sincos10.miz
begin
reserve x,x0,r,r1,r2 for
Real,
th for
Real,
rr for
set,
rseq for
Real_Sequence;
Lm1:
[.
0 , (
PI
/ 2).[
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[
proof
A1:
0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
A2:
{
0 }
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
A1,
TARSKI:def 1;
].
0 , (
PI
/ 2).[
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 46;
then (
].
0 , (
PI
/ 2).[
\/
{
0 })
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
A2,
XBOOLE_1: 8;
hence thesis by
XXREAL_1: 131;
end;
theorem ::
SINCOS10:1
Th1:
[.
0 , (
PI
/ 2).[
c= (
dom
sec )
proof
(
[.
0 , (
PI
/ 2).[
/\ (
cos
"
{
0 }))
=
{}
proof
assume (
[.
0 , (
PI
/ 2).[
/\ (
cos
"
{
0 }))
<>
{} ;
then
consider rr be
object such that
A1: rr
in (
[.
0 , (
PI
/ 2).[
/\ (
cos
"
{
0 })) by
XBOOLE_0:def 1;
rr
in (
cos
"
{
0 }) by
A1,
XBOOLE_0:def 4;
then
A2: (
cos
. rr)
in
{
0 } by
FUNCT_1:def 7;
rr
in
[.
0 , (
PI
/ 2).[ by
A1,
XBOOLE_0:def 4;
then (
cos
. rr)
<>
0 by
Lm1,
COMPTRIG: 11;
hence contradiction by
A2,
TARSKI:def 1;
end;
then (
[.
0 , (
PI
/ 2).[
\ (
cos
"
{
0 }))
c= ((
dom
cos )
\ (
cos
"
{
0 })) &
[.
0 , (
PI
/ 2).[
misses (
cos
"
{
0 }) by
SIN_COS: 24,
XBOOLE_0:def 7,
XBOOLE_1: 33;
then
[.
0 , (
PI
/ 2).[
c= ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_1: 83;
hence thesis by
RFUNCT_1:def 2;
end;
Lm2:
].(
PI
/ 2),
PI .]
c=
].(
PI
/ 2), ((3
/ 2)
*
PI ).[
proof
A1: (
PI
/ 2)
< (
PI
/ 1) by
XREAL_1: 76;
A2:
PI
< ((3
/ 2)
*
PI ) by
XREAL_1: 155;
then
A3:
PI
in
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A1;
A4:
{
PI }
c=
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A3,
TARSKI:def 1;
].(
PI
/ 2),
PI .[
c=
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A2,
XXREAL_1: 46;
then (
].(
PI
/ 2),
PI .[
\/
{
PI })
c=
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
A4,
XBOOLE_1: 8;
hence thesis by
A1,
XXREAL_1: 132;
end;
theorem ::
SINCOS10:2
Th2:
].(
PI
/ 2),
PI .]
c= (
dom
sec )
proof
(
].(
PI
/ 2),
PI .]
/\ (
cos
"
{
0 }))
=
{}
proof
assume (
].(
PI
/ 2),
PI .]
/\ (
cos
"
{
0 }))
<>
{} ;
then
consider rr be
object such that
A1: rr
in (
].(
PI
/ 2),
PI .]
/\ (
cos
"
{
0 })) by
XBOOLE_0:def 1;
rr
in (
cos
"
{
0 }) by
A1,
XBOOLE_0:def 4;
then
A2: (
cos
. rr)
in
{
0 } by
FUNCT_1:def 7;
rr
in
].(
PI
/ 2),
PI .] by
A1,
XBOOLE_0:def 4;
then (
cos
. rr)
<>
0 by
Lm2,
COMPTRIG: 13;
hence contradiction by
A2,
TARSKI:def 1;
end;
then (
].(
PI
/ 2),
PI .]
\ (
cos
"
{
0 }))
c= ((
dom
cos )
\ (
cos
"
{
0 })) &
].(
PI
/ 2),
PI .]
misses (
cos
"
{
0 }) by
SIN_COS: 24,
XBOOLE_0:def 7,
XBOOLE_1: 33;
then
].(
PI
/ 2),
PI .]
c= ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_1: 83;
hence thesis by
RFUNCT_1:def 2;
end;
Lm3:
[.(
- (
PI
/ 2)),
0 .[
c=
].(
-
PI ),
0 .[
proof
(
PI
/ 2)
< (
PI
/ 1) by
XREAL_1: 76;
then
A1: (
-
PI )
< (
- (
PI
/ 2)) by
XREAL_1: 24;
then
A2: (
- (
PI
/ 2))
in
].(
-
PI ),
0 .[;
A3:
{(
- (
PI
/ 2))}
c=
].(
-
PI ),
0 .[ by
A2,
TARSKI:def 1;
].(
- (
PI
/ 2)),
0 .[
c=
].(
-
PI ),
0 .[ by
A1,
XXREAL_1: 46;
then (
].(
- (
PI
/ 2)),
0 .[
\/
{(
- (
PI
/ 2))})
c=
].(
-
PI ),
0 .[ by
A3,
XBOOLE_1: 8;
hence thesis by
XXREAL_1: 131;
end;
theorem ::
SINCOS10:3
Th3:
[.(
- (
PI
/ 2)),
0 .[
c= (
dom
cosec )
proof
(
[.(
- (
PI
/ 2)),
0 .[
/\ (
sin
"
{
0 }))
=
{}
proof
assume (
[.(
- (
PI
/ 2)),
0 .[
/\ (
sin
"
{
0 }))
<>
{} ;
then
consider rr be
object such that
A1: rr
in (
[.(
- (
PI
/ 2)),
0 .[
/\ (
sin
"
{
0 })) by
XBOOLE_0:def 1;
A2: rr
in (
sin
"
{
0 }) by
A1,
XBOOLE_0:def 4;
A3: rr
in
[.(
- (
PI
/ 2)),
0 .[ by
A1,
XBOOLE_0:def 4;
reconsider rr as
Real by
A1;
rr
<
0 by
A3,
Lm3,
XXREAL_1: 4;
then
A4: (rr
+ (2
*
PI ))
< (
0
+ (2
*
PI )) by
XREAL_1: 8;
(
-
PI )
< rr by
A3,
Lm3,
XXREAL_1: 4;
then ((
-
PI )
+ (2
*
PI ))
< (rr
+ (2
*
PI )) by
XREAL_1: 8;
then (rr
+ (2
*
PI ))
in
].
PI , (2
*
PI ).[ by
A4;
then (
sin
. (rr
+ (2
*
PI )))
<
0 by
COMPTRIG: 9;
then
A5: (
sin
. rr)
<>
0 by
SIN_COS: 78;
(
sin
. rr)
in
{
0 } by
A2,
FUNCT_1:def 7;
hence contradiction by
A5,
TARSKI:def 1;
end;
then (
[.(
- (
PI
/ 2)),
0 .[
\ (
sin
"
{
0 }))
c= ((
dom
sin )
\ (
sin
"
{
0 })) &
[.(
- (
PI
/ 2)),
0 .[
misses (
sin
"
{
0 }) by
SIN_COS: 24,
XBOOLE_0:def 7,
XBOOLE_1: 33;
then
[.(
- (
PI
/ 2)),
0 .[
c= ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_1: 83;
hence thesis by
RFUNCT_1:def 2;
end;
Lm4:
].
0 , (
PI
/ 2).]
c=
].
0 ,
PI .[
proof
A1: (
PI
/ 2)
< (
PI
/ 1) by
XREAL_1: 76;
then
A2: (
PI
/ 2)
in
].
0 ,
PI .[;
A3:
{(
PI
/ 2)}
c=
].
0 ,
PI .[ by
A2,
TARSKI:def 1;
].
0 , (
PI
/ 2).[
c=
].
0 ,
PI .[ by
A1,
XXREAL_1: 46;
then (
].
0 , (
PI
/ 2).[
\/
{(
PI
/ 2)})
c=
].
0 ,
PI .[ by
A3,
XBOOLE_1: 8;
hence thesis by
XXREAL_1: 132;
end;
theorem ::
SINCOS10:4
Th4:
].
0 , (
PI
/ 2).]
c= (
dom
cosec )
proof
(
].
0 , (
PI
/ 2).]
/\ (
sin
"
{
0 }))
=
{}
proof
assume (
].
0 , (
PI
/ 2).]
/\ (
sin
"
{
0 }))
<>
{} ;
then
consider rr be
object such that
A1: rr
in (
].
0 , (
PI
/ 2).]
/\ (
sin
"
{
0 })) by
XBOOLE_0:def 1;
rr
in (
sin
"
{
0 }) by
A1,
XBOOLE_0:def 4;
then
A2: (
sin
. rr)
in
{
0 } by
FUNCT_1:def 7;
rr
in
].
0 , (
PI
/ 2).] by
A1,
XBOOLE_0:def 4;
then (
sin
. rr)
<>
0 by
Lm4,
COMPTRIG: 7;
hence contradiction by
A2,
TARSKI:def 1;
end;
then (
].
0 , (
PI
/ 2).]
\ (
sin
"
{
0 }))
c= ((
dom
sin )
\ (
sin
"
{
0 })) &
].
0 , (
PI
/ 2).]
misses (
sin
"
{
0 }) by
SIN_COS: 24,
XBOOLE_0:def 7,
XBOOLE_1: 33;
then
].
0 , (
PI
/ 2).]
c= ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_1: 83;
hence thesis by
RFUNCT_1:def 2;
end;
theorem ::
SINCOS10:5
Th5:
sec
is_differentiable_on
].
0 , (
PI
/ 2).[ & for x st x
in
].
0 , (
PI
/ 2).[ holds (
diff (
sec ,x))
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
set Z =
].
0 , (
PI
/ 2).[;
[.
0 , (
PI
/ 2).[
= (Z
\/
{
0 }) by
XXREAL_1: 131;
then Z
c=
[.
0 , (
PI
/ 2).[ by
XBOOLE_1: 7;
then
A1: Z
c= (
dom
sec ) by
Th1;
then
A2:
sec
is_differentiable_on Z by
FDIFF_9: 4;
for x st x
in Z holds (
diff (
sec ,x))
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
let x;
assume
A3: x
in Z;
then (
diff (
sec ,x))
= ((
sec
`| Z)
. x) by
A2,
FDIFF_1:def 7
.= ((
sin
. x)
/ ((
cos
. x)
^2 )) by
A1,
A3,
FDIFF_9: 4;
hence thesis;
end;
hence thesis by
A1,
FDIFF_9: 4;
end;
theorem ::
SINCOS10:6
Th6:
sec
is_differentiable_on
].(
PI
/ 2),
PI .[ & for x st x
in
].(
PI
/ 2),
PI .[ holds (
diff (
sec ,x))
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
set Z =
].(
PI
/ 2),
PI .[;
(
PI
/ 2)
< (
PI
/ 1) by
XREAL_1: 76;
then
].(
PI
/ 2),
PI .]
= (Z
\/
{
PI }) by
XXREAL_1: 132;
then Z
c=
].(
PI
/ 2),
PI .] by
XBOOLE_1: 7;
then
A1: Z
c= (
dom
sec ) by
Th2;
then
A2:
sec
is_differentiable_on Z by
FDIFF_9: 4;
for x st x
in Z holds (
diff (
sec ,x))
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
let x;
assume
A3: x
in Z;
then (
diff (
sec ,x))
= ((
sec
`| Z)
. x) by
A2,
FDIFF_1:def 7
.= ((
sin
. x)
/ ((
cos
. x)
^2 )) by
A1,
A3,
FDIFF_9: 4;
hence thesis;
end;
hence thesis by
A1,
FDIFF_9: 4;
end;
theorem ::
SINCOS10:7
Th7:
cosec
is_differentiable_on
].(
- (
PI
/ 2)),
0 .[ & for x st x
in
].(
- (
PI
/ 2)),
0 .[ holds (
diff (
cosec ,x))
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
set Z =
].(
- (
PI
/ 2)),
0 .[;
[.(
- (
PI
/ 2)),
0 .[
= (Z
\/
{(
- (
PI
/ 2))}) by
XXREAL_1: 131;
then Z
c=
[.(
- (
PI
/ 2)),
0 .[ by
XBOOLE_1: 7;
then
A1: Z
c= (
dom
cosec ) by
Th3;
then
A2:
cosec
is_differentiable_on Z by
FDIFF_9: 5;
for x st x
in Z holds (
diff (
cosec ,x))
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A3: x
in Z;
then (
diff (
cosec ,x))
= ((
cosec
`| Z)
. x) by
A2,
FDIFF_1:def 7
.= (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))) by
A1,
A3,
FDIFF_9: 5;
hence thesis;
end;
hence thesis by
A1,
FDIFF_9: 5;
end;
theorem ::
SINCOS10:8
Th8:
cosec
is_differentiable_on
].
0 , (
PI
/ 2).[ & for x st x
in
].
0 , (
PI
/ 2).[ holds (
diff (
cosec ,x))
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
set Z =
].
0 , (
PI
/ 2).[;
].
0 , (
PI
/ 2).]
= (Z
\/
{(
PI
/ 2)}) by
XXREAL_1: 132;
then Z
c=
].
0 , (
PI
/ 2).] by
XBOOLE_1: 7;
then
A1: Z
c= (
dom
cosec ) by
Th4;
then
A2:
cosec
is_differentiable_on Z by
FDIFF_9: 5;
for x st x
in Z holds (
diff (
cosec ,x))
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A3: x
in Z;
then (
diff (
cosec ,x))
= ((
cosec
`| Z)
. x) by
A2,
FDIFF_1:def 7
.= (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))) by
A1,
A3,
FDIFF_9: 5;
hence thesis;
end;
hence thesis by
A1,
FDIFF_9: 5;
end;
theorem ::
SINCOS10:9
(
sec
|
].
0 , (
PI
/ 2).[) is
continuous by
Th5,
FDIFF_1: 25;
theorem ::
SINCOS10:10
(
sec
|
].(
PI
/ 2),
PI .[) is
continuous by
Th6,
FDIFF_1: 25;
theorem ::
SINCOS10:11
(
cosec
|
].(
- (
PI
/ 2)),
0 .[) is
continuous by
Th7,
FDIFF_1: 25;
theorem ::
SINCOS10:12
(
cosec
|
].
0 , (
PI
/ 2).[) is
continuous by
Th8,
FDIFF_1: 25;
Lm5:
0
in
[.
0 , (
PI
/ 2).[ & (
PI
/ 4)
in
[.
0 , (
PI
/ 2).[
proof
(
PI
/ 4)
< (
PI
/ 2) by
XREAL_1: 76;
hence thesis;
end;
Lm6: ((3
/ 4)
*
PI )
in
].(
PI
/ 2),
PI .] &
PI
in
].(
PI
/ 2),
PI .]
proof
(
PI
/ 4)
< (
PI
/ 2) by
XREAL_1: 76;
then ((
PI
/ 4)
+ (
PI
/ 2))
> (
0
+ (
PI
/ 2)) & ((
PI
/ 4)
+ (
PI
/ 2))
< ((
PI
/ 2)
+ (
PI
/ 2)) by
XREAL_1: 8;
hence thesis by
COMPTRIG: 5;
end;
Lm7: (
- (
PI
/ 2))
in
[.(
- (
PI
/ 2)),
0 .[ & (
- (
PI
/ 4))
in
[.(
- (
PI
/ 2)),
0 .[
proof
(
PI
/ 4)
< (
PI
/ 2) by
XREAL_1: 76;
then (
- (
PI
/ 4))
> (
- (
PI
/ 2)) by
XREAL_1: 24;
hence thesis;
end;
Lm8: (
PI
/ 4)
in
].
0 , (
PI
/ 2).] & (
PI
/ 2)
in
].
0 , (
PI
/ 2).]
proof
(
PI
/ 4)
< (
PI
/ 2) by
XREAL_1: 76;
hence thesis;
end;
Lm9:
].
0 , (
PI
/ 2).[
c=
[.
0 , (
PI
/ 2).[ by
XXREAL_1: 22;
then
Lm10:
].
0 , (
PI
/ 2).[
c= (
dom
sec ) by
Th1;
Lm11:
].(
PI
/ 2),
PI .[
c=
].(
PI
/ 2),
PI .] by
XXREAL_1: 21;
then
Lm12:
].(
PI
/ 2),
PI .[
c= (
dom
sec ) by
Th2;
Lm13:
[.
0 , (
PI
/ 4).]
c=
[.
0 , (
PI
/ 2).[ by
Lm5,
XXREAL_2:def 12;
Lm14:
[.((3
/ 4)
*
PI ),
PI .]
c=
].(
PI
/ 2),
PI .] by
Lm6,
XXREAL_2:def 12;
Lm15:
].(
- (
PI
/ 2)),
0 .[
c=
[.(
- (
PI
/ 2)),
0 .[ by
XXREAL_1: 22;
then
Lm16:
].(
- (
PI
/ 2)),
0 .[
c= (
dom
cosec ) by
Th3;
Lm17:
].
0 , (
PI
/ 2).[
c=
].
0 , (
PI
/ 2).] by
XXREAL_1: 21;
then
Lm18:
].
0 , (
PI
/ 2).[
c= (
dom
cosec ) by
Th4;
Lm19:
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
c=
[.(
- (
PI
/ 2)),
0 .[ by
Lm7,
XXREAL_2:def 12;
Lm20:
[.(
PI
/ 4), (
PI
/ 2).]
c=
].
0 , (
PI
/ 2).] by
Lm8,
XXREAL_2:def 12;
].
0 , (
PI
/ 2).[
= (
dom (
sec
|
].
0 , (
PI
/ 2).[)) by
Lm9,
Th1,
RELAT_1: 62,
XBOOLE_1: 1;
then
Lm21:
].
0 , (
PI
/ 2).[
c= (
dom ((
sec
|
[.
0 , (
PI
/ 2).[)
|
].
0 , (
PI
/ 2).[)) by
RELAT_1: 74,
XXREAL_1: 22;
].(
PI
/ 2),
PI .[
= (
dom (
sec
|
].(
PI
/ 2),
PI .[)) by
Lm11,
Th2,
RELAT_1: 62,
XBOOLE_1: 1;
then
Lm22:
].(
PI
/ 2),
PI .[
c= (
dom ((
sec
|
].(
PI
/ 2),
PI .])
|
].(
PI
/ 2),
PI .[)) by
RELAT_1: 74,
XXREAL_1: 21;
].(
- (
PI
/ 2)),
0 .[
= (
dom (
cosec
|
].(
- (
PI
/ 2)),
0 .[)) by
Lm15,
Th3,
RELAT_1: 62,
XBOOLE_1: 1;
then
Lm23:
].(
- (
PI
/ 2)),
0 .[
c= (
dom ((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
|
].(
- (
PI
/ 2)),
0 .[)) by
RELAT_1: 74,
XXREAL_1: 22;
].
0 , (
PI
/ 2).[
= (
dom (
cosec
|
].
0 , (
PI
/ 2).[)) by
Lm17,
Th4,
RELAT_1: 62,
XBOOLE_1: 1;
then
Lm24:
].
0 , (
PI
/ 2).[
c= (
dom ((
cosec
|
].
0 , (
PI
/ 2).])
|
].
0 , (
PI
/ 2).[)) by
RELAT_1: 74,
XXREAL_1: 21;
theorem ::
SINCOS10:13
Th13: (
sec
|
].
0 , (
PI
/ 2).[) is
increasing
proof
for x st x
in
].
0 , (
PI
/ 2).[ holds (
diff (
sec ,x))
>
0
proof
let x;
assume
A1: x
in
].
0 , (
PI
/ 2).[;
].
0 , (
PI
/ 2).[
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 46;
then
A2: (
cos
. x)
>
0 by
A1,
COMPTRIG: 11;
(
PI
/ 2)
< (
PI
/ 1) by
XREAL_1: 76;
then
].
0 , (
PI
/ 2).[
c=
].
0 ,
PI .[ by
XXREAL_1: 46;
then (
sin
. x)
>
0 by
A1,
COMPTRIG: 7;
then ((
sin
. x)
/ ((
cos
. x)
^2 ))
> (
0
/ ((
cos
. x)
^2 )) by
A2;
hence thesis by
A1,
Th5;
end;
hence thesis by
Lm9,
Th1,
Th5,
ROLLE: 9,
XBOOLE_1: 1;
end;
theorem ::
SINCOS10:14
Th14: (
sec
|
].(
PI
/ 2),
PI .[) is
increasing
proof
for x st x
in
].(
PI
/ 2),
PI .[ holds (
diff (
sec ,x))
>
0
proof
let x;
assume
A1: x
in
].(
PI
/ 2),
PI .[;
PI
<= ((3
/ 2)
*
PI ) by
XREAL_1: 151;
then
].(
PI
/ 2),
PI .[
c=
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
XXREAL_1: 46;
then
A2: (
cos
. x)
<
0 by
A1,
COMPTRIG: 13;
].(
PI
/ 2),
PI .[
c=
].
0 ,
PI .[ by
XXREAL_1: 46;
then (
sin
. x)
>
0 by
A1,
COMPTRIG: 7;
then ((
sin
. x)
/ ((
cos
. x)
^2 ))
> (
0
/ ((
cos
. x)
^2 )) by
A2;
hence thesis by
A1,
Th6;
end;
hence thesis by
Lm11,
Th2,
Th6,
ROLLE: 9,
XBOOLE_1: 1;
end;
theorem ::
SINCOS10:15
Th15: (
cosec
|
].(
- (
PI
/ 2)),
0 .[) is
decreasing
proof
for x st x
in
].(
- (
PI
/ 2)),
0 .[ holds (
diff (
cosec ,x))
<
0
proof
let x;
assume
A1: x
in
].(
- (
PI
/ 2)),
0 .[;
then x
<
0 by
XXREAL_1: 4;
then
A2: (x
+ (2
*
PI ))
< (
0
+ (2
*
PI )) by
XREAL_1: 8;
(
].(
- (
PI
/ 2)),
0 .[
\/
{(
- (
PI
/ 2))})
=
[.(
- (
PI
/ 2)),
0 .[ by
XXREAL_1: 131;
then
].(
- (
PI
/ 2)),
0 .[
c=
[.(
- (
PI
/ 2)),
0 .[ by
XBOOLE_1: 7;
then
].(
- (
PI
/ 2)),
0 .[
c=
].(
-
PI ),
0 .[ by
Lm3;
then (
-
PI )
< x by
A1,
XXREAL_1: 4;
then ((
-
PI )
+ (2
*
PI ))
< (x
+ (2
*
PI )) by
XREAL_1: 8;
then (x
+ (2
*
PI ))
in
].
PI , (2
*
PI ).[ by
A2;
then (
sin
. (x
+ (2
*
PI )))
<
0 by
COMPTRIG: 9;
then
A3: (
sin
. x)
<
0 by
SIN_COS: 78;
].(
- (
PI
/ 2)),
0 .[
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 46;
then (
cos
. x)
>
0 by
A1,
COMPTRIG: 11;
then (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
< (
-
0 ) by
A3;
hence thesis by
A1,
Th7;
end;
hence thesis by
Lm15,
Th3,
Th7,
ROLLE: 10,
XBOOLE_1: 1;
end;
theorem ::
SINCOS10:16
Th16: (
cosec
|
].
0 , (
PI
/ 2).[) is
decreasing
proof
for x st x
in
].
0 , (
PI
/ 2).[ holds (
diff (
cosec ,x))
<
0
proof
let x;
assume
A1: x
in
].
0 , (
PI
/ 2).[;
].
0 , (
PI
/ 2).[
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 46;
then
A2: (
cos
. x)
>
0 by
A1,
COMPTRIG: 11;
].
0 , (
PI
/ 2).[
c=
].
0 ,
PI .[ by
COMPTRIG: 5,
XXREAL_1: 46;
then (
sin
. x)
>
0 by
A1,
COMPTRIG: 7;
then (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
< (
-
0 ) by
A2;
hence thesis by
A1,
Th8;
end;
hence thesis by
Lm17,
Th4,
Th8,
ROLLE: 10,
XBOOLE_1: 1;
end;
theorem ::
SINCOS10:17
Th17: (
sec
|
[.
0 , (
PI
/ 2).[) is
increasing
proof
now
let r1, r2;
assume that
A1: r1
in (
[.
0 , (
PI
/ 2).[
/\ (
dom
sec )) and
A2: r2
in (
[.
0 , (
PI
/ 2).[
/\ (
dom
sec )) and
A3: r1
< r2;
A4: r1
in (
dom
sec ) by
A1,
XBOOLE_0:def 4;
A5: r1
in
[.
0 , (
PI
/ 2).[ by
A1,
XBOOLE_0:def 4;
then
A6: r1
< (
PI
/ 2) by
XXREAL_1: 3;
A7: r2
in (
dom
sec ) by
A2,
XBOOLE_0:def 4;
A8: r2
in
[.
0 , (
PI
/ 2).[ by
A2,
XBOOLE_0:def 4;
then
A9: r2
< (
PI
/ 2) by
XXREAL_1: 3;
now
per cases by
A5,
XXREAL_1: 3;
suppose
A10:
0
= r1;
r2
< (
PI
/ 2) & (
PI
/ 2)
< (2
*
PI ) by
A8,
Lm1,
XREAL_1: 68,
XXREAL_1: 4;
then r2
< (2
*
PI ) by
XXREAL_0: 2;
then (
cos r2)
< 1 by
A3,
A10,
SIN_COS6: 34;
then
A11: (
cos
. r2)
< 1 by
SIN_COS:def 19;
((
- (
PI
/ 2))
+ ((2
*
PI )
*
0 ))
< r2 & r2
< ((
PI
/ 2)
+ ((2
*
PI )
*
0 )) by
A8,
Lm1,
XXREAL_1: 4;
then (
cos r2)
>
0 by
SIN_COS6: 13;
then (
cos
. r2)
>
0 by
SIN_COS:def 19;
then
A12: (1
/ 1)
< (1
/ (
cos
. r2)) by
A11,
XREAL_1: 76;
(
sec
. r1)
= (1
/ 1) by
A4,
A10,
RFUNCT_1:def 2,
SIN_COS: 30
.= 1;
hence (
sec
. r2)
> (
sec
. r1) by
A7,
A12,
RFUNCT_1:def 2;
end;
suppose
A13:
0
< r1;
then r1
in
].
0 , (
PI
/ 2).[ by
A6;
then
A14: r1
in (
].
0 , (
PI
/ 2).[
/\ (
dom
sec )) by
A4,
XBOOLE_0:def 4;
r2
in
].
0 , (
PI
/ 2).[ by
A3,
A9,
A13;
then r2
in (
].
0 , (
PI
/ 2).[
/\ (
dom
sec )) by
A7,
XBOOLE_0:def 4;
hence (
sec
. r2)
> (
sec
. r1) by
A3,
A14,
Th13,
RFUNCT_2: 20;
end;
end;
hence (
sec
. r2)
> (
sec
. r1);
end;
hence thesis by
RFUNCT_2: 20;
end;
theorem ::
SINCOS10:18
Th18: (
sec
|
].(
PI
/ 2),
PI .]) is
increasing
proof
now
let r1, r2;
assume that
A1: r1
in (
].(
PI
/ 2),
PI .]
/\ (
dom
sec )) and
A2: r2
in (
].(
PI
/ 2),
PI .]
/\ (
dom
sec )) and
A3: r1
< r2;
A4: r1
in (
dom
sec ) by
A1,
XBOOLE_0:def 4;
A5: r2
in (
dom
sec ) by
A2,
XBOOLE_0:def 4;
A6: r1
in
].(
PI
/ 2),
PI .] by
A1,
XBOOLE_0:def 4;
then
A7: (
PI
/ 2)
< r1 by
XXREAL_1: 2;
A8: r2
in
].(
PI
/ 2),
PI .] by
A2,
XBOOLE_0:def 4;
then
A9: r2
<=
PI by
XXREAL_1: 2;
A10: (
PI
/ 2)
< r2 by
A8,
XXREAL_1: 2;
now
per cases by
A9,
XXREAL_0: 1;
suppose
A11: r2
<
PI ;
then r1
<
PI by
A3,
XXREAL_0: 2;
then r1
in
].(
PI
/ 2),
PI .[ by
A7;
then
A12: r1
in (
].(
PI
/ 2),
PI .[
/\ (
dom
sec )) by
A4,
XBOOLE_0:def 4;
r2
in
].(
PI
/ 2),
PI .[ by
A10,
A11;
then r2
in (
].(
PI
/ 2),
PI .[
/\ (
dom
sec )) by
A5,
XBOOLE_0:def 4;
hence (
sec
. r2)
> (
sec
. r1) by
A3,
A12,
Th14,
RFUNCT_2: 20;
end;
suppose
A13: r2
=
PI ;
(
PI
* 1)
< (
PI
* (3
/ 2)) by
XREAL_1: 68;
then
A14: r1
< (((3
/ 2)
*
PI )
+ ((2
*
PI )
*
0 )) by
A3,
A13,
XXREAL_0: 2;
((
PI
/ 2)
+ ((2
*
PI )
*
0 ))
< r1 by
A6,
XXREAL_1: 2;
then (
cos r1)
<
0 by
A14,
SIN_COS6: 14;
then
A15: (
cos
. r1)
<
0 by
SIN_COS:def 19;
r1
<
PI by
A3,
A9,
XXREAL_0: 2;
then (
cos r1)
> (
- 1) by
A7,
SIN_COS6: 35;
then (
cos
. r1)
> (
- 1) by
SIN_COS:def 19;
then
A16: ((
cos
. r1)
" )
< ((
- 1)
" ) by
A15,
XREAL_1: 87;
(
sec
. r2)
= (1
/ (
- 1)) by
A5,
A13,
RFUNCT_1:def 2,
SIN_COS: 76
.= (
- 1);
hence (
sec
. r1)
< (
sec
. r2) by
A4,
A16,
RFUNCT_1:def 2;
end;
end;
hence (
sec
. r2)
> (
sec
. r1);
end;
hence thesis by
RFUNCT_2: 20;
end;
theorem ::
SINCOS10:19
Th19: (
cosec
|
[.(
- (
PI
/ 2)),
0 .[) is
decreasing
proof
now
let r1, r2;
assume that
A1: r1
in (
[.(
- (
PI
/ 2)),
0 .[
/\ (
dom
cosec )) and
A2: r2
in (
[.(
- (
PI
/ 2)),
0 .[
/\ (
dom
cosec )) and
A3: r1
< r2;
A4: r1
in (
dom
cosec ) by
A1,
XBOOLE_0:def 4;
A5: r1
in
[.(
- (
PI
/ 2)),
0 .[ by
A1,
XBOOLE_0:def 4;
then
A6: r1
<
0 by
XXREAL_1: 3;
A7: r2
in (
dom
cosec ) by
A2,
XBOOLE_0:def 4;
A8: r2
in
[.(
- (
PI
/ 2)),
0 .[ by
A2,
XBOOLE_0:def 4;
then
A9: r2
<
0 by
XXREAL_1: 3;
A10: (
- (
PI
/ 2))
<= r1 by
A5,
XXREAL_1: 3;
now
per cases by
A10,
XXREAL_0: 1;
suppose
A11: (
- (
PI
/ 2))
= r1;
(
- (
PI
/ 2))
> (
-
PI ) by
COMPTRIG: 5,
XREAL_1: 24;
then
A12:
].(
- (
PI
/ 2)),
0 .[
c=
].(
-
PI ),
0 .[ by
XXREAL_1: 46;
r2
in
].(
- (
PI
/ 2)),
0 .[ by
A3,
A9,
A11;
then (
-
PI )
< r2 by
A12,
XXREAL_1: 4;
then
A13: ((
-
PI )
+ (2
*
PI ))
< (r2
+ (2
*
PI )) by
XREAL_1: 8;
(r2
+ (2
*
PI ))
< (
0
+ (2
*
PI )) by
A9,
XREAL_1: 8;
then (r2
+ (2
*
PI ))
in
].
PI , (2
*
PI ).[ by
A13;
then (
sin
. (r2
+ (2
*
PI )))
<
0 by
COMPTRIG: 9;
then
A14: (
sin
. r2)
<
0 by
SIN_COS: 78;
A15: r2
< ((2
*
PI )
+ ((2
*
PI )
* (
- 1))) by
A8,
XXREAL_1: 3;
(((3
/ 2)
*
PI )
+ ((2
*
PI )
* (
- 1)))
< r2 by
A3,
A11;
then (
sin r2)
> (
- 1) by
A15,
SIN_COS6: 39;
then (
sin
. r2)
> (
- 1) by
SIN_COS:def 17;
then
A16: ((
sin
. r2)
" )
< ((
- 1)
" ) by
A14,
XREAL_1: 87;
(
cosec
. r1)
= (1
/ (
sin
. (
- (
PI
/ 2)))) by
A4,
A11,
RFUNCT_1:def 2
.= (1
/ (
- 1)) by
SIN_COS: 30,
SIN_COS: 76
.= (
- 1);
hence (
cosec
. r2)
< (
cosec
. r1) by
A7,
A16,
RFUNCT_1:def 2;
end;
suppose
A17: (
- (
PI
/ 2))
< r1;
then (
- (
PI
/ 2))
< r2 by
A3,
XXREAL_0: 2;
then r2
in
].(
- (
PI
/ 2)),
0 .[ by
A9;
then
A18: r2
in (
].(
- (
PI
/ 2)),
0 .[
/\ (
dom
cosec )) by
A7,
XBOOLE_0:def 4;
r1
in
].(
- (
PI
/ 2)),
0 .[ by
A6,
A17;
then r1
in (
].(
- (
PI
/ 2)),
0 .[
/\ (
dom
cosec )) by
A4,
XBOOLE_0:def 4;
hence (
cosec
. r2)
< (
cosec
. r1) by
A3,
A18,
Th15,
RFUNCT_2: 21;
end;
end;
hence (
cosec
. r2)
< (
cosec
. r1);
end;
hence thesis by
RFUNCT_2: 21;
end;
theorem ::
SINCOS10:20
Th20: (
cosec
|
].
0 , (
PI
/ 2).]) is
decreasing
proof
now
let r1, r2;
assume that
A1: r1
in (
].
0 , (
PI
/ 2).]
/\ (
dom
cosec )) and
A2: r2
in (
].
0 , (
PI
/ 2).]
/\ (
dom
cosec )) and
A3: r1
< r2;
A4: r1
in (
dom
cosec ) by
A1,
XBOOLE_0:def 4;
A5: r2
in
].
0 , (
PI
/ 2).] by
A2,
XBOOLE_0:def 4;
then
A6: r2
<= (
PI
/ 2) by
XXREAL_1: 2;
A7: r2
in (
dom
cosec ) by
A2,
XBOOLE_0:def 4;
A8: r1
in
].
0 , (
PI
/ 2).] by
A1,
XBOOLE_0:def 4;
then
A9:
0
< r1 by
XXREAL_1: 2;
A10:
0
< r2 by
A5,
XXREAL_1: 2;
now
per cases by
A6,
XXREAL_0: 1;
suppose
A11: r2
< (
PI
/ 2);
then r1
< (
PI
/ 2) by
A3,
XXREAL_0: 2;
then r1
in
].
0 , (
PI
/ 2).[ by
A9;
then
A12: r1
in (
].
0 , (
PI
/ 2).[
/\ (
dom
cosec )) by
A4,
XBOOLE_0:def 4;
r2
in
].
0 , (
PI
/ 2).[ by
A10,
A11;
then r2
in (
].
0 , (
PI
/ 2).[
/\ (
dom
cosec )) by
A7,
XBOOLE_0:def 4;
hence (
cosec
. r2)
< (
cosec
. r1) by
A3,
A12,
Th16,
RFUNCT_2: 21;
end;
suppose
A13: r2
= (
PI
/ 2);
then (
sin r1)
< 1 by
A3,
A9,
SIN_COS6: 30;
then
A14: (
sin
. r1)
< 1 by
SIN_COS:def 17;
(
sin
. r1)
>
0 by
A8,
Lm4,
COMPTRIG: 7;
then
A15: (1
/ 1)
< (1
/ (
sin
. r1)) by
A14,
XREAL_1: 76;
(
cosec
. r2)
= (1
/ 1) by
A7,
A13,
RFUNCT_1:def 2,
SIN_COS: 76
.= 1;
hence (
cosec
. r2)
< (
cosec
. r1) by
A4,
A15,
RFUNCT_1:def 2;
end;
end;
hence (
cosec
. r2)
< (
cosec
. r1);
end;
hence thesis by
RFUNCT_2: 21;
end;
theorem ::
SINCOS10:21
(
sec
|
[.
0 , (
PI
/ 2).[) is
one-to-one by
Th17,
FCONT_3: 8;
theorem ::
SINCOS10:22
(
sec
|
].(
PI
/ 2),
PI .]) is
one-to-one by
Th18,
FCONT_3: 8;
theorem ::
SINCOS10:23
(
cosec
|
[.(
- (
PI
/ 2)),
0 .[) is
one-to-one by
Th19,
FCONT_3: 8;
theorem ::
SINCOS10:24
(
cosec
|
].
0 , (
PI
/ 2).]) is
one-to-one by
Th20,
FCONT_3: 8;
registration
cluster (
sec
|
[.
0 , (
PI
/ 2).[) ->
one-to-one;
coherence by
Th17,
FCONT_3: 8;
cluster (
sec
|
].(
PI
/ 2),
PI .]) ->
one-to-one;
coherence by
Th18,
FCONT_3: 8;
cluster (
cosec
|
[.(
- (
PI
/ 2)),
0 .[) ->
one-to-one;
coherence by
Th19,
FCONT_3: 8;
cluster (
cosec
|
].
0 , (
PI
/ 2).]) ->
one-to-one;
coherence by
Th20,
FCONT_3: 8;
end
definition
::
SINCOS10:def1
func
arcsec1 ->
PartFunc of
REAL ,
REAL equals ((
sec
|
[.
0 , (
PI
/ 2).[)
" );
coherence ;
::
SINCOS10:def2
func
arcsec2 ->
PartFunc of
REAL ,
REAL equals ((
sec
|
].(
PI
/ 2),
PI .])
" );
coherence ;
::
SINCOS10:def3
func
arccosec1 ->
PartFunc of
REAL ,
REAL equals ((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
" );
coherence ;
::
SINCOS10:def4
func
arccosec2 ->
PartFunc of
REAL ,
REAL equals ((
cosec
|
].
0 , (
PI
/ 2).])
" );
coherence ;
end
definition
let r be
Real;
::
SINCOS10:def5
func
arcsec1 r ->
number equals (
arcsec1
. r);
coherence ;
::
SINCOS10:def6
func
arcsec2 r ->
number equals (
arcsec2
. r);
coherence ;
::
SINCOS10:def7
func
arccosec1 r ->
number equals (
arccosec1
. r);
coherence ;
::
SINCOS10:def8
func
arccosec2 r ->
number equals (
arccosec2
. r);
coherence ;
end
registration
let r be
Real;
cluster (
arcsec1 r) ->
real;
coherence ;
cluster (
arcsec2 r) ->
real;
coherence ;
cluster (
arccosec1 r) ->
real;
coherence ;
cluster (
arccosec2 r) ->
real;
coherence ;
end
Lm25: (
arcsec1 qua
Function
" )
= (
sec
|
[.
0 , (
PI
/ 2).[) by
FUNCT_1: 43;
Lm26: (
arcsec2 qua
Function
" )
= (
sec
|
].(
PI
/ 2),
PI .]) by
FUNCT_1: 43;
Lm27: (
arccosec1 qua
Function
" )
= (
cosec
|
[.(
- (
PI
/ 2)),
0 .[) by
FUNCT_1: 43;
Lm28: (
arccosec2 qua
Function
" )
= (
cosec
|
].
0 , (
PI
/ 2).]) by
FUNCT_1: 43;
theorem ::
SINCOS10:25
Th25: (
rng
arcsec1 )
=
[.
0 , (
PI
/ 2).[
proof
(
dom (
sec
|
[.
0 , (
PI
/ 2).[))
=
[.
0 , (
PI
/ 2).[ by
Th1,
RELAT_1: 62;
hence thesis by
FUNCT_1: 33;
end;
theorem ::
SINCOS10:26
Th26: (
rng
arcsec2 )
=
].(
PI
/ 2),
PI .]
proof
(
dom (
sec
|
].(
PI
/ 2),
PI .]))
=
].(
PI
/ 2),
PI .] by
Th2,
RELAT_1: 62;
hence thesis by
FUNCT_1: 33;
end;
theorem ::
SINCOS10:27
Th27: (
rng
arccosec1 )
=
[.(
- (
PI
/ 2)),
0 .[
proof
(
dom (
cosec
|
[.(
- (
PI
/ 2)),
0 .[))
=
[.(
- (
PI
/ 2)),
0 .[ by
Th3,
RELAT_1: 62;
hence thesis by
FUNCT_1: 33;
end;
theorem ::
SINCOS10:28
Th28: (
rng
arccosec2 )
=
].
0 , (
PI
/ 2).]
proof
(
dom (
cosec
|
].
0 , (
PI
/ 2).]))
=
].
0 , (
PI
/ 2).] by
Th4,
RELAT_1: 62;
hence thesis by
FUNCT_1: 33;
end;
registration
cluster
arcsec1 ->
one-to-one;
coherence ;
cluster
arcsec2 ->
one-to-one;
coherence ;
cluster
arccosec1 ->
one-to-one;
coherence ;
cluster
arccosec2 ->
one-to-one;
coherence ;
end
theorem ::
SINCOS10:29
Th29: (
sin
. (
PI
/ 4))
= (1
/ (
sqrt 2)) & (
cos
. (
PI
/ 4))
= (1
/ (
sqrt 2))
proof
A1: ((
sqrt (1
/ 2))
^2 )
= (1
/ 2) by
SQUARE_1:def 2;
1
= (((
sin
. (
PI
/ 4))
^2 )
+ ((
sin
. (
PI
/ 4))
^2 )) by
SIN_COS: 28,
SIN_COS: 73
.= (2
* ((
sin
. (
PI
/ 4))
^2 ));
then
A2: (
sin
. (
PI
/ 4))
= (
sqrt (1
/ 2)) or (
sin
. (
PI
/ 4))
= (
- (
sqrt (1
/ 2))) by
A1,
SQUARE_1: 40;
(
PI
/ 4)
< (
PI
/ 1) by
XREAL_1: 76;
then
A3: (
PI
/ 4)
in
].
0 ,
PI .[;
(
sqrt (1
/ 2))
>
0 by
SQUARE_1: 25;
hence thesis by
A2,
A3,
COMPTRIG: 7,
SIN_COS: 73,
SQUARE_1: 32;
end;
theorem ::
SINCOS10:30
Th30: (
sin
. (
- (
PI
/ 4)))
= (
- (1
/ (
sqrt 2))) & (
cos
. (
- (
PI
/ 4)))
= (1
/ (
sqrt 2)) & (
sin
. ((3
/ 4)
*
PI ))
= (1
/ (
sqrt 2)) & (
cos
. ((3
/ 4)
*
PI ))
= (
- (1
/ (
sqrt 2)))
proof
A1: (
cos
. (
- (
PI
/ 4)))
= (1
/ (
sqrt 2)) by
Th29,
SIN_COS: 30;
A2: (
cos
. ((3
/ 4)
*
PI ))
= (
cos
. (
PI
+ (
- (
PI
/ 4))))
.= (
- (1
/ (
sqrt 2))) by
A1,
SIN_COS: 78;
A3: (
sin
. (
- (
PI
/ 4)))
= (
- (1
/ (
sqrt 2))) by
Th29,
SIN_COS: 30;
(
sin
. ((3
/ 4)
*
PI ))
= (
sin
. (
PI
+ (
- (
PI
/ 4))))
.= (
- (
- (1
/ (
sqrt 2)))) by
A3,
SIN_COS: 78
.= (1
/ (
sqrt 2));
hence thesis by
A2,
Th29,
SIN_COS: 30;
end;
theorem ::
SINCOS10:31
Th31: (
sec
.
0 )
= 1 & (
sec
. (
PI
/ 4))
= (
sqrt 2) & (
sec
. ((3
/ 4)
*
PI ))
= (
- (
sqrt 2)) & (
sec
.
PI )
= (
- 1)
proof
A1: (
sec
.
PI )
= (1
/ (
- 1)) by
Lm6,
Th2,
RFUNCT_1:def 2,
SIN_COS: 76
.= (
- 1);
A2: (
sec
. ((3
/ 4)
*
PI ))
= (1
/ (
- (1
/ (
sqrt 2)))) by
Lm6,
Th2,
Th30,
RFUNCT_1:def 2
.= (
- (1
/ (1
/ (
sqrt 2)))) by
XCMPLX_1: 188
.= (
- (
sqrt 2));
A3: (
sec
.
0 )
= (1
/ 1) by
Lm5,
Th1,
RFUNCT_1:def 2,
SIN_COS: 30
.= 1;
(
sec
. (
PI
/ 4))
= (1
/ (1
/ (
sqrt 2))) by
Lm5,
Th1,
Th29,
RFUNCT_1:def 2
.= (
sqrt 2);
hence thesis by
A3,
A2,
A1;
end;
theorem ::
SINCOS10:32
Th32: (
cosec
. (
- (
PI
/ 2)))
= (
- 1) & (
cosec
. (
- (
PI
/ 4)))
= (
- (
sqrt 2)) & (
cosec
. (
PI
/ 4))
= (
sqrt 2) & (
cosec
. (
PI
/ 2))
= 1
proof
A1: (
cosec
. (
PI
/ 2))
= (1
/ 1) by
Lm8,
Th4,
RFUNCT_1:def 2,
SIN_COS: 76
.= 1;
A2: (
cosec
. (
PI
/ 4))
= (1
/ (1
/ (
sqrt 2))) by
Lm8,
Th4,
Th29,
RFUNCT_1:def 2
.= (
sqrt 2);
A3: (
cosec
. (
- (
PI
/ 2)))
= (1
/ (
sin
. (
- (
PI
/ 2)))) by
Lm7,
Th3,
RFUNCT_1:def 2
.= (1
/ (
- 1)) by
SIN_COS: 30,
SIN_COS: 76
.= (
- 1);
(
cosec
. (
- (
PI
/ 4)))
= (1
/ (
- (1
/ (
sqrt 2)))) by
Lm7,
Th3,
Th30,
RFUNCT_1:def 2
.= (
- (1
/ (1
/ (
sqrt 2)))) by
XCMPLX_1: 188
.= (
- (
sqrt 2));
hence thesis by
A3,
A2,
A1;
end;
theorem ::
SINCOS10:33
Th33: for x be
set st x
in
[.
0 , (
PI
/ 4).] holds (
sec
. x)
in
[.1, (
sqrt 2).]
proof
let x be
set;
assume x
in
[.
0 , (
PI
/ 4).];
then x
in (
].
0 , (
PI
/ 4).[
\/
{
0 , (
PI
/ 4)}) by
XXREAL_1: 128;
then
A1: x
in
].
0 , (
PI
/ 4).[ or x
in
{
0 , (
PI
/ 4)} by
XBOOLE_0:def 3;
per cases by
A1,
TARSKI:def 2;
suppose
A2: x
in
].
0 , (
PI
/ 4).[;
(
PI
/ 4)
< (
PI
/ 2) by
XREAL_1: 76;
then
0
in
[.
0 , (
PI
/ 2).[ & (
PI
/ 4)
in
[.
0 , (
PI
/ 2).[;
then
A3:
[.
0 , (
PI
/ 4).]
c=
[.
0 , (
PI
/ 2).[ by
XXREAL_2:def 12;
then
A4: (
sec
|
[.
0 , (
PI
/ 4).]) is
increasing by
Th17,
RFUNCT_2: 28;
A5: ex s be
Real st s
= x &
0
< s & s
< (
PI
/ 4) by
A2;
A6:
].
0 , (
PI
/ 4).[
c=
[.
0 , (
PI
/ 4).] by
XXREAL_1: 25;
A7: (
[.
0 , (
PI
/ 4).]
/\ (
dom
sec ))
=
[.
0 , (
PI
/ 4).] by
A3,
Th1,
XBOOLE_1: 1,
XBOOLE_1: 28;
0
in
[.
0 , (
PI
/ 4).] & ex s be
Real st s
= x &
0
< s & s
< (
PI
/ 4) by
A2;
then
A8: 1
< (
sec
. x) by
A2,
A4,
A7,
A6,
Th31,
RFUNCT_2: 20;
(
PI
/ 4)
in (
[.
0 , (
PI
/ 4).]
/\ (
dom
sec )) by
A7;
then (
sec
. x)
< (
sqrt 2) by
A2,
A4,
A7,
A6,
A5,
Th31,
RFUNCT_2: 20;
hence thesis by
A8;
end;
suppose x
=
0 ;
hence thesis by
Th31,
SQUARE_1: 19;
end;
suppose x
= (
PI
/ 4);
hence thesis by
Th31,
SQUARE_1: 19;
end;
end;
theorem ::
SINCOS10:34
Th34: for x be
set st x
in
[.((3
/ 4)
*
PI ),
PI .] holds (
sec
. x)
in
[.(
- (
sqrt 2)), (
- 1).]
proof
let x be
set;
A1: (
PI
/ 4)
< (
PI
/ 2) by
XREAL_1: 76;
then
A2: ((
PI
/ 4)
+ (
PI
/ 2))
< ((
PI
/ 2)
+ (
PI
/ 2)) by
XREAL_1: 8;
assume x
in
[.((3
/ 4)
*
PI ),
PI .];
then x
in (
].((3
/ 4)
*
PI ),
PI .[
\/
{((3
/ 4)
*
PI ),
PI }) by
A2,
XXREAL_1: 128;
then
A3: x
in
].((3
/ 4)
*
PI ),
PI .[ or x
in
{((3
/ 4)
*
PI ),
PI } by
XBOOLE_0:def 3;
per cases by
A3,
TARSKI:def 2;
suppose
A4: x
in
].((3
/ 4)
*
PI ),
PI .[;
((
PI
/ 4)
+ (
PI
/ 4))
< ((
PI
/ 2)
+ (
PI
/ 4)) by
A1,
XREAL_1: 8;
then
A5: ((3
/ 4)
*
PI )
in
].(
PI
/ 2),
PI .] by
A2;
PI
in
].(
PI
/ 2),
PI .] by
COMPTRIG: 5;
then
A6:
[.((3
/ 4)
*
PI ),
PI .]
c=
].(
PI
/ 2),
PI .] by
A5,
XXREAL_2:def 12;
then
A7: (
sec
|
[.((3
/ 4)
*
PI ),
PI .]) is
increasing by
Th18,
RFUNCT_2: 28;
A8: ex s be
Real st s
= x & ((3
/ 4)
*
PI )
< s & s
<
PI by
A4;
A9: ex s be
Real st s
= x & ((3
/ 4)
*
PI )
< s & s
<
PI by
A4;
A10:
].((3
/ 4)
*
PI ),
PI .[
c=
[.((3
/ 4)
*
PI ),
PI .] by
XXREAL_1: 25;
A11: (
[.((3
/ 4)
*
PI ),
PI .]
/\ (
dom
sec ))
=
[.((3
/ 4)
*
PI ),
PI .] by
A6,
Th2,
XBOOLE_1: 1,
XBOOLE_1: 28;
then
PI
in (
[.((3
/ 4)
*
PI ),
PI .]
/\ (
dom
sec )) by
A2;
then
A12: (
sec
. x)
< (
- 1) by
A4,
A7,
A11,
A10,
A9,
Th31,
RFUNCT_2: 20;
((3
/ 4)
*
PI )
in
[.((3
/ 4)
*
PI ),
PI .] by
A2;
then (
- (
sqrt 2))
< (
sec
. x) by
A4,
A7,
A11,
A10,
A8,
Th31,
RFUNCT_2: 20;
hence thesis by
A12;
end;
suppose
A13: x
= ((3
/ 4)
*
PI );
(
- (
sqrt 2))
< (
- 1) by
SQUARE_1: 19,
XREAL_1: 24;
hence thesis by
A13,
Th31;
end;
suppose
A14: x
=
PI ;
(
- (
sqrt 2))
< (
- 1) by
SQUARE_1: 19,
XREAL_1: 24;
hence thesis by
A14,
Th31;
end;
end;
theorem ::
SINCOS10:35
Th35: for x be
set st x
in
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).] holds (
cosec
. x)
in
[.(
- (
sqrt 2)), (
- 1).]
proof
let x be
set;
(
PI
/ 4)
< (
PI
/ 2) by
XREAL_1: 76;
then
A1: (
- (
PI
/ 2))
< (
- (
PI
/ 4)) by
XREAL_1: 24;
assume x
in
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).];
then x
in (
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[
\/
{(
- (
PI
/ 2)), (
- (
PI
/ 4))}) by
A1,
XXREAL_1: 128;
then
A2: x
in
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[ or x
in
{(
- (
PI
/ 2)), (
- (
PI
/ 4))} by
XBOOLE_0:def 3;
per cases by
A2,
TARSKI:def 2;
suppose
A3: x
in
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[;
then
A4: ex s be
Real st s
= x & (
- (
PI
/ 2))
< s & s
< (
- (
PI
/ 4));
A5: ex s be
Real st s
= x & (
- (
PI
/ 2))
< s & s
< (
- (
PI
/ 4)) by
A3;
A6:
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[
c=
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).] by
XXREAL_1: 25;
(
- (
PI
/ 2))
in
[.(
- (
PI
/ 2)),
0 .[ & (
- (
PI
/ 4))
in
[.(
- (
PI
/ 2)),
0 .[ by
A1;
then
A7:
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
c=
[.(
- (
PI
/ 2)),
0 .[ by
XXREAL_2:def 12;
then
A8: (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) is
decreasing by
Th19,
RFUNCT_2: 29;
A9: (
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
/\ (
dom
cosec ))
=
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).] by
A7,
Th3,
XBOOLE_1: 1,
XBOOLE_1: 28;
then (
- (
PI
/ 4))
in (
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
/\ (
dom
cosec )) by
A1;
then
A10: (
cosec
. x)
> (
- (
sqrt 2)) by
A3,
A8,
A9,
A6,
A5,
Th32,
RFUNCT_2: 21;
(
- (
PI
/ 2))
in
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).] by
A1;
then (
- 1)
> (
cosec
. x) by
A3,
A8,
A9,
A6,
A4,
Th32,
RFUNCT_2: 21;
hence thesis by
A10;
end;
suppose
A11: x
= (
- (
PI
/ 2));
(
- (
sqrt 2))
< (
- 1) by
SQUARE_1: 19,
XREAL_1: 24;
hence thesis by
A11,
Th32;
end;
suppose
A12: x
= (
- (
PI
/ 4));
(
- (
sqrt 2))
< (
- 1) by
SQUARE_1: 19,
XREAL_1: 24;
hence thesis by
A12,
Th32;
end;
end;
theorem ::
SINCOS10:36
Th36: for x be
set st x
in
[.(
PI
/ 4), (
PI
/ 2).] holds (
cosec
. x)
in
[.1, (
sqrt 2).]
proof
let x be
set;
A1: (
PI
/ 4)
< (
PI
/ 2) by
XREAL_1: 76;
assume x
in
[.(
PI
/ 4), (
PI
/ 2).];
then x
in (
].(
PI
/ 4), (
PI
/ 2).[
\/
{(
PI
/ 4), (
PI
/ 2)}) by
A1,
XXREAL_1: 128;
then
A2: x
in
].(
PI
/ 4), (
PI
/ 2).[ or x
in
{(
PI
/ 4), (
PI
/ 2)} by
XBOOLE_0:def 3;
per cases by
A2,
TARSKI:def 2;
suppose
A3: x
in
].(
PI
/ 4), (
PI
/ 2).[;
then
A4: ex s be
Real st s
= x & (
PI
/ 4)
< s & s
< (
PI
/ 2);
A5: ex s be
Real st s
= x & (
PI
/ 4)
< s & s
< (
PI
/ 2) by
A3;
A6:
].(
PI
/ 4), (
PI
/ 2).[
c=
[.(
PI
/ 4), (
PI
/ 2).] by
XXREAL_1: 25;
(
PI
/ 4)
in
].
0 , (
PI
/ 2).] & (
PI
/ 2)
in
].
0 , (
PI
/ 2).] by
A1;
then
A7:
[.(
PI
/ 4), (
PI
/ 2).]
c=
].
0 , (
PI
/ 2).] by
XXREAL_2:def 12;
then
A8: (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]) is
decreasing by
Th20,
RFUNCT_2: 29;
A9: (
[.(
PI
/ 4), (
PI
/ 2).]
/\ (
dom
cosec ))
=
[.(
PI
/ 4), (
PI
/ 2).] by
A7,
Th4,
XBOOLE_1: 1,
XBOOLE_1: 28;
then (
PI
/ 2)
in (
[.(
PI
/ 4), (
PI
/ 2).]
/\ (
dom
cosec )) by
A1;
then
A10: (
cosec
. x)
> 1 by
A3,
A8,
A9,
A6,
A5,
Th32,
RFUNCT_2: 21;
(
PI
/ 4)
in
[.(
PI
/ 4), (
PI
/ 2).] by
A1;
then (
sqrt 2)
> (
cosec
. x) by
A3,
A8,
A9,
A6,
A4,
Th32,
RFUNCT_2: 21;
hence thesis by
A10;
end;
suppose x
= (
PI
/ 4);
hence thesis by
Th32,
SQUARE_1: 19;
end;
suppose x
= (
PI
/ 2);
hence thesis by
Th32,
SQUARE_1: 19;
end;
end;
Lm29: (
dom (
sec
|
[.
0 , (
PI
/ 4).]))
=
[.
0 , (
PI
/ 4).]
proof
[.
0 , (
PI
/ 4).]
c=
[.
0 , (
PI
/ 2).[ by
Lm5,
XXREAL_2:def 12;
hence thesis by
Th1,
RELAT_1: 62,
XBOOLE_1: 1;
end;
Lm30: (
dom (
sec
|
[.((3
/ 4)
*
PI ),
PI .]))
=
[.((3
/ 4)
*
PI ),
PI .]
proof
[.((3
/ 4)
*
PI ),
PI .]
c=
].(
PI
/ 2),
PI .] by
Lm6,
XXREAL_2:def 12;
hence thesis by
Th2,
RELAT_1: 62,
XBOOLE_1: 1;
end;
Lm31: (
dom (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]))
=
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
proof
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
c=
[.(
- (
PI
/ 2)),
0 .[ by
Lm7,
XXREAL_2:def 12;
hence thesis by
Th3,
RELAT_1: 62,
XBOOLE_1: 1;
end;
Lm32: (
dom (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]))
=
[.(
PI
/ 4), (
PI
/ 2).]
proof
[.(
PI
/ 4), (
PI
/ 2).]
c=
].
0 , (
PI
/ 2).] by
Lm8,
XXREAL_2:def 12;
hence thesis by
Th4,
RELAT_1: 62,
XBOOLE_1: 1;
end;
Lm33: (
dom (
sec
|
[.
0 , (
PI
/ 2).[))
=
[.
0 , (
PI
/ 2).[ & for th st th
in
[.
0 , (
PI
/ 2).[ holds ((
sec
|
[.
0 , (
PI
/ 2).[)
. th)
= (
sec
. th)
proof
(
dom (
sec
|
[.
0 , (
PI
/ 2).[))
= ((
dom
sec )
/\
[.
0 , (
PI
/ 2).[) by
RELAT_1: 61;
then (
dom (
sec
|
[.
0 , (
PI
/ 2).[))
=
[.
0 , (
PI
/ 2).[ by
Th1,
XBOOLE_1: 28;
hence thesis by
FUNCT_1: 47;
end;
Lm34: (
dom (
sec
|
].(
PI
/ 2),
PI .]))
=
].(
PI
/ 2),
PI .] & for th st th
in
].(
PI
/ 2),
PI .] holds ((
sec
|
].(
PI
/ 2),
PI .])
. th)
= (
sec
. th)
proof
(
dom (
sec
|
].(
PI
/ 2),
PI .]))
= ((
dom
sec )
/\
].(
PI
/ 2),
PI .]) by
RELAT_1: 61;
then (
dom (
sec
|
].(
PI
/ 2),
PI .]))
=
].(
PI
/ 2),
PI .] by
Th2,
XBOOLE_1: 28;
hence thesis by
FUNCT_1: 47;
end;
Lm35: (
dom (
cosec
|
[.(
- (
PI
/ 2)),
0 .[))
=
[.(
- (
PI
/ 2)),
0 .[ & for th st th
in
[.(
- (
PI
/ 2)),
0 .[ holds ((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
. th)
= (
cosec
. th)
proof
(
dom (
cosec
|
[.(
- (
PI
/ 2)),
0 .[))
= ((
dom
cosec )
/\
[.(
- (
PI
/ 2)),
0 .[) by
RELAT_1: 61;
then (
dom (
cosec
|
[.(
- (
PI
/ 2)),
0 .[))
=
[.(
- (
PI
/ 2)),
0 .[ by
Th3,
XBOOLE_1: 28;
hence thesis by
FUNCT_1: 47;
end;
Lm36: (
dom (
cosec
|
].
0 , (
PI
/ 2).]))
=
].
0 , (
PI
/ 2).] & for th st th
in
].
0 , (
PI
/ 2).] holds ((
cosec
|
].
0 , (
PI
/ 2).])
. th)
= (
cosec
. th)
proof
(
dom (
cosec
|
].
0 , (
PI
/ 2).]))
= ((
dom
cosec )
/\
].
0 , (
PI
/ 2).]) by
RELAT_1: 61;
then (
dom (
cosec
|
].
0 , (
PI
/ 2).]))
=
].
0 , (
PI
/ 2).] by
Th4,
XBOOLE_1: 28;
hence thesis by
FUNCT_1: 47;
end;
theorem ::
SINCOS10:37
Th37: (
sec
|
[.
0 , (
PI
/ 2).[) is
continuous
proof
for th be
Real st th
in (
dom (
sec
|
[.
0 , (
PI
/ 2).[)) holds (
sec
|
[.
0 , (
PI
/ 2).[)
is_continuous_in th
proof
let th be
Real;
A1:
cos
is_differentiable_in th by
SIN_COS: 63;
assume
A2: th
in (
dom (
sec
|
[.
0 , (
PI
/ 2).[));
then th
in
[.
0 , (
PI
/ 2).[ by
RELAT_1: 57;
then (
cos
. th)
<>
0 by
Lm1,
COMPTRIG: 11;
then
A3:
sec
is_continuous_in th by
A1,
FCONT_1: 10,
FDIFF_1: 24;
now
let rseq;
assume that
A4: (
rng rseq)
c= (
dom (
sec
|
[.
0 , (
PI
/ 2).[)) and
A5: rseq is
convergent & (
lim rseq)
= th;
A6: (
dom (
sec
|
[.
0 , (
PI
/ 2).[))
=
[.
0 , (
PI
/ 2).[ by
Th1,
RELAT_1: 62;
now
let n be
Element of
NAT ;
(
dom rseq)
=
NAT by
SEQ_1: 1;
then (rseq
. n)
in (
rng rseq) by
FUNCT_1:def 3;
then
A7: ((
sec
|
[.
0 , (
PI
/ 2).[)
. (rseq
. n))
= (
sec
. (rseq
. n)) by
A4,
A6,
FUNCT_1: 49;
((
sec
|
[.
0 , (
PI
/ 2).[)
. (rseq
. n))
= (((
sec
|
[.
0 , (
PI
/ 2).[)
/* rseq)
. n) by
A4,
FUNCT_2: 108;
hence (((
sec
|
[.
0 , (
PI
/ 2).[)
/* rseq)
. n)
= ((
sec
/* rseq)
. n) by
A4,
A6,
A7,
Th1,
FUNCT_2: 108,
XBOOLE_1: 1;
end;
then
A8: ((
sec
|
[.
0 , (
PI
/ 2).[)
/* rseq)
= (
sec
/* rseq) by
FUNCT_2: 63;
A9: (
rng rseq)
c= (
dom
sec ) by
A4,
A6,
Th1;
then (
sec
. th)
= (
lim (
sec
/* rseq)) by
A3,
A5,
FCONT_1:def 1;
hence ((
sec
|
[.
0 , (
PI
/ 2).[)
/* rseq) is
convergent & ((
sec
|
[.
0 , (
PI
/ 2).[)
. th)
= (
lim ((
sec
|
[.
0 , (
PI
/ 2).[)
/* rseq)) by
A2,
A3,
A5,
A9,
A8,
Lm33,
FCONT_1:def 1;
end;
hence thesis by
FCONT_1:def 1;
end;
hence thesis by
FCONT_1:def 2;
end;
theorem ::
SINCOS10:38
Th38: (
sec
|
].(
PI
/ 2),
PI .]) is
continuous
proof
for th be
Real st th
in (
dom (
sec
|
].(
PI
/ 2),
PI .])) holds (
sec
|
].(
PI
/ 2),
PI .])
is_continuous_in th
proof
let th be
Real;
A1:
cos
is_differentiable_in th by
SIN_COS: 63;
assume
A2: th
in (
dom (
sec
|
].(
PI
/ 2),
PI .]));
then th
in
].(
PI
/ 2),
PI .] by
RELAT_1: 57;
then (
cos
. th)
<>
0 by
Lm2,
COMPTRIG: 13;
then
A3:
sec
is_continuous_in th by
A1,
FCONT_1: 10,
FDIFF_1: 24;
now
let rseq;
assume that
A4: (
rng rseq)
c= (
dom (
sec
|
].(
PI
/ 2),
PI .])) and
A5: rseq is
convergent & (
lim rseq)
= th;
A6: (
dom (
sec
|
].(
PI
/ 2),
PI .]))
=
].(
PI
/ 2),
PI .] by
Th2,
RELAT_1: 62;
now
let n be
Element of
NAT ;
(
dom rseq)
=
NAT by
SEQ_1: 1;
then (rseq
. n)
in (
rng rseq) by
FUNCT_1:def 3;
then
A7: ((
sec
|
].(
PI
/ 2),
PI .])
. (rseq
. n))
= (
sec
. (rseq
. n)) by
A4,
A6,
FUNCT_1: 49;
((
sec
|
].(
PI
/ 2),
PI .])
. (rseq
. n))
= (((
sec
|
].(
PI
/ 2),
PI .])
/* rseq)
. n) by
A4,
FUNCT_2: 108;
hence (((
sec
|
].(
PI
/ 2),
PI .])
/* rseq)
. n)
= ((
sec
/* rseq)
. n) by
A4,
A6,
A7,
Th2,
FUNCT_2: 108,
XBOOLE_1: 1;
end;
then
A8: ((
sec
|
].(
PI
/ 2),
PI .])
/* rseq)
= (
sec
/* rseq) by
FUNCT_2: 63;
A9: (
rng rseq)
c= (
dom
sec ) by
A4,
A6,
Th2;
then (
sec
. th)
= (
lim (
sec
/* rseq)) by
A3,
A5,
FCONT_1:def 1;
hence ((
sec
|
].(
PI
/ 2),
PI .])
/* rseq) is
convergent & ((
sec
|
].(
PI
/ 2),
PI .])
. th)
= (
lim ((
sec
|
].(
PI
/ 2),
PI .])
/* rseq)) by
A2,
A3,
A5,
A9,
A8,
Lm34,
FCONT_1:def 1;
end;
hence thesis by
FCONT_1:def 1;
end;
hence thesis by
FCONT_1:def 2;
end;
theorem ::
SINCOS10:39
Th39: (
cosec
|
[.(
- (
PI
/ 2)),
0 .[) is
continuous
proof
for th be
Real st th
in (
dom (
cosec
|
[.(
- (
PI
/ 2)),
0 .[)) holds (
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
is_continuous_in th
proof
let th be
Real;
assume
A1: th
in (
dom (
cosec
|
[.(
- (
PI
/ 2)),
0 .[));
then
A2: th
in
[.(
- (
PI
/ 2)),
0 .[ by
RELAT_1: 57;
then th
<
0 by
Lm3,
XXREAL_1: 4;
then
A3: (th
+ (2
*
PI ))
< (
0
+ (2
*
PI )) by
XREAL_1: 8;
(
-
PI )
< th by
A2,
Lm3,
XXREAL_1: 4;
then ((
-
PI )
+ (2
*
PI ))
< (th
+ (2
*
PI )) by
XREAL_1: 8;
then (th
+ (2
*
PI ))
in
].
PI , (2
*
PI ).[ by
A3;
then (
sin
. (th
+ (2
*
PI )))
<>
0 by
COMPTRIG: 9;
then
A4: (
sin
. th)
<>
0 by
SIN_COS: 78;
sin
is_differentiable_in th by
SIN_COS: 64;
then
A5:
cosec
is_continuous_in th by
A4,
FCONT_1: 10,
FDIFF_1: 24;
now
let rseq;
assume that
A6: (
rng rseq)
c= (
dom (
cosec
|
[.(
- (
PI
/ 2)),
0 .[)) and
A7: rseq is
convergent & (
lim rseq)
= th;
A8: (
dom (
cosec
|
[.(
- (
PI
/ 2)),
0 .[))
=
[.(
- (
PI
/ 2)),
0 .[ by
Th3,
RELAT_1: 62;
now
let n be
Element of
NAT ;
(
dom rseq)
=
NAT by
SEQ_1: 1;
then (rseq
. n)
in (
rng rseq) by
FUNCT_1:def 3;
then
A9: ((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
. (rseq
. n))
= (
cosec
. (rseq
. n)) by
A6,
A8,
FUNCT_1: 49;
((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
. (rseq
. n))
= (((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
/* rseq)
. n) by
A6,
FUNCT_2: 108;
hence (((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
/* rseq)
. n)
= ((
cosec
/* rseq)
. n) by
A6,
A8,
A9,
Th3,
FUNCT_2: 108,
XBOOLE_1: 1;
end;
then
A10: ((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
/* rseq)
= (
cosec
/* rseq) by
FUNCT_2: 63;
A11: (
rng rseq)
c= (
dom
cosec ) by
A6,
A8,
Th3;
then (
cosec
. th)
= (
lim (
cosec
/* rseq)) by
A5,
A7,
FCONT_1:def 1;
hence ((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
/* rseq) is
convergent & ((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
. th)
= (
lim ((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
/* rseq)) by
A1,
A5,
A7,
A11,
A10,
Lm35,
FCONT_1:def 1;
end;
hence thesis by
FCONT_1:def 1;
end;
hence thesis by
FCONT_1:def 2;
end;
theorem ::
SINCOS10:40
Th40: (
cosec
|
].
0 , (
PI
/ 2).]) is
continuous
proof
for th be
Real st th
in (
dom (
cosec
|
].
0 , (
PI
/ 2).])) holds (
cosec
|
].
0 , (
PI
/ 2).])
is_continuous_in th
proof
let th be
Real;
A1:
sin
is_differentiable_in th by
SIN_COS: 64;
assume
A2: th
in (
dom (
cosec
|
].
0 , (
PI
/ 2).]));
then th
in
].
0 , (
PI
/ 2).] by
RELAT_1: 57;
then (
sin
. th)
<>
0 by
Lm4,
COMPTRIG: 7;
then
A3:
cosec
is_continuous_in th by
A1,
FCONT_1: 10,
FDIFF_1: 24;
now
let rseq;
assume that
A4: (
rng rseq)
c= (
dom (
cosec
|
].
0 , (
PI
/ 2).])) and
A5: rseq is
convergent & (
lim rseq)
= th;
A6: (
dom (
cosec
|
].
0 , (
PI
/ 2).]))
=
].
0 , (
PI
/ 2).] by
Th4,
RELAT_1: 62;
now
let n be
Element of
NAT ;
(
dom rseq)
=
NAT by
SEQ_1: 1;
then (rseq
. n)
in (
rng rseq) by
FUNCT_1:def 3;
then
A7: ((
cosec
|
].
0 , (
PI
/ 2).])
. (rseq
. n))
= (
cosec
. (rseq
. n)) by
A4,
A6,
FUNCT_1: 49;
((
cosec
|
].
0 , (
PI
/ 2).])
. (rseq
. n))
= (((
cosec
|
].
0 , (
PI
/ 2).])
/* rseq)
. n) by
A4,
FUNCT_2: 108;
hence (((
cosec
|
].
0 , (
PI
/ 2).])
/* rseq)
. n)
= ((
cosec
/* rseq)
. n) by
A4,
A6,
A7,
Th4,
FUNCT_2: 108,
XBOOLE_1: 1;
end;
then
A8: ((
cosec
|
].
0 , (
PI
/ 2).])
/* rseq)
= (
cosec
/* rseq) by
FUNCT_2: 63;
A9: (
rng rseq)
c= (
dom
cosec ) by
A4,
A6,
Th4;
then (
cosec
. th)
= (
lim (
cosec
/* rseq)) by
A3,
A5,
FCONT_1:def 1;
hence ((
cosec
|
].
0 , (
PI
/ 2).])
/* rseq) is
convergent & ((
cosec
|
].
0 , (
PI
/ 2).])
. th)
= (
lim ((
cosec
|
].
0 , (
PI
/ 2).])
/* rseq)) by
A2,
A3,
A5,
A9,
A8,
Lm36,
FCONT_1:def 1;
end;
hence thesis by
FCONT_1:def 1;
end;
hence thesis by
FCONT_1:def 2;
end;
theorem ::
SINCOS10:41
Th41: (
rng (
sec
|
[.
0 , (
PI
/ 4).]))
=
[.1, (
sqrt 2).]
proof
now
let y be
object;
thus y
in
[.1, (
sqrt 2).] implies ex x be
object st x
in (
dom (
sec
|
[.
0 , (
PI
/ 4).])) & y
= ((
sec
|
[.
0 , (
PI
/ 4).])
. x)
proof
assume
A1: y
in
[.1, (
sqrt 2).];
then
reconsider y1 = y as
Real;
[.
0 , (
PI
/ 4).]
c=
[.
0 , (
PI
/ 2).[ by
Lm5,
XXREAL_2:def 12;
then
A2: (
sec
|
[.
0 , (
PI
/ 4).]) is
continuous by
Th37,
FCONT_1: 16;
y1
in (
[.(
sec
.
0 ), (
sec
. (
PI
/ 4)).]
\/
[.(
sec
. (
PI
/ 4)), (
sec
.
0 ).]) by
A1,
Th31,
XBOOLE_0:def 3;
then
consider x be
Real such that
A3: x
in
[.
0 , (
PI
/ 4).] & y1
= (
sec
. x) by
A2,
Lm13,
Th1,
FCONT_2: 15,
XBOOLE_1: 1;
take x;
thus thesis by
A3,
Lm29,
FUNCT_1: 49;
end;
thus (ex x be
object st x
in (
dom (
sec
|
[.
0 , (
PI
/ 4).])) & y
= ((
sec
|
[.
0 , (
PI
/ 4).])
. x)) implies y
in
[.1, (
sqrt 2).]
proof
given x be
object such that
A4: x
in (
dom (
sec
|
[.
0 , (
PI
/ 4).])) and
A5: y
= ((
sec
|
[.
0 , (
PI
/ 4).])
. x);
reconsider x1 = x as
Real by
A4;
y
= (
sec
. x1) by
A4,
A5,
Lm29,
FUNCT_1: 49;
hence thesis by
A4,
Lm29,
Th33;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
SINCOS10:42
Th42: (
rng (
sec
|
[.((3
/ 4)
*
PI ),
PI .]))
=
[.(
- (
sqrt 2)), (
- 1).]
proof
now
let y be
object;
thus y
in
[.(
- (
sqrt 2)), (
- 1).] implies ex x be
object st x
in (
dom (
sec
|
[.((3
/ 4)
*
PI ),
PI .])) & y
= ((
sec
|
[.((3
/ 4)
*
PI ),
PI .])
. x)
proof
[.((3
/ 4)
*
PI ),
PI .]
c=
].(
PI
/ 2),
PI .] by
Lm6,
XXREAL_2:def 12;
then
A1: (
sec
|
[.((3
/ 4)
*
PI ),
PI .]) is
continuous by
Th38,
FCONT_1: 16;
assume
A2: y
in
[.(
- (
sqrt 2)), (
- 1).];
then
reconsider y1 = y as
Real;
A3: ((3
/ 4)
*
PI )
<=
PI by
Lm6,
XXREAL_1: 2;
y1
in (
[.(
sec
. ((3
/ 4)
*
PI )), (
sec
.
PI ).]
\/
[.(
sec
.
PI ), (
sec
. ((3
/ 4)
*
PI )).]) by
A2,
Th31,
XBOOLE_0:def 3;
then
consider x be
Real such that
A4: x
in
[.((3
/ 4)
*
PI ),
PI .] & y1
= (
sec
. x) by
A3,
A1,
Lm14,
Th2,
FCONT_2: 15,
XBOOLE_1: 1;
take x;
thus thesis by
A4,
Lm30,
FUNCT_1: 49;
end;
thus (ex x be
object st x
in (
dom (
sec
|
[.((3
/ 4)
*
PI ),
PI .])) & y
= ((
sec
|
[.((3
/ 4)
*
PI ),
PI .])
. x)) implies y
in
[.(
- (
sqrt 2)), (
- 1).]
proof
given x be
object such that
A5: x
in (
dom (
sec
|
[.((3
/ 4)
*
PI ),
PI .])) and
A6: y
= ((
sec
|
[.((3
/ 4)
*
PI ),
PI .])
. x);
reconsider x1 = x as
Real by
A5;
y
= (
sec
. x1) by
A5,
A6,
Lm30,
FUNCT_1: 49;
hence thesis by
A5,
Lm30,
Th34;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
SINCOS10:43
Th43: (
rng (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]))
=
[.(
- (
sqrt 2)), (
- 1).]
proof
now
let y be
object;
thus y
in
[.(
- (
sqrt 2)), (
- 1).] implies ex x be
object st x
in (
dom (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])) & y
= ((
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])
. x)
proof
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
c=
[.(
- (
PI
/ 2)),
0 .[ by
Lm7,
XXREAL_2:def 12;
then
A1: (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) is
continuous by
Th39,
FCONT_1: 16;
assume
A2: y
in
[.(
- (
sqrt 2)), (
- 1).];
then
reconsider y1 = y as
Real;
A3: (
- (
PI
/ 2))
<= (
- (
PI
/ 4)) by
Lm7,
XXREAL_1: 3;
y1
in (
[.(
cosec
. (
- (
PI
/ 4))), (
cosec
. (
- (
PI
/ 2))).]
\/
[.(
cosec
. (
- (
PI
/ 2))), (
cosec
. (
- (
PI
/ 4))).]) by
A2,
Th32,
XBOOLE_0:def 3;
then
consider x be
Real such that
A4: x
in
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).] & y1
= (
cosec
. x) by
A3,
A1,
Lm19,
Th3,
FCONT_2: 15,
XBOOLE_1: 1;
take x;
thus thesis by
A4,
Lm31,
FUNCT_1: 49;
end;
thus (ex x be
object st x
in (
dom (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])) & y
= ((
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])
. x)) implies y
in
[.(
- (
sqrt 2)), (
- 1).]
proof
given x be
object such that
A5: x
in (
dom (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])) and
A6: y
= ((
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])
. x);
reconsider x1 = x as
Real by
A5;
y
= (
cosec
. x1) by
A5,
A6,
Lm31,
FUNCT_1: 49;
hence thesis by
A5,
Lm31,
Th35;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
SINCOS10:44
Th44: (
rng (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]))
=
[.1, (
sqrt 2).]
proof
now
let y be
object;
thus y
in
[.1, (
sqrt 2).] implies ex x be
object st x
in (
dom (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).])) & y
= ((
cosec
|
[.(
PI
/ 4), (
PI
/ 2).])
. x)
proof
[.(
PI
/ 4), (
PI
/ 2).]
c=
].
0 , (
PI
/ 2).] by
Lm8,
XXREAL_2:def 12;
then
A1: (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]) is
continuous by
Th40,
FCONT_1: 16;
assume
A2: y
in
[.1, (
sqrt 2).];
then
reconsider y1 = y as
Real;
A3: (
PI
/ 4)
<= (
PI
/ 2) by
Lm8,
XXREAL_1: 2;
y1
in (
[.(
cosec
. (
PI
/ 2)), (
cosec
. (
PI
/ 4)).]
\/
[.(
cosec
. (
PI
/ 4)), (
cosec
. (
PI
/ 2)).]) by
A2,
Th32,
XBOOLE_0:def 3;
then
consider x be
Real such that
A4: x
in
[.(
PI
/ 4), (
PI
/ 2).] & y1
= (
cosec
. x) by
A3,
A1,
Lm20,
Th4,
FCONT_2: 15,
XBOOLE_1: 1;
take x;
thus thesis by
A4,
Lm32,
FUNCT_1: 49;
end;
thus (ex x be
object st x
in (
dom (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).])) & y
= ((
cosec
|
[.(
PI
/ 4), (
PI
/ 2).])
. x)) implies y
in
[.1, (
sqrt 2).]
proof
given x be
object such that
A5: x
in (
dom (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).])) and
A6: y
= ((
cosec
|
[.(
PI
/ 4), (
PI
/ 2).])
. x);
reconsider x1 = x as
Real by
A5;
y
= (
cosec
. x1) by
A5,
A6,
Lm32,
FUNCT_1: 49;
hence thesis by
A5,
Lm32,
Th36;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
SINCOS10:45
Th45:
[.1, (
sqrt 2).]
c= (
dom
arcsec1 )
proof
A1:
[.
0 , (
PI
/ 4).]
c=
[.
0 , (
PI
/ 2).[ by
Lm5,
XXREAL_2:def 12;
(
rng (
sec
|
[.
0 , (
PI
/ 4).]))
c= (
rng (
sec
|
[.
0 , (
PI
/ 2).[))
proof
let y be
object;
assume y
in (
rng (
sec
|
[.
0 , (
PI
/ 4).]));
then y
in (
sec
.:
[.
0 , (
PI
/ 4).]) by
RELAT_1: 115;
then ex x be
object st x
in (
dom
sec ) & x
in
[.
0 , (
PI
/ 4).] & y
= (
sec
. x) by
FUNCT_1:def 6;
then y
in (
sec
.:
[.
0 , (
PI
/ 2).[) by
A1,
FUNCT_1:def 6;
hence thesis by
RELAT_1: 115;
end;
hence thesis by
Th41,
FUNCT_1: 33;
end;
theorem ::
SINCOS10:46
Th46:
[.(
- (
sqrt 2)), (
- 1).]
c= (
dom
arcsec2 )
proof
A1:
[.((3
/ 4)
*
PI ),
PI .]
c=
].(
PI
/ 2),
PI .] by
Lm6,
XXREAL_2:def 12;
(
rng (
sec
|
[.((3
/ 4)
*
PI ),
PI .]))
c= (
rng (
sec
|
].(
PI
/ 2),
PI .]))
proof
let y be
object;
assume y
in (
rng (
sec
|
[.((3
/ 4)
*
PI ),
PI .]));
then y
in (
sec
.:
[.((3
/ 4)
*
PI ),
PI .]) by
RELAT_1: 115;
then ex x be
object st x
in (
dom
sec ) & x
in
[.((3
/ 4)
*
PI ),
PI .] & y
= (
sec
. x) by
FUNCT_1:def 6;
then y
in (
sec
.:
].(
PI
/ 2),
PI .]) by
A1,
FUNCT_1:def 6;
hence thesis by
RELAT_1: 115;
end;
hence thesis by
Th42,
FUNCT_1: 33;
end;
theorem ::
SINCOS10:47
Th47:
[.(
- (
sqrt 2)), (
- 1).]
c= (
dom
arccosec1 )
proof
A1:
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
c=
[.(
- (
PI
/ 2)),
0 .[ by
Lm7,
XXREAL_2:def 12;
(
rng (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]))
c= (
rng (
cosec
|
[.(
- (
PI
/ 2)),
0 .[))
proof
let y be
object;
assume y
in (
rng (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]));
then y
in (
cosec
.:
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) by
RELAT_1: 115;
then ex x be
object st x
in (
dom
cosec ) & x
in
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).] & y
= (
cosec
. x) by
FUNCT_1:def 6;
then y
in (
cosec
.:
[.(
- (
PI
/ 2)),
0 .[) by
A1,
FUNCT_1:def 6;
hence thesis by
RELAT_1: 115;
end;
hence thesis by
Th43,
FUNCT_1: 33;
end;
theorem ::
SINCOS10:48
Th48:
[.1, (
sqrt 2).]
c= (
dom
arccosec2 )
proof
A1:
[.(
PI
/ 4), (
PI
/ 2).]
c=
].
0 , (
PI
/ 2).] by
Lm8,
XXREAL_2:def 12;
(
rng (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]))
c= (
rng (
cosec
|
].
0 , (
PI
/ 2).]))
proof
let y be
object;
assume y
in (
rng (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]));
then y
in (
cosec
.:
[.(
PI
/ 4), (
PI
/ 2).]) by
RELAT_1: 115;
then ex x be
object st x
in (
dom
cosec ) & x
in
[.(
PI
/ 4), (
PI
/ 2).] & y
= (
cosec
. x) by
FUNCT_1:def 6;
then y
in (
cosec
.:
].
0 , (
PI
/ 2).]) by
A1,
FUNCT_1:def 6;
hence thesis by
RELAT_1: 115;
end;
hence thesis by
Th44,
FUNCT_1: 33;
end;
Lm37: ((
sec
|
[.
0 , (
PI
/ 4).])
|
[.
0 , (
PI
/ 4).]) is
increasing
proof
[.
0 , (
PI
/ 4).]
c=
[.
0 , (
PI
/ 2).[ by
Lm5,
XXREAL_2:def 12;
then (
sec
|
[.
0 , (
PI
/ 4).]) is
increasing by
Th17,
RFUNCT_2: 28;
hence thesis;
end;
Lm38: ((
sec
|
[.((3
/ 4)
*
PI ),
PI .])
|
[.((3
/ 4)
*
PI ),
PI .]) is
increasing
proof
[.((3
/ 4)
*
PI ),
PI .]
c=
].(
PI
/ 2),
PI .] by
Lm6,
XXREAL_2:def 12;
then (
sec
|
[.((3
/ 4)
*
PI ),
PI .]) is
increasing by
Th18,
RFUNCT_2: 28;
hence thesis;
end;
Lm39: ((
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) is
decreasing
proof
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
c=
[.(
- (
PI
/ 2)),
0 .[ by
Lm7,
XXREAL_2:def 12;
then (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) is
decreasing by
Th19,
RFUNCT_2: 29;
hence thesis;
end;
Lm40: ((
cosec
|
[.(
PI
/ 4), (
PI
/ 2).])
|
[.(
PI
/ 4), (
PI
/ 2).]) is
decreasing
proof
[.(
PI
/ 4), (
PI
/ 2).]
c=
].
0 , (
PI
/ 2).] by
Lm8,
XXREAL_2:def 12;
then (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]) is
decreasing by
Th20,
RFUNCT_2: 29;
hence thesis;
end;
Lm41: (
sec
|
[.
0 , (
PI
/ 4).]) is
one-to-one
proof
[.
0 , (
PI
/ 4).]
c=
[.
0 , (
PI
/ 2).[ by
Lm5,
XXREAL_2:def 12;
then ((
sec
|
[.
0 , (
PI
/ 2).[)
|
[.
0 , (
PI
/ 4).])
= (
sec
|
[.
0 , (
PI
/ 4).]) by
RELAT_1: 74;
hence thesis;
end;
Lm42: (
sec
|
[.((3
/ 4)
*
PI ),
PI .]) is
one-to-one
proof
[.((3
/ 4)
*
PI ),
PI .]
c=
].(
PI
/ 2),
PI .] by
Lm6,
XXREAL_2:def 12;
then ((
sec
|
].(
PI
/ 2),
PI .])
|
[.((3
/ 4)
*
PI ),
PI .])
= (
sec
|
[.((3
/ 4)
*
PI ),
PI .]) by
RELAT_1: 74;
hence thesis;
end;
Lm43: (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) is
one-to-one
proof
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
c=
[.(
- (
PI
/ 2)),
0 .[ by
Lm7,
XXREAL_2:def 12;
then ((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])
= (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) by
RELAT_1: 74;
hence thesis;
end;
Lm44: (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]) is
one-to-one
proof
[.(
PI
/ 4), (
PI
/ 2).]
c=
].
0 , (
PI
/ 2).] by
Lm8,
XXREAL_2:def 12;
then ((
cosec
|
].
0 , (
PI
/ 2).])
|
[.(
PI
/ 4), (
PI
/ 2).])
= (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]) by
RELAT_1: 74;
hence thesis;
end;
registration
cluster (
sec
|
[.
0 , (
PI
/ 4).]) ->
one-to-one;
coherence by
Lm41;
cluster (
sec
|
[.((3
/ 4)
*
PI ),
PI .]) ->
one-to-one;
coherence by
Lm42;
cluster (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) ->
one-to-one;
coherence by
Lm43;
cluster (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]) ->
one-to-one;
coherence by
Lm44;
end
theorem ::
SINCOS10:49
Th49: (
arcsec1
|
[.1, (
sqrt 2).])
= ((
sec
|
[.
0 , (
PI
/ 4).])
" )
proof
set h = (
sec
|
[.
0 , (
PI
/ 2).[);
A1:
[.
0 , (
PI
/ 4).]
c=
[.
0 , (
PI
/ 2).[ by
Lm5,
XXREAL_2:def 12;
then ((
sec
|
[.
0 , (
PI
/ 4).])
" )
= ((h
|
[.
0 , (
PI
/ 4).])
" ) by
RELAT_1: 74
.= ((h
" )
| (h
.:
[.
0 , (
PI
/ 4).])) by
RFUNCT_2: 17
.= ((h
" )
| (
rng (h
|
[.
0 , (
PI
/ 4).]))) by
RELAT_1: 115
.= ((h
" )
|
[.1, (
sqrt 2).]) by
A1,
Th41,
RELAT_1: 74;
hence thesis;
end;
theorem ::
SINCOS10:50
Th50: (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])
= ((
sec
|
[.((3
/ 4)
*
PI ),
PI .])
" )
proof
set h = (
sec
|
].(
PI
/ 2),
PI .]);
A1:
[.((3
/ 4)
*
PI ),
PI .]
c=
].(
PI
/ 2),
PI .] by
Lm6,
XXREAL_2:def 12;
then ((
sec
|
[.((3
/ 4)
*
PI ),
PI .])
" )
= ((h
|
[.((3
/ 4)
*
PI ),
PI .])
" ) by
RELAT_1: 74
.= ((h
" )
| (h
.:
[.((3
/ 4)
*
PI ),
PI .])) by
RFUNCT_2: 17
.= ((h
" )
| (
rng (h
|
[.((3
/ 4)
*
PI ),
PI .]))) by
RELAT_1: 115
.= ((h
" )
|
[.(
- (
sqrt 2)), (
- 1).]) by
A1,
Th42,
RELAT_1: 74;
hence thesis;
end;
theorem ::
SINCOS10:51
Th51: (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])
= ((
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])
" )
proof
set h = (
cosec
|
[.(
- (
PI
/ 2)),
0 .[);
A1:
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
c=
[.(
- (
PI
/ 2)),
0 .[ by
Lm7,
XXREAL_2:def 12;
then ((
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])
" )
= ((h
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])
" ) by
RELAT_1: 74
.= ((h
" )
| (h
.:
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])) by
RFUNCT_2: 17
.= ((h
" )
| (
rng (h
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]))) by
RELAT_1: 115
.= ((h
" )
|
[.(
- (
sqrt 2)), (
- 1).]) by
A1,
Th43,
RELAT_1: 74;
hence thesis;
end;
theorem ::
SINCOS10:52
Th52: (
arccosec2
|
[.1, (
sqrt 2).])
= ((
cosec
|
[.(
PI
/ 4), (
PI
/ 2).])
" )
proof
set h = (
cosec
|
].
0 , (
PI
/ 2).]);
A1:
[.(
PI
/ 4), (
PI
/ 2).]
c=
].
0 , (
PI
/ 2).] by
Lm8,
XXREAL_2:def 12;
then ((
cosec
|
[.(
PI
/ 4), (
PI
/ 2).])
" )
= ((h
|
[.(
PI
/ 4), (
PI
/ 2).])
" ) by
RELAT_1: 74
.= ((h
" )
| (h
.:
[.(
PI
/ 4), (
PI
/ 2).])) by
RFUNCT_2: 17
.= ((h
" )
| (
rng (h
|
[.(
PI
/ 4), (
PI
/ 2).]))) by
RELAT_1: 115
.= ((h
" )
|
[.1, (
sqrt 2).]) by
A1,
Th44,
RELAT_1: 74;
hence thesis;
end;
theorem ::
SINCOS10:53
((
sec
|
[.
0 , (
PI
/ 4).]) qua
Function
* (
arcsec1
|
[.1, (
sqrt 2).]))
= (
id
[.1, (
sqrt 2).]) by
Th41,
Th49,
FUNCT_1: 39;
theorem ::
SINCOS10:54
((
sec
|
[.((3
/ 4)
*
PI ),
PI .]) qua
Function
* (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).]))
= (
id
[.(
- (
sqrt 2)), (
- 1).]) by
Th42,
Th50,
FUNCT_1: 39;
theorem ::
SINCOS10:55
((
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) qua
Function
* (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).]))
= (
id
[.(
- (
sqrt 2)), (
- 1).]) by
Th43,
Th51,
FUNCT_1: 39;
theorem ::
SINCOS10:56
((
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]) qua
Function
* (
arccosec2
|
[.1, (
sqrt 2).]))
= (
id
[.1, (
sqrt 2).]) by
Th44,
Th52,
FUNCT_1: 39;
theorem ::
SINCOS10:57
((
sec
|
[.
0 , (
PI
/ 4).])
* (
arcsec1
|
[.1, (
sqrt 2).]))
= (
id
[.1, (
sqrt 2).]) by
Th41,
Th49,
FUNCT_1: 39;
theorem ::
SINCOS10:58
((
sec
|
[.((3
/ 4)
*
PI ),
PI .])
* (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).]))
= (
id
[.(
- (
sqrt 2)), (
- 1).]) by
Th42,
Th50,
FUNCT_1: 39;
theorem ::
SINCOS10:59
((
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])
* (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).]))
= (
id
[.(
- (
sqrt 2)), (
- 1).]) by
Th43,
Th51,
FUNCT_1: 39;
theorem ::
SINCOS10:60
((
cosec
|
[.(
PI
/ 4), (
PI
/ 2).])
* (
arccosec2
|
[.1, (
sqrt 2).]))
= (
id
[.1, (
sqrt 2).]) by
Th44,
Th52,
FUNCT_1: 39;
theorem ::
SINCOS10:61
(
arcsec1 qua
Function
* (
sec
|
[.
0 , (
PI
/ 2).[))
= (
id
[.
0 , (
PI
/ 2).[) by
Lm25,
Th25,
FUNCT_1: 39;
theorem ::
SINCOS10:62
(
arcsec2 qua
Function
* (
sec
|
].(
PI
/ 2),
PI .]))
= (
id
].(
PI
/ 2),
PI .]) by
Lm26,
Th26,
FUNCT_1: 39;
theorem ::
SINCOS10:63
(
arccosec1 qua
Function
* (
cosec
|
[.(
- (
PI
/ 2)),
0 .[))
= (
id
[.(
- (
PI
/ 2)),
0 .[) by
Lm27,
Th27,
FUNCT_1: 39;
theorem ::
SINCOS10:64
(
arccosec2 qua
Function
* (
cosec
|
].
0 , (
PI
/ 2).]))
= (
id
].
0 , (
PI
/ 2).]) by
Lm28,
Th28,
FUNCT_1: 39;
theorem ::
SINCOS10:65
Th65: (
arcsec1
* (
sec
|
[.
0 , (
PI
/ 2).[))
= (
id
[.
0 , (
PI
/ 2).[) by
Lm25,
Th25,
FUNCT_1: 39;
theorem ::
SINCOS10:66
Th66: (
arcsec2
* (
sec
|
].(
PI
/ 2),
PI .]))
= (
id
].(
PI
/ 2),
PI .]) by
Lm26,
Th26,
FUNCT_1: 39;
theorem ::
SINCOS10:67
Th67: (
arccosec1
* (
cosec
|
[.(
- (
PI
/ 2)),
0 .[))
= (
id
[.(
- (
PI
/ 2)),
0 .[) by
Lm27,
Th27,
FUNCT_1: 39;
theorem ::
SINCOS10:68
Th68: (
arccosec2
* (
cosec
|
].
0 , (
PI
/ 2).]))
= (
id
].
0 , (
PI
/ 2).]) by
Lm28,
Th28,
FUNCT_1: 39;
theorem ::
SINCOS10:69
Th69:
0
<= r & r
< (
PI
/ 2) implies (
arcsec1 (
sec
. r))
= r
proof
A1: (
dom (
sec
|
[.
0 , (
PI
/ 2).[))
=
[.
0 , (
PI
/ 2).[ by
Th1,
RELAT_1: 62;
assume
0
<= r & r
< (
PI
/ 2);
then
A2: r
in
[.
0 , (
PI
/ 2).[;
then (
arcsec1 (
sec
. r))
= (
arcsec1
. ((
sec
|
[.
0 , (
PI
/ 2).[)
. r)) by
FUNCT_1: 49
.= ((
id
[.
0 , (
PI
/ 2).[)
. r) by
A2,
A1,
Th65,
FUNCT_1: 13
.= r by
A2,
FUNCT_1: 18;
hence thesis;
end;
theorem ::
SINCOS10:70
Th70: (
PI
/ 2)
< r & r
<=
PI implies (
arcsec2 (
sec
. r))
= r
proof
A1: (
dom (
sec
|
].(
PI
/ 2),
PI .]))
=
].(
PI
/ 2),
PI .] by
Th2,
RELAT_1: 62;
assume (
PI
/ 2)
< r & r
<=
PI ;
then
A2: r
in
].(
PI
/ 2),
PI .];
then (
arcsec2 (
sec
. r))
= (
arcsec2
. ((
sec
|
].(
PI
/ 2),
PI .])
. r)) by
FUNCT_1: 49
.= ((
id
].(
PI
/ 2),
PI .])
. r) by
A2,
A1,
Th66,
FUNCT_1: 13
.= r by
A2,
FUNCT_1: 18;
hence thesis;
end;
theorem ::
SINCOS10:71
Th71: (
- (
PI
/ 2))
<= r & r
<
0 implies (
arccosec1 (
cosec
. r))
= r
proof
A1: (
dom (
cosec
|
[.(
- (
PI
/ 2)),
0 .[))
=
[.(
- (
PI
/ 2)),
0 .[ by
Th3,
RELAT_1: 62;
assume (
- (
PI
/ 2))
<= r & r
<
0 ;
then
A2: r
in
[.(
- (
PI
/ 2)),
0 .[;
then (
arccosec1 (
cosec
. r))
= (
arccosec1
. ((
cosec
|
[.(
- (
PI
/ 2)),
0 .[)
. r)) by
FUNCT_1: 49
.= ((
id
[.(
- (
PI
/ 2)),
0 .[)
. r) by
A2,
A1,
Th67,
FUNCT_1: 13
.= r by
A2,
FUNCT_1: 18;
hence thesis;
end;
theorem ::
SINCOS10:72
Th72:
0
< r & r
<= (
PI
/ 2) implies (
arccosec2 (
cosec
. r))
= r
proof
A1: (
dom (
cosec
|
].
0 , (
PI
/ 2).]))
=
].
0 , (
PI
/ 2).] by
Th4,
RELAT_1: 62;
assume
0
< r & r
<= (
PI
/ 2);
then
A2: r
in
].
0 , (
PI
/ 2).];
then (
arccosec2 (
cosec
. r))
= (
arccosec2
. ((
cosec
|
].
0 , (
PI
/ 2).])
. r)) by
FUNCT_1: 49
.= ((
id
].
0 , (
PI
/ 2).])
. r) by
A2,
A1,
Th68,
FUNCT_1: 13
.= r by
A2,
FUNCT_1: 18;
hence thesis;
end;
theorem ::
SINCOS10:73
Th73: (
arcsec1
. 1)
=
0 & (
arcsec1
. (
sqrt 2))
= (
PI
/ 4)
proof
A1: (
arcsec1
. 1)
= (
arcsec1 1)
.=
0 by
Th31,
Th69;
A2: (
PI
/ 4)
< (
PI
/ 2) by
Lm5,
XXREAL_1: 3;
(
arcsec1
. (
sqrt 2))
= (
arcsec1 (
sqrt 2))
.= (
PI
/ 4) by
A2,
Th31,
Th69;
hence thesis by
A1;
end;
theorem ::
SINCOS10:74
Th74: (
arcsec2
. (
- (
sqrt 2)))
= ((3
/ 4)
*
PI ) & (
arcsec2
. (
- 1))
=
PI
proof
A1: (
PI
/ 2)
<
PI by
Lm6,
XXREAL_1: 2;
A2: (
arcsec2
. (
- 1))
= (
arcsec2 (
- 1))
.=
PI by
A1,
Th31,
Th70;
A3: (
PI
/ 2)
< ((3
/ 4)
*
PI ) & ((3
/ 4)
*
PI )
<=
PI by
Lm6,
XXREAL_1: 2;
(
arcsec2
. (
- (
sqrt 2)))
= (
arcsec2 (
- (
sqrt 2)))
.= ((3
/ 4)
*
PI ) by
A3,
Th31,
Th70;
hence thesis by
A2;
end;
theorem ::
SINCOS10:75
Th75: (
arccosec1
. (
- 1))
= (
- (
PI
/ 2)) & (
arccosec1
. (
- (
sqrt 2)))
= (
- (
PI
/ 4))
proof
A1: (
arccosec1
. (
- 1))
= (
arccosec1 (
- 1))
.= (
- (
PI
/ 2)) by
Th32,
Th71;
A2: (
- (
PI
/ 2))
<= (
- (
PI
/ 4)) by
Lm7,
XXREAL_1: 3;
(
arccosec1
. (
- (
sqrt 2)))
= (
arccosec1 (
- (
sqrt 2)))
.= (
- (
PI
/ 4)) by
A2,
Th32,
Th71;
hence thesis by
A1;
end;
theorem ::
SINCOS10:76
Th76: (
arccosec2
. (
sqrt 2))
= (
PI
/ 4) & (
arccosec2
. 1)
= (
PI
/ 2)
proof
A1: (
arccosec2
. 1)
= (
arccosec2 1)
.= (
PI
/ 2) by
Th32,
Th72;
A2: (
PI
/ 4)
<= (
PI
/ 2) by
Lm8,
XXREAL_1: 2;
(
arccosec2
. (
sqrt 2))
= (
arccosec2 (
sqrt 2))
.= (
PI
/ 4) by
A2,
Th32,
Th72;
hence thesis by
A1;
end;
theorem ::
SINCOS10:77
Th77: (
arcsec1
| (
sec
.:
[.
0 , (
PI
/ 2).[)) is
increasing
proof
set f = (
sec
|
[.
0 , (
PI
/ 2).[);
A1: (f
.:
[.
0 , (
PI
/ 2).[)
= (
rng (f
|
[.
0 , (
PI
/ 2).[)) by
RELAT_1: 115
.= (
rng (
sec
|
[.
0 , (
PI
/ 2).[)) by
RELAT_1: 73
.= (
sec
.:
[.
0 , (
PI
/ 2).[) by
RELAT_1: 115;
(f
|
[.
0 , (
PI
/ 2).[)
= f by
RELAT_1: 73;
hence thesis by
A1,
Th17,
FCONT_3: 9;
end;
theorem ::
SINCOS10:78
Th78: (
arcsec2
| (
sec
.:
].(
PI
/ 2),
PI .])) is
increasing
proof
set f = (
sec
|
].(
PI
/ 2),
PI .]);
A1: (f
.:
].(
PI
/ 2),
PI .])
= (
rng (f
|
].(
PI
/ 2),
PI .])) by
RELAT_1: 115
.= (
rng (
sec
|
].(
PI
/ 2),
PI .])) by
RELAT_1: 73
.= (
sec
.:
].(
PI
/ 2),
PI .]) by
RELAT_1: 115;
(f
|
].(
PI
/ 2),
PI .])
= f by
RELAT_1: 73;
hence thesis by
A1,
Th18,
FCONT_3: 9;
end;
theorem ::
SINCOS10:79
Th79: (
arccosec1
| (
cosec
.:
[.(
- (
PI
/ 2)),
0 .[)) is
decreasing
proof
set f = (
cosec
|
[.(
- (
PI
/ 2)),
0 .[);
A1: (f
.:
[.(
- (
PI
/ 2)),
0 .[)
= (
rng (f
|
[.(
- (
PI
/ 2)),
0 .[)) by
RELAT_1: 115
.= (
rng (
cosec
|
[.(
- (
PI
/ 2)),
0 .[)) by
RELAT_1: 73
.= (
cosec
.:
[.(
- (
PI
/ 2)),
0 .[) by
RELAT_1: 115;
(f
|
[.(
- (
PI
/ 2)),
0 .[)
= f by
RELAT_1: 73;
hence thesis by
A1,
Th19,
FCONT_3: 10;
end;
theorem ::
SINCOS10:80
Th80: (
arccosec2
| (
cosec
.:
].
0 , (
PI
/ 2).])) is
decreasing
proof
set f = (
cosec
|
].
0 , (
PI
/ 2).]);
A1: (f
.:
].
0 , (
PI
/ 2).])
= (
rng (f
|
].
0 , (
PI
/ 2).])) by
RELAT_1: 115
.= (
rng (
cosec
|
].
0 , (
PI
/ 2).])) by
RELAT_1: 73
.= (
cosec
.:
].
0 , (
PI
/ 2).]) by
RELAT_1: 115;
(f
|
].
0 , (
PI
/ 2).])
= f by
RELAT_1: 73;
hence thesis by
A1,
Th20,
FCONT_3: 10;
end;
theorem ::
SINCOS10:81
Th81: (
arcsec1
|
[.1, (
sqrt 2).]) is
increasing
proof
[.1, (
sqrt 2).]
= (
sec
.:
[.
0 , (
PI
/ 4).]) &
[.
0 , (
PI
/ 4).]
c=
[.
0 , (
PI
/ 2).[ by
Lm5,
Th41,
RELAT_1: 115,
XXREAL_2:def 12;
hence thesis by
Th77,
RELAT_1: 123,
RFUNCT_2: 28;
end;
theorem ::
SINCOS10:82
Th82: (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).]) is
increasing
proof
[.(
- (
sqrt 2)), (
- 1).]
= (
sec
.:
[.((3
/ 4)
*
PI ),
PI .]) &
[.((3
/ 4)
*
PI ),
PI .]
c=
].(
PI
/ 2),
PI .] by
Lm6,
Th42,
RELAT_1: 115,
XXREAL_2:def 12;
hence thesis by
Th78,
RELAT_1: 123,
RFUNCT_2: 28;
end;
theorem ::
SINCOS10:83
Th83: (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).]) is
decreasing
proof
[.(
- (
sqrt 2)), (
- 1).]
= (
cosec
.:
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) &
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
c=
[.(
- (
PI
/ 2)),
0 .[ by
Lm7,
Th43,
RELAT_1: 115,
XXREAL_2:def 12;
hence thesis by
Th79,
RELAT_1: 123,
RFUNCT_2: 29;
end;
theorem ::
SINCOS10:84
Th84: (
arccosec2
|
[.1, (
sqrt 2).]) is
decreasing
proof
[.1, (
sqrt 2).]
= (
cosec
.:
[.(
PI
/ 4), (
PI
/ 2).]) &
[.(
PI
/ 4), (
PI
/ 2).]
c=
].
0 , (
PI
/ 2).] by
Lm8,
Th44,
RELAT_1: 115,
XXREAL_2:def 12;
hence thesis by
Th80,
RELAT_1: 123,
RFUNCT_2: 29;
end;
theorem ::
SINCOS10:85
Th85: for x be
set st x
in
[.1, (
sqrt 2).] holds (
arcsec1
. x)
in
[.
0 , (
PI
/ 4).]
proof
let x be
set;
assume x
in
[.1, (
sqrt 2).];
then x
in (
].1, (
sqrt 2).[
\/
{1, (
sqrt 2)}) by
SQUARE_1: 19,
XXREAL_1: 128;
then
A1: x
in
].1, (
sqrt 2).[ or x
in
{1, (
sqrt 2)} by
XBOOLE_0:def 3;
per cases by
A1,
TARSKI:def 2;
suppose
A2: x
in
].1, (
sqrt 2).[;
then
A3:
].1, (
sqrt 2).[
c=
[.1, (
sqrt 2).] & ex s be
Real st s
= x & 1
< s & s
< (
sqrt 2) by
XXREAL_1: 25;
A4: (
[.1, (
sqrt 2).]
/\ (
dom
arcsec1 ))
=
[.1, (
sqrt 2).] by
Th45,
XBOOLE_1: 28;
then (
sqrt 2)
in (
[.1, (
sqrt 2).]
/\ (
dom
arcsec1 )) by
SQUARE_1: 19;
then
A5: (
arcsec1
. x)
< (
PI
/ 4) by
A2,
A4,
A3,
Th73,
Th81,
RFUNCT_2: 20;
1
in
[.1, (
sqrt 2).] by
SQUARE_1: 19;
then
0
< (
arcsec1
. x) by
A2,
A4,
A3,
Th73,
Th81,
RFUNCT_2: 20;
hence thesis by
A5;
end;
suppose x
= 1;
hence thesis by
Th73;
end;
suppose x
= (
sqrt 2);
hence thesis by
Th73;
end;
end;
theorem ::
SINCOS10:86
Th86: for x be
set st x
in
[.(
- (
sqrt 2)), (
- 1).] holds (
arcsec2
. x)
in
[.((3
/ 4)
*
PI ),
PI .]
proof
let x be
set;
A1: (
- (
sqrt 2))
< (
- 1) by
SQUARE_1: 19,
XREAL_1: 24;
assume x
in
[.(
- (
sqrt 2)), (
- 1).];
then x
in (
].(
- (
sqrt 2)), (
- 1).[
\/
{(
- (
sqrt 2)), (
- 1)}) by
A1,
XXREAL_1: 128;
then
A2: x
in
].(
- (
sqrt 2)), (
- 1).[ or x
in
{(
- (
sqrt 2)), (
- 1)} by
XBOOLE_0:def 3;
per cases by
A2,
TARSKI:def 2;
suppose
A3: x
in
].(
- (
sqrt 2)), (
- 1).[;
then
A4:
].(
- (
sqrt 2)), (
- 1).[
c=
[.(
- (
sqrt 2)), (
- 1).] & ex s be
Real st s
= x & (
- (
sqrt 2))
< s & s
< (
- 1) by
XXREAL_1: 25;
A5: (
[.(
- (
sqrt 2)), (
- 1).]
/\ (
dom
arcsec2 ))
=
[.(
- (
sqrt 2)), (
- 1).] by
Th46,
XBOOLE_1: 28;
then (
- 1)
in (
[.(
- (
sqrt 2)), (
- 1).]
/\ (
dom
arcsec2 )) by
A1;
then
A6: (
arcsec2
. x)
<
PI by
A3,
A5,
A4,
Th74,
Th82,
RFUNCT_2: 20;
(
- (
sqrt 2))
in
[.(
- (
sqrt 2)), (
- 1).] by
A1;
then ((3
/ 4)
*
PI )
< (
arcsec2
. x) by
A3,
A5,
A4,
Th74,
Th82,
RFUNCT_2: 20;
hence thesis by
A6;
end;
suppose
A7: x
= (
- (
sqrt 2));
((3
/ 4)
*
PI )
<=
PI by
Lm6,
XXREAL_1: 2;
hence thesis by
A7,
Th74;
end;
suppose
A8: x
= (
- 1);
((3
/ 4)
*
PI )
<=
PI by
Lm6,
XXREAL_1: 2;
hence thesis by
A8,
Th74;
end;
end;
theorem ::
SINCOS10:87
Th87: for x be
set st x
in
[.(
- (
sqrt 2)), (
- 1).] holds (
arccosec1
. x)
in
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
proof
let x be
set;
A1: (
- (
sqrt 2))
< (
- 1) by
SQUARE_1: 19,
XREAL_1: 24;
assume x
in
[.(
- (
sqrt 2)), (
- 1).];
then x
in (
].(
- (
sqrt 2)), (
- 1).[
\/
{(
- (
sqrt 2)), (
- 1)}) by
A1,
XXREAL_1: 128;
then
A2: x
in
].(
- (
sqrt 2)), (
- 1).[ or x
in
{(
- (
sqrt 2)), (
- 1)} by
XBOOLE_0:def 3;
per cases by
A2,
TARSKI:def 2;
suppose
A3: x
in
].(
- (
sqrt 2)), (
- 1).[;
then
A4:
].(
- (
sqrt 2)), (
- 1).[
c=
[.(
- (
sqrt 2)), (
- 1).] & ex s be
Real st s
= x & (
- (
sqrt 2))
< s & s
< (
- 1) by
XXREAL_1: 25;
A5: (
[.(
- (
sqrt 2)), (
- 1).]
/\ (
dom
arccosec1 ))
=
[.(
- (
sqrt 2)), (
- 1).] by
Th47,
XBOOLE_1: 28;
then (
- 1)
in (
[.(
- (
sqrt 2)), (
- 1).]
/\ (
dom
arccosec1 )) by
A1;
then
A6: (
arccosec1
. x)
> (
- (
PI
/ 2)) by
A3,
A5,
A4,
Th75,
Th83,
RFUNCT_2: 21;
(
- (
sqrt 2))
in
[.(
- (
sqrt 2)), (
- 1).] by
A1;
then (
- (
PI
/ 4))
> (
arccosec1
. x) by
A3,
A5,
A4,
Th75,
Th83,
RFUNCT_2: 21;
hence thesis by
A6;
end;
suppose
A7: x
= (
- (
sqrt 2));
(
- (
PI
/ 2))
<= (
- (
PI
/ 4)) by
Lm7,
XXREAL_1: 3;
hence thesis by
A7,
Th75;
end;
suppose
A8: x
= (
- 1);
(
- (
PI
/ 2))
<= (
- (
PI
/ 4)) by
Lm7,
XXREAL_1: 3;
hence thesis by
A8,
Th75;
end;
end;
theorem ::
SINCOS10:88
Th88: for x be
set st x
in
[.1, (
sqrt 2).] holds (
arccosec2
. x)
in
[.(
PI
/ 4), (
PI
/ 2).]
proof
let x be
set;
assume x
in
[.1, (
sqrt 2).];
then x
in (
].1, (
sqrt 2).[
\/
{1, (
sqrt 2)}) by
SQUARE_1: 19,
XXREAL_1: 128;
then
A1: x
in
].1, (
sqrt 2).[ or x
in
{1, (
sqrt 2)} by
XBOOLE_0:def 3;
per cases by
A1,
TARSKI:def 2;
suppose
A2: x
in
].1, (
sqrt 2).[;
then
A3:
].1, (
sqrt 2).[
c=
[.1, (
sqrt 2).] & ex s be
Real st s
= x & 1
< s & s
< (
sqrt 2) by
XXREAL_1: 25;
A4: (
[.1, (
sqrt 2).]
/\ (
dom
arccosec2 ))
=
[.1, (
sqrt 2).] by
Th48,
XBOOLE_1: 28;
then (
sqrt 2)
in (
[.1, (
sqrt 2).]
/\ (
dom
arccosec2 )) by
SQUARE_1: 19;
then
A5: (
arccosec2
. x)
> (
PI
/ 4) by
A2,
A4,
A3,
Th76,
Th84,
RFUNCT_2: 21;
1
in
[.1, (
sqrt 2).] by
SQUARE_1: 19;
then (
PI
/ 2)
> (
arccosec2
. x) by
A2,
A4,
A3,
Th76,
Th84,
RFUNCT_2: 21;
hence thesis by
A5;
end;
suppose
A6: x
= 1;
(
PI
/ 4)
<= (
PI
/ 2) by
Lm8,
XXREAL_1: 2;
hence thesis by
A6,
Th76;
end;
suppose
A7: x
= (
sqrt 2);
(
PI
/ 4)
<= (
PI
/ 2) by
Lm8,
XXREAL_1: 2;
hence thesis by
A7,
Th76;
end;
end;
theorem ::
SINCOS10:89
Th89: 1
<= r & r
<= (
sqrt 2) implies (
sec
. (
arcsec1 r))
= r
proof
assume 1
<= r & r
<= (
sqrt 2);
then
A1: r
in
[.1, (
sqrt 2).];
then
A2: r
in (
dom (
arcsec1
|
[.1, (
sqrt 2).])) by
Th45,
RELAT_1: 62;
(
sec
. (
arcsec1 r))
= ((
sec
|
[.
0 , (
PI
/ 4).]) qua
Function
. (
arcsec1
. r)) by
A1,
Th85,
FUNCT_1: 49
.= ((
sec
|
[.
0 , (
PI
/ 4).]) qua
Function
. ((
arcsec1
|
[.1, (
sqrt 2).])
. r)) by
A1,
FUNCT_1: 49
.= (((
sec
|
[.
0 , (
PI
/ 4).]) qua
Function
* (
arcsec1
|
[.1, (
sqrt 2).]))
. r) by
A2,
FUNCT_1: 13
.= ((
id
[.1, (
sqrt 2).])
. r) by
Th41,
Th49,
FUNCT_1: 39
.= r by
A1,
FUNCT_1: 18;
hence thesis;
end;
theorem ::
SINCOS10:90
Th90: (
- (
sqrt 2))
<= r & r
<= (
- 1) implies (
sec
. (
arcsec2 r))
= r
proof
assume (
- (
sqrt 2))
<= r & r
<= (
- 1);
then
A1: r
in
[.(
- (
sqrt 2)), (
- 1).];
then
A2: r
in (
dom (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])) by
Th46,
RELAT_1: 62;
(
sec
. (
arcsec2 r))
= ((
sec
|
[.((3
/ 4)
*
PI ),
PI .]) qua
Function
. (
arcsec2
. r)) by
A1,
Th86,
FUNCT_1: 49
.= ((
sec
|
[.((3
/ 4)
*
PI ),
PI .]) qua
Function
. ((
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])
. r)) by
A1,
FUNCT_1: 49
.= (((
sec
|
[.((3
/ 4)
*
PI ),
PI .]) qua
Function
* (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).]))
. r) by
A2,
FUNCT_1: 13
.= ((
id
[.(
- (
sqrt 2)), (
- 1).])
. r) by
Th42,
Th50,
FUNCT_1: 39
.= r by
A1,
FUNCT_1: 18;
hence thesis;
end;
theorem ::
SINCOS10:91
Th91: (
- (
sqrt 2))
<= r & r
<= (
- 1) implies (
cosec
. (
arccosec1 r))
= r
proof
assume (
- (
sqrt 2))
<= r & r
<= (
- 1);
then
A1: r
in
[.(
- (
sqrt 2)), (
- 1).];
then
A2: r
in (
dom (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])) by
Th47,
RELAT_1: 62;
(
cosec
. (
arccosec1 r))
= ((
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) qua
Function
. (
arccosec1
. r)) by
A1,
Th87,
FUNCT_1: 49
.= ((
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) qua
Function
. ((
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])
. r)) by
A1,
FUNCT_1: 49
.= (((
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]) qua
Function
* (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).]))
. r) by
A2,
FUNCT_1: 13
.= ((
id
[.(
- (
sqrt 2)), (
- 1).])
. r) by
Th43,
Th51,
FUNCT_1: 39
.= r by
A1,
FUNCT_1: 18;
hence thesis;
end;
theorem ::
SINCOS10:92
Th92: 1
<= r & r
<= (
sqrt 2) implies (
cosec
. (
arccosec2 r))
= r
proof
assume 1
<= r & r
<= (
sqrt 2);
then
A1: r
in
[.1, (
sqrt 2).];
then
A2: r
in (
dom (
arccosec2
|
[.1, (
sqrt 2).])) by
Th48,
RELAT_1: 62;
(
cosec
. (
arccosec2 r))
= ((
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]) qua
Function
. (
arccosec2
. r)) by
A1,
Th88,
FUNCT_1: 49
.= ((
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]) qua
Function
. ((
arccosec2
|
[.1, (
sqrt 2).])
. r)) by
A1,
FUNCT_1: 49
.= (((
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]) qua
Function
* (
arccosec2
|
[.1, (
sqrt 2).]))
. r) by
A2,
FUNCT_1: 13
.= ((
id
[.1, (
sqrt 2).])
. r) by
Th44,
Th52,
FUNCT_1: 39
.= r by
A1,
FUNCT_1: 18;
hence thesis;
end;
theorem ::
SINCOS10:93
Th93: (
arcsec1
|
[.1, (
sqrt 2).]) is
continuous
proof
set f = (
sec
|
[.
0 , (
PI
/ 4).]);
(f
|
[.
0 , (
PI
/ 4).])
= f & (((f
|
[.
0 , (
PI
/ 4).])
" )
| (f
.:
[.
0 , (
PI
/ 4).])) is
continuous by
Lm29,
Lm37,
FCONT_1: 47,
RELAT_1: 72;
then ((
arcsec1
|
[.1, (
sqrt 2).])
|
[.1, (
sqrt 2).]) is
continuous by
Th41,
Th49,
RELAT_1: 115;
hence thesis by
FCONT_1: 15;
end;
theorem ::
SINCOS10:94
Th94: (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).]) is
continuous
proof
set f = (
sec
|
[.((3
/ 4)
*
PI ),
PI .]);
((3
/ 4)
*
PI )
<=
PI by
Lm6,
XXREAL_1: 2;
then (f
|
[.((3
/ 4)
*
PI ),
PI .])
= f & (((f
|
[.((3
/ 4)
*
PI ),
PI .])
" )
| (f
.:
[.((3
/ 4)
*
PI ),
PI .])) is
continuous by
Lm30,
Lm38,
FCONT_1: 47,
RELAT_1: 72;
then ((
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])
|
[.(
- (
sqrt 2)), (
- 1).]) is
continuous by
Th42,
Th50,
RELAT_1: 115;
hence thesis by
FCONT_1: 15;
end;
theorem ::
SINCOS10:95
Th95: (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).]) is
continuous
proof
set f = (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]);
(
- (
PI
/ 2))
<= (
- (
PI
/ 4)) by
Lm7,
XXREAL_1: 3;
then (f
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])
= f & (((f
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])
" )
| (f
.:
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])) is
continuous by
Lm31,
Lm39,
FCONT_1: 47,
RELAT_1: 72;
then ((
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])
|
[.(
- (
sqrt 2)), (
- 1).]) is
continuous by
Th43,
Th51,
RELAT_1: 115;
hence thesis by
FCONT_1: 15;
end;
theorem ::
SINCOS10:96
Th96: (
arccosec2
|
[.1, (
sqrt 2).]) is
continuous
proof
set f = (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]);
(
PI
/ 4)
<= (
PI
/ 2) by
Lm8,
XXREAL_1: 2;
then (f
|
[.(
PI
/ 4), (
PI
/ 2).])
= f & (((f
|
[.(
PI
/ 4), (
PI
/ 2).])
" )
| (f
.:
[.(
PI
/ 4), (
PI
/ 2).])) is
continuous by
Lm32,
Lm40,
FCONT_1: 47,
RELAT_1: 72;
then ((
arccosec2
|
[.1, (
sqrt 2).])
|
[.1, (
sqrt 2).]) is
continuous by
Th44,
Th52,
RELAT_1: 115;
hence thesis by
FCONT_1: 15;
end;
theorem ::
SINCOS10:97
Th97: (
rng (
arcsec1
|
[.1, (
sqrt 2).]))
=
[.
0 , (
PI
/ 4).]
proof
now
let y be
object;
thus y
in
[.
0 , (
PI
/ 4).] implies ex x be
object st x
in (
dom (
arcsec1
|
[.1, (
sqrt 2).])) & y
= ((
arcsec1
|
[.1, (
sqrt 2).])
. x)
proof
assume
A1: y
in
[.
0 , (
PI
/ 4).];
then
reconsider y1 = y as
Real;
y1
in (
[.(
arcsec1
. 1), (
arcsec1
. (
sqrt 2)).]
\/
[.(
arcsec1
. (
sqrt 2)), (
arcsec1
. 1).]) by
A1,
Th73,
XBOOLE_0:def 3;
then
consider x be
Real such that
A2: x
in
[.1, (
sqrt 2).] & y1
= (
arcsec1
. x) by
Th45,
Th93,
FCONT_2: 15,
SQUARE_1: 19;
take x;
thus thesis by
A2,
Th45,
FUNCT_1: 49,
RELAT_1: 62;
end;
thus (ex x be
object st x
in (
dom (
arcsec1
|
[.1, (
sqrt 2).])) & y
= ((
arcsec1
|
[.1, (
sqrt 2).])
. x)) implies y
in
[.
0 , (
PI
/ 4).]
proof
given x be
object such that
A3: x
in (
dom (
arcsec1
|
[.1, (
sqrt 2).])) and
A4: y
= ((
arcsec1
|
[.1, (
sqrt 2).])
. x);
A5: (
dom (
arcsec1
|
[.1, (
sqrt 2).]))
=
[.1, (
sqrt 2).] by
Th45,
RELAT_1: 62;
then y
= (
arcsec1
. x) by
A3,
A4,
FUNCT_1: 49;
hence thesis by
A3,
A5,
Th85;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
SINCOS10:98
Th98: (
rng (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).]))
=
[.((3
/ 4)
*
PI ),
PI .]
proof
now
let y be
object;
thus y
in
[.((3
/ 4)
*
PI ),
PI .] implies ex x be
object st x
in (
dom (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])) & y
= ((
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])
. x)
proof
assume
A1: y
in
[.((3
/ 4)
*
PI ),
PI .];
then
reconsider y1 = y as
Real;
(
- (
sqrt 2))
< (
- 1) & y1
in (
[.(
arcsec2
. (
- (
sqrt 2))), (
arcsec2
. (
- 1)).]
\/
[.(
arcsec2
. (
- 1)), (
arcsec2
. (
- (
sqrt 2))).]) by
A1,
Th74,
SQUARE_1: 19,
XBOOLE_0:def 3,
XREAL_1: 24;
then
consider x be
Real such that
A2: x
in
[.(
- (
sqrt 2)), (
- 1).] & y1
= (
arcsec2
. x) by
Th46,
Th94,
FCONT_2: 15;
take x;
thus thesis by
A2,
Th46,
FUNCT_1: 49,
RELAT_1: 62;
end;
thus (ex x be
object st x
in (
dom (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])) & y
= ((
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])
. x)) implies y
in
[.((3
/ 4)
*
PI ),
PI .]
proof
given x be
object such that
A3: x
in (
dom (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])) and
A4: y
= ((
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])
. x);
A5: (
dom (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).]))
=
[.(
- (
sqrt 2)), (
- 1).] by
Th46,
RELAT_1: 62;
then y
= (
arcsec2
. x) by
A3,
A4,
FUNCT_1: 49;
hence thesis by
A3,
A5,
Th86;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
SINCOS10:99
Th99: (
rng (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).]))
=
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
proof
now
let y be
object;
thus y
in
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).] implies ex x be
object st x
in (
dom (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])) & y
= ((
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])
. x)
proof
assume
A1: y
in
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).];
then
reconsider y1 = y as
Real;
(
- (
sqrt 2))
< (
- 1) & y1
in (
[.(
arccosec1
. (
- 1)), (
arccosec1
. (
- (
sqrt 2))).]
\/
[.(
arccosec1
. (
- (
sqrt 2))), (
arccosec1
. (
- 1)).]) by
A1,
Th75,
SQUARE_1: 19,
XBOOLE_0:def 3,
XREAL_1: 24;
then
consider x be
Real such that
A2: x
in
[.(
- (
sqrt 2)), (
- 1).] & y1
= (
arccosec1
. x) by
Th47,
Th95,
FCONT_2: 15;
take x;
thus thesis by
A2,
Th47,
FUNCT_1: 49,
RELAT_1: 62;
end;
thus (ex x be
object st x
in (
dom (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])) & y
= ((
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])
. x)) implies y
in
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
proof
given x be
object such that
A3: x
in (
dom (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])) and
A4: y
= ((
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])
. x);
A5: (
dom (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).]))
=
[.(
- (
sqrt 2)), (
- 1).] by
Th47,
RELAT_1: 62;
then y
= (
arccosec1
. x) by
A3,
A4,
FUNCT_1: 49;
hence thesis by
A3,
A5,
Th87;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
SINCOS10:100
Th100: (
rng (
arccosec2
|
[.1, (
sqrt 2).]))
=
[.(
PI
/ 4), (
PI
/ 2).]
proof
now
let y be
object;
thus y
in
[.(
PI
/ 4), (
PI
/ 2).] implies ex x be
object st x
in (
dom (
arccosec2
|
[.1, (
sqrt 2).])) & y
= ((
arccosec2
|
[.1, (
sqrt 2).])
. x)
proof
assume
A1: y
in
[.(
PI
/ 4), (
PI
/ 2).];
then
reconsider y1 = y as
Real;
y1
in (
[.(
arccosec2
. (
sqrt 2)), (
arccosec2
. 1).]
\/
[.(
arccosec2
. 1), (
arccosec2
. (
sqrt 2)).]) by
A1,
Th76,
XBOOLE_0:def 3;
then
consider x be
Real such that
A2: x
in
[.1, (
sqrt 2).] & y1
= (
arccosec2
. x) by
Th48,
Th96,
FCONT_2: 15,
SQUARE_1: 19;
take x;
thus thesis by
A2,
Th48,
FUNCT_1: 49,
RELAT_1: 62;
end;
thus (ex x be
object st x
in (
dom (
arccosec2
|
[.1, (
sqrt 2).])) & y
= ((
arccosec2
|
[.1, (
sqrt 2).])
. x)) implies y
in
[.(
PI
/ 4), (
PI
/ 2).]
proof
given x be
object such that
A3: x
in (
dom (
arccosec2
|
[.1, (
sqrt 2).])) and
A4: y
= ((
arccosec2
|
[.1, (
sqrt 2).])
. x);
A5: (
dom (
arccosec2
|
[.1, (
sqrt 2).]))
=
[.1, (
sqrt 2).] by
Th48,
RELAT_1: 62;
then y
= (
arccosec2
. x) by
A3,
A4,
FUNCT_1: 49;
hence thesis by
A3,
A5,
Th88;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
SINCOS10:101
(1
<= r & r
<= (
sqrt 2) & (
arcsec1 r)
=
0 implies r
= 1) & (1
<= r & r
<= (
sqrt 2) & (
arcsec1 r)
= (
PI
/ 4) implies r
= (
sqrt 2)) by
Th31,
Th89;
theorem ::
SINCOS10:102
((
- (
sqrt 2))
<= r & r
<= (
- 1) & (
arcsec2 r)
= ((3
/ 4)
*
PI ) implies r
= (
- (
sqrt 2))) & ((
- (
sqrt 2))
<= r & r
<= (
- 1) & (
arcsec2 r)
=
PI implies r
= (
- 1)) by
Th31,
Th90;
theorem ::
SINCOS10:103
((
- (
sqrt 2))
<= r & r
<= (
- 1) & (
arccosec1 r)
= (
- (
PI
/ 2)) implies r
= (
- 1)) & ((
- (
sqrt 2))
<= r & r
<= (
- 1) & (
arccosec1 r)
= (
- (
PI
/ 4)) implies r
= (
- (
sqrt 2))) by
Th32,
Th91;
theorem ::
SINCOS10:104
(1
<= r & r
<= (
sqrt 2) & (
arccosec2 r)
= (
PI
/ 4) implies r
= (
sqrt 2)) & (1
<= r & r
<= (
sqrt 2) & (
arccosec2 r)
= (
PI
/ 2) implies r
= 1) by
Th32,
Th92;
theorem ::
SINCOS10:105
Th105: 1
<= r & r
<= (
sqrt 2) implies
0
<= (
arcsec1 r) & (
arcsec1 r)
<= (
PI
/ 4)
proof
assume 1
<= r & r
<= (
sqrt 2);
then
A1: r
in
[.1, (
sqrt 2).];
then r
in (
dom (
arcsec1
|
[.1, (
sqrt 2).])) by
Th45,
RELAT_1: 62;
then ((
arcsec1
|
[.1, (
sqrt 2).])
. r)
in (
rng (
arcsec1
|
[.1, (
sqrt 2).])) by
FUNCT_1:def 3;
then (
arcsec1 r)
in (
rng (
arcsec1
|
[.1, (
sqrt 2).])) by
A1,
FUNCT_1: 49;
hence thesis by
Th97,
XXREAL_1: 1;
end;
theorem ::
SINCOS10:106
Th106: (
- (
sqrt 2))
<= r & r
<= (
- 1) implies ((3
/ 4)
*
PI )
<= (
arcsec2 r) & (
arcsec2 r)
<=
PI
proof
assume (
- (
sqrt 2))
<= r & r
<= (
- 1);
then
A1: r
in
[.(
- (
sqrt 2)), (
- 1).];
then r
in (
dom (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])) by
Th46,
RELAT_1: 62;
then ((
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])
. r)
in (
rng (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])) by
FUNCT_1:def 3;
then (
arcsec2 r)
in (
rng (
arcsec2
|
[.(
- (
sqrt 2)), (
- 1).])) by
A1,
FUNCT_1: 49;
hence thesis by
Th98,
XXREAL_1: 1;
end;
theorem ::
SINCOS10:107
Th107: (
- (
sqrt 2))
<= r & r
<= (
- 1) implies (
- (
PI
/ 2))
<= (
arccosec1 r) & (
arccosec1 r)
<= (
- (
PI
/ 4))
proof
assume (
- (
sqrt 2))
<= r & r
<= (
- 1);
then
A1: r
in
[.(
- (
sqrt 2)), (
- 1).];
then r
in (
dom (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])) by
Th47,
RELAT_1: 62;
then ((
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])
. r)
in (
rng (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])) by
FUNCT_1:def 3;
then (
arccosec1 r)
in (
rng (
arccosec1
|
[.(
- (
sqrt 2)), (
- 1).])) by
A1,
FUNCT_1: 49;
hence thesis by
Th99,
XXREAL_1: 1;
end;
theorem ::
SINCOS10:108
Th108: 1
<= r & r
<= (
sqrt 2) implies (
PI
/ 4)
<= (
arccosec2 r) & (
arccosec2 r)
<= (
PI
/ 2)
proof
assume 1
<= r & r
<= (
sqrt 2);
then
A1: r
in
[.1, (
sqrt 2).];
then r
in (
dom (
arccosec2
|
[.1, (
sqrt 2).])) by
Th48,
RELAT_1: 62;
then ((
arccosec2
|
[.1, (
sqrt 2).])
. r)
in (
rng (
arccosec2
|
[.1, (
sqrt 2).])) by
FUNCT_1:def 3;
then (
arccosec2 r)
in (
rng (
arccosec2
|
[.1, (
sqrt 2).])) by
A1,
FUNCT_1: 49;
hence thesis by
Th100,
XXREAL_1: 1;
end;
theorem ::
SINCOS10:109
Th109: 1
< r & r
< (
sqrt 2) implies
0
< (
arcsec1 r) & (
arcsec1 r)
< (
PI
/ 4)
proof
assume
A1: 1
< r & r
< (
sqrt 2);
then (
arcsec1 r)
<= (
PI
/ 4) by
Th105;
then
0
< (
arcsec1 r) & (
arcsec1 r)
< (
PI
/ 4) or
0
= (
arcsec1 r) or (
arcsec1 r)
= (
PI
/ 4) by
A1,
Th105,
XXREAL_0: 1;
hence thesis by
A1,
Th31,
Th89;
end;
theorem ::
SINCOS10:110
Th110: (
- (
sqrt 2))
< r & r
< (
- 1) implies ((3
/ 4)
*
PI )
< (
arcsec2 r) & (
arcsec2 r)
<
PI
proof
assume
A1: (
- (
sqrt 2))
< r & r
< (
- 1);
then ((3
/ 4)
*
PI )
<= (
arcsec2 r) & (
arcsec2 r)
<=
PI by
Th106;
then ((3
/ 4)
*
PI )
< (
arcsec2 r) & (
arcsec2 r)
<
PI or ((3
/ 4)
*
PI )
= (
arcsec2 r) or (
arcsec2 r)
=
PI by
XXREAL_0: 1;
hence thesis by
A1,
Th31,
Th90;
end;
theorem ::
SINCOS10:111
Th111: (
- (
sqrt 2))
< r & r
< (
- 1) implies (
- (
PI
/ 2))
< (
arccosec1 r) & (
arccosec1 r)
< (
- (
PI
/ 4))
proof
assume
A1: (
- (
sqrt 2))
< r & r
< (
- 1);
then (
- (
PI
/ 2))
<= (
arccosec1 r) & (
arccosec1 r)
<= (
- (
PI
/ 4)) by
Th107;
then (
- (
PI
/ 2))
< (
arccosec1 r) & (
arccosec1 r)
< (
- (
PI
/ 4)) or (
- (
PI
/ 2))
= (
arccosec1 r) or (
arccosec1 r)
= (
- (
PI
/ 4)) by
XXREAL_0: 1;
hence thesis by
A1,
Th32,
Th91;
end;
theorem ::
SINCOS10:112
Th112: 1
< r & r
< (
sqrt 2) implies (
PI
/ 4)
< (
arccosec2 r) & (
arccosec2 r)
< (
PI
/ 2)
proof
assume
A1: 1
< r & r
< (
sqrt 2);
then (
PI
/ 4)
<= (
arccosec2 r) & (
arccosec2 r)
<= (
PI
/ 2) by
Th108;
then (
PI
/ 4)
< (
arccosec2 r) & (
arccosec2 r)
< (
PI
/ 2) or (
PI
/ 4)
= (
arccosec2 r) or (
arccosec2 r)
= (
PI
/ 2) by
XXREAL_0: 1;
hence thesis by
A1,
Th32,
Th92;
end;
theorem ::
SINCOS10:113
Th113: 1
<= r & r
<= (
sqrt 2) implies (
sin
. (
arcsec1 r))
= ((
sqrt ((r
^2 )
- 1))
/ r) & (
cos
. (
arcsec1 r))
= (1
/ r)
proof
set x = (
arcsec1 r);
assume that
A1: 1
<= r and
A2: r
<= (
sqrt 2);
r
in
[.1, (
sqrt 2).] by
A1,
A2;
then
A3: x
in (
dom (
sec
|
[.
0 , (
PI
/ 4).])) by
Lm29,
Th85;
(
PI
/ 4)
< (
PI
/ 1) by
XREAL_1: 76;
then
0
in
[.
0 ,
PI .] & (
PI
/ 4)
in
[.
0 ,
PI .];
then
[.
0 , (
PI
/ 4).]
c=
[.
0 ,
PI .] by
XXREAL_2:def 12;
then
A4: (
sin
. x)
>=
0 by
A3,
Lm29,
COMPTRIG: 8;
A5: (
dom (
sec
|
[.
0 , (
PI
/ 4).]))
c= (
dom
sec ) by
RELAT_1: 60;
A6: r
= ((
cos
^ )
. x) by
A1,
A2,
Th89
.= (1
/ (
cos
. x)) by
A3,
A5,
RFUNCT_1:def 2;
(r
^2 )
>= (1
^2 ) by
A1,
SQUARE_1: 15;
then
A7: ((r
^2 )
- 1)
>=
0 by
XREAL_1: 48;
(((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
= 1 by
SIN_COS: 28;
then ((
sin
. x)
^2 )
= (1
- ((
cos
. x)
^2 ))
.= (1
- ((1
/ r)
* (1
/ r))) by
A6
.= (1
- (1
/ (r
^2 ))) by
XCMPLX_1: 102
.= (((r
^2 )
/ (r
^2 ))
- (1
/ (r
^2 ))) by
A1,
XCMPLX_1: 60
.= (((r
^2 )
- 1)
/ (r
^2 ));
then (
sin
. x)
= (
sqrt (((r
^2 )
- 1)
/ (r
^2 ))) by
A4,
SQUARE_1:def 2
.= ((
sqrt ((r
^2 )
- 1))
/ (
sqrt (r
^2 ))) by
A1,
A7,
SQUARE_1: 30
.= ((
sqrt ((r
^2 )
- 1))
/ r) by
A1,
SQUARE_1: 22;
hence thesis by
A6;
end;
theorem ::
SINCOS10:114
Th114: (
- (
sqrt 2))
<= r & r
<= (
- 1) implies (
sin
. (
arcsec2 r))
= (
- ((
sqrt ((r
^2 )
- 1))
/ r)) & (
cos
. (
arcsec2 r))
= (1
/ r)
proof
((3
/ 4)
*
PI )
<=
PI by
Lm6,
XXREAL_1: 2;
then
A1: ((3
/ 4)
*
PI )
in
[.
0 ,
PI .];
A2: (
dom (
sec
|
[.((3
/ 4)
*
PI ),
PI .]))
c= (
dom
sec ) by
RELAT_1: 60;
set x = (
arcsec2 r);
assume that
A3: (
- (
sqrt 2))
<= r and
A4: r
<= (
- 1);
r
in
[.(
- (
sqrt 2)), (
- 1).] by
A3,
A4;
then
A5: x
in (
dom (
sec
|
[.((3
/ 4)
*
PI ),
PI .])) by
Lm30,
Th86;
A6: r
= ((
cos
^ )
. x) by
A3,
A4,
Th90
.= (1
/ (
cos
. x)) by
A5,
A2,
RFUNCT_1:def 2;
PI
in
[.
0 ,
PI .];
then
[.((3
/ 4)
*
PI ),
PI .]
c=
[.
0 ,
PI .] by
A1,
XXREAL_2:def 12;
then
A7: (
sin
. x)
>=
0 by
A5,
Lm30,
COMPTRIG: 8;
(
- r)
>= (
- (
- 1)) by
A4,
XREAL_1: 24;
then ((
- r)
^2 )
>= (1
^2 ) by
SQUARE_1: 15;
then
A8: ((r
^2 )
- 1)
>=
0 by
XREAL_1: 48;
(((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
= 1 by
SIN_COS: 28;
then ((
sin
. x)
^2 )
= (1
- ((
cos
. x)
^2 ))
.= (1
- ((1
/ r)
* (1
/ r))) by
A6
.= (1
- (1
/ (r
^2 ))) by
XCMPLX_1: 102
.= (((r
^2 )
/ (r
^2 ))
- (1
/ (r
^2 ))) by
A4,
XCMPLX_1: 60
.= (((r
^2 )
- 1)
/ (r
^2 ));
then (
sin
. x)
= (
sqrt (((r
^2 )
- 1)
/ (r
^2 ))) by
A7,
SQUARE_1:def 2
.= ((
sqrt ((r
^2 )
- 1))
/ (
sqrt (r
^2 ))) by
A4,
A8,
SQUARE_1: 30
.= ((
sqrt ((r
^2 )
- 1))
/ (
- r)) by
A4,
SQUARE_1: 23
.= (
- ((
sqrt ((r
^2 )
- 1))
/ r)) by
XCMPLX_1: 188;
hence thesis by
A6;
end;
theorem ::
SINCOS10:115
Th115: (
- (
sqrt 2))
<= r & r
<= (
- 1) implies (
sin
. (
arccosec1 r))
= (1
/ r) & (
cos
. (
arccosec1 r))
= (
- ((
sqrt ((r
^2 )
- 1))
/ r))
proof
set x = (
arccosec1 r);
assume that
A1: (
- (
sqrt 2))
<= r and
A2: r
<= (
- 1);
r
in
[.(
- (
sqrt 2)), (
- 1).] by
A1,
A2;
then
A3: x
in (
dom (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).])) by
Lm31,
Th87;
(
- (
PI
/ 4))
>= (
- (
PI
/ 2)) by
Lm7,
XXREAL_1: 3;
then (
- (
PI
/ 2))
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] & (
- (
PI
/ 4))
in
[.(
- (
PI
/ 2)), (
PI
/ 2).];
then
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]
c=
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
XXREAL_2:def 12;
then
A4: (
cos
. x)
>=
0 by
A3,
Lm31,
COMPTRIG: 12;
A5: (
dom (
cosec
|
[.(
- (
PI
/ 2)), (
- (
PI
/ 4)).]))
c= (
dom
cosec ) by
RELAT_1: 60;
A6: r
= ((
sin
^ )
. x) by
A1,
A2,
Th91
.= (1
/ (
sin
. x)) by
A3,
A5,
RFUNCT_1:def 2;
(
- r)
>= (
- (
- 1)) by
A2,
XREAL_1: 24;
then ((
- r)
^2 )
>= (1
^2 ) by
SQUARE_1: 15;
then
A7: ((r
^2 )
- 1)
>=
0 by
XREAL_1: 48;
(((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
= 1 by
SIN_COS: 28;
then ((
cos
. x)
^2 )
= (1
- ((
sin
. x)
^2 ))
.= (1
- ((1
/ r)
* (1
/ r))) by
A6
.= (1
- (1
/ (r
^2 ))) by
XCMPLX_1: 102
.= (((r
^2 )
/ (r
^2 ))
- (1
/ (r
^2 ))) by
A2,
XCMPLX_1: 60
.= (((r
^2 )
- 1)
/ (r
^2 ));
then (
cos
. x)
= (
sqrt (((r
^2 )
- 1)
/ (r
^2 ))) by
A4,
SQUARE_1:def 2
.= ((
sqrt ((r
^2 )
- 1))
/ (
sqrt (r
^2 ))) by
A2,
A7,
SQUARE_1: 30
.= ((
sqrt ((r
^2 )
- 1))
/ (
- r)) by
A2,
SQUARE_1: 23
.= (
- ((
sqrt ((r
^2 )
- 1))
/ r)) by
XCMPLX_1: 188;
hence thesis by
A6;
end;
theorem ::
SINCOS10:116
Th116: 1
<= r & r
<= (
sqrt 2) implies (
sin
. (
arccosec2 r))
= (1
/ r) & (
cos
. (
arccosec2 r))
= ((
sqrt ((r
^2 )
- 1))
/ r)
proof
(
PI
/ 4)
<= (
PI
/ 2) by
Lm8,
XXREAL_1: 2;
then
A1: (
PI
/ 4)
in
[.(
- (
PI
/ 2)), (
PI
/ 2).];
A2: (
dom (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).]))
c= (
dom
cosec ) by
RELAT_1: 60;
set x = (
arccosec2 r);
assume that
A3: 1
<= r and
A4: r
<= (
sqrt 2);
r
in
[.1, (
sqrt 2).] by
A3,
A4;
then
A5: x
in (
dom (
cosec
|
[.(
PI
/ 4), (
PI
/ 2).])) by
Lm32,
Th88;
A6: r
= ((
sin
^ )
. x) by
A3,
A4,
Th92
.= (1
/ (
sin
. x)) by
A5,
A2,
RFUNCT_1:def 2;
(
PI
/ 2)
in
[.(
- (
PI
/ 2)), (
PI
/ 2).];
then
[.(
PI
/ 4), (
PI
/ 2).]
c=
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
A1,
XXREAL_2:def 12;
then
A7: (
cos
. x)
>=
0 by
A5,
Lm32,
COMPTRIG: 12;
(r
^2 )
>= (1
^2 ) by
A3,
SQUARE_1: 15;
then
A8: ((r
^2 )
- 1)
>=
0 by
XREAL_1: 48;
(((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
= 1 by
SIN_COS: 28;
then ((
cos
. x)
^2 )
= (1
- ((
sin
. x)
^2 ))
.= (1
- ((1
/ r)
* (1
/ r))) by
A6
.= (1
- (1
/ (r
^2 ))) by
XCMPLX_1: 102
.= (((r
^2 )
/ (r
^2 ))
- (1
/ (r
^2 ))) by
A3,
XCMPLX_1: 60
.= (((r
^2 )
- 1)
/ (r
^2 ));
then (
cos
. x)
= (
sqrt (((r
^2 )
- 1)
/ (r
^2 ))) by
A7,
SQUARE_1:def 2
.= ((
sqrt ((r
^2 )
- 1))
/ (
sqrt (r
^2 ))) by
A3,
A8,
SQUARE_1: 30
.= ((
sqrt ((r
^2 )
- 1))
/ r) by
A3,
SQUARE_1: 22;
hence thesis by
A6;
end;
theorem ::
SINCOS10:117
1
< r & r
< (
sqrt 2) implies (
cosec
. (
arcsec1 r))
= (r
/ (
sqrt ((r
^2 )
- 1)))
proof
set x = (
arcsec1 r);
].
0 , (
PI
/ 2).]
= (
].
0 , (
PI
/ 2).[
\/
{(
PI
/ 2)}) by
XXREAL_1: 132;
then
A1:
].
0 , (
PI
/ 2).[
c=
].
0 , (
PI
/ 2).] by
XBOOLE_1: 7;
(
PI
/ 4)
< (
PI
/ 2) by
XREAL_1: 76;
then
].
0 , (
PI
/ 4).[
c=
].
0 , (
PI
/ 2).[ by
XXREAL_1: 46;
then
].
0 , (
PI
/ 4).[
c=
].
0 , (
PI
/ 2).] by
A1;
then
A2:
].
0 , (
PI
/ 4).[
c= (
dom
cosec ) by
Th4;
assume
A3: 1
< r & r
< (
sqrt 2);
then
0
< (
arcsec1 r) & (
arcsec1 r)
< (
PI
/ 4) by
Th109;
then x
in
].
0 , (
PI
/ 4).[;
then (
cosec
. x)
= (1
/ (
sin
. x)) by
A2,
RFUNCT_1:def 2
.= (1
/ ((
sqrt ((r
^2 )
- 1))
/ r)) by
A3,
Th113
.= (r
/ (
sqrt ((r
^2 )
- 1))) by
XCMPLX_1: 57;
hence thesis;
end;
theorem ::
SINCOS10:118
(
- (
sqrt 2))
< r & r
< (
- 1) implies (
cosec
. (
arcsec2 r))
= (
- (r
/ (
sqrt ((r
^2 )
- 1))))
proof
set x = (
arcsec2 r);
A1:
].((3
/ 4)
*
PI ),
PI .[
c= (
dom
cosec )
proof
(
].((3
/ 4)
*
PI ),
PI .[
/\ (
sin
"
{
0 }))
=
{}
proof
assume (
].((3
/ 4)
*
PI ),
PI .[
/\ (
sin
"
{
0 }))
<>
{} ;
then
consider rr be
object such that
A2: rr
in (
].((3
/ 4)
*
PI ),
PI .[
/\ (
sin
"
{
0 })) by
XBOOLE_0:def 1;
rr
in (
sin
"
{
0 }) by
A2,
XBOOLE_0:def 4;
then
A3: (
sin
. rr)
in
{
0 } by
FUNCT_1:def 7;
A4:
].((3
/ 4)
*
PI ),
PI .[
c=
].
0 ,
PI .[ by
XXREAL_1: 46;
rr
in
].((3
/ 4)
*
PI ),
PI .[ by
A2,
XBOOLE_0:def 4;
then (
sin
. rr)
<>
0 by
A4,
COMPTRIG: 7;
hence contradiction by
A3,
TARSKI:def 1;
end;
then (
].((3
/ 4)
*
PI ),
PI .[
\ (
sin
"
{
0 }))
c= ((
dom
sin )
\ (
sin
"
{
0 })) &
].((3
/ 4)
*
PI ),
PI .[
misses (
sin
"
{
0 }) by
SIN_COS: 24,
XBOOLE_0:def 7,
XBOOLE_1: 33;
then
].((3
/ 4)
*
PI ),
PI .[
c= ((
dom
sin )
\ (
sin
"
{
0 })) by
XBOOLE_1: 83;
hence thesis by
RFUNCT_1:def 2;
end;
assume
A5: (
- (
sqrt 2))
< r & r
< (
- 1);
then ((3
/ 4)
*
PI )
< (
arcsec2 r) & (
arcsec2 r)
<
PI by
Th110;
then x
in
].((3
/ 4)
*
PI ),
PI .[;
then (
cosec
. x)
= (1
/ (
sin
. x)) by
A1,
RFUNCT_1:def 2
.= (1
/ (
- ((
sqrt ((r
^2 )
- 1))
/ r))) by
A5,
Th114
.= (
- (1
/ ((
sqrt ((r
^2 )
- 1))
/ r))) by
XCMPLX_1: 188
.= (
- (r
/ (
sqrt ((r
^2 )
- 1)))) by
XCMPLX_1: 57;
hence thesis;
end;
theorem ::
SINCOS10:119
(
- (
sqrt 2))
< r & r
< (
- 1) implies (
sec
. (
arccosec1 r))
= (
- (r
/ (
sqrt ((r
^2 )
- 1))))
proof
set x = (
arccosec1 r);
A1:
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[
c= (
dom
sec )
proof
(
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[
/\ (
cos
"
{
0 }))
=
{}
proof
assume (
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[
/\ (
cos
"
{
0 }))
<>
{} ;
then
consider rr be
object such that
A2: rr
in (
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[
/\ (
cos
"
{
0 })) by
XBOOLE_0:def 1;
rr
in (
cos
"
{
0 }) by
A2,
XBOOLE_0:def 4;
then
A3: (
cos
. rr)
in
{
0 } by
FUNCT_1:def 7;
A4:
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 46;
rr
in
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[ by
A2,
XBOOLE_0:def 4;
then (
cos
. rr)
<>
0 by
A4,
COMPTRIG: 11;
hence contradiction by
A3,
TARSKI:def 1;
end;
then (
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[
\ (
cos
"
{
0 }))
c= ((
dom
cos )
\ (
cos
"
{
0 })) &
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[
misses (
cos
"
{
0 }) by
SIN_COS: 24,
XBOOLE_0:def 7,
XBOOLE_1: 33;
then
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[
c= ((
dom
cos )
\ (
cos
"
{
0 })) by
XBOOLE_1: 83;
hence thesis by
RFUNCT_1:def 2;
end;
assume
A5: (
- (
sqrt 2))
< r & r
< (
- 1);
then (
- (
PI
/ 2))
< (
arccosec1 r) & (
arccosec1 r)
< (
- (
PI
/ 4)) by
Th111;
then x
in
].(
- (
PI
/ 2)), (
- (
PI
/ 4)).[;
then (
sec
. x)
= (1
/ (
cos
. x)) by
A1,
RFUNCT_1:def 2
.= (1
/ (
- ((
sqrt ((r
^2 )
- 1))
/ r))) by
A5,
Th115
.= (
- (1
/ ((
sqrt ((r
^2 )
- 1))
/ r))) by
XCMPLX_1: 188
.= (
- (r
/ (
sqrt ((r
^2 )
- 1)))) by
XCMPLX_1: 57;
hence thesis;
end;
theorem ::
SINCOS10:120
1
< r & r
< (
sqrt 2) implies (
sec
. (
arccosec2 r))
= (r
/ (
sqrt ((r
^2 )
- 1)))
proof
set x = (
arccosec2 r);
[.
0 , (
PI
/ 2).[
= (
].
0 , (
PI
/ 2).[
\/
{
0 }) by
XXREAL_1: 131;
then
].(
PI
/ 4), (
PI
/ 2).[
c=
].
0 , (
PI
/ 2).[ &
].
0 , (
PI
/ 2).[
c=
[.
0 , (
PI
/ 2).[ by
XBOOLE_1: 7,
XXREAL_1: 46;
then
].(
PI
/ 4), (
PI
/ 2).[
c=
[.
0 , (
PI
/ 2).[;
then
A1:
].(
PI
/ 4), (
PI
/ 2).[
c= (
dom
sec ) by
Th1;
assume
A2: 1
< r & r
< (
sqrt 2);
then (
PI
/ 4)
< (
arccosec2 r) & (
arccosec2 r)
< (
PI
/ 2) by
Th112;
then x
in
].(
PI
/ 4), (
PI
/ 2).[;
then (
sec
. x)
= (1
/ (
cos
. x)) by
A1,
RFUNCT_1:def 2
.= (1
/ ((
sqrt ((r
^2 )
- 1))
/ r)) by
A2,
Th116
.= (r
/ (
sqrt ((r
^2 )
- 1))) by
XCMPLX_1: 57;
hence thesis;
end;
theorem ::
SINCOS10:121
Th121:
arcsec1
is_differentiable_on (
sec
.:
].
0 , (
PI
/ 2).[)
proof
set X = (
sec
.:
].
0 , (
PI
/ 2).[);
set g1 = (
arcsec1
| (
sec
.:
].
0 , (
PI
/ 2).[));
set f = (
sec
|
[.
0 , (
PI
/ 2).[);
set g = (f
|
].
0 , (
PI
/ 2).[);
A1: g
= (
sec
|
].
0 , (
PI
/ 2).[) by
RELAT_1: 74,
XXREAL_1: 22;
A2: (
dom ((g
|
].
0 , (
PI
/ 2).[)
" ))
= (
rng (g
|
].
0 , (
PI
/ 2).[)) by
FUNCT_1: 33
.= (
rng (
sec
|
].
0 , (
PI
/ 2).[)) by
A1,
RELAT_1: 72
.= (
sec
.:
].
0 , (
PI
/ 2).[) by
RELAT_1: 115;
A3: ((g
|
].
0 , (
PI
/ 2).[)
" )
= ((f
|
].
0 , (
PI
/ 2).[)
" ) by
RELAT_1: 72
.= (
arcsec1
| (f
.:
].
0 , (
PI
/ 2).[)) by
RFUNCT_2: 17
.= (
arcsec1
| (
rng (f
|
].
0 , (
PI
/ 2).[))) by
RELAT_1: 115
.= (
arcsec1
| (
rng (
sec
|
].
0 , (
PI
/ 2).[))) by
RELAT_1: 74,
XXREAL_1: 22
.= (
arcsec1
| (
sec
.:
].
0 , (
PI
/ 2).[)) by
RELAT_1: 115;
A4: g
is_differentiable_on
].
0 , (
PI
/ 2).[ by
A1,
Th5,
FDIFF_2: 16;
now
A5: for x0 st x0
in
].
0 , (
PI
/ 2).[ holds ((
sin
. x0)
/ ((
cos
. x0)
^2 ))
>
0
proof
let x0;
assume
A6: x0
in
].
0 , (
PI
/ 2).[;
].
0 , (
PI
/ 2).[
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 46;
then
A7: (
cos
. x0)
>
0 by
A6,
COMPTRIG: 11;
].
0 , (
PI
/ 2).[
c=
].
0 ,
PI .[ by
COMPTRIG: 5,
XXREAL_1: 46;
then (
sin
. x0)
>
0 by
A6,
COMPTRIG: 7;
hence thesis by
A7;
end;
let x0 such that
A8: x0
in
].
0 , (
PI
/ 2).[;
(
diff (g,x0))
= ((g
`|
].
0 , (
PI
/ 2).[)
. x0) by
A4,
A8,
FDIFF_1:def 7
.= (((
sec
|
].
0 , (
PI
/ 2).[)
`|
].
0 , (
PI
/ 2).[)
. x0) by
RELAT_1: 74,
XXREAL_1: 22
.= ((
sec
`|
].
0 , (
PI
/ 2).[)
. x0) by
Th5,
FDIFF_2: 16
.= (
diff (
sec ,x0)) by
A8,
Th5,
FDIFF_1:def 7
.= ((
sin
. x0)
/ ((
cos
. x0)
^2 )) by
A8,
Th5;
hence (
diff (g,x0))
>
0 by
A8,
A5;
end;
then
A9: g1
is_differentiable_on X by
A2,
A4,
A3,
Lm21,
FDIFF_2: 48;
A10: for x st x
in X holds (
arcsec1
| X)
is_differentiable_in x
proof
let x;
assume x
in X;
then (g1
| X)
is_differentiable_in x by
A9,
FDIFF_1:def 6;
hence thesis by
RELAT_1: 72;
end;
X
c= (
dom
arcsec1 ) by
A2,
A3,
RELAT_1: 60;
hence thesis by
A10,
FDIFF_1:def 6;
end;
theorem ::
SINCOS10:122
Th122:
arcsec2
is_differentiable_on (
sec
.:
].(
PI
/ 2),
PI .[)
proof
set X = (
sec
.:
].(
PI
/ 2),
PI .[);
set g1 = (
arcsec2
| (
sec
.:
].(
PI
/ 2),
PI .[));
set f = (
sec
|
].(
PI
/ 2),
PI .]);
set g = (f
|
].(
PI
/ 2),
PI .[);
A1: g
= (
sec
|
].(
PI
/ 2),
PI .[) by
RELAT_1: 74,
XXREAL_1: 21;
A2: (
dom ((g
|
].(
PI
/ 2),
PI .[)
" ))
= (
rng (g
|
].(
PI
/ 2),
PI .[)) by
FUNCT_1: 33
.= (
rng (
sec
|
].(
PI
/ 2),
PI .[)) by
A1,
RELAT_1: 72
.= (
sec
.:
].(
PI
/ 2),
PI .[) by
RELAT_1: 115;
A3: ((g
|
].(
PI
/ 2),
PI .[)
" )
= ((f
|
].(
PI
/ 2),
PI .[)
" ) by
RELAT_1: 72
.= (
arcsec2
| (f
.:
].(
PI
/ 2),
PI .[)) by
RFUNCT_2: 17
.= (
arcsec2
| (
rng (f
|
].(
PI
/ 2),
PI .[))) by
RELAT_1: 115
.= (
arcsec2
| (
rng (
sec
|
].(
PI
/ 2),
PI .[))) by
RELAT_1: 74,
XXREAL_1: 21
.= (
arcsec2
| (
sec
.:
].(
PI
/ 2),
PI .[)) by
RELAT_1: 115;
A4: g
is_differentiable_on
].(
PI
/ 2),
PI .[ by
A1,
Th6,
FDIFF_2: 16;
now
A5: for x0 st x0
in
].(
PI
/ 2),
PI .[ holds ((
sin
. x0)
/ ((
cos
. x0)
^2 ))
>
0
proof
let x0;
assume
A6: x0
in
].(
PI
/ 2),
PI .[;
].(
PI
/ 2),
PI .[
c=
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
COMPTRIG: 5,
XXREAL_1: 46;
then
A7: (
cos
. x0)
<
0 by
A6,
COMPTRIG: 13;
].(
PI
/ 2),
PI .[
c=
].
0 ,
PI .[ by
XXREAL_1: 46;
then (
sin
. x0)
>
0 by
A6,
COMPTRIG: 7;
hence thesis by
A7;
end;
let x0 such that
A8: x0
in
].(
PI
/ 2),
PI .[;
(
diff (g,x0))
= ((g
`|
].(
PI
/ 2),
PI .[)
. x0) by
A4,
A8,
FDIFF_1:def 7
.= (((
sec
|
].(
PI
/ 2),
PI .[)
`|
].(
PI
/ 2),
PI .[)
. x0) by
RELAT_1: 74,
XXREAL_1: 21
.= ((
sec
`|
].(
PI
/ 2),
PI .[)
. x0) by
Th6,
FDIFF_2: 16
.= (
diff (
sec ,x0)) by
A8,
Th6,
FDIFF_1:def 7
.= ((
sin
. x0)
/ ((
cos
. x0)
^2 )) by
A8,
Th6;
hence (
diff (g,x0))
>
0 by
A8,
A5;
end;
then
A9: g1
is_differentiable_on X by
A2,
A4,
A3,
Lm22,
FDIFF_2: 48;
A10: for x st x
in X holds (
arcsec2
| X)
is_differentiable_in x
proof
let x;
assume x
in X;
then (g1
| X)
is_differentiable_in x by
A9,
FDIFF_1:def 6;
hence thesis by
RELAT_1: 72;
end;
X
c= (
dom
arcsec2 ) by
A2,
A3,
RELAT_1: 60;
hence thesis by
A10,
FDIFF_1:def 6;
end;
theorem ::
SINCOS10:123
Th123:
arccosec1
is_differentiable_on (
cosec
.:
].(
- (
PI
/ 2)),
0 .[)
proof
set X = (
cosec
.:
].(
- (
PI
/ 2)),
0 .[);
set g1 = (
arccosec1
| (
cosec
.:
].(
- (
PI
/ 2)),
0 .[));
set f = (
cosec
|
[.(
- (
PI
/ 2)),
0 .[);
set g = (f
|
].(
- (
PI
/ 2)),
0 .[);
A1: g
= (
cosec
|
].(
- (
PI
/ 2)),
0 .[) by
RELAT_1: 74,
XXREAL_1: 22;
A2: (
dom ((g
|
].(
- (
PI
/ 2)),
0 .[)
" ))
= (
rng (g
|
].(
- (
PI
/ 2)),
0 .[)) by
FUNCT_1: 33
.= (
rng (
cosec
|
].(
- (
PI
/ 2)),
0 .[)) by
A1,
RELAT_1: 72
.= (
cosec
.:
].(
- (
PI
/ 2)),
0 .[) by
RELAT_1: 115;
A3: ((g
|
].(
- (
PI
/ 2)),
0 .[)
" )
= ((f
|
].(
- (
PI
/ 2)),
0 .[)
" ) by
RELAT_1: 72
.= (
arccosec1
| (f
.:
].(
- (
PI
/ 2)),
0 .[)) by
RFUNCT_2: 17
.= (
arccosec1
| (
rng (f
|
].(
- (
PI
/ 2)),
0 .[))) by
RELAT_1: 115
.= (
arccosec1
| (
rng (
cosec
|
].(
- (
PI
/ 2)),
0 .[))) by
RELAT_1: 74,
XXREAL_1: 22
.= (
arccosec1
| (
cosec
.:
].(
- (
PI
/ 2)),
0 .[)) by
RELAT_1: 115;
A4: g
is_differentiable_on
].(
- (
PI
/ 2)),
0 .[ by
A1,
Th7,
FDIFF_2: 16;
now
A5: for x0 st x0
in
].(
- (
PI
/ 2)),
0 .[ holds (
- ((
cos
. x0)
/ ((
sin
. x0)
^2 )))
<
0
proof
let x0;
assume
A6: x0
in
].(
- (
PI
/ 2)),
0 .[;
then x0
<
0 by
XXREAL_1: 4;
then
A7: (x0
+ (2
*
PI ))
< (
0
+ (2
*
PI )) by
XREAL_1: 8;
(
].(
- (
PI
/ 2)),
0 .[
\/
{(
- (
PI
/ 2))})
=
[.(
- (
PI
/ 2)),
0 .[ by
XXREAL_1: 131;
then
].(
- (
PI
/ 2)),
0 .[
c=
[.(
- (
PI
/ 2)),
0 .[ by
XBOOLE_1: 7;
then
].(
- (
PI
/ 2)),
0 .[
c=
].(
-
PI ),
0 .[ by
Lm3;
then (
-
PI )
< x0 by
A6,
XXREAL_1: 4;
then ((
-
PI )
+ (2
*
PI ))
< (x0
+ (2
*
PI )) by
XREAL_1: 8;
then (x0
+ (2
*
PI ))
in
].
PI , (2
*
PI ).[ by
A7;
then (
sin
. (x0
+ (2
*
PI )))
<
0 by
COMPTRIG: 9;
then
A8: (
sin
. x0)
<
0 by
SIN_COS: 78;
].(
- (
PI
/ 2)),
0 .[
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 46;
then (
cos
. x0)
>
0 by
A6,
COMPTRIG: 11;
hence thesis by
A8;
end;
let x0 such that
A9: x0
in
].(
- (
PI
/ 2)),
0 .[;
(
diff (g,x0))
= ((g
`|
].(
- (
PI
/ 2)),
0 .[)
. x0) by
A4,
A9,
FDIFF_1:def 7
.= (((
cosec
|
].(
- (
PI
/ 2)),
0 .[)
`|
].(
- (
PI
/ 2)),
0 .[)
. x0) by
RELAT_1: 74,
XXREAL_1: 22
.= ((
cosec
`|
].(
- (
PI
/ 2)),
0 .[)
. x0) by
Th7,
FDIFF_2: 16
.= (
diff (
cosec ,x0)) by
A9,
Th7,
FDIFF_1:def 7
.= (
- ((
cos
. x0)
/ ((
sin
. x0)
^2 ))) by
A9,
Th7;
hence (
diff (g,x0))
<
0 by
A9,
A5;
end;
then
A10: g1
is_differentiable_on X by
A2,
A4,
A3,
Lm23,
FDIFF_2: 48;
A11: for x st x
in X holds (
arccosec1
| X)
is_differentiable_in x
proof
let x;
assume x
in X;
then (g1
| X)
is_differentiable_in x by
A10,
FDIFF_1:def 6;
hence thesis by
RELAT_1: 72;
end;
X
c= (
dom
arccosec1 ) by
A2,
A3,
RELAT_1: 60;
hence thesis by
A11,
FDIFF_1:def 6;
end;
theorem ::
SINCOS10:124
Th124:
arccosec2
is_differentiable_on (
cosec
.:
].
0 , (
PI
/ 2).[)
proof
set X = (
cosec
.:
].
0 , (
PI
/ 2).[);
set g1 = (
arccosec2
| (
cosec
.:
].
0 , (
PI
/ 2).[));
set f = (
cosec
|
].
0 , (
PI
/ 2).]);
set g = (f
|
].
0 , (
PI
/ 2).[);
A1: g
= (
cosec
|
].
0 , (
PI
/ 2).[) by
RELAT_1: 74,
XXREAL_1: 21;
A2: (
dom ((g
|
].
0 , (
PI
/ 2).[)
" ))
= (
rng (g
|
].
0 , (
PI
/ 2).[)) by
FUNCT_1: 33
.= (
rng (
cosec
|
].
0 , (
PI
/ 2).[)) by
A1,
RELAT_1: 72
.= (
cosec
.:
].
0 , (
PI
/ 2).[) by
RELAT_1: 115;
A3: ((g
|
].
0 , (
PI
/ 2).[)
" )
= ((f
|
].
0 , (
PI
/ 2).[)
" ) by
RELAT_1: 72
.= (
arccosec2
| (f
.:
].
0 , (
PI
/ 2).[)) by
RFUNCT_2: 17
.= (
arccosec2
| (
rng (f
|
].
0 , (
PI
/ 2).[))) by
RELAT_1: 115
.= (
arccosec2
| (
rng (
cosec
|
].
0 , (
PI
/ 2).[))) by
RELAT_1: 74,
XXREAL_1: 21
.= (
arccosec2
| (
cosec
.:
].
0 , (
PI
/ 2).[)) by
RELAT_1: 115;
A4: g
is_differentiable_on
].
0 , (
PI
/ 2).[ by
A1,
Th8,
FDIFF_2: 16;
now
A5: for x0 st x0
in
].
0 , (
PI
/ 2).[ holds (
- ((
cos
. x0)
/ ((
sin
. x0)
^2 )))
<
0
proof
let x0;
assume
A6: x0
in
].
0 , (
PI
/ 2).[;
].
0 , (
PI
/ 2).[
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 46;
then
A7: (
cos
. x0)
>
0 by
A6,
COMPTRIG: 11;
].
0 , (
PI
/ 2).[
c=
].
0 ,
PI .[ by
COMPTRIG: 5,
XXREAL_1: 46;
then (
sin
. x0)
>
0 by
A6,
COMPTRIG: 7;
hence thesis by
A7;
end;
let x0 such that
A8: x0
in
].
0 , (
PI
/ 2).[;
(
diff (g,x0))
= ((g
`|
].
0 , (
PI
/ 2).[)
. x0) by
A4,
A8,
FDIFF_1:def 7
.= (((
cosec
|
].
0 , (
PI
/ 2).[)
`|
].
0 , (
PI
/ 2).[)
. x0) by
RELAT_1: 74,
XXREAL_1: 21
.= ((
cosec
`|
].
0 , (
PI
/ 2).[)
. x0) by
Th8,
FDIFF_2: 16
.= (
diff (
cosec ,x0)) by
A8,
Th8,
FDIFF_1:def 7
.= (
- ((
cos
. x0)
/ ((
sin
. x0)
^2 ))) by
A8,
Th8;
hence (
diff (g,x0))
<
0 by
A8,
A5;
end;
then
A9: g1
is_differentiable_on X by
A2,
A4,
A3,
Lm24,
FDIFF_2: 48;
A10: for x st x
in X holds (
arccosec2
| X)
is_differentiable_in x
proof
let x;
assume x
in X;
then (g1
| X)
is_differentiable_in x by
A9,
FDIFF_1:def 6;
hence thesis by
RELAT_1: 72;
end;
X
c= (
dom
arccosec2 ) by
A2,
A3,
RELAT_1: 60;
hence thesis by
A10,
FDIFF_1:def 6;
end;
theorem ::
SINCOS10:125
(
sec
.:
].
0 , (
PI
/ 2).[) is
open
proof
for x0 st x0
in
].
0 , (
PI
/ 2).[ holds (
diff (
sec ,x0))
>
0
proof
let x0;
assume
A1: x0
in
].
0 , (
PI
/ 2).[;
].
0 , (
PI
/ 2).[
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 46;
then
A2: (
cos
. x0)
>
0 by
A1,
COMPTRIG: 11;
].
0 , (
PI
/ 2).[
c=
].
0 ,
PI .[ by
COMPTRIG: 5,
XXREAL_1: 46;
then (
sin
. x0)
>
0 by
A1,
COMPTRIG: 7;
then ((
sin
. x0)
/ ((
cos
. x0)
^2 ))
> (
0
/ ((
cos
. x0)
^2 )) by
A2;
hence thesis by
A1,
Th5;
end;
then (
rng (
sec
|
].
0 , (
PI
/ 2).[)) is
open by
Lm10,
Th5,
FDIFF_2: 41;
hence thesis by
RELAT_1: 115;
end;
theorem ::
SINCOS10:126
(
sec
.:
].(
PI
/ 2),
PI .[) is
open
proof
for x0 st x0
in
].(
PI
/ 2),
PI .[ holds (
diff (
sec ,x0))
>
0
proof
let x0;
assume
A1: x0
in
].(
PI
/ 2),
PI .[;
].(
PI
/ 2),
PI .[
c=
].(
PI
/ 2), ((3
/ 2)
*
PI ).[ by
COMPTRIG: 5,
XXREAL_1: 46;
then
A2: (
cos
. x0)
<
0 by
A1,
COMPTRIG: 13;
].(
PI
/ 2),
PI .[
c=
].
0 ,
PI .[ by
XXREAL_1: 46;
then (
sin
. x0)
>
0 by
A1,
COMPTRIG: 7;
then ((
sin
. x0)
/ ((
cos
. x0)
^2 ))
> (
0
/ ((
cos
. x0)
^2 )) by
A2;
hence thesis by
A1,
Th6;
end;
then (
rng (
sec
|
].(
PI
/ 2),
PI .[)) is
open by
Lm12,
Th6,
FDIFF_2: 41;
hence thesis by
RELAT_1: 115;
end;
theorem ::
SINCOS10:127
(
cosec
.:
].(
- (
PI
/ 2)),
0 .[) is
open
proof
for x0 st x0
in
].(
- (
PI
/ 2)),
0 .[ holds (
diff (
cosec ,x0))
<
0
proof
let x0;
assume
A1: x0
in
].(
- (
PI
/ 2)),
0 .[;
then x0
<
0 by
XXREAL_1: 4;
then
A2: (x0
+ (2
*
PI ))
< (
0
+ (2
*
PI )) by
XREAL_1: 8;
(
].(
- (
PI
/ 2)),
0 .[
\/
{(
- (
PI
/ 2))})
=
[.(
- (
PI
/ 2)),
0 .[ by
XXREAL_1: 131;
then
].(
- (
PI
/ 2)),
0 .[
c=
[.(
- (
PI
/ 2)),
0 .[ by
XBOOLE_1: 7;
then
].(
- (
PI
/ 2)),
0 .[
c=
].(
-
PI ),
0 .[ by
Lm3;
then (
-
PI )
< x0 by
A1,
XXREAL_1: 4;
then ((
-
PI )
+ (2
*
PI ))
< (x0
+ (2
*
PI )) by
XREAL_1: 8;
then (x0
+ (2
*
PI ))
in
].
PI , (2
*
PI ).[ by
A2;
then (
sin
. (x0
+ (2
*
PI )))
<
0 by
COMPTRIG: 9;
then
A3: (
sin
. x0)
<
0 by
SIN_COS: 78;
].(
- (
PI
/ 2)),
0 .[
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 46;
then (
cos
. x0)
>
0 by
A1,
COMPTRIG: 11;
then (
- ((
cos
. x0)
/ ((
sin
. x0)
^2 )))
< (
-
0 ) by
A3;
hence thesis by
A1,
Th7;
end;
then (
rng (
cosec
|
].(
- (
PI
/ 2)),
0 .[)) is
open by
Lm16,
Th7,
FDIFF_2: 41;
hence thesis by
RELAT_1: 115;
end;
theorem ::
SINCOS10:128
(
cosec
.:
].
0 , (
PI
/ 2).[) is
open
proof
for x0 st x0
in
].
0 , (
PI
/ 2).[ holds (
diff (
cosec ,x0))
<
0
proof
let x0;
assume
A1: x0
in
].
0 , (
PI
/ 2).[;
].
0 , (
PI
/ 2).[
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 46;
then
A2: (
cos
. x0)
>
0 by
A1,
COMPTRIG: 11;
].
0 , (
PI
/ 2).[
c=
].
0 ,
PI .[ by
COMPTRIG: 5,
XXREAL_1: 46;
then (
sin
. x0)
>
0 by
A1,
COMPTRIG: 7;
then (
- ((
cos
. x0)
/ ((
sin
. x0)
^2 )))
< (
-
0 ) by
A2;
hence thesis by
A1,
Th8;
end;
then (
rng (
cosec
|
].
0 , (
PI
/ 2).[)) is
open by
Lm18,
Th8,
FDIFF_2: 41;
hence thesis by
RELAT_1: 115;
end;
theorem ::
SINCOS10:129
(
arcsec1
| (
sec
.:
].
0 , (
PI
/ 2).[)) is
continuous by
Th121,
FDIFF_1: 25;
theorem ::
SINCOS10:130
(
arcsec2
| (
sec
.:
].(
PI
/ 2),
PI .[)) is
continuous by
Th122,
FDIFF_1: 25;
theorem ::
SINCOS10:131
(
arccosec1
| (
cosec
.:
].(
- (
PI
/ 2)),
0 .[)) is
continuous by
Th123,
FDIFF_1: 25;
theorem ::
SINCOS10:132
(
arccosec2
| (
cosec
.:
].
0 , (
PI
/ 2).[)) is
continuous by
Th124,
FDIFF_1: 25;