series_5.miz



    begin

    reserve a,b,c,d for positive Real,

m,u,w,x,y,z for Real,

n,k for Nat,

s,s1 for Real_Sequence;

    

     Lm1: ((x |^ 3) - (y |^ 3)) = ((x - y) * (((x ^2 ) + (x * y)) + (y ^2 )))

    proof

      ((x - y) * (((x ^2 ) + (x * y)) + (y ^2 ))) = ((((x * (x ^2 )) + ((x * x) * y)) + (x * (y ^2 ))) - (((y * (x ^2 )) + ((y * x) * y)) + (y * (y ^2 ))))

      .= ((((x * (x |^ 2)) + ((x * x) * y)) + (x * (y ^2 ))) - (((y * (x ^2 )) + ((y * x) * y)) + (y * (y ^2 )))) by NEWTON: 81

      .= ((((x |^ (2 + 1)) + ((x * x) * y)) + (x * (y ^2 ))) - (((y * (x ^2 )) + ((y * x) * y)) + (y * (y ^2 )))) by NEWTON: 6

      .= ((((x |^ 3) + (x * (y * y))) - ((y * x) * y)) - (y * (y ^2 )))

      .= ((x |^ 3) - ((y |^ 2) * y)) by NEWTON: 81

      .= ((x |^ 3) - (y |^ (2 + 1))) by NEWTON: 6;

      hence thesis;

    end;

    

     Lm2: (2 / ((1 / a) + (1 / b))) = ((2 * (a * b)) / (a + b))

    proof

      (1 / ((1 / a) + (1 / b))) = (1 / (((1 * b) + (1 * a)) / (a * b))) by XCMPLX_1: 116

      .= (((a * b) * 1) / (b + a)) by XCMPLX_1: 77

      .= ((a * b) / (b + a));

      then ((2 * 1) / ((1 / a) + (1 / b))) = (2 * ((a * b) / (b + a))) by XCMPLX_1: 74;

      hence thesis by XCMPLX_1: 74;

    end;

    

     Lm3: (((1 / x) * (1 / y)) * (1 / z)) = (1 / ((x * y) * z))

    proof

      (((1 / x) * (1 / y)) * (1 / z)) = ((1 / (x * y)) * (1 / z)) by XCMPLX_1: 102

      .= (1 / ((x * y) * z)) by XCMPLX_1: 102;

      hence thesis;

    end;

    

     Lm4: for b be Real holds ((a / c) to_power ( - b)) = ((c / a) to_power b)

    proof

      let b be Real;

      ((a / c) to_power ( - b)) = ((1 / (a / c)) to_power b) by POWER: 32

      .= (((c / a) * 1) to_power b) by XCMPLX_1: 80

      .= ((c / a) to_power b);

      hence thesis;

    end;

    

     Lm5: (((( sqrt (a * b)) ^2 ) + (( sqrt (c * d)) ^2 )) * ((( sqrt (a * c)) ^2 ) + (( sqrt (b * d)) ^2 ))) >= ((b * c) * ((a + d) ^2 ))

    proof

      (((a * (b ^2 )) * d) + (((c ^2 ) * d) * a)) >= (2 * ( sqrt (((a * (b ^2 )) * d) * (((c ^2 ) * d) * a)))) by SIN_COS2: 1;

      then ((((a * (b ^2 )) * d) + (((c ^2 ) * d) * a)) + ((((a ^2 ) * b) * c) + ((b * c) * (d ^2 )))) >= ((2 * ( sqrt ((((a ^2 ) * (b ^2 )) * (c ^2 )) * (d ^2 )))) + ((((a ^2 ) * b) * c) + ((b * c) * (d ^2 )))) by XREAL_1: 7;

      then (((((a * (b ^2 )) * d) + (((c ^2 ) * d) * a)) + (((a ^2 ) * b) * c)) + ((b * c) * (d ^2 ))) >= (((2 * ( sqrt (((a * b) * (c * d)) ^2 ))) + (((a ^2 ) * b) * c)) + ((b * c) * (d ^2 )));

      then

       A1: (((((a * (b ^2 )) * d) + (((c ^2 ) * d) * a)) + (((a ^2 ) * b) * c)) + ((b * c) * (d ^2 ))) >= (((2 * (((a * b) * c) * d)) + (((a ^2 ) * b) * c)) + ((b * c) * (d ^2 ))) by SQUARE_1: 22;

      (((( sqrt (a * b)) ^2 ) + (( sqrt (c * d)) ^2 )) * ((( sqrt (a * c)) ^2 ) + (( sqrt (b * d)) ^2 ))) = (((a * b) + (( sqrt (c * d)) ^2 )) * ((( sqrt (a * c)) ^2 ) + (( sqrt (b * d)) ^2 ))) by SQUARE_1:def 2

      .= (((a * b) + (c * d)) * ((( sqrt (a * c)) ^2 ) + (( sqrt (b * d)) ^2 ))) by SQUARE_1:def 2

      .= (((a * b) + (c * d)) * ((a * c) + (( sqrt (b * d)) ^2 ))) by SQUARE_1:def 2

      .= (((a * b) + (c * d)) * ((a * c) + (b * d))) by SQUARE_1:def 2

      .= ((((((a ^2 ) * b) * c) + ((a * (b ^2 )) * d)) + (((c ^2 ) * d) * a)) + ((b * c) * (d ^2 )));

      hence thesis by A1;

    end;

    

     Lm6: (((x + y) + z) ^2 ) = ((((((x ^2 ) + (y ^2 )) + (z ^2 )) + ((2 * x) * y)) + ((2 * y) * z)) + ((2 * z) * x));

    

     Lm7: |.x.| < 1 implies (x ^2 ) < 1

    proof

      assume |.x.| < 1;

      then ( |.x.| ^2 ) < (1 ^2 ) by SQUARE_1: 16;

      hence thesis by COMPLEX1: 75;

    end;

    

     Lm8: (x ^2 ) < 1 implies |.x.| < 1

    proof

      assume (x ^2 ) < 1;

      then ( sqrt (x ^2 )) < 1 by SQUARE_1: 18, SQUARE_1: 27, XREAL_1: 63;

      hence thesis by COMPLEX1: 72;

    end;

    

     Lm9: ((((((((2 * (a ^2 )) * ( sqrt (b * c))) * 2) * (b ^2 )) * ( sqrt (a * c))) * 2) * (c ^2 )) * ( sqrt (a * b))) = ((((2 * a) * b) * c) |^ 3)

    proof

      ((((((((2 * (a ^2 )) * ( sqrt (b * c))) * 2) * (b ^2 )) * ( sqrt (a * c))) * 2) * (c ^2 )) * ( sqrt (a * b))) = ((((((((2 ^2 ) * 2) * (a ^2 )) * (b ^2 )) * (c ^2 )) * ( sqrt (b * c))) * ( sqrt (a * c))) * ( sqrt (a * b)))

      .= ((((((((2 |^ 2) * 2) * (a ^2 )) * (b ^2 )) * (c ^2 )) * ( sqrt (b * c))) * ( sqrt (a * c))) * ( sqrt (a * b))) by NEWTON: 81

      .= (((((((2 |^ (2 + 1)) * (a ^2 )) * (b ^2 )) * (c ^2 )) * ( sqrt (b * c))) * ( sqrt (a * c))) * ( sqrt (a * b))) by NEWTON: 6

      .= ((((((2 |^ 3) * (a ^2 )) * (b ^2 )) * (c ^2 )) * (( sqrt (b * c)) * ( sqrt (a * c)))) * ( sqrt (a * b)))

      .= ((((((2 |^ 3) * (a ^2 )) * (b ^2 )) * (c ^2 )) * ( sqrt ((b * c) * (a * c)))) * ( sqrt (a * b))) by SQUARE_1: 29

      .= (((((2 |^ 3) * (a ^2 )) * (b ^2 )) * (c ^2 )) * (( sqrt (((b * c) * a) * c)) * ( sqrt (a * b))))

      .= (((((2 |^ 3) * (a ^2 )) * (b ^2 )) * (c ^2 )) * ( sqrt ((((b * c) * a) * c) * (a * b)))) by SQUARE_1: 29

      .= (((((2 |^ 3) * (a ^2 )) * (b ^2 )) * (c ^2 )) * ( sqrt (((a * b) * c) ^2 )))

      .= (((((2 |^ 3) * (a ^2 )) * (b ^2 )) * (c ^2 )) * ((a * b) * c)) by SQUARE_1: 22

      .= ((((2 |^ 3) * ((a ^2 ) * a)) * ((b ^2 ) * b)) * ((c ^2 ) * c))

      .= ((((2 |^ 3) * ((a |^ 2) * a)) * ((b ^2 ) * b)) * ((c ^2 ) * c)) by NEWTON: 81

      .= ((((2 |^ 3) * ((a |^ 2) * a)) * ((b |^ 2) * b)) * ((c ^2 ) * c)) by NEWTON: 81

      .= ((((2 |^ 3) * ((a |^ 2) * a)) * ((b |^ 2) * b)) * ((c |^ 2) * c)) by NEWTON: 81

      .= ((((2 |^ 3) * (a |^ (2 + 1))) * ((b |^ 2) * b)) * ((c |^ 2) * c)) by NEWTON: 6

      .= ((((2 |^ 3) * (a |^ 3)) * (b |^ 3)) * ((c |^ 2) * c)) by NEWTON: 6

      .= ((((2 |^ 3) * (a |^ 3)) * (b |^ 3)) * (c |^ (2 + 1))) by NEWTON: 6

      .= ((((2 * a) |^ 3) * (b |^ 3)) * (c |^ 3)) by NEWTON: 7

      .= ((((2 * a) * b) |^ 3) * (c |^ 3)) by NEWTON: 7

      .= ((((2 * a) * b) * c) |^ 3) by NEWTON: 7;

      hence thesis;

    end;

    

     Lm10: ( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) = ((1 / 2) * ( sqrt ((4 * ((a ^2 ) + (b ^2 ))) + ((4 * a) * b))))

    proof

      

       A1: (((1 / 2) * ( sqrt ((4 * ((a ^2 ) + (b ^2 ))) + ((4 * a) * b)))) ^2 ) = (((1 / 2) * (1 / 2)) * (( sqrt ((4 * ((a ^2 ) + (b ^2 ))) + ((4 * a) * b))) ^2 ))

      .= ((1 / 4) * ((4 * ((a ^2 ) + (b ^2 ))) + ((4 * a) * b))) by SQUARE_1:def 2

      .= (( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) ^2 ) by SQUARE_1:def 2;

      

       A2: ( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) > 0 by SQUARE_1: 25;

      ( sqrt ((4 * ((a ^2 ) + (b ^2 ))) + ((4 * a) * b))) > 0 by SQUARE_1: 25;

      then ( sqrt (( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) ^2 )) = ((1 / 2) * ( sqrt ((4 * ((a ^2 ) + (b ^2 ))) + ((4 * a) * b)))) by A1, SQUARE_1: 22;

      hence thesis by A2, SQUARE_1: 22;

    end;

    

     Lm11: ( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) >= (((1 / 2) * ( sqrt 3)) * (a + b))

    proof

      ((a ^2 ) + (b ^2 )) >= ((2 * a) * b) by SERIES_3: 6;

      then (((a ^2 ) + (b ^2 )) + ((3 * ((a ^2 ) + (b ^2 ))) + ((4 * a) * b))) >= (((2 * a) * b) + ((3 * ((a ^2 ) + (b ^2 ))) + ((4 * a) * b))) by XREAL_1: 6;

      then ( sqrt ((4 * ((a ^2 ) + (b ^2 ))) + ((4 * a) * b))) >= ( sqrt ((3 * ((a ^2 ) + (b ^2 ))) + ((6 * a) * b))) by SQUARE_1: 26;

      then

       A1: ((1 / 2) * ( sqrt ((4 * ((a ^2 ) + (b ^2 ))) + ((4 * a) * b)))) >= ((1 / 2) * ( sqrt ((3 * ((a ^2 ) + (b ^2 ))) + ((6 * a) * b)))) by XREAL_1: 64;

      ( sqrt ((3 * ((a ^2 ) + (b ^2 ))) + ((6 * a) * b))) = ( sqrt (3 * ((a + b) ^2 )));

      

      then ( sqrt ((3 * ((a ^2 ) + (b ^2 ))) + ((6 * a) * b))) = (( sqrt 3) * ( sqrt ((a + b) ^2 ))) by SQUARE_1: 29

      .= (( sqrt 3) * (a + b)) by SQUARE_1: 22;

      hence thesis by A1, Lm10;

    end;

    

     Lm12: ( sqrt ((((a ^2 ) + (a * b)) + (b ^2 )) / 3)) <= ( sqrt (((a ^2 ) + (b ^2 )) / 2))

    proof

      (((a ^2 ) + (b ^2 )) / 2) >= (a * b) by SERIES_3: 7;

      then ((((a ^2 ) + (b ^2 )) / 2) + ((a ^2 ) + (b ^2 ))) >= ((a * b) + ((a ^2 ) + (b ^2 ))) by XREAL_1: 6;

      then ((((a ^2 ) + (b ^2 )) + (((a ^2 ) + (b ^2 )) / 2)) / 3) >= ((((a ^2 ) + (a * b)) + (b ^2 )) / 3) by XREAL_1: 72;

      hence thesis by SQUARE_1: 26;

    end;

    

     Lm13: ((((b * c) / a) ^2 ) + (((c * a) / b) ^2 )) >= (2 * (c ^2 ))

    proof

      ((((b * c) / a) ^2 ) + (((c * a) / b) ^2 )) >= ((2 * ((b * c) / a)) * ((c * a) / b)) by SERIES_3: 6;

      then ((((b * c) / a) ^2 ) + (((c * a) / b) ^2 )) >= (2 * (((b * c) / a) * ((c * a) / b)));

      then ((((b * c) / a) ^2 ) + (((c * a) / b) ^2 )) >= (2 * (((b * c) * (c * a)) / (a * b))) by XCMPLX_1: 76;

      then ((((b * c) / a) ^2 ) + (((c * a) / b) ^2 )) >= (2 * (((b * a) * (c * c)) / ((a * b) * 1)));

      then ((((b * c) / a) ^2 ) + (((c * a) / b) ^2 )) >= (2 * ((c * c) / 1)) by XCMPLX_1: 91;

      hence thesis;

    end;

    

     Lm14: (((b * c) / a) * ((c * a) / b)) = (c ^2 )

    proof

      (((b * c) / a) * ((c * a) / b)) = (((b * c) * (c * a)) / (a * b)) by XCMPLX_1: 76

      .= (((c * c) * (a * b)) / (a * b))

      .= ((c * c) * ((a * b) / (a * b))) by XCMPLX_1: 74

      .= ((c * c) * 1) by XCMPLX_1: 60;

      hence thesis;

    end;

    

     Lm15: ((((2 * ((b * c) / a)) * ((c * a) / b)) + ((2 * ((b * c) / a)) * ((a * b) / c))) + ((2 * ((c * a) / b)) * ((a * b) / c))) = (2 * (((a ^2 ) + (b ^2 )) + (c ^2 )))

    proof

      ((((2 * ((b * c) / a)) * ((c * a) / b)) + ((2 * ((b * c) / a)) * ((a * b) / c))) + ((2 * ((c * a) / b)) * ((a * b) / c))) = (((2 * (((b * c) / a) * ((c * a) / b))) + ((2 * ((b * c) / a)) * ((a * b) / c))) + ((2 * ((c * a) / b)) * ((a * b) / c)))

      .= (((2 * (c ^2 )) + (2 * (((b * c) / a) * ((a * b) / c)))) + ((2 * ((c * a) / b)) * ((a * b) / c))) by Lm14

      .= (((2 * (c ^2 )) + (2 * (b ^2 ))) + (2 * (((c * a) / b) * ((a * b) / c)))) by Lm14

      .= (((2 * (c ^2 )) + (2 * (b ^2 ))) + (2 * (a ^2 ))) by Lm14

      .= (2 * (((c ^2 ) + (b ^2 )) + (a ^2 )));

      hence thesis;

    end;

    

     Lm16: (((((b * c) / a) + ((c * a) / b)) + ((a * b) / c)) ^2 ) = ((((((c * a) / b) ^2 ) + (((a * b) / c) ^2 )) + (((b * c) / a) ^2 )) + (2 * (((a ^2 ) + (b ^2 )) + (c ^2 ))))

    proof

      (((((b * c) / a) + ((c * a) / b)) + ((a * b) / c)) ^2 ) = ((((((b * c) / a) ^2 ) + (((c * a) / b) ^2 )) + (((a * b) / c) ^2 )) + ((((2 * ((b * c) / a)) * ((c * a) / b)) + ((2 * ((b * c) / a)) * ((a * b) / c))) + ((2 * ((c * a) / b)) * ((a * b) / c))))

      .= ((((((b * c) / a) ^2 ) + (((c * a) / b) ^2 )) + (((a * b) / c) ^2 )) + (2 * (((a ^2 ) + (b ^2 )) + (c ^2 )))) by Lm15;

      hence thesis;

    end;

    

     Lm17: ((a + b) + c) = 1 implies ((1 / a) - 1) = ((b + c) / a)

    proof

      assume ((a + b) + c) = 1;

      

      then ((1 / a) - 1) = (((a + (b + c)) / a) - 1)

      .= (((a / a) + ((b + c) / a)) - 1) by XCMPLX_1: 62

      .= ((1 + ((b + c) / a)) - 1) by XCMPLX_1: 60;

      hence thesis;

    end;

    

     Lm18: ((((2 * ( sqrt (b * c))) / a) * ((2 * ( sqrt (a * c))) / b)) * ((2 * ( sqrt (a * b))) / c)) = 8

    proof

      ((((2 * ( sqrt (b * c))) / a) * ((2 * ( sqrt (a * c))) / b)) * ((2 * ( sqrt (a * b))) / c)) = ((((2 * ( sqrt (b * c))) * (2 * ( sqrt (a * c)))) / (a * b)) * ((2 * ( sqrt (a * b))) / c)) by XCMPLX_1: 76

      .= (((4 * (( sqrt (b * c)) * ( sqrt (a * c)))) / (a * b)) * ((2 * ( sqrt (a * b))) / c))

      .= (((4 * ( sqrt ((b * c) * (a * c)))) / (a * b)) * ((2 * ( sqrt (a * b))) / c)) by SQUARE_1: 29

      .= (((4 * ( sqrt ((b * a) * (c ^2 )))) * (2 * ( sqrt (a * b)))) / ((a * b) * c)) by XCMPLX_1: 76

      .= ((8 * (( sqrt ((b * a) * (c ^2 ))) * ( sqrt (a * b)))) / ((a * b) * c))

      .= ((8 * ( sqrt (((b * a) * (c ^2 )) * (a * b)))) / ((a * b) * c)) by SQUARE_1: 29

      .= ((8 * ( sqrt (((a * b) * c) ^2 ))) / ((a * b) * c))

      .= ((8 * ((a * b) * c)) / ((a * b) * c)) by SQUARE_1: 22

      .= (8 * (((a * b) * c) / ((a * b) * c))) by XCMPLX_1: 74

      .= (8 * 1) by XCMPLX_1: 60;

      hence thesis;

    end;

    

     Lm19: ((a + b) + c) = 1 implies (1 + (1 / a)) = (2 + ((b + c) / a))

    proof

      assume ((a + b) + c) = 1;

      

      then (1 + (1 / a)) = (1 + ((a + (b + c)) / a))

      .= (1 + ((a / a) + ((b + c) / a))) by XCMPLX_1: 62

      .= ((1 + (a / a)) + ((b + c) / a))

      .= ((1 + 1) + ((b + c) / a)) by XCMPLX_1: 60;

      hence thesis;

    end;

    

     Lm20: ((1 + (( sqrt (a * c)) / b)) * (( sqrt (a * b)) / c)) = ((( sqrt (a * b)) / c) + (a / ( sqrt (b * c))))

    proof

      

       A1: ( sqrt (b * c)) > 0 by SQUARE_1: 25;

      ((1 + (( sqrt (a * c)) / b)) * (( sqrt (a * b)) / c)) = ((1 * (( sqrt (a * b)) / c)) + ((( sqrt (a * c)) / b) * (( sqrt (a * b)) / c)))

      .= ((( sqrt (a * b)) / c) + ((( sqrt (a * c)) * ( sqrt (a * b))) / (b * c))) by XCMPLX_1: 76

      .= ((( sqrt (a * b)) / c) + (( sqrt ((a * c) * (a * b))) / (b * c))) by SQUARE_1: 29

      .= ((( sqrt (a * b)) / c) + (( sqrt ((a ^2 ) * (c * b))) / (b * c)))

      .= ((( sqrt (a * b)) / c) + ((( sqrt (a ^2 )) * ( sqrt (c * b))) / (b * c))) by SQUARE_1: 29

      .= ((( sqrt (a * b)) / c) + ((( sqrt (a ^2 )) * ( sqrt (c * b))) / (( sqrt (b * c)) ^2 ))) by SQUARE_1:def 2

      .= ((( sqrt (a * b)) / c) + ((( sqrt (a ^2 )) / ( sqrt (b * c))) * (( sqrt (c * b)) / ( sqrt (b * c))))) by XCMPLX_1: 76

      .= ((( sqrt (a * b)) / c) + ((( sqrt (a ^2 )) / ( sqrt (b * c))) * 1)) by A1, XCMPLX_1: 60

      .= ((( sqrt (a * b)) / c) + (a / ( sqrt (b * c)))) by SQUARE_1: 22;

      hence thesis;

    end;

    

     Lm21: (((( sqrt (b * c)) / a) + (c / ( sqrt (b * a)))) * (( sqrt (a * b)) / c)) = ((b / ( sqrt (a * c))) + 1)

    proof

      

       A1: ( sqrt (a * c)) > 0 by SQUARE_1: 25;

      

       A2: ( sqrt (a * b)) > 0 by SQUARE_1: 25;

      (((( sqrt (b * c)) / a) + (c / ( sqrt (b * a)))) * (( sqrt (a * b)) / c)) = (((( sqrt (b * c)) / a) * (( sqrt (a * b)) / c)) + ((c / ( sqrt (b * a))) * (( sqrt (a * b)) / c)))

      .= (((( sqrt (b * c)) * ( sqrt (a * b))) / (a * c)) + ((c / ( sqrt (b * a))) * (( sqrt (a * b)) / c))) by XCMPLX_1: 76

      .= ((( sqrt ((b * c) * (a * b))) / (a * c)) + ((c / ( sqrt (b * a))) * (( sqrt (a * b)) / c))) by SQUARE_1: 29

      .= ((( sqrt ((a * c) * (b ^2 ))) / (a * c)) + ((c / ( sqrt (b * a))) * (( sqrt (a * b)) / c)))

      .= (((( sqrt (a * c)) * ( sqrt (b ^2 ))) / (a * c)) + ((c / ( sqrt (b * a))) * (( sqrt (a * b)) / c))) by SQUARE_1: 29

      .= (((( sqrt (b ^2 )) * ( sqrt (a * c))) / (( sqrt (a * c)) ^2 )) + ((c / ( sqrt (b * a))) * (( sqrt (a * b)) / c))) by SQUARE_1:def 2

      .= (((( sqrt (b ^2 )) / ( sqrt (a * c))) * (( sqrt (a * c)) / ( sqrt (a * c)))) + ((c / ( sqrt (b * a))) * (( sqrt (a * b)) / c))) by XCMPLX_1: 76

      .= (((( sqrt (b ^2 )) / ( sqrt (a * c))) * 1) + ((c / ( sqrt (b * a))) * (( sqrt (a * b)) / c))) by A1, XCMPLX_1: 60

      .= ((b / ( sqrt (a * c))) + ((c / ( sqrt (b * a))) * (( sqrt (a * b)) / c))) by SQUARE_1: 22

      .= ((b / ( sqrt (a * c))) + ((c / c) * (( sqrt (a * b)) / ( sqrt (b * a))))) by XCMPLX_1: 85

      .= ((b / ( sqrt (a * c))) + (1 * (( sqrt (a * b)) / ( sqrt (b * a))))) by XCMPLX_1: 60

      .= ((b / ( sqrt (a * c))) + 1) by A2, XCMPLX_1: 60;

      hence thesis;

    end;

    

     Lm22: (((1 + (( sqrt (b * c)) / a)) * (1 + (( sqrt (a * c)) / b))) * (1 + (( sqrt (a * b)) / c))) = ((((((2 + (( sqrt (a * c)) / b)) + (b / ( sqrt (a * c)))) + (( sqrt (a * b)) / c)) + (c / ( sqrt (b * a)))) + (a / ( sqrt (b * c)))) + (( sqrt (b * c)) / a))

    proof

      

       A1: ( sqrt (b * a)) > 0 by SQUARE_1: 25;

      (((1 + (( sqrt (b * c)) / a)) * (1 + (( sqrt (a * c)) / b))) * (1 + (( sqrt (a * b)) / c))) = (((((1 * 1) + (1 * (( sqrt (a * c)) / b))) + ((( sqrt (b * c)) / a) * 1)) + ((( sqrt (b * c)) / a) * (( sqrt (a * c)) / b))) * (1 + (( sqrt (a * b)) / c)))

      .= ((((1 + (( sqrt (a * c)) / b)) + (( sqrt (b * c)) / a)) + ((( sqrt (b * c)) * ( sqrt (a * c))) / (a * b))) * (1 + (( sqrt (a * b)) / c))) by XCMPLX_1: 76

      .= ((((1 + (( sqrt (a * c)) / b)) + (( sqrt (b * c)) / a)) + (( sqrt ((b * c) * (a * c))) / (a * b))) * (1 + (( sqrt (a * b)) / c))) by SQUARE_1: 29

      .= ((((1 + (( sqrt (a * c)) / b)) + (( sqrt (b * c)) / a)) + (( sqrt ((b * a) * (c ^2 ))) / (a * b))) * (1 + (( sqrt (a * b)) / c)))

      .= ((((1 + (( sqrt (a * c)) / b)) + (( sqrt (b * c)) / a)) + ((( sqrt (b * a)) * ( sqrt (c ^2 ))) / (a * b))) * (1 + (( sqrt (a * b)) / c))) by SQUARE_1: 29

      .= ((((1 + (( sqrt (a * c)) / b)) + (( sqrt (b * c)) / a)) + ((( sqrt (b * a)) * c) / (a * b))) * (1 + (( sqrt (a * b)) / c))) by SQUARE_1: 22

      .= ((((1 + (( sqrt (a * c)) / b)) + (( sqrt (b * c)) / a)) + ((( sqrt (b * a)) * c) / (( sqrt (a * b)) ^2 ))) * (1 + (( sqrt (a * b)) / c))) by SQUARE_1:def 2

      .= ((((1 + (( sqrt (a * c)) / b)) + (( sqrt (b * c)) / a)) + ((( sqrt (b * a)) / ( sqrt (b * a))) * (c / ( sqrt (b * a))))) * (1 + (( sqrt (a * b)) / c))) by XCMPLX_1: 76

      .= ((((1 + (( sqrt (a * c)) / b)) + (( sqrt (b * c)) / a)) + (1 * (c / ( sqrt (b * a))))) * (1 + (( sqrt (a * b)) / c))) by A1, XCMPLX_1: 60

      .= (((((1 + (( sqrt (a * c)) / b)) + ((1 + (( sqrt (a * c)) / b)) * (( sqrt (a * b)) / c))) + (( sqrt (b * c)) / a)) + (c / ( sqrt (b * a)))) + (((( sqrt (b * c)) / a) + (c / ( sqrt (b * a)))) * (( sqrt (a * b)) / c)))

      .= (((((1 + (( sqrt (a * c)) / b)) + ((( sqrt (a * b)) / c) + (a / ( sqrt (b * c))))) + (( sqrt (b * c)) / a)) + (c / ( sqrt (b * a)))) + (((( sqrt (b * c)) / a) + (c / ( sqrt (b * a)))) * (( sqrt (a * b)) / c))) by Lm20

      .= ((((((1 + (( sqrt (a * c)) / b)) + (( sqrt (a * b)) / c)) + (a / ( sqrt (b * c)))) + (( sqrt (b * c)) / a)) + (c / ( sqrt (b * a)))) + ((b / ( sqrt (a * c))) + 1)) by Lm21

      .= ((((((2 + (( sqrt (a * c)) / b)) + (b / ( sqrt (a * c)))) + (( sqrt (a * b)) / c)) + (c / ( sqrt (b * a)))) + (a / ( sqrt (b * c)))) + (( sqrt (b * c)) / a));

      hence thesis;

    end;

    

     Lm23: ((((((( sqrt (a * c)) / b) + (b / ( sqrt (a * c)))) + (( sqrt (a * b)) / c)) + (c / ( sqrt (b * a)))) + (a / ( sqrt (b * c)))) + (( sqrt (b * c)) / a)) >= 6

    proof

      ( sqrt (a * c)) > 0 by SQUARE_1: 25;

      then

       A1: ((( sqrt (a * c)) / b) + (b / ( sqrt (a * c)))) >= 2 by SERIES_3: 3;

      ( sqrt (b * c)) > 0 by SQUARE_1: 25;

      then

       A2: ((a / ( sqrt (b * c))) + (( sqrt (b * c)) / a)) >= 2 by SERIES_3: 3;

      ( sqrt (b * a)) > 0 by SQUARE_1: 25;

      then ((( sqrt (a * b)) / c) + (c / ( sqrt (b * a)))) >= 2 by SERIES_3: 3;

      then (((( sqrt (a * c)) / b) + (b / ( sqrt (a * c)))) + ((( sqrt (a * b)) / c) + (c / ( sqrt (b * a))))) >= (2 + 2) by A1, XREAL_1: 7;

      then (((((( sqrt (a * c)) / b) + (b / ( sqrt (a * c)))) + (( sqrt (a * b)) / c)) + (c / ( sqrt (b * a)))) + ((a / ( sqrt (b * c))) + (( sqrt (b * c)) / a))) >= (4 + 2) by A2, XREAL_1: 7;

      hence thesis;

    end;

    theorem :: SERIES_5:1

    ((a + b) * ((1 / a) + (1 / b))) >= 4

    proof

      ((a / b) + (b / a)) >= (2 * ( sqrt ((a / b) * (b / a)))) by SIN_COS2: 1;

      then ((a / b) + (b / a)) >= (2 * ( sqrt ((a * b) / (b * a)))) by XCMPLX_1: 76;

      then ((a / b) + (b / a)) >= (2 * ( sqrt (((a / b) * b) / a))) by XCMPLX_1: 83;

      then ((a / b) + (b / a)) >= (2 * ( sqrt (a / a))) by XCMPLX_1: 87;

      then ((a / b) + (b / a)) >= (2 * 1) by SQUARE_1: 18, XCMPLX_1: 60;

      then (((a / b) + (b / a)) + 2) >= (2 + 2) by XREAL_1: 7;

      then ((((a / b) + (b / a)) + 1) + 1) >= 4;

      then ((((a * (1 / b)) + (b / a)) + 1) + 1) >= 4 by XCMPLX_1: 99;

      then ((((a * (1 / b)) + (b * (1 / a))) + 1) + 1) >= 4 by XCMPLX_1: 99;

      then ((((a * (1 / b)) + (b * (1 / a))) + (a * (1 / a))) + 1) >= 4 by XCMPLX_1: 106;

      then ((((a * (1 / b)) + (b * (1 / a))) + (a * (1 / a))) + (b * (1 / b))) >= 4 by XCMPLX_1: 106;

      hence thesis;

    end;

    theorem :: SERIES_5:2

    ((a |^ 4) + (b |^ 4)) >= (((a |^ 3) * b) + (a * (b |^ 3)))

    proof

      ((a - b) ^2 ) >= 0 by XREAL_1: 63;

      then (((a - b) * (a - b)) * (((a ^2 ) + (a * b)) + (b ^2 ))) >= 0 ;

      then ((a - b) * ((a - b) * (((a ^2 ) + (a * b)) + (b ^2 )))) >= 0 ;

      then ((a - b) * ((a |^ 3) - (b |^ 3))) >= 0 by Lm1;

      then ((((a |^ 3) * a) - ((a |^ 3) * b)) - ((b |^ 3) * (a - b))) >= 0 ;

      then (((a |^ (3 + 1)) - ((a |^ 3) * b)) - ((b |^ 3) * (a - b))) >= 0 by NEWTON: 6;

      then (((a |^ 4) - ((a |^ 3) * b)) - (((b |^ 3) * a) - ((b |^ 3) * b))) >= 0 ;

      then (((a |^ 4) - ((a |^ 3) * b)) - (((b |^ 3) * a) - (b |^ (3 + 1)))) >= 0 by NEWTON: 6;

      then (((((a |^ 4) + (b |^ 4)) - ((a |^ 3) * b)) - ((b |^ 3) * a)) + (((a |^ 3) * b) + ((b |^ 3) * a))) >= ( 0 + (((a |^ 3) * b) + ((b |^ 3) * a))) by XREAL_1: 7;

      hence thesis;

    end;

    theorem :: SERIES_5:3

    

     Th3: a < b implies 1 < ((b + c) / (a + c))

    proof

      assume a < b;

      then (a + c) < (b + c) by XREAL_1: 8;

      hence thesis by XREAL_1: 187;

    end;

    theorem :: SERIES_5:4

    

     Th4: a < b implies (a / b) < ( sqrt (a / b))

    proof

      (b ^2 ) > 0 ;

      then (b |^ 2) > 0 by NEWTON: 81;

      then ((b |^ 2) * b) > 0 ;

      then

       A1: (b |^ (2 + 1)) > 0 by NEWTON: 6;

      assume a < b;

      then (a - b) < 0 by XREAL_1: 49;

      then ((a * b) * (a - b)) < 0 ;

      then ((((a ^2 ) * b) - (a * (b ^2 ))) + (a * (b ^2 ))) < ( 0 + (a * (b ^2 ))) by XREAL_1: 8;

      then (((a ^2 ) * b) / (b |^ (2 + 1))) < ((a * (b ^2 )) / (b |^ (2 + 1))) by A1, XREAL_1: 74;

      then (((a ^2 ) * b) / ((b |^ 2) * b)) < ((a * (b ^2 )) / (b |^ (2 + 1))) by NEWTON: 6;

      then (((a ^2 ) * b) / ((b |^ 2) * b)) < ((a * (b ^2 )) / ((b |^ 2) * b)) by NEWTON: 6;

      then (((a ^2 ) * b) / ((b ^2 ) * b)) < ((a * (b ^2 )) / ((b |^ 2) * b)) by NEWTON: 81;

      then (((a ^2 ) * b) / ((b ^2 ) * b)) < ((a * (b ^2 )) / ((b ^2 ) * b)) by NEWTON: 81;

      then ((a ^2 ) / (b ^2 )) < ((a * (b ^2 )) / (b * (b ^2 ))) by XCMPLX_1: 91;

      then ((a ^2 ) / (b ^2 )) < (a / b) by XCMPLX_1: 91;

      then ((a / b) ^2 ) < (a / b) by XCMPLX_1: 76;

      then ( sqrt ((a / b) ^2 )) < ( sqrt (a / b)) by SQUARE_1: 27;

      hence thesis by SQUARE_1: 22;

    end;

    theorem :: SERIES_5:5

    

     Th5: a < b implies ( sqrt (a / b)) < ((b + ( sqrt (((a ^2 ) + (b ^2 )) / 2))) / (a + ( sqrt (((a ^2 ) + (b ^2 )) / 2))))

    proof

      assume

       A1: a < b;

      then (a / b) < 1 by XREAL_1: 189;

      then

       A2: ( sqrt (a / b)) < 1 by SQUARE_1: 18, SQUARE_1: 27;

      ( sqrt (((a ^2 ) + (b ^2 )) / 2)) > 0 by SQUARE_1: 25;

      then 1 < ((b + ( sqrt (((a ^2 ) + (b ^2 )) / 2))) / (a + ( sqrt (((a ^2 ) + (b ^2 )) / 2)))) by A1, Th3;

      hence thesis by A2, XXREAL_0: 2;

    end;

    theorem :: SERIES_5:6

    a < b implies (a / b) < ((b + ( sqrt (((a ^2 ) + (b ^2 )) / 2))) / (a + ( sqrt (((a ^2 ) + (b ^2 )) / 2))))

    proof

      assume

       A1: a < b;

      then

       A2: ( sqrt (a / b)) < ((b + ( sqrt (((a ^2 ) + (b ^2 )) / 2))) / (a + ( sqrt (((a ^2 ) + (b ^2 )) / 2)))) by Th5;

      (a / b) < ( sqrt (a / b)) by A1, Th4;

      hence thesis by A2, XXREAL_0: 2;

    end;

    theorem :: SERIES_5:7

    

     Th7: (2 / ((1 / a) + (1 / b))) <= ( sqrt (a * b))

    proof

      

       A1: ( sqrt (a * b)) > 0 by SQUARE_1: 25;

      then ((2 * ( sqrt (a * b))) / (a + b)) <= 1 by SIN_COS2: 1, XREAL_1: 183;

      then (((2 * ( sqrt (a * b))) / (a + b)) * ( sqrt (a * b))) <= (1 * ( sqrt (a * b))) by A1, XREAL_1: 64;

      then ((2 * ( sqrt (a * b))) / ((a + b) / ( sqrt (a * b)))) <= ( sqrt (a * b)) by XCMPLX_1: 82;

      then (((2 * ( sqrt (a * b))) * ( sqrt (a * b))) / (a + b)) <= ( sqrt (a * b)) by XCMPLX_1: 77;

      then ((2 * (( sqrt (a * b)) ^2 )) / (a + b)) <= ( sqrt (a * b));

      then ((2 * (a * b)) / (a + b)) <= ( sqrt (a * b)) by SQUARE_1:def 2;

      hence thesis by Lm2;

    end;

    theorem :: SERIES_5:8

    

     Th8: ((a + b) / 2) <= ( sqrt (((a ^2 ) + (b ^2 )) / 2))

    proof

      ((a ^2 ) + (b ^2 )) >= ((2 * a) * b) by SERIES_3: 6;

      then (((a ^2 ) + (b ^2 )) + ((a ^2 ) + (b ^2 ))) >= (((2 * a) * b) + ((a ^2 ) + (b ^2 ))) by XREAL_1: 7;

      then ( sqrt (2 * ((a ^2 ) + (b ^2 )))) >= ( sqrt ((a + b) ^2 )) by SQUARE_1: 26;

      then ( sqrt (2 * ((a ^2 ) + (b ^2 )))) >= (a + b) by SQUARE_1: 22;

      then (( sqrt (2 * ((a ^2 ) + (b ^2 )))) / ( sqrt (2 * 2))) >= ((a + b) / 2) by SQUARE_1: 20, XREAL_1: 72;

      then (( sqrt (2 * ((a ^2 ) + (b ^2 )))) / (( sqrt 2) * ( sqrt 2))) >= ((a + b) / 2) by SQUARE_1: 29;

      then ((( sqrt 2) * ( sqrt ((a ^2 ) + (b ^2 )))) / (( sqrt 2) * ( sqrt 2))) >= ((a + b) / 2) by SQUARE_1: 29;

      then

       A1: (((( sqrt 2) / ( sqrt 2)) * ( sqrt ((a ^2 ) + (b ^2 )))) / ( sqrt 2)) >= ((a + b) / 2) by XCMPLX_1: 83;

      ( sqrt 2) > 0 by SQUARE_1: 25;

      then ((1 * ( sqrt ((a ^2 ) + (b ^2 )))) / ( sqrt 2)) >= ((a + b) / 2) by A1, XCMPLX_1: 60;

      hence thesis by SQUARE_1: 30;

    end;

    theorem :: SERIES_5:9

    (x + y) <= ( sqrt (2 * ((x ^2 ) + (y ^2 ))))

    proof

      ((x ^2 ) + (y ^2 )) >= ((2 * x) * y) by SERIES_3: 6;

      then

       A1: (((x ^2 ) + (y ^2 )) + ((x ^2 ) + (y ^2 ))) >= (((2 * x) * y) + ((x ^2 ) + (y ^2 ))) by XREAL_1: 6;

      then

       A2: (2 * ((x ^2 ) + (y ^2 ))) >= ((x + y) ^2 );

      

       A3: ((x + y) ^2 ) >= 0 by XREAL_1: 63;

      then

       A4: ( sqrt (2 * ((x ^2 ) + (y ^2 )))) >= ( sqrt ((x + y) ^2 )) by A1, SQUARE_1: 26;

      per cases ;

        suppose (x + y) > 0 ;

        hence thesis by A4, SQUARE_1: 22;

      end;

        suppose (x + y) = 0 ;

        hence thesis by A2, SQUARE_1: 17, SQUARE_1: 26;

      end;

        suppose (x + y) < 0 ;

        hence thesis by A1, A3, SQUARE_1:def 2;

      end;

    end;

    theorem :: SERIES_5:10

    

     Th10: (2 / ((1 / a) + (1 / b))) <= ((a + b) / 2)

    proof

      

       A1: ((a + b) / 2) >= ( sqrt (a * b)) by SERIES_3: 2;

      (2 / ((1 / a) + (1 / b))) <= ( sqrt (a * b)) by Th7;

      hence thesis by A1, XXREAL_0: 2;

    end;

    theorem :: SERIES_5:11

    ( sqrt (a * b)) <= ( sqrt (((a ^2 ) + (b ^2 )) / 2))

    proof

      

       A1: ((a + b) / 2) >= ( sqrt (a * b)) by SERIES_3: 2;

      ((a + b) / 2) <= ( sqrt (((a ^2 ) + (b ^2 )) / 2)) by Th8;

      hence thesis by A1, XXREAL_0: 2;

    end;

    theorem :: SERIES_5:12

    (2 / ((1 / a) + (1 / b))) <= ( sqrt (((a ^2 ) + (b ^2 )) / 2))

    proof

      

       A1: (2 / ((1 / a) + (1 / b))) <= ((a + b) / 2) by Th10;

      ((a + b) / 2) <= ( sqrt (((a ^2 ) + (b ^2 )) / 2)) by Th8;

      hence thesis by A1, XXREAL_0: 2;

    end;

    theorem :: SERIES_5:13

     |.x.| < 1 & |.y.| < 1 implies |.((x + y) / (1 + (x * y))).| <= 1

    proof

      assume that

       A1: |.x.| < 1 and

       A2: |.y.| < 1;

      per cases ;

        suppose

         A3: (1 + (x * y)) <> 0 ;

        (y ^2 ) < 1 by A2, Lm7;

        then

         A4: ((y ^2 ) - (y ^2 )) < (1 - (y ^2 )) by XREAL_1: 14;

        (x ^2 ) < 1 by A1, Lm7;

        then ((x ^2 ) - (x ^2 )) < (1 - (x ^2 )) by XREAL_1: 14;

        then 0 < ((1 - (x ^2 )) * (1 - (y ^2 ))) by A4;

        then ( 0 + ((x ^2 ) + (y ^2 ))) < ((((1 - (y ^2 )) - (x ^2 )) + ((x ^2 ) * (y ^2 ))) + ((x ^2 ) + (y ^2 ))) by XREAL_1: 8;

        then

         A5: (((x ^2 ) + (y ^2 )) + ((2 * x) * y)) < ((1 + ((x ^2 ) * (y ^2 ))) + ((2 * x) * y)) by XREAL_1: 8;

        ((1 + (x * y)) ^2 ) > 0 by A3, SQUARE_1: 12;

        then (((x + y) ^2 ) / ((1 + (x * y)) ^2 )) < ((((x * y) + 1) ^2 ) / ((1 + (x * y)) ^2 )) by A5, XREAL_1: 74;

        then (((x + y) ^2 ) / ((1 + (x * y)) ^2 )) < 1 by A3, XCMPLX_1: 60;

        then (((x + y) / (1 + (x * y))) ^2 ) < 1 by XCMPLX_1: 76;

        hence thesis by Lm8;

      end;

        suppose (1 + (x * y)) = 0 ;

        

        then |.((x + y) / (1 + (x * y))).| = |. 0 .| by XCMPLX_1: 49

        .= 0 by ABSVALUE: 2;

        hence thesis;

      end;

    end;

    theorem :: SERIES_5:14

    ( |.(x + y).| / (1 + |.(x + y).|)) <= (( |.x.| / (1 + |.x.|)) + ( |.y.| / (1 + |.y.|)))

    proof

      per cases ;

        suppose |.(x + y).| = 0 ;

        hence thesis;

      end;

        suppose

         A1: |.(x + y).| > 0 ;

        (1 + |.y.|) >= 1 by XREAL_1: 31;

        then ((1 + |.y.|) + |.x.|) >= (1 + |.x.|) by XREAL_1: 6;

        then

         A2: ( |.x.| / ((1 + |.x.|) + |.y.|)) <= ( |.x.| / (1 + |.x.|)) by XREAL_1: 118;

        (1 + |.x.|) >= 1 by XREAL_1: 31;

        then ((1 + |.x.|) + |.y.|) >= (1 + |.y.|) by XREAL_1: 6;

        then ( |.y.| / ((1 + |.x.|) + |.y.|)) <= ( |.y.| / (1 + |.y.|)) by XREAL_1: 118;

        then

         A3: (( |.x.| / ((1 + |.x.|) + |.y.|)) + ( |.y.| / ((1 + |.x.|) + |.y.|))) <= (( |.x.| / (1 + |.x.|)) + ( |.y.| / (1 + |.y.|))) by A2, XREAL_1: 7;

        (1 / ( |.x.| + |.y.|)) <= (1 / |.(x + y).|) by A1, COMPLEX1: 56, XREAL_1: 118;

        then ((1 / ( |.x.| + |.y.|)) + 1) <= ((1 / |.(x + y).|) + 1) by XREAL_1: 7;

        then

         A4: (1 / ((1 / |.(x + y).|) + 1)) <= (1 / ((1 / ( |.x.| + |.y.|)) + 1)) by XREAL_1: 118;

        

         A5: 0 < ( |.x.| + |.y.|) by A1, COMPLEX1: 56;

        

        then

         A6: (1 / ((1 / ( |.x.| + |.y.|)) + 1)) = ((1 * ( |.x.| + |.y.|)) / (((1 / ( |.x.| + |.y.|)) + 1) * ( |.x.| + |.y.|))) by XCMPLX_1: 91

        .= (( |.x.| + |.y.|) / (((1 / ( |.x.| + |.y.|)) * ( |.x.| + |.y.|)) + ( |.x.| + |.y.|)))

        .= (( |.x.| + |.y.|) / (1 + ( |.x.| + |.y.|))) by A5, XCMPLX_1: 87

        .= (( |.x.| / ((1 + |.x.|) + |.y.|)) + ( |.y.| / ((1 + |.x.|) + |.y.|))) by XCMPLX_1: 62;

        ( |.(x + y).| / (1 + |.(x + y).|)) = (( |.(x + y).| / |.(x + y).|) / ((1 + |.(x + y).|) / |.(x + y).|)) by A1, XCMPLX_1: 55

        .= (1 / ((1 + |.(x + y).|) / |.(x + y).|)) by A1, XCMPLX_1: 60

        .= (1 / ((1 / |.(x + y).|) + ( |.(x + y).| / |.(x + y).|))) by XCMPLX_1: 62

        .= (1 / ((1 / |.(x + y).|) + 1)) by A1, XCMPLX_1: 60;

        hence thesis by A4, A6, A3, XXREAL_0: 2;

      end;

    end;

    theorem :: SERIES_5:15

    ((((a / ((a + b) + d)) + (b / ((a + b) + c))) + (c / ((b + c) + d))) + (d / ((a + c) + d))) > 1

    proof

      (d + ((a + b) + c)) > ( 0 + ((a + b) + c)) by XREAL_1: 8;

      then

       A1: (b / (((a + b) + c) + d)) < (b / ((a + b) + c)) by XREAL_1: 76;

      (((b + c) + d) + a) > ( 0 + ((b + c) + d)) by XREAL_1: 8;

      then

       A2: (c / ((b + c) + d)) > (c / (((a + b) + c) + d)) by XREAL_1: 76;

      (c + ((a + b) + d)) > ( 0 + ((a + b) + d)) by XREAL_1: 8;

      then (a / (((a + b) + c) + d)) < (a / ((a + b) + d)) by XREAL_1: 76;

      then ((a / (((a + b) + c) + d)) + (b / (((a + b) + c) + d))) < ((a / ((a + b) + d)) + (b / ((a + b) + c))) by A1, XREAL_1: 8;

      then ((a + b) / (((a + b) + c) + d)) < ((a / ((a + b) + d)) + (b / ((a + b) + c))) by XCMPLX_1: 62;

      then (((a + b) / (((a + b) + c) + d)) + (c / (((a + b) + c) + d))) < (((a / ((a + b) + d)) + (b / ((a + b) + c))) + (c / ((b + c) + d))) by A2, XREAL_1: 8;

      then

       A3: (((a + b) + c) / (((a + b) + c) + d)) < (((a / ((a + b) + d)) + (b / ((a + b) + c))) + (c / ((b + c) + d))) by XCMPLX_1: 62;

      (b + ((a + c) + d)) > ( 0 + ((a + c) + d)) by XREAL_1: 8;

      then (d / ((a + c) + d)) > (d / (((a + b) + c) + d)) by XREAL_1: 76;

      then ((((a + b) + c) / (((a + b) + c) + d)) + (d / (((a + b) + c) + d))) < ((((a / ((a + b) + d)) + (b / ((a + b) + c))) + (c / ((b + c) + d))) + (d / ((a + c) + d))) by A3, XREAL_1: 8;

      then ((((a + b) + c) + d) / (((a + b) + c) + d)) < ((((a / ((a + b) + d)) + (b / ((a + b) + c))) + (c / ((b + c) + d))) + (d / ((a + c) + d))) by XCMPLX_1: 62;

      hence thesis by XCMPLX_1: 60;

    end;

    theorem :: SERIES_5:16

    ((((a / ((a + b) + d)) + (b / ((a + b) + c))) + (c / ((b + c) + d))) + (d / ((a + c) + d))) < 2

    proof

      

       A1: (b / (a + b)) > (b / ((a + b) + c)) by XREAL_1: 29, XREAL_1: 76;

      (a / (a + b)) > (a / ((a + b) + d)) by XREAL_1: 29, XREAL_1: 76;

      then ((a / (a + b)) + (b / (a + b))) > ((a / ((a + b) + d)) + (b / ((a + b) + c))) by A1, XREAL_1: 8;

      then ((a + b) / (a + b)) > ((a / ((a + b) + d)) + (b / ((a + b) + c))) by XCMPLX_1: 62;

      then

       A2: 1 > ((a / ((a + b) + d)) + (b / ((a + b) + c))) by XCMPLX_1: 60;

      (a + (c + d)) > (c + d) by XREAL_1: 29;

      then

       A3: (d / (c + d)) > (d / ((a + c) + d)) by XREAL_1: 76;

      (b + (c + d)) > (c + d) by XREAL_1: 29;

      then (c / (c + d)) > (c / ((b + c) + d)) by XREAL_1: 76;

      then (1 + (c / (c + d))) > (((a / ((a + b) + d)) + (b / ((a + b) + c))) + (c / ((b + c) + d))) by A2, XREAL_1: 8;

      then ((1 + (c / (c + d))) + (d / (c + d))) > ((((a / ((a + b) + d)) + (b / ((a + b) + c))) + (c / ((b + c) + d))) + (d / ((a + c) + d))) by A3, XREAL_1: 8;

      then (1 + ((c / (c + d)) + (d / (c + d)))) > ((((a / ((a + b) + d)) + (b / ((a + b) + c))) + (c / ((b + c) + d))) + (d / ((a + c) + d)));

      then (1 + ((c + d) / (c + d))) > ((((a / ((a + b) + d)) + (b / ((a + b) + c))) + (c / ((b + c) + d))) + (d / ((a + c) + d))) by XCMPLX_1: 62;

      then (1 + 1) > ((((a / ((a + b) + d)) + (b / ((a + b) + c))) + (c / ((b + c) + d))) + (d / ((a + c) + d))) by XCMPLX_1: 60;

      hence thesis;

    end;

    theorem :: SERIES_5:17

    (a + b) > c & (b + c) > a & (a + c) > b implies (((1 / ((a + b) - c)) + (1 / ((b + c) - a))) + (1 / ((c + a) - b))) >= (9 / ((a + b) + c))

    proof

      assume that

       A1: (a + b) > c and

       A2: (b + c) > a and

       A3: (a + c) > b;

      

       A4: ((a + c) - b) > 0 by A3, XREAL_1: 50;

      set f = ((c + a) - b);

      set e = ((b + c) - a);

      set d = ((a + b) - c);

      

       A5: ((b + c) - a) > 0 by A2, XREAL_1: 50;

      

       A6: ((a + b) - c) > 0 by A1, XREAL_1: 50;

      then

       A7: ((d + e) + f) >= (3 * (3 -root ((d * e) * f))) by A5, A4, SERIES_3: 15;

      (((1 / d) + (1 / e)) + (1 / f)) >= (3 * (3 -root (((1 / d) * (1 / e)) * (1 / f)))) by A6, A5, A4, SERIES_3: 15;

      then

       A8: (((1 / d) + (1 / e)) + (1 / f)) >= (3 * (3 -root (1 / ((d * e) * f)))) by Lm3;

      

       A9: (3 -root ((d * e) * f)) >= 0 by A6, A5, A4, POWER: 7;

      (3 -root (1 / ((d * e) * f))) >= 0 by A6, A5, A4, POWER: 7;

      then (((d + e) + f) * (((1 / d) + (1 / e)) + (1 / f))) >= ((3 * (3 -root ((d * e) * f))) * (3 * (3 -root (1 / ((d * e) * f))))) by A7, A9, A8, XREAL_1: 66;

      then (((d + e) + f) * (((1 / d) + (1 / e)) + (1 / f))) >= (9 * ((3 -root ((d * e) * f)) * (3 -root (1 / ((d * e) * f)))));

      then (((d + e) + f) * (((1 / d) + (1 / e)) + (1 / f))) >= (9 * (3 -root (((d * e) * f) * (1 / ((d * e) * f))))) by A6, A5, A4, POWER: 11;

      then (((d + e) + f) * (((1 / d) + (1 / e)) + (1 / f))) >= (9 * (3 -root (((d * e) * f) / (((d * e) * f) / 1)))) by XCMPLX_1: 79;

      then (((d + e) + f) * (((1 / d) + (1 / e)) + (1 / f))) >= (9 * (3 -root 1)) by A6, A5, A4, XCMPLX_1: 60;

      then (((d + e) + f) * (((1 / d) + (1 / e)) + (1 / f))) >= (9 * 1) by POWER: 6;

      hence thesis by XREAL_1: 79;

    end;

    theorem :: SERIES_5:18

    ( sqrt ((a + b) * (c + d))) >= (( sqrt (a * c)) + ( sqrt (b * d)))

    proof

      

       A1: ( sqrt ((a + b) * (c + d))) > 0 by SQUARE_1: 25;

      

       A2: ( sqrt (b * d)) > 0 by SQUARE_1: 25;

      ((a * d) + (b * c)) >= (2 * ( sqrt ((a * d) * (b * c)))) by SIN_COS2: 1;

      then (((a * d) + (b * c)) + ((a * c) + (b * d))) >= ((2 * ( sqrt ((a * d) * (b * c)))) + ((a * c) + (b * d))) by XREAL_1: 7;

      then ((a + b) * (c + d)) >= (((2 * ( sqrt ((a * d) * (b * c)))) + (a * c)) + (b * d));

      then ((a + b) * (c + d)) >= (((2 * ( sqrt ((a * d) * (b * c)))) + (( sqrt (a * c)) ^2 )) + (b * d)) by SQUARE_1:def 2;

      then ((a + b) * (c + d)) >= (((2 * ( sqrt ((a * d) * (b * c)))) + (( sqrt (a * c)) ^2 )) + (( sqrt (b * d)) ^2 )) by SQUARE_1:def 2;

      then (( sqrt ((a + b) * (c + d))) ^2 ) >= (((2 * ( sqrt ((a * c) * (b * d)))) + (( sqrt (a * c)) ^2 )) + (( sqrt (b * d)) ^2 )) by SQUARE_1:def 2;

      then

       A3: (( sqrt ((a + b) * (c + d))) ^2 ) >= (((( sqrt (a * c)) ^2 ) + (2 * (( sqrt (a * c)) * ( sqrt (b * d))))) + (( sqrt (b * d)) ^2 )) by SQUARE_1: 29;

      ((( sqrt (a * c)) + ( sqrt (b * d))) ^2 ) >= 0 by XREAL_1: 63;

      then

       A4: ( sqrt (( sqrt ((a + b) * (c + d))) ^2 )) >= ( sqrt ((( sqrt (a * c)) + ( sqrt (b * d))) ^2 )) by A3, SQUARE_1: 26;

      ( sqrt (a * c)) > 0 by SQUARE_1: 25;

      then ( sqrt (( sqrt ((a + b) * (c + d))) ^2 )) >= (( sqrt (a * c)) + ( sqrt (b * d))) by A4, A2, SQUARE_1: 22;

      hence thesis by A1, SQUARE_1: 22;

    end;

    theorem :: SERIES_5:19

    (((a * b) + (c * d)) * ((a * c) + (b * d))) >= ((((4 * a) * b) * c) * d)

    proof

      ( sqrt (a * d)) > 0 by SQUARE_1: 25;

      then ((a + d) ^2 ) >= ((2 * ( sqrt (a * d))) ^2 ) by SIN_COS2: 1, SQUARE_1: 15;

      then ((a + d) ^2 ) >= ((2 ^2 ) * (( sqrt (a * d)) ^2 ));

      then ((a + d) ^2 ) >= ((2 * 2) * (a * d)) by SQUARE_1:def 2;

      then

       A1: (((a + d) ^2 ) * (b * c)) >= (((4 * a) * d) * (b * c)) by XREAL_1: 64;

      (((a * b) + (c * d)) * ((a * c) + (b * d))) = (((( sqrt (a * b)) ^2 ) + (c * d)) * ((a * c) + (b * d))) by SQUARE_1:def 2

      .= (((( sqrt (a * b)) ^2 ) + (( sqrt (c * d)) ^2 )) * ((a * c) + (b * d))) by SQUARE_1:def 2

      .= (((( sqrt (a * b)) ^2 ) + (( sqrt (c * d)) ^2 )) * ((( sqrt (a * c)) ^2 ) + (b * d))) by SQUARE_1:def 2

      .= (((( sqrt (a * b)) ^2 ) + (( sqrt (c * d)) ^2 )) * ((( sqrt (a * c)) ^2 ) + (( sqrt (b * d)) ^2 ))) by SQUARE_1:def 2;

      then (((a * b) + (c * d)) * ((a * c) + (b * d))) >= ((b * c) * ((a + d) ^2 )) by Lm5;

      hence thesis by A1, XXREAL_0: 2;

    end;

    theorem :: SERIES_5:20

    

     Th20: (((a / b) + (b / c)) + (c / a)) >= 3

    proof

      (((a / b) + (b / c)) + (c / a)) >= (3 * (3 -root (((a / b) * (b / c)) * (c / a)))) by SERIES_3: 15;

      then (((a / b) + (b / c)) + (c / a)) >= (3 * (3 -root (((a * b) / (b * c)) * (c / a)))) by XCMPLX_1: 76;

      then (((a / b) + (b / c)) + (c / a)) >= (3 * (3 -root ((a / c) * (c / a)))) by XCMPLX_1: 91;

      then (((a / b) + (b / c)) + (c / a)) >= (3 * (3 -root ((a * c) / (c * a)))) by XCMPLX_1: 76;

      then (((a / b) + (b / c)) + (c / a)) >= (3 * (3 -root 1)) by XCMPLX_1: 60;

      then (((a / b) + (b / c)) + (c / a)) >= (3 * 1) by POWER: 6;

      hence thesis;

    end;

    theorem :: SERIES_5:21

    (((a * b) + (b * c)) + (c * a)) = 1 implies ((a + b) + c) >= ( sqrt 3)

    proof

      assume

       A1: (((a * b) + (b * c)) + (c * a)) = 1;

      then (((a ^2 ) + (b ^2 )) + (c ^2 )) >= 1 by SERIES_3: 10;

      then ((((a ^2 ) + (b ^2 )) + (c ^2 )) + 2) >= (1 + 2) by XREAL_1: 6;

      then ( sqrt (((a + b) + c) ^2 )) >= ( sqrt 3) by A1, SQUARE_1: 26;

      hence thesis by SQUARE_1: 22;

    end;

    theorem :: SERIES_5:22

    (((((b + c) - a) / a) + (((c + a) - b) / b)) + (((a + b) - c) / c)) >= 3

    proof

      

       A1: (((b / a) + (c / b)) + (a / c)) >= 3 by Th20;

      (((a / b) + (b / c)) + (c / a)) >= 3 by Th20;

      then ((((a / b) + (b / c)) + (c / a)) + (((b / a) + (c / b)) + (a / c))) >= (3 + 3) by A1, XREAL_1: 7;

      then

       A2: (((((((a / b) + (b / c)) + (c / a)) + (b / a)) + (c / b)) + (a / c)) - 3) >= (6 - 3) by XREAL_1: 9;

      (((((b + c) - a) / a) + (((c + a) - b) / b)) + (((a + b) - c) / c)) = (((((b + c) / a) - (a / a)) + (((c + a) - b) / b)) + (((a + b) - c) / c)) by XCMPLX_1: 120

      .= (((((b + c) / a) - 1) + (((c + a) - b) / b)) + (((a + b) - c) / c)) by XCMPLX_1: 60

      .= (((((b + c) / a) - 1) + (((c + a) / b) - (b / b))) + (((a + b) - c) / c)) by XCMPLX_1: 120

      .= (((((b + c) / a) - 1) + (((c + a) / b) - 1)) + (((a + b) - c) / c)) by XCMPLX_1: 60

      .= ((((((b + c) / a) - 1) + ((c + a) / b)) - 1) + (((a + b) / c) - (c / c))) by XCMPLX_1: 120

      .= ((((((b + c) / a) - 1) + ((c + a) / b)) - 1) + (((a + b) / c) - 1)) by XCMPLX_1: 60

      .= (((((b + c) / a) + ((c + a) / b)) + ((a + b) / c)) - 3)

      .= (((((b / a) + (c / a)) + ((c + a) / b)) + ((a + b) / c)) - 3) by XCMPLX_1: 62

      .= (((((b / a) + (c / a)) + ((c / b) + (a / b))) + ((a + b) / c)) - 3) by XCMPLX_1: 62

      .= (((((b / a) + (c / a)) + ((c / b) + (a / b))) + ((a / c) + (b / c))) - 3) by XCMPLX_1: 62

      .= (((((((a / b) + (b / c)) + (c / a)) + (b / a)) + (c / b)) + (a / c)) - 3);

      hence thesis by A2;

    end;

    theorem :: SERIES_5:23

    ((a + (1 / a)) * (b + (1 / b))) >= ((( sqrt (a * b)) + (1 / ( sqrt (a * b)))) ^2 )

    proof

      

       A1: ( sqrt (a * b)) > 0 by SQUARE_1: 25;

      

       A2: ((a + (1 / a)) * (b + (1 / b))) = ((((a * b) + (a * (1 / b))) + ((1 / a) * b)) + ((1 / a) * (1 / b)))

      .= ((((a * b) + ((a * 1) / b)) + ((1 / a) * b)) + ((1 / a) * (1 / b))) by XCMPLX_1: 74

      .= ((((a * b) + ((a * 1) / b)) + ((b * 1) / a)) + ((1 / a) * (1 / b))) by XCMPLX_1: 74

      .= ((((a * b) + ((a * 1) / b)) + ((b * 1) / a)) + ((1 * 1) / (a * b))) by XCMPLX_1: 76

      .= ((((a * b) + (a / b)) + (b / a)) + (1 / (a * b)));

      ((a / b) + (b / a)) >= (2 * ( sqrt ((a / b) * (b / a)))) by SIN_COS2: 1;

      then ((a / b) + (b / a)) >= (2 * ( sqrt ((a * b) / (b * a)))) by XCMPLX_1: 76;

      then ((a / b) + (b / a)) >= (2 * 1) by SQUARE_1: 18, XCMPLX_1: 60;

      then

       A3: (((a / b) + (b / a)) + ((a * b) + (1 / (a * b)))) >= (2 + ((a * b) + (1 / (a * b)))) by XREAL_1: 6;

      ((( sqrt (a * b)) + (1 / ( sqrt (a * b)))) ^2 ) = (((( sqrt (a * b)) ^2 ) + ((2 * ( sqrt (a * b))) * (1 / ( sqrt (a * b))))) + ((1 / ( sqrt (a * b))) ^2 ))

      .= (((a * b) + ((2 * ( sqrt (a * b))) * (1 / ( sqrt (a * b))))) + ((1 / ( sqrt (a * b))) ^2 )) by SQUARE_1:def 2

      .= (((a * b) + ((2 * ( sqrt (a * b))) * (1 / ( sqrt (a * b))))) + ((1 ^2 ) / (( sqrt (a * b)) ^2 ))) by XCMPLX_1: 76

      .= (((a * b) + (2 * (( sqrt (a * b)) * (1 / ( sqrt (a * b)))))) + (1 / (a * b))) by SQUARE_1:def 2

      .= (((a * b) + (2 * ((( sqrt (a * b)) * 1) / ( sqrt (a * b))))) + (1 / (a * b))) by XCMPLX_1: 74

      .= (((a * b) + (2 * 1)) + (1 / (a * b))) by A1, XCMPLX_1: 60

      .= (((a * b) + 2) + (1 / (a * b)));

      hence thesis by A2, A3;

    end;

    theorem :: SERIES_5:24

    ((((b * c) / a) + ((a * c) / b)) + ((a * b) / c)) >= ((a + b) + c)

    proof

      

       A1: (((a * c) / b) + ((a * b) / c)) = ((a * (c / b)) + ((a * b) / c)) by XCMPLX_1: 74

      .= ((a * (c / b)) + (a * (b / c))) by XCMPLX_1: 74

      .= (a * ((c / b) + (b / c)));

      

       A2: (((a * b) / c) + ((b * c) / a)) = ((b * (a / c)) + ((b * c) / a)) by XCMPLX_1: 74

      .= ((b * (a / c)) + (b * (c / a))) by XCMPLX_1: 74

      .= (b * ((a / c) + (c / a)));

      

       A3: (b * ((a / c) + (c / a))) >= (b * 2) by SERIES_3: 3, XREAL_1: 64;

      

       A4: (c * ((b / a) + (a / b))) >= (c * 2) by SERIES_3: 3, XREAL_1: 64;

      (a * ((c / b) + (b / c))) >= (a * 2) by SERIES_3: 3, XREAL_1: 64;

      then ((a * ((c / b) + (b / c))) + (b * ((a / c) + (c / a)))) >= ((a * 2) + (b * 2)) by A3, XREAL_1: 7;

      then

       A5: (((a * ((c / b) + (b / c))) + (b * ((a / c) + (c / a)))) + (c * ((b / a) + (a / b)))) >= (((a * 2) + (b * 2)) + (c * 2)) by A4, XREAL_1: 7;

      (((b * c) / a) + ((a * c) / b)) = ((c * (b / a)) + ((a * c) / b)) by XCMPLX_1: 74

      .= ((c * (b / a)) + (c * (a / b))) by XCMPLX_1: 74

      .= (c * ((b / a) + (a / b)));

      then ((2 * ((((b * c) / a) + ((a * c) / b)) + ((a * b) / c))) / 2) >= ((2 * ((a + b) + c)) / 2) by A1, A2, A5, XREAL_1: 72;

      hence thesis;

    end;

    theorem :: SERIES_5:25

    x > y & y > z implies ((((x ^2 ) * y) + ((y ^2 ) * z)) + ((z ^2 ) * x)) > (((x * (y ^2 )) + (y * (z ^2 ))) + (z * (x ^2 )))

    proof

      assume that

       A1: x > y and

       A2: y > z;

      

       A3: (y - z) > 0 by A2, XREAL_1: 50;

      x > z by A1, A2, XXREAL_0: 2;

      then

       A4: (x - z) > 0 by XREAL_1: 50;

      (x - y) > 0 by A1, XREAL_1: 50;

      then (((x - y) * (y - z)) * (x - z)) > 0 by A3, A4;

      then (((((x ^2 ) * y) + ((y ^2 ) * z)) + ((z ^2 ) * x)) - (((x * (y ^2 )) + (y * (z ^2 ))) + (z * (x ^2 )))) > 0 ;

      hence thesis by XREAL_1: 47;

    end;

    theorem :: SERIES_5:26

    a > b & b > c implies (b / (a - b)) > (c / (a - c))

    proof

      assume that

       A1: a > b and

       A2: b > c;

      

       A3: (a - b) > 0 by A1, XREAL_1: 50;

      (b * ( - 1)) < (c * ( - 1)) by A2, XREAL_1: 69;

      then (( - b) + a) < (( - c) + a) by XREAL_1: 8;

      then

       A4: (c / (a - b)) > (c / (a - c)) by A3, XREAL_1: 76;

      (b / (a - b)) > (c / (a - b)) by A2, A3, XREAL_1: 74;

      hence thesis by A4, XXREAL_0: 2;

    end;

    theorem :: SERIES_5:27

    b > a & c > d implies (c / (c + a)) > (d / (d + b))

    proof

      assume that

       A1: b > a and

       A2: c > d;

      (b * c) > (a * d) by A1, A2, XREAL_1: 96;

      then ((b * c) + (c * d)) > ((a * d) + (c * d)) by XREAL_1: 8;

      then (c * (b + d)) > (d * (a + c));

      hence thesis by XREAL_1: 106;

    end;

    theorem :: SERIES_5:28

    ((m * x) + (z * y)) <= (( sqrt ((m ^2 ) + (z ^2 ))) * ( sqrt ((x ^2 ) + (y ^2 ))))

    proof

      

       A1: (z ^2 ) >= 0 by XREAL_1: 63;

      

       A2: (m ^2 ) >= 0 by XREAL_1: 63;

      then

       A3: ( sqrt ((m ^2 ) + (z ^2 ))) >= 0 by A1, SQUARE_1:def 2;

      

       A4: (((m * x) + (z * y)) ^2 ) >= 0 by XREAL_1: 63;

      (((m * y) ^2 ) + ((z * x) ^2 )) >= ((2 * (m * y)) * (z * x)) by SERIES_3: 6;

      then

       A5: ((((m * y) ^2 ) + ((z * x) ^2 )) + (((m ^2 ) * (x ^2 )) + ((z ^2 ) * (y ^2 )))) >= (((((2 * m) * x) * y) * z) + (((m ^2 ) * (x ^2 )) + ((z ^2 ) * (y ^2 )))) by XREAL_1: 6;

      

       A6: (y ^2 ) >= 0 by XREAL_1: 63;

      

       A7: (x ^2 ) >= 0 by XREAL_1: 63;

      then

       A8: ( sqrt ((x ^2 ) + (y ^2 ))) >= 0 by A6, SQUARE_1:def 2;

      ((( sqrt ((m ^2 ) + (z ^2 ))) * ( sqrt ((x ^2 ) + (y ^2 )))) ^2 ) = ((( sqrt ((m ^2 ) + (z ^2 ))) ^2 ) * (( sqrt ((x ^2 ) + (y ^2 ))) ^2 ))

      .= (((m ^2 ) + (z ^2 )) * (( sqrt ((x ^2 ) + (y ^2 ))) ^2 )) by A2, A1, SQUARE_1:def 2

      .= (((m ^2 ) + (z ^2 )) * ((x ^2 ) + (y ^2 ))) by A7, A6, SQUARE_1:def 2

      .= (((((m ^2 ) * (x ^2 )) + ((m * y) ^2 )) + ((z * x) ^2 )) + ((z ^2 ) * (y ^2 )));

      then ( sqrt ((( sqrt ((m ^2 ) + (z ^2 ))) * ( sqrt ((x ^2 ) + (y ^2 )))) ^2 )) >= ( sqrt (((m * x) + (z * y)) ^2 )) by A5, A4, SQUARE_1: 26;

      then

       A9: (( sqrt ((m ^2 ) + (z ^2 ))) * ( sqrt ((x ^2 ) + (y ^2 )))) >= ( sqrt (((m * x) + (z * y)) ^2 )) by A3, A8, SQUARE_1: 22;

      per cases ;

        suppose ((m * x) + (z * y)) > 0 ;

        hence thesis by A9, SQUARE_1: 22;

      end;

        suppose ((m * x) + (z * y)) = 0 ;

        hence thesis by A3, A8;

      end;

        suppose ((m * x) + (z * y)) < 0 ;

        hence thesis by A3, A8;

      end;

    end;

    theorem :: SERIES_5:29

    

     Th29: ((((m * x) + (u * y)) + (w * z)) ^2 ) <= ((((m ^2 ) + (u ^2 )) + (w ^2 )) * (((x ^2 ) + (y ^2 )) + (z ^2 )))

    proof

      (((m ^2 ) * (z ^2 )) + ((w ^2 ) * (x ^2 ))) = (((m * z) ^2 ) + ((w * x) ^2 ));

      then

       A1: (((m ^2 ) * (z ^2 )) + ((w ^2 ) * (x ^2 ))) >= ((2 * (m * z)) * (w * x)) by SERIES_3: 6;

      (((u ^2 ) * (z ^2 )) + ((w ^2 ) * (y ^2 ))) = (((u * z) ^2 ) + ((w * y) ^2 ));

      then

       A2: (((u ^2 ) * (z ^2 )) + ((w ^2 ) * (y ^2 ))) >= ((2 * (u * z)) * (w * y)) by SERIES_3: 6;

      (((m * y) ^2 ) + ((u * x) ^2 )) >= ((2 * (m * y)) * (u * x)) by SERIES_3: 6;

      then ((((m ^2 ) * (y ^2 )) + ((u ^2 ) * (x ^2 ))) + (((m ^2 ) * (z ^2 )) + ((w ^2 ) * (x ^2 )))) >= (((((2 * m) * y) * u) * x) + ((((2 * m) * z) * w) * x)) by A1, XREAL_1: 7;

      then ((((((m ^2 ) * (y ^2 )) + ((u ^2 ) * (x ^2 ))) + ((m ^2 ) * (z ^2 ))) + ((w ^2 ) * (x ^2 ))) + (((u ^2 ) * (z ^2 )) + ((w ^2 ) * (y ^2 )))) >= ((((((2 * m) * y) * u) * x) + ((((2 * m) * z) * w) * x)) + ((((2 * u) * z) * w) * y)) by A2, XREAL_1: 7;

      then ((((((((m ^2 ) * (y ^2 )) + ((u ^2 ) * (x ^2 ))) + ((m ^2 ) * (z ^2 ))) + ((w ^2 ) * (x ^2 ))) + ((u ^2 ) * (z ^2 ))) + ((w ^2 ) * (y ^2 ))) + ((((m * x) ^2 ) + ((u * y) ^2 )) + ((w * z) ^2 ))) >= (((((((2 * m) * y) * u) * x) + ((((2 * m) * z) * w) * x)) + ((((2 * u) * z) * w) * y)) + ((((m * x) ^2 ) + ((u * y) ^2 )) + ((w * z) ^2 ))) by XREAL_1: 6;

      hence thesis;

    end;

    theorem :: SERIES_5:30

    ((((9 * a) * b) * c) / (((a ^2 ) + (b ^2 )) + (c ^2 ))) <= ((a + b) + c)

    proof

      

       A1: ((b ^2 ) * (a + c)) >= ((b ^2 ) * (2 * ( sqrt (a * c)))) by SIN_COS2: 1, XREAL_1: 64;

      

       A2: ((c ^2 ) * (a + b)) >= ((c ^2 ) * (2 * ( sqrt (a * b)))) by SIN_COS2: 1, XREAL_1: 64;

      

       A3: ( sqrt (a * b)) > 0 by SQUARE_1: 25;

      

       A4: ( sqrt (a * c)) > 0 by SQUARE_1: 25;

      ( sqrt (b * c)) > 0 by SQUARE_1: 25;

      then ((((2 * (a ^2 )) * ( sqrt (b * c))) + ((2 * (b ^2 )) * ( sqrt (a * c)))) + ((2 * (c ^2 )) * ( sqrt (a * b)))) >= (3 * (3 -root ((((2 * (a ^2 )) * ( sqrt (b * c))) * ((2 * (b ^2 )) * ( sqrt (a * c)))) * ((2 * (c ^2 )) * ( sqrt (a * b)))))) by A4, A3, SERIES_3: 15;

      then ((((2 * (a ^2 )) * ( sqrt (b * c))) + ((2 * (b ^2 )) * ( sqrt (a * c)))) + ((2 * (c ^2 )) * ( sqrt (a * b)))) >= (3 * (3 -root ((((((((2 * (a ^2 )) * ( sqrt (b * c))) * 2) * (b ^2 )) * ( sqrt (a * c))) * 2) * (c ^2 )) * ( sqrt (a * b)))));

      then ((((2 * (a ^2 )) * ( sqrt (b * c))) + ((2 * (b ^2 )) * ( sqrt (a * c)))) + ((2 * (c ^2 )) * ( sqrt (a * b)))) >= (3 * (3 -root ((((2 * a) * b) * c) |^ 3))) by Lm9;

      then

       A5: ((((2 * (a ^2 )) * ( sqrt (b * c))) + ((2 * (b ^2 )) * ( sqrt (a * c)))) + ((2 * (c ^2 )) * ( sqrt (a * b)))) >= (3 * (((2 * a) * b) * c)) by POWER: 4;

      

       A6: (((a |^ 3) + (b |^ 3)) + (c |^ 3)) >= (((3 * a) * b) * c) by SERIES_3: 12;

      ((a ^2 ) * (b + c)) >= ((a ^2 ) * (2 * ( sqrt (b * c)))) by SIN_COS2: 1, XREAL_1: 64;

      then (((a ^2 ) * (b + c)) + ((b ^2 ) * (a + c))) >= (((a ^2 ) * (2 * ( sqrt (b * c)))) + ((b ^2 ) * (2 * ( sqrt (a * c))))) by A1, XREAL_1: 7;

      then ((((a ^2 ) * (b + c)) + ((b ^2 ) * (a + c))) + ((c ^2 ) * (a + b))) >= ((((2 * (a ^2 )) * ( sqrt (b * c))) + ((2 * (b ^2 )) * ( sqrt (a * c)))) + ((2 * (c ^2 )) * ( sqrt (a * b)))) by A2, XREAL_1: 7;

      then ((((((a * (b ^2 )) + (a * (c ^2 ))) + (b * (a ^2 ))) + (b * (c ^2 ))) + (c * (a ^2 ))) + (c * (b ^2 ))) >= (((6 * a) * b) * c) by A5, XXREAL_0: 2;

      then

       A7: ((((a |^ 3) + (b |^ 3)) + (c |^ 3)) + ((((((a * (b ^2 )) + (a * (c ^2 ))) + (b * (a ^2 ))) + (b * (c ^2 ))) + (c * (a ^2 ))) + (c * (b ^2 )))) >= ((((3 * a) * b) * c) + (((6 * a) * b) * c)) by A6, XREAL_1: 7;

      ((((a ^2 ) + (b ^2 )) + (c ^2 )) * ((a + b) + c)) = (((((((((a * (a ^2 )) + (a * (b ^2 ))) + (a * (c ^2 ))) + (b * (a ^2 ))) + (b * (b ^2 ))) + (b * (c ^2 ))) + (c * (a ^2 ))) + (c * (b ^2 ))) + (c * (c ^2 )))

      .= (((((((((a * (a |^ 2)) + (a * (b ^2 ))) + (a * (c ^2 ))) + (b * (a ^2 ))) + (b * (b ^2 ))) + (b * (c ^2 ))) + (c * (a ^2 ))) + (c * (b ^2 ))) + (c * (c ^2 ))) by NEWTON: 81

      .= (((((((((a |^ (2 + 1)) + (a * (b ^2 ))) + (a * (c ^2 ))) + (b * (a ^2 ))) + (b * (b ^2 ))) + (b * (c ^2 ))) + (c * (a ^2 ))) + (c * (b ^2 ))) + (c * (c ^2 ))) by NEWTON: 6

      .= (((((((((a |^ 3) + (a * (b ^2 ))) + (a * (c ^2 ))) + (b * (a ^2 ))) + (b * (b |^ 2))) + (b * (c ^2 ))) + (c * (a ^2 ))) + (c * (b ^2 ))) + (c * (c ^2 ))) by NEWTON: 81

      .= (((((((((a |^ 3) + (a * (b ^2 ))) + (a * (c ^2 ))) + (b * (a ^2 ))) + (b |^ (2 + 1))) + (b * (c ^2 ))) + (c * (a ^2 ))) + (c * (b ^2 ))) + (c * (c ^2 ))) by NEWTON: 6

      .= (((((((((a |^ 3) + (a * (b ^2 ))) + (a * (c ^2 ))) + (b * (a ^2 ))) + (b |^ 3)) + (b * (c ^2 ))) + (c * (a ^2 ))) + (c * (b ^2 ))) + (c * (c |^ 2))) by NEWTON: 81

      .= (((((((((a |^ 3) + (a * (b ^2 ))) + (a * (c ^2 ))) + (b * (a ^2 ))) + (b |^ 3)) + (b * (c ^2 ))) + (c * (a ^2 ))) + (c * (b ^2 ))) + (c |^ (2 + 1))) by NEWTON: 6

      .= (((((((((a |^ 3) + (b |^ 3)) + (c |^ 3)) + (a * (b ^2 ))) + (a * (c ^2 ))) + (b * (a ^2 ))) + (b * (c ^2 ))) + (c * (a ^2 ))) + (c * (b ^2 )));

      then ((((a + b) + c) * (((a ^2 ) + (b ^2 )) + (c ^2 ))) / (((a ^2 ) + (b ^2 )) + (c ^2 ))) >= ((((9 * a) * b) * c) / (((a ^2 ) + (b ^2 )) + (c ^2 ))) by A7, XREAL_1: 72;

      then (((a + b) + c) / ((((a ^2 ) + (b ^2 )) + (c ^2 )) / (((a ^2 ) + (b ^2 )) + (c ^2 )))) >= ((((9 * a) * b) * c) / (((a ^2 ) + (b ^2 )) + (c ^2 ))) by XCMPLX_1: 77;

      then (((a + b) + c) / 1) >= ((((9 * a) * b) * c) / (((a ^2 ) + (b ^2 )) + (c ^2 ))) by XCMPLX_1: 60;

      hence thesis;

    end;

    theorem :: SERIES_5:31

    ((a + b) + c) <= ((( sqrt ((((a ^2 ) + (a * b)) + (b ^2 )) / 3)) + ( sqrt ((((b ^2 ) + (b * c)) + (c ^2 )) / 3))) + ( sqrt ((((c ^2 ) + (c * a)) + (a ^2 )) / 3)))

    proof

      

       A1: ( sqrt 3) > 0 by SQUARE_1: 25;

      

       A2: ( sqrt (((c ^2 ) + (c * a)) + (a ^2 ))) >= (((1 / 2) * ( sqrt 3)) * (c + a)) by Lm11;

      

       A3: ( sqrt (((b ^2 ) + (b * c)) + (c ^2 ))) >= (((1 / 2) * ( sqrt 3)) * (b + c)) by Lm11;

      ( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) >= (((1 / 2) * ( sqrt 3)) * (a + b)) by Lm11;

      then (( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) + ( sqrt (((b ^2 ) + (b * c)) + (c ^2 )))) >= ((((1 / 2) * ( sqrt 3)) * (a + b)) + (((1 / 2) * ( sqrt 3)) * (b + c))) by A3, XREAL_1: 7;

      then ((( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) + ( sqrt (((b ^2 ) + (b * c)) + (c ^2 )))) + ( sqrt (((c ^2 ) + (c * a)) + (a ^2 )))) >= (((((1 / 2) * ( sqrt 3)) * (a + b)) + (((1 / 2) * ( sqrt 3)) * (b + c))) + (((1 / 2) * ( sqrt 3)) * (c + a))) by A2, XREAL_1: 7;

      then (((( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) + ( sqrt (((b ^2 ) + (b * c)) + (c ^2 )))) + ( sqrt (((c ^2 ) + (c * a)) + (a ^2 )))) / ( sqrt 3)) >= ((((a + b) + c) * ( sqrt 3)) / ( sqrt 3)) by A1, XREAL_1: 72;

      then (((( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) + ( sqrt (((b ^2 ) + (b * c)) + (c ^2 )))) + ( sqrt (((c ^2 ) + (c * a)) + (a ^2 )))) / ( sqrt 3)) >= (((a + b) + c) * (( sqrt 3) / ( sqrt 3))) by XCMPLX_1: 74;

      then (((( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) + ( sqrt (((b ^2 ) + (b * c)) + (c ^2 )))) + ( sqrt (((c ^2 ) + (c * a)) + (a ^2 )))) / ( sqrt 3)) >= (((a + b) + c) * 1) by A1, XCMPLX_1: 60;

      then (((( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) + ( sqrt (((b ^2 ) + (b * c)) + (c ^2 )))) / ( sqrt 3)) + (( sqrt (((c ^2 ) + (c * a)) + (a ^2 ))) / ( sqrt 3))) >= ((a + b) + c) by XCMPLX_1: 62;

      then (((( sqrt (((a ^2 ) + (a * b)) + (b ^2 ))) / ( sqrt 3)) + (( sqrt (((b ^2 ) + (b * c)) + (c ^2 ))) / ( sqrt 3))) + (( sqrt (((c ^2 ) + (c * a)) + (a ^2 ))) / ( sqrt 3))) >= ((a + b) + c) by XCMPLX_1: 62;

      then ((( sqrt ((((a ^2 ) + (a * b)) + (b ^2 )) / 3)) + (( sqrt (((b ^2 ) + (b * c)) + (c ^2 ))) / ( sqrt 3))) + (( sqrt (((c ^2 ) + (c * a)) + (a ^2 ))) / ( sqrt 3))) >= ((a + b) + c) by SQUARE_1: 30;

      then ((( sqrt ((((a ^2 ) + (a * b)) + (b ^2 )) / 3)) + ( sqrt ((((b ^2 ) + (b * c)) + (c ^2 )) / 3))) + (( sqrt (((c ^2 ) + (c * a)) + (a ^2 ))) / ( sqrt 3))) >= ((a + b) + c) by SQUARE_1: 30;

      hence thesis by SQUARE_1: 30;

    end;

    theorem :: SERIES_5:32

    ((( sqrt ((((a ^2 ) + (a * b)) + (b ^2 )) / 3)) + ( sqrt ((((b ^2 ) + (b * c)) + (c ^2 )) / 3))) + ( sqrt ((((c ^2 ) + (c * a)) + (a ^2 )) / 3))) <= ((( sqrt (((a ^2 ) + (b ^2 )) / 2)) + ( sqrt (((b ^2 ) + (c ^2 )) / 2))) + ( sqrt (((c ^2 ) + (a ^2 )) / 2)))

    proof

      

       A1: ( sqrt ((((b ^2 ) + (b * c)) + (c ^2 )) / 3)) <= ( sqrt (((b ^2 ) + (c ^2 )) / 2)) by Lm12;

      

       A2: ( sqrt ((((c ^2 ) + (c * a)) + (a ^2 )) / 3)) <= ( sqrt (((c ^2 ) + (a ^2 )) / 2)) by Lm12;

      ( sqrt ((((a ^2 ) + (a * b)) + (b ^2 )) / 3)) <= ( sqrt (((a ^2 ) + (b ^2 )) / 2)) by Lm12;

      then (( sqrt ((((a ^2 ) + (a * b)) + (b ^2 )) / 3)) + ( sqrt ((((b ^2 ) + (b * c)) + (c ^2 )) / 3))) <= (( sqrt (((a ^2 ) + (b ^2 )) / 2)) + ( sqrt (((b ^2 ) + (c ^2 )) / 2))) by A1, XREAL_1: 7;

      hence thesis by A2, XREAL_1: 7;

    end;

    theorem :: SERIES_5:33

    ((( sqrt (((a ^2 ) + (b ^2 )) / 2)) + ( sqrt (((b ^2 ) + (c ^2 )) / 2))) + ( sqrt (((c ^2 ) + (a ^2 )) / 2))) <= ( sqrt (3 * (((a ^2 ) + (b ^2 )) + (c ^2 ))))

    proof

      

       A1: (( sqrt (((a ^2 ) + (b ^2 )) / 2)) ^2 ) = (((a ^2 ) + (b ^2 )) / 2) by SQUARE_1:def 2;

      

       A2: (( sqrt (((b ^2 ) + (c ^2 )) / 2)) ^2 ) = (((b ^2 ) + (c ^2 )) / 2) by SQUARE_1:def 2;

      

       A3: ( sqrt (((c ^2 ) + (a ^2 )) / 2)) > 0 by SQUARE_1: 25;

      

       A4: ( sqrt (((b ^2 ) + (c ^2 )) / 2)) > 0 by SQUARE_1: 25;

      

       A5: (((( sqrt (((a ^2 ) + (b ^2 )) / 2)) + ( sqrt (((b ^2 ) + (c ^2 )) / 2))) + ( sqrt (((c ^2 ) + (a ^2 )) / 2))) ^2 ) >= 0 by XREAL_1: 63;

      

       A6: ( sqrt (((a ^2 ) + (b ^2 )) / 2)) > 0 by SQUARE_1: 25;

      

       A7: (( sqrt (((c ^2 ) + (a ^2 )) / 2)) ^2 ) = (((c ^2 ) + (a ^2 )) / 2) by SQUARE_1:def 2;

      ((((1 * ( sqrt (((a ^2 ) + (b ^2 )) / 2))) + (1 * ( sqrt (((b ^2 ) + (c ^2 )) / 2)))) + (1 * ( sqrt (((c ^2 ) + (a ^2 )) / 2)))) ^2 ) <= ((((1 ^2 ) + (1 ^2 )) + (1 ^2 )) * (((( sqrt (((a ^2 ) + (b ^2 )) / 2)) ^2 ) + (( sqrt (((b ^2 ) + (c ^2 )) / 2)) ^2 )) + (( sqrt (((c ^2 ) + (a ^2 )) / 2)) ^2 ))) by Th29;

      then ( sqrt (((( sqrt (((a ^2 ) + (b ^2 )) / 2)) + ( sqrt (((b ^2 ) + (c ^2 )) / 2))) + ( sqrt (((c ^2 ) + (a ^2 )) / 2))) ^2 )) <= ( sqrt (3 * (((a ^2 ) + (b ^2 )) + (c ^2 )))) by A1, A2, A7, A5, SQUARE_1: 26;

      hence thesis by A6, A4, A3, SQUARE_1: 22;

    end;

    theorem :: SERIES_5:34

    ( sqrt (3 * (((a ^2 ) + (b ^2 )) + (c ^2 )))) <= ((((b * c) / a) + ((c * a) / b)) + ((a * b) / c))

    proof

      

       A1: ((((b * c) / a) ^2 ) + (((c * a) / b) ^2 )) >= (2 * (c ^2 )) by Lm13;

      

       A2: ((((c * a) / b) ^2 ) + (((a * b) / c) ^2 )) >= (2 * (a ^2 )) by Lm13;

      ((((b * c) / a) ^2 ) + (((a * b) / c) ^2 )) >= (2 * (b ^2 )) by Lm13;

      then (((((c * a) / b) ^2 ) + (((a * b) / c) ^2 )) + ((((b * c) / a) ^2 ) + (((a * b) / c) ^2 ))) >= ((2 * (a ^2 )) + (2 * (b ^2 ))) by A2, XREAL_1: 7;

      then (((((((c * a) / b) ^2 ) + (((a * b) / c) ^2 )) + (((b * c) / a) ^2 )) + (((a * b) / c) ^2 )) + ((((b * c) / a) ^2 ) + (((c * a) / b) ^2 ))) >= (((2 * (a ^2 )) + (2 * (b ^2 ))) + (2 * (c ^2 ))) by A1, XREAL_1: 7;

      then (((((((c * a) / b) ^2 ) + (((a * b) / c) ^2 )) + (((b * c) / a) ^2 )) * 2) / 2) >= (((((a ^2 ) + (b ^2 )) + (c ^2 )) * 2) / 2) by XREAL_1: 72;

      then ((((((c * a) / b) ^2 ) + (((a * b) / c) ^2 )) + (((b * c) / a) ^2 )) + (2 * (((a ^2 ) + (b ^2 )) + (c ^2 )))) >= ((((a ^2 ) + (b ^2 )) + (c ^2 )) + (2 * (((a ^2 ) + (b ^2 )) + (c ^2 )))) by XREAL_1: 6;

      then (((((b * c) / a) + ((c * a) / b)) + ((a * b) / c)) ^2 ) >= (3 * (((a ^2 ) + (b ^2 )) + (c ^2 ))) by Lm16;

      then ( sqrt (((((b * c) / a) + ((c * a) / b)) + ((a * b) / c)) ^2 )) >= ( sqrt (3 * (((a ^2 ) + (b ^2 )) + (c ^2 )))) by SQUARE_1: 26;

      hence thesis by SQUARE_1: 22;

    end;

    theorem :: SERIES_5:35

    (a + b) = 1 implies (((1 / (a ^2 )) - 1) * ((1 / (b ^2 )) - 1)) >= 9

    proof

      assume

       A1: (a + b) = 1;

      ( sqrt (a * b)) > 0 by SQUARE_1: 25;

      then (1 ^2 ) >= ((2 * ( sqrt (a * b))) ^2 ) by A1, SIN_COS2: 1, SQUARE_1: 15;

      then 1 >= ((2 * 2) * (( sqrt (a * b)) ^2 ));

      then 1 >= (4 * (a * b)) by SQUARE_1:def 2;

      then (8 / 1) <= (8 / ((4 * a) * b)) by XREAL_1: 118;

      then 8 <= (8 / (4 * (a * b)));

      then 8 <= ((8 / 4) / (a * b)) by XCMPLX_1: 78;

      then

       A2: (8 + 1) <= ((2 / (a * b)) + 1) by XREAL_1: 7;

      (((1 / (a ^2 )) - 1) * ((1 / (b ^2 )) - 1)) = (((1 - (1 * (a ^2 ))) / (a ^2 )) * ((1 / (b ^2 )) - 1)) by XCMPLX_1: 126

      .= (((1 - (1 * (a ^2 ))) / (a ^2 )) * ((1 - (1 * (b ^2 ))) / (b ^2 ))) by XCMPLX_1: 126

      .= ((((1 - a) * (1 + a)) * ((1 - b) * (1 + b))) / ((a ^2 ) * (b ^2 ))) by XCMPLX_1: 76;

      

      then (((1 / (a ^2 )) - 1) * ((1 / (b ^2 )) - 1)) = (((a * b) * ((1 + a) * (1 + b))) / ((a * b) * (a * b))) by A1

      .= (((a * b) / (a * b)) * (((1 + a) * (1 + b)) / (a * b))) by XCMPLX_1: 76

      .= (1 * (((1 + a) * (1 + b)) / (a * b))) by XCMPLX_1: 60

      .= (((1 + (a + b)) + (a * b)) / (a * b))

      .= ((2 / (a * b)) + ((a * b) / (a * b))) by A1, XCMPLX_1: 62

      .= ((2 / (a * b)) + 1) by XCMPLX_1: 60;

      hence thesis by A2;

    end;

    theorem :: SERIES_5:36

    (a + b) = 1 implies ((a * b) + (1 / (a * b))) >= (17 / 4)

    proof

      

       A1: ( sqrt (a * b)) > 0 by SQUARE_1: 25;

      assume (a + b) = 1;

      then (1 ^2 ) >= ((2 * ( sqrt (a * b))) ^2 ) by A1, SIN_COS2: 1, SQUARE_1: 15;

      then 1 >= ((2 * 2) * (( sqrt (a * b)) ^2 ));

      then 1 >= (4 * (a * b)) by SQUARE_1:def 2;

      then

       A2: (1 / 4) >= (((a * b) * 4) / 4) by XREAL_1: 72;

      then ((1 / 4) * ( - 1)) <= ((a * b) * ( - 1)) by XREAL_1: 65;

      then (( - (1 / 4)) + 1) <= (( - (a * b)) + 1) by XREAL_1: 7;

      then ((3 / 4) ^2 ) <= ((1 - (a * b)) ^2 ) by SQUARE_1: 15;

      then ((9 / (4 ^2 )) / (1 / 4)) <= (((1 - (a * b)) ^2 ) / (1 / 4)) by XREAL_1: 72;

      then

       A3: ((9 / 4) + (8 / 4)) <= ((((1 - (a * b)) ^2 ) * 4) + 2) by XREAL_1: 7;

      ((1 - (a * b)) ^2 ) >= 0 by XREAL_1: 63;

      then (((1 - (a * b)) ^2 ) / (1 / 4)) <= (((1 - (a * b)) ^2 ) / (a * b)) by A2, XREAL_1: 118;

      then

       A4: ((((1 - (a * b)) ^2 ) * 4) + 2) <= ((((1 - (a * b)) ^2 ) / (a * b)) + 2) by XREAL_1: 7;

      ((1 / (a * b)) + (a * b)) = ((1 + ((a * b) * (a * b))) / (a * b)) by XCMPLX_1: 113

      .= (((((1 ^2 ) - ((2 * 1) * (a * b))) + ((a * b) ^2 )) + (2 * (a * b))) / (a * b))

      .= ((((1 - (a * b)) ^2 ) / (a * b)) + ((2 * (a * b)) / (a * b))) by XCMPLX_1: 62

      .= ((((1 - (a * b)) ^2 ) / (a * b)) + (2 * ((a * b) / (a * b)))) by XCMPLX_1: 74

      .= ((((1 - (a * b)) ^2 ) / (a * b)) + (2 * 1)) by XCMPLX_1: 60

      .= ((((1 - (a * b)) ^2 ) / (a * b)) + 2);

      hence thesis by A4, A3, XXREAL_0: 2;

    end;

    theorem :: SERIES_5:37

    ((a + b) + c) = 1 implies (((1 / a) + (1 / b)) + (1 / c)) >= 9

    proof

      assume

       A1: ((a + b) + c) = 1;

      

       A2: (3 -root ((a * b) * c)) >= 0 by POWER: 7;

      (((1 / a) + (1 / b)) + (1 / c)) >= (3 * (3 -root (((1 / a) * (1 / b)) * (1 / c)))) by SERIES_3: 15;

      then

       A3: (((1 / a) + (1 / b)) + (1 / c)) >= (3 * (3 -root (1 / ((a * b) * c)))) by Lm3;

      

       A4: (3 -root (1 / ((a * b) * c))) >= 0 by POWER: 7;

      ((a + b) + c) >= (3 * (3 -root ((a * b) * c))) by SERIES_3: 15;

      then (((a + b) + c) * (((1 / a) + (1 / b)) + (1 / c))) >= ((3 * (3 -root ((a * b) * c))) * (3 * (3 -root (1 / ((a * b) * c))))) by A2, A3, A4, XREAL_1: 66;

      then (((1 / a) + (1 / b)) + (1 / c)) >= (9 * ((3 -root ((a * b) * c)) * (3 -root (1 / ((a * b) * c))))) by A1;

      then (((1 / a) + (1 / b)) + (1 / c)) >= (9 * (3 -root (((a * b) * c) * (1 / ((a * b) * c))))) by POWER: 11;

      then (((1 / a) + (1 / b)) + (1 / c)) >= (9 * (3 -root (((a * b) * c) / (((a * b) * c) / 1)))) by XCMPLX_1: 79;

      then (((1 / a) + (1 / b)) + (1 / c)) >= (9 * (3 -root 1)) by XCMPLX_1: 60;

      then (((1 / a) + (1 / b)) + (1 / c)) >= (9 * 1) by POWER: 6;

      hence thesis;

    end;

    theorem :: SERIES_5:38

    ((a + b) + c) = 1 implies ((((1 / a) - 1) * ((1 / b) - 1)) * ((1 / c) - 1)) >= 8

    proof

      

       A1: ((a + c) / b) >= ((2 * ( sqrt (a * c))) / b) by SIN_COS2: 1, XREAL_1: 72;

      

       A2: ((a + b) / c) >= ((2 * ( sqrt (a * b))) / c) by SIN_COS2: 1, XREAL_1: 72;

      

       A3: ( sqrt (a * b)) > 0 by SQUARE_1: 25;

      

       A4: ( sqrt (a * c)) > 0 by SQUARE_1: 25;

      assume

       A5: ((a + b) + c) = 1;

      

      then

       A6: ((((1 / a) - 1) * ((1 / b) - 1)) * ((1 / c) - 1)) = ((((b + c) / a) * ((1 / b) - 1)) * ((1 / c) - 1)) by Lm17

      .= ((((b + c) / a) * ((a + c) / b)) * ((1 / c) - 1)) by A5, Lm17

      .= ((((b + c) / a) * ((a + c) / b)) * ((((a + b) / c) + (c / c)) - 1)) by A5, XCMPLX_1: 62

      .= ((((b + c) / a) * ((a + c) / b)) * ((((a + b) / c) + 1) - 1)) by XCMPLX_1: 60

      .= ((((b + c) / a) * ((a + c) / b)) * ((a + b) / c));

      

       A7: ( sqrt (b * c)) > 0 by SQUARE_1: 25;

      ((b + c) / a) >= ((2 * ( sqrt (b * c))) / a) by SIN_COS2: 1, XREAL_1: 72;

      then (((b + c) / a) * ((a + c) / b)) >= (((2 * ( sqrt (b * c))) / a) * ((2 * ( sqrt (a * c))) / b)) by A1, A7, A4, XREAL_1: 66;

      then ((((1 / a) - 1) * ((1 / b) - 1)) * ((1 / c) - 1)) >= ((((2 * ( sqrt (b * c))) / a) * ((2 * ( sqrt (a * c))) / b)) * ((2 * ( sqrt (a * b))) / c)) by A6, A2, A7, A4, A3, XREAL_1: 66;

      hence thesis by Lm18;

    end;

    theorem :: SERIES_5:39

    ((a + b) + c) = 1 implies (((1 + (1 / a)) * (1 + (1 / b))) * (1 + (1 / c))) >= 64

    proof

      

       A1: ( sqrt (b * c)) > 0 by SQUARE_1: 25;

      ((a + b) / c) >= ((2 * ( sqrt (a * b))) / c) by SIN_COS2: 1, XREAL_1: 72;

      then (2 + ((a + b) / c)) >= (2 + ((2 * ( sqrt (a * b))) / c)) by XREAL_1: 6;

      then

       A2: (2 + ((a + b) / c)) >= (2 + (2 * (( sqrt (a * b)) / c))) by XCMPLX_1: 74;

      

       A3: ( sqrt (a * b)) > 0 by SQUARE_1: 25;

      ((a + c) / b) >= ((2 * ( sqrt (a * c))) / b) by SIN_COS2: 1, XREAL_1: 72;

      then (2 + ((a + c) / b)) >= (2 + ((2 * ( sqrt (a * c))) / b)) by XREAL_1: 6;

      then

       A4: (2 + ((a + c) / b)) >= (2 + (2 * (( sqrt (a * c)) / b))) by XCMPLX_1: 74;

      

       A5: ( sqrt (a * c)) > 0 by SQUARE_1: 25;

      ((b + c) / a) >= ((2 * ( sqrt (b * c))) / a) by SIN_COS2: 1, XREAL_1: 72;

      then (2 + ((b + c) / a)) >= (2 + ((2 * ( sqrt (b * c))) / a)) by XREAL_1: 6;

      then (2 + ((b + c) / a)) >= (2 + (2 * (( sqrt (b * c)) / a))) by XCMPLX_1: 74;

      then ((2 + ((b + c) / a)) * (2 + ((a + c) / b))) >= ((2 * (1 + (( sqrt (b * c)) / a))) * (2 * (1 + (( sqrt (a * c)) / b)))) by A4, A1, A5, XREAL_1: 66;

      then

       A6: (((2 + ((b + c) / a)) * (2 + ((a + c) / b))) * (2 + ((a + b) / c))) >= (((2 * (1 + (( sqrt (b * c)) / a))) * (2 * (1 + (( sqrt (a * c)) / b)))) * (2 * (1 + (( sqrt (a * b)) / c)))) by A2, A1, A5, A3, XREAL_1: 66;

      ((((((( sqrt (a * c)) / b) + (b / ( sqrt (a * c)))) + (( sqrt (a * b)) / c)) + (c / ( sqrt (b * a)))) + (a / ( sqrt (b * c)))) + (( sqrt (b * c)) / a)) >= 6 by Lm23;

      then (2 + ((((((( sqrt (a * c)) / b) + (b / ( sqrt (a * c)))) + (( sqrt (a * b)) / c)) + (c / ( sqrt (b * a)))) + (a / ( sqrt (b * c)))) + (( sqrt (b * c)) / a))) >= (6 + 2) by XREAL_1: 6;

      then

       A7: (8 * ((((((2 + (( sqrt (a * c)) / b)) + (b / ( sqrt (a * c)))) + (( sqrt (a * b)) / c)) + (c / ( sqrt (b * a)))) + (a / ( sqrt (b * c)))) + (( sqrt (b * c)) / a))) >= (8 * 8) by XREAL_1: 64;

      assume

       A8: ((a + b) + c) = 1;

      

      then (((1 + (1 / a)) * (1 + (1 / b))) * (1 + (1 / c))) = (((2 + ((b + c) / a)) * (1 + (1 / b))) * (1 + (1 / c))) by Lm19

      .= (((2 + ((b + c) / a)) * (2 + ((a + c) / b))) * (1 + (1 / c))) by A8, Lm19

      .= (((2 + ((b + c) / a)) * (2 + ((a + c) / b))) * (1 + (((a + b) / c) + (c / c)))) by A8, XCMPLX_1: 62

      .= (((2 + ((b + c) / a)) * (2 + ((a + c) / b))) * ((1 + ((a + b) / c)) + 1)) by XCMPLX_1: 60

      .= (((2 + ((b + c) / a)) * (2 + ((a + c) / b))) * (2 + ((a + b) / c)));

      then (((1 + (1 / a)) * (1 + (1 / b))) * (1 + (1 / c))) >= (8 * (((1 + (( sqrt (b * c)) / a)) * (1 + (( sqrt (a * c)) / b))) * (1 + (( sqrt (a * b)) / c)))) by A6;

      then (((1 + (1 / a)) * (1 + (1 / b))) * (1 + (1 / c))) >= (8 * ((((((2 + (( sqrt (a * c)) / b)) + (b / ( sqrt (a * c)))) + (( sqrt (a * b)) / c)) + (c / ( sqrt (b * a)))) + (a / ( sqrt (b * c)))) + (( sqrt (b * c)) / a))) by Lm22;

      hence thesis by A7, XXREAL_0: 2;

    end;

    theorem :: SERIES_5:40

    ((x + y) + z) = 1 implies (((x ^2 ) + (y ^2 )) + (z ^2 )) >= (1 / 3)

    proof

      

       A1: (((y ^2 ) + (z ^2 )) / 2) >= (y * z) by SERIES_3: 7;

      

       A2: (((x ^2 ) + (z ^2 )) / 2) >= (x * z) by SERIES_3: 7;

      (((x ^2 ) + (y ^2 )) / 2) >= (x * y) by SERIES_3: 7;

      then ((((x ^2 ) + (y ^2 )) / 2) + (((y ^2 ) + (z ^2 )) / 2)) >= ((y * z) + (x * y)) by A1, XREAL_1: 7;

      then (((((x ^2 ) + (y ^2 )) / 2) + (((y ^2 ) + (z ^2 )) / 2)) + (((x ^2 ) + (z ^2 )) / 2)) >= (((y * z) + (x * y)) + (x * z)) by A2, XREAL_1: 7;

      then ( - (((((x ^2 ) + (y ^2 )) / 2) + (((y ^2 ) + (z ^2 )) / 2)) + (((x ^2 ) + (z ^2 )) / 2))) <= ( - (((y * z) + (x * y)) + (x * z))) by XREAL_1: 24;

      then (( - (((((x ^2 ) + (y ^2 )) / 2) + (((y ^2 ) + (z ^2 )) / 2)) + (((x ^2 ) + (z ^2 )) / 2))) * 2) <= (( - (((y * z) + (x * y)) + (x * z))) * 2) by XREAL_1: 64;

      then (( - ((((((x ^2 ) + (y ^2 )) / 2) + (((y ^2 ) + (z ^2 )) / 2)) + (((x ^2 ) + (z ^2 )) / 2)) * 2)) + 1) <= (( - ((((y * z) + (x * y)) + (x * z)) * 2)) + 1) by XREAL_1: 6;

      then

       A3: (1 - ((((x ^2 ) + (y ^2 )) + (z ^2 )) * 2)) <= (1 - ((((y * z) + (x * y)) + (x * z)) * 2));

      assume ((x + y) + z) = 1;

      then ((((((x ^2 ) + (y ^2 )) + (z ^2 )) + ((2 * x) * y)) + ((2 * y) * z)) + ((2 * z) * x)) = (1 ^2 ) by Lm6;

      then 1 <= ((((x ^2 ) + (y ^2 )) + (z ^2 )) + ((((x ^2 ) + (y ^2 )) + (z ^2 )) * 2)) by A3, XREAL_1: 20;

      then (1 / 3) <= (((((x ^2 ) + (y ^2 )) + (z ^2 )) * 3) / 3) by XREAL_1: 72;

      hence thesis;

    end;

    theorem :: SERIES_5:41

    ((x + y) + z) = 1 implies (((x * y) + (y * z)) + (z * x)) <= (1 / 3)

    proof

      (((x ^2 ) + (y ^2 )) + (z ^2 )) >= (((x * y) + (y * z)) + (x * z)) by SERIES_3: 10;

      then

       A1: ((((x ^2 ) + (y ^2 )) + (z ^2 )) + (2 * (((x * y) + (y * z)) + (z * x)))) >= ((((x * y) + (y * z)) + (x * z)) + (2 * (((x * y) + (y * z)) + (z * x)))) by XREAL_1: 7;

      assume ((x + y) + z) = 1;

      then (1 ^2 ) = ((((((x ^2 ) + (y ^2 )) + (z ^2 )) + ((2 * x) * y)) + ((2 * y) * z)) + ((2 * z) * x)) by Lm6;

      then (1 / 3) >= ((3 * (((x * y) + (y * z)) + (z * x))) / 3) by A1, XREAL_1: 72;

      hence thesis;

    end;

    theorem :: SERIES_5:42

    a > b & b > c implies (((a to_power (2 * a)) * (b to_power (2 * b))) * (c to_power (2 * c))) > (((a to_power (b + c)) * (b to_power (a + c))) * (c to_power (a + b)))

    proof

      assume that

       A1: a > b and

       A2: b > c;

      

       A3: (b / c) > 1 by A2, XREAL_1: 187;

      set e = (((a to_power (b + c)) * (b to_power (a + c))) * (c to_power (a + b)));

      

       A4: (b to_power (c + a)) > 0 by POWER: 34;

      (b - c) > 0 by A2, XREAL_1: 50;

      then

       A5: ((b / c) to_power (b - c)) > 1 by A3, POWER: 35;

      

       A6: (a / b) > 1 by A1, XREAL_1: 187;

      (a - b) > 0 by A1, XREAL_1: 50;

      then ((a / b) to_power (a - b)) > 1 by A6, POWER: 35;

      then

       A7: (((a / b) to_power (a - b)) * ((b / c) to_power (b - c))) > 1 by A5, XREAL_1: 161;

      

       A8: (c to_power (a + b)) > 0 by POWER: 34;

      

       A9: a > c by A1, A2, XXREAL_0: 2;

      then

       A10: (a / c) > 1 by XREAL_1: 187;

      set d = (((a to_power (2 * a)) * (b to_power (2 * b))) * (c to_power (2 * c)));

      

       A11: (a to_power (b + c)) > 0 by POWER: 34;

      (a - c) > 0 by A9, XREAL_1: 50;

      then ((a / c) to_power (a - c)) > 1 by A10, POWER: 35;

      then ((((a / b) to_power (a - b)) * ((b / c) to_power (b - c))) * ((a / c) to_power ( - (c - a)))) > 1 by A7, XREAL_1: 161;

      then ((((a / b) to_power (a - b)) * ((b / c) to_power (b - c))) * ((c / a) to_power (c - a))) > 1 by Lm4;

      then ((((a to_power (a - b)) / (b to_power (a - b))) * ((b / c) to_power (b - c))) * ((c / a) to_power (c - a))) > 1 by POWER: 31;

      then ((((a to_power (a - b)) / (b to_power (a - b))) * ((b to_power (b - c)) / (c to_power (b - c)))) * ((c / a) to_power (c - a))) > 1 by POWER: 31;

      then ((((a to_power (a - b)) / (b to_power (a - b))) * ((b to_power (b - c)) / (c to_power (b - c)))) * ((c to_power (c - a)) / (a to_power (c - a)))) > 1 by POWER: 31;

      then ((((a to_power (a - b)) * (b to_power (b - c))) / ((c to_power (b - c)) * (b to_power (a - b)))) * ((c to_power (c - a)) / (a to_power (c - a)))) > 1 by XCMPLX_1: 76;

      then ((((a to_power (a - b)) / (c to_power (b - c))) * ((b to_power (b - c)) / (b to_power (a - b)))) * ((c to_power (c - a)) / (a to_power (c - a)))) > 1 by XCMPLX_1: 76;

      then ((((a to_power (a - b)) / (c to_power (b - c))) * (b to_power ((b - c) - (a - b)))) * ((c to_power (c - a)) / (a to_power (c - a)))) > 1 by POWER: 29;

      then ((((a to_power (a - b)) / (c to_power (b - c))) * ((c to_power (c - a)) / (a to_power (c - a)))) * (b to_power (((2 * b) - a) - c))) > 1;

      then ((((a to_power (a - b)) / (a to_power (c - a))) * ((c to_power (c - a)) / (c to_power (b - c)))) * (b to_power (((2 * b) - a) - c))) > 1 by XCMPLX_1: 85;

      then (((a to_power ((a - b) - (c - a))) * ((c to_power (c - a)) / (c to_power (b - c)))) * (b to_power (((2 * b) - a) - c))) > 1 by POWER: 29;

      then (((a to_power (((2 * a) - b) - c)) * (c to_power ((c - a) - (b - c)))) * (b to_power (((2 * b) - a) - c))) > 1 by POWER: 29;

      then (((a to_power ((2 * a) - (b + c))) * (c to_power ((2 * c) - (a + b)))) * (b to_power ((2 * b) - (a + c)))) > 1;

      then ((((a to_power (2 * a)) / (a to_power (b + c))) * (c to_power ((2 * c) - (a + b)))) * (b to_power ((2 * b) - (a + c)))) > 1 by POWER: 29;

      then ((((a to_power (2 * a)) / (a to_power (b + c))) * ((c to_power (2 * c)) / (c to_power (a + b)))) * (b to_power ((2 * b) - (a + c)))) > 1 by POWER: 29;

      then ((((a to_power (2 * a)) * (c to_power (2 * c))) / ((a to_power (b + c)) * (c to_power (a + b)))) * (b to_power ((2 * b) - (a + c)))) > 1 by XCMPLX_1: 76;

      then ((((a to_power (2 * a)) * (c to_power (2 * c))) / ((a to_power (b + c)) * (c to_power (a + b)))) * ((b to_power (2 * b)) / (b to_power (a + c)))) > 1 by POWER: 29;

      then ((((a to_power (2 * a)) * (c to_power (2 * c))) * (b to_power (2 * b))) / (((a to_power (b + c)) * (c to_power (a + b))) * (b to_power (a + c)))) > 1 by XCMPLX_1: 76;

      then ((d / e) * e) > (1 * e) by A11, A4, A8, XREAL_1: 68;

      hence thesis by A11, A4, A8, XCMPLX_1: 87;

    end;

    theorem :: SERIES_5:43

    n >= 1 implies ((a |^ (n + 1)) + (b |^ (n + 1))) >= (((a |^ n) * b) + (a * (b |^ n)))

    proof

      assume

       A1: n >= 1;

      per cases ;

        suppose

         A2: (a - b) > 0 ;

        then ((a - b) + b) > ( 0 + b) by XREAL_1: 8;

        then (a |^ n) > (b |^ n) by A1, PREPOWER: 10;

        then ((a |^ n) - (b |^ n)) > 0 by XREAL_1: 50;

        then ((a - b) * ((a |^ n) - (b |^ n))) > 0 by A2;

        then ((((a * (a |^ n)) - (a * (b |^ n))) - (b * (a |^ n))) + (b * (b |^ n))) > 0 ;

        then ((((a |^ (n + 1)) - (a * (b |^ n))) - (b * (a |^ n))) + (b * (b |^ n))) > 0 by NEWTON: 6;

        then ((((a |^ (n + 1)) - (a * (b |^ n))) - (b * (a |^ n))) + (b |^ (n + 1))) > 0 by NEWTON: 6;

        then (((((a |^ (n + 1)) + (b |^ (n + 1))) - (a * (b |^ n))) - (b * (a |^ n))) + ((a * (b |^ n)) + (b * (a |^ n)))) > ( 0 + ((a * (b |^ n)) + (b * (a |^ n)))) by XREAL_1: 8;

        hence thesis;

      end;

        suppose

         A3: (a - b) = 0 ;

        

        then (((a |^ n) * b) + (a * (b |^ n))) = ((a |^ (n + 1)) + ((a |^ n) * a)) by NEWTON: 6

        .= ((a |^ (n + 1)) + (a |^ (n + 1))) by NEWTON: 6

        .= (2 * (a |^ (n + 1)));

        hence thesis by A3;

      end;

        suppose

         A4: (a - b) < 0 ;

        then ((a - b) + b) < ( 0 + b) by XREAL_1: 8;

        then (a |^ n) < (b |^ n) by A1, PREPOWER: 10;

        then ((a |^ n) - (b |^ n)) < 0 by XREAL_1: 49;

        then ((a - b) * ((a |^ n) - (b |^ n))) > 0 by A4;

        then ((((a * (a |^ n)) - (a * (b |^ n))) - (b * (a |^ n))) + (b * (b |^ n))) > 0 ;

        then ((((a |^ (n + 1)) - (a * (b |^ n))) - (b * (a |^ n))) + (b * (b |^ n))) > 0 by NEWTON: 6;

        then ((((a |^ (n + 1)) - (a * (b |^ n))) - (b * (a |^ n))) + (b |^ (n + 1))) > 0 by NEWTON: 6;

        then (((((a |^ (n + 1)) + (b |^ (n + 1))) - (a * (b |^ n))) - (b * (a |^ n))) + ((a * (b |^ n)) + (b * (a |^ n)))) > ( 0 + ((a * (b |^ n)) + (b * (a |^ n)))) by XREAL_1: 8;

        hence thesis;

      end;

    end;

    theorem :: SERIES_5:44

    ((a ^2 ) + (b ^2 )) = (c ^2 ) & n >= 3 implies ((a |^ (n + 2)) + (b |^ (n + 2))) < (c |^ (n + 2))

    proof

      assume that

       A1: ((a ^2 ) + (b ^2 )) = (c ^2 ) and

       A2: n >= 3;

      

       A3: n >= 1 by A2, XXREAL_0: 2;

      (b ^2 ) > 0 ;

      then

       A4: (b |^ 2) > 0 by NEWTON: 81;

      (((c ^2 ) - (b ^2 )) + (b ^2 )) > ( 0 + (b ^2 )) by A1, XREAL_1: 8;

      then ( sqrt (c ^2 )) > ( sqrt (b ^2 )) by SQUARE_1: 27;

      then c > ( sqrt (b ^2 )) by SQUARE_1: 22;

      then c > b by SQUARE_1: 22;

      then (c |^ n) > (b |^ n) by A3, PREPOWER: 10;

      then ((c |^ n) * (b |^ 2)) > ((b |^ n) * (b |^ 2)) by A4, XREAL_1: 68;

      then

       A5: ((c |^ n) * (b |^ 2)) > (b |^ (n + 2)) by NEWTON: 8;

      (a ^2 ) > 0 ;

      then

       A6: (a |^ 2) > 0 by NEWTON: 81;

      (((c ^2 ) - (a ^2 )) + (a ^2 )) > ( 0 + (a ^2 )) by A1, XREAL_1: 8;

      then ( sqrt (c ^2 )) > ( sqrt (a ^2 )) by SQUARE_1: 27;

      then c > ( sqrt (a ^2 )) by SQUARE_1: 22;

      then c > a by SQUARE_1: 22;

      then (c |^ n) > (a |^ n) by A3, PREPOWER: 10;

      then ((c |^ n) * (a |^ 2)) > ((a |^ n) * (a |^ 2)) by A6, XREAL_1: 68;

      then ((c |^ n) * (a |^ 2)) > (a |^ (n + 2)) by NEWTON: 8;

      then (((c |^ n) * (a |^ 2)) + ((c |^ n) * (b |^ 2))) > ((a |^ (n + 2)) + (b |^ (n + 2))) by A5, XREAL_1: 8;

      then ((c |^ n) * ((a |^ 2) + (b |^ 2))) > ((a |^ (n + 2)) + (b |^ (n + 2)));

      then ((c |^ n) * ((a ^2 ) + (b |^ 2))) > ((a |^ (n + 2)) + (b |^ (n + 2))) by NEWTON: 81;

      then ((c |^ n) * (c ^2 )) > ((a |^ (n + 2)) + (b |^ (n + 2))) by A1, NEWTON: 81;

      then ((c |^ n) * (c |^ 2)) > ((a |^ (n + 2)) + (b |^ (n + 2))) by NEWTON: 81;

      hence thesis by NEWTON: 8;

    end;

    theorem :: SERIES_5:45

    n >= 1 implies ((1 + (1 / (n + 1))) |^ n) < ((1 + (1 / n)) |^ (n + 1))

    proof

      assume

       A1: n >= 1;

      (n + 1) > (n + 0 ) by XREAL_1: 8;

      then (1 / (n + 1)) < (1 / n) by A1, XREAL_1: 76;

      then ((1 / (n + 1)) + 1) < ((1 / n) + 1) by XREAL_1: 8;

      then

       A2: ((1 + (1 / (n + 1))) |^ n) < ((1 + (1 / n)) |^ n) by A1, PREPOWER: 10;

      

       A3: ((1 + (1 / n)) |^ n) > 0 by PREPOWER: 6;

      (((1 + (1 / n)) |^ (n + 1)) - ((1 + (1 / n)) |^ n)) = ((((1 + (1 / n)) |^ n) * (1 + (1 / n))) - ((1 + (1 / n)) |^ n)) by NEWTON: 6

      .= (((1 + (1 / n)) |^ n) * (1 / n));

      then ((((1 + (1 / n)) |^ (n + 1)) - ((1 + (1 / n)) |^ n)) + ((1 + (1 / n)) |^ n)) > ( 0 + ((1 + (1 / n)) |^ n)) by A1, A3, XREAL_1: 8;

      hence thesis by A2, XXREAL_0: 2;

    end;

    theorem :: SERIES_5:46

    n >= 1 & k >= 1 implies (((a |^ k) + (b |^ k)) * ((a |^ n) + (b |^ n))) <= (2 * ((a |^ (k + n)) + (b |^ (k + n))))

    proof

      assume that

       A1: n >= 1 and

       A2: k >= 1;

      

       A3: ((((a |^ k) + (b |^ k)) * ((a |^ n) + (b |^ n))) - (2 * ((a |^ (k + n)) + (b |^ (k + n))))) = (((((((a |^ k) * (a |^ n)) + ((a |^ k) * (b |^ n))) + ((b |^ k) * (a |^ n))) + ((b |^ k) * (b |^ n))) - (2 * (a |^ (k + n)))) - (2 * (b |^ (k + n))))

      .= ((((((a |^ (k + n)) + ((a |^ k) * (b |^ n))) + ((b |^ k) * (a |^ n))) + ((b |^ k) * (b |^ n))) - (2 * (a |^ (k + n)))) - (2 * (b |^ (k + n)))) by NEWTON: 8

      .= ((((((a |^ (k + n)) + ((a |^ k) * (b |^ n))) + ((b |^ k) * (a |^ n))) + (b |^ (k + n))) - (2 * (a |^ (k + n)))) - (2 * (b |^ (k + n)))) by NEWTON: 8

      .= (((((a |^ k) * (b |^ n)) + ((b |^ k) * (a |^ n))) - (a |^ (k + n))) - (b |^ (k + n)))

      .= (((((a |^ k) * (b |^ n)) + ((b |^ k) * (a |^ n))) - ((a |^ k) * (a |^ n))) - (b |^ (k + n))) by NEWTON: 8

      .= (((((a |^ k) * (b |^ n)) + ((b |^ k) * (a |^ n))) - ((a |^ k) * (a |^ n))) - ((b |^ k) * (b |^ n))) by NEWTON: 8

      .= (((a |^ n) - (b |^ n)) * ((b |^ k) - (a |^ k)));

      per cases ;

        suppose (a - b) > 0 ;

        then

         A4: ((a - b) + b) > ( 0 + b) by XREAL_1: 8;

        then (a |^ k) > (b |^ k) by A2, PREPOWER: 10;

        then

         A5: ((b |^ k) - (a |^ k)) < 0 by XREAL_1: 49;

        (a |^ n) > (b |^ n) by A1, A4, PREPOWER: 10;

        then ((a |^ n) - (b |^ n)) > 0 by XREAL_1: 50;

        hence thesis by A3, A5, XREAL_1: 48;

      end;

        suppose (a - b) = 0 ;

        then (a |^ n) = (b |^ n);

        hence thesis by A3;

      end;

        suppose (a - b) < 0 ;

        then

         A6: ((a - b) + b) < ( 0 + b) by XREAL_1: 8;

        then (a |^ k) < (b |^ k) by A2, PREPOWER: 10;

        then

         A7: ((b |^ k) - (a |^ k)) > 0 by XREAL_1: 50;

        (a |^ n) < (b |^ n) by A1, A6, PREPOWER: 10;

        then ((a |^ n) - (b |^ n)) < 0 by XREAL_1: 49;

        hence thesis by A3, A7, XREAL_1: 48;

      end;

    end;

    theorem :: SERIES_5:47

    (for n holds (s . n) = (1 / ( sqrt (n + 1)))) implies for n holds (( Partial_Sums s) . n) < (2 * ( sqrt (n + 1)))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) < (2 * ( sqrt ($1 + 1)));

      assume

       A1: for n holds (s . n) = (1 / ( sqrt (n + 1)));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        

         A3: ( sqrt (n + 2)) > 0 by SQUARE_1: 25;

        (((4 * (n ^2 )) + (12 * n)) + 8) < (((4 * (n ^2 )) + (12 * n)) + 9) by XREAL_1: 8;

        then ( sqrt (4 * ((n + 2) * (n + 1)))) < ( sqrt (((2 * n) + 3) ^2 )) by SQUARE_1: 27;

        then (2 * ( sqrt ((n + 2) * (n + 1)))) < ( sqrt (((2 * n) + 3) ^2 )) by SQUARE_1: 20, SQUARE_1: 29;

        then (2 * ( sqrt ((n + 2) * (n + 1)))) < ((2 * n) + 3) by SQUARE_1: 22;

        then ((2 * ( sqrt ((n + 2) * (n + 1)))) + 1) < (((2 * n) + 3) + 1) by XREAL_1: 8;

        then ((2 * (( sqrt (n + 2)) * ( sqrt (n + 1)))) + 1) < (2 * (n + 2)) by SQUARE_1: 29;

        then ((2 * (( sqrt (n + 2)) * ( sqrt (n + 1)))) + 1) < (2 * ( sqrt ((n + 2) ^2 ))) by SQUARE_1: 22;

        then (((2 * (( sqrt (n + 2)) * ( sqrt (n + 1)))) + 1) / ( sqrt (n + 2))) < ((2 * ( sqrt ((n + 2) * (n + 2)))) / ( sqrt (n + 2))) by A3, XREAL_1: 74;

        then (((2 * (( sqrt (n + 2)) * ( sqrt (n + 1)))) + 1) / ( sqrt (n + 2))) < ((2 * (( sqrt (n + 2)) * ( sqrt (n + 2)))) / ( sqrt (n + 2))) by SQUARE_1: 29;

        then (((2 * (( sqrt (n + 2)) * ( sqrt (n + 1)))) + 1) / ( sqrt (n + 2))) < (((2 * ( sqrt (n + 2))) * ( sqrt (n + 2))) / ( sqrt (n + 2)));

        then (((2 * (( sqrt (n + 2)) * ( sqrt (n + 1)))) + 1) / ( sqrt (n + 2))) < (2 * ( sqrt (n + 2))) by A3, XCMPLX_1: 89;

        then ((((2 * ( sqrt (n + 1))) * ( sqrt (n + 2))) / ( sqrt (n + 2))) + (1 / ( sqrt (n + 2)))) < (2 * ( sqrt (n + 2))) by XCMPLX_1: 62;

        then

         A4: ((2 * ( sqrt (n + 1))) + (1 / ( sqrt (n + 2)))) < (2 * ( sqrt (n + 2))) by A3, XCMPLX_1: 89;

        assume (( Partial_Sums s) . n) < (2 * ( sqrt (n + 1)));

        then ((( Partial_Sums s) . n) + (1 / ( sqrt (n + 2)))) < ((2 * ( sqrt (n + 1))) + (1 / ( sqrt (n + 2)))) by XREAL_1: 8;

        then ((( Partial_Sums s) . n) + (1 / ( sqrt ((n + 1) + 1)))) < (2 * ( sqrt (n + 2))) by A4, XXREAL_0: 2;

        then ((( Partial_Sums s) . n) + (s . (n + 1))) < (2 * ( sqrt (n + 2))) by A1;

        hence thesis by SERIES_1:def 1;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= (1 / ( sqrt ( 0 + 1))) by A1

      .= 1 by SQUARE_1: 18;

      then

       A5: X[ 0 ] by SQUARE_1: 18;

      for n holds X[n] from NAT_1:sch 2( A5, A2);

      hence thesis;

    end;

    theorem :: SERIES_5:48

    

     Th48: (for n holds (s . n) = (1 / ((n + 1) ^2 ))) implies for n holds (( Partial_Sums s) . n) <= (2 - (1 / (n + 1)))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) <= (2 - (1 / ($1 + 1)));

      assume

       A1: for n holds (s . n) = (1 / ((n + 1) ^2 ));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) <= (2 - (1 / (n + 1)));

        then

         A3: ((( Partial_Sums s) . n) + (1 / ((n + 2) ^2 ))) <= ((2 - (1 / (n + 1))) + (1 / ((n + 2) ^2 ))) by XREAL_1: 7;

        (((n ^2 ) + (3 * n)) + 3) > (((n ^2 ) + (3 * n)) + 2) by XREAL_1: 8;

        then ((((n ^2 ) + (3 * n)) + 3) / ((n + 1) * ((n + 2) ^2 ))) > (((n + 2) * (n + 1)) / (((n + 2) ^2 ) * (n + 1))) by XREAL_1: 74;

        then ((((n ^2 ) + (3 * n)) + 3) / ((n + 1) * ((n + 2) ^2 ))) > ((n + 2) / ((n + 2) * (n + 2))) by XCMPLX_1: 91;

        then ((((n ^2 ) + (3 * n)) + 3) / ((n + 1) * ((n + 2) ^2 ))) > (((n + 2) / (n + 2)) / (n + 2)) by XCMPLX_1: 78;

        then ((((n ^2 ) + (3 * n)) + 3) / ((n + 1) * ((n + 2) ^2 ))) > (1 / (n + 2)) by XCMPLX_1: 60;

        then (( - 1) * ((((n ^2 ) + (3 * n)) + 3) / ((n + 1) * ((n + 2) ^2 )))) < (( - 1) * (1 / (n + 2))) by XREAL_1: 69;

        then

         A4: (( - ((((n ^2 ) + (3 * n)) + 3) / ((n + 1) * ((n + 2) ^2 )))) + 2) < (( - (1 / (n + 2))) + 2) by XREAL_1: 8;

        (( Partial_Sums s) . (n + 1)) = ((( Partial_Sums s) . n) + (s . (n + 1))) by SERIES_1:def 1

        .= ((( Partial_Sums s) . n) + (1 / (((n + 1) + 1) ^2 ))) by A1;

        then (( Partial_Sums s) . (n + 1)) <= (2 - ((1 / (n + 1)) - (1 / ((n + 2) ^2 )))) by A3;

        then (( Partial_Sums s) . (n + 1)) <= (2 - (((1 * ((n + 2) ^2 )) - (1 * (n + 1))) / ((n + 1) * ((n + 2) ^2 )))) by XCMPLX_1: 130;

        hence thesis by A4, XXREAL_0: 2;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= (1 / (( 0 + 1) ^2 )) by A1

      .= 1;

      then

       A5: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A5, A2);

      hence thesis;

    end;

    theorem :: SERIES_5:49

    (for n holds (s . n) = (1 / ((n + 1) ^2 ))) implies (( Partial_Sums s) . n) < 2

    proof

      assume for n holds (s . n) = (1 / ((n + 1) ^2 ));

      then

       A1: (( Partial_Sums s) . n) <= (2 - (1 / (n + 1))) by Th48;

      (( - (1 / (n + 1))) + 2) < ( 0 + 2) by XREAL_1: 8;

      hence thesis by A1, XXREAL_0: 2;

    end;

    theorem :: SERIES_5:50

    

     Th50: (for n holds (s . n) < 1) implies for n holds (( Partial_Sums s) . n) < (n + 1)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) < ($1 + 1);

      assume

       A1: for n holds (s . n) < 1;

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        

         A3: (( Partial_Sums s) . (n + 1)) = ((( Partial_Sums s) . n) + (s . (n + 1))) by SERIES_1:def 1;

        assume (( Partial_Sums s) . n) < (n + 1);

        hence thesis by A1, A3, XREAL_1: 8;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1;

      then

       A4: X[ 0 ] by A1;

      for n holds X[n] from NAT_1:sch 2( A4, A2);

      hence thesis;

    end;

    theorem :: SERIES_5:51

    (for n holds (s . n) > 0 & (s . n) < 1) implies for n holds (( Partial_Product s) . n) >= ((( Partial_Sums s) . n) - n)

    proof

      defpred X[ Nat] means (( Partial_Product s) . $1) >= ((( Partial_Sums s) . $1) - $1);

      assume

       A1: for n holds (s . n) > 0 & (s . n) < 1;

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume

         A3: (( Partial_Product s) . n) >= ((( Partial_Sums s) . n) - n);

        

         A4: (s . (n + 1)) < 1 by A1;

        ((( Partial_Sums s) . n) - (n + 1)) < 0 by A1, Th50, XREAL_1: 49;

        then ((s . (n + 1)) * (((( Partial_Sums s) . n) - n) - 1)) > (1 * (((( Partial_Sums s) . n) - n) - 1)) by A4, XREAL_1: 69;

        then

         A5: (((((s . (n + 1)) * (( Partial_Sums s) . n)) - ((s . (n + 1)) * n)) - (s . (n + 1))) + (s . (n + 1))) > ((((( Partial_Sums s) . n) - n) - 1) + (s . (n + 1))) by XREAL_1: 8;

        (s . (n + 1)) > 0 by A1;

        then ((( Partial_Product s) . n) * (s . (n + 1))) >= (((( Partial_Sums s) . n) - n) * (s . (n + 1))) by A3, XREAL_1: 64;

        then ((( Partial_Product s) . n) * (s . (n + 1))) > (((( Partial_Sums s) . n) + (s . (n + 1))) - (n + 1)) by A5, XXREAL_0: 2;

        then (( Partial_Product s) . (n + 1)) > (((( Partial_Sums s) . n) + (s . (n + 1))) - (n + 1)) by SERIES_3:def 1;

        hence thesis by SERIES_1:def 1;

      end;

      ((( Partial_Sums s) . 0 ) - 0 ) = (s . 0 ) by SERIES_1:def 1;

      then

       A6: X[ 0 ] by SERIES_3:def 1;

      for n holds X[n] from NAT_1:sch 2( A6, A2);

      hence thesis;

    end;

    theorem :: SERIES_5:52

    

     Th52: (for n be Nat holds (s . n) > 0 & (s1 . n) = (1 / (s . n))) implies for n holds (( Partial_Sums s1) . n) > 0

    proof

      defpred X[ Nat] means (( Partial_Sums s1) . $1) > 0 ;

      assume

       A1: for n be Nat holds (s . n) > 0 & (s1 . n) = (1 / (s . n));

      then

       A2: (s1 . 0 ) = (1 / (s . 0 ));

      

       A3: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume

         A4: (( Partial_Sums s1) . n) > 0 ;

        

         A5: (( Partial_Sums s1) . (n + 1)) = ((( Partial_Sums s1) . n) + (s1 . (n + 1))) by SERIES_1:def 1;

        

         A6: (s . (n + 1)) > 0 by A1;

        (s1 . (n + 1)) = (1 / (s . (n + 1))) by A1;

        hence thesis by A4, A5, A6;

      end;

      (s . 0 ) > 0 by A1;

      then

       A7: X[ 0 ] by A2, SERIES_1:def 1;

      for n holds X[n] from NAT_1:sch 2( A7, A3);

      hence thesis;

    end;

    theorem :: SERIES_5:53

    (for n be Nat holds (s . n) > 0 & (s1 . n) = (1 / (s . n))) implies for n holds ((( Partial_Sums s) . n) * (( Partial_Sums s1) . n)) >= ((n + 1) ^2 )

    proof

      defpred X[ Nat] means ((( Partial_Sums s) . $1) * (( Partial_Sums s1) . $1)) >= (($1 + 1) ^2 );

      assume

       A1: for n be Nat holds (s . n) > 0 & (s1 . n) = (1 / (s . n));

      then

       A2: (s . 0 ) > 0 ;

      

       A3: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        set x = (( Partial_Sums s) . n);

        set y = (( Partial_Sums s1) . n);

        assume

         A4: ((( Partial_Sums s) . n) * (( Partial_Sums s1) . n)) >= ((n + 1) ^2 );

        then

         A5: ((x * y) + (((x / (s . (n + 1))) + (y * (s . (n + 1)))) + 1)) >= (((n + 1) ^2 ) + (((x / (s . (n + 1))) + (y * (s . (n + 1)))) + 1)) by XREAL_1: 7;

        ( sqrt (x * y)) >= ( sqrt ((n + 1) ^2 )) by A4, SQUARE_1: 26;

        then ( sqrt (x * y)) >= (n + 1) by SQUARE_1: 22;

        then

         A6: (2 * ( sqrt (x * y))) >= (2 * (n + 1)) by XREAL_1: 64;

        

         A7: (s . (n + 1)) > 0 by A1;

        

         A8: x > 0 by A1, SERIES_3: 33;

        y > 0 by A1, Th52;

        then ((x / (s . (n + 1))) + (y * (s . (n + 1)))) >= (2 * ( sqrt ((y * (s . (n + 1))) * (x / (s . (n + 1)))))) by A7, A8, SIN_COS2: 1;

        then ((x / (s . (n + 1))) + (y * (s . (n + 1)))) >= (2 * ( sqrt (x / ((1 * (s . (n + 1))) / (y * (s . (n + 1))))))) by XCMPLX_1: 81;

        then ((x / (s . (n + 1))) + (y * (s . (n + 1)))) >= (2 * ( sqrt (x / (1 / y)))) by A7, XCMPLX_1: 91;

        then ((x / (s . (n + 1))) + (y * (s . (n + 1)))) >= (2 * ( sqrt (y * (x / 1)))) by XCMPLX_1: 81;

        then ((x / (s . (n + 1))) + (y * (s . (n + 1)))) >= ((2 * n) + 2) by A6, XXREAL_0: 2;

        then

         A9: (((x / (s . (n + 1))) + (y * (s . (n + 1)))) + (((n ^2 ) + (2 * n)) + 2)) >= (((2 * n) + 2) + (((n ^2 ) + (2 * n)) + 2)) by XREAL_1: 7;

        ((( Partial_Sums s) . (n + 1)) * (( Partial_Sums s1) . (n + 1))) = ((x + (s . (n + 1))) * (( Partial_Sums s1) . (n + 1))) by SERIES_1:def 1

        .= ((x + (s . (n + 1))) * (y + (s1 . (n + 1)))) by SERIES_1:def 1

        .= ((((x * y) + (x * (s1 . (n + 1)))) + ((s . (n + 1)) * y)) + ((s . (n + 1)) * (s1 . (n + 1))))

        .= ((((x * y) + (x * (1 / (s . (n + 1))))) + ((s . (n + 1)) * y)) + ((s . (n + 1)) * (s1 . (n + 1)))) by A1

        .= ((((x * y) + (x * (1 / (s . (n + 1))))) + ((s . (n + 1)) * y)) + ((s . (n + 1)) * (1 / (s . (n + 1))))) by A1

        .= ((((x * y) + (x * (1 / (s . (n + 1))))) + ((s . (n + 1)) * y)) + (((s . (n + 1)) * 1) / (s . (n + 1)))) by XCMPLX_1: 74

        .= ((((x * y) + (x * (1 / (s . (n + 1))))) + ((s . (n + 1)) * y)) + 1) by A7, XCMPLX_1: 60

        .= ((((x * y) + (x / ((s . (n + 1)) / 1))) + ((s . (n + 1)) * y)) + 1) by XCMPLX_1: 79

        .= ((((x * y) + (x / (s . (n + 1)))) + ((s . (n + 1)) * y)) + 1);

        hence thesis by A9, A5, XXREAL_0: 2;

      end;

      ((( Partial_Sums s) . 0 ) * (( Partial_Sums s1) . 0 )) = ((s . 0 ) * (( Partial_Sums s1) . 0 )) by SERIES_1:def 1

      .= ((s . 0 ) * (s1 . 0 )) by SERIES_1:def 1

      .= ((s . 0 ) * (1 / (s . 0 ))) by A1

      .= ((s . 0 ) / ((s . 0 ) / 1)) by XCMPLX_1: 79

      .= 1 by A2, XCMPLX_1: 60;

      then

       A10: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A10, A3);

      hence thesis;

    end;

    theorem :: SERIES_5:54

    (for n st n >= 1 holds (s . n) = ( sqrt n) & (s . 0 ) = 0 ) implies for n st n >= 1 holds (( Partial_Sums s) . n) < (((1 / 6) * ((4 * n) + 3)) * ( sqrt n))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) < (((1 / 6) * ((4 * $1) + 3)) * ( sqrt $1));

      assume

       A1: for n st n >= 1 holds (s . n) = ( sqrt n) & (s . 0 ) = 0 ;

      

       A2: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that

         A3: n >= 1 and

         A4: (( Partial_Sums s) . n) < (((1 / 6) * ((4 * n) + 3)) * ( sqrt n));

        (n + 1) >= (1 + 1) by A3, XREAL_1: 7;

        then (n + 1) >= 1 by XXREAL_0: 2;

        then

         A5: (s . (n + 1)) = ( sqrt (n + 1)) by A1;

        ( 0 + ((16 * (n ^2 )) + (8 * n))) < (1 + ((16 * (n ^2 )) + (8 * n))) by XREAL_1: 8;

        then (((16 * n) + 8) * n) < (1 * (((16 * (n ^2 )) + (8 * n)) + 1));

        then (((4 * ((4 * n) + 1)) + 4) / (((4 * n) + 1) ^2 )) < (1 / n) by A3, XREAL_1: 106;

        then (((4 * ((4 * n) + 1)) / (((4 * n) + 1) * ((4 * n) + 1))) + (4 / (((4 * n) + 1) ^2 ))) < (1 / n) by XCMPLX_1: 62;

        then ((4 / ((4 * n) + 1)) + (4 / (((4 * n) + 1) ^2 ))) < (1 / n) by XCMPLX_1: 91;

        then (1 + ((4 / ((4 * n) + 1)) + (4 / (((4 * n) + 1) ^2 )))) < (1 + (1 / n)) by XREAL_1: 8;

        then ((1 + (4 / ((4 * n) + 1))) + (4 / (((4 * n) + 1) ^2 ))) < (1 + (1 / n));

        then ((1 + ((2 * 2) / ((4 * n) + 1))) + ((2 / ((4 * n) + 1)) ^2 )) < (1 + (1 / n)) by XCMPLX_1: 76;

        then ((1 + (2 * (2 / ((4 * n) + 1)))) + ((2 / ((4 * n) + 1)) ^2 )) < (1 + (1 / n)) by XCMPLX_1: 74;

        then (((2 / ((4 * n) + 1)) + 1) ^2 ) < ((1 + (n * 1)) / n) by A3, XCMPLX_1: 113;

        then ( sqrt (((2 / ((4 * n) + 1)) + 1) ^2 )) < ( sqrt ((1 + n) / n)) by SQUARE_1: 27;

        then ((2 / ((4 * n) + 1)) + 1) < ( sqrt ((1 + n) / n)) by SQUARE_1: 22;

        then ((2 + (((4 * n) + 1) * 1)) / ((4 * n) + 1)) < ( sqrt ((1 + n) / n)) by XCMPLX_1: 113;

        then

         A6: (((4 * n) + 3) / ((4 * n) + 1)) < (( sqrt (1 + n)) / ( sqrt n)) by SQUARE_1: 30;

        ( sqrt n) > 0 by A3, SQUARE_1: 25;

        then ((1 / 6) * (((4 * n) + 3) * ( sqrt n))) < ((1 / 6) * (( sqrt (1 + n)) * ((4 * n) + 1))) by A6, XREAL_1: 68, XREAL_1: 102;

        then (( Partial_Sums s) . n) < ((((1 / 6) * ( sqrt (1 + n))) * ((4 * n) + 7)) - ( sqrt (1 + n))) by A4, XXREAL_0: 2;

        then

         A7: ((( Partial_Sums s) . n) + ( sqrt (1 + n))) < (((((1 / 6) * ( sqrt (1 + n))) * ((4 * n) + 7)) - ( sqrt (1 + n))) + ( sqrt (1 + n))) by XREAL_1: 8;

        thus thesis by A5, A7, SERIES_1:def 1;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ( 0 + (s . 1)) by A1

      .= 1 by A1, SQUARE_1: 18;

      then

       A8: X[1] by SQUARE_1: 18;

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A8, A2);

      hence thesis;

    end;

    theorem :: SERIES_5:55

    (for n st n >= 1 holds (s . n) = ( sqrt n) & (s . 0 ) = 0 ) implies for n st n >= 1 holds (( Partial_Sums s) . n) > (((2 / 3) * n) * ( sqrt n))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) > (((2 / 3) * $1) * ( sqrt $1));

      assume

       A1: for n st n >= 1 holds (s . n) = ( sqrt n) & (s . 0 ) = 0 ;

      

       A2: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that

         A3: n >= 1 and

         A4: (( Partial_Sums s) . n) > (((2 / 3) * n) * ( sqrt n));

        (2 * n) >= (2 * 1) by A3, XREAL_1: 64;

        then (2 * n) > 1 by XXREAL_0: 2;

        then

         A5: ((2 * n) - 1) > 0 by XREAL_1: 50;

        (3 * n) >= (3 * 1) by A3, XREAL_1: 64;

        then (3 * n) > 1 by XXREAL_0: 2;

        then (1 - (3 * n)) < 0 by XREAL_1: 49;

        then (((1 + (n - (4 * n))) + ((4 * (n ^2 )) - (4 * (n ^2 )))) + (4 * (n |^ 3))) < ( 0 + (4 * (n |^ 3))) by XREAL_1: 8;

        then ((((4 * (n |^ (2 + 1))) - (4 * (n ^2 ))) + n) + (((4 * (n ^2 )) - (4 * n)) + 1)) < (4 * (n |^ 3));

        then ((((4 * ((n |^ 2) * n)) - (4 * (n * n))) + n) + (((4 * (n ^2 )) - (4 * n)) + 1)) < (4 * (n |^ 3)) by NEWTON: 6;

        then (((((4 * (n |^ 2)) - (4 * n)) + 1) * n) + ((((4 * (n ^2 )) - (4 * n)) + 1) * 1)) < (4 * (n |^ 3));

        then (((((4 * (n ^2 )) - (4 * n)) + 1) * n) + ((((4 * (n ^2 )) - (4 * n)) + 1) * 1)) < (4 * (n |^ 3)) by NEWTON: 81;

        then ((((4 * (n ^2 )) - (4 * n)) + 1) * (n + 1)) < (4 * (n |^ (2 + 1)));

        then ((((4 * (n ^2 )) - (4 * n)) + 1) * (n + 1)) < (4 * ((n |^ 2) * n)) by NEWTON: 6;

        then ((((4 * (n ^2 )) - (4 * n)) + 1) * (n + 1)) < ((4 * (n |^ 2)) * n);

        then ((((2 * n) - 1) ^2 ) * (n + 1)) < ((4 * (n ^2 )) * n) by NEWTON: 81;

        then ((n + 1) / n) < (((2 * n) ^2 ) / (((2 * n) - 1) ^2 )) by A3, A5, XREAL_1: 106;

        then ((n + 1) / n) < (((2 * n) / ((2 * n) - 1)) ^2 ) by XCMPLX_1: 76;

        then ( sqrt ((n + 1) / n)) < ( sqrt (((2 * n) / ((2 * n) - 1)) ^2 )) by SQUARE_1: 27;

        then ( sqrt ((n + 1) / n)) < ((2 * n) / ((2 * n) - 1)) by A5, SQUARE_1: 22;

        then

         A6: (( sqrt (n + 1)) / ( sqrt n)) < ((2 * n) / ((2 * n) - 1)) by SQUARE_1: 30;

        ( sqrt n) > 0 by A3, SQUARE_1: 25;

        then ((1 / 3) * (( sqrt (n + 1)) * ((2 * n) - 1))) < ((1 / 3) * ((2 * n) * ( sqrt n))) by A5, A6, XREAL_1: 68, XREAL_1: 102;

        then (( Partial_Sums s) . n) > ((((2 / 3) * (n + 1)) * ( sqrt (n + 1))) - ( sqrt (n + 1))) by A4, XXREAL_0: 2;

        then

         A7: ((( Partial_Sums s) . n) + ( sqrt (n + 1))) > (((((2 / 3) * (n + 1)) * ( sqrt (n + 1))) - ( sqrt (n + 1))) + ( sqrt (n + 1))) by XREAL_1: 8;

        (n + 1) >= (1 + 1) by A3, XREAL_1: 7;

        then (n + 1) >= 1 by XXREAL_0: 2;

        then ((( Partial_Sums s) . n) + (s . (n + 1))) > (((2 / 3) * (n + 1)) * ( sqrt (n + 1))) by A1, A7;

        hence thesis by SERIES_1:def 1;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ( 0 + (s . 1)) by A1

      .= 1 by A1, SQUARE_1: 18;

      then

       A8: X[1] by SQUARE_1: 18;

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A8, A2);

      hence thesis;

    end;

    theorem :: SERIES_5:56

    (for n st n >= 1 holds (s . n) = (1 + (1 / ((2 * n) + 1))) & (s . 0 ) = 1) implies for n st n >= 1 holds (( Partial_Product s) . n) > ((1 / 2) * ( sqrt ((2 * n) + 3)))

    proof

      defpred X[ Nat] means (( Partial_Product s) . $1) > ((1 / 2) * ( sqrt ((2 * $1) + 3)));

      

       A1: ((1 / 2) * ( sqrt ((2 * 1) + 3))) = (( sqrt 5) / 2);

      assume

       A2: for n st n >= 1 holds (s . n) = (1 + (1 / ((2 * n) + 1))) & (s . 0 ) = 1;

      

       A3: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that

         A4: n >= 1 and

         A5: (( Partial_Product s) . n) > ((1 / 2) * ( sqrt ((2 * n) + 3)));

        (n + 1) >= (1 + 1) by A4, XREAL_1: 7;

        then

         A6: (n + 1) >= 1 by XXREAL_0: 2;

        

         A7: ( sqrt ((2 * n) + 3)) > 0 by SQUARE_1: 25;

        ((1 / ((2 * n) + 3)) + ((2 * n) + 5)) > ( 0 + ((2 * n) + 5)) by XREAL_1: 8;

        then (((1 / ((2 * n) + 3)) + 2) + ((2 * n) + 3)) > ((2 * n) + 5);

        then ((((1 ^2 ) / (( sqrt ((2 * n) + 3)) ^2 )) + 2) + ((2 * n) + 3)) > ((2 * n) + 5) by SQUARE_1:def 2;

        then ((((1 / ( sqrt ((2 * n) + 3))) ^2 ) + 2) + ((2 * n) + 3)) > ((2 * n) + 5) by XCMPLX_1: 76;

        then ((((1 / ( sqrt ((2 * n) + 3))) ^2 ) + (2 * 1)) + (( sqrt ((2 * n) + 3)) ^2 )) > ((2 * n) + 5) by SQUARE_1:def 2;

        then ((((1 / ( sqrt ((2 * n) + 3))) ^2 ) + (2 * (( sqrt ((2 * n) + 3)) * (1 / ( sqrt ((2 * n) + 3)))))) + (( sqrt ((2 * n) + 3)) ^2 )) > ((2 * n) + 5) by A7, XCMPLX_1: 106;

        then ( sqrt (((1 / ( sqrt ((2 * n) + 3))) + ( sqrt ((2 * n) + 3))) ^2 )) > ( sqrt ((2 * n) + 5)) by SQUARE_1: 27;

        then (( sqrt ((2 * n) + 3)) + (1 / ( sqrt ((2 * n) + 3)))) > ( sqrt ((2 * n) + 5)) by A7, SQUARE_1: 22;

        then

         A8: ((1 / 2) * (( sqrt ((2 * n) + 3)) + (1 / ( sqrt ((2 * n) + 3))))) > ((1 / 2) * ( sqrt ((2 * n) + 5))) by XREAL_1: 68;

        ((( Partial_Product s) . n) * (1 + (1 / ((2 * n) + 3)))) > (((1 / 2) * ( sqrt ((2 * n) + 3))) * (1 + (1 / ((2 * n) + 3)))) by A5, XREAL_1: 68;

        then ((( Partial_Product s) . n) * (1 + (1 / ((2 * n) + 3)))) > ((((1 / 2) * ( sqrt ((2 * n) + 3))) * 1) + (((1 / 2) * ( sqrt ((2 * n) + 3))) * (1 / ((2 * n) + 3))));

        then ((( Partial_Product s) . n) * (1 + (1 / ((2 * n) + 3)))) > (((1 / 2) * ( sqrt ((2 * n) + 3))) + (((1 / 2) * ( sqrt ((2 * n) + 3))) / ((2 * n) + 3))) by XCMPLX_1: 74;

        then ((( Partial_Product s) . n) * (1 + (1 / ((2 * n) + 3)))) > (((1 / 2) * ( sqrt ((2 * n) + 3))) + ((1 / 2) * (( sqrt ((2 * n) + 3)) / ((2 * n) + 3)))) by XCMPLX_1: 74;

        then ((( Partial_Product s) . n) * (1 + (1 / ((2 * n) + 3)))) > (((1 / 2) * ( sqrt ((2 * n) + 3))) + ((1 / 2) * (( sqrt ((2 * n) + 3)) / ( sqrt (((2 * n) + 3) ^2 ))))) by SQUARE_1: 22;

        then ((( Partial_Product s) . n) * (1 + (1 / ((2 * n) + 3)))) > (((1 / 2) * ( sqrt ((2 * n) + 3))) + ((1 / 2) * ((( sqrt ((2 * n) + 3)) * 1) / (( sqrt ((2 * n) + 3)) * ( sqrt ((2 * n) + 3)))))) by SQUARE_1: 29;

        then ((( Partial_Product s) . n) * (1 + (1 / ((2 * n) + 3)))) > (((1 / 2) * ( sqrt ((2 * n) + 3))) + ((1 / 2) * ((( sqrt ((2 * n) + 3)) / ( sqrt ((2 * n) + 3))) * (1 / ( sqrt ((2 * n) + 3)))))) by XCMPLX_1: 76;

        then ((( Partial_Product s) . n) * (1 + (1 / ((2 * n) + 3)))) > (((1 / 2) * ( sqrt ((2 * n) + 3))) + ((1 / 2) * (1 * (1 / ( sqrt ((2 * n) + 3)))))) by A7, XCMPLX_1: 60;

        then ((( Partial_Product s) . n) * (1 + (1 / ((2 * (n + 1)) + 1)))) > ((1 / 2) * ( sqrt ((2 * n) + 5))) by A8, XXREAL_0: 2;

        then ((( Partial_Product s) . n) * (s . (n + 1))) > ((1 / 2) * ( sqrt ((2 * n) + 5))) by A2, A6;

        hence thesis by SERIES_3:def 1;

      end;

      ( sqrt (16 / 9)) > ( sqrt (5 / 4)) by SQUARE_1: 27;

      then (( sqrt (4 ^2 )) / ( sqrt (3 ^2 ))) > ( sqrt (5 / 4)) by SQUARE_1: 30;

      then (4 / ( sqrt (3 ^2 ))) > ( sqrt (5 / 4)) by SQUARE_1: 22;

      then (4 / 3) > ( sqrt (5 / 4)) by SQUARE_1: 22;

      then

       A9: (4 / 3) > (( sqrt 5) / ( sqrt (2 ^2 ))) by SQUARE_1: 30;

      (( Partial_Product s) . (1 + 0 )) = ((( Partial_Product s) . 0 ) * (s . (1 + 0 ))) by SERIES_3:def 1

      .= ((s . 0 ) * (s . 1)) by SERIES_3:def 1

      .= (1 * (s . 1)) by A2

      .= (1 + (1 / ((2 * 1) + 1))) by A2

      .= (4 / 3);

      then

       A10: X[1] by A1, A9, SQUARE_1: 22;

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A10, A3);

      hence thesis;

    end;

    theorem :: SERIES_5:57

    (for n st n >= 1 holds (s . n) = ( sqrt (n * (n + 1))) & (s . 0 ) = 0 ) implies for n st n >= 1 holds (( Partial_Sums s) . n) > ((n * (n + 1)) / 2)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) > (($1 * ($1 + 1)) / 2);

      assume

       A1: for n st n >= 1 holds (s . n) = ( sqrt (n * (n + 1))) & (s . 0 ) = 0 ;

      

       A2: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that

         A3: n >= 1 and

         A4: (( Partial_Sums s) . n) > ((n * (n + 1)) / 2);

        (n + 1) >= (1 + 1) by A3, XREAL_1: 7;

        then (n + 1) >= 1 by XXREAL_0: 2;

        then

         A5: (s . (n + 1)) = ( sqrt ((n + 1) * ((n + 1) + 1))) by A1;

        (n + 2) > (n + 1) by XREAL_1: 8;

        then ((n + 2) * (n + 1)) > ((n + 1) ^2 ) by XREAL_1: 68;

        then ( sqrt ((n + 2) * (n + 1))) > ( sqrt ((n + 1) ^2 )) by SQUARE_1: 27;

        then

         A6: ( sqrt ((n + 2) * (n + 1))) > (n + 1) by SQUARE_1: 22;

        ((( Partial_Sums s) . n) + (( sqrt ((n + 1) * (n + 2))) - (((n + 1) * (n + 2)) / 2))) > (((n * (n + 1)) / 2) + (( sqrt ((n + 1) * (n + 2))) - (((n + 1) * (n + 2)) / 2))) by A4, XREAL_1: 8;

        then (((( Partial_Sums s) . n) + ( sqrt ((n + 1) * (n + 2)))) - (((n + 1) * (n + 2)) / 2)) > (( sqrt ((n + 1) * (n + 2))) - (n + 1));

        then (((( Partial_Sums s) . n) + ( sqrt ((n + 1) * (n + 2)))) - (((n + 1) * (n + 2)) / 2)) > 0 by A6, XREAL_1: 50;

        then

         A7: ((((( Partial_Sums s) . n) + ( sqrt ((n + 1) * (n + 2)))) - (((n + 1) * (n + 2)) / 2)) + (((n + 1) * (n + 2)) / 2)) > ( 0 + (((n + 1) * (n + 2)) / 2)) by XREAL_1: 8;

        thus thesis by A5, A7, SERIES_1:def 1;

      end;

      

       A8: (( Partial_Sums s) . 1) = (( Partial_Sums s) . ( 0 + 1))

      .= ((( Partial_Sums s) . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ( 0 + (s . 1)) by A1

      .= ( sqrt (1 * (1 + 1))) by A1

      .= ( sqrt 2);

      then ((( Partial_Sums s) . 1) ^2 ) = 2 by SQUARE_1:def 2;

      then ( sqrt ((( Partial_Sums s) . 1) ^2 )) > ( sqrt (((1 * (1 + 1)) / 2) ^2 )) by SQUARE_1: 27;

      then

       A9: ( sqrt ((( Partial_Sums s) . 1) ^2 )) > ((1 * (1 + 1)) / 2) by SQUARE_1: 22;

      (( Partial_Sums s) . 1) > 0 by A8, SQUARE_1: 25;

      then

       A10: X[1] by A9, SQUARE_1: 22;

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A10, A2);

      hence thesis;

    end;