pdiff_6.miz
begin
reserve i,n,m for
Nat;
theorem ::
PDIFF_6:1
Th1: for f be
set holds f is
PartFunc of (
REAL m), (
REAL n) iff f is
PartFunc of (
REAL-NS m), (
REAL-NS n)
proof
let f be
set;
the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
hence thesis;
end;
theorem ::
PDIFF_6:2
Th2: for n,m be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), x be
Element of (
REAL m), y be
Point of (
REAL-NS m) st f
= g & x
= y holds f
is_differentiable_in x iff g
is_differentiable_in y
proof
let n,m be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), x be
Element of (
REAL m), y be
Point of (
REAL-NS m);
assume
A1: f
= g & x
= y;
hereby
assume f
is_differentiable_in x;
then ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= g & x
= y & g
is_differentiable_in y by
PDIFF_1:def 7;
hence g
is_differentiable_in y by
A1;
end;
assume g
is_differentiable_in y;
hence f
is_differentiable_in x by
A1,
PDIFF_1:def 7;
end;
theorem ::
PDIFF_6:3
Th3: for n,m be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), x be
Element of (
REAL m), y be
Point of (
REAL-NS m) st f
= g & x
= y & f
is_differentiable_in x holds (
diff (f,x))
= (
diff (g,y))
proof
let n,m be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), x be
Element of (
REAL m), y be
Point of (
REAL-NS m);
assume
A1: f
= g & x
= y & f
is_differentiable_in x;
then ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= g & x
= y & (
diff (f,x))
= (
diff (g,y)) by
PDIFF_1:def 8;
hence thesis by
A1;
end;
theorem ::
PDIFF_6:4
Th4: for f1,f2 be
PartFunc of (
REAL m), (
REAL n), g1,g2 be
PartFunc of (
REAL-NS m), (
REAL-NS n) st f1
= g1 & f2
= g2 holds (f1
+ f2)
= (g1
+ g2)
proof
let f1,f2 be
PartFunc of (
REAL m), (
REAL n), g1,g2 be
PartFunc of (
REAL-NS m), (
REAL-NS n);
assume
A1: f1
= g1 & f2
= g2;
the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider g12 = (g1
+ g2) as
PartFunc of (
REAL m), (
REAL n);
A2: ((
dom f1)
/\ (
dom f2))
= (
dom g12) by
A1,
VFUNCT_1:def 1;
A3: (f1
<++> f2)
= (f1
+ f2) by
INTEGR15:def 9;
for c be
object st c
in (
dom g12) holds ((g1
+ g2)
. c)
= ((f1
. c)
+ (f2
. c))
proof
let c be
object;
assume
A4: c
in (
dom g12);
then
A5: c
in (
dom (g1
+ g2));
c
in (
dom f1) & c
in (
dom f2) by
A2,
A4,
XBOOLE_0:def 4;
then
A6: (f1
/. c)
= (f1
. c) & (f2
/. c)
= (f2
. c) by
PARTFUN1:def 6;
A7: (f1
/. c)
= (g1
/. c) & (f2
/. c)
= (g2
/. c) by
A1,
REAL_NS1:def 4;
(g12
. c)
= ((g1
+ g2)
/. c) by
A4,
PARTFUN1:def 6
.= ((g1
/. c)
+ (g2
/. c)) by
A5,
VFUNCT_1:def 1;
hence thesis by
A6,
A7,
REAL_NS1: 2;
end;
hence thesis by
A2,
A3,
VALUED_2:def 45;
end;
theorem ::
PDIFF_6:5
Th5: for f1,f2 be
PartFunc of (
REAL m), (
REAL n), g1,g2 be
PartFunc of (
REAL-NS m), (
REAL-NS n) st f1
= g1 & f2
= g2 holds (f1
- f2)
= (g1
- g2)
proof
let f1,f2 be
PartFunc of (
REAL m), (
REAL n), g1,g2 be
PartFunc of (
REAL-NS m), (
REAL-NS n);
assume
A1: f1
= g1 & f2
= g2;
the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider g12 = (g1
- g2) as
PartFunc of (
REAL m), (
REAL n);
A2: ((
dom f1)
/\ (
dom f2))
= (
dom g12) by
A1,
VFUNCT_1:def 2;
A3: (f1
<--> f2)
= (f1
- f2) by
INTEGR15:def 10;
for c be
object st c
in (
dom g12) holds ((g1
- g2)
. c)
= ((f1
. c)
- (f2
. c))
proof
let c be
object;
assume
A4: c
in (
dom g12);
then
A5: c
in (
dom (g1
- g2));
c
in (
dom f1) & c
in (
dom f2) by
A2,
A4,
XBOOLE_0:def 4;
then
A6: (f1
/. c)
= (f1
. c) & (f2
/. c)
= (f2
. c) by
PARTFUN1:def 6;
A7: (f1
/. c)
= (g1
/. c) & (f2
/. c)
= (g2
/. c) by
A1,
REAL_NS1:def 4;
(g12
. c)
= ((g1
- g2)
/. c) by
A4,
PARTFUN1:def 6
.= ((g1
/. c)
- (g2
/. c)) by
A5,
VFUNCT_1:def 2;
hence thesis by
A6,
A7,
REAL_NS1: 5;
end;
hence thesis by
A2,
A3,
VALUED_2:def 46;
end;
theorem ::
PDIFF_6:6
Th6: for f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), a be
Real st f
= g holds (a
(#) f)
= (a
(#) g)
proof
let f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), a be
Real;
assume
A1: f
= g;
the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider aG = (a
(#) g) as
PartFunc of (
REAL m), (
REAL n);
A2: (
dom f)
= (
dom aG) by
A1,
VFUNCT_1:def 4;
A3: (a
(#) f)
= (f
[#] a) by
INTEGR15:def 11;
for c be
object st c
in (
dom aG) holds (aG
. c)
= (a
(#) (f
. c))
proof
let c be
object;
assume
A4: c
in (
dom aG);
then
A5: c
in (
dom (a
(#) g));
A6: (f
/. c)
= (g
/. c) by
A1,
REAL_NS1:def 4;
A7: (f
/. c)
= (f
. c) by
A2,
A4,
PARTFUN1:def 6;
(aG
. c)
= ((a
(#) g)
/. c) by
A4,
PARTFUN1:def 6
.= (a
* (g
/. c)) by
A5,
VFUNCT_1:def 4;
hence (aG
. c)
= (a
(#) (f
. c)) by
A6,
A7,
REAL_NS1: 3;
end;
hence thesis by
A2,
A3,
VALUED_2:def 39;
end;
theorem ::
PDIFF_6:7
Th7: for f1,f2 be
Function of (
REAL m), (
REAL n), g1,g2 be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))) st f1
= g1 & f2
= g2 holds (f1
+ f2)
= (g1
+ g2)
proof
let f1,f2 be
Function of (
REAL m), (
REAL n), g1,g2 be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n)));
assume
A1: f1
= g1 & f2
= g2;
A2: the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider g12 = (g1
+ g2) as
Function of (
REAL m), (
REAL n) by
LOPBAN_1:def 9;
g1 is
LinearOperator of (
REAL-NS m), (
REAL-NS n) & g2 is
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
LOPBAN_1:def 9;
then (
dom g1)
= (
REAL m) & (
dom g2)
= (
REAL m) by
A2,
FUNCT_2:def 1;
then
A3: ((
dom f1)
/\ (
dom f2))
= (
dom g12) by
A1,
FUNCT_2:def 1;
A4: (f1
<++> f2)
= (f1
+ f2) by
INTEGR15:def 9;
for c be
object st c
in (
dom g12) holds (g12
. c)
= ((f1
. c)
+ (f2
. c))
proof
let c be
object;
assume
A5: c
in (
dom g12);
then
reconsider x = c as
VECTOR of (
REAL-NS m) by
REAL_NS1:def 4;
reconsider c1 = c as
Element of (
REAL m) by
A5;
(g12
. x)
= ((g1
. x)
+ (g2
. x)) by
LOPBAN_1: 35;
hence (g12
. c)
= ((f1
/. c1)
+ (f2
/. c1)) by
A1,
REAL_NS1: 2
.= ((f1
. c)
+ (f2
. c));
end;
hence thesis by
A3,
A4,
VALUED_2:def 45;
end;
theorem ::
PDIFF_6:8
Th8: for f1,f2 be
Function of (
REAL m), (
REAL n), g1,g2 be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))) st f1
= g1 & f2
= g2 holds (f1
- f2)
= (g1
- g2)
proof
let f1,f2 be
Function of (
REAL m), (
REAL n), g1,g2 be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n)));
assume
A1: f1
= g1 & f2
= g2;
A2: the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider g12 = (g1
- g2) as
Function of (
REAL m), (
REAL n) by
LOPBAN_1:def 9;
g1 is
LinearOperator of (
REAL-NS m), (
REAL-NS n) & g2 is
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
LOPBAN_1:def 9;
then (
dom g1)
= (
REAL m) & (
dom g2)
= (
REAL m) by
A2,
FUNCT_2:def 1;
then
A3: ((
dom f1)
/\ (
dom f2))
= (
dom g12) by
A1,
FUNCT_2:def 1;
A4: (f1
<--> f2)
= (f1
- f2) by
INTEGR15:def 10;
for c be
object st c
in (
dom g12) holds (g12
. c)
= ((f1
. c)
- (f2
. c))
proof
let c be
object;
assume
A5: c
in (
dom g12);
then
reconsider x = c as
VECTOR of (
REAL-NS m) by
REAL_NS1:def 4;
reconsider c1 = c as
Element of (
REAL m) by
A5;
(g12
. x)
= ((g1
. x)
- (g2
. x)) by
LOPBAN_1: 40;
hence (g12
. c)
= ((f1
/. c1)
- (f2
/. c1)) by
A1,
REAL_NS1: 5
.= ((f1
. c)
- (f2
. c));
end;
hence thesis by
A3,
A4,
VALUED_2:def 46;
end;
theorem ::
PDIFF_6:9
Th9: for f be
Function of (
REAL m), (
REAL n), g be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), r be
Real st f
= g holds (r
(#) f)
= (r
* g)
proof
let f be
Function of (
REAL m), (
REAL n), g be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), r be
Real;
assume
A1: f
= g;
the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider rG = (r
* g) as
Function of (
REAL m), (
REAL n) by
LOPBAN_1:def 9;
(
dom f)
= (
REAL m) by
FUNCT_2:def 1;
then
A2: (
dom f)
= (
dom rG) by
FUNCT_2:def 1;
A3: (r
(#) f)
= (f
[#] r) by
INTEGR15:def 11;
for c be
object st c
in (
dom rG) holds (rG
. c)
= (r
(#) (f
. c))
proof
let c be
object;
assume
A4: c
in (
dom rG);
then
reconsider x = c as
VECTOR of (
REAL-NS m) by
REAL_NS1:def 4;
reconsider c1 = c as
Element of (
REAL m) by
A4;
(rG
. x)
= (r
* (g
. x)) by
LOPBAN_1: 36;
hence (rG
. c)
= (r
* (f
/. c1)) by
A1,
REAL_NS1: 3
.= (r
(#) (f
. c));
end;
hence thesis by
A2,
A3,
VALUED_2:def 39;
end;
theorem ::
PDIFF_6:10
Th10: for m,n be non
zero
Nat holds for f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m) st f
is_differentiable_in x holds (
diff (f,x)) is
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n)))
proof
let m,n be non
zero
Nat;
let f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m);
assume f
is_differentiable_in x;
then ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= g & x
= y & (
diff (f,x))
= (
diff (g,y)) by
PDIFF_1:def 8;
hence thesis;
end;
definition
let n,m be
Nat;
let IT be
Function of (
REAL m), (
REAL n);
::
PDIFF_6:def1
attr IT is
additive means
:
Def1: for x,y be
Element of (
REAL m) holds (IT
. (x
+ y))
= ((IT
. x)
+ (IT
. y));
::
PDIFF_6:def2
attr IT is
homogeneous means
:
Def2: for x be
Element of (
REAL m), r be
Real holds (IT
. (r
* x))
= (r
* (IT
. x));
end
theorem ::
PDIFF_6:11
Th11: for IT be
Function of (
REAL m), (
REAL n) st IT is
additive holds (IT
. (
0* m))
= (
0* n)
proof
let IT be
Function of (
REAL m), (
REAL n);
assume
A1: IT is
additive;
(IT
. (
0* m))
= (IT
. ((
0* m)
+ (
0* m))) by
RVSUM_1: 16;
then (IT
. (
0* m))
= ((IT
. (
0* m))
+ (IT
. (
0* m))) by
A1;
then (
0* n)
= (((IT
. (
0* m))
+ (IT
. (
0* m)))
- (IT
. (
0* m))) by
RVSUM_1: 37;
hence (
0* n)
= (IT
. (
0* m)) by
RVSUM_1: 42;
end;
theorem ::
PDIFF_6:12
Th12: for f be
Function of (
REAL m), (
REAL n), g be
Function of (
REAL-NS m), (
REAL-NS n) st f
= g holds f is
additive iff g is
additive
proof
let f be
Function of (
REAL m), (
REAL n), g be
Function of (
REAL-NS m), (
REAL-NS n);
assume
A1: f
= g;
hereby
assume
A2: f is
additive;
now
let x,y be
Point of (
REAL-NS m);
reconsider x1 = x, y1 = y as
Element of (
REAL m) by
REAL_NS1:def 4;
(g
. (x
+ y))
= (f
. (x1
+ y1)) by
A1,
REAL_NS1: 2
.= ((f
. x1)
+ (f
. y1)) by
A2;
hence (g
. (x
+ y))
= ((g
. x)
+ (g
. y)) by
A1,
REAL_NS1: 2;
end;
hence g is
additive by
VECTSP_1:def 20;
end;
assume
A3: g is
additive;
now
let x,y be
Element of (
REAL m);
reconsider x1 = x, y1 = y as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
(f
. (x
+ y))
= (g
. (x1
+ y1)) by
A1,
REAL_NS1: 2
.= ((g
. x1)
+ (g
. y1)) by
A3,
VECTSP_1:def 20;
hence (f
. (x
+ y))
= ((f
. x)
+ (f
. y)) by
A1,
REAL_NS1: 2;
end;
hence f is
additive;
end;
theorem ::
PDIFF_6:13
Th13: for f be
Function of (
REAL m), (
REAL n), g be
Function of (
REAL-NS m), (
REAL-NS n) st f
= g holds f is
homogeneous iff g is
homogeneous
proof
let f be
Function of (
REAL m), (
REAL n), g be
Function of (
REAL-NS m), (
REAL-NS n);
assume
A1: f
= g;
hereby
assume
A2: f is
homogeneous;
now
let x be
Point of (
REAL-NS m), r be
Real;
reconsider x1 = x as
Element of (
REAL m) by
REAL_NS1:def 4;
(g
. (r
* x))
= (f
. (r
* x1)) by
A1,
REAL_NS1: 3
.= (r
* (f
. x1)) by
A2;
hence (g
. (r
* x))
= (r
* (g
. x)) by
A1,
REAL_NS1: 3;
end;
hence g is
homogeneous;
end;
assume
A3: g is
homogeneous;
now
let x be
Element of (
REAL m), r be
Real;
reconsider x1 = x as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
(f
. (r
* x))
= (g
. (r
* x1)) by
A1,
REAL_NS1: 3
.= (r
* (g
. x1)) by
A3;
hence (f
. (r
* x))
= (r
* (f
. x)) by
A1,
REAL_NS1: 3;
end;
hence f is
homogeneous;
end;
registration
let n,m be
Nat;
cluster ((
REAL m)
--> (
0* n)) ->
additive
homogeneous;
coherence
proof
let f be
Function of (
REAL m), (
REAL n) such that
A1: f
= ((
REAL m)
--> (
0* n));
reconsider n1 = n as
Nat;
hereby
let x,y be
Element of (
REAL m);
A2: (
0. (
REAL-NS n1))
= (
0* n) by
REAL_NS1:def 4;
(f
. (x
+ y))
= (
0* n) by
A1,
FUNCOP_1: 7
.= (
0. (
REAL-NS n1)) by
REAL_NS1:def 4
.= ((
0. (
REAL-NS n1))
+ (
0. (
REAL-NS n1))) by
RLVECT_1: 4
.= ((
0* n)
+ (
0* n)) by
A2,
REAL_NS1: 2
.= ((f
. x)
+ (
0* n)) by
A1,
FUNCOP_1: 7;
hence (f
. (x
+ y))
= ((f
. x)
+ (f
. y)) by
A1,
FUNCOP_1: 7;
end;
hereby
let x be
Element of (
REAL m), r be
Real;
A3: (
0. (
REAL-NS n1))
= (
0* n) by
REAL_NS1:def 4;
(f
. (r
* x))
= (
0* n) by
A1,
FUNCOP_1: 7
.= (
0. (
REAL-NS n1)) by
REAL_NS1:def 4
.= (r
* (
0. (
REAL-NS n1))) by
RLVECT_1: 10
.= (r
* (
0* n)) by
A3,
REAL_NS1: 3;
hence (f
. (r
* x))
= (r
* (f
. x)) by
A1,
FUNCOP_1: 7;
end;
end;
end
registration
let n,m be
Nat;
cluster
additive
homogeneous for
Function of (
REAL m), (
REAL n);
existence
proof
take ((
REAL m)
--> (
0* n));
thus thesis;
end;
end
definition
let m,n be
Nat;
mode
LinearOperator of m,n is
additive
homogeneous
Function of (
REAL m), (
REAL n);
end
theorem ::
PDIFF_6:14
Th14: for f be
set holds f is
LinearOperator of m, n iff f is
LinearOperator of (
REAL-NS m), (
REAL-NS n)
proof
let f be
set;
(
REAL m)
= the
carrier of (
REAL-NS m) & (
REAL n)
= the
carrier of (
REAL-NS n) by
REAL_NS1:def 4;
hence f is
additive
homogeneous
Function of (
REAL m), (
REAL n) iff f is
additive
homogeneous
Function of (
REAL-NS m), (
REAL-NS n) by
Th12,
Th13;
end;
definition
let m,n be
Nat, IT be
Function of (
REAL m), (
REAL n);
::
PDIFF_6:def3
attr IT is
Lipschitzian means
:
Def3: ex K be
Real st
0
<= K & for x be
Element of (
REAL m) holds
|.(IT
. x).|
<= (K
*
|.x.|);
end
theorem ::
PDIFF_6:15
Th15: for xseq,yseq be
FinSequence of (
REAL m) st (
len xseq)
= ((
len yseq)
+ 1) & (xseq
| (
len yseq))
= yseq holds ex v be
Element of (
REAL m) st v
= (xseq
. (
len xseq)) & (
Sum xseq)
= ((
Sum yseq)
+ v)
proof
let xseq,yseq be
FinSequence of (
REAL m);
assume
A1: (
len xseq)
= ((
len yseq)
+ 1) & (xseq
| (
len yseq))
= yseq;
A2: (
len xseq)
= (
len (
accum xseq)) & (xseq
. 1)
= ((
accum xseq)
. 1) & (for k be
Nat st 1
<= k & k
< (
len xseq) holds ((
accum xseq)
. (k
+ 1))
= (((
accum xseq)
/. k)
+ (xseq
/. (k
+ 1)))) by
EUCLID_7:def 10;
A3: (
Sum xseq)
= ((
accum xseq)
. (
len xseq)) by
A1,
EUCLID_7:def 11;
set g = (
accum xseq);
set i = (
len yseq);
per cases ;
suppose
A4: i
=
0 ;
then
reconsider v = (xseq
. (
len xseq)) as
Element of (
REAL m) by
A1,
A3,
EUCLID_7:def 10;
take v;
(
Sum yseq)
= (
0* m) by
A4,
EUCLID_7:def 11;
hence v
= (xseq
. (
len xseq)) & (
Sum xseq)
= ((
Sum yseq)
+ v) by
A1,
A2,
A3,
A4,
RVSUM_1: 16;
end;
suppose
A5: i
<>
0 ;
A6: (
len yseq)
= (
len (
accum yseq)) & (yseq
. 1)
= ((
accum yseq)
. 1) & (for k be
Nat st 1
<= k & k
< (
len yseq) holds ((
accum yseq)
. (k
+ 1))
= (((
accum yseq)
/. k)
+ (yseq
/. (k
+ 1)))) by
EUCLID_7:def 10;
A7: (
Sum yseq)
= ((
accum yseq)
. i) by
A5,
EUCLID_7:def 11;
set g0 = (
accum yseq);
A8: i
<= (
len g) by
A1,
A2,
NAT_1: 11;
then
A9: (
len (g
| i))
= i by
FINSEQ_1: 59;
A10: for k be
Nat st 1
<= k & k
<= (
len (g
| i)) holds ((g
| i)
. k)
= (g0
. k)
proof
defpred
PP[
Nat] means 1
<= $1 & $1
<= (
len (g
| i)) implies ((g
| i)
. $1)
= (g0
. $1);
A11:
PP[
0 ];
A12:
now
let k be
Nat;
assume
A13:
PP[k];
now
assume
A14: 1
<= (k
+ 1) & (k
+ 1)
<= (
len (g
| i));
then
A15: (k
+ 1)
<= (
len yseq) by
A8,
FINSEQ_1: 59;
then (k
+ 1)
in (
Seg i) by
A14;
then
A16: ((g
| i)
. (k
+ 1))
= (g
. (k
+ 1)) & (xseq
. (k
+ 1))
= ((xseq
| (
Seg i))
. (k
+ 1)) by
FUNCT_1: 49;
A17: k
< (
len yseq) by
A15,
NAT_1: 13;
now
assume
A18: k
<>
0 ;
then
A19: 1
<= k by
NAT_1: 14;
then
A20: k
in (
Seg i) by
A17;
(
len yseq)
<= (
len xseq) by
A1,
NAT_1: 12;
then
A21: k
< (
len xseq) by
A17,
XXREAL_0: 2;
then (g
/. k)
= (g
. k) by
A2,
A19,
FINSEQ_4: 15;
then (g
/. k)
= ((g
| i)
. k) by
A20,
FUNCT_1: 49;
then
A22: (g
/. k)
= (g0
/. k) by
A6,
A17,
A19,
A13,
A14,
FINSEQ_4: 15,
NAT_1: 13;
(k
+ 1)
<= (
len xseq) by
A15,
A1,
NAT_1: 12;
then (xseq
/. (k
+ 1))
= (xseq
. (k
+ 1)) by
A14,
FINSEQ_4: 15;
then (xseq
/. (k
+ 1))
= (yseq
/. (k
+ 1)) by
A1,
A14,
A9,
A16,
FINSEQ_4: 15;
then ((g
/. k)
+ (xseq
/. (k
+ 1)))
= (g0
. (k
+ 1)) by
A6,
A17,
A18,
A22,
NAT_1: 14;
hence ((g
| i)
. (k
+ 1))
= (g0
. (k
+ 1)) by
A2,
A16,
A18,
A21,
NAT_1: 14;
end;
hence ((g
| i)
. (k
+ 1))
= (g0
. (k
+ 1)) by
A1,
A6,
A16,
EUCLID_7:def 10;
end;
hence
PP[(k
+ 1)];
end;
thus for k be
Nat holds
PP[k] from
NAT_1:sch 2(
A11,
A12);
end;
1
<= i by
A5,
NAT_1: 14;
then i
in (
Seg i);
then
A23: i
in (
dom (g
| i)) by
A9,
FINSEQ_1:def 3;
then i
in (
dom g) by
RELAT_1: 57;
then (g
. i)
= (g
/. i) by
PARTFUN1:def 6;
then ((g
| i)
. i)
= (g
/. i) by
A23,
FUNCT_1: 47;
then
A24: (g0
. i)
= (g
/. i) by
A6,
A9,
A10,
FINSEQ_1: 14;
(
dom xseq)
= (
Seg (i
+ 1)) by
A1,
FINSEQ_1:def 3;
then (xseq
. (
len xseq))
in (
rng xseq) by
A1,
FINSEQ_1: 4,
FUNCT_1: 3;
then
reconsider v = (xseq
. (
len xseq)) as
Element of (
REAL m);
take v;
thus v
= (xseq
. (
len xseq));
A25: i
< (
len xseq) by
A1,
NAT_1: 13;
1
<= (i
+ 1) by
NAT_1: 11;
then ((g
/. i)
+ (xseq
/. (i
+ 1)))
= ((
Sum yseq)
+ v) by
A7,
A24,
A1,
FINSEQ_4: 15;
hence (
Sum xseq)
= ((
Sum yseq)
+ v) by
A1,
A25,
A2,
A3,
A5,
NAT_1: 14;
end;
end;
theorem ::
PDIFF_6:16
Th16: for f be
LinearOperator of m, n, xseq be
FinSequence of (
REAL m), yseq be
FinSequence of (
REAL n) st (
len xseq)
= (
len yseq) & (for i be
Nat st i
in (
dom xseq) holds (yseq
. i)
= (f
. (xseq
. i))) holds (
Sum yseq)
= (f
. (
Sum xseq))
proof
let f be
LinearOperator of m, n;
defpred
P[
Nat] means for xseq be
FinSequence of (
REAL m), yseq be
FinSequence of (
REAL n) st $1
= (
len xseq) & (
len xseq)
= (
len yseq) & for i be
Nat st i
in (
dom xseq) holds (yseq
. i)
= (f
. (xseq
. i)) holds (
Sum yseq)
= (f
. (
Sum xseq));
A1:
P[
0 ]
proof
let xseq be
FinSequence of (
REAL m), yseq be
FinSequence of (
REAL n);
assume
0
= (
len xseq) & (
len xseq)
= (
len yseq) & for i be
Nat st i
in (
dom xseq) holds (yseq
. i)
= (f
. (xseq
. i));
then (
Sum xseq)
= (
0* m) & (
Sum yseq)
= (
0* n) by
EUCLID_7:def 11;
hence thesis by
Th11;
end;
A2:
now
let i be
Nat;
assume
A3:
P[i];
now
let xseq be
FinSequence of (
REAL m), yseq be
FinSequence of (
REAL n);
assume
A4: (i
+ 1)
= (
len xseq) & (
len xseq)
= (
len yseq) & for k be
Nat st k
in (
dom xseq) holds (yseq
. k)
= (f
. (xseq
. k));
set xseq0 = (xseq
| i), yseq0 = (yseq
| i);
A5: i
= (
len xseq0) by
A4,
FINSEQ_1: 59,
NAT_1: 11;
then
A6: (
len xseq0)
= (
len yseq0) by
A4,
FINSEQ_1: 59,
NAT_1: 11;
for k be
Nat st k
in (
dom xseq0) holds (yseq0
. k)
= (f
. (xseq0
. k))
proof
let k be
Nat;
assume
A7: k
in (
dom xseq0);
then
A8: k
in (
Seg i) by
RELAT_1: 57;
k
in (
dom xseq) by
A7,
RELAT_1: 57;
then
A9: (yseq
. k)
= (f
. (xseq
. k)) by
A4;
(xseq
. k)
= (xseq0
. k) by
A8,
FUNCT_1: 49;
hence (yseq0
. k)
= (f
. (xseq0
. k)) by
A8,
A9,
FUNCT_1: 49;
end;
then
A10: (
Sum yseq0)
= (f
. (
Sum xseq0)) by
A5,
A6,
A3;
consider v be
Element of (
REAL m) such that
A11: v
= (xseq
. (
len xseq)) & (
Sum xseq)
= ((
Sum xseq0)
+ v) by
A4,
A5,
Th15;
consider w be
Element of (
REAL n) such that
A12: w
= (yseq
. (
len yseq)) & (
Sum yseq)
= ((
Sum yseq0)
+ w) by
A4,
A5,
A6,
Th15;
(
dom xseq)
= (
Seg (i
+ 1)) by
A4,
FINSEQ_1:def 3;
then w
= (f
. v) by
A4,
A12,
A11,
FINSEQ_1: 4;
hence (
Sum yseq)
= (f
. (
Sum xseq)) by
A10,
A11,
A12,
Def1;
end;
hence
P[(i
+ 1)];
end;
A13: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A1,
A2);
let xseq be
FinSequence of (
REAL m), yseq be
FinSequence of (
REAL n);
assume (
len xseq)
= (
len yseq) & for i be
Nat st i
in (
dom xseq) holds (yseq
. i)
= (f
. (xseq
. i));
hence (
Sum yseq)
= (f
. (
Sum xseq)) by
A13;
end;
theorem ::
PDIFF_6:17
Th17: for xseq be
FinSequence of (
REAL m), yseq be
FinSequence of
REAL st (
len xseq)
= (
len yseq) & (for i be
Nat st i
in (
dom xseq) holds ex v be
Element of (
REAL m) st v
= (xseq
. i) & (yseq
. i)
=
|.v.|) holds
|.(
Sum xseq).|
<= (
Sum yseq)
proof
defpred
P[
Nat] means for xseq be
FinSequence of (
REAL m), yseq be
FinSequence of
REAL st $1
= (
len xseq) & (
len xseq)
= (
len yseq) & (for i be
Nat st i
in (
dom xseq) holds ex v be
Element of (
REAL m) st v
= (xseq
. i) & (yseq
. i)
=
|.v.|) holds
|.(
Sum xseq).|
<= (
Sum yseq);
A1:
P[
0 ]
proof
let xseq be
FinSequence of (
REAL m), yseq be
FinSequence of
REAL ;
assume
0
= (
len xseq) & (
len xseq)
= (
len yseq) & (for i be
Nat st i
in (
dom xseq) holds ex v be
Element of (
REAL m) st v
= (xseq
. i) & (yseq
. i)
=
|.v.|);
then (
Sum xseq)
= (
0* m) & (
<*>
REAL )
= yseq by
EUCLID_7:def 11;
hence thesis by
EUCLID: 7,
RVSUM_1: 72;
end;
A2:
now
let i be
Nat;
assume
A3:
P[i];
now
let xseq be
FinSequence of (
REAL m), yseq be
FinSequence of
REAL ;
set xseq0 = (xseq
| i), yseq0 = (yseq
| i);
assume
A4: (i
+ 1)
= (
len xseq) & (
len xseq)
= (
len yseq) & (for i be
Nat st i
in (
dom xseq) holds ex v be
Element of (
REAL m) st v
= (xseq
. i) & (yseq
. i)
=
|.v.|);
A5: for k be
Nat st k
in (
dom xseq0) holds ex v be
Element of (
REAL m) st v
= (xseq0
. k) & (yseq0
. k)
=
|.v.|
proof
let k be
Nat;
assume k
in (
dom xseq0);
then
A6: k
in (
Seg i) & k
in (
dom xseq) by
RELAT_1: 57;
then
consider v be
Element of (
REAL m) such that
A7: v
= (xseq
. k) & (yseq
. k)
=
|.v.| by
A4;
take v;
thus thesis by
A6,
A7,
FUNCT_1: 49;
end;
(
dom xseq)
= (
Seg (i
+ 1)) by
A4,
FINSEQ_1:def 3;
then
consider w be
Element of (
REAL m) such that
A8: w
= (xseq
. (i
+ 1)) & (yseq
. (i
+ 1))
=
|.w.| by
A4,
FINSEQ_1: 4;
A9: 1
<= (i
+ 1) & (i
+ 1)
<= (
len yseq) by
A4,
NAT_1: 11;
yseq
= ((yseq
| i)
^
<*(yseq
/. (i
+ 1))*>) by
A4,
FINSEQ_5: 21;
then yseq
= (yseq0
^
<*(yseq
. (i
+ 1))*>) by
A9,
FINSEQ_4: 15;
then
A10: (
Sum yseq)
= ((
Sum yseq0)
+ (yseq
. (i
+ 1))) by
RVSUM_1: 74;
A11: i
= (
len xseq0) by
A4,
FINSEQ_1: 59,
NAT_1: 11;
then
A12: ex v be
Element of (
REAL m) st v
= (xseq
. (
len xseq)) & (
Sum xseq)
= ((
Sum xseq0)
+ v) by
A4,
Th15;
A13:
|.((
Sum xseq0)
+ w).|
<= (
|.(
Sum xseq0).|
+
|.w.|) by
EUCLID: 12;
(
len xseq0)
= (
len yseq0) by
A4,
A11,
FINSEQ_1: 59,
NAT_1: 11;
then
|.(
Sum xseq0).|
<= (
Sum yseq0) by
A3,
A5,
A11;
then (
|.(
Sum xseq0).|
+
|.w.|)
<= ((
Sum yseq0)
+ (yseq
. (i
+ 1))) by
A8,
XREAL_1: 6;
hence
|.(
Sum xseq).|
<= (
Sum yseq) by
A4,
A8,
A10,
A12,
A13,
XXREAL_0: 2;
end;
hence
P[(i
+ 1)];
end;
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
registration
let m,n be
Nat;
cluster ->
Lipschitzian for
LinearOperator of m, n;
coherence
proof
let f be
LinearOperator of m, n;
A1: m
in
NAT & n
in
NAT by
ORDINAL1:def 12;
defpred
KSX[
Nat,
object] means $2
=
|.(f
. (
Base_FinSeq (m,$1))).|;
A2: for k0 be
Nat st k0
in (
Seg m) holds ex v be
Element of
REAL st
KSX[k0, v]
proof
let k0 be
Nat;
assume k0
in (
Seg m);
consider v be
Real such that
A3:
KSX[k0, v];
reconsider v as
Element of
REAL by
XREAL_0:def 1;
KSX[k0, v] by
A3;
hence thesis;
end;
consider KS be
FinSequence of
REAL such that
A4: (
dom KS)
= (
Seg m) & for i be
Nat st i
in (
Seg m) holds
KSX[i, (KS
. i)] from
FINSEQ_1:sch 5(
A2);
set K = ((
Sum KS)
+ 1);
now
let j be
Nat;
assume j
in (
dom KS);
then (KS
. j)
=
|.(f
. (
Base_FinSeq (m,j))).| by
A4;
hence
0
<= (KS
. j);
end;
then
A5:
0
<= (
Sum KS) by
RVSUM_1: 84;
reconsider m0 = m as
Nat;
now
let x be
Element of (
REAL m);
A6: (
len (
ProjFinSeq x))
= m by
EUCLID_7:def 12;
defpred
PFX[
set,
set] means $2
= (f
. ((
ProjFinSeq x)
. $1));
A7:
now
let k be
Nat;
assume k
in (
Seg m);
then k
in (
dom (
ProjFinSeq x)) by
A6,
FINSEQ_1:def 3;
then
reconsider v = ((
ProjFinSeq x)
. k) as
Element of (
REAL m) by
PARTFUN1: 4;
(f
. v) is
Element of (
REAL n);
hence ex x be
Element of (
REAL n) st
PFX[k, x];
end;
consider fx be
FinSequence of (
REAL n) such that
A8: (
dom fx)
= (
Seg m) & for i be
Nat st i
in (
Seg m) holds
PFX[i, (fx
. i)] from
FINSEQ_1:sch 5(
A7);
A9: x
= (
Sum (
ProjFinSeq x)) & (
len fx)
= m by
A1,
A8,
EUCLID_7: 31,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (
ProjFinSeq x));
then i
in (
Seg m) by
A6,
FINSEQ_1:def 3;
hence (fx
. i)
= (f
. ((
ProjFinSeq x)
. i)) by
A8;
end;
then
A10: (
Sum fx)
= (f
. x) by
A6,
A9,
Th16;
reconsider x0 = x as
Element of (
REAL m);
A11: for i be
Nat st 1
<= i & i
<= m holds ex v be
Element of (
REAL n) st v
= (fx
. i) &
|.v.|
<= (
|.x.|
*
|.(f
. (
Base_FinSeq (m,i))).|)
proof
let i be
Nat;
assume
A12: 1
<= i & i
<= m;
then
A13: ((
ProjFinSeq x)
. i)
= (
|(x, (
Base_FinSeq (m,i)))|
* (
Base_FinSeq (m,i))) by
EUCLID_7:def 12;
A14: i
in (
Seg m) by
A12;
then
reconsider v = (fx
. i) as
Element of (
REAL n) by
A8,
PARTFUN1: 4;
take v;
v
= (f
. ((
ProjFinSeq x)
. i)) by
A8,
A14;
then v
= (
|(x, (
Base_FinSeq (m,i)))|
* (f
. (
Base_FinSeq (m,i)))) by
A13,
Def2;
then v
= ((x0
. i)
* (f
. (
Base_FinSeq (m,i)))) by
A12,
EUCLID_7: 30;
then
|.v.|
= (
|.(x0
. i).|
*
|.(f
. (
Base_FinSeq (m,i))).|) by
EUCLID: 11;
hence thesis by
A14,
REAL_NS1: 8,
XREAL_1: 64;
end;
defpred
ZFX[
set,
set] means ex v be
Element of (
REAL n) st v
= (fx
. $1) & $2
=
|.v.|;
A15:
now
let k be
Nat;
assume k
in (
Seg m);
then
reconsider v = (fx
. k) as
Element of (
REAL n) by
A8,
PARTFUN1: 4;
|.v.|
in
REAL by
XREAL_0:def 1;
hence ex x be
Element of
REAL st
ZFX[k, x];
end;
consider zfx be
FinSequence of
REAL such that
A16: (
dom zfx)
= (
Seg m) & for i be
Nat st i
in (
Seg m) holds
ZFX[i, (zfx
. i)] from
FINSEQ_1:sch 5(
A15);
A17: (
len zfx)
= m by
A1,
A16,
FINSEQ_1:def 3;
then
A18: (
len fx)
= (
len zfx) by
A8,
FINSEQ_1:def 3;
for i be
Nat st i
in (
dom fx) holds ex v be
Element of (
REAL n) st v
= (fx
. i) & (zfx
. i)
=
|.v.| by
A8,
A16;
then
A19:
|.(f
. x).|
<= (
Sum zfx) by
A10,
A18,
Th17;
A20:
now
let j be
Nat;
assume
A21: j
in (
Seg m);
then
A22: ex v be
Element of (
REAL n) st v
= (fx
. j) & (zfx
. j)
=
|.v.| by
A16;
1
<= j & j
<= m by
A21,
FINSEQ_1: 1;
then ex v be
Element of (
REAL n) st v
= (fx
. j) &
|.v.|
<= (
|.x.|
*
|.(f
. (
Base_FinSeq (m,j))).|) by
A11;
then (zfx
. j)
<= (
|.x.|
* (KS
. j)) by
A4,
A21,
A22;
hence (zfx
. j)
<= ((
|.x.|
* KS)
. j) by
VALUED_1: 6;
end;
A23: zfx is
Element of (m
-tuples_on
REAL ) by
A17,
FINSEQ_2: 92;
(
len KS)
= m by
A1,
A4,
FINSEQ_1:def 3;
then
reconsider KS0 = KS as
Element of (
REAL m0) by
FINSEQ_2: 92;
(
|.x.|
* KS0) is
Element of (m0
-tuples_on
REAL );
then (
Sum zfx)
<= (
Sum (
|.x.|
* KS)) by
A20,
A23,
RVSUM_1: 82;
then (
Sum zfx)
<= (
|.x.|
* (
Sum KS)) by
RVSUM_1: 87;
then
A24:
|.(f
. x).|
<= (
|.x.|
* (
Sum KS)) by
A19,
XXREAL_0: 2;
(
0
+ (
Sum KS))
<= (1
+ (
Sum KS)) by
XREAL_1: 6;
then (
|.x.|
* (
Sum KS))
<= (
|.x.|
* (1
+ (
Sum KS))) by
XREAL_1: 64;
hence
|.(f
. x).|
<= (K
*
|.x.|) by
A24,
XXREAL_0: 2;
end;
hence thesis by
A5;
end;
end
registration
let m, n;
cluster ->
Lipschitzian for
LinearOperator of (
REAL-NS m), (
REAL-NS n);
coherence
proof
let f be
LinearOperator of (
REAL-NS m), (
REAL-NS n);
reconsider g = f as
LinearOperator of m, n by
Th14;
consider K be
Real such that
A1:
0
<= K & for x be
Element of (
REAL m) holds
|.(g
. x).|
<= (K
*
|.x.|) by
Def3;
take K;
thus
0
<= K by
A1;
let x be
Point of (
REAL-NS m);
reconsider x1 = x as
Element of (
REAL m) by
REAL_NS1:def 4;
reconsider y = (g
. x1) as
Element of (
REAL n);
||.(f
. x).||
=
|.y.| by
REAL_NS1: 1;
then
||.(f
. x).||
<= (K
*
|.x1.|) by
A1;
hence
||.(f
. x).||
<= (K
*
||.x.||) by
REAL_NS1: 1;
end;
end
theorem ::
PDIFF_6:18
Th18: for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m) st f
is_differentiable_in x holds (
diff (f,x)) is
LinearOperator of (
REAL-NS m), (
REAL-NS n)
proof
let m,n be non
zero
Nat;
let f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m);
assume f
is_differentiable_in x;
then (
diff (f,x)) is
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))) by
Th10;
hence thesis by
LOPBAN_1:def 9;
end;
theorem ::
PDIFF_6:19
for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m) st f
is_differentiable_in x holds (
diff (f,x)) is
LinearOperator of m, n
proof
let m,n be non
zero
Nat;
let f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m);
assume f
is_differentiable_in x;
then (
diff (f,x)) is
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
Th18;
hence thesis by
Th14;
end;
theorem ::
PDIFF_6:20
for n,m be non
zero
Nat, g1,g2 be
PartFunc of (
REAL m), (
REAL n), y0 be
Element of (
REAL m) st g1
is_differentiable_in y0 & g2
is_differentiable_in y0 holds (g1
+ g2)
is_differentiable_in y0 & (
diff ((g1
+ g2),y0))
= ((
diff (g1,y0))
+ (
diff (g2,y0)))
proof
let n,m be non
zero
Nat, g1,g2 be
PartFunc of (
REAL m), (
REAL n), y0 be
Element of (
REAL m);
assume
A1: g1
is_differentiable_in y0 & g2
is_differentiable_in y0;
reconsider f1 = g1 as
PartFunc of (
REAL-NS m), (
REAL-NS n) by
Th1;
reconsider f2 = g2 as
PartFunc of (
REAL-NS m), (
REAL-NS n) by
Th1;
reconsider x0 = y0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
f1
is_differentiable_in x0 & f2
is_differentiable_in x0 by
A1,
Th2;
then
A2: (f1
+ f2)
is_differentiable_in x0 & (
diff ((f1
+ f2),x0))
= ((
diff (f1,x0))
+ (
diff (f2,x0))) by
NDIFF_1: 35;
(f1
+ f2)
= (g1
+ g2) by
Th4;
hence (g1
+ g2)
is_differentiable_in y0 by
A2,
Th2;
then
A3: (
diff ((g1
+ g2),y0))
= (
diff ((f1
+ f2),x0)) by
Th4,
Th3;
(
diff (f1,x0))
= (
diff (g1,y0)) & (
diff (f2,x0))
= (
diff (g2,y0)) by
Th3,
A1;
hence (
diff ((g1
+ g2),y0))
= ((
diff (g1,y0))
+ (
diff (g2,y0))) by
A2,
A3,
Th7;
end;
theorem ::
PDIFF_6:21
for n,m be non
zero
Nat, g1,g2 be
PartFunc of (
REAL m), (
REAL n), y0 be
Element of (
REAL m) st g1
is_differentiable_in y0 & g2
is_differentiable_in y0 holds (g1
- g2)
is_differentiable_in y0 & (
diff ((g1
- g2),y0))
= ((
diff (g1,y0))
- (
diff (g2,y0)))
proof
let n,m be non
zero
Nat, g1,g2 be
PartFunc of (
REAL m), (
REAL n), y0 be
Element of (
REAL m);
assume
A1: g1
is_differentiable_in y0 & g2
is_differentiable_in y0;
reconsider f1 = g1 as
PartFunc of (
REAL-NS m), (
REAL-NS n) by
Th1;
reconsider f2 = g2 as
PartFunc of (
REAL-NS m), (
REAL-NS n) by
Th1;
reconsider x0 = y0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
f1
is_differentiable_in x0 & f2
is_differentiable_in x0 by
A1,
Th2;
then
A2: (f1
- f2)
is_differentiable_in x0 & (
diff ((f1
- f2),x0))
= ((
diff (f1,x0))
- (
diff (f2,x0))) by
NDIFF_1: 36;
(f1
- f2)
= (g1
- g2) by
Th5;
hence (g1
- g2)
is_differentiable_in y0 by
A2,
Th2;
then
A3: (
diff ((g1
- g2),y0))
= (
diff ((f1
- f2),x0)) by
Th3,
Th5;
(
diff (f1,x0))
= (
diff (g1,y0)) & (
diff (f2,x0))
= (
diff (g2,y0)) by
Th3,
A1;
hence (
diff ((g1
- g2),y0))
= ((
diff (g1,y0))
- (
diff (g2,y0))) by
A2,
A3,
Th8;
end;
theorem ::
PDIFF_6:22
for n,m be non
zero
Nat, g be
PartFunc of (
REAL m), (
REAL n), y0 be
Element of (
REAL m), r be
Real st g
is_differentiable_in y0 holds (r
(#) g)
is_differentiable_in y0 & (
diff ((r
(#) g),y0))
= (r
(#) (
diff (g,y0)))
proof
let n,m be non
zero
Nat, g be
PartFunc of (
REAL m), (
REAL n), y0 be
Element of (
REAL m), r be
Real;
assume
A1: g
is_differentiable_in y0;
reconsider f = g as
PartFunc of (
REAL-NS m), (
REAL-NS n) by
Th1;
reconsider x0 = y0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
f
is_differentiable_in x0 by
A1,
Th2;
then
A2: (r
(#) f)
is_differentiable_in x0 & (
diff ((r
(#) f),x0))
= (r
* (
diff (f,x0))) by
NDIFF_1: 37;
(r
(#) f)
= (r
(#) g) by
Th6;
hence (r
(#) g)
is_differentiable_in y0 by
A2,
Th2;
then (
diff ((r
(#) g),y0))
= (
diff ((r
(#) f),x0)) by
Th3,
Th6;
hence (
diff ((r
(#) g),y0))
= (r
(#) (
diff (g,y0))) by
A2,
Th9,
Th3,
A1;
end;
theorem ::
PDIFF_6:23
Th23: for x0 be
Element of (
REAL m), y0 be
Point of (
REAL-NS m), r be
Real st x0
= y0 holds { y where y be
Element of (
REAL m) :
|.(y
- x0).|
< r }
= { z where z be
Point of (
REAL-NS m) :
||.(z
- y0).||
< r }
proof
let x0 be
Element of (
REAL m), y0 be
Point of (
REAL-NS m), r be
Real;
assume
A1: x0
= y0;
now
let w be
object;
assume w
in { y where y be
Element of (
REAL m) :
|.(y
- x0).|
< r };
then
consider y be
Element of (
REAL m) such that
A2: y
= w &
|.(y
- x0).|
< r;
reconsider z = y as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
||.(z
- y0).||
< r by
A1,
A2,
REAL_NS1: 1,
REAL_NS1: 5;
hence w
in { z1 where z1 be
Point of (
REAL-NS m) :
||.(z1
- y0).||
< r } by
A2;
end;
then
A3: { y where y be
Element of (
REAL m) :
|.(y
- x0).|
< r }
c= { z where z be
Point of (
REAL-NS m) :
||.(z
- y0).||
< r } by
TARSKI:def 3;
now
let w be
object;
assume w
in { z where z be
Point of (
REAL-NS m) :
||.(z
- y0).||
< r };
then
consider y be
Point of (
REAL-NS m) such that
A4: y
= w &
||.(y
- y0).||
< r;
reconsider z = y as
Element of (
REAL m) by
REAL_NS1:def 4;
|.(z
- x0).|
< r by
A1,
A4,
REAL_NS1: 1,
REAL_NS1: 5;
hence w
in { z1 where z1 be
Element of (
REAL m) :
|.(z1
- x0).|
< r } by
A4;
end;
then { z where z be
Point of (
REAL-NS m) :
||.(z
- y0).||
< r }
c= { y where y be
Element of (
REAL m) :
|.(y
- x0).|
< r } by
TARSKI:def 3;
hence thesis by
A3,
XBOOLE_0:def 10;
end;
theorem ::
PDIFF_6:24
Th24: for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), x0 be
Element of (
REAL m), L,R be
Function of (
REAL m), (
REAL n) st L is
LinearOperator of m, n & ex r0 be
Real st
0
< r0 & { y where y be
Element of (
REAL m) :
|.(y
- x0).|
< r0 }
c= (
dom f) & (for r be
Real st r
>
0 holds ex d be
Real st d
>
0 & (for z be
Element of (
REAL m), w be
Element of (
REAL n) st z
<> (
0* m) &
|.z.|
< d & w
= (R
. z) holds ((
|.z.|
" )
*
|.w.|)
< r)) & for x be
Element of (
REAL m) st
|.(x
- x0).|
< r0 holds ((f
/. x)
- (f
/. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) holds f
is_differentiable_in x0 & (
diff (f,x0))
= L
proof
let m,n be non
zero
Nat;
let f be
PartFunc of (
REAL m), (
REAL n), x0 be
Element of (
REAL m), L,R be
Function of (
REAL m), (
REAL n);
reconsider g = f as
PartFunc of (
REAL-NS m), (
REAL-NS n) by
Th1;
reconsider y0 = x0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
assume
A1: L is
LinearOperator of m, n;
given r0 be
Real such that
A2:
0
< r0 & { y where y be
Element of (
REAL m) :
|.(y
- x0).|
< r0 }
c= (
dom f) & (for r be
Real st r
>
0 holds ex d be
Real st d
>
0 & (for z be
Element of (
REAL m), w be
Element of (
REAL n) st z
<> (
0* m) &
|.z.|
< d & w
= (R
. z) holds ((
|.z.|
" )
*
|.w.|)
< r)) & for x be
Element of (
REAL m) st
|.(x
- x0).|
< r0 holds ((f
/. x)
- (f
/. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
L is
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
A1,
Th14;
then
reconsider GL = L as
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))) by
LOPBAN_1:def 9;
(
REAL m)
= the
carrier of (
REAL-NS m) & (
REAL n)
= the
carrier of (
REAL-NS n) by
REAL_NS1:def 4;
then
reconsider GR = R as
Function of (
REAL-NS m), (
REAL-NS n);
the
carrier of (
REAL-NS m)
= (
REAL m) by
REAL_NS1:def 4;
then
A3: (
dom R)
= the
carrier of (
REAL-NS m) by
FUNCT_2:def 1;
now
let r be
Real;
assume r
>
0 ;
then
consider d be
Real such that
A4: d
>
0 & (for z be
Element of (
REAL m), w be
Element of (
REAL n) st z
<> (
0* m) &
|.z.|
< d & w
= (R
. z) holds ((
|.z.|
" )
*
|.w.|)
< r) by
A2;
take d;
thus d
>
0 by
A4;
thus for z be
Point of (
REAL-NS m) st z
<> (
0. (
REAL-NS m)) &
||.z.||
< d holds ((
||.z.||
" )
*
||.(GR
/. z).||)
< r
proof
let z be
Point of (
REAL-NS m);
assume
A5: z
<> (
0. (
REAL-NS m)) &
||.z.||
< d;
reconsider s = z as
Element of (
REAL m) by
REAL_NS1:def 4;
reconsider w = (R
. s) as
Element of (
REAL n);
A6: s
<> (
0* m) by
A5,
REAL_NS1:def 4;
|.s.|
< d by
A5,
REAL_NS1: 1;
then ((
|.s.|
" )
*
|.w.|)
< r by
A4,
A6;
then ((
||.z.||
" )
*
|.w.|)
< r by
REAL_NS1: 1;
hence ((
||.z.||
" )
*
||.(GR
/. z).||)
< r by
REAL_NS1: 1;
end;
end;
then
reconsider GR as
RestFunc of (
REAL-NS m), (
REAL-NS n) by
NDIFF_1: 23;
set N = { y where y be
Point of (
REAL-NS m) :
||.(y
- y0).||
< r0 };
reconsider N as
Neighbourhood of y0 by
A2,
NFCONT_1: 3;
A7: N
c= (
dom g) by
A2,
Th23;
A8: for y be
Point of (
REAL-NS m) st y
in N holds ((g
/. y)
- (g
/. y0))
= ((GL
. (y
- y0))
+ (GR
/. (y
- y0)))
proof
let y be
Point of (
REAL-NS m);
assume
A9: y
in N;
reconsider x = y as
Element of (
REAL m) by
REAL_NS1:def 4;
x
in { s where s be
Element of (
REAL m) :
|.(s
- x0).|
< r0 } by
A9,
Th23;
then ex s be
Element of (
REAL m) st s
= x &
|.(s
- x0).|
< r0;
then
A10: ((f
/. x)
- (f
/. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A2;
A11: y0
in N by
NFCONT_1: 4;
then (f
/. x)
= (f
. x) & (f
/. x0)
= (f
. x0) by
A9,
A7,
PARTFUN1:def 6;
then
A12: (f
/. x)
= (g
/. y) & (f
/. x0)
= (g
/. y0) by
A9,
A11,
A7,
PARTFUN1:def 6;
(x
- x0)
= (y
- y0) by
REAL_NS1: 5;
then (L
. (x
- x0))
= (GL
. (y
- y0)) & (R
. (x
- x0))
= (GR
/. (y
- y0)) by
A3,
PARTFUN1:def 6;
then ((L
. (x
- x0))
+ (R
. (x
- x0)))
= ((GL
. (y
- y0))
+ (GR
/. (y
- y0))) by
REAL_NS1: 2;
hence ((g
/. y)
- (g
/. y0))
= ((GL
. (y
- y0))
+ (GR
/. (y
- y0))) by
A10,
A12,
REAL_NS1: 5;
end;
then
A13: g
is_differentiable_in y0 by
A7,
NDIFF_1:def 6;
hence
A14: f
is_differentiable_in x0 by
Th2;
(
diff (g,y0))
= GL by
A13,
A8,
A7,
NDIFF_1:def 7;
hence thesis by
Th3,
A14;
end;
theorem ::
PDIFF_6:25
for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), x0 be
Element of (
REAL m) holds f
is_differentiable_in x0 iff ex r0 be
Real st
0
< r0 & { y where y be
Element of (
REAL m) :
|.(y
- x0).|
< r0 }
c= (
dom f) & ex L,R be
Function of (
REAL m), (
REAL n) st L is
LinearOperator of m, n & (for r be
Real st r
>
0 holds ex d be
Real st d
>
0 & (for z be
Element of (
REAL m), w be
Element of (
REAL n) st z
<> (
0* m) &
|.z.|
< d & w
= (R
. z) holds ((
|.z.|
" )
*
|.w.|)
< r)) & for x be
Element of (
REAL m) st
|.(x
- x0).|
< r0 holds ((f
/. x)
- (f
/. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)))
proof
let m,n be non
zero
Nat;
let f be
PartFunc of (
REAL m), (
REAL n), x0 be
Element of (
REAL m);
reconsider g = f as
PartFunc of (
REAL-NS m), (
REAL-NS n) by
Th1;
reconsider y0 = x0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
hereby
assume f
is_differentiable_in x0;
then g
is_differentiable_in y0 by
Th2;
then
consider N be
Neighbourhood of y0 such that
A1: N
c= (
dom g) & ex GL be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), GR be
RestFunc of (
REAL-NS m), (
REAL-NS n) st for y be
Point of (
REAL-NS m) st y
in N holds ((g
/. y)
- (g
/. y0))
= ((GL
. (y
- y0))
+ (GR
/. (y
- y0))) by
NDIFF_1:def 6;
consider GL be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), GR be
RestFunc of (
REAL-NS m), (
REAL-NS n) such that
A2: for y be
Point of (
REAL-NS m) st y
in N holds ((g
/. y)
- (g
/. y0))
= ((GL
. (y
- y0))
+ (GR
/. (y
- y0))) by
A1;
consider r0 be
Real such that
A3:
0
< r0 & { y where y be
Point of (
REAL-NS m) :
||.(y
- y0).||
< r0 }
c= N by
NFCONT_1:def 1;
take r0;
thus
0
< r0 by
A3;
{ y where y be
Point of (
REAL-NS m) :
||.(y
- y0).||
< r0 }
c= (
dom g) by
A3,
A1,
XBOOLE_1: 1;
hence { y where y be
Element of (
REAL m) :
|.(y
- x0).|
< r0 }
c= (
dom f) by
Th23;
A4: GR is
total by
NDIFF_1:def 5;
then
A5: (
dom GR)
= the
carrier of (
REAL-NS m) by
PARTFUN1:def 2;
A6: the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider L = GL as
Function of (
REAL m), (
REAL n) by
LOPBAN_1:def 9;
reconsider R = GR as
Function of (
REAL m), (
REAL n) by
A6,
A4;
take L, R;
GL is
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
LOPBAN_1:def 9;
hence L is
LinearOperator of m, n by
Th14;
thus for r be
Real st r
>
0 holds ex d be
Real st d
>
0 & (for z be
Element of (
REAL m), w be
Element of (
REAL n) st z
<> (
0* m) &
|.z.|
< d & w
= (R
. z) holds ((
|.z.|
" )
*
|.w.|)
< r)
proof
let r be
Real;
assume r
>
0 ;
then
consider d be
Real such that
A7: d
>
0 & (for z be
Point of (
REAL-NS m) st z
<> (
0. (
REAL-NS m)) &
||.z.||
< d holds ((
||.z.||
" )
*
||.(GR
/. z).||)
< r) by
A4,
NDIFF_1: 23;
take d;
thus d
>
0 by
A7;
let z be
Element of (
REAL m), w be
Element of (
REAL n);
assume
A8: z
<> (
0* m) &
|.z.|
< d & w
= (R
. z);
reconsider s = z as
Element of (
REAL-NS m) by
REAL_NS1:def 4;
A9: s
<> (
0. (
REAL-NS m)) by
A8,
REAL_NS1:def 4;
||.s.||
< d by
A8,
REAL_NS1: 1;
then ((
||.s.||
" )
*
||.(GR
/. s).||)
< r by
A7,
A9;
then ((
|.z.|
" )
*
||.(GR
/. s).||)
< r by
REAL_NS1: 1;
hence ((
|.z.|
" )
*
|.w.|)
< r by
A5,
A8,
PARTFUN1:def 6,
REAL_NS1: 1;
end;
thus for x be
Element of (
REAL m) st
|.(x
- x0).|
< r0 holds ((f
/. x)
- (f
/. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)))
proof
let x be
Element of (
REAL m);
assume
|.(x
- x0).|
< r0;
then x
in { s where s be
Element of (
REAL m) :
|.(s
- x0).|
< r0 };
then
A10: x
in { y where y be
Point of (
REAL-NS m) :
||.(y
- y0).||
< r0 } by
Th23;
reconsider y = x as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
A11: ((g
/. y)
- (g
/. y0))
= ((GL
. (y
- y0))
+ (GR
/. (y
- y0))) by
A3,
A10,
A2;
A12: y
in N & y0
in N by
A3,
A10,
NFCONT_1: 4;
then (f
/. x)
= (f
. x) & (f
/. x0)
= (f
. x0) by
A1,
PARTFUN1:def 6;
then
A13: (f
/. x)
= (g
/. y) & (f
/. x0)
= (g
/. y0) by
A12,
A1,
PARTFUN1:def 6;
(x
- x0)
= (y
- y0) by
REAL_NS1: 5;
then (L
. (x
- x0))
= (GL
. (y
- y0)) & (R
. (x
- x0))
= (GR
/. (y
- y0)) by
A5,
PARTFUN1:def 6;
then ((L
. (x
- x0))
+ (R
. (x
- x0)))
= ((GL
. (y
- y0))
+ (GR
/. (y
- y0))) by
REAL_NS1: 2;
hence ((f
/. x)
- (f
/. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A11,
A13,
REAL_NS1: 5;
end;
end;
assume ex r0 be
Real st
0
< r0 & { y where y be
Element of (
REAL m) :
|.(y
- x0).|
< r0 }
c= (
dom f) & ex L,R be
Function of (
REAL m), (
REAL n) st L is
LinearOperator of m, n & (for r be
Real st r
>
0 holds ex d be
Real st d
>
0 & (for z be
Element of (
REAL m), w be
Element of (
REAL n) st z
<> (
0* m) &
|.z.|
< d & w
= (R
. z) holds ((
|.z.|
" )
*
|.w.|)
< r)) & for x be
Element of (
REAL m) st
|.(x
- x0).|
< r0 holds ((f
/. x)
- (f
/. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
hence f
is_differentiable_in x0 by
Th24;
end;
begin
theorem ::
PDIFF_6:26
Th26: for y1,y2 be
Point of (
REAL-NS n) holds ((
Proj (i,n))
. (y1
+ y2))
= (((
Proj (i,n))
. y1)
+ ((
Proj (i,n))
. y2))
proof
let y1,y2 be
Point of (
REAL-NS n);
reconsider yy1 = y1, yy2 = y2 as
Element of (
REAL n) by
REAL_NS1:def 4;
reconsider ry1 = (yy1
. i) as
Element of
REAL by
XREAL_0:def 1;
reconsider ry2 = (yy2
. i) as
Element of
REAL by
XREAL_0:def 1;
((
Proj (i,n))
. y1)
=
<*((
proj (i,n))
. y1)*> & ((
Proj (i,n))
. y2)
=
<*((
proj (i,n))
. y2)*> by
PDIFF_1:def 4;
then
A1: ((
Proj (i,n))
. y1)
=
<*ry1*> & ((
Proj (i,n))
. y2)
=
<*ry2*> by
PDIFF_1:def 1;
A2:
<*ry1*> is
Element of (
REAL 1) &
<*ry2*> is
Element of (
REAL 1) by
FINSEQ_2: 98;
((
Proj (i,n))
. (y1
+ y2))
=
<*((
proj (i,n))
. (y1
+ y2))*> by
PDIFF_1:def 4
.=
<*((
proj (i,n))
. (yy1
+ yy2))*> by
REAL_NS1: 2
.=
<*((yy1
+ yy2)
. i)*> by
PDIFF_1:def 1
.=
<*((yy1
. i)
+ (yy2
. i))*> by
RVSUM_1: 11
.= (
<*ry1*>
+
<*ry2*>) by
RVSUM_1: 13;
hence thesis by
A1,
A2,
REAL_NS1: 2;
end;
theorem ::
PDIFF_6:27
Th27: for y1 be
Point of (
REAL-NS n), r be
Real holds ((
Proj (i,n))
. (r
* y1))
= (r
* ((
Proj (i,n))
. y1))
proof
let y1 be
Point of (
REAL-NS n), r be
Real;
reconsider yy1 = y1 as
Element of (
REAL n) by
REAL_NS1:def 4;
reconsider y1i = (yy1
. i) as
Element of
REAL by
XREAL_0:def 1;
((
Proj (i,n))
. y1)
=
<*((
proj (i,n))
. y1)*> by
PDIFF_1:def 4;
then
A1: ((
Proj (i,n))
. y1)
=
<*y1i*> by
PDIFF_1:def 1;
A2:
<*y1i*> is
Element of (
REAL 1) by
FINSEQ_2: 98;
((
Proj (i,n))
. (r
* y1))
=
<*((
proj (i,n))
. (r
* y1))*> by
PDIFF_1:def 4
.=
<*((
proj (i,n))
. (r
* yy1))*> by
REAL_NS1: 3
.=
<*((r
* yy1)
. i)*> by
PDIFF_1:def 1
.=
<*(r
* (yy1
. i))*> by
RVSUM_1: 44
.= (r
*
<*y1i*>) by
RVSUM_1: 47;
hence thesis by
A1,
A2,
REAL_NS1: 3;
end;
theorem ::
PDIFF_6:28
Th28: for m,n be non
zero
Nat, g be
PartFunc of (
REAL-NS m), (
REAL-NS n), x0 be
Point of (
REAL-NS m), i be
Nat st 1
<= i & i
<= n & g
is_differentiable_in x0 holds ((
Proj (i,n))
* g)
is_differentiable_in x0 & ((
Proj (i,n))
* (
diff (g,x0)))
= (
diff (((
Proj (i,n))
* g),x0))
proof
let m,n be non
zero
Nat;
let g be
PartFunc of (
REAL-NS m), (
REAL-NS n), x0 be
Point of (
REAL-NS m), i be
Nat;
assume
A1: 1
<= i & i
<= n & g
is_differentiable_in x0;
then
consider N be
Neighbourhood of x0 such that
A2: N
c= (
dom g) & ex GR be
RestFunc of (
REAL-NS m), (
REAL-NS n) st for x be
Point of (
REAL-NS m) st x
in N holds ((g
/. x)
- (g
/. x0))
= (((
diff (g,x0))
. (x
- x0))
+ (GR
/. (x
- x0))) by
NDIFF_1:def 7;
consider GR be
RestFunc of (
REAL-NS m), (
REAL-NS n) such that
A3: for x be
Point of (
REAL-NS m) st x
in N holds ((g
/. x)
- (g
/. x0))
= (((
diff (g,x0))
. (x
- x0))
+ (GR
/. (x
- x0))) by
A2;
set RLB0 = (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1)));
reconsider DFG = (
diff (g,x0)) as
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
LOPBAN_1:def 9;
reconsider PG = (
Proj (i,n)) as
Function of the
carrier of (
REAL-NS n), the
carrier of (
REAL-NS 1);
(PG
* DFG) is
Function of the
carrier of (
REAL-NS m), the
carrier of (
REAL-NS 1);
then
reconsider L = ((
Proj (i,n))
* (
diff (g,x0))) as
Function of (
REAL-NS m), (
REAL-NS 1);
A4: for x,y be
VECTOR of (
REAL-NS m) holds (L
. (x
+ y))
= ((L
. x)
+ (L
. y))
proof
let x,y be
VECTOR of (
REAL-NS m);
A5: (
dom L)
= the
carrier of (
REAL-NS m) by
FUNCT_2:def 1;
A6: (DFG
. (x
+ y))
= ((DFG
. x)
+ (DFG
. y)) by
VECTSP_1:def 20;
(L
. (x
+ y))
= ((
Proj (i,n))
. (DFG
. (x
+ y))) by
A5,
FUNCT_1: 12
.= (((
Proj (i,n))
. (DFG
. x))
+ ((
Proj (i,n))
. (DFG
. y))) by
A6,
Th26
.= (((
Proj (i,n))
. (DFG
. x))
+ (L
. y)) by
A5,
FUNCT_1: 12;
hence (L
. (x
+ y))
= ((L
. x)
+ (L
. y)) by
A5,
FUNCT_1: 12;
end;
for x be
VECTOR of (
REAL-NS m), r be
Real holds (L
. (r
* x))
= (r
* (L
. x))
proof
let x be
VECTOR of (
REAL-NS m), r be
Real;
A7: (
dom L)
= the
carrier of (
REAL-NS m) by
FUNCT_2:def 1;
(DFG
. (r
* x))
= (r
* (DFG
. x)) by
LOPBAN_1:def 5;
then ((
Proj (i,n))
. (DFG
. (r
* x)))
= (r
* ((
Proj (i,n))
. (DFG
. x))) by
Th27;
then (L
. (r
* x))
= (r
* ((
Proj (i,n))
. (DFG
. x))) by
A7,
FUNCT_1: 12;
hence (L
. (r
* x))
= (r
* (L
. x)) by
A7,
FUNCT_1: 12;
end;
then
reconsider L as
LinearOperator of (
REAL-NS m), (
REAL-NS 1) by
A4,
LOPBAN_1:def 5,
VECTSP_1:def 20;
reconsider L as
Point of RLB0 by
LOPBAN_1:def 9;
A8: GR is
total by
NDIFF_1:def 5;
then
reconsider FGR = GR as
Function of the
carrier of (
REAL-NS m), the
carrier of (
REAL-NS n);
A9: ((
Proj (i,n))
* FGR) is
Function of the
carrier of (
REAL-NS m), the
carrier of (
REAL-NS 1);
((
Proj (i,n))
* GR) is
RestFunc of (
REAL-NS m), (
REAL-NS 1)
proof
A10: (
dom GR)
= the
carrier of (
REAL-NS m) by
A8,
PARTFUN1:def 2;
reconsider R = ((
Proj (i,n))
* GR) as
PartFunc of (
REAL-NS m), (
REAL-NS 1);
for r be
Real st r
>
0 holds ex d be
Real st d
>
0 & (for z be
Point of (
REAL-NS m) st z
<> (
0. (
REAL-NS m)) &
||.z.||
< d holds ((
||.z.||
" )
*
||.(R
/. z).||)
< r)
proof
let r be
Real;
assume r
>
0 ;
then
consider d be
Real such that
A11: d
>
0 & (for z be
Point of (
REAL-NS m) st z
<> (
0. (
REAL-NS m)) &
||.z.||
< d holds ((
||.z.||
" )
*
||.(GR
/. z).||)
< r) by
A8,
NDIFF_1: 23;
take d;
thus d
>
0 by
A11;
let z be
Point of (
REAL-NS m);
assume
A12: z
<> (
0. (
REAL-NS m)) &
||.z.||
< d;
A13: (GR
/. z)
= (GR
. z) by
A10,
PARTFUN1:def 6;
A14: i
in (
Seg n) by
A1;
reconsider GRz = (GR
/. z) as
Point of (
REAL-NS n);
reconsider GRz1 = GRz as
Element of (
REAL n) by
REAL_NS1:def 4;
reconsider GRzi = (GRz1
. i) as
Element of
REAL by
XREAL_0:def 1;
(
dom (
Proj (i,n)))
= the
carrier of (
REAL-NS n) by
PARTFUN1:def 2;
then
A15: z
in (
dom ((
Proj (i,n))
* GR)) by
A10,
A13,
FUNCT_1: 11;
then (((
Proj (i,n))
* GR)
. z)
= ((
Proj (i,n))
. (GR
. z)) by
FUNCT_1: 12
.=
<*((
proj (i,n))
. GRz1)*> by
A13,
PDIFF_1:def 4;
then
A16: (((
Proj (i,n))
* GR)
. z)
=
<*GRzi*> by
PDIFF_1:def 1;
A17:
|.GRzi.|
<=
||.(GR
/. z).|| by
A14,
REAL_NS1: 9;
A18:
0
<=
||.z.|| by
NORMSP_1: 4;
0
<=
|.GRzi.| by
COMPLEX1: 46;
then
A19: ((
||.z.||
" )
*
|.GRzi.|)
<= ((
||.z.||
" )
*
||.(GR
/. z).||) by
A17,
A18,
XREAL_1: 66;
((
||.z.||
" )
*
||.(GR
/. z).||)
< r by
A11,
A12;
then
A20: ((
||.z.||
" )
*
|.GRzi.|)
< r by
A19,
XXREAL_0: 2;
(((
Proj (i,n))
* GR)
. z)
in (
rng ((
Proj (i,n))
* GR)) by
A15,
FUNCT_1: 3;
then
reconsider Rz = (((
Proj (i,n))
* GR)
. z) as
VECTOR of (
REAL-NS 1);
set VGRzi =
<*GRzi*>;
VGRzi is
Element of (
REAL 1) by
FINSEQ_2: 98;
then
||.Rz.||
=
|.VGRzi.| by
A16,
REAL_NS1: 1;
then ((
||.z.||
" )
*
||.Rz.||)
< r by
A20,
JORDAN2C: 10;
hence thesis by
A15,
PARTFUN1:def 6;
end;
hence thesis by
A9,
NDIFF_1: 23;
end;
then
reconsider R = ((
Proj (i,n))
* GR) as
RestFunc of (
REAL-NS m), (
REAL-NS 1);
set pg = ((
Proj (i,n))
* g);
A21: (
dom (
Proj (i,n)))
= the
carrier of (
REAL-NS n) by
FUNCT_2:def 1;
then (
rng g)
c= (
dom (
Proj (i,n)));
then
A22: (
dom g)
= (
dom ((
Proj (i,n))
* g)) by
RELAT_1: 27;
A23: (
dom (
Proj (i,n)))
= (
REAL n) by
A21,
REAL_NS1:def 4;
A24: for x be
Point of (
REAL-NS m) st x
in N holds ((pg
/. x)
- (pg
/. x0))
= ((L
. (x
- x0))
+ (R
/. (x
- x0)))
proof
let x be
Point of (
REAL-NS m);
now
assume
A25: x
in N;
then
A26: ((g
/. x)
- (g
/. x0))
= (((
diff (g,x0))
. (x
- x0))
+ (GR
/. (x
- x0))) by
A3;
A27: x0
in N by
NFCONT_1: 4;
then
A28: (pg
/. x)
= (pg
. x) & (pg
/. x0)
= (pg
. x0) by
A2,
A22,
A25,
PARTFUN1:def 6;
A29: (g
/. x)
= (g
. x) & (g
/. x0)
= (g
. x0) by
A2,
A25,
A27,
PARTFUN1:def 6;
reconsider PGSx = ((pg
/. x)
- (pg
/. x0)) as
Element of (
REAL 1) by
REAL_NS1:def 4;
(pg
. x)
in (
rng pg) by
A2,
A22,
A25,
FUNCT_1: 3;
then
reconsider PGdx = (pg
. x) as
Element of (
REAL 1) by
REAL_NS1:def 4;
(pg
. x0)
in (
rng pg) by
A2,
A22,
A27,
FUNCT_1: 3;
then
reconsider PGdx0 = (pg
. x0) as
Element of (
REAL 1) by
REAL_NS1:def 4;
(g
. x)
in (
rng g) by
A2,
A25,
FUNCT_1: 3;
then
reconsider Gx = (g
. x) as
Element of (
REAL n) by
REAL_NS1:def 4;
(g
. x0)
in (
rng g) by
A2,
A27,
FUNCT_1: 3;
then
reconsider Gx0 = (g
. x0) as
Element of (
REAL n) by
REAL_NS1:def 4;
set ProjGx = ((
Proj (i,n))
. (g
. x));
Gx
in (
dom (
Proj (i,n))) by
A23;
then ProjGx
in (
rng (
Proj (i,n))) by
FUNCT_1: 3;
then
reconsider ProjGx as
Element of (
REAL 1) by
REAL_NS1:def 4;
set ProjGx0 = ((
Proj (i,n))
. (g
. x0));
Gx0
in (
dom (
Proj (i,n))) by
A23;
then ProjGx0
in (
rng (
Proj (i,n))) by
FUNCT_1: 3;
then
reconsider ProjGx0 as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider Gx1 = Gx as
Element of (
REAL-NS n) by
REAL_NS1:def 4;
reconsider Gx01 = Gx0 as
Element of (
REAL-NS n) by
REAL_NS1:def 4;
reconsider Gsx = (g
/. x) as
Element of (
REAL n) by
REAL_NS1:def 4;
reconsider Gsx0 = (g
/. x0) as
Element of (
REAL n) by
REAL_NS1:def 4;
set dxx0 = (x
- x0);
reconsider Ldxx0 = (L
. (x
- x0)) as
Element of (
REAL-NS 1);
A30: (
dom R)
= the
carrier of (
REAL-NS m) by
A9,
PARTFUN1:def 2;
then
A31: (R
/. (x
- x0))
= (R
. dxx0) by
PARTFUN1:def 6;
then
reconsider Rdxx0 = (R
. (x
- x0)) as
Element of (
REAL-NS 1);
reconsider Ldiff = ((
diff (g,x0))
. (x
- x0)) as
Element of (
REAL n) by
REAL_NS1:def 4;
set ProjLdiff = ((
Proj (i,n))
. Ldiff);
ProjLdiff
in (
rng (
Proj (i,n))) by
A21,
FUNCT_1: 3;
then
reconsider ProjLdiff as
Element of (
REAL 1) by
REAL_NS1:def 4;
A32: (
dom GR)
= the
carrier of (
REAL-NS m) by
A8,
PARTFUN1:def 2;
then (GR
. dxx0)
in (
rng GR) by
FUNCT_1: 3;
then
reconsider Rdiff = (GR
. dxx0) as
Element of (
REAL n) by
REAL_NS1:def 4;
A33: Rdiff
= (GR
/. dxx0) by
A32,
PARTFUN1:def 6;
set ProjRdiff = ((
Proj (i,n))
. Rdiff);
ProjRdiff
in (
rng (
Proj (i,n))) by
A23,
FUNCT_1: 3;
then
reconsider ProjRdiff as
Element of (
REAL 1) by
REAL_NS1:def 4;
(
dom L)
= the
carrier of (
REAL-NS m) by
FUNCT_2:def 1;
then (L
. (x
- x0))
= ((
Proj (i,n))
. Ldiff) & (R
. (x
- x0))
= ((
Proj (i,n))
. Rdiff) by
A30,
FUNCT_1: 12;
then
A34: (Ldxx0
+ Rdxx0)
= (ProjLdiff
+ ProjRdiff) by
REAL_NS1: 2;
((
Proj (i,n))
. Ldiff)
=
<*((
proj (i,n))
. Ldiff)*> by
PDIFF_1:def 4;
then
A35: ((
Proj (i,n))
. Ldiff)
=
<*(Ldiff
. i)*> by
PDIFF_1:def 1;
Rdiff
in (
dom (
Proj (i,n))) by
A23;
then ((
Proj (i,n))
. Rdiff)
=
<*((
proj (i,n))
. Rdiff)*> by
PDIFF_1:def 4;
then
A36: ((
Proj (i,n))
. Rdiff)
=
<*(Rdiff
. i)*> by
PDIFF_1:def 1;
reconsider diffGR = (((
diff (g,x0))
. (x
- x0))
+ (GR
/. (x
- x0))) as
Element of (
REAL n) by
REAL_NS1:def 4;
reconsider Rsdiff = (GR
/. (x
- x0)) as
Element of (
REAL n) by
REAL_NS1:def 4;
PGSx
= (PGdx
- PGdx0) by
A28,
REAL_NS1: 5
.= (ProjGx
- PGdx0) by
A2,
A22,
A25,
FUNCT_1: 12
.= (ProjGx
- ProjGx0) by
A2,
A22,
A27,
FUNCT_1: 12
.= (
<*((
proj (i,n))
. Gx1)*>
- ProjGx0) by
PDIFF_1:def 4
.= (
<*((
proj (i,n))
. Gx1)*>
-
<*((
proj (i,n))
. Gx01)*>) by
PDIFF_1:def 4
.= (
<*(Gx
. i)*>
-
<*((
proj (i,n))
. Gx01)*>) by
PDIFF_1:def 1
.= (
<*(Gx
. i)*>
-
<*(Gx0
. i)*>) by
PDIFF_1:def 1
.=
<*((Gx
. i)
- (Gx0
. i))*> by
RVSUM_1: 29
.=
<*((Gsx
- Gsx0)
. i)*> by
A29,
RVSUM_1: 27
.=
<*(diffGR
. i)*> by
A26,
REAL_NS1: 5
.=
<*((Ldiff
+ Rsdiff)
. i)*> by
REAL_NS1: 2
.=
<*((Ldiff
. i)
+ (Rsdiff
. i))*> by
RVSUM_1: 11;
hence thesis by
A31,
A34,
A35,
A36,
A33,
RVSUM_1: 13;
end;
hence thesis;
end;
hence ((
Proj (i,n))
* g)
is_differentiable_in x0 by
A2,
A22,
NDIFF_1:def 6;
hence ((
Proj (i,n))
* (
diff (g,x0)))
= (
diff (((
Proj (i,n))
* g),x0)) by
A2,
A22,
A24,
NDIFF_1:def 7;
end;
theorem ::
PDIFF_6:29
for m,n be non
zero
Nat, g be
PartFunc of (
REAL-NS m), (
REAL-NS n), x0 be
Point of (
REAL-NS m) holds g
is_differentiable_in x0 iff (for i be
Nat st 1
<= i & i
<= n holds ((
Proj (i,n))
* g)
is_differentiable_in x0)
proof
let m,n be non
zero
Nat;
let g be
PartFunc of (
REAL-NS m), (
REAL-NS n);
let x0 be
Point of (
REAL-NS m);
set RB = (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n)));
(for i be
Nat st 1
<= i & i
<= n holds ((
Proj (i,n))
* g)
is_differentiable_in x0) implies g
is_differentiable_in x0
proof
assume
A1: for i be
Nat st 1
<= i & i
<= n holds ((
Proj (i,n))
* g)
is_differentiable_in x0;
defpred
Pd[
Nat,
Element of
REAL ] means $2
>
0 & { y where y be
Point of (
REAL-NS m) :
||.(y
- x0).||
< $2 }
c= (
dom ((
Proj ($1,n))
* g)) & ex Ri be
RestFunc of (
REAL-NS m), (
REAL-NS 1) st for x be
Point of (
REAL-NS m) st x
in { y where y be
Point of (
REAL-NS m) :
||.(y
- x0).||
< $2 } holds ((((
Proj ($1,n))
* g)
/. x)
- (((
Proj ($1,n))
* g)
/. x0))
= (((
diff (((
Proj ($1,n))
* g),x0))
. (x
- x0))
+ (Ri
/. (x
- x0)));
A2: for k be
Nat st k
in (
Seg n) holds ex dk be
Element of
REAL st
Pd[k, dk]
proof
let k be
Nat;
assume k
in (
Seg n);
then 1
<= k & k
<= n by
FINSEQ_1: 1;
then ((
Proj (k,n))
* g)
is_differentiable_in x0 by
A1;
then
consider Nk be
Neighbourhood of x0 such that
A3: Nk
c= (
dom ((
Proj (k,n))
* g)) & ex Rk be
RestFunc of (
REAL-NS m), (
REAL-NS 1) st for x be
Point of (
REAL-NS m) st x
in Nk holds ((((
Proj (k,n))
* g)
/. x)
- (((
Proj (k,n))
* g)
/. x0))
= (((
diff (((
Proj (k,n))
* g),x0))
. (x
- x0))
+ (Rk
/. (x
- x0))) by
NDIFF_1:def 7;
consider dk be
Real such that
A4:
0
< dk & { y where y be
Point of (
REAL-NS m) :
||.(y
- x0).||
< dk }
c= Nk by
NFCONT_1:def 1;
reconsider dk as
Element of
REAL by
XREAL_0:def 1;
take dk;
thus
0
< dk by
A4;
thus { y where y be
Point of (
REAL-NS m) :
||.(y
- x0).||
< dk }
c= (
dom ((
Proj (k,n))
* g)) by
A4,
A3,
XBOOLE_1: 1;
thus ex Rk be
RestFunc of (
REAL-NS m), (
REAL-NS 1) st for x be
Point of (
REAL-NS m) st x
in { y where y be
Point of (
REAL-NS m) :
||.(y
- x0).||
< dk } holds ((((
Proj (k,n))
* g)
/. x)
- (((
Proj (k,n))
* g)
/. x0))
= (((
diff (((
Proj (k,n))
* g),x0))
. (x
- x0))
+ (Rk
/. (x
- x0)))
proof
consider Rk be
RestFunc of (
REAL-NS m), (
REAL-NS 1) such that
A5: for x be
Point of (
REAL-NS m) st x
in Nk holds ((((
Proj (k,n))
* g)
/. x)
- (((
Proj (k,n))
* g)
/. x0))
= (((
diff (((
Proj (k,n))
* g),x0))
. (x
- x0))
+ (Rk
/. (x
- x0))) by
A3;
take Rk;
thus for x be
Point of (
REAL-NS m) st x
in { y where y be
Point of (
REAL-NS m) :
||.(y
- x0).||
< dk } holds ((((
Proj (k,n))
* g)
/. x)
- (((
Proj (k,n))
* g)
/. x0))
= (((
diff (((
Proj (k,n))
* g),x0))
. (x
- x0))
+ (Rk
/. (x
- x0))) by
A4,
A5;
end;
end;
consider d be
FinSequence of
REAL such that
A6: (
dom d)
= (
Seg n) & for k be
Nat st k
in (
Seg n) holds
Pd[k, (d
/. k)] from
RECDEF_1:sch 17(
A2);
set d0 = (
min d);
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
(
len d)
= nn by
A6,
FINSEQ_1:def 3;
then
A7: (
min_p d)
in (
dom d) by
RFINSEQ2:def 2;
then (d
/. (
min_p d))
>
0 by
A6;
then
A8: d0
>
0 by
A7,
PARTFUN1:def 6;
defpred
LX[
set,
set] means ex y be
Element of (
REAL n) st $2
= y & for i be
Nat st i
in (
Seg n) holds (y
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. $1));
A9: for x be
Point of (
REAL-NS m) holds ex y be
Point of (
REAL-NS n) st
LX[x, y]
proof
let x be
Point of (
REAL-NS m);
defpred
YX[
Nat,
set] means $2
= ((
proj (1,1))
. ((
diff (((
Proj ($1,n))
* g),x0))
. x));
A10: for i be
Nat st i
in (
Seg n) holds ex r be
Element of
REAL st
YX[i, r]
proof
let i be
Nat;
assume i
in (
Seg n);
((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. x))
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider y be
FinSequence of
REAL such that
A11: (
dom y)
= (
Seg n) & for i be
Nat st i
in (
Seg n) holds
YX[i, (y
/. i)] from
RECDEF_1:sch 17(
A10);
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
(
len y)
= nn by
A11,
FINSEQ_1:def 3;
then
reconsider y as
Element of (
REAL n) by
FINSEQ_2: 92;
A12:
now
let i be
Nat;
assume i
in (
Seg n);
then
YX[i, (y
/. i)] & (y
/. i)
= (y
. i) by
A11,
PARTFUN1:def 6;
hence (y
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. x));
end;
reconsider y0 = y as
Point of (
REAL-NS n) by
REAL_NS1:def 4;
ex y be
Element of (
REAL n) st y0
= y & for i be
Nat st i
in (
Seg n) holds (y
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. x)) by
A12;
hence ex y0 be
Point of (
REAL-NS n) st
LX[x, y0];
end;
consider L be
Function of (
REAL-NS m), (
REAL-NS n) such that
A13: for x be
Point of (
REAL-NS m) holds
LX[x, (L
. x)] from
FUNCT_2:sch 3(
A9);
A14: for x,y be
VECTOR of (
REAL-NS m) holds (L
. (x
+ y))
= ((L
. x)
+ (L
. y))
proof
let x,y be
VECTOR of (
REAL-NS m);
consider Lx be
Element of (
REAL n) such that
A15: (L
. x)
= Lx & for i be
Nat st i
in (
Seg n) holds (Lx
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. x)) by
A13;
consider Ly be
Element of (
REAL n) such that
A16: (L
. y)
= Ly & for i be
Nat st i
in (
Seg n) holds (Ly
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. y)) by
A13;
consider Lxy be
Element of (
REAL n) such that
A17: (L
. (x
+ y))
= Lxy & for i be
Nat st i
in (
Seg n) holds (Lxy
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. (x
+ y))) by
A13;
(
dom Lxy)
= (
Seg n) by
FINSEQ_1: 89;
then
A18: (
dom Lxy)
= (
dom (Lx
+ Ly)) by
FINSEQ_1: 89;
for i0 be
Nat st i0
in (
dom Lxy) holds (Lxy
. i0)
= ((Lx
+ Ly)
. i0)
proof
let i0 be
Nat;
reconsider i = i0 as
Nat;
assume i0
in (
dom Lxy);
then i
in (
Seg n) by
FINSEQ_1: 89;
then
A19: (Lxy
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. (x
+ y))) & (Lx
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. x)) & (Ly
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. y)) by
A15,
A16,
A17;
(
diff (((
Proj (i,n))
* g),x0)) is
LinearOperator of (
REAL-NS m), (
REAL-NS 1) by
LOPBAN_1:def 9;
then
A20: ((
diff (((
Proj (i,n))
* g),x0))
. (x
+ y))
= (((
diff (((
Proj (i,n))
* g),x0))
. x)
+ ((
diff (((
Proj (i,n))
* g),x0))
. y)) by
VECTSP_1:def 20;
reconsider Diffxy = ((
diff (((
Proj (i,n))
* g),x0))
. (x
+ y)) as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider Diffx = ((
diff (((
Proj (i,n))
* g),x0))
. x) as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider Diffy = ((
diff (((
Proj (i,n))
* g),x0))
. y) as
Element of (
REAL 1) by
REAL_NS1:def 4;
Diffxy
= (Diffx
+ Diffy) by
A20,
REAL_NS1: 2;
then (Lxy
. i0)
= ((Diffx
+ Diffy)
. 1) by
A19,
PDIFF_1:def 1;
then (Lxy
. i0)
= ((Diffx
. 1)
+ (Diffy
. 1)) by
RVSUM_1: 11;
then (Lxy
. i0)
= ((Lx
. i0)
+ (Diffy
. 1)) by
A19,
PDIFF_1:def 1;
then (Lxy
. i0)
= ((Lx
. i0)
+ (Ly
. i0)) by
A19,
PDIFF_1:def 1;
hence thesis by
RVSUM_1: 11;
end;
then Lxy
= (Lx
+ Ly) by
A18,
FINSEQ_1: 13;
hence thesis by
A15,
A16,
A17,
REAL_NS1: 2;
end;
for x be
VECTOR of (
REAL-NS m), r be
Real holds (L
. (r
* x))
= (r
* (L
. x))
proof
let x be
VECTOR of (
REAL-NS m), r be
Real;
consider Lx be
Element of (
REAL n) such that
A21: (L
. x)
= Lx & for i be
Nat st i
in (
Seg n) holds (Lx
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. x)) by
A13;
consider Lrx be
Element of (
REAL n) such that
A22: (L
. (r
* x))
= Lrx & for i be
Nat st i
in (
Seg n) holds (Lrx
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. (r
* x))) by
A13;
(
dom (r
* Lx))
= (
Seg n) by
FINSEQ_1: 89;
then
A23: (
dom (r
* Lx))
= (
dom Lrx) by
FINSEQ_1: 89;
for i0 be
Nat st i0
in (
dom (r
* Lx)) holds ((r
* Lx)
. i0)
= (Lrx
. i0)
proof
let i0 be
Nat;
reconsider i = i0 as
Nat;
assume i0
in (
dom (r
* Lx));
then i0
in (
Seg n) by
FINSEQ_1: 89;
then
A24: (Lx
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. x)) & (Lrx
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. (r
* x))) by
A21,
A22;
(
diff (((
Proj (i,n))
* g),x0)) is
LinearOperator of (
REAL-NS m), (
REAL-NS 1) by
LOPBAN_1:def 9;
then
A25: ((
diff (((
Proj (i,n))
* g),x0))
. (r
* x))
= (r
* ((
diff (((
Proj (i,n))
* g),x0))
. x)) by
LOPBAN_1:def 5;
reconsider Diffrx = ((
diff (((
Proj (i,n))
* g),x0))
. (r
* x)) as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider Diffx = ((
diff (((
Proj (i,n))
* g),x0))
. x) as
Element of (
REAL 1) by
REAL_NS1:def 4;
Diffrx
= (r
* Diffx) by
A25,
REAL_NS1: 3;
then (Lrx
. i0)
= ((r
* Diffx)
. 1) by
A24,
PDIFF_1:def 1;
then (Lrx
. i0)
= (r
* (Diffx
. 1)) by
RVSUM_1: 45;
then (Lrx
. i0)
= (r
* (Lx
. i0)) by
A24,
PDIFF_1:def 1;
hence thesis by
RVSUM_1: 45;
end;
then (r
* Lx)
= Lrx by
A23,
FINSEQ_1: 13;
hence thesis by
A21,
A22,
REAL_NS1: 3;
end;
then
reconsider L as
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
A14,
LOPBAN_1:def 5,
VECTSP_1:def 20;
reconsider L0 = L as
Point of RB by
LOPBAN_1:def 9;
deffunc
RD(
Element of (
REAL-NS m)) = (((g
/. ($1
+ x0))
- (g
/. x0))
- (L
. $1));
consider R be
Function of (
REAL-NS m), (
REAL-NS n) such that
A26: for x be
Element of (
REAL-NS m) holds (R
. x)
=
RD(x) from
FUNCT_2:sch 4;
A27: for x be
Element of (
REAL-NS m), i be
Nat st i
in (
Seg n) & (x
+ x0)
in (
dom g) holds (((
Proj (i,n))
* R)
. x)
= (((((
Proj (i,n))
* g)
/. (x
+ x0))
- (((
Proj (i,n))
* g)
/. x0))
- (((
Proj (i,n))
* L)
. x))
proof
let x be
Element of (
REAL-NS m), i be
Nat;
assume that
A28: i
in (
Seg n) and
A29: (x
+ x0)
in (
dom g);
(x0
- x0)
= (
0. (
REAL-NS m)) by
RLVECT_1: 15;
then (x0
- x0)
= (
0* m) by
REAL_NS1:def 4;
then
||.(x0
- x0).||
=
|.(
0* m).| by
REAL_NS1: 1;
then
A30:
||.(x0
- x0).||
=
0 by
EUCLID: 7;
A31:
0
< (d
/. i) & { y where y be
Point of (
REAL-NS m) :
||.(y
- x0).||
< (d
/. i) }
c= (
dom ((
Proj (i,n))
* g)) by
A28,
A6;
then x0
in { y where y be
Point of (
REAL-NS m) :
||.(y
- x0).||
< (d
/. i) } by
A30;
then
A32: x0
in (
dom ((
Proj (i,n))
* g)) by
A31;
A33: (
dom ((
Proj (i,n))
* g))
c= (
dom g) by
RELAT_1: 25;
reconsider gxx0 = (g
/. (x
+ x0)), gx0 = (g
/. x0), Lx = (L
. x) as
Element of (
REAL n) by
REAL_NS1:def 4;
reconsider Lx1 = (L
. x) as
Point of (
REAL-NS n);
A34: (
- gx0)
= ((
- 1)
* (g
/. x0)) & (
- Lx)
= ((
- 1)
* (L
. x)) by
REAL_NS1: 3;
then (gxx0
+ (
- gx0))
= ((g
/. (x
+ x0))
+ ((
- 1)
* (g
/. x0))) by
REAL_NS1: 2;
then
A35: ((gxx0
+ (
- gx0))
+ (
- Lx))
= (((g
/. (x
+ x0))
+ ((
- 1)
* (g
/. x0)))
+ ((
- 1)
* (L
. x))) by
A34,
REAL_NS1: 2;
(gxx0
- gx0)
= ((g
/. (x
+ x0))
- (g
/. x0)) by
REAL_NS1: 5;
then
A36: (((g
/. (x
+ x0))
- (g
/. x0))
- (L
. x))
= ((gxx0
- gx0)
- Lx) by
REAL_NS1: 5;
(((
Proj (i,n))
* R)
. x)
= ((
Proj (i,n))
. (R
. x)) by
FUNCT_2: 15;
then (((
Proj (i,n))
* R)
. x)
= ((
Proj (i,n))
. (((g
/. (x
+ x0))
- (g
/. x0))
- (L
. x))) by
A26;
then (((
Proj (i,n))
* R)
. x)
= (((
Proj (i,n))
. ((g
/. (x
+ x0))
+ ((
- 1)
* (g
/. x0))))
+ ((
Proj (i,n))
. ((
- 1)
* (L
. x)))) by
A36,
A35,
Th26;
then
A37: (((
Proj (i,n))
* R)
. x)
= ((((
Proj (i,n))
. (g
/. (x
+ x0)))
+ ((
Proj (i,n))
. ((
- 1)
* (g
/. x0))))
+ ((
Proj (i,n))
. ((
- 1)
* (L
. x)))) by
Th26;
((
Proj (i,n))
. ((
- 1)
* (g
/. x0)))
= ((
- 1)
* ((
Proj (i,n))
. (g
/. x0))) & ((
Proj (i,n))
. ((
- 1)
* Lx1))
= ((
- 1)
* ((
Proj (i,n))
. Lx1)) by
Th27;
then (((
Proj (i,n))
* R)
. x)
= ((((
Proj (i,n))
. (g
/. (x
+ x0)))
+ (
- ((
Proj (i,n))
. (g
/. x0))))
+ ((
- 1)
* ((
Proj (i,n))
. (L
. x)))) by
A37,
RLVECT_1: 16;
then (((
Proj (i,n))
* R)
. x)
= ((((
Proj (i,n))
. (g
/. (x
+ x0)))
+ (
- ((
Proj (i,n))
. (g
/. x0))))
+ (
- ((
Proj (i,n))
. (L
. x)))) by
RLVECT_1: 16;
then (((
Proj (i,n))
* R)
. x)
= ((((
Proj (i,n))
. (g
/. (x
+ x0)))
- ((
Proj (i,n))
. (g
/. x0)))
+ (
- ((
Proj (i,n))
. (L
. x)))) by
RLVECT_1:def 11;
then
A38: (((
Proj (i,n))
* R)
. x)
= ((((
Proj (i,n))
. (g
/. (x
+ x0)))
- ((
Proj (i,n))
. (g
/. x0)))
- ((
Proj (i,n))
. (L
. x))) by
RLVECT_1:def 11;
(g
/. (x
+ x0))
in the
carrier of (
REAL-NS n) & (g
/. x0)
in the
carrier of (
REAL-NS n);
then
A39: (g
/. (x
+ x0))
in (
dom (
Proj (i,n))) & (g
/. x0)
in (
dom (
Proj (i,n))) by
FUNCT_2:def 1;
A40: ((
Proj (i,n))
. (g
/. (x
+ x0)))
= ((
Proj (i,n))
/. (g
/. (x
+ x0)))
.= (((
Proj (i,n))
* g)
/. (x
+ x0)) by
A29,
A39,
PARTFUN2: 4;
((
Proj (i,n))
. (g
/. x0))
= ((
Proj (i,n))
/. (g
/. x0))
.= (((
Proj (i,n))
* g)
/. x0) by
A32,
A33,
A39,
PARTFUN2: 4;
hence thesis by
A38,
A40,
FUNCT_2: 15;
end;
for r be
Real st r
>
0 holds ex d be
Real st d
>
0 & for z be
Point of (
REAL-NS m) st z
<> (
0. (
REAL-NS m)) &
||.z.||
< d holds ((
||.z.||
" )
*
||.(R
/. z).||)
< r
proof
let r be
Real;
assume
A41: r
>
0 ;
set r0 = (((
sqrt n)
" )
* r);
A42: (
sqrt n)
>
0 by
SQUARE_1: 25;
then
A43: r0
>
0 by
A41,
XREAL_1: 129;
defpred
DD[
Nat,
Element of
REAL ] means $2
>
0 & for z be
Point of (
REAL-NS m) st z
<> (
0. (
REAL-NS m)) &
||.z.||
< $2 holds ((
||.z.||
" )
*
||.(((
Proj ($1,n))
* R)
/. z).||)
< r0;
A44: for k be
Nat st k
in (
Seg n) holds ex dd be
Element of
REAL st
DD[k, dd]
proof
let k be
Nat;
assume
A45: k
in (
Seg n);
then 1
<= k & k
<= n by
FINSEQ_1: 1;
then ((
Proj (k,n))
* g)
is_differentiable_in x0 by
A1;
then
consider Nk be
Neighbourhood of x0 such that
A46: Nk
c= (
dom ((
Proj (k,n))
* g)) & ex PR be
RestFunc of (
REAL-NS m), (
REAL-NS 1) st for x be
Point of (
REAL-NS m) st x
in Nk holds ((((
Proj (k,n))
* g)
/. x)
- (((
Proj (k,n))
* g)
/. x0))
= (((
diff (((
Proj (k,n))
* g),x0))
. (x
- x0))
+ (PR
/. (x
- x0))) by
NDIFF_1:def 7;
consider d0 be
Real such that
A47:
0
< d0 & { y where y be
Point of (
REAL-NS m) :
||.(y
- x0).||
< d0 }
c= Nk by
NFCONT_1:def 1;
consider PR be
RestFunc of (
REAL-NS m), (
REAL-NS 1) such that
A48: for x be
Point of (
REAL-NS m) st x
in Nk holds ((((
Proj (k,n))
* g)
/. x)
- (((
Proj (k,n))
* g)
/. x0))
= (((
diff (((
Proj (k,n))
* g),x0))
. (x
- x0))
+ (PR
/. (x
- x0))) by
A46;
PR is
total by
NDIFF_1:def 5;
then
consider d1 be
Real such that
A49: d1
>
0 & for z be
Point of (
REAL-NS m) st z
<> (
0. (
REAL-NS m)) &
||.z.||
< d1 holds ((
||.z.||
" )
*
||.(PR
/. z).||)
< r0 by
A43,
NDIFF_1: 23;
reconsider d0, d1 as
Real;
reconsider dd = (
min (d0,d1)) as
Element of
REAL by
XREAL_0:def 1;
take dd;
for z be
Point of (
REAL-NS m) st z
<> (
0. (
REAL-NS m)) &
||.z.||
< dd holds ((
||.z.||
" )
*
||.(((
Proj (k,n))
* R)
/. z).||)
< r0
proof
let z be
Point of (
REAL-NS m);
assume
A50: z
<> (
0. (
REAL-NS m)) &
||.z.||
< dd;
dd
<= d1 by
XXREAL_0: 17;
then
||.z.||
< d1 by
A50,
XXREAL_0: 2;
then
A51: ((
||.z.||
" )
*
||.(PR
/. z).||)
< r0 by
A50,
A49;
dd
<= d0 by
XXREAL_0: 17;
then
A52:
||.z.||
< d0 by
A50,
XXREAL_0: 2;
A53: ((z
+ x0)
- x0)
= z by
RLVECT_4: 1;
then
A54: (z
+ x0)
in { y where y be
Point of (
REAL-NS m) :
||.(y
- x0).||
< d0 } by
A52;
then (z
+ x0)
in Nk by
A47;
then
A55: (z
+ x0)
in (
dom ((
Proj (k,n))
* g)) by
A46;
((((
Proj (k,n))
* g)
/. (z
+ x0))
- (((
Proj (k,n))
* g)
/. x0))
= (((
diff (((
Proj (k,n))
* g),x0))
. ((z
+ x0)
- x0))
+ (PR
/. ((z
+ x0)
- x0))) by
A54,
A47,
A48;
then
A56: (PR
/. z)
= (((((
Proj (k,n))
* g)
/. (z
+ x0))
- (((
Proj (k,n))
* g)
/. x0))
- ((
diff (((
Proj (k,n))
* g),x0))
. z)) by
A53,
RLVECT_4: 1;
(
dom ((
Proj (k,n))
* g))
c= (
dom g) by
RELAT_1: 25;
then
A57: (((
Proj (k,n))
* R)
. z)
= (((((
Proj (k,n))
* g)
/. (z
+ x0))
- (((
Proj (k,n))
* g)
/. x0))
- (((
Proj (k,n))
* L)
. z)) by
A55,
A45,
A27;
consider y be
Element of (
REAL n) such that
A58: (L
. z)
= y & for i be
Nat st i
in (
Seg n) holds (y
. i)
= ((
proj (1,1))
. ((
diff (((
Proj (i,n))
* g),x0))
. z)) by
A13;
A59: (y
. k)
= ((
proj (1,1))
. ((
diff (((
Proj (k,n))
* g),x0))
. z)) by
A58,
A45;
((
diff (((
Proj (k,n))
* g),x0))
. z) is
Element of (
REAL 1) by
REAL_NS1:def 4;
then
consider Dk be
Element of
REAL such that
A60: ((
diff (((
Proj (k,n))
* g),x0))
. z)
=
<*Dk*> by
FINSEQ_2: 97;
reconsider y1 = y as
Point of (
REAL-NS n) by
REAL_NS1:def 4;
(
dom L)
= the
carrier of (
REAL-NS m) by
FUNCT_2:def 1;
then (((
Proj (k,n))
* L)
. z)
= ((
Proj (k,n))
. (L
. z)) by
FUNCT_1: 13;
then (((
Proj (k,n))
* L)
. z)
=
<*((
proj (k,n))
. y1)*> by
A58,
PDIFF_1:def 4;
then (((
Proj (k,n))
* L)
. z)
=
<*((
proj (1,1))
. ((
diff (((
Proj (k,n))
* g),x0))
. z))*> by
A59,
PDIFF_1:def 1;
hence thesis by
A51,
A56,
A57,
A60,
PDIFF_1: 1;
end;
hence thesis by
A47,
A49,
XXREAL_0: 21;
end;
consider dd be
FinSequence of
REAL such that
A61: (
dom dd)
= (
Seg n) & for i be
Nat st i
in (
Seg n) holds
DD[i, (dd
/. i)] from
RECDEF_1:sch 17(
A44);
set d = (
min dd);
take d;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
(
len dd)
= nn by
A61,
FINSEQ_1:def 3;
then
A62: (
min_p dd)
in (
dom dd) by
RFINSEQ2:def 2;
then
A63: (dd
/. (
min_p dd))
>
0 by
A61;
for z be
Point of (
REAL-NS m) st z
<> (
0. (
REAL-NS m)) &
||.z.||
< d holds ((
||.z.||
" )
*
||.(R
/. z).||)
< r
proof
let z be
Point of (
REAL-NS m);
assume
A64: z
<> (
0. (
REAL-NS m)) &
||.z.||
< d;
reconsider Rz = (R
/. z) as
Element of (
REAL n) by
REAL_NS1:def 4;
reconsider zr = ((
||.z.||
* r0)
^2 ) as
Element of
REAL by
XREAL_0:def 1;
reconsider R0 = (n
|-> zr) as
Element of (n
-tuples_on
REAL );
reconsider SRz = (
sqr Rz) as
Element of (n
-tuples_on
REAL );
||.z.||
<>
0 by
A64,
NORMSP_0:def 5;
then
A65:
||.z.||
>
0 by
NORMSP_1: 4;
A66: for i0 be
Nat st i0
in (
Seg n) holds (SRz
. i0)
< (R0
. i0)
proof
let i0 be
Nat;
reconsider i = i0 as
Nat;
assume
A67: i0
in (
Seg n);
then i
in (
dom Rz) by
FINSEQ_2: 124;
then ((
sqr Rz)
. i)
= (
sqrreal
. (Rz
. i)) by
FUNCT_1: 13;
then
A68: ((
sqr Rz)
. i)
= ((Rz
. i)
^2 ) by
RVSUM_1:def 2;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
1
<= i & i
<= nn by
A67,
FINSEQ_1: 1;
then 1
<= i & i
<= (
len dd) by
A61,
FINSEQ_1:def 3;
then d
<= (dd
. i) by
RFINSEQ2: 2;
then d
<= (dd
/. i) by
A67,
A61,
PARTFUN1:def 6;
then
||.z.||
< (dd
/. i) by
A64,
XXREAL_0: 2;
then ((
||.z.||
" )
*
||.(((
Proj (i,n))
* R)
/. z).||)
< r0 by
A64,
A67,
A61;
then
A69:
||.(((
Proj (i,n))
* R)
/. z).||
< (r0
/ (
||.z.||
" )) by
A65,
XREAL_1: 81;
(Rz
. i)
in
REAL by
XREAL_0:def 1;
then
reconsider Rzi =
<*(Rz
. i)*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
(((
Proj (i,n))
* R)
. z)
= ((
Proj (i,n))
. (R
. z)) by
FUNCT_2: 15;
then (((
Proj (i,n))
* R)
. z)
=
<*((
proj (i,n))
. Rz)*> by
PDIFF_1:def 4;
then (((
Proj (i,n))
* R)
. z)
=
<*(Rz
. i)*> by
PDIFF_1:def 1;
then
||.(((
Proj (i,n))
* R)
. z).||
=
|.Rzi.| by
REAL_NS1: 1;
then
|.(Rz
. i).|
< (
||.z.||
* r0) by
A69,
JORDAN2C: 10;
then (
|.(Rz
. i).|
^2 )
< ((
||.z.||
* r0)
^2 ) by
COMPLEX1: 46,
SQUARE_1: 16;
then ((Rz
. i0)
^2 )
< ((
||.z.||
* r0)
^2 ) by
COMPLEX1: 75;
hence thesis by
A67,
A68,
FINSEQ_2: 57;
end;
A70: for i be
Nat st i
in (
dom (
sqr Rz)) holds
0
<= ((
sqr Rz)
. i)
proof
let i be
Nat;
assume i
in (
dom (
sqr Rz));
then i
in (
dom (
sqrreal
* Rz)) & (
dom (
sqrreal
* Rz))
c= (
dom Rz) by
RELAT_1: 25;
then ((
sqr Rz)
. i)
= (
sqrreal
. (Rz
. i)) by
FUNCT_1: 13;
then ((
sqr Rz)
. i)
= ((Rz
. i)
^2 ) by
RVSUM_1:def 2;
hence thesis by
XREAL_1: 63;
end;
A71: ((
||.z.||
* r0)
^2 )
>=
0 by
XREAL_1: 63;
A72: ex i be
Nat st i
in (
Seg n) & (SRz
. i)
< (R0
. i)
proof
take 1;
1
<= n by
NAT_1: 14;
hence 1
in (
Seg n);
hence (SRz
. 1)
< (R0
. 1) by
A66;
end;
A73: (
sqrt n)
>
0 by
SQUARE_1: 25;
for i0 be
Nat st i0
in (
Seg n) holds (SRz
. i0)
<= (R0
. i0) by
A66;
then (
Sum SRz)
< (
Sum R0) by
A72,
RVSUM_1: 83;
then (
Sum (
sqr Rz))
< (n
* ((
||.z.||
* r0)
^2 )) by
RVSUM_1: 80;
then
|.Rz.|
< (
sqrt (n
* ((
||.z.||
* r0)
^2 ))) by
A70,
RVSUM_1: 84,
SQUARE_1: 27;
then
|.Rz.|
< ((
sqrt n)
* (
sqrt ((
||.z.||
* r0)
^2 ))) by
A71,
SQUARE_1: 29;
then
|.Rz.|
< ((
sqrt n)
*
|.(
||.z.||
* r0).|) by
COMPLEX1: 72;
then
|.Rz.|
< ((
sqrt n)
* (
||.z.||
* r0)) by
A42,
A41,
A65,
ABSVALUE:def 1;
then
|.Rz.|
< (((
sqrt n)
* r0)
*
||.z.||);
then (
|.Rz.|
/
||.z.||)
< ((
sqrt n)
* r0) by
A65,
XREAL_1: 83;
then ((
||.z.||
" )
*
||.(R
/. z).||)
< (((
sqrt n)
* ((
sqrt n)
" ))
* r) by
REAL_NS1: 1;
then ((
||.z.||
" )
*
||.(R
/. z).||)
< (1
* r) by
A73,
XCMPLX_0:def 7;
hence ((
||.z.||
" )
*
||.(R
/. z).||)
< r;
end;
hence thesis by
A63,
A62,
PARTFUN1:def 6;
end;
then
reconsider R as
RestFunc of (
REAL-NS m), (
REAL-NS n) by
NDIFF_1: 23;
set N = { y where y be
Point of (
REAL-NS m) :
||.(y
- x0).||
< d0 };
reconsider N as
Neighbourhood of x0 by
A8,
NFCONT_1: 3;
now
let x be
object;
assume x
in N;
then
consider y be
Point of (
REAL-NS m) such that
A74: x
= y &
||.(y
- x0).||
< d0;
1
<= n by
NAT_1: 14;
then
A75: 1
in (
Seg n) & 1
in (
dom d) by
A6;
then
A76: { z where z be
Point of (
REAL-NS m) :
||.(z
- x0).||
< (d
/. 1) }
c= (
dom ((
Proj (1,n))
* g)) by
A6;
(
dom ((
Proj (1,n))
* g))
c= (
dom g) by
RELAT_1: 25;
then
A77: { z where z be
Point of (
REAL-NS m) :
||.(z
- x0).||
< (d
/. 1) }
c= (
dom g) by
A76,
XBOOLE_1: 1;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
(
len d)
= nn by
A6,
FINSEQ_1:def 3;
then 1
<= (
len d) by
NAT_1: 14;
then d0
<= (d
. 1) by
RFINSEQ2: 2;
then d0
<= (d
/. 1) by
A75,
PARTFUN1:def 6;
then
||.(y
- x0).||
< (d
/. 1) by
A74,
XXREAL_0: 2;
then y
in { z where z be
Point of (
REAL-NS m) :
||.(z
- x0).||
< (d
/. 1) };
hence x
in (
dom g) by
A74,
A77;
end;
then
A78: N
c= (
dom g) by
TARSKI:def 3;
ex L be
Point of RB, R be
RestFunc of (
REAL-NS m), (
REAL-NS n) st for x be
Point of (
REAL-NS m) st x
in N holds ((g
/. x)
- (g
/. x0))
= ((L
. (x
- x0))
+ (R
/. (x
- x0)))
proof
take L0;
take R;
hereby
let x be
Point of (
REAL-NS m);
assume x
in N;
A79: (
dom R)
= the
carrier of (
REAL-NS m) by
PARTFUN1:def 2;
(R
. (x
- x0))
= (((g
/. ((x
- x0)
+ x0))
- (g
/. x0))
- (L
. (x
- x0))) by
A26;
then (R
. (x
- x0))
= (((g
/. (x
- (x0
- x0)))
- (g
/. x0))
- (L0
. (x
- x0))) by
RLVECT_1: 29;
then (R
. (x
- x0))
= (((g
/. (x
- (x0
+ (
- x0))))
- (g
/. x0))
- (L0
. (x
- x0))) by
RLVECT_1:def 11;
then (R
. (x
- x0))
= (((g
/. (x
- (
0. (
REAL-NS m))))
- (g
/. x0))
- (L0
. (x
- x0))) by
RLVECT_1: 5;
then (R
. (x
- x0))
= (((g
/. x)
- (g
/. x0))
- (L0
. (x
- x0))) by
RLVECT_1: 13;
then (R
. (x
- x0))
= (((g
/. x)
- (g
/. x0))
+ (
- (L0
. (x
- x0)))) by
RLVECT_1:def 11;
then (R
/. (x
- x0))
= (((g
/. x)
- (g
/. x0))
+ (
- (L0
. (x
- x0)))) by
A79,
PARTFUN1:def 6;
then ((L0
. (x
- x0))
+ (R
/. (x
- x0)))
= (((g
/. x)
- (g
/. x0))
+ ((
- (L0
. (x
- x0)))
+ (L0
. (x
- x0)))) by
RLVECT_1:def 3;
then ((L0
. (x
- x0))
+ (R
/. (x
- x0)))
= (((g
/. x)
- (g
/. x0))
+ (
0. (
REAL-NS n))) by
RLVECT_1: 5;
hence ((g
/. x)
- (g
/. x0))
= ((L0
. (x
- x0))
+ (R
/. (x
- x0))) by
RLVECT_1: 4;
end;
end;
hence thesis by
A78,
NDIFF_1:def 6;
end;
hence thesis by
Th28;
end;
definition
let X be
set;
let n,m be non
zero
Nat;
let f be
PartFunc of (
REAL m), (
REAL n);
::
PDIFF_6:def4
pred f
is_differentiable_on X means X
c= (
dom f) & for x be
Element of (
REAL m) st x
in X holds (f
| X)
is_differentiable_in x;
end
theorem ::
PDIFF_6:30
Th30: for X be
set, m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n) st f
= g holds f
is_differentiable_on X iff g
is_differentiable_on X
proof
let X be
set, m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n);
assume
A1: f
= g;
A2:
now
assume
A3: f
is_differentiable_on X;
then
A4: X
c= (
dom f) & for x be
Element of (
REAL m) st x
in X holds (f
| X)
is_differentiable_in x;
now
let y be
Point of (
REAL-NS m);
reconsider x = y as
Element of (
REAL m) by
REAL_NS1:def 4;
assume y
in X;
then (f
| X)
is_differentiable_in x by
A3;
then ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st (f
| X)
= g & x
= y & g
is_differentiable_in y by
PDIFF_1:def 7;
hence (g
| X)
is_differentiable_in y by
A1;
end;
hence g
is_differentiable_on X by
A1,
A4,
NDIFF_1:def 8;
end;
now
assume
A5: g
is_differentiable_on X;
hence X
c= (
dom f) by
A1,
NDIFF_1:def 8;
A6: X
c= (
dom g) & for x be
Point of (
REAL-NS m) st x
in X holds (g
| X)
is_differentiable_in x by
A5,
NDIFF_1:def 8;
now
let y be
Element of (
REAL m);
reconsider x = y as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
assume y
in X;
then (g
| X)
is_differentiable_in x by
A5,
NDIFF_1:def 8;
hence (f
| X)
is_differentiable_in y by
A1,
PDIFF_1:def 7;
end;
hence f
is_differentiable_on X by
A1,
A6;
end;
hence thesis by
A2;
end;
theorem ::
PDIFF_6:31
for X be
set, m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n) holds f
is_differentiable_on X implies X is
Subset of (
REAL m) by
XBOOLE_1: 1;
theorem ::
PDIFF_6:32
for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), Z be
Subset of (
REAL m) st ex Z0 be
Subset of (
REAL-NS m) st Z
= Z0 & Z0 is
open holds (f
is_differentiable_on Z iff Z
c= (
dom f) & for x be
Element of (
REAL m) st x
in Z holds f
is_differentiable_in x)
proof
let m,n be non
zero
Nat;
let f be
PartFunc of (
REAL m), (
REAL n);
let Z be
Subset of (
REAL m);
assume ex Z0 be
Subset of (
REAL-NS m) st Z
= Z0 & Z0 is
open;
then
consider Z0 be
Subset of (
REAL-NS m) such that
A1: Z
= Z0 & Z0 is
open;
the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider g = f as
PartFunc of (
REAL-NS m), (
REAL-NS n);
A2: g
is_differentiable_on Z0 iff Z0
c= (
dom g) & for x be
Point of (
REAL-NS m) st x
in Z0 holds g
is_differentiable_in x by
A1,
NDIFF_1: 31;
thus f
is_differentiable_on Z implies Z
c= (
dom f) & for x be
Element of (
REAL m) st x
in Z holds f
is_differentiable_in x by
A1,
A2,
Th30,
PDIFF_1:def 7;
assume
A3: Z
c= (
dom f) & for x be
Element of (
REAL m) st x
in Z holds f
is_differentiable_in x;
now
let y be
Point of (
REAL-NS m);
reconsider x = y as
Element of (
REAL m) by
REAL_NS1:def 4;
assume y
in Z0;
then f
is_differentiable_in x by
A1,
A3;
then ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= g & x
= y & g
is_differentiable_in y by
PDIFF_1:def 7;
hence g
is_differentiable_in y;
end;
hence f
is_differentiable_on Z by
A1,
A2,
A3,
Th30;
end;
theorem ::
PDIFF_6:33
for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), Z be
Subset of (
REAL m) st f
is_differentiable_on Z holds ex Z0 be
Subset of (
REAL-NS m) st Z
= Z0 & Z0 is
open
proof
let m,n be non
zero
Nat;
let f be
PartFunc of (
REAL m), (
REAL n), Z be
Subset of (
REAL m);
assume
A1: f
is_differentiable_on Z;
the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider g = f as
PartFunc of (
REAL-NS m), (
REAL-NS n);
reconsider Z0 = Z as
Subset of (
REAL-NS m) by
REAL_NS1:def 4;
take Z0;
g
is_differentiable_on Z0 by
A1,
Th30;
hence thesis by
NDIFF_1: 32;
end;