integr15.miz
begin
reserve Z for
set;
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A,
REAL ;
let D be
Division of A;
::
INTEGR15:def1
mode
middle_volume of f,D ->
FinSequence of
REAL means
:
Def1: (
len it )
= (
len D) & for i be
Nat st i
in (
dom D) holds ex r be
Element of
REAL st r
in (
rng (f
| (
divset (D,i)))) & (it
. i)
= (r
* (
vol (
divset (D,i))));
correctness
proof
defpred
P1[
Nat,
Real] means ex r be
Element of
REAL st r
in (
rng (f
| (
divset (D,$1)))) & $2
= (r
* (
vol (
divset (D,$1))));
A1: (
Seg (
len D))
= (
dom D) by
FINSEQ_1:def 3;
A2: for k be
Nat st k
in (
Seg (
len D)) holds ex x be
Element of
REAL st
P1[k, x]
proof
let k be
Nat;
assume k
in (
Seg (
len D));
then
A3: k
in (
dom D) by
FINSEQ_1:def 3;
(
dom f)
= A by
FUNCT_2:def 1;
then (
dom (f
| (
divset (D,k))))
= (
divset (D,k)) by
A3,
INTEGRA1: 8,
RELAT_1: 62;
then (
rng (f
| (
divset (D,k)))) is non
empty by
RELAT_1: 42;
then
consider r be
object such that
A4: r
in (
rng (f
| (
divset (D,k))));
reconsider r as
Element of
REAL by
A4;
(r
* (
vol (
divset (D,k)))) is
Element of
REAL by
XREAL_0:def 1;
hence thesis by
A4;
end;
consider p be
FinSequence of
REAL such that
A5: (
dom p)
= (
Seg (
len D)) & for k be
Nat st k
in (
Seg (
len D)) holds
P1[k, (p
. k)] from
FINSEQ_1:sch 5(
A2);
(
len p)
= (
len D) by
A5,
FINSEQ_1:def 3;
hence thesis by
A5,
A1;
end;
end
Lm1: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, F be
middle_volume of f, D, i be
Nat st (f
| A) is
bounded_below & i
in (
dom D) holds ((
lower_volume (f,D))
. i)
<= (F
. i)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, F be
middle_volume of f, D, i be
Nat;
assume that
A1: (f
| A) is
bounded_below and
A2: i
in (
dom D);
A3: ((
lower_volume (f,D))
. i)
= ((
lower_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i)))) by
A2,
INTEGRA1:def 7;
consider r be
Element of
REAL such that
A4: r
in (
rng (f
| (
divset (D,i)))) and
A5: (F
. i)
= (r
* (
vol (
divset (D,i)))) by
A2,
Def1;
(
rng f) is
bounded_below by
A1,
INTEGRA1: 11;
then (
rng (f
| (
divset (D,i)))) is
bounded_below by
RELAT_1: 70,
XXREAL_2: 44;
then
0
<= (
vol (
divset (D,i))) & (
lower_bound (
rng (f
| (
divset (D,i)))))
<= r by
A4,
INTEGRA1: 9,
SEQ_4:def 2;
hence ((
lower_volume (f,D))
. i)
<= (F
. i) by
A5,
A3,
XREAL_1: 64;
end;
Lm2: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, e be
Real st (f
| A) is
bounded_below &
0
< e holds ex F be
middle_volume of f, D st for i be
Nat st i
in (
dom D) holds ((
lower_volume (f,D))
. i)
<= (F
. i) & (F
. i)
< (((
lower_volume (f,D))
. i)
+ e)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, e be
Real;
assume that
A1: (f
| A) is
bounded_below and
A2:
0
< e;
defpred
P1[
Nat,
Real] means ex r be
Element of
REAL st r
in (
rng (f
| (
divset (D,$1)))) & $2
= (r
* (
vol (
divset (D,$1)))) & ((
lower_volume (f,D))
. $1)
<= $2 & $2
< (((
lower_volume (f,D))
. $1)
+ e);
A3: for k be
Nat st k
in (
Seg (
len D)) holds ex x be
Element of
REAL st
P1[k, x]
proof
let k be
Nat;
assume k
in (
Seg (
len D));
then
A4: k
in (
dom D) by
FINSEQ_1:def 3;
(
dom f)
= A by
FUNCT_2:def 1;
then (
dom (f
| (
divset (D,k))))
= (
divset (D,k)) by
A4,
INTEGRA1: 8,
RELAT_1: 62;
then
A5: (
rng (f
| (
divset (D,k)))) is non
empty by
RELAT_1: 42;
(
rng f) is
bounded_below by
A1,
INTEGRA1: 11;
then
A6: (
rng (f
| (
divset (D,k)))) is
bounded_below by
RELAT_1: 70,
XXREAL_2: 44;
per cases ;
suppose
A7: (
vol (
divset (D,k)))
=
0 ;
consider r be
object such that
A8: r
in (
rng (f
| (
divset (D,k)))) by
A5;
reconsider r as
Element of
REAL by
A8;
reconsider x = (r
* (
vol (
divset (D,k)))) as
Element of
REAL by
XREAL_0:def 1;
A9: ((
lower_volume (f,D))
. k)
= ((
lower_bound (
rng (f
| (
divset (D,k)))))
* (
vol (
divset (D,k)))) by
A4,
INTEGRA1:def 7
.=
0 by
A7;
then x
< (((
lower_volume (f,D))
. k)
+ e) by
A2,
A7;
hence ex x be
Element of
REAL st
P1[k, x] by
A7,
A8,
A9;
end;
suppose
A10: (
vol (
divset (D,k)))
<>
0 ;
set l = (
lower_bound (
rng (f
| (
divset (D,k)))));
set e1 = (e
/ (
vol (
divset (D,k))));
A11:
0
< (
vol (
divset (D,k))) by
A10,
INTEGRA1: 9;
then
0
< e1 by
A2,
XREAL_1: 139;
then
consider r be
Real such that
A12: r
in (
rng (f
| (
divset (D,k)))) and
A13: r
< (l
+ e1) by
A6,
A5,
SEQ_4:def 2;
A14: ((
lower_volume (f,D))
. k)
= ((
lower_bound (
rng (f
| (
divset (D,k)))))
* (
vol (
divset (D,k)))) by
A4,
INTEGRA1:def 7;
reconsider x = (r
* (
vol (
divset (D,k)))) as
Element of
REAL by
XREAL_0:def 1;
x
< ((l
+ e1)
* (
vol (
divset (D,k)))) by
A11,
A13,
XREAL_1: 68;
then x
< (((
lower_volume (f,D))
. k)
+ (e1
* (
vol (
divset (D,k))))) by
A14;
then
A15: x
< (((
lower_volume (f,D))
. k)
+ e) by
A10,
XCMPLX_1: 87;
l
<= r by
A6,
A12,
SEQ_4:def 2;
then ((
lower_volume (f,D))
. k)
<= x by
A11,
A14,
XREAL_1: 64;
hence ex x be
Element of
REAL st
P1[k, x] by
A12,
A15;
end;
end;
consider p be
FinSequence of
REAL such that
A16: (
dom p)
= (
Seg (
len D)) & for k be
Nat st k
in (
Seg (
len D)) holds
P1[k, (p
. k)] from
FINSEQ_1:sch 5(
A3);
A17:
now
let i be
Nat;
assume i
in (
dom D);
then i
in (
Seg (
len D)) by
FINSEQ_1:def 3;
then
consider r be
Element of
REAL such that
A18: r
in (
rng (f
| (
divset (D,i)))) & (p
. i)
= (r
* (
vol (
divset (D,i)))) and ((
lower_volume (f,D))
. i)
<= (p
. i) and (p
. i)
< (((
lower_volume (f,D))
. i)
+ e) by
A16;
take r;
thus r
in (
rng (f
| (
divset (D,i)))) & (p
. i)
= (r
* (
vol (
divset (D,i)))) by
A18;
end;
(
len p)
= (
len D) by
A16,
FINSEQ_1:def 3;
then
reconsider p as
middle_volume of f, D by
A17,
Def1;
now
let i be
Nat;
assume i
in (
dom D);
then i
in (
Seg (
len D)) by
FINSEQ_1:def 3;
then ex r be
Element of
REAL st r
in (
rng (f
| (
divset (D,i)))) & (p
. i)
= (r
* (
vol (
divset (D,i)))) & ((
lower_volume (f,D))
. i)
<= (p
. i) & (p
. i)
< (((
lower_volume (f,D))
. i)
+ e) by
A16;
hence ((
lower_volume (f,D))
. i)
<= (p
. i) & (p
. i)
< (((
lower_volume (f,D))
. i)
+ e);
end;
hence thesis;
end;
Lm3: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, e be
Real st (f
| A) is
bounded_above &
0
< e holds ex F be
middle_volume of f, D st for i be
Nat st i
in (
dom D) holds (F
. i)
<= ((
upper_volume (f,D))
. i) & (((
upper_volume (f,D))
. i)
- e)
< (F
. i)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, e be
Real;
assume that
A1: (f
| A) is
bounded_above and
A2:
0
< e;
defpred
P1[
Nat,
Real] means ex r be
Element of
REAL st r
in (
rng (f
| (
divset (D,$1)))) & $2
= (r
* (
vol (
divset (D,$1)))) & $2
<= ((
upper_volume (f,D))
. $1) & (((
upper_volume (f,D))
. $1)
- e)
< $2;
A3: for k be
Nat st k
in (
Seg (
len D)) holds ex x be
Element of
REAL st
P1[k, x]
proof
let k be
Nat;
assume k
in (
Seg (
len D));
then
A4: k
in (
dom D) by
FINSEQ_1:def 3;
(
dom f)
= A by
FUNCT_2:def 1;
then (
dom (f
| (
divset (D,k))))
= (
divset (D,k)) by
A4,
INTEGRA1: 8,
RELAT_1: 62;
then
A5: (
rng (f
| (
divset (D,k)))) is non
empty by
RELAT_1: 42;
(
rng f) is
bounded_above by
A1,
INTEGRA1: 13;
then
A6: (
rng (f
| (
divset (D,k)))) is
bounded_above by
RELAT_1: 70,
XXREAL_2: 43;
per cases ;
suppose
A7: (
vol (
divset (D,k)))
=
0 ;
consider r be
object such that
A8: r
in (
rng (f
| (
divset (D,k)))) by
A5;
reconsider r as
Element of
REAL by
A8;
reconsider x = (r
* (
vol (
divset (D,k)))) as
Element of
REAL by
XREAL_0:def 1;
A9: ((
upper_volume (f,D))
. k)
= ((
upper_bound (
rng (f
| (
divset (D,k)))))
* (
vol (
divset (D,k)))) by
A4,
INTEGRA1:def 6
.=
0 by
A7;
then (((
upper_volume (f,D))
. k)
- e)
< x by
A2,
A7;
hence ex x be
Element of
REAL st
P1[k, x] by
A7,
A8,
A9;
end;
suppose
A10: (
vol (
divset (D,k)))
<>
0 ;
set l = (
upper_bound (
rng (f
| (
divset (D,k)))));
set e1 = (e
/ (
vol (
divset (D,k))));
A11:
0
< (
vol (
divset (D,k))) by
A10,
INTEGRA1: 9;
then
0
< e1 by
A2,
XREAL_1: 139;
then
consider r be
Real such that
A12: r
in (
rng (f
| (
divset (D,k)))) and
A13: (l
- e1)
< r by
A6,
A5,
SEQ_4:def 1;
A14: ((
upper_volume (f,D))
. k)
= ((
upper_bound (
rng (f
| (
divset (D,k)))))
* (
vol (
divset (D,k)))) by
A4,
INTEGRA1:def 6;
reconsider x = (r
* (
vol (
divset (D,k)))) as
Element of
REAL by
XREAL_0:def 1;
((l
- e1)
* (
vol (
divset (D,k))))
< x by
A11,
A13,
XREAL_1: 68;
then (((
upper_volume (f,D))
. k)
- (e1
* (
vol (
divset (D,k)))))
< x by
A14;
then
A15: (((
upper_volume (f,D))
. k)
- e)
< x by
A10,
XCMPLX_1: 87;
r
<= l by
A6,
A12,
SEQ_4:def 1;
then x
<= ((
upper_volume (f,D))
. k) by
A11,
A14,
XREAL_1: 64;
hence ex x be
Element of
REAL st
P1[k, x] by
A12,
A15;
end;
end;
consider p be
FinSequence of
REAL such that
A16: (
dom p)
= (
Seg (
len D)) & for k be
Nat st k
in (
Seg (
len D)) holds
P1[k, (p
. k)] from
FINSEQ_1:sch 5(
A3);
A17:
now
let i be
Nat;
assume i
in (
dom D);
then i
in (
Seg (
len D)) by
FINSEQ_1:def 3;
then
consider r be
Element of
REAL such that
A18: r
in (
rng (f
| (
divset (D,i)))) & (p
. i)
= (r
* (
vol (
divset (D,i)))) and (p
. i)
<= ((
upper_volume (f,D))
. i) and (((
upper_volume (f,D))
. i)
- e)
< (p
. i) by
A16;
take r;
thus r
in (
rng (f
| (
divset (D,i)))) & (p
. i)
= (r
* (
vol (
divset (D,i)))) by
A18;
end;
(
len p)
= (
len D) by
A16,
FINSEQ_1:def 3;
then
reconsider p as
middle_volume of f, D by
A17,
Def1;
now
let i be
Nat;
assume i
in (
dom D);
then i
in (
Seg (
len D)) by
FINSEQ_1:def 3;
then ex r be
Element of
REAL st r
in (
rng (f
| (
divset (D,i)))) & (p
. i)
= (r
* (
vol (
divset (D,i)))) & (p
. i)
<= ((
upper_volume (f,D))
. i) & (((
upper_volume (f,D))
. i)
- e)
< (p
. i) by
A16;
hence (p
. i)
<= ((
upper_volume (f,D))
. i) & (((
upper_volume (f,D))
. i)
- e)
< (p
. i);
end;
hence thesis;
end;
Lm4: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, F be
middle_volume of f, D, i be
Nat st (f
| A) is
bounded_above & i
in (
dom D) holds (F
. i)
<= ((
upper_volume (f,D))
. i)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, F be
middle_volume of f, D, i be
Nat;
assume that
A1: (f
| A) is
bounded_above and
A2: i
in (
dom D);
A3: ((
upper_volume (f,D))
. i)
= ((
upper_bound (
rng (f
| (
divset (D,i)))))
* (
vol (
divset (D,i)))) by
A2,
INTEGRA1:def 6;
consider r be
Element of
REAL such that
A4: r
in (
rng (f
| (
divset (D,i)))) and
A5: (F
. i)
= (r
* (
vol (
divset (D,i)))) by
A2,
Def1;
(
rng f) is
bounded_above by
A1,
INTEGRA1: 13;
then (
rng (f
| (
divset (D,i)))) is
bounded_above by
RELAT_1: 70,
XXREAL_2: 43;
then
0
<= (
vol (
divset (D,i))) & r
<= (
upper_bound (
rng (f
| (
divset (D,i))))) by
A4,
INTEGRA1: 9,
SEQ_4:def 1;
hence (F
. i)
<= ((
upper_volume (f,D))
. i) by
A5,
A3,
XREAL_1: 64;
end;
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A,
REAL ;
let D be
Division of A;
let F be
middle_volume of f, D;
::
INTEGR15:def2
func
middle_sum (f,F) ->
Real equals (
Sum F);
correctness ;
end
theorem ::
INTEGR15:1
Th1: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, F be
middle_volume of f, D st (f
| A) is
bounded_below holds (
lower_sum (f,D))
<= (
middle_sum (f,F))
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, F be
middle_volume of f, D;
(
len (
lower_volume (f,D)))
= (
len D) by
INTEGRA1:def 7;
then
reconsider p = (
lower_volume (f,D)) as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
(
len F)
= (
len D) by
Def1;
then
reconsider q = F as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
assume
A1: (f
| A) is
bounded_below;
now
let i be
Nat;
assume i
in (
Seg (
len D));
then i
in (
dom D) by
FINSEQ_1:def 3;
hence (p
. i)
<= (q
. i) by
A1,
Lm1;
end;
hence thesis by
RVSUM_1: 82;
end;
theorem ::
INTEGR15:2
Th2: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, F be
middle_volume of f, D st (f
| A) is
bounded_above holds (
middle_sum (f,F))
<= (
upper_sum (f,D))
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, F be
middle_volume of f, D;
(
len (
upper_volume (f,D)))
= (
len D) by
INTEGRA1:def 6;
then
reconsider p = (
upper_volume (f,D)) as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
(
len F)
= (
len D) by
Def1;
then
reconsider q = F as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
assume
A1: (f
| A) is
bounded_above;
now
let i be
Nat;
assume i
in (
Seg (
len D));
then i
in (
dom D) by
FINSEQ_1:def 3;
hence (q
. i)
<= (p
. i) by
A1,
Lm4;
end;
hence thesis by
RVSUM_1: 82;
end;
theorem ::
INTEGR15:3
Th3: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, e be
Real st (f
| A) is
bounded_below &
0
< e holds ex F be
middle_volume of f, D st (
middle_sum (f,F))
<= ((
lower_sum (f,D))
+ e)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, e be
Real;
(
len (
lower_volume (f,D)))
= (
len D) by
INTEGRA1:def 7;
then
reconsider p = (
lower_volume (f,D)) as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
reconsider e1 = (e
/ (
len D)) as
Element of
REAL by
XREAL_0:def 1;
assume (f
| A) is
bounded_below &
0
< e;
then
consider F be
middle_volume of f, D such that
A1: for i be
Nat st i
in (
dom D) holds ((
lower_volume (f,D))
. i)
<= (F
. i) & (F
. i)
< (((
lower_volume (f,D))
. i)
+ e1) by
Lm2,
XREAL_1: 139;
set s = ((
len D)
|-> e1);
reconsider t = (p
+ s) as
Element of ((
len D)
-tuples_on
REAL );
take F;
(
len F)
= (
len D) by
Def1;
then
reconsider q = F as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
now
let i be
Nat;
assume
A2: i
in (
Seg (
len D));
then i
in (
dom D) by
FINSEQ_1:def 3;
then (q
. i)
<= ((p
. i)
+ e1) by
A1;
then (q
. i)
<= ((p
. i)
+ (s
. i)) by
A2,
FINSEQ_2: 57;
hence (q
. i)
<= (t
. i) by
RVSUM_1: 11;
end;
then (
Sum q)
<= (
Sum t) by
RVSUM_1: 82;
then (
Sum q)
<= ((
Sum p)
+ (
Sum s)) by
RVSUM_1: 89;
then (
Sum q)
<= ((
Sum p)
+ ((
len D)
* e1)) by
RVSUM_1: 80;
hence thesis by
XCMPLX_1: 87;
end;
theorem ::
INTEGR15:4
Th4: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, e be
Real st (f
| A) is
bounded_above &
0
< e holds ex F be
middle_volume of f, D st ((
upper_sum (f,D))
- e)
<= (
middle_sum (f,F))
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , D be
Division of A, e be
Real;
(
len (
upper_volume (f,D)))
= (
len D) by
INTEGRA1:def 6;
then
reconsider p = (
upper_volume (f,D)) as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
reconsider e1 = (e
/ (
len D)) as
Element of
REAL by
XREAL_0:def 1;
assume (f
| A) is
bounded_above &
0
< e;
then
consider F be
middle_volume of f, D such that
A1: for i be
Nat st i
in (
dom D) holds (F
. i)
<= ((
upper_volume (f,D))
. i) & (((
upper_volume (f,D))
. i)
- e1)
< (F
. i) by
Lm3,
XREAL_1: 139;
set s = ((
len D)
|-> e1);
reconsider t = (p
- s) as
Element of ((
len D)
-tuples_on
REAL );
take F;
(
len F)
= (
len D) by
Def1;
then
reconsider q = F as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
now
let i be
Nat;
assume
A2: i
in (
Seg (
len D));
then i
in (
dom D) by
FINSEQ_1:def 3;
then ((p
. i)
- e1)
<= (q
. i) by
A1;
then ((p
. i)
- (s
. i))
<= (q
. i) by
A2,
FINSEQ_2: 57;
hence (t
. i)
<= (q
. i) by
RVSUM_1: 27;
end;
then (
Sum t)
<= (
Sum q) by
RVSUM_1: 82;
then ((
Sum p)
- (
Sum s))
<= (
Sum q) by
RVSUM_1: 90;
then ((
Sum p)
- ((
len D)
* e1))
<= (
Sum q) by
RVSUM_1: 80;
hence thesis by
XCMPLX_1: 87;
end;
definition
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A;
::
INTEGR15:def3
mode
middle_volume_Sequence of f,T ->
sequence of (
REAL
* ) means
:
Def3: for k be
Element of
NAT holds (it
. k) is
middle_volume of f, (T
. k);
correctness
proof
defpred
P[
Element of
NAT ,
set] means $2 is
middle_volume of f, (T
. $1);
A1: for x be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P[x, y]
proof
let x be
Element of
NAT ;
set y = the
middle_volume of f, (T
. x);
reconsider y as
Element of (
REAL
* ) by
FINSEQ_1:def 11;
y is
middle_volume of f, (T
. x);
hence thesis;
end;
ex f be
sequence of (
REAL
* ) st for x be
Element of
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 3(
A1);
hence thesis;
end;
end
definition
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A, S be
middle_volume_Sequence of f, T, k be
Element of
NAT ;
:: original:
.
redefine
func S
. k ->
middle_volume of f, (T
. k) ;
coherence by
Def3;
end
definition
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A, S be
middle_volume_Sequence of f, T;
::
INTEGR15:def4
func
middle_sum (f,S) ->
Real_Sequence means
:
Def4: for i be
Element of
NAT holds (it
. i)
= (
middle_sum (f,(S
. i)));
existence
proof
deffunc
H1(
Nat) = (
middle_sum (f,(S
. (
In ($1,
NAT )))));
consider IT be
Real_Sequence such that
A1: for i be
Nat holds (IT
. i)
=
H1(i) from
SEQ_1:sch 1;
take IT;
let i be
Element of
NAT ;
(IT
. i)
=
H1(i) by
A1;
hence thesis;
end;
uniqueness
proof
let F1,F2 be
Real_Sequence;
assume that
A2: for i be
Element of
NAT holds (F1
. i)
= (
middle_sum (f,(S
. i))) and
A3: for i be
Element of
NAT holds (F2
. i)
= (
middle_sum (f,(S
. i)));
for i be
Element of
NAT holds (F1
. i)
= (F2
. i)
proof
let i be
Element of
NAT ;
(F1
. i)
= (
middle_sum (f,(S
. i))) by
A2
.= (F2
. i) by
A3;
hence (F1
. i)
= (F2
. i);
end;
hence F1
= F2 by
FUNCT_2: 63;
end;
end
theorem ::
INTEGR15:5
Th5: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A, S be
middle_volume_Sequence of f, T, i be
Element of
NAT st (f
| A) is
bounded_below holds ((
lower_sum (f,T))
. i)
<= ((
middle_sum (f,S))
. i)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A, S be
middle_volume_Sequence of f, T, i be
Element of
NAT ;
assume
A1: (f
| A) is
bounded_below;
((
middle_sum (f,S))
. i)
= (
middle_sum (f,(S
. i))) & ((
lower_sum (f,T))
. i)
= (
lower_sum (f,(T
. i))) by
Def4,
INTEGRA2:def 3;
hence thesis by
A1,
Th1;
end;
theorem ::
INTEGR15:6
Th6: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A, S be
middle_volume_Sequence of f, T, i be
Element of
NAT st (f
| A) is
bounded_above holds ((
middle_sum (f,S))
. i)
<= ((
upper_sum (f,T))
. i)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A, S be
middle_volume_Sequence of f, T, i be
Element of
NAT ;
assume
A1: (f
| A) is
bounded_above;
((
middle_sum (f,S))
. i)
= (
middle_sum (f,(S
. i))) & ((
upper_sum (f,T))
. i)
= (
upper_sum (f,(T
. i))) by
Def4,
INTEGRA2:def 2;
hence thesis by
A1,
Th2;
end;
theorem ::
INTEGR15:7
Th7: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A, e be
Element of
REAL st
0
< e & (f
| A) is
bounded_below holds ex S be
middle_volume_Sequence of f, T st for i be
Element of
NAT holds ((
middle_sum (f,S))
. i)
<= (((
lower_sum (f,T))
. i)
+ e)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A, e be
Element of
REAL ;
defpred
P[
Element of
NAT ,
set] means $2 is
middle_volume of f, (T
. $1) & ex z be
middle_volume of f, (T
. $1) st z
= $2 & (
middle_sum (f,z))
<= ((
lower_sum (f,(T
. $1)))
+ e);
assume
A1:
0
< e & (f
| A) is
bounded_below;
A2: for x be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P[x, y]
proof
let x be
Element of
NAT ;
consider z be
middle_volume of f, (T
. x) such that
A3: (
middle_sum (f,z))
<= ((
lower_sum (f,(T
. x)))
+ e) by
A1,
Th3;
reconsider y = z as
Element of (
REAL
* ) by
FINSEQ_1:def 11;
take y;
thus thesis by
A3;
end;
consider F be
sequence of (
REAL
* ) such that
A4: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A2);
reconsider F as
middle_volume_Sequence of f, T by
A4,
Def3;
now
let x be
Element of
NAT ;
ex z be
middle_volume of f, (T
. x) st z
= (F
. x) & (
middle_sum (f,z))
<= ((
lower_sum (f,(T
. x)))
+ e) by
A4;
then ((
middle_sum (f,F))
. x)
<= ((
lower_sum (f,(T
. x)))
+ e) by
Def4;
hence ((
middle_sum (f,F))
. x)
<= (((
lower_sum (f,T))
. x)
+ e) by
INTEGRA2:def 3;
end;
hence thesis;
end;
theorem ::
INTEGR15:8
Th8: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A, e be
Element of
REAL st
0
< e & (f
| A) is
bounded_above holds ex S be
middle_volume_Sequence of f, T st for i be
Element of
NAT holds (((
upper_sum (f,T))
. i)
- e)
<= ((
middle_sum (f,S))
. i)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A, e be
Element of
REAL ;
defpred
P[
Element of
NAT ,
set] means $2 is
middle_volume of f, (T
. $1) & ex z be
middle_volume of f, (T
. $1) st z
= $2 & ((
upper_sum (f,(T
. $1)))
- e)
<= (
middle_sum (f,z));
assume
A1:
0
< e & (f
| A) is
bounded_above;
A2: for x be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P[x, y]
proof
let x be
Element of
NAT ;
consider z be
middle_volume of f, (T
. x) such that
A3: ((
upper_sum (f,(T
. x)))
- e)
<= (
middle_sum (f,z)) by
A1,
Th4;
reconsider y = z as
Element of (
REAL
* ) by
FINSEQ_1:def 11;
take y;
thus thesis by
A3;
end;
consider F be
sequence of (
REAL
* ) such that
A4: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A2);
reconsider F as
middle_volume_Sequence of f, T by
A4,
Def3;
now
let x be
Element of
NAT ;
ex z be
middle_volume of f, (T
. x) st z
= (F
. x) & ((
upper_sum (f,(T
. x)))
- e)
<= (
middle_sum (f,z)) by
A4;
then ((
upper_sum (f,(T
. x)))
- e)
<= ((
middle_sum (f,F))
. x) by
Def4;
hence (((
upper_sum (f,T))
. x)
- e)
<= ((
middle_sum (f,F))
. x) by
INTEGRA2:def 2;
end;
hence thesis;
end;
Lm5: for p,q,r be
Real_Sequence st p is
convergent & r is
convergent & (
lim p)
= (
lim r) & (for i be
Element of
NAT holds (p
. i)
<= (q
. i)) & (for i be
Element of
NAT holds (q
. i)
<= (r
. i)) holds q is
convergent & (
lim p)
= (
lim q) & (
lim r)
= (
lim q)
proof
let p,q,r be
Real_Sequence;
assume that
A1: p is
convergent and
A2: r is
convergent and
A3: (
lim p)
= (
lim r) and
A4: for i be
Element of
NAT holds (p
. i)
<= (q
. i) and
A5: for i be
Element of
NAT holds (q
. i)
<= (r
. i);
A6:
now
let e be
Real;
assume
A7:
0
< e;
then
consider n1 be
Nat such that
A8: for m be
Nat st n1
<= m holds
|.((p
. m)
- (
lim p)).|
< e by
A1,
SEQ_2:def 7;
consider n2 be
Nat such that
A9: for m be
Nat st n2
<= m holds
|.((r
. m)
- (
lim r)).|
< e by
A2,
A7,
SEQ_2:def 7;
reconsider n = (
max (n1,n2)) as
Nat by
TARSKI: 1;
take n;
thus for m be
Nat st n
<= m holds
|.((q
. m)
- (
lim p)).|
< e
proof
let m be
Nat;
assume
A10: n
<= m;
A11: m
in
NAT by
ORDINAL1:def 12;
n1
<= n by
XXREAL_0: 25;
then n1
<= m by
A10,
XXREAL_0: 2;
then
|.((p
. m)
- (
lim p)).|
< e by
A8;
then (p
. m)
in
].((
lim p)
- e), ((
lim p)
+ e).[ by
RCOMP_1: 1;
then (p
. m)
in { z where z be
Real : ((
lim p)
- e)
< z & z
< ((
lim p)
+ e) } by
RCOMP_1:def 2;
then
A12: ex z be
Real st z
= (p
. m) & ((
lim p)
- e)
< z & z
< ((
lim p)
+ e);
(p
. m)
<= (q
. m) by
A4,
A11;
then
A13: ((
lim p)
- e)
< (q
. m) by
A12,
XXREAL_0: 2;
n2
<= n by
XXREAL_0: 25;
then n2
<= m by
A10,
XXREAL_0: 2;
then
|.((r
. m)
- (
lim r)).|
< e by
A9;
then (r
. m)
in
].((
lim r)
- e), ((
lim r)
+ e).[ by
RCOMP_1: 1;
then (r
. m)
in { z where z be
Real : ((
lim r)
- e)
< z & z
< ((
lim r)
+ e) } by
RCOMP_1:def 2;
then
A14: ex z be
Real st z
= (r
. m) & ((
lim r)
- e)
< z & z
< ((
lim r)
+ e);
(q
. m)
<= (r
. m) by
A5,
A11;
then (q
. m)
< ((
lim p)
+ e) by
A3,
A14,
XXREAL_0: 2;
then (q
. m)
in { z where z be
Real : ((
lim p)
- e)
< z & z
< ((
lim p)
+ e) } by
A13;
then (q
. m)
in
].((
lim p)
- e), ((
lim p)
+ e).[ by
RCOMP_1:def 2;
hence
|.((q
. m)
- (
lim p)).|
< e by
RCOMP_1: 1;
end;
end;
hence q is
convergent by
SEQ_2:def 6;
hence (
lim q)
= (
lim p) & (
lim q)
= (
lim r) by
A3,
A6,
SEQ_2:def 7;
end;
theorem ::
INTEGR15:9
Th9: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A, S be
middle_volume_Sequence of f, T st f is
bounded & f is
integrable & (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= (
integral f)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL , T be
DivSequence of A, S be
middle_volume_Sequence of f, T;
assume that
A1: f is
bounded and
A2: f is
integrable and
A3: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
(f
| A) is
bounded_below by
A1;
then
A5: for i be
Element of
NAT holds ((
lower_sum (f,T))
. i)
<= ((
middle_sum (f,S))
. i) by
Th5;
A6: (f
| A)
= f;
then
A7: (
lower_sum (f,T)) is
convergent & (
upper_sum (f,T)) is
convergent by
A1,
A3,
INTEGRA4: 8,
INTEGRA4: 9;
(f
| A) is
bounded_above by
A1;
then
A8: for i be
Element of
NAT holds ((
middle_sum (f,S))
. i)
<= ((
upper_sum (f,T))
. i) by
Th6;
A9: ((
lim (
upper_sum (f,T)))
- (
lim (
lower_sum (f,T))))
=
0 by
A1,
A2,
A3,
A6,
INTEGRA4: 12;
then (
lim (
lower_sum (f,T)))
= (
integral f) by
A1,
A3,
A6,
INTEGRA4: 9;
hence thesis by
A7,
A9,
A5,
A8,
Lm5;
end;
theorem ::
INTEGR15:10
Th10: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL st f is
bounded holds f is
integrable iff ex I be
Real st for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
REAL ;
assume
A1: f is
bounded;
hereby
assume
A2: f is
integrable;
reconsider I = (
integral f) as
Real;
take I;
thus for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I by
A1,
A2,
Th9;
end;
A3: (f
| A) is
bounded by
A1;
now
given I be
Real such that
A4: for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I;
A5: for T be
DivSequence of A st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
lim (
upper_sum (f,T)))
= I
proof
let T be
DivSequence of A;
set S = the
middle_volume_Sequence of f, T;
A6:
now
let i be
Nat;
A7: i
in
NAT by
ORDINAL1:def 12;
((
middle_sum (f,S))
. i)
<= ((
upper_sum (f,T))
. i) by
A3,
Th6,
A7;
then (((
middle_sum (f,S))
. i)
- ((
middle_sum (f,S))
. i))
<= (((
upper_sum (f,T))
. i)
- ((
middle_sum (f,S))
. i)) by
XREAL_1: 9;
hence
0
<= (((
upper_sum (f,T))
- (
middle_sum (f,S)))
. i) by
VALUED_1: 15,
A7;
end;
assume
A8: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
then
A9: (
upper_sum (f,T)) is
convergent by
A3,
INTEGRA4: 9;
A10:
now
let e1 be
Real;
reconsider e = e1 as
Element of
REAL by
XREAL_0:def 1;
assume
0
< e1;
then
consider S be
middle_volume_Sequence of f, T such that
A11: for i be
Element of
NAT holds (((
upper_sum (f,T))
. i)
- e)
<= ((
middle_sum (f,S))
. i) by
A3,
Th8;
A12:
now
let i be
Nat;
A13: i
in
NAT by
ORDINAL1:def 12;
(((
upper_sum (f,T))
. i)
- e)
<= ((
middle_sum (f,S))
. i) by
A11,
A13;
then ((((
upper_sum (f,T))
. i)
- e)
+ e)
<= (((
middle_sum (f,S))
. i)
+ e) by
XREAL_1: 6;
then (((
upper_sum (f,T))
. i)
- ((
middle_sum (f,S))
. i))
<= ((((
middle_sum (f,S))
. i)
+ e)
- ((
middle_sum (f,S))
. i)) by
XREAL_1: 9;
hence (((
upper_sum (f,T))
- (
middle_sum (f,S)))
. i)
<= e by
VALUED_1: 15,
A13;
end;
A14: (
middle_sum (f,S)) is
convergent by
A4,
A8;
then
A15: ((
upper_sum (f,T))
- (
middle_sum (f,S))) is
convergent by
A9;
(
lim ((
upper_sum (f,T))
- (
middle_sum (f,S))))
= ((
lim (
upper_sum (f,T)))
- (
lim (
middle_sum (f,S)))) by
A9,
A14,
SEQ_2: 12
.= ((
lim (
upper_sum (f,T)))
- I) by
A4,
A8;
hence ((
lim (
upper_sum (f,T)))
- I)
<= e1 by
A12,
A15,
PREPOWER: 2;
end;
A16: (
middle_sum (f,S)) is
convergent by
A4,
A8;
then
A17: ((
upper_sum (f,T))
- (
middle_sum (f,S))) is
convergent by
A9;
(
lim ((
upper_sum (f,T))
- (
middle_sum (f,S))))
= ((
lim (
upper_sum (f,T)))
- (
lim (
middle_sum (f,S)))) by
A9,
A16,
SEQ_2: 12
.= ((
lim (
upper_sum (f,T)))
- I) by
A4,
A8;
then
0
<= ((
lim (
upper_sum (f,T)))
- I) by
A6,
A17,
SEQ_2: 17;
then ((
lim (
upper_sum (f,T)))
- I)
=
0 by
A10,
XREAL_1: 5;
hence thesis;
end;
A18: for T be
DivSequence of A st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds I
= (
lim (
lower_sum (f,T)))
proof
let T be
DivSequence of A;
set S = the
middle_volume_Sequence of f, T;
A19:
now
let i be
Nat;
A20: i
in
NAT by
ORDINAL1:def 12;
((
lower_sum (f,T))
. i)
<= ((
middle_sum (f,S))
. i) by
A3,
Th5,
A20;
then (((
lower_sum (f,T))
. i)
- ((
lower_sum (f,T))
. i))
<= (((
middle_sum (f,S))
. i)
- ((
lower_sum (f,T))
. i)) by
XREAL_1: 9;
hence
0
<= (((
middle_sum (f,S))
- (
lower_sum (f,T)))
. i) by
VALUED_1: 15,
A20;
end;
assume
A21: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
then
A22: (
lower_sum (f,T)) is
convergent by
A3,
INTEGRA4: 8;
A23:
now
let e1 be
Real;
reconsider e = e1 as
Element of
REAL by
XREAL_0:def 1;
assume
0
< e1;
then
consider S be
middle_volume_Sequence of f, T such that
A24: for i be
Element of
NAT holds ((
middle_sum (f,S))
. i)
<= (((
lower_sum (f,T))
. i)
+ e) by
A3,
Th7;
A25:
now
let i be
Nat;
A26: i
in
NAT by
ORDINAL1:def 12;
((
middle_sum (f,S))
. i)
<= (((
lower_sum (f,T))
. i)
+ e) by
A24,
A26;
then (((
middle_sum (f,S))
. i)
- ((
lower_sum (f,T))
. i))
<= ((((
lower_sum (f,T))
. i)
+ e)
- ((
lower_sum (f,T))
. i)) by
XREAL_1: 9;
hence (((
middle_sum (f,S))
- (
lower_sum (f,T)))
. i)
<= e by
VALUED_1: 15,
A26;
end;
A27: (
middle_sum (f,S)) is
convergent by
A4,
A21;
then
A28: ((
middle_sum (f,S))
- (
lower_sum (f,T))) is
convergent by
A22;
(
lim ((
middle_sum (f,S))
- (
lower_sum (f,T))))
= ((
lim (
middle_sum (f,S)))
- (
lim (
lower_sum (f,T)))) by
A22,
A27,
SEQ_2: 12
.= (I
- (
lim (
lower_sum (f,T)))) by
A4,
A21;
hence (I
- (
lim (
lower_sum (f,T))))
<= e1 by
A25,
A28,
PREPOWER: 2;
end;
A29: (
middle_sum (f,S)) is
convergent by
A4,
A21;
then
A30: ((
middle_sum (f,S))
- (
lower_sum (f,T))) is
convergent by
A22;
(
lim ((
middle_sum (f,S))
- (
lower_sum (f,T))))
= ((
lim (
middle_sum (f,S)))
- (
lim (
lower_sum (f,T)))) by
A22,
A29,
SEQ_2: 12
.= (I
- (
lim (
lower_sum (f,T)))) by
A4,
A21;
then
0
<= (I
- (
lim (
lower_sum (f,T)))) by
A19,
A30,
SEQ_2: 17;
then (I
- (
lim (
lower_sum (f,T))))
=
0 by
A23,
XREAL_1: 5;
hence thesis;
end;
now
let T be
DivSequence of A;
assume
A31: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
hence ((
lim (
upper_sum (f,T)))
- (
lim (
lower_sum (f,T))))
= ((
lim (
upper_sum (f,T)))
- I) by
A18
.= (I
- I) by
A5,
A31
.=
0 ;
end;
hence f is
integrable by
A3,
INTEGRA4: 12;
end;
hence thesis;
end;
definition
let n be
Element of
NAT ;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A, (
REAL n);
let D be
Division of A;
::
INTEGR15:def5
mode
middle_volume of f,D ->
FinSequence of (
REAL n) means
:
Def5: (
len it )
= (
len D) & for i be
Nat st i
in (
dom D) holds ex r be
Element of (
REAL n) st r
in (
rng (f
| (
divset (D,i)))) & (it
. i)
= ((
vol (
divset (D,i)))
* r);
correctness
proof
defpred
P1[
Nat,
set] means ex r be
Element of (
REAL n) st r
in (
rng (f
| (
divset (D,$1)))) & $2
= ((
vol (
divset (D,$1)))
* r);
A1: (
Seg (
len D))
= (
dom D) by
FINSEQ_1:def 3;
A2: for k be
Nat st k
in (
Seg (
len D)) holds ex x be
Element of (
REAL n) st
P1[k, x]
proof
let k be
Nat;
assume k
in (
Seg (
len D));
then
A3: k
in (
dom D) by
FINSEQ_1:def 3;
(
dom f)
= A by
FUNCT_2:def 1;
then (
dom (f
| (
divset (D,k))))
= (
divset (D,k)) by
A3,
INTEGRA1: 8,
RELAT_1: 62;
then (
rng (f
| (
divset (D,k)))) is non
empty by
RELAT_1: 42;
then
consider r be
object such that
A4: r
in (
rng (f
| (
divset (D,k))));
reconsider r as
Element of (
REAL n) by
A4;
((
vol (
divset (D,k)))
* r) is
Element of (
REAL n);
hence thesis by
A4;
end;
consider p be
FinSequence of (
REAL n) such that
A5: (
dom p)
= (
Seg (
len D)) & for k be
Nat st k
in (
Seg (
len D)) holds
P1[k, (p
. k)] from
FINSEQ_1:sch 5(
A2);
(
len p)
= (
len D) by
A5,
FINSEQ_1:def 3;
hence thesis by
A5,
A1;
end;
end
definition
let n be
Element of
NAT ;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A, (
REAL n);
let D be
Division of A;
let F be
middle_volume of f, D;
::
INTEGR15:def6
func
middle_sum (f,F) ->
Element of (
REAL n) means
:
Def6: for i be
Element of
NAT st i
in (
Seg n) holds ex Fi be
FinSequence of
REAL st Fi
= ((
proj (i,n))
* F) & (it
. i)
= (
Sum Fi);
existence
proof
defpred
P[
Nat,
Real] means ex i be
Element of
NAT , Fi be
FinSequence of
REAL st $1
= i & Fi
= ((
proj (i,n))
* F) & $2
= (
Sum Fi);
A1: for i be
Nat st i
in (
Seg n) holds ex x be
Element of
REAL st
P[i, x]
proof
let i be
Nat;
assume i
in (
Seg n);
then
reconsider ii = i as
Element of
NAT ;
reconsider Fi = ((
proj (ii,n))
* F) as
FinSequence of
REAL ;
reconsider x = (
Sum Fi) as
Element of
REAL by
XREAL_0:def 1;
take x;
thus ex ii be
Element of
NAT , Fi be
FinSequence of
REAL st i
= ii & Fi
= ((
proj (ii,n))
* F) & x
= (
Sum Fi);
end;
consider p be
FinSequence of
REAL such that
A2: (
dom p)
= (
Seg n) & for i be
Nat st i
in (
Seg n) holds
P[i, (p
. i)] from
FINSEQ_1:sch 5(
A1);
take p;
A3: for i be
Element of
NAT st i
in (
Seg n) holds ex Fi be
FinSequence of
REAL st Fi
= ((
proj (i,n))
* F) & (p
. i)
= (
Sum Fi)
proof
let i be
Element of
NAT ;
reconsider k = i as
Nat;
assume i
in (
Seg n);
then
P[k, (p
. k)] by
A2;
hence thesis;
end;
(
len p)
= n by
A2,
FINSEQ_1:def 3;
hence thesis by
A3,
FINSEQ_2: 92;
end;
uniqueness
proof
let x1,x2 be
Element of (
REAL n) such that
A4: (for i be
Element of
NAT st i
in (
Seg n) holds ex Fi1 be
FinSequence of
REAL st Fi1
= ((
proj (i,n))
* F) & (x1
. i)
= (
Sum Fi1)) & for i be
Element of
NAT st i
in (
Seg n) holds ex Fi2 be
FinSequence of
REAL st Fi2
= ((
proj (i,n))
* F) & (x2
. i)
= (
Sum Fi2);
A5: for k0 be
Nat st k0
in (
dom x1) holds (x1
. k0)
= (x2
. k0)
proof
let k0 be
Nat;
assume
A6: k0
in (
dom x1);
then
reconsider k = k0 as
Element of
NAT ;
(
len x1)
= n by
CARD_1:def 7;
then k0
in (
Seg n) by
A6,
FINSEQ_1:def 3;
then (ex Fi1 be
FinSequence of
REAL st Fi1
= ((
proj (k,n))
* F) & (x1
. k)
= (
Sum Fi1)) & ex Fi2 be
FinSequence of
REAL st Fi2
= ((
proj (k,n))
* F) & (x2
. k)
= (
Sum Fi2) by
A4;
hence thesis;
end;
A7: (
len x2)
= n by
CARD_1:def 7;
(
len x1)
= n by
CARD_1:def 7;
then (
dom x1)
= (
Seg n) by
FINSEQ_1:def 3
.= (
dom x2) by
A7,
FINSEQ_1:def 3;
hence thesis by
A5,
FINSEQ_1: 13;
end;
end
definition
let n be
Element of
NAT ;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A, (
REAL n);
let T be
DivSequence of A;
::
INTEGR15:def7
mode
middle_volume_Sequence of f,T ->
sequence of ((
REAL n)
* ) means
:
Def7: for k be
Element of
NAT holds (it
. k) is
middle_volume of f, (T
. k);
correctness
proof
defpred
P[
Element of
NAT ,
set] means $2 is
middle_volume of f, (T
. $1);
A1: for x be
Element of
NAT holds ex y be
Element of ((
REAL n)
* ) st
P[x, y]
proof
let x be
Element of
NAT ;
set y = the
middle_volume of f, (T
. x);
reconsider y as
Element of ((
REAL n)
* ) by
FINSEQ_1:def 11;
y is
middle_volume of f, (T
. x);
hence thesis;
end;
ex f be
sequence of ((
REAL n)
* ) st for x be
Element of
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 3(
A1);
hence thesis;
end;
end
definition
let n be
Element of
NAT ;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A, (
REAL n);
let T be
DivSequence of A;
let S be
middle_volume_Sequence of f, T;
let k be
Element of
NAT ;
:: original:
.
redefine
func S
. k ->
middle_volume of f, (T
. k) ;
coherence by
Def7;
end
definition
let n be
Element of
NAT ;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A, (
REAL n);
let T be
DivSequence of A;
let S be
middle_volume_Sequence of f, T;
::
INTEGR15:def8
func
middle_sum (f,S) ->
sequence of (
REAL-NS n) means
:
Def8: for i be
Element of
NAT holds (it
. i)
= (
middle_sum (f,(S
. i)));
existence
proof
deffunc
H1(
Element of
NAT ) = (
middle_sum (f,(S
. $1)));
A1: (
REAL n)
= the
carrier of (
REAL-NS n) by
REAL_NS1:def 4;
ex IT be
sequence of (
REAL n) st for i be
Element of
NAT holds (IT
. i)
=
H1(i) from
FUNCT_2:sch 4;
hence thesis by
A1;
end;
uniqueness
proof
let F1,F2 be
sequence of (
REAL-NS n);
assume that
A2: for i be
Element of
NAT holds (F1
. i)
= (
middle_sum (f,(S
. i))) and
A3: for i be
Element of
NAT holds (F2
. i)
= (
middle_sum (f,(S
. i)));
for i be
Element of
NAT holds (F1
. i)
= (F2
. i)
proof
let i be
Element of
NAT ;
thus (F1
. i)
= (
middle_sum (f,(S
. i))) by
A2
.= (F2
. i) by
A3;
end;
hence F1
= F2 by
FUNCT_2: 63;
end;
end
definition
let n be
Nat;
let Z be
set;
let f,g be
PartFunc of Z, (
REAL n);
::
INTEGR15:def9
func f
+ g ->
PartFunc of Z, (
REAL n) equals (f
<++> g);
coherence
proof
set F = (f
<++> g);
(
rng F)
c= (
REAL n)
proof
let y be
object;
assume y
in (
rng F);
then
consider x be
object such that
A1: x
in (
dom F) and
A2: (F
. x)
= y by
FUNCT_1:def 3;
(
dom F)
= ((
dom f)
/\ (
dom g)) by
VALUED_2:def 45;
then x
in (
dom f) & x
in (
dom g) by
A1,
XBOOLE_0:def 4;
then
A3: (f
. x)
= (f
/. x) & (g
. x)
= (g
/. x) by
PARTFUN1:def 6;
((f
/. x)
+ (g
/. x))
in (
REAL n);
hence thesis by
A2,
A3,
A1,
VALUED_2:def 45;
end;
hence thesis by
RELSET_1: 6;
end;
::
INTEGR15:def10
func f
- g ->
PartFunc of Z, (
REAL n) equals (f
<--> g);
coherence
proof
set F = (f
<--> g);
(
rng F)
c= (
REAL n)
proof
let y be
object;
assume y
in (
rng F);
then
consider x be
object such that
A4: x
in (
dom F) and
A5: (F
. x)
= y by
FUNCT_1:def 3;
(
dom F)
= ((
dom f)
/\ (
dom g)) by
VALUED_2:def 46;
then x
in (
dom f) & x
in (
dom g) by
A4,
XBOOLE_0:def 4;
then
A6: (f
. x)
= (f
/. x) & (g
. x)
= (g
/. x) by
PARTFUN1:def 6;
((f
/. x)
- (g
/. x))
in (
REAL n);
hence thesis by
A5,
A6,
A4,
VALUED_2:def 46;
end;
hence thesis by
RELSET_1: 6;
end;
end
definition
let n be
Nat;
let r be
Real;
let Z be
set;
let f be
PartFunc of Z, (
REAL n);
::
INTEGR15:def11
func r
(#) f ->
PartFunc of Z, (
REAL n) equals (f
[#] r);
coherence
proof
set F = (f
[#] r);
(
rng F)
c= (
REAL n)
proof
let y be
object;
assume y
in (
rng F);
then
consider x be
object such that
A1: x
in (
dom F) and
A2: (F
. x)
= y by
FUNCT_1:def 3;
(
dom F)
= (
dom f) by
VALUED_2:def 39;
then
A3: (f
. x)
= (f
/. x) by
A1,
PARTFUN1:def 6;
(r
* (f
/. x))
in (
REAL n);
hence thesis by
A2,
A3,
A1,
VALUED_2:def 39;
end;
hence thesis by
RELSET_1: 6;
end;
end
begin
definition
let n be
Element of
NAT ;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A, (
REAL n);
::
INTEGR15:def12
attr f is
bounded means for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* f) is
bounded;
end
Lm6: for n,i be
Element of
NAT , f be
PartFunc of
REAL , (
REAL n), i be
Element of
NAT , A be
Subset of
REAL holds ((
proj (i,n))
* (f
| A))
= (((
proj (i,n))
* f)
| A)
proof
let n,i be
Element of
NAT , f be
PartFunc of
REAL , (
REAL n), i be
Element of
NAT , A be
Subset of
REAL ;
A1: (
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
then
A2: (
rng f)
c= (
dom (
proj (i,n)));
A3: (
rng (f
| A))
c= (
dom (
proj (i,n))) by
A1;
A4:
now
let c be
object;
assume
A5: c
in (
dom (((
proj (i,n))
* f)
| A));
then
A6: c
in ((
dom ((
proj (i,n))
* f))
/\ A) by
RELAT_1: 61;
then
A7: c
in A by
XBOOLE_0:def 4;
A8: c
in (
dom ((
proj (i,n))
* f)) by
A6,
XBOOLE_0:def 4;
then c
in (
dom f) by
A2,
RELAT_1: 27;
then c
in ((
dom f)
/\ A) by
A7,
XBOOLE_0:def 4;
then
A9: c
in (
dom (f
| A)) by
RELAT_1: 61;
then c
in (
dom ((
proj (i,n))
* (f
| A))) by
A3,
RELAT_1: 27;
then (((
proj (i,n))
* (f
| A))
. c)
= ((
proj (i,n))
. ((f
| A)
. c)) by
FUNCT_1: 12
.= ((
proj (i,n))
. (f
. c)) by
A9,
FUNCT_1: 47
.= (((
proj (i,n))
* f)
. c) by
A8,
FUNCT_1: 12;
hence ((((
proj (i,n))
* f)
| A)
. c)
= (((
proj (i,n))
* (f
| A))
. c) by
A5,
FUNCT_1: 47;
end;
(
dom (((
proj (i,n))
* f)
| A))
= ((
dom ((
proj (i,n))
* f))
/\ A) by
RELAT_1: 61
.= ((
dom f)
/\ A) by
A2,
RELAT_1: 27
.= (
dom (f
| A)) by
RELAT_1: 61
.= (
dom ((
proj (i,n))
* (f
| A))) by
A3,
RELAT_1: 27;
hence thesis by
A4,
FUNCT_1: 2;
end;
definition
let n be
Element of
NAT ;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A, (
REAL n);
::
INTEGR15:def13
attr f is
integrable means for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* f) is
integrable;
end
definition
let n be
Element of
NAT ;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A, (
REAL n);
::
INTEGR15:def14
func
integral (f) ->
Element of (
REAL n) means
:
Def14: (
dom it )
= (
Seg n) & for i be
Element of
NAT st i
in (
Seg n) holds (it
. i)
= (
integral ((
proj (i,n))
* f));
existence
proof
defpred
P[
Nat,
Real] means ex i be
Element of
NAT st $1
= i & $2
= (
integral ((
proj (i,n))
* f));
A1: for i be
Nat st i
in (
Seg n) holds ex x be
Element of
REAL st
P[i, x]
proof
let i be
Nat;
assume i
in (
Seg n);
then
reconsider ii = i as
Element of
NAT ;
reconsider x = (
integral ((
proj (ii,n))
* f)) as
Element of
REAL by
XREAL_0:def 1;
take x;
thus thesis;
end;
consider p be
FinSequence of
REAL such that
A2: (
dom p)
= (
Seg n) & for i be
Nat st i
in (
Seg n) holds
P[i, (p
. i)] from
FINSEQ_1:sch 5(
A1);
take p;
A3: for i be
Element of
NAT st i
in (
Seg n) holds (p
. i)
= (
integral ((
proj (i,n))
* f))
proof
let i be
Element of
NAT ;
assume i
in (
Seg n);
then
P[i, (p
. i)] by
A2;
hence thesis;
end;
(
len p)
= n by
A2,
FINSEQ_1:def 3;
hence thesis by
A2,
A3,
FINSEQ_2: 92;
end;
uniqueness
proof
let x1,x2 be
Element of (
REAL n) such that
A4: (
dom x1)
= (
Seg n) and
A5: for i be
Element of
NAT st i
in (
Seg n) holds (x1
. i)
= (
integral ((
proj (i,n))
* f)) and
A6: (
dom x2)
= (
Seg n) and
A7: for i be
Element of
NAT st i
in (
Seg n) holds (x2
. i)
= (
integral ((
proj (i,n))
* f));
now
let k be
Nat;
assume
A8: k
in (
dom x1);
then
reconsider i = k as
Element of
NAT ;
(x1
. i)
= (
integral ((
proj (i,n))
* f)) by
A4,
A5,
A8
.= (x2
. i) by
A4,
A7,
A8;
hence (x1
. k)
= (x2
. k);
end;
hence thesis by
A4,
A6,
FINSEQ_1: 13;
end;
end
theorem ::
INTEGR15:11
Th11: for n be
Element of
NAT , A be non
empty
closed_interval
Subset of
REAL , f be
Function of A, (
REAL n), T be
DivSequence of A, S be
middle_volume_Sequence of f, T st f is
bounded & f is
integrable & (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= (
integral f)
proof
let n be
Element of
NAT , A be non
empty
closed_interval
Subset of
REAL , f be
Function of A, (
REAL n), T be
DivSequence of A, S be
middle_volume_Sequence of f, T;
assume that
A1: f is
bounded & f is
integrable and
A2: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
set seq = (
middle_sum (f,S));
set xs = (
integral f);
(
REAL n)
= the
carrier of (
REAL-NS n) by
REAL_NS1:def 4;
then
reconsider xseq = seq as
sequence of (
REAL n);
A3: for i be
Nat st i
in (
Seg n) holds ex rseqi be
Real_Sequence st for k be
Nat holds (rseqi
. k)
= ((xseq
. k)
. i) & rseqi is
convergent & (xs
. i)
= (
lim rseqi)
proof
let i be
Nat;
reconsider pjinf = ((
proj (i,n))
* f) as
Function of A,
REAL ;
defpred
P[
Element of
NAT ,
set] means $2
= ((
proj (i,n))
* (S
. $1));
A4: for x be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P[x, y]
proof
let x be
Element of
NAT ;
((
proj (i,n))
* (S
. x)) is
Element of (
REAL
* ) by
FINSEQ_1:def 11;
hence thesis;
end;
consider F be
sequence of (
REAL
* ) such that
A5: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A4);
A6: for x be
Element of
NAT holds ((
proj (i,n))
* (S
. x)) is
FinSequence of
REAL & (
dom ((
proj (i,n))
* (S
. x)))
= (
Seg (
len (S
. x))) & (
rng ((
proj (i,n))
* (S
. x)))
c=
REAL
proof
let x be
Element of
NAT ;
(
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
then (
rng (S
. x))
c= (
dom (
proj (i,n)));
then (
dom ((
proj (i,n))
* (S
. x)))
= (
dom (S
. x)) by
RELAT_1: 27
.= (
Seg (
len (S
. x))) by
FINSEQ_1:def 3;
hence thesis;
end;
for k be
Element of
NAT holds (F
. k) is
middle_volume of pjinf, (T
. k)
proof
let k be
Element of
NAT ;
reconsider Tk = (T
. k) as
FinSequence;
reconsider Fk = (F
. k) as
FinSequence of
REAL ;
A7: (F
. k)
= ((
proj (i,n))
* (S
. k)) by
A5;
then
A8: (
dom Fk)
= (
Seg (
len (S
. k))) by
A6
.= (
Seg (
len Tk)) by
Def5;
then
A9: (
dom Fk)
= (
dom Tk) by
FINSEQ_1:def 3;
A10:
now
let j be
Nat;
(
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
then
A11: (
rng f)
c= (
dom (
proj (i,n)));
assume
A12: j
in (
dom Tk);
then
consider r be
Element of (
REAL n) such that
A13: r
in (
rng (f
| (
divset ((T
. k),j)))) and
A14: ((S
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* r) by
Def5;
reconsider v = ((
proj (i,n))
. r) as
Element of
REAL ;
take v;
consider t be
object such that
A15: t
in (
dom (f
| (
divset ((T
. k),j)))) and
A16: r
= ((f
| (
divset ((T
. k),j)))
. t) by
A13,
FUNCT_1:def 3;
t
in ((
dom f)
/\ (
divset ((T
. k),j))) by
A15,
RELAT_1: 61;
then t
in (
dom f) by
XBOOLE_0:def 4;
then
A17: t
in (
dom ((
proj (i,n))
* f)) by
A11,
RELAT_1: 27;
A18: (
dom (f
| (
divset ((T
. k),j))))
= ((
dom f)
/\ (
divset ((T
. k),j))) by
RELAT_1: 61
.= ((
dom pjinf)
/\ (
divset ((T
. k),j))) by
A11,
RELAT_1: 27
.= (
dom (pjinf
| (
divset ((T
. k),j)))) by
RELAT_1: 61;
((
proj (i,n))
. r)
= ((
proj (i,n))
. (f
. t)) by
A15,
A16,
FUNCT_1: 47
.= (((
proj (i,n))
* f)
. t) by
A17,
FUNCT_1: 12
.= ((pjinf
| (
divset ((T
. k),j)))
. t) by
A15,
A18,
FUNCT_1: 47;
hence v
in (
rng (pjinf
| (
divset ((T
. k),j)))) by
A15,
A18,
FUNCT_1: 3;
thus (Fk
. j)
= ((
proj (i,n))
. ((S
. k)
. j)) by
A7,
A9,
A12,
FUNCT_1: 12
.= (((
vol (
divset ((T
. k),j)))
* r)
. i) by
A14,
PDIFF_1:def 1
.= ((
vol (
divset ((T
. k),j)))
* (r
. i)) by
RVSUM_1: 44
.= (v
* (
vol (
divset ((T
. k),j)))) by
PDIFF_1:def 1;
end;
(
len Fk)
= (
len Tk) by
A8,
FINSEQ_1:def 3;
hence thesis by
A10,
Def1;
end;
then
reconsider pjis = F as
middle_volume_Sequence of pjinf, T by
Def3;
reconsider rseqi = (
middle_sum (pjinf,pjis)) as
Real_Sequence;
assume
A19: i
in (
Seg n);
A20: for k be
Nat holds (rseqi
. k)
= ((xseq
. k)
. i)
proof
let k be
Nat;
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
A21: ex Fi be
FinSequence of
REAL st Fi
= ((
proj (i,n))
* (S
. k)) & ((
middle_sum (f,(S
. k)))
. i)
= (
Sum Fi) by
A19,
Def6;
(rseqi
. k)
= (
middle_sum (pjinf,(pjis
. k))) by
Def4
.= ((
middle_sum (f,(S
. k)))
. i) by
A5,
A21
.= ((xseq
. k)
. i) by
Def8;
hence thesis;
end;
take rseqi;
A22: ((
proj (i,n))
* f) is
bounded & pjinf is
integrable by
A1,
A19;
then (
lim (
middle_sum (pjinf,pjis)))
= (
integral pjinf) by
A2,
Th9;
hence thesis by
A2,
A19,
A22,
A20,
Def14,
Th9;
end;
reconsider x = xs as
Point of (
REAL-NS n) by
REAL_NS1:def 4;
xs
= x;
hence thesis by
A3,
REAL_NS1: 11;
end;
theorem ::
INTEGR15:12
for n be
Element of
NAT , A be non
empty
closed_interval
Subset of
REAL , f be
Function of A, (
REAL n) st f is
bounded holds f is
integrable iff ex I be
Element of (
REAL n) st for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I
proof
let n be
Element of
NAT , A be non
empty
closed_interval
Subset of
REAL , f be
Function of A, (
REAL n);
assume
A1: f is
bounded;
hereby
reconsider I = (
integral f) as
Element of (
REAL n);
assume
A2: f is
integrable;
take I;
thus for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I by
A1,
A2,
Th11;
end;
now
assume ex I be
Element of (
REAL n) st for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I;
then
consider I be
Element of (
REAL n) such that
A3: for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I;
now
let i be
Element of
NAT ;
reconsider Ii = (I
. i) as
Element of
REAL by
XREAL_0:def 1;
assume
A4: i
in (
Seg n);
A5:
now
set x = I;
let T be
DivSequence of A, Si be
middle_volume_Sequence of ((
proj (i,n))
* f), T;
defpred
P[
Element of
NAT ,
set] means ex H be
FinSequence, z be
FinSequence st H
= (T
. $1) & z
= $2 & (
len z)
= (
len H) & for j be
Element of
NAT st j
in (
dom H) holds ex rji be
Element of (
REAL n), tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. $1),j)))) & ((Si
. $1)
. j)
= ((
vol (
divset ((T
. $1),j)))
* ((((
proj (i,n))
* f)
| (
divset ((T
. $1),j)))
. tji)) & rji
= ((f
| (
divset ((T
. $1),j)))
. tji) & (z
. j)
= ((
vol (
divset ((T
. $1),j)))
* rji);
reconsider xs = x as
Element of (
REAL n);
A6: for k be
Element of
NAT holds ex y be
Element of ((
REAL n)
* ) st
P[k, y]
proof
let k be
Element of
NAT ;
reconsider Tk = (T
. k) as
FinSequence;
defpred
P1[
Nat,
set] means ex j be
Element of
NAT st $1
= j & ex rji be
Element of (
REAL n), tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. k),j)))) & ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* ((((
proj (i,n))
* f)
| (
divset ((T
. k),j)))
. tji)) & rji
= ((f
| (
divset ((T
. k),j)))
. tji) & $2
= ((
vol (
divset ((T
. k),j)))
* rji);
A7: for j be
Nat st j
in (
Seg (
len Tk)) holds ex x be
Element of (
REAL n) st
P1[j, x]
proof
(
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
then
A8: (
rng f)
c= (
dom (
proj (i,n)));
let j0 be
Nat;
assume
A9: j0
in (
Seg (
len Tk));
then
reconsider j = j0 as
Element of
NAT ;
j
in (
dom Tk) by
A9,
FINSEQ_1:def 3;
then
consider r be
Element of
REAL such that
A10: r
in (
rng (((
proj (i,n))
* f)
| (
divset ((T
. k),j)))) and
A11: ((Si
. k)
. j)
= (r
* (
vol (
divset ((T
. k),j)))) by
Def1;
consider tji be
object such that
A12: tji
in (
dom (((
proj (i,n))
* f)
| (
divset ((T
. k),j)))) and
A13: r
= ((((
proj (i,n))
* f)
| (
divset ((T
. k),j)))
. tji) by
A10,
FUNCT_1:def 3;
tji
in ((
dom ((
proj (i,n))
* f))
/\ (
divset ((T
. k),j))) by
A12,
RELAT_1: 61;
then
reconsider tji as
Element of
REAL ;
A14: (
dom (f
| (
divset ((T
. k),j))))
= ((
dom f)
/\ (
divset ((T
. k),j))) by
RELAT_1: 61
.= ((
dom ((
proj (i,n))
* f))
/\ (
divset ((T
. k),j))) by
A8,
RELAT_1: 27
.= (
dom (((
proj (i,n))
* f)
| (
divset ((T
. k),j)))) by
RELAT_1: 61;
then ((f
| (
divset ((T
. k),j)))
. tji)
in (
rng (f
| (
divset ((T
. k),j)))) by
A12,
FUNCT_1: 3;
then
reconsider rji = ((f
| (
divset ((T
. k),j)))
. tji) as
Element of (
REAL n);
reconsider x = ((
vol (
divset ((T
. k),j)))
* rji) as
Element of (
REAL n);
take x;
thus
P1[j0, x] by
A11,
A12,
A13,
A14;
end;
consider p be
FinSequence of (
REAL n) such that
A15: (
dom p)
= (
Seg (
len Tk)) & for j be
Nat st j
in (
Seg (
len Tk)) holds
P1[j, (p
. j)] from
FINSEQ_1:sch 5(
A7);
reconsider x = p as
Element of ((
REAL n)
* ) by
FINSEQ_1:def 11;
take x;
A16:
now
let jj0 be
Element of
NAT ;
reconsider j0 = jj0 as
Nat;
A17: (
dom Tk)
= (
Seg (
len Tk)) by
FINSEQ_1:def 3;
assume jj0
in (
dom Tk);
then
P1[j0, (p
. j0)] by
A15,
A17;
hence ex rji be
Element of (
REAL n), tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. k),jj0)))) & ((Si
. k)
. jj0)
= ((
vol (
divset ((T
. k),jj0)))
* ((((
proj (i,n))
* f)
| (
divset ((T
. k),jj0)))
. tji)) & rji
= ((f
| (
divset ((T
. k),jj0)))
. tji) & (p
. jj0)
= ((
vol (
divset ((T
. k),jj0)))
* rji);
end;
(
len p)
= (
len Tk) by
A15,
FINSEQ_1:def 3;
hence
P[k, x] by
A16;
end;
consider S be
sequence of ((
REAL n)
* ) such that
A18: for x be
Element of
NAT holds
P[x, (S
. x)] from
FUNCT_2:sch 3(
A6);
for k be
Element of
NAT holds (S
. k) is
middle_volume of f, (T
. k)
proof
let k be
Element of
NAT ;
consider H be
FinSequence, z be
FinSequence such that
A19: H
= (T
. k) & z
= (S
. k) & (
len H)
= (
len z) and
A20: for j be
Element of
NAT st j
in (
dom H) holds ex rji be
Element of (
REAL n), tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. k),j)))) & ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* ((((
proj (i,n))
* f)
| (
divset ((T
. k),j)))
. tji)) & rji
= ((f
| (
divset ((T
. k),j)))
. tji) & (z
. j)
= ((
vol (
divset ((T
. k),j)))
* rji) by
A18;
A21:
now
let x be
Nat;
assume
A22: x
in (
dom H);
then
reconsider j = x as
Element of
NAT ;
consider rji be
Element of (
REAL n), tji be
Element of
REAL such that
A23: tji
in (
dom (f
| (
divset ((T
. k),j)))) and ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* ((((
proj (i,n))
* f)
| (
divset ((T
. k),j)))
. tji)) and
A24: rji
= ((f
| (
divset ((T
. k),j)))
. tji) and
A25: (z
. j)
= ((
vol (
divset ((T
. k),j)))
* rji) by
A20,
A22;
take rji;
thus rji
in (
rng (f
| (
divset ((T
. k),x)))) by
A23,
A24,
FUNCT_1: 3;
thus (z
. x)
= ((
vol (
divset ((T
. k),x)))
* rji) by
A25;
end;
thus thesis by
A19,
A21,
Def5;
end;
then
reconsider S as
middle_volume_Sequence of f, T by
Def7;
set seq = (
middle_sum (f,S));
(
REAL n)
= the
carrier of (
REAL-NS n) by
REAL_NS1:def 4;
then
reconsider xseq = seq as
sequence of (
REAL n);
assume (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
then seq is
convergent & (
lim seq)
= x by
A3;
then
consider rseqi be
Real_Sequence such that
A26: for k be
Nat holds (rseqi
. k)
= ((xseq
. k)
. i) & rseqi is
convergent & (xs
. i)
= (
lim rseqi) by
A4,
REAL_NS1: 11;
for k be
Element of
NAT holds (rseqi
. k)
= ((
middle_sum (((
proj (i,n))
* f),Si))
. k)
proof
let k be
Element of
NAT ;
consider H be
FinSequence, z be
FinSequence such that
A27: H
= (T
. k) and
A28: z
= (S
. k) and
A29: (
len H)
= (
len z) and
A30: for j be
Element of
NAT st j
in (
dom H) holds ex rji be
Element of (
REAL n), tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. k),j)))) & ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* ((((
proj (i,n))
* f)
| (
divset ((T
. k),j)))
. tji)) & rji
= ((f
| (
divset ((T
. k),j)))
. tji) & (z
. j)
= ((
vol (
divset ((T
. k),j)))
* rji) by
A18;
(
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
then (
rng (S
. k))
c= (
dom (
proj (i,n)));
then
A31: (
dom ((
proj (i,n))
* (S
. k)))
= (
dom (S
. k)) by
RELAT_1: 27
.= (
Seg (
len H)) by
A28,
A29,
FINSEQ_1:def 3
.= (
Seg (
len (Si
. k))) by
A27,
Def1
.= (
dom (Si
. k)) by
FINSEQ_1:def 3;
A32: for j be
Nat st j
in (
dom ((
proj (i,n))
* (S
. k))) holds (((
proj (i,n))
* (S
. k))
. j)
= ((Si
. k)
. j)
proof
let j0 be
Nat;
reconsider j = j0 as
Element of
NAT by
ORDINAL1:def 12;
(
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
then
A33: (
rng f)
c= (
dom (
proj (i,n)));
assume
A34: j0
in (
dom ((
proj (i,n))
* (S
. k)));
then j0
in (
Seg (
len (Si
. k))) by
A31,
FINSEQ_1:def 3;
then j0
in (
Seg (
len H)) by
A27,
Def1;
then j
in (
dom H) by
FINSEQ_1:def 3;
then
consider rji be
Element of (
REAL n), tji be
Element of
REAL such that
A35: tji
in (
dom (f
| (
divset ((T
. k),j)))) and
A36: ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* ((((
proj (i,n))
* f)
| (
divset ((T
. k),j)))
. tji)) and
A37: rji
= ((f
| (
divset ((T
. k),j)))
. tji) and
A38: (z
. j)
= ((
vol (
divset ((T
. k),j)))
* rji) by
A30;
A39: (
dom (f
| (
divset ((T
. k),j))))
= ((
dom f)
/\ (
divset ((T
. k),j))) by
RELAT_1: 61
.= ((
dom ((
proj (i,n))
* f))
/\ (
divset ((T
. k),j))) by
A33,
RELAT_1: 27
.= (
dom (((
proj (i,n))
* f)
| (
divset ((T
. k),j)))) by
RELAT_1: 61;
then tji
in ((
dom ((
proj (i,n))
* f))
/\ (
divset ((T
. k),j))) by
A35,
RELAT_1: 61;
then
A40: tji
in (
dom ((
proj (i,n))
* f)) by
XBOOLE_0:def 4;
A41: ((((
proj (i,n))
* f)
| (
divset ((T
. k),j)))
. tji)
= (((
proj (i,n))
* f)
. tji) by
A35,
A39,
FUNCT_1: 47
.= ((
proj (i,n))
. (f
. tji)) by
A40,
FUNCT_1: 12
.= ((
proj (i,n))
. rji) by
A35,
A37,
FUNCT_1: 47;
(((
proj (i,n))
* (S
. k))
. j)
= ((
proj (i,n))
. ((S
. k)
. j)) by
A34,
FUNCT_1: 12
.= (((
vol (
divset ((T
. k),j)))
* rji)
. i) by
A28,
A38,
PDIFF_1:def 1
.= ((
vol (
divset ((T
. k),j)))
* (rji
. i)) by
RVSUM_1: 44
.= ((Si
. k)
. j) by
A36,
A41,
PDIFF_1:def 1;
hence thesis;
end;
consider Fi be
FinSequence of
REAL such that
A42: Fi
= ((
proj (i,n))
* (S
. k)) and
A43: ((
middle_sum (f,(S
. k)))
. i)
= (
Sum Fi) by
A4,
Def6;
thus (rseqi
. k)
= ((xseq
. k)
. i) by
A26
.= (
Sum Fi) by
A43,
Def8
.= (
middle_sum (((
proj (i,n))
* f),(Si
. k))) by
A31,
A32,
A42,
FINSEQ_1: 13
.= ((
middle_sum (((
proj (i,n))
* f),Si))
. k) by
Def4;
end;
hence (
middle_sum (((
proj (i,n))
* f),Si)) is
convergent & (
lim (
middle_sum (((
proj (i,n))
* f),Si)))
= Ii by
A26,
FUNCT_2: 63;
end;
((
proj (i,n))
* f) is
bounded by
A1,
A4;
hence ((
proj (i,n))
* f) is
integrable by
A5,
Th10;
end;
hence f is
integrable;
end;
hence thesis;
end;
definition
let n be
Element of
NAT ;
let f be
PartFunc of
REAL , (
REAL n);
::
INTEGR15:def15
attr f is
bounded means for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* f) is
bounded;
end
definition
let n be
Element of
NAT ;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL , (
REAL n);
::
INTEGR15:def16
pred f
is_integrable_on A means for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* f)
is_integrable_on A;
end
definition
let n be
Element of
NAT ;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL , (
REAL n);
::
INTEGR15:def17
func
integral (f,A) ->
Element of (
REAL n) means
:
Def17: (
dom it )
= (
Seg n) & for i be
Element of
NAT st i
in (
Seg n) holds (it
. i)
= (
integral (((
proj (i,n))
* f),A));
existence
proof
defpred
P[
Nat,
Real] means ex i be
Element of
NAT st $1
= i & $2
= (
integral (((
proj (i,n))
* f),A));
A1: for i be
Nat st i
in (
Seg n) holds ex x be
Element of
REAL st
P[i, x]
proof
let i be
Nat;
assume i
in (
Seg n);
then
reconsider ii = i as
Element of
NAT ;
reconsider x = (
integral (((
proj (ii,n))
* f),A)) as
Element of
REAL by
XREAL_0:def 1;
take x;
thus thesis;
end;
consider p be
FinSequence of
REAL such that
A2: (
dom p)
= (
Seg n) & for i be
Nat st i
in (
Seg n) holds
P[i, (p
. i)] from
FINSEQ_1:sch 5(
A1);
take p;
A3: for i be
Element of
NAT st i
in (
Seg n) holds (p
. i)
= (
integral (((
proj (i,n))
* f),A))
proof
let i be
Element of
NAT ;
assume i
in (
Seg n);
then
P[i, (p
. i)] by
A2;
hence thesis;
end;
(
len p)
= n by
A2,
FINSEQ_1:def 3;
hence thesis by
A2,
A3,
FINSEQ_2: 92;
end;
uniqueness
proof
let x1,x2 be
Element of (
REAL n) such that
A4: (
dom x1)
= (
Seg n) and
A5: for i be
Element of
NAT st i
in (
Seg n) holds (x1
. i)
= (
integral (((
proj (i,n))
* f),A)) and
A6: (
dom x2)
= (
Seg n) and
A7: for i be
Element of
NAT st i
in (
Seg n) holds (x2
. i)
= (
integral (((
proj (i,n))
* f),A));
for k be
Nat st k
in (
dom x1) holds (x1
. k)
= (x2
. k)
proof
let k be
Nat;
assume
A8: k
in (
dom x1);
then
reconsider k as
Element of
NAT ;
(x2
. k)
= (
integral (((
proj (k,n))
* f),A)) by
A4,
A7,
A8;
hence thesis by
A4,
A5,
A8;
end;
hence thesis by
A4,
A6,
FINSEQ_1: 13;
end;
end
theorem ::
INTEGR15:13
for n be
Element of
NAT , A be non
empty
closed_interval
Subset of
REAL , f be
PartFunc of
REAL , (
REAL n), g be
Function of A, (
REAL n) st (f
| A)
= g holds f
is_integrable_on A iff g is
integrable
proof
let n be
Element of
NAT , A be non
empty
closed_interval
Subset of
REAL , f be
PartFunc of
REAL , (
REAL n), g be
Function of A, (
REAL n);
assume
A1: (f
| A)
= g;
thus f
is_integrable_on A implies g is
integrable
proof
assume
A2: f
is_integrable_on A;
for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* g) is
integrable
proof
let i be
Element of
NAT ;
(
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom (
proj (i,n)));
then
A3: (
dom ((
proj (i,n))
* f))
= (
dom f) by
RELAT_1: 27;
A
= (
dom g) by
FUNCT_2:def 1
.= ((
dom f)
/\ A) by
A1,
RELAT_1: 61;
then (((
proj (i,n))
* f)
|| A) is
total by
A3,
INTEGRA5: 6,
XBOOLE_1: 17;
then
reconsider F = (((
proj (i,n))
* f)
| A) as
Function of A,
REAL ;
assume i
in (
Seg n);
then ((
proj (i,n))
* f)
is_integrable_on A by
A2;
then F is
integrable;
hence thesis by
A1,
Lm6;
end;
hence thesis;
end;
assume
A4: g is
integrable;
for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* f)
is_integrable_on A
proof
let i be
Element of
NAT ;
assume
A5: i
in (
Seg n);
((
proj (i,n))
* g)
= (((
proj (i,n))
* f)
| A) by
A1,
Lm6;
then (((
proj (i,n))
* f)
|| A) is
integrable by
A4,
A5;
hence thesis;
end;
hence thesis;
end;
theorem ::
INTEGR15:14
for n be
Element of
NAT , A be non
empty
closed_interval
Subset of
REAL , f be
PartFunc of
REAL , (
REAL n), g be
Function of A, (
REAL n) st (f
| A)
= g holds (
integral (f,A))
= (
integral g)
proof
let n be
Element of
NAT , A be non
empty
closed_interval
Subset of
REAL , f be
PartFunc of
REAL , (
REAL n), g be
Function of A, (
REAL n);
assume
A1: (f
| A)
= g;
A2:
now
let k be
Nat;
assume
A3: k
in (
dom (
integral (f,A)));
then
reconsider i = k as
Element of
NAT ;
(
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom (
proj (i,n)));
then
A4: (
dom ((
proj (i,n))
* f))
= (
dom f) by
RELAT_1: 27;
A
= (
dom g) by
FUNCT_2:def 1
.= ((
dom f)
/\ A) by
A1,
RELAT_1: 61;
then (((
proj (i,n))
* f)
|| A) is
total by
A4,
INTEGRA5: 6,
XBOOLE_1: 17;
then
reconsider F = (((
proj (i,n))
* f)
| A) as
Function of A,
REAL ;
A5: F
= ((
proj (i,n))
* g) by
A1,
Lm6;
A6: i
in (
Seg n) by
A3,
Def17;
then ((
integral (f,A))
. i)
= (
integral (((
proj (i,n))
* f),A)) by
Def17
.= (
integral (((
proj (i,n))
* f)
|| A));
hence ((
integral (f,A))
. k)
= ((
integral g)
. k) by
A6,
A5,
Def14;
end;
(
dom (
integral (f,A)))
= (
Seg n) by
Def17
.= (
dom (
integral g)) by
Def14;
hence thesis by
A2,
FINSEQ_1: 13;
end;
definition
let a,b be
Real;
let n be
Element of
NAT ;
let f be
PartFunc of
REAL , (
REAL n);
::
INTEGR15:def18
func
integral (f,a,b) ->
Element of (
REAL n) means
:
Def18: (
dom it )
= (
Seg n) & for i be
Element of
NAT st i
in (
Seg n) holds (it
. i)
= (
integral (((
proj (i,n))
* f),a,b));
existence
proof
defpred
P[
Nat,
Real] means ex i be
Element of
NAT st $1
= i & $2
= (
integral (((
proj (i,n))
* f),a,b));
A1: for i be
Nat st i
in (
Seg n) holds ex x be
Element of
REAL st
P[i, x]
proof
let i be
Nat;
assume i
in (
Seg n);
then
reconsider ii = i as
Element of
NAT ;
reconsider x = (
integral (((
proj (ii,n))
* f),a,b)) as
Element of
REAL by
XREAL_0:def 1;
take x;
thus thesis;
end;
consider p be
FinSequence of
REAL such that
A2: (
dom p)
= (
Seg n) & for i be
Nat st i
in (
Seg n) holds
P[i, (p
. i)] from
FINSEQ_1:sch 5(
A1);
take p;
A3: for i be
Element of
NAT st i
in (
Seg n) holds (p
. i)
= (
integral (((
proj (i,n))
* f),a,b))
proof
let i be
Element of
NAT ;
assume i
in (
Seg n);
then
P[i, (p
. i)] by
A2;
hence thesis;
end;
(
len p)
= n by
A2,
FINSEQ_1:def 3;
hence thesis by
A2,
A3,
FINSEQ_2: 92;
end;
uniqueness
proof
let x1,x2 be
Element of (
REAL n) such that
A4: (
dom x1)
= (
Seg n) and
A5: for i be
Element of
NAT st i
in (
Seg n) holds (x1
. i)
= (
integral (((
proj (i,n))
* f),a,b)) and
A6: (
dom x2)
= (
Seg n) and
A7: for i be
Element of
NAT st i
in (
Seg n) holds (x2
. i)
= (
integral (((
proj (i,n))
* f),a,b));
for k be
Nat st k
in (
dom x1) holds (x1
. k)
= (x2
. k)
proof
let k be
Nat;
assume
A8: k
in (
dom x1);
then
reconsider k as
Element of
NAT ;
(x2
. k)
= (
integral (((
proj (k,n))
* f),a,b)) by
A4,
A7,
A8;
hence thesis by
A4,
A5,
A8;
end;
hence thesis by
A4,
A6,
FINSEQ_1: 13;
end;
end
begin
theorem ::
INTEGR15:15
Th15: for n,i be
Element of
NAT , f1,f2 be
PartFunc of Z, (
REAL n) holds ((
proj (i,n))
* (f1
+ f2))
= (((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2)) & ((
proj (i,n))
* (f1
- f2))
= (((
proj (i,n))
* f1)
- ((
proj (i,n))
* f2))
proof
let n,i be
Element of
NAT ;
let f1,f2 be
PartFunc of Z, (
REAL n);
A1: (
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f1)
c= (
dom (
proj (i,n)));
then
A2: (
dom ((
proj (i,n))
* f1))
= (
dom f1) by
RELAT_1: 27;
A3: (
rng (f1
+ f2))
c= (
dom (
proj (i,n))) by
A1;
then
A4: (
dom ((
proj (i,n))
* (f1
+ f2)))
= (
dom (f1
+ f2)) by
RELAT_1: 27;
(
rng f2)
c= (
dom (
proj (i,n))) by
A1;
then
A5: (
dom ((
proj (i,n))
* f2))
= (
dom f2) by
RELAT_1: 27;
A6: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_2:def 45;
A7: for z be
Element of Z st z
in (
dom ((
proj (i,n))
* (f1
+ f2))) holds (((
proj (i,n))
* (f1
+ f2))
. z)
= ((((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2))
. z)
proof
let z be
Element of Z;
reconsider f1z = (f1
/. z) as
Element of (n
-tuples_on
REAL );
reconsider f2z = (f2
/. z) as
Element of (n
-tuples_on
REAL );
assume
A8: z
in (
dom ((
proj (i,n))
* (f1
+ f2)));
then
A9: z
in (
dom (f1
+ f2)) by
A3,
RELAT_1: 27;
then
A10: z
in ((
dom f1)
/\ (
dom f2)) by
VALUED_2:def 45;
then z
in (
dom f1) by
XBOOLE_0:def 4;
then
A11: (f1
. z)
= f1z by
PARTFUN1:def 6;
z
in (
dom f2) by
A10,
XBOOLE_0:def 4;
then
A12: (f2
. z)
= f2z by
PARTFUN1:def 6;
((
proj (i,n))
. ((f1
+ f2)
. z))
= ((
proj (i,n))
. ((f1
. z)
+ (f2
. z))) by
A9,
VALUED_2:def 45;
then ((
proj (i,n))
. ((f1
+ f2)
. z))
= (((f1
/. z)
+ (f2
/. z))
. i) by
A11,
A12,
PDIFF_1:def 1;
then
A13: ((
proj (i,n))
. ((f1
+ f2)
. z))
= ((f1z
. i)
+ (f2z
. i)) by
RVSUM_1: 11;
A14: z
in ((
dom ((
proj (i,n))
* f1))
/\ (
dom ((
proj (i,n))
* f2))) by
A2,
A5,
A4,
A8,
VALUED_2:def 45;
then z
in (
dom ((
proj (i,n))
* f1)) by
XBOOLE_0:def 4;
then (((
proj (i,n))
* f1)
. z)
= ((
proj (i,n))
. (f1
. z)) by
FUNCT_1: 12;
then
A15: (((
proj (i,n))
* f1)
. z)
= (f1z
. i) by
A11,
PDIFF_1:def 1;
z
in (
dom ((
proj (i,n))
* f2)) by
A14,
XBOOLE_0:def 4;
then (((
proj (i,n))
* f2)
. z)
= ((
proj (i,n))
. (f2
. z)) by
FUNCT_1: 12;
then
A16: (((
proj (i,n))
* f2)
. z)
= (f2z
. i) by
A12,
PDIFF_1:def 1;
z
in (
dom (((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2))) by
A6,
A2,
A5,
A4,
A8,
VALUED_1:def 1;
then ((((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2))
. z)
= ((f1z
. i)
+ (f2z
. i)) by
A15,
A16,
VALUED_1:def 1;
hence thesis by
A8,
A13,
FUNCT_1: 12;
end;
(
dom ((
proj (i,n))
* (f1
+ f2)))
= (
dom (((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2))) by
A6,
A2,
A5,
A4,
VALUED_1:def 1;
hence ((
proj (i,n))
* (f1
+ f2))
= (((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2)) by
A7,
PARTFUN1: 5;
A17: (
rng (f1
- f2))
c= (
dom (
proj (i,n))) by
A1;
then
A18: (
dom ((
proj (i,n))
* (f1
- f2)))
= (
dom (f1
- f2)) by
RELAT_1: 27;
A19: (
dom (f1
- f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_2:def 46;
then
A20: (
dom ((
proj (i,n))
* (f1
- f2)))
= (
dom (((
proj (i,n))
* f1)
- ((
proj (i,n))
* f2))) by
A2,
A5,
A18,
VALUED_1: 12;
for z be
Element of Z st z
in (
dom ((
proj (i,n))
* (f1
- f2))) holds (((
proj (i,n))
* (f1
- f2))
. z)
= ((((
proj (i,n))
* f1)
- ((
proj (i,n))
* f2))
. z)
proof
let z be
Element of Z;
reconsider f1z = (f1
/. z) as
Element of (n
-tuples_on
REAL );
reconsider f2z = (f2
/. z) as
Element of (n
-tuples_on
REAL );
assume
A21: z
in (
dom ((
proj (i,n))
* (f1
- f2)));
then
A22: z
in (
dom (f1
- f2)) by
A17,
RELAT_1: 27;
then
A23: z
in ((
dom f1)
/\ (
dom f2)) by
VALUED_2:def 46;
then z
in (
dom f1) by
XBOOLE_0:def 4;
then
A24: (f1
. z)
= f1z by
PARTFUN1:def 6;
z
in (
dom f2) by
A23,
XBOOLE_0:def 4;
then
A25: (f2
. z)
= f2z by
PARTFUN1:def 6;
z
in (
dom ((
proj (i,n))
* f2)) by
A5,
A19,
A18,
A21,
XBOOLE_0:def 4;
then (((
proj (i,n))
* f2)
. z)
= ((
proj (i,n))
. (f2
. z)) by
FUNCT_1: 12;
then
A26: (((
proj (i,n))
* f2)
. z)
= (f2z
. i) by
A25,
PDIFF_1:def 1;
((
proj (i,n))
. ((f1
- f2)
. z))
= ((
proj (i,n))
. ((f1
. z)
- (f2
. z))) by
A22,
VALUED_2:def 46;
then ((
proj (i,n))
. ((f1
- f2)
. z))
= (((f1
/. z)
- (f2
/. z))
. i) by
A24,
A25,
PDIFF_1:def 1;
then
A27: ((
proj (i,n))
. ((f1
- f2)
. z))
= ((f1z
. i)
- (f2z
. i)) by
RVSUM_1: 27;
z
in (
dom ((
proj (i,n))
* f1)) by
A2,
A19,
A18,
A21,
XBOOLE_0:def 4;
then (((
proj (i,n))
* f1)
. z)
= ((
proj (i,n))
. (f1
. z)) by
FUNCT_1: 12;
then
A28: (((
proj (i,n))
* f1)
. z)
= (f1z
. i) by
A24,
PDIFF_1:def 1;
((((
proj (i,n))
* f1)
- ((
proj (i,n))
* f2))
. z)
= ((((
proj (i,n))
* f1)
. z)
- (((
proj (i,n))
* f2)
. z)) by
A20,
A21,
VALUED_1: 13;
hence thesis by
A21,
A27,
A28,
A26,
FUNCT_1: 12;
end;
hence thesis by
A20,
PARTFUN1: 5;
end;
theorem ::
INTEGR15:16
Th16: for n,i be
Element of
NAT , r be
Real, f be
PartFunc of Z, (
REAL n) holds ((
proj (i,n))
* (r
(#) f))
= (r
(#) ((
proj (i,n))
* f))
proof
let n,i be
Element of
NAT ;
let r be
Real;
let f be
PartFunc of Z, (
REAL n);
A1: (
dom (r
(#) f))
= (
dom f) by
VALUED_2:def 39;
A2: (
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
then
A3: (
rng (r
(#) f))
c= (
dom (
proj (i,n)));
(
rng f)
c= (
dom (
proj (i,n))) by
A2;
then
A4: (
dom ((
proj (i,n))
* f))
= (
dom f) by
RELAT_1: 27;
then (
dom (r
(#) ((
proj (i,n))
* f)))
= (
dom f) by
VALUED_1:def 5;
then
A5: (
dom ((
proj (i,n))
* (r
(#) f)))
= (
dom (r
(#) ((
proj (i,n))
* f))) by
A1,
A3,
RELAT_1: 27;
for z be
Element of Z st z
in (
dom (r
(#) ((
proj (i,n))
* f))) holds (((
proj (i,n))
* (r
(#) f))
. z)
= ((r
(#) ((
proj (i,n))
* f))
. z)
proof
let z be
Element of Z;
reconsider fz = (f
/. z) as
Element of (n
-tuples_on
REAL );
reconsider rfz = ((r
(#) f)
/. z) as
Element of (n
-tuples_on
REAL );
assume
A6: z
in (
dom (r
(#) ((
proj (i,n))
* f)));
then
A7: z
in (
dom ((
proj (i,n))
* f)) by
VALUED_1:def 5;
then
A8: (f
. z)
= fz by
A4,
PARTFUN1:def 6;
((r
(#) ((
proj (i,n))
* f))
. z)
= (r
* (((
proj (i,n))
* f)
. z)) by
A6,
VALUED_1:def 5
.= (r
* ((
proj (i,n))
. fz)) by
A7,
A8,
FUNCT_1: 12;
then
A9: ((r
(#) ((
proj (i,n))
* f))
. z)
= (r
* (fz
. i)) by
PDIFF_1:def 1;
A10: ((r
(#) f)
. z)
= rfz by
A1,
A4,
A7,
PARTFUN1:def 6;
thus (((
proj (i,n))
* (r
(#) f))
. z)
= ((
proj (i,n))
. ((r
(#) f)
. z)) by
A5,
A6,
FUNCT_1: 12
.= (rfz
. i) by
A10,
PDIFF_1:def 1
.= ((r
(#) fz)
. i) by
A1,
A4,
A7,
A8,
A10,
VALUED_2:def 39
.= ((r
(#) ((
proj (i,n))
* f))
. z) by
A9,
RVSUM_1: 44;
end;
hence thesis by
A5,
PARTFUN1: 5;
end;
theorem ::
INTEGR15:17
for n be
Element of
NAT holds for A be non
empty
closed_interval
Subset of
REAL holds for f1,f2 be
PartFunc of
REAL , (
REAL n) st f1
is_integrable_on A & f2
is_integrable_on A & A
c= (
dom f1) & A
c= (
dom f2) & (f1
| A) is
bounded & (f2
| A) is
bounded holds (f1
+ f2)
is_integrable_on A & (f1
- f2)
is_integrable_on A & (
integral ((f1
+ f2),A))
= ((
integral (f1,A))
+ (
integral (f2,A))) & (
integral ((f1
- f2),A))
= ((
integral (f1,A))
- (
integral (f2,A)))
proof
let n be
Element of
NAT ;
let A be non
empty
closed_interval
Subset of
REAL ;
let f1,f2 be
PartFunc of
REAL , (
REAL n);
assume that
A1: f1
is_integrable_on A & f2
is_integrable_on A and
A2: A
c= (
dom f1) & A
c= (
dom f2) and
A3: (f1
| A) is
bounded and
A4: (f2
| A) is
bounded;
A5: for i be
Element of
NAT st i
in (
Seg n) holds A
c= (
dom ((
proj (i,n))
* f1)) & A
c= (
dom ((
proj (i,n))
* f2))
proof
let i be
Element of
NAT ;
assume i
in (
Seg n);
(
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f1)
c= (
dom (
proj (i,n))) & (
rng f2)
c= (
dom (
proj (i,n)));
hence thesis by
A2,
RELAT_1: 27;
end;
A6: for i be
Element of
NAT st i
in (
Seg n) holds (((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2))
is_integrable_on A & (
integral ((((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2)),A))
= ((
integral (((
proj (i,n))
* f1),A))
+ (
integral (((
proj (i,n))
* f2),A))) & (((
proj (i,n))
* f1)
- ((
proj (i,n))
* f2))
is_integrable_on A & (
integral ((((
proj (i,n))
* f1)
- ((
proj (i,n))
* f2)),A))
= ((
integral (((
proj (i,n))
* f1),A))
- (
integral (((
proj (i,n))
* f2),A)))
proof
let i be
Element of
NAT ;
assume
A7: i
in (
Seg n);
then
A8: A
c= (
dom ((
proj (i,n))
* f1)) & A
c= (
dom ((
proj (i,n))
* f2)) by
A5;
((
proj (i,n))
* (f2
| A)) is
bounded by
A4,
A7;
then
A9: (((
proj (i,n))
* f2)
| A) is
bounded by
Lm6;
((
proj (i,n))
* (f1
| A)) is
bounded by
A3,
A7;
then
A10: (((
proj (i,n))
* f1)
| A) is
bounded by
Lm6;
A11: ((
proj (i,n))
* f1)
is_integrable_on A & ((
proj (i,n))
* f2)
is_integrable_on A by
A1,
A7;
hence (((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2))
is_integrable_on A & (
integral ((((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2)),A))
= ((
integral (((
proj (i,n))
* f1),A))
+ (
integral (((
proj (i,n))
* f2),A))) by
A8,
A10,
A9,
INTEGRA6: 11;
thus (((
proj (i,n))
* f1)
- ((
proj (i,n))
* f2))
is_integrable_on A & (
integral ((((
proj (i,n))
* f1)
- ((
proj (i,n))
* f2)),A))
= ((
integral (((
proj (i,n))
* f1),A))
- (
integral (((
proj (i,n))
* f2),A))) by
A8,
A10,
A9,
A11,
INTEGRA6: 11;
end;
A12: for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* (f1
+ f2))
is_integrable_on A & ((
proj (i,n))
* (f1
- f2))
is_integrable_on A
proof
let i be
Element of
NAT ;
assume i
in (
Seg n);
then (((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2))
is_integrable_on A & (((
proj (i,n))
* f1)
- ((
proj (i,n))
* f2))
is_integrable_on A by
A6;
hence thesis by
Th15;
end;
then for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* (f1
+ f2))
is_integrable_on A;
hence (f1
+ f2)
is_integrable_on A;
A13: for i be
Element of
NAT st i
in (
Seg n) holds (((
integral (f1,A))
. i)
+ ((
integral (f2,A))
. i))
= ((
integral (((
proj (i,n))
* f1),A))
+ (
integral (((
proj (i,n))
* f2),A))) & (((
integral (f1,A))
. i)
- ((
integral (f2,A))
. i))
= ((
integral (((
proj (i,n))
* f1),A))
- (
integral (((
proj (i,n))
* f2),A)))
proof
let i be
Element of
NAT ;
assume
A14: i
in (
Seg n);
then ((
integral (f1,A))
. i)
= (
integral (((
proj (i,n))
* f1),A)) by
Def17;
hence thesis by
A14,
Def17;
end;
A15: for i be
Element of
NAT st i
in (
Seg n) holds (((
integral (f1,A))
. i)
+ ((
integral (f2,A))
. i))
= (
integral ((((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2)),A)) & (((
integral (f1,A))
. i)
- ((
integral (f2,A))
. i))
= (
integral ((((
proj (i,n))
* f1)
- ((
proj (i,n))
* f2)),A))
proof
let i be
Element of
NAT ;
assume
A16: i
in (
Seg n);
then (((
integral (f1,A))
. i)
+ ((
integral (f2,A))
. i))
= ((
integral (((
proj (i,n))
* f1),A))
+ (
integral (((
proj (i,n))
* f2),A))) & (((
integral (f1,A))
. i)
- ((
integral (f2,A))
. i))
= ((
integral (((
proj (i,n))
* f1),A))
- (
integral (((
proj (i,n))
* f2),A))) by
A13;
hence thesis by
A6,
A16;
end;
A17: for i be
Element of
NAT st i
in (
Seg n) holds (((
integral (f1,A))
. i)
+ ((
integral (f2,A))
. i))
= (
integral (((
proj (i,n))
* (f1
+ f2)),A)) & (((
integral (f1,A))
. i)
- ((
integral (f2,A))
. i))
= (
integral (((
proj (i,n))
* (f1
- f2)),A))
proof
let i be
Element of
NAT ;
assume i
in (
Seg n);
then (((
integral (f1,A))
. i)
+ ((
integral (f2,A))
. i))
= (
integral ((((
proj (i,n))
* f1)
+ ((
proj (i,n))
* f2)),A)) & (((
integral (f1,A))
. i)
- ((
integral (f2,A))
. i))
= (
integral ((((
proj (i,n))
* f1)
- ((
proj (i,n))
* f2)),A)) by
A15;
hence thesis by
Th15;
end;
A18: for i be
Element of
NAT st i
in (
Seg n) holds ((
integral ((f1
+ f2),A))
. i)
= (((
integral (f1,A))
. i)
+ ((
integral (f2,A))
. i)) & ((
integral ((f1
- f2),A))
. i)
= (((
integral (f1,A))
. i)
- ((
integral (f2,A))
. i))
proof
let i be
Element of
NAT ;
assume
A19: i
in (
Seg n);
then (((
integral (f1,A))
. i)
+ ((
integral (f2,A))
. i))
= (
integral (((
proj (i,n))
* (f1
+ f2)),A)) & (((
integral (f1,A))
. i)
- ((
integral (f2,A))
. i))
= (
integral (((
proj (i,n))
* (f1
- f2)),A)) by
A17;
hence thesis by
A19,
Def17;
end;
for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* (f1
- f2))
is_integrable_on A by
A12;
hence (f1
- f2)
is_integrable_on A;
A20: (
dom (
integral ((f1
+ f2),A)))
= (
Seg n) by
FINSEQ_1: 89;
A21: for i be
Element of
NAT st i
in (
dom (
integral ((f1
+ f2),A))) holds ((
integral ((f1
+ f2),A))
. i)
= (((
integral (f1,A))
+ (
integral (f2,A)))
. i)
proof
let i be
Element of
NAT ;
assume i
in (
dom (
integral ((f1
+ f2),A)));
then ((
integral ((f1
+ f2),A))
. i)
= (((
integral (f1,A))
. i)
+ ((
integral (f2,A))
. i)) by
A18,
A20;
hence thesis by
RVSUM_1: 11;
end;
(
dom ((
integral (f1,A))
+ (
integral (f2,A))))
= (
Seg n) by
FINSEQ_1: 89;
hence (
integral ((f1
+ f2),A))
= ((
integral (f1,A))
+ (
integral (f2,A))) by
A21,
FINSEQ_1: 89,
PARTFUN1: 5;
A22: (
dom (
integral ((f1
- f2),A)))
= (
Seg n) by
FINSEQ_1: 89;
A23: for i be
Element of
NAT st i
in (
dom (
integral ((f1
- f2),A))) holds ((
integral ((f1
- f2),A))
. i)
= (((
integral (f1,A))
- (
integral (f2,A)))
. i)
proof
let i be
Element of
NAT ;
assume i
in (
dom (
integral ((f1
- f2),A)));
then ((
integral ((f1
- f2),A))
. i)
= (((
integral (f1,A))
. i)
- ((
integral (f2,A))
. i)) by
A18,
A22;
hence thesis by
RVSUM_1: 27;
end;
(
dom ((
integral (f1,A))
- (
integral (f2,A))))
= (
Seg n) by
FINSEQ_1: 89;
hence thesis by
A23,
FINSEQ_1: 89,
PARTFUN1: 5;
end;
theorem ::
INTEGR15:18
for n be
Element of
NAT holds for r be
Real holds for A be non
empty
closed_interval
Subset of
REAL holds for f be
PartFunc of
REAL , (
REAL n) st A
c= (
dom f) & f
is_integrable_on A & (f
| A) is
bounded holds (r
(#) f)
is_integrable_on A & (
integral ((r
(#) f),A))
= (r
* (
integral (f,A)))
proof
let n be
Element of
NAT ;
let r be
Real;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL , (
REAL n);
assume that
A1: A
c= (
dom f) and
A2: f
is_integrable_on A and
A3: (f
| A) is
bounded;
A4:
now
let i be
Element of
NAT ;
(
dom (
proj (i,n)))
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom (
proj (i,n)));
hence A
c= (
dom ((
proj (i,n))
* f)) by
A1,
RELAT_1: 27;
end;
A5: for i be
Element of
NAT st i
in (
Seg n) holds (
integral ((r
(#) ((
proj (i,n))
* f)),A))
= (r
* (
integral (((
proj (i,n))
* f),A)))
proof
let i be
Element of
NAT ;
assume
A6: i
in (
Seg n);
(((
proj (i,n))
* f)
| A)
= ((
proj (i,n))
* (f
| A)) by
Lm6;
then
A7: (((
proj (i,n))
* f)
| A) is
bounded by
A3,
A6;
A8: A
c= (
dom ((
proj (i,n))
* f)) by
A4;
((
proj (i,n))
* f)
is_integrable_on A by
A2,
A6;
hence thesis by
A7,
A8,
INTEGRA6: 9;
end;
A9: for i be
Element of
NAT st i
in (
Seg n) holds ((r
* (
integral (f,A)))
. i)
= (r
* (
integral (((
proj (i,n))
* f),A)))
proof
let i be
Element of
NAT ;
assume i
in (
Seg n);
then (r
* ((
integral (f,A))
. i))
= (r
* (
integral (((
proj (i,n))
* f),A))) by
Def17;
hence thesis by
RVSUM_1: 45;
end;
A10: for i be
Element of
NAT st i
in (
Seg n) holds ((
integral ((r
(#) f),A))
. i)
= ((r
* (
integral (f,A)))
. i)
proof
let i be
Element of
NAT ;
A11: (
integral ((r
(#) ((
proj (i,n))
* f)),A))
= (
integral (((
proj (i,n))
* (r
(#) f)),A)) by
Th16;
assume
A12: i
in (
Seg n);
then ((
integral ((r
(#) f),A))
. i)
= (
integral (((
proj (i,n))
* (r
(#) f)),A)) & ((r
* (
integral (f,A)))
. i)
= (r
* (
integral (((
proj (i,n))
* f),A))) by
A9,
Def17;
hence thesis by
A5,
A12,
A11;
end;
for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* (r
(#) f))
is_integrable_on A
proof
let i be
Element of
NAT ;
assume
A13: i
in (
Seg n);
(((
proj (i,n))
* f)
| A)
= ((
proj (i,n))
* (f
| A)) by
Lm6;
then
A14: (((
proj (i,n))
* f)
| A) is
bounded by
A3,
A13;
A15: A
c= (
dom ((
proj (i,n))
* f)) by
A4;
((
proj (i,n))
* f)
is_integrable_on A by
A2,
A13;
then (r
(#) ((
proj (i,n))
* f))
is_integrable_on A by
A14,
A15,
INTEGRA6: 9;
hence thesis by
Th16;
end;
hence (r
(#) f)
is_integrable_on A;
A16: (
dom (
integral ((r
(#) f),A)))
= (
Seg n) by
FINSEQ_1: 89;
then (
dom (
integral ((r
(#) f),A)))
= (
dom (r
* (
integral (f,A)))) by
FINSEQ_1: 89;
hence thesis by
A10,
A16,
PARTFUN1: 5;
end;
theorem ::
INTEGR15:19
for n be
Element of
NAT holds for f be
PartFunc of
REAL , (
REAL n), A be non
empty
closed_interval
Subset of
REAL , a,b be
Real st A
=
[.a, b.] holds (
integral (f,A))
= (
integral (f,a,b))
proof
let n be
Element of
NAT ;
let f be
PartFunc of
REAL , (
REAL n), A be non
empty
closed_interval
Subset of
REAL , a,b be
Real;
assume
A1: A
=
[.a, b.];
A2:
now
let i be
Nat;
assume
A3: i
in (
dom (
integral (f,A)));
then
reconsider k = i as
Element of
NAT ;
(
dom (
integral (f,A)))
= (
Seg n) by
Def17;
then ((
integral (f,A))
. k)
= (
integral (((
proj (k,n))
* f),A)) & ((
integral (f,a,b))
. k)
= (
integral (((
proj (k,n))
* f),a,b)) by
A3,
Def17,
Def18;
hence ((
integral (f,A))
. i)
= ((
integral (f,a,b))
. i) by
A1,
INTEGRA5: 19;
end;
(
dom (
integral (f,A)))
= (
Seg n) by
Def17
.= (
dom (
integral (f,a,b))) by
Def18;
hence (
integral (f,A))
= (
integral (f,a,b)) by
A2,
FINSEQ_1: 13;
end;
theorem ::
INTEGR15:20
for n be
Element of
NAT holds for f be
PartFunc of
REAL , (
REAL n), A be non
empty
closed_interval
Subset of
REAL , a,b be
Real st A
=
[.b, a.] holds (
- (
integral (f,A)))
= (
integral (f,a,b))
proof
let n be
Element of
NAT ;
let f be
PartFunc of
REAL , (
REAL n), A be non
empty
closed_interval
Subset of
REAL , a,b be
Real;
assume
A1: A
=
[.b, a.];
A2:
now
let i be
Nat;
assume
A3: i
in (
dom (
- (
integral (f,A))));
then
reconsider k = i as
Element of
NAT ;
A4: (
dom (
integral (f,A)))
= (
Seg n) by
Def17;
A5: k
in (
dom (
integral (f,A))) by
A3,
VALUED_1: 8;
then
A6: ((
integral (f,a,b))
. k)
= (
integral (((
proj (k,n))
* f),a,b)) by
A4,
Def18;
((
- (
integral (f,A)))
. k)
= (
- ((
integral (f,A))
. k)) by
VALUED_1: 8
.= (
- (
integral (((
proj (k,n))
* f),A))) by
A5,
A4,
Def17;
hence ((
- (
integral (f,A)))
. i)
= ((
integral (f,a,b))
. i) by
A1,
A6,
INTEGRA5: 20;
end;
reconsider jj = 1 as
Real;
(
dom (
- (
integral (f,A))))
= (
dom ((
- jj)
(#) (
integral (f,A)))) by
VALUED_1:def 6
.= (
dom (
integral (f,A))) by
VALUED_1:def 5
.= (
Seg n) by
Def17
.= (
dom (
integral (f,a,b))) by
Def18;
hence thesis by
A2,
FINSEQ_1: 13;
end;
theorem ::
INTEGR15:21
for n be
Nat, Z,x be
set, f,g be
PartFunc of Z, (
REAL n) st x
in (
dom (f
+ g)) holds ((f
+ g)
/. x)
= ((f
/. x)
+ (g
/. x))
proof
let n be
Nat;
let Z,x be
set;
let f,g be
PartFunc of Z, (
REAL n);
assume
A1: x
in (
dom (f
+ g));
(
dom (f
+ g))
= ((
dom f)
/\ (
dom g)) by
VALUED_2:def 45;
then x
in (
dom f) & x
in (
dom g) by
A1,
XBOOLE_0:def 4;
then
A2: (f
. x)
= (f
/. x) & (g
. x)
= (g
/. x) by
PARTFUN1:def 6;
thus ((f
+ g)
/. x)
= ((f
+ g)
. x) by
A1,
PARTFUN1:def 6
.= ((f
/. x)
+ (g
/. x)) by
A1,
A2,
VALUED_2:def 45;
end;
theorem ::
INTEGR15:22
for n be
Nat, Z,x be
set, f,g be
PartFunc of Z, (
REAL n) st x
in (
dom (f
- g)) holds ((f
- g)
/. x)
= ((f
/. x)
- (g
/. x))
proof
let n be
Nat;
let Z,x be
set;
let f,g be
PartFunc of Z, (
REAL n);
assume
A1: x
in (
dom (f
- g));
(
dom (f
- g))
= ((
dom f)
/\ (
dom g)) by
VALUED_2:def 46;
then x
in (
dom f) & x
in (
dom g) by
A1,
XBOOLE_0:def 4;
then
A2: (f
. x)
= (f
/. x) & (g
. x)
= (g
/. x) by
PARTFUN1:def 6;
thus ((f
- g)
/. x)
= ((f
- g)
. x) by
A1,
PARTFUN1:def 6
.= ((f
/. x)
- (g
/. x)) by
A1,
A2,
VALUED_2:def 46;
end;
theorem ::
INTEGR15:23
for n be
Nat, Z,x be
set, f be
PartFunc of Z, (
REAL n) holds for r be
Real st x
in (
dom (r
(#) f)) holds ((r
(#) f)
/. x)
= (r
* (f
/. x))
proof
let n be
Nat;
let Z,x be
set;
let f be
PartFunc of Z, (
REAL n);
let r be
Real;
assume
A1: x
in (
dom (r
(#) f));
(
dom (r
(#) f))
= (
dom f) by
VALUED_2:def 39;
then
A2: (f
. x)
= (f
/. x) by
A1,
PARTFUN1:def 6;
thus ((r
(#) f)
/. x)
= ((r
(#) f)
. x) by
A1,
PARTFUN1:def 6
.= (r
* (f
/. x)) by
A1,
A2,
VALUED_2:def 39;
end;