rsspace2.miz
begin
theorem ::
RSSPACE2:1
Th1: the
carrier of
l2_Space
=
the_set_of_l2RealSequences & (for x be
set holds x is
VECTOR of
l2_Space iff x is
Real_Sequence & ((
seq_id x)
(#) (
seq_id x)) is
summable) & (
0.
l2_Space )
=
Zeroseq & (for u be
VECTOR of
l2_Space holds u
= (
seq_id u)) & (for u,v be
VECTOR of
l2_Space holds (u
+ v)
= ((
seq_id u)
+ (
seq_id v))) & (for r be
Real holds for u be
VECTOR of
l2_Space holds (r
* u)
= (r
(#) (
seq_id u))) & (for u be
VECTOR of
l2_Space holds (
- u)
= (
- (
seq_id u)) & (
seq_id (
- u))
= (
- (
seq_id u))) & (for u,v be
VECTOR of
l2_Space holds (u
- v)
= ((
seq_id u)
- (
seq_id v))) & (for v,w be
VECTOR of
l2_Space holds ((
seq_id v)
(#) (
seq_id w)) is
summable) & for v,w be
VECTOR of
l2_Space holds (v
.|. w)
= (
Sum ((
seq_id v)
(#) (
seq_id w)))
proof
thus the
carrier of
l2_Space
=
the_set_of_l2RealSequences ;
thus for x be
set holds x is
Element of
l2_Space iff x is
Real_Sequence & ((
seq_id x)
(#) (
seq_id x)) is
summable
proof
let x be
set;
x
in
the_set_of_RealSequences iff x is
Real_Sequence by
FUNCT_2: 8,
FUNCT_2: 66;
hence thesis by
RSSPACE:def 11;
end;
thus (
0.
l2_Space )
= (
0.
Linear_Space_of_RealSequences ) by
RSSPACE:def 10
.=
Zeroseq ;
thus for u be
VECTOR of
l2_Space holds u
= (
seq_id u);
set W =
the_set_of_l2RealSequences ;
set L1 =
Linear_Space_of_RealSequences ;
thus
A10: for u,v be
VECTOR of
l2_Space holds (u
+ v)
= ((
seq_id u)
+ (
seq_id v))
proof
let u,v be
VECTOR of
l2_Space ;
reconsider u1 = u, v1 = v as
VECTOR of
Linear_Space_of_RealSequences by
RLSUB_1: 10,
RSSPACE: 12;
(
dom the
addF of L1)
=
[:the
carrier of L1, the
carrier of L1:] by
FUNCT_2:def 1;
then (
dom (the
addF of
Linear_Space_of_RealSequences
|| W))
=
[:W, W:] by
RELAT_1: 62,
ZFMISC_1: 96;
then
A11:
[u, v]
in (
dom (the
addF of
Linear_Space_of_RealSequences
|| W)) by
ZFMISC_1: 87;
(u
+ v)
= ((the
addF of
Linear_Space_of_RealSequences
|| W)
.
[u, v]) by
RSSPACE:def 8
.= (u1
+ v1) by
A11,
FUNCT_1: 47;
hence thesis by
RSSPACE: 2;
end;
thus
A12: for r be
Real holds for u be
VECTOR of
l2_Space holds (r
* u)
= (r
(#) (
seq_id u))
proof
let r be
Real;
reconsider r as
Element of
REAL by
XREAL_0:def 1;
let u be
VECTOR of
l2_Space ;
reconsider u1 = u as
VECTOR of
Linear_Space_of_RealSequences by
RLSUB_1: 10,
RSSPACE: 12;
(
dom the
Mult of L1)
=
[:
REAL , the
carrier of L1:] by
FUNCT_2:def 1;
then (
dom (the
Mult of
Linear_Space_of_RealSequences
|
[:
REAL , W:]))
=
[:
REAL , W:] by
RELAT_1: 62,
ZFMISC_1: 96;
then
A13:
[r, u]
in (
dom (the
Mult of
Linear_Space_of_RealSequences
|
[:
REAL , W:])) by
ZFMISC_1: 87;
(r
* u)
= ((the
Mult of
Linear_Space_of_RealSequences
|
[:
REAL , W:])
.
[r, u]) by
RSSPACE:def 9
.= (r
* u1) by
A13,
FUNCT_1: 47;
hence thesis by
RSSPACE: 3;
end;
thus
A15: for u be
VECTOR of
l2_Space holds (
- u)
= (
- (
seq_id u)) & (
seq_id (
- u))
= (
- (
seq_id u))
proof
let u be
VECTOR of
l2_Space ;
(
- u)
= ((
- 1)
* u) by
RLVECT_1: 16
.= ((
- 1)
(#) (
seq_id u)) by
A12
.= (
- (
seq_id u)) by
SEQ_1: 17;
hence thesis;
end;
thus for u,v be
VECTOR of
l2_Space holds (u
- v)
= ((
seq_id u)
- (
seq_id v))
proof
let u,v be
VECTOR of
l2_Space ;
thus (u
- v)
= ((
seq_id u)
+ (
seq_id (
- v))) by
A10
.= ((
seq_id u)
+ (
- (
seq_id v))) by
A15
.= ((
seq_id u)
- (
seq_id v)) by
SEQ_1: 11;
end;
thus for u,v be
VECTOR of
l2_Space holds ((
seq_id u)
(#) (
seq_id v)) is
summable
proof
set q0 = (1
/ 2);
let u,v be
VECTOR of
l2_Space ;
set p = ((
seq_id v)
(#) (
seq_id v));
set q = ((
seq_id u)
(#) (
seq_id u));
set r = (
abs ((
seq_id u)
(#) (
seq_id v)));
A2: for n be
Nat holds
0
<= ((2
(#) r)
. n)
proof
set rr = ((
seq_id u)
(#) (
seq_id v));
let n be
Nat;
reconsider tt =
|.(rr
. n).| as
Real;
A3:
0
<= tt by
COMPLEX1: 46;
((2
(#) r)
. n)
= (2
* (r
. n)) by
SEQ_1: 9
.= (2
*
|.(rr
. n).|) by
SEQ_1: 12;
hence thesis by
A3;
end;
A4: for n be
Nat holds ((2
(#) r)
. n)
<= ((p
+ q)
. n)
proof
set s = (
seq_id v), t = (
seq_id u);
let n be
Nat;
reconsider sn = (s
. n), tn = (t
. n) as
Real;
reconsider ss =
|.sn.|, tt =
|.tn.| as
Real;
A5: ((p
+ q)
. n)
= ((p
. n)
+ (q
. n)) by
SEQ_1: 7
.= (((s
. n)
* (s
. n))
+ (q
. n)) by
SEQ_1: 8
.= ((sn
^2 )
+ ((t
. n)
* (t
. n))) by
SEQ_1: 8
.= ((
|.sn.|
^2 )
+ (tn
^2 )) by
COMPLEX1: 75
.= ((
|.sn.|
^2 )
+ (
|.tn.|
^2 )) by
COMPLEX1: 75;
A6:
0
<= ((
|.sn.|
-
|.tn.|)
^2 ) by
XREAL_1: 63;
((2
(#) r)
. n)
= (2
* (r
. n)) by
SEQ_1: 9
.= (2
*
|.(((
seq_id u)
(#) (
seq_id v))
. n).|) by
SEQ_1: 12
.= (2
*
|.(((
seq_id u)
. n)
* ((
seq_id v)
. n)).|) by
SEQ_1: 8
.= (2
* (ss
* tt)) by
COMPLEX1: 65
.= ((2
*
|.sn.|)
*
|.tn.|);
then (
0
+ ((2
(#) r)
. n))
<= ((((p
+ q)
. n)
- ((2
(#) r)
. n))
+ ((2
(#) r)
. n)) by
A5,
A6,
XREAL_1: 7;
hence thesis;
end;
A7: (q0
(#) (2
(#) r))
= ((q0
* 2)
(#) r) by
SEQ_1: 23
.= r by
SEQ_1: 27;
((
seq_id v)
(#) (
seq_id v)) is
summable & ((
seq_id u)
(#) (
seq_id u)) is
summable by
RSSPACE:def 11;
then (p
+ q) is
summable by
SERIES_1: 7;
then (2
(#) r) is
summable by
A2,
A4,
SERIES_1: 20;
then r is
summable by
A7,
SERIES_1: 10;
then ((
seq_id u)
(#) (
seq_id v)) is
absolutely_summable by
SERIES_1:def 4;
hence thesis;
end;
thus for v,w be
VECTOR of
l2_Space holds (v
.|. w)
= (
Sum ((
seq_id v)
(#) (
seq_id w)))
proof
let v,w be
VECTOR of
l2_Space ;
thus (v
.|. w)
= (the
scalar of
l2_Space
. (v,w)) by
BHSP_1:def 1
.= (
Sum ((
seq_id v)
(#) (
seq_id w))) by
RSSPACE:def 12;
end;
end;
theorem ::
RSSPACE2:2
Th2: for x,y,z be
Point of
l2_Space holds for a be
Real holds ((x
.|. x)
=
0 iff x
= (
0.
l2_Space )) &
0
<= (x
.|. x) & (x
.|. y)
= (y
.|. x) & ((x
+ y)
.|. z)
= ((x
.|. z)
+ (y
.|. z)) & ((a
* x)
.|. y)
= (a
* (x
.|. y))
proof
let x,y,z be
Point of
l2_Space ;
let a be
Real;
A1: for n be
Nat holds
0
<= (((
seq_id x)
(#) (
seq_id x))
. n)
proof
let n be
Nat;
(((
seq_id x)
(#) (
seq_id x))
. n)
= (((
seq_id x)
. n)
* ((
seq_id x)
. n)) by
SEQ_1: 8;
hence thesis by
XREAL_1: 63;
end;
A2: ((
seq_id x)
(#) (
seq_id x)) is
summable & (x
.|. x)
= (
Sum ((
seq_id x)
(#) (
seq_id x))) by
Th1;
A3:
now
A4: for n be
Nat holds
0
<= (((
seq_id x)
(#) (
seq_id x))
. n)
proof
let n be
Nat;
(((
seq_id x)
(#) (
seq_id x))
. n)
= (((
seq_id x)
. n)
* ((
seq_id x)
. n)) by
SEQ_1: 8;
hence thesis by
XREAL_1: 63;
end;
assume
A5: (x
.|. x)
=
0 ;
A6: (x
.|. x)
= (
Sum ((
seq_id x)
(#) (
seq_id x))) & ((
seq_id x)
(#) (
seq_id x)) is
summable by
Th1;
A7: for n be
Nat holds
0
= ((
seq_id x)
. n)
proof
let n be
Nat;
0
= (((
seq_id x)
(#) (
seq_id x))
. n) by
A5,
A4,
A6,
RSSPACE: 17
.= (((
seq_id x)
. n)
* ((
seq_id x)
. n)) by
SEQ_1: 8;
hence thesis by
XCMPLX_1: 6;
end;
x is
Element of
the_set_of_RealSequences by
RSSPACE:def 11;
hence x
= (
0.
l2_Space ) by
A7,
Th1,
RSSPACE: 5;
end;
A8: (x
.|. y)
= (
Sum ((
seq_id x)
(#) (
seq_id y))) by
Th1
.= (y
.|. x) by
Th1;
A9:
now
assume
A10: x
= (
0.
l2_Space );
A11: for n be
Nat holds (((
seq_id x)
(#) (
seq_id x))
. n)
=
0
proof
let n be
Nat;
thus (((
seq_id x)
(#) (
seq_id x))
. n)
= (((
seq_id x)
. n)
* ((
seq_id x)
. n)) by
SEQ_1: 8
.= (((
seq_id x)
. n)
*
0 ) by
A10,
Th1
.=
0 ;
end;
thus (x
.|. x)
= (
Sum ((
seq_id x)
(#) (
seq_id x))) by
Th1
.=
0 by
A11,
RSSPACE: 16;
end;
A12: ((
seq_id x)
(#) (
seq_id y)) is
summable by
Th1;
A13: ((a
* x)
.|. y)
= (
Sum ((
seq_id (a
* x))
(#) (
seq_id y))) by
Th1
.= (
Sum ((a
(#) (
seq_id x))
(#) (
seq_id y))) by
Th1
.= (
Sum (a
(#) ((
seq_id x)
(#) (
seq_id y)))) by
SEQ_1: 18
.= (a
* (
Sum ((
seq_id x)
(#) (
seq_id y)))) by
A12,
SERIES_1: 10
.= (a
* (x
.|. y)) by
Th1;
A14: ((
seq_id x)
(#) (
seq_id z)) is
summable & ((
seq_id y)
(#) (
seq_id z)) is
summable by
Th1;
((x
+ y)
.|. z)
= (
Sum ((
seq_id (x
+ y))
(#) (
seq_id z))) by
Th1
.= (
Sum (((
seq_id x)
+ (
seq_id y))
(#) (
seq_id z))) by
Th1
.= (
Sum (((
seq_id x)
(#) (
seq_id z))
+ ((
seq_id y)
(#) (
seq_id z)))) by
SEQ_1: 16
.= ((
Sum ((
seq_id x)
(#) (
seq_id z)))
+ (
Sum ((
seq_id y)
(#) (
seq_id z)))) by
A14,
SERIES_1: 7
.= ((x
.|. z)
+ (
Sum ((
seq_id y)
(#) (
seq_id z)))) by
Th1
.= ((x
.|. z)
+ (y
.|. z)) by
Th1;
hence thesis by
A3,
A9,
A1,
A2,
A8,
A13,
SERIES_1: 18;
end;
registration
cluster
l2_Space ->
RealUnitarySpace-like;
coherence by
Th2,
BHSP_1:def 2;
end
Lm1: for rseq be
Real_Sequence st (for n be
Nat holds
0
<= (rseq
. n)) holds (for n be
Nat holds
0
<= ((
Partial_Sums rseq)
. n)) & (for n be
Nat holds (rseq
. n)
<= ((
Partial_Sums rseq)
. n)) & (rseq is
summable implies (for n be
Nat holds ((
Partial_Sums rseq)
. n)
<= (
Sum rseq)) & for n be
Nat holds (rseq
. n)
<= (
Sum rseq))
proof
let rseq be
Real_Sequence such that
A1: for n be
Nat holds
0
<= (rseq
. n);
A2: (
Partial_Sums rseq) is
non-decreasing by
A1,
SERIES_1: 16;
thus
A3: for n be
Nat holds
0
<= ((
Partial_Sums rseq)
. n)
proof
let n be
Nat;
A4: n
= (n
+
0 ) & ((
Partial_Sums rseq)
.
0 )
= (rseq
.
0 ) by
SERIES_1:def 1;
0
<= (rseq
.
0 ) by
A1;
hence thesis by
A2,
A4,
SEQM_3: 5;
end;
thus
A5: for n be
Nat holds (rseq
. n)
<= ((
Partial_Sums rseq)
. n)
proof
let n be
Nat;
now
per cases ;
case n
=
0 ;
hence thesis by
SERIES_1:def 1;
end;
case
A6: n
<>
0 ;
A7: n
in
NAT by
ORDINAL1:def 12;
set nn = (n
- 1);
(
0
+ 1)
<= n by
A6,
INT_1: 7,
A7;
then
A8: nn
in
NAT by
INT_1: 5,
A7;
then
0
<= ((
Partial_Sums rseq)
. nn) by
A3;
then (nn
+ 1)
= n & ((rseq
. n)
+
0 )
<= ((rseq
. n)
+ ((
Partial_Sums rseq)
. nn)) by
XREAL_1: 7;
hence thesis by
A8,
SERIES_1:def 1;
end;
end;
hence thesis;
end;
assume rseq is
summable;
then
A9: (
Partial_Sums rseq) is
bounded_above by
A1,
SERIES_1: 17;
thus
A10: for n be
Nat holds ((
Partial_Sums rseq)
. n)
<= (
Sum rseq)
proof
let n be
Nat;
((
Partial_Sums rseq)
. n)
<= (
lim (
Partial_Sums rseq)) by
A1,
A9,
SEQ_4: 37,
SERIES_1: 16;
hence thesis by
SERIES_1:def 3;
end;
let n be
Nat;
A11: (rseq
. n)
<= ((
Partial_Sums rseq)
. n) by
A5;
((
Partial_Sums rseq)
. n)
<= (
Sum rseq) by
A10;
hence thesis by
A11,
XXREAL_0: 2;
end;
Lm2: (for x,y be
Real holds ((x
+ y)
* (x
+ y))
<= (((2
* x)
* x)
+ ((2
* y)
* y))) & for x,y be
Real holds (x
* x)
<= (((2
* (x
- y))
* (x
- y))
+ ((2
* y)
* y))
proof
A1:
now
let x,y be
Real;
0
<= ((x
- y)
^2 ) by
XREAL_1: 63;
then (
0
+ ((x
+ y)
* (x
+ y)))
<= (((((2
* x)
* x)
+ ((2
* y)
* y))
- ((x
+ y)
* (x
+ y)))
+ ((x
+ y)
* (x
+ y))) by
XREAL_1: 7;
hence ((x
+ y)
* (x
+ y))
<= (((2
* x)
* x)
+ ((2
* y)
* y));
end;
now
let x,y be
Real;
((x
- y)
+ y)
= x;
hence (x
* x)
<= (((2
* (x
- y))
* (x
- y))
+ ((2
* y)
* y)) by
A1;
end;
hence thesis by
A1;
end;
Lm3: for e be
Real holds for seq be
Real_Sequence st (seq is
convergent & ex k be
Nat st for i be
Nat st k
<= i holds (seq
. i)
<= e) holds (
lim seq)
<= e
proof
let e be
Real;
let seq be
Real_Sequence such that
A1: seq is
convergent and
A2: ex k be
Nat st for i be
Nat st k
<= i holds (seq
. i)
<= e;
consider k be
Nat such that
A3: for i be
Nat st k
<= i holds (seq
. i)
<= e by
A2;
reconsider ee = e as
Element of
REAL by
XREAL_0:def 1;
set cseq = (
seq_const e);
A4: (
lim cseq)
= (cseq
.
0 ) by
SEQ_4: 26
.= e by
SEQ_1: 57;
A5:
now
let i be
Nat;
((seq
^\ k)
. i)
= (seq
. (k
+ i)) & (seq
. (k
+ i))
<= e by
A3,
NAT_1: 11,
NAT_1:def 3;
hence ((seq
^\ k)
. i)
<= (cseq
. i) by
SEQ_1: 57;
end;
(
lim (seq
^\ k))
= (
lim seq) by
A1,
SEQ_4: 20;
hence thesis by
A1,
A5,
A4,
SEQ_2: 18;
end;
Lm4: for c be
Real, seq be
Real_Sequence st seq is
convergent holds for rseq be
Real_Sequence st (for i be
Nat holds (rseq
. i)
= (((seq
. i)
- c)
* ((seq
. i)
- c))) holds rseq is
convergent & (
lim rseq)
= (((
lim seq)
- c)
* ((
lim seq)
- c))
proof
let c be
Real;
reconsider cc = c as
Element of
REAL by
XREAL_0:def 1;
set cseq = (
seq_const c);
let seq be
Real_Sequence such that
A1: seq is
convergent;
A2: (seq
- cseq) is
convergent by
A1;
then
A3: ((seq
- cseq)
(#) (seq
- cseq)) is
convergent;
let rseq be
Real_Sequence such that
A4: for i be
Nat holds (rseq
. i)
= (((seq
. i)
- c)
* ((seq
. i)
- c));
now
let i be
Element of
NAT ;
thus (rseq
. i)
= (((seq
. i)
- c)
* ((seq
. i)
- c)) by
A4
.= (((seq
. i)
- (cseq
. i))
* ((seq
. i)
- c)) by
SEQ_1: 57
.= (((seq
. i)
- (cseq
. i))
* ((seq
. i)
+ (
- (cseq
. i)))) by
SEQ_1: 57
.= (((seq
. i)
+ ((
- cseq)
. i))
* ((seq
. i)
+ (
- (cseq
. i)))) by
SEQ_1: 10
.= (((seq
. i)
+ ((
- cseq)
. i))
* ((seq
. i)
+ ((
- cseq)
. i))) by
SEQ_1: 10
.= (((seq
+ (
- cseq))
. i)
* ((seq
. i)
+ ((
- cseq)
. i))) by
SEQ_1: 7
.= (((seq
- cseq)
. i)
* ((seq
+ (
- cseq))
. i)) by
SEQ_1: 7,
SEQ_1: 11
.= (((seq
- cseq)
. i)
* ((seq
- cseq)
. i)) by
SEQ_1: 11
.= (((seq
- cseq)
(#) (seq
- cseq))
. i) by
SEQ_1: 8;
end;
then
A5: for x be
object st x
in
NAT holds (rseq
. x)
= (((seq
- cseq)
(#) (seq
- cseq))
. x);
(
lim ((seq
- cseq)
(#) (seq
- cseq)))
= ((
lim (seq
- cseq))
* (
lim (seq
- cseq))) by
A2,
SEQ_2: 15
.= (((
lim seq)
- (
lim cseq))
* (
lim (seq
- cseq))) by
A1,
SEQ_2: 12
.= (((
lim seq)
- (
lim cseq))
* ((
lim seq)
- (
lim cseq))) by
A1,
SEQ_2: 12
.= (((
lim seq)
- (cseq
.
0 ))
* ((
lim seq)
- (
lim cseq))) by
SEQ_4: 26
.= (((
lim seq)
- (cseq
.
0 ))
* ((
lim seq)
- (cseq
.
0 ))) by
SEQ_4: 26
.= (((
lim seq)
- c)
* ((
lim seq)
- (cseq
.
0 ))) by
SEQ_1: 57
.= (((
lim seq)
- c)
* ((
lim seq)
- c)) by
SEQ_1: 57;
hence thesis by
A5,
A3,
FUNCT_2: 12;
end;
Lm5: for c be
Real, seq,seq1 be
Real_Sequence st seq is
convergent & seq1 is
convergent holds for rseq be
Real_Sequence st (for i be
Nat holds (rseq
. i)
= ((((seq
. i)
- c)
* ((seq
. i)
- c))
+ (seq1
. i))) holds rseq is
convergent & (
lim rseq)
= ((((
lim seq)
- c)
* ((
lim seq)
- c))
+ (
lim seq1))
proof
let c be
Real;
let seq,seq1 be
Real_Sequence such that
A1: seq is
convergent and
A2: seq1 is
convergent;
reconsider cc = c as
Element of
REAL by
XREAL_0:def 1;
set cseq = (
seq_const c);
A3: (seq
- cseq) is
convergent by
A1;
then
A4: ((seq
- cseq)
(#) (seq
- cseq)) is
convergent;
let rseq be
Real_Sequence such that
A5: for i be
Nat holds (rseq
. i)
= ((((seq
. i)
- c)
* ((seq
. i)
- c))
+ (seq1
. i));
now
let i be
Element of
NAT ;
thus (rseq
. i)
= ((((seq
. i)
- c)
* ((seq
. i)
- c))
+ (seq1
. i)) by
A5
.= ((((seq
. i)
- (cseq
. i))
* ((seq
. i)
- c))
+ (seq1
. i)) by
SEQ_1: 57
.= ((((seq
. i)
- (cseq
. i))
* ((seq
. i)
+ (
- (cseq
. i))))
+ (seq1
. i)) by
SEQ_1: 57
.= ((((seq
. i)
+ ((
- cseq)
. i))
* ((seq
. i)
+ (
- (cseq
. i))))
+ (seq1
. i)) by
SEQ_1: 10
.= ((((seq
. i)
+ ((
- cseq)
. i))
* ((seq
. i)
+ ((
- cseq)
. i)))
+ (seq1
. i)) by
SEQ_1: 10
.= ((((seq
+ (
- cseq))
. i)
* ((seq
. i)
+ ((
- cseq)
. i)))
+ (seq1
. i)) by
SEQ_1: 7
.= ((((seq
- cseq)
. i)
* ((seq
+ (
- cseq))
. i))
+ (seq1
. i)) by
SEQ_1: 7,
SEQ_1: 11
.= ((((seq
- cseq)
. i)
* ((seq
- cseq)
. i))
+ (seq1
. i)) by
SEQ_1: 11
.= ((((seq
- cseq)
(#) (seq
- cseq))
. i)
+ (seq1
. i)) by
SEQ_1: 8
.= ((((seq
- cseq)
(#) (seq
- cseq))
+ seq1)
. i) by
SEQ_1: 7;
end;
then
A6: rseq
= (((seq
- cseq)
(#) (seq
- cseq))
+ seq1) by
FUNCT_2: 63;
(
lim ((seq
- cseq)
(#) (seq
- cseq)))
= ((
lim (seq
- cseq))
* (
lim (seq
- cseq))) by
A3,
SEQ_2: 15
.= (((
lim seq)
- (
lim cseq))
* (
lim (seq
- cseq))) by
A1,
SEQ_2: 12
.= (((
lim seq)
- (
lim cseq))
* ((
lim seq)
- (
lim cseq))) by
A1,
SEQ_2: 12
.= (((
lim seq)
- (cseq
.
0 ))
* ((
lim seq)
- (
lim cseq))) by
SEQ_4: 26
.= (((
lim seq)
- (cseq
.
0 ))
* ((
lim seq)
- (cseq
.
0 ))) by
SEQ_4: 26
.= (((
lim seq)
- c)
* ((
lim seq)
- (cseq
.
0 ))) by
SEQ_1: 57
.= (((
lim seq)
- c)
* ((
lim seq)
- c)) by
SEQ_1: 57;
hence thesis by
A2,
A6,
A4,
SEQ_2: 6;
end;
registration
cluster
l2_Space ->
complete;
coherence
proof
let vseq be
sequence of
l2_Space such that
A1: vseq is
Cauchy;
defpred
P[
object,
object] means ex i be
Nat st $1
= i & ex rseqi be
Real_Sequence st (for n be
Nat holds (rseqi
. n)
= ((
seq_id (vseq
. n))
. i)) & rseqi is
convergent & $2
= (
lim rseqi);
A2: for x be
object st x
in
NAT holds ex y be
object st y
in
REAL &
P[x, y]
proof
let x be
object;
assume x
in
NAT ;
then
reconsider i = x as
Element of
NAT ;
deffunc
F(
set) = ((
seq_id (vseq
. $1))
. i);
consider rseqi be
Real_Sequence such that
A3: for n be
Nat holds (rseqi
. n)
=
F(n) from
SEQ_1:sch 1;
reconsider lr = (
lim rseqi) as
Element of
REAL by
XREAL_0:def 1;
take lr;
now
let e be
Real such that
A4: e
>
0 ;
thus ex k be
Nat st for m be
Nat st k
<= m holds
|.((rseqi
. m)
- (rseqi
. k)).|
< e
proof
consider k be
Nat such that
A5: for n,m be
Nat st n
>= k & m
>= k holds
||.((vseq
. n)
- (vseq
. m)).||
< e by
A1,
A4,
BHSP_3: 2;
now
let m be
Nat;
assume k
<= m;
then
||.((vseq
. m)
- (vseq
. k)).||
< e by
A5;
then (
sqrt (((vseq
. m)
- (vseq
. k))
.|. ((vseq
. m)
- (vseq
. k))))
< e by
BHSP_1:def 4;
then
A6: (
sqrt (
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
(#) (
seq_id ((vseq
. m)
- (vseq
. k))))))
< e by
Th1;
reconsider e1 = e as
Real;
A7: (
sqrt (
|.((rseqi
. m)
- (rseqi
. k)).|
*
|.((rseqi
. m)
- (rseqi
. k)).|))
= (
sqrt (
|.((rseqi
. m)
- (rseqi
. k)).|
^2 ))
.=
|.((rseqi
. m)
- (rseqi
. k)).| by
COMPLEX1: 46,
SQUARE_1: 22;
(
seq_id ((vseq
. m)
- (vseq
. k)))
= ((
seq_id (vseq
. m))
- (
seq_id (vseq
. k))) by
Th1
.= ((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. k)))) by
SEQ_1: 11;
then ((
seq_id ((vseq
. m)
- (vseq
. k)))
. i)
= (((
seq_id (vseq
. m))
. i)
+ ((
- (
seq_id (vseq
. k)))
. i)) by
SEQ_1: 7
.= (((
seq_id (vseq
. m))
. i)
+ (
- ((
seq_id (vseq
. k))
. i))) by
SEQ_1: 10
.= (((
seq_id (vseq
. m))
. i)
- ((
seq_id (vseq
. k))
. i))
.= ((rseqi
. m)
- ((
seq_id (vseq
. k))
. i)) by
A3
.= ((rseqi
. m)
- (rseqi
. k)) by
A3;
then (((
seq_id ((vseq
. m)
- (vseq
. k)))
. i)
* ((
seq_id ((vseq
. m)
- (vseq
. k)))
. i))
= (((rseqi
. m)
- (rseqi
. k))
^2 )
.= (
|.((rseqi
. m)
- (rseqi
. k)).|
^2 ) by
COMPLEX1: 75
.= (
|.((rseqi
. m)
- (rseqi
. k)).|
*
|.((rseqi
. m)
- (rseqi
. k)).|);
then
A8: (
|.((rseqi
. m)
- (rseqi
. k)).|
*
|.((rseqi
. m)
- (rseqi
. k)).|)
= (((
seq_id ((vseq
. m)
- (vseq
. k)))
(#) (
seq_id ((vseq
. m)
- (vseq
. k))))
. i) by
SEQ_1: 8;
A9: for i be
Nat holds
0
<= (((
seq_id ((vseq
. m)
- (vseq
. k)))
(#) (
seq_id ((vseq
. m)
- (vseq
. k))))
. i)
proof
let i be
Nat;
(((
seq_id ((vseq
. m)
- (vseq
. k)))
(#) (
seq_id ((vseq
. m)
- (vseq
. k))))
. i)
= (((
seq_id ((vseq
. m)
- (vseq
. k)))
. i)
* ((
seq_id ((vseq
. m)
- (vseq
. k)))
. i)) by
SEQ_1: 8;
hence thesis by
XREAL_1: 63;
end;
A10: ((
seq_id ((vseq
. m)
- (vseq
. k)))
(#) (
seq_id ((vseq
. m)
- (vseq
. k)))) is
summable by
RSSPACE:def 11;
then
A11:
0
<= (
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
(#) (
seq_id ((vseq
. m)
- (vseq
. k))))) by
A9,
SERIES_1: 18;
then
0
<= (
sqrt (
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
(#) (
seq_id ((vseq
. m)
- (vseq
. k)))))) by
SQUARE_1:def 2;
then ((
sqrt (
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
(#) (
seq_id ((vseq
. m)
- (vseq
. k))))))
^2 )
< (e1
^2 ) by
A6,
SQUARE_1: 16;
then
A12: (
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
(#) (
seq_id ((vseq
. m)
- (vseq
. k)))))
< (e
* e) by
A11,
SQUARE_1:def 2;
(((
seq_id ((vseq
. m)
- (vseq
. k)))
(#) (
seq_id ((vseq
. m)
- (vseq
. k))))
. i)
<= (
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
(#) (
seq_id ((vseq
. m)
- (vseq
. k))))) by
A10,
A9,
Lm1;
then
A13:
0
<=
|.((rseqi
. m)
- (rseqi
. k)).| & (
|.((rseqi
. m)
- (rseqi
. k)).|
*
|.((rseqi
. m)
- (rseqi
. k)).|)
< (e
* e) by
A12,
A8,
COMPLEX1: 46,
XXREAL_0: 2;
(
sqrt (e
* e))
= (
sqrt (e1
^2 ))
.= e by
A4,
SQUARE_1: 22;
hence
|.((rseqi
. m)
- (rseqi
. k)).|
< e by
A13,
A7,
SQUARE_1: 27;
end;
hence thesis;
end;
end;
then rseqi is
convergent by
SEQ_4: 41;
hence thesis by
A3;
end;
consider f be
sequence of
REAL such that
A14: for x be
object st x
in
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 1(
A2);
reconsider tseq = f as
Real_Sequence;
A15:
now
let i be
Nat;
i
in
NAT by
ORDINAL1:def 12;
then ex i0 be
Nat st i
= i0 & ex rseqi be
Real_Sequence st (for n be
Nat holds (rseqi
. n)
= ((
seq_id (vseq
. n))
. i0)) & rseqi is
convergent & (f
. i)
= (
lim rseqi) by
A14;
hence ex rseqi be
Real_Sequence st (for n be
Nat holds (rseqi
. n)
= ((
seq_id (vseq
. n))
. i)) & rseqi is
convergent & (tseq
. i)
= (
lim rseqi);
end;
A16: for e be
Real st e
>
0 holds ex k be
Nat st for n be
Nat st n
>= k holds (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))) is
summable & (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
< (e
* e)
proof
let e1 be
Real such that
A17: e1
>
0 ;
set e = (e1
/ 2);
A18: e
>
0 by
A17,
XREAL_1: 215;
then
consider k be
Nat such that
A19: for n,m be
Nat st n
>= k & m
>= k holds
||.((vseq
. n)
- (vseq
. m)).||
< e by
A1,
BHSP_3: 2;
e
< e1 by
A17,
XREAL_1: 216;
then
A20: (e
* e)
< (e1
* e1) by
A18,
XREAL_1: 97;
A21: for m,n be
Nat st n
>= k & m
>= k holds (((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m)))) is
summable & (
Sum ((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m)))))
< (e
* e) & for i be
Nat holds
0
<= (((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m))))
. i))
proof
let m,n be
Nat;
assume n
>= k & m
>= k;
then
||.((vseq
. n)
- (vseq
. m)).||
< e by
A19;
then (
sqrt (((vseq
. n)
- (vseq
. m))
.|. ((vseq
. n)
- (vseq
. m))))
< e by
BHSP_1:def 4;
then
A22: (
sqrt (
Sum ((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m))))))
< e by
Th1;
A23: for i be
Nat holds
0
<= (((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m))))
. i)
proof
let i be
Nat;
(((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m))))
. i)
= (((
seq_id ((vseq
. n)
- (vseq
. m)))
. i)
* ((
seq_id ((vseq
. n)
- (vseq
. m)))
. i)) by
SEQ_1: 8;
hence thesis by
XREAL_1: 63;
end;
((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m)))) is
summable by
RSSPACE:def 11;
then
A24:
0
<= (
Sum ((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m))))) by
A23,
SERIES_1: 18;
then
0
<= (
sqrt (
Sum ((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m)))))) by
SQUARE_1:def 2;
then ((
sqrt (
Sum ((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m))))))
^2 )
< (e
^2 ) by
A22,
SQUARE_1: 16;
hence thesis by
A23,
A24,
RSSPACE:def 11,
SQUARE_1:def 2;
end;
A25: for n,i be
Nat holds for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
. i)) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i)
proof
let n be
Nat;
defpred
P[
Nat] means for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
. $1)) holds (rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. $1));
A26: for m,k be
Nat holds (
seq_id ((vseq
. m)
- (vseq
. k)))
= ((
seq_id (vseq
. m))
- (
seq_id (vseq
. k))) by
Th1;
for i be
Nat st
P[i] holds
P[(i
+ 1)]
proof
let i be
Nat such that
A27: for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
. i)) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i);
thus for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
. (i
+ 1))) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. (i
+ 1))
proof
deffunc
F(
Nat) = ((
Partial_Sums ((
seq_id ((vseq
. $1)
- (vseq
. n)))
(#) (
seq_id ((vseq
. $1)
- (vseq
. n)))))
. i);
consider rseqb be
Real_Sequence such that
A28: for m be
Nat holds (rseqb
. m)
=
F(m) from
SEQ_1:sch 1;
consider rseq0 be
Real_Sequence such that
A29: for m be
Nat holds (rseq0
. m)
= ((
seq_id (vseq
. m))
. (i
+ 1)) and
A30: rseq0 is
convergent and
A31: (tseq
. (i
+ 1))
= (
lim rseq0) by
A15;
let rseq be
Real_Sequence such that
A32: for m be
Nat holds (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
. (i
+ 1));
A33:
now
let m be
Nat;
thus (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
. (i
+ 1)) by
A32
.= ((((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n))))
. (i
+ 1))
+ ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
. i)) by
SERIES_1:def 1
.= (((((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n))))
. (i
+ 1))
+ ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
. i)) by
A26
.= (((((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n))))
. (i
+ 1))
+ (rseqb
. m)) by
A28
.= (((((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
(#) ((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))))
. (i
+ 1))
+ (rseqb
. m)) by
A26
.= (((((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
. (i
+ 1))
* (((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
. (i
+ 1)))
+ (rseqb
. m)) by
SEQ_1: 8
.= (((((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1))
* (((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
. (i
+ 1)))
+ (rseqb
. m)) by
SEQ_1: 11
.= (((((
seq_id (vseq
. m))
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1)))
* (((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)))
+ (rseqb
. m)) by
SEQ_1: 7,
SEQ_1: 11
.= (((((
seq_id (vseq
. m))
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1)))
* (((
seq_id (vseq
. m))
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))))
+ (rseqb
. m)) by
SEQ_1: 7
.= (((((
seq_id (vseq
. m))
. (i
+ 1))
+ (
- ((
seq_id (vseq
. n))
. (i
+ 1))))
* (((
seq_id (vseq
. m))
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))))
+ (rseqb
. m)) by
SEQ_1: 10
.= (((((
seq_id (vseq
. m))
. (i
+ 1))
- ((
seq_id (vseq
. n))
. (i
+ 1)))
* (((
seq_id (vseq
. m))
. (i
+ 1))
+ (
- ((
seq_id (vseq
. n))
. (i
+ 1)))))
+ (rseqb
. m)) by
SEQ_1: 10
.= ((((rseq0
. m)
- ((
seq_id (vseq
. n))
. (i
+ 1)))
* (((
seq_id (vseq
. m))
. (i
+ 1))
- ((
seq_id (vseq
. n))
. (i
+ 1))))
+ (rseqb
. m)) by
A29
.= ((((rseq0
. m)
- ((
seq_id (vseq
. n))
. (i
+ 1)))
* ((rseq0
. m)
- ((
seq_id (vseq
. n))
. (i
+ 1))))
+ (rseqb
. m)) by
A29;
end;
A34: rseqb is
convergent by
A27,
A28;
then (
lim rseq)
= ((((tseq
. (i
+ 1))
+ (
- ((
seq_id (vseq
. n))
. (i
+ 1))))
* ((tseq
. (i
+ 1))
- ((
seq_id (vseq
. n))
. (i
+ 1))))
+ (
lim rseqb)) by
A30,
A31,
A33,
Lm5
.= ((((tseq
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1)))
* ((tseq
. (i
+ 1))
+ (
- ((
seq_id (vseq
. n))
. (i
+ 1)))))
+ (
lim rseqb)) by
SEQ_1: 10
.= ((((tseq
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1)))
* ((tseq
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))))
+ (
lim rseqb)) by
SEQ_1: 10
.= ((((tseq
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1))
* ((tseq
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))))
+ (
lim rseqb)) by
SEQ_1: 7
.= ((((tseq
- (
seq_id (vseq
. n)))
. (i
+ 1))
* ((tseq
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)))
+ (
lim rseqb)) by
SEQ_1: 7,
SEQ_1: 11
.= ((((tseq
- (
seq_id (vseq
. n)))
. (i
+ 1))
* ((tseq
- (
seq_id (vseq
. n)))
. (i
+ 1)))
+ (
lim rseqb)) by
SEQ_1: 11
.= ((((tseq
- (
seq_id (vseq
. n)))
(#) (tseq
- (
seq_id (vseq
. n))))
. (i
+ 1))
+ (
lim rseqb)) by
SEQ_1: 8
.= ((((tseq
- (
seq_id (vseq
. n)))
(#) (tseq
- (
seq_id (vseq
. n))))
. (i
+ 1))
+ ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i)) by
A27,
A28
.= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. (i
+ 1)) by
SERIES_1:def 1;
hence thesis by
A34,
A30,
A33,
Lm5;
end;
end;
then
A35: for i be
Nat st
P[i] holds
P[(i
+ 1)];
now
let rseq be
Real_Sequence such that
A36: for m be
Nat holds (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
.
0 );
thus rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
.
0 )
proof
consider rseq0 be
Real_Sequence such that
A37: for m be
Nat holds (rseq0
. m)
= ((
seq_id (vseq
. m))
.
0 ) and
A38: rseq0 is
convergent and
A39: (tseq
.
0 )
= (
lim rseq0) by
A15;
A40:
now
let m be
Nat;
thus (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
.
0 ) by
A36
.= (((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n))))
.
0 ) by
SERIES_1:def 1
.= ((((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n))))
.
0 ) by
A26
.= ((((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
(#) ((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))))
.
0 ) by
A26
.= ((((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
.
0 )
* (((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
.
0 )) by
SEQ_1: 8
.= ((((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
.
0 )
* (((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
.
0 )) by
SEQ_1: 11
.= ((((
seq_id (vseq
. m))
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 ))
* (((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
.
0 )) by
SEQ_1: 7,
SEQ_1: 11
.= ((((
seq_id (vseq
. m))
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 ))
* (((
seq_id (vseq
. m))
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 ))) by
SEQ_1: 7
.= ((((
seq_id (vseq
. m))
.
0 )
+ (
- ((
seq_id (vseq
. n))
.
0 )))
* (((
seq_id (vseq
. m))
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 ))) by
SEQ_1: 10
.= ((((
seq_id (vseq
. m))
.
0 )
- ((
seq_id (vseq
. n))
.
0 ))
* (((
seq_id (vseq
. m))
.
0 )
+ (
- ((
seq_id (vseq
. n))
.
0 )))) by
SEQ_1: 10
.= (((rseq0
. m)
- ((
seq_id (vseq
. n))
.
0 ))
* (((
seq_id (vseq
. m))
.
0 )
- ((
seq_id (vseq
. n))
.
0 ))) by
A37
.= (((rseq0
. m)
- ((
seq_id (vseq
. n))
.
0 ))
* ((rseq0
. m)
- ((
seq_id (vseq
. n))
.
0 ))) by
A37;
end;
then (
lim rseq)
= (((tseq
.
0 )
+ (
- ((
seq_id (vseq
. n))
.
0 )))
* ((tseq
.
0 )
- ((
seq_id (vseq
. n))
.
0 ))) by
A38,
A39,
Lm4
.= (((tseq
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 ))
* ((tseq
.
0 )
+ (
- ((
seq_id (vseq
. n))
.
0 )))) by
SEQ_1: 10
.= (((tseq
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 ))
* ((tseq
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 ))) by
SEQ_1: 10
.= (((tseq
+ (
- (
seq_id (vseq
. n))))
.
0 )
* ((tseq
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 ))) by
SEQ_1: 7
.= (((tseq
- (
seq_id (vseq
. n)))
.
0 )
* ((tseq
+ (
- (
seq_id (vseq
. n))))
.
0 )) by
SEQ_1: 7,
SEQ_1: 11
.= (((tseq
- (
seq_id (vseq
. n)))
.
0 )
* ((tseq
- (
seq_id (vseq
. n)))
.
0 )) by
SEQ_1: 11
.= (((tseq
- (
seq_id (vseq
. n)))
(#) (tseq
- (
seq_id (vseq
. n))))
.
0 ) by
SEQ_1: 8
.= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
.
0 ) by
SERIES_1:def 1;
hence thesis by
A38,
A40,
Lm4;
end;
end;
then
A41:
P[
0 ];
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A41,
A35);
hence thesis;
end;
for n be
Nat st n
>= k holds (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))) is
summable & (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
< (e1
* e1)
proof
let n be
Nat such that
A42: n
>= k;
A43: for i be
Nat st
0
<= i holds ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i)
<= (e
* e)
proof
let i be
Nat such that
0
<= i;
deffunc
F(
Nat) = ((
Partial_Sums ((
seq_id ((vseq
. $1)
- (vseq
. n)))
(#) (
seq_id ((vseq
. $1)
- (vseq
. n)))))
. i);
consider rseq be
Real_Sequence such that
A44: for m be
Nat holds (rseq
. m)
=
F(m) from
SEQ_1:sch 1;
A45: for m be
Nat st m
>= k holds (rseq
. m)
<= (e
* e)
proof
let m be
Nat such that
A46: m
>= k;
((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))) is
summable & for i be
Nat holds
0
<= (((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n))))
. i) by
A21,
A42,
A46;
then
A47: ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
. i)
<= (
Sum ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n))))) by
Lm1;
A48: (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
. i) by
A44;
(
Sum ((
seq_id ((vseq
. m)
- (vseq
. n)))
(#) (
seq_id ((vseq
. m)
- (vseq
. n)))))
< (e
* e) by
A21,
A42,
A46;
hence thesis by
A48,
A47,
XXREAL_0: 2;
end;
rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i) by
A25,
A44;
hence thesis by
A45,
Lm3;
end;
now
let i be
Nat;
((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i)
<= (e
* e) by
A43;
hence ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
. i)
< (e1
* e1) by
A20,
XXREAL_0: 2;
end;
then
A49: (
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n))))) is
bounded_above by
SEQ_2:def 3;
A50: for i be
Nat holds
0
<= ((((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n))))
. i)
proof
let i be
Nat;
((((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n))))
. i)
= ((((
seq_id tseq)
- (
seq_id (vseq
. n)))
. i)
* (((
seq_id tseq)
- (
seq_id (vseq
. n)))
. i)) by
SEQ_1: 8;
hence thesis by
XREAL_1: 63;
end;
then (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))) is
summable by
A49,
SERIES_1: 17;
then (
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n))))) is
convergent by
SERIES_1:def 2;
then (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
= (
lim (
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))) & (
lim (
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n))))))
<= (e
* e) by
A43,
Lm3,
SERIES_1:def 3;
hence thesis by
A20,
A50,
A49,
SERIES_1: 17,
XXREAL_0: 2;
end;
hence thesis;
end;
A51: ((
seq_id tseq)
(#) (
seq_id tseq)) is
summable
proof
set d = ((
seq_id tseq)
(#) (
seq_id tseq));
A52: for i be
Nat holds
0
<= (((
seq_id tseq)
(#) (
seq_id tseq))
. i)
proof
let i be
Nat;
(((
seq_id tseq)
(#) (
seq_id tseq))
. i)
= (((
seq_id tseq)
. i)
* ((
seq_id tseq)
. i)) by
SEQ_1: 8;
hence thesis by
XREAL_1: 63;
end;
consider m be
Nat such that
A53: for n be
Nat st n
>= m holds (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))) is
summable & (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
< (1
* 1) by
A16;
set b = ((
seq_id (vseq
. m))
(#) (
seq_id (vseq
. m)));
set a = (((
seq_id tseq)
- (
seq_id (vseq
. m)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. m))));
((
seq_id (vseq
. m))
(#) (
seq_id (vseq
. m))) is
summable by
RSSPACE:def 11;
then
A54: (2
(#) b) is
summable by
SERIES_1: 10;
A55: for i be
Nat holds (d
. i)
<= (((2
(#) a)
+ (2
(#) b))
. i)
proof
let i be
Nat;
set x = ((
seq_id tseq)
. i);
set y = ((
seq_id (vseq
. m))
. i);
A56: (2
* (b
. i))
= (2
* (y
* y)) by
SEQ_1: 8
.= ((2
* y)
* y);
(((
seq_id tseq)
- (
seq_id (vseq
. m)))
. i)
= (((
seq_id tseq)
+ (
- (
seq_id (vseq
. m))))
. i) by
SEQ_1: 11
.= (((
seq_id tseq)
. i)
+ ((
- (
seq_id (vseq
. m)))
. i)) by
SEQ_1: 7
.= (((
seq_id tseq)
. i)
+ (
- ((
seq_id (vseq
. m))
. i))) by
SEQ_1: 10
.= (((
seq_id tseq)
. i)
- ((
seq_id (vseq
. m))
. i));
then (a
. i)
= ((((
seq_id tseq)
. i)
- ((
seq_id (vseq
. m))
. i))
* (((
seq_id tseq)
. i)
- ((
seq_id (vseq
. m))
. i))) by
SEQ_1: 8;
then
A57: (d
. i)
= (((
seq_id tseq)
. i)
* ((
seq_id tseq)
. i)) & (2
* (a
. i))
= ((2
* (x
- y))
* (x
- y)) by
SEQ_1: 8;
(((2
(#) a)
+ (2
(#) b))
. i)
= (((2
(#) a)
. i)
+ ((2
(#) b)
. i)) by
SEQ_1: 7
.= ((2
* (a
. i))
+ ((2
(#) b)
. i)) by
SEQ_1: 9
.= ((2
* (a
. i))
+ (2
* (b
. i))) by
SEQ_1: 9;
hence thesis by
A57,
A56,
Lm2;
end;
(((
seq_id tseq)
- (
seq_id (vseq
. m)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. m)))) is
summable by
A53;
then (2
(#) a) is
summable by
SERIES_1: 10;
then ((2
(#) a)
+ (2
(#) b)) is
summable by
A54,
SERIES_1: 7;
hence thesis by
A52,
A55,
SERIES_1: 20;
end;
tseq
in
the_set_of_RealSequences by
FUNCT_2: 8;
then
reconsider tv = tseq as
Point of
l2_Space by
A51,
RSSPACE:def 11;
for e be
Real st e
>
0 holds ex m be
Nat st for n be
Nat st n
>= m holds
||.((vseq
. n)
- tv).||
< e
proof
let e be
Real such that
A58: e
>
0 ;
consider m be
Nat such that
A59: for n be
Nat st n
>= m holds (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))) is
summable & (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
< (e
* e) by
A16,
A58;
now
tseq
in
the_set_of_RealSequences by
FUNCT_2: 8;
then
reconsider u = tseq as
VECTOR of
l2_Space by
A51,
RSSPACE:def 11;
let n be
Nat;
assume n
>= m;
then
A60: (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) ((
seq_id tseq)
- (
seq_id (vseq
. n)))))
< (e
* e) by
A59;
reconsider v = (vseq
. n) as
VECTOR of
l2_Space ;
(
seq_id (u
- v))
= ((
seq_id tseq)
- (
seq_id (vseq
. n))) by
Th1;
then
A61: ((u
- v)
.|. (u
- v))
< (e
* e) by
A60,
Th1;
A62:
||.((vseq
. n)
- tv).||
=
||.(
- (tv
- (vseq
. n))).|| by
RLVECT_1: 33
.=
||.(tv
- (vseq
. n)).|| by
BHSP_1: 31
.= (
sqrt ((u
- v)
.|. (u
- v))) by
BHSP_1:def 4;
0
<= ((u
- v)
.|. (u
- v)) by
BHSP_1:def 2;
then (
sqrt ((u
- v)
.|. (u
- v)))
< (
sqrt (e
^2 )) by
A61,
SQUARE_1: 27;
hence
||.((vseq
. n)
- tv).||
< e by
A58,
A62,
SQUARE_1: 22;
end;
hence thesis;
end;
hence thesis by
BHSP_2: 9;
end;
end
registration
cluster
complete for
RealUnitarySpace;
existence
proof
take
l2_Space ;
thus thesis;
end;
end
definition
mode
RealHilbertSpace is
complete
RealUnitarySpace;
end
begin
theorem ::
RSSPACE2:3
for r be
Real_Sequence st (for n be
Nat holds
0
<= (r
. n)) holds (for n be
Nat holds
0
<= ((
Partial_Sums r)
. n)) & (for n be
Nat holds (r
. n)
<= ((
Partial_Sums r)
. n)) & (r is
summable implies (for n be
Nat holds ((
Partial_Sums r)
. n)
<= (
Sum r)) & for n be
Nat holds (r
. n)
<= (
Sum r)) by
Lm1;
theorem ::
RSSPACE2:4
(for x,y be
Real holds ((x
+ y)
* (x
+ y))
<= (((2
* x)
* x)
+ ((2
* y)
* y))) & for x,y be
Real holds (x
* x)
<= (((2
* (x
- y))
* (x
- y))
+ ((2
* y)
* y)) by
Lm2;
theorem ::
RSSPACE2:5
for e be
Real, s be
Real_Sequence st (s is
convergent & ex k be
Nat st for i be
Nat st k
<= i holds (s
. i)
<= e) holds (
lim s)
<= e by
Lm3;
theorem ::
RSSPACE2:6
for c be
Real, s be
Real_Sequence st s is
convergent holds for r be
Real_Sequence st (for i be
Nat holds (r
. i)
= (((s
. i)
- c)
* ((s
. i)
- c))) holds r is
convergent & (
lim r)
= (((
lim s)
- c)
* ((
lim s)
- c)) by
Lm4;
theorem ::
RSSPACE2:7
for c be
Real, s,s1 be
Real_Sequence st s is
convergent & s1 is
convergent holds for r be
Real_Sequence st (for i be
Nat holds (r
. i)
= ((((s
. i)
- c)
* ((s
. i)
- c))
+ (s1
. i))) holds r is
convergent & (
lim r)
= ((((
lim s)
- c)
* ((
lim s)
- c))
+ (
lim s1)) by
Lm5;