scmyciel.miz



    begin

    theorem :: SCMYCIEL:1

    

     Th1: for x be object, X be set holds not [x, X] in X

    proof

      let x be object, X be set;

      

       A1: X in {x, X} by TARSKI:def 2;

       {x, X} in { {x, X}, {x}} by TARSKI:def 2;

      hence thesis by A1, XREGULAR: 7;

    end;

    theorem :: SCMYCIEL:2

    

     Th2: for x,X be object holds [x, X] <> X

    proof

      let x,X be object;

      assume

       A1: [x, X] = X;

      reconsider X as set by TARSKI: 1;

       {x, X} in X by TARSKI:def 2, A1;

      hence contradiction by TARSKI:def 2;

    end;

    theorem :: SCMYCIEL:3

    

     Th3: for x,X be object holds [x, X] <> x

    proof

      let x,X be object;

      assume

       A1: [x, X] = x;

      reconsider x as set by TARSKI: 1;

       {x, X} in x by TARSKI:def 2, A1;

      hence contradiction by TARSKI:def 2;

    end;

    theorem :: SCMYCIEL:4

    

     Th4: for x1,y1,x2,y2 be object, X be set st x1 in X & x2 in X & {x1, [y1, X]} = {x2, [y2, X]} holds x1 = x2 & y1 = y2

    proof

      let x1,y1,x2,y2 be object, X be set;

      assume that

       A1: x1 in X and

       A2: x2 in X;

      assume

       A3: {x1, [y1, X]} = {x2, [y2, X]};

      per cases by A3, ZFMISC_1: 6;

        suppose x1 = x2 & [y1, X] = [y2, X];

        hence x1 = x2 & y1 = y2 by XTUPLE_0: 1;

      end;

        suppose x1 = x2 & [y1, X] = x2;

        hence x1 = x2 & y1 = y2 by Th1, A2;

      end;

        suppose x1 = [y2, X] & [y1, X] = x2;

        hence x1 = x2 & y1 = y2 by Th1, A2;

      end;

        suppose x1 = [y2, X] & [y1, X] = [y2, X];

        hence x1 = x2 & y1 = y2 by Th1, A1;

      end;

    end;

    theorem :: SCMYCIEL:5

    

     Th5: for X be set, v be object st 3 c= ( card X) holds ex v1,v2 be object st v1 in X & v2 in X & v1 <> v & v2 <> v & v1 <> v2

    proof

      let X be set, v be object;

      assume 3 c= ( card X);

      then

      consider x,y,z be object such that

       A1: x in X and

       A2: y in X and

       A3: z in X and

       A4: x <> y and

       A5: x <> z and

       A6: y <> z by PENCIL_1: 5;

      v <> x & v <> y & v <> z or v = x or v = y or v = z;

      hence ex v1,v2 be object st v1 in X & v2 in X & v1 <> v & v2 <> v & v1 <> v2 by A1, A2, A3, A4, A5, A6;

    end;

    theorem :: SCMYCIEL:6

    

     Th6: for x be set holds ( singletons {x}) = { {x}}

    proof

      let x be set;

      

       A1: {x} c= {x};

      thus ( singletons {x}) c= { {x}}

      proof

        let a be object;

        assume a in ( singletons {x});

        then

        consider f be Subset of {x} such that

         A2: a = f and

         A3: f is 1 -element;

        f = {} or f = {x} by ZFMISC_1: 33;

        hence thesis by A2, A3, TARSKI:def 1;

      end;

      let a be object;

      assume a in { {x}};

      then a = {x} by TARSKI:def 1;

      hence thesis by A1;

    end;

    registration

      cluster finite-yielding for FinSequence;

      existence

      proof

        reconsider f = <* {} *> as FinSequence;

        take f;

        now

          let x be set;

          assume x in ( rng f);

          then x in { {} } by FINSEQ_1: 39;

          hence x is finite;

        end;

        hence thesis;

      end;

    end

    theorem :: SCMYCIEL:7

    

     Th7: for X be non empty finite set, P be a_partition of X st ( card P) < ( card X) holds ex p be set, x,y be object st p in P & x in p & y in p & x <> y

    proof

      let X be non empty finite set, P be a_partition of X such that

       A1: ( card P) < ( card X);

      

       A2: ( card P) in ( Segm ( card X)) by A1, NAT_1: 44;

      consider x,y be object such that

       A3: x in X and

       A4: y in X and

       A5: x <> y and

       A6: (( proj P) . x) = (( proj P) . y) by A2, FINSEQ_4: 65;

      take p = (( proj P) . x);

      take x, y;

      thus p in P by A3, FUNCT_2: 5;

      thus x in p & y in p by A3, A4, A6, EQREL_1:def 9;

      thus x <> y by A5;

    end;

    registration

      cluster ( union { {} }) -> empty;

      correctness ;

    end

    theorem :: SCMYCIEL:8

    

     Th8: for x be set holds ( union { {} , {x}}) = {x}

    proof

      let x be set;

       {x} = ( union ( bool {x})) by ZFMISC_1: 81;

      hence thesis by ZFMISC_1: 24;

    end;

    theorem :: SCMYCIEL:9

    

     Th9: for X be set, s be Subset of X st s is 1 -element holds ex x be set st x in X & s = {x}

    proof

      let X be set, s be Subset of X;

      assume s is 1 -element;

      then s is trivial non empty;

      then

      consider x be Element of s such that

       A1: s = {x} by SUBSET_1: 46;

      take x;

      x in s by A1;

      hence x in X;

      thus s = {x} by A1;

    end;

    theorem :: SCMYCIEL:10

    

     Th10: for X be set holds ( card { {X, [x, X]} where x be Element of X : x in X }) = ( card X)

    proof

      let X be set;

      set uG = X;

      set A = { {uG, [x, uG]} where x be Element of uG : x in uG };

      deffunc F( object) = {uG, [$1, uG]};

      consider f be Function such that

       A1: ( dom f) = uG and

       A2: for x be object st x in uG holds (f . x) = F(x) from FUNCT_1:sch 3;

      now

        let x1,x2 be object;

        assume that

         A3: x1 in ( dom f) and

         A4: x2 in ( dom f) and

         A5: (f . x1) = (f . x2);

         F(x1) = (f . x1) & F(x2) = (f . x2) by A3, A4, A1, A2;

        then [x1, uG] = uG or [x1, uG] = [x2, uG] by A5, ZFMISC_1: 6;

        hence x1 = x2 by Th2, XTUPLE_0: 1;

      end;

      then

       A6: f is one-to-one;

      

       A7: ( rng f) = A

      proof

        thus ( rng f) c= A

        proof

          let y be object;

          assume y in ( rng f);

          then

          consider a be object such that

           A8: a in ( dom f) and

           A9: (f . a) = y by FUNCT_1:def 3;

          y = {uG, [a, uG]} by A8, A9, A1, A2;

          hence thesis by A8, A1;

        end;

        thus A c= ( rng f)

        proof

          let a be object;

          assume a in A;

          then

          consider x be Element of uG such that

           A10: a = {uG, [x, uG]} and

           A11: x in uG;

          (f . x) = a by A10, A11, A2;

          hence thesis by A1, A11, FUNCT_1:def 3;

        end;

      end;

      (A,uG) are_equipotent by A1, A6, A7, WELLORD2:def 4;

      hence ( card A) = ( card uG) by CARD_1: 5;

    end;

    definition

      let G be set;

      :: SCMYCIEL:def1

      func PairsOf G -> Subset of G means

      : Def1: for e be set holds e in it iff e in G & ( card e) = 2;

      existence

      proof

        defpred P[ set] means ( card $1) = 2;

        consider X be Subset of G such that

         A1: for x be set holds x in X iff x in G & P[x] from SUBSET_1:sch 1;

        take X;

        thus thesis by A1;

      end;

      uniqueness

      proof

        let it1,it2 be Subset of G such that

         A2: for e be set holds e in it1 iff e in G & ( card e) = 2 and

         A3: for e be set holds e in it2 iff e in G & ( card e) = 2;

        now

          let x be object;

          reconsider xx = x as set by TARSKI: 1;

          x in it2 iff x in G & ( card xx) = 2 by A3;

          hence x in it1 iff x in it2 by A2;

        end;

        hence it1 = it2 by TARSKI: 2;

      end;

    end

    theorem :: SCMYCIEL:11

    

     Th11: for X be set, e be set st e in ( PairsOf X) holds ex x,y be set st x <> y & x in ( union X) & y in ( union X) & e = {x, y}

    proof

      let G be set, e be set;

      assume

       A1: e in ( PairsOf G);

      then ( card e) = 2 by Def1;

      then

      consider x,y be object such that

       A2: x <> y and

       A3: e = {x, y} by CARD_2: 60;

      x in e & y in e by A3, TARSKI:def 2;

      then x in ( union G) & y in ( union G) by A1, TARSKI:def 4;

      hence thesis by A2, A3;

    end;

    theorem :: SCMYCIEL:12

    

     Th12: for X be set, x,y be object st x <> y & {x, y} in X holds {x, y} in ( PairsOf X)

    proof

      let X be set, x,y be object such that

       A1: x <> y and

       A2: {x, y} in X;

      ( card {x, y}) = 2 by A1, CARD_2: 57;

      hence {x, y} in ( PairsOf X) by A2, Def1;

    end;

    theorem :: SCMYCIEL:13

    

     Th13: for X be set, x,y be object st {x, y} in ( PairsOf X) holds x <> y & x in ( union X) & y in ( union X)

    proof

      let G be set, a,b be object;

      assume {a, b} in ( PairsOf G);

      then

      consider x,y be set such that

       A1: x <> y and

       A2: x in ( union G) & y in ( union G) and

       A3: {a, b} = {x, y} by Th11;

      a = x & b = y or a = y & b = x by A3, ZFMISC_1: 6;

      hence thesis by A2, A1;

    end;

    theorem :: SCMYCIEL:14

    

     Th14: for G,H be set st G c= H holds ( PairsOf G) c= ( PairsOf H)

    proof

      let G,H be set;

      assume

       A1: G c= H;

      let e be object;

      reconsider ee = e as set by TARSKI: 1;

      assume

       A2: e in ( PairsOf G);

      

       A3: ( card ee) = 2 by A2, Def1;

      e in G by A2;

      hence thesis by A1, A3, Def1;

    end;

    theorem :: SCMYCIEL:15

    

     Th15: for X be finite set holds ( card { {x, [y, ( union X)]} where x,y be Element of ( union X) : {x, y} in ( PairsOf X) }) = (2 * ( card ( PairsOf X)))

    proof

      let G be finite set;

      set Y = ( union G);

      set A = { {x, [y, Y]} where x,y be Element of ( union G) : {x, y} in ( PairsOf G) };

      set EG = ( PairsOf G);

      set uG = ( union G);

      set s = ( canFS EG);

      

       A1: ( len s) = ( card EG) by FINSEQ_1: 93;

      

       A2: ( rng s) = EG by FUNCT_2:def 3;

      defpred P[ object, object] means for a,b be set st $1 = {a, b} holds $2 = { {a, [b, Y]}, {b, [a, Y]}};

      

       A3: for x,y1,y2 be object st x in EG & P[x, y1] & P[x, y2] holds y1 = y2

      proof

        let x,v1,v2 be object such that

         A4: x in EG and

         A5: P[x, v1] and

         A6: P[x, v2];

        consider x1,y1 be set such that x1 <> y1 and x1 in ( union G) and y1 in ( union G) and

         A7: x = {x1, y1} by A4, Th11;

        v2 = { {x1, [y1, Y]}, {y1, [x1, Y]}} by A7, A6;

        hence v1 = v2 by A7, A5;

      end;

      

       A8: for x be object st x in EG holds ex y be object st P[x, y]

      proof

        let x be object;

        assume x in EG;

        then

        consider x1,y1 be set such that x1 <> y1 and x1 in ( union G) and y1 in ( union G) and

         A9: x = {x1, y1} by Th11;

        take y = { {x1, [y1, Y]}, {y1, [x1, Y]}};

        let a,b be set;

        assume x = {a, b};

        then a = x1 & b = y1 or a = y1 & b = x1 by A9, ZFMISC_1: 6;

        hence y = { {a, [b, Y]}, {b, [a, Y]}};

      end;

      consider f be Function such that

       A10: ( dom f) = EG and

       A11: for x be object st x in EG holds P[x, (f . x)] from FUNCT_1:sch 2( A3, A8);

      now

        let y be set;

        assume y in ( rng (f * s));

        then y in ( rng f) by FUNCT_1: 14;

        then

        consider x be object such that

         A12: x in ( dom f) and

         A13: y = (f . x) by FUNCT_1:def 3;

        consider x1,y1 be set such that x1 <> y1 and x1 in ( union G) and y1 in ( union G) and

         A14: x = {x1, y1} by A12, A10, Th11;

        y = { {x1, [y1, Y]}, {y1, [x1, Y]}} by A14, A13, A12, A10, A11;

        hence y is finite;

      end;

      then

      reconsider S = (f * s) as finite-yielding FinSequence by A2, A10, FINSEQ_1: 16, FINSET_1:def 2;

      

       A15: ( dom S) = ( dom s) by A2, A10, RELAT_1: 27;

      deffunc F( set) = ( card (S . $1));

      consider L be FinSequence of NAT such that

       A16: ( len L) = ( len S) and

       A17: for j be Nat st j in ( dom L) holds (L . j) = F(j) from FINSEQ_2:sch 1;

      

       A18: ( dom S) = ( dom L) by A16, FINSEQ_3: 29;

      

       A19: for i be Nat st i in ( dom S) holds (S . i) is finite & (L . i) = ( card (S . i)) by A18, A17;

      now

        let x,y be object;

        assume

         A20: x <> y;

        per cases ;

          suppose that

           A21: x in ( dom S) and

           A22: y in ( dom S);

          

           A23: x in ( dom s) & (s . x) in ( dom f) by A21, FUNCT_1: 11;

          

           A24: y in ( dom s) & (s . y) in ( dom f) by A22, FUNCT_1: 11;

          consider x1,y1 be set such that x1 <> y1 and

           A25: x1 in ( union G) & y1 in ( union G) and

           A26: (s . x) = {x1, y1} by A23, A10, Th11;

          consider x2,y2 be set such that x2 <> y2 and

           A27: x2 in ( union G) & y2 in ( union G) and

           A28: (s . y) = {x2, y2} by A24, A10, Th11;

          

           A29: (S . x) = (f . (s . x)) by A21, FUNCT_1: 12;

          

           A30: (S . y) = (f . (s . y)) by A22, FUNCT_1: 12;

          

           A31: (S . x) = { {x1, [y1, Y]}, {y1, [x1, Y]}} by A26, A29, A23, A10, A11;

          

           A32: (S . y) = { {x2, [y2, Y]}, {y2, [x2, Y]}} by A28, A30, A24, A10, A11;

          assume (S . x) meets (S . y);

          then

          consider a be object such that

           A33: a in (S . x) and

           A34: a in (S . y) by XBOOLE_0: 3;

          

           A35: a = {x1, [y1, Y]} or a = {y1, [x1, Y]} by A33, A31, TARSKI:def 2;

          

           A36: a = {x2, [y2, Y]} or a = {y2, [x2, Y]} by A34, A32, TARSKI:def 2;

          x1 = x2 & y1 = y2 or x1 = y2 & y1 = x2 or y1 = x2 & x1 = y2 by A25, A27, A35, A36, Th4;

          hence contradiction by A26, A28, A20, A23, A24, FUNCT_1:def 4;

        end;

          suppose not (x in ( dom S) & y in ( dom S));

          then (S . x) = {} or (S . y) = {} by FUNCT_1:def 2;

          hence (S . x) misses (S . y);

        end;

      end;

      then

       A37: S is disjoint_valued by PROB_2:def 2;

      ( Union S) = ( union ( rng S));

      then

       A38: ( card ( union ( rng S))) = ( Sum L) by A18, A19, A37, DIST_1: 17;

      

       A39: ( dom (( len L) |-> 2)) = ( Seg ( len L)) by FUNCOP_1: 13

      .= ( dom L) by FINSEQ_1:def 3;

      now

        let j be Nat such that

         A40: j in ( dom L);

        

         A41: (S . j) = (f . (s . j)) by A40, A18, FUNCT_1: 12;

        consider x,y be set such that

         A42: x <> y and x in ( union G) and y in ( union G) and

         A43: (s . j) = {x, y} by Th11, A40, A18, A15, A2, FUNCT_1: 3;

        

         A44: (f . (s . j)) = { {x, [y, Y]}, {y, [x, Y]}} by A43, A11, A40, A18, A15, A2, FUNCT_1: 3;

         A45:

        now

          assume {x, [y, Y]} = {y, [x, Y]};

          then x = y or x = [x, Y] by ZFMISC_1: 6;

          hence contradiction by A42, Th3;

        end;

        

         A46: j in ( Seg ( len L)) by A40, FINSEQ_1:def 3;

        

        thus (L . j) = ( card (S . j)) by A40, A17

        .= 2 by A45, A44, A41, CARD_2: 57

        .= ((( len L) |-> 2) . j) by A46, FINSEQ_2: 57;

      end;

      then

       A47: L = (( len L) |-> 2) by A39;

      

       A48: ( len L) = ( card EG) by A16, A15, A1, FINSEQ_3: 29;

      ( union ( rng S)) = A

      proof

        thus ( union ( rng S)) c= A

        proof

          let a be object;

          assume a in ( union ( rng S));

          then

          consider YY be set such that

           A49: a in YY and

           A50: YY in ( rng S) by TARSKI:def 4;

          consider b be object such that

           A51: b in ( dom S) and

           A52: YY = (S . b) by A50, FUNCT_1:def 3;

          

           A53: (S . b) = (f . (s . b)) by A51, FUNCT_1: 12;

          

           A54: (s . b) in EG by A51, A15, A2, FUNCT_1: 3;

          consider x,y be set such that x <> y and

           A55: x in ( union G) and

           A56: y in ( union G) and

           A57: (s . b) = {x, y} by Th11, A51, A15, A2, FUNCT_1: 3;

          (f . (s . b)) = { {x, [y, Y]}, {y, [x, Y]}} by A57, A11, A51, A15, A2, FUNCT_1: 3;

          then a = {x, [y, Y]} or a = {y, [x, Y]} by A49, A52, A53, TARSKI:def 2;

          hence a in A by A57, A54, A55, A56;

        end;

        thus A c= ( union ( rng S))

        proof

          let a be object;

          assume a in A;

          then

          consider x,y be Element of uG such that

           A58: a = {x, [y, Y]} and

           A59: {x, y} in EG;

          consider c be object such that c in ( dom s) and

           A60: (s . c) = {x, y} by A59, A2, FUNCT_1:def 3;

          ( rng S) = ( rng f) by A10, A2, RELAT_1: 28;

          then

           A61: (f . (s . c)) in ( rng S) by A10, A60, A59, FUNCT_1: 3;

          (f . (s . c)) = { {x, [y, Y]}, {y, [x, Y]}} by A60, A59, A11;

          then a in (f . (s . c)) by A58, TARSKI:def 2;

          hence a in ( union ( rng S)) by A61, TARSKI:def 4;

        end;

      end;

      hence ( card A) = (2 * ( card EG)) by A38, A47, A48, RVSUM_1: 80;

    end;

    theorem :: SCMYCIEL:16

    for X be finite set holds ( card { [x, y] where x,y be Element of ( union X) : {x, y} in ( PairsOf X) }) = (2 * ( card ( PairsOf X)))

    proof

      let X be finite set;

      set Y = ( union X);

      set B = { [x, y] where x,y be Element of Y : {x, y} in ( PairsOf X) };

      set A = { {x, [y, Y]} where x,y be Element of Y : {x, y} in ( PairsOf X) };

      per cases ;

        suppose

         A1: B is empty;

        now

          assume A is non empty;

          then

          consider a be object such that

           A2: a in A;

          consider x,y be Element of ( union X) such that a = {x, [y, Y]} and

           A3: {x, y} in ( PairsOf X) by A2;

           [x, y] in B by A3;

          hence contradiction by A1;

        end;

        hence ( card B) = (2 * ( card ( PairsOf X))) by A1, Th15;

      end;

        suppose

         A4: B is non empty;

        then

        consider b be object such that

         A5: b in B;

        consider x,y be Element of Y such that b = [x, y] and

         A6: {x, y} in ( PairsOf X) by A5;

        

         A7: x in {x, y} by TARSKI:def 2;

        

         A8: Y <> {} by A6, A7, TARSKI:def 4;

        defpred P[ object, object] means for a,b be Element of Y st a in Y & b in Y & $1 = {a, [b, Y]} holds $2 = [a, b];

        

         A9: for c be object st c in A holds ex d be object st d in B & P[c, d]

        proof

          let c be object;

          assume c in A;

          then

          consider x,y be Element of ( union X) such that

           A10: c = {x, [y, Y]} and

           A11: {x, y} in ( PairsOf X);

          take d = [x, y];

          thus d in B by A11;

          thus P[c, d]

          proof

            let a,b be Element of Y;

            assume

             A12: a in Y & b in Y;

            assume c = {a, [b, Y]};

            then a = x & b = y by A10, A12, Th4;

            hence d = [a, b];

          end;

        end;

        consider f be Function of A, B such that

         A13: for c be object st c in A holds P[c, (f . c)] from FUNCT_2:sch 1( A9);

        

         A14: ( dom f) = A by A4, FUNCT_2:def 1;

        

         A15: f is one-to-one

        proof

          let c1,c2 be object such that

           A16: c1 in ( dom f) and

           A17: c2 in ( dom f) and

           A18: (f . c1) = (f . c2);

          consider x1,y1 be Element of Y such that

           A19: c1 = {x1, [y1, Y]} and {x1, y1} in ( PairsOf X) by A16, A14;

          consider x2,y2 be Element of Y such that

           A20: c2 = {x2, [y2, Y]} and {x2, y2} in ( PairsOf X) by A17, A14;

          

           A21: (f . c1) = [x1, y1] by A13, A16, A14, A8, A19;

          

           A22: (f . c2) = [x2, y2] by A13, A17, A14, A8, A20;

          x1 = x2 & y1 = y2 by A18, A21, A22, XTUPLE_0: 1;

          hence c1 = c2 by A19, A20;

        end;

        

         A23: ( rng f) = B

        proof

          thus ( rng f) c= B

          proof

            let b be object;

            assume b in ( rng f);

            then

            consider a be object such that

             A24: a in ( dom f) and

             A25: b = (f . a) by FUNCT_1:def 3;

            consider x,y be Element of Y such that

             A26: a = {x, [y, Y]} and

             A27: {x, y} in ( PairsOf X) by A24, A14;

            

             A28: b = [x, y] by A25, A24, A13, A14, A8, A26;

            thus b in B by A28, A27;

          end;

          thus B c= ( rng f)

          proof

            let b be object;

            assume

             A29: b in B;

            consider x,y be Element of Y such that

             A30: b = [x, y] and

             A31: {x, y} in ( PairsOf X) by A29;

            set a = {x, [y, Y]};

            

             A32: a in A by A31;

            

             A33: (f . a) = b by A32, A13, A30, A8;

            thus b in ( rng f) by A32, A33, A14, FUNCT_1: 3;

          end;

        end;

        

         A34: f is onto by A23, FUNCT_2:def 3;

        

        thus ( card B) = ( card A) by A15, A34, A4, EULER_1: 11

        .= (2 * ( card ( PairsOf X))) by Th15;

      end;

    end;

    registration

      let X be finite set;

      cluster ( PairsOf X) -> finite;

      coherence ;

    end

    definition

      let X be set;

      :: SCMYCIEL:def2

      attr X is void means

      : Def2: X = { {} };

    end

    registration

      cluster void for set;

      existence by Def2;

    end

    registration

      cluster void -> finite for set;

      coherence ;

    end

    registration

      let G be void set;

      cluster ( union G) -> empty;

      coherence

      proof

        G = { {} } by Def2;

        hence thesis;

      end;

    end

    theorem :: SCMYCIEL:17

    

     Th17: for X be set st X is void holds ( PairsOf X) = {}

    proof

      let G be set such that

       A1: G is void;

      assume ( PairsOf G) <> {} ;

      then

      consider x be object such that

       A2: x in ( PairsOf G) by XBOOLE_0:def 1;

      reconsider x as set by TARSKI: 1;

      

       A3: ( card x) = 2 by A2, Def1;

      G = { {} } by A1;

      then x = {} by A2, TARSKI:def 1;

      hence thesis by A3;

    end;

    theorem :: SCMYCIEL:18

    

     Th18: for X be set st ( union X) = {} holds X = {} or X = { {} }

    proof

      let X be set such that

       A1: ( union X) = {} ;

      assume X <> {} ;

      then

      consider x be object such that

       A2: x in X by XBOOLE_0:def 1;

      thus X = { {} }

      proof

        thus X c= { {} }

        proof

          let a be object;

          assume a in X;

          then a = {} by A1, ORDERS_1: 6;

          hence thesis by TARSKI:def 1;

        end;

        let a be object;

        assume a in { {} };

        then a = {} by TARSKI:def 1;

        hence a in X by A2, A1, ORDERS_1: 6;

      end;

    end;

    definition

      let X be set;

      :: SCMYCIEL:def3

      attr X is pairfree means ( PairsOf X) is empty;

    end

    theorem :: SCMYCIEL:19

    

     Th19: for X,x be set st ( card ( union X)) = 1 holds X is pairfree

    proof

      let G,x be set;

      assume

       A1: ( card ( union G)) = 1;

      assume not G is pairfree;

      then ( PairsOf G) <> {} ;

      then

      consider e be object such that

       A2: e in ( PairsOf G) by XBOOLE_0:def 1;

      consider x,y be set such that

       A3: x <> y and

       A4: x in ( union G) and

       A5: y in ( union G) and e = {x, y} by A2, Th11;

      consider w be object such that

       A6: ( union G) = {w} by A1, CARD_2: 42;

      x = w by A4, A6, TARSKI:def 1;

      hence contradiction by A3, A5, A6, TARSKI:def 1;

    end;

    

     Lm1: for X be set holds ( union { V where V be finite Subset of X : ( card V) <= 2 }) = X

    proof

      let X be set;

      set G = { V where V be finite Subset of X : ( card V) <= 2 };

      thus ( union G) c= X

      proof

        let x be object;

        assume x in ( union G);

        then

        consider a be set such that

         A1: x in a and

         A2: a in G by TARSKI:def 4;

        consider V be finite Subset of X such that

         A3: a = V & ( card V) <= 2 by A2;

        thus x in X by A1, A3;

      end;

      thus X c= ( union G)

      proof

        let x be object;

        

         A4: ( card {x}) = 1 by CARD_1: 30;

        

         A5: x in {x} by TARSKI:def 1;

        assume x in X;

        then {x} c= X by ZFMISC_1: 31;

        then {x} in G by A4;

        hence x in ( union G) by A5, TARSKI:def 4;

      end;

    end;

    registration

      cluster finite-membered non empty for set;

      existence

      proof

        take { {} };

        thus thesis;

      end;

    end

    registration

      let X be finite-membered set, Y be set;

      cluster (X /\ Y) -> finite-membered;

      coherence

      proof

        let x be set;

        assume x in (X /\ Y);

        then x in X by XBOOLE_0:def 4;

        hence thesis;

      end;

      cluster (X \ Y) -> finite-membered;

      coherence ;

    end

    begin

    definition

      let n be Nat;

      let X be set;

      :: SCMYCIEL:def4

      attr X is n -at_most_dimensional means

      : Def4: for x be set st x in X holds ( card x) c= (n + 1);

    end

    registration

      let n be Nat;

      cluster n -at_most_dimensional -> finite-membered for set;

      correctness

      proof

        let X be set;

        assume

         A1: X is n -at_most_dimensional;

        thus X is finite-membered

        proof

          let x be set;

          assume x in X;

          then ( card x) c= (n + 1) by A1;

          hence x is finite;

        end;

      end;

    end

    

     Lm2: for n be Nat holds { {} } is n -at_most_dimensional

    proof

      let n be Nat;

      set E = { {} };

      thus { {} } is n -at_most_dimensional

      proof

        let x be set;

        assume x in E;

        then x = {} by TARSKI:def 1;

        hence ( card x) c= (n + 1);

      end;

    end;

    registration

      let n be Nat;

      cluster n -at_most_dimensional subset-closed non empty for set;

      existence

      proof

        set E = { {} };

        take E;

        thus thesis by Lm2;

      end;

    end

    theorem :: SCMYCIEL:20

    

     Th20: for G be subset-closed non empty set holds {} in G

    proof

      let G be subset-closed non empty set;

      consider z be object such that

       A1: z in G by XBOOLE_0:def 1;

      reconsider z as set by TARSKI: 1;

       {} c= z;

      hence {} in G by A1, CLASSES1:def 1;

    end;

    theorem :: SCMYCIEL:21

    

     Th21: for n be Nat, X be n -at_most_dimensional set, x be Element of X st x in X holds ( card x) <= (n + 1)

    proof

      let n be Nat, X be n -at_most_dimensional set, x be Element of X;

      assume x in X;

      then

       A1: ( card x) c= (n + 1) by Def4;

      reconsider x as finite set;

      ( Segm ( card x)) c= ( Segm (n + 1)) by A1;

      hence thesis by NAT_1: 39;

    end;

    registration

      let n be Nat;

      let X,Y be n -at_most_dimensional set;

      cluster (X \/ Y) -> n -at_most_dimensional;

      coherence

      proof

        let x be set;

        assume

         A1: x in (X \/ Y);

        x in X or x in Y by A1, XBOOLE_0:def 3;

        hence ( card x) c= (n + 1) by Def4;

      end;

    end

    registration

      let n be Nat;

      let X be n -at_most_dimensional set, Y be set;

      cluster (X /\ Y) -> n -at_most_dimensional;

      coherence

      proof

        let x be set;

        assume x in (X /\ Y);

        then x in X by XBOOLE_0:def 4;

        hence ( card x) c= (n + 1) by Def4;

      end;

      cluster (X \ Y) -> n -at_most_dimensional;

      coherence by Def4;

    end

    registration

      let n be Nat, X be n -at_most_dimensional set;

      cluster -> n -at_most_dimensional for Subset of X;

      correctness by Def4;

    end

    definition

      let s be set;

      :: SCMYCIEL:def5

      attr s is SimpleGraph-like means s is 1 -at_most_dimensional subset-closed non empty;

    end

    registration

      cluster SimpleGraph-like -> 1 -at_most_dimensional subset-closed non empty for set;

      correctness ;

      cluster 1 -at_most_dimensional subset-closed non empty -> SimpleGraph-like for set;

      correctness ;

    end

    theorem :: SCMYCIEL:22

    

     Th22: { {} } is SimpleGraph-like by Lm2;

    registration

      cluster { {} } -> SimpleGraph-like;

      correctness by Th22;

    end

    registration

      cluster SimpleGraph-like for set;

      existence by Th22;

    end

    definition

      mode SimpleGraph is SimpleGraph-like set;

    end

    registration

      cluster void for SimpleGraph;

      existence

      proof

        reconsider G = { {} } as SimpleGraph;

        take G;

        thus thesis;

      end;

      cluster finite for SimpleGraph;

      existence by Th22;

    end

    notation

      let G be set;

      synonym Vertices G for union G;

      synonym Edges G for PairsOf G;

    end

    notation

      let X be set;

      synonym X is edgeless for X is pairfree;

    end

    theorem :: SCMYCIEL:23

    

     Th23: for G be SimpleGraph st ( Vertices G) is finite holds G is finite

    proof

      let G be SimpleGraph;

      assume

       A1: ( Vertices G) is finite;

      G c= ( bool ( Vertices G)) by ZFMISC_1: 82;

      hence G is finite by A1;

    end;

    theorem :: SCMYCIEL:24

    

     Th24: for G be SimpleGraph, x be object holds x in ( Vertices G) iff {x} in G

    proof

      let G be SimpleGraph, x be object;

      thus x in ( Vertices G) implies {x} in G

      proof

        assume x in ( Vertices G);

        then

        consider y be set such that

         A1: x in y and

         A2: y in G by TARSKI:def 4;

         {x} c= y by A1, ZFMISC_1: 31;

        hence {x} in G by A2, CLASSES1:def 1;

      end;

      x in {x} by TARSKI:def 1;

      hence thesis by TARSKI:def 4;

    end;

    theorem :: SCMYCIEL:25

    

     Th25: for x be set holds { {} , {x}} is SimpleGraph

    proof

      let x be set;

      set H = { {} , {x}};

      

       A1: H is 1 -at_most_dimensional

      proof

        let a be set such that

         A2: a in H;

        per cases by A2, TARSKI:def 2;

          suppose a = {} ;

          hence ( card a) c= (1 + 1);

        end;

          suppose a = {x};

          then

           A3: ( card a) = 1 by CARD_1: 30;

          ( Segm 1) c= ( Segm (1 + 1)) by NAT_1: 39;

          hence ( card a) c= (1 + 1) by A3;

        end;

      end;

      H is subset-closed

      proof

        let X,Y be set such that

         A4: X in H and

         A5: Y c= X;

        per cases by A4, TARSKI:def 2;

          suppose X = {} ;

          then Y = {} by A5;

          hence Y in H by TARSKI:def 2;

        end;

          suppose

           A6: X = {x};

          per cases by A6, A5, ZFMISC_1: 33;

            suppose Y = {} ;

            hence Y in H by TARSKI:def 2;

          end;

            suppose Y = {x};

            hence Y in H by TARSKI:def 2;

          end;

        end;

      end;

      hence { {} , {x}} is SimpleGraph by A1;

    end;

    definition

      let X be finite finite-membered set;

      :: SCMYCIEL:def6

      func order X -> Nat equals ( card ( union X));

      coherence ;

    end

    definition

      let X be finite set;

      :: SCMYCIEL:def7

      func size X -> Nat equals ( card ( PairsOf X));

      coherence ;

    end

    theorem :: SCMYCIEL:26

    

     Th26: for G be finite SimpleGraph holds ( order G) <= ( card G)

    proof

      let G be finite SimpleGraph;

      set uG = ( union G);

      

       A1: ( card ( singletons uG)) = ( card uG) by BSPACE: 41;

      ( singletons uG) c= G

      proof

        let x be object;

        assume x in ( singletons uG);

        then

        consider f be Subset of uG such that

         A2: x = f and

         A3: f is 1 -element;

        consider a be set such that

         A4: a in uG and

         A5: f = {a} by A3, Th9;

        consider y be set such that

         A6: a in y and

         A7: y in G by A4, TARSKI:def 4;

         {a} c= y by A6, ZFMISC_1: 31;

        hence x in G by A7, A5, A2, CLASSES1:def 1;

      end;

      hence ( order G) <= ( card G) by A1, NAT_1: 43;

    end;

    definition

      let G be SimpleGraph;

      mode Vertex of G is Element of ( Vertices G);

      mode Edge of G is Element of ( Edges G);

    end

    theorem :: SCMYCIEL:27

    

     Th27: for G be SimpleGraph holds G = (( { {} } \/ ( singletons ( Vertices G))) \/ ( Edges G))

    proof

      let G be SimpleGraph;

      thus G c= (( { {} } \/ ( singletons ( Vertices G))) \/ ( Edges G))

      proof

        let x be object;

        assume

         A1: x in G;

        reconsider v = x as finite set by A1;

        ( card v) <= (1 + 1) by A1, Th21;

        then ( card v) = 0 or ... or ( card v) = 2;

        per cases ;

          suppose ( card v) = 0 ;

          then v = {} ;

          then v in { {} } by TARSKI:def 1;

          then v in ( { {} } \/ ( singletons ( Vertices G))) by XBOOLE_0:def 3;

          hence thesis by XBOOLE_0:def 3;

        end;

          suppose ( card v) = 1;

          then

          consider a be object such that

           A2: v = {a} by CARD_2: 42;

          

           A3: a in v by A2, TARSKI:def 1;

          

           A4: a in ( union G) by A3, A1, TARSKI:def 4;

          reconsider v as Subset of ( Vertices G) by A4, A2, ZFMISC_1: 31;

          v in ( singletons ( Vertices G)) by A2;

          then v in ( { {} } \/ ( singletons ( Vertices G))) by XBOOLE_0:def 3;

          hence thesis by XBOOLE_0:def 3;

        end;

          suppose ( card v) = 2;

          then v in ( Edges G) by A1, Def1;

          hence thesis by XBOOLE_0:def 3;

        end;

      end;

      thus (( { {} } \/ ( singletons ( Vertices G))) \/ ( Edges G)) c= G

      proof

        let x be object;

        assume x in (( { {} } \/ ( singletons ( Vertices G))) \/ ( Edges G));

        then

         A5: x in ( { {} } \/ ( singletons ( Vertices G))) or x in ( Edges G) by XBOOLE_0:def 3;

        per cases by A5, XBOOLE_0:def 3;

          suppose

           A6: x in { {} };

          consider z be object such that

           A7: z in G by XBOOLE_0:def 1;

          reconsider z as set by TARSKI: 1;

          

           A8: {} c= z;

          x = {} by A6, TARSKI:def 1;

          hence x in G by A8, A7, CLASSES1:def 1;

        end;

          suppose x in ( singletons ( Vertices G));

          then

          consider f be Subset of ( Vertices G) such that

           A9: x = f and

           A10: f is 1 -element;

          consider v be set such that

           A11: v in ( Vertices G) and

           A12: f = {v} by A10, Th9;

          thus x in G by A9, A11, A12, Th24;

        end;

          suppose x in ( Edges G);

          hence x in G;

        end;

      end;

    end;

    theorem :: SCMYCIEL:28

    

     Th28: for G be SimpleGraph st ( Vertices G) = {} holds G is void by Th18;

    theorem :: SCMYCIEL:29

    

     Th29: for G be SimpleGraph, x be set st x in G & x <> {} holds (ex y be set st x = {y} & y in ( Vertices G)) or x in ( Edges G)

    proof

      let G be SimpleGraph, x be set such that

       A1: x in G and

       A2: x <> {} ;

      x in (( { {} } \/ ( singletons ( Vertices G))) \/ ( Edges G)) by A1, Th27;

      then x in ( { {} } \/ ( singletons ( Vertices G))) or x in ( Edges G) by XBOOLE_0:def 3;

      then

       A3: x in { {} } or x in ( singletons ( Vertices G)) or x in ( Edges G) by XBOOLE_0:def 3;

      per cases by A3, A2, TARSKI:def 1;

        suppose x in ( singletons ( Vertices G));

        then

        consider f be Subset of ( Vertices G) such that

         A4: x = f and

         A5: f is 1 -element;

        consider v be set such that

         A6: v in ( Vertices G) and

         A7: f = {v} by A5, Th9;

        thus thesis by A7, A6, A4;

      end;

        suppose x in ( Edges G);

        hence thesis;

      end;

    end;

    theorem :: SCMYCIEL:30

    for G be SimpleGraph, x be set st ( Vertices G) = {x} holds G = { {} , {x}}

    proof

      let G be SimpleGraph, a be set such that

       A1: ( Vertices G) = {a};

       A2:

      now

        assume ( Edges G) <> {} ;

        then

        consider e be object such that

         A3: e in ( Edges G) by XBOOLE_0:def 1;

        consider x,y be set such that

         A4: x <> y and

         A5: x in ( Vertices G) and

         A6: y in ( Vertices G) and e = {x, y} by A3, Th11;

        x = a by A5, A1, TARSKI:def 1;

        hence contradiction by A4, A6, A1, TARSKI:def 1;

      end;

      

       A7: ( singletons ( Vertices G)) = { {a}} by A1, Th6;

      

      thus G = (( { {} } \/ ( singletons ( Vertices G))) \/ ( Edges G)) by Th27

      .= { {} , {a}} by A7, A2, ENUMSET1: 1;

    end;

    theorem :: SCMYCIEL:31

    

     Th31: for X be set holds ex G be SimpleGraph st G is edgeless & ( Vertices G) = X

    proof

      let X be set;

      set G = ( { {} } \/ ( singletons X));

      

       A1: G is subset-closed

      proof

        let x,y be set;

        assume that

         A2: x in G and

         A3: y c= x;

        per cases by A2, XBOOLE_0:def 3;

          suppose x in { {} };

          then x = {} by TARSKI:def 1;

          then y = {} by A3;

          then y in { {} } by TARSKI:def 1;

          hence y in G by XBOOLE_0:def 3;

        end;

          suppose x in ( singletons X);

          then

          consider f be Subset of X such that

           A4: x = f and

           A5: f is 1 -element;

          consider v be set such that v in X and

           A6: f = {v} by A5, Th9;

          per cases by A3, A4, A6, ZFMISC_1: 33;

            suppose y = {} ;

            then y in { {} } by TARSKI:def 1;

            hence y in G by XBOOLE_0:def 3;

          end;

            suppose y = {v};

            hence y in G by A2, A6, A4;

          end;

        end;

      end;

      

       A7: G is 1 -at_most_dimensional

      proof

        let x be set;

        assume

         A8: x in G;

        per cases by A8, XBOOLE_0:def 3;

          suppose x in { {} };

          then x = {} by TARSKI:def 1;

          hence ( card x) c= (1 + 1);

        end;

          suppose x in ( singletons X);

          then

          consider f be Subset of X such that

           A9: x = f and

           A10: f is 1 -element;

          consider v be set such that v in X and

           A11: f = {v} by A10, Th9;

          

           A12: ( card x) = 1 by A9, A11, CARD_1: 30;

          ( Segm 1) c= ( Segm (1 + 1)) by NAT_1: 39;

          hence ( card x) c= (1 + 1) by A12;

        end;

      end;

      reconsider G as SimpleGraph by A1, A7;

      take G;

      now

        assume ( Edges G) <> {} ;

        then

        consider e be object such that

         A13: e in ( Edges G) by XBOOLE_0:def 1;

        reconsider e as set by TARSKI: 1;

        

         A14: e in G & ( card e) = 2 by A13, Def1;

        per cases by A13, XBOOLE_0:def 3;

          suppose e in { {} };

          hence contradiction by A14, CARD_1: 27, TARSKI:def 1;

        end;

          suppose e in ( singletons X);

          then

          consider f be Subset of X such that

           A15: e = f and

           A16: f is 1 -element;

          consider v be set such that v in X and

           A17: f = {v} by A16, Th9;

          thus contradiction by A14, A15, A17, CARD_1: 30;

        end;

      end;

      hence G is edgeless;

      thus ( Vertices G) = X

      proof

        thus ( Vertices G) c= X

        proof

          let x be object;

          assume x in ( Vertices G);

          then

          consider y be set such that

           A18: x in y and

           A19: y in G by TARSKI:def 4;

          per cases by A19, XBOOLE_0:def 3;

            suppose y in { {} };

            hence thesis by A18, TARSKI:def 1;

          end;

            suppose y in ( singletons X);

            then

            consider f be Subset of X such that

             A20: y = f and f is 1 -element;

            thus x in X by A20, A18;

          end;

        end;

        thus X c= ( Vertices G)

        proof

          let x be object;

          assume x in X;

          then

          reconsider f = {x} as Subset of X by ZFMISC_1: 31;

          f is 1 -element;

          then {x} in ( singletons X);

          then {x} in G by XBOOLE_0:def 3;

          hence x in ( Vertices G) by Th24;

        end;

      end;

    end;

    definition

      let G be SimpleGraph, v be Element of ( Vertices G);

      :: SCMYCIEL:def8

      func Adjacent v -> Subset of ( Vertices G) means

      : Def8: for x be Element of ( Vertices G) holds x in it iff {v, x} in ( Edges G);

      existence

      proof

        set A = { x where x be Element of ( Vertices G) : {v, x} in ( Edges G) };

        A c= ( Vertices G)

        proof

          let a be object;

          assume a in A;

          then

          consider x be Element of ( Vertices G) such that

           A1: a = x and

           A2: {v, x} in ( Edges G);

          thus a in ( Vertices G) by A1, A2, Th13;

        end;

        then

        reconsider A as Subset of ( Vertices G);

        take A;

        let x be Element of ( Vertices G);

        hereby

          assume x in A;

          then

          consider a be Element of ( Vertices G) such that

           A3: x = a and

           A4: {v, a} in ( Edges G);

          thus {v, x} in ( Edges G) by A3, A4;

        end;

        thus thesis;

      end;

      uniqueness

      proof

        let A1,A2 be Subset of ( Vertices G) such that

         A5: for x be Element of ( Vertices G) holds x in A1 iff {v, x} in ( Edges G) and

         A6: for x be Element of ( Vertices G) holds x in A2 iff {v, x} in ( Edges G);

        thus A1 c= A2

        proof

          let x be object;

          assume

           A7: x in A1;

          then {v, x} in ( Edges G) by A5;

          hence thesis by A6, A7;

        end;

        thus A2 c= A1

        proof

          let x be object;

          assume

           A8: x in A2;

          then {v, x} in ( Edges G) by A6;

          hence thesis by A5, A8;

        end;

      end;

    end

    definition

      let X be set;

      :: SCMYCIEL:def9

      mode SimpleGraph of X -> SimpleGraph means

      : Def9: ( Vertices it ) = X;

      existence

      proof

        consider G be SimpleGraph such that G is edgeless and

         A1: ( Vertices G) = X by Th31;

        take G;

        thus thesis by A1;

      end;

    end

    definition

      let X be set;

      :: SCMYCIEL:def10

      func CompleteSGraph X -> SimpleGraph of X equals { V where V be finite Subset of X : ( card V) <= 2 };

      coherence

      proof

        set G = { V where V be finite Subset of X : ( card V) <= 2 };

        

         A1: G is subset-closed

        proof

          let x,y be set such that

           A2: x in G and

           A3: y c= x;

          consider V be finite Subset of X such that

           A4: x = V and

           A5: ( card V) <= 2 by A2;

          reconsider y1 = y as finite Subset of X by A4, A3, XBOOLE_1: 1;

          ( card y1) <= ( card V) by A3, A4, NAT_1: 43;

          then ( card y1) <= 2 by A5, XXREAL_0: 2;

          hence y in G;

        end;

        

         A6: G is 1 -at_most_dimensional

        proof

          let x be set;

          assume x in G;

          then

          consider V be finite Subset of X such that

           A7: x = V and

           A8: ( card V) <= 2;

          ( Segm ( card V)) c= ( Segm (1 + 1)) by A8, NAT_1: 39;

          hence ( card x) c= (1 + 1) by A7;

        end;

        

         A9: {} c= X;

        ( card {} ) <= 2;

        then {} in G by A9;

        then

        reconsider G as SimpleGraph by A1, A6;

        ( Vertices G) = X by Lm1;

        hence thesis by Def9;

      end;

    end

    theorem :: SCMYCIEL:32

    

     Th32: for G be SimpleGraph st (for x,y be set st x in ( Vertices G) & y in ( Vertices G) holds {x, y} in G) holds G = ( CompleteSGraph ( Vertices G))

    proof

      let G be SimpleGraph such that

       A1: for x,y be set st x in ( Vertices G) & y in ( Vertices G) holds {x, y} in G;

      set C = { V where V be finite Subset of ( Vertices G) : ( card V) <= 2 };

      C = G

      proof

        thus C c= G

        proof

          let a be object;

          assume a in C;

          then

          consider V be finite Subset of ( Vertices G) such that

           A2: a = V and

           A3: ( card V) <= 2;

          ( card V) = 0 or ... or ( card V) = 2 by A3;

          per cases ;

            suppose ( card V) = 0 ;

            then V = {} ;

            hence a in G by A2, Th20;

          end;

            suppose ( card V) = 1;

            then

            consider c be object such that

             A4: V = {c} by CARD_2: 42;

            c in V by A4, TARSKI:def 1;

            then {c, c} in G by A1;

            hence a in G by A4, A2, ENUMSET1: 29;

          end;

            suppose ( card V) = 2;

            then

            consider c,d be object such that c <> d and

             A5: V = {c, d} by CARD_2: 60;

            c in V & d in V by A5, TARSKI:def 2;

            hence a in G by A1, A5, A2;

          end;

        end;

        thus G c= C

        proof

          let a be object;

          assume

           A6: a in G;

          then

          reconsider aa = a as finite set;

          

           A7: ( card aa) <= (1 + 1) by A6, Th21;

          aa c= ( union G) by A6, ZFMISC_1: 74;

          hence a in C by A7;

        end;

      end;

      hence G = ( CompleteSGraph ( Vertices G));

    end;

    registration

      let X be finite set;

      cluster ( CompleteSGraph X) -> finite;

      correctness

      proof

        set G = ( CompleteSGraph X);

        G c= ( bool X)

        proof

          let x be object;

          assume x in G;

          then

          consider V be finite Subset of X such that

           A1: x = V and ( card V) <= 2;

          thus x in ( bool X) by A1;

        end;

        hence G is finite;

      end;

    end

    theorem :: SCMYCIEL:33

    

     Th33: for X be set, x be set st x in X holds {x} in ( CompleteSGraph X)

    proof

      let X be set, x be set such that

       A1: x in X;

      

       A2: {x} c= X by A1, ZFMISC_1: 31;

      

       A3: ( card {x}) = 1 by CARD_1: 30;

      thus {x} in ( CompleteSGraph X) by A3, A2;

    end;

    theorem :: SCMYCIEL:34

    

     Th34: for X be set, x,y be set st x in X & y in X holds {x, y} in ( CompleteSGraph X)

    proof

      let X be set, x,y be set such that

       A1: x in X and

       A2: y in X;

      

       A3: {x, y} c= X by A1, A2, ZFMISC_1: 32;

      

       A4: ( card {x, y}) <= 2 by CARD_2: 50;

      thus {x, y} in ( CompleteSGraph X) by A4, A3;

    end;

    theorem :: SCMYCIEL:35

    

     Th35: ( CompleteSGraph {} ) = { {} }

    proof

      for x,y be set st x in ( union { {} }) & y in ( union { {} }) holds {x, y} in { {} };

      hence ( CompleteSGraph {} ) = { {} } by Th32;

    end;

    theorem :: SCMYCIEL:36

    

     Th36: for x be set holds ( CompleteSGraph {x}) = { {} , {x}}

    proof

      let x be set;

      thus ( CompleteSGraph {x}) c= { {} , {x}}

      proof

        let a be object;

        assume a in ( CompleteSGraph {x});

        then

        consider V be finite Subset of {x} such that

         A1: a = V and ( card V) <= 2;

        a = {} or a = {x} by A1, ZFMISC_1: 33;

        hence thesis by TARSKI:def 2;

      end;

      

       A2: {x} = ( Vertices ( CompleteSGraph {x})) by Lm1;

      

       A3: x in {x} by TARSKI:def 1;

      thus { {} , {x}} c= ( CompleteSGraph {x})

      proof

        let a be object;

        assume a in { {} , {x}};

        then a = {} or a = {x} by TARSKI:def 2;

        hence thesis by A2, A3, Th20, Th24;

      end;

    end;

    theorem :: SCMYCIEL:37

    

     Th37: for x,y be set holds ( CompleteSGraph {x, y}) = { {} , {x}, {y}, {x, y}}

    proof

      let x,y be set;

      thus ( CompleteSGraph {x, y}) c= { {} , {x}, {y}, {x, y}}

      proof

        let a be object;

        assume a in ( CompleteSGraph {x, y});

        then

        consider V be finite Subset of {x, y} such that

         A1: a = V and ( card V) <= 2;

        a = {} or a = {x} or a = {y} or a = {x, y} by A1, ZFMISC_1: 36;

        hence thesis by ENUMSET1:def 2;

      end;

      

       A2: {x, y} = ( Vertices ( CompleteSGraph {x, y})) by Lm1;

      

       A3: x in {x, y} by TARSKI:def 2;

      

       A4: y in {x, y} by TARSKI:def 2;

      

       A5: ( card {x, y}) <= 2 by CARD_2: 50;

      thus { {} , {x}, {y}, {x, y}} c= ( CompleteSGraph {x, y})

      proof

        let a be object;

        assume a in { {} , {x}, {y}, {x, y}};

        then a = {} or a = {x} or a = {y} or a = {x, y} by ENUMSET1:def 2;

        hence thesis by A2, A3, A4, A5, Th20, Th24;

      end;

    end;

    theorem :: SCMYCIEL:38

    for X,Y be set st X c= Y holds ( CompleteSGraph X) c= ( CompleteSGraph Y)

    proof

      let X,Y be set such that

       A1: X c= Y;

      let a be object;

      assume a in ( CompleteSGraph X);

      then

      consider V be finite Subset of X such that

       A2: a = V and

       A3: ( card V) <= 2;

      V is Subset of Y by A1, XBOOLE_1: 1;

      hence a in ( CompleteSGraph Y) by A2, A3;

    end;

    theorem :: SCMYCIEL:39

    

     Th39: for G be SimpleGraph, x be set st x in ( Vertices G) holds ( CompleteSGraph {x}) c= G

    proof

      let G be SimpleGraph, x be set such that

       A1: x in ( Vertices G);

      

       A2: ( CompleteSGraph {x}) = { {} , {x}} by Th36;

      

       A3: {} in G by Th20;

      

       A4: {x} in G by A1, Th24;

      thus ( CompleteSGraph {x}) c= G by A2, A3, A4, ZFMISC_1: 32;

    end;

    registration

      let G be SimpleGraph;

      cluster SimpleGraph-like for Subset of G;

      existence

      proof

        G c= G;

        then

        reconsider H = G as Subset of G;

        take H;

        thus thesis;

      end;

    end

    definition

      let G be SimpleGraph;

      mode Subgraph of G is SimpleGraph-like Subset of G;

    end

    

     Lm3: for G be SimpleGraph holds (( CompleteSGraph ( Vertices G)) \ ( Edges G)) is SimpleGraph

    proof

      let G be SimpleGraph;

      set CSGVG = ( CompleteSGraph ( Vertices G));

      set C = (CSGVG \ ( Edges G));

      

       A1: {} in CSGVG by Th20;

      now

        assume {} in ( Edges G);

        then

        consider x,y be set such that x <> y & x in ( Vertices G) & y in ( Vertices G) and

         A2: {} = {x, y} by Th11;

        thus contradiction by A2;

      end;

      then

      reconsider C as non empty set by A1, XBOOLE_0:def 5;

      C is subset-closed

      proof

        let X,Y be set such that

         A3: X in C and

         A4: Y c= X;

        assume Y nin C;

        then

         A5: Y nin CSGVG or Y in ( Edges G) by XBOOLE_0:def 5;

        

         A6: X in CSGVG & not X in ( Edges G) by A3, XBOOLE_0:def 5;

        

         A7: Y in ( Edges G) by A4, A5, A6, CLASSES1:def 1;

        

         A8: ( card Y) = 2 by A7, Def1;

        reconsider X as finite set by A3;

        

         A9: ( card X) <= (1 + 1) by A3, Th21;

        

         A10: 2 <= ( card X) by A8, A4, NAT_1: 43;

        ( card X) = 2 by A9, A10, XXREAL_0: 1;

        hence contradiction by A6, A5, A4, A8, CARD_2: 102;

      end;

      hence thesis;

    end;

    

     Lm4: for G be SimpleGraph holds ( Vertices G) = ( Vertices (( CompleteSGraph ( Vertices G)) \ ( Edges G)))

    proof

      let G be SimpleGraph;

      set CG = (( CompleteSGraph ( Vertices G)) \ ( Edges G));

      

       A1: CG is SimpleGraph by Lm3;

      now

        let a be object;

        hereby

          assume a in ( Vertices G);

          then

           A2: {a} in ( CompleteSGraph ( Vertices G)) by Th33;

          now

            assume {a} in ( Edges G);

            then {a, a} in ( Edges G) by ENUMSET1: 29;

            hence contradiction by Th13;

          end;

          then {a} in CG by A2, XBOOLE_0:def 5;

          hence a in ( Vertices CG) by A1, Th24;

        end;

        assume a in ( Vertices CG);

        then {a} in CG by A1, Th24;

        then a in ( Vertices ( CompleteSGraph ( Vertices G))) by Th24;

        hence a in ( Vertices G) by Lm1;

      end;

      hence ( Vertices G) = ( Vertices CG) by TARSKI: 2;

    end;

    

     Lm5: for G be SimpleGraph, x,y be set st x <> y & x in ( Vertices G) & y in ( Vertices G) holds {x, y} in ( Edges G) iff {x, y} nin ( Edges (( CompleteSGraph ( Vertices G)) \ ( Edges G)))

    proof

      let G be SimpleGraph, x,y be set such that

       A1: x <> y and

       A2: x in ( Vertices G) and

       A3: y in ( Vertices G);

      set CG = (( CompleteSGraph ( Vertices G)) \ ( Edges G));

      thus {x, y} in ( Edges G) implies {x, y} nin ( Edges CG) by XBOOLE_0:def 5;

      assume

       A4: {x, y} nin ( Edges CG);

      assume

       A5: {x, y} nin ( Edges G);

       {x, y} in ( CompleteSGraph ( Vertices G)) by A2, A3, Th34;

      then {x, y} in CG by A5, XBOOLE_0:def 5;

      hence contradiction by A4, A1, Th12;

    end;

    

     Lm6: for G,CG be SimpleGraph st CG = (( CompleteSGraph ( Vertices G)) \ ( Edges G)) holds (( CompleteSGraph ( Vertices CG)) \ ( Edges CG)) = G

    proof

      let G,CG be SimpleGraph such that

       A1: CG = (( CompleteSGraph ( Vertices G)) \ ( Edges G));

      set CCG = (( CompleteSGraph ( Vertices CG)) \ ( Edges CG));

      

       A2: ( Vertices G) = ( Vertices CG) by A1, Lm4;

      

       A3: ( Vertices CG) = ( Vertices CCG) by Lm4;

      CCG is SimpleGraph by Lm3;

      then

       A4: CCG = (( { {} } \/ ( singletons ( Vertices CCG))) \/ ( Edges CCG)) by Th27;

      

       A5: G = (( { {} } \/ ( singletons ( Vertices G))) \/ ( Edges G)) by Th27;

      now

        let a be object;

        hereby

          assume

           A6: a in ( Edges CCG);

          then

          consider x,y be set such that

           A7: x <> y and

           A8: x in ( Vertices CCG) & y in ( Vertices CCG) and

           A9: a = {x, y} by Th11;

           {x, y} nin ( Edges CG) by A7, A3, A6, A9, A8, Lm5;

          hence a in ( Edges G) by A7, A3, A2, A8, A9, A1, Lm5;

        end;

        assume

         A10: a in ( Edges G);

        then

        consider x,y be set such that

         A11: x <> y and

         A12: x in ( Vertices G) & y in ( Vertices G) and

         A13: a = {x, y} by Th11;

         {x, y} nin ( Edges CG) by A11, A10, A13, A12, A1, Lm5;

        hence a in ( Edges CCG) by A11, A2, A12, A13, Lm5;

      end;

      hence thesis by A2, A3, A4, A5, TARSKI: 2;

    end;

    definition

      let G be SimpleGraph;

      :: SCMYCIEL:def11

      func Complement G -> SimpleGraph equals (( CompleteSGraph ( Vertices G)) \ ( Edges G));

      correctness by Lm3;

      involutiveness by Lm6;

    end

    theorem :: SCMYCIEL:40

    for G be SimpleGraph holds ( Vertices G) = ( Vertices ( Complement G)) by Lm4;

    theorem :: SCMYCIEL:41

    for G be SimpleGraph, x,y be set st x <> y & x in ( Vertices G) & y in ( Vertices G) holds {x, y} in ( Edges G) iff {x, y} nin ( Edges ( Complement G)) by Lm5;

    begin

    definition

      let G be SimpleGraph, L be set;

      :: SCMYCIEL:def12

      func G SubgraphInducedBy L -> Subset of G equals (G /\ ( bool L));

      coherence by XBOOLE_1: 17;

    end

    registration

      let G be SimpleGraph, L be set;

      cluster (G SubgraphInducedBy L) -> SimpleGraph-like;

      coherence

      proof

        set S = (G /\ ( bool L));

        

         A1: {} in G by Th20;

         {} c= L;

        then

        reconsider S as non empty set by A1, XBOOLE_0:def 4;

        S is subset-closed;

        hence thesis;

      end;

    end

    theorem :: SCMYCIEL:42

    for G be SimpleGraph holds G = (G SubgraphInducedBy ( Vertices G))

    proof

      let G be SimpleGraph;

      thus G c= (G SubgraphInducedBy ( Vertices G))

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume

         A1: x in G;

        

         A2: xx c= ( union G) by A1, ZFMISC_1: 74;

        thus thesis by A1, A2, XBOOLE_0:def 4;

      end;

      thus thesis;

    end;

    theorem :: SCMYCIEL:43

    

     Th43: for G be SimpleGraph, L be set holds (G SubgraphInducedBy L) = (G SubgraphInducedBy (L /\ ( Vertices G)))

    proof

      let G be SimpleGraph, L be set;

      thus (G SubgraphInducedBy L) c= (G SubgraphInducedBy (L /\ ( Vertices G)))

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume

         A1: x in (G SubgraphInducedBy L);

        then

         A2: x in ( bool L) by XBOOLE_0:def 4;

        

         A3: xx c= ( Vertices G) by A1, ZFMISC_1: 74;

        

         A4: xx c= (L /\ ( Vertices G)) by A2, A3, XBOOLE_1: 19;

        thus x in (G SubgraphInducedBy (L /\ ( Vertices G))) by A1, A4, XBOOLE_0:def 4;

      end;

      thus (G SubgraphInducedBy (L /\ ( Vertices G))) c= (G SubgraphInducedBy L)

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume

         A5: x in (G SubgraphInducedBy (L /\ ( Vertices G)));

        then x in ( bool (L /\ ( Vertices G))) by XBOOLE_0:def 4;

        then

         A6: xx c= L by XBOOLE_1: 18;

        thus thesis by A5, A6, XBOOLE_0:def 4;

      end;

    end;

    registration

      let G be finite SimpleGraph, L be set;

      cluster (G SubgraphInducedBy L) -> finite;

      coherence ;

    end

    registration

      let G be SimpleGraph, L be finite set;

      cluster (G SubgraphInducedBy L) -> finite;

      coherence ;

    end

    theorem :: SCMYCIEL:44

    

     Th44: for G,H be SimpleGraph st G c= H holds G c= (H SubgraphInducedBy ( Vertices G))

    proof

      let G,H be SimpleGraph;

      assume

       A1: G c= H;

      set L = ( Vertices G);

      let g be object;

      reconsider gg = g as set by TARSKI: 1;

      assume

       A2: g in G;

      gg c= ( Vertices G) by A2, ZFMISC_1: 74;

      hence g in (H SubgraphInducedBy L) by A2, A1, XBOOLE_0:def 4;

    end;

    

     Lm7: for G be SimpleGraph, L be set, x be set st x in ( Vertices (G SubgraphInducedBy L)) holds x in L

    proof

      let G be SimpleGraph, L be set;

      set S = (G /\ ( bool L));

      let x be set;

      assume

       A1: x in ( Vertices (G SubgraphInducedBy L));

      consider Y be set such that

       A2: x in Y and

       A3: Y in S by A1, TARSKI:def 4;

      set y = Y;

      Y in ( bool L) by A3, XBOOLE_0:def 4;

      hence x in L by A2;

    end;

    

     Lm8: for G be SimpleGraph, L be set, x be set st x in L & x in ( Vertices G) holds x in ( Vertices (G SubgraphInducedBy L))

    proof

      let G be SimpleGraph, L be set, x be set such that

       A1: x in L and

       A2: x in ( Vertices G);

      

       A3: {x} in G by A2, Th24;

      

       A4: {x} c= L by A1, ZFMISC_1: 31;

      

       A5: {x} in (G SubgraphInducedBy L) by A3, A4, XBOOLE_0:def 4;

      thus x in ( Vertices (G SubgraphInducedBy L)) by A5, Th24;

    end;

    theorem :: SCMYCIEL:45

    

     Th45: for G be SimpleGraph, L be set holds ( Vertices (G SubgraphInducedBy L)) = (( Vertices G) /\ L)

    proof

      let G be SimpleGraph, L be set;

      set S = (G SubgraphInducedBy L);

      set uS = ( union S);

      set uG = ( union G);

      ( union (G /\ ( bool L))) c= (( union G) /\ ( union ( bool L))) by ZFMISC_1: 79;

      hence uS c= (uG /\ L) by ZFMISC_1: 81;

      thus (uG /\ L) c= uS

      proof

        let a be object;

        assume a in (uG /\ L);

        then a in uG & a in L by XBOOLE_0:def 4;

        hence a in uS by Lm8;

      end;

    end;

    

     Lm9: for G be SimpleGraph, L be set st L c= ( Vertices G) holds ( Vertices (G SubgraphInducedBy L)) = L

    proof

      let G be SimpleGraph, L be set such that

       A1: L c= ( union G);

      

      thus ( Vertices (G SubgraphInducedBy L)) = (( Vertices G) /\ L) by Th45

      .= L by A1, XBOOLE_1: 28;

    end;

    

     Lm10: for G be SimpleGraph, L,x,y be set st x in L & y in L & {x, y} in G holds {x, y} in (G SubgraphInducedBy L)

    proof

      let G be SimpleGraph, L,x,y be set such that

       A1: x in L and

       A2: y in L and

       A3: {x, y} in G;

       {x, y} c= L by A1, A2, ZFMISC_1: 32;

      hence {x, y} in (G SubgraphInducedBy L) by A3, XBOOLE_0:def 4;

    end;

    theorem :: SCMYCIEL:46

    

     Th46: for G be SimpleGraph, x be set st x in ( Vertices G) holds (G SubgraphInducedBy {x}) = { {} , {x}}

    proof

      let G be SimpleGraph, x be set such that

       A1: x in ( Vertices G);

      set Gx = (G SubgraphInducedBy {x});

      thus Gx c= { {} , {x}}

      proof

        let a be object;

        assume a in Gx;

        then a in ( bool {x}) by XBOOLE_0:def 4;

        then a = {} or a = {x} by ZFMISC_1: 33;

        hence thesis by TARSKI:def 2;

      end;

      thus { {} , {x}} c= Gx

      proof

        let a be object;

        reconsider aa = a as set by TARSKI: 1;

        

         A2: {} in G & {x} in G by Th20, A1, Th24;

        assume a in { {} , {x}};

        then

         A3: a = {} or a = {x} by TARSKI:def 2;

        then aa c= {x};

        hence thesis by A2, A3, XBOOLE_0:def 4;

      end;

    end;

    begin

    definition

      let G be SimpleGraph;

      :: SCMYCIEL:def13

      attr G is clique means

      : Def13: G = ( CompleteSGraph ( Vertices G));

    end

    theorem :: SCMYCIEL:47

    

     Th47: for G be SimpleGraph st for x,y be set st x <> y & x in ( Vertices G) & y in ( Vertices G) holds {x, y} in ( Edges G) holds G is clique

    proof

      let G be SimpleGraph such that

       A1: for x,y be set st x <> y & x in ( Vertices G) & y in ( Vertices G) holds {x, y} in ( Edges G);

      now

        let x,y be set such that

         A2: x in ( Vertices G) and

         A3: y in ( Vertices G);

        per cases ;

          suppose x <> y;

          then {x, y} in ( Edges G) by A2, A3, A1;

          hence {x, y} in G;

        end;

          suppose x = y;

          then {x, y} = {x} by ENUMSET1: 29;

          hence {x, y} in G by A2, Th24;

        end;

      end;

      then G = ( CompleteSGraph ( Vertices G)) by Th32;

      hence G is clique;

    end;

    theorem :: SCMYCIEL:48

    

     Th48: { {} } is clique by Th35;

    registration

      cluster clique for SimpleGraph;

      existence by Th48;

      let G be SimpleGraph;

      cluster clique for Subgraph of G;

      existence

      proof

         {} in G by Th20;

        then

        reconsider S = { {} } as Subgraph of G by ZFMISC_1: 31;

        take S;

        thus thesis by Th48;

      end;

    end

    definition

      let G be SimpleGraph;

      mode Clique of G is clique Subgraph of G;

    end

    theorem :: SCMYCIEL:49

    

     Th49: for X be set holds ( CompleteSGraph X) is clique by Lm1;

    registration

      let X be set;

      cluster ( CompleteSGraph X) -> clique;

      correctness by Th49;

    end

    theorem :: SCMYCIEL:50

    

     Th50: for G be SimpleGraph, x be set st x in ( Vertices G) holds { {} , {x}} is Clique of G

    proof

      let G be SimpleGraph, x be set such that

       A1: x in ( Vertices G);

      set C = ( CompleteSGraph {x});

      

       A2: C = { {} , {x}} by Th36;

      thus { {} , {x}} is Clique of G by A2, A1, Th39;

    end;

    theorem :: SCMYCIEL:51

    

     Th51: for G be SimpleGraph, x,y be set st x in ( Vertices G) & y in ( Vertices G) & {x, y} in G holds { {} , {x}, {y}, {x, y}} is Clique of G

    proof

      let G be SimpleGraph, x,y be set such that

       A1: x in ( Vertices G) and

       A2: y in ( Vertices G) and

       A3: {x, y} in G;

      set C = ( CompleteSGraph {x, y});

      

       A4: C = { {} , {x}, {y}, {x, y}} by Th37;

      C c= G

      proof

        let a be object;

        assume

         A5: a in C;

        per cases by A5, A4, ENUMSET1:def 2;

          suppose a = {} ;

          hence thesis by Th20;

        end;

          suppose a = {x};

          hence thesis by A1, Th24;

        end;

          suppose a = {y};

          hence thesis by A2, Th24;

        end;

          suppose a = {x, y};

          hence thesis by A3;

        end;

      end;

      hence { {} , {x}, {y}, {x, y}} is Clique of G by Th37;

    end;

    registration

      let G be SimpleGraph;

      cluster finite for Clique of G;

      existence

      proof

         {} in G by Th20;

        then

        reconsider C = { {} } as Subgraph of G by ZFMISC_1: 31;

        C is clique by Th48;

        hence thesis;

      end;

    end

    theorem :: SCMYCIEL:52

    

     Th52: for G be SimpleGraph, x be set st x in ( union G) holds ex C be finite Clique of G st ( Vertices C) = {x}

    proof

      let G be SimpleGraph, x be set such that

       A1: x in ( union G);

      set C = ( CompleteSGraph {x});

      

       A2: C = { {} , {x}} by Th36;

      reconsider C as finite Clique of G by A1, A2, Th50;

      take C;

      thus ( Vertices C) = {x} by A2, Th8;

    end;

    theorem :: SCMYCIEL:53

    

     Th53: for C be clique SimpleGraph, u,v be set st u in ( Vertices C) & v in ( Vertices C) holds {u, v} in C

    proof

      let C be clique SimpleGraph, u,v be set such that

       A1: u in ( Vertices C) and

       A2: v in ( Vertices C);

      C = ( CompleteSGraph ( Vertices C)) by Def13;

      hence thesis by A1, A2, Th34;

    end;

    definition

      let G be SimpleGraph;

      :: SCMYCIEL:def14

      attr G is with_finite_clique# means

      : Def14: ex C be finite Clique of G st for D be finite Clique of G holds ( order D) <= ( order C);

    end

    registration

      cluster with_finite_clique# for SimpleGraph;

      existence

      proof

        take G = the void SimpleGraph;

         {} in G by Th20;

        then { {} } c= G by ZFMISC_1: 31;

        then

        reconsider C = { {} } as finite Clique of G by Th48;

        take C;

        let D be finite Clique of G;

        ( union D) c= ( union G) by ZFMISC_1: 77;

        hence ( order D) <= ( order C);

      end;

    end

    registration

      cluster finite -> with_finite_clique# for SimpleGraph;

      coherence

      proof

        let G be SimpleGraph;

        assume G is finite;

        then

        reconsider R9 = G as finite SimpleGraph;

        defpred P[ Nat] means ex c be finite Clique of G st ( order c) = $1;

        

         A1: for k be Nat st P[k] holds k <= ( card R9)

        proof

          let k be Nat;

          assume P[k];

          then

          consider c be finite Clique of G such that

           A2: ( order c) = k;

          

           A3: ( card c) <= ( card R9) by NAT_1: 43;

          ( order c) <= ( card c) by Th26;

          hence k <= ( card R9) by A2, A3, XXREAL_0: 2;

        end;

         {} in G by Th20;

        then { {} } c= G by ZFMISC_1: 31;

        then

        reconsider E = { {} } as finite Clique of G by Th48;

        ( order E) = 0 ;

        then

         A4: ex k be Nat st P[k];

        consider k be Nat such that

         A5: P[k] and

         A6: for n be Nat st P[n] holds n <= k from NAT_1:sch 6( A1, A4);

        consider c be finite Clique of G such that

         A7: ( order c) = k by A5;

        for D be finite Clique of G holds ( order D) <= ( order c) by A7, A6;

        hence G is with_finite_clique#;

      end;

    end

    definition

      let G be with_finite_clique# SimpleGraph;

      :: SCMYCIEL:def15

      func clique# G -> Nat means

      : Def15: (ex C be finite Clique of G st ( order C) = it ) & for T be finite Clique of G holds ( order T) <= it ;

      existence

      proof

        consider C be finite Clique of G such that

         A1: for D be finite Clique of G holds ( order D) <= ( order C) by Def14;

        take itt = ( order C);

        thus ex A be finite Clique of G st ( order A) = itt;

        let T be finite Clique of G;

        thus ( order T) <= itt by A1;

      end;

      uniqueness

      proof

        let it1,it2 be Nat such that

         A2: ex C be finite Clique of G st ( order C) = it1 and

         A3: for T be finite Clique of G holds ( order T) <= it1 and

         A4: ex C be finite Clique of G st ( order C) = it2 and

         A5: for T be finite Clique of G holds ( order T) <= it2;

        consider C1 be finite Clique of G such that

         A6: ( order C1) = it1 by A2;

        consider C2 be finite Clique of G such that

         A7: ( order C2) = it2 by A4;

        it1 <= it2 & it2 <= it1 by A3, A5, A6, A7;

        hence it1 = it2 by XXREAL_0: 1;

      end;

    end

    theorem :: SCMYCIEL:54

    

     Th54: for G be with_finite_clique# SimpleGraph st ( clique# G) = 0 holds ( Vertices G) = {}

    proof

      let G be with_finite_clique# SimpleGraph;

      assume

       A1: ( clique# G) = 0 ;

      assume ( Vertices G) <> {} ;

      then

      consider v be object such that

       A2: v in ( Vertices G) by XBOOLE_0:def 1;

      consider D be finite Clique of G such that

       A3: ( Vertices D) = {v} by A2, Th52;

      ( order D) <= 0 by A1, Def15;

      hence contradiction by A3;

    end;

    theorem :: SCMYCIEL:55

    for G be void SimpleGraph holds ( clique# G) = 0

    proof

      let G be void SimpleGraph;

      assume

       A1: ( clique# G) <> 0 ;

      consider C be finite Clique of G such that

       A2: ( order C) = ( clique# G) by Def15;

      ( Vertices C) c= ( Vertices G) by ZFMISC_1: 77;

      hence contradiction by A1, A2;

    end;

    theorem :: SCMYCIEL:56

    

     Th56: for G be SimpleGraph, x,y be set st {x, y} in G holds (G SubgraphInducedBy {x, y}) is Clique of G

    proof

      let G be SimpleGraph, x,y be set such that

       A1: {x, y} in G;

      set S = (G SubgraphInducedBy {x, y});

      now

        let a,b be set such that

         A2: a in ( union S) and

         A3: b in ( union S);

        

         A4: a in {x, y} & b in {x, y} by A2, A3, Lm7;

        then

         A5: (a = x or a = y) & (b = x or b = y) by TARSKI:def 2;

        per cases ;

          suppose a = b;

          then {a, b} = {a} by ENUMSET1: 29;

          hence {a, b} in S by A2, Th24;

        end;

          suppose a <> b;

          hence {a, b} in S by A4, A5, A1, Lm10;

        end;

      end;

      then S = ( CompleteSGraph ( Vertices S)) by Th32;

      hence (G SubgraphInducedBy {x, y}) is Clique of G;

    end;

    theorem :: SCMYCIEL:57

    

     Th57: for G be with_finite_clique# SimpleGraph st ( Edges G) <> {} holds ( clique# G) >= 2

    proof

      let G be with_finite_clique# SimpleGraph such that

       A1: ( Edges G) <> {} ;

      consider e be object such that

       A2: e in ( Edges G) by A1, XBOOLE_0:def 1;

      consider x,y be set such that

       A3: x <> y and

       A4: x in ( Vertices G) and

       A5: y in ( Vertices G) and

       A6: e = {x, y} by A2, Th11;

      reconsider S = (G SubgraphInducedBy {x, y}) as finite Clique of G by A6, A2, Th56;

      

       A7: ( Vertices S) = (( Vertices G) /\ {x, y}) by Th45;

      

       A8: {x, y} c= ( Vertices G) by A4, A5, ZFMISC_1: 32;

      ( Vertices S) = {x, y} by A7, A8, XBOOLE_1: 28;

      then ( order S) = 2 by A3, CARD_2: 57;

      hence ( clique# G) >= 2 by Def15;

    end;

    theorem :: SCMYCIEL:58

    

     Th58: for G,H be with_finite_clique# SimpleGraph st G c= H holds ( clique# G) <= ( clique# H)

    proof

      let G,H be with_finite_clique# SimpleGraph such that

       A1: G c= H;

      consider D be finite Clique of G such that

       A2: ( order D) = ( clique# G) by Def15;

      D is Clique of H by A1, XBOOLE_1: 1;

      hence ( clique# G) <= ( clique# H) by A2, Def15;

    end;

    theorem :: SCMYCIEL:59

    

     Th59: for X be finite set holds ( clique# ( CompleteSGraph X)) = ( card X)

    proof

      let X be finite set;

      set G = ( CompleteSGraph X);

      

       A1: ( order G) = ( card X) by Lm1;

      

       A2: G c= G;

      for T be finite Clique of G holds ( order T) <= ( order G) by NAT_1: 43, ZFMISC_1: 77;

      hence ( clique# ( CompleteSGraph X)) = ( card X) by A1, A2, Def15;

    end;

    definition

      let G be SimpleGraph, P be a_partition of ( Vertices G);

      :: SCMYCIEL:def16

      attr P is Clique-wise means

      : Def16: for x be set st x in P holds (G SubgraphInducedBy x) is Clique of G;

    end

    registration

      let G be SimpleGraph;

      cluster Clique-wise for a_partition of ( Vertices G);

      correctness

      proof

        set VG = ( Vertices G);

        per cases ;

          suppose VG is empty;

          then

          reconsider S = {} as a_partition of VG by EQREL_1: 45;

          take S;

          thus S is Clique-wise;

        end;

          suppose VG is non empty;

          then

          reconsider cRp1 = VG as non empty set;

          set S = ( SmallestPartition VG);

          

           A1: S = the set of all {x} where x be Element of cRp1 by EQREL_1: 37;

          take S;

          now

            let z be set;

            assume

             A2: z in S;

            consider x be Element of cRp1 such that

             A3: z = {x} by A1, A2;

            (G SubgraphInducedBy z) = { {} , {x}} by A3, Th46;

            hence (G SubgraphInducedBy z) is Clique of G by Th50;

          end;

          hence S is Clique-wise;

        end;

      end;

    end

    definition

      let G be SimpleGraph;

      mode Clique-partition of G is Clique-wise a_partition of ( Vertices G);

    end

    registration

      let G be void SimpleGraph;

      cluster empty -> Clique-wise for a_partition of ( Vertices G);

      correctness ;

    end

    definition

      let G be SimpleGraph;

      :: SCMYCIEL:def17

      attr G is with_finite_cliquecover# means

      : Def17: ex C be Clique-partition of G st C is finite;

    end

    registration

      cluster finite -> with_finite_cliquecover# for SimpleGraph;

      correctness

      proof

        let G be SimpleGraph;

        assume

         A1: G is finite;

        set VG = ( Vertices G);

        per cases ;

          suppose VG is empty;

          then

          reconsider S = {} as a_partition of VG by EQREL_1: 45;

          for x be set st x in S holds (G SubgraphInducedBy x) is Clique of G;

          then

          reconsider S as Clique-partition of G by Def16;

          take S;

          thus S is finite;

        end;

          suppose

           A2: VG is non empty;

          defpred P[ set] means not contradiction;

          reconsider cRp1 = VG as finite non empty set by A2, A1;

          set S = ( SmallestPartition VG);

          deffunc F( set) = {$1};

          

           A3: S = { F(x) where x be Element of cRp1 : P[x] } by EQREL_1: 37;

          

           A4: { F(x) where x be Element of cRp1 : P[x] } is finite from PRE_CIRC:sch 1;

          now

            let z be set;

            assume

             A5: z in S;

            consider x be Element of VG such that

             A6: z = {x} by A5, A3;

            (G SubgraphInducedBy z) = { {} , {x}} by A6, A2, Th46;

            hence (G SubgraphInducedBy z) is Clique of G by A2, Th50;

          end;

          then

          reconsider S as Clique-partition of G by Def16;

          take S;

          thus thesis by A4;

        end;

      end;

    end

    registration

      let G be with_finite_cliquecover# SimpleGraph;

      cluster finite for Clique-partition of G;

      correctness by Def17;

    end

    registration

      let G be with_finite_cliquecover# SimpleGraph, S be Subset of ( Vertices G);

      cluster (G SubgraphInducedBy S) -> with_finite_cliquecover#;

      correctness

      proof

        set H = (G SubgraphInducedBy S);

        consider C be Clique-partition of G such that

         A1: C is finite by Def17;

        reconsider VH = ( Vertices H) as Subset of ( Vertices G) by ZFMISC_1: 77;

        reconsider D = (C | VH) as a_partition of ( Vertices H);

        now

          let p be set such that

           A2: p in D;

          set Hp = (H SubgraphInducedBy p);

          now

            let x,y be set such that

             A3: x in ( union Hp) and

             A4: y in ( union Hp);

            consider c be Element of C such that

             A5: p = (c /\ VH) and c meets VH by A2;

            

             A6: x in p by A3, Lm7;

            

             A7: y in p by A4, Lm7;

            

             A8: x in VH by A5, A6, XBOOLE_0:def 4;

            

             A9: y in VH by A5, A7, XBOOLE_0:def 4;

            set Gc = (G SubgraphInducedBy c);

            

             A10: Gc is Clique of G by A8, Def16;

            

             A11: Gc = ( CompleteSGraph ( Vertices Gc)) by A10, Def13;

            x in c & y in c by A6, A7, A5, XBOOLE_0:def 4;

            then x in ( Vertices Gc) & y in ( Vertices Gc) by Lm8;

            then

             A12: {x, y} in Gc by A11, Th34;

            x in S & y in S by A8, A9, Lm7;

            then {x, y} c= S by ZFMISC_1: 32;

            then

             A13: {x, y} in H by A12, XBOOLE_0:def 4;

             {x, y} c= p by A6, A7, ZFMISC_1: 32;

            hence {x, y} in Hp by A13, XBOOLE_0:def 4;

          end;

          then Hp = ( CompleteSGraph ( Vertices Hp)) by Th32;

          hence Hp is Clique of H;

        end;

        then

        reconsider D as Clique-partition of H by Def16;

        take D;

        thus D is finite by A1;

      end;

    end

    definition

      let G be with_finite_cliquecover# SimpleGraph;

      :: SCMYCIEL:def18

      func cliquecover# G -> Nat means

      : Def18: (ex C be finite Clique-partition of G st ( card C) = it ) & for C be finite Clique-partition of G holds it <= ( card C);

      existence

      proof

        defpred P[ Nat] means ex C be finite Clique-partition of G st ( card C) = $1;

        consider C be Clique-partition of G such that

         A1: C is finite by Def17;

        ( card C) = ( card C);

        then

         A2: ex k be Nat st P[k] by A1;

        consider n be Nat such that

         A3: P[n] and

         A4: for k be Nat st P[k] holds n <= k from NAT_1:sch 5( A2);

        take n;

        thus ex C be finite Clique-partition of G st ( card C) = n by A3;

        let C be finite Clique-partition of G;

        thus n <= ( card C) by A4;

      end;

      uniqueness

      proof

        let it1,it2 be Nat such that

         A5: (ex C be finite Clique-partition of G st ( card C) = it1) and

         A6: for C be finite Clique-partition of G holds it1 <= ( card C) and

         A7: (ex C be finite Clique-partition of G st ( card C) = it2) and

         A8: for C be finite Clique-partition of G holds it2 <= ( card C);

        consider C1 be finite Clique-partition of G such that

         A9: ( card C1) = it1 by A5;

        consider C2 be finite Clique-partition of G such that

         A10: ( card C2) = it2 by A7;

        it1 <= ( card C2) & it2 <= ( card C1) by A6, A8;

        hence it1 = it2 by A9, A10, XXREAL_0: 1;

      end;

    end

    begin

    definition

      let G be SimpleGraph, S be Subset of ( Vertices G);

      :: SCMYCIEL:def19

      attr S is stable means

      : Def19: for x,y be set st x <> y & x in S & y in S holds {x, y} nin G;

    end

    theorem :: SCMYCIEL:60

    for G be SimpleGraph holds ( {} ( Vertices G)) is stable;

    theorem :: SCMYCIEL:61

    

     Th61: for G be SimpleGraph, S be Subset of ( Vertices G), v be object st S = {v} holds S is stable

    proof

      let G be SimpleGraph, S be Subset of ( Vertices G), v be object such that

       A1: S = {v};

      let x,y be set such that

       A2: x <> y and

       A3: x in S & y in S;

      x = v & y = v by A1, A3, TARSKI:def 1;

      hence {x, y} nin G by A2;

    end;

    registration

      let G be SimpleGraph;

      cluster trivial -> stable for Subset of ( Vertices G);

      coherence

      proof

        let S be Subset of ( Vertices G);

        assume

         A1: S is trivial;

        per cases by A1, ZFMISC_1: 131;

          suppose S is empty;

          then S = ( {} ( Vertices G));

          hence thesis;

        end;

          suppose ex c be object st S = {c};

          then

          consider c be object such that

           A2: S = {c};

          thus thesis by A2, Th61;

        end;

      end;

    end

    registration

      let G be SimpleGraph;

      cluster stable for Subset of ( Vertices G);

      existence

      proof

        take ( {} ( Vertices G));

        thus thesis;

      end;

    end

    definition

      let G be SimpleGraph;

      mode StableSet of G is stable Subset of ( Vertices G);

    end

    theorem :: SCMYCIEL:62

    

     Th62: for G be SimpleGraph, x,y be set st x in ( Vertices G) & y in ( Vertices G) & {x, y} nin G holds {x, y} is StableSet of G

    proof

      let G be SimpleGraph, x,y be set such that

       A1: x in ( Vertices G) and

       A2: y in ( Vertices G) and

       A3: {x, y} nin G;

      reconsider S = {x, y} as Subset of ( Vertices G) by A1, A2, ZFMISC_1: 32;

      S is stable

      proof

        let a,b be set such that

         A4: a <> b and

         A5: a in S and

         A6: b in S;

        (a = x or a = y) & (b = x or b = y) by A5, A6, TARSKI:def 2;

        hence {a, b} nin G by A3, A4;

      end;

      hence {x, y} is StableSet of G;

    end;

    theorem :: SCMYCIEL:63

    

     Th63: for G be with_finite_clique# SimpleGraph st ( clique# G) = 1 holds ( Vertices G) is StableSet of G

    proof

      let R be with_finite_clique# SimpleGraph;

      assume

       A1: ( clique# R) = 1;

      set cR = ( Vertices R);

      

       A2: cR c= cR;

      now

        let a,b be set such that

         A3: a <> b & a in cR & b in cR;

        

         A4: {a, b} c= cR by A3, ZFMISC_1: 32;

        assume {a, b} in R;

        then

        reconsider H = (R SubgraphInducedBy {a, b}) as finite Clique of R by Th56;

        ( Vertices H) = {a, b} by A4, Lm9;

        then ( order H) = 2 by A3, CARD_2: 57;

        hence contradiction by A1, Def15;

      end;

      hence cR is StableSet of R by A2, Def19;

    end;

    registration

      let G be SimpleGraph;

      cluster finite for StableSet of G;

      existence

      proof

        take ( {} ( Vertices G));

        thus thesis;

      end;

    end

    theorem :: SCMYCIEL:64

    

     Th64: for G be SimpleGraph, A be StableSet of G, B be Subset of A holds B is StableSet of G

    proof

      let R be SimpleGraph, A be StableSet of R, B be Subset of A;

      set VR = ( Vertices R);

      reconsider BB = B as Subset of VR by XBOOLE_1: 1;

      BB is stable by Def19;

      hence thesis;

    end;

    definition

      let G be SimpleGraph, P be a_partition of ( Vertices G);

      :: SCMYCIEL:def20

      attr P is StableSet-wise means

      : Def20: for x be set st x in P holds x is StableSet of G;

    end

    theorem :: SCMYCIEL:65

    

     Th65: for G be SimpleGraph holds ( SmallestPartition ( Vertices G)) is StableSet-wise

    proof

      let G be SimpleGraph;

      set C = ( SmallestPartition ( Vertices G));

      let c be set such that

       A1: c in C;

      consider a be object such that a in ( Vertices G) and

       A2: c = ( Class (( id ( Vertices G)),a)) by A1, EQREL_1:def 3;

      reconsider cc = c as Subset of ( Vertices G) by A1;

      

       A3: cc is stable

      proof

        let x,y be set such that

         A4: x <> y and

         A5: x in cc and

         A6: y in cc;

        

         A7: [a, x] in ( id ( Vertices G)) by A5, A2, RELAT_1: 169;

        

         A8: [a, y] in ( id ( Vertices G)) by A6, A2, RELAT_1: 169;

        

         A9: a = y by A8, RELAT_1:def 10;

        thus {x, y} nin G by A7, A9, A4, RELAT_1:def 10;

      end;

      thus c is StableSet of G by A3;

    end;

    registration

      let G be SimpleGraph;

      cluster StableSet-wise for a_partition of ( Vertices G);

      existence

      proof

        take ( SmallestPartition ( Vertices G));

        thus thesis by Th65;

      end;

    end

    definition

      let G be SimpleGraph;

      mode Coloring of G is StableSet-wise a_partition of ( Vertices G);

    end

    definition

      let G be SimpleGraph;

      :: SCMYCIEL:def21

      attr G is finitely_colorable means

      : Def21: ex C be Coloring of G st C is finite;

    end

    registration

      cluster finitely_colorable for SimpleGraph;

      existence

      proof

        take G = the finite SimpleGraph;

        ( SmallestPartition ( Vertices G)) is Coloring of G by Th65;

        hence thesis;

      end;

    end

    registration

      cluster finite -> finitely_colorable for SimpleGraph;

      correctness

      proof

        let G be SimpleGraph;

        assume

         A1: G is finite;

        ( SmallestPartition ( Vertices G)) is Coloring of G by Th65;

        hence thesis by A1;

      end;

    end

    registration

      let G be finitely_colorable SimpleGraph;

      cluster finite for Coloring of G;

      existence by Def21;

    end

    theorem :: SCMYCIEL:66

    

     Th66: for G be SimpleGraph, S be Clique of G, L be set st L c= ( Vertices S) holds (G SubgraphInducedBy L) is Clique of G

    proof

      let G be SimpleGraph, S be Clique of G, L be set such that

       A1: L c= ( Vertices S);

      set g = (G SubgraphInducedBy L);

      now

        let x,y be set such that

         A2: x in ( union g) and

         A3: y in ( union g);

        

         A4: x in L by A2, Lm7;

        

         A5: y in L by A3, Lm7;

        

         A6: {x, y} in S by A4, A5, A1, Th53;

        thus {x, y} in g by A4, A5, A6, Lm10;

      end;

      then g = ( CompleteSGraph ( Vertices g)) by Th32;

      hence g is Clique of G;

    end;

    theorem :: SCMYCIEL:67

    

     Th67: for G be SimpleGraph, C be Coloring of G, S be Subset of ( Vertices G) holds (C | S) is Coloring of (G SubgraphInducedBy S)

    proof

      let G be SimpleGraph, C be Coloring of G, S be Subset of ( Vertices G);

      set g = (G SubgraphInducedBy S);

      

       A1: ( Vertices g) = (S /\ ( Vertices G)) by Th45

      .= S by XBOOLE_1: 28;

      reconsider CS = (C | S) as a_partition of ( Vertices g) by A1;

      CS is StableSet-wise

      proof

        let x be set such that

         A2: x in CS;

        reconsider xx = x as Subset of ( Vertices g) by A2;

        consider z be Element of C such that

         A3: xx = (z /\ S) and z meets S by A2;

        xx is stable

        proof

          let x,y be set such that

           A4: x <> y and

           A5: x in xx and

           A6: y in xx;

          assume

           A7: {x, y} in g;

          

           A8: x in z by A3, A5, XBOOLE_0:def 4;

          

           A9: y in z by A6, A3, XBOOLE_0:def 4;

          z is StableSet of G by A3, A5, Def20;

          hence contradiction by A7, A4, A8, A9, Def19;

        end;

        hence x is StableSet of g;

      end;

      hence (C | S) is Coloring of g;

    end;

    registration

      let G be finitely_colorable SimpleGraph, S be set;

      cluster (G SubgraphInducedBy S) -> finitely_colorable;

      coherence

      proof

        consider C be Coloring of G such that

         A1: C is finite by Def21;

        reconsider C as finite Coloring of G by A1;

        reconsider SX = (S /\ ( Vertices G)) as Subset of ( Vertices G) by XBOOLE_1: 17;

        

         A2: (G SubgraphInducedBy SX) = (G SubgraphInducedBy S) by Th43;

        reconsider D = (C | SX) as Coloring of (G SubgraphInducedBy S) by Th67, A2;

        take D;

        thus D is finite;

      end;

    end

    definition

      let G be finitely_colorable SimpleGraph;

      :: SCMYCIEL:def22

      func chromatic# G -> Nat means

      : Def22: (ex C be finite Coloring of G st ( card C) = it ) & for C be finite Coloring of G holds it <= ( card C);

      existence

      proof

        defpred P[ Nat] means ex C be finite Coloring of G st ( card C) = $1;

        consider C be Coloring of G such that

         A1: C is finite by Def21;

        ( card C) = ( card C);

        then

         A2: ex k be Nat st P[k] by A1;

        consider n be Nat such that

         A3: P[n] and

         A4: for k be Nat st P[k] holds n <= k from NAT_1:sch 5( A2);

        take n;

        thus ex C be finite Coloring of G st ( card C) = n by A3;

        let C be finite Coloring of G;

        thus n <= ( card C) by A4;

      end;

      uniqueness

      proof

        let it1,it2 be Nat such that

         A5: ex C be finite Coloring of G st ( card C) = it1 and

         A6: for C be finite Coloring of G holds it1 <= ( card C) and

         A7: ex C be finite Coloring of G st ( card C) = it2 and

         A8: for C be finite Coloring of G holds it2 <= ( card C);

        consider C1 be finite Coloring of G such that

         A9: ( card C1) = it1 by A5;

        consider C2 be finite Coloring of G such that

         A10: ( card C2) = it2 by A7;

        it1 <= ( card C2) & it2 <= ( card C1) by A6, A8;

        hence it1 = it2 by A9, A10, XXREAL_0: 1;

      end;

    end

    theorem :: SCMYCIEL:68

    

     Th68: for G,H be finitely_colorable SimpleGraph st G c= H holds ( chromatic# G) <= ( chromatic# H)

    proof

      let G,H be finitely_colorable SimpleGraph;

      assume

       A1: G c= H;

      then

      reconsider S = ( Vertices G) as Subset of ( Vertices H) by ZFMISC_1: 77;

      set g = (H SubgraphInducedBy S);

      

       A2: G c= g by A1, Th44;

      consider C be finite Coloring of H such that

       A3: ( card C) = ( chromatic# H) by Def22;

      reconsider g as finitely_colorable SimpleGraph;

      reconsider Cg = (C | S) as finite Coloring of g by Th67;

      

       A4: ( Vertices G) = ( Vertices g) by Lm9;

      

       A5: G c= g

      proof

        let a be object;

        assume a in G;

        then a in (( { {} } \/ ( singletons ( Vertices G))) \/ ( Edges G)) by Th27;

        then

         A6: a in ( { {} } \/ ( singletons ( Vertices G))) or a in ( Edges G) by XBOOLE_0:def 3;

        per cases by A6, XBOOLE_0:def 3;

          suppose a in { {} };

          then a = {} by TARSKI:def 1;

          hence a in g by Th20;

        end;

          suppose a in ( singletons ( Vertices G));

          then a in ( { {} } \/ ( singletons ( Vertices g))) by A4, XBOOLE_0:def 3;

          then a in (( { {} } \/ ( singletons ( Vertices g))) \/ ( Edges g)) by XBOOLE_0:def 3;

          hence a in g by Th27;

        end;

          suppose a in ( Edges G);

          then a in G;

          hence a in g by A2;

        end;

      end;

      reconsider Cg1 = Cg as a_partition of ( Vertices G);

      Cg1 is StableSet-wise

      proof

        let x be set such that

         A7: x in Cg1;

        reconsider xx = x as Subset of ( Vertices G) by A7;

        reconsider xxx = x as Subset of ( Vertices g) by A7;

        xx is stable

        proof

          let x,y be set such that

           A8: x <> y and

           A9: x in xx and

           A10: y in xx;

          

           A11: xxx is stable by A7, Def20;

          assume {x, y} in G;

          hence contradiction by A5, A8, A9, A10, A11;

        end;

        hence x is StableSet of G;

      end;

      then

       A12: ( card Cg) >= ( chromatic# G) by Def22;

      ( card C) >= ( card (C | S)) by MYCIELSK: 8;

      hence ( chromatic# G) <= ( chromatic# H) by A12, A3, XXREAL_0: 2;

    end;

    theorem :: SCMYCIEL:69

    

     Th69: for X be finite set holds ( chromatic# ( CompleteSGraph X)) = ( card X)

    proof

      let X be finite set;

      set n = ( card X);

      set G = ( CompleteSGraph X);

      set D = ( SmallestPartition X);

      

       A1: ( card D) = ( card X) by TOPGEN_2: 12;

      

       A2: ( Vertices G) = X by Lm1;

      reconsider D as a_partition of ( Vertices G) by Lm1;

      

       A3: D is StableSet-wise

      proof

        let x be set;

        assume

         A4: x in D;

        then

        reconsider xx = x as Subset of ( Vertices G);

        xx is stable

        proof

          let x,y be set such that

           A5: x <> y and

           A6: x in xx and

           A7: y in xx;

          X is non empty by A4;

          then D = the set of all {a} where a be Element of X by EQREL_1: 37;

          then

          consider a be Element of X such that

           A8: xx = {a} by A4;

          a = x & y = a by A8, A6, A7, TARSKI:def 1;

          hence {x, y} nin G by A5;

        end;

        hence x is StableSet of G;

      end;

      for C be finite Coloring of G holds ( card X) <= ( card C)

      proof

        let C be finite Coloring of G;

        assume

         A9: ( card X) > ( card C);

        then X is non empty;

        then

        consider p be set, x,y be object such that

         A10: p in C and

         A11: x in p and

         A12: y in p and

         A13: x <> y by A9, A2, Th7;

        

         A14: p is StableSet of G by A10, Def20;

        reconsider p as Subset of ( Vertices G) by A10;

        

         A15: {x, y} nin G by A14, A11, A12, A13, Def19;

        p c= X by A2;

        hence contradiction by A11, A12, A15, Th34;

      end;

      hence ( chromatic# ( CompleteSGraph X)) = n by A1, A3, Def22;

    end;

    theorem :: SCMYCIEL:70

    

     Th70: for G be finitely_colorable SimpleGraph, C be finite Coloring of G, c be set st c in C & ( card C) = ( chromatic# G) holds ex v be Element of ( Vertices G) st v in c & for d be Element of C st d <> c holds ex w be Element of ( Vertices G) st w in ( Adjacent v) & w in d

    proof

      let G be finitely_colorable SimpleGraph, C be finite Coloring of G, c be set such that

       A1: c in C and

       A2: ( card C) = ( chromatic# G);

      assume

       A3: not thesis;

      set uG = ( Vertices G);

      

       A4: ( union C) = uG by EQREL_1:def 4;

      reconsider c as Subset of uG by A1;

      set Cc = (C \ {c});

      

       A5: c in {c} by TARSKI:def 1;

      per cases ;

        suppose

         A6: Cc is empty;

        consider v be object such that

         A7: v in c by A1, XBOOLE_0:def 1;

        reconsider v as Element of uG by A7;

        consider d be Element of C such that

         A8: d <> c and for w be Element of uG holds not (w in ( Adjacent v) & w in d) by A7, A3;

         0 = (( card C) - ( card {c})) by A1, A6, CARD_1: 27, EULER_1: 4;

        then ( 0 + 1) = ((( card C) - 1) + 1) by CARD_1: 30;

        then

        consider x be object such that

         A9: C = {x} by CARD_2: 42;

        c = x & d = x by A1, A9, TARSKI:def 1;

        hence thesis by A8;

      end;

        suppose Cc is non empty;

        then

        reconsider Cc as non empty set;

        defpred P[ object, object] means ex A be set st A = $2 & for vv be Element of uG st $1 = vv holds $2 <> c & $2 in C & for w be Element of uG holds not (w in ( Adjacent vv) & w in A);

        

         A10: for e be object st e in c holds ex u be object st P[e, u]

        proof

          let v be object such that

           A11: v in c;

          reconsider vv = v as Element of uG by A11;

          consider d be Element of C such that

           A12: d <> c and

           A13: for w be Element of uG holds not (w in ( Adjacent vv) & w in d) by A11, A3;

          take d, d;

          thus thesis by A12, A13, A1;

        end;

        consider r be Function such that

         A14: ( dom r) = c and

         A15: for e be object st e in c holds P[e, (r . e)] from CLASSES1:sch 1( A10);

        deffunc DF( set) = ($1 \/ (r " {$1}));

        reconsider Cc as finite non empty set;

        defpred P[ set] means not contradiction;

        set D = { DF(d) where d be Element of Cc : P[d] };

        consider d be object such that

         A16: d in Cc by XBOOLE_0:def 1;

        reconsider d as set by TARSKI: 1;

        

         A17: (d \/ (r " {d})) in D by A16;

        

         A18: D c= ( bool uG)

        proof

          let x be object;

          assume x in D;

          then

          consider d be Element of Cc such that

           A19: x = (d \/ (r " {d}));

          

           A20: (r " {d}) c= c by A14, RELAT_1: 132;

          

           A21: (r " {d}) c= uG by A20, XBOOLE_1: 1;

          d in C by XBOOLE_0:def 5;

          then (d \/ (r " {d})) c= uG by A21, XBOOLE_1: 8;

          hence x in ( bool uG) by A19;

        end;

        

         A22: ( union D) = uG

        proof

          thus ( union D) c= uG

          proof

            let x be object;

            assume x in ( union D);

            then

            consider Y be set such that

             A23: x in Y and

             A24: Y in D by TARSKI:def 4;

            thus x in uG by A23, A24, A18;

          end;

          thus uG c= ( union D)

          proof

            let x be object;

            assume

             A25: x in uG;

            then

            consider d be set such that

             A26: x in d and

             A27: d in C by A4, TARSKI:def 4;

            reconsider xp1 = x as Element of uG by A25;

            per cases ;

              suppose

               A28: d = c;

               P[xp1, (r . xp1)] by A26, A15, A28;

              then (r . xp1) <> c;

              then

               A29: not (r . xp1) in {c} by TARSKI:def 1;

               P[xp1, (r . xp1)] by A26, A28, A15;

              then (r . xp1) in C;

              then

               A30: (r . xp1) in Cc by A29, XBOOLE_0:def 5;

              (r . xp1) in {(r . xp1)} by TARSKI:def 1;

              then x in (r " {(r . xp1)}) by A26, A28, A14, FUNCT_1:def 7;

              then

               A31: x in ((r . xp1) \/ (r " {(r . xp1)})) by XBOOLE_0:def 3;

              ((r . xp1) \/ (r " {(r . xp1)})) in D by A30;

              hence x in ( union D) by A31, TARSKI:def 4;

            end;

              suppose d <> c;

              then not d in {c} by TARSKI:def 1;

              then d in Cc by A27, XBOOLE_0:def 5;

              then

               A32: (d \/ (r " {d})) in D;

              x in (d \/ (r " {d})) by A26, XBOOLE_0:def 3;

              hence x in ( union D) by A32, TARSKI:def 4;

            end;

          end;

        end;

        

         A33: for A be Subset of uG st A in D holds A <> {} & for B be Subset of uG st B in D holds A = B or A misses B

        proof

          let A be Subset of uG;

          assume A in D;

          then

          consider da be Element of Cc such that

           A34: A = (da \/ (r " {da}));

          

           A35: da in C by XBOOLE_0:def 5;

          hence A <> {} by A34;

          let B be Subset of uG;

          assume B in D;

          then

          consider db be Element of Cc such that

           A36: B = (db \/ (r " {db}));

          

           A37: db in C by XBOOLE_0:def 5;

          per cases ;

            suppose da = db;

            hence A = B or A misses B by A34, A36;

          end;

            suppose

             A38: da <> db;

            then

             A39: da misses db by A35, A37, EQREL_1:def 4;

            

             A40: (r " {da}) misses (r " {db}) by A38, FUNCT_1: 71, ZFMISC_1: 11;

            assume A <> B;

            assume A meets B;

            then

            consider x be object such that

             A41: x in A and

             A42: x in B by XBOOLE_0: 3;

            per cases by A41, A42, A34, A36, XBOOLE_0:def 3;

              suppose x in da & x in db;

              hence contradiction by A39, XBOOLE_0: 3;

            end;

              suppose that

               A43: x in da and

               A44: x in (r " {db});

              

               A45: da <> c by A5, XBOOLE_0:def 5;

              (r " {db}) c= c by A14, RELAT_1: 132;

              then da meets c by A43, A44, XBOOLE_0: 3;

              hence contradiction by A45, A35, A1, EQREL_1:def 4;

            end;

              suppose that

               A46: x in (r " {da}) and

               A47: x in db;

              

               A48: db <> c by A5, XBOOLE_0:def 5;

              (r " {da}) c= c by A14, RELAT_1: 132;

              then db meets c by A46, A47, XBOOLE_0: 3;

              hence contradiction by A48, A37, A1, EQREL_1:def 4;

            end;

              suppose x in (r " {da}) & x in (r " {db});

              hence contradiction by A40, XBOOLE_0: 3;

            end;

          end;

        end;

        reconsider D as a_partition of uG by A18, A22, A33, EQREL_1:def 4;

        now

          let x be set;

          assume

           A49: x in D;

          then

          reconsider S = x as Subset of uG;

          consider d be Element of Cc such that

           A50: x = (d \/ (r " {d})) by A49;

          

           A51: (r " {d}) c= c by A14, RELAT_1: 132;

          

           A52: d in C by XBOOLE_0:def 5;

          

           A53: d is StableSet of G by A52, Def20;

          

           A54: c is StableSet of G by A1, Def20;

          S is stable

          proof

            let a,b be set such that

             A55: a <> b and

             A56: a in S and

             A57: b in S;

            reconsider aa = a, bb = b as Vertex of G by A56, A57;

            per cases by A56, A57, A50, XBOOLE_0:def 3;

              suppose a in d & b in d;

              hence not {a, b} in G by A53, A55, Def19;

            end;

              suppose that

               A58: a in d and

               A59: b in (r " {d});

              (r . b) in {d} by A59, FUNCT_1:def 7;

              then

               A60: (r . b) = d by TARSKI:def 1;

               P[b, (r . b)] by A51, A59, A15;

              then not a in ( Adjacent bb) by A58, A60;

              then not {aa, bb} in ( Edges G) by Def8;

              hence not {a, b} in G by A55, Th12;

            end;

              suppose that

               A61: a in (r " {d}) and

               A62: b in d;

              (r . a) in {d} by A61, FUNCT_1:def 7;

              then

               A63: (r . a) = d by TARSKI:def 1;

               P[a, (r . a)] by A51, A61, A15;

              then not b in ( Adjacent aa) by A62, A63;

              then not {bb, aa} in ( Edges G) by Def8;

              hence not {a, b} in G by A55, Th12;

            end;

              suppose a in (r " {d}) & b in (r " {d});

              hence not {a, b} in G by A51, A54, A55, Def19;

            end;

          end;

          hence x is StableSet of G;

        end;

        then

        reconsider D as Coloring of G by Def20;

        ( card Cc) = (( card C) - ( card {c})) by A1, EULER_1: 4;

        then (( card Cc) + 1) = ((( card C) - 1) + 1) by CARD_1: 30;

        then

         A64: ( card Cc) < ( card C) by NAT_1: 13;

        deffunc FS( set) = ($1 \/ (r " {$1}));

        consider s be Function such that

         A65: ( dom s) = Cc and

         A66: for x be set st x in Cc holds (s . x) = FS(x) from FUNCT_1:sch 5;

        

         A67: ( rng s) c= D

        proof

          let y be object;

          assume y in ( rng s);

          then

          consider d be object such that

           A68: d in ( dom s) and

           A69: y = (s . d) by FUNCT_1:def 3;

          reconsider d as set by TARSKI: 1;

          y = (d \/ (r " {d})) by A65, A66, A68, A69;

          hence y in D by A68, A65;

        end;

        then

        reconsider s as Function of Cc, D by A65, FUNCT_2: 2;

        

         A70: s is one-to-one

        proof

          let x1,x2 be object such that

           A71: x1 in ( dom s) and

           A72: x2 in ( dom s) and

           A73: (s . x1) = (s . x2);

          reconsider x1, x2 as set by TARSKI: 1;

          

           A74: (s . x1) = (x1 \/ (r " {x1})) by A71, A66, A65;

          

           A75: (s . x2) = (x2 \/ (r " {x2})) by A72, A66, A65;

          

           A76: x1 c= x2

          proof

            let x be object;

            assume

             A77: x in x1;

            then

             A78: x in (s . x1) by A74, XBOOLE_0:def 3;

            per cases by A78, A73, A75, XBOOLE_0:def 3;

              suppose x in x2;

              hence thesis;

            end;

              suppose

               A79: x in (r " {x2});

              

               A80: (r " {x2}) c= ( dom r) by RELAT_1: 132;

              

               A81: x1 in C by A65, A71, XBOOLE_0:def 5;

              reconsider x1 as Subset of uG by A65, A71;

              x1 meets c by A80, A79, A14, A77, XBOOLE_0: 3;

              then x1 = c by A81, A1, EQREL_1:def 4;

              hence thesis by A5, A65, A71, XBOOLE_0:def 5;

            end;

          end;

          x2 c= x1

          proof

            let x be object;

            assume

             A82: x in x2;

            then

             A83: x in (s . x2) by A75, XBOOLE_0:def 3;

            per cases by A83, A73, A74, XBOOLE_0:def 3;

              suppose x in x1;

              hence thesis;

            end;

              suppose

               A84: x in (r " {x1});

              

               A85: (r " {x1}) c= ( dom r) by RELAT_1: 132;

              

               A86: x2 in C by A65, A72, XBOOLE_0:def 5;

              reconsider x2 as Subset of uG by A65, A72;

              x2 meets c by A85, A84, A14, A82, XBOOLE_0: 3;

              then x2 = c by A86, A1, EQREL_1:def 4;

              hence thesis by A5, A65, A72, XBOOLE_0:def 5;

            end;

          end;

          hence thesis by A76, XBOOLE_0:def 10;

        end;

        D c= ( rng s)

        proof

          let x be object;

          assume x in D;

          then

          consider d be Element of Cc such that

           A87: x = (d \/ (r " {d}));

          (s . d) = (d \/ (r " {d})) by A66;

          hence x in ( rng s) by A87, A65, FUNCT_1:def 3;

        end;

        then D = ( rng s) by A67;

        then s is onto by FUNCT_2:def 3;

        then

         A88: ( card Cc) = ( card D) by A70, A17, EULER_1: 11;

        then D is finite;

        hence contradiction by A64, A88, A2, Def22;

      end;

    end;

    definition

      let G be SimpleGraph;

      :: SCMYCIEL:def23

      attr G is with_finite_stability# means

      : Def23: ex A be finite StableSet of G st for B be finite StableSet of G holds ( card B) <= ( card A);

    end

    registration

      cluster finite -> with_finite_stability# for SimpleGraph;

      correctness

      proof

        let R be SimpleGraph;

        assume R is finite;

        then

        reconsider R9 = R as finite SimpleGraph;

        reconsider VR = ( Vertices R9) as finite set;

        defpred P[ Nat] means ex A be finite StableSet of R9 st ( card A) = $1;

        

         A1: for k be Nat st P[k] holds k <= ( card VR) by NAT_1: 43;

        ( {} VR) is StableSet of R & ( card {} ) = 0 ;

        then

         A2: ex k be Nat st P[k];

        consider k be Nat such that

         A3: P[k] and

         A4: for n be Nat st P[n] holds n <= k from NAT_1:sch 6( A1, A2);

        consider S be finite StableSet of R such that

         A5: ( card S) = k by A3;

        take S;

        let T be finite StableSet of R;

        thus ( card T) <= ( card S) by A5, A4;

      end;

    end

    registration

      let G be with_finite_stability# SimpleGraph;

      cluster -> finite for StableSet of G;

      correctness

      proof

        consider A be finite StableSet of G such that

         A1: for B be finite StableSet of G holds ( card A) >= ( card B) by Def23;

        given B be StableSet of G such that

         A2: B is infinite;

        consider C be finite Subset of B such that

         A3: ( card C) > ( card A) by A2, DILWORTH: 5;

        C is StableSet of G by Th64;

        hence contradiction by A1, A3;

      end;

    end

    registration

      cluster with_finite_stability# non void for SimpleGraph;

      existence

      proof

        reconsider G = { {} , { {} }} as SimpleGraph by Th25;

        set A = ( union G);

        A = { {} } by Th8;

        then G is non void;

        hence thesis;

      end;

    end

    definition

      let G be with_finite_stability# SimpleGraph;

      :: SCMYCIEL:def24

      func stability# G -> Nat means

      : Def24: (ex A be finite StableSet of G st ( card A) = it ) & for T be finite StableSet of G holds ( card T) <= it ;

      existence

      proof

        consider A be finite StableSet of G such that

         A1: for B be finite StableSet of G holds ( card A) >= ( card B) by Def23;

        take itt = ( card A);

        thus ex A be finite StableSet of G st ( card A) = itt;

        let T be finite StableSet of G;

        thus ( card T) <= itt by A1;

      end;

      uniqueness

      proof

        let it1,it2 be Nat such that

         A2: ex S1 be finite StableSet of G st ( card S1) = it1 and

         A3: for T be finite StableSet of G holds ( card T) <= it1 and

         A4: ex S2 be finite StableSet of G st ( card S2) = it2 and

         A5: for T be finite StableSet of G holds ( card T) <= it2;

        consider S1 be finite StableSet of G such that

         A6: ( card S1) = it1 by A2;

        consider S2 be finite StableSet of G such that

         A7: ( card S2) = it2 by A4;

        it1 <= it2 & it2 <= it1 by A3, A5, A6, A7;

        hence it1 = it2 by XXREAL_0: 1;

      end;

    end

    registration

      let G be with_finite_stability# non void SimpleGraph;

      cluster ( stability# G) -> positive;

      correctness

      proof

        ( Vertices G) <> {} by Th28;

        then

        consider v be object such that

         A1: v in ( Vertices G) by XBOOLE_0:def 1;

        reconsider S = {v} as finite Subset of ( Vertices G) by A1, ZFMISC_1: 31;

        ( card S) <= ( stability# G) by Def24;

        hence thesis;

      end;

    end

    theorem :: SCMYCIEL:71

    

     Th71: for G be with_finite_stability# SimpleGraph st ( stability# G) = 1 holds G is clique

    proof

      let R be with_finite_stability# SimpleGraph;

      assume

       A1: ( stability# R) = 1;

      set cR = ( Vertices R);

      now

        let a,b be set such that

         A2: a <> b and

         A3: a in cR & b in cR;

        assume {a, b} nin ( Edges R);

        then {a, b} nin R by A2, Th12;

        then

         A4: {a, b} is StableSet of R by A3, Th62;

        ( card {a, b}) = 2 by A2, CARD_2: 57;

        hence contradiction by A1, A4, Def24;

      end;

      hence R is clique by Th47;

    end;

    registration

      cluster with_finite_clique# with_finite_stability# -> finite for SimpleGraph;

      correctness

      proof

        let R be SimpleGraph;

        assume

         A1: R is with_finite_clique#;

        assume

         A2: R is with_finite_stability#;

        assume

         A3: R is infinite;

        set VR = ( Vertices R);

        

         A4: ( Vertices R) is infinite by A3, Th23;

        

         A5: R c= R;

        reconsider R as with_finite_clique# with_finite_stability# SimpleGraph by A1, A2;

        consider C be finite Clique of R such that

         A6: ( order C) = ( clique# R) by Def15;

        reconsider VC = ( Vertices C) as finite Subset of VR by ZFMISC_1: 77;

        consider An be finite StableSet of R such that

         A7: ( card An) = ( stability# R) by Def24;

        reconsider VAn = An as finite Subset of VR;

        set h = ( clique# R), w = ( stability# R);

        

         A8: ( 0 + 1) <= h by A4, Th54, NAT_1: 14;

        R is non void by A3;

        then

         A9: ( 0 + 1) <= w by NAT_1: 13;

        per cases by A8, A9, XXREAL_0: 1;

          suppose h = 1;

          then

           A10: VR is StableSet of R by Th63;

          consider Y be finite Subset of VR such that

           A11: ( card Y) > w by A4, DILWORTH: 5;

          Y is StableSet of R by A10, Th64;

          hence thesis by A11, Def24;

        end;

          suppose w = 1;

          then

           A12: R is Clique of R by A5, Th71;

          consider Y be finite Subset of VR such that

           A13: ( card Y) > h by A4, DILWORTH: 5;

          

           A14: (R SubgraphInducedBy Y) is Clique of R by A12, Th66;

          ( order (R SubgraphInducedBy Y)) = ( card Y) by Lm9;

          hence thesis by A13, A14, Def15;

        end;

          suppose

           A15: h > 1 & w > 1;

          set m = (( max (( clique# R),( stability# R))) + 1);

          reconsider m as Nat;

          consider r be Nat such that

           A16: for X be finite set, P be a_partition of ( the_subsets_of_card (2,X)) st ( card X) >= r & ( card P) = 2 holds ex S be Subset of X st ( card S) >= m & S is_homogeneous_for P by RAMSEY_1: 17;

          consider Y be finite Subset of VR such that

           A17: ( card Y) > r by A4, DILWORTH: 5;

          set X = ((Y \/ VAn) \/ VC);

          reconsider X as finite Subset of VR;

          Y c= (Y \/ An) & (Y \/ An) c= ((Y \/ An) \/ VC) by XBOOLE_1: 7;

          then

           A18: ( card Y) <= ( card X) by NAT_1: 43, XBOOLE_1: 1;

          set A = { {x, y} where x,y be Element of VR : x <> y & x in X & y in X & {x, y} in ( Edges R) };

          set B = { {x, y} where x,y be Element of VR : x <> y & x in X & y in X & {x, y} nin ( Edges R) };

          set E = ( the_subsets_of_card (2,X));

          set P = {A, B};

          

           A19: A c= E

          proof

            let x be object;

            reconsider x1 = x as set by TARSKI: 1;

            assume x in A;

            then

            consider xx,yy be Element of VR such that

             A20: {xx, yy} = x and

             A21: xx <> yy and

             A22: xx in X and

             A23: yy in X and {xx, yy} in ( Edges R);

            x is Subset of X & ( card x1) = 2 by A20, A21, A22, A23, CARD_2: 57, ZFMISC_1: 32;

            hence thesis;

          end;

          

           A24: B c= E

          proof

            let x be object;

            reconsider x1 = x as set by TARSKI: 1;

            assume x in B;

            then

            consider xx,yy be Element of VR such that

             A25: {xx, yy} = x and

             A26: xx <> yy and

             A27: xx in X and

             A28: yy in X and {xx, yy} nin ( Edges R);

            x is Subset of X & ( card x1) = 2 by A25, A26, A27, A28, CARD_2: 57, ZFMISC_1: 32;

            hence thesis;

          end;

          

           A29: A in P & B in P by TARSKI:def 2;

           A30:

          now

            assume

             A31: A = B;

            consider a,b be set such that

             A32: a in An and

             A33: b in An and

             A34: a <> b by A15, A7, NAT_1: 59;

            reconsider a, b as Element of VR by A32, A33;

            

             A35: {a, b} nin ( Edges R) by A32, A33, A34, Def19;

            a in (Y \/ An) & b in (Y \/ An) by A32, A33, XBOOLE_0:def 3;

            then a in X & b in X by XBOOLE_0:def 3;

            then {a, b} in B by A35, A34;

            then

            consider aa,bb be Element of VR such that

             A36: {a, b} = {aa, bb} and aa <> bb & aa in X & bb in X and

             A37: {aa, bb} in ( Edges R) by A31;

            thus contradiction by A37, A32, A33, A34, Def19, A36;

          end;

          

           A38: P c= ( bool E)

          proof

            let x be object;

            reconsider x1 = x as set by TARSKI: 1;

            assume x in P;

            then x1 c= E by A19, A24, TARSKI:def 2;

            hence thesis;

          end;

          

           A39: ( union P) = E

          proof

            thus ( union P) c= E

            proof

              let x be object;

              assume x in ( union P);

              then

              consider Y be set such that

               A40: x in Y and

               A41: Y in P by TARSKI:def 4;

              Y = A or Y = B by A41, TARSKI:def 2;

              hence thesis by A40, A19, A24;

            end;

            thus E c= ( union P)

            proof

              let x be object;

              assume x in E;

              then

              consider xx be Subset of X such that

               A42: x = xx and

               A43: ( card xx) = 2;

              consider a,b be object such that

               A44: a <> b and

               A45: xx = {a, b} by A43, CARD_2: 60;

              a in xx & b in xx by A45, TARSKI:def 2;

              then a in X & b in X;

              then

              reconsider a, b as Element of VR;

              

               A46: a in xx & b in xx by A45, TARSKI:def 2;

               {a, b} in ( Edges R) or {a, b} nin ( Edges R);

              then {a, b} in A or {a, b} in B by A46, A44;

              hence x in ( union P) by A42, A45, A29, TARSKI:def 4;

            end;

          end;

          for a be Subset of E st a in P holds a <> {} & for b be Subset of E st b in P holds a = b or a misses b

          proof

            let a be Subset of E such that

             A47: a in P;

            thus a <> {}

            proof

              per cases by A47, TARSKI:def 2;

                suppose

                 A48: a = A;

                consider aa,bb be set such that

                 A49: aa in VC and

                 A50: bb in VC and

                 A51: aa <> bb by A15, A6, NAT_1: 59;

                reconsider aa, bb as Element of VR by A49, A50;

                 {aa, bb} in C by A49, A50, Th53;

                then

                 A52: {aa, bb} in ( Edges R) by A51, Th12;

                aa in ((Y \/ An) \/ VC) & bb in ((Y \/ An) \/ VC) by A49, A50, XBOOLE_0:def 3;

                then {aa, bb} in A by A51, A52;

                hence thesis by A48;

              end;

                suppose

                 A53: a = B;

                consider aa,bb be set such that

                 A54: aa in An and

                 A55: bb in An and

                 A56: aa <> bb by A15, A7, NAT_1: 59;

                reconsider aa, bb as Element of VR by A54, A55;

                

                 A57: {aa, bb} nin ( Edges R) by A54, A55, A56, Def19;

                aa in (Y \/ An) & bb in (Y \/ An) by A54, A55, XBOOLE_0:def 3;

                then aa in X & bb in X by XBOOLE_0:def 3;

                then {aa, bb} in B by A56, A57;

                hence thesis by A53;

              end;

            end;

            let b be Subset of E such that

             A58: b in P;

            assume

             A59: a <> b;

            assume

             A60: a meets b;

            (a = A or a = B) & (b = A or b = B) by A47, A58, TARSKI:def 2;

            then (A /\ B) <> {} by A59, A60;

            then

            consider x be object such that

             A61: x in (A /\ B) by XBOOLE_0:def 1;

            x in A by A61, XBOOLE_0:def 4;

            then

            consider xx,yy be Element of VR such that

             A62: {xx, yy} = x and xx <> yy & xx in X & yy in X and

             A63: {xx, yy} in ( Edges R);

            x in B by A61, XBOOLE_0:def 4;

            then

            consider x2,y2 be Element of VR such that

             A64: {x2, y2} = x and x2 <> y2 & x2 in X & y2 in X and

             A65: {x2, y2} nin ( Edges R);

            thus contradiction by A63, A65, A62, A64;

          end;

          then

          reconsider P as a_partition of E by A39, A38, EQREL_1:def 4;

          ( card P) = 2 by A30, CARD_2: 57;

          then

          consider S be Subset of X such that

           A66: ( card S) >= m and

           A67: S is_homogeneous_for P by A18, A16, A17, XXREAL_0: 2;

          reconsider S as finite Subset of VR by XBOOLE_1: 1;

          ( max (( clique# R),( stability# R))) >= ( clique# R) by XXREAL_0: 25;

          then m > ( clique# R) by NAT_1: 13;

          then

           A68: ( card S) > ( clique# R) by A66, XXREAL_0: 2;

          ( max (( clique# R),( stability# R))) >= ( stability# R) by XXREAL_0: 25;

          then m > ( stability# R) by NAT_1: 13;

          then

           A69: ( card S) > ( stability# R) by A66, XXREAL_0: 2;

          consider p be Element of P such that

           A70: ( the_subsets_of_card (2,S)) c= p by A67, RAMSEY_1:def 1;

          per cases by TARSKI:def 2;

            suppose

             A71: p = A;

            set H = (R SubgraphInducedBy S);

            

             A72: ( Vertices H) = S by Lm9;

            now

              let x,y be set such that

               A73: x <> y and

               A74: x in ( union H) and

               A75: y in ( union H);

               {x, y} is Subset of S & ( card {x, y}) = 2 by A72, A74, A75, A73, CARD_2: 57, ZFMISC_1: 32;

              then {x, y} in ( the_subsets_of_card (2,S));

              then {x, y} in A by A71, A70;

              then

              consider xx,yy be Element of VR such that

               A76: {xx, yy} = {x, y} and xx <> yy & xx in X & yy in X and

               A77: {xx, yy} in ( Edges R);

               {x, y} in H by A77, A74, A75, A72, Lm10, A76;

              hence {x, y} in ( Edges H) by A73, Th12;

            end;

            then H is finite Clique of R by Th47;

            then ( order H) <= ( clique# R) by Def15;

            hence contradiction by A68, Lm9;

          end;

            suppose

             A78: p = B;

            now

              let x,y be set such that

               A79: x <> y and

               A80: x in S and

               A81: y in S;

               {x, y} is Subset of S & ( card {x, y}) = 2 by A80, A81, A79, CARD_2: 57, ZFMISC_1: 32;

              then {x, y} in ( the_subsets_of_card (2,S));

              then {x, y} in B by A78, A70;

              then

              consider xx,yy be Element of VR such that

               A82: {xx, yy} = {x, y} and xx <> yy & xx in X & yy in X and

               A83: {xx, yy} nin ( Edges R);

              thus {x, y} nin R by A79, A83, Th12, A82;

            end;

            then S is stable;

            hence contradiction by A69, Def24;

          end;

        end;

      end;

    end

    theorem :: SCMYCIEL:72

    

     Th72: for G be SimpleGraph, C be Clique of G holds ( Vertices C) is StableSet of ( Complement G)

    proof

      let G be SimpleGraph, C be Clique of G;

      set CG = ( Complement G);

      

       A1: ( Vertices G) = ( Vertices CG) by Lm4;

      reconsider uC = ( union C) as Subset of ( Vertices CG) by A1, ZFMISC_1: 77;

      now

        let x,y be set such that

         A2: x <> y and

         A3: x in uC and

         A4: y in uC;

         {x, y} in C by A3, A4, Th53;

        then {x, y} in ( Edges G) by A2, Th12;

        hence {x, y} nin CG by XBOOLE_0:def 5;

      end;

      hence ( union C) is StableSet of ( Complement G) by Def19;

    end;

    theorem :: SCMYCIEL:73

    

     Th73: for G be SimpleGraph, C be Clique of ( Complement G) holds ( Vertices C) is StableSet of G

    proof

      let G be SimpleGraph, C be Clique of ( Complement G);

      ( Vertices C) is StableSet of ( Complement ( Complement G)) by Th72;

      hence ( Vertices C) is StableSet of G;

    end;

    theorem :: SCMYCIEL:74

    

     Th74: for G be SimpleGraph, C be StableSet of G holds (( Complement G) SubgraphInducedBy C) is Clique of ( Complement G)

    proof

      let G be SimpleGraph, C be StableSet of G;

      set CG = ( Complement G);

      set CGSC = (CG SubgraphInducedBy C);

      set uCGSC = ( union CGSC);

      now

        let a,b be set such that

         A1: a <> b and

         A2: a in uCGSC and

         A3: b in uCGSC;

        

         A4: a in C & b in C by A2, A3, Lm7;

        

         A5: {a, b} nin ( Edges G) by A4, A1, Def19;

        

         A6: {a, b} in ( CompleteSGraph ( Vertices G)) by A4, Th34;

         {a, b} in CG by A5, A6, XBOOLE_0:def 5;

        then {a, b} in CGSC by A4, Lm10;

        hence {a, b} in ( Edges CGSC) by A1, Th12;

      end;

      hence CGSC is Clique of ( Complement G) by Th47;

    end;

    theorem :: SCMYCIEL:75

    

     Th75: for G be SimpleGraph, C be StableSet of ( Complement G) holds (G SubgraphInducedBy C) is Clique of G

    proof

      let G be SimpleGraph, C be StableSet of ( Complement G);

      (( Complement ( Complement G)) SubgraphInducedBy C) is Clique of ( Complement ( Complement G)) by Th74;

      hence (G SubgraphInducedBy C) is Clique of G;

    end;

    registration

      let G be with_finite_clique# SimpleGraph;

      cluster ( Complement G) -> with_finite_stability#;

      correctness

      proof

        set CG = ( Complement G);

        consider A be finite Clique of G such that

         A1: for B be finite Clique of G holds ( order B) <= ( order A) by Def14;

        

         A2: ( Vertices G) = ( Vertices CG) by Lm4;

        set C = ( union A);

        reconsider C as finite StableSet of CG by Th72;

        take C;

        let D be finite StableSet of CG;

        

         A3: (G SubgraphInducedBy D) is finite Clique of G by Th75;

        ( order (G SubgraphInducedBy D)) <= ( order A) by A3, A1;

        hence ( card D) <= ( card C) by A2, Lm9;

      end;

    end

    registration

      let G be with_finite_stability# SimpleGraph;

      cluster ( Complement G) -> with_finite_clique#;

      correctness

      proof

        set CG = ( Complement G);

        consider A be finite StableSet of G such that

         A1: for B be finite StableSet of G holds ( card B) <= ( card A) by Def23;

        

         A2: ( Vertices G) = ( Vertices CG) by Lm4;

        set C = (CG SubgraphInducedBy A);

        reconsider C as finite Clique of CG by Th74;

        take C;

        let D be finite Clique of CG;

        

         A3: ( union D) is StableSet of G by Th73;

        A = ( union C) by A2, Lm9;

        hence ( order D) <= ( order C) by A1, A3;

      end;

    end

    theorem :: SCMYCIEL:76

    

     Th76: for G be with_finite_clique# SimpleGraph holds ( clique# G) = ( stability# ( Complement G))

    proof

      let G be with_finite_clique# SimpleGraph;

      set CG = ( Complement G);

      set sCG = ( stability# ( Complement G)), cG = ( clique# G);

      consider C be finite Clique of G such that

       A1: ( order C) = cG by Def15;

      

       A2: ( Vertices G) = ( Vertices CG) by Lm4;

      reconsider A = ( union C) as StableSet of CG by Th72;

      

       A3: ( card A) = cG by A1;

      now

        let T be finite StableSet of CG;

        (G SubgraphInducedBy T) is Clique of G by Th75;

        then ( order (G SubgraphInducedBy T)) <= cG by Def15;

        hence ( card T) <= cG by A2, Lm9;

      end;

      hence cG = sCG by A3, Def24;

    end;

    theorem :: SCMYCIEL:77

    for G be with_finite_stability# SimpleGraph holds ( stability# G) = ( clique# ( Complement G))

    proof

      let G be with_finite_stability# SimpleGraph;

      ( Complement ( Complement G)) = G;

      hence thesis by Th76;

    end;

    theorem :: SCMYCIEL:78

    

     Th78: for G be SimpleGraph, C be Clique-partition of ( Complement G) holds C is Coloring of G

    proof

      let G be SimpleGraph, C be Clique-partition of ( Complement G);

      set CG = ( Complement G);

      now

        let x be set;

        assume

         A1: x in C;

        then

         A2: (( Complement G) SubgraphInducedBy x) is Clique of CG by Def16;

        ( union (( Complement G) SubgraphInducedBy x)) = x by A1, Lm9;

        hence x is StableSet of G by A2, Th73;

      end;

      hence C is Coloring of G by Lm4, Def20;

    end;

    theorem :: SCMYCIEL:79

    

     Th79: for G be SimpleGraph, C be Clique-partition of G holds C is Coloring of ( Complement G)

    proof

      let G be SimpleGraph, C be Clique-partition of G;

      ( Complement ( Complement G)) = G;

      hence thesis by Th78;

    end;

    theorem :: SCMYCIEL:80

    

     Th80: for G be SimpleGraph, C be Coloring of G holds C is Clique-partition of ( Complement G)

    proof

      let G be SimpleGraph, C be Coloring of G;

      set CG = ( Complement G);

      now

        let x be set;

        assume x in C;

        then x is StableSet of G by Def20;

        hence (CG SubgraphInducedBy x) is Clique of CG by Th74;

      end;

      hence C is Clique-partition of CG by Lm4, Def16;

    end;

    theorem :: SCMYCIEL:81

    for G be SimpleGraph, C be Coloring of ( Complement G) holds C is Clique-partition of G

    proof

      let G be SimpleGraph, C be Coloring of ( Complement G);

      ( Complement ( Complement G)) = G;

      hence thesis by Th80;

    end;

    registration

      let G be finitely_colorable SimpleGraph;

      cluster ( Complement G) -> with_finite_cliquecover#;

      correctness

      proof

        consider C be Coloring of G such that

         A1: C is finite by Def21;

        C is Clique-partition of ( Complement G) by Th80;

        hence thesis by A1;

      end;

    end

    registration

      let G be with_finite_cliquecover# SimpleGraph;

      cluster ( Complement G) -> finitely_colorable;

      correctness

      proof

        consider C be Clique-partition of G such that

         A1: C is finite by Def17;

        C is Coloring of ( Complement G) by Th79;

        hence thesis by A1;

      end;

    end

    theorem :: SCMYCIEL:82

    

     Th82: for G be finitely_colorable SimpleGraph holds ( chromatic# G) = ( cliquecover# ( Complement G))

    proof

      let G be finitely_colorable SimpleGraph;

      set CG = ( Complement G);

      set k = ( cliquecover# CG);

      consider C be finite Clique-partition of CG such that

       A1: ( card C) = k by Def18;

      

       A2: C is Coloring of G by Th78;

      now

        let C be finite Coloring of G;

        assume

         A3: k > ( card C);

        C is Clique-partition of CG by Th80;

        hence contradiction by A3, Def18;

      end;

      hence ( chromatic# G) = ( cliquecover# ( Complement G)) by A2, A1, Def22;

    end;

    theorem :: SCMYCIEL:83

    for G be with_finite_cliquecover# SimpleGraph holds ( cliquecover# G) = ( chromatic# ( Complement G))

    proof

      let G be with_finite_cliquecover# SimpleGraph;

      ( Complement ( Complement G)) = G;

      hence thesis by Th82;

    end;

    begin

    definition

      let G be SimpleGraph;

      :: SCMYCIEL:def25

      func Mycielskian G -> SimpleGraph equals (((( { {} } \/ the set of all {x} where x be Element of ((( union G) \/ [:( union G), {( union G)}:]) \/ {( union G)})) \/ ( Edges G)) \/ { {x, [y, ( union G)]} where x,y be Element of ( union G) : {x, y} in ( Edges G) }) \/ { {( union G), [x, ( union G)]} where x be Element of ( union G) : x in ( Vertices G) });

      correctness

      proof

        set uG = ( union G);

        set C = the set of all {x} where x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG});

        set A = { {x, [y, uG]} where x,y be Element of uG : {x, y} in ( Edges G) };

        set B = { {uG, [x, uG]} where x be Element of uG : x in ( Vertices G) };

        set M = (((( { {} } \/ C) \/ ( Edges G)) \/ A) \/ B);

        reconsider N = M as non empty set;

        

         A1: M is subset-closed

        proof

          let a,b be set such that

           A2: a in M and

           A3: b c= a;

          

           A4: {} in { {} } by TARSKI:def 1;

          then

           A5: {} in M by MYCIELSK: 4;

          per cases by A2, MYCIELSK: 4;

            suppose a in { {} };

            then a = {} by TARSKI:def 1;

            hence b in M by A3, A5;

          end;

            suppose a in C;

            then

            consider x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG}) such that

             A6: a = {x};

            thus b in M by A5, A6, A2, A3, ZFMISC_1: 33;

          end;

            suppose a in ( Edges G);

            then

            consider x,y be set such that x <> y and

             A7: x in ( Vertices G) and

             A8: y in ( Vertices G) and

             A9: a = {x, y} by Th11;

            

             A10: b = {} or b = {x} or b = {y} or b = {x, y} by A9, A3, ZFMISC_1: 36;

            x in (uG \/ [:uG, {uG}:]) & y in (uG \/ [:uG, {uG}:]) by A7, A8, XBOOLE_0:def 3;

            then x in ((uG \/ [:uG, {uG}:]) \/ {uG}) & y in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

            then {x} in C & {y} in C;

            hence b in M by A10, A4, A9, A2, MYCIELSK: 4;

          end;

            suppose a in A;

            then

            consider x,y be Element of uG such that

             A11: a = {x, [y, uG]} and

             A12: {x, y} in ( Edges G);

            

             A13: x in uG by A12, Th13;

            

             A14: b = {} or b = {x} or b = { [y, uG]} or b = {x, [y, uG]} by A11, A3, ZFMISC_1: 36;

            x in (uG \/ [:uG, {uG}:]) by A13, XBOOLE_0:def 3;

            then x in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

            then

             A15: {x} in C;

            y in uG & uG in {uG} by A12, Th13, TARSKI:def 1;

            then [y, uG] in [:uG, {uG}:] by ZFMISC_1:def 2;

            then [y, uG] in (uG \/ [:uG, {uG}:]) by XBOOLE_0:def 3;

            then [y, uG] in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

            then { [y, uG]} in C;

            hence b in M by A11, A2, A14, A4, A15, MYCIELSK: 4;

          end;

            suppose a in B;

            then

            consider x be Element of uG such that

             A16: a = {uG, [x, uG]} and

             A17: x in ( Vertices G);

            

             A18: b = {} or b = {uG} or b = { [x, uG]} or b = {uG, [x, uG]} by A16, A3, ZFMISC_1: 36;

            uG in {uG} by TARSKI:def 1;

            then uG in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

            then

             A19: {uG} in C;

            x in uG & uG in {uG} by A17, TARSKI:def 1;

            then [x, uG] in [:uG, {uG}:] by ZFMISC_1:def 2;

            then [x, uG] in (uG \/ [:uG, {uG}:]) by XBOOLE_0:def 3;

            then [x, uG] in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

            then { [x, uG]} in C;

            hence b in M by A16, A2, A18, A4, A19, MYCIELSK: 4;

          end;

        end;

        

         A20: N is 1 -at_most_dimensional

        proof

          let a be set;

          assume

           A21: a in N;

          per cases by A21, MYCIELSK: 4;

            suppose a in { {} };

            then a = {} by TARSKI:def 1;

            hence ( card a) c= (1 + 1);

          end;

            suppose a in C;

            then

            consider x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG}) such that

             A22: a = {x};

            

             A23: ( card a) = 1 by A22, CARD_1: 30;

            ( Segm 1) c= ( Segm (1 + 1)) by NAT_1: 39;

            hence ( card a) c= (1 + 1) by A23;

          end;

            suppose a in ( Edges G);

            hence ( card a) c= (1 + 1) by Def4;

          end;

            suppose a in A;

            then

            consider x,y be Element of uG such that

             A24: a = {x, [y, uG]} and {x, y} in ( Edges G);

            ( card {x, [y, uG]}) <= 2 by CARD_2: 50;

            then ( Segm ( card {x, [y, uG]})) c= ( Segm (1 + 1)) by NAT_1: 39;

            hence ( card a) c= (1 + 1) by A24;

          end;

            suppose a in B;

            then

            consider x be Element of uG such that

             A25: a = {uG, [x, uG]} and x in ( Vertices G);

            ( card {uG, [x, uG]}) <= 2 by CARD_2: 50;

            then ( Segm ( card {uG, [x, uG]})) c= ( Segm 2) by NAT_1: 39;

            hence ( card a) c= (1 + 1) by A25;

          end;

        end;

        thus M is SimpleGraph by A1, A20;

      end;

    end

    theorem :: SCMYCIEL:84

    

     Th84: for G be SimpleGraph holds G c= ( Mycielskian G)

    proof

      let G be SimpleGraph;

      set MG = ( Mycielskian G);

      set uG = ( union G);

      let x be object;

      assume x in G;

      then x in (( { {} } \/ ( singletons uG)) \/ ( Edges G)) by Th27;

      then

       A1: x in ( { {} } \/ ( singletons uG)) or x in ( Edges G) by XBOOLE_0:def 3;

      per cases by A1, XBOOLE_0:def 3;

        suppose x in { {} };

        then x = {} by TARSKI:def 1;

        hence x in MG by Th20;

      end;

        suppose x in ( singletons uG);

        then

        consider f be Subset of uG such that

         A2: x = f and

         A3: f is 1 -element;

        consider a be set such that

         A4: a in uG and

         A5: f = {a} by A3, Th9;

        a in (uG \/ [:uG, {uG}:]) by A4, XBOOLE_0:def 3;

        then a in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

        then x in the set of all {xx} where xx be Element of ((uG \/ [:uG, {uG}:]) \/ {uG}) by A2, A5;

        hence x in MG by MYCIELSK: 4;

      end;

        suppose

         A6: x in ( Edges G);

        ( Edges G) c= MG by MYCIELSK: 3;

        hence x in MG by A6;

      end;

    end;

    theorem :: SCMYCIEL:85

    

     Th85: for G be SimpleGraph, v be set holds v in ( Vertices ( Mycielskian G)) iff v in ( union G) or (ex x be set st x in ( union G) & v = [x, ( union G)]) or v = ( union G)

    proof

      let G be SimpleGraph, v be set;

      set uG = ( union G);

      set MG = ( Mycielskian G);

      set uMG = ( union MG);

      hereby

        assume v in ( Vertices MG);

        then

        consider g be set such that

         A1: v in g and

         A2: g in MG by TARSKI:def 4;

        defpred Thesis[] means v in ( union G) or (ex x be set st x in ( union G) & v = [x, ( union G)]) or v = ( union G);

        per cases by A2, MYCIELSK: 4;

          suppose g in { {} };

          hence Thesis[] by A1, TARSKI:def 1;

        end;

          suppose g in the set of all {x} where x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG});

          then

          consider h be Element of ((uG \/ [:uG, {uG}:]) \/ {uG}) such that

           A3: g = {h};

          

           A4: h in (uG \/ [:uG, {uG}:]) or h in {uG} by XBOOLE_0:def 3;

          

           A5: v = h by A3, A1, TARSKI:def 1;

          per cases by A4, XBOOLE_0:def 3;

            suppose h in uG;

            hence Thesis[] by A3, A1, TARSKI:def 1;

          end;

            suppose h in [:uG, {uG}:];

            then

            consider h1,h2 be object such that

             A6: h1 in uG and

             A7: h2 in {uG} and

             A8: h = [h1, h2] by ZFMISC_1:def 2;

            h2 = uG by A7, TARSKI:def 1;

            hence Thesis[] by A5, A8, A6;

          end;

            suppose h in {uG};

            hence Thesis[] by A5, TARSKI:def 1;

          end;

        end;

          suppose g in ( Edges G);

          then

          consider g1,g2 be set such that g1 <> g2 and

           A9: g1 in ( Vertices G) and

           A10: g2 in ( Vertices G) and

           A11: g = {g1, g2} by Th11;

          thus Thesis[] by A9, A10, A1, A11, TARSKI:def 2;

        end;

          suppose g in { {x, [y, uG]} where x,y be Element of uG : {x, y} in ( Edges G) };

          then

          consider g1,g2 be Element of uG such that

           A12: g = {g1, [g2, uG]} and

           A13: {g1, g2} in ( Edges G);

          

           A14: g1 in uG & g2 in uG by A13, Th13;

          v = g1 or v = [g2, uG] by A12, A1, TARSKI:def 2;

          hence Thesis[] by A14;

        end;

          suppose g in { {uG, [x, uG]} where x be Element of uG : x in ( Vertices G) };

          then

          consider x be Element of uG such that

           A15: g = {uG, [x, uG]} and

           A16: x in uG;

          v = uG or v = [x, uG] by A1, A15, TARSKI:def 2;

          hence Thesis[] by A16;

        end;

      end;

      assume

       A17: v in ( union G) or (ex x be set st x in ( union G) & v = [x, ( union G)]) or v = ( union G);

      

       A18: for a be set st a in ((uG \/ [:uG, {uG}:]) \/ {uG}) holds a in uMG

      proof

        let a be set;

        assume a in ((uG \/ [:uG, {uG}:]) \/ {uG});

        then

         A19: {a} in the set of all {x} where x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG});

        

         A20: the set of all {x} where x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG}) c= MG by MYCIELSK: 3;

        a in {a} by TARSKI:def 1;

        hence a in uMG by A20, A19, TARSKI:def 4;

      end;

      per cases by A17;

        suppose v in ( union G);

        then v in (uG \/ [:uG, {uG}:]) by XBOOLE_0:def 3;

        then v in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

        hence thesis by A18;

      end;

        suppose (ex x be set st x in ( union G) & v = [x, ( union G)]);

        then

        consider x be set such that

         A21: x in ( union G) and

         A22: v = [x, ( union G)];

        ( union G) in {( union G)} by TARSKI:def 1;

        then v in [:uG, {uG}:] by A21, A22, ZFMISC_1:def 2;

        then v in (uG \/ [:uG, {uG}:]) by XBOOLE_0:def 3;

        then v in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

        hence thesis by A18;

      end;

        suppose v = ( union G);

        then v in {uG} by TARSKI:def 1;

        then v in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

        hence thesis by A18;

      end;

    end;

    theorem :: SCMYCIEL:86

    

     Th86: for G be SimpleGraph holds ( Vertices ( Mycielskian G)) = ((( union G) \/ [:( union G), {( union G)}:]) \/ {( union G)})

    proof

      let G be SimpleGraph;

      set uG = ( union G);

      set MG = ( Mycielskian G);

      set uMG = ( union MG);

      

       A1: uG in {uG} by TARSKI:def 1;

      thus uMG c= ((uG \/ [:uG, {uG}:]) \/ {uG})

      proof

        let v be object;

        assume

         A2: v in uMG;

        per cases by A2, Th85;

          suppose v in uG;

          then v in (uG \/ ( [:uG, {uG}:] \/ {uG})) by XBOOLE_0:def 3;

          hence v in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_1: 4;

        end;

          suppose ex x be set st x in uG & v = [x, uG];

          then

          consider x be set such that

           A3: x in uG and

           A4: v = [x, uG];

          v in [:uG, {uG}:] by A1, A3, A4, ZFMISC_1:def 2;

          then v in (uG \/ [:uG, {uG}:]) by XBOOLE_0:def 3;

          hence v in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

        end;

          suppose v = ( union G);

          then v in {uG} by TARSKI:def 1;

          hence thesis by XBOOLE_0:def 3;

        end;

      end;

      thus ((uG \/ [:uG, {uG}:]) \/ {uG}) c= uMG

      proof

        let v be object;

        assume v in ((uG \/ [:uG, {uG}:]) \/ {uG});

        then

         A5: v in (uG \/ [:uG, {uG}:]) or v in {uG} by XBOOLE_0:def 3;

        per cases by A5, XBOOLE_0:def 3;

          suppose v in uG;

          hence thesis by Th85;

        end;

          suppose v in [:uG, {uG}:];

          then

          consider x,y be object such that

           A6: x in uG and

           A7: y in {uG} and

           A8: v = [x, y] by ZFMISC_1:def 2;

          y = uG by A7, TARSKI:def 1;

          hence thesis by A6, A8, Th85;

        end;

          suppose v in {uG};

          then v = uG by TARSKI:def 1;

          hence thesis by Th85;

        end;

      end;

    end;

    theorem :: SCMYCIEL:87

    

     Th87: for G be SimpleGraph holds ( union G) in ( union ( Mycielskian G))

    proof

      let G be SimpleGraph;

      ( union G) in {( union G)} by TARSKI:def 1;

      then ( union G) in ((( union G) \/ [:( union G), {( union G)}:]) \/ {( union G)}) by XBOOLE_0:def 3;

      hence ( union G) in ( union ( Mycielskian G)) by Th86;

    end;

    theorem :: SCMYCIEL:88

    

     Th88: for G be void SimpleGraph holds ( Mycielskian G) = { {} , {( union G)}}

    proof

      let G be void SimpleGraph;

      set uG = ( union G);

      

       A1: { {uG, [x, uG]} where x be Element of uG : x in ( Vertices G) } = {}

      proof

        assume not thesis;

        then

        consider e be object such that

         A2: e in { {uG, [x, uG]} where x be Element of uG : x in ( Vertices G) } by XBOOLE_0:def 1;

        consider x be Element of uG such that e = {uG, [x, uG]} and

         A3: x in ( Vertices G) by A2;

        thus thesis by A3;

      end;

      

       A4: { {x, [y, uG]} where x,y be Element of uG : {x, y} in ( Edges G) } = {}

      proof

        assume not thesis;

        then

        consider e be object such that

         A5: e in { {x, [y, uG]} where x,y be Element of uG : {x, y} in ( Edges G) } by XBOOLE_0:def 1;

        consider x,y be Element of uG such that e = {x, [y, uG]} and

         A6: {x, y} in ( Edges G) by A5;

        thus thesis by A6, Th13;

      end;

      

       A7: ( Edges G) = {}

      proof

        assume not thesis;

        then

        consider e be object such that

         A8: e in ( Edges G) by XBOOLE_0:def 1;

        consider x,y be set such that x <> y and

         A9: x in ( Vertices G) and y in ( Vertices G) & e = {x, y} by A8, Th11;

        thus contradiction by A9;

      end;

      

       A10: the set of all {x} where x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG}) = { {uG}}

      proof

        thus the set of all {x} where x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG}) c= { {uG}}

        proof

          let a be object;

          assume a in the set of all {x} where x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG});

          then

          consider x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG}) such that

           A11: a = {x};

          x = uG by TARSKI:def 1;

          hence a in { {uG}} by A11, TARSKI:def 1;

        end;

        thus { {uG}} c= the set of all {x} where x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG})

        proof

          let a be object;

          assume a in { {uG}};

          then

           A12: a = {uG} by TARSKI:def 1;

          uG in ((uG \/ [:uG, {uG}:]) \/ {uG}) by TARSKI:def 1;

          hence thesis by A12;

        end;

      end;

      thus ( Mycielskian G) = { {} , {uG}} by A1, A4, A7, A10, ENUMSET1: 1;

    end;

    registration

      let G be finite SimpleGraph;

      cluster ( Mycielskian G) -> finite;

      correctness

      proof

        set uG = ( union G);

        set MG = ( Mycielskian G);

        set C = the set of all {x} where x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG});

        set A = { {x, [y, uG]} where x,y be Element of uG : {x, y} in ( Edges G) };

        set B = { {uG, [x, uG]} where x be Element of uG : x in ( Vertices G) };

        per cases ;

          suppose G is void;

          then MG = { {} , {( union G)}} by Th88;

          hence thesis;

        end;

          suppose G is non void;

          then

          reconsider uGf = uG as non empty set by Th28;

          

           A1: uGf is finite;

          deffunc FB( set) = {uG, [$1, uG]};

          

           A2: { FB(x) where x be Element of uGf : x in uGf } is finite from FRAENKEL:sch 21( A1);

          

           A3: uG is finite;

          deffunc FA( set, set) = {$1, [$2, uG]};

          set AA = { FA(x,y) where x be Element of uGf, y be Element of uGf : x in uG & y in uG };

          

           A4: AA is finite from FRAENKEL:sch 22( A3, A3);

          

           A5: A c= AA

          proof

            let a be object;

            assume a in A;

            then

            consider x,y be Element of uG such that

             A6: a = {x, [y, uG]} and {x, y} in ( Edges G);

            thus a in AA by A6;

          end;

          deffunc FC( set) = {$1};

          defpred P[ set] means not contradiction;

          { FC(x) where x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG}) : P[x] } is finite from PRE_CIRC:sch 1;

          hence MG is finite by A2, A4, A5;

        end;

      end;

    end

    theorem :: SCMYCIEL:89

    

     Th89: for G be finite SimpleGraph holds ( order ( Mycielskian G)) = ((2 * ( order G)) + 1)

    proof

      let G be finite SimpleGraph;

      set uG = ( union G);

      set MG = ( Mycielskian G);

      

       A1: ( card [:uG, {uG}:]) = ( order G) by CARD_1: 69;

      

       A2: uG misses [:uG, {uG}:]

      proof

        assume uG meets [:uG, {uG}:];

        then

        consider a be object such that

         A3: a in uG and

         A4: a in [:uG, {uG}:] by XBOOLE_0: 3;

        consider x,y be object such that x in uG and

         A5: y in {uG} and

         A6: a = [x, y] by A4, ZFMISC_1:def 2;

        y = uG by A5, TARSKI:def 1;

        hence contradiction by A6, A3, Th1;

      end;

       A7:

      now

        assume uG in (uG \/ [:uG, {uG}:]);

        then uG in uG or uG in [:uG, {uG}:] by XBOOLE_0:def 3;

        then

        consider x,y be object such that x in uG and

         A8: y in {uG} and

         A9: uG = [x, y] by ZFMISC_1:def 2;

        y = uG by A8, TARSKI:def 1;

        hence contradiction by A9, Th2;

      end;

      

      thus ( order MG) = ( card ((uG \/ [:uG, {uG}:]) \/ {uG})) by Th86

      .= (( card (uG \/ [:uG, {uG}:])) + 1) by A7, CARD_2: 41

      .= ((( card uG) + ( card [:uG, {uG}:])) + 1) by A2, CARD_2: 40

      .= ((2 * ( order G)) + 1) by A1;

    end;

    theorem :: SCMYCIEL:90

    

     Th90: for G be SimpleGraph, e be set holds e in ( Edges ( Mycielskian G)) iff e in ( Edges G) or (ex x,y be Element of ( union G) st e = {x, [y, ( union G)]} & {x, y} in ( Edges G)) or (ex y be Element of ( union G) st e = {( union G), [y, ( union G)]} & y in ( union G))

    proof

      let G be SimpleGraph, e be set;

      set uG = ( union G);

      set MG = ( Mycielskian G);

      set C = the set of all {x} where x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG});

      set A = { {x, [y, uG]} where x,y be Element of uG : {x, y} in ( Edges G) };

      set B = { {uG, [x, uG]} where x be Element of uG : x in ( Vertices G) };

      hereby

        assume

         A1: e in ( Edges ( Mycielskian G));

        then

        consider x,y be set such that

         A2: x <> y and x in ( Vertices MG) and y in ( Vertices MG) and

         A3: e = {x, y} by Th11;

        per cases by A1, MYCIELSK: 4;

          suppose e in { {} };

          hence e in ( Edges G) or (ex x,y be Element of uG st e = {x, [y, uG]} & {x, y} in ( Edges G)) or (ex y be Element of uG st e = {uG, [y, uG]} & y in uG) by A3, TARSKI:def 1;

        end;

          suppose e in C;

          then

          consider a be Element of ((uG \/ [:uG, {uG}:]) \/ {uG}) such that

           A4: e = {a};

          thus e in ( Edges G) or (ex x,y be Element of uG st e = {x, [y, uG]} & {x, y} in ( Edges G)) or (ex y be Element of uG st e = {uG, [y, uG]} & y in uG) by A4, A3, A2, ZFMISC_1: 5;

        end;

          suppose e in ( Edges G) or e in A or e in B;

          hence e in ( Edges G) or (ex x,y be Element of uG st e = {x, [y, uG]} & {x, y} in ( Edges G)) or (ex y be Element of uG st e = {uG, [y, uG]} & y in uG);

        end;

      end;

      assume

       A5: e in ( Edges G) or (ex x,y be Element of uG st e = {x, [y, uG]} & {x, y} in ( Edges G)) or (ex y be Element of uG st e = {uG, [y, uG]} & y in uG);

      per cases by A5;

        suppose

         A6: e in ( Edges G);

        

         A7: ( card e) = 2 by A6, Def1;

        e in MG by A6, MYCIELSK: 4;

        hence e in ( Edges ( Mycielskian G)) by A7, Def1;

      end;

        suppose ex x,y be Element of uG st e = {x, [y, uG]} & {x, y} in ( Edges G);

        then

        consider x,y be Element of uG such that

         A8: e = {x, [y, uG]} and

         A9: {x, y} in ( Edges G);

        

         A10: e in A by A8, A9;

        

         A11: e in MG by A10, MYCIELSK: 4;

        y in uG by A9, Th13;

        then x <> [y, uG] by Th1;

        then ( card e) = 2 by A8, CARD_2: 57;

        hence e in ( Edges ( Mycielskian G)) by A11, Def1;

      end;

        suppose ex y be Element of uG st e = {uG, [y, uG]} & y in uG;

        then

        consider y be Element of uG such that

         A12: e = {uG, [y, uG]} and

         A13: y in uG;

        

         A14: e in B by A12, A13;

        

         A15: e in MG by A14, MYCIELSK: 4;

        ( card e) = 2 by Th2, A12, CARD_2: 57;

        hence e in ( Edges ( Mycielskian G)) by A15, Def1;

      end;

    end;

    theorem :: SCMYCIEL:91

    

     Th91: for G be SimpleGraph holds ( Edges ( Mycielskian G)) = ((( Edges G) \/ { {x, [y, ( union G)]} where x,y be Element of ( union G) : {x, y} in ( Edges G) }) \/ { {( union G), [y, ( union G)]} where y be Element of ( union G) : y in ( union G) })

    proof

      let G be SimpleGraph;

      set uG = ( union G);

      set A = { {x, [y, uG]} where x,y be Element of uG : {x, y} in ( Edges G) };

      set B = { {uG, [y, uG]} where y be Element of uG : y in uG };

      thus ( Edges ( Mycielskian G)) c= ((( Edges G) \/ A) \/ B)

      proof

        let e be object;

        assume

         A1: e in ( Edges ( Mycielskian G));

        per cases by A1, Th90;

          suppose e in ( Edges G);

          then e in (( Edges G) \/ A) by XBOOLE_0:def 3;

          hence thesis by XBOOLE_0:def 3;

        end;

          suppose ex x,y be Element of ( union G) st e = {x, [y, ( union G)]} & {x, y} in ( Edges G);

          then e in A;

          then e in (( Edges G) \/ A) by XBOOLE_0:def 3;

          hence thesis by XBOOLE_0:def 3;

        end;

          suppose ex y be Element of ( union G) st e = {uG, [y, uG]} & y in uG;

          then e in B;

          hence thesis by XBOOLE_0:def 3;

        end;

      end;

      thus ((( Edges G) \/ A) \/ B) c= ( Edges ( Mycielskian G))

      proof

        let e be object;

        assume e in ((( Edges G) \/ A) \/ B);

        then

         A2: e in (( Edges G) \/ A) or e in B by XBOOLE_0:def 3;

        per cases by A2, XBOOLE_0:def 3;

          suppose e in ( Edges G);

          hence thesis by Th90;

        end;

          suppose e in A;

          then

          consider x,y be Element of uG such that

           A3: e = {x, [y, uG]} & {x, y} in ( Edges G);

          thus thesis by A3, Th90;

        end;

          suppose e in B;

          then

          consider y be Element of uG such that

           A4: e = {( union G), [y, ( union G)]} & y in uG;

          thus thesis by A4, Th90;

        end;

      end;

    end;

    theorem :: SCMYCIEL:92

    

     Th92: for G be finite SimpleGraph holds ( size ( Mycielskian G)) = ((3 * ( size G)) + ( order G))

    proof

      let G be finite SimpleGraph;

      set uG = ( union G);

      set MG = ( Mycielskian G);

      set A = { {x, [y, uG]} where x,y be Element of uG : {x, y} in ( Edges G) };

      set B = { {uG, [y, uG]} where y be Element of uG : y in ( union G) };

      per cases ;

        suppose

         A1: G is void;

        then

         A2: MG = { {} , {uG}} by Th88;

        

         A3: ( size G) = 0 by A1, Th17, CARD_1: 27;

        ( size MG) = 0

        proof

          assume not thesis;

          then ( Edges MG) <> {} ;

          then

          consider e be object such that

           A4: e in ( Edges MG) by XBOOLE_0:def 1;

          consider x,y be set such that

           A5: x <> y and x in ( Vertices MG) & y in ( Vertices MG) and

           A6: e = {x, y} by A4, Th11;

          e = {} or e = {uG} by A2, A4, TARSKI:def 2;

          hence thesis by A6, A5, ZFMISC_1: 5;

        end;

        hence thesis by A1, A3;

      end;

        suppose G is non void;

        then

        reconsider uGf = uG as non empty set by Th28;

        

         A7: uGf is finite;

        deffunc FB( set) = {uG, [$1, uG]};

        { FB(x) where x be Element of uGf : x in uGf } is finite from FRAENKEL:sch 21( A7);

        then

        reconsider B as finite set;

        

         A8: uG is finite;

        deffunc FA( set, set) = {$1, [$2, uG]};

        set AA = { FA(x,y) where x be Element of uGf, y be Element of uGf : x in uG & y in uG };

        

         A9: AA is finite from FRAENKEL:sch 22( A8, A8);

        A c= AA

        proof

          let a be object;

          assume a in A;

          then

          consider x,y be Element of uG such that

           A10: a = {x, [y, uG]} and {x, y} in ( Edges G);

          thus a in AA by A10;

        end;

        then

        reconsider A as finite set by A9;

        

         A11: ( card B) = ( order G) by Th10;

        

         A12: ( card A) = (2 * ( size G)) by Th15;

         A13:

        now

          assume B meets (( Edges G) \/ A);

          then

          consider a be object such that

           A14: a in B and

           A15: a in (( Edges G) \/ A) by XBOOLE_0: 3;

          consider y be Element of uG such that

           A16: a = {uG, [y, uG]} and y in ( union G) by A14;

          per cases by A15, XBOOLE_0:def 3;

            suppose a in ( Edges G);

            then

            consider xa,ya be set such that xa <> ya and

             A17: xa in ( Vertices G) and ya in ( Vertices G) and

             A18: a = {xa, ya} by Th11;

            per cases by A16, A18, ZFMISC_1: 6;

              suppose xa = uG;

              hence contradiction by A17;

            end;

              suppose xa = [y, uG];

              hence contradiction by A17, Th1;

            end;

          end;

            suppose a in A;

            then

            consider xa,ya be Element of uG such that

             A19: a = {xa, [ya, uG]} and

             A20: {xa, ya} in ( Edges G);

            

             A21: xa in uG by A20, Th13;

            per cases by A16, A19, ZFMISC_1: 6;

              suppose xa = uG;

              hence contradiction by A21;

            end;

              suppose xa = [y, uG];

              hence contradiction by A21, Th1;

            end;

          end;

        end;

         A22:

        now

          assume A meets ( Edges G);

          then

          consider a be object such that

           A23: a in A and

           A24: a in ( Edges G) by XBOOLE_0: 3;

          consider xa,ya be Element of uG such that

           A25: a = {xa, [ya, uG]} and {xa, ya} in ( Edges G) by A23;

          consider xe,ye be set such that xe <> ye and

           A26: xe in ( Vertices G) and

           A27: ye in ( Vertices G) and

           A28: a = {xe, ye} by A24, Th11;

          per cases by A25, A28, ZFMISC_1: 6;

            suppose xe = [ya, uG];

            hence contradiction by A26, Th1;

          end;

            suppose ye = [ya, uG];

            hence contradiction by A27, Th1;

          end;

        end;

        

        thus ( size ( Mycielskian G)) = ( card ((( Edges G) \/ A) \/ B)) by Th91

        .= (( card (( Edges G) \/ A)) + ( order G)) by A11, A13, CARD_2: 40

        .= ((( card ( Edges G)) + (2 * ( size G))) + ( order G)) by A12, A22, CARD_2: 40

        .= ((3 * ( size G)) + ( order G));

      end;

    end;

    theorem :: SCMYCIEL:93

    

     Th93: for G be SimpleGraph, s,t be object st {s, t} in ( Edges ( Mycielskian G)) holds {s, t} in ( Edges G) or (s in ( union G) or s = ( union G)) & (ex y be object st y in ( union G) & t = [y, ( union G)]) or (t in ( union G) or t = ( union G)) & (ex y be object st y in ( union G) & s = [y, ( union G)])

    proof

      let G be SimpleGraph, s,t be object such that

       A1: {s, t} in ( Edges ( Mycielskian G));

      set uG = ( union G);

      per cases by A1, Th90;

        suppose {s, t} in ( Edges G);

        hence thesis;

      end;

        suppose ex x,y be Element of uG st {s, t} = {x, [y, uG]} & {x, y} in ( Edges G);

        then

        consider x,y be Element of uG such that

         A2: {s, t} = {x, [y, uG]} and

         A3: {x, y} in ( Edges G);

        

         A4: x in uG & y in uG by A3, Th13;

        s = x & t = [y, uG] or t = x & s = [y, uG] by A2, ZFMISC_1: 6;

        hence thesis by A4;

      end;

        suppose ex y be Element of uG st {s, t} = {uG, [y, uG]} & y in uG;

        then

        consider y be Element of uG such that

         A5: {s, t} = {uG, [y, uG]} and

         A6: y in uG;

        s = uG & t = [y, uG] or t = uG & s = [y, uG] by A5, ZFMISC_1: 6;

        hence thesis by A6;

      end;

    end;

    theorem :: SCMYCIEL:94

    

     Th94: for G be SimpleGraph, u be object st {( union G), u} in ( Edges ( Mycielskian G)) holds ex x be object st x in ( union G) & u = [x, ( union G)]

    proof

      let G be SimpleGraph, u be object such that

       A1: {( union G), u} in ( Edges ( Mycielskian G));

      set uG = ( union G);

      per cases by A1, Th93;

        suppose {uG, u} in ( Edges G);

        then uG in uG by Th13;

        hence ex x be object st x in uG & u = [x, uG];

      end;

        suppose (uG in uG or uG = uG) & (ex y be object st y in uG & u = [y, uG]);

        hence ex x be object st x in uG & u = [x, ( union G)];

      end;

        suppose (u in uG or u = uG) & (ex y be object st y in uG & uG = [y, uG]);

        then

        consider y be set such that y in uG and

         A2: uG = [y, uG];

        thus ex x be object st x in uG & u = [x, uG] by A2, Th2;

      end;

    end;

    theorem :: SCMYCIEL:95

    

     Th95: for G be SimpleGraph, u be object st u in ( Vertices G) holds { [u, ( union G)]} in ( Mycielskian G)

    proof

      let G be SimpleGraph, u be object such that

       A1: u in ( Vertices G);

       { [u, ( union G)], ( union G)} in ( Edges ( Mycielskian G)) by A1, Th90;

      then [u, ( union G)] in ( Vertices ( Mycielskian G)) by Th13;

      hence { [u, ( union G)]} in ( Mycielskian G) by Th24;

    end;

    theorem :: SCMYCIEL:96

    

     Th96: for G be SimpleGraph, u be set st u in ( Vertices G) holds { [u, ( union G)], ( union G)} in ( Mycielskian G)

    proof

      let G be SimpleGraph, u be set such that

       A1: u in ( Vertices G);

       { [u, ( union G)], ( union G)} in ( Edges ( Mycielskian G)) by A1, Th90;

      hence { [u, ( union G)], ( union G)} in ( Mycielskian G);

    end;

    theorem :: SCMYCIEL:97

    

     Th97: for G be SimpleGraph, x,y be object holds not { [x, ( union G)], [y, ( union G)]} in ( Edges ( Mycielskian G))

    proof

      let G be SimpleGraph, x,y be object such that

       A1: { [x, ( union G)], [y, ( union G)]} in ( Edges ( Mycielskian G));

      

       A2: ( union G) in {x, ( union G)} by TARSKI:def 2;

      

       A3: {x, ( union G)} in { {x}, {x, ( union G)}} by TARSKI:def 2;

      

       A4: not [x, ( union G)] in ( union G) by A2, A3, XREGULAR: 7;

      

       A5: not [x, ( union G)] = ( union G) by A2, TARSKI:def 2;

      

       A6: ( union G) in {y, ( union G)} by TARSKI:def 2;

      

       A7: {y, ( union G)} in { {y}, {y, ( union G)}} by TARSKI:def 2;

      

       A8: not [y, ( union G)] in ( union G) by A6, A7, XREGULAR: 7;

      

       A9: not [y, ( union G)] = ( union G) by A6, TARSKI:def 2;

       { [x, ( union G)], [y, ( union G)]} in ( Edges G) by A1, A4, A5, A8, A9, Th93;

      hence contradiction by A4, Th13;

    end;

    theorem :: SCMYCIEL:98

    

     Th98: for G be SimpleGraph, x,y be object st x <> y holds not { [x, ( union G)], [y, ( union G)]} in ( Mycielskian G)

    proof

      let G be SimpleGraph, x,y be object such that

       A1: x <> y and

       A2: { [x, ( union G)], [y, ( union G)]} in ( Mycielskian G);

       [x, ( union G)] <> [y, ( union G)] by A1, XTUPLE_0: 1;

      then ( card { [x, ( union G)], [y, ( union G)]}) = 2 by CARD_2: 57;

      then { [x, ( union G)], [y, ( union G)]} in ( Edges ( Mycielskian G)) by A2, Def1;

      hence contradiction by Th97;

    end;

    theorem :: SCMYCIEL:99

    

     Th99: for G be SimpleGraph, x,y be object st { [x, ( union G)], y} in ( Edges ( Mycielskian G)) holds x <> y & x in ( union G) & (y in ( union G) or y = ( union G))

    proof

      let G be SimpleGraph, x,y be object such that

       A1: { [x, ( union G)], y} in ( Edges ( Mycielskian G));

      set uG = ( union G);

      set e = { [x, ( union G)], y};

      per cases by A1, Th90;

        suppose e in ( Edges G);

        then [x, uG] in uG by Th13;

        hence x <> y & x in ( union G) & (y in ( union G) or y = ( union G)) by Th1;

      end;

        suppose ex x,y be Element of uG st e = {x, [y, ( union G)]} & {x, y} in ( Edges G);

        then

        consider xa,ya be Element of uG such that

         A2: e = {xa, [ya, ( union G)]} and

         A3: {xa, ya} in ( Edges G);

        consider xx,yy be set such that

         A4: xx <> yy and

         A5: xx in ( Vertices G) & yy in ( Vertices G) and

         A6: {xa, ya} = {xx, yy} by A3, Th11;

        

         A7: xa = xx & ya = yy or xa = yy & ya = xx by A6, ZFMISC_1: 6;

        per cases by A2, ZFMISC_1: 6;

          suppose xa = [x, uG] & y = [ya, uG];

          hence thesis by A5, Th1;

        end;

          suppose xa = y & [ya, uG] = [x, uG];

          hence x <> y & x in ( union G) & (y in ( union G) or y = ( union G)) by A4, A5, A7, XTUPLE_0: 1;

        end;

      end;

        suppose ex y be Element of ( union G) st e = {( union G), [y, ( union G)]} & y in ( union G);

        then

        consider yy be Element of uG such that

         A8: e = {( union G), [yy, ( union G)]} and

         A9: yy in ( union G);

        

         A10: uG = [x, uG] & y = [yy, uG] or uG = y & [x, uG] = [yy, uG] by A8, ZFMISC_1: 6;

        x = yy by A10, Th2, XTUPLE_0: 1;

        hence x <> y & x in ( union G) & (y in ( union G) or y = ( union G)) by A10, A9;

      end;

    end;

    theorem :: SCMYCIEL:100

    

     Th100: for G be SimpleGraph, x,y be set st { [x, ( union G)], y} in ( Mycielskian G) holds x <> y

    proof

      let G be SimpleGraph, x,y be set;

      set MG = ( Mycielskian G);

      set uG = ( union G);

      assume

       A1: { [x, uG], y} in MG;

      assume

       A2: x = y;

      then [x, uG] <> y by Th3;

      then { [x, uG], y} in ( Edges MG) by A1, Th12;

      hence thesis by A2, Th99;

    end;

    theorem :: SCMYCIEL:101

    

     Th101: for G be SimpleGraph, x,y be set st y in ( union G) & { [x, ( union G)], y} in ( Mycielskian G) holds {x, y} in G

    proof

      let G be SimpleGraph;

      set MG = ( Mycielskian G);

      set uG = ( union G);

      set A = { {x, [y, uG]} where x,y be Element of uG : {x, y} in ( Edges G) };

      set B = { {uG, [y, uG]} where y be Element of uG : y in uG };

      let x,y be set;

      assume

       A1: y in uG;

      assume { [x, uG], y} in MG;

      then { [x, uG], y} in (( { {} } \/ ( singletons ( Vertices MG))) \/ ( Edges MG)) by Th27;

      then

       A2: { [x, uG], y} in ( { {} } \/ ( singletons ( Vertices MG))) or { [x, uG], y} in ( Edges MG) by XBOOLE_0:def 3;

      per cases by A2, XBOOLE_0:def 3;

        suppose { [x, uG], y} in { {} };

        hence thesis by TARSKI:def 1;

      end;

        suppose { [x, uG], y} in ( singletons ( Vertices MG));

        then

        consider f be Subset of ( Vertices MG) such that

         A3: f = { [x, uG], y} and

         A4: f is 1 -element;

        consider s be set such that s in ( Vertices MG) and

         A5: f = {s} by A4, Th9;

        

         A6: ( card f) = 1 by A5, CARD_1: 30;

        y = [x, uG] by A6, A3, CARD_2: 57;

        hence thesis by A1, Th1;

      end;

        suppose { [x, uG], y} in ( Edges MG);

        then { [x, uG], y} in ((( Edges G) \/ A) \/ B) by Th91;

        then

         A7: { [x, uG], y} in (( Edges G) \/ A) or { [x, uG], y} in B by XBOOLE_0:def 3;

        per cases by A7, XBOOLE_0:def 3;

          suppose { [x, uG], y} in ( Edges G);

          then [x, uG] in uG by Th13;

          hence thesis by Th1;

        end;

          suppose { [x, uG], y} in A;

          then

          consider xx,yy be Element of uG such that

           A8: { [x, uG], y} = {xx, [yy, uG]} and

           A9: {xx, yy} in ( Edges G);

          

           A10: xx in uG & yy in uG by A9, Th13;

           [x, uG] = xx & y = [yy, uG] or [x, uG] = [yy, uG] & y = xx by A8, ZFMISC_1: 6;

          then x = yy & y = xx by A10, Th1, XTUPLE_0: 1;

          hence thesis by A9;

        end;

          suppose { [x, uG], y} in B;

          then

          consider yy be Element of uG such that

           A11: { [x, uG], y} = {uG, [yy, uG]} and yy in uG;

           [x, uG] = uG & y = [yy, uG] or [x, uG] = [yy, uG] & y = uG by A11, ZFMISC_1: 6;

          hence thesis by Th1, A1;

        end;

      end;

    end;

    theorem :: SCMYCIEL:102

    

     Th102: for G be SimpleGraph, x,y be set st {x, y} in ( Edges G) holds { [x, ( union G)], y} in ( Mycielskian G)

    proof

      let G be SimpleGraph;

      set uG = ( union G);

      let x,y be set;

      

       A1: { {xx, [yy, uG]} where xx,yy be Element of uG : {xx, yy} in ( Edges G) } c= ( Mycielskian G) by MYCIELSK: 3;

      assume

       A2: {x, y} in ( Edges G);

      then x in uG & y in uG by Th13;

      then { [x, uG], y} in { {xx, [yy, uG]} where xx,yy be Element of uG : {xx, yy} in ( Edges G) } by A2;

      hence { [x, ( union G)], y} in ( Mycielskian G) by A1;

    end;

    theorem :: SCMYCIEL:103

    

     Th103: for G be SimpleGraph, x,y be set st x in ( Vertices G) & y in ( Vertices G) & {x, y} in ( Mycielskian G) holds {x, y} in G

    proof

      let G be SimpleGraph, s,t be set such that

       A1: s in ( Vertices G) and

       A2: t in ( Vertices G) and

       A3: {s, t} in ( Mycielskian G);

      per cases ;

        suppose s = t;

        then {s, t} = {s} by ENUMSET1: 29;

        hence {s, t} in G by A1, Th24;

      end;

        suppose s <> t;

        then ( card {s, t}) = 2 by CARD_2: 57;

        then

         A4: {s, t} in ( Edges ( Mycielskian G)) by A3, Def1;

        per cases by A4, Th93;

          suppose {s, t} in ( Edges G);

          hence {s, t} in G;

        end;

          suppose (s in ( union G) or s = ( union G)) & (ex y be object st y in ( union G) & t = [y, ( union G)]);

          then

          consider y be set such that y in ( union G) and

           A5: t = [y, ( union G)];

          thus {s, t} in G by A5, A2, Th1;

        end;

          suppose (t in ( union G) or t = ( union G)) & (ex y be object st y in ( union G) & s = [y, ( union G)]);

          then

          consider y be set such that y in ( union G) and

           A6: s = [y, ( union G)];

          thus {s, t} in G by A6, A1, Th1;

        end;

      end;

    end;

    theorem :: SCMYCIEL:104

    

     Th104: for G be SimpleGraph holds G = (( Mycielskian G) SubgraphInducedBy ( Vertices G))

    proof

      let G be SimpleGraph;

      set L = ( Vertices G), MG = ( Mycielskian G);

      thus G c= (MG SubgraphInducedBy L) by Th84, Th44;

      thus (MG SubgraphInducedBy L) c= G

      proof

        let a be object;

        assume

         A1: a in (MG SubgraphInducedBy L);

        reconsider m = a as set by TARSKI: 1;

        

         A2: m in ( bool L) by A1, XBOOLE_0:def 4;

        per cases by A1, MYCIELSK: 4;

          suppose m in { {} };

          then m = {} by TARSKI:def 1;

          hence a in G by Th20;

        end;

          suppose m in the set of all {x} where x be Element of ((L \/ [:L, {L}:]) \/ {L});

          then

          consider x be Element of ((L \/ [:L, {L}:]) \/ {L}) such that

           A3: m = {x};

          x in m by A3, TARSKI:def 1;

          hence a in G by A2, A3, Th24;

        end;

          suppose m in ( Edges G);

          hence a in G;

        end;

          suppose m in { {x, [y, L]} where x,y be Element of L : {x, y} in ( Edges G) };

          then

          consider x,y be Element of L such that

           A4: m = {x, [y, L]} and {x, y} in ( Edges G);

           [y, L] in m by A4, TARSKI:def 2;

          hence a in G by A2, Th1;

        end;

          suppose m in { {L, [x, L]} where x be Element of L : x in ( Vertices G) };

          then

          consider x be Element of L such that

           A5: m = {L, [x, L]} and x in ( Vertices G);

          L in m by A5, TARSKI:def 2;

          then L in L by A2;

          hence a in G;

        end;

      end;

    end;

    theorem :: SCMYCIEL:105

    

     Th105: for G be SimpleGraph, C be finite Clique of ( Mycielskian G) st 3 <= ( order C) holds for v be Vertex of C holds v <> ( union G)

    proof

      let G be SimpleGraph, C be finite Clique of ( Mycielskian G) such that

       A1: 3 <= ( order C);

      set MG = ( Mycielskian G);

      let v be Vertex of C such that

       A2: v = ( union G);

      ( Segm 3) c= ( Segm ( order C)) by A1, NAT_1: 39;

      then

      consider v1,v2 be object such that

       A3: v1 in ( Vertices C) and

       A4: v2 in ( Vertices C) and

       A5: v1 <> v and

       A6: v2 <> v and

       A7: v1 <> v2 by Th5;

      

       A8: {v, v1} in C by A3, Th53;

      

       A9: {v, v2} in C by A4, Th53;

      

       A10: {v, v1} in ( Edges MG) by A8, A5, Th12;

      

       A11: {v, v2} in ( Edges MG) by A6, A9, Th12;

      consider x1 be object such that x1 in ( union G) and

       A12: v1 = [x1, ( union G)] by A2, A10, Th94;

      consider x2 be object such that x2 in ( union G) and

       A13: v2 = [x2, ( union G)] by A2, A11, Th94;

       {v1, v2} in C by A3, A4, Th53;

      hence contradiction by A12, A13, A7, Th98;

    end;

    theorem :: SCMYCIEL:106

    

     Th106: for G be with_finite_clique# SimpleGraph st ( clique# G) = 0 holds for D be finite Clique of ( Mycielskian G) holds ( order D) <= 1

    proof

      let G be with_finite_clique# SimpleGraph such that

       A1: ( clique# G) = 0 ;

      set uG = ( union G);

      

       A2: ( Vertices G) = {} by A1, Th54;

      

       A3: G is void by A2, Th28;

      

       A4: ( union ( Mycielskian G)) = ( union { {} , {uG}}) by A3, Th88

      .= ( {} \/ {uG}) by ZFMISC_1: 75

      .= {uG};

      let D be finite Clique of ( Mycielskian G);

      ( Vertices D) c= {uG} by A4, ZFMISC_1: 77;

      then ( Segm ( card ( Vertices D))) c= ( Segm ( card {uG})) by CARD_1: 11;

      then ( card ( Vertices D)) <= ( card {uG}) by NAT_1: 39;

      hence ( order D) <= 1 by CARD_1: 30;

    end;

    theorem :: SCMYCIEL:107

    for G be SimpleGraph, x be set st ( Vertices G) = {x} holds ( Mycielskian G) = { {} , {x}, { [x, ( union G)]}, {( union G)}, { [x, ( union G)], ( union G)}}

    proof

      let G be SimpleGraph, a be set such that

       A1: ( Vertices G) = {a};

      

       A2: ( card ( Vertices G)) = 1 by A1, CARD_1: 30;

      

       A3: a in ( Vertices G) by A1, TARSKI:def 1;

      set uG = ( union G);

      set MG = ( Mycielskian G);

      set A = the set of all {x} where x be Element of ((( union G) \/ [:uG, {uG}:]) \/ {uG});

      set B = { {x, [y, uG]} where x,y be Element of uG : {x, y} in ( Edges G) };

      set C = { {uG, [x, uG]} where x be Element of uG : x in ( Vertices G) };

      consider aa be object such that

       A4: uG = {aa} by A2, CARD_2: 42;

      

       A5: a = aa by A4, A3, TARSKI:def 1;

      

       A6: [:uG, {uG}:] = { [a, uG]} by A4, A5, ZFMISC_1: 29;

      

       A7: G is edgeless by A2, Th19;

      thus ( Mycielskian G) c= { {} , {a}, { [a, uG]}, {uG}, { [a, uG], uG}}

      proof

        let e be object;

        assume

         A8: e in MG;

        per cases by A8, MYCIELSK: 4;

          suppose e in { {} };

          then e = {} by TARSKI:def 1;

          hence e in { {} , {a}, { [a, uG]}, {uG}, { [a, uG], uG}} by ENUMSET1:def 3;

        end;

          suppose e in A;

          then

          consider x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG}) such that

           A9: e = {x};

          x in (uG \/ [:uG, {uG}:]) or x in {uG} by XBOOLE_0:def 3;

          then x in uG or x in [:uG, {uG}:] or x in {uG} by XBOOLE_0:def 3;

          then x = a or x = [a, uG] or x = uG by A4, A5, A6, TARSKI:def 1;

          hence thesis by A9, ENUMSET1:def 3;

        end;

          suppose e in ( Edges G);

          hence thesis by A7;

        end;

          suppose e in B;

          then

          consider x,y be Element of uG such that e = {x, [y, uG]} and

           A10: {x, y} in ( Edges G);

          thus thesis by A10, A7;

        end;

          suppose e in C;

          then

          consider x be Element of uG such that

           A11: e = {uG, [x, uG]} and x in ( Vertices G);

          x = a by A4, A5, TARSKI:def 1;

          hence thesis by A11, ENUMSET1:def 3;

        end;

      end;

      thus { {} , {a}, { [a, ( union G)]}, {( union G)}, { [a, ( union G)], ( union G)}} c= ( Mycielskian G)

      proof

        let e be object;

        assume

         A12: e in { {} , {a}, { [a, ( union G)]}, {( union G)}, { [a, ( union G)], ( union G)}};

        per cases by A12, ENUMSET1:def 3;

          suppose e = {} ;

          hence e in MG by Th20;

        end;

          suppose

           A13: e = {a};

          a in (uG \/ [:uG, {uG}:]) by A3, XBOOLE_0:def 3;

          then a in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

          then e in A by A13;

          hence e in MG by MYCIELSK: 4;

        end;

          suppose

           A14: e = { [a, ( union G)]};

           [a, ( union G)] in [:uG, {uG}:] by A6, TARSKI:def 1;

          then [a, ( union G)] in (uG \/ [:uG, {uG}:]) by XBOOLE_0:def 3;

          then [a, ( union G)] in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

          then e in A by A14;

          hence e in MG by MYCIELSK: 4;

        end;

          suppose

           A15: e = {uG};

          uG in {uG} by TARSKI:def 1;

          then uG in ((uG \/ [:uG, {uG}:]) \/ {uG}) by XBOOLE_0:def 3;

          then e in A by A15;

          hence e in MG by MYCIELSK: 4;

        end;

          suppose e = { [a, uG], uG};

          then e in C by A3;

          hence e in MG by MYCIELSK: 4;

        end;

      end;

    end;

    theorem :: SCMYCIEL:108

    

     Th108: for G be with_finite_clique# SimpleGraph st ( clique# G) = 1 holds for D be finite Clique of ( Mycielskian G) holds ( order D) <= 2

    proof

      let G be with_finite_clique# SimpleGraph such that

       A1: ( clique# G) = 1;

      set uG = ( union G);

      set MG = ( Mycielskian G);

      set uMG = ( union MG);

      let D be finite Clique of ( Mycielskian G);

      set uD = ( union D);

      assume

       A2: ( order D) > 2;

      then

       A3: ( order D) >= (2 + 1) by NAT_1: 13;

      uD is non empty by A2;

      then

      consider v be object such that

       A4: v in uD;

      

       A5: v <> uG by A4, A3, Th105;

      ( Segm 3) c= ( Segm ( order D)) by A3, NAT_1: 39;

      then

      consider v1,v2 be object such that

       A6: v1 in uD and v2 in uD and

       A7: v1 <> v and v2 <> v and v1 <> v2 by Th5;

      

       A8: v1 <> uG by A6, A3, Th105;

      set e = {v, v1};

      e in D by A4, A6, Th53;

      then

       A9: e in ( Edges MG) by A7, Th12;

      per cases by A9, Th90;

        suppose e in ( Edges G);

        hence contradiction by A1, Th57;

      end;

        suppose ex x,y be Element of ( union G) st e = {x, [y, uG]} & {x, y} in ( Edges G);

        then

        consider x,y be Element of uG such that e = {x, [y, uG]} and

         A10: {x, y} in ( Edges G);

        thus contradiction by A1, A10, Th57;

      end;

        suppose ex y be Element of ( union G) st e = {uG, [y, uG]} & y in uG;

        then

        consider y be Element of uG such that

         A11: e = {uG, [y, uG]} and y in uG;

        thus contradiction by A5, A8, A11, ZFMISC_1: 6;

      end;

    end;

    theorem :: SCMYCIEL:109

    

     Th109: for G be with_finite_clique# SimpleGraph st 2 <= ( clique# G) holds for D be finite Clique of ( Mycielskian G) holds ( order D) <= ( clique# G)

    proof

      let G be with_finite_clique# SimpleGraph such that

       A1: 2 <= ( clique# G);

      let D be finite Clique of ( Mycielskian G) such that

       A2: ( order D) > ( clique# G);

      set MG = ( Mycielskian G), uG = ( union G);

      

       A3: ( Vertices D) c= ( Vertices MG) by ZFMISC_1: 77;

      

       A4: ( Edges D) c= ( Edges MG) by Th14;

      2 < ( order D) by A2, A1, XXREAL_0: 2;

      then

       A5: (2 + 1) <= ( order D) by NAT_1: 13;

      per cases ;

        suppose D c= G;

        hence contradiction by A2, Def15;

      end;

        suppose not D c= G;

        then

        consider e be object such that

         A6: e in D and

         A7: not e in G;

        now

          assume

           A8: ( Vertices D) c= ( Vertices G);

          

           A9: e <> {} by A7, Th20;

          now

            assume not e in ( Edges D);

            then

            consider y be set such that

             A10: e = {y} and

             A11: y in ( Vertices D) by A9, A6, Th29;

            thus contradiction by A7, A10, A11, A8, Th24;

          end;

          then

          consider x,y be set such that x <> y and

           A12: x in ( Vertices D) and

           A13: y in ( Vertices D) and

           A14: e = {x, y} by Th11;

          thus contradiction by A6, A8, A14, A7, Th103, A12, A13;

        end;

        then

        consider v be object such that

         A15: v in ( Vertices D) and

         A16: not v in ( Vertices G);

        ( Segm 3) c= ( Segm ( order D)) by A5, NAT_1: 39;

        then

        consider v1,v2 be object such that

         A17: v1 in ( Vertices D) and

         A18: v2 in ( Vertices D) and

         A19: v1 <> v and

         A20: v2 <> v and

         A21: v1 <> v2 by Th5;

         {v, v1} in D by A15, A17, Th53;

        then

         A22: {v, v1} in ( Edges D) by A19, Th12;

         {v, v2} in D by A15, A18, Th53;

        then

         A23: {v, v2} in ( Edges D) by A20, Th12;

         {v1, v2} in D by A17, A18, Th53;

        then

         A24: {v1, v2} in ( Edges D) by A21, Th12;

        per cases by A15, A3, A16, Th85;

          suppose

           A25: v = uG;

          consider x be object such that x in ( union G) and

           A26: v1 = [x, ( union G)] by A25, A22, A4, Th94;

          consider y be object such that y in ( union G) and

           A27: v2 = [y, ( union G)] by A25, A23, A4, Th94;

          thus contradiction by A24, A4, A26, A27, Th97;

        end;

          suppose ex x be set st x in ( union G) & v = [x, ( union G)];

          then

          consider x be set such that

           A28: x in uG and

           A29: v = [x, uG];

          set E = (D SubgraphInducedBy ( union G));

          reconsider F = (G SubgraphInducedBy ( {x} \/ ( union E))) as finite SimpleGraph;

          

           A30: ( Vertices F) = ( {x} \/ ( Vertices E))

          proof

            thus ( Vertices F) c= ( {x} \/ ( Vertices E))

            proof

              let a be object;

              assume a in ( Vertices F);

              then a in (( union G) /\ ( {x} \/ ( union E))) by Th45;

              then

               A31: a in ( {x} \/ ( union E)) by XBOOLE_0:def 4;

              per cases by A31, XBOOLE_0:def 3;

                suppose a in {x};

                hence thesis by XBOOLE_0:def 3;

              end;

                suppose a in ( union E);

                hence thesis by XBOOLE_0:def 3;

              end;

            end;

            let a be object;

            assume

             A32: a in ( {x} \/ ( Vertices E));

            per cases by A32, XBOOLE_0:def 3;

              suppose a in {x};

              then

               A33: a = x by TARSKI:def 1;

              x in {x} by TARSKI:def 1;

              then x in ( {x} \/ ( union E)) by XBOOLE_0:def 3;

              then x in (( union G) /\ ( {x} \/ ( union E))) by A28, XBOOLE_0:def 4;

              hence a in ( Vertices F) by A33, Th45;

            end;

              suppose a in ( Vertices E);

              then a in (( union D) /\ ( union G)) by Th45;

              then a in ( union G) by XBOOLE_0:def 4;

              then a in (( union G) /\ ( {x} \/ ( union E))) by A32, XBOOLE_0:def 4;

              hence a in ( Vertices F) by Th45;

            end;

          end;

          

           A34: ( union E) c= ( union D) by ZFMISC_1: 77;

           A35:

          now

            assume x in ( union E);

            then { [x, uG], x} in D by A34, A15, A29, Th53;

            hence contradiction by Th100;

          end;

          reconsider Fs = F as SimpleGraph-like Subset of G;

          now

            let a,b be set such that

             A36: a <> b and

             A37: a in ( union Fs) and

             A38: b in ( union Fs);

            

             A39: a in (( union G) /\ ( {x} \/ ( union E))) by A37, Th45;

            then

             A40: a in ( union G) & a in ( {x} \/ ( union E)) by XBOOLE_0:def 4;

            

             A41: b in (( union G) /\ ( {x} \/ ( union E))) by A38, Th45;

            then

             A42: b in ( union G) & b in ( {x} \/ ( union E)) by XBOOLE_0:def 4;

            

             A43: a in ( Vertices G) by A39, XBOOLE_0:def 4;

            

             A44: b in ( Vertices G) by A41, XBOOLE_0:def 4;

            x in {x} by TARSKI:def 1;

            then

             A45: x in ( {x} \/ ( union E)) by XBOOLE_0:def 3;

             {a, b} in Fs

            proof

              per cases by A40, A42, XBOOLE_0:def 3;

                suppose a in {x} & b in {x};

                then

                 A46: a = x & b = x by TARSKI:def 1;

                then {a, b} = {x} by ENUMSET1: 29;

                hence {a, b} in Fs by A46, A37, Th24;

              end;

                suppose

                 A47: a in {x} & b in ( union E);

                then

                 A48: a = x by TARSKI:def 1;

                b in (( union D) /\ ( union G)) by A47, Th45;

                then

                 A49: b in ( union D) & b in uG by XBOOLE_0:def 4;

                then { [x, uG], b} in D by A15, A29, Th53;

                then {x, b} in G by A49, Th101;

                hence {a, b} in Fs by A45, A48, A42, Lm10;

              end;

                suppose

                 A50: b in {x} & a in ( union E);

                then

                 A51: b = x by TARSKI:def 1;

                a in (( union D) /\ ( union G)) by A50, Th45;

                then

                 A52: a in ( union D) & a in uG by XBOOLE_0:def 4;

                then { [x, uG], a} in D by A15, A29, Th53;

                then {x, a} in G by A52, Th101;

                hence {a, b} in Fs by A45, A51, A40, Lm10;

              end;

                suppose a in ( union E) & b in ( union E);

                then a in (( union D) /\ ( union G)) & b in (( union D) /\ ( union G)) by Th45;

                then a in ( union D) & b in ( union D) by XBOOLE_0:def 4;

                then {a, b} in D by Th53;

                then {a, b} in G by A43, A44, Th103;

                hence {a, b} in Fs by A40, A42, Lm10;

              end;

            end;

            hence {a, b} in ( Edges Fs) by A36, Th12;

          end;

          then

           A53: Fs is clique by Th47;

          

           A54: ( Vertices D) c= ( {v} \/ ( Vertices E))

          proof

            let a be object such that

             A55: a in ( Vertices D);

            per cases ;

              suppose a = v;

              then a in {v} by TARSKI:def 1;

              hence thesis by XBOOLE_0:def 3;

            end;

              suppose

               A56: a <> v;

               {a, [x, uG]} in D by A29, A15, A55, Th53;

              then {a, [x, uG]} in ( Edges D) by A56, A29, Th12;

              then a in uG or a = uG by A4, Th99;

              then a in ( Vertices E) by A5, Th105, A55, Lm8;

              hence thesis by XBOOLE_0:def 3;

            end;

          end;

          

           A57: ( Vertices E) c= ( Vertices D) by ZFMISC_1: 77;

          

           A58: ( {v} \/ ( Vertices E)) c= ( Vertices D)

          proof

            let a be object;

            assume a in ( {v} \/ ( Vertices E));

            then a in {v} or a in ( Vertices E) by XBOOLE_0:def 3;

            hence thesis by A15, A57, TARSKI:def 1;

          end;

          

           A59: not v in ( Vertices E) by A29, Lm7, Th1;

          ( order F) = (1 + ( card ( Vertices E))) by A30, A35, CARD_2: 41

          .= ( card ( {v} \/ ( Vertices E))) by A59, CARD_2: 41

          .= ( order D) by A58, A54, XBOOLE_0:def 10;

          hence contradiction by A2, A53, Def15;

        end;

      end;

    end;

    registration

      let G be with_finite_clique# SimpleGraph;

      cluster ( Mycielskian G) -> with_finite_clique#;

      coherence

      proof

        set MG = ( Mycielskian G);

        set uG = ( union G);

        per cases by NAT_1: 25;

          suppose

           A1: ( clique# G) = 0 ;

          then uG = {} by Th54;

          then {} in ( union MG) by Th87;

          then

          consider C be finite Clique of MG such that

           A2: ( Vertices C) = { {} } by Th52;

          take C;

          ( order C) = 1 by A2, CARD_1: 30;

          hence for D be finite Clique of MG holds ( order D) <= ( order C) by A1, Th106;

        end;

          suppose

           A3: ( clique# G) = 1;

          then

          consider C be finite Clique of G such that

           A4: ( order C) = 1 by Def15;

          

           A5: ( union C) c= ( union G) by ZFMISC_1: 77;

          ( Vertices C) <> {} by A4;

          then

          consider v be object such that

           A6: v in ( Vertices C) by XBOOLE_0:def 1;

          

           A7: [v, uG] in ( union MG) by A6, A5, Th85;

          

           A8: uG in ( union MG) by Th87;

          

           A9: { [v, uG], uG} in MG by A6, A5, Th96;

          reconsider CC = { {} , { [v, uG]}, {uG}, { [v, uG], uG}} as finite Clique of MG by A7, A8, A9, Th51;

          

           A10: CC = ( CompleteSGraph { [v, uG], uG}) by Th37;

          

           A11: ( Vertices CC) = { [v, uG], uG} by A10, Lm1;

          take CC;

          ( order CC) = 2 by A11, Th2, CARD_2: 57;

          hence for D be finite Clique of MG holds ( order D) <= ( order CC) by A3, Th108;

        end;

          suppose ( clique# G) > 1;

          then

           A12: ( clique# G) >= (1 + 1) by NAT_1: 13;

          consider C be finite Clique of G such that

           A13: ( order C) = ( clique# G) by Def15;

          G c= MG by Th84;

          then

          reconsider CC = C as finite Clique of MG by XBOOLE_1: 1;

          take CC;

          thus for D be finite Clique of MG holds ( order D) <= ( order CC) by A13, A12, Th109;

        end;

      end;

    end

    theorem :: SCMYCIEL:110

    

     Th110: for G be with_finite_clique# SimpleGraph st 2 <= ( clique# G) holds ( clique# ( Mycielskian G)) = ( clique# G)

    proof

      let G be with_finite_clique# SimpleGraph such that

       A1: 2 <= ( clique# G) and

       A2: ( clique# ( Mycielskian G)) <> ( clique# G);

      set MG = ( Mycielskian G);

      consider D be finite Clique of MG such that

       A3: ( order D) = ( clique# MG) by Def15;

      ( clique# G) <= ( clique# MG) by Th84, Th58;

      then ( clique# G) < ( clique# MG) by A2, XXREAL_0: 1;

      hence contradiction by A1, A3, Th109;

    end;

    theorem :: SCMYCIEL:111

    

     Th111: for G be finitely_colorable SimpleGraph holds ex E be Coloring of ( Mycielskian G) st ( card E) = (1 + ( chromatic# G))

    proof

      let G be finitely_colorable SimpleGraph;

      set uG = ( union G);

      set MG = ( Mycielskian G);

      set uMG = ( union MG);

      set cnG = ( chromatic# G);

      consider C be finite Coloring of G such that

       A1: ( card C) = cnG by Def22;

      defpred P[ object, object] means ex A be set st A = $1 & $2 = { [x, uG] where x be Element of uG : x in A };

      

       A2: for e be object st e in C holds ex u be object st P[e, u]

      proof

        let e be object such that e in C;

        reconsider A = e as set by TARSKI: 1;

        take u = { [x, uG] where x be Element of uG : x in A };

        thus P[e, u];

      end;

      consider r be Function such that ( dom r) = C and

       A3: for e be object st e in C holds P[e, (r . e)] from CLASSES1:sch 1( A2);

      set D = { (d \/ (r . d)) where d be Element of C : d in C };

      

       A4: ( card D) = ( card C)

      proof

        per cases ;

          suppose

           A5: D is empty;

          now

            assume C is non empty;

            then

            consider c be object such that

             A6: c in C;

            reconsider c as set by TARSKI: 1;

            (c \/ (r . c)) in D by A6;

            hence contradiction by A5;

          end;

          hence thesis by A5;

        end;

          suppose

           A7: D is non empty;

          defpred R[ object, object] means ex A be set st A = $1 & $2 = (A \/ (r . $1));

          

           A8: for e be object st e in C holds ex u be object st R[e, u]

          proof

            let e be object such that e in C;

            reconsider A = e as set by TARSKI: 1;

            take u = (A \/ (r . e));

            thus R[e, u];

          end;

          consider s be Function such that

           A9: ( dom s) = C and

           A10: for e be object st e in C holds R[e, (s . e)] from CLASSES1:sch 1( A8);

          

           A11: ( rng s) c= D

          proof

            let y be object;

            assume y in ( rng s);

            then

            consider x be object such that

             A12: x in ( dom s) and

             A13: y = (s . x) by FUNCT_1:def 3;

            reconsider x as set by TARSKI: 1;

             R[x, y] by A12, A13, A9, A10;

            then y = (x \/ (r . x));

            hence y in D by A12, A9;

          end;

          then

          reconsider s as Function of C, D by A9, FUNCT_2: 2;

          D c= ( rng s)

          proof

            let x be object;

            assume x in D;

            then

            consider c be Element of C such that

             A14: x = (c \/ (r . c)) and

             A15: c in C;

             R[c, (s . c)] by A15, A10;

            then x = (s . c) by A14;

            hence x in ( rng s) by A15, A9, FUNCT_1:def 3;

          end;

          then ( rng s) = D by A11;

          then

           A16: s is onto by FUNCT_2:def 3;

          s is one-to-one

          proof

            let x1,x2 be object such that

             A17: x1 in ( dom s) and

             A18: x2 in ( dom s) and

             A19: (s . x1) = (s . x2);

            reconsider x1, x2 as set by TARSKI: 1;

             R[x1, (s . x1)] by A17, A9, A10;

            then

             A20: (s . x1) = (x1 \/ (r . x1));

             R[x2, (s . x2)] by A18, A9, A10;

            then

             A21: (s . x2) = (x2 \/ (r . x2));

            

             A22: x1 c= x2

            proof

              let x be object;

              assume

               A23: x in x1;

              

               A24: x in (s . x1) by A20, A23, XBOOLE_0:def 3;

              per cases by A24, A19, A21, XBOOLE_0:def 3;

                suppose x in x2;

                hence thesis;

              end;

                suppose

                 A25: x in (r . x2);

                 P[x2, (r . x2)] by A3, A9, A18;

                then x in { [xx, uG] where xx be Element of uG : xx in x2 } by A25;

                then

                consider xx be Element of uG such that

                 A26: x = [xx, uG] and xx in x2;

                thus thesis by A26, A17, A23, A9, Th1;

              end;

            end;

            x2 c= x1

            proof

              let x be object;

              assume

               A27: x in x2;

              

               A28: x in (s . x2) by A21, A27, XBOOLE_0:def 3;

              per cases by A28, A19, A20, XBOOLE_0:def 3;

                suppose x in x1;

                hence thesis;

              end;

                suppose

                 A29: x in (r . x1);

                 P[x1, (r . x1)] by A3, A9, A17;

                then x in { [xx, uG] where xx be Element of uG : xx in x1 } by A29;

                then

                consider xx be Element of uG such that

                 A30: x = [xx, uG] and xx in x1;

                thus thesis by A30, A18, A27, A9, Th1;

              end;

            end;

            hence thesis by A22, XBOOLE_0:def 10;

          end;

          hence thesis by A16, A7, EULER_1: 11;

        end;

      end;

      

       A31: D is finite by A4;

      set E = (D \/ { {uG}});

      

       A32: ( union E) = uMG

      proof

        thus ( union E) c= uMG

        proof

          let x be object;

          assume x in ( union E);

          then

          consider Y be set such that

           A33: x in Y and

           A34: Y in E by TARSKI:def 4;

          per cases by A34, XBOOLE_0:def 3;

            suppose Y in D;

            then

            consider d be Element of C such that

             A35: Y = (d \/ (r . d)) and

             A36: d in C;

            per cases by A35, A33, XBOOLE_0:def 3;

              suppose

               A37: x in d;

              

               A38: uG c= uMG by Th84, ZFMISC_1: 77;

              x in uG by A37;

              hence x in uMG by A38;

            end;

              suppose

               A39: x in (r . d);

               P[d, (r . d)] by A3, A36;

              then x in { [yy, uG] where yy be Element of uG : yy in d } by A39;

              then

              consider yy be Element of uG such that

               A40: x = [yy, uG] and

               A41: yy in d;

               {x} in MG by A40, A41, Th95;

              hence x in uMG by Th24;

            end;

          end;

            suppose Y in { {uG}};

            then Y = {uG} by TARSKI:def 1;

            then x = uG by A33, TARSKI:def 1;

            hence x in uMG by Th87;

          end;

        end;

        thus uMG c= ( union E)

        proof

          let a be object;

          assume a in uMG;

          then

          consider Y be set such that

           A42: a in Y and

           A43: Y in MG by TARSKI:def 4;

          

           A44: a in uG implies a in ( union E)

          proof

            assume a in uG;

            then a in ( union C) by EQREL_1:def 4;

            then

            consider d be set such that

             A45: a in d and

             A46: d in C by TARSKI:def 4;

            

             A47: a in (d \/ (r . d)) by A45, XBOOLE_0:def 3;

            (d \/ (r . d)) in D by A46;

            then (d \/ (r . d)) in E by XBOOLE_0:def 3;

            hence a in ( union E) by A47, TARSKI:def 4;

          end;

           A48:

          now

            let x be set;

            assume

             A49: a = [x, uG];

            assume

             A50: x in uG;

            then x in ( union C) by EQREL_1:def 4;

            then

            consider d be set such that

             A51: x in d and

             A52: d in C by TARSKI:def 4;

            (d \/ (r . d)) in D by A52;

            then

             A53: (d \/ (r . d)) in E by XBOOLE_0:def 3;

            

             A54: a in { [xx, uG] where xx be Element of uG : xx in d } by A51, A49, A50;

             P[d, (r . d)] by A3, A52;

            then a in (r . d) by A54;

            then a in (d \/ (r . d)) by XBOOLE_0:def 3;

            hence a in ( union E) by A53, TARSKI:def 4;

          end;

          per cases by A43, MYCIELSK: 4;

            suppose Y in { {} };

            hence a in ( union E) by A42, TARSKI:def 1;

          end;

            suppose Y in the set of all {x} where x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG});

            then

            consider x be Element of ((uG \/ [:uG, {uG}:]) \/ {uG}) such that

             A55: Y = {x};

            

             A56: a = x by A55, A42, TARSKI:def 1;

            

             A57: a in (uG \/ [:uG, {uG}:]) or a in {uG} by A56, XBOOLE_0:def 3;

            per cases by A57, XBOOLE_0:def 3;

              suppose a in uG;

              hence a in ( union E) by A44;

            end;

              suppose a in [:uG, {uG}:];

              then

              consider x,y be object such that

               A58: x in uG and

               A59: y in {uG} and

               A60: a = [x, y] by ZFMISC_1:def 2;

              y = uG by A59, TARSKI:def 1;

              hence a in ( union E) by A58, A60, A48;

            end;

              suppose

               A61: a in {uG};

               {uG} in { {uG}} by TARSKI:def 1;

              then {uG} in E by XBOOLE_0:def 3;

              hence a in ( union E) by A61, TARSKI:def 4;

            end;

          end;

            suppose Y in ( Edges G);

            then

            consider p,r be set such that p <> r and

             A62: p in ( Vertices G) and

             A63: r in ( Vertices G) and

             A64: Y = {p, r} by Th11;

            thus a in ( union E) by A44, A62, A63, A64, A42, TARSKI:def 2;

          end;

            suppose Y in { {x, [y, uG]} where x,y be Element of uG : {x, y} in ( Edges G) };

            then

            consider x,y be Element of uG such that

             A65: Y = {x, [y, uG]} and

             A66: {x, y} in ( Edges G);

            

             A67: a = x or a = [y, uG] by A42, A65, TARSKI:def 2;

            x in uG by A66, Th13;

            hence a in ( union E) by A67, A44, A48;

          end;

            suppose Y in { {uG, [x, uG]} where x be Element of uG : x in ( Vertices G) };

            then

            consider x be Element of uG such that

             A68: Y = {uG, [x, uG]} and

             A69: x in ( Vertices G);

            per cases by A42, A68, TARSKI:def 2;

              suppose a = uG;

              then

               A70: a in {uG} by TARSKI:def 1;

               {uG} in { {uG}} by TARSKI:def 1;

              then {uG} in E by XBOOLE_0:def 3;

              hence a in ( union E) by A70, TARSKI:def 4;

            end;

              suppose

               A71: a = [x, uG];

              thus a in ( union E) by A71, A48, A69;

            end;

          end;

        end;

      end;

       A72:

      now

        let A be Subset of uMG such that

         A73: A in E;

        per cases by A73, XBOOLE_0:def 3;

          suppose A in D;

          then

          consider d be Element of C such that

           A74: A = (d \/ (r . d)) and

           A75: d in C;

          thus A <> {} by A74, A75;

          thus for B be Subset of uMG st B in E holds A = B or A misses B

          proof

            let B be Subset of uMG such that

             A76: B in E;

            per cases by A76, XBOOLE_0:def 3;

              suppose B in D;

              then

              consider e be Element of C such that

               A77: B = (e \/ (r . e)) and

               A78: e in C;

              now

                assume A meets B;

                then

                consider x be object such that

                 A79: x in A and

                 A80: x in B by XBOOLE_0: 3;

                per cases by A79, A80, A77, A74, XBOOLE_0:def 3;

                  suppose x in d & x in e;

                  then d = e by EQREL_1: 70;

                  hence A = B by A77, A74;

                end;

                  suppose

                   A81: x in d & x in (r . e);

                  then P[e, (r . e)] by A3;

                  then x in { [yy, uG] where yy be Element of uG : yy in e } by A81;

                  then

                  consider yy be Element of uG such that

                   A82: x = [yy, uG] and yy in e;

                  thus A = B by A82, Th1, A81;

                end;

                  suppose

                   A83: x in (r . d) & x in e;

                  then P[d, (r . d)] by A3;

                  then x in { [yy, uG] where yy be Element of uG : yy in d } by A83;

                  then

                  consider yy be Element of uG such that

                   A84: x = [yy, uG] and yy in d;

                  thus A = B by A84, Th1, A83;

                end;

                  suppose

                   A85: x in (r . d) & x in (r . e);

                   P[d, (r . d)] by A3, A75;

                  then x in { [yy, uG] where yy be Element of uG : yy in d } by A85;

                  then

                  consider yy be Element of uG such that

                   A86: x = [yy, uG] and

                   A87: yy in d;

                   P[e, (r . e)] by A3, A78;

                  then x in { [zz, uG] where zz be Element of uG : zz in e } by A85;

                  then

                  consider zz be Element of uG such that

                   A88: x = [zz, uG] and

                   A89: zz in e;

                  yy = zz by A86, A88, XTUPLE_0: 1;

                  then d = e by A87, A89, EQREL_1: 70;

                  hence A = B by A77, A74;

                end;

              end;

              hence A = B or A misses B;

            end;

              suppose B in { {uG}};

              then

               A90: B = {uG} by TARSKI:def 1;

              now

                assume A meets B;

                then

                consider x be object such that

                 A91: x in A and

                 A92: x in B by XBOOLE_0: 3;

                

                 A93: x = uG by A92, A90, TARSKI:def 1;

                per cases by A93, A91, A74, XBOOLE_0:def 3;

                  suppose uG in d;

                  then uG in uG;

                  hence contradiction;

                end;

                  suppose

                   A94: uG in (r . d);

                   P[d, (r . d)] by A3, A75;

                  then uG in { [yy, uG] where yy be Element of uG : yy in d } by A94;

                  then

                  consider yy be Element of uG such that

                   A95: uG = [yy, uG] and yy in d;

                  thus contradiction by A95, Th2;

                end;

              end;

              hence A = B or A misses B;

            end;

          end;

        end;

          suppose

           A96: A in { {uG}};

          then

           A97: A = {uG} by TARSKI:def 1;

          thus A <> {} by A96;

          thus for B be Subset of uMG st B in E holds A = B or A misses B

          proof

            let B be Subset of uMG such that

             A98: B in E;

            per cases by A98, XBOOLE_0:def 3;

              suppose B in D;

              then

              consider d be Element of C such that

               A99: B = (d \/ (r . d)) and

               A100: d in C;

              now

                assume A meets B;

                then

                consider x be object such that

                 A101: x in A and

                 A102: x in B by XBOOLE_0: 3;

                

                 A103: x = uG by A101, A97, TARSKI:def 1;

                per cases by A103, A102, A99, XBOOLE_0:def 3;

                  suppose uG in d;

                  then uG in uG;

                  hence contradiction;

                end;

                  suppose

                   A104: uG in (r . d);

                   P[d, (r . d)] by A3, A100;

                  then uG in { [yy, uG] where yy be Element of uG : yy in d } by A104;

                  then

                  consider yy be Element of uG such that

                   A105: uG = [yy, uG] and yy in d;

                  thus contradiction by A105, Th2;

                end;

              end;

              hence A = B or A misses B;

            end;

              suppose B in { {uG}};

              hence A = B or A misses B by A97, TARSKI:def 1;

            end;

          end;

        end;

      end;

      

       A106: E c= ( bool uMG)

      proof

        let x be object;

        reconsider x1 = x as set by TARSKI: 1;

        assume

         A107: x in E;

        per cases by A107, XBOOLE_0:def 3;

          suppose x in D;

          then

          consider d be Element of C such that

           A108: x = (d \/ (r . d)) and

           A109: d in C;

          

           A110: uG c= uMG by Th84, ZFMISC_1: 77;

          

           A111: d c= uMG by A110;

          (r . d) c= uMG

          proof

            let y be object;

            assume

             A112: y in (r . d);

             P[d, (r . d)] by A3, A109;

            then y in { [yy, uG] where yy be Element of uG : yy in d } by A112;

            then

            consider yy be Element of uG such that

             A113: y = [yy, uG] and

             A114: yy in d;

             {y} in MG by A113, A114, Th95;

            hence y in uMG by Th24;

          end;

          then x1 c= uMG by A108, A111, XBOOLE_1: 8;

          hence x in ( bool uMG);

        end;

          suppose x in { {uG}};

          then

           A115: x = {uG} by TARSKI:def 1;

          uG in uMG by Th87;

          then x1 c= uMG by A115, ZFMISC_1: 31;

          hence x in ( bool uMG);

        end;

      end;

      reconsider E as a_partition of uMG by A32, A72, A106, EQREL_1:def 4;

      E is StableSet-wise

      proof

        let e be set such that

         A116: e in E;

        reconsider e1 = e as Subset of uMG by A116;

        e1 is stable

        proof

          let x,y be set such that

           A117: x <> y and

           A118: x in e1 and

           A119: y in e1;

          per cases by A116, XBOOLE_0:def 3;

            suppose e in D;

            then

            consider d be Element of C such that

             A120: e = (d \/ (r . d)) and

             A121: d in C;

            

             A122: P[d, (r . d)] by A3, A121;

            

             A123: d is stable by Def20;

            per cases by A120, A118, A119, XBOOLE_0:def 3;

              suppose

               A124: x in d & y in d;

              then {x, y} nin G by A123, A117;

              hence {x, y} nin MG by A124, Th103;

            end;

              suppose that

               A125: x in d and

               A126: y in (r . d);

              consider x1 be Element of uG such that

               A127: y = [x1, uG] and

               A128: x1 in d by A126, A122;

              per cases ;

                suppose x1 = x;

                hence {x, y} nin MG by A127, Th100;

              end;

                suppose x1 <> x;

                then {x1, x} nin G by A125, A128, A123;

                hence {x, y} nin MG by A125, A127, Th101;

              end;

            end;

              suppose that

               A129: x in (r . d) and

               A130: y in d;

              consider x1 be Element of uG such that

               A131: x = [x1, uG] and

               A132: x1 in d by A129, A122;

              per cases ;

                suppose x1 = y;

                hence {x, y} nin MG by A131, Th100;

              end;

                suppose x1 <> y;

                then {x1, y} nin G by A130, A132, A123;

                hence {x, y} nin MG by A131, A130, Th101;

              end;

            end;

              suppose that

               A133: x in (r . d) and

               A134: y in (r . d);

              consider x1 be Element of uG such that

               A135: x = [x1, uG] and x1 in d by A133, A122;

              consider y1 be Element of uG such that

               A136: y = [y1, uG] and y1 in d by A134, A122;

              thus {x, y} nin MG by A135, A136, A117, Th98;

            end;

          end;

            suppose e in { {uG}};

            then e = {uG} by TARSKI:def 1;

            then x = uG & y = uG by A118, A119, TARSKI:def 1;

            hence thesis by A117;

          end;

        end;

        hence e is StableSet of MG;

      end;

      then

      reconsider E as Coloring of MG;

      take E;

      now

        assume {uG} in D;

        then

        consider d be Element of C such that

         A137: {uG} = (d \/ (r . d)) and

         A138: d in C;

        

         A139: uG in (d \/ (r . d)) by A137, TARSKI:def 1;

        per cases by A139, XBOOLE_0:def 3;

          suppose uG in d;

          then uG in uG;

          hence contradiction;

        end;

          suppose

           A140: uG in (r . d);

           P[d, (r . d)] by A3, A138;

          then uG in { [x, uG] where x be Element of uG : x in d } by A140;

          then

          consider x be Element of uG such that

           A141: uG = [x, uG] and x in d;

          thus contradiction by A141, Th2;

        end;

      end;

      hence ( card E) = (1 + cnG) by A4, A31, A1, CARD_2: 41;

    end;

    registration

      let G be finitely_colorable SimpleGraph;

      cluster ( Mycielskian G) -> finitely_colorable;

      coherence

      proof

        consider E be Coloring of ( Mycielskian G) such that

         A1: ( card E) = (1 + ( chromatic# G)) by Th111;

        E is finite by A1;

        hence thesis;

      end;

    end

    theorem :: SCMYCIEL:112

    

     Th112: for G be finitely_colorable SimpleGraph holds ( chromatic# ( Mycielskian G)) = (1 + ( chromatic# G))

    proof

      let G be finitely_colorable SimpleGraph;

      set uG = ( union G);

      set MG = ( Mycielskian G);

      set uMG = ( union MG);

      set cnG = ( chromatic# G);

      set cnMG = ( chromatic# MG);

      consider D be Coloring of MG such that

       A1: ( card D) = (1 + cnG) by Th111;

      D is finite by A1;

      then

       A2: cnMG <= (1 + cnG) by A1, Def22;

      now

        assume

         A3: (1 + cnG) > cnMG;

        

         A4: cnG >= cnMG by A3, NAT_1: 13;

        

         A5: cnG <= cnMG by Th84, Th68;

        

         A6: cnG = cnMG by A4, A5, XXREAL_0: 1;

        consider E be finite Coloring of MG such that

         A7: ( card E) = cnMG by Def22;

        

         A8: ( union E) = ( union MG) by EQREL_1:def 4;

        

         A9: G = (MG SubgraphInducedBy uG) by Th104;

        reconsider S = uG as Subset of ( Vertices MG) by Th84, ZFMISC_1: 77;

        reconsider C = (E | S) as finite Coloring of G by A9, Th67;

        

         A10: ( card C) >= cnG by Def22;

        

         A11: ( card C) <= cnG by A6, A7, MYCIELSK: 8;

        

         A12: ( card C) = cnG by A10, A11, XXREAL_0: 1;

        

         A13: uG in ( union MG) by Th87;

        then

        consider EuG be set such that

         A14: uG in EuG and

         A15: EuG in E by A8, TARSKI:def 4;

        reconsider EuG as Subset of ( Vertices MG) by A15;

        reconsider uG as Element of ( Vertices MG) by A14, A15;

        set se = (EuG /\ S);

        

         A16: EuG meets S by A15, A6, A7, A12, MYCIELSK: 9;

        se in C by A15, A16;

        then

        consider sev be Element of ( Vertices G) such that

         A17: sev in se and

         A18: for d be Element of C st d <> se holds ex w be Element of ( Vertices G) st w in ( Adjacent sev) & w in d by A10, A11, Th70, XXREAL_0: 1;

        

         A19: uG is non empty by A16;

        then { [sev, uG]} in MG by Th95;

        then

        reconsider csev = [sev, uG] as Element of ( Vertices MG) by Th24;

        csev in ( Vertices MG) by A13;

        then csev in ( union E) by EQREL_1:def 4;

        then

        consider Ecse be set such that

         A20: csev in Ecse and

         A21: Ecse in E by TARSKI:def 4;

        reconsider Ecse as Subset of ( Vertices MG) by A21;

         A22:

        now

          assume

           A23: EuG <> Ecse;

          set sf = (Ecse /\ S);

          

           A24: Ecse meets S by A21, A6, A7, A12, MYCIELSK: 9;

          

           A25: sf in C by A24, A21;

          now

            assume se = sf;

            then sev in EuG & sev in Ecse by A17, XBOOLE_0:def 4;

            then EuG meets Ecse by XBOOLE_0: 3;

            hence contradiction by A23, A21, A15, EQREL_1:def 4;

          end;

          then

          consider w be Element of ( Vertices G) such that

           A26: w in ( Adjacent sev) and

           A27: w in sf by A25, A18;

          

           A28: w in Ecse by A27, XBOOLE_0:def 4;

          

           A29: Ecse is stable by A21, Def20;

          

           A30: csev <> w by A19, Th1;

           {sev, w} in ( Edges G) by A26, Def8;

          then {csev, w} in MG by Th102;

          hence contradiction by A29, A30, A28, A20;

        end;

        

         A31: {csev, uG} in ( Edges MG) by A19, Th90;

        

         A32: csev <> uG by Th2;

        EuG is stable by A15, Def20;

        hence contradiction by A32, A31, A22, A20, A14;

      end;

      hence thesis by A2, XXREAL_0: 1;

    end;

    definition

      let G be SimpleGraph;

      :: SCMYCIEL:def26

      func MycielskianSeq G -> ManySortedSet of NAT means

      : Def26: ex myc be Function st it = myc & (myc . 0 ) = G & for k be Nat, G be SimpleGraph st G = (myc . k) holds (myc . (k + 1)) = ( Mycielskian G);

      existence

      proof

        defpred P[ Nat, set, set] means ($2 is SimpleGraph implies ex G be SimpleGraph st $2 = G & $3 = ( Mycielskian G)) & ( not $2 is SimpleGraph implies $3 = $2);

        

         A1: for n be Nat, x be set holds ex y be set st P[n, x, y]

        proof

          let n be Nat, x be set;

          per cases ;

            suppose x is SimpleGraph;

            then

            reconsider G = x as SimpleGraph;

            ( Mycielskian G) = ( Mycielskian G);

            hence ex y be set st P[n, x, y];

          end;

            suppose not x is SimpleGraph;

            hence thesis;

          end;

        end;

        consider f be Function such that

         A2: ( dom f) = NAT and

         A3: (f . 0 ) = G and

         A4: for n be Nat holds P[n, (f . n), (f . (n + 1))] from RECDEF_1:sch 1( A1);

        reconsider f as NAT -defined Function by A2, RELAT_1:def 18;

        reconsider f as ManySortedSet of NAT by A2, PARTFUN1:def 2;

        take f;

        take myc = f;

        thus f = myc;

        thus (myc . 0 ) = G by A3;

        let k be Nat, G be SimpleGraph such that

         A5: G = (myc . k);

        ex G be SimpleGraph st (f . k) = G & (f . (k + 1)) = ( Mycielskian G) by A4, A5;

        hence (myc . (k + 1)) = ( Mycielskian G) by A5;

      end;

      uniqueness

      proof

        let it1,it2 be ManySortedSet of NAT ;

        given myc1 be Function such that

         A6: it1 = myc1 and

         A7: (myc1 . 0 ) = G and

         A8: for k be Nat, G be SimpleGraph st G = (myc1 . k) holds (myc1 . (k + 1)) = ( Mycielskian G);

        given myc2 be Function such that

         A9: it2 = myc2 and

         A10: (myc2 . 0 ) = G and

         A11: for k be Nat, G be SimpleGraph st G = (myc2 . k) holds (myc2 . (k + 1)) = ( Mycielskian G);

        defpred P[ Nat] means (myc1 . $1) is SimpleGraph & (myc1 . $1) = (myc2 . $1);

        

         A12: P[ 0 ] by A7, A10;

        

         A13: for k be Nat st P[k] holds P[(k + 1)]

        proof

          let k be Nat;

          assume

           A14: P[k];

          reconsider H = (myc1 . k) as SimpleGraph by A14;

          (myc1 . (k + 1)) = ( Mycielskian H) by A8;

          hence (myc1 . (k + 1)) is SimpleGraph;

          

          thus (myc1 . (k + 1)) = ( Mycielskian H) by A8

          .= (myc2 . (k + 1)) by A14, A11;

        end;

        

         A15: for k be Nat holds P[k] from NAT_1:sch 2( A12, A13);

        for i be object st i in NAT holds (myc1 . i) = (myc2 . i) by A15;

        hence it1 = it2 by A6, A9, PBOOLE: 3;

      end;

    end

    theorem :: SCMYCIEL:113

    

     Th113: for G be SimpleGraph holds (( MycielskianSeq G) . 0 ) = G

    proof

      let G be SimpleGraph;

      consider myc be Function such that

       A1: ( MycielskianSeq G) = myc and

       A2: (myc . 0 ) = G and for k be Nat, G be SimpleGraph st G = (myc . k) holds (myc . (k + 1)) = ( Mycielskian G) by Def26;

      thus (( MycielskianSeq G) . 0 ) = G by A1, A2;

    end;

    theorem :: SCMYCIEL:114

    

     Th114: for G be SimpleGraph, n be Nat holds (( MycielskianSeq G) . n) is SimpleGraph

    proof

      let G be SimpleGraph, n be Nat;

      set MG = ( MycielskianSeq G);

      defpred P[ Nat] means (MG . $1) is SimpleGraph;

      consider myc be Function such that

       A1: ( MycielskianSeq G) = myc and

       A2: (myc . 0 ) = G and

       A3: for k be Nat, G be SimpleGraph st G = (myc . k) holds (myc . (k + 1)) = ( Mycielskian G) by Def26;

      

       A4: P[ 0 ] by A1, A2;

      

       A5: for k be Nat st P[k] holds P[(k + 1)]

      proof

        let k be Nat;

        assume P[k];

        then

        reconsider H = (MG . k) as SimpleGraph;

        (MG . (k + 1)) = ( Mycielskian H) by A1, A3;

        hence P[(k + 1)];

      end;

      for k be Nat holds P[k] from NAT_1:sch 2( A4, A5);

      hence thesis;

    end;

    registration

      let G be SimpleGraph, n be Nat;

      cluster (( MycielskianSeq G) . n) -> SimpleGraph-like;

      coherence by Th114;

    end

    theorem :: SCMYCIEL:115

    

     Th115: for G,H be SimpleGraph, n be Nat holds (( MycielskianSeq G) . (n + 1)) = ( Mycielskian (( MycielskianSeq G) . n))

    proof

      let G,H be SimpleGraph, n be Nat;

      set H = (( MycielskianSeq G) . n);

      consider myc be Function such that

       A1: ( MycielskianSeq G) = myc and (myc . 0 ) = G and

       A2: for k be Nat, G be SimpleGraph st G = (myc . k) holds (myc . (k + 1)) = ( Mycielskian G) by Def26;

      thus (( MycielskianSeq G) . (n + 1)) = ( Mycielskian H) by A1, A2;

    end;

    registration

      let G be with_finite_clique# SimpleGraph, n be Nat;

      cluster (( MycielskianSeq G) . n) -> with_finite_clique#;

      coherence

      proof

        set MG = ( MycielskianSeq G);

        defpred P[ Nat] means (MG . $1) is with_finite_clique#;

        consider myc be Function such that

         A1: ( MycielskianSeq G) = myc and

         A2: (myc . 0 ) = G and

         A3: for k be Nat, G be SimpleGraph st G = (myc . k) holds (myc . (k + 1)) = ( Mycielskian G) by Def26;

        

         A4: P[ 0 ] by A1, A2;

        

         A5: for k be Nat st P[k] holds P[(k + 1)]

        proof

          let k be Nat;

          assume P[k];

          then

          reconsider H = (MG . k) as with_finite_clique# SimpleGraph;

          (MG . (k + 1)) = ( Mycielskian H) by A1, A3;

          hence P[(k + 1)];

        end;

        for k be Nat holds P[k] from NAT_1:sch 2( A4, A5);

        hence thesis;

      end;

    end

    registration

      let G be finitely_colorable SimpleGraph, n be Nat;

      cluster (( MycielskianSeq G) . n) -> finitely_colorable;

      coherence

      proof

        set MG = ( MycielskianSeq G);

        defpred P[ Nat] means (MG . $1) is finitely_colorable;

        consider myc be Function such that

         A1: ( MycielskianSeq G) = myc and

         A2: (myc . 0 ) = G and

         A3: for k be Nat, G be SimpleGraph st G = (myc . k) holds (myc . (k + 1)) = ( Mycielskian G) by Def26;

        

         A4: P[ 0 ] by A1, A2;

        

         A5: for k be Nat st P[k] holds P[(k + 1)]

        proof

          let k be Nat;

          assume P[k];

          then

          reconsider H = (MG . k) as finitely_colorable SimpleGraph;

          (MG . (k + 1)) = ( Mycielskian H) by A1, A3;

          hence P[(k + 1)];

        end;

        for k be Nat holds P[k] from NAT_1:sch 2( A4, A5);

        hence thesis;

      end;

    end

    registration

      let G be finite SimpleGraph, n be Nat;

      cluster (( MycielskianSeq G) . n) -> finite;

      coherence

      proof

        defpred P[ Nat] means (( MycielskianSeq G) . $1) is finite;

        

         A1: P[ 0 ] by Th113;

         A2:

        now

          let k be Nat;

          assume

           A3: P[k];

          set H = (( MycielskianSeq G) . k);

          (( MycielskianSeq G) . (k + 1)) = ( Mycielskian H) by Th115;

          hence P[(k + 1)] by A3;

        end;

        for k be Nat holds P[k] from NAT_1:sch 2( A1, A2);

        hence thesis;

      end;

    end

    theorem :: SCMYCIEL:116

    

     Th116: for G be finite SimpleGraph, n be Nat holds ( order (( MycielskianSeq G) . n)) = ((((2 |^ n) * ( order G)) + (2 |^ n)) - 1)

    proof

      let G be finite SimpleGraph, n be Nat;

      set g = ( order G);

      set MG = ( MycielskianSeq G);

      defpred P[ Nat] means ( order (MG . $1)) = ((((2 |^ $1) * g) + (2 |^ $1)) - 1);

      

       A1: P[ 0 ]

      proof

        

        thus ( order (MG . 0 )) = ((g + 1) - 1) by Th113

        .= (((1 * g) + (2 |^ 0 )) - 1) by NEWTON: 4

        .= ((((2 |^ 0 ) * g) + (2 |^ 0 )) - 1) by NEWTON: 4;

      end;

      

       A2: for n be Nat st P[n] holds P[(n + 1)]

      proof

        let n be Nat such that

         A3: P[n];

        

        thus ( order (MG . (n + 1))) = ( order ( Mycielskian (MG . n))) by Th115

        .= ((2 * ((((2 |^ n) * g) + (2 |^ n)) - 1)) + 1) by A3, Th89

        .= (((((2 * (2 |^ n)) * g) + (2 * (2 |^ n))) - (2 * 1)) + 1)

        .= (((((2 |^ (n + 1)) * g) + (2 * (2 |^ n))) - (2 * 1)) + 1) by NEWTON: 6

        .= (((((2 |^ (n + 1)) * g) + (2 |^ (n + 1))) - 2) + 1) by NEWTON: 6

        .= ((((2 |^ (n + 1)) * g) + (2 |^ (n + 1))) - 1);

      end;

      for n be Nat holds P[n] from NAT_1:sch 2( A1, A2);

      hence ( order (MG . n)) = ((((2 |^ n) * g) + (2 |^ n)) - 1);

    end;

    theorem :: SCMYCIEL:117

    for G be finite SimpleGraph, n be Nat holds ( size (( MycielskianSeq G) . n)) = ((((3 |^ n) * ( size G)) + (((3 |^ n) - (2 |^ n)) * ( order G))) + ((n + 1) block 3))

    proof

      let G be finite SimpleGraph, n be Nat;

      set g = ( order G);

      set s = ( size G);

      set MG = ( MycielskianSeq G);

      defpred P[ Nat] means ( size (MG . $1)) = ((((3 |^ $1) * s) + (((3 |^ $1) - (2 |^ $1)) * g)) + (($1 + 1) block 3));

      

       A1: P[ 0 ]

      proof

        

        thus ( size (MG . 0 )) = (((1 * s) + ( 0 * g)) + 0 ) by Th113

        .= ((((3 |^ 0 ) * s) + ((1 - 1) * g)) + 0 ) by NEWTON: 4

        .= ((((3 |^ 0 ) * s) + (((3 |^ 0 ) - 1) * g)) + 0 ) by NEWTON: 4

        .= ((((3 |^ 0 ) * s) + (((3 |^ 0 ) - (2 |^ 0 )) * g)) + 0 ) by NEWTON: 4

        .= ((((3 |^ 0 ) * s) + (((3 |^ 0 ) - (2 |^ 0 )) * g)) + (( 0 + 1) block 3)) by STIRL2_1: 29;

      end;

      

       A2: for n be Nat st P[n] holds P[(n + 1)]

      proof

        let n be Nat such that

         A3: P[n];

        

         A4: (n + 1) >= ( 0 + 1) by XREAL_1: 6;

        

         A5: ((1 / 2) * ((2 |^ (n + 1)) - 2)) = ((1 / 2) * ((2 * (2 |^ n)) - (2 * 1))) by NEWTON: 6

        .= ((2 |^ n) - 1);

        

        thus ( size (MG . (n + 1))) = ( size ( Mycielskian (MG . n))) by Th115

        .= ((3 * ((((3 |^ n) * s) + (((3 |^ n) - (2 |^ n)) * g)) + ((n + 1) block 3))) + ( order (MG . n))) by A3, Th92

        .= (((((3 * (3 |^ n)) * s) + ((3 * ((3 |^ n) - (2 |^ n))) * g)) + (3 * ((n + 1) block 3))) + ( order (MG . n)))

        .= (((((3 |^ (n + 1)) * s) + ((3 * ((3 |^ n) - (2 |^ n))) * g)) + (3 * ((n + 1) block 3))) + ( order (MG . n))) by NEWTON: 6

        .= (((((3 |^ (n + 1)) * s) + ((3 * ((3 |^ n) - (2 |^ n))) * g)) + (3 * ((n + 1) block 3))) + ((((2 |^ n) * g) + (2 |^ n)) - 1)) by Th116

        .= (((((3 |^ (n + 1)) * s) + ((3 * ((3 |^ n) - (2 |^ n))) * g)) + ((2 |^ n) * g)) + ((3 * ((n + 1) block 3)) + ((2 |^ n) - 1)))

        .= (((((3 |^ (n + 1)) * s) + ((3 * ((3 |^ n) - (2 |^ n))) * g)) + ((2 |^ n) * g)) + (((2 + 1) * ((n + 1) block (2 + 1))) + ((n + 1) block 2))) by A5, A4, STIRL2_1: 47

        .= ((((3 |^ (n + 1)) * s) + ((((3 * (3 |^ n)) * g) - (((2 * (2 |^ n)) * g) + ((2 |^ n) * g))) + ((2 |^ n) * g))) + (((n + 1) + 1) block 3)) by STIRL2_1: 46

        .= ((((3 |^ (n + 1)) * s) + ((((3 * (3 |^ n)) * g) - (((2 |^ (n + 1)) * g) + ((2 |^ n) * g))) + ((2 |^ n) * g))) + (((n + 1) + 1) block 3)) by NEWTON: 6

        .= ((((3 |^ (n + 1)) * s) + (((((3 * (3 |^ n)) * g) - ((2 |^ (n + 1)) * g)) - ((2 |^ n) * g)) + ((2 |^ n) * g))) + (((n + 1) + 1) block 3))

        .= ((((3 |^ (n + 1)) * s) + (((((3 |^ (n + 1)) * g) - ((2 |^ (n + 1)) * g)) - ((2 |^ n) * g)) + ((2 |^ n) * g))) + (((n + 1) + 1) block 3)) by NEWTON: 6

        .= ((((3 |^ (n + 1)) * s) + (((3 |^ (n + 1)) - (2 |^ (n + 1))) * g)) + (((n + 1) + 1) block 3));

      end;

      for n be Nat holds P[n] from NAT_1:sch 2( A1, A2);

      hence ( size (MG . n)) = ((((3 |^ n) * s) + (((3 |^ n) - (2 |^ n)) * g)) + ((n + 1) block 3));

    end;

    theorem :: SCMYCIEL:118

    

     Th118: for n be Nat holds ( clique# (( MycielskianSeq ( CompleteSGraph 2)) . n)) = 2 & ( chromatic# (( MycielskianSeq ( CompleteSGraph 2)) . n)) = (n + 2)

    proof

      

       A1: ( card 2) = 2;

      set P2 = ( CompleteSGraph 2);

      defpred P[ Nat] means ( clique# (( MycielskianSeq P2) . $1)) = 2 & ( chromatic# (( MycielskianSeq P2) . $1)) = ($1 + 2);

      

       A2: ( clique# (( MycielskianSeq P2) . 0 )) = ( clique# P2) by Th113

      .= 2 by A1, Th59;

      ( chromatic# (( MycielskianSeq P2) . 0 )) = ( chromatic# P2) by Th113

      .= ( 0 + 2) by A1, Th69;

      then

       A3: P[ 0 ] by A2;

      

       A4: for n be Nat st P[n] holds P[(n + 1)]

      proof

        let n be Nat;

        assume

         A5: P[n];

        

        thus ( clique# (( MycielskianSeq P2) . (n + 1))) = ( clique# ( Mycielskian (( MycielskianSeq P2) . n))) by Th115

        .= 2 by Th110, A5;

        

        thus ( chromatic# (( MycielskianSeq P2) . (n + 1))) = ( chromatic# ( Mycielskian (( MycielskianSeq P2) . n))) by Th115

        .= (1 + (n + 2)) by A5, Th112

        .= ((n + 1) + 2);

      end;

      for n be Nat holds P[n] from NAT_1:sch 2( A3, A4);

      hence thesis;

    end;

    theorem :: SCMYCIEL:119

    for n be Nat holds ex G be finite SimpleGraph st ( clique# G) = 2 & ( chromatic# G) > n

    proof

      let n be Nat;

      set P2 = ( CompleteSGraph 2);

      reconsider G = (( MycielskianSeq P2) . n) as finite SimpleGraph;

      take G;

      ((n + 1) + 1) > (n + 1) & (n + 1) > n by NAT_1: 13;

      then (n + 2) > n by XXREAL_0: 2;

      hence thesis by Th118;

    end;

    theorem :: SCMYCIEL:120

    for n be Nat holds ex G be finite SimpleGraph st ( stability# G) = 2 & ( cliquecover# G) > n

    proof

      let n be Nat;

      set G = (( MycielskianSeq ( CompleteSGraph 2)) . n);

      ((n + 1) + 1) > (n + 1) & (n + 1) > n by NAT_1: 13;

      then (n + 2) > n by XXREAL_0: 2;

      then

       A1: ( clique# G) = 2 & ( chromatic# G) > n by Th118;

      take S = ( Complement G);

      thus ( stability# S) = 2 by A1, Th76;

      thus ( cliquecover# S) > n by A1, Th82;

    end;