
*
PI )
*
0 )).]) is
increasing by
SIN_COS6: 56;
then (
cos
. (
angle (p1,p3,p2)))
< (
cos
. (
angle (p,p3,p2))) by
A81,
A78,
A79,
RFUNCT_2: 20;
hence thesis by
A57,
A65,
A58,
A80,
XREAL_1: 69;
end;
end;
set a = (g
.
0 );
0
in { r where r be
Real :
0
<= r & r
<= 1 };
then
0
in (
dom g) by
A56,
RCOMP_1:def 1;
then
A82: (g
.
0 )
= (f9
. p1) by
A54,
FUNCT_1: 12;
A83: (f9
. q1)
= ((((
|.(p1
- p1).|
^2 )
- (
|.(p1
- p3).|
^2 ))
- (
|.(p1
- p3).|
^2 ))
/ (
|.(p1
- p3).|
*
|.(p1
- p3).|)) by
A59
.= ((((
0
^2 )
- (
|.(p1
- p3).|
^2 ))
- (
|.(p1
- p3).|
^2 ))
/ (
|.(p1
- p3).|
*
|.(p1
- p3).|)) by
Lm1
.= (((
- 2)
* (
|.(p1
- p3).|
^2 ))
/ (
|.(p1
- p3).|
*
|.(p1
- p3).|))
.= (
- 2) by
A28,
XCMPLX_1: 89;
then a
<> d by
A82,
A58,
A29;
then a
< d by
A82,
A83,
A58,
A11,
XXREAL_0: 1;
then
consider rc be
Real such that
A84: (g
. rc)
= d and
A85:
0
< rc & rc
< 1 by
A66,
TOPREAL5: 6;
rc
in { r where r be
Real :
0
<= r & r
<= 1 } by
A85;
then
A86: rc
in (
dom g) by
A56,
RCOMP_1:def 1;
then
A87: (f
. rc)
= (((1
- rc)
* p1)
+ (rc
* p2)) by
A52,
A56;
set p4 = (((1
- rc)
* p1)
+ (rc
* p2));
take p4;
thus
A88: p4
in (
LSeg (p1,p2)) by
A85;
then
reconsider q = p4 as
Point of ((
TOP-REAL 2)
| (
LSeg (p1,p2))) by
PRE_TOPC: 8;
A89:
|.(p4
- p3).|
<>
0 by
A2,
A88,
Lm1;
set r2 = (
|.(p1
- p3).|
*
|.(p4
- p3).|);
A90: (
|.(p4
- p1).|
^2 )
= (((
|.(p1
- p3).|
^2 )
+ (
|.(p4
- p3).|
^2 ))
- (((2
*
|.(p1
- p3).|)
*
|.(p4
- p3).|)
* (
cos (
angle (p1,p3,p4))))) by
Th7;
(f9
. q)
= ((((
|.(p4
- p1).|
^2 )
- (
|.(p1
- p3).|
^2 ))
- (
|.(p4
- p3).|
^2 ))
/ (
|.(p1
- p3).|
*
|.(p4
- p3).|)) by
A59;
then
A91: d
= (((
- 2)
* (r2
* (
cos (
angle (p1,p3,p4)))))
/ r2) by
A84,
A86,
A87,
A90,
FUNCT_1: 12
.= ((
- 2)
* ((r2
* (
cos (
angle (p1,p3,p4))))
/ r2)) by
XCMPLX_1: 74
.= ((
- 2)
* (
cos (
angle (p1,p3,p4)))) by
A28,
A89,
XCMPLX_1: 89;
A92: p1
<> p4
proof
A93:
|.(p1
- p3).|
<>
0 by
A27,
Lm1;
assume
A94: p1
= p4;
0
= (
0
*
|.(p1
- p1).|)
.= (((2
*
|.(p1
- p3).|)
*
|.(p1
- p3).|)
- (((2
*
|.(p1
- p3).|)
*
|.(p1
- p3).|)
* (
cos (
angle (p1,p3,p4))))) by
A90,
A94,
Lm1;
hence contradiction by
A58,
A29,
A91,
A93,
XCMPLX_1: 7;
end;
A95: p3
<> p4 by
A2,
A85;
per cases ;
suppose
A96: (
angle (p,p3,p2))
<=
PI ;
(p,p3,p2)
are_mutually_distinct by
A1,
A2,
A10,
A21,
ZFMISC_1:def 5;
then (
angle (p3,p2,p))
<=
PI by
A96,
Th23;
then
A97: (
angle (p3,p2,p1))
<=
PI by
A1,
A10,
Th10;
(p3,p2,p1)
are_mutually_distinct by
A10,
A27,
A21,
ZFMISC_1:def 5;
then (
angle (p2,p1,p3))
<=
PI by
A97,
Th23;
then
A98: (
angle (p4,p1,p3))
<=
PI by
A88,
A92,
Th9;
(p4,p1,p3)
are_mutually_distinct by
A27,
A92,
A95,
ZFMISC_1:def 5;
then (
angle (p1,p3,p4))
<=
PI by
A98,
Th23;
hence (
angle (p1,p3,p4))
= (
arccos (
cos (
angle (p1,p3,p4)))) by
COMPLEX2: 70,
SIN_COS6: 92
.= (
angle (p,p3,p2)) by
A58,
A91,
A96,
COMPLEX2: 70,
SIN_COS6: 92;
end;
suppose
A99: (
angle (p,p3,p2))
>
PI ;
(p,p3,p2)
are_mutually_distinct by
A1,
A2,
A10,
A21,
ZFMISC_1:def 5;
then (
angle (p3,p2,p))
>
PI by
A99,
Th24;
then
A100: (
angle (p3,p2,p1))
>
PI by
A1,
A10,
Th10;
(p3,p2,p1)
are_mutually_distinct by
A10,
A27,
A21,
ZFMISC_1:def 5;
then (
angle (p2,p1,p3))
>
PI by
A100,
Th24;
then
A101: (
angle (p4,p1,p3))
>
PI by
A88,
A92,
Th9;
(p4,p1,p3)
are_mutually_distinct by
A27,
A92,
A95,
ZFMISC_1:def 5;
then (
angle (p1,p3,p4))
>
PI by
A101,
Th24;
then (
- (
angle (p1,p3,p4)))
< (
-
PI ) by
XREAL_1: 24;
then
A102: ((
- (
angle (p1,p3,p4)))
+ (2
*
PI ))
< ((
-
PI )
+ (2
*
PI )) by
XREAL_1: 6;
A103: (
cos ((2
*
PI )
- (
angle (p1,p3,p4))))
= (
cos
. ((
- (
angle (p1,p3,p4)))
+ ((2
*
PI )
* 1))) by
SIN_COS:def 19
.= (
cos
. (
- (
angle (p1,p3,p4)))) by
SIN_COS6: 10
.= (
cos
. (
angle (p1,p3,p4))) by
SIN_COS: 30
.= (
cos (
angle (p,p3,p2))) by
A58,
A91,
SIN_COS:def 19
.= (
cos
. (
angle (p,p3,p2))) by
SIN_COS:def 19
.= (
cos
. (
- (
angle (p,p3,p2)))) by
SIN_COS: 30
.= (
cos
. ((
- (
angle (p,p3,p2)))
+ ((2
*
PI )
* 1))) by
SIN_COS6: 10
.= (
cos ((2
*
PI )
- (
angle (p,p3,p2)))) by
SIN_COS:def 19;
(
- (
angle (p,p3,p2)))
< (
-
PI ) by
A99,
XREAL_1: 24;
then
A104: ((
- (
angle (p,p3,p2)))
+ (2
*
PI ))
< ((
-
PI )
+ (2
*
PI )) by
XREAL_1: 6;
(
angle (p,p3,p2))
< (2
*
PI ) by
COMPLEX2: 70;
then (
- (
angle (p,p3,p2)))
> (
- (2
*
PI )) by
XREAL_1: 24;
then
A105: ((
- (
angle (p,p3,p2)))
+ (2
*
PI ))
> ((
- (2
*
PI ))
+ (2
*
PI )) by
XREAL_1: 6;
(
angle (p1,p3,p4))
< (2
*
PI ) by
COMPLEX2: 70;
then (
- (
angle (p1,p3,p4)))
> (
- (2
*
PI )) by
XREAL_1: 24;
then ((
- (
angle (p1,p3,p4)))
+ (2
*
PI ))
> ((
- (2
*
PI ))
+ (2
*
PI )) by
XREAL_1: 6;
then ((2
*
PI )
- (
angle (p1,p3,p4)))
= (
arccos (
cos ((2
*
PI )
- (
angle (p1,p3,p4))))) by
A102,
SIN_COS6: 92
.= ((2
*
PI )
- (
angle (p,p3,p2))) by
A104,
A103,
A105,
SIN_COS6: 92;
hence thesis;
end;
end;
end;
theorem ::
EUCLID_6:29
p1
in (
inside_of_circle (a,b,r)) & p2
in (
outside_of_circle (a,b,r)) implies ex p st p
in ((
LSeg (p1,p2))
/\ (
circle (a,b,r))) by
Lm17;
theorem ::
EUCLID_6:30
Th30: p1
in (
circle (a,b,r)) & p3
in (
circle (a,b,r)) & p4
in (
circle (a,b,r)) & p
in (
LSeg (p1,p3)) & p
in (
LSeg (p1,p4)) & p3
<> p4 implies p
= p1
proof
assume
A1: p1
in (
circle (a,b,r));
assume
A2: p3
in (
circle (a,b,r));
assume
A3: p4
in (
circle (a,b,r));
assume
A4: p
in (
LSeg (p1,p3));
assume
A5: p
in (
LSeg (p1,p4));
assume
A6: p3
<> p4;
per cases ;
suppose
A7: p1
= p3 or p1
= p4;
per cases by
A7;
suppose p1
= p3;
then p
in
{p1} by
A4,
RLTOPSP1: 70;
hence thesis by
TARSKI:def 1;
end;
suppose p1
= p4;
then p
in
{p1} by
A5,
RLTOPSP1: 70;
hence thesis by
TARSKI:def 1;
end;
end;
suppose
A8: p1
<> p3 & p1
<> p4;
per cases ;
suppose
A9: p
<> p1;
A10: (
inside_of_circle (a,b,r))
misses (
circle (a,b,r)) by
TOPREAL9: 54;
per cases by
A4,
A5,
A6,
A9,
Th12;
suppose
A11: p3
in (
LSeg (p1,p4));
not p3
in
{p1, p4} by
A6,
A8,
TARSKI:def 2;
then
A12: p3
in ((
LSeg (p1,p4))
\
{p1, p4}) by
A11,
XBOOLE_0:def 5;
((
LSeg (p1,p4))
\
{p1, p4})
c= (
inside_of_circle (a,b,r)) by
A1,
A3,
TOPREAL9: 60;
then p3
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A2,
A12,
XBOOLE_0:def 4;
hence thesis by
A10,
XBOOLE_0:def 7;
end;
suppose
A13: p4
in (
LSeg (p1,p3));
not p4
in
{p1, p3} by
A6,
A8,
TARSKI:def 2;
then
A14: p4
in ((
LSeg (p1,p3))
\
{p1, p3}) by
A13,
XBOOLE_0:def 5;
((
LSeg (p1,p3))
\
{p1, p3})
c= (
inside_of_circle (a,b,r)) by
A1,
A2,
TOPREAL9: 60;
then p4
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A3,
A14,
XBOOLE_0:def 4;
hence thesis by
A10,
XBOOLE_0:def 7;
end;
end;
suppose p
= p1;
hence thesis;
end;
end;
end;
theorem ::
EUCLID_6:31
Th31: p1
in (
circle (a,b,r)) & p2
in (
circle (a,b,r)) & p
in (
circle (a,b,r)) & pc
=
|[a, b]| & pc
in (
LSeg (p,p2)) & p1
<> p implies (2
* (
angle (p1,p,p2)))
= (
angle (p1,pc,p2)) or (2
* ((
angle (p1,p,p2))
-
PI ))
= (
angle (p1,pc,p2))
proof
assume
A1: p1
in (
circle (a,b,r));
assume
A2: p2
in (
circle (a,b,r));
assume
A3: p
in (
circle (a,b,r));
assume that
A4: pc
=
|[a, b]| and
A5: pc
in (
LSeg (p,p2));
assume
A6: p1
<> p;
per cases ;
suppose
A7: r
=
0 ;
then
|.(p1
- pc).|
=
0 by
A1,
A4,
TOPREAL9: 43;
then
A8: p1
= pc by
Lm1;
A9:
|.(p2
- pc).|
=
0 by
A2,
A4,
A7,
TOPREAL9: 43;
then p2
= pc by
Lm1;
then (2
* (
angle (p1,p,p2)))
= (2
*
0 ) by
A8,
COMPLEX2: 79
.= (
angle (pc,pc,pc)) by
COMPLEX2: 79;
hence thesis by
A9,
A8,
Lm1;
end;
suppose
A10: r
<>
0 ;
|.(p2
- pc).|
= r by
A2,
A4,
TOPREAL9: 43;
then
A11: pc
<> p2 by
A10,
Lm1;
A12: (
euc2cpx p1)
<> (
euc2cpx p) by
A6,
EUCLID_3: 4;
A13:
|.(p1
- pc).|
= r by
A1,
A4,
TOPREAL9: 43;
then pc
<> p1 by
A10,
Lm1;
then
A14: (
euc2cpx pc)
<> (
euc2cpx p1) by
EUCLID_3: 4;
A15:
|.(p
- pc).|
= r by
A3,
A4,
TOPREAL9: 43;
then
A16: pc
<> p by
A10,
Lm1;
then
A17: (
angle (p1,p,p2))
= (
angle (p1,p,pc)) by
A5,
Th10;
|.(pc
- p1).|
=
|.(p
- pc).| by
A13,
A15,
Lm2;
then
A18: (
angle (pc,p1,p))
= (
angle (p1,p,pc)) by
A6,
Th16;
(
euc2cpx pc)
<> (
euc2cpx p) by
A16,
EUCLID_3: 4;
then
A19: (((
angle (pc,p1,p))
+ (
angle (p1,p,pc)))
+ (
angle (p,pc,p1)))
=
PI or (((
angle (pc,p1,p))
+ (
angle (p1,p,pc)))
+ (
angle (p,pc,p1)))
= (5
*
PI ) by
A14,
A12,
COMPLEX2: 88;
per cases by
A5,
A16,
A11,
A19,
A18,
A17,
Th13;
suppose ((
angle (p,pc,p1))
+ (
angle (p1,pc,p2)))
=
PI & ((2
* (
angle (p1,p,p2)))
+ (
angle (p,pc,p1)))
=
PI ;
hence thesis;
end;
suppose
A20: ((
angle (p,pc,p1))
+ (
angle (p1,pc,p2)))
= (3
*
PI ) & ((2
* (
angle (p1,p,p2)))
+ (
angle (p,pc,p1)))
=
PI ;
(
angle (p1,pc,p2))
< (2
*
PI ) & (
angle (p1,p,p2))
>=
0 by
COMPLEX2: 70;
then ((
- (2
* (
angle (p1,p,p2))))
+ (
angle (p1,pc,p2)))
< (
0
+ (2
*
PI )) by
XREAL_1: 8;
hence thesis by
A20;
end;
suppose
A21: ((
angle (p,pc,p1))
+ (
angle (p1,pc,p2)))
=
PI & ((2
* (
angle (p1,p,p2)))
+ (
angle (p,pc,p1)))
= (5
*
PI );
(
angle (p1,pc,p2))
>=
0 & ((
angle (p1,p,p2))
* 2)
< ((2
*
PI )
* 2) by
COMPLEX2: 70,
XREAL_1: 68;
then ((2
* (
angle (p1,p,p2)))
+ (
- (
angle (p1,pc,p2))))
< (((2
*
PI )
* 2)
+
0 ) by
XREAL_1: 8;
hence thesis by
A21;
end;
suppose ((
angle (p,pc,p1))
+ (
angle (p1,pc,p2)))
= (3
*
PI ) & ((2
* (
angle (p1,p,p2)))
+ (
angle (p,pc,p1)))
= (5
*
PI );
hence thesis;
end;
end;
end;
theorem ::
EUCLID_6:32
Th32: p1
in (
circle (a,b,r)) & r
>
0 implies ex p2 st p1
<> p2 & p2
in (
circle (a,b,r)) &
|[a, b]|
in (
LSeg (p1,p2))
proof
set pc =
|[a, b]|;
set p2 = ((2
* pc)
- p1);
assume
A1: p1
in (
circle (a,b,r));
then
A2:
|.(p1
- pc).|
= r by
TOPREAL9: 43;
assume
A3: r
>
0 ;
take p2;
thus p1
<> p2
proof
assume p1
= p2;
then ((1
* p1)
+ p1)
= (((2
* pc)
- p1)
+ p1) by
RLVECT_1:def 8;
then ((1
* p1)
+ (1
* p1))
= (((2
* pc)
- p1)
+ p1) by
RLVECT_1:def 8;
then ((1
+ 1)
* p1)
= (((2
* pc)
- p1)
+ p1) by
RLVECT_1:def 6;
then (2
* p1)
= ((2
* pc)
- (p1
- p1)) by
RLVECT_1: 29;
then (2
* p1)
= ((2
* pc)
- (
0. (
TOP-REAL 2))) by
RLVECT_1: 5;
then (2
* p1)
= ((2
* pc)
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 12;
then (2
* p1)
= (2
* pc) by
RLVECT_1: 4;
then p1
= pc by
RLVECT_1: 36;
then
|.(pc
- pc).|
= r by
A1,
TOPREAL9: 43;
hence contradiction by
A3,
Lm1;
end;
|.(p2
- pc).|
=
|.(((2
* pc)
- p1)
- pc).|
.=
|.(((2
* pc)
+ (
- p1))
- pc).|
.=
|.(((2
* pc)
+ (
- pc))
+ (
- p1)).| by
RLVECT_1:def 3
.=
|.(((2
* pc)
+ ((
- 1)
* pc))
+ (
- p1)).|
.=
|.(((2
+ (
- 1))
* pc)
+ (
- p1)).| by
RLVECT_1:def 6
.=
|.(pc
- p1).| by
RLVECT_1:def 8
.= r by
A2,
Lm2;
hence p2
in (
circle (a,b,r)) by
TOPREAL9: 43;
(((1
- (1
/ 2))
* p1)
+ ((1
/ 2)
* p2))
= ((1
/ 2)
* (p1
+ p2)) by
RLVECT_1:def 5
.= ((1
/ 2)
* ((p1
+ (
- p1))
+ (2
* pc))) by
RLVECT_1:def 3
.= ((1
/ 2)
* ((
0. (
TOP-REAL 2))
+ (2
* pc))) by
RLVECT_1: 5
.= ((1
/ 2)
* (2
* pc)) by
RLVECT_1: 4
.= (((1
/ 2)
* 2)
* pc) by
RLVECT_1:def 7
.= pc by
RLVECT_1:def 8;
hence thesis;
end;
theorem ::
EUCLID_6:33
Th33: p1
in (
circle (a,b,r)) & p2
in (
circle (a,b,r)) & p
in (
circle (a,b,r)) & pc
=
|[a, b]| & p1
<> p & p2
<> p implies (2
* (
angle (p1,p,p2)))
= (
angle (p1,pc,p2)) or (2
* ((
angle (p1,p,p2))
-
PI ))
= (
angle (p1,pc,p2))
proof
assume
A1: p1
in (
circle (a,b,r));
assume
A2: p2
in (
circle (a,b,r));
assume
A3: p
in (
circle (a,b,r));
assume
A4: pc
=
|[a, b]|;
assume that
A5: p1
<> p and
A6: p2
<> p;
per cases ;
suppose
A7: r
=
0 ;
then
|.(p1
- pc).|
=
0 by
A1,
A4,
TOPREAL9: 43;
then
A8: p1
= pc by
Lm1;
A9:
|.(p2
- pc).|
=
0 by
A2,
A4,
A7,
TOPREAL9: 43;
then p2
= pc by
Lm1;
then (2
* (
angle (p1,p,p2)))
= (2
*
0 ) by
A8,
COMPLEX2: 79
.= (
angle (pc,pc,pc)) by
COMPLEX2: 79;
hence thesis by
A9,
A8,
Lm1;
end;
suppose
A10: r
<>
0 ;
A11:
|.(p2
- pc).|
= r by
A2,
A4,
TOPREAL9: 43;
|.(p1
- pc).|
>=
0 ;
then r
>
0 by
A1,
A4,
A10,
TOPREAL9: 43;
then
consider p3 such that p
<> p3 and
A12: p3
in (
circle (a,b,r)) and
A13:
|[a, b]|
in (
LSeg (p,p3)) by
A3,
Th32;
per cases ;
suppose p2
= p3;
hence thesis by
A1,
A3,
A4,
A5,
A12,
A13,
Th31;
end;
suppose
A14: p2
<> p3;
A15: (
angle (p2,pc,p3))
<>
0
proof
set z3 = (
euc2cpx (p3
- pc));
set z2 = (
euc2cpx (p2
- pc));
assume (
angle (p2,pc,p3))
=
0 ;
then
A16: (
Arg (p2
- pc))
= (
Arg (p3
- pc)) by
EUCLID_3: 36;
A17:
|.(p2
- pc).|
=
|.(p3
- pc).| by
A4,
A11,
A12,
TOPREAL9: 43;
A18:
|.z2.|
=
|.(p2
- pc).| by
EUCLID_3: 25
.=
|.z3.| by
A17,
EUCLID_3: 25;
A19: z2
= ((
|.z2.|
* (
cos (
Arg z2)))
+ ((
|.z2.|
* (
sin (
Arg z2)))
*
<i> )) by
COMPTRIG: 62
.= z3 by
A16,
A18,
COMPTRIG: 62;
p2
= (p2
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 4
.= (p2
+ (pc
+ (
- pc))) by
RLVECT_1: 5
.= ((p2
+ (
- pc))
+ pc) by
RLVECT_1:def 3
.= ((p3
- pc)
+ pc) by
A19,
EUCLID_3: 4
.= (p3
+ (pc
+ (
- pc))) by
RLVECT_1:def 3
.= (p3
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 5
.= p3 by
RLVECT_1: 4;
hence contradiction by
A14;
end;
(2
* (
angle (p2,p,p3)))
= (
angle (p2,pc,p3)) or (2
* ((
angle (p2,p,p3))
-
PI ))
= (
angle (p2,pc,p3)) by
A2,
A3,
A4,
A6,
A12,
A13,
Th31;
then
A20: (
angle (p2,p,p3))
<>
0 by
A15,
COMPLEX2: 70;
A21: (2
* ((
angle (p2,p,p3))
-
PI ))
= (
angle (p2,pc,p3)) implies (2
* (
angle (p3,p,p2)))
= (
angle (p3,pc,p2))
proof
assume
A22: (2
* ((
angle (p2,p,p3))
-
PI ))
= (
angle (p2,pc,p3));
thus (2
* (
angle (p3,p,p2)))
= (2
* ((2
*
PI )
- (
angle (p2,p,p3)))) by
A20,
EUCLID_3: 37
.= ((2
*
PI )
- (2
* ((
angle (p2,p,p3))
-
PI )))
.= (
angle (p3,pc,p2)) by
A15,
A22,
EUCLID_3: 37;
end;
A23: (
angle (p3,p,p2))
= ((2
*
PI )
- (
angle (p2,p,p3))) by
A20,
EUCLID_3: 37;
A24: (2
* (
angle (p2,p,p3)))
= (
angle (p2,pc,p3)) implies (2
* ((
angle (p3,p,p2))
-
PI ))
= (
angle (p3,pc,p2))
proof
assume (2
* (
angle (p2,p,p3)))
= (
angle (p2,pc,p3));
hence (2
* ((
angle (p3,p,p2))
-
PI ))
= ((2
*
PI )
- (
angle (p2,pc,p3))) by
A23
.= (
angle (p3,pc,p2)) by
A15,
EUCLID_3: 37;
end;
A25: (
angle (p1,p,p2))
= ((
angle (p1,p,p3))
+ (
angle (p3,p,p2))) or ((
angle (p1,p,p2))
+ (2
*
PI ))
= ((
angle (p1,p,p3))
+ (
angle (p3,p,p2))) by
Th4;
per cases by
Th4;
suppose
A26: (
angle (p1,pc,p2))
= ((
angle (p1,pc,p3))
+ (
angle (p3,pc,p2)));
per cases by
A1,
A2,
A3,
A4,
A5,
A6,
A12,
A13,
A24,
A21,
Th31;
suppose (2
* (
angle (p1,p,p3)))
= (
angle (p1,pc,p3)) & (2
* ((
angle (p3,p,p2))
-
PI ))
= (
angle (p3,pc,p2));
then (
angle (p1,pc,p2))
= ((2
* (
angle (p1,p,p2)))
- (2
*
PI )) or (
angle (p1,pc,p2))
= ((2
* (
angle (p1,p,p2)))
+ (2
*
PI )) by
A25,
A26;
hence thesis by
Lm3;
end;
suppose (2
* (
angle (p1,p,p3)))
= (
angle (p1,pc,p3)) & (2
* (
angle (p3,p,p2)))
= (
angle (p3,pc,p2));
then (
angle (p1,pc,p2))
= (2
* (
angle (p1,p,p2))) or (
angle (p1,pc,p2))
= ((2
* (
angle (p1,p,p2)))
+ (4
*
PI )) by
A25,
A26;
hence thesis by
Lm4;
end;
suppose (2
* ((
angle (p1,p,p3))
-
PI ))
= (
angle (p1,pc,p3)) & (2
* ((
angle (p3,p,p2))
-
PI ))
= (
angle (p3,pc,p2));
then (
angle (p1,pc,p2))
= ((2
* ((
angle (p1,p,p3))
+ (
angle (p3,p,p2))))
- (4
*
PI )) by
A26;
hence thesis by
A25,
Lm5;
end;
suppose (2
* ((
angle (p1,p,p3))
-
PI ))
= (
angle (p1,pc,p3)) & (2
* (
angle (p3,p,p2)))
= (
angle (p3,pc,p2));
then (
angle (p1,pc,p2))
= ((2
* (
angle (p1,p,p2)))
- (2
*
PI )) or (
angle (p1,pc,p2))
= ((2
* (
angle (p1,p,p2)))
+ (2
*
PI )) by
A25,
A26;
hence thesis by
Lm3;
end;
end;
suppose
A27: ((
angle (p1,pc,p2))
+ (2
*
PI ))
= ((
angle (p1,pc,p3))
+ (
angle (p3,pc,p2)));
per cases by
A1,
A2,
A3,
A4,
A5,
A6,
A12,
A13,
A24,
A21,
Th31;
suppose (2
* (
angle (p1,p,p3)))
= (
angle (p1,pc,p3)) & (2
* ((
angle (p3,p,p2))
-
PI ))
= (
angle (p3,pc,p2));
then (
angle (p1,pc,p2))
= ((2
* ((
angle (p1,p,p3))
+ (
angle (p3,p,p2))))
- (4
*
PI )) by
A27;
hence thesis by
A25,
Lm5;
end;
suppose (2
* (
angle (p1,p,p3)))
= (
angle (p1,pc,p3)) & (2
* (
angle (p3,p,p2)))
= (
angle (p3,pc,p2));
then (
angle (p1,pc,p2))
= ((2
* (
angle (p1,p,p2)))
- (2
*
PI )) or (
angle (p1,pc,p2))
= ((2
* (
angle (p1,p,p2)))
+ (2
*
PI )) by
A25,
A27;
hence thesis by
Lm3;
end;
suppose (2
* ((
angle (p1,p,p3))
-
PI ))
= (
angle (p1,pc,p3)) & (2
* ((
angle (p3,p,p2))
-
PI ))
= (
angle (p3,pc,p2));
then (
angle (p1,pc,p2))
= ((2
* ((
angle (p1,p,p3))
+ (
angle (p3,p,p2))))
- (6
*
PI )) by
A27;
hence thesis by
A25,
Lm6;
end;
suppose (2
* ((
angle (p1,p,p3))
-
PI ))
= (
angle (p1,pc,p3)) & (2
* (
angle (p3,p,p2)))
= (
angle (p3,pc,p2));
then (
angle (p1,pc,p2))
= ((2
* ((
angle (p1,p,p3))
+ (
angle (p3,p,p2))))
- (4
*
PI )) by
A27;
hence thesis by
A25,
Lm5;
end;
end;
end;
end;
end;
theorem ::
EUCLID_6:34
Th34: p1
in (
circle (a,b,r)) & p2
in (
circle (a,b,r)) & p3
in (
circle (a,b,r)) & p4
in (
circle (a,b,r)) & p1
<> p3 & p1
<> p4 & p2
<> p3 & p2
<> p4 implies (
angle (p1,p3,p2))
= (
angle (p1,p4,p2)) or (
angle (p1,p3,p2))
= ((
angle (p1,p4,p2))
-
PI ) or (
angle (p1,p3,p2))
= ((
angle (p1,p4,p2))
+
PI )
proof
assume
A1: p1
in (
circle (a,b,r));
set pc =
|[a, b]|;
assume
A2: p2
in (
circle (a,b,r));
assume
A3: p3
in (
circle (a,b,r));
assume
A4: p4
in (
circle (a,b,r));
assume that
A5: p1
<> p3 and
A6: p1
<> p4 and
A7: p2
<> p3 and
A8: p2
<> p4;
per cases by
A1,
A2,
A3,
A5,
A7,
Th33;
suppose (2
* (
angle (p1,p3,p2)))
= (
angle (p1,pc,p2));
then (2
* (
angle (p1,p4,p2)))
= (2
* (
angle (p1,p3,p2))) or (2
* ((
angle (p1,p4,p2))
-
PI ))
= (2
* (
angle (p1,p3,p2))) by
A1,
A2,
A4,
A6,
A8,
Th33;
hence thesis;
end;
suppose (2
* ((
angle (p1,p3,p2))
-
PI ))
= (
angle (p1,pc,p2));
then (2
* (
angle (p1,p4,p2)))
= (2
* ((
angle (p1,p3,p2))
-
PI )) or (2
* ((
angle (p1,p4,p2))
-
PI ))
= (2
* ((
angle (p1,p3,p2))
-
PI )) by
A1,
A2,
A4,
A6,
A8,
Th33;
hence thesis;
end;
end;
theorem ::
EUCLID_6:35
Th35: p1
in (
circle (a,b,r)) & p2
in (
circle (a,b,r)) & p3
in (
circle (a,b,r)) & p1
<> p2 & p2
<> p3 implies (
angle (p1,p2,p3))
<>
PI
proof
assume
A1: p1
in (
circle (a,b,r));
assume
A2: p2
in (
circle (a,b,r));
assume p3
in (
circle (a,b,r));
then
A3: ((
LSeg (p1,p3))
\
{p1, p3})
c= (
inside_of_circle (a,b,r)) by
A1,
TOPREAL9: 60;
assume p1
<> p2 & p2
<> p3;
then
A4: not p2
in
{p1, p3} by
TARSKI:def 2;
(
inside_of_circle (a,b,r))
misses (
circle (a,b,r)) by
TOPREAL9: 54;
then
A5: ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r)))
=
{} by
XBOOLE_0:def 7;
assume (
angle (p1,p2,p3))
=
PI ;
then p2
in (
LSeg (p1,p3)) by
Th11;
then p2
in ((
LSeg (p1,p3))
\
{p1, p3}) by
A4,
XBOOLE_0:def 5;
hence contradiction by
A2,
A3,
A5,
XBOOLE_0:def 4;
end;
Lm22: p1
in (
circle (a,b,r)) & p3
in (
circle (a,b,r)) & p4
in (
circle (a,b,r)) & p
in (
LSeg (p1,p3)) & p
in (
LSeg (p1,p4)) implies (
|.(p1
- p).|
*
|.(p
- p3).|)
= (
|.(p1
- p).|
*
|.(p
- p4).|)
proof
assume
A1: p1
in (
circle (a,b,r)) & p3
in (
circle (a,b,r)) & p4
in (
circle (a,b,r));
assume
A2: p
in (
LSeg (p1,p3)) & p
in (
LSeg (p1,p4));
per cases ;
suppose p3
<> p4;
then p
= p1 by
A1,
A2,
Th30;
then
|.(p1
- p).|
=
|.(
0. (
TOP-REAL 2)).| by
RLVECT_1: 5
.=
0 by
EUCLID_2: 39;
hence thesis;
end;
suppose p3
= p4;
hence thesis;
end;
end;
Lm23: p1
in (
circle (a,b,r)) & p2
in (
circle (a,b,r)) & p4
in (
circle (a,b,r)) & p
in (
LSeg (p1,p1)) & p
in (
LSeg (p2,p4)) implies (
|.(p1
- p).|
*
|.(p
- p1).|)
= (
|.(p2
- p).|
*
|.(p
- p4).|)
proof
assume that
A1: p1
in (
circle (a,b,r)) and
A2: p2
in (
circle (a,b,r)) & p4
in (
circle (a,b,r));
A3: ((
LSeg (p2,p4))
\
{p2, p4})
c= (
inside_of_circle (a,b,r)) by
A2,
TOPREAL9: 60;
A4: (
inside_of_circle (a,b,r))
misses (
circle (a,b,r)) by
TOPREAL9: 54;
assume p
in (
LSeg (p1,p1));
then
A5: p
in
{p1} by
RLTOPSP1: 70;
then
A6:
|.(p1
- p).|
=
|.(p
- p).| by
TARSKI:def 1
.=
|.(
0. (
TOP-REAL 2)).| by
RLVECT_1: 5
.=
|.(
0* 2).| by
EUCLID: 70
.=
0 by
EUCLID: 7;
assume p
in (
LSeg (p2,p4));
then
A7: p1
in (
LSeg (p2,p4)) by
A5,
TARSKI:def 1;
per cases ;
suppose p1
<> p2 & p1
<> p4;
then not p1
in
{p2, p4} by
TARSKI:def 2;
then p1
in ((
LSeg (p2,p4))
\
{p2, p4}) by
A7,
XBOOLE_0:def 5;
then p1
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A1,
A3,
XBOOLE_0:def 4;
hence thesis by
A4,
XBOOLE_0:def 7;
end;
suppose
A8: not (p1
<> p2 & p1
<> p4);
per cases by
A8;
suppose p1
= p2;
then
|.(p2
- p).|
=
|.(p1
- p1).| by
A5,
TARSKI:def 1
.=
|.(
0. (
TOP-REAL 2)).| by
RLVECT_1: 5
.=
|.(
0* 2).| by
EUCLID: 70
.=
0 by
EUCLID: 7;
hence thesis by
A6;
end;
suppose p1
= p4;
then
|.(p
- p4).|
=
|.(p1
- p1).| by
A5,
TARSKI:def 1
.=
|.(
0. (
TOP-REAL 2)).| by
RLVECT_1: 5
.=
|.(
0* 2).| by
EUCLID: 70
.=
0 by
EUCLID: 7;
hence thesis by
A6;
end;
end;
end;
theorem ::
EUCLID_6:36
Th36: p1
in (
circle (a,b,r)) & p2
in (
circle (a,b,r)) & p3
in (
circle (a,b,r)) & p4
in (
circle (a,b,r)) & p
in (
LSeg (p1,p3)) & p
in (
LSeg (p2,p4)) & (p1,p2,p3,p4)
are_mutually_distinct implies (
angle (p1,p4,p2))
= (
angle (p1,p3,p2))
proof
assume that
A1: p1
in (
circle (a,b,r)) and
A2: p2
in (
circle (a,b,r)) and
A3: p3
in (
circle (a,b,r)) and
A4: p4
in (
circle (a,b,r));
A5: ((
LSeg (p1,p3))
\
{p1, p3})
c= (
inside_of_circle (a,b,r)) by
A1,
A3,
TOPREAL9: 60;
assume that
A6: p
in (
LSeg (p1,p3)) and
A7: p
in (
LSeg (p2,p4));
assume
A8: (p1,p2,p3,p4)
are_mutually_distinct ;
then
A9: p1
<> p2 by
ZFMISC_1:def 6;
A10: p3
<> p4 by
A8,
ZFMISC_1:def 6;
A11: p1
<> p4 by
A8,
ZFMISC_1:def 6;
A12: p2
<> p4 by
A8,
ZFMISC_1:def 6;
A13: p1
<> p3 by
A8,
ZFMISC_1:def 6;
A14: (
inside_of_circle (a,b,r))
misses (
circle (a,b,r)) by
TOPREAL9: 54;
A15: ((
LSeg (p2,p4))
\
{p2, p4})
c= (
inside_of_circle (a,b,r)) by
A2,
A4,
TOPREAL9: 60;
A16: p
<> p1 & p
<> p4
proof
assume
A17: p
= p1 or p
= p4;
per cases by
A17;
suppose
A18: p
= p1;
not p1
in
{p2, p4} by
A9,
A11,
TARSKI:def 2;
then p1
in ((
LSeg (p2,p4))
\
{p2, p4}) by
A7,
A18,
XBOOLE_0:def 5;
then p1
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A1,
A15,
XBOOLE_0:def 4;
hence contradiction by
A14,
XBOOLE_0:def 7;
end;
suppose
A19: p
= p4;
not p4
in
{p1, p3} by
A11,
A10,
TARSKI:def 2;
then p4
in ((
LSeg (p1,p3))
\
{p1, p3}) by
A6,
A19,
XBOOLE_0:def 5;
then p4
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A4,
A5,
XBOOLE_0:def 4;
hence contradiction by
A14,
XBOOLE_0:def 7;
end;
end;
then
A20: (p1,p4,p)
are_mutually_distinct by
A11,
ZFMISC_1:def 5;
A21: (p4,p,p1)
are_mutually_distinct by
A11,
A16,
ZFMISC_1:def 5;
A22: (
angle (p1,p4,p))
= (
angle (p1,p4,p2)) by
A7,
A16,
Th10;
A23: p2
<> p3 by
A8,
ZFMISC_1:def 6;
A24: p
<> p2 & p
<> p3
proof
assume
A25: p
= p2 or p
= p3;
per cases by
A25;
suppose
A26: p
= p3;
not p3
in
{p2, p4} by
A23,
A10,
TARSKI:def 2;
then p3
in ((
LSeg (p2,p4))
\
{p2, p4}) by
A7,
A26,
XBOOLE_0:def 5;
then p3
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A3,
A15,
XBOOLE_0:def 4;
hence contradiction by
A14,
XBOOLE_0:def 7;
end;
suppose
A27: p
= p2;
not p2
in
{p1, p3} by
A9,
A23,
TARSKI:def 2;
then p2
in ((
LSeg (p1,p3))
\
{p1, p3}) by
A6,
A27,
XBOOLE_0:def 5;
then p2
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A2,
A5,
XBOOLE_0:def 4;
hence contradiction by
A14,
XBOOLE_0:def 7;
end;
end;
then
A28: (
angle (p4,p,p1))
= (
angle (p2,p,p3)) by
A6,
A7,
A16,
Th15;
A29: (p,p3,p2)
are_mutually_distinct by
A23,
A24,
ZFMISC_1:def 5;
A30: (p2,p,p3)
are_mutually_distinct by
A23,
A24,
ZFMISC_1:def 5;
A31: (
angle (p,p3,p2))
= (
angle (p1,p3,p2)) by
A6,
A24,
Th9;
per cases by
A1,
A2,
A3,
A4,
A13,
A11,
A23,
A12,
Th34;
suppose (
angle (p1,p4,p2))
= (
angle (p1,p3,p2));
hence thesis;
end;
suppose
A32: (
angle (p1,p4,p2))
= ((
angle (p1,p3,p2))
-
PI );
(
angle (p1,p3,p2))
< (2
*
PI ) by
COMPLEX2: 70;
then ((
angle (p1,p3,p2))
-
PI )
< ((2
*
PI )
-
PI ) by
XREAL_1: 9;
then (
angle (p2,p,p3))
<=
PI by
A22,
A28,
A20,
A32,
Th23;
then
A33: (
angle (p1,p3,p2))
<=
PI by
A31,
A30,
Th23;
A34: not p3
in
{p1, p2} by
A13,
A23,
TARSKI:def 2;
(
angle (p1,p4,p2))
>=
0 by
COMPLEX2: 70;
then (((
angle (p1,p3,p2))
-
PI )
+
PI )
>= (
0
+
PI ) by
A32,
XREAL_1: 6;
then p3
in (
LSeg (p1,p2)) by
A33,
Th11,
XXREAL_0: 1;
then
A35: p3
in ((
LSeg (p1,p2))
\
{p1, p2}) by
A34,
XBOOLE_0:def 5;
((
LSeg (p1,p2))
\
{p1, p2})
c= (
inside_of_circle (a,b,r)) by
A1,
A2,
TOPREAL9: 60;
then (
inside_of_circle (a,b,r))
misses (
circle (a,b,r)) & p3
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A3,
A35,
TOPREAL9: 54,
XBOOLE_0:def 4;
hence thesis by
XBOOLE_0:def 7;
end;
suppose
A36: (
angle (p1,p4,p2))
= ((
angle (p1,p3,p2))
+
PI );
(
angle (p1,p4,p2))
< (2
*
PI ) by
COMPLEX2: 70;
then ((
angle (p1,p4,p2))
-
PI )
< ((2
*
PI )
-
PI ) by
XREAL_1: 9;
then (
angle (p4,p,p1))
<=
PI by
A31,
A28,
A29,
A36,
Th23;
then
A37: (
angle (p1,p4,p2))
<=
PI by
A22,
A21,
Th23;
A38: not p4
in
{p1, p2} by
A11,
A12,
TARSKI:def 2;
(
angle (p1,p3,p2))
>=
0 by
COMPLEX2: 70;
then (((
angle (p1,p4,p2))
-
PI )
+
PI )
>= (
0
+
PI ) by
A36,
XREAL_1: 6;
then p4
in (
LSeg (p1,p2)) by
A37,
Th11,
XXREAL_0: 1;
then
A39: p4
in ((
LSeg (p1,p2))
\
{p1, p2}) by
A38,
XBOOLE_0:def 5;
((
LSeg (p1,p2))
\
{p1, p2})
c= (
inside_of_circle (a,b,r)) by
A1,
A2,
TOPREAL9: 60;
then (
inside_of_circle (a,b,r))
misses (
circle (a,b,r)) & p4
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A4,
A39,
TOPREAL9: 54,
XBOOLE_0:def 4;
hence thesis by
XBOOLE_0:def 7;
end;
end;
theorem ::
EUCLID_6:37
Th37: p1
in (
circle (a,b,r)) & p2
in (
circle (a,b,r)) & p3
in (
circle (a,b,r)) & (
angle (p1,p2,p3))
=
0 & p1
<> p2 & p2
<> p3 implies p1
= p3
proof
assume
A1: p1
in (
circle (a,b,r)) & p2
in (
circle (a,b,r)) & p3
in (
circle (a,b,r));
assume
A2: (
angle (p1,p2,p3))
=
0 ;
assume
A3: p1
<> p2 & p2
<> p3;
then
A4: (
euc2cpx p1)
<> (
euc2cpx p2) & (
euc2cpx p2)
<> (
euc2cpx p3) by
EUCLID_3: 4;
assume
A5: p1
<> p3;
then (
euc2cpx p1)
<> (
euc2cpx p3) by
EUCLID_3: 4;
then (
angle (p2,p3,p1))
=
0 & (
angle (p3,p1,p2))
=
PI or (
angle (p2,p3,p1))
=
PI & (
angle (p3,p1,p2))
=
0 by
A2,
A4,
COMPLEX2: 87;
hence contradiction by
A1,
A3,
A5,
Th35;
end;
::$Notion-Name
theorem ::
EUCLID_6:38
p1
in (
circle (a,b,r)) & p2
in (
circle (a,b,r)) & p3
in (
circle (a,b,r)) & p4
in (
circle (a,b,r)) & p
in (
LSeg (p1,p3)) & p
in (
LSeg (p2,p4)) implies (
|.(p1
- p).|
*
|.(p
- p3).|)
= (
|.(p2
- p).|
*
|.(p
- p4).|)
proof
assume that
A1: p1
in (
circle (a,b,r)) and
A2: p2
in (
circle (a,b,r)) and
A3: p3
in (
circle (a,b,r)) and
A4: p4
in (
circle (a,b,r));
A5:
|.(p1
- p).|
=
|.(p
- p1).| by
Lm2;
A6:
|.(p3
- p).|
=
|.(p
- p3).| by
Lm2;
A7:
|.(p2
- p).|
=
|.(p
- p2).| &
|.(p4
- p).|
=
|.(p
- p4).| by
Lm2;
assume that
A8: p
in (
LSeg (p1,p3)) and
A9: p
in (
LSeg (p2,p4));
per cases ;
suppose
A10: not (p1,p2,p3,p4)
are_mutually_distinct ;
per cases by
A10,
ZFMISC_1:def 6;
suppose p1
= p2;
hence thesis by
A1,
A3,
A4,
A8,
A9,
Lm22;
end;
suppose p1
= p3;
hence thesis by
A1,
A2,
A4,
A8,
A9,
Lm23;
end;
suppose p1
= p4;
hence thesis by
A1,
A2,
A3,
A8,
A9,
A7,
Lm22;
end;
suppose p2
= p3;
hence thesis by
A1,
A2,
A4,
A8,
A9,
A5,
A6,
Lm22;
end;
suppose p2
= p4;
hence thesis by
A1,
A2,
A3,
A8,
A9,
Lm23;
end;
suppose p3
= p4;
hence thesis by
A1,
A2,
A3,
A8,
A9,
A5,
A7,
Lm22;
end;
end;
suppose
A11: (p1,p2,p3,p4)
are_mutually_distinct ;
then
A12: p3
<> p4 by
ZFMISC_1:def 6;
A13: p1
<> p2 by
A11,
ZFMISC_1:def 6;
A14: p2
<> p3 by
A11,
ZFMISC_1:def 6;
A15: ((
LSeg (p1,p3))
\
{p1, p3})
c= (
inside_of_circle (a,b,r)) by
A1,
A3,
TOPREAL9: 60;
A16: (
inside_of_circle (a,b,r))
misses (
circle (a,b,r)) by
TOPREAL9: 54;
A17: ((
LSeg (p2,p4))
\
{p2, p4})
c= (
inside_of_circle (a,b,r)) by
A2,
A4,
TOPREAL9: 60;
A18: p
<> p2 & p
<> p3
proof
assume
A19: p
= p2 or p
= p3;
per cases by
A19;
suppose
A20: p
= p3;
not p3
in
{p2, p4} by
A14,
A12,
TARSKI:def 2;
then p3
in ((
LSeg (p2,p4))
\
{p2, p4}) by
A9,
A20,
XBOOLE_0:def 5;
then p3
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A3,
A17,
XBOOLE_0:def 4;
hence contradiction by
A16,
XBOOLE_0:def 7;
end;
suppose
A21: p
= p2;
not p2
in
{p1, p3} by
A13,
A14,
TARSKI:def 2;
then p2
in ((
LSeg (p1,p3))
\
{p1, p3}) by
A8,
A21,
XBOOLE_0:def 5;
then p2
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A2,
A15,
XBOOLE_0:def 4;
hence contradiction by
A16,
XBOOLE_0:def 7;
end;
end;
then
A22: (p2,p,p3)
are_mutually_distinct by
A14,
ZFMISC_1:def 5;
A23: p1
<> p4 by
A11,
ZFMISC_1:def 6;
A24: p
<> p1 & p
<> p4
proof
assume
A25: p
= p1 or p
= p4;
per cases by
A25;
suppose
A26: p
= p1;
not p1
in
{p2, p4} by
A13,
A23,
TARSKI:def 2;
then p1
in ((
LSeg (p2,p4))
\
{p2, p4}) by
A9,
A26,
XBOOLE_0:def 5;
then p1
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A1,
A17,
XBOOLE_0:def 4;
hence contradiction by
A16,
XBOOLE_0:def 7;
end;
suppose
A27: p
= p4;
not p4
in
{p1, p3} by
A23,
A12,
TARSKI:def 2;
then p4
in ((
LSeg (p1,p3))
\
{p1, p3}) by
A8,
A27,
XBOOLE_0:def 5;
then p4
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A4,
A15,
XBOOLE_0:def 4;
hence contradiction by
A16,
XBOOLE_0:def 7;
end;
end;
then
A28: (
angle (p4,p,p1))
= (
angle (p2,p,p3)) by
A8,
A9,
A18,
Th15;
A29: p2
<> p4 by
A11,
ZFMISC_1:def 6;
A30: (
angle (p3,p2,p))
<>
PI
proof
assume (
angle (p3,p2,p))
=
PI ;
then (
angle (p3,p2,p4))
=
PI by
A9,
A18,
Th10;
hence contradiction by
A2,
A3,
A4,
A14,
A29,
Th35;
end;
A31: p1
<> p3 by
A11,
ZFMISC_1:def 6;
A32: (
angle (p,p3,p2))
<>
PI
proof
assume (
angle (p,p3,p2))
=
PI ;
then (
angle (p1,p3,p2))
=
PI by
A8,
A18,
Th9;
hence contradiction by
A1,
A2,
A3,
A31,
A14,
Th35;
end;
A33: (
angle (p,p1,p4))
<>
PI
proof
assume (
angle (p,p1,p4))
=
PI ;
then (
angle (p3,p1,p4))
=
PI by
A8,
A24,
Th9;
hence contradiction by
A1,
A3,
A4,
A31,
A23,
Th35;
end;
A34: (
angle (p,p3,p2))
= (
angle (p1,p3,p2)) by
A8,
A18,
Th9;
A35: (
angle (p1,p4,p))
= (
angle (p1,p4,p2)) by
A9,
A24,
Th10;
A36: (
angle (p4,p,p1))
<>
PI
proof
assume (
angle (p4,p,p1))
=
PI ;
then p
in (
LSeg (p1,p4)) by
Th11;
hence contradiction by
A1,
A2,
A4,
A9,
A13,
A24,
Th30;
end;
then (
angle (p2,p,p3))
<>
PI by
A8,
A9,
A24,
A18,
Th15;
then
A37: (p2,p,p3)
is_a_triangle by
A22,
A32,
A30,
Th20;
A38: (
angle (p1,p4,p))
<>
PI
proof
assume (
angle (p1,p4,p))
=
PI ;
then (
angle (p1,p4,p2))
=
PI by
A9,
A24,
Th10;
hence contradiction by
A1,
A2,
A4,
A23,
A29,
Th35;
end;
(p4,p,p1)
are_mutually_distinct by
A23,
A24,
ZFMISC_1:def 5;
then
A39: (p4,p,p1)
is_a_triangle by
A36,
A33,
A38,
Th20;
(
angle (p1,p4,p2))
= (
angle (p1,p3,p2)) by
A1,
A2,
A3,
A4,
A8,
A9,
A11,
Th36;
hence thesis by
A5,
A6,
A7,
A35,
A34,
A28,
A39,
A37,
Th22;
end;
end;
begin
::$Notion-Name
theorem ::
EUCLID_6:39
a
=
|.(p2
- p1).| & b
=
|.(p3
- p2).| & c
=
|.(p1
- p3).| & s
= ((
the_perimeter_of_polygon3 (p1,p2,p3))
/ 2) implies
|.(
the_area_of_polygon3 (p1,p2,p3)).|
= (
sqrt (((s
* (s
- a))
* (s
- b))
* (s
- c)))
proof
assume that
A1: a
=
|.(p2
- p1).| and
A2: b
=
|.(p3
- p2).| and
A3: c
=
|.(p1
- p3).|;
A4: a
=
|.(p1
- p2).| by
A1,
Lm2;
c
=
|.(p3
- p1).| by
A3,
Lm2;
then
A5: (c
^2 )
= (((a
^2 )
+ (b
^2 ))
- (((2
* a)
* b)
* (
cos (
angle (p1,p2,p3))))) by
A2,
A4,
Th7;
assume
A6: s
= ((
the_perimeter_of_polygon3 (p1,p2,p3))
/ 2);
A7: (((
sin (
angle (p3,p2,p1)))
^2 )
+ ((
cos (
angle (p3,p2,p1)))
^2 ))
= 1 by
SIN_COS: 29;
((
the_area_of_polygon3 (p1,p2,p3))
^2 )
= ((((a
* b)
* (
sin (
angle (p3,p2,p1))))
/ 2)
^2 ) by
A2,
A4,
Th5
.= ((((a
* b)
* (
sin (
angle (p3,p2,p1))))
^2 )
* ((1
/ 2)
^2 ))
.= ((((a
* b)
^2 )
* (1
- ((
cos (
angle (p3,p2,p1)))
^2 )))
* ((1
/ 2)
^2 )) by
A7,
SQUARE_1: 9
.= ((((((a
* b)
^2 )
- (((a
* b)
^2 )
* ((
cos (
angle (p3,p2,p1)))
^2 )))
* (2
^2 ))
/ (2
^2 ))
* ((1
/ 2)
^2 )) by
XCMPLX_1: 89
.= (((((2
^2 )
* ((a
* b)
^2 ))
- ((((2
* a)
* b)
* (
cos (
angle (p3,p2,p1))))
^2 ))
/ (2
^2 ))
* ((1
/ 2)
^2 ))
.= (((((2
^2 )
* ((a
* b)
^2 ))
- ((((
- (c
^2 ))
+ (a
^2 ))
+ (b
^2 ))
^2 ))
/ (2
^2 ))
* ((1
/ 2)
^2 )) by
A5,
Th3
.= (((((16
* (s
- a))
* (s
- b))
* ((s
- c)
* s))
/ (2
* 2))
* ((1
/ 2)
^2 )) by
A1,
A2,
A3,
A6
.= (((s
* (s
- a))
* (s
- b))
* (s
- c));
hence thesis by
COMPLEX1: 72;
end;
::$Notion-Name
theorem ::
EUCLID_6:40
p1
in (
circle (a,b,r)) & p2
in (
circle (a,b,r)) & p3
in (
circle (a,b,r)) & p4
in (
circle (a,b,r)) & p
in (
LSeg (p1,p3)) & p
in (
LSeg (p2,p4)) implies (
|.(p3
- p1).|
*
|.(p4
- p2).|)
= ((
|.(p2
- p1).|
*
|.(p4
- p3).|)
+ (
|.(p3
- p2).|
*
|.(p4
- p1).|))
proof
assume that
A1: p1
in (
circle (a,b,r)) and
A2: p2
in (
circle (a,b,r)) and
A3: p3
in (
circle (a,b,r)) and
A4: p4
in (
circle (a,b,r));
A5:
|.(p3
- p1).|
=
|.(p1
- p3).| by
Lm2;
assume that
A6: p
in (
LSeg (p1,p3)) and
A7: p
in (
LSeg (p2,p4));
per cases ;
suppose
A8: not (p1,p2,p3,p4)
are_mutually_distinct ;
per cases by
A8,
ZFMISC_1:def 6;
suppose
A9: p1
= p2;
then
|.(p2
- p1).|
=
0 by
Lm1;
hence thesis by
A9;
end;
suppose p1
= p3;
then
A10: p
in
{p1} by
A6,
RLTOPSP1: 70;
then p
in (
circle (a,b,r)) by
A1,
TARSKI:def 1;
then p
in ((
LSeg (p2,p4))
/\ (
circle (a,b,r))) by
A7,
XBOOLE_0:def 4;
then p
in
{p2, p4} by
A2,
A4,
TOPREAL9: 61;
then
A11: p
= p2 or p
= p4 by
TARSKI:def 2;
per cases by
A10,
A11,
TARSKI:def 1;
suppose
A12: p1
= p2;
then
|.(p2
- p1).|
=
0 by
Lm1;
hence thesis by
A12;
end;
suppose
A13: p1
= p4;
then
|.(p4
- p1).|
=
0 by
Lm1;
hence thesis by
A5,
A13,
Lm2;
end;
end;
suppose
A14: p1
= p4;
then
|.(p4
- p1).|
=
0 by
Lm1;
hence thesis by
A5,
A14,
Lm2;
end;
suppose
A15: p2
= p3;
then
|.(p3
- p2).|
=
0 by
Lm1;
hence thesis by
A15;
end;
suppose p2
= p4;
then
A16: p
in
{p2} by
A7,
RLTOPSP1: 70;
then p
in (
circle (a,b,r)) by
A2,
TARSKI:def 1;
then p
in ((
LSeg (p1,p3))
/\ (
circle (a,b,r))) by
A6,
XBOOLE_0:def 4;
then p
in
{p1, p3} by
A1,
A3,
TOPREAL9: 61;
then
A17: p
= p1 or p
= p3 by
TARSKI:def 2;
per cases by
A16,
A17,
TARSKI:def 1;
suppose
A18: p1
= p2;
then
|.(p2
- p1).|
=
0 by
Lm1;
hence thesis by
A18;
end;
suppose
A19: p2
= p3;
then
|.(p3
- p2).|
=
0 by
Lm1;
hence thesis by
A19;
end;
end;
suppose
A20: p3
= p4;
then
|.(p4
- p3).|
=
0 by
Lm1;
hence thesis by
A20;
end;
end;
suppose
A21: (p1,p2,p3,p4)
are_mutually_distinct ;
then
A22: p3
<> p4 by
ZFMISC_1:def 6;
then
A23: (
euc2cpx p3)
<> (
euc2cpx p4) by
EUCLID_3: 4;
A24: p2
<> p4 by
A21,
ZFMISC_1:def 6;
then
A25: (
angle (p3,p4,p2))
<>
PI by
A2,
A3,
A4,
A22,
Th35;
A26: p1
<> p2 by
A21,
ZFMISC_1:def 6;
then
A27: (
angle (p1,p2,p4))
<>
PI by
A1,
A2,
A4,
A24,
Th35;
A28: p1
<> p4 by
A21,
ZFMISC_1:def 6;
then
A29: (
angle (p4,p1,p2))
<>
PI by
A1,
A2,
A4,
A26,
Th35;
A30: (
angle (p2,p4,p1))
<>
PI by
A1,
A2,
A4,
A28,
A24,
Th35;
(p2,p4,p1)
are_mutually_distinct by
A26,
A28,
A24,
ZFMISC_1:def 5;
then
A31: (p2,p4,p1)
is_a_triangle by
A30,
A29,
A27,
Th20;
A32: p2
<> p3 by
A21,
ZFMISC_1:def 6;
then
A33: (
euc2cpx p2)
<> (
euc2cpx p3) by
EUCLID_3: 4;
A34: (
angle (p2,p3,p4))
<>
PI by
A2,
A3,
A4,
A32,
A22,
Th35;
A35: not p2
in (
LSeg (p1,p3))
proof
assume
A36: p2
in (
LSeg (p1,p3));
not p2
in
{p1, p3} by
A26,
A32,
TARSKI:def 2;
then
A37: p2
in ((
LSeg (p1,p3))
\
{p1, p3}) by
A36,
XBOOLE_0:def 5;
((
LSeg (p1,p3))
\
{p1, p3})
c= (
inside_of_circle (a,b,r)) by
A1,
A3,
TOPREAL9: 60;
then (
inside_of_circle (a,b,r))
misses (
circle (a,b,r)) & p2
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A2,
A37,
TOPREAL9: 54,
XBOOLE_0:def 4;
hence contradiction by
XBOOLE_0:def 7;
end;
then
consider p5 such that
A38: p5
in (
LSeg (p1,p3)) and
A39: (
angle (p1,p2,p5))
= (
angle (p,p2,p3)) by
A6,
Th28;
A40: (
angle (p4,p2,p3))
<>
PI by
A2,
A3,
A4,
A32,
A24,
Th35;
then
A41: (
angle (p1,p2,p5))
<>
PI by
A6,
A7,
A35,
A39,
Th9;
A42: (
euc2cpx p2)
<> (
euc2cpx p4) by
A24,
EUCLID_3: 4;
A43: p5
<> p1
proof
assume p5
= p1;
then (
angle (p4,p2,p3))
= (
angle (p1,p2,p1)) by
A6,
A7,
A35,
A39,
Th9
.=
0 by
COMPLEX2: 79;
hence contradiction by
A34,
A25,
A33,
A42,
A23,
COMPLEX2: 87;
end;
A44: p5
<> p3
proof
((
angle (p4,p2,p3))
+ (
angle (p3,p2,p4)))
= (
angle (p4,p2,p4)) or ((
angle (p4,p2,p3))
+ (
angle (p3,p2,p4)))
= ((
angle (p4,p2,p4))
+ (2
*
PI )) by
Th4;
then
A45: ((
angle (p4,p2,p3))
+ (
angle (p3,p2,p4)))
=
0 or ((
angle (p4,p2,p3))
+ (
angle (p3,p2,p4)))
= (
0
+ (2
*
PI )) by
COMPLEX2: 79;
assume p5
= p3;
then
A46: (
angle (p4,p2,p3))
= (
angle (p1,p2,p3)) by
A6,
A7,
A35,
A39,
Th9;
per cases by
A45,
Th4;
suppose ((
angle (p4,p2,p3))
+ (
angle (p3,p2,p4)))
=
0 & ((
angle (p1,p2,p3))
+ (
angle (p3,p2,p4)))
= (
angle (p1,p2,p4)) or ((
angle (p4,p2,p3))
+ (
angle (p3,p2,p4)))
= (2
*
PI ) & ((
angle (p1,p2,p3))
+ (
angle (p3,p2,p4)))
= ((
angle (p1,p2,p4))
+ (2
*
PI ));
hence contradiction by
A1,
A2,
A4,
A26,
A28,
A24,
A46,
Th37;
end;
suppose ((
angle (p4,p2,p3))
+ (
angle (p3,p2,p4)))
= (2
*
PI ) & ((
angle (p1,p2,p3))
+ (
angle (p3,p2,p4)))
= (
angle (p1,p2,p4));
hence contradiction by
A46,
COMPLEX2: 70;
end;
suppose ((
angle (p4,p2,p3))
+ (
angle (p3,p2,p4)))
=
0 & ((
angle (p1,p2,p3))
+ (
angle (p3,p2,p4)))
= ((
angle (p1,p2,p4))
+ (2
*
PI ));
then (
angle (p1,p2,p4))
= (
- (2
*
PI )) by
A46;
hence contradiction by
COMPLEX2: 70;
end;
end;
A47: (
angle (p,p2,p3))
= (
angle (p4,p2,p3)) by
A6,
A7,
A35,
Th9;
A48: (
angle (p5,p2,p3))
= (
angle (p1,p2,p4))
proof
per cases by
A47,
A39,
Th4;
suppose (
angle (p5,p2,p3))
= ((
angle (p5,p2,p4))
+ (
angle (p4,p2,p3))) & (
angle (p1,p2,p4))
= ((
angle (p4,p2,p3))
+ (
angle (p5,p2,p4))) or ((
angle (p5,p2,p3))
+ (2
*
PI ))
= ((
angle (p5,p2,p4))
+ (
angle (p4,p2,p3))) & ((
angle (p1,p2,p4))
+ (2
*
PI ))
= ((
angle (p4,p2,p3))
+ (
angle (p5,p2,p4)));
hence thesis;
end;
suppose
A49: ((
angle (p5,p2,p3))
+ (2
*
PI ))
= ((
angle (p5,p2,p4))
+ (
angle (p4,p2,p3))) & (
angle (p1,p2,p4))
= ((
angle (p4,p2,p3))
+ (
angle (p5,p2,p4)));
(
angle (p5,p2,p3))
>=
0 by
COMPLEX2: 70;
then ((
angle (p5,p2,p3))
+ (2
*
PI ))
>= (
0
+ (2
*
PI )) by
XREAL_1: 6;
hence thesis by
A49,
COMPLEX2: 70;
end;
suppose
A50: (
angle (p5,p2,p3))
= ((
angle (p5,p2,p4))
+ (
angle (p4,p2,p3))) & ((
angle (p1,p2,p4))
+ (2
*
PI ))
= ((
angle (p4,p2,p3))
+ (
angle (p5,p2,p4)));
(
angle (p1,p2,p4))
>=
0 by
COMPLEX2: 70;
then ((
angle (p1,p2,p4))
+ (2
*
PI ))
>= (
0
+ (2
*
PI )) by
XREAL_1: 6;
hence thesis by
A50,
COMPLEX2: 70;
end;
end;
A51: p5
<> p2
proof
A52: ((
LSeg (p1,p3))
\
{p1, p3})
c= (
inside_of_circle (a,b,r)) by
A1,
A3,
TOPREAL9: 60;
assume
A53: p5
= p2;
not p2
in
{p1, p3} by
A26,
A32,
TARSKI:def 2;
then p2
in ((
LSeg (p1,p3))
\
{p1, p3}) by
A38,
A53,
XBOOLE_0:def 5;
then (
inside_of_circle (a,b,r))
misses (
circle (a,b,r)) & p2
in ((
inside_of_circle (a,b,r))
/\ (
circle (a,b,r))) by
A2,
A52,
TOPREAL9: 54,
XBOOLE_0:def 4;
hence contradiction by
XBOOLE_0:def 7;
end;
then
A54: (p1,p2,p5)
are_mutually_distinct by
A26,
A43,
ZFMISC_1:def 5;
p1
<> p3 by
A21,
ZFMISC_1:def 6;
then (p2,p3,p4,p1)
are_mutually_distinct by
A26,
A28,
A32,
A24,
A22,
ZFMISC_1:def 6;
then
A55: (
angle (p2,p1,p3))
= (
angle (p2,p4,p3)) by
A1,
A2,
A3,
A4,
A6,
A7,
Th36;
A56: (
angle (p3,p1,p2))
= (
angle (p3,p4,p2))
proof
per cases ;
suppose
A57: (
angle (p2,p1,p3))
=
0 ;
then (
angle (p3,p1,p2))
=
0 by
EUCLID_3: 36;
hence thesis by
A55,
A57,
EUCLID_3: 36;
end;
suppose
A58: (
angle (p2,p1,p3))
<>
0 ;
then (
angle (p3,p1,p2))
= ((2
*
PI )
- (
angle (p2,p1,p3))) by
EUCLID_3: 37;
hence thesis by
A55,
A58,
EUCLID_3: 37;
end;
end;
then
A59: (
angle (p5,p1,p2))
= (
angle (p3,p4,p2)) by
A38,
A43,
Th9;
A60: (
angle (p2,p3,p4))
= (
angle (p2,p5,p1))
proof
A61: (
euc2cpx p2)
<> (
euc2cpx p5) & (
euc2cpx p2)
<> (
euc2cpx p1) by
A26,
A51,
EUCLID_3: 4;
A62: (
euc2cpx p5)
<> (
euc2cpx p1) by
A43,
EUCLID_3: 4;
per cases by
A33,
A42,
A23,
A61,
A62,
COMPLEX2: 88;
suppose (((
angle (p2,p3,p4))
+ (
angle (p3,p4,p2)))
+ (
angle (p4,p2,p3)))
=
PI & (((
angle (p2,p5,p1))
+ (
angle (p5,p1,p2)))
+ (
angle (p1,p2,p5)))
=
PI or (((
angle (p2,p3,p4))
+ (
angle (p3,p4,p2)))
+ (
angle (p4,p2,p3)))
= (5
*
PI ) & (((
angle (p2,p5,p1))
+ (
angle (p5,p1,p2)))
+ (
angle (p1,p2,p5)))
= (5
*
PI );
hence thesis by
A47,
A39,
A59;
end;
suppose
A63: (((
angle (p2,p3,p4))
+ (
angle (p3,p4,p2)))
+ (
angle (p4,p2,p3)))
= (5
*
PI ) & (((
angle (p2,p5,p1))
+ (
angle (p5,p1,p2)))
+ (
angle (p1,p2,p5)))
=
PI ;
(
angle (p2,p3,p4))
< (2
*
PI ) & (
angle (p2,p5,p1))
>=
0 by
COMPLEX2: 70;
then
A64: ((
angle (p2,p3,p4))
- (
angle (p2,p5,p1)))
< ((2
*
PI )
-
0 ) by
XREAL_1: 14;
((
angle (p2,p3,p4))
- (
angle (p2,p5,p1)))
= (4
*
PI ) by
A47,
A39,
A59,
A63;
hence thesis by
A64,
XREAL_1: 64;
end;
suppose
A65: (((
angle (p2,p3,p4))
+ (
angle (p3,p4,p2)))
+ (
angle (p4,p2,p3)))
=
PI & (((
angle (p2,p5,p1))
+ (
angle (p5,p1,p2)))
+ (
angle (p1,p2,p5)))
= (5
*
PI );
(
angle (p2,p5,p1))
< (2
*
PI ) & (
angle (p2,p3,p4))
>=
0 by
COMPLEX2: 70;
then
A66: ((
angle (p2,p5,p1))
- (
angle (p2,p3,p4)))
< ((2
*
PI )
-
0 ) by
XREAL_1: 14;
((
angle (p2,p5,p1))
- (
angle (p2,p3,p4)))
= (4
*
PI ) by
A47,
A39,
A59,
A65;
hence thesis by
A66,
XREAL_1: 64;
end;
end;
A67: (
angle (p1,p4,p2))
= (
angle (p1,p3,p2)) by
A1,
A2,
A3,
A4,
A6,
A7,
A21,
Th36;
(
angle (p2,p4,p1))
= (
angle (p2,p3,p1))
proof
per cases ;
suppose
A68: (
angle (p1,p4,p2))
=
0 ;
then (
angle (p2,p4,p1))
=
0 by
EUCLID_3: 36;
hence thesis by
A67,
A68,
EUCLID_3: 36;
end;
suppose
A69: (
angle (p1,p4,p2))
<>
0 ;
then (
angle (p2,p4,p1))
= ((2
*
PI )
- (
angle (p1,p4,p2))) by
EUCLID_3: 37;
hence thesis by
A67,
A69,
EUCLID_3: 37;
end;
end;
then
A70: (
angle (p2,p4,p1))
= (
angle (p2,p3,p5)) by
A38,
A44,
Th10;
A71: (
angle (p4,p1,p2))
= (
angle (p3,p5,p2))
proof
A72: (
euc2cpx p2)
<> (
euc2cpx p5) & (
euc2cpx p3)
<> (
euc2cpx p5) by
A44,
A51,
EUCLID_3: 4;
A73: (
euc2cpx p4)
<> (
euc2cpx p1) & (
euc2cpx p2)
<> (
euc2cpx p3) by
A28,
A32,
EUCLID_3: 4;
A74: (
euc2cpx p2)
<> (
euc2cpx p4) & (
euc2cpx p2)
<> (
euc2cpx p1) by
A26,
A24,
EUCLID_3: 4;
per cases by
A74,
A73,
A72,
COMPLEX2: 88;
suppose (((
angle (p2,p4,p1))
+ (
angle (p4,p1,p2)))
+ (
angle (p1,p2,p4)))
=
PI & (((
angle (p2,p3,p5))
+ (
angle (p3,p5,p2)))
+ (
angle (p5,p2,p3)))
=
PI or (((
angle (p2,p4,p1))
+ (
angle (p4,p1,p2)))
+ (
angle (p1,p2,p4)))
= (5
*
PI ) & (((
angle (p2,p3,p5))
+ (
angle (p3,p5,p2)))
+ (
angle (p5,p2,p3)))
= (5
*
PI );
hence thesis by
A70,
A48;
end;
suppose
A75: (((
angle (p2,p4,p1))
+ (
angle (p4,p1,p2)))
+ (
angle (p1,p2,p4)))
= (5
*
PI ) & (((
angle (p2,p3,p5))
+ (
angle (p3,p5,p2)))
+ (
angle (p5,p2,p3)))
=
PI ;
(
angle (p4,p1,p2))
< (2
*
PI ) & (
angle (p3,p5,p2))
>=
0 by
COMPLEX2: 70;
then
A76: ((
angle (p4,p1,p2))
- (
angle (p3,p5,p2)))
< ((2
*
PI )
-
0 ) by
XREAL_1: 14;
((
angle (p4,p1,p2))
- (
angle (p3,p5,p2)))
= (4
*
PI ) by
A70,
A48,
A75;
hence thesis by
A76,
XREAL_1: 64;
end;
suppose
A77: (((
angle (p2,p4,p1))
+ (
angle (p4,p1,p2)))
+ (
angle (p1,p2,p4)))
=
PI & (((
angle (p2,p3,p5))
+ (
angle (p3,p5,p2)))
+ (
angle (p5,p2,p3)))
= (5
*
PI );
(
angle (p3,p5,p2))
< (2
*
PI ) & (
angle (p4,p1,p2))
>=
0 by
COMPLEX2: 70;
then
A78: ((
angle (p3,p5,p2))
- (
angle (p4,p1,p2)))
< ((2
*
PI )
-
0 ) by
XREAL_1: 14;
((
angle (p3,p5,p2))
- (
angle (p4,p1,p2)))
= (4
*
PI ) by
A70,
A48,
A77;
hence thesis by
A78,
XREAL_1: 64;
end;
end;
(p2,p3,p5)
are_mutually_distinct by
A32,
A44,
A51,
ZFMISC_1:def 5;
then (p2,p3,p5)
is_a_triangle by
A70,
A48,
A71,
A30,
A29,
A27,
Th20;
then (
|.(p5
- p3).|
*
|.(p4
- p2).|)
= (
|.(p3
- p2).|
*
|.(p1
- p4).|) by
A70,
A48,
A31,
Th21;
then (
|.(p5
- p3).|
*
|.(p4
- p2).|)
= (
|.(p3
- p2).|
*
|.(p4
- p1).|) by
Lm2;
then
A79: (
|.(p3
- p5).|
*
|.(p4
- p2).|)
= (
|.(p3
- p2).|
*
|.(p4
- p1).|) by
Lm2;
(p4,p2,p3)
are_mutually_distinct by
A32,
A24,
A22,
ZFMISC_1:def 5;
then
A80: (p4,p2,p3)
is_a_triangle by
A40,
A34,
A25,
Th20;
A81:
|.(p3
- p1).|
= (
sqrt (
|.(p3
- p1).|
^2 )) by
SQUARE_1: 22
.= (
sqrt (((
|.(p1
- p5).|
^2 )
+ (
|.(p3
- p5).|
^2 ))
- (((2
*
|.(p1
- p5).|)
*
|.(p3
- p5).|)
* (
cos (
angle (p1,p5,p3)))))) by
Th7
.= (
sqrt (((
|.(p1
- p5).|
^2 )
+ (
|.(p3
- p5).|
^2 ))
- (((2
*
|.(p1
- p5).|)
*
|.(p3
- p5).|)
* (
cos
PI )))) by
A38,
A43,
A44,
Th8
.= (
sqrt ((
|.(p1
- p5).|
+
|.(p3
- p5).|)
^2 )) by
SIN_COS: 77
.= (
|.(p1
- p5).|
+
|.(p3
- p5).|) by
SQUARE_1: 22;
(
angle (p5,p1,p2))
<>
PI by
A2,
A3,
A4,
A24,
A22,
A38,
A43,
A56,
Th9,
Th35;
then (p1,p2,p5)
is_a_triangle by
A34,
A60,
A41,
A54,
Th20;
then (
|.(p1
- p5).|
*
|.(p2
- p4).|)
= (
|.(p2
- p1).|
*
|.(p4
- p3).|) by
A47,
A39,
A59,
A80,
Th21;
then (
|.(p1
- p5).|
*
|.(p4
- p2).|)
= (
|.(p2
- p1).|
*
|.(p4
- p3).|) by
Lm2;
hence ((
|.(p2
- p1).|
*
|.(p4
- p3).|)
+ (
|.(p3
- p2).|
*
|.(p4
- p1).|))
= ((
|.(p5
- p1).|
*
|.(p4
- p2).|)
+ (
|.(p3
- p5).|
*
|.(p4
- p2).|)) by
A79,
Lm2
.= ((
|.(p5
- p1).|
+
|.(p3
- p5).|)
*
|.(p4
- p2).|)
.= (
|.(p3
- p1).|
*
|.(p4
- p2).|) by
A81,
Lm2;
end;
end;
begin
reserve c1,c2,c3 for
Element of
COMPLEX ;
theorem ::
EUCLID_6:41
((p1
- p2)
`1 )
= ((p1
`1 )
- (p2
`1 )) & ((p1
- p2)
`2 )
= ((p1
`2 )
- (p2
`2 )) by
Lm15;
theorem ::
EUCLID_6:42
|.(p1
- p2).|
=
0 iff p1
= p2 by
Lm1;
theorem ::
EUCLID_6:43
|.(p1
- p2).|
=
|.(p2
- p1).| by
Lm2;
theorem ::
EUCLID_6:44
not (
angle (p1,p2,p3))
= ((2
* (
angle (p4,p5,p6)))
+ (2
*
PI )) by
Lm3;
theorem ::
EUCLID_6:45
not (
angle (p1,p2,p3))
= ((2
* (
angle (p4,p5,p6)))
+ (4
*
PI )) by
Lm4;
theorem ::
EUCLID_6:46
not (
angle (p1,p2,p3))
= ((2
* (
angle (p4,p5,p6)))
- (4
*
PI )) by
Lm5;
theorem ::
EUCLID_6:47
not (
angle (p1,p2,p3))
= ((2
* (
angle (p4,p5,p6)))
- (6
*
PI )) by
Lm6;
theorem ::
EUCLID_6:48
c1
= (
euc2cpx (p1
- p2)) & c2
= (
euc2cpx (p3
- p2)) implies (
angle (p1,p2,p3))
= (
angle (c1,c2)) by
Lm7;
theorem ::
EUCLID_6:49
((
angle (c1,c2))
+ (
angle (c2,c3)))
= (
angle (c1,c3)) or ((
angle (c1,c2))
+ (
angle (c2,c3)))
= ((
angle (c1,c3))
+ (2
*
PI )) by
Lm14;
theorem ::
EUCLID_6:50
c1
= (
euc2cpx (p1
- p2)) & c2
= (
euc2cpx (p3
- p2)) implies (
Re (c1
.|. c2))
= ((((p1
`1 )
- (p2
`1 ))
* ((p3
`1 )
- (p2
`1 )))
+ (((p1
`2 )
- (p2
`2 ))
* ((p3
`2 )
- (p2
`2 )))) & (
Im (c1
.|. c2))
= ((
- (((p1
`1 )
- (p2
`1 ))
* ((p3
`2 )
- (p2
`2 ))))
+ (((p1
`2 )
- (p2
`2 ))
* ((p3
`1 )
- (p2
`1 )))) &
|.c1.|
= (
sqrt ((((p1
`1 )
- (p2
`1 ))
^2 )
+ (((p1
`2 )
- (p2
`2 ))
^2 ))) &
|.(p1
- p2).|
=
|.c1.| by
Lm16;
theorem ::
EUCLID_6:51
for n be
Element of
NAT , q1 be
Point of (
TOP-REAL n) holds for f be
Function of (
TOP-REAL n),
R^1 st (for q be
Point of (
TOP-REAL n) holds (f
. q)
=
|.(q
- q1).|) holds f is
continuous by
Lm20;
theorem ::
EUCLID_6:52
for n be
Element of
NAT , q1 be
Point of (
TOP-REAL n) holds ex f be
Function of (
TOP-REAL n),
R^1 st (for q be
Point of (
TOP-REAL n) holds (f
. q)
=
|.(q
- q1).|) & f is
continuous by
Lm21;