holder_1.miz
begin
reserve a,b,p,q for
Real;
registration
let x be
Real;
cluster (
right_closed_halfline x) -> non
empty;
coherence
proof
reconsider x as
Real;
x
in { g where g be
Real : x
<= g };
hence thesis by
XXREAL_1: 232;
end;
end
theorem ::
HOLDER_1:1
for p,q be
Real st
0
< p &
0
< q holds for a be
Real st
0
<= a holds ((a
to_power p)
* (a
to_power q))
= (a
to_power (p
+ q))
proof
let p,q be
Real such that
A1:
0
< p and
A2:
0
< q;
let a be
Real such that
A3:
0
<= a;
now
per cases ;
case
A4: a
=
0 ;
then ((a
to_power p)
* (a
to_power q))
= (
0
* (
0
to_power q)) by
A1,
POWER:def 2
.=
0 ;
hence thesis by
A1,
A2,
A4,
POWER:def 2;
end;
case a
<>
0 ;
hence thesis by
A3,
POWER: 27;
end;
end;
hence thesis;
end;
theorem ::
HOLDER_1:2
for p,q be
Real st
0
< p &
0
< q holds for a be
Real st
0
<= a holds ((a
to_power p)
to_power q)
= (a
to_power (p
* q))
proof
let p,q be
Real such that
A1:
0
< p and
A2:
0
< q;
A3:
0
< (p
* q) by
A1,
A2,
XREAL_1: 129;
let a be
Real such that
A4:
0
<= a;
now
per cases ;
case
A5: a
=
0 ;
then ((a
to_power p)
to_power q)
= (
0
to_power q) by
A1,
POWER:def 2
.=
0 by
A2,
POWER:def 2;
hence thesis by
A3,
A5,
POWER:def 2;
end;
case a
<>
0 ;
hence thesis by
A4,
POWER: 33;
end;
end;
hence thesis;
end;
theorem ::
HOLDER_1:3
Th3: for p be
Real st
0
<= p holds for a,b be
Real st
0
<= a & a
<= b holds (a
to_power p)
<= (b
to_power p)
proof
let p be
Real such that
A1:
0
<= p;
let a,b be
Real such that
A2:
0
<= a and
A3: a
<= b;
per cases by
A1;
suppose
S1:
0
= p;
(a
to_power
0 )
= 1 & (b
to_power
0 )
= 1 by
POWER: 24;
hence thesis by
S1;
end;
suppose
S2:
0
< p;
per cases ;
suppose a
= b;
hence thesis;
end;
suppose
A4: a
<> b;
A5: a
< b by
A3,
A4,
XXREAL_0: 1;
now
per cases ;
suppose
A6: a
=
0 ;
then (a
to_power p)
=
0 by
S2,
POWER:def 2;
hence thesis by
A3,
A4,
A6,
POWER: 34;
end;
suppose a
<>
0 ;
hence thesis by
A2,
A5,
S2,
POWER: 37;
end;
end;
hence thesis;
end;
end;
end;
theorem ::
HOLDER_1:4
Th4: 1
< p & ((1
/ p)
+ (1
/ q))
= 1 &
0
< a &
0
< b implies (a
* b)
<= (((a
#R p)
/ p)
+ ((b
#R q)
/ q)) & ((a
* b)
= (((a
#R p)
/ p)
+ ((b
#R q)
/ q)) iff (a
#R p)
= (b
#R q))
proof
assume that
A1: 1
< p and
A2: ((1
/ p)
+ (1
/ q))
= 1 and
A3:
0
< a and
A4:
0
< b;
A5:
0
< (b
#R q) by
A4,
PREPOWER: 81;
reconsider pp = (1
/ p) as
Real;
(1
- pp)
<>
0 by
A1,
XREAL_1: 189;
then
A6: ((q
" )
" )
<>
0 by
A2;
then ((((1
* q)
+ (1
* p))
/ (p
* q))
* (p
* q))
= (1
* (p
* q)) by
A1,
A2,
XCMPLX_1: 116;
then
A7: (q
+ p)
= (p
* q) by
A1,
A6,
XCMPLX_1: 6,
XCMPLX_1: 87;
then
A8: ((q
- 1)
* p)
= q;
A9:
0
< (b
#R (q
- 1)) by
A4,
PREPOWER: 81;
A10:
now
assume
A11: (a
#R p)
= (b
#R q);
then
A12: (a
#R p)
= ((b
#R (q
- 1))
#R p) by
A4,
A8,
PREPOWER: 91;
a
= (a
#R 1) by
A3,
PREPOWER: 72
.= (a
#R (p
* (1
/ p))) by
A1,
XCMPLX_1: 106
.= ((a
#R p)
#R (1
/ p)) by
A3,
PREPOWER: 91
.= ((b
#R (q
- 1))
#R (p
* (1
/ p))) by
A4,
A12,
PREPOWER: 81,
PREPOWER: 91
.= ((b
#R (q
- 1))
#R 1) by
A1,
XCMPLX_1: 106
.= (b
#R (q
- 1)) by
A4,
PREPOWER: 72,
PREPOWER: 81;
then (a
* 1)
= (b
#R (q
- 1));
then (a
* (b
#R ((1
- q)
+ (q
- 1))))
= (b
#R (q
- 1)) by
A4,
PREPOWER: 71;
then (a
* ((b
#R (1
- q))
* (b
#R (q
- 1))))
= (1
* (b
#R (q
- 1))) by
A4,
PREPOWER: 75;
then
A13: ((a
* (b
#R (1
- q)))
* (b
#R (q
- 1)))
= (1
* (b
#R (q
- 1)));
thus (((a
#R p)
/ p)
+ ((b
#R q)
/ q))
= (((b
#R q)
* (1
/ p))
+ ((b
#R q)
/ q)) by
A11,
XCMPLX_1: 99
.= (((b
#R q)
* (1
/ p))
+ ((b
#R q)
* (1
/ q))) by
XCMPLX_1: 99
.= ((b
#R q)
* ((1
/ p)
+ (1
/ q)))
.= ((b
#R q)
* (a
* (b
#R (1
- q)))) by
A2,
A9,
A13,
XCMPLX_1: 5
.= (a
* ((b
#R (1
- q))
* (b
#R q)))
.= (a
* (b
#R ((1
- q)
+ q))) by
A4,
PREPOWER: 75
.= (a
* b) by
A4,
PREPOWER: 72;
end;
A14:
0
< (b
#R (1
- q)) by
A4,
PREPOWER: 81;
then
A15: (
0
* (b
#R (1
- q)))
< (a
* (b
#R (1
- q))) by
A3,
XREAL_1: 68;
ex h be
PartFunc of
REAL ,
REAL st (
dom h)
= (
right_open_halfline
0 ) & for x be
Real st x
>
0 holds (h
. x)
= ((x
#R p)
/ p) & h
is_differentiable_in x & (
diff (h,x))
= (x
#R (p
- 1))
proof
set h = ((1
/ p)
(#) (
#R p));
take h;
(
dom (
#R p))
= (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
hence
A16: (
dom h)
= (
right_open_halfline
0 ) by
VALUED_1:def 5;
now
let x be
Real such that
A17: x
>
0 ;
x
in { g where g be
Real :
0
< g } by
A17;
then
A18: x
in (
right_open_halfline
0 ) by
XXREAL_1: 230;
hence (h
. x)
= ((1
/ p)
* ((
#R p)
. x)) by
A16,
VALUED_1:def 5
.= ((1
/ p)
* (x
#R p)) by
A18,
TAYLOR_1:def 4
.= ((x
#R p)
/ p) by
XCMPLX_1: 99;
A19: (
#R p)
is_differentiable_in x by
A17,
TAYLOR_1: 21;
hence h
is_differentiable_in x by
FDIFF_1: 15;
thus (
diff (h,x))
= ((1
/ p)
* (
diff ((
#R p),x))) by
A19,
FDIFF_1: 15
.= ((1
/ p)
* (p
* (x
#R (p
- 1)))) by
A17,
TAYLOR_1: 21
.= (((1
/ p)
* p)
* (x
#R (p
- 1)))
.= (1
* (x
#R (p
- 1))) by
A1,
XCMPLX_1: 106
.= (x
#R (p
- 1));
end;
hence thesis;
end;
then
consider h be
PartFunc of
REAL ,
REAL such that
A20: (
dom h)
= (
right_open_halfline
0 ) and
A21: for x be
Real st x
>
0 holds (h
. x)
= ((x
#R p)
/ p) & h
is_differentiable_in x & (
diff (h,x))
= (x
#R (p
- 1));
ex g be
PartFunc of
REAL ,
REAL st (
dom g)
=
REAL & for x be
Element of
REAL holds (g
. x)
= ((1
/ q)
- x) & g
is_differentiable_in x & (
diff (g,x))
= (
- 1)
proof
deffunc
U(
Real) = (
In (((1
/ q)
- $1),
REAL ));
defpred
X[
set] means $1
in
REAL ;
consider g be
PartFunc of
REAL ,
REAL such that
A22: for d be
Element of
REAL holds d
in (
dom g) iff
X[d] and
A23: for d be
Element of
REAL st d
in (
dom g) holds (g
/. d)
=
U(d) from
PARTFUN2:sch 2;
take g;
for x be
object st x
in
REAL holds x
in (
dom g) by
A22;
then
A24: (
dom g)
c=
REAL &
REAL
c= (
dom g) by
RELAT_1:def 18;
then
A25: (
dom g)
= (
[#]
REAL ) by
XBOOLE_0:def 10;
A26: for d be
Element of
REAL holds (g
. d)
= ((1
/ q)
- d)
proof
let d be
Element of
REAL ;
(g
/. d)
=
U(d) by
A23,
A25;
hence thesis by
A25,
PARTFUN1:def 6;
end;
A27: for d be
Real st d
in
REAL holds (g
. d)
= (((
- 1)
* d)
+ (1
/ q))
proof
let d be
Real such that
A28: d
in
REAL ;
thus (g
. d)
= ((1
/ q)
- d) by
A26,
A28
.= (((
- 1)
* d)
+ (1
/ q));
end;
then
A29: g
is_differentiable_on (
dom g) by
A25,
FDIFF_1: 23;
for x be
Element of
REAL holds g
is_differentiable_in x & (
diff (g,x))
= (
- 1)
proof
let d be
Element of
REAL ;
thus g
is_differentiable_in d by
A25,
A29,
FDIFF_1: 9;
thus (
diff (g,d))
= ((g
`| (
dom g))
. d) by
A25,
A29,
FDIFF_1:def 7
.= (
- 1) by
A25,
A27,
FDIFF_1: 23;
end;
hence thesis by
A24,
A26,
XBOOLE_0:def 10;
end;
then
consider g be
PartFunc of
REAL ,
REAL such that
A30: (
dom g)
=
REAL and
A31: for x be
Element of
REAL holds (g
. x)
= ((1
/ q)
- x) and
A32: for x be
Element of
REAL holds g
is_differentiable_in x & (
diff (g,x))
= (
- 1);
set f = (h
+ g);
A33: (
dom f)
= ((
right_open_halfline
0 )
/\
REAL ) by
A30,
A20,
VALUED_1:def 1
.= (
right_open_halfline
0 ) by
XBOOLE_1: 28;
A34: for x be
Real st x
in (
right_open_halfline
0 ) holds (f
. x)
= ((((x
#R p)
/ p)
+ (1
/ q))
- x) & f
is_differentiable_in x & (
diff (f,x))
= ((x
#R (p
- 1))
- 1)
proof
let x be
Real such that
A35: x
in (
right_open_halfline
0 );
reconsider xx = x as
Element of
REAL by
XREAL_0:def 1;
x
in { y where y be
Real :
0
< y } by
A35,
XXREAL_1: 230;
then
A36: ex y be
Real st x
= y &
0
< y;
then
A37: (
diff (h,x))
= (x
#R (p
- 1)) by
A21;
thus (f
. x)
= ((h
. x)
+ (g
. x)) by
A33,
A35,
VALUED_1:def 1
.= (((x
#R p)
/ p)
+ (g
. xx)) by
A21,
A36
.= (((x
#R p)
/ p)
+ ((1
/ q)
- x)) by
A31
.= ((((x
#R p)
/ p)
+ (1
/ q))
- x);
A38: g
is_differentiable_in xx by
A32;
A39: h
is_differentiable_in x by
A21,
A36;
hence f
is_differentiable_in x by
A38,
FDIFF_1: 13;
A40: (
diff (g,xx))
= (
- 1) by
A32;
thus (
diff (f,x))
= ((
diff (h,x))
+ (
diff (g,x))) by
A38,
A39,
FDIFF_1: 13
.= ((x
#R (p
- 1))
- 1) by
A40,
A37;
end;
A41: for x be
Real st
0
< x & x
<> 1 holds x
< (((x
#R p)
/ p)
+ (1
/ q))
proof
1
in { y where y be
Real :
0
< y };
then 1
in (
right_open_halfline
0 ) by
XXREAL_1: 230;
then
A42: (f
. 1)
= ((((1
#R p)
/ p)
+ (1
/ q))
- 1) by
A34
.= (((1
/ p)
+ (1
/ q))
- 1) by
PREPOWER: 73
.=
0 by
A2;
for x be
Real st x
in (
right_open_halfline
0 ) holds f
is_differentiable_in x by
A34;
then
A43: f
is_differentiable_on (
right_open_halfline
0 ) by
A33,
FDIFF_1: 9;
let x be
Real such that
A44:
0
< x and
A45: x
<> 1;
x
in { y where y be
Real :
0
< y } by
A44;
then
A46: x
in (
right_open_halfline
0 ) by
XXREAL_1: 230;
now
per cases by
A45,
XXREAL_0: 1;
case x
< 1;
then
A47: (1
- 1)
< (1
- x) by
XREAL_1: 15;
set t = (1
- x);
A48: (1
- 1)
< (p
- 1) by
A1,
XREAL_1: 14;
now
let z be
object;
assume z
in
[.x, (x
+ t).];
then z
in { r where r be
Real : x
<= r & r
<= (x
+ t) } by
RCOMP_1:def 1;
then ex r be
Real st r
= z & x
<= r & r
<= (x
+ t);
then z
in { y where y be
Real :
0
< y } by
A44;
hence z
in (
right_open_halfline
0 ) by
XXREAL_1: 230;
end;
then
A49:
[.x, (x
+ t).]
c= (
right_open_halfline
0 );
(f
| (
right_open_halfline
0 )) is
continuous by
A43,
FDIFF_1: 25;
then
A50: (f
|
[.x, (x
+ t).]) is
continuous by
A49,
FCONT_1: 16;
].x, (x
+ t).[
c=
[.x, (x
+ t).] by
XXREAL_1: 25;
then f
is_differentiable_on
].x, (x
+ t).[ by
A43,
A49,
FDIFF_1: 26,
XBOOLE_1: 1;
then
consider s be
Real such that
A51:
0
< s and
A52: s
< 1 and
A53: (f
. (x
+ t))
= ((f
. x)
+ (t
* (
diff (f,(x
+ (s
* t)))))) by
A33,
A47,
A49,
A50,
ROLLE: 4;
(s
* t)
< (1
* t) by
A47,
A52,
XREAL_1: 68;
then (x
+ (s
* t))
< (x
+ t) by
XREAL_1: 8;
then ((x
+ (s
* t))
to_power (p
- 1))
< ((x
+ (s
* t))
to_power
0 ) by
A44,
A47,
A51,
A48,
POWER: 40;
then ((x
+ (s
* t))
#R (p
- 1))
< ((x
+ (s
* t))
to_power
0 ) by
A44,
A47,
A51,
POWER:def 2;
then ((x
+ (s
* t))
#R (p
- 1))
< ((x
+ (s
* t))
#R
0 ) by
A44,
A47,
A51,
POWER:def 2;
then ((x
+ (s
* t))
#R (p
- 1))
< 1 by
A44,
A47,
A51,
PREPOWER: 71;
then
A54: (((x
+ (s
* t))
#R (p
- 1))
- 1)
< (1
- 1) by
XREAL_1: 14;
(x
+ (s
* t))
in { y where y be
Real :
0
< y } by
A44,
A47,
A51;
then (x
+ (s
* t))
in (
right_open_halfline
0 ) by
XXREAL_1: 230;
then (
diff (f,(x
+ (s
* t))))
= (((x
+ (s
* t))
#R (p
- 1))
- 1) by
A34;
then (t
* (
diff (f,(x
+ (s
* t)))))
< (t
*
0 ) by
A47,
A54,
XREAL_1: 68;
then ((f
. x)
+ (t
* (
diff (f,(x
+ (s
* t))))))
< ((f
. x)
+
0 ) by
XREAL_1: 8;
then
0
< ((((x
#R p)
/ p)
+ (1
/ q))
- x) by
A34,
A46,
A42,
A53;
then (
0
+ x)
< (((((x
#R p)
/ p)
+ (1
/ q))
- x)
+ x) by
XREAL_1: 8;
hence thesis;
end;
case x
> 1;
then
A55: (1
- 1)
< (x
- 1) by
XREAL_1: 14;
set t = (x
- 1);
now
let z be
object;
assume z
in
[.1, (1
+ t).];
then z
in { r where r be
Real : 1
<= r & r
<= (1
+ t) } by
RCOMP_1:def 1;
then ex r be
Real st r
= z & 1
<= r & r
<= (1
+ t);
then z
in { y where y be
Real :
0
< y };
hence z
in (
right_open_halfline
0 ) by
XXREAL_1: 230;
end;
then
A56:
[.1, (1
+ t).]
c= (
right_open_halfline
0 );
A57: (1
- 1)
< (p
- 1) by
A1,
XREAL_1: 14;
(f
| (
right_open_halfline
0 )) is
continuous by
A43,
FDIFF_1: 25;
then
A58: (f
|
[.1, (1
+ t).]) is
continuous by
A56,
FCONT_1: 16;
].1, (1
+ t).[
c=
[.1, (1
+ t).] by
XXREAL_1: 25;
then f
is_differentiable_on
].1, (1
+ t).[ by
A43,
A56,
FDIFF_1: 26,
XBOOLE_1: 1;
then
consider s be
Real such that
A59:
0
< s and s
< 1 and
A60: (f
. (1
+ t))
= ((f
. 1)
+ (t
* (
diff (f,(1
+ (s
* t)))))) by
A33,
A55,
A56,
A58,
ROLLE: 4;
(
0
* t)
< (s
* t) by
A55,
A59,
XREAL_1: 68;
then (1
+
0 )
< (1
+ (s
* t)) by
XREAL_1: 8;
then 1
< ((1
+ (s
* t))
#R (p
- 1)) by
A57,
PREPOWER: 86;
then
A61: (1
- 1)
< (((1
+ (s
* t))
#R (p
- 1))
- 1) by
XREAL_1: 14;
(1
+ (s
* t))
in { y where y be
Real :
0
< y } by
A55,
A59;
then (1
+ (s
* t))
in (
right_open_halfline
0 ) by
XXREAL_1: 230;
then (
diff (f,(1
+ (s
* t))))
= (((1
+ (s
* t))
#R (p
- 1))
- 1) by
A34;
then (t
*
0 )
< (t
* (
diff (f,(1
+ (s
* t))))) by
A55,
A61,
XREAL_1: 68;
then
0
< ((((x
#R p)
/ p)
+ (1
/ q))
- x) by
A34,
A46,
A42,
A60;
then (
0
+ x)
< (((((x
#R p)
/ p)
+ (1
/ q))
- x)
+ x) by
XREAL_1: 8;
hence thesis;
end;
end;
hence thesis;
end;
A62: (((1
- q)
* p)
+ q)
=
0 by
A7;
A63:
now
assume (a
* b)
= (((a
#R p)
/ p)
+ ((b
#R q)
/ q));
then (a
* b)
= (((a
#R p)
/ p)
+ ((1
/ q)
* (b
#R q))) by
XCMPLX_1: 99;
then (a
* b)
= (((a
#R p)
* (1
/ p))
+ ((1
/ q)
* (b
#R q))) by
XCMPLX_1: 99;
then (a
* b)
= (((a
#R p)
* ((b
#R
0 )
/ p))
+ ((1
/ q)
* (b
#R q))) by
A4,
PREPOWER: 71;
then (a
* b)
= (((a
#R p)
* (((b
#R ((1
- q)
* p))
* (b
#R q))
/ p))
+ ((1
/ q)
* (b
#R q))) by
A4,
A62,
PREPOWER: 75;
then (a
* b)
= (((a
#R p)
* (((b
#R ((1
- q)
* p))
/ p)
* (b
#R q)))
+ ((1
/ q)
* (b
#R q))) by
XCMPLX_1: 74;
then (a
* b)
= ((((a
#R p)
* ((b
#R ((1
- q)
* p))
/ p))
* (b
#R q))
+ ((1
/ q)
* (b
#R q)));
then (a
* b)
= (((((a
#R p)
* (b
#R ((1
- q)
* p)))
/ p)
* (b
#R q))
+ ((1
/ q)
* (b
#R q))) by
XCMPLX_1: 74;
then (a
* b)
= (((((a
#R p)
* (b
#R ((1
- q)
* p)))
/ p)
+ (1
/ q))
* (b
#R q));
then (a
* b)
= (((((a
#R p)
* ((b
#R (1
- q))
#R p))
/ p)
+ (1
/ q))
* (b
#R q)) by
A4,
PREPOWER: 91;
then (a
* b)
= (((((a
* (b
#R (1
- q)))
#R p)
/ p)
+ (1
/ q))
* (b
#R q)) by
A3,
A14,
PREPOWER: 78;
then (a
* (b
#R ((1
- q)
+ q)))
= (((((a
* (b
#R (1
- q)))
#R p)
/ p)
+ (1
/ q))
* (b
#R q)) by
A4,
PREPOWER: 72;
then (a
* ((b
#R (1
- q))
* (b
#R q)))
= (((((a
* (b
#R (1
- q)))
#R p)
/ p)
+ (1
/ q))
* (b
#R q)) by
A4,
PREPOWER: 75;
then ((a
* (b
#R (1
- q)))
* (b
#R q))
= (((((a
* (b
#R (1
- q)))
#R p)
/ p)
+ (1
/ q))
* (b
#R q));
then
A64: (a
* (b
#R (1
- q)))
= ((((a
* (b
#R (1
- q)))
#R p)
/ p)
+ (1
/ q)) by
A5,
XCMPLX_1: 5;
(a
* ((b
#R (1
- q))
* (b
#R (q
- 1))))
= ((a
* (b
#R (1
- q)))
* (b
#R (q
- 1)))
.= (1
* (b
#R (q
- 1))) by
A41,
A15,
A64;
then (a
* (b
#R ((1
- q)
+ (q
- 1))))
= (b
#R (q
- 1)) by
A4,
PREPOWER: 75;
then (a
* 1)
= (b
#R (q
- 1)) by
A4,
PREPOWER: 71;
hence (a
#R p)
= (b
#R q) by
A4,
A8,
PREPOWER: 91;
end;
(a
* (b
#R (1
- q)))
<= ((((a
* (b
#R (1
- q)))
#R p)
/ p)
+ (1
/ q))
proof
now
per cases ;
case (a
* (b
#R (1
- q)))
= 1;
hence (a
* (b
#R (1
- q)))
= ((((a
* (b
#R (1
- q)))
#R p)
/ p)
+ (1
/ q)) by
A2,
PREPOWER: 73;
end;
case (a
* (b
#R (1
- q)))
<> 1;
hence thesis by
A41,
A15;
end;
end;
hence thesis;
end;
then ((a
* (b
#R (1
- q)))
* (b
#R q))
<= (((((a
* (b
#R (1
- q)))
#R p)
/ p)
+ (1
/ q))
* (b
#R q)) by
A5,
XREAL_1: 64;
then (a
* ((b
#R (1
- q))
* (b
#R q)))
<= (((((a
* (b
#R (1
- q)))
#R p)
/ p)
+ (1
/ q))
* (b
#R q));
then (a
* (b
#R ((1
- q)
+ q)))
<= (((((a
* (b
#R (1
- q)))
#R p)
/ p)
+ (1
/ q))
* (b
#R q)) by
A4,
PREPOWER: 75;
then (a
* b)
<= (((((a
* (b
#R (1
- q)))
#R p)
/ p)
+ (1
/ q))
* (b
#R q)) by
A4,
PREPOWER: 72;
then (a
* b)
<= (((((a
#R p)
* ((b
#R (1
- q))
#R p))
/ p)
+ (1
/ q))
* (b
#R q)) by
A3,
A14,
PREPOWER: 78;
then (a
* b)
<= (((((a
#R p)
* (b
#R ((1
- q)
* p)))
/ p)
+ (1
/ q))
* (b
#R q)) by
A4,
PREPOWER: 91;
then (a
* b)
<= (((((a
#R p)
* (b
#R ((1
- q)
* p)))
/ p)
* (b
#R q))
+ ((1
/ q)
* (b
#R q)));
then (a
* b)
<= ((((a
#R p)
* ((b
#R ((1
- q)
* p))
/ p))
* (b
#R q))
+ ((1
/ q)
* (b
#R q))) by
XCMPLX_1: 74;
then (a
* b)
<= (((a
#R p)
* (((b
#R ((1
- q)
* p))
/ p)
* (b
#R q)))
+ ((1
/ q)
* (b
#R q)));
then (a
* b)
<= (((a
#R p)
* (((b
#R ((1
- q)
* p))
* (b
#R q))
/ p))
+ ((1
/ q)
* (b
#R q))) by
XCMPLX_1: 74;
then (a
* b)
<= (((a
#R p)
* ((b
#R (((1
- q)
* p)
+ q))
/ p))
+ ((1
/ q)
* (b
#R q))) by
A4,
PREPOWER: 75;
then (a
* b)
<= (((a
#R p)
* (1
/ p))
+ ((1
/ q)
* (b
#R q))) by
A4,
A7,
PREPOWER: 71;
then (a
* b)
<= (((a
#R p)
/ p)
+ ((1
/ q)
* (b
#R q))) by
XCMPLX_1: 99;
hence thesis by
A63,
A10,
XCMPLX_1: 99;
end;
theorem ::
HOLDER_1:5
Th5: 1
< p & ((1
/ p)
+ (1
/ q))
= 1 &
0
<= a &
0
<= b implies (a
* b)
<= (((a
to_power p)
/ p)
+ ((b
to_power q)
/ q)) & ((a
* b)
= (((a
to_power p)
/ p)
+ ((b
to_power q)
/ q)) iff (a
to_power p)
= (b
to_power q))
proof
assume that
A1: 1
< p and
A2: ((1
/ p)
+ (1
/ q))
= 1 and
A3:
0
<= a and
A4:
0
<= b;
A5:
0
<= ((a
to_power p)
/ p)
proof
now
per cases by
A3;
case
0
< a;
then
0
< (a
to_power p) by
POWER: 34;
hence thesis by
A1;
end;
case
0
= a;
then
0
= (a
to_power p) by
A1,
POWER:def 2;
hence thesis;
end;
end;
hence thesis;
end;
reconsider pp = (1
/ p) as
Real;
(1
/ p)
< 1 by
A1,
XREAL_1: 189;
then
A6: (1
- 1)
< (1
- pp) by
XREAL_1: 15;
then
A7:
0
< q by
A2;
A8:
0
<= ((b
to_power q)
/ q)
proof
now
per cases by
A4;
case
0
< b;
then
0
< (b
to_power q) by
POWER: 34;
hence thesis by
A7;
end;
case
0
= b;
then
0
= (b
to_power q) by
A7,
POWER:def 2;
hence thesis;
end;
end;
hence thesis;
end;
now
per cases ;
case
A9: (a
* b)
=
0 ;
now
per cases by
A9,
XCMPLX_1: 6;
case
A10: a
=
0 ;
A11:
now
assume (a
* b)
= (((a
to_power p)
/ p)
+ ((b
to_power q)
/ q));
then
0
= ((
0
/ p)
+ ((b
to_power q)
/ q)) by
A1,
A10,
POWER:def 2;
then (
0
* q)
= (((b
to_power q)
/ q)
* q);
then
0
= (b
to_power q) by
A7,
XCMPLX_1: 87;
then
A12:
0
= ((b
to_power q)
to_power (1
/ q)) by
A2,
A6,
POWER:def 2;
A13:
0
= b
proof
assume
A14: b
<>
0 ;
then
0
= (b
to_power (q
* (1
/ q))) by
A4,
A12,
POWER: 33;
then
0
= (b
to_power 1) by
A7,
XCMPLX_1: 106;
hence contradiction by
A14,
POWER: 25;
end;
thus (a
to_power p)
=
0 by
A1,
A10,
POWER:def 2
.= (b
to_power q) by
A7,
A13,
POWER:def 2;
end;
now
assume (a
to_power p)
= (b
to_power q);
then
A15: ((b
to_power q)
/ q)
= (
0
/ q) by
A1,
A10,
POWER:def 2
.=
0 ;
((a
to_power p)
/ p)
= (
0
/ p) by
A1,
A10,
POWER:def 2
.=
0 ;
hence (a
* b)
= (((a
to_power p)
/ p)
+ ((b
to_power q)
/ q)) by
A9,
A15;
end;
hence (a
* b)
= (((a
to_power p)
/ p)
+ ((b
to_power q)
/ q)) iff (a
to_power p)
= (b
to_power q) by
A11;
end;
case
A16: b
=
0 ;
A17: (1
/ p)
>
0 by
A1,
XREAL_1: 139;
A18:
now
assume (a
* b)
= (((a
to_power p)
/ p)
+ ((b
to_power q)
/ q));
then
0
= ((
0
/ q)
+ ((a
to_power p)
/ p)) by
A7,
A16,
POWER:def 2;
then (
0
* p)
= (((a
to_power p)
/ p)
* p);
then
0
= (a
to_power p) by
A1,
XCMPLX_1: 87;
then
A19:
0
= ((a
to_power p)
to_power (1
/ p)) by
A17,
POWER:def 2;
A20:
0
= a
proof
assume
A21: a
<>
0 ;
then
0
= (a
to_power (p
* (1
/ p))) by
A3,
A19,
POWER: 33;
then
0
= (a
to_power 1) by
A1,
XCMPLX_1: 106;
hence contradiction by
A21,
POWER: 25;
end;
thus (b
to_power q)
=
0 by
A7,
A16,
POWER:def 2
.= (a
to_power p) by
A1,
A20,
POWER:def 2;
end;
now
assume (a
to_power p)
= (b
to_power q);
then
A22: ((a
to_power p)
/ p)
= (
0
/ p) by
A7,
A16,
POWER:def 2
.=
0 ;
((b
to_power q)
/ q)
= (
0
/ q) by
A7,
A16,
POWER:def 2
.=
0 ;
hence (a
* b)
= (((a
to_power p)
/ p)
+ ((b
to_power q)
/ q)) by
A9,
A22;
end;
hence (a
* b)
= (((a
to_power p)
/ p)
+ ((b
to_power q)
/ q)) iff (a
to_power p)
= (b
to_power q) by
A18;
end;
end;
hence thesis by
A5,
A8;
end;
case
A23: (a
* b)
<>
0 ;
then
A24: a
<>
0 ;
A25: b
<>
0 by
A23;
then (a
* b)
= (((a
#R p)
/ p)
+ ((b
#R q)
/ q)) iff (a
#R p)
= (b
#R q) by
A1,
A2,
A3,
A4,
A24,
Th4;
then
A26: (a
* b)
= (((a
to_power p)
/ p)
+ ((b
#R q)
/ q)) iff (a
to_power p)
= (b
#R q) by
A3,
A24,
POWER:def 2;
(a
* b)
<= (((a
#R p)
/ p)
+ ((b
#R q)
/ q)) by
A1,
A2,
A3,
A4,
A24,
A25,
Th4;
then (a
* b)
<= (((a
to_power p)
/ p)
+ ((b
#R q)
/ q)) by
A3,
A24,
POWER:def 2;
hence thesis by
A4,
A25,
A26,
POWER:def 2;
end;
end;
hence thesis;
end;
Lm1: for a be
Real_Sequence st for n be
Nat holds
0
<= (a
. n) holds for n be
Nat holds (a
. n)
<= ((
Partial_Sums a)
. n)
proof
let a be
Real_Sequence such that
A1: for n be
Nat holds
0
<= (a
. n);
defpred
P[
Nat] means (a
. $1)
<= ((
Partial_Sums a)
. $1);
A2: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
P[n];
then
A3: ((
Partial_Sums a)
. (n
+ 1))
= (((
Partial_Sums a)
. n)
+ (a
. (n
+ 1))) & ((a
. n)
+ (a
. (n
+ 1)))
<= (((
Partial_Sums a)
. n)
+ (a
. (n
+ 1))) by
SERIES_1:def 1,
XREAL_1: 6;
0
<= (a
. n) by
A1;
then (
0
+ (a
. (n
+ 1)))
<= ((a
. n)
+ (a
. (n
+ 1))) by
XREAL_1: 6;
hence thesis by
A3,
XXREAL_0: 2;
end;
A4:
P[
0 ] by
SERIES_1:def 1;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
Lm2: for a be
Real_Sequence st for n be
Nat holds
0
<= (a
. n) holds for n be
Nat holds
0
<= ((
Partial_Sums a)
. n)
proof
let a be
Real_Sequence such that
A1: for n be
Nat holds
0
<= (a
. n);
let n be
Nat;
(a
. n)
<= ((
Partial_Sums a)
. n) by
A1,
Lm1;
hence thesis by
A1;
end;
Lm3: for a be
Real_Sequence st for n be
Nat holds
0
<= (a
. n) holds for n be
Nat st ((
Partial_Sums a)
. n)
=
0 holds for k be
Nat st k
<= n holds (a
. k)
=
0
proof
let a be
Real_Sequence such that
A1: for n be
Nat holds
0
<= (a
. n);
let n be
Nat such that
A2: ((
Partial_Sums a)
. n)
=
0 ;
now
A3: (
Partial_Sums a) is
non-decreasing by
A1,
SERIES_1: 16;
let k be
Nat;
assume k
<= n;
then
A4: ((
Partial_Sums a)
. k)
<= ((
Partial_Sums a)
. n) by
A3,
SEQM_3: 6;
(a
. k)
<= ((
Partial_Sums a)
. k) by
A1,
Lm1;
hence (a
. k)
=
0 by
A1,
A2,
A4;
end;
hence thesis;
end;
Lm4: for a be
Real_Sequence holds for n be
Nat st for k be
Nat st k
<= n holds (a
. k)
=
0 holds ((
Partial_Sums a)
. n)
=
0
proof
let a be
Real_Sequence;
defpred
P[
Nat] means (for k be
Nat st k
<= $1 holds (a
. k)
=
0 ) implies ((
Partial_Sums a)
. $1)
=
0 ;
A1: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat such that
A2:
P[n];
now
assume
A3: for k be
Nat st k
<= (n
+ 1) holds (a
. k)
=
0 ;
A4:
now
A5: n
<= (n
+ 1) by
NAT_1: 11;
let k be
Nat;
assume k
<= n;
hence (a
. k)
=
0 by
A3,
A5,
XXREAL_0: 2;
end;
thus ((
Partial_Sums a)
. (n
+ 1))
= (((
Partial_Sums a)
. n)
+ (a
. (n
+ 1))) by
SERIES_1:def 1
.=
0 by
A2,
A3,
A4;
end;
hence thesis;
end;
A6:
P[
0 ]
proof
assume for k be
Nat st k
<=
0 holds (a
. k)
=
0 ;
then (a
.
0 )
=
0 ;
hence thesis by
SERIES_1:def 1;
end;
thus for n be
Nat holds
P[n] from
NAT_1:sch 2(
A6,
A1);
end;
begin
theorem ::
HOLDER_1:6
Th6: for p,q be
Real st 1
< p & ((1
/ p)
+ (1
/ q))
= 1 holds for a,b,ap,bq,ab be
Real_Sequence st (for n be
Nat holds (ap
. n)
= (
|.(a
. n).|
to_power p) & (bq
. n)
= (
|.(b
. n).|
to_power q) & (ab
. n)
=
|.((a
. n)
* (b
. n)).|) holds for n be
Nat holds ((
Partial_Sums ab)
. n)
<= ((((
Partial_Sums ap)
. n)
to_power (1
/ p))
* (((
Partial_Sums bq)
. n)
to_power (1
/ q)))
proof
let p,q be
Real such that
A1: 1
< p and
A2: ((1
/ p)
+ (1
/ q))
= 1;
reconsider pp = (1
/ p) as
Real;
let a,b,ap,bq,ab be
Real_Sequence such that
A3: for n be
Nat holds (ap
. n)
= (
|.(a
. n).|
to_power p) & (bq
. n)
= (
|.(b
. n).|
to_power q) & (ab
. n)
=
|.((a
. n)
* (b
. n)).|;
let n be
Nat;
set B = ((
Partial_Sums bq)
. n);
(1
/ p)
< 1 by
A1,
XREAL_1: 189;
then
A4: (1
- 1)
< (1
- pp) by
XREAL_1: 15;
then
A5:
0
< q by
A2;
A6: for n be
Nat holds
0
<= (bq
. n)
proof
let n be
Nat;
A7: (bq
. n)
= (
|.(b
. n).|
to_power q) by
A3;
now
per cases by
COMPLEX1: 46;
case
|.(b
. n).|
=
0 ;
hence thesis by
A5,
A7,
POWER:def 2;
end;
case
|.(b
. n).|
>
0 ;
hence thesis by
A7,
POWER: 34;
end;
end;
hence thesis;
end;
then
A8:
0
<= B by
Lm2;
set A = ((
Partial_Sums ap)
. n);
A9: for n be
Nat holds
0
<= (ap
. n)
proof
let n be
Nat;
A10: (ap
. n)
= (
|.(a
. n).|
to_power p) by
A3;
now
per cases by
COMPLEX1: 46;
case
|.(a
. n).|
=
0 ;
hence thesis by
A1,
A10,
POWER:def 2;
end;
case
|.(a
. n).|
>
0 ;
hence thesis by
A10,
POWER: 34;
end;
end;
hence thesis;
end;
then
A11:
0
<= A by
Lm2;
set Bq = (B
to_power (1
/ q));
set Ap = (A
to_power (1
/ p));
A12: (1
/ p)
>
0 by
A1,
XREAL_1: 139;
now
per cases ;
case
A13: (A
* B)
=
0 ;
A14:
0
<= Ap
proof
now
per cases by
A9,
Lm2;
case
0
< A;
hence thesis by
POWER: 34;
end;
case
0
= A;
hence thesis by
A12,
POWER:def 2;
end;
end;
hence thesis;
end;
0
<= Bq
proof
now
per cases by
A6,
Lm2;
case
0
< B;
hence thesis by
POWER: 34;
end;
case
0
= B;
hence thesis by
A2,
A4,
POWER:def 2;
end;
end;
hence thesis;
end;
then
A15:
0
<= (Ap
* Bq) by
A14;
now
per cases by
A13,
XCMPLX_1: 6;
case
A16: A
=
0 ;
A17: for k be
Nat st k
<= n holds (a
. k)
=
0
proof
let k be
Nat;
assume k
<= n;
then (ap
. k)
=
0 by
A9,
A16,
Lm3;
then
A18: (
|.(a
. k).|
to_power p)
=
0 by
A3;
|.(a
. k).|
=
0
proof
assume
|.(a
. k).|
<>
0 ;
then
|.(a
. k).|
>
0 by
COMPLEX1: 46;
hence contradiction by
A18,
POWER: 34;
end;
hence thesis by
ABSVALUE: 2;
end;
for k be
Nat st k
<= n holds (ab
. k)
=
0
proof
let k be
Nat such that
A19: k
<= n;
thus (ab
. k)
=
|.((a
. k)
* (b
. k)).| by
A3
.=
|.(
0
* (b
. k)).| by
A17,
A19
.=
0 by
ABSVALUE: 2;
end;
hence thesis by
A15,
Lm4;
end;
case
A20: B
=
0 ;
A21: for k be
Nat st k
<= n holds (b
. k)
=
0
proof
let k be
Nat;
assume k
<= n;
then (bq
. k)
=
0 by
A6,
A20,
Lm3;
then
A22: (
|.(b
. k).|
to_power q)
=
0 by
A3;
|.(b
. k).|
=
0
proof
assume
|.(b
. k).|
<>
0 ;
then
|.(b
. k).|
>
0 by
COMPLEX1: 46;
hence contradiction by
A22,
POWER: 34;
end;
hence thesis by
ABSVALUE: 2;
end;
for k be
Nat st k
<= n holds (ab
. k)
=
0
proof
let k be
Nat such that
A23: k
<= n;
thus (ab
. k)
=
|.((a
. k)
* (b
. k)).| by
A3
.=
|.((a
. k)
*
0 ).| by
A21,
A23
.=
0 by
ABSVALUE: 2;
end;
hence thesis by
A15,
Lm4;
end;
end;
hence thesis;
end;
case
A24: (A
* B)
<>
0 ;
deffunc
G(
Nat) = (
|.(b
. $1).|
/ Bq);
consider y be
Real_Sequence such that
A25: for n be
Nat holds (y
. n)
=
G(n) from
SEQ_1:sch 1;
A26: B
<>
0 by
A24;
then
A27: Bq
>
0 by
A8,
POWER: 34;
A28: for n be
Nat holds
0
<= (y
. n)
proof
let n be
Nat;
0
<=
|.(b
. n).| by
COMPLEX1: 46;
then
0
<= (
|.(b
. n).|
/ Bq) by
A27;
hence thesis by
A25;
end;
deffunc
F(
Nat) = (
|.(a
. $1).|
/ Ap);
consider x be
Real_Sequence such that
A29: for n be
Nat holds (x
. n)
=
F(n) from
SEQ_1:sch 1;
A30: for n be
Nat holds (((1
/ (Ap
* Bq))
(#) ab)
. n)
= ((x
. n)
* (y
. n))
proof
let n be
Nat;
(x
. n)
= (
|.(a
. n).|
/ Ap) & (y
. n)
= (
|.(b
. n).|
/ Bq) by
A29,
A25;
hence ((x
. n)
* (y
. n))
= ((
|.(a
. n).|
*
|.(b
. n).|)
/ (Ap
* Bq)) by
XCMPLX_1: 76
.= (
|.((a
. n)
* (b
. n)).|
/ (Ap
* Bq)) by
COMPLEX1: 65
.= ((ab
. n)
/ (Ap
* Bq)) by
A3
.= ((1
/ (Ap
* Bq))
* (ab
. n)) by
XCMPLX_1: 99
.= (((1
/ (Ap
* Bq))
(#) ab)
. n) by
SEQ_1: 9;
end;
A31: ((
Partial_Sums ((1
/ (Ap
* Bq))
(#) ab))
. n)
= (((1
/ (Ap
* Bq))
(#) (
Partial_Sums ab))
. n) by
SERIES_1: 9
.= ((1
/ (Ap
* Bq))
* ((
Partial_Sums ab)
. n)) by
SEQ_1: 9;
A32: A
<>
0 by
A24;
then
A33: Ap
>
0 by
A11,
POWER: 34;
then
A34: (Ap
* Bq)
>
0 by
A27,
XREAL_1: 129;
A35: for n be
Nat holds ((((1
/ p)
(#) ((1
/ A)
(#) ap))
+ ((1
/ q)
(#) ((1
/ B)
(#) bq)))
. n)
= ((((x
. n)
to_power p)
/ p)
+ (((y
. n)
to_power q)
/ q))
proof
let n be
Nat;
A36: ((
|.(a
. n).|
/ Ap)
to_power p)
= ((
|.(a
. n).|
to_power p)
/ (Ap
to_power p))
proof
now
per cases ;
case
A37:
|.(a
. n).|
=
0 ;
hence ((
|.(a
. n).|
/ Ap)
to_power p)
= (
0
/ (Ap
to_power p)) by
A1,
POWER:def 2
.= ((
|.(a
. n).|
to_power p)
/ (Ap
to_power p)) by
A1,
A37,
POWER:def 2;
end;
case
|.(a
. n).|
<>
0 ;
then
|.(a
. n).|
>
0 by
COMPLEX1: 46;
hence thesis by
A33,
POWER: 31;
end;
end;
hence thesis;
end;
A38: ((
|.(b
. n).|
/ Bq)
to_power q)
= ((
|.(b
. n).|
to_power q)
/ (Bq
to_power q))
proof
now
per cases ;
case
A39:
|.(b
. n).|
=
0 ;
hence ((
|.(b
. n).|
/ Bq)
to_power q)
= (
0
/ (Bq
to_power q)) by
A5,
POWER:def 2
.= ((
|.(b
. n).|
to_power q)
/ (Bq
to_power q)) by
A5,
A39,
POWER:def 2;
end;
case
|.(b
. n).|
<>
0 ;
then
|.(b
. n).|
>
0 by
COMPLEX1: 46;
hence thesis by
A27,
POWER: 31;
end;
end;
hence thesis;
end;
(y
. n)
= (
|.(b
. n).|
/ Bq) by
A25;
then
A40: (((y
. n)
to_power q)
/ q)
= (((bq
. n)
/ (Bq
to_power q))
/ q) by
A3,
A38
.= (((bq
. n)
/ (B
to_power ((1
/ q)
* q)))
/ q) by
A8,
A26,
POWER: 33
.= (((bq
. n)
/ (B
to_power 1))
/ q) by
A5,
XCMPLX_1: 87
.= (((bq
. n)
/ B)
/ q) by
POWER: 25
.= ((1
/ q)
* ((bq
. n)
/ B)) by
XCMPLX_1: 99
.= ((1
/ q)
* ((1
/ B)
* (bq
. n))) by
XCMPLX_1: 99
.= ((1
/ q)
* (((1
/ B)
(#) bq)
. n)) by
SEQ_1: 9
.= (((1
/ q)
(#) ((1
/ B)
(#) bq))
. n) by
SEQ_1: 9;
(x
. n)
= (
|.(a
. n).|
/ Ap) by
A29;
then (((x
. n)
to_power p)
/ p)
= (((ap
. n)
/ (Ap
to_power p))
/ p) by
A3,
A36
.= (((ap
. n)
/ (A
to_power ((1
/ p)
* p)))
/ p) by
A11,
A32,
POWER: 33
.= (((ap
. n)
/ (A
to_power 1))
/ p) by
A1,
XCMPLX_1: 87
.= (((ap
. n)
/ A)
/ p) by
POWER: 25
.= ((1
/ p)
* ((ap
. n)
/ A)) by
XCMPLX_1: 99
.= ((1
/ p)
* ((1
/ A)
* (ap
. n))) by
XCMPLX_1: 99
.= ((1
/ p)
* (((1
/ A)
(#) ap)
. n)) by
SEQ_1: 9
.= (((1
/ p)
(#) ((1
/ A)
(#) ap))
. n) by
SEQ_1: 9;
hence thesis by
A40,
SEQ_1: 7;
end;
A41: for n be
Nat holds
0
<= (x
. n)
proof
let n be
Nat;
0
<=
|.(a
. n).| by
COMPLEX1: 46;
then
0
<= (
|.(a
. n).|
/ Ap) by
A33;
hence thesis by
A29;
end;
A42: for n be
Nat holds ((x
. n)
* (y
. n))
<= ((((x
. n)
to_power p)
/ p)
+ (((y
. n)
to_power q)
/ q)) & (((x
. n)
* (y
. n))
= ((((x
. n)
to_power p)
/ p)
+ (((y
. n)
to_power q)
/ q)) iff ((x
. n)
to_power p)
= ((y
. n)
to_power q))
proof
let n be
Nat;
0
<= (x
. n) &
0
<= (y
. n) by
A41,
A28;
hence thesis by
A1,
A2,
Th5;
end;
for n be
Nat holds (((1
/ (Ap
* Bq))
(#) ab)
. n)
<= ((((1
/ p)
(#) ((1
/ A)
(#) ap))
+ ((1
/ q)
(#) ((1
/ B)
(#) bq)))
. n)
proof
let n be
Nat;
((x
. n)
* (y
. n))
<= ((((x
. n)
to_power p)
/ p)
+ (((y
. n)
to_power q)
/ q)) & ((((1
/ p)
(#) ((1
/ A)
(#) ap))
+ ((1
/ q)
(#) ((1
/ B)
(#) bq)))
. n)
= ((((x
. n)
to_power p)
/ p)
+ (((y
. n)
to_power q)
/ q)) by
A42,
A35;
hence thesis by
A30;
end;
then
A43: ((
Partial_Sums ((1
/ (Ap
* Bq))
(#) ab))
. n)
<= ((
Partial_Sums (((1
/ p)
(#) ((1
/ A)
(#) ap))
+ ((1
/ q)
(#) ((1
/ B)
(#) bq))))
. n) by
SERIES_1: 14;
((
Partial_Sums (((1
/ p)
(#) ((1
/ A)
(#) ap))
+ ((1
/ q)
(#) ((1
/ B)
(#) bq))))
. n)
= (((
Partial_Sums ((1
/ p)
(#) ((1
/ A)
(#) ap)))
+ (
Partial_Sums ((1
/ q)
(#) ((1
/ B)
(#) bq))))
. n) by
SERIES_1: 5
.= (((
Partial_Sums ((1
/ p)
(#) ((1
/ A)
(#) ap)))
. n)
+ ((
Partial_Sums ((1
/ q)
(#) ((1
/ B)
(#) bq)))
. n)) by
SEQ_1: 7
.= ((((1
/ p)
(#) (
Partial_Sums ((1
/ A)
(#) ap)))
. n)
+ ((
Partial_Sums ((1
/ q)
(#) ((1
/ B)
(#) bq)))
. n)) by
SERIES_1: 9
.= (((1
/ p)
* ((
Partial_Sums ((1
/ A)
(#) ap))
. n))
+ ((
Partial_Sums ((1
/ q)
(#) ((1
/ B)
(#) bq)))
. n)) by
SEQ_1: 9
.= (((1
/ p)
* (((1
/ A)
(#) (
Partial_Sums ap))
. n))
+ ((
Partial_Sums ((1
/ q)
(#) ((1
/ B)
(#) bq)))
. n)) by
SERIES_1: 9
.= (((1
/ p)
* ((1
/ A)
* ((
Partial_Sums ap)
. n)))
+ ((
Partial_Sums ((1
/ q)
(#) ((1
/ B)
(#) bq)))
. n)) by
SEQ_1: 9
.= (((1
/ p)
* ((1
/ A)
* ((
Partial_Sums ap)
. n)))
+ (((1
/ q)
(#) (
Partial_Sums ((1
/ B)
(#) bq)))
. n)) by
SERIES_1: 9
.= (((1
/ p)
* ((1
/ A)
* ((
Partial_Sums ap)
. n)))
+ ((1
/ q)
* ((
Partial_Sums ((1
/ B)
(#) bq))
. n))) by
SEQ_1: 9
.= (((1
/ p)
* ((1
/ A)
* ((
Partial_Sums ap)
. n)))
+ ((1
/ q)
* (((1
/ B)
(#) (
Partial_Sums bq))
. n))) by
SERIES_1: 9
.= (((1
/ p)
* ((1
/ A)
* ((
Partial_Sums ap)
. n)))
+ ((1
/ q)
* ((1
/ B)
* ((
Partial_Sums bq)
. n)))) by
SEQ_1: 9
.= (((1
/ p)
* 1)
+ ((1
/ q)
* ((1
/ B)
* B))) by
A32,
XCMPLX_1: 87
.= (((1
/ p)
* 1)
+ ((1
/ q)
* 1)) by
A26,
XCMPLX_1: 87
.= 1 by
A2;
then (((
Partial_Sums ab)
. n)
/ (Ap
* Bq))
<= 1 by
A43,
A31,
XCMPLX_1: 99;
hence thesis by
A34,
XREAL_1: 187;
end;
end;
hence thesis;
end;
theorem ::
HOLDER_1:7
Th7: for p be
Real st 1
< p holds for a,b,ap,bp,ab be
Real_Sequence st (for n be
Nat holds (ap
. n)
= (
|.(a
. n).|
to_power p) & (bp
. n)
= (
|.(b
. n).|
to_power p) & (ab
. n)
= (
|.((a
. n)
+ (b
. n)).|
to_power p)) holds for n be
Nat holds (((
Partial_Sums ab)
. n)
to_power (1
/ p))
<= ((((
Partial_Sums ap)
. n)
to_power (1
/ p))
+ (((
Partial_Sums bp)
. n)
to_power (1
/ p)))
proof
let p be
Real such that
A1: 1
< p;
A2: (1
/ p)
>
0 by
A1,
XREAL_1: 139;
let a,b,ap,bp,ab be
Real_Sequence such that
A3: for n be
Nat holds (ap
. n)
= (
|.(a
. n).|
to_power p) & (bp
. n)
= (
|.(b
. n).|
to_power p) & (ab
. n)
= (
|.((a
. n)
+ (b
. n)).|
to_power p);
A4: for n be
Nat holds
0
<= (ap
. n)
proof
let n be
Nat;
A5: (ap
. n)
= (
|.(a
. n).|
to_power p) by
A3;
now
per cases by
COMPLEX1: 46;
case
|.(a
. n).|
=
0 ;
hence thesis by
A1,
A5,
POWER:def 2;
end;
case
|.(a
. n).|
>
0 ;
hence thesis by
A5,
POWER: 34;
end;
end;
hence thesis;
end;
A6: for n be
Nat holds
0
<= (bp
. n)
proof
let n be
Nat;
A7: (bp
. n)
= (
|.(b
. n).|
to_power p) by
A3;
now
per cases by
COMPLEX1: 46;
case
|.(b
. n).|
=
0 ;
hence thesis by
A1,
A7,
POWER:def 2;
end;
case
|.(b
. n).|
>
0 ;
hence thesis by
A7,
POWER: 34;
end;
end;
hence thesis;
end;
deffunc
F(
Nat) = (
|.((a
. $1)
+ (b
. $1)).|
to_power (p
- 1));
consider x be
Real_Sequence such that
A8: for n be
Nat holds (x
. n)
=
F(n) from
SEQ_1:sch 1;
A9: (1
- 1)
< (p
- 1) by
A1,
XREAL_1: 14;
A10: for n be
Nat holds
0
<= (x
. n)
proof
let n be
Nat;
A11: (x
. n)
= (
|.((a
. n)
+ (b
. n)).|
to_power (p
- 1)) by
A8;
now
per cases by
COMPLEX1: 46;
case
|.((a
. n)
+ (b
. n)).|
=
0 ;
hence thesis by
A9,
A11,
POWER:def 2;
end;
case
|.((a
. n)
+ (b
. n)).|
>
0 ;
hence thesis by
A11,
POWER: 34;
end;
end;
hence thesis;
end;
A12: for n be
Nat holds ((x
(#) (
abs b))
. n)
=
|.((b
. n)
* (x
. n)).|
proof
let n be
Nat;
0
<= (x
. n) by
A10;
then
A13:
|.(x
. n).|
= (x
. n) by
ABSVALUE:def 1;
thus ((x
(#) (
abs b))
. n)
= ((x
. n)
* ((
abs b)
. n)) by
SEQ_1: 8
.= ((x
. n)
*
|.(b
. n).|) by
SEQ_1: 12
.=
|.((b
. n)
* (x
. n)).| by
A13,
COMPLEX1: 65;
end;
reconsider pp = (1
/ p) as
Real;
reconsider qq = (1
- pp) as
Real;
reconsider q = (1
/ qq) as
Real;
A14: qq
= (1
/ q) by
XCMPLX_1: 56;
then
A15: ((1
/ p)
+ (1
/ q))
= 1;
(1
/ p)
< 1 by
A1,
XREAL_1: 189;
then
A16: (1
- 1)
< (1
- pp) by
XREAL_1: 15;
then
A17: q
<>
0 by
A14;
then ((((1
* q)
+ (1
* p))
/ (p
* q))
* (p
* q))
= (1
* (p
* q)) by
A1,
A15,
XCMPLX_1: 116;
then
A18: (q
+ p)
= (p
* q) by
A1,
A17,
XCMPLX_1: 6,
XCMPLX_1: 87;
A19: for n be
Nat holds (ab
. n)
= ((x
. n)
*
|.((a
. n)
+ (b
. n)).|)
proof
let n be
Nat;
now
per cases ;
case
A20:
|.((a
. n)
+ (b
. n)).|
=
0 ;
thus (ab
. n)
= (
|.((a
. n)
+ (b
. n)).|
to_power p) by
A3
.= ((x
. n)
*
|.((a
. n)
+ (b
. n)).|) by
A1,
A20,
POWER:def 2;
end;
case
A21:
|.((a
. n)
+ (b
. n)).|
<>
0 ;
A22:
0
<=
|.((a
. n)
+ (b
. n)).| by
COMPLEX1: 46;
thus (ab
. n)
= (
|.((a
. n)
+ (b
. n)).|
to_power ((p
- 1)
+ 1)) by
A3
.= ((
|.((a
. n)
+ (b
. n)).|
to_power (p
- 1))
* (
|.((a
. n)
+ (b
. n)).|
to_power 1)) by
A21,
A22,
POWER: 27
.= ((
|.((a
. n)
+ (b
. n)).|
to_power (p
- 1))
*
|.((a
. n)
+ (b
. n)).|) by
POWER: 25
.= ((x
. n)
*
|.((a
. n)
+ (b
. n)).|) by
A8;
end;
end;
hence thesis;
end;
A23: for n be
Nat holds (ab
. n)
<= (((x
(#) (
abs a))
+ (x
(#) (
abs b)))
. n)
proof
let n be
Nat;
A24: ((x
. n)
* (
|.(a
. n).|
+
|.(b
. n).|))
= (((x
. n)
*
|.(a
. n).|)
+ ((x
. n)
*
|.(b
. n).|))
.= (((x
. n)
* ((
abs a)
. n))
+ ((x
. n)
*
|.(b
. n).|)) by
SEQ_1: 12
.= (((x
. n)
* ((
abs a)
. n))
+ ((x
. n)
* ((
abs b)
. n))) by
SEQ_1: 12
.= (((x
(#) (
abs a))
. n)
+ ((x
. n)
* ((
abs b)
. n))) by
SEQ_1: 8
.= (((x
(#) (
abs a))
. n)
+ ((x
(#) (
abs b))
. n)) by
SEQ_1: 8
.= (((x
(#) (
abs a))
+ (x
(#) (
abs b)))
. n) by
SEQ_1: 7;
0
<= (x
. n) & (ab
. n)
= ((x
. n)
*
|.((a
. n)
+ (b
. n)).|) by
A10,
A19;
hence thesis by
A24,
COMPLEX1: 56,
XREAL_1: 64;
end;
A25:
0
< q by
A16,
A14;
A26: for n be
Nat holds (
|.(x
. n).|
to_power q)
= (ab
. n)
proof
let n be
Nat;
0
<= (x
. n) by
A10;
then
|.(x
. n).|
= (x
. n) by
ABSVALUE:def 1;
then
A27: (
|.(x
. n).|
to_power q)
= ((
|.((a
. n)
+ (b
. n)).|
to_power (p
- 1))
to_power q) by
A8;
now
per cases ;
case
A28:
|.((a
. n)
+ (b
. n)).|
=
0 ;
then
A29: (ab
. n)
= (
0
to_power p) by
A3
.=
0 by
A1,
POWER:def 2;
(
|.(x
. n).|
to_power q)
= (
0
to_power q) by
A9,
A27,
A28,
POWER:def 2
.=
0 by
A25,
POWER:def 2;
hence thesis by
A29;
end;
case
|.((a
. n)
+ (b
. n)).|
<>
0 ;
then
0
<
|.((a
. n)
+ (b
. n)).| by
COMPLEX1: 46;
hence (
|.(x
. n).|
to_power q)
= (
|.((a
. n)
+ (b
. n)).|
to_power ((p
- 1)
* q)) by
A27,
POWER: 33
.= (ab
. n) by
A3,
A18;
end;
end;
hence thesis;
end;
A30: for n be
Nat holds ((x
(#) (
abs a))
. n)
=
|.((a
. n)
* (x
. n)).|
proof
let n be
Nat;
0
<= (x
. n) by
A10;
then
A31:
|.(x
. n).|
= (x
. n) by
ABSVALUE:def 1;
thus ((x
(#) (
abs a))
. n)
= ((x
. n)
* ((
abs a)
. n)) by
SEQ_1: 8
.= ((x
. n)
*
|.(a
. n).|) by
SEQ_1: 12
.=
|.((a
. n)
* (x
. n)).| by
A31,
COMPLEX1: 65;
end;
A32: for n be
Nat holds ((
Partial_Sums ab)
. n)
<= (((((
Partial_Sums ap)
. n)
to_power (1
/ p))
+ (((
Partial_Sums bp)
. n)
to_power (1
/ p)))
* (((
Partial_Sums ab)
. n)
to_power (1
/ q)))
proof
let n be
Nat;
A33: ((
Partial_Sums ((x
(#) (
abs a))
+ (x
(#) (
abs b))))
. n)
= (((
Partial_Sums (x
(#) (
abs a)))
+ (
Partial_Sums (x
(#) (
abs b))))
. n) by
SERIES_1: 5
.= (((
Partial_Sums (x
(#) (
abs a)))
. n)
+ ((
Partial_Sums (x
(#) (
abs b)))
. n)) by
SEQ_1: 7;
((
Partial_Sums (x
(#) (
abs a)))
. n)
<= ((((
Partial_Sums ap)
. n)
to_power (1
/ p))
* (((
Partial_Sums ab)
. n)
to_power (1
/ q))) & ((
Partial_Sums (x
(#) (
abs b)))
. n)
<= ((((
Partial_Sums bp)
. n)
to_power (1
/ p))
* (((
Partial_Sums ab)
. n)
to_power (1
/ q))) by
A1,
A3,
A15,
A30,
A12,
A26,
Th6;
then
A34: (((
Partial_Sums (x
(#) (
abs a)))
. n)
+ ((
Partial_Sums (x
(#) (
abs b)))
. n))
<= (((((
Partial_Sums ap)
. n)
to_power (1
/ p))
* (((
Partial_Sums ab)
. n)
to_power (1
/ q)))
+ ((((
Partial_Sums bp)
. n)
to_power (1
/ p))
* (((
Partial_Sums ab)
. n)
to_power (1
/ q)))) by
XREAL_1: 7;
((
Partial_Sums ab)
. n)
<= ((
Partial_Sums ((x
(#) (
abs a))
+ (x
(#) (
abs b))))
. n) by
A23,
SERIES_1: 14;
hence thesis by
A33,
A34,
XXREAL_0: 2;
end;
A35: for n be
Nat holds
0
<= (ab
. n)
proof
let n be
Nat;
0
<=
|.((a
. n)
+ (b
. n)).| by
COMPLEX1: 46;
then
A36: (
0
to_power p)
<= (
|.((a
. n)
+ (b
. n)).|
to_power p) by
A1,
Th3;
(ab
. n)
= (
|.((a
. n)
+ (b
. n)).|
to_power p) by
A3;
hence thesis by
A1,
A36,
POWER:def 2;
end;
now
let n be
Nat;
set A = ((
Partial_Sums ab)
. n);
set C = ((((
Partial_Sums ap)
. n)
to_power (1
/ p))
+ (((
Partial_Sums bp)
. n)
to_power (1
/ p)));
set D = (A
to_power (1
/ q));
A37:
0
<= A by
A35,
Lm2;
0
<= ((
Partial_Sums bp)
. n) by
A6,
Lm2;
then (
0
to_power (1
/ p))
<= (((
Partial_Sums bp)
. n)
to_power (1
/ p)) by
A2,
Th3;
then
A38:
0
<= (((
Partial_Sums bp)
. n)
to_power (1
/ p)) by
A2,
POWER:def 2;
0
<= ((
Partial_Sums ap)
. n) by
A4,
Lm2;
then (
0
to_power (1
/ p))
<= (((
Partial_Sums ap)
. n)
to_power (1
/ p)) by
A2,
Th3;
then
0
<= (((
Partial_Sums ap)
. n)
to_power (1
/ p)) by
A2,
POWER:def 2;
then
A39: (
0
+
0 )
<= ((((
Partial_Sums ap)
. n)
to_power (1
/ p))
+ (((
Partial_Sums bp)
. n)
to_power (1
/ p))) by
A38;
now
per cases ;
case A
=
0 ;
hence (A
to_power (1
/ p))
<= C by
A2,
A39,
POWER:def 2;
end;
case
A40: A
<>
0 ;
set B = (1
/ D);
A41:
0
< D by
A37,
A40,
POWER: 34;
then
A42:
0
< B by
XREAL_1: 139;
A43: ((C
* D)
* B)
= (C
* (D
* B))
.= (C
* 1) by
A41,
XCMPLX_1: 87
.= C;
(A
* B)
= (A
/ D) by
XCMPLX_1: 99
.= ((A
to_power 1)
/ D) by
POWER: 25
.= (A
to_power (1
- (1
/ q))) by
A37,
A40,
POWER: 29
.= (A
to_power (1
/ p)) by
A14;
hence (A
to_power (1
/ p))
<= ((((
Partial_Sums ap)
. n)
to_power (1
/ p))
+ (((
Partial_Sums bp)
. n)
to_power (1
/ p))) by
A32,
A42,
A43,
XREAL_1: 64;
end;
end;
hence (((
Partial_Sums ab)
. n)
to_power (1
/ p))
<= ((((
Partial_Sums ap)
. n)
to_power (1
/ p))
+ (((
Partial_Sums bp)
. n)
to_power (1
/ p)));
end;
hence thesis;
end;
theorem ::
HOLDER_1:8
Th8: for a,b be
Real_Sequence st (for n be
Nat holds (a
. n)
<= (b
. n)) & b is
convergent & a is
non-decreasing holds a is
convergent & (
lim a)
<= (
lim b)
proof
let a,b be
Real_Sequence such that
A1: for n be
Nat holds (a
. n)
<= (b
. n) and
A2: b is
convergent and
A3: a is
non-decreasing;
A4: b is
bounded by
A2;
A5: a is
bounded_above
proof
consider r be
Real such that
A6: for n be
Nat holds (b
. n)
< r by
A4,
SEQ_2:def 3;
now
let n be
Nat;
(a
. n)
<= (b
. n) by
A1;
then (a
. n)
<= r by
A6,
XXREAL_0: 2;
then ((a
. n)
+
0 )
< (r
+ 1) by
XREAL_1: 8;
hence (a
. n)
< (r
+ 1);
end;
hence thesis by
SEQ_2:def 3;
end;
hence a is
convergent by
A3;
thus thesis by
A1,
A2,
A3,
A5,
SEQ_2: 18;
end;
theorem ::
HOLDER_1:9
Th9: for a,b,c be
Real_Sequence st (for n be
Nat holds (a
. n)
<= ((b
. n)
+ (c
. n))) & b is
convergent & c is
convergent & a is
non-decreasing holds a is
convergent & (
lim a)
<= ((
lim b)
+ (
lim c))
proof
let a,b,c be
Real_Sequence such that
A1: for n be
Nat holds (a
. n)
<= ((b
. n)
+ (c
. n)) and
A2: b is
convergent & c is
convergent and
A3: a is
non-decreasing;
A4:
now
let n be
Nat;
(a
. n)
<= ((b
. n)
+ (c
. n)) by
A1;
hence (a
. n)
<= ((b
+ c)
. n) by
SEQ_1: 7;
end;
A5: (b
+ c) is
convergent by
A2;
hence a is
convergent by
A3,
A4,
Th8;
(
lim (b
+ c))
= ((
lim b)
+ (
lim c)) by
A2,
SEQ_2: 6;
hence thesis by
A3,
A5,
A4,
Th8;
end;
theorem ::
HOLDER_1:10
Th10: for p be
Real st
0
< p holds for a,ap be
Real_Sequence st a is
convergent & (for n be
Nat holds
0
<= (a
. n)) & (for n be
Nat holds (ap
. n)
= ((a
. n)
to_power p)) holds ap is
convergent & (
lim ap)
= ((
lim a)
to_power p)
proof
let p be
Real such that
A1:
0
< p;
let a,ap be
Real_Sequence such that
A2: a is
convergent and
A3: for n be
Nat holds
0
<= (a
. n) and
A4: for n be
Nat holds (ap
. n)
= ((a
. n)
to_power p);
now
per cases ;
case
A5: (
lim a)
=
0 ;
now
per cases ;
case ex n be
Nat st for m be
Nat st n
<= m holds (a
. m)
=
0 ;
then
consider N be
Nat such that
A6: for m be
Nat st N
<= m holds (a
. m)
=
0 ;
A7: for n be
Nat holds ((a
^\ N)
. n)
=
0
proof
let n be
Nat;
(a
. (n
+ N))
=
0 by
A6,
NAT_1: 12;
hence thesis by
NAT_1:def 3;
end;
A8:
now
let e be
Real such that
A9: e
>
0 ;
reconsider n =
0 as
Nat;
take n;
let m be
Nat such that n
<= m;
A10: ((
lim a)
to_power p)
=
0 by
A1,
A5,
POWER:def 2;
((ap
^\ N)
. m)
= (ap
. (m
+ N)) by
NAT_1:def 3
.= ((a
. (m
+ N))
to_power p) by
A4
.= (((a
^\ N)
. m)
to_power p) by
NAT_1:def 3
.= (
0
to_power p) by
A7
.=
0 by
A1,
POWER:def 2;
hence
|.(((ap
^\ N)
. m)
- ((
lim a)
to_power p)).|
< e by
A9,
A10,
ABSVALUE: 2;
end;
then
A11: (ap
^\ N) is
convergent by
SEQ_2:def 6;
then ((
lim a)
to_power p)
= (
lim (ap
^\ N)) by
A8,
SEQ_2:def 7;
hence thesis by
A11,
SEQ_4: 20,
SEQ_4: 21;
end;
case
A12: for n be
Nat holds ex m be
Nat st n
<= m & (a
. m)
<>
0 ;
defpred
P[
set] means (a
. $1)
<>
0 ;
ex m1 be
Nat st
0
<= m1 & (a
. m1)
<>
0 by
A12;
then
A13: ex m be
Nat st
P[m];
consider M be
Nat such that
A14:
P[M] & for n be
Nat st
P[n] holds M
<= n from
NAT_1:sch 5(
A13);
defpred
P[
set,
set,
set] means for n,m be
Nat st $2
= n & $3
= m holds n
< m & (a
. m)
<>
0 & for k be
Nat st n
< k & (a
. k)
<>
0 holds m
<= k;
A15: ((
lim a)
to_power p)
=
0 by
A1,
A5,
POWER:def 2;
reconsider M as
Nat;
A16:
now
let n be
Nat;
consider m be
Nat such that
A17: (n
+ 1)
<= m & (a
. m)
<>
0 by
A12;
take m;
thus n
< m & (a
. m)
<>
0 by
A17,
NAT_1: 13;
end;
A18: for n be
Nat, x be
Element of
NAT holds ex y be
Element of
NAT st
P[n, x, y]
proof
let n be
Nat, x be
Element of
NAT ;
defpred
P[
Nat] means x
< $1 & (a
. $1)
<>
0 ;
ex m be
Nat st
P[m] by
A16;
then
A19: ex m be
Nat st
P[m];
consider l be
Nat such that
A20:
P[l] & for k be
Nat st
P[k] holds l
<= k from
NAT_1:sch 5(
A19);
take l;
l
in
NAT by
ORDINAL1:def 12;
hence thesis by
A20;
end;
reconsider zz =
0 as
Element of
NAT ;
consider F be
sequence of
NAT such that
A21: (F
.
0 )
= (
In (M,
NAT )) & for n be
Nat holds
P[n, (F
. n), (F
. (n
+ 1))] from
RECDEF_1:sch 2(
A18);
(
rng F)
c=
NAT by
RELAT_1:def 19;
then
A22: (
rng F)
c=
REAL by
NUMBERS: 19;
(
dom F)
=
NAT by
FUNCT_2:def 1;
then
reconsider F as
Real_Sequence by
A22,
RELSET_1: 4;
for n be
Nat holds (F
. n)
< (F
. (n
+ 1)) by
A21;
then
reconsider F as
increasing
sequence of
NAT by
SEQM_3:def 6;
A23: for n be
Nat st (a
. n)
<>
0 holds ex m be
Nat st (F
. m)
= n
proof
defpred
P[
set] means (a
. $1)
<>
0 & for m be
Nat holds (F
. m)
<> $1;
assume ex n be
Nat st
P[n];
then
A24: ex n be
Nat st
P[n];
consider M1 be
Nat such that
A25:
P[M1] & for n be
Nat st
P[n] holds M1
<= n from
NAT_1:sch 5(
A24);
defpred
P[
Nat] means $1
< M1 & (a
. $1)
<>
0 & ex m be
Nat st (F
. m)
= $1;
A26: ex n be
Nat st
P[n]
proof
take M;
M
<= M1 & M
<> M1 by
A14,
A21,
A25;
hence M
< M1 by
XXREAL_0: 1;
thus (a
. M)
<>
0 by
A14;
take
0 ;
thus thesis by
A21;
end;
A27: for n be
Nat st
P[n] holds n
<= M1;
consider MX be
Nat such that
A28:
P[MX] & for n be
Nat st
P[n] holds n
<= MX from
NAT_1:sch 6(
A27,
A26);
A29: for k be
Nat st MX
< k & k
< M1 holds (a
. k)
=
0
proof
given k be
Nat such that
A30: MX
< k and
A31: k
< M1 & (a
. k)
<>
0 ;
now
per cases ;
case ex m be
Nat st (F
. m)
= k;
hence contradiction by
A28,
A30,
A31;
end;
case for m be
Nat holds (F
. m)
<> k;
hence contradiction by
A25,
A31;
end;
end;
hence contradiction;
end;
consider m be
Nat such that
A32: (F
. m)
= MX by
A28;
A33: MX
< (F
. (m
+ 1)) & (a
. (F
. (m
+ 1)))
<>
0 by
A21,
A32;
A34: (F
. (m
+ 1))
<= M1 by
A21,
A25,
A28,
A32;
now
assume (F
. (m
+ 1))
<> M1;
then (F
. (m
+ 1))
< M1 by
A34,
XXREAL_0: 1;
hence contradiction by
A29,
A33;
end;
hence contradiction by
A25;
end;
A35: (a
* F) is
convergent & (
lim (a
* F))
=
0 by
A2,
A5,
SEQ_4: 16,
SEQ_4: 17;
A36:
now
let e be
Real;
assume
A37:
0
< e;
then
0
< (e
to_power (1
/ p)) by
POWER: 34;
then
consider n be
Nat such that
A38: for m be
Nat st n
<= m holds
|.(((a
* F)
. m)
-
0 ).|
< (e
to_power (1
/ p)) by
A35,
SEQ_2:def 7;
reconsider k = (F
. n) as
Nat;
take k;
let m be
Nat such that
A39: k
<= m;
now
per cases ;
case (a
. m)
=
0 ;
then (ap
. m)
= (
0
to_power p) by
A4
.=
0 by
A1,
POWER:def 2;
hence
|.((ap
. m)
- ((
lim a)
to_power p)).|
< e by
A15,
A37,
ABSVALUE: 2;
end;
case
A40: (a
. m)
<>
0 ;
then
consider l be
Nat such that
A41: m
= (F
. l) by
A23;
A42: l
in
NAT by
ORDINAL1:def 12;
n
<= l by
A39,
A41,
SEQM_3: 1;
then
|.(((a
* F)
. l)
-
0 ).|
< (e
to_power (1
/ p)) by
A38;
then
A43:
|.(a
. (F
. l)).|
< (e
to_power (1
/ p)) by
FUNCT_2: 15,
A42;
A44: ((a
. m)
to_power p)
= (ap
. m) by
A4;
A45: (a
. m)
>
0 by
A3,
A40;
then
A46:
0
< (ap
. m) by
A44,
POWER: 34;
|.(a
. m).|
>
0 by
A40,
COMPLEX1: 47;
then (
|.(a
. m).|
to_power p)
< ((e
to_power (1
/ p))
to_power p) by
A1,
A41,
A43,
POWER: 37;
then (
|.(a
. m).|
to_power p)
< (e
to_power ((1
/ p)
* p)) by
A37,
POWER: 33;
then (
|.(a
. m).|
to_power p)
< (e
to_power 1) by
A1,
XCMPLX_1: 106;
then (
|.(a
. m).|
to_power p)
< e by
POWER: 25;
then (ap
. m)
< e by
A45,
A44,
ABSVALUE:def 1;
hence
|.((ap
. m)
- ((
lim a)
to_power p)).|
< e by
A15,
A46,
ABSVALUE:def 1;
end;
end;
hence
|.((ap
. m)
- ((
lim a)
to_power p)).|
< e;
end;
hence ap is
convergent by
SEQ_2:def 6;
hence (
lim ap)
= ((
lim a)
to_power p) by
A36,
SEQ_2:def 7;
end;
end;
hence thesis;
end;
case
A47: (
lim a)
<>
0 ;
A48:
0
<= (
lim a) by
A2,
A3,
SEQ_2: 17;
ex k be
Nat st (
rng (a
^\ k))
c= (
dom (
#R p))
proof
set e0 = (
lim a);
A49: (e0
/ 2)
>
0 by
A47,
A48,
XREAL_1: 215;
then
consider k be
Nat such that
A50: for m be
Nat st k
<= m holds
|.((a
. m)
- e0).|
< (e0
/ 2) by
A2,
SEQ_2:def 7;
take k;
A51:
now
let m be
Nat;
|.((a
. (k
+ m))
- e0).|
< (e0
/ 2) by
A50,
NAT_1: 12;
then (
- (e0
/ 2))
<= ((a
. (k
+ m))
- e0) by
ABSVALUE: 5;
then ((
- (e0
/ 2))
+ e0)
<= (((a
. (k
+ m))
- e0)
+ e0) by
XREAL_1: 7;
hence
0
< ((a
^\ k)
. m) by
A49,
NAT_1:def 3;
end;
let x be
object;
assume x
in (
rng (a
^\ k));
then
consider n be
Element of
NAT such that
A52: x
= ((a
^\ k)
. n) by
FUNCT_2: 113;
0
< ((a
^\ k)
. n) by
A51;
then ((a
^\ k)
. n)
in { g where g be
Real :
0
< g };
then ((a
^\ k)
. n)
in (
right_open_halfline
0 ) by
XXREAL_1: 230;
hence x
in (
dom (
#R p)) by
A52,
TAYLOR_1:def 4;
end;
then
consider k be
Nat such that
A53: (
rng (a
^\ k))
c= (
dom (
#R p));
now
let x be
object;
assume x
in
NAT ;
then
reconsider n = x as
Element of
NAT ;
((a
^\ k)
. n)
in (
rng (a
^\ k)) by
VALUED_0: 28;
then ((a
^\ k)
. n)
in (
dom (
#R p)) by
A53;
then
A54: ((a
^\ k)
. n)
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
then (a
. (k
+ n))
in (
right_open_halfline
0 ) by
NAT_1:def 3;
then (a
. (k
+ n))
in { g where g be
Real :
0
< g } by
XXREAL_1: 230;
then
A55: ex g be
Real st (a
. (k
+ n))
= g & g
>
0 ;
thus (((
#R p)
/* (a
^\ k))
. x)
= ((
#R p)
. ((a
^\ k)
. n)) by
A53,
FUNCT_2: 108
.= (((a
^\ k)
. n)
#R p) by
A54,
TAYLOR_1:def 4
.= ((a
. (k
+ n))
#R p) by
NAT_1:def 3
.= ((a
. (k
+ n))
to_power p) by
A55,
POWER:def 2
.= (ap
. (k
+ n)) by
A4
.= ((ap
^\ k)
. x) by
NAT_1:def 3;
end;
then
A56: ((
#R p)
/* (a
^\ k))
= (ap
^\ k) by
FUNCT_2: 12;
A57: (
lim (a
^\ k))
= (
lim a) by
A2,
SEQ_4: 20;
(
lim a)
>
0 by
A2,
A3,
A47,
SEQ_2: 17;
then (
#R p)
is_continuous_in (
lim (a
^\ k)) by
A57,
FDIFF_1: 24,
TAYLOR_1: 21;
then
A58: ((
#R p)
/* (a
^\ k)) is
convergent & ((
#R p)
. (
lim (a
^\ k)))
= (
lim ((
#R p)
/* (a
^\ k))) by
A2,
A53,
FCONT_1:def 1;
(
lim a)
in { g where g be
Real :
0
< g } by
A47,
A48;
then (
lim a)
in (
right_open_halfline
0 ) by
XXREAL_1: 230;
then ((
#R p)
. (
lim (a
^\ k)))
= ((
lim a)
#R p) by
A57,
TAYLOR_1:def 4
.= ((
lim a)
to_power p) by
A47,
A48,
POWER:def 2;
hence thesis by
A58,
A56,
SEQ_4: 21,
SEQ_4: 22;
end;
end;
hence thesis;
end;
theorem ::
HOLDER_1:11
for p be
Real st
0
< p holds for a,ap be
Real_Sequence st a is
summable & (for n be
Nat holds
0
<= (a
. n)) & (for n be
Nat holds (ap
. n)
= (((
Partial_Sums a)
. n)
to_power p)) holds ap is
convergent & (
lim ap)
= ((
Sum a)
to_power p) & ap is
non-decreasing & for n be
Nat holds (ap
. n)
<= ((
Sum a)
to_power p)
proof
let p be
Real such that
A1:
0
< p;
let a,ap be
Real_Sequence such that
A2: a is
summable and
A3: for n be
Nat holds
0
<= (a
. n) and
A4: for n be
Nat holds (ap
. n)
= (((
Partial_Sums a)
. n)
to_power p);
A5: (
Partial_Sums a) is
convergent & for n be
Nat holds
0
<= ((
Partial_Sums a)
. n) by
A2,
A3,
Lm2,
SERIES_1:def 2;
then (
lim ap)
= ((
lim (
Partial_Sums a))
to_power p) by
A1,
A4,
Th10;
hence
A6: ap is
convergent & (
lim ap)
= ((
Sum a)
to_power p) by
A1,
A4,
A5,
Th10,
SERIES_1:def 3;
A7: (
Partial_Sums a) is
non-decreasing by
A3,
SERIES_1: 16;
now
let n,m be
Nat;
assume n
<= m;
then
A8: ((
Partial_Sums a)
. n)
<= ((
Partial_Sums a)
. m) by
A7,
SEQM_3: 6;
A9: (ap
. n)
= (((
Partial_Sums a)
. n)
to_power p) & (ap
. m)
= (((
Partial_Sums a)
. m)
to_power p) by
A4;
0
<= ((
Partial_Sums a)
. n) by
A3,
Lm2;
hence (ap
. n)
<= (ap
. m) by
A1,
A9,
A8,
Th3;
end;
hence
A10: ap is
non-decreasing by
SEQM_3: 6;
thus thesis by
A6,
A10,
SEQ_4: 37;
end;
theorem ::
HOLDER_1:12
for p,q be
Real st 1
< p & ((1
/ p)
+ (1
/ q))
= 1 holds for a,b,ap,bq,ab be
Real_Sequence st (for n be
Nat holds (ap
. n)
= (
|.(a
. n).|
to_power p) & (bq
. n)
= (
|.(b
. n).|
to_power q) & (ab
. n)
=
|.((a
. n)
* (b
. n)).|) & ap is
summable & bq is
summable holds ab is
summable & (
Sum ab)
<= (((
Sum ap)
to_power (1
/ p))
* ((
Sum bq)
to_power (1
/ q)))
proof
let p,q be
Real such that
A1: 1
< p and
A2: ((1
/ p)
+ (1
/ q))
= 1;
let a,b,ap,bq,ab be
Real_Sequence such that
A3: for n be
Nat holds (ap
. n)
= (
|.(a
. n).|
to_power p) & (bq
. n)
= (
|.(b
. n).|
to_power q) & (ab
. n)
=
|.((a
. n)
* (b
. n)).| and
A4: ap is
summable and
A5: bq is
summable;
A6: (
Partial_Sums ap) is
convergent by
A4,
SERIES_1:def 2;
reconsider pp = (1
/ p) as
Real;
(1
/ p)
< 1 by
A1,
XREAL_1: 189;
then
A7: (1
- 1)
< (1
- pp) by
XREAL_1: 15;
then
A8:
0
< q by
A2;
for n be
Nat holds
0
<= (bq
. n)
proof
let n be
Nat;
A9: (bq
. n)
= (
|.(b
. n).|
to_power q) by
A3;
now
per cases by
COMPLEX1: 46;
case
|.(b
. n).|
=
0 ;
hence thesis by
A8,
A9,
POWER:def 2;
end;
case
|.(b
. n).|
>
0 ;
hence thesis by
A9,
POWER: 34;
end;
end;
hence thesis;
end;
then
A10: for n be
Nat holds
0
<= ((
Partial_Sums bq)
. n) by
Lm2;
for n be
Nat holds
0
<= (ab
. n)
proof
let n be
Nat;
(ab
. n)
=
|.((a
. n)
* (b
. n)).| by
A3;
hence thesis by
COMPLEX1: 46;
end;
then
A11: (
Partial_Sums ab) is
non-decreasing by
SERIES_1: 16;
deffunc
G(
Nat) = (((
Partial_Sums bq)
. $1)
to_power (1
/ q));
consider y be
Real_Sequence such that
A12: for n be
Nat holds (y
. n)
=
G(n) from
SEQ_1:sch 1;
for n be
Nat holds
0
<= (ap
. n)
proof
let n be
Nat;
A13: (ap
. n)
= (
|.(a
. n).|
to_power p) by
A3;
now
per cases by
COMPLEX1: 46;
case
|.(a
. n).|
=
0 ;
hence thesis by
A1,
A13,
POWER:def 2;
end;
case
|.(a
. n).|
>
0 ;
hence thesis by
A13,
POWER: 34;
end;
end;
hence thesis;
end;
then
A14: for n be
Nat holds
0
<= ((
Partial_Sums ap)
. n) by
Lm2;
deffunc
F(
Nat) = (((
Partial_Sums ap)
. $1)
to_power (1
/ p));
consider x be
Real_Sequence such that
A15: for n be
Nat holds (x
. n)
=
F(n) from
SEQ_1:sch 1;
A16: for n be
Nat holds ((
Partial_Sums ab)
. n)
<= ((x
(#) y)
. n)
proof
let n be
Nat;
A17: (y
. n)
= (((
Partial_Sums bq)
. n)
to_power (1
/ q)) by
A12;
((
Partial_Sums ab)
. n)
<= ((((
Partial_Sums ap)
. n)
to_power (1
/ p))
* (((
Partial_Sums bq)
. n)
to_power (1
/ q))) & (x
. n)
= (((
Partial_Sums ap)
. n)
to_power (1
/ p)) by
A1,
A2,
A3,
A15,
Th6;
hence thesis by
A17,
SEQ_1: 8;
end;
A18: (1
/ p)
>
0 by
A1,
XREAL_1: 139;
then
A19: x is
convergent by
A15,
A6,
A14,
Th10;
A20: (
Partial_Sums bq) is
convergent by
A5,
SERIES_1:def 2;
then
A21: y is
convergent by
A2,
A7,
A12,
A10,
Th10;
then (x
(#) y) is
convergent by
A19;
then
A22: (
Partial_Sums ab) is
convergent & (
lim (
Partial_Sums ab))
<= (
lim (x
(#) y)) by
A16,
A11,
Th8;
(
Sum ap)
= (
lim (
Partial_Sums ap)) by
SERIES_1:def 3;
then
A23: (
lim x)
= ((
Sum ap)
to_power (1
/ p)) by
A18,
A15,
A6,
A14,
Th10;
(
Sum bq)
= (
lim (
Partial_Sums bq)) by
SERIES_1:def 3;
then (
lim y)
= ((
Sum bq)
to_power (1
/ q)) by
A2,
A7,
A12,
A20,
A10,
Th10;
then (
lim (x
(#) y))
= (((
Sum ap)
to_power (1
/ p))
* ((
Sum bq)
to_power (1
/ q))) by
A19,
A23,
A21,
SEQ_2: 15;
hence thesis by
A22,
SERIES_1:def 2,
SERIES_1:def 3;
end;
theorem ::
HOLDER_1:13
for p be
Real st 1
< p holds for a,b,ap,bp,ab be
Real_Sequence st (for n be
Nat holds (ap
. n)
= (
|.(a
. n).|
to_power p) & (bp
. n)
= (
|.(b
. n).|
to_power p) & (ab
. n)
= (
|.((a
. n)
+ (b
. n)).|
to_power p)) & ap is
summable & bp is
summable holds ab is
summable & ((
Sum ab)
to_power (1
/ p))
<= (((
Sum ap)
to_power (1
/ p))
+ ((
Sum bp)
to_power (1
/ p)))
proof
let p be
Real such that
A1: 1
< p;
A2: (1
/ p)
>
0 by
A1,
XREAL_1: 139;
let a,b,ap,bp,ab be
Real_Sequence such that
A3: for n be
Nat holds (ap
. n)
= (
|.(a
. n).|
to_power p) & (bp
. n)
= (
|.(b
. n).|
to_power p) & (ab
. n)
= (
|.((a
. n)
+ (b
. n)).|
to_power p) and
A4: ap is
summable and
A5: bp is
summable;
deffunc
H(
Nat) = (((
Partial_Sums ab)
. $1)
to_power (1
/ p));
consider z be
Real_Sequence such that
A6: for n be
Nat holds (z
. n)
=
H(n) from
SEQ_1:sch 1;
A7: for n be
Nat holds
0
<= (ab
. n)
proof
let n be
Nat;
A8: (ab
. n)
= (
|.((a
. n)
+ (b
. n)).|
to_power p) by
A3;
per cases by
COMPLEX1: 46;
suppose
|.((a
. n)
+ (b
. n)).|
=
0 ;
hence thesis by
A1,
A8,
POWER:def 2;
end;
suppose
|.((a
. n)
+ (b
. n)).|
>
0 ;
hence thesis by
A8,
POWER: 34;
end;
end;
A9: for n be
Nat holds
0
<= (z
. n)
proof
let n be
Nat;
A10: (z
. n)
= (((
Partial_Sums ab)
. n)
to_power (1
/ p)) by
A6;
per cases by
A7,
Lm2;
suppose ((
Partial_Sums ab)
. n)
=
0 ;
hence thesis by
A2,
A10,
POWER:def 2;
end;
suppose ((
Partial_Sums ab)
. n)
>
0 ;
hence thesis by
A10,
POWER: 34;
end;
end;
A11: (
Partial_Sums ab) is
non-decreasing by
A7,
SERIES_1: 16;
A12:
now
let n,m be
Nat;
assume n
<= m;
then
A13: ((
Partial_Sums ab)
. n)
<= ((
Partial_Sums ab)
. m) by
A11,
SEQM_3: 6;
A14:
0
<= (((
Partial_Sums ab)
. m)
to_power (1
/ p))
proof
per cases by
A7,
Lm2;
suppose ((
Partial_Sums ab)
. m)
=
0 ;
hence thesis by
A2,
POWER:def 2;
end;
suppose ((
Partial_Sums ab)
. m)
>
0 ;
hence thesis by
POWER: 34;
end;
end;
now
per cases ;
case ((
Partial_Sums ab)
. n)
= ((
Partial_Sums ab)
. m);
hence (((
Partial_Sums ab)
. n)
to_power (1
/ p))
<= (((
Partial_Sums ab)
. m)
to_power (1
/ p));
end;
case ((
Partial_Sums ab)
. n)
<> ((
Partial_Sums ab)
. m);
then
A15: ((
Partial_Sums ab)
. n)
< ((
Partial_Sums ab)
. m) by
A13,
XXREAL_0: 1;
now
per cases ;
case ((
Partial_Sums ab)
. n)
=
0 ;
hence (((
Partial_Sums ab)
. n)
to_power (1
/ p))
<= (((
Partial_Sums ab)
. m)
to_power (1
/ p)) by
A2,
A14,
POWER:def 2;
end;
case
A16: ((
Partial_Sums ab)
. n)
<>
0 ;
0
<= ((
Partial_Sums ab)
. n) by
A7,
Lm2;
hence (((
Partial_Sums ab)
. n)
to_power (1
/ p))
<= (((
Partial_Sums ab)
. m)
to_power (1
/ p)) by
A2,
A15,
A16,
POWER: 37;
end;
end;
hence (((
Partial_Sums ab)
. n)
to_power (1
/ p))
<= (((
Partial_Sums ab)
. m)
to_power (1
/ p));
end;
end;
hence (((
Partial_Sums ab)
. n)
to_power (1
/ p))
<= (((
Partial_Sums ab)
. m)
to_power (1
/ p));
end;
now
let n,m be
Nat;
assume
A17: n
<= m;
(z
. n)
= (((
Partial_Sums ab)
. n)
to_power (1
/ p)) & (z
. m)
= (((
Partial_Sums ab)
. m)
to_power (1
/ p)) by
A6;
hence (z
. n)
<= (z
. m) by
A12,
A17;
end;
then
A18: z is
non-decreasing by
SEQM_3: 6;
for n be
Nat holds
0
<= (ap
. n)
proof
let n be
Nat;
A19: (ap
. n)
= (
|.(a
. n).|
to_power p) by
A3;
now
per cases by
COMPLEX1: 46;
case
|.(a
. n).|
=
0 ;
hence thesis by
A1,
A19,
POWER:def 2;
end;
case
|.(a
. n).|
>
0 ;
hence thesis by
A19,
POWER: 34;
end;
end;
hence thesis;
end;
then
A20: for n be
Nat holds
0
<= ((
Partial_Sums ap)
. n) by
Lm2;
deffunc
F(
Nat) = (((
Partial_Sums ap)
. $1)
to_power (1
/ p));
consider x be
Real_Sequence such that
A21: for n be
Nat holds (x
. n)
=
F(n) from
SEQ_1:sch 1;
for n be
Nat holds
0
<= (bp
. n)
proof
let n be
Nat;
A22: (bp
. n)
= (
|.(b
. n).|
to_power p) by
A3;
now
per cases by
COMPLEX1: 46;
case
|.(b
. n).|
=
0 ;
hence thesis by
A1,
A22,
POWER:def 2;
end;
case
|.(b
. n).|
>
0 ;
hence thesis by
A22,
POWER: 34;
end;
end;
hence thesis;
end;
then
A23: for n be
Nat holds
0
<= ((
Partial_Sums bp)
. n) by
Lm2;
deffunc
G(
Nat) = (((
Partial_Sums bp)
. $1)
to_power (1
/ p));
consider y be
Real_Sequence such that
A24: for n be
Nat holds (y
. n)
=
G(n) from
SEQ_1:sch 1;
A25: (
Partial_Sums bp) is
convergent by
A5,
SERIES_1:def 2;
then
A26: y is
convergent by
A2,
A24,
A23,
Th10;
A27: (
Partial_Sums ap) is
convergent by
A4,
SERIES_1:def 2;
then
A28: x is
convergent by
A2,
A21,
A20,
Th10;
A29: for n be
Nat holds (z
. n)
<= ((x
. n)
+ (y
. n))
proof
let n be
Nat;
A30: (y
. n)
= (((
Partial_Sums bp)
. n)
to_power (1
/ p)) by
A24;
(((
Partial_Sums ab)
. n)
to_power (1
/ p))
<= ((((
Partial_Sums ap)
. n)
to_power (1
/ p))
+ (((
Partial_Sums bp)
. n)
to_power (1
/ p))) & (x
. n)
= (((
Partial_Sums ap)
. n)
to_power (1
/ p)) by
A1,
A3,
A21,
Th7;
hence thesis by
A6,
A30;
end;
then
A31: z is
convergent by
A28,
A26,
A18,
Th9;
A32: for n be
Nat holds ((z
. n)
to_power p)
= ((
Partial_Sums ab)
. n)
proof
let n be
Nat;
A33: (z
. n)
= (((
Partial_Sums ab)
. n)
to_power (1
/ p)) by
A6;
now
per cases ;
case
A34: ((
Partial_Sums ab)
. n)
=
0 ;
then (z
. n)
=
0 by
A2,
A33,
POWER:def 2;
hence thesis by
A1,
A34,
POWER:def 2;
end;
case
A35: ((
Partial_Sums ab)
. n)
<>
0 ;
0
<= ((
Partial_Sums ab)
. n) by
A7,
Lm2;
hence ((z
. n)
to_power p)
= (((
Partial_Sums ab)
. n)
to_power ((1
/ p)
* p)) by
A33,
A35,
POWER: 33
.= (((
Partial_Sums ab)
. n)
to_power 1) by
A1,
XCMPLX_1: 106
.= ((
Partial_Sums ab)
. n) by
POWER: 25;
end;
end;
hence thesis;
end;
then (
lim (
Partial_Sums ab))
= ((
lim z)
to_power p) by
A1,
A9,
A31,
Th10;
then
A36: (
Sum ab)
= ((
lim z)
to_power p) by
SERIES_1:def 3;
A37: ((
Sum ab)
to_power (1
/ p))
= (
lim z)
proof
per cases ;
suppose
A38: (
lim z)
=
0 ;
hence ((
Sum ab)
to_power (1
/ p))
= (
0
to_power (1
/ p)) by
A1,
A36,
POWER:def 2
.= (
lim z) by
A2,
A38,
POWER:def 2;
end;
suppose (
lim z)
<>
0 ;
then
0
< (
lim z) by
A9,
A31,
SEQ_2: 17;
hence ((
Sum ab)
to_power (1
/ p))
= ((
lim z)
to_power ((1
/ p)
* p)) by
A36,
POWER: 33
.= ((
lim z)
to_power 1) by
A1,
XCMPLX_1: 106
.= (
lim z) by
POWER: 25;
end;
end;
(
Sum bp)
= (
lim (
Partial_Sums bp)) by
SERIES_1:def 3;
then
A39: (
lim y)
= ((
Sum bp)
to_power (1
/ p)) by
A2,
A24,
A25,
A23,
Th10;
(
Sum ap)
= (
lim (
Partial_Sums ap)) by
SERIES_1:def 3;
then
A40: (
lim x)
= ((
Sum ap)
to_power (1
/ p)) by
A2,
A21,
A27,
A20,
Th10;
(
Partial_Sums ab) is
convergent by
A1,
A9,
A31,
A32,
Th10;
hence thesis by
A28,
A40,
A26,
A39,
A29,
A18,
A37,
Th9,
SERIES_1:def 2;
end;