mesfunc7.miz
begin
reserve X for non
empty
set,
S for
SigmaField of X,
M for
sigma_Measure of S,
f,g for
PartFunc of X,
ExtREAL ,
E for
Element of S;
theorem ::
MESFUNC7:1
Th1: (for x be
Element of X st x
in (
dom f) holds (f
. x)
<= (g
. x)) implies (g
- f) is
nonnegative
proof
assume
A1: for x be
Element of X st x
in (
dom f) holds (f
. x)
<= (g
. x);
now
let y be
ExtReal;
assume y
in (
rng (g
- f));
then
consider x be
object such that
A2: x
in (
dom (g
- f)) and
A3: y
= ((g
- f)
. x) by
FUNCT_1:def 3;
reconsider x as
set by
TARSKI: 1;
(
dom (g
- f))
= (((
dom g)
/\ (
dom f))
\ (((g
"
{
+infty })
/\ (f
"
{
+infty }))
\/ ((g
"
{
-infty })
/\ (f
"
{
-infty })))) by
MESFUNC1:def 4;
then x
in ((
dom g)
/\ (
dom f)) by
A2,
XBOOLE_0:def 5;
then x
in (
dom f) by
XBOOLE_0:def 4;
then
0.
<= ((g
. x)
- (f
. x)) by
A1,
XXREAL_3: 40;
hence
0
<= y by
A2,
A3,
MESFUNC1:def 4;
end;
then (
rng (g
- f)) is
nonnegative by
SUPINF_2:def 9;
hence thesis by
SUPINF_2:def 12;
end;
theorem ::
MESFUNC7:2
Th2: for Y be
set, f be
PartFunc of X,
ExtREAL , r be
Real holds ((r
(#) f)
| Y)
= (r
(#) (f
| Y))
proof
let Y be
set, f be
PartFunc of X,
ExtREAL , r be
Real;
A1:
now
let x be
Element of X;
assume
A2: x
in (
dom ((r
(#) f)
| Y));
then
A3: x
in ((
dom (r
(#) f))
/\ Y) by
RELAT_1: 61;
then
A4: x
in Y by
XBOOLE_0:def 4;
A5: x
in (
dom (r
(#) f)) by
A3,
XBOOLE_0:def 4;
then x
in (
dom f) by
MESFUNC1:def 6;
then x
in ((
dom f)
/\ Y) by
A4,
XBOOLE_0:def 4;
then
A6: x
in (
dom (f
| Y)) by
RELAT_1: 61;
then
A7: x
in (
dom (r
(#) (f
| Y))) by
MESFUNC1:def 6;
thus (((r
(#) f)
| Y)
. x)
= ((r
(#) f)
. x) by
A2,
FUNCT_1: 47
.= (r
* (f
. x)) by
A5,
MESFUNC1:def 6
.= (r
* ((f
| Y)
. x)) by
A6,
FUNCT_1: 47
.= ((r
(#) (f
| Y))
. x) by
A7,
MESFUNC1:def 6;
end;
(
dom ((r
(#) f)
| Y))
= ((
dom (r
(#) f))
/\ Y) by
RELAT_1: 61
.= ((
dom f)
/\ Y) by
MESFUNC1:def 6
.= (
dom (f
| Y)) by
RELAT_1: 61
.= (
dom (r
(#) (f
| Y))) by
MESFUNC1:def 6;
hence thesis by
A1,
PARTFUN1: 5;
end;
reconsider jj = 1 as
Real;
theorem ::
MESFUNC7:3
Th3: f
is_integrable_on M & g
is_integrable_on M & (g
- f) is
nonnegative implies ex E be
Element of S st E
= ((
dom f)
/\ (
dom g)) & (
Integral (M,(f
| E)))
<= (
Integral (M,(g
| E)))
proof
assume that
A1: f
is_integrable_on M and
A2: g
is_integrable_on M and
A3: (g
- f) is
nonnegative;
set h = ((
- jj)
(#) f);
A4: h
is_integrable_on M by
A1,
MESFUNC5: 110;
then
consider E be
Element of S such that
A5: E
= ((
dom h)
/\ (
dom g)) and
A6: (
Integral (M,(h
+ g)))
= ((
Integral (M,(h
| E)))
+ (
Integral (M,(g
| E)))) by
A2,
MESFUNC5: 109;
A7: ex E3 be
Element of S st E3
= (
dom h) & h is E3
-measurable by
A4;
A8: (g
| E)
is_integrable_on M by
A2,
MESFUNC5: 97;
then
A9: (
Integral (M,(g
| E)))
<
+infty by
MESFUNC5: 96;
-infty
< (
Integral (M,(g
| E))) by
A8,
MESFUNC5: 96;
then
reconsider c2 = (
Integral (M,(g
| E))) as
Element of
REAL by
A9,
XXREAL_0: 14;
take E;
A10: (h
| E)
= ((
- jj)
(#) (f
| E)) by
Th2;
(g
+ (
- f)) is
nonnegative by
A3,
MESFUNC2: 8;
then
A11: (h
+ g) is
nonnegative by
MESFUNC2: 9;
A12: (f
| E)
is_integrable_on M by
A1,
MESFUNC5: 97;
then
A13: (
Integral (M,(f
| E)))
<
+infty by
MESFUNC5: 96;
-infty
< (
Integral (M,(f
| E))) by
A12,
MESFUNC5: 96;
then
reconsider c1 = (
Integral (M,(f
| E))) as
Element of
REAL by
A13,
XXREAL_0: 14;
A14: ((
- jj) qua
ExtReal
* (
Integral (M,(f
| E))))
= ((
- jj)
* c1) by
EXTREAL1: 1
.= (
- c1);
ex E2 be
Element of S st E2
= (
dom g) & g is E2
-measurable by
A2;
then ex A be
Element of S st A
= (
dom (h
+ g)) & (h
+ g) is A
-measurable by
A7,
MESFUNC5: 47;
then
0
<= ((
Integral (M,(h
| E)))
+ (
Integral (M,(g
| E)))) by
A6,
A11,
MESFUNC5: 90;
then
0
<= (((
- jj) qua
ExtReal
* (
Integral (M,(f
| E))))
+ (
Integral (M,(g
| E)))) by
A12,
A10,
MESFUNC5: 110;
then
0
<= ((
- c1)
+ c2) by
A14,
XXREAL_3:def 2;
then (
0
+ c1)
<= (((
- c1)
+ c2)
+ c1) by
XREAL_1: 6;
hence thesis by
A5,
MESFUNC1:def 6;
end;
begin
registration
let X;
cluster
nonnegative for
PartFunc of X,
ExtREAL ;
existence
proof
set f = the
PartFunc of X,
ExtREAL ;
take
|.f.|;
now
let x be
object;
assume x
in (
dom
|.f.|);
then (
|.f.|
. x)
=
|.(f
. x).| by
MESFUNC1:def 10;
hence
0.
<= (
|.f.|
. x) by
EXTREAL1: 14;
end;
hence thesis by
SUPINF_2: 52;
end;
end
registration
let X, f;
cluster
|.f.| ->
nonnegative;
correctness
proof
now
let x be
object;
assume x
in (
dom
|.f.|);
then (
|.f.|
. x)
=
|.(f
. x).| by
MESFUNC1:def 10;
hence
0.
<= (
|.f.|
. x) by
EXTREAL1: 14;
end;
hence thesis by
SUPINF_2: 52;
end;
end
theorem ::
MESFUNC7:4
f
is_integrable_on M implies ex F be
sequence of S st (for n be
Element of
NAT holds (F
. n)
= ((
dom f)
/\ (
great_eq_dom (
|.f.|,(1
/ (n
+ 1)))))) & ((
dom f)
\ (
eq_dom (f,
0. )))
= (
union (
rng F)) & for n be
Element of
NAT holds (F
. n)
in S & (M
. (F
. n))
<
+infty
proof
assume
A1: f
is_integrable_on M;
then
consider E be
Element of S such that
A2: E
= (
dom f) and
A3: f is E
-measurable;
defpred
P[
Element of
NAT ,
set] means $2
= (E
/\ (
great_eq_dom (
|.f.|,(1
/ ($1
+ 1)))));
A4: (
dom
|.f.|)
= E by
A2,
MESFUNC1:def 10;
now
let x be
object;
assume
A5: x
in (E
\ (
eq_dom (f,
0. )));
then
reconsider z = x as
Element of X;
reconsider y = (f
. z) as
R_eal;
A6: x
in E by
A5,
XBOOLE_0:def 5;
then
A7: x
in (
dom
|.f.|) by
A2,
MESFUNC1:def 10;
not x
in (
eq_dom (f,
0. )) by
A5,
XBOOLE_0:def 5;
then not y
=
0. by
A2,
A6,
MESFUNC1:def 15;
then
0.
<
|.(f
. z).| by
EXTREAL1: 15;
then
0.
< (
|.f.|
. z) by
A7,
MESFUNC1:def 10;
then x
in (
great_dom (
|.f.|,
0. )) by
A7,
MESFUNC1:def 13;
hence x
in (E
/\ (
great_dom (
|.f.|,
0. ))) by
A6,
XBOOLE_0:def 4;
end;
then
A8: (E
\ (
eq_dom (f,
0. )))
c= (E
/\ (
great_dom (
|.f.|,
0. )));
now
let x be
object;
assume
A9: x
in (E
/\ (
great_dom (
|.f.|,
0. )));
then
reconsider z = x as
Element of X;
x
in (
great_dom (
|.f.|,
0. )) by
A9,
XBOOLE_0:def 4;
then
A10:
0.
< (
|.f.|
. z) by
MESFUNC1:def 13;
A11: x
in E by
A9,
XBOOLE_0:def 4;
then x
in (
dom
|.f.|) by
A2,
MESFUNC1:def 10;
then
A12:
0.
<
|.(f
. z).| by
A10,
MESFUNC1:def 10;
not x
in (
eq_dom (f,
0. ))
proof
assume x
in (
eq_dom (f,
0. ));
then (f
. z)
=
0. by
MESFUNC1:def 15;
hence contradiction by
A12,
EXTREAL1: 16;
end;
hence x
in (E
\ (
eq_dom (f,
0. ))) by
A11,
XBOOLE_0:def 5;
end;
then
A13: (E
/\ (
great_dom (
|.f.|,
0. )))
c= (E
\ (
eq_dom (f,
0. )));
A14:
|.f.| is E
-measurable by
A2,
A3,
MESFUNC2: 27;
A15: for n be
Element of
NAT holds ex Z be
Element of S st
P[n, Z]
proof
let n be
Element of
NAT ;
take (E
/\ (
great_eq_dom (
|.f.|,(1
/ (n
+ 1)))));
thus thesis by
A14,
A4,
MESFUNC1: 27;
end;
consider F be
sequence of S such that
A16: for n be
Element of
NAT holds
P[n, (F
. n)] from
FUNCT_2:sch 3(
A15);
A17: for n be
Element of
NAT holds (F
. n)
in S & (M
. (F
. n))
<
+infty
proof
let n be
Element of
NAT ;
set d = (1
/ (n
+ 1));
set En = (F
. n);
set g = (
|.f.|
| En);
A18: g is
nonnegative by
MESFUNC5: 15;
set z = (1
/ (n
+ 1));
A19: (
|.f.|
| E)
=
|.f.| by
A4,
RELAT_1: 69;
A20: (F
. n)
= (E
/\ (
great_eq_dom (
|.f.|,(1
/ (n
+ 1))))) by
A16;
then
A21: (
dom g)
= En by
A4,
RELAT_1: 62,
XBOOLE_1: 17;
((
dom
|.f.|)
/\ En)
= (E
/\ En) by
A2,
MESFUNC1:def 10;
then
A22: ((
dom
|.f.|)
/\ En)
= En by
A20,
XBOOLE_1: 17,
XBOOLE_1: 28;
|.f.| is En
-measurable by
A14,
A20,
MESFUNC1: 30,
XBOOLE_1: 17;
then
A23: g is En
-measurable by
A22,
MESFUNC5: 42;
then
A24: (
integral+ (M,g))
= (
Integral (M,g)) by
A21,
MESFUNC5: 15,
MESFUNC5: 88;
|.f.|
is_integrable_on M by
A1,
MESFUNC5: 100;
then
A25: (
Integral (M,
|.f.|))
<
+infty by
MESFUNC5: 96;
A26: ((z
* (M
. En))
/ z)
= (M
. En) by
XXREAL_3: 88;
(F
. n)
c= E by
A20,
XBOOLE_1: 17;
then
A27: (
Integral (M,g))
<= (
Integral (M,
|.f.|)) by
A2,
A3,
A4,
A19,
MESFUNC2: 27,
MESFUNC5: 93;
consider nf be
PartFunc of X,
ExtREAL such that
A28: nf
is_simple_func_in S and
A29: (
dom nf)
= En and
A30: for x be
object st x
in En holds (nf
. x)
= d by
MESFUNC5: 41;
for x be
object st x
in (
dom nf) holds (nf
. x)
>=
0 by
A29,
A30;
then
A31: nf is
nonnegative by
SUPINF_2: 52;
then
A32: (
Integral (M,nf))
= (
integral' (M,nf)) by
A28,
MESFUNC5: 89;
A33: (F
. n)
c= (
great_eq_dom (
|.f.|,(1
/ (n
+ 1)))) by
A20,
XBOOLE_1: 17;
A34: for x be
Element of X st x
in (
dom nf) holds (nf
. x)
<= (g
. x)
proof
let x be
Element of X;
assume
A35: x
in (
dom nf);
then
A36: (1
/ (n
+ 1))
<= (
|.f.|
. x) by
A33,
A29,
MESFUNC1:def 14;
(g
. x)
= (
|.f.|
. x) by
A21,
A29,
A35,
FUNCT_1: 47;
hence thesis by
A29,
A30,
A35,
A36;
end;
nf is En
-measurable by
A28,
MESFUNC2: 34;
then (
integral+ (M,nf))
<= (
integral+ (M,g)) by
A21,
A23,
A18,
A29,
A31,
A34,
MESFUNC5: 85;
then
A37: (
integral+ (M,nf))
<= (
Integral (M,
|.f.|)) by
A24,
A27,
XXREAL_0: 2;
A38: (
+infty
/ z)
=
+infty by
XXREAL_3: 83;
(
integral+ (M,nf))
= (
Integral (M,nf)) by
A28,
A31,
MESFUNC5: 89;
then (
integral+ (M,nf))
= ((1
/ (n
+ 1))
* (M
. En)) by
A29,
A30,
A32,
MESFUNC5: 104;
then ((1
/ (n
+ 1))
* (M
. En))
<
+infty by
A25,
A37,
XXREAL_0: 2;
hence thesis by
A26,
A38,
XXREAL_3: 80;
end;
take F;
for n be
Element of
NAT holds (F
. n)
= (E
/\ (
great_eq_dom (
|.f.|,(
0
+ (1
/ (n
+ 1)))))) by
A16;
then (E
/\ (
great_dom (
|.f.|,
0 )))
= (
union (
rng F)) by
MESFUNC1: 22;
hence thesis by
A2,
A16,
A13,
A8,
A17,
XBOOLE_0:def 10;
end;
begin
notation
let F be
Relation;
synonym F is
extreal-yielding for F is
ext-real-valued;
end
registration
cluster
extreal-yielding for
FinSequence;
existence
proof
set f = the
FinSequence of
ExtREAL ;
f is
extreal-yielding;
hence thesis;
end;
end
definition
::
MESFUNC7:def1
func
multextreal ->
BinOp of
ExtREAL means
:
Def1: for x,y be
Element of
ExtREAL holds (it
. (x,y))
= (x
* y);
existence from
BINOP_1:sch 4;
uniqueness from
BINOP_2:sch 2;
end
registration
cluster
multextreal ->
commutative
associative;
coherence
proof
A1: for a,b,c be
Element of
ExtREAL holds (
multextreal
. (a,(
multextreal
. (b,c))))
= (
multextreal
. ((
multextreal
. (a,b)),c))
proof
let a,b,c be
Element of
ExtREAL ;
(
multextreal
. (a,(
multextreal
. (b,c))))
= (
multextreal
. (a,(b
* c))) by
Def1;
then (
multextreal
. (a,(
multextreal
. (b,c))))
= (a
* (b
* c)) by
Def1;
then (
multextreal
. (a,(
multextreal
. (b,c))))
= ((a
* b)
* c) by
XXREAL_3: 66;
then (
multextreal
. (a,(
multextreal
. (b,c))))
= (
multextreal
. ((a
* b),c)) by
Def1;
hence thesis by
Def1;
end;
for a,b be
Element of
ExtREAL holds (
multextreal
. (a,b))
= (
multextreal
. (b,a))
proof
let a,b be
Element of
ExtREAL ;
(
multextreal
. (a,b))
= (a
* b) by
Def1;
hence thesis by
Def1;
end;
hence thesis by
A1,
BINOP_1:def 2,
BINOP_1:def 3;
end;
end
Lm1:
1.
is_a_unity_wrt
multextreal
proof
for r be
Element of
ExtREAL holds (
multextreal
. (r,
1. ))
= r
proof
let r be
Element of
ExtREAL ;
(
multextreal
. (r,
1. ))
= (r
*
1. ) by
Def1;
hence thesis by
XXREAL_3: 81;
end;
then
A1:
1.
is_a_right_unity_wrt
multextreal by
BINOP_1:def 6;
for r be
Element of
ExtREAL holds (
multextreal
. (
1. ,r))
= r
proof
let r be
Element of
ExtREAL ;
(
multextreal
. (
1. ,r))
= (
1.
* r) by
Def1;
hence thesis by
XXREAL_3: 81;
end;
then
1.
is_a_left_unity_wrt
multextreal by
BINOP_1:def 5;
hence thesis by
A1,
BINOP_1:def 7;
end;
theorem ::
MESFUNC7:5
Th5: (
the_unity_wrt
multextreal )
= 1 by
Lm1,
BINOP_1:def 8;
registration
cluster
multextreal ->
having_a_unity;
coherence by
Lm1,
Th5,
SETWISEO: 14;
end
definition
let F be
extreal-yielding
FinSequence;
::
MESFUNC7:def2
func
Product F ->
Element of
ExtREAL means
:
Def2: ex f be
FinSequence of
ExtREAL st f
= F & it
= (
multextreal
$$ f);
existence
proof
(
rng F)
c=
ExtREAL by
VALUED_0:def 2;
then
reconsider f = F as
FinSequence of
ExtREAL by
FINSEQ_1:def 4;
take (
multextreal
$$ f);
thus thesis;
end;
uniqueness ;
end
registration
let x be
Element of
ExtREAL , n be
Nat;
cluster (n
|-> x) ->
extreal-yielding;
coherence ;
end
definition
let x be
Element of
ExtREAL ;
let k be
Nat;
::
MESFUNC7:def3
func x
|^ k ->
number equals (
Product (k
|-> x));
coherence ;
end
definition
let x be
Element of
ExtREAL , k be
Nat;
:: original:
|^
redefine
func x
|^ k ->
R_eal ;
coherence ;
end
registration
cluster (
<*>
ExtREAL ) ->
extreal-yielding;
coherence ;
end
registration
let r be
Element of
ExtREAL ;
cluster
<*r*> ->
extreal-yielding;
coherence ;
end
theorem ::
MESFUNC7:6
Th6: (
Product (
<*>
ExtREAL ))
= 1
proof
(
Product (
<*>
ExtREAL ))
= (
multextreal
$$ (
<*>
ExtREAL )) by
Def2;
hence thesis by
Th5,
FINSOP_1: 10;
end;
theorem ::
MESFUNC7:7
Th7: for r be
Element of
ExtREAL holds (
Product
<*r*>)
= r
proof
let r be
Element of
ExtREAL ;
reconsider r9 = r as
Element of
ExtREAL ;
reconsider F =
<*r9*> as
FinSequence of
ExtREAL ;
(
multextreal
$$ F)
= r by
FINSOP_1: 11;
hence thesis by
Def2;
end;
registration
let f,g be
extreal-yielding
FinSequence;
cluster (f
^ g) ->
extreal-yielding;
coherence
proof
A1: (
rng (f
^ g))
= ((
rng f)
\/ (
rng g)) by
FINSEQ_1: 31;
A2: (
rng g)
c=
ExtREAL by
VALUED_0:def 2;
(
rng f)
c=
ExtREAL by
VALUED_0:def 2;
then (
rng (f
^ g))
c=
ExtREAL by
A2,
A1,
XBOOLE_1: 8;
hence thesis by
VALUED_0:def 2;
end;
end
theorem ::
MESFUNC7:8
Th8: for F be
extreal-yielding
FinSequence, r be
Element of
ExtREAL holds (
Product (F
^
<*r*>))
= ((
Product F)
* r)
proof
let F be
extreal-yielding
FinSequence, r be
Element of
ExtREAL ;
A1: (
rng (F
^
<*r*>))
c=
ExtREAL by
VALUED_0:def 2;
(
rng F)
c=
ExtREAL by
VALUED_0:def 2;
then
reconsider Fr = (F
^
<*r*>), Ff = F as
FinSequence of
ExtREAL by
A1,
FINSEQ_1:def 4;
reconsider Ff1 = Ff as
extreal-yielding
FinSequence;
(
Product (F
^
<*r*>))
= (
multextreal
$$ Fr) by
Def2;
then (
Product (F
^
<*r*>))
= (
multextreal
. ((
multextreal
$$ Ff),r)) by
FINSOP_1: 4;
then (
Product (F
^
<*r*>))
= (
multextreal
. ((
Product Ff1),r)) by
Def2;
hence thesis by
Def1;
end;
theorem ::
MESFUNC7:9
Th9: for x be
Element of
ExtREAL holds (x
|^ 1)
= x
proof
let x be
Element of
ExtREAL ;
(
Product (1
|-> x))
= (
Product
<*x*>) by
FINSEQ_2: 59;
hence thesis by
Th7;
end;
theorem ::
MESFUNC7:10
Th10: for x be
Element of
ExtREAL , k be
Nat holds (x
|^ (k
+ 1))
= ((x
|^ k)
* x)
proof
let x be
Element of
ExtREAL ;
defpred
P[
Nat] means (x
|^ ($1
+ 1))
= ((x
|^ $1)
* x);
A1: for k be
Nat st
P[k] holds
P[(k
+ 1 qua
Complex)]
proof
let k be
Nat;
assume (x
|^ (k
+ 1))
= ((x
|^ k)
* x);
reconsider k1 = (k
+ 1) as
Element of
NAT ;
(
Product ((k1
+ 1)
|-> x))
= (
Product ((k1
|-> x)
^
<*x*>)) by
FINSEQ_2: 60;
hence thesis by
Th8;
end;
(x
|^ (
0
+ 1))
= (
Product
<*x*>) by
FINSEQ_2: 59;
then (x
|^ (
0
+ 1))
= x by
Th7;
then (x
|^ (
0
+ 1))
= (
1.
* x) by
XXREAL_3: 81;
then
A2:
P[
0 ] by
Th6,
FINSEQ_2: 58;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A2,
A1);
hence thesis;
end;
definition
let k be
Nat, X, f;
::
MESFUNC7:def4
func f
|^ k ->
PartFunc of X,
ExtREAL means
:
Def4: (
dom it )
= (
dom f) & for x be
Element of X st x
in (
dom it ) holds (it
. x)
= ((f
. x)
|^ k);
existence
proof
deffunc
U(
set) = ((f
. $1)
|^ k);
defpred
X[
set] means $1
in (
dom f);
consider f3 be
PartFunc of X,
ExtREAL such that
A1: for d be
Element of X holds d
in (
dom f3) iff
X[d] and
A2: for d be
Element of X st d
in (
dom f3) holds (f3
/. d)
=
U(d) from
PARTFUN2:sch 2;
take f3;
for x be
object st x
in (
dom f) holds x
in (
dom f3) by
A1;
then
A3: (
dom f)
c= (
dom f3);
for x be
object st x
in (
dom f3) holds x
in (
dom f) by
A1;
then (
dom f3)
c= (
dom f);
hence (
dom f3)
= (
dom f) by
A3,
XBOOLE_0:def 10;
let d be
Element of X;
assume
A4: d
in (
dom f3);
then (f3
/. d)
= ((f
. d)
|^ k) by
A2;
hence thesis by
A4,
PARTFUN1:def 6;
end;
uniqueness
proof
let f1,f2 be
PartFunc of X,
ExtREAL ;
assume that
A5: (
dom f1)
= (
dom f) and
A6: for d be
Element of X st d
in (
dom f1) holds (f1
. d)
= ((f
. d)
|^ k) and
A7: (
dom f2)
= (
dom f) and
A8: for d be
Element of X st d
in (
dom f2) holds (f2
. d)
= ((f
. d)
|^ k);
for d be
Element of X st d
in (
dom f) holds (f1
. d)
= (f2
. d)
proof
let d be
Element of X;
assume
A9: d
in (
dom f);
then (f1
. d)
= ((f
. d)
|^ k) by
A5,
A6;
hence thesis by
A7,
A8,
A9;
end;
hence f1
= f2 by
A5,
A7,
PARTFUN1: 5;
end;
end
theorem ::
MESFUNC7:11
Th11: for x be
Element of
ExtREAL , y be
Real, k be
Nat st x
= y holds (x
|^ k)
= (y
|^ k)
proof
let x be
Element of
ExtREAL , y be
Real, k be
Nat;
defpred
P[
Nat] means (x
|^ $1)
= (y
|^ $1);
assume
A1: x
= y;
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
reconsider y1 = y as
Element of
REAL by
XREAL_0:def 1;
let k be
Nat;
assume
P[k];
then ((x
|^ k)
* x)
= ((y
|^ k)
* y) by
A1,
EXTREAL1: 1;
then ((x
|^ k)
* x)
= (y
|^ (k
+ 1)) by
NEWTON: 6;
hence thesis by
Th10;
end;
(x
|^
0 )
=
1. by
Th6,
FINSEQ_2: 58;
then
A3:
P[
0 ] by
NEWTON: 4;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
MESFUNC7:12
Th12: for x be
Element of
ExtREAL , k be
Nat st
0
<= x holds
0
<= (x
|^ k)
proof
let x be
Element of
ExtREAL , k be
Nat;
defpred
P[
Nat] means
0
<= (x
|^ $1);
assume
A1:
0
<= x;
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A3:
P[k];
(x
|^ (k
+ 1))
= ((x
|^ k)
* x) by
Th10;
hence thesis by
A1,
A3;
end;
A4:
P[
0 ] by
Th6,
FINSEQ_2: 58;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
theorem ::
MESFUNC7:13
Th13: for k be
Nat st 1
<= k holds (
+infty
|^ k)
=
+infty
proof
defpred
P[
Nat] means (
+infty
|^ $1)
=
+infty ;
A1: for k be non
zero
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be non
zero
Nat;
assume
A2:
P[k];
(
+infty
|^ (k
+ 1))
= ((
+infty
|^ k)
*
+infty ) by
Th10;
hence thesis by
A2,
XXREAL_3:def 5;
end;
A3:
P[1] by
Th9;
for k be non
zero
Nat holds
P[k] from
NAT_1:sch 10(
A3,
A1);
hence thesis;
end;
theorem ::
MESFUNC7:14
Th14: for k be
Nat, X, S, f, E st E
c= (
dom f) & f is E
-measurable holds (
|.f.|
|^ k) is E
-measurable
proof
let k be
Nat;
let X, S, f, E;
reconsider k1 = k as
Element of
NAT by
ORDINAL1:def 12;
assume that
A1: E
c= (
dom f) and
A2: f is E
-measurable;
A3: (
dom (
|.f.|
|^ k))
= (
dom
|.f.|) by
Def4;
then
A4: (
dom (
|.f.|
|^ k))
= (
dom f) by
MESFUNC1:def 10;
per cases ;
suppose
A5: k
=
0 ;
A6: for r be
Real st 1
< r holds (E
/\ (
less_dom ((
|.f.|
|^ k),r)))
in S
proof
let r be
Real;
assume
A7: 1
< r;
E
c= (
less_dom ((
|.f.|
|^ k),r))
proof
let x be
object;
reconsider xx = x as
set by
TARSKI: 1;
assume
A8: x
in E;
then ((
|.f.|
|^ k)
. xx)
= ((
|.f.|
. xx)
|^ k) by
A1,
A4,
Def4;
then ((
|.f.|
|^ k)
. xx)
< r by
A5,
A7,
Th6,
FINSEQ_2: 58;
hence thesis by
A1,
A4,
A8,
MESFUNC1:def 11;
end;
then (E
/\ (
less_dom ((
|.f.|
|^ k),r)))
= E by
XBOOLE_1: 28;
hence thesis;
end;
A9: E
c= (
dom (
|.f.|
|^ k)) by
A1,
A3,
MESFUNC1:def 10;
for r be
Real holds (E
/\ (
less_dom ((
|.f.|
|^ k),r)))
in S
proof
let r be
Real;
now
assume
A10: r
<= 1;
E
c= (
great_eq_dom ((
|.f.|
|^ k),r))
proof
let x be
object;
reconsider xx = x as
set by
TARSKI: 1;
assume
A11: x
in E;
then ((
|.f.|
|^ k)
. xx)
= ((
|.f.|
. xx)
|^ k) by
A1,
A4,
Def4;
then r
<= ((
|.f.|
|^ k)
. xx) by
A5,
A10,
Th6,
FINSEQ_2: 58;
hence thesis by
A1,
A4,
A11,
MESFUNC1:def 14;
end;
then (E
/\ (
great_eq_dom ((
|.f.|
|^ k),r)))
= E by
XBOOLE_1: 28;
then (E
/\ (
less_dom ((
|.f.|
|^ k),r)))
= (E
\ E) by
A9,
MESFUNC1: 17;
hence thesis;
end;
hence thesis by
A6;
end;
hence thesis;
end;
suppose
A12: k
<>
0 ;
then
A13: ((jj
/ k)
* k)
= 1 by
XCMPLX_1: 87;
A14: for r be
Real st
0
< r holds (
great_eq_dom ((
|.f.|
|^ k),r))
= (
great_eq_dom (
|.f.|,(r
to_power (1
/ k))))
proof
let r be
Real;
assume
A15:
0
< r;
A16: (
great_eq_dom ((
|.f.|
|^ k),r))
c= (
great_eq_dom (
|.f.|,(r
to_power (1
/ k))))
proof
let x be
object;
reconsider xx = x as
set by
TARSKI: 1;
assume
A17: x
in (
great_eq_dom ((
|.f.|
|^ k),r));
then
A18: x
in (
dom (
|.f.|
|^ k)) by
MESFUNC1:def 14;
then
A19: (
|.f.|
. xx)
=
|.(f
. xx).| by
A3,
MESFUNC1:def 10;
then
A20:
0
<= (
|.f.|
. xx) by
EXTREAL1: 14;
per cases ;
suppose (
|.f.|
. xx)
=
+infty ;
then (r
to_power (1
/ k))
<= (
|.f.|
. xx) by
XXREAL_0: 3;
hence thesis by
A3,
A18,
MESFUNC1:def 14;
end;
suppose (
|.f.|
. xx)
<>
+infty ;
then
reconsider fx = (
|.f.|
. xx) as
Element of
REAL by
A20,
XXREAL_0: 14;
A21: r
<= ((
|.f.|
|^ k)
. xx) by
A17,
MESFUNC1:def 14;
((
|.f.|
|^ k)
. xx)
= ((
|.f.|
. xx)
|^ k) by
A18,
Def4;
then
A22: r
<= (fx
to_power k1) by
A21,
Th11;
((fx
to_power k)
to_power (jj
/ k))
= (fx
to_power ((k
* jj)
/ k)) by
A12,
A19,
EXTREAL1: 14,
HOLDER_1: 2;
then
A23: ((fx
to_power k)
to_power (1
/ k))
= fx by
A13,
POWER: 25;
(r
to_power (jj
/ k))
<= ((fx
to_power k)
to_power (jj
/ k)) by
A15,
A22,
HOLDER_1: 3;
hence thesis by
A3,
A18,
A23,
MESFUNC1:def 14;
end;
end;
(
great_eq_dom (
|.f.|,(r
to_power (1
/ k))))
c= (
great_eq_dom ((
|.f.|
|^ k),r))
proof
let x be
object;
reconsider xx = x as
set by
TARSKI: 1;
assume
A24: x
in (
great_eq_dom (
|.f.|,(r
to_power (1
/ k))));
then
A25: x
in (
dom
|.f.|) by
MESFUNC1:def 14;
then
A26: ((
|.f.|
|^ k)
. xx)
= ((
|.f.|
. xx)
|^ k) by
A3,
Def4;
(
|.f.|
. xx)
=
|.(f
. xx).| by
A25,
MESFUNC1:def 10;
then
A27:
0
<= (
|.f.|
. xx) by
EXTREAL1: 14;
A28:
now
assume (
|.f.|
. xx)
<>
+infty ;
then
reconsider fx = (
|.f.|
. xx) as
Element of
REAL by
A27,
XXREAL_0: 14;
reconsider R = (r
to_power (1
/ k)) as
Real;
A29:
0
< (r
to_power (1
/ k)) by
A15,
POWER: 34;
A30: (R
to_power k1)
= (r
to_power ((jj
/ k)
* k)) by
A15,
POWER: 33;
A31: ((
|.f.|
|^ k)
. xx)
= (fx
|^ k) by
A26,
Th11;
(r
to_power (1
/ k))
<= (
|.f.|
. xx) by
A24,
MESFUNC1:def 14;
then (r
to_power 1)
<= (fx
to_power k) by
A13,
A29,
A30,
HOLDER_1: 3;
hence r
<= ((
|.f.|
|^ k)
. xx) by
A31;
end;
now
assume (
|.f.|
. xx)
=
+infty ;
then ((
|.f.|
. xx)
|^ k)
=
+infty by
A12,
Th13,
NAT_1: 14;
hence r
<= ((
|.f.|
|^ k)
. xx) by
A26,
XXREAL_0: 3;
end;
hence thesis by
A3,
A25,
A28,
MESFUNC1:def 14;
end;
hence thesis by
A16,
XBOOLE_0:def 10;
end;
A32:
|.f.| is E
-measurable by
A1,
A2,
MESFUNC2: 27;
for r be
Real holds (E
/\ (
great_eq_dom ((
|.f.|
|^ k),r)))
in S
proof
let r be
Real;
per cases ;
suppose
A33: r
<=
0 ;
E
c= (
great_eq_dom ((
|.f.|
|^ k),r))
proof
let x be
object;
reconsider xx = x as
set by
TARSKI: 1;
assume
A34: x
in E;
then
A35: (
|.f.|
. xx)
=
|.(f
. xx).| by
A1,
A3,
A4,
MESFUNC1:def 10;
((
|.f.|
|^ k)
. xx)
= ((
|.f.|
. xx)
|^ k) by
A1,
A4,
A34,
Def4;
then r
<= ((
|.f.|
|^ k)
. xx) by
A33,
A35,
Th12,
EXTREAL1: 14;
hence thesis by
A1,
A4,
A34,
MESFUNC1:def 14;
end;
then (E
/\ (
great_eq_dom ((
|.f.|
|^ k),r)))
= E by
XBOOLE_1: 28;
hence thesis;
end;
suppose
0
< r;
then (E
/\ (
great_eq_dom ((
|.f.|
|^ k),r)))
= (E
/\ (
great_eq_dom (
|.f.|,(r
to_power (1
/ k))))) by
A14;
hence thesis by
A1,
A3,
A4,
A32,
MESFUNC1: 27;
end;
end;
hence thesis by
A1,
A4,
MESFUNC1: 27;
end;
end;
theorem ::
MESFUNC7:15
Th15: ((
dom f)
/\ (
dom g))
= E & f is
real-valued & g is
real-valued & f is E
-measurable & g is E
-measurable implies (f
(#) g) is E
-measurable
proof
assume that
A1: ((
dom f)
/\ (
dom g))
= E and
A2: f is
real-valued and
A3: g is
real-valued and
A4: f is E
-measurable and
A5: g is E
-measurable;
A6: (
dom (f
(#) g))
= ((
dom f)
/\ (
dom g)) by
MESFUNC1:def 5;
A7: (
dom ((1
/ 4)
(#) (
|.(f
+ g).|
|^ 2)))
= (
dom (
|.(f
+ g).|
|^ 2)) by
MESFUNC1:def 6;
A8: (
dom (
|.(f
- g).|
|^ 2))
= (
dom
|.(f
- g).|) by
Def4;
then
A9: (
dom (
|.(f
- g).|
|^ 2))
= (
dom (f
- g)) by
MESFUNC1:def 10;
then
A10: (
dom (
|.(f
- g).|
|^ 2))
= ((
dom f)
/\ (
dom g)) by
A2,
MESFUNC2: 2;
then
A11: (
dom (
|.(f
- g).|
|^ 2))
c= (
dom g) by
XBOOLE_1: 17;
A12: (
dom ((1
/ 4)
(#) (
|.(f
- g).|
|^ 2)))
= (
dom (
|.(f
- g).|
|^ 2)) by
MESFUNC1:def 6;
A13: (
dom (
|.(f
+ g).|
|^ 2))
= (
dom
|.(f
+ g).|) by
Def4;
then
A14: (
dom (
|.(f
+ g).|
|^ 2))
= (
dom (f
+ g)) by
MESFUNC1:def 10;
then
A15: (
dom (
|.(f
+ g).|
|^ 2))
= ((
dom f)
/\ (
dom g)) by
A2,
MESFUNC2: 2;
then
A16: (
dom (
|.(f
+ g).|
|^ 2))
c= (
dom g) by
XBOOLE_1: 17;
A17: (
dom (
|.(f
+ g).|
|^ 2))
c= (
dom f) by
A15,
XBOOLE_1: 17;
for x be
Element of X st x
in (
dom (
|.(f
+ g).|
|^ 2)) holds
|.((
|.(f
+ g).|
|^ 2)
. x).|
<
+infty
proof
let x be
Element of X;
assume
A18: x
in (
dom (
|.(f
+ g).|
|^ 2));
then
A19:
|.(g
. x).|
<
+infty by
A3,
A16,
MESFUNC2:def 1;
|.(f
. x).|
<
+infty by
A2,
A17,
A18,
MESFUNC2:def 1;
then
reconsider c1 = (f
. x), c2 = (g
. x) as
Element of
REAL by
A19,
EXTREAL1: 41;
((f
. x)
+ (g
. x))
= (c1
+ c2) by
SUPINF_2: 1;
then
|.((f
. x)
+ (g
. x)).|
=
|.(c1
+ c2) qua
Complex.| by
EXTREAL1: 12;
then
A20: (
|.((f
. x)
+ (g
. x)).|
*
|.((f
. x)
+ (g
. x)).|)
= (
|.(c1
+ c2) qua
Complex.|
*
|.(c1
+ c2) qua
Complex.|) by
EXTREAL1: 1;
((
|.(f
+ g).|
|^ 2)
. x)
= ((
|.(f
+ g).|
. x)
|^ (1
+ 1)) by
A18,
Def4;
then
A21: ((
|.(f
+ g).|
|^ 2)
. x)
= (((
|.(f
+ g).|
. x)
|^ 1)
* (
|.(f
+ g).|
. x)) by
Th10;
A22:
|.((f
+ g)
. x).|
=
|.((f
. x)
+ (g
. x)).| by
A14,
A18,
MESFUNC1:def 3;
(
|.(f
+ g).|
. x)
=
|.((f
+ g)
. x).| by
A13,
A18,
MESFUNC1:def 10;
then
|.((
|.(f
+ g).|
|^ 2)
. x).|
=
|.(
|.((f
. x)
+ (g
. x)).|
*
|.((f
. x)
+ (g
. x)).|).| by
A21,
A22,
Th9
.=
|.
|.(((f
. x)
+ (g
. x))
* ((f
. x)
+ (g
. x))).|.| by
EXTREAL1: 19
.=
|.(((f
. x)
+ (g
. x))
* ((f
. x)
+ (g
. x))).|
.= (
|.((f
. x)
+ (g
. x)).|
*
|.((f
. x)
+ (g
. x)).|) by
EXTREAL1: 19;
hence thesis by
A20,
XXREAL_0: 9,
XREAL_0:def 1;
end;
then (
|.(f
+ g).|
|^ 2) is
real-valued by
MESFUNC2:def 1;
then
A23: ((1
/ 4)
(#) (
|.(f
+ g).|
|^ 2)) is
real-valued by
MESFUNC2: 10;
then
A24: (
dom (((1
/ 4)
(#) (
|.(f
+ g).|
|^ 2))
- ((1
/ 4)
(#) (
|.(f
- g).|
|^ 2))))
= ((
dom ((1
/ 4)
(#) (
|.(f
+ g).|
|^ 2)))
/\ (
dom ((1
/ 4)
(#) (
|.(f
- g).|
|^ 2)))) by
MESFUNC2: 2;
for x be
Element of X st x
in (
dom (f
(#) g)) holds ((f
(#) g)
. x)
= ((((1
/ 4)
(#) (
|.(f
+ g).|
|^ 2))
- ((1
/ 4)
(#) (
|.(f
- g).|
|^ 2)))
. x)
proof
let x be
Element of X;
assume
A25: x
in (
dom (f
(#) g));
then
A26:
|.(g
. x).|
<
+infty by
A3,
A15,
A16,
A6,
MESFUNC2:def 1;
|.(f
. x).|
<
+infty by
A2,
A15,
A17,
A6,
A25,
MESFUNC2:def 1;
then
reconsider c1 = (f
. x), c2 = (g
. x) as
Element of
REAL by
A26,
EXTREAL1: 41;
((f
. x)
+ (g
. x))
= (c1
+ c2) by
SUPINF_2: 1;
then
|.((f
. x)
+ (g
. x)).|
=
|.(c1
+ c2) qua
Complex.| by
EXTREAL1: 12;
then
A27: (
|.((f
. x)
+ (g
. x)).|
*
|.((f
. x)
+ (g
. x)).|)
= (
|.(c1
+ c2) qua
Complex.|
*
|.(c1
+ c2) qua
Complex.|) by
EXTREAL1: 1;
(((1
/ 4)
(#) (
|.(f
+ g).|
|^ 2))
. x)
= ((1
/ 4)
* ((
|.(f
+ g).|
|^ 2)
. x)) by
A15,
A6,
A7,
A25,
MESFUNC1:def 6;
then (((1
/ 4)
(#) (
|.(f
+ g).|
|^ 2))
. x)
= ((1
/ 4)
* ((
|.(f
+ g).|
. x)
|^ (1
+ 1))) by
A15,
A6,
A25,
Def4;
then
A28: (((1
/ 4)
(#) (
|.(f
+ g).|
|^ 2))
. x)
= ((1
/ 4)
* (((
|.(f
+ g).|
. x)
|^ 1)
* (
|.(f
+ g).|
. x))) by
Th10;
A29: (
|.(f
+ g).|
. x)
=
|.((f
+ g)
. x).| by
A13,
A15,
A6,
A25,
MESFUNC1:def 10;
|.((f
+ g)
. x).|
=
|.((f
. x)
+ (g
. x)).| by
A14,
A15,
A6,
A25,
MESFUNC1:def 3;
then (((1
/ 4)
(#) (
|.(f
+ g).|
|^ 2))
. x)
= ((1
/ 4)
* (
|.((f
. x)
+ (g
. x)).|
*
|.((f
. x)
+ (g
. x)).|)) by
A29,
A28,
Th9;
then
A30: (((1
/ 4)
(#) (
|.(f
+ g).|
|^ 2))
. x)
= ((1
/ 4)
* (
|.(c1
+ c2) qua
Complex.|
*
|.(c1
+ c2) qua
Complex.|)) by
A27,
EXTREAL1: 1;
(
|.(c1
- c2) qua
Complex.|
*
|.(c1
- c2) qua
Complex.|)
= (
|.(c1
- c2) qua
Complex.|
^2 );
then
A31: (
|.(c1
- c2) qua
Complex.|
*
|.(c1
- c2) qua
Complex.|)
= ((c1
- c2)
^2 ) by
COMPLEX1: 75;
(((1
/ 4)
(#) (
|.(f
- g).|
|^ 2))
. x)
= ((1
/ 4)
* ((
|.(f
- g).|
|^ 2)
. x)) by
A10,
A6,
A12,
A25,
MESFUNC1:def 6;
then (((1
/ 4)
(#) (
|.(f
- g).|
|^ 2))
. x)
= ((1
/ 4)
* ((
|.(f
- g).|
. x)
|^ (1
+ 1))) by
A10,
A6,
A25,
Def4;
then
A32: (((1
/ 4)
(#) (
|.(f
- g).|
|^ 2))
. x)
= ((1
/ 4)
* (((
|.(f
- g).|
. x)
|^ 1)
* (
|.(f
- g).|
. x))) by
Th10;
((f
. x)
- (g
. x))
= (c1
- c2) by
SUPINF_2: 3;
then
|.((f
. x)
- (g
. x)).|
=
|.(c1
- c2) qua
Complex.| by
EXTREAL1: 12;
then
A33: (
|.((f
. x)
- (g
. x)).|
*
|.((f
. x)
- (g
. x)).|)
= (
|.(c1
- c2) qua
Complex.|
*
|.(c1
- c2) qua
Complex.|) by
EXTREAL1: 1;
A34: (
|.(f
- g).|
. x)
=
|.((f
- g)
. x).| by
A8,
A10,
A6,
A25,
MESFUNC1:def 10;
|.((f
- g)
. x).|
=
|.((f
. x)
- (g
. x)).| by
A9,
A10,
A6,
A25,
MESFUNC1:def 4;
then (((1
/ 4)
(#) (
|.(f
- g).|
|^ 2))
. x)
= ((1
/ 4)
* (
|.((f
. x)
- (g
. x)).|
*
|.((f
. x)
- (g
. x)).|)) by
A34,
A32,
Th9;
then
A35: (((1
/ 4)
(#) (
|.(f
- g).|
|^ 2))
. x)
= ((1
/ 4)
* (
|.(c1
- c2) qua
Complex.|
*
|.(c1
- c2) qua
Complex.|)) by
A33,
EXTREAL1: 1;
(
|.(c1
+ c2) qua
Complex.|
*
|.(c1
+ c2) qua
Complex.|)
= (
|.(c1
+ c2) qua
Complex.|
^2 );
then (
|.(c1
+ c2) qua
Complex.|
*
|.(c1
+ c2) qua
Complex.|)
= ((c1
+ c2)
^2 ) by
COMPLEX1: 75;
then ((((1
/ 4)
(#) (
|.(f
+ g).|
|^ 2))
. x)
- (((1
/ 4)
(#) (
|.(f
- g).|
|^ 2))
. x))
= (((1
/ 4)
* (((c1
^2 )
+ ((2
* c1)
* c2))
+ (c2
^2 )))
- ((1
/ 4)
* (((c1
^2 )
- ((2
* c1)
* c2))
+ (c2
^2 )))) by
A30,
A35,
A31,
SUPINF_2: 3
.= (c1
* c2)
.= ((f
. x)
* (g
. x)) by
EXTREAL1: 1
.= ((f
(#) g)
. x) by
A25,
MESFUNC1:def 5;
hence thesis by
A15,
A10,
A6,
A7,
A12,
A24,
A25,
MESFUNC1:def 4;
end;
then
A36: (f
(#) g)
= (((1
/ 4)
(#) (
|.(f
+ g).|
|^ 2))
- ((1
/ 4)
(#) (
|.(f
- g).|
|^ 2))) by
A15,
A10,
A6,
A7,
A12,
A24,
PARTFUN1: 5;
A37: (
dom (
|.(f
- g).|
|^ 2))
c= (
dom f) by
A10,
XBOOLE_1: 17;
for x be
Element of X st x
in (
dom (
|.(f
- g).|
|^ 2)) holds
|.((
|.(f
- g).|
|^ 2)
. x).|
<
+infty
proof
let x be
Element of X;
assume
A38: x
in (
dom (
|.(f
- g).|
|^ 2));
then
A39:
|.(g
. x).|
<
+infty by
A3,
A11,
MESFUNC2:def 1;
|.(f
. x).|
<
+infty by
A2,
A37,
A38,
MESFUNC2:def 1;
then
reconsider c1 = (f
. x), c2 = (g
. x) as
Element of
REAL by
A39,
EXTREAL1: 41;
((f
. x)
- (g
. x))
= (c1
- c2) by
SUPINF_2: 3;
then
|.((f
. x)
- (g
. x)).|
=
|.(c1
- c2) qua
Complex.| by
EXTREAL1: 12;
then
A40: (
|.((f
. x)
- (g
. x)).|
*
|.((f
. x)
- (g
. x)).|)
= (
|.(c1
- c2) qua
Complex.|
*
|.(c1
- c2) qua
Complex.|) by
EXTREAL1: 1;
((
|.(f
- g).|
|^ 2)
. x)
= ((
|.(f
- g).|
. x)
|^ (1
+ 1)) by
A38,
Def4;
then
A41: ((
|.(f
- g).|
|^ 2)
. x)
= (((
|.(f
- g).|
. x)
|^ 1)
* (
|.(f
- g).|
. x)) by
Th10;
(
|.(f
- g).|
. x)
=
|.((f
- g)
. x).| by
A8,
A38,
MESFUNC1:def 10;
then (
|.(f
- g).|
. x)
=
|.((f
. x)
- (g
. x)).| by
A9,
A38,
MESFUNC1:def 4;
then
|.((
|.(f
- g).|
|^ 2)
. x).|
=
|.(
|.((f
. x)
- (g
. x)).|
*
|.((f
. x)
- (g
. x)).|).| by
A41,
Th9
.=
|.
|.(((f
. x)
- (g
. x))
* ((f
. x)
- (g
. x))).|.| by
EXTREAL1: 19
.=
|.(((f
. x)
- (g
. x))
* ((f
. x)
- (g
. x))).|
.= (
|.((f
. x)
- (g
. x)).|
*
|.((f
. x)
- (g
. x)).|) by
EXTREAL1: 19;
hence thesis by
A40,
XXREAL_0: 9,
XREAL_0:def 1;
end;
then (
|.(f
- g).|
|^ 2) is
real-valued by
MESFUNC2:def 1;
then
A42: ((1
/ 4)
(#) (
|.(f
- g).|
|^ 2)) is
real-valued by
MESFUNC2: 10;
(f
+ g) is E
-measurable by
A2,
A3,
A4,
A5,
MESFUNC2: 7;
then (
|.(f
+ g).|
|^ 2) is E
-measurable by
A1,
A14,
A15,
Th14;
then
A43: ((jj
/ 4)
(#) (
|.(f
+ g).|
|^ 2)) is E
-measurable by
A1,
A15,
MESFUNC5: 49;
(f
- g) is E
-measurable by
A1,
A2,
A3,
A4,
A5,
MESFUNC2: 11,
XBOOLE_1: 17;
then (
|.(f
- g).|
|^ 2) is E
-measurable by
A1,
A9,
A10,
Th14;
then ((jj
/ 4)
(#) (
|.(f
- g).|
|^ 2)) is E
-measurable by
A1,
A10,
MESFUNC5: 49;
hence thesis by
A1,
A10,
A12,
A23,
A42,
A36,
A43,
MESFUNC2: 11;
end;
theorem ::
MESFUNC7:16
Th16: (
rng f) is
real-bounded implies f is
real-valued
proof
assume
A1: (
rng f) is
real-bounded;
then (
rng f) is
bounded_above by
XXREAL_2:def 11;
then
consider UB be
Real such that
A2: UB is
UpperBound of (
rng f) by
XXREAL_2:def 10;
A3: UB
in
REAL by
XREAL_0:def 1;
(
rng f) is
bounded_below by
A1,
XXREAL_2:def 11;
then
consider LB be
Real such that
A4: LB is
LowerBound of (
rng f) by
XXREAL_2:def 9;
A5: LB
in
REAL by
XREAL_0:def 1;
now
let x be
Element of X;
assume x
in (
dom f);
then
A6: (f
. x)
in (
rng f) by
FUNCT_1: 3;
then LB
<= (f
. x) by
A4,
XXREAL_2:def 2;
then
-infty
< (f
. x) by
A5,
XXREAL_0: 2,
XXREAL_0: 12;
then
A7: (
-
+infty )
< (f
. x) by
XXREAL_3: 23;
(f
. x)
<= UB by
A2,
A6,
XXREAL_2:def 1;
then (f
. x)
<
+infty by
A3,
XXREAL_0: 2,
XXREAL_0: 9;
hence
|.(f
. x).|
<
+infty by
A7,
EXTREAL1: 22;
end;
hence thesis by
MESFUNC2:def 1;
end;
::$Notion-Name
theorem ::
MESFUNC7:17
for M be
sigma_Measure of S, f,g be
PartFunc of X,
ExtREAL , E be
Element of S, F be non
empty
Subset of
ExtREAL st ((
dom f)
/\ (
dom g))
= E & (
rng f)
= F & g is
real-valued & f is E
-measurable & (
rng f) is
real-bounded & g
is_integrable_on M holds ((f
(#) g)
| E)
is_integrable_on M & ex c be
Element of
REAL st c
>= (
inf F) & c
<= (
sup F) & (
Integral (M,((f
(#)
|.g.|)
| E)))
= (c
* (
Integral (M,(
|.g.|
| E))))
proof
let M be
sigma_Measure of S, f,g be
PartFunc of X,
ExtREAL , E be
Element of S, F be non
empty
Subset of
ExtREAL ;
assume that
A1: ((
dom f)
/\ (
dom g))
= E and
A2: (
rng f)
= F and
A3: g is
real-valued and
A4: f is E
-measurable and
A5: (
rng f) is
real-bounded and
A6: g
is_integrable_on M;
A7: (
dom ((f
(#)
|.g.|)
| E))
= ((
dom (f
(#)
|.g.|))
/\ E) by
RELAT_1: 61;
A8: (
rng f) is
Subset of
REAL by
A5,
Th16,
MESFUNC2: 32;
then not
+infty
in (
rng f);
then
A9: (
rng f)
<>
{
+infty } by
TARSKI:def 1;
A10: (
rng f) is
bounded_above by
A5,
XXREAL_2:def 11;
not
-infty
in (
rng f) by
A8;
then
A11: (
rng f)
<>
{
-infty } by
TARSKI:def 1;
(
rng f) is
bounded_below by
A5,
XXREAL_2:def 11;
then
reconsider k0 = (
inf F), l0 = (
sup F) as
Element of
REAL by
A2,
A10,
A9,
A11,
XXREAL_2: 57,
XXREAL_2: 58;
A12:
|.(
sup F).|
=
|.l0 qua
Complex.| by
EXTREAL1: 12;
|.(
inf F).|
=
|.k0 qua
Complex.| by
EXTREAL1: 12;
then
reconsider k1 =
|.(
inf F).|, l1 =
|.(
sup F).| as
Real by
A12;
A13: E
c= (
dom f) by
A1,
XBOOLE_1: 17;
A14: (
sup F) is
UpperBound of (
rng f) by
A2,
XXREAL_2:def 3;
A15: E
c= (
dom g) by
A1,
XBOOLE_1: 17;
then
A16: E
c= (
dom
|.g.|) by
MESFUNC1:def 10;
A17: (
dom
|.g.|)
= (
dom g) by
MESFUNC1:def 10;
for x be
Element of X st x
in (
dom
|.g.|) holds
|.(
|.g.|
. x).|
<
+infty
proof
let x be
Element of X;
assume
A18: x
in (
dom
|.g.|);
then
|.(
|.g.|
. x).|
=
|.
|.(g
. x).|.| by
MESFUNC1:def 10;
then
|.(
|.g.|
. x).|
=
|.(g
. x).|;
hence thesis by
A3,
A17,
A18,
MESFUNC2:def 1;
end;
then
A19:
|.g.| is
real-valued by
MESFUNC2:def 1;
A20: f is
real-valued by
A5,
Th16;
consider E1 be
Element of S such that
A21: E1
= (
dom g) and
A22: g is E1
-measurable by
A6;
A23: E1
= (
dom
|.g.|) by
A21,
MESFUNC1:def 10;
|.g.| is E1
-measurable by
A21,
A22,
MESFUNC2: 27;
then
A24:
|.g.| is E
-measurable by
A1,
A21,
MESFUNC1: 30,
XBOOLE_1: 17;
((
dom f)
/\ (
dom
|.g.|))
= E by
A1,
MESFUNC1:def 10;
then
A25: (f
(#)
|.g.|) is E
-measurable by
A4,
A24,
A20,
A19,
Th15;
A26:
|.g.|
is_integrable_on M by
A6,
MESFUNC5: 100;
then
A27: (
|.g.|
| E)
is_integrable_on M by
MESFUNC5: 97;
A28: (
dom (f
(#)
|.g.|))
= ((
dom f)
/\ (
dom
|.g.|)) by
MESFUNC1:def 5;
then
A29: (
dom (f
(#)
|.g.|))
= E by
A1,
MESFUNC1:def 10;
A30: (
dom (k0
(#)
|.g.|))
= (
dom
|.g.|) by
MESFUNC1:def 6;
then
A31: (
dom ((k0
(#)
|.g.|)
| E))
= E by
A16,
RELAT_1: 62;
A32: (
inf F) is
LowerBound of (
rng f) by
A2,
XXREAL_2:def 4;
A33: for x be
Element of X st x
in E holds ((
inf F)
*
|.(g
. x).|)
<= ((f
. x)
*
|.(g
. x).|) & ((f
. x)
*
|.(g
. x).|)
<= ((
sup F)
*
|.(g
. x).|)
proof
let x be
Element of X;
A34:
0
<=
|.(g
. x).| by
EXTREAL1: 14;
assume
A35: x
in E;
then
A36: (f
. x)
<= (
sup F) by
A13,
A14,
FUNCT_1: 3,
XXREAL_2:def 1;
(
inf F)
<= (f
. x) by
A13,
A32,
A35,
FUNCT_1: 3,
XXREAL_2:def 2;
hence thesis by
A36,
A34,
XXREAL_3: 71;
end;
for x be
Element of X st x
in (
dom ((k0
(#)
|.g.|)
| E)) holds (((k0
(#)
|.g.|)
| E)
. x)
<= (((f
(#)
|.g.|)
| E)
. x)
proof
let x be
Element of X;
assume
A37: x
in (
dom ((k0
(#)
|.g.|)
| E));
then
A38: (((k0
(#)
|.g.|)
| E)
. x)
= ((k0
(#)
|.g.|)
. x) by
FUNCT_1: 47;
((f
(#)
|.g.|)
. x)
= ((f
. x)
* (
|.g.|
. x)) by
A29,
A31,
A37,
MESFUNC1:def 5;
then
A39: ((f
(#)
|.g.|)
. x)
= ((f
. x)
*
|.(g
. x).|) by
A16,
A31,
A37,
MESFUNC1:def 10;
((k0
(#)
|.g.|)
. x)
= (k0
* (
|.g.|
. x)) by
A16,
A30,
A31,
A37,
MESFUNC1:def 6;
then ((k0
(#)
|.g.|)
. x)
= (k0
*
|.(g
. x).|) by
A16,
A31,
A37,
MESFUNC1:def 10;
then ((k0
(#)
|.g.|)
. x)
<= ((f
(#)
|.g.|)
. x) by
A33,
A31,
A37,
A39;
hence thesis by
A29,
A7,
A31,
A37,
A38,
FUNCT_1: 47;
end;
then
A40: (((f
(#)
|.g.|)
| E)
- ((k0
(#)
|.g.|)
| E)) is
nonnegative by
Th1;
A41: (
dom (l0
(#)
|.g.|))
= (
dom
|.g.|) by
MESFUNC1:def 6;
then
A42: (
dom ((l0
(#)
|.g.|)
| E))
= E by
A16,
RELAT_1: 62;
A43: (
dom (f
(#) g))
= E by
A1,
MESFUNC1:def 5;
then
A44: (
dom ((f
(#) g)
| E))
= E by
RELAT_1: 62;
then
A45: (
dom
|.((f
(#) g)
| E).|)
= E by
MESFUNC1:def 10;
A46: for x be
Element of X st x
in (
dom ((f
(#)
|.g.|)
| E)) holds
|.(((f
(#)
|.g.|)
| E)
. x).|
<= (
|.((f
(#) g)
| E).|
. x)
proof
let x be
Element of X;
assume
A47: x
in (
dom ((f
(#)
|.g.|)
| E));
then
A48: (((f
(#)
|.g.|)
| E)
. x)
= ((f
(#)
|.g.|)
. x) by
FUNCT_1: 47;
|.((f
(#)
|.g.|)
. x).|
=
|.((f
. x)
* (
|.g.|
. x)).| by
A29,
A7,
A47,
MESFUNC1:def 5
.=
|.((f
. x)
*
|.(g
. x).|).| by
A1,
A17,
A15,
A28,
A7,
A47,
MESFUNC1:def 10
.= (
|.(f
. x).|
*
|.
|.(g
. x).|.|) by
EXTREAL1: 19
.= (
|.(f
. x).|
*
|.(g
. x).|);
then
A49:
|.((f
(#)
|.g.|)
. x).|
=
|.((f
. x)
* (g
. x)).| by
EXTREAL1: 19;
(
dom
|.(f
(#) g).|)
= E by
A43,
MESFUNC1:def 10;
then
A50: (
|.(f
(#) g).|
. x)
=
|.((f
(#) g)
. x).| by
A29,
A7,
A47,
MESFUNC1:def 10;
|.(((f
(#) g)
| E)
. x).|
=
|.((f
(#) g)
. x).| by
A44,
A29,
A7,
A47,
FUNCT_1: 47;
then (
|.((f
(#) g)
| E).|
. x)
= (
|.(f
(#) g).|
. x) by
A45,
A29,
A7,
A47,
A50,
MESFUNC1:def 10;
hence thesis by
A43,
A29,
A7,
A47,
A49,
A50,
A48,
MESFUNC1:def 5;
end;
(
Integral (M,((l0
(#)
|.g.|)
| E)))
= (
Integral (M,(l0
(#) (
|.g.|
| E)))) by
Th2;
then
A51: (
Integral (M,((l0
(#)
|.g.|)
| E)))
= (l0
* (
Integral (M,(
|.g.|
| E)))) by
A27,
MESFUNC5: 110;
A52: ((
dom (f
(#) g))
/\ E)
= E by
A43;
g is E
-measurable by
A1,
A21,
A22,
MESFUNC1: 30,
XBOOLE_1: 17;
then (f
(#) g) is E
-measurable by
A1,
A3,
A4,
A20,
Th15;
then
A53: ((f
(#) g)
| E) is E
-measurable by
A52,
MESFUNC5: 42;
A54: for x be
Element of X st x
in E holds
|.(f
. x).|
<= (
|.(
inf F).|
+
|.(
sup F).|)
proof
0
<=
|.k0 qua
Complex.| by
COMPLEX1: 46;
then
A55: (l0
+
0 )
<= (l0
+
|.k0 qua
Complex.|) by
XREAL_1: 6;
l0
<=
|.l0 qua
Complex.| by
COMPLEX1: 76;
then (l0
+
|.k0 qua
Complex.|)
<= (
|.l0 qua
Complex.|
+
|.k0 qua
Complex.|) by
XREAL_1: 6;
then
A56: l0
<= (
|.l0 qua
Complex.|
+
|.k0 qua
Complex.|) by
A55,
XXREAL_0: 2;
0
<=
|.l0 qua
Complex.| by
COMPLEX1: 46;
then
A57: ((
-
|.k0 qua
Complex.|)
-
|.l0 qua
Complex.|)
<= ((
-
|.k0 qua
Complex.|)
-
0 ) by
XREAL_1: 10;
(
-
|.k0 qua
Complex.|)
<= k0 by
COMPLEX1: 76;
then
A58: ((
-
|.k0 qua
Complex.|)
-
|.l0 qua
Complex.|)
<= k0 by
A57,
XXREAL_0: 2;
let x be
Element of X;
A59:
|.k0 qua
Complex.|
=
|.(
inf F).| by
EXTREAL1: 12;
assume
A60: x
in E;
then (f
. x)
in (
rng f) by
A13,
FUNCT_1: 3;
then
reconsider fx = (f
. x) as
Real by
A8;
A61:
|.l0 qua
Complex.|
=
|.(
sup F).| by
EXTREAL1: 12;
fx
<= l0 by
A13,
A14,
A60,
FUNCT_1: 3,
XXREAL_2:def 1;
then
A62: fx
<= (
|.k0 qua
Complex.|
+
|.l0 qua
Complex.|) by
A56,
XXREAL_0: 2;
k0
<= fx by
A13,
A32,
A60,
FUNCT_1: 3,
XXREAL_2:def 2;
then (
- (
|.k0 qua
Complex.|
+
|.l0 qua
Complex.|))
<= fx by
A58,
XXREAL_0: 2;
then
A63:
|.fx qua
Complex.|
<= (
|.k0 qua
Complex.|
+
|.l0 qua
Complex.|) by
A62,
ABSVALUE: 5;
|.fx qua
Complex.|
=
|.(f
. x).| by
EXTREAL1: 12;
hence thesis by
A63,
A59,
A61,
SUPINF_2: 1;
end;
(
dom (((k1
+ l1)
(#)
|.g.|)
| E))
= (
dom ((k1
+ l1)
(#) (
|.g.|
| E))) by
Th2;
then (
dom (((k1
+ l1)
(#)
|.g.|)
| E))
= (
dom (
|.g.|
| E)) by
MESFUNC1:def 6;
then
A64: (
dom (((k1
+ l1)
(#)
|.g.|)
| E))
= E by
A16,
RELAT_1: 62;
A65: (
dom ((k1
+ l1)
(#)
|.g.|))
= (
dom
|.g.|) by
MESFUNC1:def 6;
A66: for x be
Element of X st x
in (
dom ((f
(#) g)
| E)) holds
|.(((f
(#) g)
| E)
. x).|
<= ((((k1
+ l1)
(#)
|.g.|)
| E)
. x)
proof
let x be
Element of X;
assume
A67: x
in (
dom ((f
(#) g)
| E));
then
A68: (((f
(#) g)
| E)
. x)
= ((f
(#) g)
. x) by
FUNCT_1: 47;
(
dom (f
| E))
= E by
A1,
RELAT_1: 62,
XBOOLE_1: 17;
then
A69: ((f
| E)
. x)
= (f
. x) by
A44,
A67,
FUNCT_1: 47;
(
dom (g
| E))
= E by
A1,
RELAT_1: 62,
XBOOLE_1: 17;
then
A70: ((g
| E)
. x)
= (g
. x) by
A44,
A67,
FUNCT_1: 47;
0
<=
|.((g
| E)
. x).| by
EXTREAL1: 14;
then
A71: (
|.((f
| E)
. x).|
*
|.((g
| E)
. x).|)
<= ((
|.(
inf F).|
+
|.(
sup F).|)
*
|.((g
| E)
. x).|) by
A44,
A54,
A67,
A69,
XXREAL_3: 71;
A72: ((((k1
+ l1)
(#)
|.g.|)
| E)
. x)
= (((k1
+ l1)
(#)
|.g.|)
. x) by
A44,
A64,
A67,
FUNCT_1: 47;
|.((f
(#) g)
. x).|
=
|.((f
. x)
* (g
. x)).| by
A43,
A44,
A67,
MESFUNC1:def 5;
then
A73:
|.(((f
(#) g)
| E)
. x).|
= (
|.((f
| E)
. x).|
*
|.((g
| E)
. x).|) by
A68,
A69,
A70,
EXTREAL1: 19;
(((k1
+ l1)
(#)
|.g.|)
. x)
= ((k1
+ l1)
* (
|.g.|
. x)) by
A16,
A44,
A65,
A67,
MESFUNC1:def 6;
then ((((k1
+ l1)
(#)
|.g.|)
| E)
. x)
= ((k1
+ l1)
*
|.((g
| E)
. x).|) by
A16,
A44,
A67,
A70,
A72,
MESFUNC1:def 10;
hence thesis by
A71,
A73,
SUPINF_2: 1;
end;
((k1
+ l1)
(#)
|.g.|)
is_integrable_on M by
A26,
MESFUNC5: 110;
then
A74: (((k1
+ l1)
(#)
|.g.|)
| E)
is_integrable_on M by
MESFUNC5: 97;
then ((f
(#) g)
| E)
is_integrable_on M by
A44,
A64,
A53,
A66,
MESFUNC5: 102;
then
A75:
|.((f
(#) g)
| E).|
is_integrable_on M by
MESFUNC5: 100;
((
dom (f
(#)
|.g.|))
/\ E)
= E by
A29;
then ((f
(#)
|.g.|)
| E) is E
-measurable by
A25,
MESFUNC5: 42;
then
A76: ((f
(#)
|.g.|)
| E)
is_integrable_on M by
A45,
A29,
A7,
A75,
A46,
MESFUNC5: 102;
then
A77:
-infty
< (
Integral (M,((f
(#)
|.g.|)
| E))) by
MESFUNC5: 96;
(k0
(#)
|.g.|)
is_integrable_on M by
A26,
MESFUNC5: 110;
then ((k0
(#)
|.g.|)
| E)
is_integrable_on M by
MESFUNC5: 97;
then
consider V1 be
Element of S such that
A78: V1
= ((
dom ((k0
(#)
|.g.|)
| E))
/\ (
dom ((f
(#)
|.g.|)
| E))) and
A79: (
Integral (M,(((k0
(#)
|.g.|)
| E)
| V1)))
<= (
Integral (M,(((f
(#)
|.g.|)
| E)
| V1))) by
A76,
A40,
Th3;
A80: (((f
(#)
|.g.|)
| E)
| V1)
= ((f
(#)
|.g.|)
| E) by
A29,
A7,
A31,
A78,
RELAT_1: 68;
A81: (
dom (f
(#)
|.g.|))
c= (
dom (l0
(#)
|.g.|)) by
A28,
A41,
XBOOLE_1: 17;
for x be
Element of X st x
in (
dom ((f
(#)
|.g.|)
| E)) holds (((f
(#)
|.g.|)
| E)
. x)
<= (((l0
(#)
|.g.|)
| E)
. x)
proof
let x be
Element of X;
assume
A82: x
in (
dom ((f
(#)
|.g.|)
| E));
then
A83: (((f
(#)
|.g.|)
| E)
. x)
= ((f
(#)
|.g.|)
. x) by
FUNCT_1: 47;
((f
(#)
|.g.|)
. x)
= ((f
. x)
* (
|.g.|
. x)) by
A29,
A7,
A82,
MESFUNC1:def 5;
then
A84: ((f
(#)
|.g.|)
. x)
= ((f
. x)
*
|.(g
. x).|) by
A16,
A29,
A7,
A82,
MESFUNC1:def 10;
((l0
(#)
|.g.|)
. x)
= (l0
* (
|.g.|
. x)) by
A29,
A7,
A81,
A82,
MESFUNC1:def 6;
then ((l0
(#)
|.g.|)
. x)
= (l0
*
|.(g
. x).|) by
A16,
A29,
A7,
A82,
MESFUNC1:def 10;
then ((f
(#)
|.g.|)
. x)
<= ((l0
(#)
|.g.|)
. x) by
A29,
A7,
A33,
A82,
A84;
hence thesis by
A29,
A7,
A42,
A82,
A83,
FUNCT_1: 47;
end;
then
A85: (((l0
(#)
|.g.|)
| E)
- ((f
(#)
|.g.|)
| E)) is
nonnegative by
Th1;
(
Integral (M,((k0
(#)
|.g.|)
| E)))
= (
Integral (M,(k0
(#) (
|.g.|
| E)))) by
Th2;
then
A86: (
Integral (M,((k0
(#)
|.g.|)
| E)))
= (k0
* (
Integral (M,(
|.g.|
| E)))) by
A27,
MESFUNC5: 110;
(l0
(#)
|.g.|)
is_integrable_on M by
A26,
MESFUNC5: 110;
then ((l0
(#)
|.g.|)
| E)
is_integrable_on M by
MESFUNC5: 97;
then
consider V2 be
Element of S such that
A87: V2
= ((
dom ((l0
(#)
|.g.|)
| E))
/\ (
dom ((f
(#)
|.g.|)
| E))) and
A88: (
Integral (M,(((f
(#)
|.g.|)
| E)
| V2)))
<= (
Integral (M,(((l0
(#)
|.g.|)
| E)
| V2))) by
A76,
A85,
Th3;
A89: (((f
(#)
|.g.|)
| E)
| V2)
= ((f
(#)
|.g.|)
| E) by
A29,
A7,
A42,
A87,
RELAT_1: 68;
A90: (((l0
(#)
|.g.|)
| E)
| V2)
= ((l0
(#)
|.g.|)
| E) by
A29,
A7,
A42,
A87,
RELAT_1: 68;
A91: (
Integral (M,((f
(#)
|.g.|)
| E)))
<
+infty by
A76,
MESFUNC5: 96;
A92: (((k0
(#)
|.g.|)
| E)
| V1)
= ((k0
(#)
|.g.|)
| E) by
A29,
A7,
A31,
A78,
RELAT_1: 68;
ex c be
Element of
REAL st c
>= (
inf F) & c
<= (
sup F) & (
Integral (M,((f
(#)
|.g.|)
| E)))
= (c
* (
Integral (M,(
|.g.|
| E))))
proof
per cases ;
suppose
A93: (
Integral (M,(
|.g.|
| E)))
<>
0. ;
reconsider c3 = (
Integral (M,((f
(#)
|.g.|)
| E))) as
Element of
REAL by
A77,
A91,
XXREAL_0: 14;
set c2 = ((
Integral (M,((f
(#)
|.g.|)
| E)))
/ (
Integral (M,(
|.g.|
| E))));
A94: (
Integral (M,(
|.g.|
| E)))
<
+infty by
A27,
MESFUNC5: 96;
A95:
-infty
< (
Integral (M,(
|.g.|
| E))) by
A27,
MESFUNC5: 96;
then
reconsider c1 = (
Integral (M,(
|.g.|
| E))) as
Element of
REAL by
A94,
XXREAL_0: 14;
((
Integral (M,((f
(#)
|.g.|)
| E)))
/ (
Integral (M,(
|.g.|
| E))))
= (c3
/ c1);
then
reconsider c = c2 as
Element of
REAL by
XREAL_0:def 1;
A96: (c3
* (c1
/ c1))
= ((
Integral (M,((f
(#)
|.g.|)
| E)))
* ((
Integral (M,(
|.g.|
| E)))
/ (
Integral (M,(
|.g.|
| E))))) by
EXTREAL1: 1;
((
Integral (M,(
|.g.|
| E)))
* ((
Integral (M,((f
(#)
|.g.|)
| E)))
/ (
Integral (M,(
|.g.|
| E)))))
= (c1
* (c3
/ c1)) by
EXTREAL1: 1;
then
A97: (c
* (
Integral (M,(
|.g.|
| E))))
= (
Integral (M,((f
(#)
|.g.|)
| E))) by
A93,
A96,
XXREAL_3: 88;
A98: (
Integral (M,(
|.g.|
| E)))
>
0. by
A21,
A22,
A23,
A93,
MESFUNC2: 27,
MESFUNC5: 92;
((
sup F)
* (
Integral (M,(
|.g.|
| E))))
= (l0
* c1) by
EXTREAL1: 1;
then
A99: (((
sup F)
* (
Integral (M,(
|.g.|
| E))))
/ (
Integral (M,(
|.g.|
| E))))
= ((l0
* c1)
/ c1);
((l0
* c1)
/ c1)
= (l0
* (c1
/ c1));
then
A100: (((
sup F)
* (
Integral (M,(
|.g.|
| E))))
/ (
Integral (M,(
|.g.|
| E))))
= ((
sup F)
* ((
Integral (M,(
|.g.|
| E)))
/ (
Integral (M,(
|.g.|
| E))))) by
A99,
EXTREAL1: 1;
((
inf F)
* (
Integral (M,(
|.g.|
| E))))
= (k0
* c1) by
EXTREAL1: 1;
then
A101: (((
inf F)
* (
Integral (M,(
|.g.|
| E))))
/ (
Integral (M,(
|.g.|
| E))))
= ((k0
* c1)
/ c1);
((k0
* c1)
/ c1)
= (k0
* (c1
/ c1));
then
A102: (((
inf F)
* (
Integral (M,(
|.g.|
| E))))
/ (
Integral (M,(
|.g.|
| E))))
= ((
inf F)
* ((
Integral (M,(
|.g.|
| E)))
/ (
Integral (M,(
|.g.|
| E))))) by
A101,
EXTREAL1: 1;
((
sup F)
* ((
Integral (M,(
|.g.|
| E)))
/ (
Integral (M,(
|.g.|
| E)))))
= ((
sup F)
*
1. ) by
A93,
A95,
A94,
XXREAL_3: 78;
then ((
sup F)
* ((
Integral (M,(
|.g.|
| E)))
/ (
Integral (M,(
|.g.|
| E)))))
= (
sup F) by
XXREAL_3: 81;
then
A103: c
<= (
sup F) by
A51,
A88,
A89,
A90,
A98,
A100,
XXREAL_3: 79;
((
inf F)
* ((
Integral (M,(
|.g.|
| E)))
/ (
Integral (M,(
|.g.|
| E)))))
= ((
inf F)
*
1. ) by
A93,
A95,
A94,
XXREAL_3: 78;
then ((
inf F)
* ((
Integral (M,(
|.g.|
| E)))
/ (
Integral (M,(
|.g.|
| E)))))
= (
inf F) by
XXREAL_3: 81;
then c
>= (
inf F) by
A86,
A79,
A92,
A80,
A98,
A102,
XXREAL_3: 79;
hence thesis by
A103,
A97;
end;
suppose
A104: (
Integral (M,(
|.g.|
| E)))
=
0. ;
then
0.
<= (
Integral (M,((f
(#)
|.g.|)
| E))) by
A29,
A7,
A31,
A86,
A78,
A79,
A80,
RELAT_1: 68;
then
A105: (
Integral (M,((f
(#)
|.g.|)
| E)))
=
0. by
A29,
A7,
A42,
A51,
A87,
A88,
A89,
A104,
RELAT_1: 68;
consider y be
object such that
A106: y
in F by
XBOOLE_0:def 1;
reconsider y as
Element of
ExtREAL by
A106;
A107: y
<= (
sup F) by
A106,
XXREAL_2: 4;
(
inf F)
<= y by
A106,
XXREAL_2: 3;
then
A108: k0
<= (
sup F) by
A107,
XXREAL_0: 2;
(k0
* (
Integral (M,(
|.g.|
| E))))
=
0. by
A104;
hence thesis by
A108,
A105;
end;
end;
hence thesis by
A44,
A64,
A74,
A53,
A66,
MESFUNC5: 102;
end;
begin
reserve E1,E2 for
Element of S;
reserve x,A for
set;
reserve a,b for
Real;
theorem ::
MESFUNC7:18
Th18: (
|.f.|
| A)
=
|.(f
| A).|
proof
(
dom (
|.f.|
| A))
= ((
dom
|.f.|)
/\ A) by
RELAT_1: 61;
then
A1: (
dom (
|.f.|
| A))
= ((
dom f)
/\ A) by
MESFUNC1:def 10;
A2: (
dom (f
| A))
= ((
dom f)
/\ A) by
RELAT_1: 61;
then
A3: (
dom
|.(f
| A).|)
= ((
dom f)
/\ A) by
MESFUNC1:def 10;
now
let x be
Element of X;
assume
A4: x
in (
dom (
|.f.|
| A));
then (
|.(f
| A).|
. x)
=
|.((f
| A)
. x).| by
A1,
A3,
MESFUNC1:def 10;
then
A5: (
|.(f
| A).|
. x)
=
|.(f
. x).| by
A2,
A1,
A4,
FUNCT_1: 47;
x
in (
dom f) by
A1,
A4,
XBOOLE_0:def 4;
then
A6: x
in (
dom
|.f.|) by
MESFUNC1:def 10;
((
|.f.|
| A)
. x)
= (
|.f.|
. x) by
A4,
FUNCT_1: 47;
hence ((
|.f.|
| A)
. x)
= (
|.(f
| A).|
. x) by
A6,
A5,
MESFUNC1:def 10;
end;
hence thesis by
A1,
A3,
PARTFUN1: 5;
end;
theorem ::
MESFUNC7:19
Th19: (
dom (
|.f.|
+
|.g.|))
= ((
dom f)
/\ (
dom g)) & (
dom
|.(f
+ g).|)
c= (
dom
|.f.|)
proof
set F =
|.f.|;
set G =
|.g.|;
F is
without-infty by
MESFUNC5: 12;
then not
-infty
in (
rng F);
then
A1: (F
"
{
-infty })
=
{} by
FUNCT_1: 72;
G is
without-infty by
MESFUNC5: 12;
then not
-infty
in (
rng G);
then
A2: (G
"
{
-infty })
=
{} by
FUNCT_1: 72;
(
dom (
|.f.|
+
|.g.|))
= (((
dom F)
/\ (
dom G))
\ (((F
"
{
-infty })
/\ (G
"
{
+infty }))
\/ ((F
"
{
+infty })
/\ (G
"
{
-infty })))) by
MESFUNC1:def 3;
then (
dom (
|.f.|
+
|.g.|))
= ((
dom f)
/\ (
dom G)) by
A1,
A2,
MESFUNC1:def 10;
hence (
dom (
|.f.|
+
|.g.|))
= ((
dom f)
/\ (
dom g)) by
MESFUNC1:def 10;
(
dom
|.(f
+ g).|)
= (
dom (f
+ g)) by
MESFUNC1:def 10
.= (((
dom f)
/\ (
dom g))
\ (((f
"
{
-infty })
/\ (g
"
{
+infty }))
\/ ((f
"
{
+infty })
/\ (g
"
{
-infty })))) by
MESFUNC1:def 3
.= ((
dom f)
/\ ((
dom g)
\ (((f
"
{
-infty })
/\ (g
"
{
+infty }))
\/ ((f
"
{
+infty })
/\ (g
"
{
-infty }))))) by
XBOOLE_1: 49;
then (
dom
|.(f
+ g).|)
c= (
dom f) by
XBOOLE_1: 17;
hence thesis by
MESFUNC1:def 10;
end;
theorem ::
MESFUNC7:20
Th20: ((
|.f.|
| (
dom
|.(f
+ g).|))
+ (
|.g.|
| (
dom
|.(f
+ g).|)))
= ((
|.f.|
+
|.g.|)
| (
dom
|.(f
+ g).|))
proof
A1: (
|.g.|
| (
dom
|.(f
+ g).|))
=
|.(g
| (
dom
|.(f
+ g).|)).| by
Th18;
A2: (
dom
|.(f
+ g).|)
c= (
dom
|.g.|) by
Th19;
then
A3: (
dom
|.(f
+ g).|)
c= (
dom g) by
MESFUNC1:def 10;
(
dom (g
| (
dom
|.(f
+ g).|)))
= ((
dom g)
/\ (
dom
|.(f
+ g).|)) by
RELAT_1: 61;
then
A4: (
dom (g
| (
dom
|.(f
+ g).|)))
= (
dom
|.(f
+ g).|) by
A3,
XBOOLE_1: 28;
then
A5: (
dom
|.(g
| (
dom
|.(f
+ g).|)).|)
= (
dom
|.(f
+ g).|) by
MESFUNC1:def 10;
A6: (
dom
|.(f
+ g).|)
c= (
dom
|.f.|) by
Th19;
then
A7: (
dom
|.(f
+ g).|)
c= (
dom f) by
MESFUNC1:def 10;
then ((
dom
|.(f
+ g).|)
/\ (
dom
|.(f
+ g).|))
c= ((
dom f)
/\ (
dom g)) by
A3,
XBOOLE_1: 27;
then
A8: (
dom
|.(f
+ g).|)
c= (
dom (
|.f.|
+
|.g.|)) by
Th19;
then
A9: (
dom ((
|.f.|
+
|.g.|)
| (
dom
|.(f
+ g).|)))
= (
dom
|.(f
+ g).|) by
RELAT_1: 62;
(
dom (f
| (
dom
|.(f
+ g).|)))
= ((
dom f)
/\ (
dom
|.(f
+ g).|)) by
RELAT_1: 61;
then
A10: (
dom (f
| (
dom
|.(f
+ g).|)))
= (
dom
|.(f
+ g).|) by
A7,
XBOOLE_1: 28;
A11: (
|.f.|
| (
dom
|.(f
+ g).|))
=
|.(f
| (
dom
|.(f
+ g).|)).| by
Th18;
then
A12: (
dom ((
|.f.|
| (
dom
|.(f
+ g).|))
+ (
|.g.|
| (
dom
|.(f
+ g).|))))
= ((
dom (f
| (
dom
|.(f
+ g).|)))
/\ (
dom (g
| (
dom
|.(f
+ g).|)))) by
A1,
Th19
.= (
dom
|.(f
+ g).|) by
A10,
A4;
A13: (
dom
|.(f
| (
dom
|.(f
+ g).|)).|)
= (
dom
|.(f
+ g).|) by
A10,
MESFUNC1:def 10;
now
let x be
Element of X;
assume
A14: x
in (
dom ((
|.f.|
+
|.g.|)
| (
dom
|.(f
+ g).|)));
then
A15: (((
|.f.|
+
|.g.|)
| (
dom
|.(f
+ g).|))
. x)
= ((
|.f.|
+
|.g.|)
. x) by
FUNCT_1: 47
.= ((
|.f.|
. x)
+ (
|.g.|
. x)) by
A8,
A9,
A14,
MESFUNC1:def 3
.= (
|.(f
. x).|
+ (
|.g.|
. x)) by
A6,
A9,
A14,
MESFUNC1:def 10;
A16: x
in (
dom
|.(f
+ g).|) by
A8,
A14,
RELAT_1: 62;
then (((
|.f.|
| (
dom
|.(f
+ g).|))
+ (
|.g.|
| (
dom
|.(f
+ g).|)))
. x)
= (((
|.f.|
| (
dom
|.(f
+ g).|))
. x)
+ ((
|.g.|
| (
dom
|.(f
+ g).|))
. x)) by
A12,
MESFUNC1:def 3
.= (
|.((f
| (
dom
|.(f
+ g).|))
. x).|
+ (
|.(g
| (
dom
|.(f
+ g).|)).|
. x)) by
A13,
A11,
A1,
A16,
MESFUNC1:def 10
.= (
|.((f
| (
dom
|.(f
+ g).|))
. x).|
+
|.((g
| (
dom
|.(f
+ g).|))
. x).|) by
A5,
A16,
MESFUNC1:def 10
.= (
|.(f
. x).|
+
|.((g
| (
dom
|.(f
+ g).|))
. x).|) by
A16,
FUNCT_1: 49
.= (
|.(f
. x).|
+
|.(g
. x).|) by
A16,
FUNCT_1: 49;
hence (((
|.f.|
+
|.g.|)
| (
dom
|.(f
+ g).|))
. x)
= (((
|.f.|
| (
dom
|.(f
+ g).|))
+ (
|.g.|
| (
dom
|.(f
+ g).|)))
. x) by
A2,
A9,
A14,
A15,
MESFUNC1:def 10;
end;
hence thesis by
A12,
A8,
PARTFUN1: 5,
RELAT_1: 62;
end;
theorem ::
MESFUNC7:21
Th21: x
in (
dom
|.(f
+ g).|) implies (
|.(f
+ g).|
. x)
<= ((
|.f.|
+
|.g.|)
. x)
proof
A1:
|.((f
. x)
+ (g
. x)).|
<= (
|.(f
. x).|
+
|.(g
. x).|) by
EXTREAL1: 24;
assume
A2: x
in (
dom
|.(f
+ g).|);
then x
in (
dom (f
+ g)) by
MESFUNC1:def 10;
then
A3:
|.((f
+ g)
. x).|
<= (
|.(f
. x).|
+
|.(g
. x).|) by
A1,
MESFUNC1:def 3;
A4: (
dom
|.(f
+ g).|)
c= (
dom
|.g.|) by
Th19;
then
A5:
|.(g
. x).|
= (
|.g.|
. x) by
A2,
MESFUNC1:def 10;
x
in (
dom
|.g.|) by
A2,
A4;
then
A6: x
in (
dom g) by
MESFUNC1:def 10;
A7: (
dom
|.(f
+ g).|)
c= (
dom
|.f.|) by
Th19;
then x
in (
dom
|.f.|) by
A2;
then x
in (
dom f) by
MESFUNC1:def 10;
then x
in ((
dom f)
/\ (
dom g)) by
A6,
XBOOLE_0:def 4;
then
A8: x
in (
dom (
|.f.|
+
|.g.|)) by
Th19;
|.(f
. x).|
= (
|.f.|
. x) by
A2,
A7,
MESFUNC1:def 10;
then (
|.(f
. x).|
+
|.(g
. x).|)
= ((
|.f.|
+
|.g.|)
. x) by
A5,
A8,
MESFUNC1:def 3;
hence thesis by
A2,
A3,
MESFUNC1:def 10;
end;
theorem ::
MESFUNC7:22
f
is_integrable_on M & g
is_integrable_on M implies ex E be
Element of S st E
= (
dom (f
+ g)) & (
Integral (M,(
|.(f
+ g).|
| E)))
<= ((
Integral (M,(
|.f.|
| E)))
+ (
Integral (M,(
|.g.|
| E))))
proof
assume that
A1: f
is_integrable_on M and
A2: g
is_integrable_on M;
A3:
|.g.|
is_integrable_on M by
A2,
MESFUNC5: 100;
A4: (f
+ g)
is_integrable_on M by
A1,
A2,
MESFUNC5: 108;
A5:
|.(f
+ g).|
is_integrable_on M by
A4,
MESFUNC5: 100;
for x be
Element of X st x
in (
dom
|.(f
+ g).|) holds (
|.(f
+ g).|
. x)
<= ((
|.f.|
+
|.g.|)
. x) by
Th21;
then
A6: ((
|.f.|
+
|.g.|)
-
|.(f
+ g).|) is
nonnegative by
Th1;
set G =
|.g.|;
set F =
|.f.|;
A7: (
dom
|.(f
+ g).|)
= (
dom (f
+ g)) by
MESFUNC1:def 10
.= (((
dom f)
/\ (
dom g))
\ (((f
"
{
-infty })
/\ (g
"
{
+infty }))
\/ ((f
"
{
+infty })
/\ (g
"
{
-infty })))) by
MESFUNC1:def 3;
A8:
|.f.|
is_integrable_on M by
A1,
MESFUNC5: 100;
then (
|.f.|
+
|.g.|)
is_integrable_on M by
A3,
MESFUNC5: 108;
then
consider E be
Element of S such that
A9: E
= ((
dom (
|.f.|
+
|.g.|))
/\ (
dom
|.(f
+ g).|)) and
A10: (
Integral (M,(
|.(f
+ g).|
| E)))
<= (
Integral (M,((
|.f.|
+
|.g.|)
| E))) by
A5,
A6,
Th3;
A11: (G
| E)
is_integrable_on M by
A3,
MESFUNC5: 97;
(F
| E)
is_integrable_on M by
A8,
MESFUNC5: 97;
then
consider E1 be
Element of S such that
A12: E1
= ((
dom (F
| E))
/\ (
dom (G
| E))) and
A13: (
Integral (M,((F
| E)
+ (G
| E))))
= ((
Integral (M,((F
| E)
| E1)))
+ (
Integral (M,((G
| E)
| E1)))) by
A11,
MESFUNC5: 109;
take E;
(
dom (G
| E))
= ((
dom G)
/\ E) by
RELAT_1: 61;
then
A14: (
dom (G
| E))
= ((
dom g)
/\ E) by
MESFUNC1:def 10;
A15: (
dom (
|.f.|
+
|.g.|))
= ((
dom f)
/\ (
dom g)) by
Th19;
then
A16: E
= (
dom
|.(f
+ g).|) by
A9,
A7,
XBOOLE_1: 28,
XBOOLE_1: 36;
(
dom (F
| E))
= ((
dom F)
/\ E) by
RELAT_1: 61;
then (
dom (F
| E))
= ((
dom f)
/\ E) by
MESFUNC1:def 10;
then E1
= ((((
dom f)
/\ E)
/\ E)
/\ (
dom g)) by
A12,
A14,
XBOOLE_1: 16;
then E1
= (((
dom f)
/\ (E
/\ E))
/\ (
dom g)) by
XBOOLE_1: 16;
then E1
= (((
dom f)
/\ (
dom g))
/\ E) by
XBOOLE_1: 16;
then
A17: E1
= E by
A9,
A15,
A7,
XBOOLE_1: 28,
XBOOLE_1: 36;
then
A18: ((G
| E)
| E1)
= (G
| E) by
FUNCT_1: 51;
((F
| E)
| E1)
= (F
| E) by
A17,
FUNCT_1: 51;
hence thesis by
A10,
A13,
A16,
A18,
Th20,
MESFUNC1:def 10;
end;
theorem ::
MESFUNC7:23
Th23: (
max+ (
chi (A,X)))
= (
chi (A,X))
proof
A1: (
dom (
max+ (
chi (A,X))))
= (
dom (
chi (A,X))) by
MESFUNC2:def 2;
now
let x be
Element of X;
A2: (
rng (
chi (A,X)))
c=
{
0 , 1} by
FUNCT_3: 39;
assume
A3: x
in (
dom (
max+ (
chi (A,X))));
then
A4: ((
max+ (
chi (A,X)))
. x)
= (
max (((
chi (A,X))
. x),
0. )) by
MESFUNC2:def 2;
((
chi (A,X))
. x)
in (
rng (
chi (A,X))) by
A1,
A3,
FUNCT_1: 3;
hence ((
max+ (
chi (A,X)))
. x)
= ((
chi (A,X))
. x) by
A4,
A2,
XXREAL_0:def 10;
end;
hence thesis by
A1,
PARTFUN1: 5;
end;
theorem ::
MESFUNC7:24
Th24: (M
. E)
<
+infty implies (
chi (E,X))
is_integrable_on M & (
Integral (M,(
chi (E,X))))
= (M
. E) & (
Integral (M,((
chi (E,X))
| E)))
= (M
. E)
proof
reconsider XX = X as
Element of S by
MEASURE1: 7;
set F = (XX
\ E);
A1:
now
let x be
Element of X;
A2:
now
assume x
in E;
then ((
chi (E,X))
. x)
= 1 by
FUNCT_3:def 3;
hence (
max ((
- ((
chi (E,X))
. x)),
0. ))
=
0. by
XXREAL_0:def 10;
end;
A3:
now
assume not x
in E;
then ((
chi (E,X))
. x)
=
0. by
FUNCT_3:def 3;
then (
- ((
chi (E,X))
. x))
=
0 ;
hence (
max ((
- ((
chi (E,X))
. x)),
0. ))
=
0. ;
end;
assume x
in (
dom (
max- (
chi (E,X))));
hence ((
max- (
chi (E,X)))
. x)
=
0 by
A2,
A3,
MESFUNC2:def 3;
end;
A4: XX
= (
dom (
chi (E,X))) by
FUNCT_3:def 3;
then
A5: XX
= (
dom (
max+ (
chi (E,X)))) by
Th23;
A6: (XX
/\ F)
= F by
XBOOLE_1: 28;
then
A7: (
dom ((
max+ (
chi (E,X)))
| F))
= F by
A5,
RELAT_1: 61;
A8:
now
let x be
Element of X;
assume
A9: x
in (
dom ((
max+ (
chi (E,X)))
| F));
then ((
chi (E,X))
. x)
=
0 by
A7,
FUNCT_3: 37;
then ((
max+ (
chi (E,X)))
. x)
=
0 by
Th23;
hence (((
max+ (
chi (E,X)))
| F)
. x)
=
0 by
A9,
FUNCT_1: 47;
end;
A10: (
chi (E,X)) is XX
-measurable by
MESFUNC2: 29;
then
A11: (
max+ (
chi (E,X))) is XX
-measurable by
Th23;
then (
max+ (
chi (E,X))) is F
-measurable by
MESFUNC1: 30;
then
A12: (
integral+ (M,((
max+ (
chi (E,X)))
| F)))
=
0 by
A5,
A6,
A7,
A8,
MESFUNC5: 42,
MESFUNC5: 87;
XX
= (
dom (
max- (
chi (E,X)))) by
A4,
MESFUNC2:def 3;
then
A13: (
integral+ (M,(
max- (
chi (E,X)))))
=
0 by
A4,
A10,
A1,
MESFUNC2: 26,
MESFUNC5: 87;
A14: (XX
/\ E)
= E by
XBOOLE_1: 28;
then
A15: (
dom ((
max+ (
chi (E,X)))
| E))
= E by
A5,
RELAT_1: 61;
(E
\/ F)
= XX by
A14,
XBOOLE_1: 51;
then
A16: ((
max+ (
chi (E,X)))
| (E
\/ F))
= (
max+ (
chi (E,X))) by
A5,
RELAT_1: 69;
A17: for x be
object st x
in (
dom (
max+ (
chi (E,X)))) holds
0.
<= ((
max+ (
chi (E,X)))
. x) by
MESFUNC2: 12;
then
A18: (
max+ (
chi (E,X))) is
nonnegative by
SUPINF_2: 52;
then (
integral+ (M,((
max+ (
chi (E,X)))
| (E
\/ F))))
= ((
integral+ (M,((
max+ (
chi (E,X)))
| E)))
+ (
integral+ (M,((
max+ (
chi (E,X)))
| F)))) by
A5,
A11,
MESFUNC5: 81,
XBOOLE_1: 79;
then
A19: (
integral+ (M,(
max+ (
chi (E,X)))))
= (
integral+ (M,((
max+ (
chi (E,X)))
| E))) by
A16,
A12,
XXREAL_3: 4;
A20:
now
let x be
object;
assume
A21: x
in (
dom ((
max+ (
chi (E,X)))
| E));
then ((
chi (E,X))
. x)
= 1 by
A15,
FUNCT_3:def 3;
then ((
max+ (
chi (E,X)))
. x)
= 1 by
Th23;
hence (((
max+ (
chi (E,X)))
| E)
. x)
= jj by
A21,
FUNCT_1: 47;
end;
then ((
max+ (
chi (E,X)))
| E)
is_simple_func_in S by
A15,
MESFUNC6: 2;
then (
integral+ (M,(
max+ (
chi (E,X)))))
= (
integral' (M,((
max+ (
chi (E,X)))
| E))) by
A18,
A19,
MESFUNC5: 15,
MESFUNC5: 77;
then
A22: (
integral+ (M,(
max+ (
chi (E,X)))))
= (jj
* (M
. (
dom ((
max+ (
chi (E,X)))
| E)))) by
A15,
A20,
MESFUNC5: 104;
(
max+ (
chi (E,X))) is E
-measurable by
A11,
MESFUNC1: 30;
then ((
max+ (
chi (E,X)))
| E) is E
-measurable by
A5,
A14,
MESFUNC5: 42;
then
A23: ((
chi (E,X))
| E) is E
-measurable by
Th23;
((
max+ (
chi (E,X)))
| E) is
nonnegative by
A17,
MESFUNC5: 15,
SUPINF_2: 52;
then
A24: ((
chi (E,X))
| E) is
nonnegative by
Th23;
E
= (
dom ((
chi (E,X))
| E)) by
A15,
Th23;
then
A25: (
Integral (M,((
chi (E,X))
| E)))
= (
integral+ (M,((
chi (E,X))
| E))) by
A23,
A24,
MESFUNC5: 88;
assume (M
. E)
<
+infty ;
then (
integral+ (M,(
max+ (
chi (E,X)))))
<
+infty by
A15,
A22,
XXREAL_3: 81;
hence (
chi (E,X))
is_integrable_on M by
A4,
A10,
A13;
(
Integral (M,(
chi (E,X))))
= (1
* (M
. E)) by
A15,
A22,
A13,
XXREAL_3: 15;
hence (
Integral (M,(
chi (E,X))))
= (M
. E) by
XXREAL_3: 81;
((
chi (E,X))
| E)
= ((
max+ (
chi (E,X)))
| E) by
Th23;
hence thesis by
A15,
A19,
A22,
A25,
XXREAL_3: 81;
end;
theorem ::
MESFUNC7:25
Th25: (M
. (E1
/\ E2))
<
+infty implies (
Integral (M,((
chi (E1,X))
| E2)))
= (M
. (E1
/\ E2))
proof
reconsider XX = X as
Element of S by
MEASURE1: 7;
A1: E2
= ((E1
/\ E2)
\/ (E2
\ E1)) by
XBOOLE_1: 51;
set F = (E2
\ E1);
A2: (
dom ((
chi (E1,X))
| (E1
/\ E2)))
= ((
dom (
chi (E1,X)))
/\ (E1
/\ E2)) by
RELAT_1: 61
.= (X
/\ (E1
/\ E2)) by
FUNCT_3:def 3;
A3: (
dom ((
chi ((E1
/\ E2),X))
| (E1
/\ E2)))
= ((
dom (
chi ((E1
/\ E2),X)))
/\ (E1
/\ E2)) by
RELAT_1: 61
.= (X
/\ (E1
/\ E2)) by
FUNCT_3:def 3;
now
let x be
Element of X;
assume
A4: x
in (
dom ((
chi (E1,X))
| (E1
/\ E2)));
then
A5: (((
chi ((E1
/\ E2),X))
| (E1
/\ E2))
. x)
= ((
chi ((E1
/\ E2),X))
. x) by
A2,
A3,
FUNCT_1: 47;
A6: x
in (E1
/\ E2) by
A2,
A4,
XBOOLE_0:def 4;
then
A7: x
in E1 by
XBOOLE_0:def 4;
(((
chi (E1,X))
| (E1
/\ E2))
. x)
= ((
chi (E1,X))
. x) by
A4,
FUNCT_1: 47
.= 1 by
A7,
FUNCT_3:def 3;
hence (((
chi (E1,X))
| (E1
/\ E2))
. x)
= (((
chi ((E1
/\ E2),X))
| (E1
/\ E2))
. x) by
A6,
A5,
FUNCT_3:def 3;
end;
then
A8: ((
chi (E1,X))
| (E1
/\ E2))
= ((
chi ((E1
/\ E2),X))
| (E1
/\ E2)) by
A2,
A3,
PARTFUN1: 5;
assume (M
. (E1
/\ E2))
<
+infty ;
then
A9: (
Integral (M,((
chi (E1,X))
| (E1
/\ E2))))
= (M
. (E1
/\ E2)) by
A8,
Th24;
A10: XX
= (
dom (
chi (E1,X))) by
FUNCT_3:def 3;
then
A11: F
= (
dom ((
chi (E1,X))
| (E2
\ E1))) by
RELAT_1: 62;
then F
= ((
dom (
chi (E1,X)))
/\ F) by
RELAT_1: 61;
then
A12: ((
chi (E1,X))
| (E2
\ E1)) is F
-measurable by
MESFUNC2: 29,
MESFUNC5: 42;
now
let x be
object;
assume x
in (
dom (
chi (E1,X)));
then
A13: ((
chi (E1,X))
. x)
in (
rng (
chi (E1,X))) by
FUNCT_1: 3;
(
rng (
chi (E1,X)))
c=
{
0 , 1} by
FUNCT_3: 39;
hence
0.
<= ((
chi (E1,X))
. x) by
A13;
end;
then
A14: (
chi (E1,X)) is
nonnegative by
SUPINF_2: 52;
now
let x be
Element of X;
assume
A15: x
in (
dom ((
chi (E1,X))
| (E2
\ E1)));
(E2
\ E1)
c= (X
\ E1) by
XBOOLE_1: 33;
then ((
chi (E1,X))
. x)
=
0 by
A11,
A15,
FUNCT_3: 37;
hence
0
= (((
chi (E1,X))
| (E2
\ E1))
. x) by
A15,
FUNCT_1: 47;
end;
then (
integral+ (M,((
chi (E1,X))
| (E2
\ E1))))
=
0 by
A11,
A12,
MESFUNC5: 87;
then
A16: (
Integral (M,((
chi (E1,X))
| (E2
\ E1))))
=
0. by
A14,
A11,
A12,
MESFUNC5: 15,
MESFUNC5: 88;
(
chi (E1,X)) is XX
-measurable by
MESFUNC2: 29;
then (
Integral (M,((
chi (E1,X))
| E2)))
= ((
Integral (M,((
chi (E1,X))
| (E1
/\ E2))))
+ (
Integral (M,((
chi (E1,X))
| (E2
\ E1))))) by
A10,
A14,
A1,
MESFUNC5: 91,
XBOOLE_1: 89;
hence thesis by
A9,
A16,
XXREAL_3: 4;
end;
theorem ::
MESFUNC7:26
f
is_integrable_on M & E
c= (
dom f) & (M
. E)
<
+infty & (for x be
Element of X st x
in E holds a
<= (f
. x) & (f
. x)
<= b) implies (a
* (M
. E))
<= (
Integral (M,(f
| E))) & (
Integral (M,(f
| E)))
<= (b
* (M
. E))
proof
reconsider a1 = a, b1 = b as
Element of
REAL by
XREAL_0:def 1;
assume that
A1: f
is_integrable_on M and
A2: E
c= (
dom f) and
A3: (M
. E)
<
+infty and
A4: for x be
Element of X st x
in E holds a
<= (f
. x) & (f
. x)
<= b;
set C = (
chi (E,X));
A5: (f
| E)
is_integrable_on M by
A1,
MESFUNC5: 97;
for x be
Element of X st x
in (
dom (a1
(#) (C
| E))) holds ((a1
(#) (C
| E))
. x)
<= ((f
| E)
. x)
proof
let x be
Element of X;
assume
A6: x
in (
dom (a1
(#) (C
| E)));
then
A7: x
in (
dom (C
| E)) by
MESFUNC1:def 6;
then x
in ((
dom C)
/\ E) by
RELAT_1: 61;
then
A8: x
in E by
XBOOLE_0:def 4;
then a
<= (f
. x) by
A4;
then
A9: a
<= ((f
| E)
. x) by
A8,
FUNCT_1: 49;
((a1
(#) (C
| E))
. x)
= (a
* ((C
| E)
. x)) by
A6,
MESFUNC1:def 6
.= (a
* (C
. x)) by
A7,
FUNCT_1: 47
.= (a
*
1. ) by
A8,
FUNCT_3:def 3;
hence thesis by
A9,
XXREAL_3: 81;
end;
then
A10: ((f
| E)
- (a1
(#) (C
| E))) is
nonnegative by
Th1;
(
chi (E,X))
is_integrable_on M by
A3,
Th24;
then
A11: (C
| E)
is_integrable_on M by
MESFUNC5: 97;
then (a1
(#) (C
| E))
is_integrable_on M by
MESFUNC5: 110;
then
consider E1 be
Element of S such that
A12: E1
= ((
dom (f
| E))
/\ (
dom (a1
(#) (C
| E)))) and
A13: (
Integral (M,((a1
(#) (C
| E))
| E1)))
<= (
Integral (M,((f
| E)
| E1))) by
A5,
A10,
Th3;
(
dom (f
| E))
= ((
dom f)
/\ E) by
RELAT_1: 61;
then
A14: (
dom (f
| E))
= E by
A2,
XBOOLE_1: 28;
(
dom (a1
(#) (C
| E)))
= (
dom (C
| E)) by
MESFUNC1:def 6;
then (
dom (a1
(#) (C
| E)))
= ((
dom C)
/\ E) by
RELAT_1: 61;
then (
dom (a1
(#) (C
| E)))
= (X
/\ E) by
FUNCT_3:def 3;
then
A15: (
dom (a1
(#) (C
| E)))
= E by
XBOOLE_1: 28;
then
A16: ((f
| E)
| E1)
= (f
| E) by
A12,
A14,
RELAT_1: 69;
(
dom (b1
(#) (C
| E)))
= (
dom (C
| E)) by
MESFUNC1:def 6;
then (
dom (b1
(#) (C
| E)))
= ((
dom C)
/\ E) by
RELAT_1: 61;
then (
dom (b1
(#) (C
| E)))
= (X
/\ E) by
FUNCT_3:def 3;
then
A17: (
dom (b1
(#) (C
| E)))
= E by
XBOOLE_1: 28;
for x be
Element of X st x
in (
dom (f
| E)) holds ((f
| E)
. x)
<= ((b1
(#) (C
| E))
. x)
proof
let x be
Element of X;
assume
A18: x
in (
dom (f
| E));
then
A19: x
in (
dom (C
| E)) by
A14,
A15,
MESFUNC1:def 6;
then x
in ((
dom C)
/\ E) by
RELAT_1: 61;
then
A20: x
in E by
XBOOLE_0:def 4;
then (f
. x)
<= b by
A4;
then
A21: ((f
| E)
. x)
<= b by
A20,
FUNCT_1: 49;
((b1
(#) (C
| E))
. x)
= (b
* ((C
| E)
. x)) by
A14,
A17,
A18,
MESFUNC1:def 6
.= (b
* (C
. x)) by
A19,
FUNCT_1: 47
.= (b
*
1. ) by
A20,
FUNCT_3:def 3;
hence thesis by
A21,
XXREAL_3: 81;
end;
then
A22: ((b1
(#) (C
| E))
- (f
| E)) is
nonnegative by
Th1;
(b1
(#) (C
| E))
is_integrable_on M by
A11,
MESFUNC5: 110;
then
consider E2 be
Element of S such that
A23: E2
= ((
dom (f
| E))
/\ (
dom (b1
(#) (C
| E)))) and
A24: (
Integral (M,((f
| E)
| E2)))
<= (
Integral (M,((b1
(#) (C
| E))
| E2))) by
A5,
A22,
Th3;
A25: ((b1
(#) (C
| E))
| E2)
= (b1
(#) (C
| E)) by
A14,
A17,
A23,
RELAT_1: 69;
E
= (E
/\ E);
then
A26: (
Integral (M,(C
| E)))
= (M
. E) by
A3,
Th25;
A27: ((f
| E)
| E2)
= (f
| E) by
A14,
A17,
A23,
RELAT_1: 69;
((a1
(#) (C
| E))
| E1)
= (a1
(#) (C
| E)) by
A12,
A14,
A15,
RELAT_1: 69;
hence thesis by
A11,
A13,
A24,
A25,
A16,
A27,
A26,
MESFUNC5: 110;
end;