pdiff_1.miz
begin
definition
let i,n be
Nat;
::
PDIFF_1:def1
func
proj (i,n) ->
Function of (
REAL n),
REAL means
:
Def1: for x be
Element of (
REAL n) holds (it
. x)
= (x
. i);
existence
proof
deffunc
F(
Element of (
REAL n)) = (
In (($1
. i),
REAL ));
consider f be
Function of (
REAL n),
REAL such that
A1: for x be
Element of (
REAL n) holds (f
. x)
=
F(x) from
FUNCT_2:sch 4;
take f;
let x be
Element of (
REAL n);
(f
. x)
=
F(x) by
A1;
hence thesis;
end;
uniqueness
proof
let f,g be
Function of (
REAL n),
REAL ;
assume that
A2: for x be
Element of (
REAL n) holds (f
. x)
= (x
. i) and
A3: for x be
Element of (
REAL n) holds (g
. x)
= (x
. i);
now
let x be
Element of (
REAL n);
(f
. x)
= (x
. i) by
A2;
hence (f
. x)
= (g
. x) by
A3;
end;
hence thesis by
FUNCT_2: 63;
end;
end
set W = ((
proj (1,1)) qua
Function
" );
Lm1: (
proj (1,1)) is
bijective & (
dom (
proj (1,1)))
= (
REAL 1) & (
rng (
proj (1,1)))
=
REAL & for x be
Real holds ((
proj (1,1))
.
<*x*>)
= x & (((
proj (1,1)) qua
Function
" )
. x)
=
<*x*>
proof
set f = (
proj (1,1));
for x1,x2 be
object st x1
in (
dom f) & x2
in (
dom f) & (f
. x1)
= (f
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume that
A1: x1
in (
dom f) and
A2: x2
in (
dom f) and
A3: (f
. x1)
= (f
. x2);
reconsider y1 = x1, y2 = x2 as
Element of (
REAL 1) by
A1,
A2;
x1 is
Tuple of 1,
REAL by
A1,
FINSEQ_2: 131;
then
consider d1 be
Element of
REAL such that
A4: x1
=
<*d1*> by
FINSEQ_2: 97;
d1
= (
<*d1*>
. 1) by
FINSEQ_1: 40;
then d1
= (f
. y1) by
A4,
Def1;
then
A5: d1
= (y2
. 1) by
A3,
Def1;
x2 is
Tuple of 1,
REAL by
A2,
FINSEQ_2: 131;
then ex d2 be
Element of
REAL st x2
=
<*d2*> by
FINSEQ_2: 97;
hence thesis by
A4,
A5,
FINSEQ_1: 40;
end;
then
A6: f is
one-to-one by
FUNCT_1:def 4;
A7: (
dom f)
= (
REAL 1) by
FUNCT_2:def 1;
A8:
now
let x be
Real;
reconsider xx = x as
Element of
REAL by
XREAL_0:def 1;
A9:
<*xx*> is
Element of (1
-tuples_on
REAL ) by
FINSEQ_2: 98;
then ((
proj (1,1))
.
<*x*>)
= (
<*x*>
. 1) by
Def1;
hence ((
proj (1,1))
.
<*x*>)
= x by
FINSEQ_1: 40;
hence (((
proj (1,1)) qua
Function
" )
. x)
=
<*x*> by
A7,
A6,
A9,
FUNCT_1: 34;
end;
A10: for y be
object st y
in
REAL holds ex x be
object st x
in (
REAL 1) & y
= (f
. x)
proof
let y be
object;
assume y
in
REAL ;
then
reconsider y1 = y as
Element of
REAL ;
reconsider x =
<*y1*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
(f
. x)
= (x
. 1) by
Def1;
then (f
. x)
= y by
FINSEQ_1: 40;
hence thesis;
end;
then (
rng f)
=
REAL by
FUNCT_2: 10;
then f is
onto by
FUNCT_2:def 3;
hence thesis by
A6,
A10,
A8,
FUNCT_2: 10,
FUNCT_2:def 1;
end;
Lm2: for i,n be
Nat st i
in (
Seg n) holds (
proj (i,n)) is
onto
proof
let i,n be
Nat;
set f = (
proj (i,n));
assume
A1: i
in (
Seg n);
for y be
object st y
in
REAL holds ex x be
object st x
in (
REAL n) & y
= (f
. x)
proof
let y be
object;
assume y
in
REAL ;
then
reconsider y1 = y as
Element of
REAL ;
reconsider x = (n
|-> y1) as
Element of (
REAL n);
(f
. x)
= (x
. i) by
Def1;
then (f
. x)
= y by
A1,
FINSEQ_2: 57;
hence thesis;
end;
then (
rng f)
=
REAL by
FUNCT_2: 10;
hence thesis by
FUNCT_2:def 3;
end;
theorem ::
PDIFF_1:1
(for i,n be
Nat st i
in (
Seg n) holds (
dom (
proj (i,n)))
= (
REAL n) & (
rng (
proj (i,n)))
=
REAL ) & for x be
Real holds ((
proj (1,1))
.
<*x*>)
= x & (((
proj (1,1)) qua
Function
" )
. x)
=
<*x*>
proof
now
let i,n be
Nat;
assume
A1: i
in (
Seg n);
thus (
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
(
proj (i,n)) is
onto by
A1,
Lm2;
hence (
rng (
proj (i,n)))
=
REAL by
FUNCT_2:def 3;
end;
hence thesis by
Lm1;
end;
theorem ::
PDIFF_1:2
Th2: ((
proj (1,1)) qua
Function
" ) is
Function of
REAL , (
REAL 1) & ((
proj (1,1)) qua
Function
" ) is
one-to-one & (
dom ((
proj (1,1)) qua
Function
" ))
=
REAL & (
rng ((
proj (1,1)) qua
Function
" ))
= (
REAL 1) & ex g be
Function of
REAL , (
REAL 1) st g is
bijective & ((
proj (1,1)) qua
Function
" )
= g
proof
A1: (
REAL 1)
= (
rng W) by
Lm1,
FUNCT_1: 33;
REAL
= (
dom W) by
Lm1,
FUNCT_1: 33;
then
reconsider g = W as
Function of
REAL , (
REAL 1) by
A1,
FUNCT_2: 1;
g is
onto by
A1,
FUNCT_2:def 3;
hence thesis by
Lm1,
FUNCT_1: 33;
end;
registration
cluster (
proj (1,1)) ->
bijective;
coherence by
Lm1;
end
definition
let g be
PartFunc of
REAL ,
REAL ;
::
PDIFF_1:def2
func
<>* g ->
PartFunc of (
REAL 1), (
REAL 1) equals ((((
proj (1,1)) qua
Function
" )
* g)
* (
proj (1,1)));
coherence
proof
reconsider f = ((
proj (1,1)) qua
Function
" ) as
PartFunc of
REAL , (
REAL 1) by
PARTFUN1: 9;
((f
* g)
* (
proj (1,1))) is
PartFunc of (
REAL 1), (
REAL 1);
hence thesis;
end;
end
definition
let n be
Nat;
let g be
PartFunc of (
REAL n),
REAL ;
::
PDIFF_1:def3
func
<>* g ->
PartFunc of (
REAL n), (
REAL 1) equals (((
proj (1,1)) qua
Function
" )
* g);
correctness
proof
reconsider f = ((
proj (1,1)) qua
Function
" ) as
PartFunc of
REAL , (
REAL 1) by
PARTFUN1: 9;
(f
* g) is
PartFunc of (
REAL n), (
REAL 1);
hence thesis;
end;
end
definition
let i,n be
Nat;
::
PDIFF_1:def4
func
Proj (i,n) ->
Function of (
REAL-NS n), (
REAL-NS 1) means
:
Def4: for x be
Point of (
REAL-NS n) holds (it
. x)
=
<*((
proj (i,n))
. x)*>;
existence
proof
deffunc
F(
Point of (
REAL-NS n)) =
<*((
proj (i,n))
. $1)*>;
A1: for x be
Point of (
REAL-NS n) holds
F(x) is
Element of (
REAL-NS 1)
proof
let x be
Point of (
REAL-NS n);
((
proj (i,n))
. x)
in
REAL by
XREAL_0:def 1;
then
A2:
F(x) is
FinSequence of
REAL by
FINSEQ_1: 74;
(
len
F(x))
= 1 by
FINSEQ_1: 39;
then
F(x) is
Element of (1
-tuples_on
REAL ) by
A2,
FINSEQ_2: 92;
then
F(x)
in (
REAL 1);
hence thesis by
REAL_NS1:def 4;
end;
thus ex f be
Function of (
REAL-NS n), (
REAL-NS 1) st for x be
Point of (
REAL-NS n) holds (f
. x)
=
F(x) from
FUNCT_2:sch 9(
A1);
end;
uniqueness
proof
let f,g be
Function of (
REAL-NS n), (
REAL-NS 1);
assume that
A3: for x be
Point of (
REAL-NS n) holds (f
. x)
=
<*((
proj (i,n))
. x)*> and
A4: for x be
Point of (
REAL-NS n) holds (g
. x)
=
<*((
proj (i,n))
. x)*>;
now
let x be
Point of (
REAL-NS n);
(f
. x)
=
<*((
proj (i,n))
. x)*> by
A3;
hence (f
. x)
= (g
. x) by
A4;
end;
hence thesis by
FUNCT_2: 63;
end;
end
definition
let i be
Nat;
let x be
FinSequence of
REAL ;
::
PDIFF_1:def5
func
reproj (i,x) ->
Function means
:
Def5: (
dom it )
=
REAL & for r be
Element of
REAL holds (it
. r)
= (
Replace (x,i,r));
existence
proof
deffunc
F(
Element of
REAL ) = (
Replace (x,i,$1));
consider f be
Function such that
A1: (
dom f)
=
REAL & for r be
Element of
REAL st r
in
REAL holds (f
. r)
=
F(r) from
CLASSES1:sch 2;
take f;
thus thesis by
A1;
end;
uniqueness
proof
let f,g be
Function;
assume that
A2: (
dom f)
=
REAL and
A3: for r be
Element of
REAL holds (f
. r)
= (
Replace (x,i,r)) and
A4: (
dom g)
=
REAL and
A5: for r be
Element of
REAL holds (g
. r)
= (
Replace (x,i,r));
now
let p be
object;
assume p
in (
dom f);
then
reconsider r = p as
Element of
REAL by
A2;
(f
. r)
= (
Replace (x,i,r)) by
A3;
hence (f
. p)
= (g
. p) by
A5;
end;
hence thesis by
A2,
A4,
FUNCT_1: 2;
end;
end
definition
let n,i be
Nat;
let x be
Element of (
REAL n);
:: original:
reproj
redefine
func
reproj (i,x) ->
Function of
REAL , (
REAL n) ;
correctness
proof
A1:
now
let p be
object;
assume p
in
REAL ;
then
reconsider r = p as
Element of
REAL ;
A2: ((
reproj (i,x))
. r)
= (
Replace (x,i,r)) by
Def5;
then
reconsider IT = ((
reproj (i,x))
. r) as
FinSequence of
REAL ;
(
len IT)
= (
len x) by
A2,
FINSEQ_7: 5
.= n by
CARD_1:def 7;
then
reconsider IT as
Element of (n
-tuples_on
REAL ) by
FINSEQ_2: 92;
IT is
Element of (
REAL n);
hence ((
reproj (i,x))
. p)
in (
REAL n);
end;
(
dom (
reproj (i,x)))
=
REAL by
Def5;
hence thesis by
A1,
FUNCT_2: 3;
end;
end
definition
let n,i be
Nat;
let x be
Point of (
REAL-NS n);
::
PDIFF_1:def6
func
reproj (i,x) ->
Function of (
REAL-NS 1), (
REAL-NS n) means
:
Def6: for r be
Element of (
REAL-NS 1) holds ex q be
Element of
REAL , y be
Element of (
REAL n) st r
=
<*q*> & y
= x & (it
. r)
= ((
reproj (i,y))
. q);
existence
proof
defpred
P[
Element of (
REAL-NS 1),
Point of (
REAL-NS n)] means ex q be
Element of
REAL , z be
Element of (
REAL n) st $1
=
<*q*> & z
= x & $2
= ((
reproj (i,z))
. q);
A1: for r be
Element of (
REAL-NS 1) holds ex y be
Element of (
REAL-NS n) st
P[r, y]
proof
reconsider z = x as
Element of (
REAL n) by
REAL_NS1:def 4;
let r be
Element of (
REAL-NS 1);
r is
Element of (
REAL 1) by
REAL_NS1:def 4;
then
consider q be
Element of
REAL such that
A2: r
=
<*q*> by
FINSEQ_2: 97;
((
reproj (i,z))
. q) is
Element of (
REAL-NS n) by
REAL_NS1:def 4;
hence thesis by
A2;
end;
thus ex f be
Function of (
REAL-NS 1), (
REAL-NS n) st for r be
Element of (
REAL-NS 1) holds
P[r, (f
. r)] from
FUNCT_2:sch 3(
A1);
end;
uniqueness
proof
let f,g be
Function of (
REAL-NS 1), (
REAL-NS n);
assume that
A3: for r be
Element of (
REAL-NS 1) holds ex q be
Element of
REAL , y be
Element of (
REAL n) st r
=
<*q*> & y
= x & (f
. r)
= ((
reproj (i,y))
. q) and
A4: for r be
Element of (
REAL-NS 1) holds ex q be
Element of
REAL , y be
Element of (
REAL n) st r
=
<*q*> & y
= x & (g
. r)
= ((
reproj (i,y))
. q);
now
let r be
Point of (
REAL-NS 1);
consider p be
Element of
REAL , y be
Element of (
REAL n) such that
A5: r
=
<*p*> and
A6: y
= x and
A7: (f
. r)
= ((
reproj (i,y))
. p) by
A3;
A8: ex q be
Element of
REAL , z be
Element of (
REAL n) st r
=
<*q*> & z
= x & (g
. r)
= ((
reproj (i,z))
. q) by
A4;
p
= (
<*p*>
. 1) by
FINSEQ_1:def 8;
hence (f
. r)
= (g
. r) by
A5,
A6,
A7,
A8,
FINSEQ_1:def 8;
end;
hence thesis by
FUNCT_2: 63;
end;
end
definition
let m,n be non
zero
Nat;
let f be
PartFunc of (
REAL m), (
REAL n);
let x be
Element of (
REAL m);
::
PDIFF_1:def7
pred f
is_differentiable_in x means ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= g & x
= y & g
is_differentiable_in y;
end
definition
let m,n be non
zero
Nat;
let f be
PartFunc of (
REAL m), (
REAL n);
let x be
Element of (
REAL m);
assume
A1: f
is_differentiable_in x;
::
PDIFF_1:def8
func
diff (f,x) ->
Function of (
REAL m), (
REAL n) means
:
Def8: ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= g & x
= y & it
= (
diff (g,y));
correctness
proof
A2: the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
consider g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) such that
A3: f
= g and
A4: x
= y and g
is_differentiable_in y by
A1;
the
carrier of (
REAL-NS m)
= (
REAL m) by
REAL_NS1:def 4;
then (
diff (g,y)) is
Function of (
REAL m), (
REAL n) by
A2,
LOPBAN_1:def 9;
hence thesis by
A3,
A4;
end;
end
theorem ::
PDIFF_1:3
Th3: for I be
Function of
REAL , (
REAL 1) st I
= ((
proj (1,1)) qua
Function
" ) holds (for x be
VECTOR of (
REAL-NS 1), y be
Real st x
= (I
. y) holds
||.x.||
=
|.y.|) & (for x,y be
VECTOR of (
REAL-NS 1), a,b be
Real st x
= (I
. a) & y
= (I
. b) holds (x
+ y)
= (I
. (a
+ b))) & (for x be
VECTOR of (
REAL-NS 1), y,a be
Real st x
= (I
. y) holds (a
* x)
= (I
. (a
* y))) & (for x be
VECTOR of (
REAL-NS 1), a be
Real st x
= (I
. a) holds (
- x)
= (I
. (
- a))) & for x,y be
VECTOR of (
REAL-NS 1), a,b be
Real st x
= (I
. a) & y
= (I
. b) holds (x
- y)
= (I
. (a
- b))
proof
let I be
Function of
REAL , (
REAL 1);
assume
A1: I
= ((
proj (1,1)) qua
Function
" );
hereby
let x be
VECTOR of (
REAL-NS 1), y be
Real;
reconsider xx = x as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider yy = y as
Real;
reconsider yy2 = (yy
^2 ) as
Real;
assume x
= (I
. y);
then xx
=
<*y*> by
A1,
Lm1;
then (
sqrt (
Sum (
sqr xx)))
= (
sqrt (
Sum
<*yy2*>)) by
RVSUM_1: 55;
then
A2: (
sqrt (
Sum (
sqr xx)))
= (
sqrt (y
^2 )) by
RVSUM_1: 73;
||.x.||
=
|.xx.| by
REAL_NS1: 1;
hence
||.x.||
=
|.y.| by
A2,
COMPLEX1: 72;
end;
A3:
now
let x,y be
VECTOR of (
REAL-NS 1), a,b be
Real;
reconsider xx = x, yy = y as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider aa = a, bb = b as
Real;
assume that
A4: x
= (I
. a) and
A5: y
= (I
. b);
A6:
<*b*>
= yy by
A1,
A5,
Lm1;
<*a*>
= xx by
A1,
A4,
Lm1;
then (x
- y)
= (
<*aa*>
-
<*bb*>) by
A6,
REAL_NS1: 5;
then (x
- y)
=
<*(a
- b)*> by
RVSUM_1: 29;
hence (x
- y)
= (I
. (a
- b)) by
A1,
Lm1;
end;
hereby
let x,y be
VECTOR of (
REAL-NS 1), a,b be
Real;
reconsider xx = x, yy = y as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider aa = a, bb = b as
Real;
assume that
A7: x
= (I
. a) and
A8: y
= (I
. b);
A9:
<*b*>
= yy by
A1,
A8,
Lm1;
<*a*>
= xx by
A1,
A7,
Lm1;
then (x
+ y)
= (
<*aa*>
+
<*bb*>) by
A9,
REAL_NS1: 2;
then (x
+ y)
=
<*(a
+ b)*> by
RVSUM_1: 13;
hence (x
+ y)
= (I
. (a
+ b)) by
A1,
Lm1;
end;
A10:
now
let x be
VECTOR of (
REAL-NS 1), y,a be
Real;
reconsider xx = x as
Element of (
REAL 1) by
REAL_NS1:def 4;
assume x
= (I
. y);
then
A11: xx
=
<*y*> by
A1,
Lm1;
(a
* x)
= (a
* xx) by
REAL_NS1: 3;
then (a
* x)
=
<*(a
* y)*> by
A11,
RVSUM_1: 47;
hence (a
* x)
= (I
. (a
* y)) by
A1,
Lm1;
end;
now
let x be
VECTOR of (
REAL-NS 1), a be
Real;
assume x
= (I
. a);
then ((
- 1)
* x)
= (I
. ((
- 1)
* a)) by
A10;
hence (
- x)
= (I
. (
- a)) by
RLVECT_1: 16;
end;
hence thesis by
A10,
A3;
end;
reconsider I = ((
proj (1,1)) qua
Function
" ) as
Function of
REAL , (
REAL 1) by
Th2;
theorem ::
PDIFF_1:4
Th4: for J be
Function of (
REAL 1),
REAL st J
= (
proj (1,1)) holds (for x be
VECTOR of (
REAL-NS 1), y be
Real st (J
. x)
= y holds
||.x.||
=
|.y.|) & (for x,y be
VECTOR of (
REAL-NS 1), a,b be
Real st (J
. x)
= a & (J
. y)
= b holds (J
. (x
+ y))
= (a
+ b)) & (for x be
VECTOR of (
REAL-NS 1), y,a be
Real st (J
. x)
= y holds (J
. (a
* x))
= (a
* y)) & (for x be
VECTOR of (
REAL-NS 1), a be
Real st (J
. x)
= a holds (J
. (
- x))
= (
- a)) & for x,y be
VECTOR of (
REAL-NS 1), a,b be
Real st (J
. x)
= a & (J
. y)
= b holds (J
. (x
- y))
= (a
- b)
proof
let J be
Function of (
REAL 1),
REAL ;
assume
A1: J
= (
proj (1,1));
hereby
let x be
VECTOR of (
REAL-NS 1), y be
Real;
reconsider xx = x as
Element of (
REAL 1) by
REAL_NS1:def 4;
assume (J
. x)
= y;
then (I
. (J
. xx))
= (I
. y);
then x
= (I
. y) by
A1,
Lm1,
FUNCT_1: 34;
hence
||.x.||
=
|.y.| by
Th3;
end;
hereby
let x,y be
VECTOR of (
REAL-NS 1), a,b be
Real;
reconsider xx = x, yy = y as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider aa = a, bb = b as
Element of
REAL by
XREAL_0:def 1;
assume that
A2: (J
. x)
= a and
A3: (J
. y)
= b;
(I
. (J
. yy))
= (I
. b) by
A3;
then
A4: y
= (I
. b) by
A1,
Lm1,
FUNCT_1: 34;
(I
. (J
. xx))
= (I
. a) by
A2;
then x
= (I
. a) by
A1,
Lm1,
FUNCT_1: 34;
then (J
. (x
+ y))
= (J
. (I
. (a
+ b))) by
A4,
Th3;
then (J
. (x
+ y))
= (J
. (I
. (aa
+ bb)));
hence (J
. (x
+ y))
= (a
+ b) by
A1,
Lm1,
FUNCT_1: 35;
end;
hereby
let x be
VECTOR of (
REAL-NS 1), y,a be
Real;
reconsider xx = x as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider yy = y, aa = a as
Element of
REAL by
XREAL_0:def 1;
assume (J
. x)
= y;
then (I
. (J
. xx))
= (I
. y);
then x
= (I
. y) by
A1,
Lm1,
FUNCT_1: 34;
then (J
. (a
* x))
= (J
. (I
. (a
* y))) by
Th3;
then (J
. (a
* x))
= (aa
* yy) by
A1,
Lm1,
FUNCT_1: 35;
hence (J
. (a
* x))
= (a
* y);
end;
hereby
let x be
VECTOR of (
REAL-NS 1), y be
Real;
reconsider xx = x as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider yy = y as
Element of
REAL by
XREAL_0:def 1;
assume (J
. x)
= y;
then (I
. y)
= (I
. (J
. xx));
then x
= (I
. y) by
A1,
Lm1,
FUNCT_1: 34;
then (J
. (
- x))
= (J
. (I
. (
- y))) by
Th3;
then (J
. (
- x))
= (
- yy) by
A1,
Lm1,
FUNCT_1: 35;
hence (J
. (
- x))
= (
- y);
end;
let x,y be
VECTOR of (
REAL-NS 1), a,b be
Real;
reconsider xx = x, yy = y as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider aa = a, bb = b as
Element of
REAL by
XREAL_0:def 1;
assume that
A5: (J
. x)
= a and
A6: (J
. y)
= b;
(I
. (J
. yy))
= (I
. b) by
A6;
then
A7: y
= (I
. b) by
A1,
Lm1,
FUNCT_1: 34;
(I
. (J
. xx))
= (I
. a) by
A5;
then x
= (I
. a) by
A1,
Lm1,
FUNCT_1: 34;
then (J
. (x
- y))
= (J
. (I
. (a
- b))) by
A7,
Th3;
then (J
. (x
- y))
= (aa
- bb) by
A1,
Lm1,
FUNCT_1: 35;
hence thesis;
end;
reconsider jj = 1 as
Element of
REAL by
XREAL_0:def 1;
theorem ::
PDIFF_1:5
Th5: for I be
Function of
REAL , (
REAL 1), J be
Function of (
REAL 1),
REAL st I
= ((
proj (1,1)) qua
Function
" ) & J
= (
proj (1,1)) holds (for R be
RestFunc of (
REAL-NS 1), (
REAL-NS 1) holds ((J
* R)
* I) is
RestFunc) & for L be
LinearOperator of (
REAL-NS 1), (
REAL-NS 1) holds ((J
* L)
* I) is
LinearFunc
proof
let I be
Function of
REAL , (
REAL 1), J be
Function of (
REAL 1),
REAL ;
assume that
A1: I
= ((
proj (1,1)) qua
Function
" ) and
A2: J
= (
proj (1,1));
thus for R be
RestFunc of (
REAL-NS 1), (
REAL-NS 1) holds ((J
* R)
* I) is
RestFunc
proof
let R be
RestFunc of (
REAL-NS 1), (
REAL-NS 1);
A3: R is
total by
NDIFF_1:def 5;
the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then
reconsider R0 = R as
Function of (
REAL 1), (
REAL 1) by
A3;
reconsider R1 = ((J
* R)
* I) as
PartFunc of
REAL ,
REAL ;
A4: ((J
* R0)
* I) is
Function of
REAL ,
REAL ;
then
A5: (
dom R1)
=
REAL by
FUNCT_2:def 1;
A6: for r be
Real st r
>
0 holds ex d be
Real st d
>
0 & for z1 be
Real st z1
<>
0 &
|.z1.|
< d holds ((
|.z1.|
" )
*
|.(R1
. z1).|)
< r
proof
let r be
Real;
assume r
>
0 ;
then
consider d be
Real such that
A7: d
>
0 and
A8: for z be
Point of (
REAL-NS 1) st z
<> (
0. (
REAL-NS 1)) &
||.z.||
< d holds ((
||.z.||
" )
*
||.(R
/. z).||)
< r by
A3,
NDIFF_1: 23;
take d;
for z1 be
Real st z1
<>
0 &
|.z1.|
< d holds ((
|.z1.|
" )
*
|.(R1
. z1).|)
< r
proof
let z1 be
Real such that
A9: z1
<>
0 and
A10:
|.z1.|
< d;
reconsider z1 as
Element of
REAL by
XREAL_0:def 1;
reconsider z = (I
. z1) as
Point of (
REAL-NS 1) by
REAL_NS1:def 4;
|.z1.|
>
0 by
A9,
COMPLEX1: 47;
then
||.z.||
<>
0 by
A1,
Th3;
then
A11: z
<> (
0. (
REAL-NS 1));
(I
* J)
= (
id (
dom (
proj (1,1)))) by
A1,
A2,
FUNCT_1: 39;
then
A12: (I
* J)
= (
id (
REAL 1)) by
FUNCT_2:def 1;
A13: (
dom (J
* R0))
= (
REAL 1) by
FUNCT_2:def 1;
R is
total by
NDIFF_1:def 5;
then
A14: (
dom R)
= the
carrier of (
REAL-NS 1) by
PARTFUN1:def 2;
then (R
/. z)
= (R
. z) by
PARTFUN1:def 6;
then (R
/. z)
= (((
id the
carrier of (
REAL-NS 1))
* R)
. (I
. z1)) by
FUNCT_2: 17;
then (R
/. z)
= (((I
* J)
* R)
. (I
. z1)) by
A12,
REAL_NS1:def 4;
then
A15: (R
/. z)
= ((I
* J)
. (R
. (I
. z1))) by
A14,
FUNCT_1: 13;
(
dom J)
= (
REAL 1) by
FUNCT_2:def 1;
then (R
/. z)
= (I
. (J
. (R0
. z))) by
A15,
FUNCT_1: 13,
FUNCT_2: 5;
then (R
/. z)
= (I
. ((J
* R0)
. (I
. z1))) by
A13,
FUNCT_1: 12;
then (R
/. z)
= (I
. (R1
. z1)) by
A5,
FUNCT_1: 12;
then
A16:
||.(R
/. z).||
=
|.(R1
. z1).| by
A1,
Th3;
A17: (
||.z.||
" )
= (
|.z1.|
" ) by
A1,
Th3;
||.z.||
< d by
A1,
A10,
Th3;
hence thesis by
A8,
A11,
A17,
A16;
end;
hence thesis by
A7;
end;
for h be
0
-convergent
non-zero
Real_Sequence holds ((h
" )
(#) (R1
/* h)) is
convergent & (
lim ((h
" )
(#) (R1
/* h)))
=
0
proof
let h be
0
-convergent
non-zero
Real_Sequence;
A18:
now
let r0 be
Real;
reconsider r = r0 as
Real;
A19: (
lim h)
=
0 ;
assume r0
>
0 ;
then
consider d be
Real such that
A20: d
>
0 and
A21: for z1 be
Real st z1
<>
0 &
|.z1.|
< d holds ((
|.z1.|
" )
*
|.(R1
. z1).|)
< r by
A6;
reconsider d1 = d as
Real;
consider m be
Nat such that
A22: for n be
Nat st m
<= n holds
|.((h
. n)
-
0 ).|
< d1 by
A20,
A19,
SEQ_2:def 7;
take m;
hereby
let n be
Nat;
A23: (h
. n)
<>
0 by
SEQ_1: 5;
A24: n
in
NAT by
ORDINAL1:def 12;
(
rng h)
c= (
dom R1) by
A5;
then
A25: ((
|.(h
. n).|
" )
*
|.(R1
. (h
. n)).|)
= ((
|.(h
. n).|
" )
*
|.((R1
/* h)
. n).|) by
FUNCT_2: 108,
A24
.= ((((
abs h)
. n)
" )
*
|.((R1
/* h)
. n).|) by
SEQ_1: 12
.= ((((
abs h)
" )
. n)
*
|.((R1
/* h)
. n).|) by
VALUED_1: 10
.= (((
abs (h
" ))
. n)
*
|.((R1
/* h)
. n).|) by
SEQ_1: 54
.= (
|.((h
" )
. n).|
*
|.((R1
/* h)
. n).|) by
SEQ_1: 12
.=
|.(((h
" )
. n)
* ((R1
/* h)
. n)).| by
COMPLEX1: 65
.=
|.((((h
" )
(#) (R1
/* h))
. n)
-
0 ).| by
SEQ_1: 8;
assume m
<= n;
then
|.((h
. n)
-
0 ).|
< d by
A22;
hence
|.((((h
" )
(#) (R1
/* h))
. n)
-
0 ).|
< r0 by
A21,
A23,
A25;
end;
end;
hence ((h
" )
(#) (R1
/* h)) is
convergent by
SEQ_2:def 6;
hence thesis by
A18,
SEQ_2:def 7;
end;
hence thesis by
A4,
FDIFF_1:def 2;
end;
thus for L be
LinearOperator of (
REAL-NS 1), (
REAL-NS 1) holds ((J
* L)
* I) is
LinearFunc
proof
let L be
LinearOperator of (
REAL-NS 1), (
REAL-NS 1);
A26: the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then
reconsider L0 = L as
Function of (
REAL 1), (
REAL 1);
reconsider L1 = ((J
* L0)
* I) as
PartFunc of
REAL ,
REAL ;
A27: (
dom (J
* L0))
= (
REAL 1) by
FUNCT_2:def 1;
consider r be
Real such that
A28: r
= (L1
. 1);
A29: (
dom ((J
* L0)
* I))
=
REAL by
FUNCT_2:def 1;
A30: (
dom L0)
= (
REAL 1) by
FUNCT_2:def 1;
for p be
Real holds (L1
. p)
= (r
* p)
proof
reconsider 1p = (I
. jj) as
VECTOR of (
REAL-NS 1) by
REAL_NS1:def 4;
let p be
Real;
reconsider pp = p, jj = 1 as
Element of
REAL by
XREAL_0:def 1;
(
dom I)
=
REAL by
FUNCT_2:def 1;
then (L1
. p)
= ((J
* L)
. (I
. (pp
* jj))) by
FUNCT_1: 13;
then (L1
. p)
= ((J
* L)
. (p
* 1p)) by
A1,
Th3;
then (L1
. p)
= (J
. (L
. (p
* 1p))) by
A26,
A30,
FUNCT_1: 13;
then (L1
. p)
= (J
. (p
* (L
. 1p))) by
LOPBAN_1:def 5;
then (L1
. p)
= (p
* (J
. (L
. 1p))) by
A2,
Th4;
then (L1
. p)
= (p
* ((J
* L0)
. (I
. jj))) by
A27,
FUNCT_1: 12;
hence thesis by
A29,
A28,
FUNCT_1: 12;
end;
hence thesis by
FDIFF_1:def 3;
end;
end;
theorem ::
PDIFF_1:6
Th6: for I be
Function of
REAL , (
REAL 1), J be
Function of (
REAL 1),
REAL st I
= ((
proj (1,1)) qua
Function
" ) & J
= (
proj (1,1)) holds (for R be
RestFunc holds ((I
* R)
* J) is
RestFunc of (
REAL-NS 1), (
REAL-NS 1)) & for L be
LinearFunc holds ((I
* L)
* J) is
Lipschitzian
LinearOperator of (
REAL-NS 1), (
REAL-NS 1)
proof
let I be
Function of
REAL , (
REAL 1), J be
Function of (
REAL 1),
REAL ;
assume that
A1: I
= ((
proj (1,1)) qua
Function
" ) and
A2: J
= (
proj (1,1));
thus for R be
RestFunc holds ((I
* R)
* J) is
RestFunc of (
REAL-NS 1), (
REAL-NS 1)
proof
let R be
RestFunc;
R is
total by
FDIFF_1:def 2;
then
reconsider R0 = R as
Function of
REAL ,
REAL ;
A3: the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then
reconsider R1 = ((I
* R0)
* J) as
PartFunc of (
REAL-NS 1), (
REAL-NS 1);
for h be (
0. (
REAL-NS 1))
-convergent
non-zero
sequence of (
REAL-NS 1) holds ((
||.h.||
" )
(#) (R1
/* h)) is
convergent & (
lim ((
||.h.||
" )
(#) (R1
/* h)))
= (
0. (
REAL-NS 1))
proof
let h be (
0. (
REAL-NS 1))
-convergent
non-zero
sequence of (
REAL-NS 1);
A4: (
lim h)
= (
0. (
REAL-NS 1)) by
NDIFF_1:def 4;
deffunc
F(
Nat) = (J
. (h
. $1));
consider s be
Real_Sequence such that
A5: for n be
Nat holds (s
. n)
=
F(n) from
SEQ_1:sch 1;
A6: h is
convergent by
NDIFF_1:def 4;
A7:
now
let p be
Real;
assume
0
< p;
then
consider m be
Nat such that
A8: for n be
Nat st m
<= n holds
||.((h
. n)
- (
0. (
REAL-NS 1))).||
< p by
A6,
A4,
NORMSP_1:def 7;
reconsider m as
Nat;
take m;
now
let n be
Nat;
assume
A9: m
<= n;
reconsider nn = n as
Nat;
||.((h
. nn)
- (
0. (
REAL-NS 1))).||
< p by
A8,
A9;
then
A10:
||.(h
. nn).||
< p by
RLVECT_1: 13;
(s
. n)
= (J
. (h
. n)) by
A5;
hence
|.((s
. n)
-
0 ).|
< p by
A2,
A10,
Th4;
end;
hence for n be
Nat st m
<= n holds
|.((s
. n)
-
0 ).|
< p;
end;
then
A11: s is
convergent by
SEQ_2:def 6;
then
A12: (
lim s)
=
0 by
A7,
SEQ_2:def 7;
now
let x be
object;
assume x
in
NAT ;
then
reconsider n = x as
Element of
NAT ;
A13:
0
<=
|.(s
. n).| by
COMPLEX1: 46;
(h
. n)
<> (
0. (
REAL-NS 1)) by
NDIFF_1: 6;
then
A14:
||.(h
. n).||
<>
0 by
NORMSP_0:def 5;
(s
. n)
= (J
. (h
. n)) by
A5;
then
|.(s
. x).|
<>
0 by
A2,
A14,
Th4;
hence (s
. x)
<>
0 by
A13,
COMPLEX1: 47;
end;
then s is
non-zero by
SEQ_1: 4;
then
reconsider s as
0
-convergent
non-zero
Real_Sequence by
A11,
A12,
FDIFF_1:def 1;
A15: (J
* I)
= (
id
REAL ) by
A1,
A2,
Lm1,
FUNCT_1: 39;
now
reconsider f1 = R1 as
Function;
let n be
Element of
NAT ;
A16: (
rng h)
c= the
carrier of (
REAL-NS 1);
(h
. n)
in the
carrier of (
REAL-NS 1);
then
A17: (h
. n)
in (
REAL 1) by
REAL_NS1:def 4;
A18: ((R0
* J)
. (h
. n))
in
REAL by
XREAL_0:def 1;
R1 is
total by
A3;
then ((R
/* s)
. n)
= (R
. (s
. n)) by
FUNCT_2: 115;
then ((R
/* s)
. n)
= (R
. (J
. (h
. n))) by
A5;
then ((R
/* s)
. n)
= ((J
* I)
. (R0
. (J
. (h
. n)))) by
A15;
then ((R
/* s)
. n)
= ((J
* I)
. ((R0
* J)
. (h
. n))) by
A17,
FUNCT_2: 15;
then ((R
/* s)
. n)
= (J
. (I
. ((R0
* J)
. (h
. n)))) by
FUNCT_2: 15,
A18;
then
A19: ((R
/* s)
. n)
= (J
. ((I
* (R0
* J))
. (h
. n))) by
A17,
FUNCT_2: 15;
NAT
= (
dom h) by
FUNCT_2:def 1;
then
A20: (R1
. (h
. n))
= ((f1
* h)
. n) by
FUNCT_1: 13;
(
dom R1)
= (
REAL 1) by
FUNCT_2:def 1;
then (
rng h)
c= (
dom R1) by
A16,
REAL_NS1:def 4;
then (R1
. (h
. n))
= ((R1
/* h)
. n) by
A20,
FUNCT_2:def 11;
then
A21: ((R
/* s)
. n)
= (J
. ((R1
/* h)
. n)) by
A19,
RELAT_1: 36;
A22: (s
. n)
= (J
. (h
. n)) by
A5;
(
||.((
||.h.||
" )
(#) (R1
/* h)).||
. n)
=
||.(((
||.h.||
" )
(#) (R1
/* h))
. n).|| by
NORMSP_0:def 4
.=
||.(((
||.h.||
" )
. n)
* ((R1
/* h)
. n)).|| by
NDIFF_1:def 2
.= (
|.((
||.h.||
" )
. n).|
*
||.((R1
/* h)
. n).||) by
NORMSP_1:def 1
.= (
|.((
||.h.||
. n)
" ).|
*
||.((R1
/* h)
. n).||) by
VALUED_1: 10
.= (
|.(
||.(h
. n).||
" ).|
*
||.((R1
/* h)
. n).||) by
NORMSP_0:def 4
.= ((
||.(h
. n).||
" )
*
||.((R1
/* h)
. n).||) by
ABSVALUE:def 1
.= ((
|.(s
. n).|
" )
*
||.((R1
/* h)
. n).||) by
A2,
A22,
Th4
.= ((
|.(s
. n).|
" )
*
|.((R
/* s)
. n).|) by
A2,
A21,
Th4
.= ((
|.(s
. n).|
" )
* (
|.(R
/* s).|
. n)) by
SEQ_1: 12
.= ((((
abs s)
. n)
" )
* (
|.(R
/* s).|
. n)) by
SEQ_1: 12
.= ((((
abs s)
" )
. n)
* (
|.(R
/* s).|
. n)) by
VALUED_1: 10
.= ((((
abs s)
" )
(#)
|.(R
/* s).|)
. n) by
SEQ_1: 8
.= ((
|.(s
" ).|
(#) (
abs (R
/* s)))
. n) by
SEQ_1: 54;
hence (
||.((
||.h.||
" )
(#) (R1
/* h)).||
. n)
= (
|.((s
" )
(#) (R
/* s)).|
. n) by
SEQ_1: 52;
end;
then
A23:
||.((
||.h.||
" )
(#) (R1
/* h)).||
=
|.((s
" )
(#) (R
/* s)).| by
FUNCT_2: 63;
A24: (
lim ((s
" )
(#) (R
/* s)))
=
0 by
FDIFF_1:def 2;
A25: ((s
" )
(#) (R
/* s)) is
convergent by
FDIFF_1:def 2;
then (
lim
|.((s
" )
(#) (R
/* s)).|)
=
|.(
lim ((s
" )
(#) (R
/* s))).| by
SEQ_4: 14;
then
A26: (
lim
|.((s
" )
(#) (R
/* s)).|)
=
0 by
A24,
ABSVALUE: 2;
A27: (
abs ((s
" )
(#) (R
/* s))) is
convergent by
A25,
SEQ_4: 13;
A28:
now
let p be
Real;
assume
0
< p;
then
consider m be
Nat such that
A29: for n be
Nat st m
<= n holds
|.((
||.((
||.h.||
" )
(#) (R1
/* h)).||
. n)
-
0 ).|
< p by
A23,
A27,
A26,
SEQ_2:def 7;
reconsider m as
Nat;
take m;
let n be
Nat;
assume m
<= n;
then
|.((
||.((
||.h.||
" )
(#) (R1
/* h)).||
. n)
-
0 ).|
< p by
A29;
then
A30:
|.
||.(((
||.h.||
" )
(#) (R1
/* h))
. n).||.|
< p by
NORMSP_0:def 4;
||.(((
||.h.||
" )
(#) (R1
/* h))
. n).||
< p by
A30,
ABSVALUE:def 1;
hence
||.((((
||.h.||
" )
(#) (R1
/* h))
. n)
- (
0. (
REAL-NS 1))).||
< p by
RLVECT_1: 13;
end;
then ((
||.h.||
" )
(#) (R1
/* h)) is
convergent by
NORMSP_1:def 6;
hence thesis by
A28,
NORMSP_1:def 7;
end;
hence thesis by
A3,
NDIFF_1:def 10;
end;
thus for L be
LinearFunc holds ((I
* L)
* J) is
Lipschitzian
LinearOperator of (
REAL-NS 1), (
REAL-NS 1)
proof
let L be
LinearFunc;
consider r be
Real such that
A31: for p be
Real holds (L
. p)
= (r
* p) by
FDIFF_1:def 3;
L is
total by
FDIFF_1:def 3;
then
reconsider L0 = L as
Function of
REAL ,
REAL ;
reconsider r as
Real;
set K =
|.r.|;
A32: the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
((I
* L0)
* J) is
Function of (
REAL 1), (
REAL 1);
then
reconsider L1 = ((I
* L)
* J) as
Function of (
REAL-NS 1), (
REAL-NS 1) by
A32;
A33: (
dom L1)
= (
REAL 1) by
A32,
FUNCT_2:def 1;
A34: (
dom L0)
=
REAL by
FUNCT_2:def 1;
A35:
now
let x,y be
VECTOR of (
REAL-NS 1);
A36: ((J
. x)
+ (J
. y))
in
REAL by
XREAL_0:def 1;
A37: (J
. x)
in
REAL by
XREAL_0:def 1;
(J
. y)
in
REAL by
XREAL_0:def 1;
then (I
. (L
. (J
. y)))
= ((I
* L)
. (J
. y)) by
A34,
FUNCT_1: 13;
then
A38: (I
. (L
. (J
. y)))
= (L1
. y) by
A32,
A33,
FUNCT_1: 12;
(L1
. (x
+ y))
= ((I
* L)
. (J
. (x
+ y))) by
A32,
A33,
FUNCT_1: 12;
then (L1
. (x
+ y))
= ((I
* L)
. ((J
. x)
+ (J
. y))) by
A2,
Th4;
then (L1
. (x
+ y))
= (I
. (L
. ((J
. x)
+ (J
. y)))) by
A36,
A34,
FUNCT_1: 13;
then (L1
. (x
+ y))
= (I
. (r
* ((J
. x)
+ (J
. y)))) by
A31;
then (L1
. (x
+ y))
= (I
. ((r
* (J
. x))
+ (r
* (J
. y))));
then (L1
. (x
+ y))
= (I
. ((L
. (J
. x))
+ (r
* (J
. y)))) by
A31;
then
A39: (L1
. (x
+ y))
= (I
. ((L
. (J
. x))
+ (L
. (J
. y)))) by
A31;
(I
. (L
. (J
. x)))
= ((I
* L)
. (J
. x)) by
A37,
A34,
FUNCT_1: 13;
then (I
. (L
. (J
. x)))
= (L1
. x) by
A32,
A33,
FUNCT_1: 12;
hence (L1
. (x
+ y))
= ((L1
. x)
+ (L1
. y)) by
A1,
A38,
A39,
Th3;
end;
now
let x be
VECTOR of (
REAL-NS 1), a be
Real;
reconsider aa = a as
Real;
A40: (J
. x)
in
REAL by
XREAL_0:def 1;
A41: (aa
* (J
. x))
in
REAL by
XREAL_0:def 1;
(L1
. (a
* x))
= ((I
* L)
. (J
. (a
* x))) by
A32,
A33,
FUNCT_1: 12;
then (L1
. (a
* x))
= ((I
* L)
. (a
* (J
. x))) by
A2,
Th4;
then (L1
. (aa
* x))
= (I
. (L
. (aa
* (J
. x)))) by
A41,
A34,
FUNCT_1: 13;
then (L1
. (a
* x))
= (I
. (r
* (a
* (J
. x)))) by
A31;
then (L1
. (a
* x))
= (I
. (a
* (r
* (J
. x))));
then
A42: (L1
. (a
* x))
= (I
. (a
* (L
. (J
. x)))) by
A31;
(I
. (L
. (J
. x)))
= ((I
* L)
. (J
. x)) by
A40,
A34,
FUNCT_1: 13;
then (I
. (L
. (J
. x)))
= (L1
. x) by
A32,
A33,
FUNCT_1: 12;
hence (L1
. (a
* x))
= (a
* (L1
. x)) by
A1,
A42,
Th3;
end;
then
reconsider L1 as
LinearOperator of (
REAL-NS 1), (
REAL-NS 1) by
A35,
VECTSP_1:def 20,
LOPBAN_1:def 5;
A43:
now
let x be
VECTOR of (
REAL-NS 1);
(J
. x)
in
REAL by
XREAL_0:def 1;
then (I
. (L
. (J
. x)))
= ((I
* L)
. (J
. x)) by
A34,
FUNCT_1: 13;
then (I
. (L
. (J
. x)))
= (L1
. x) by
A32,
A33,
FUNCT_1: 12;
then
||.(L1
. x).||
=
|.(L
. (J
. x)).| by
A1,
Th3;
then
||.(L1
. x).||
=
|.(r
* (J
. x)).| by
A31;
then
||.(L1
. x).||
= (
|.r.|
*
|.(J
. x).|) by
COMPLEX1: 65;
hence
||.(L1
. x).||
<= (K
*
||.x.||) by
A2,
Th4;
end;
0
<= K by
COMPLEX1: 46;
hence thesis by
A43,
LOPBAN_1:def 8;
end;
end;
reserve f for
PartFunc of (
REAL-NS 1), (
REAL-NS 1);
reserve g for
PartFunc of
REAL ,
REAL ;
reserve x for
Point of (
REAL-NS 1);
reserve y for
Real;
theorem ::
PDIFF_1:7
Th7: f
= (
<>* g) & x
=
<*y*> & f
is_differentiable_in x implies g
is_differentiable_in y & (
diff (g,y))
= ((((
proj (1,1))
* (
diff (f,x)))
* ((
proj (1,1)) qua
Function
" ))
. 1)
proof
set J = (
proj (1,1)) qua
Function;
reconsider L = (
diff (f,x)) as
Lipschitzian
LinearOperator of (
REAL-NS 1), (
REAL-NS 1) by
LOPBAN_1:def 9;
A1: (
rng g)
c= (
dom I) by
Th2;
reconsider L0 = ((J
* L)
* I) as
LinearFunc by
Th5;
assume that
A2: f
= (
<>* g) and
A3: x
=
<*y*> and
A4: f
is_differentiable_in x;
consider NN be
Neighbourhood of x such that
A5: NN
c= (
dom f) and
A6: ex R be
RestFunc of (
REAL-NS 1), (
REAL-NS 1) st for y be
Point of (
REAL-NS 1) st y
in NN holds ((f
/. y)
- (f
/. x))
= (((
diff (f,x))
. (y
- x))
+ (R
/. (y
- x))) by
A4,
NDIFF_1:def 7;
consider e be
Real such that
A7:
0
< e and
A8: { z where z be
Point of (
REAL-NS 1) :
||.(z
- x).||
< e }
c= NN by
NFCONT_1:def 1;
consider R be
RestFunc of (
REAL-NS 1), (
REAL-NS 1) such that
A9: for x9 be
Point of (
REAL-NS 1) st x9
in NN holds ((f
/. x9)
- (f
/. x))
= (((
diff (f,x))
. (x9
- x))
+ (R
/. (x9
- x))) by
A6;
set N = { z where z be
Point of (
REAL-NS 1) :
||.(z
- x).||
< e };
A10: N
c= the
carrier of (
REAL-NS 1)
proof
let y be
object;
assume y
in N;
then ex z be
Point of (
REAL-NS 1) st y
= z &
||.(z
- x).||
< e;
hence thesis;
end;
then
reconsider N as
Neighbourhood of x by
A7,
NFCONT_1:def 1;
set N0 = { z where z be
Element of
REAL :
|.(z
- y).|
< e };
A11: N
c= (
dom f) by
A5,
A8;
now
let z be
object;
hereby
assume z
in N0;
then
consider y9 be
Element of
REAL such that
A12: z
= y9 and
A13:
|.(y9
- y).|
< e;
reconsider w = (I
. y9) as
Point of (
REAL-NS 1) by
REAL_NS1:def 4;
x
= (I
. y) by
A3,
Lm1;
then (w
- x)
= (I
. (y9
- y)) by
Th3;
then
||.(w
- x).||
=
|.(y9
- y).| by
Th3;
then w
in { z0 where z0 be
Point of (
REAL-NS 1) :
||.(z0
- x).||
< e } by
A13;
then (J
. w)
in (J
.: N) by
FUNCT_2: 35;
hence z
in (J
.: N) by
A12,
Lm1,
FUNCT_1: 35;
end;
assume z
in (J
.: N);
then
consider ww be
object such that ww
in (
REAL 1) and
A14: ww
in N and
A15: z
= (J
. ww) by
FUNCT_2: 64;
consider w be
Point of (
REAL-NS 1) such that
A16: ww
= w and
A17:
||.(w
- x).||
< e by
A14;
reconsider y9 = (J
. w) as
Element of
REAL by
XREAL_0:def 1;
(J
. x)
= y by
A3,
Lm1;
then (J
. (w
- x))
= (y9
- y) by
Th4;
then
|.(y9
- y).|
< e by
A17,
Th4;
hence z
in N0 by
A15,
A16;
end;
then
A18: N0
= (J
.: N) by
TARSKI: 2;
(
dom f)
= (J
" (
dom (I
* g))) by
A2,
RELAT_1: 147;
then (J
.: (
dom f))
= (J
.: (J
" (
dom g))) by
A1,
RELAT_1: 27;
then
A19: (J
.: (
dom f))
= (
dom g) by
Lm1,
FUNCT_1: 77;
A20: (I
* J)
= (
id (
REAL 1)) by
Lm1,
FUNCT_1: 39;
reconsider R0 = ((J
* R)
* I) as
RestFunc by
Th5;
A21: (J
* I)
= (
id
REAL ) by
Lm1,
FUNCT_1: 39;
N
c= (
dom f) by
A5,
A8;
then
A22: N0
c= (
dom g) by
A19,
A18,
RELAT_1: 123;
A23:
].(y
- e), (y
+ e).[
c= N0
proof
let d be
object such that
A24: d
in
].(y
- e), (y
+ e).[;
reconsider y0 = d as
Element of
REAL by
A24;
|.(y0
- y).|
< e by
A24,
RCOMP_1: 1;
hence thesis;
end;
N0
c=
].(y
- e), (y
+ e).[
proof
let d be
object;
assume d
in N0;
then ex r be
Element of
REAL st d
= r &
|.(r
- y).|
< e;
hence thesis by
RCOMP_1: 1;
end;
then N0
=
].(y
- e), (y
+ e).[ by
A23,
XBOOLE_0:def 10;
then
A25: N0 is
Neighbourhood of y by
A7,
RCOMP_1:def 6;
N
c= (
REAL 1) by
A10,
REAL_NS1:def 4;
then ((I
* J)
.: N)
= N by
A20,
FRECHET: 13;
then
A26: (I
.: N0)
= N by
A18,
RELAT_1: 126;
A27: for y0 be
Real st y0
in N0 holds ((g
. y0)
- (g
. y))
= ((L0
. (y0
- y))
+ (R0
. (y0
- y)))
proof
let y0 be
Real;
reconsider yy0 = y0, yy = y as
Element of
REAL by
XREAL_0:def 1;
reconsider y9 = (I
. yy0) as
Point of (
REAL-NS 1) by
REAL_NS1:def 4;
R is
total by
NDIFF_1:def 5;
then
A28: (
dom R)
= the
carrier of (
REAL-NS 1) by
PARTFUN1:def 2;
R0 is
total by
FDIFF_1:def 2;
then (
dom ((J
* R)
* I))
=
REAL by
PARTFUN1:def 2;
then (yy0
- yy)
in (
dom ((J
* R)
* I));
then
A29: (y0
- y)
in (
dom (J
* (R
* I))) by
RELAT_1: 36;
(I
. (yy0
- yy))
in (
REAL 1);
then (I
. (yy0
- yy))
in (
dom R) by
A28,
REAL_NS1:def 4;
then (J
. (R
/. (I
. (yy0
- yy))))
= (J
. (R
. (I
. (yy0
- yy)))) by
PARTFUN1:def 6;
then (J
. (R
/. (I
. (yy0
- yy))))
= (J
. ((R
* I)
. (yy0
- yy))) by
Th2,
FUNCT_1: 13;
then (J
. (R
/. (I
. (yy0
- yy))))
= ((J
* (R
* I))
. (yy0
- yy)) by
A29,
FUNCT_1: 12;
then
A30: (J
. (R
/. (I
. (yy0
- yy))))
= (R0
. (yy0
- yy)) by
RELAT_1: 36;
L0 is
total by
FDIFF_1:def 3;
then (
dom ((J
* L)
* I))
=
REAL by
PARTFUN1:def 2;
then (yy0
- yy)
in (
dom ((J
* L)
* I));
then
A31: (y0
- y)
in (
dom (J
* (L
* I))) by
RELAT_1: 36;
assume
A32: y0
in N0;
then
A33: (I
. yy0)
in N by
A26,
FUNCT_2: 35;
then (J
. (f
/. (I
. yy0)))
= (J
. (f
. (I
. yy0))) by
A11,
PARTFUN1:def 6;
then
A34: (J
. (f
/. (I
. yy0)))
= (J
. ((f
* I)
. yy0)) by
Th2,
FUNCT_1: 13;
(J
* f)
= (J
* (I
* (g
* J))) by
A2,
RELAT_1: 36;
then
A35: (J
* f)
= ((
id
REAL )
* (g
* J)) by
A21,
RELAT_1: 36;
(
rng (g
* J))
c=
REAL ;
then ((J
* f)
* I)
= ((g
* J)
* I) by
A35,
RELAT_1: 53;
then
A36: ((J
* f)
* I)
= (g
* (
id
REAL )) by
A21,
RELAT_1: 36;
(
dom g)
c=
REAL ;
then
A37: g
= ((J
* f)
* I) by
A36,
RELAT_1: 51;
y0
in (
dom g) by
A22,
A32;
then y0
in (
dom (J
* (f
* I))) by
A37,
RELAT_1: 36;
then (J
. (f
/. (I
. y0)))
= ((J
* (f
* I))
. y0) by
A34,
FUNCT_1: 12;
then
A38: (J
. (f
/. (I
. y0)))
= (g
. y0) by
A37,
RELAT_1: 36;
A39: x
= (I
. y) by
A3,
Lm1;
set Iy = (I
. yy);
x
in N by
NFCONT_1: 4;
then (J
. (f
/. (I
. y)))
= (J
. (f
. Iy)) by
A11,
A39,
PARTFUN1:def 6;
then
A40: (J
. (f
/. Iy))
= (J
. ((f
* I)
. yy)) by
Th2,
FUNCT_1: 13;
y
in N0 by
A25,
RCOMP_1: 16;
then y
in (
dom g) by
A22;
then y
in (
dom (J
* (f
* I))) by
A37,
RELAT_1: 36;
then (J
. (f
/. (I
. y)))
= ((J
* (f
* I))
. y) by
A40,
FUNCT_1: 12;
then
A41: (J
. (f
/. (I
. y)))
= (g
. y) by
A37,
RELAT_1: 36;
(J
. ((f
/. y9)
- (f
/. x)))
= (J
. ((L
. (y9
- x))
+ (R
/. (y9
- x)))) by
A9,
A8,
A33;
then ((J
. (f
/. y9))
- (J
. (f
/. x)))
= (J
. ((L
. (y9
- x))
+ (R
/. (y9
- x)))) by
Th4;
then ((J
. (f
/. (I
. y0)))
- (J
. (f
/. (I
. y))))
= ((J
. (L
. (y9
- x)))
+ (J
. (R
/. (y9
- x)))) by
A39,
Th4;
then
A42: ((J
. (f
/. (I
. y0)))
- (J
. (f
/. (I
. y))))
= ((J
. (L
. (I
. (y0
- y))))
+ (J
. (R
/. (y9
- x)))) by
A39,
Th3;
(J
. (L
. (I
. (yy0
- yy))))
= (J
. ((L
* I)
. (yy0
- yy))) by
Th2,
FUNCT_1: 13;
then (J
. (L
. (I
. (y0
- y))))
= ((J
* (L
* I))
. (y0
- y)) by
A31,
FUNCT_1: 12;
then (J
. (L
. (I
. (y0
- y))))
= (L0
. (y0
- y)) by
RELAT_1: 36;
hence thesis by
A39,
A42,
A38,
A41,
A30,
Th3;
end;
hence g
is_differentiable_in y by
A25,
A22,
FDIFF_1:def 4;
hence thesis by
A25,
A22,
A27,
FDIFF_1:def 5;
end;
theorem ::
PDIFF_1:8
Th8: f
= (
<>* g) & x
=
<*y*> & g
is_differentiable_in y implies f
is_differentiable_in x & ((
diff (f,x))
.
<*1*>)
=
<*(
diff (g,y))*>
proof
set J = (
proj (1,1));
assume that
A1: f
= (
<>* g) and
A2: x
=
<*y*> and
A3: g
is_differentiable_in y;
reconsider x0 = y as
Real;
consider N0 be
Neighbourhood of x0 such that
A4: N0
c= (
dom g) and
A5: ex L0 be
LinearFunc, R0 be
RestFunc st (
diff (g,x0))
= (L0
. 1) & for y0 be
Real st y0
in N0 holds ((g
. y0)
- (g
. x0))
= ((L0
. (y0
- x0))
+ (R0
. (y0
- x0))) by
A3,
FDIFF_1:def 5;
consider e0 be
Real such that
A6:
0
< e0 and
A7: N0
=
].(x0
- e0), (x0
+ e0).[ by
RCOMP_1:def 6;
reconsider e = e0 as
Real;
set N = { z where z be
Point of (
REAL-NS 1) :
||.(z
- x).||
< e };
A8: (
rng (g
* J))
c=
REAL ;
consider L0 be
LinearFunc, R0 be
RestFunc such that
A9: (
diff (g,x0))
= (L0
. 1) and
A10: for y0 be
Real st y0
in N0 holds ((g
. y0)
- (g
. x0))
= ((L0
. (y0
- x0))
+ (R0
. (y0
- x0))) by
A5;
reconsider R = ((I
* R0)
* J) as
RestFunc of (
REAL-NS 1), (
REAL-NS 1) by
Th6;
reconsider L = ((I
* L0)
* J) as
Lipschitzian
LinearOperator of (
REAL-NS 1), (
REAL-NS 1) by
Th6;
A11: (
dom g)
c=
REAL ;
(
dom f)
c= the
carrier of (
REAL-NS 1);
then
A12: (
dom f)
c= (
rng I) by
Th2,
REAL_NS1:def 4;
A13: (J
* I)
= (
id
REAL ) by
Lm1,
FUNCT_1: 39;
now
let z be
object;
hereby
assume z
in N;
then
consider w be
Point of (
REAL-NS 1) such that
A14: z
= w and
A15:
||.(w
- x).||
< e;
reconsider y = (J
. w) as
Element of
REAL by
XREAL_0:def 1;
(J
. x)
= x0 by
A2,
Lm1;
then (J
. (w
- x))
= (y
- x0) by
Th4;
then
|.(y
- x0).|
< e by
A15,
Th4;
then
A16: y
in N0 by
A7,
RCOMP_1: 1;
w
in the
carrier of (
REAL-NS 1);
then w
in (
dom J) by
Lm1,
REAL_NS1:def 4;
then w
= (I
. y) by
FUNCT_1: 34;
hence z
in (I
.: N0) by
A14,
A16,
FUNCT_2: 35;
end;
assume z
in (I
.: N0);
then
consider yy be
object such that
A17: yy
in
REAL and
A18: yy
in N0 and
A19: z
= (I
. yy) by
FUNCT_2: 64;
reconsider y = yy as
Element of
REAL by
A17;
reconsider w = (I
. y) as
Point of (
REAL-NS 1) by
REAL_NS1:def 4;
(I
. x0)
= x by
A2,
Lm1;
then
A20: (w
- x)
= (I
. (y
- x0)) by
Th3;
|.(y
- x0).|
< e by
A7,
A18,
RCOMP_1: 1;
then
||.(w
- x).||
< e by
A20,
Th3;
hence z
in N by
A19;
end;
then
A21: N
= (I
.: N0) by
TARSKI: 2;
(J
* f)
= (J
* (I
* (g
* J))) by
A1,
RELAT_1: 36;
then (J
* f)
= ((
id
REAL )
* (g
* J)) by
A13,
RELAT_1: 36;
then ((J
* f)
* I)
= ((g
* J)
* I) by
A8,
RELAT_1: 53;
then ((J
* f)
* I)
= (g
* (
id
REAL )) by
A13,
RELAT_1: 36;
then g
= ((J
* f)
* I) by
A11,
RELAT_1: 51;
then
A22: (
dom g)
= (I
" (
dom (J
* f))) by
RELAT_1: 147;
(
rng f)
c= the
carrier of (
REAL-NS 1);
then (
rng f)
c= (
dom J) by
Lm1,
REAL_NS1:def 4;
then (I
.: (
dom g))
= (I
.: (I
" (
dom f))) by
A22,
RELAT_1: 27;
then (I
.: (
dom g))
= (
dom f) by
A12,
FUNCT_1: 77;
then
A23: N
c= (
dom f) by
A4,
A21,
RELAT_1: 123;
N
c= the
carrier of (
REAL-NS 1)
proof
let y be
object;
assume y
in N;
then ex z be
Point of (
REAL-NS 1) st y
= z &
||.(z
- x).||
< e;
hence thesis;
end;
then
A24: N is
Neighbourhood of x by
A6,
NFCONT_1:def 1;
(J
* I)
= (
id
REAL ) by
Lm1,
FUNCT_1: 39;
then ((J
* I)
.: N0)
= N0 by
FRECHET: 13;
then
A25: (J
.: N)
= N0 by
A21,
RELAT_1: 126;
A26: for y be
Point of (
REAL-NS 1) st y
in N holds ((f
/. y)
- (f
/. x))
= ((L
. (y
- x))
+ (R
/. (y
- x)))
proof
x
in the
carrier of (
REAL-NS 1);
then x
in (
dom J) by
Lm1,
REAL_NS1:def 4;
then
A27: (I
. (g
. (J
. x)))
= (I
. ((g
* J)
. x)) by
FUNCT_1: 13;
A28: x
in N by
A24,
NFCONT_1: 4;
then x
in (
dom f) by
A23;
then x
in (
dom (I
* (g
* J))) by
A1,
RELAT_1: 36;
then (I
. (g
. (J
. x)))
= ((I
* (g
* J))
. x) by
A27,
FUNCT_1: 12;
then (I
. (g
. (J
. x)))
= (f
. x) by
A1,
RELAT_1: 36;
then
A29: (I
. (g
. (J
. x)))
= (f
/. x) by
A23,
A28,
PARTFUN1:def 6;
let y be
Point of (
REAL-NS 1);
assume
A30: y
in N;
reconsider y0 = (J
. y) as
Element of
REAL by
XREAL_0:def 1;
reconsider y0x0 = (y0
- x0) as
Element of
REAL by
XREAL_0:def 1;
reconsider gy0 = (g
. y0), gx0 = (g
. x0), g0 = (g
.
0 ) as
Element of
REAL by
XREAL_0:def 1;
reconsider L0y0x0 = (L0
. y0x0) as
Element of
REAL by
XREAL_0:def 1;
reconsider R0y0x0 = (R0
. y0x0), Jyx = (J
. (y
- x)) as
Element of
REAL by
XREAL_0:def 1;
reconsider gJy = (g
. (J
. y)), gJx = (g
. (J
. x)) as
Element of
REAL by
XREAL_0:def 1;
reconsider R0Jyx = (R0
. Jyx), L0Jyx = (L0
. Jyx) as
Element of
REAL by
XREAL_0:def 1;
reconsider p1 = (I
. gy0), p2 = (I
. gx0), q1 = (I
. L0y0x0), q2 = (I
. R0y0x0) as
VECTOR of (
REAL-NS 1) by
REAL_NS1:def 4;
A31: (J
. x)
= x0 by
A2,
Lm1;
y
in the
carrier of (
REAL-NS 1);
then y
in (
REAL 1) by
REAL_NS1:def 4;
then (I
. ((g
. y0)
- (g
. x0)))
= (I
. ((L0
. (y0
- x0))
+ (R0
. (y0
- x0)))) by
A10,
A25,
A30,
FUNCT_2: 35;
then (p1
- p2)
= (I
. ((L0
. (y0
- x0))
+ (R0
. (y0
- x0)))) by
Th3;
then (p1
- p2)
= (q1
+ q2) by
Th3;
then ((I
. gy0)
- (I
. gx0))
= (q1
+ q2) by
REAL_NS1: 5;
then ((I
. gJy)
- (I
. gJx))
= ((I
. L0y0x0)
+ (I
. R0y0x0)) by
A31,
REAL_NS1: 2;
then ((I
. gJy)
- (I
. gJx))
= ((I
. L0Jyx)
+ (I
. R0y0x0)) by
A31,
Th4;
then
A32: ((I
. gJy)
- (I
. gJx))
= ((I
. L0Jyx)
+ (I
. R0Jyx)) by
A31,
Th4;
(
dom L)
= the
carrier of (
REAL-NS 1) by
FUNCT_2:def 1;
then (y
- x)
in (
dom ((I
* L0)
* J));
then
A33: (y
- x)
in (
dom (I
* (L0
* J))) by
RELAT_1: 36;
(y
- x)
in the
carrier of (
REAL-NS 1);
then
A34: (y
- x)
in (
dom J) by
Lm1,
REAL_NS1:def 4;
then
A35: (I
. (R0
. (J
. (y
- x))))
= (I
. ((R0
* J)
. (y
- x))) by
FUNCT_1: 13;
R is
total by
NDIFF_1:def 5;
then
A36: (
dom ((I
* R0)
* J))
= the
carrier of (
REAL-NS 1) by
PARTFUN1:def 2;
then (y
- x)
in (
dom ((I
* R0)
* J));
then (y
- x)
in (
dom (I
* (R0
* J))) by
RELAT_1: 36;
then (I
. (R0
. (J
. (y
- x))))
= ((I
* (R0
* J))
. (y
- x)) by
A35,
FUNCT_1: 12;
then (I
. (R0
. (J
. (y
- x))))
= (((I
* R0)
* J)
. (y
- x)) by
RELAT_1: 36;
then
A37: (I
. (R0
. (J
. (y
- x))))
= (R
/. (y
- x)) by
A36,
PARTFUN1:def 6;
y
in the
carrier of (
REAL-NS 1);
then y
in (
dom J) by
Lm1,
REAL_NS1:def 4;
then
A38: (I
. (g
. (J
. y)))
= (I
. ((g
* J)
. y)) by
FUNCT_1: 13;
(I
. (L0
. (J
. (y
- x))))
= (I
. ((L0
* J)
. (y
- x))) by
A34,
FUNCT_1: 13;
then (I
. (L0
. (J
. (y
- x))))
= ((I
* (L0
* J))
. (y
- x)) by
A33,
FUNCT_1: 12;
then
A39: (I
. (L0
. (J
. (y
- x))))
= (L
. (y
- x)) by
RELAT_1: 36;
y
in (
dom f) by
A23,
A30;
then y
in (
dom (I
* (g
* J))) by
A1,
RELAT_1: 36;
then (I
. (g
. (J
. y)))
= ((I
* (g
* J))
. y) by
A38,
FUNCT_1: 12;
then (I
. (g
. (J
. y)))
= (f
. y) by
A1,
RELAT_1: 36;
then (I
. (g
. (J
. y)))
= (f
/. y) by
A23,
A30,
PARTFUN1:def 6;
then ((I
. gJy)
- (I
. gJx))
= ((f
/. y)
- (f
/. x)) by
A29,
REAL_NS1: 5;
hence thesis by
A32,
A37,
A39,
REAL_NS1: 2;
end;
L0 is
total by
FDIFF_1:def 3;
then
A40: (
dom L0)
=
REAL by
PARTFUN1:def 2;
A41: L is
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS 1))) by
LOPBAN_1:def 9;
then f
is_differentiable_in x by
A24,
A23,
A26,
NDIFF_1:def 6;
then (
diff (f,x))
= ((I
* L0)
* J) by
A24,
A23,
A41,
A26,
NDIFF_1:def 7;
then ((
diff (f,x))
.
<*1*>)
= (((I
* L0)
* J)
. (I
. 1)) by
Lm1;
then ((
diff (f,x))
.
<*jj*>)
= ((I
* L0)
. (J
. (I
. jj))) by
Lm1,
FUNCT_1: 13;
then ((
diff (f,x))
.
<*jj*>)
= (I
. (L0
. (J
. (I
. jj)))) by
A40,
FUNCT_1: 13;
then ((
diff (f,x))
.
<*1*>)
= (I
. (L0
. 1)) by
Lm1,
FUNCT_1: 35;
hence thesis by
A24,
A23,
A9,
A41,
A26,
Lm1,
NDIFF_1:def 6;
end;
theorem ::
PDIFF_1:9
f
= (
<>* g) & x
=
<*y*> implies (f
is_differentiable_in x iff g
is_differentiable_in y) by
Th7,
Th8;
theorem ::
PDIFF_1:10
Th10: f
= (
<>* g) & x
=
<*y*> & f
is_differentiable_in x implies ((
diff (f,x))
.
<*1*>)
=
<*(
diff (g,y))*>
proof
assume that
A1: f
= (
<>* g) and
A2: x
=
<*y*> and
A3: f
is_differentiable_in x;
g
is_differentiable_in y by
A1,
A2,
A3,
Th7;
hence thesis by
A1,
A2,
Th8;
end;
begin
reserve m,n for non
zero
Nat;
reserve i,j for
Nat;
reserve f for
PartFunc of (
REAL-NS n), (
REAL-NS 1);
reserve g for
PartFunc of (
REAL n),
REAL ;
reserve x for
Point of (
REAL-NS n);
reserve y for
Element of (
REAL n);
definition
let n,m be non
zero
Nat;
let i be
Nat;
let f be
PartFunc of (
REAL-NS m), (
REAL-NS n);
let x be
Point of (
REAL-NS m);
::
PDIFF_1:def9
pred f
is_partial_differentiable_in x,i means (f
* (
reproj (i,x)))
is_differentiable_in ((
Proj (i,m))
. x);
end
definition
let m,n be non
zero
Nat;
let i be
Nat;
let f be
PartFunc of (
REAL-NS m), (
REAL-NS n);
let x be
Point of (
REAL-NS m);
::
PDIFF_1:def10
func
partdiff (f,x,i) ->
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS n))) equals (
diff ((f
* (
reproj (i,x))),((
Proj (i,m))
. x)));
coherence ;
end
definition
let n be non
zero
Nat;
let i be
Nat;
let f be
PartFunc of (
REAL n),
REAL ;
let x be
Element of (
REAL n);
::
PDIFF_1:def11
pred f
is_partial_differentiable_in x,i means (f
* (
reproj (i,x)))
is_differentiable_in ((
proj (i,n))
. x);
end
definition
let n be non
zero
Nat;
let i be
Nat;
let f be
PartFunc of (
REAL n),
REAL ;
let x be
Element of (
REAL n);
::
PDIFF_1:def12
func
partdiff (f,x,i) ->
Real equals (
diff ((f
* (
reproj (i,x))),((
proj (i,n))
. x)));
coherence ;
end
theorem ::
PDIFF_1:11
Th11: (
Proj (i,n))
= (((
proj (1,1)) qua
Function
" )
* (
proj (i,n)))
proof
reconsider h = ((
proj (1,1)) qua
Function
" ) as
Function of
REAL , (
REAL 1) by
Th2;
A1: the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
A2:
now
let x be
Element of (
REAL n);
reconsider z = x as
Point of (
REAL-NS n) by
REAL_NS1:def 4;
A3: ((h
* (
proj (i,n)))
. x)
= (h
. ((
proj (i,n))
. x)) by
FUNCT_2: 15;
hence ((h
* (
proj (i,n)))
. x)
=
<*((
proj (i,n))
. x)*> by
Lm1;
((
Proj (i,n))
. x)
= ((
Proj (i,n))
. z);
then ((
Proj (i,n))
. x)
=
<*((
proj (i,n))
. x)*> by
Def4;
hence ((
Proj (i,n))
. x)
= ((h
* (
proj (i,n)))
. x) by
A3,
Lm1;
end;
the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
hence thesis by
A1,
A2,
FUNCT_2: 63;
end;
theorem ::
PDIFF_1:12
Th12: x
= y implies ((
reproj (i,y))
* (
proj (1,1)))
= (
reproj (i,x))
proof
reconsider k = (
proj (1,1)) as
Function of (
REAL 1),
REAL ;
A1: the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
assume
A2: x
= y;
A3:
now
let s be
Element of (
REAL 1);
reconsider r = s as
Point of (
REAL-NS 1) by
REAL_NS1:def 4;
A4: (((
reproj (i,y))
* k)
. s)
= ((
reproj (i,y))
. (k
. s)) by
FUNCT_2: 15;
ex q be
Element of
REAL , z be
Element of (
REAL n) st r
=
<*q*> & z
= x & ((
reproj (i,x))
. r)
= ((
reproj (i,z))
. q) by
Def6;
hence ((
reproj (i,x))
. s)
= (((
reproj (i,y))
* k)
. s) by
A2,
A4,
Lm1;
end;
the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
hence thesis by
A1,
A3,
FUNCT_2: 63;
end;
theorem ::
PDIFF_1:13
Th13: f
= (
<>* g) & x
= y implies (
<>* (g
* (
reproj (i,y))))
= (f
* (
reproj (i,x)))
proof
reconsider h = ((
proj (1,1)) qua
Function
" ) as
Function of
REAL , (
REAL 1) by
Th2;
assume that
A1: f
= (
<>* g) and
A2: x
= y;
((
reproj (i,y))
* (
proj (1,1)))
= (
reproj (i,x)) by
A2,
Th12;
then (((h
* g)
* (
reproj (i,y)))
* (
proj (1,1)))
= (f
* (
reproj (i,x))) by
A1,
RELAT_1: 36;
hence thesis by
RELAT_1: 36;
end;
theorem ::
PDIFF_1:14
Th14: f
= (
<>* g) & x
= y implies (f
is_partial_differentiable_in (x,i) iff g
is_partial_differentiable_in (y,i))
proof
assume that
A1: f
= (
<>* g) and
A2: x
= y;
A3:
<*((
proj (i,n))
. y)*>
= ((
Proj (i,n))
. x) by
A2,
Def4;
(f
* (
reproj (i,x)))
= (
<>* (g
* (
reproj (i,y)))) by
A1,
A2,
Th13;
hence thesis by
A3,
Th7,
Th8;
end;
theorem ::
PDIFF_1:15
Th15: f
= (
<>* g) & x
= y & f
is_partial_differentiable_in (x,i) implies ((
partdiff (f,x,i))
.
<*1*>)
=
<*(
partdiff (g,y,i))*>
proof
assume that
A1: f
= (
<>* g) and
A2: x
= y and
A3: f
is_partial_differentiable_in (x,i);
A4: (f
* (
reproj (i,x)))
is_differentiable_in ((
Proj (i,n))
. x) by
A3;
A5:
<*((
proj (i,n))
. y)*>
= ((
Proj (i,n))
. x) by
A2,
Def4;
(f
* (
reproj (i,x)))
= (
<>* (g
* (
reproj (i,y)))) by
A1,
A2,
Th13;
hence thesis by
A4,
A5,
Th10;
end;
definition
let m,n be non
zero
Nat;
let i be
Nat;
let f be
PartFunc of (
REAL m), (
REAL n);
let x be
Element of (
REAL m);
::
PDIFF_1:def13
pred f
is_partial_differentiable_in x,i means ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= g & x
= y & g
is_partial_differentiable_in (y,i);
end
definition
let m,n be non
zero
Nat;
let i be
Nat;
let f be
PartFunc of (
REAL m), (
REAL n);
let x be
Element of (
REAL m);
assume
A1: f
is_partial_differentiable_in (x,i);
::
PDIFF_1:def14
func
partdiff (f,x,i) ->
Element of (
REAL n) means
:
Def14: ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= g & x
= y & it
= ((
partdiff (g,y,i))
.
<*1*>);
correctness
proof
A2: the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
consider g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) such that
A3: f
= g and
A4: x
= y and g
is_partial_differentiable_in (y,i) by
A1;
the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then (
partdiff (g,y,i)) is
Function of (
REAL 1), (
REAL n) by
A2,
LOPBAN_1:def 9;
then ((
partdiff (g,y,i))
.
<*jj*>) is
Element of (
REAL n) by
FINSEQ_2: 98,
FUNCT_2: 5;
hence thesis by
A3,
A4;
end;
end
theorem ::
PDIFF_1:16
for m,n be non
zero
Nat, F be
PartFunc of (
REAL-NS m), (
REAL-NS n), G be
PartFunc of (
REAL m), (
REAL n), x be
Point of (
REAL-NS m), y be
Element of (
REAL m) st F
= G & x
= y holds F
is_partial_differentiable_in (x,i) iff G
is_partial_differentiable_in (y,i);
theorem ::
PDIFF_1:17
Th17: for m,n be non
zero
Nat, F be
PartFunc of (
REAL-NS m), (
REAL-NS n), G be
PartFunc of (
REAL m), (
REAL n), x be
Point of (
REAL-NS m), y be
Element of (
REAL m) st F
= G & x
= y & F
is_partial_differentiable_in (x,i) holds ((
partdiff (F,x,i))
.
<*1*>)
= (
partdiff (G,y,i))
proof
let m,n be non
zero
Nat, F be
PartFunc of (
REAL-NS m), (
REAL-NS n), G be
PartFunc of (
REAL m), (
REAL n), x be
Point of (
REAL-NS m), y be
Element of (
REAL m);
assume that
A1: F
= G and
A2: x
= y and
A3: F
is_partial_differentiable_in (x,i);
A4: the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then (
partdiff (F,x,i)) is
Function of (
REAL 1), (
REAL n) by
A4,
LOPBAN_1:def 9;
then
A5: ((
partdiff (F,x,i))
.
<*jj*>) is
Element of (
REAL n) by
FINSEQ_2: 98,
FUNCT_2: 5;
G
is_partial_differentiable_in (y,i) by
A1,
A2,
A3;
hence thesis by
A1,
A2,
A5,
Def14;
end;
theorem ::
PDIFF_1:18
for g1 be
PartFunc of (
REAL n), (
REAL 1) holds g1
= (
<>* g) implies (g1
is_partial_differentiable_in (y,i) iff g
is_partial_differentiable_in (y,i))
proof
let g1 be
PartFunc of (
REAL n), (
REAL 1);
assume
A1: g1
= (
<>* g);
reconsider y9 = y as
Point of (
REAL-NS n) by
REAL_NS1:def 4;
the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then
reconsider h = g1 as
PartFunc of (
REAL-NS n), (
REAL-NS 1) by
REAL_NS1:def 4;
h
is_partial_differentiable_in (y9,i) iff g1
is_partial_differentiable_in (y,i);
hence thesis by
A1,
Th14;
end;
theorem ::
PDIFF_1:19
for g1 be
PartFunc of (
REAL n), (
REAL 1) st g1
= (
<>* g) & g1
is_partial_differentiable_in (y,i) holds (
partdiff (g1,y,i))
=
<*(
partdiff (g,y,i))*>
proof
let g1 be
PartFunc of (
REAL n), (
REAL 1);
assume that
A1: g1
= (
<>* g) and
A2: g1
is_partial_differentiable_in (y,i);
reconsider y9 = y as
Point of (
REAL-NS n) by
REAL_NS1:def 4;
the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then
reconsider h = g1 as
PartFunc of (
REAL-NS n), (
REAL-NS 1) by
REAL_NS1:def 4;
A3: h
is_partial_differentiable_in (y9,i) by
A2;
then ((
partdiff (h,y9,i))
.
<*1*>)
= (
partdiff (g1,y,i)) by
Th17;
hence thesis by
A1,
A3,
Th15;
end;
begin
reserve X for
set;
reserve r for
Real;
reserve f,f1,f2 for
PartFunc of (
REAL-NS m), (
REAL-NS n);
reserve g,g1,g2 for
PartFunc of (
REAL n),
REAL ;
reserve h for
PartFunc of (
REAL m), (
REAL n);
reserve x for
Point of (
REAL-NS m);
reserve y for
Element of (
REAL n);
reserve z for
Element of (
REAL m);
definition
let m,n be non
zero
Nat;
let i,j be
Nat;
let f be
PartFunc of (
REAL-NS m), (
REAL-NS n);
let x be
Point of (
REAL-NS m);
::
PDIFF_1:def15
pred f
is_partial_differentiable_in x,i,j means (((
Proj (j,n))
* f)
* (
reproj (i,x)))
is_differentiable_in ((
Proj (i,m))
. x);
end
definition
let m,n be non
zero
Nat;
let i,j be
Nat;
let f be
PartFunc of (
REAL-NS m), (
REAL-NS n);
let x be
Point of (
REAL-NS m);
::
PDIFF_1:def16
func
partdiff (f,x,i,j) ->
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS 1))) equals (
diff ((((
Proj (j,n))
* f)
* (
reproj (i,x))),((
Proj (i,m))
. x)));
correctness ;
end
definition
let m,n be non
zero
Nat;
let i,j be
Nat;
let h be
PartFunc of (
REAL m), (
REAL n);
let z be
Element of (
REAL m);
::
PDIFF_1:def17
pred h
is_partial_differentiable_in z,i,j means (((
proj (j,n))
* h)
* (
reproj (i,z)))
is_differentiable_in ((
proj (i,m))
. z);
end
definition
let m,n be non
zero
Nat;
let i,j be
Nat;
let h be
PartFunc of (
REAL m), (
REAL n);
let z be
Element of (
REAL m);
::
PDIFF_1:def18
func
partdiff (h,z,i,j) ->
Real equals (
diff ((((
proj (j,n))
* h)
* (
reproj (i,z))),((
proj (i,m))
. z)));
correctness ;
end
theorem ::
PDIFF_1:20
for m,n be non
zero
Nat, F be
PartFunc of (
REAL-NS m), (
REAL-NS n), G be
PartFunc of (
REAL m), (
REAL n), x be
Point of (
REAL-NS m), y be
Element of (
REAL m) st F
= G & x
= y holds F
is_differentiable_in x iff G
is_differentiable_in y;
theorem ::
PDIFF_1:21
for m,n be non
zero
Nat, F be
PartFunc of (
REAL-NS m), (
REAL-NS n), G be
PartFunc of (
REAL m), (
REAL n), x be
Point of (
REAL-NS m), y be
Element of (
REAL m) st F
= G & x
= y & F
is_differentiable_in x holds (
diff (F,x))
= (
diff (G,y))
proof
let m,n be non
zero
Nat, F be
PartFunc of (
REAL-NS m), (
REAL-NS n), G be
PartFunc of (
REAL m), (
REAL n), x be
Point of (
REAL-NS m), y be
Element of (
REAL m);
assume that
A1: F
= G and
A2: x
= y and
A3: F
is_differentiable_in x;
A4: the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
the
carrier of (
REAL-NS m)
= (
REAL m) by
REAL_NS1:def 4;
then
A5: (
diff (F,x)) is
Function of (
REAL m), (
REAL n) by
A4,
LOPBAN_1:def 9;
G
is_differentiable_in y by
A1,
A2,
A3;
hence thesis by
A1,
A2,
A5,
Def8;
end;
theorem ::
PDIFF_1:22
Th22: f
= h & x
= z implies (((
Proj (j,n))
* f)
* (
reproj (i,x)))
= (
<>* (((
proj (j,n))
* h)
* (
reproj (i,z))))
proof
reconsider h1 = ((
proj (1,1)) qua
Function
" ) as
Function of
REAL , (
REAL 1) by
Th2;
assume that
A1: f
= h and
A2: x
= z;
(
<>* (((
proj (j,n))
* h)
* (
reproj (i,z))))
= ((h1
* ((
proj (j,n))
* (h
* (
reproj (i,z)))))
* (
proj (1,1))) by
RELAT_1: 36
.= (((h1
* (
proj (j,n)))
* (h
* (
reproj (i,z))))
* (
proj (1,1))) by
RELAT_1: 36
.= ((h1
* (
proj (j,n)))
* ((h
* (
reproj (i,z)))
* (
proj (1,1)))) by
RELAT_1: 36
.= ((h1
* (
proj (j,n)))
* (h
* ((
reproj (i,z))
* (
proj (1,1))))) by
RELAT_1: 36
.= ((
Proj (j,n))
* (h
* ((
reproj (i,z))
* (
proj (1,1))))) by
Th11
.= ((
Proj (j,n))
* (h
* (
reproj (i,x)))) by
A2,
Th12;
hence thesis by
A1,
RELAT_1: 36;
end;
theorem ::
PDIFF_1:23
f
= h & x
= z implies (f
is_partial_differentiable_in (x,i,j) iff h
is_partial_differentiable_in (z,i,j))
proof
assume that
A1: f
= h and
A2: x
= z;
A3: ((
Proj (i,m))
. x)
=
<*((
proj (i,m))
. z)*> by
A2,
Def4;
(((
Proj (j,n))
* f)
* (
reproj (i,x)))
= (
<>* (((
proj (j,n))
* h)
* (
reproj (i,z)))) by
A1,
A2,
Th22;
hence thesis by
A3,
Th7,
Th8;
end;
theorem ::
PDIFF_1:24
f
= h & x
= z & f
is_partial_differentiable_in (x,i,j) implies ((
partdiff (f,x,i,j))
.
<*1*>)
=
<*(
partdiff (h,z,i,j))*>
proof
assume that
A1: f
= h and
A2: x
= z and
A3: f
is_partial_differentiable_in (x,i,j);
A4: ((
Proj (i,m))
. x)
=
<*((
proj (i,m))
. z)*> by
A2,
Def4;
A5: (((
Proj (j,n))
* f)
* (
reproj (i,x)))
is_differentiable_in ((
Proj (i,m))
. x) by
A3;
(((
Proj (j,n))
* f)
* (
reproj (i,x)))
= (
<>* (((
proj (j,n))
* h)
* (
reproj (i,z)))) by
A1,
A2,
Th22;
hence thesis by
A4,
A5,
Th10;
end;
definition
let m,n be non
zero
Nat;
let i be
Nat;
let f be
PartFunc of (
REAL-NS m), (
REAL-NS n);
let X be
set;
::
PDIFF_1:def19
pred f
is_partial_differentiable_on X,i means X
c= (
dom f) & for x be
Point of (
REAL-NS m) st x
in X holds (f
| X)
is_partial_differentiable_in (x,i);
end
theorem ::
PDIFF_1:25
Th25: f
is_partial_differentiable_on (X,i) implies X is
Subset of (
REAL-NS m) by
XBOOLE_1: 1;
definition
let m,n be non
zero
Nat;
let i be
Nat;
let f be
PartFunc of (
REAL-NS m), (
REAL-NS n);
let X;
assume
A1: f
is_partial_differentiable_on (X,i);
::
PDIFF_1:def20
func f
`partial| (X,i) ->
PartFunc of (
REAL-NS m), (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS n))) means (
dom it )
= X & for x be
Point of (
REAL-NS m) st x
in X holds (it
/. x)
= (
partdiff (f,x,i));
existence
proof
deffunc
F(
Element of (
REAL-NS m)) = (
partdiff (f,$1,i));
defpred
P[
Element of (
REAL-NS m)] means $1
in X;
consider F be
PartFunc of (
REAL-NS m), (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS n))) such that
A2: (for x be
Point of (
REAL-NS m) holds x
in (
dom F) iff
P[x]) & for x be
Point of (
REAL-NS m) st x
in (
dom F) holds (F
. x)
=
F(x) from
SEQ_1:sch 3;
take F;
now
A3: X is
Subset of (
REAL-NS m) by
A1,
Th25;
let y be
object;
assume y
in X;
hence y
in (
dom F) by
A2,
A3;
end;
then
A4: X
c= (
dom F);
for y be
object st y
in (
dom F) holds y
in X by
A2;
then (
dom F)
c= X;
hence (
dom F)
= X by
A4,
XBOOLE_0:def 10;
hereby
let x be
Point of (
REAL-NS m);
assume x
in X;
then
A5: x
in (
dom F) by
A2;
then (F
. x)
= (
partdiff (f,x,i)) by
A2;
hence (F
/. x)
= (
partdiff (f,x,i)) by
A5,
PARTFUN1:def 6;
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL-NS m), (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS n)));
assume that
A6: (
dom F)
= X and
A7: for x be
Point of (
REAL-NS m) st x
in X holds (F
/. x)
= (
partdiff (f,x,i)) and
A8: (
dom G)
= X and
A9: for x be
Point of (
REAL-NS m) st x
in X holds (G
/. x)
= (
partdiff (f,x,i));
now
let x be
Point of (
REAL-NS m);
assume
A10: x
in (
dom F);
then (F
/. x)
= (
partdiff (f,x,i)) by
A6,
A7;
hence (F
/. x)
= (G
/. x) by
A6,
A9,
A10;
end;
hence thesis by
A6,
A8,
PARTFUN2: 1;
end;
end
theorem ::
PDIFF_1:26
Th26: ((f1
+ f2)
* (
reproj (i,x)))
= ((f1
* (
reproj (i,x)))
+ (f2
* (
reproj (i,x)))) & ((f1
- f2)
* (
reproj (i,x)))
= ((f1
* (
reproj (i,x)))
- (f2
* (
reproj (i,x))))
proof
A1: (
dom (
reproj (i,x)))
= the
carrier of (
REAL-NS 1) by
FUNCT_2:def 1;
A2: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 1;
for s be
Element of (
REAL-NS 1) holds s
in (
dom ((f1
+ f2)
* (
reproj (i,x)))) iff s
in (
dom ((f1
* (
reproj (i,x)))
+ (f2
* (
reproj (i,x)))))
proof
let s be
Element of (
REAL-NS 1);
s
in (
dom ((f1
+ f2)
* (
reproj (i,x)))) iff ((
reproj (i,x))
. s)
in ((
dom f1)
/\ (
dom f2)) by
A2,
A1,
FUNCT_1: 11;
then s
in (
dom ((f1
+ f2)
* (
reproj (i,x)))) iff ((
reproj (i,x))
. s)
in (
dom f1) & ((
reproj (i,x))
. s)
in (
dom f2) by
XBOOLE_0:def 4;
then s
in (
dom ((f1
+ f2)
* (
reproj (i,x)))) iff s
in (
dom (f1
* (
reproj (i,x)))) & s
in (
dom (f2
* (
reproj (i,x)))) by
A1,
FUNCT_1: 11;
then s
in (
dom ((f1
+ f2)
* (
reproj (i,x)))) iff s
in ((
dom (f1
* (
reproj (i,x))))
/\ (
dom (f2
* (
reproj (i,x))))) by
XBOOLE_0:def 4;
hence thesis by
VFUNCT_1:def 1;
end;
then for s be
object holds s
in (
dom ((f1
+ f2)
* (
reproj (i,x)))) iff s
in (
dom ((f1
* (
reproj (i,x)))
+ (f2
* (
reproj (i,x)))));
then
A3: (
dom ((f1
+ f2)
* (
reproj (i,x))))
= (
dom ((f1
* (
reproj (i,x)))
+ (f2
* (
reproj (i,x))))) by
TARSKI: 2;
A4: for z be
Element of (
REAL-NS 1) st z
in (
dom ((f1
+ f2)
* (
reproj (i,x)))) holds (((f1
+ f2)
* (
reproj (i,x)))
. z)
= (((f1
* (
reproj (i,x)))
+ (f2
* (
reproj (i,x))))
. z)
proof
let z be
Element of (
REAL-NS 1);
assume
A5: z
in (
dom ((f1
+ f2)
* (
reproj (i,x))));
then
A6: ((
reproj (i,x))
. z)
in (
dom (f1
+ f2)) by
FUNCT_1: 11;
A7: ((
reproj (i,x))
. z)
in ((
dom f1)
/\ (
dom f2)) by
A2,
A5,
FUNCT_1: 11;
then
A8: ((
reproj (i,x))
. z)
in (
dom f1) by
XBOOLE_0:def 4;
then
A9: z
in (
dom (f1
* (
reproj (i,x)))) by
A1,
FUNCT_1: 11;
A10: ((
reproj (i,x))
. z)
in (
dom f2) by
A7,
XBOOLE_0:def 4;
then
A11: z
in (
dom (f2
* (
reproj (i,x)))) by
A1,
FUNCT_1: 11;
A12: (f2
/. ((
reproj (i,x))
. z))
= (f2
. ((
reproj (i,x))
. z)) by
A10,
PARTFUN1:def 6
.= ((f2
* (
reproj (i,x)))
. z) by
A11,
FUNCT_1: 12
.= ((f2
* (
reproj (i,x)))
/. z) by
A11,
PARTFUN1:def 6;
A13: (f1
/. ((
reproj (i,x))
. z))
= (f1
. ((
reproj (i,x))
. z)) by
A8,
PARTFUN1:def 6
.= ((f1
* (
reproj (i,x)))
. z) by
A9,
FUNCT_1: 12
.= ((f1
* (
reproj (i,x)))
/. z) by
A9,
PARTFUN1:def 6;
(((f1
+ f2)
* (
reproj (i,x)))
. z)
= ((f1
+ f2)
. ((
reproj (i,x))
. z)) by
A5,
FUNCT_1: 12
.= ((f1
+ f2)
/. ((
reproj (i,x))
. z)) by
A6,
PARTFUN1:def 6
.= ((f1
/. ((
reproj (i,x))
. z))
+ (f2
/. ((
reproj (i,x))
. z))) by
A6,
VFUNCT_1:def 1
.= (((f1
* (
reproj (i,x)))
+ (f2
* (
reproj (i,x))))
/. z) by
A3,
A5,
A13,
A12,
VFUNCT_1:def 1;
hence thesis by
A3,
A5,
PARTFUN1:def 6;
end;
A14: (
dom (f1
- f2))
= ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 2;
for s be
Element of (
REAL-NS 1) holds s
in (
dom ((f1
- f2)
* (
reproj (i,x)))) iff s
in (
dom ((f1
* (
reproj (i,x)))
- (f2
* (
reproj (i,x)))))
proof
let s be
Element of (
REAL-NS 1);
s
in (
dom ((f1
- f2)
* (
reproj (i,x)))) iff ((
reproj (i,x))
. s)
in ((
dom f1)
/\ (
dom f2)) by
A14,
A1,
FUNCT_1: 11;
then s
in (
dom ((f1
- f2)
* (
reproj (i,x)))) iff ((
reproj (i,x))
. s)
in (
dom f1) & ((
reproj (i,x))
. s)
in (
dom f2) by
XBOOLE_0:def 4;
then s
in (
dom ((f1
- f2)
* (
reproj (i,x)))) iff s
in (
dom (f1
* (
reproj (i,x)))) & s
in (
dom (f2
* (
reproj (i,x)))) by
A1,
FUNCT_1: 11;
then s
in (
dom ((f1
- f2)
* (
reproj (i,x)))) iff s
in ((
dom (f1
* (
reproj (i,x))))
/\ (
dom (f2
* (
reproj (i,x))))) by
XBOOLE_0:def 4;
hence thesis by
VFUNCT_1:def 2;
end;
then for s be
object holds s
in (
dom ((f1
- f2)
* (
reproj (i,x)))) iff s
in (
dom ((f1
* (
reproj (i,x)))
- (f2
* (
reproj (i,x)))));
then
A15: (
dom ((f1
- f2)
* (
reproj (i,x))))
= (
dom ((f1
* (
reproj (i,x)))
- (f2
* (
reproj (i,x))))) by
TARSKI: 2;
for z be
Element of (
REAL-NS 1) st z
in (
dom ((f1
- f2)
* (
reproj (i,x)))) holds (((f1
- f2)
* (
reproj (i,x)))
. z)
= (((f1
* (
reproj (i,x)))
- (f2
* (
reproj (i,x))))
. z)
proof
let z be
Element of (
REAL-NS 1);
assume
A16: z
in (
dom ((f1
- f2)
* (
reproj (i,x))));
then
A17: ((
reproj (i,x))
. z)
in (
dom (f1
- f2)) by
FUNCT_1: 11;
A18: ((
reproj (i,x))
. z)
in ((
dom f1)
/\ (
dom f2)) by
A14,
A16,
FUNCT_1: 11;
then
A19: ((
reproj (i,x))
. z)
in (
dom f1) by
XBOOLE_0:def 4;
then
A20: z
in (
dom (f1
* (
reproj (i,x)))) by
A1,
FUNCT_1: 11;
A21: ((
reproj (i,x))
. z)
in (
dom f2) by
A18,
XBOOLE_0:def 4;
then
A22: z
in (
dom (f2
* (
reproj (i,x)))) by
A1,
FUNCT_1: 11;
A23: (f2
/. ((
reproj (i,x))
. z))
= (f2
. ((
reproj (i,x))
. z)) by
A21,
PARTFUN1:def 6
.= ((f2
* (
reproj (i,x)))
. z) by
A22,
FUNCT_1: 12
.= ((f2
* (
reproj (i,x)))
/. z) by
A22,
PARTFUN1:def 6;
A24: (f1
/. ((
reproj (i,x))
. z))
= (f1
. ((
reproj (i,x))
. z)) by
A19,
PARTFUN1:def 6
.= ((f1
* (
reproj (i,x)))
. z) by
A20,
FUNCT_1: 12
.= ((f1
* (
reproj (i,x)))
/. z) by
A20,
PARTFUN1:def 6;
thus (((f1
- f2)
* (
reproj (i,x)))
. z)
= ((f1
- f2)
. ((
reproj (i,x))
. z)) by
A16,
FUNCT_1: 12
.= ((f1
- f2)
/. ((
reproj (i,x))
. z)) by
A17,
PARTFUN1:def 6
.= ((f1
/. ((
reproj (i,x))
. z))
- (f2
/. ((
reproj (i,x))
. z))) by
A17,
VFUNCT_1:def 2
.= (((f1
* (
reproj (i,x)))
- (f2
* (
reproj (i,x))))
/. z) by
A15,
A16,
A24,
A23,
VFUNCT_1:def 2
.= (((f1
* (
reproj (i,x)))
- (f2
* (
reproj (i,x))))
. z) by
A15,
A16,
PARTFUN1:def 6;
end;
hence thesis by
A3,
A15,
A4,
PARTFUN1: 5;
end;
theorem ::
PDIFF_1:27
Th27: (r
(#) (f
* (
reproj (i,x))))
= ((r
(#) f)
* (
reproj (i,x)))
proof
A1: (
dom (r
(#) f))
= (
dom f) by
VFUNCT_1:def 4;
A2: (
dom (r
(#) (f
* (
reproj (i,x)))))
= (
dom (f
* (
reproj (i,x)))) by
VFUNCT_1:def 4;
A3: (
dom (
reproj (i,x)))
= the
carrier of (
REAL-NS 1) by
FUNCT_2:def 1;
for s be
Element of (
REAL-NS 1) holds s
in (
dom ((r
(#) f)
* (
reproj (i,x)))) iff s
in (
dom (f
* (
reproj (i,x))))
proof
let s be
Element of (
REAL-NS 1);
s
in (
dom ((r
(#) f)
* (
reproj (i,x)))) iff ((
reproj (i,x))
. s)
in (
dom (r
(#) f)) by
A3,
FUNCT_1: 11;
hence thesis by
A1,
A3,
FUNCT_1: 11;
end;
then for s be
object holds s
in (
dom (r
(#) (f
* (
reproj (i,x))))) iff s
in (
dom ((r
(#) f)
* (
reproj (i,x)))) by
A2;
then
A4: (
dom (r
(#) (f
* (
reproj (i,x)))))
= (
dom ((r
(#) f)
* (
reproj (i,x)))) by
TARSKI: 2;
A5: for s be
Element of (
REAL-NS 1) holds s
in (
dom ((r
(#) f)
* (
reproj (i,x)))) iff ((
reproj (i,x))
. s)
in (
dom (r
(#) f))
proof
let s be
Element of (
REAL-NS 1);
(
dom (
reproj (i,x)))
= the
carrier of (
REAL-NS 1) by
FUNCT_2:def 1;
hence thesis by
FUNCT_1: 11;
end;
for z be
Element of (
REAL-NS 1) st z
in (
dom (r
(#) (f
* (
reproj (i,x))))) holds ((r
(#) (f
* (
reproj (i,x))))
. z)
= (((r
(#) f)
* (
reproj (i,x)))
. z)
proof
let z be
Element of (
REAL-NS 1);
assume
A6: z
in (
dom (r
(#) (f
* (
reproj (i,x)))));
then
A7: z
in (
dom (f
* (
reproj (i,x)))) by
VFUNCT_1:def 4;
A8: ((
reproj (i,x))
. z)
in (
dom f) by
A1,
A5,
A4,
A6;
then
A9: (f
/. ((
reproj (i,x))
. z))
= (f
. ((
reproj (i,x))
. z)) by
PARTFUN1:def 6
.= ((f
* (
reproj (i,x)))
. z) by
A7,
FUNCT_1: 12
.= ((f
* (
reproj (i,x)))
/. z) by
A7,
PARTFUN1:def 6;
A10: ((r
(#) (f
* (
reproj (i,x))))
. z)
= ((r
(#) (f
* (
reproj (i,x))))
/. z) by
A6,
PARTFUN1:def 6
.= (r
* (f
/. ((
reproj (i,x))
. z))) by
A6,
A9,
VFUNCT_1:def 4;
(((r
(#) f)
* (
reproj (i,x)))
. z)
= ((r
(#) f)
. ((
reproj (i,x))
. z)) by
A4,
A6,
FUNCT_1: 12
.= ((r
(#) f)
/. ((
reproj (i,x))
. z)) by
A1,
A8,
PARTFUN1:def 6
.= (r
* (f
/. ((
reproj (i,x))
. z))) by
A1,
A8,
VFUNCT_1:def 4;
hence thesis by
A10;
end;
hence thesis by
A4,
PARTFUN1: 5;
end;
theorem ::
PDIFF_1:28
Th28: f1
is_partial_differentiable_in (x,i) & f2
is_partial_differentiable_in (x,i) implies (f1
+ f2)
is_partial_differentiable_in (x,i) & (
partdiff ((f1
+ f2),x,i))
= ((
partdiff (f1,x,i))
+ (
partdiff (f2,x,i)))
proof
assume that
A1: f1
is_partial_differentiable_in (x,i) and
A2: f2
is_partial_differentiable_in (x,i);
A3: (f1
* (
reproj (i,x)))
is_differentiable_in ((
Proj (i,m))
. x) by
A1;
A4: (f2
* (
reproj (i,x)))
is_differentiable_in ((
Proj (i,m))
. x) by
A2;
((f1
+ f2)
* (
reproj (i,x)))
= ((f1
* (
reproj (i,x)))
+ (f2
* (
reproj (i,x)))) by
Th26;
then ((f1
+ f2)
* (
reproj (i,x)))
is_differentiable_in ((
Proj (i,m))
. x) by
A3,
A4,
NDIFF_1: 35;
hence (f1
+ f2)
is_partial_differentiable_in (x,i);
(
diff (((f1
* (
reproj (i,x)))
+ (f2
* (
reproj (i,x)))),((
Proj (i,m))
. x)))
= (
partdiff ((f1
+ f2),x,i)) by
Th26;
hence thesis by
A3,
A4,
NDIFF_1: 35;
end;
theorem ::
PDIFF_1:29
g1
is_partial_differentiable_in (y,i) & g2
is_partial_differentiable_in (y,i) implies (g1
+ g2)
is_partial_differentiable_in (y,i) & (
partdiff ((g1
+ g2),y,i))
= ((
partdiff (g1,y,i))
+ (
partdiff (g2,y,i)))
proof
assume that
A1: g1
is_partial_differentiable_in (y,i) and
A2: g2
is_partial_differentiable_in (y,i);
reconsider x = y as
Point of (
REAL-NS n) by
REAL_NS1:def 4;
A3: the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then
reconsider f1 = (
<>* g1), f2 = (
<>* g2) as
PartFunc of (
REAL-NS n), (
REAL-NS 1) by
REAL_NS1:def 4;
reconsider One =
<*jj*> as
VECTOR of (
REAL-NS 1) by
A3,
FINSEQ_2: 98;
A4: f1
is_partial_differentiable_in (x,i) by
A1,
Th14;
then
A5: ((
partdiff (f1,x,i))
. One)
=
<*(
partdiff (g1,y,i))*> by
Th15;
reconsider d2 = (
partdiff (g2,y,i)) as
Element of
REAL by
XREAL_0:def 1;
reconsider Pd2 =
<*d2*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
reconsider d1 = (
partdiff (g1,y,i)) as
Element of
REAL by
XREAL_0:def 1;
reconsider Pd1 =
<*d1*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
A6: the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
(
rng g2)
c= (
dom W) by
Th2;
then
A7: (
dom (W
* g2))
= (
dom g2) by
RELAT_1: 27;
(
rng g1)
c= (
dom W) by
Th2;
then
A8: (
dom (W
* g1))
= (
dom g1) by
RELAT_1: 27;
then (
dom (f1
+ f2))
= ((
dom g1)
/\ (
dom g2)) by
A7,
VFUNCT_1:def 1;
then
A9: (
dom (f1
+ f2))
= (
dom (g1
+ g2)) by
VALUED_1:def 1;
A10: (
rng (g1
+ g2))
c= (
dom W) by
Th2;
then
A11: (
dom (W
* (g1
+ g2)))
= (
dom (g1
+ g2)) by
RELAT_1: 27;
A12:
now
let x be
Element of (
REAL-NS n);
assume
A13: x
in (
dom (f1
+ f2));
then ((f1
+ f2)
. x)
= ((f1
+ f2)
/. x) by
PARTFUN1:def 6;
then
A14: ((f1
+ f2)
. x)
= ((f1
/. x)
+ (f2
/. x)) by
A13,
VFUNCT_1:def 1;
A15: x
in ((
dom f1)
/\ (
dom f2)) by
A13,
VFUNCT_1:def 1;
then x
in (
dom f1) by
XBOOLE_0:def 4;
then
A16: (f1
/. x)
= ((W
* g1)
. x) by
PARTFUN1:def 6;
x
in (
dom f2) by
A15,
XBOOLE_0:def 4;
then
A17: (f2
/. x)
= ((W
* g2)
. x) by
PARTFUN1:def 6;
x
in (
dom g2) by
A7,
A15,
XBOOLE_0:def 4;
then
A18: (f2
/. x)
= (W
. (g2
. x)) by
A17,
FUNCT_1: 13;
x
in (
dom g1) by
A8,
A15,
XBOOLE_0:def 4;
then
A19: (f1
/. x)
= (W
. (g1
. x)) by
A16,
FUNCT_1: 13;
((
<>* (g1
+ g2))
. x)
= (W
. ((g1
+ g2)
. x)) by
A9,
A11,
A13,
FUNCT_1: 12;
then ((
<>* (g1
+ g2))
. x)
= (W
. ((g1
. x)
+ (g2
. x))) by
A9,
A13,
VALUED_1:def 1;
hence ((f1
+ f2)
. x)
= ((
<>* (g1
+ g2))
. x) by
A14,
A19,
A18,
Th2,
Th3;
end;
A20: f2
is_partial_differentiable_in (x,i) by
A2,
Th14;
then
A21: ((
partdiff (f2,x,i))
. One)
=
<*(
partdiff (g2,y,i))*> by
Th15;
A22: (f1
+ f2)
is_partial_differentiable_in (x,i) by
A4,
A20,
Th28;
(
dom (f1
+ f2))
= (
dom (
<>* (g1
+ g2))) by
A9,
A10,
RELAT_1: 27;
then
A23: (f1
+ f2)
= (
<>* (g1
+ g2)) by
A6,
A3,
A12,
PARTFUN1: 5;
then
<*(
partdiff ((g1
+ g2),y,i))*>
= ((
partdiff ((f1
+ f2),x,i))
.
<*1*>) by
A4,
A20,
Th15,
Th28
.= (((
partdiff (f1,x,i))
+ (
partdiff (f2,x,i)))
.
<*1*>) by
A4,
A20,
Th28
.= (((
partdiff (f1,x,i))
. One)
+ ((
partdiff (f2,x,i))
. One)) by
LOPBAN_1: 35
.= (Pd1
+ Pd2) by
A5,
A21,
REAL_NS1: 2
.=
<*((
partdiff (g1,y,i))
+ (
partdiff (g2,y,i)))*> by
RVSUM_1: 13;
then (
partdiff ((g1
+ g2),y,i))
= (
<*((
partdiff (g1,y,i))
+ (
partdiff (g2,y,i)))*>
. 1) by
FINSEQ_1: 40;
hence thesis by
A23,
A22,
Th14,
FINSEQ_1: 40;
end;
theorem ::
PDIFF_1:30
Th30: f1
is_partial_differentiable_in (x,i) & f2
is_partial_differentiable_in (x,i) implies (f1
- f2)
is_partial_differentiable_in (x,i) & (
partdiff ((f1
- f2),x,i))
= ((
partdiff (f1,x,i))
- (
partdiff (f2,x,i)))
proof
assume that
A1: f1
is_partial_differentiable_in (x,i) and
A2: f2
is_partial_differentiable_in (x,i);
A3: (f1
* (
reproj (i,x)))
is_differentiable_in ((
Proj (i,m))
. x) by
A1;
A4: (f2
* (
reproj (i,x)))
is_differentiable_in ((
Proj (i,m))
. x) by
A2;
((f1
- f2)
* (
reproj (i,x)))
= ((f1
* (
reproj (i,x)))
- (f2
* (
reproj (i,x)))) by
Th26;
then ((f1
- f2)
* (
reproj (i,x)))
is_differentiable_in ((
Proj (i,m))
. x) by
A3,
A4,
NDIFF_1: 36;
hence (f1
- f2)
is_partial_differentiable_in (x,i);
(
diff (((f1
* (
reproj (i,x)))
- (f2
* (
reproj (i,x)))),((
Proj (i,m))
. x)))
= (
partdiff ((f1
- f2),x,i)) by
Th26;
hence thesis by
A3,
A4,
NDIFF_1: 36;
end;
theorem ::
PDIFF_1:31
g1
is_partial_differentiable_in (y,i) & g2
is_partial_differentiable_in (y,i) implies (g1
- g2)
is_partial_differentiable_in (y,i) & (
partdiff ((g1
- g2),y,i))
= ((
partdiff (g1,y,i))
- (
partdiff (g2,y,i)))
proof
assume that
A1: g1
is_partial_differentiable_in (y,i) and
A2: g2
is_partial_differentiable_in (y,i);
reconsider x = y as
Point of (
REAL-NS n) by
REAL_NS1:def 4;
A3: the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then
reconsider f1 = (
<>* g1), f2 = (
<>* g2) as
PartFunc of (
REAL-NS n), (
REAL-NS 1) by
REAL_NS1:def 4;
reconsider One =
<*jj*> as
VECTOR of (
REAL-NS 1) by
A3,
FINSEQ_2: 98;
A4: f1
is_partial_differentiable_in (x,i) by
A1,
Th14;
then
A5: ((
partdiff (f1,x,i))
. One)
=
<*(
partdiff (g1,y,i))*> by
Th15;
reconsider d2 = (
partdiff (g2,y,i)) as
Element of
REAL by
XREAL_0:def 1;
reconsider Pd2 =
<*d2*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
reconsider d1 = (
partdiff (g1,y,i)) as
Element of
REAL by
XREAL_0:def 1;
reconsider Pd1 =
<*d1*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
A6: the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
(
rng g2)
c= (
dom W) by
Th2;
then
A7: (
dom (W
* g2))
= (
dom g2) by
RELAT_1: 27;
(
rng g1)
c= (
dom W) by
Th2;
then
A8: (
dom (W
* g1))
= (
dom g1) by
RELAT_1: 27;
then (
dom (f1
- f2))
= ((
dom g1)
/\ (
dom g2)) by
A7,
VFUNCT_1:def 2;
then
A9: (
dom (f1
- f2))
= (
dom (g1
- g2)) by
VALUED_1: 12;
A10: (
rng (g1
- g2))
c= (
dom W) by
Th2;
then
A11: (
dom (W
* (g1
- g2)))
= (
dom (g1
- g2)) by
RELAT_1: 27;
A12:
now
let x be
Element of (
REAL-NS n);
assume
A13: x
in (
dom (f1
- f2));
then ((f1
- f2)
. x)
= ((f1
- f2)
/. x) by
PARTFUN1:def 6;
then
A14: ((f1
- f2)
. x)
= ((f1
/. x)
- (f2
/. x)) by
A13,
VFUNCT_1:def 2;
A15: x
in ((
dom f1)
/\ (
dom f2)) by
A13,
VFUNCT_1:def 2;
then x
in (
dom f1) by
XBOOLE_0:def 4;
then
A16: (f1
/. x)
= ((W
* g1)
. x) by
PARTFUN1:def 6;
x
in (
dom f2) by
A15,
XBOOLE_0:def 4;
then
A17: (f2
/. x)
= ((W
* g2)
. x) by
PARTFUN1:def 6;
x
in (
dom g2) by
A7,
A15,
XBOOLE_0:def 4;
then
A18: (f2
/. x)
= (W
. (g2
. x)) by
A17,
FUNCT_1: 13;
x
in (
dom g1) by
A8,
A15,
XBOOLE_0:def 4;
then
A19: (f1
/. x)
= (W
. (g1
. x)) by
A16,
FUNCT_1: 13;
((
<>* (g1
- g2))
. x)
= (W
. ((g1
- g2)
. x)) by
A9,
A11,
A13,
FUNCT_1: 12;
then ((
<>* (g1
- g2))
. x)
= (W
. ((g1
. x)
- (g2
. x))) by
A9,
A13,
VALUED_1: 13;
hence ((f1
- f2)
. x)
= ((
<>* (g1
- g2))
. x) by
A14,
A19,
A18,
Th2,
Th3;
end;
A20: f2
is_partial_differentiable_in (x,i) by
A2,
Th14;
then
A21: ((
partdiff (f2,x,i))
. One)
=
<*(
partdiff (g2,y,i))*> by
Th15;
A22: (f1
- f2)
is_partial_differentiable_in (x,i) by
A4,
A20,
Th30;
(
dom (f1
- f2))
= (
dom (
<>* (g1
- g2))) by
A9,
A10,
RELAT_1: 27;
then
A23: (f1
- f2)
= (
<>* (g1
- g2)) by
A6,
A3,
A12,
PARTFUN1: 5;
then
<*(
partdiff ((g1
- g2),y,i))*>
= ((
partdiff ((f1
- f2),x,i))
.
<*1*>) by
A4,
A20,
Th15,
Th30
.= (((
partdiff (f1,x,i))
- (
partdiff (f2,x,i)))
.
<*1*>) by
A4,
A20,
Th30
.= (((
partdiff (f1,x,i))
. One)
- ((
partdiff (f2,x,i))
. One)) by
LOPBAN_1: 40
.= (Pd1
- Pd2) by
A5,
A21,
REAL_NS1: 5
.=
<*((
partdiff (g1,y,i))
- (
partdiff (g2,y,i)))*> by
RVSUM_1: 29;
then (
partdiff ((g1
- g2),y,i))
= (
<*((
partdiff (g1,y,i))
- (
partdiff (g2,y,i)))*>
. 1) by
FINSEQ_1: 40;
hence thesis by
A23,
A22,
Th14,
FINSEQ_1: 40;
end;
theorem ::
PDIFF_1:32
Th32: f
is_partial_differentiable_in (x,i) implies (r
(#) f)
is_partial_differentiable_in (x,i) & (
partdiff ((r
(#) f),x,i))
= (r
* (
partdiff (f,x,i)))
proof
assume f
is_partial_differentiable_in (x,i);
then
A1: (f
* (
reproj (i,x)))
is_differentiable_in ((
Proj (i,m))
. x);
(r
(#) (f
* (
reproj (i,x))))
= ((r
(#) f)
* (
reproj (i,x))) by
Th27;
then ((r
(#) f)
* (
reproj (i,x)))
is_differentiable_in ((
Proj (i,m))
. x) by
A1,
NDIFF_1: 37;
hence (r
(#) f)
is_partial_differentiable_in (x,i);
(
diff ((r
(#) (f
* (
reproj (i,x)))),((
Proj (i,m))
. x)))
= (
partdiff ((r
(#) f),x,i)) by
Th27;
hence thesis by
A1,
NDIFF_1: 37;
end;
theorem ::
PDIFF_1:33
g
is_partial_differentiable_in (y,i) implies (r
(#) g)
is_partial_differentiable_in (y,i) & (
partdiff ((r
(#) g),y,i))
= (r
* (
partdiff (g,y,i)))
proof
A1: the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
A2: (
rng g)
c= (
dom W) by
Th2;
then
A3: (
dom (W
* g))
= (
dom g) by
RELAT_1: 27;
reconsider d = (
partdiff (g,y,i)) as
Element of
REAL by
XREAL_0:def 1;
reconsider Pd =
<*d*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
reconsider x = y as
Point of (
REAL-NS n) by
REAL_NS1:def 4;
A4: the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then
reconsider f = (
<>* g) as
PartFunc of (
REAL-NS n), (
REAL-NS 1) by
REAL_NS1:def 4;
reconsider One =
<*jj*> as
VECTOR of (
REAL-NS 1) by
A4,
FINSEQ_2: 98;
assume g
is_partial_differentiable_in (y,i);
then
A5: f
is_partial_differentiable_in (x,i) by
Th14;
then
A6: (r
(#) f)
is_partial_differentiable_in (x,i) by
Th32;
(
dom (r
(#) f))
= (
dom (W
* g)) by
VFUNCT_1:def 4;
then (
dom (r
(#) f))
= (
dom g) by
A2,
RELAT_1: 27;
then
A7: (
dom (r
(#) f))
= (
dom (r
(#) g)) by
VALUED_1:def 5;
A8: (
rng (r
(#) g))
c= (
dom W) by
Th2;
then
A9: (
dom (W
* (r
(#) g)))
= (
dom (r
(#) g)) by
RELAT_1: 27;
A10:
now
let x be
Element of (
REAL-NS n);
consider I be
Function of
REAL , (
REAL 1) such that I is
bijective and
A11: W
= I by
Th2;
assume
A12: x
in (
dom (r
(#) f));
then
A13: ((
<>* (r
(#) g))
. x)
= (W
. ((r
(#) g)
. x)) by
A7,
A9,
FUNCT_1: 12;
((r
(#) f)
. x)
= ((r
(#) f)
/. x) by
A12,
PARTFUN1:def 6;
then
A14: ((r
(#) f)
. x)
= (r
* (f
/. x)) by
A12,
VFUNCT_1:def 4;
A15: x
in (
dom g) by
A3,
A12,
VFUNCT_1:def 4;
then
A16: x
in (
dom (r
(#) g)) by
VALUED_1:def 5;
x
in (
dom f) by
A12,
VFUNCT_1:def 4;
then (f
/. x)
= ((W
* g)
. x) by
PARTFUN1:def 6;
then (f
/. x)
= (W
. (g
. x)) by
A15,
FUNCT_1: 13;
then (r
* (f
/. x))
= (I
. (r
* (g
. x))) by
A11,
Th3;
hence ((r
(#) f)
. x)
= ((
<>* (r
(#) g))
. x) by
A16,
A14,
A13,
A11,
VALUED_1:def 5;
end;
A17: ((
partdiff (f,x,i))
. One)
=
<*(
partdiff (g,y,i))*> by
A5,
Th15;
(
dom (r
(#) f))
= (
dom (
<>* (r
(#) g))) by
A7,
A8,
RELAT_1: 27;
then
A18: (r
(#) f)
= (
<>* (r
(#) g)) by
A1,
A4,
A10,
PARTFUN1: 5;
then
<*(
partdiff ((r
(#) g),y,i))*>
= ((
partdiff ((r
(#) f),x,i))
.
<*1*>) by
A5,
Th15,
Th32
.= ((r
* (
partdiff (f,x,i)))
.
<*1*>) by
A5,
Th32
.= (r
* ((
partdiff (f,x,i))
. One)) by
LOPBAN_1: 36
.= (r
* Pd) by
A17,
REAL_NS1: 3
.=
<*(r
* (
partdiff (g,y,i)))*> by
RVSUM_1: 47;
then (
partdiff ((r
(#) g),y,i))
= (
<*(r
* (
partdiff (g,y,i)))*>
. 1) by
FINSEQ_1: 40;
hence thesis by
A18,
A6,
Th14,
FINSEQ_1: 40;
end;