borsuk_6.miz



    begin

    scheme :: BORSUK_6:sch1

    ExFunc3CondD { C() -> non empty set , P,Q,R[ set], F,G,H( set) -> set } :

ex f be Function st ( dom f) = C() & for c be Element of C() holds (P[c] implies (f . c) = F(c)) & (Q[c] implies (f . c) = G(c)) & (R[c] implies (f . c) = H(c))

      provided

       A1: for c be Element of C() holds (P[c] implies not Q[c]) & (P[c] implies not R[c]) & (Q[c] implies not R[c])

       and

       A2: for c be Element of C() holds P[c] or Q[c] or R[c];

      

       A3: for c be set st c in C() holds P[c] or Q[c] or R[c] by A2;

      

       A4: for c be set st c in C() holds (P[c] implies not Q[c]) & (P[c] implies not R[c]) & (Q[c] implies not R[c]) by A1;

      ex f be Function st ( dom f) = C() & for c be set st c in C() holds (P[c] implies (f . c) = F(c)) & (Q[c] implies (f . c) = G(c)) & (R[c] implies (f . c) = H(c)) from RECDEF_2:sch 1( A4, A3);

      then

      consider f be Function such that

       A5: ( dom f) = C() and

       A6: for c be set st c in C() holds (P[c] implies (f . c) = F(c)) & (Q[c] implies (f . c) = G(c)) & (R[c] implies (f . c) = H(c));

      take f;

      thus ( dom f) = C() by A5;

      let c be Element of C();

      thus thesis by A6;

    end;

    theorem :: BORSUK_6:1

    

     Th1: the carrier of [: I[01] , I[01] :] = [: [. 0 , 1.], [. 0 , 1.]:] by BORSUK_1: 40, BORSUK_1:def 2;

    theorem :: BORSUK_6:2

    

     Th2: for a,b,x be Real st a <= x & x <= b holds ((x - a) / (b - a)) in the carrier of ( Closed-Interval-TSpace ( 0 ,1))

    proof

      let a,b,x be Real;

      assume that

       A1: a <= x and

       A2: x <= b;

      

       A3: a <= b by A1, A2, XXREAL_0: 2;

      

       A4: (x - a) <= (b - a) by A2, XREAL_1: 9;

      

       A5: ((x - a) / (b - a)) <= 1

      proof

        per cases by A3, XREAL_1: 48;

          suppose (b - a) = 0 ;

          hence thesis by XCMPLX_1: 49;

        end;

          suppose (b - a) > 0 ;

          hence thesis by A4, XREAL_1: 185;

        end;

      end;

      

       A6: (x - a) >= 0 by A1, XREAL_1: 48;

      (b - a) >= 0 by A3, XREAL_1: 48;

      then ((x - a) / (b - a)) in [. 0 , 1.] by A5, A6, XXREAL_1: 1;

      hence thesis by TOPMETR: 18;

    end;

    theorem :: BORSUK_6:3

    

     Th3: for x be Point of I[01] st x <= (1 / 2) holds (2 * x) is Point of I[01]

    proof

      let x be Point of I[01] ;

      assume x <= (1 / 2);

      then

       A1: (2 * x) <= (2 * (1 / 2)) by XREAL_1: 64;

       0 <= x by BORSUK_1: 43;

      hence thesis by A1, BORSUK_1: 43;

    end;

    theorem :: BORSUK_6:4

    

     Th4: for x be Point of I[01] st x >= (1 / 2) holds ((2 * x) - 1) is Point of I[01]

    proof

      let x be Point of I[01] ;

      x <= 1 by BORSUK_1: 43;

      then (2 * x) <= (2 * 1) by XREAL_1: 64;

      then

       A1: ((2 * x) - 1) <= (2 - 1) by XREAL_1: 9;

      assume x >= (1 / 2);

      then (2 * x) >= (2 * (1 / 2)) by XREAL_1: 64;

      then ((2 * x) - 1) >= (1 - 1) by XREAL_1: 9;

      hence thesis by A1, BORSUK_1: 43;

    end;

    theorem :: BORSUK_6:5

    

     Th5: for p,q be Point of I[01] holds (p * q) is Point of I[01]

    proof

      let p,q be Point of I[01] ;

      

       A1: 0 <= p by BORSUK_1: 43;

      p <= 1 & q <= 1 by BORSUK_1: 43;

      then 0 <= q & (p * q) <= 1 by A1, BORSUK_1: 43, XREAL_1: 160;

      hence thesis by A1, BORSUK_1: 43;

    end;

    theorem :: BORSUK_6:6

    

     Th6: for x be Point of I[01] holds ((1 / 2) * x) is Point of I[01]

    proof

      let x be Point of I[01] ;

      x <= 1 by BORSUK_1: 43;

      then ((1 / 2) * x) <= ((1 / 2) * 1) by XREAL_1: 64;

      then x >= 0 & ((1 / 2) * x) <= 1 by BORSUK_1: 43, XXREAL_0: 2;

      hence thesis by BORSUK_1: 43;

    end;

    theorem :: BORSUK_6:7

    

     Th7: for x be Point of I[01] st x >= (1 / 2) holds (x - (1 / 4)) is Point of I[01]

    proof

      let x be Point of I[01] ;

      x <= 1 by BORSUK_1: 43;

      then x <= (1 + (1 / 4)) by XXREAL_0: 2;

      then

       A1: (x - (1 / 4)) <= 1 by XREAL_1: 20;

      assume x >= (1 / 2);

      then x >= ((1 / 4) + 0 ) by XXREAL_0: 2;

      then (x - (1 / 4)) >= 0 by XREAL_1: 19;

      hence thesis by A1, BORSUK_1: 43;

    end;

    theorem :: BORSUK_6:8

    

     Th8: ( id I[01] ) is Path of 0[01] , 1[01]

    proof

      set f = ( id I[01] );

      (f . 0 ) = 0[01] & (f . 1) = 1[01] by BORSUK_1:def 14, BORSUK_1:def 15, FUNCT_1: 18;

      hence thesis by BORSUK_2:def 4;

    end;

    theorem :: BORSUK_6:9

    

     Th9: for a,b,c,d be Point of I[01] st a <= b & c <= d holds [: [.a, b.], [.c, d.]:] is compact non empty Subset of [: I[01] , I[01] :]

    proof

      let a,b,c,d be Point of I[01] ;

       [.a, b.] is Subset of I[01] & [.c, d.] is Subset of I[01] by BORSUK_4: 18;

      then

       A1: [: [.a, b.], [.c, d.]:] c= [:the carrier of I[01] , the carrier of I[01] :] by ZFMISC_1: 96;

      assume

       A2: a <= b & c <= d;

      then a in [.a, b.] & c in [.c, d.] by XXREAL_1: 1;

      then

      reconsider Ewa = [: [.a, b.], [.c, d.]:] as non empty Subset of [: I[01] , I[01] :] by A1, BORSUK_1:def 2;

       [.a, b.] is compact Subset of I[01] & [.c, d.] is compact Subset of I[01] by A2, BORSUK_4: 24;

      then Ewa is compact Subset of [: I[01] , I[01] :] by BORSUK_3: 23;

      hence thesis;

    end;

    begin

    theorem :: BORSUK_6:10

    

     Th10: for S,T be Subset of ( TOP-REAL 2) st S = { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= ((2 * (p `1 )) - 1) } & T = { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= (p `1 ) } holds (( AffineMap (1, 0 ,(1 / 2),(1 / 2))) .: S) = T

    proof

      set f = ( AffineMap (1, 0 ,(1 / 2),(1 / 2)));

      set A = 1, B = 0 , C = (1 / 2), D = (1 / 2);

      let S,T be Subset of ( TOP-REAL 2);

      assume that

       A1: S = { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= ((2 * (p `1 )) - 1) } and

       A2: T = { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= (p `1 ) };

      (f .: S) = T

      proof

        thus (f .: S) c= T

        proof

          let x be object;

          assume x in (f .: S);

          then

          consider y be object such that y in ( dom f) and

           A3: y in S and

           A4: x = (f . y) by FUNCT_1:def 6;

          consider p be Point of ( TOP-REAL 2) such that

           A5: y = p and

           A6: (p `2 ) <= ((2 * (p `1 )) - 1) by A1, A3;

          set b = (f . p);

          (f . p) = |[((A * (p `1 )) + B), ((C * (p `2 )) + D)]| by JGRAPH_2:def 2;

          then

           A7: (b `1 ) = ((A * (p `1 )) + B) & (b `2 ) = ((C * (p `2 )) + D) by EUCLID: 52;

          (C * (p `2 )) <= (C * ((2 * (p `1 )) - 1)) by A6, XREAL_1: 64;

          then ((C * (p `2 )) + D) <= (((p `1 ) - C) + D) by XREAL_1: 6;

          hence thesis by A2, A4, A5, A7;

        end;

        let x be object;

        assume

         A8: x in T;

        then

         A9: ex p be Point of ( TOP-REAL 2) st x = p & (p `2 ) <= (p `1 ) by A2;

        f is onto by JORDAN1K: 36;

        then ( rng f) = the carrier of ( TOP-REAL 2) by FUNCT_2:def 3;

        then

        consider y be object such that

         A10: y in ( dom f) and

         A11: x = (f . y) by A8, FUNCT_1:def 3;

        reconsider y as Point of ( TOP-REAL 2) by A10;

        set b = (f . y);

        

         A12: (f . y) = |[((A * (y `1 )) + B), ((C * (y `2 )) + D)]| by JGRAPH_2:def 2;

        then (b `1 ) = (y `1 ) by EUCLID: 52;

        then (2 * (b `2 )) <= (2 * (y `1 )) by A9, A11, XREAL_1: 64;

        then

         A13: ((2 * (b `2 )) - 1) <= ((2 * (y `1 )) - 1) by XREAL_1: 9;

        (b `2 ) = ((C * (y `2 )) + D) by A12, EUCLID: 52;

        then y in S by A1, A13;

        hence thesis by A10, A11, FUNCT_1:def 6;

      end;

      hence thesis;

    end;

    theorem :: BORSUK_6:11

    

     Th11: for S,T be Subset of ( TOP-REAL 2) st S = { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= ((2 * (p `1 )) - 1) } & T = { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= (p `1 ) } holds (( AffineMap (1, 0 ,(1 / 2),(1 / 2))) .: S) = T

    proof

      set f = ( AffineMap (1, 0 ,(1 / 2),(1 / 2)));

      set A = 1, B = 0 , C = (1 / 2), D = (1 / 2);

      let S,T be Subset of ( TOP-REAL 2);

      assume that

       A1: S = { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= ((2 * (p `1 )) - 1) } and

       A2: T = { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= (p `1 ) };

      (f .: S) = T

      proof

        thus (f .: S) c= T

        proof

          let x be object;

          assume x in (f .: S);

          then

          consider y be object such that y in ( dom f) and

           A3: y in S and

           A4: x = (f . y) by FUNCT_1:def 6;

          consider p be Point of ( TOP-REAL 2) such that

           A5: y = p and

           A6: (p `2 ) >= ((2 * (p `1 )) - 1) by A1, A3;

          

           A7: (C * (p `2 )) >= (C * ((2 * (p `1 )) - 1)) by A6, XREAL_1: 64;

          set b = (f . p);

          

           A8: (f . p) = |[((A * (p `1 )) + B), ((C * (p `2 )) + D)]| by JGRAPH_2:def 2;

          then

           A9: (b `1 ) = ((A * (p `1 )) + B) by EUCLID: 52;

          (b `2 ) = ((C * (p `2 )) + D) by A8, EUCLID: 52;

          then (b `2 ) >= (((p `1 ) - C) + D) by A7, XREAL_1: 6;

          hence thesis by A2, A4, A5, A9;

        end;

        let x be object;

        assume

         A10: x in T;

        then

         A11: ex p be Point of ( TOP-REAL 2) st x = p & (p `2 ) >= (p `1 ) by A2;

        f is onto by JORDAN1K: 36;

        then ( rng f) = the carrier of ( TOP-REAL 2) by FUNCT_2:def 3;

        then

        consider y be object such that

         A12: y in ( dom f) and

         A13: x = (f . y) by A10, FUNCT_1:def 3;

        reconsider y as Point of ( TOP-REAL 2) by A12;

        set b = (f . y);

        

         A14: (f . y) = |[((A * (y `1 )) + B), ((C * (y `2 )) + D)]| by JGRAPH_2:def 2;

        then (b `1 ) = (y `1 ) by EUCLID: 52;

        then (2 * (b `2 )) >= (2 * (y `1 )) by A11, A13, XREAL_1: 64;

        then

         A15: ((2 * (b `2 )) - 1) >= ((2 * (y `1 )) - 1) by XREAL_1: 9;

        (b `2 ) = ((C * (y `2 )) + D) by A14, EUCLID: 52;

        then y in S by A1, A15;

        hence thesis by A12, A13, FUNCT_1:def 6;

      end;

      hence thesis;

    end;

    theorem :: BORSUK_6:12

    

     Th12: for S,T be Subset of ( TOP-REAL 2) st S = { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= (1 - (2 * (p `1 ))) } & T = { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= ( - (p `1 )) } holds (( AffineMap (1, 0 ,(1 / 2),( - (1 / 2)))) .: S) = T

    proof

      set f = ( AffineMap (1, 0 ,(1 / 2),( - (1 / 2))));

      set A = 1, B = 0 , C = (1 / 2), D = ( - (1 / 2));

      let S,T be Subset of ( TOP-REAL 2);

      assume that

       A1: S = { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= (1 - (2 * (p `1 ))) } and

       A2: T = { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= ( - (p `1 )) };

      (f .: S) = T

      proof

        thus (f .: S) c= T

        proof

          let x be object;

          assume x in (f .: S);

          then

          consider y be object such that y in ( dom f) and

           A3: y in S and

           A4: x = (f . y) by FUNCT_1:def 6;

          consider p be Point of ( TOP-REAL 2) such that

           A5: y = p and

           A6: (p `2 ) >= (1 - (2 * (p `1 ))) by A1, A3;

          set b = (f . p);

          (C * (p `2 )) >= (C * (1 - (2 * (p `1 )))) by A6, XREAL_1: 64;

          then

           A7: ((C * (p `2 )) + D) >= ((C - (p `1 )) + D) by XREAL_1: 6;

          

           A8: (f . p) = |[((A * (p `1 )) + B), ((C * (p `2 )) + D)]| by JGRAPH_2:def 2;

          then (b `1 ) = ((A * (p `1 )) + B) by EUCLID: 52;

          then (b `2 ) >= ( - (b `1 )) by A8, A7, EUCLID: 52;

          hence thesis by A2, A4, A5;

        end;

        let x be object;

        assume

         A9: x in T;

        then

         A10: ex p be Point of ( TOP-REAL 2) st x = p & (p `2 ) >= ( - (p `1 )) by A2;

        f is onto by JORDAN1K: 36;

        then ( rng f) = the carrier of ( TOP-REAL 2) by FUNCT_2:def 3;

        then

        consider y be object such that

         A11: y in ( dom f) and

         A12: x = (f . y) by A9, FUNCT_1:def 3;

        reconsider y as Point of ( TOP-REAL 2) by A11;

        set b = (f . y);

        

         A13: (f . y) = |[((A * (y `1 )) + B), ((C * (y `2 )) + D)]| by JGRAPH_2:def 2;

        then (b `1 ) = (y `1 ) by EUCLID: 52;

        then (2 * (b `2 )) >= (2 * ( - (y `1 ))) by A10, A12, XREAL_1: 64;

        then

         A14: ((2 * (b `2 )) + 1) >= ((2 * ( - (y `1 ))) + 1) by XREAL_1: 6;

        (b `2 ) = ((C * (y `2 )) + D) by A13, EUCLID: 52;

        then (y `2 ) >= (1 - (2 * (y `1 ))) by A14;

        then y in S by A1;

        hence thesis by A11, A12, FUNCT_1:def 6;

      end;

      hence thesis;

    end;

    theorem :: BORSUK_6:13

    

     Th13: for S,T be Subset of ( TOP-REAL 2) st S = { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= (1 - (2 * (p `1 ))) } & T = { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= ( - (p `1 )) } holds (( AffineMap (1, 0 ,(1 / 2),( - (1 / 2)))) .: S) = T

    proof

      set f = ( AffineMap (1, 0 ,(1 / 2),( - (1 / 2))));

      set A = 1, B = 0 , C = (1 / 2), D = ( - (1 / 2));

      let S,T be Subset of ( TOP-REAL 2);

      assume that

       A1: S = { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= (1 - (2 * (p `1 ))) } and

       A2: T = { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= ( - (p `1 )) };

      (f .: S) = T

      proof

        thus (f .: S) c= T

        proof

          let x be object;

          assume x in (f .: S);

          then

          consider y be object such that y in ( dom f) and

           A3: y in S and

           A4: x = (f . y) by FUNCT_1:def 6;

          consider p be Point of ( TOP-REAL 2) such that

           A5: y = p and

           A6: (p `2 ) <= (1 - (2 * (p `1 ))) by A1, A3;

          set b = (f . p);

          (C * (p `2 )) <= (C * (1 - (2 * (p `1 )))) by A6, XREAL_1: 64;

          then

           A7: ((C * (p `2 )) + D) <= ((C - (p `1 )) + D) by XREAL_1: 6;

          

           A8: (f . p) = |[((A * (p `1 )) + B), ((C * (p `2 )) + D)]| by JGRAPH_2:def 2;

          then (b `1 ) = ((A * (p `1 )) + B) by EUCLID: 52;

          then (b `2 ) <= ( - (b `1 )) by A8, A7, EUCLID: 52;

          hence thesis by A2, A4, A5;

        end;

        let x be object;

        assume

         A9: x in T;

        then

         A10: ex p be Point of ( TOP-REAL 2) st x = p & (p `2 ) <= ( - (p `1 )) by A2;

        f is onto by JORDAN1K: 36;

        then ( rng f) = the carrier of ( TOP-REAL 2) by FUNCT_2:def 3;

        then

        consider y be object such that

         A11: y in ( dom f) and

         A12: x = (f . y) by A9, FUNCT_1:def 3;

        reconsider y as Point of ( TOP-REAL 2) by A11;

        set b = (f . y);

        

         A13: (f . y) = |[((A * (y `1 )) + B), ((C * (y `2 )) + D)]| by JGRAPH_2:def 2;

        then (b `1 ) = (y `1 ) by EUCLID: 52;

        then (2 * (b `2 )) <= (2 * ( - (y `1 ))) by A10, A12, XREAL_1: 64;

        then

         A14: ((2 * (b `2 )) + 1) <= ((2 * ( - (y `1 ))) + 1) by XREAL_1: 6;

        (b `2 ) = ((C * (y `2 )) + D) by A13, EUCLID: 52;

        then (y `2 ) <= (1 - (2 * (y `1 ))) by A14;

        then y in S by A1;

        hence thesis by A11, A12, FUNCT_1:def 6;

      end;

      hence thesis;

    end;

    begin

    theorem :: BORSUK_6:14

    for T be non empty 1-sorted holds T is real-membered iff for x be Element of T holds x is real

    proof

      let T be non empty 1-sorted;

      thus T is real-membered implies for x be Element of T holds x is real;

      assume for x be Element of T holds x is real;

      then for x be object st x in the carrier of T holds x is real;

      then the carrier of T is real-membered by MEMBERED:def 3;

      hence thesis by TOPMETR:def 8;

    end;

    registration

      cluster non empty real-membered for 1-sorted;

      existence

      proof

        take I[01] ;

        thus thesis;

      end;

      cluster non empty real-membered for TopSpace;

      existence

      proof

        take I[01] ;

        thus thesis;

      end;

    end

    registration

      let T be real-membered 1-sorted;

      cluster -> real for Element of T;

      coherence ;

    end

    registration

      let T be real-membered TopStruct;

      cluster -> real-membered for SubSpace of T;

      coherence ;

    end

    registration

      let S,T be real-membered non empty TopSpace, p be Element of [:S, T:];

      cluster (p `1 ) -> real;

      coherence

      proof

        p in the carrier of [:S, T:];

        then p in [:the carrier of S, the carrier of T:] by BORSUK_1:def 2;

        then (p `1 ) in the carrier of S by MCART_1: 10;

        hence thesis;

      end;

      cluster (p `2 ) -> real;

      coherence

      proof

        p in the carrier of [:S, T:];

        then p in [:the carrier of S, the carrier of T:] by BORSUK_1:def 2;

        then (p `2 ) in the carrier of T by MCART_1: 10;

        hence thesis;

      end;

    end

    registration

      let T be non empty SubSpace of [: I[01] , I[01] :], x be Point of T;

      cluster (x `1 ) -> real;

      coherence

      proof

        the carrier of T c= the carrier of [: I[01] , I[01] :] & x in the carrier of T by BORSUK_1: 1;

        then

        reconsider x9 = x as Point of [: I[01] , I[01] :];

        (x9 `1 ) is real;

        hence thesis;

      end;

      cluster (x `2 ) -> real;

      coherence

      proof

        the carrier of T c= the carrier of [: I[01] , I[01] :] & x in the carrier of T by BORSUK_1: 1;

        then

        reconsider x9 = x as Point of [: I[01] , I[01] :];

        (x9 `2 ) is real;

        hence thesis;

      end;

    end

    begin

    theorem :: BORSUK_6:15

    

     Th15: { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= ((2 * (p `1 )) - 1) } is closed Subset of ( TOP-REAL 2)

    proof

      reconsider L = { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= (p `1 ) } as closed Subset of ( TOP-REAL 2) by JGRAPH_2: 46;

      set f = ( AffineMap (1, 0 ,(1 / 2),(1 / 2)));

      defpred P[ Point of ( TOP-REAL 2)] means ($1 `2 ) <= ((2 * ($1 `1 )) - 1);

      { p where p be Point of ( TOP-REAL 2) : P[p] } is Subset of ( TOP-REAL 2) from JGRAPH_2:sch 1;

      then

      reconsider K = { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= ((2 * (p `1 )) - 1) } as Subset of ( TOP-REAL 2);

      K c= the carrier of ( TOP-REAL 2);

      then

       A1: K c= ( dom f) by FUNCT_2:def 1;

      

       A2: (f .: K) = L by Th10;

      f is one-to-one by JGRAPH_2: 44;

      then K = (f " (f .: K)) by A1, FUNCT_1: 94;

      hence thesis by A2, PRE_TOPC:def 6;

    end;

    theorem :: BORSUK_6:16

    

     Th16: { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= ((2 * (p `1 )) - 1) } is closed Subset of ( TOP-REAL 2)

    proof

      reconsider L = { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= (p `1 ) } as closed Subset of ( TOP-REAL 2) by JGRAPH_2: 46;

      set f = ( AffineMap (1, 0 ,(1 / 2),(1 / 2)));

      defpred P[ Point of ( TOP-REAL 2)] means ($1 `2 ) >= ((2 * ($1 `1 )) - 1);

      { p where p be Point of ( TOP-REAL 2) : P[p] } is Subset of ( TOP-REAL 2) from JGRAPH_2:sch 1;

      then

      reconsider K = { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= ((2 * (p `1 )) - 1) } as Subset of ( TOP-REAL 2);

      K c= the carrier of ( TOP-REAL 2);

      then

       A1: K c= ( dom f) by FUNCT_2:def 1;

      

       A2: (f .: K) = L by Th11;

      f is one-to-one by JGRAPH_2: 44;

      then K = (f " (f .: K)) by A1, FUNCT_1: 94;

      hence thesis by A2, PRE_TOPC:def 6;

    end;

    theorem :: BORSUK_6:17

    

     Th17: { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= (1 - (2 * (p `1 ))) } is closed Subset of ( TOP-REAL 2)

    proof

      reconsider L = { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= ( - (p `1 )) } as closed Subset of ( TOP-REAL 2) by JGRAPH_2: 47;

      set f = ( AffineMap (1, 0 ,(1 / 2),( - (1 / 2))));

      defpred P[ Point of ( TOP-REAL 2)] means ($1 `2 ) <= (1 - (2 * ($1 `1 )));

      { p where p be Point of ( TOP-REAL 2) : P[p] } is Subset of ( TOP-REAL 2) from JGRAPH_2:sch 1;

      then

      reconsider K = { p where p be Point of ( TOP-REAL 2) : (p `2 ) <= (1 - (2 * (p `1 ))) } as Subset of ( TOP-REAL 2);

      K c= the carrier of ( TOP-REAL 2);

      then

       A1: K c= ( dom f) by FUNCT_2:def 1;

      

       A2: (f .: K) = L by Th13;

      f is one-to-one by JGRAPH_2: 44;

      then K = (f " (f .: K)) by A1, FUNCT_1: 94;

      hence thesis by A2, PRE_TOPC:def 6;

    end;

    theorem :: BORSUK_6:18

    

     Th18: { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= (1 - (2 * (p `1 ))) } is closed Subset of ( TOP-REAL 2)

    proof

      reconsider L = { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= ( - (p `1 )) } as closed Subset of ( TOP-REAL 2) by JGRAPH_2: 47;

      set f = ( AffineMap (1, 0 ,(1 / 2),( - (1 / 2))));

      defpred P[ Point of ( TOP-REAL 2)] means ($1 `2 ) >= (1 - (2 * ($1 `1 )));

      { p where p be Point of ( TOP-REAL 2) : P[p] } is Subset of ( TOP-REAL 2) from JGRAPH_2:sch 1;

      then

      reconsider K = { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= (1 - (2 * (p `1 ))) } as Subset of ( TOP-REAL 2);

      K c= the carrier of ( TOP-REAL 2);

      then

       A1: K c= ( dom f) by FUNCT_2:def 1;

      

       A2: (f .: K) = L by Th12;

      f is one-to-one by JGRAPH_2: 44;

      then K = (f " (f .: K)) by A1, FUNCT_1: 94;

      hence thesis by A2, PRE_TOPC:def 6;

    end;

    theorem :: BORSUK_6:19

    

     Th19: { p where p be Point of ( TOP-REAL 2) : (p `2 ) >= (1 - (2 * (p `1 ))) & (p `2 ) >= ((2 * (p `1 )) - 1) } is closed Subset of ( TOP-REAL 2)

    proof

      defpred R[ Point of ( TOP-REAL 2)] means ($1 `2 ) >= ((2 * ($1 `1 )) - 1);

      reconsider L = { p where p be Point of ( TOP-REAL 2) : R[p] } as closed Subset of ( TOP-REAL 2) by Th16;

      defpred P[ Point of ( TOP-REAL 2)] means ($1 `2 ) >= (1 - (2 * ($1 `1 )));

      reconsider K = { p where p be Point of ( TOP-REAL 2) : P[p] } as closed Subset of ( TOP-REAL 2) by Th18;

      set T = { p where p be Point of ( TOP-REAL 2) : P[p] & R[p] };

      { p where p be Point of ( TOP-REAL 2) : P[p] & R[p] } = ({ p where p be Point of ( TOP-REAL 2) : P[p] } /\ { p where p be Point of ( TOP-REAL 2) : R[p] }) from DOMAIN_1:sch 10;

      then T = (K /\ L);

      hence thesis;

    end;

    theorem :: BORSUK_6:20

    

     Th20: ex f be Function of [: R^1 , R^1 :], ( TOP-REAL 2) st for x,y be Real holds (f . [x, y]) = <*x, y*>

    proof

      defpred P[ Element of REAL , Element of REAL , set] means ex c be Element of ( REAL 2) st c = $3 & $3 = <*$1, $2*>;

      

       A1: for x,y be Element of REAL holds ex u be Element of ( REAL 2) st P[x, y, u]

      proof

        let x,y be Element of REAL ;

        take <*x, y*>;

         <*x, y*> is Element of ( REAL 2) by FINSEQ_2: 137;

        hence thesis;

      end;

      consider f be Function of [: REAL , REAL :], ( REAL 2) such that

       A2: for x,y be Element of REAL holds P[x, y, (f . (x,y))] from BINOP_1:sch 3( A1);

      the carrier of [: R^1 , R^1 :] = [:the carrier of R^1 , the carrier of R^1 :] by BORSUK_1:def 2;

      then

      reconsider f as Function of [: R^1 , R^1 :], ( TOP-REAL 2) by EUCLID: 22, TOPMETR: 17;

      take f;

      for x,y be Real holds (f . [x, y]) = <*x, y*>

      proof

        let x,y be Real;

        reconsider x, y as Element of REAL by XREAL_0:def 1;

         P[x, y, (f . (x,y))] by A2;

        hence thesis;

      end;

      hence thesis;

    end;

    theorem :: BORSUK_6:21

    

     Th21: { p where p be Point of [: R^1 , R^1 :] : (p `2 ) <= (1 - (2 * (p `1 ))) } is closed Subset of [: R^1 , R^1 :]

    proof

      set GG = [: R^1 , R^1 :], SS = ( TOP-REAL 2);

      defpred P[ Point of GG] means ($1 `2 ) <= (1 - (2 * ($1 `1 )));

      defpred R[ Point of SS] means ($1 `2 ) <= (1 - (2 * ($1 `1 )));

      reconsider K = { p where p be Point of GG : P[p] } as Subset of GG from DOMAIN_1:sch 7;

      reconsider L = { p where p be Point of SS : R[p] } as Subset of SS from DOMAIN_1:sch 7;

      consider f be Function of GG, SS such that

       A1: for x,y be Real holds (f . [x, y]) = <*x, y*> by Th20;

      

       A2: L c= (f .: K)

      proof

        let x be object;

        assume x in L;

        then

        consider z be Point of SS such that

         A3: z = x and

         A4: R[z];

        the carrier of SS = ( REAL 2) by EUCLID: 22;

        then z is Tuple of 2, REAL by FINSEQ_2: 131;

        then

        consider x1,y1 be Element of REAL such that

         A5: z = <*x1, y1*> by FINSEQ_2: 100;

        (z `1 ) = x1 by A5, EUCLID: 52;

        then

         A6: y1 <= (1 - (2 * x1)) by A4, A5, EUCLID: 52;

        set Y = [x1, y1];

        

         A7: Y in [: REAL , REAL :] by ZFMISC_1: 87;

        then

         A8: Y in the carrier of GG by BORSUK_1:def 2, TOPMETR: 17;

        reconsider Y as Point of GG by A7, BORSUK_1:def 2, TOPMETR: 17;

        

         A9: Y in ( dom f) by A8, FUNCT_2:def 1;

        (Y `1 ) = x1 & (Y `2 ) = y1;

        then

         A10: Y in K by A6;

        x = (f . Y) by A1, A3, A5;

        hence thesis by A10, A9, FUNCT_1:def 6;

      end;

      

       A11: f is being_homeomorphism by A1, TOPREAL6: 76;

      (f .: K) c= L

      proof

        let x be object;

        assume x in (f .: K);

        then

        consider y be object such that y in ( dom f) and

         A12: y in K and

         A13: x = (f . y) by FUNCT_1:def 6;

        consider z be Point of GG such that

         A14: z = y and

         A15: P[z] by A12;

        z in the carrier of GG;

        then z in [:the carrier of R^1 , the carrier of R^1 :] by BORSUK_1:def 2;

        then

        consider x1,y1 be object such that

         A16: x1 in the carrier of R^1 & y1 in the carrier of R^1 and

         A17: z = [x1, y1] by ZFMISC_1:def 2;

        reconsider x1, y1 as Real by A16;

        

         A18: x = |[x1, y1]| by A1, A13, A14, A17;

        then

        reconsider x9 = x as Point of SS;

        

         A19: (z `1 ) = x1 & (z `2 ) = y1 by A17;

        (x9 `1 ) = x1 & (x9 `2 ) = y1 by A18, FINSEQ_1: 44;

        hence thesis by A15, A19;

      end;

      then (f .: K) = L by A2;

      hence thesis by A11, Th17, TOPS_2: 58;

    end;

    theorem :: BORSUK_6:22

    

     Th22: { p where p be Point of [: R^1 , R^1 :] : (p `2 ) <= ((2 * (p `1 )) - 1) } is closed Subset of [: R^1 , R^1 :]

    proof

      set GG = [: R^1 , R^1 :], SS = ( TOP-REAL 2);

      defpred P[ Point of GG] means ($1 `2 ) <= ((2 * ($1 `1 )) - 1);

      defpred R[ Point of SS] means ($1 `2 ) <= ((2 * ($1 `1 )) - 1);

      reconsider K = { p where p be Point of GG : P[p] } as Subset of GG from DOMAIN_1:sch 7;

      reconsider L = { p where p be Point of SS : R[p] } as Subset of SS from DOMAIN_1:sch 7;

      consider f be Function of GG, SS such that

       A1: for x,y be Real holds (f . [x, y]) = <*x, y*> by Th20;

      

       A2: L c= (f .: K)

      proof

        let x be object;

        assume x in L;

        then

        consider z be Point of SS such that

         A3: z = x and

         A4: R[z];

        the carrier of SS = ( REAL 2) by EUCLID: 22;

        then z is Tuple of 2, REAL by FINSEQ_2: 131;

        then

        consider x1,y1 be Element of REAL such that

         A5: z = <*x1, y1*> by FINSEQ_2: 100;

        (z `1 ) = x1 by A5, EUCLID: 52;

        then

         A6: y1 <= ((2 * x1) - 1) by A4, A5, EUCLID: 52;

        set Y = [x1, y1];

        

         A7: Y in [:the carrier of R^1 , the carrier of R^1 :] by TOPMETR: 17, ZFMISC_1: 87;

        then

         A8: Y in the carrier of GG by BORSUK_1:def 2;

        reconsider Y as Point of GG by A7, BORSUK_1:def 2;

        

         A9: Y in ( dom f) by A8, FUNCT_2:def 1;

        (Y `1 ) = x1 & (Y `2 ) = y1;

        then

         A10: Y in K by A6;

        x = (f . Y) by A1, A3, A5;

        hence thesis by A10, A9, FUNCT_1:def 6;

      end;

      

       A11: f is being_homeomorphism by A1, TOPREAL6: 76;

      (f .: K) c= L

      proof

        let x be object;

        assume x in (f .: K);

        then

        consider y be object such that y in ( dom f) and

         A12: y in K and

         A13: x = (f . y) by FUNCT_1:def 6;

        consider z be Point of GG such that

         A14: z = y and

         A15: P[z] by A12;

        z in the carrier of GG;

        then z in [:the carrier of R^1 , the carrier of R^1 :] by BORSUK_1:def 2;

        then

        consider x1,y1 be object such that

         A16: x1 in the carrier of R^1 & y1 in the carrier of R^1 and

         A17: z = [x1, y1] by ZFMISC_1:def 2;

        reconsider x1, y1 as Real by A16;

        

         A18: x = |[x1, y1]| by A1, A13, A14, A17;

        then

        reconsider x9 = x as Point of SS;

        

         A19: (z `1 ) = x1 & (z `2 ) = y1 by A17;

        (x9 `1 ) = x1 & (x9 `2 ) = y1 by A18, FINSEQ_1: 44;

        hence thesis by A15, A19;

      end;

      then (f .: K) = L by A2;

      hence thesis by A11, Th15, TOPS_2: 58;

    end;

    theorem :: BORSUK_6:23

    

     Th23: { p where p be Point of [: R^1 , R^1 :] : (p `2 ) >= (1 - (2 * (p `1 ))) & (p `2 ) >= ((2 * (p `1 )) - 1) } is closed Subset of [: R^1 , R^1 :]

    proof

      set GG = [: R^1 , R^1 :], SS = ( TOP-REAL 2);

      defpred P[ Point of GG] means ($1 `2 ) >= (1 - (2 * ($1 `1 ))) & ($1 `2 ) >= ((2 * ($1 `1 )) - 1);

      defpred R[ Point of SS] means ($1 `2 ) >= (1 - (2 * ($1 `1 ))) & ($1 `2 ) >= ((2 * ($1 `1 )) - 1);

      reconsider K = { p where p be Point of GG : P[p] } as Subset of GG from DOMAIN_1:sch 7;

      reconsider L = { p where p be Point of SS : R[p] } as Subset of SS from DOMAIN_1:sch 7;

      consider f be Function of GG, SS such that

       A1: for x,y be Real holds (f . [x, y]) = <*x, y*> by Th20;

      

       A2: L c= (f .: K)

      proof

        let x be object;

        assume x in L;

        then

        consider z be Point of SS such that

         A3: z = x and

         A4: R[z];

        the carrier of SS = ( REAL 2) by EUCLID: 22;

        then z is Tuple of 2, REAL by FINSEQ_2: 131;

        then

        consider x1,y1 be Element of REAL such that

         A5: z = <*x1, y1*> by FINSEQ_2: 100;

        (z `1 ) = x1 by A5, EUCLID: 52;

        then

         A6: y1 >= (1 - (2 * x1)) & y1 >= ((2 * x1) - 1) by A4, A5, EUCLID: 52;

        set Y = [x1, y1];

        

         A7: Y in [:the carrier of R^1 , the carrier of R^1 :] by TOPMETR: 17, ZFMISC_1: 87;

        then

         A8: Y in the carrier of GG by BORSUK_1:def 2;

        reconsider Y as Point of GG by A7, BORSUK_1:def 2;

        

         A9: Y in ( dom f) by A8, FUNCT_2:def 1;

        (Y `1 ) = x1 & (Y `2 ) = y1;

        then

         A10: Y in K by A6;

        x = (f . Y) by A1, A3, A5;

        hence thesis by A10, A9, FUNCT_1:def 6;

      end;

      

       A11: f is being_homeomorphism by A1, TOPREAL6: 76;

      (f .: K) c= L

      proof

        let x be object;

        assume x in (f .: K);

        then

        consider y be object such that y in ( dom f) and

         A12: y in K and

         A13: x = (f . y) by FUNCT_1:def 6;

        consider z be Point of GG such that

         A14: z = y and

         A15: P[z] by A12;

        z in the carrier of GG;

        then z in [:the carrier of R^1 , the carrier of R^1 :] by BORSUK_1:def 2;

        then

        consider x1,y1 be object such that

         A16: x1 in the carrier of R^1 & y1 in the carrier of R^1 and

         A17: z = [x1, y1] by ZFMISC_1:def 2;

        reconsider x1, y1 as Real by A16;

        

         A18: x = |[x1, y1]| by A1, A13, A14, A17;

        then

        reconsider x9 = x as Point of SS;

        

         A19: (z `1 ) = x1 & (z `2 ) = y1 by A17;

        (x9 `1 ) = x1 & (x9 `2 ) = y1 by A18, FINSEQ_1: 44;

        hence thesis by A15, A19;

      end;

      then (f .: K) = L by A2;

      hence thesis by A11, Th19, TOPS_2: 58;

    end;

    theorem :: BORSUK_6:24

    

     Th24: { p where p be Point of [: I[01] , I[01] :] : (p `2 ) <= (1 - (2 * (p `1 ))) } is closed non empty Subset of [: I[01] , I[01] :]

    proof

      set GG = [: I[01] , I[01] :], SS = [: R^1 , R^1 :];

       0 in the carrier of I[01] by BORSUK_1: 43;

      then [ 0 , 0 ] in [:the carrier of I[01] , the carrier of I[01] :] by ZFMISC_1: 87;

      then

      reconsider x = [ 0 , 0 ] as Point of GG by BORSUK_1:def 2;

      reconsider PA = { p where p be Point of SS : (p `2 ) <= (1 - (2 * (p `1 ))) } as closed Subset of SS by Th21;

      set P0 = { p where p be Point of GG : (p `2 ) <= (1 - (2 * (p `1 ))) };

      

       A1: GG is SubSpace of SS by BORSUK_3: 21;

      

       A2: P0 = (PA /\ ( [#] GG))

      proof

        thus P0 c= (PA /\ ( [#] GG))

        proof

          let x be object;

          

           A3: the carrier of GG c= the carrier of SS by A1, BORSUK_1: 1;

          assume x in P0;

          then

           A4: ex p be Point of GG st x = p & (p `2 ) <= (1 - (2 * (p `1 )));

          then x in the carrier of GG;

          then

          reconsider a = x as Point of SS by A3;

          (a `2 ) <= (1 - (2 * (a `1 ))) by A4;

          then x in PA;

          hence thesis by A4, XBOOLE_0:def 4;

        end;

        let x be object;

        assume

         A5: x in (PA /\ ( [#] GG));

        then x in PA by XBOOLE_0:def 4;

        then ex p be Point of SS st x = p & (p `2 ) <= (1 - (2 * (p `1 )));

        hence thesis by A5;

      end;

      (x `2 ) <= (1 - (2 * (x `1 )));

      then x in P0;

      hence thesis by A1, A2, PRE_TOPC: 13;

    end;

    theorem :: BORSUK_6:25

    

     Th25: { p where p be Point of [: I[01] , I[01] :] : (p `2 ) >= (1 - (2 * (p `1 ))) & (p `2 ) >= ((2 * (p `1 )) - 1) } is closed non empty Subset of [: I[01] , I[01] :]

    proof

      set GG = [: I[01] , I[01] :], SS = [: R^1 , R^1 :];

      1 in the carrier of I[01] by BORSUK_1: 43;

      then [1, 1] in [:the carrier of I[01] , the carrier of I[01] :] by ZFMISC_1: 87;

      then

      reconsider x = [1, 1] as Point of GG by BORSUK_1:def 2;

      reconsider PA = { p where p be Point of SS : (p `2 ) >= (1 - (2 * (p `1 ))) & (p `2 ) >= ((2 * (p `1 )) - 1) } as closed Subset of SS by Th23;

      set P0 = { p where p be Point of GG : (p `2 ) >= (1 - (2 * (p `1 ))) & (p `2 ) >= ((2 * (p `1 )) - 1) };

      

       A1: (x `2 ) >= ((2 * (x `1 )) - 1);

      

       A2: GG is SubSpace of SS by BORSUK_3: 21;

      

       A3: P0 = (PA /\ ( [#] GG))

      proof

        thus P0 c= (PA /\ ( [#] GG))

        proof

          let x be object;

          

           A4: the carrier of GG c= the carrier of SS by A2, BORSUK_1: 1;

          assume x in P0;

          then

           A5: ex p be Point of GG st x = p & (p `2 ) >= (1 - (2 * (p `1 ))) & (p `2 ) >= ((2 * (p `1 )) - 1);

          then x in the carrier of GG;

          then

          reconsider a = x as Point of SS by A4;

          (a `2 ) >= (1 - (2 * (a `1 ))) by A5;

          then x in PA by A5;

          hence thesis by A5, XBOOLE_0:def 4;

        end;

        let x be object;

        assume

         A6: x in (PA /\ ( [#] GG));

        then x in PA by XBOOLE_0:def 4;

        then ex p be Point of SS st x = p & (p `2 ) >= (1 - (2 * (p `1 ))) & (p `2 ) >= ((2 * (p `1 )) - 1);

        hence thesis by A6;

      end;

      (x `2 ) >= (1 - (2 * (x `1 )));

      then x in P0 by A1;

      hence thesis by A2, A3, PRE_TOPC: 13;

    end;

    theorem :: BORSUK_6:26

    

     Th26: { p where p be Point of [: I[01] , I[01] :] : (p `2 ) <= ((2 * (p `1 )) - 1) } is closed non empty Subset of [: I[01] , I[01] :]

    proof

      set GG = [: I[01] , I[01] :], SS = [: R^1 , R^1 :];

       0 in the carrier of I[01] & 1 in the carrier of I[01] by BORSUK_1: 43;

      then [1, 0 ] in [:the carrier of I[01] , the carrier of I[01] :] by ZFMISC_1: 87;

      then

      reconsider x = [1, 0 ] as Point of GG by BORSUK_1:def 2;

      reconsider PA = { p where p be Point of SS : (p `2 ) <= ((2 * (p `1 )) - 1) } as closed Subset of SS by Th22;

      set P0 = { p where p be Point of GG : (p `2 ) <= ((2 * (p `1 )) - 1) };

      

       A1: GG is SubSpace of SS by BORSUK_3: 21;

      

       A2: P0 = (PA /\ ( [#] GG))

      proof

        thus P0 c= (PA /\ ( [#] GG))

        proof

          let x be object;

          

           A3: the carrier of GG c= the carrier of SS by A1, BORSUK_1: 1;

          assume x in P0;

          then

           A4: ex p be Point of GG st x = p & (p `2 ) <= ((2 * (p `1 )) - 1);

          then x in the carrier of GG;

          then

          reconsider a = x as Point of SS by A3;

          (a `2 ) <= ((2 * (a `1 )) - 1) by A4;

          then x in PA;

          hence thesis by A4, XBOOLE_0:def 4;

        end;

        let x be object;

        assume

         A5: x in (PA /\ ( [#] GG));

        then x in PA by XBOOLE_0:def 4;

        then ex p be Point of SS st x = p & (p `2 ) <= ((2 * (p `1 )) - 1);

        hence thesis by A5;

      end;

      (x `2 ) <= ((2 * (x `1 )) - 1);

      then x in P0;

      hence thesis by A1, A2, PRE_TOPC: 13;

    end;

    theorem :: BORSUK_6:27

    

     Th27: for S,T be non empty TopSpace, p be Point of [:S, T:] holds (p `1 ) is Point of S & (p `2 ) is Point of T

    proof

      let S,T be non empty TopSpace, p be Point of [:S, T:];

      p in the carrier of [:S, T:];

      then p in [:the carrier of S, the carrier of T:] by BORSUK_1:def 2;

      hence thesis by MCART_1: 10;

    end;

    theorem :: BORSUK_6:28

    

     Th28: for A,B be Subset of [: I[01] , I[01] :] st A = [: [. 0 , (1 / 2).], [. 0 , 1.]:] & B = [: [.(1 / 2), 1.], [. 0 , 1.]:] holds (( [#] ( [: I[01] , I[01] :] | A)) \/ ( [#] ( [: I[01] , I[01] :] | B))) = ( [#] [: I[01] , I[01] :])

    proof

      let A,B be Subset of [: I[01] , I[01] :];

      assume

       A1: A = [: [. 0 , (1 / 2).], [. 0 , 1.]:] & B = [: [.(1 / 2), 1.], [. 0 , 1.]:];

      (( [#] ( [: I[01] , I[01] :] | A)) \/ ( [#] ( [: I[01] , I[01] :] | B))) = (A \/ ( [#] ( [: I[01] , I[01] :] | B))) by PRE_TOPC:def 5

      .= (A \/ B) by PRE_TOPC:def 5

      .= [:( [. 0 , (1 / 2).] \/ [.(1 / 2), 1.]), [. 0 , 1.]:] by A1, ZFMISC_1: 97

      .= [: [. 0 , 1.], [. 0 , 1.]:] by XXREAL_1: 174

      .= ( [#] [: I[01] , I[01] :]) by BORSUK_1: 40, BORSUK_1:def 2;

      hence thesis;

    end;

    theorem :: BORSUK_6:29

    

     Th29: for A,B be Subset of [: I[01] , I[01] :] st A = [: [. 0 , (1 / 2).], [. 0 , 1.]:] & B = [: [.(1 / 2), 1.], [. 0 , 1.]:] holds (( [#] ( [: I[01] , I[01] :] | A)) /\ ( [#] ( [: I[01] , I[01] :] | B))) = [: {(1 / 2)}, [. 0 , 1.]:]

    proof

      let A,B be Subset of [: I[01] , I[01] :];

      assume

       A1: A = [: [. 0 , (1 / 2).], [. 0 , 1.]:] & B = [: [.(1 / 2), 1.], [. 0 , 1.]:];

      (( [#] ( [: I[01] , I[01] :] | A)) /\ ( [#] ( [: I[01] , I[01] :] | B))) = (A /\ ( [#] ( [: I[01] , I[01] :] | B))) by PRE_TOPC:def 5

      .= (A /\ B) by PRE_TOPC:def 5

      .= [:( [. 0 , (1 / 2).] /\ [.(1 / 2), 1.]), [. 0 , 1.]:] by A1, ZFMISC_1: 99

      .= [: {(1 / 2)}, [. 0 , 1.]:] by XXREAL_1: 418;

      hence thesis;

    end;

    begin

    registration

      let T be TopStruct;

      cluster empty compact for Subset of T;

      existence

      proof

        take ( {} T);

        thus thesis;

      end;

    end

    theorem :: BORSUK_6:30

    

     Th30: for T be TopStruct holds {} is empty compact Subset of T

    proof

      let T be TopStruct;

      ( {} T) c= the carrier of T;

      hence thesis;

    end;

    theorem :: BORSUK_6:31

    

     Th31: for T be TopStruct, a,b be Real st a > b holds [.a, b.] is empty compact Subset of T

    proof

      let T be TopStruct, a,b be Real;

      assume a > b;

      then [.a, b.] = ( {} T) by XXREAL_1: 29;

      hence thesis;

    end;

    theorem :: BORSUK_6:32

    for a,b,c,d be Point of I[01] holds [: [.a, b.], [.c, d.]:] is compact Subset of [: I[01] , I[01] :]

    proof

      let a,b,c,d be Point of I[01] ;

      per cases ;

        suppose a <= b & c <= d;

        hence thesis by Th9;

      end;

        suppose a > b & c <= d;

        then

        reconsider A = [.a, b.] as empty Subset of I[01] by Th31;

         [:A, [.c, d.]:] = {} ;

        hence thesis by Th30;

      end;

        suppose a > b & c > d;

        then

        reconsider A = [.c, d.] as empty Subset of I[01] by Th31;

         [: [.a, b.], A:] = {} ;

        hence thesis by Th30;

      end;

        suppose a <= b & c > d;

        then

        reconsider A = [.c, d.] as empty Subset of I[01] by Th31;

         [: [.a, b.], A:] = {} ;

        hence thesis by Th30;

      end;

    end;

    begin

    definition

      let a,b,c,d be Real;

      :: BORSUK_6:def1

      func L[01] (a,b,c,d) -> Function of ( Closed-Interval-TSpace (a,b)), ( Closed-Interval-TSpace (c,d)) equals (( L[01] (( (#) (c,d)),((c,d) (#) ))) * ( P[01] (a,b,( (#) ( 0 ,1)),(( 0 ,1) (#) ))));

      correctness ;

    end

    theorem :: BORSUK_6:33

    

     Th33: for a,b,c,d be Real st a < b & c < d holds (( L[01] (a,b,c,d)) . a) = c & (( L[01] (a,b,c,d)) . b) = d

    proof

      let a,b,c,d be Real;

      assume that

       A1: a < b and

       A2: c < d;

      a in [.a, b.] by A1, XXREAL_1: 1;

      then a in the carrier of ( Closed-Interval-TSpace (a,b)) by A1, TOPMETR: 18;

      then a in ( dom ( P[01] (a,b,( (#) ( 0 ,1)),(( 0 ,1) (#) )))) by FUNCT_2:def 1;

      

      hence (( L[01] (a,b,c,d)) . a) = (( L[01] (( (#) (c,d)),((c,d) (#) ))) . (( P[01] (a,b,( (#) ( 0 ,1)),(( 0 ,1) (#) ))) . a)) by FUNCT_1: 13

      .= (( L[01] (( (#) (c,d)),((c,d) (#) ))) . (( P[01] (a,b,( (#) ( 0 ,1)),(( 0 ,1) (#) ))) . ( (#) (a,b)))) by A1, TREAL_1:def 1

      .= (( L[01] (( (#) (c,d)),((c,d) (#) ))) . ( (#) ( 0 ,1))) by A1, TREAL_1: 13

      .= ( (#) (c,d)) by A2, TREAL_1: 9

      .= c by A2, TREAL_1:def 1;

      b in [.a, b.] by A1, XXREAL_1: 1;

      then b in the carrier of ( Closed-Interval-TSpace (a,b)) by A1, TOPMETR: 18;

      then b in ( dom ( P[01] (a,b,( (#) ( 0 ,1)),(( 0 ,1) (#) )))) by FUNCT_2:def 1;

      

      hence (( L[01] (a,b,c,d)) . b) = (( L[01] (( (#) (c,d)),((c,d) (#) ))) . (( P[01] (a,b,( (#) ( 0 ,1)),(( 0 ,1) (#) ))) . b)) by FUNCT_1: 13

      .= (( L[01] (( (#) (c,d)),((c,d) (#) ))) . (( P[01] (a,b,( (#) ( 0 ,1)),(( 0 ,1) (#) ))) . ((a,b) (#) ))) by A1, TREAL_1:def 2

      .= (( L[01] (( (#) (c,d)),((c,d) (#) ))) . (( 0 ,1) (#) )) by A1, TREAL_1: 13

      .= ((c,d) (#) ) by A2, TREAL_1: 9

      .= d by A2, TREAL_1:def 2;

    end;

    theorem :: BORSUK_6:34

    

     Th34: for a,b,c,d be Real st a < b & c <= d holds ( L[01] (a,b,c,d)) is continuous Function of ( Closed-Interval-TSpace (a,b)), ( Closed-Interval-TSpace (c,d))

    proof

      let a,b,c,d be Real;

      assume a < b & c <= d;

      then ( L[01] (( (#) (c,d)),((c,d) (#) ))) is continuous Function of ( Closed-Interval-TSpace ( 0 ,1)), ( Closed-Interval-TSpace (c,d)) & ( P[01] (a,b,( (#) ( 0 ,1)),(( 0 ,1) (#) ))) is continuous Function of ( Closed-Interval-TSpace (a,b)), ( Closed-Interval-TSpace ( 0 ,1)) by TREAL_1: 8, TREAL_1: 12;

      hence thesis;

    end;

    theorem :: BORSUK_6:35

    

     Th35: for a,b,c,d be Real st a < b & c <= d holds for x be Real st a <= x & x <= b holds (( L[01] (a,b,c,d)) . x) = ((((d - c) / (b - a)) * (x - a)) + c)

    proof

      

       A1: 0 = ( (#) ( 0 ,1)) & 1 = (( 0 ,1) (#) ) by TREAL_1:def 1, TREAL_1:def 2;

      let a,b,c,d be Real;

      assume

       A2: a < b;

      set G = ( P[01] (a,b,( (#) ( 0 ,1)),(( 0 ,1) (#) )));

      set F = ( L[01] (( (#) (c,d)),((c,d) (#) )));

      set f = ( L[01] (a,b,c,d));

      assume

       A3: c <= d;

      then

       A4: ( (#) (c,d)) = c & ((c,d) (#) ) = d by TREAL_1:def 1, TREAL_1:def 2;

      let x be Real;

      assume

       A5: a <= x;

      set X = ((x - a) / (b - a));

      assume

       A6: x <= b;

      then

       A7: X in the carrier of ( Closed-Interval-TSpace ( 0 ,1)) by A5, Th2;

      x in [.a, b.] by A5, A6, XXREAL_1: 1;

      then

       A8: x in the carrier of ( Closed-Interval-TSpace (a,b)) by A2, TOPMETR: 18;

      then x in ( dom G) by FUNCT_2:def 1;

      

      then (f . x) = (F . (G . x)) by FUNCT_1: 13

      .= (F . ((((b - x) * 0 ) + ((x - a) * 1)) / (b - a))) by A2, A8, A1, TREAL_1:def 4

      .= (((1 - X) * c) + (X * d)) by A3, A4, A7, TREAL_1:def 3

      .= ((((d - c) / (b - a)) * (x - a)) + c) by XCMPLX_1: 234;

      hence thesis;

    end;

    theorem :: BORSUK_6:36

    

     Th36: for f1,f2 be Function of [: I[01] , I[01] :], I[01] st f1 is continuous & f2 is continuous & (for p be Point of [: I[01] , I[01] :] holds ((f1 . p) * (f2 . p)) is Point of I[01] ) holds ex g be Function of [: I[01] , I[01] :], I[01] st (for p be Point of [: I[01] , I[01] :], r1,r2 be Real st (f1 . p) = r1 & (f2 . p) = r2 holds (g . p) = (r1 * r2)) & g is continuous

    proof

      reconsider A = [. 0 , 1.] as non empty Subset of R^1 by TOPMETR: 17, XXREAL_1: 1;

      set X = [: I[01] , I[01] :];

      let f1,f2 be Function of [: I[01] , I[01] :], I[01] ;

      assume that

       A1: f1 is continuous & f2 is continuous and

       A2: for p be Point of [: I[01] , I[01] :] holds ((f1 . p) * (f2 . p)) is Point of I[01] ;

      reconsider f19 = f1, f29 = f2 as Function of X, R^1 by BORSUK_1: 40, FUNCT_2: 7, TOPMETR: 17;

      f19 is continuous & f29 is continuous by A1, PRE_TOPC: 26;

      then

      consider g be Function of X, R^1 such that

       A3: for p be Point of X, r1,r2 be Real st (f19 . p) = r1 & (f29 . p) = r2 holds (g . p) = (r1 * r2) and

       A4: g is continuous by JGRAPH_2: 25;

      

       A5: ( rng g) c= [. 0 , 1.]

      proof

        let x be object;

        assume x in ( rng g);

        then

        consider y be object such that

         A6: y in ( dom g) and

         A7: x = (g . y) by FUNCT_1:def 3;

        reconsider y as Point of X by A6;

        (g . y) = ((f1 . y) * (f2 . y)) by A3;

        then (g . y) is Point of I[01] by A2;

        hence thesis by A7, BORSUK_1: 40;

      end;

       [. 0 , 1.] = the carrier of ( R^1 | A) & ( dom g) = the carrier of X by FUNCT_2:def 1, PRE_TOPC: 8;

      then

      reconsider g as Function of X, ( R^1 | A) by A5, FUNCT_2: 2;

      ( R^1 | A) = I[01] by BORSUK_1:def 13, TOPMETR:def 6;

      then

      reconsider g as continuous Function of X, I[01] by A4, JGRAPH_1: 45;

      take g;

      thus thesis by A3;

    end;

    theorem :: BORSUK_6:37

    

     Th37: for f1,f2 be Function of [: I[01] , I[01] :], I[01] st f1 is continuous & f2 is continuous & (for p be Point of [: I[01] , I[01] :] holds ((f1 . p) + (f2 . p)) is Point of I[01] ) holds ex g be Function of [: I[01] , I[01] :], I[01] st (for p be Point of [: I[01] , I[01] :], r1,r2 be Real st (f1 . p) = r1 & (f2 . p) = r2 holds (g . p) = (r1 + r2)) & g is continuous

    proof

      reconsider A = [. 0 , 1.] as non empty Subset of R^1 by TOPMETR: 17, XXREAL_1: 1;

      set X = [: I[01] , I[01] :];

      let f1,f2 be Function of [: I[01] , I[01] :], I[01] ;

      assume that

       A1: f1 is continuous & f2 is continuous and

       A2: for p be Point of [: I[01] , I[01] :] holds ((f1 . p) + (f2 . p)) is Point of I[01] ;

      reconsider f19 = f1, f29 = f2 as Function of X, R^1 by BORSUK_1: 40, FUNCT_2: 7, TOPMETR: 17;

      f19 is continuous & f29 is continuous by A1, PRE_TOPC: 26;

      then

      consider g be Function of X, R^1 such that

       A3: for p be Point of X, r1,r2 be Real st (f19 . p) = r1 & (f29 . p) = r2 holds (g . p) = (r1 + r2) and

       A4: g is continuous by JGRAPH_2: 19;

      

       A5: ( rng g) c= [. 0 , 1.]

      proof

        let x be object;

        assume x in ( rng g);

        then

        consider y be object such that

         A6: y in ( dom g) and

         A7: x = (g . y) by FUNCT_1:def 3;

        reconsider y as Point of X by A6;

        (g . y) = ((f1 . y) + (f2 . y)) by A3;

        then (g . y) is Point of I[01] by A2;

        hence thesis by A7, BORSUK_1: 40;

      end;

       [. 0 , 1.] = the carrier of ( R^1 | A) & ( dom g) = the carrier of X by FUNCT_2:def 1, PRE_TOPC: 8;

      then

      reconsider g as Function of X, ( R^1 | A) by A5, FUNCT_2: 2;

      ( R^1 | A) = I[01] by BORSUK_1:def 13, TOPMETR:def 6;

      then

      reconsider g as continuous Function of X, I[01] by A4, JGRAPH_1: 45;

      take g;

      thus thesis by A3;

    end;

    theorem :: BORSUK_6:38

    for f1,f2 be Function of [: I[01] , I[01] :], I[01] st f1 is continuous & f2 is continuous & (for p be Point of [: I[01] , I[01] :] holds ((f1 . p) - (f2 . p)) is Point of I[01] ) holds ex g be Function of [: I[01] , I[01] :], I[01] st (for p be Point of [: I[01] , I[01] :], r1,r2 be Real st (f1 . p) = r1 & (f2 . p) = r2 holds (g . p) = (r1 - r2)) & g is continuous

    proof

      reconsider A = [. 0 , 1.] as non empty Subset of R^1 by TOPMETR: 17, XXREAL_1: 1;

      set X = [: I[01] , I[01] :];

      let f1,f2 be Function of [: I[01] , I[01] :], I[01] ;

      assume that

       A1: f1 is continuous & f2 is continuous and

       A2: for p be Point of [: I[01] , I[01] :] holds ((f1 . p) - (f2 . p)) is Point of I[01] ;

      reconsider f19 = f1, f29 = f2 as Function of X, R^1 by BORSUK_1: 40, FUNCT_2: 7, TOPMETR: 17;

      f19 is continuous & f29 is continuous by A1, PRE_TOPC: 26;

      then

      consider g be Function of X, R^1 such that

       A3: for p be Point of X, r1,r2 be Real st (f19 . p) = r1 & (f29 . p) = r2 holds (g . p) = (r1 - r2) and

       A4: g is continuous by JGRAPH_2: 21;

      

       A5: ( rng g) c= [. 0 , 1.]

      proof

        let x be object;

        assume x in ( rng g);

        then

        consider y be object such that

         A6: y in ( dom g) and

         A7: x = (g . y) by FUNCT_1:def 3;

        reconsider y as Point of X by A6;

        (g . y) = ((f1 . y) - (f2 . y)) by A3;

        then (g . y) is Point of I[01] by A2;

        hence thesis by A7, BORSUK_1: 40;

      end;

       [. 0 , 1.] = the carrier of ( R^1 | A) & ( dom g) = the carrier of X by FUNCT_2:def 1, PRE_TOPC: 8;

      then

      reconsider g as Function of X, ( R^1 | A) by A5, FUNCT_2: 2;

      ( R^1 | A) = I[01] by BORSUK_1:def 13, TOPMETR:def 6;

      then

      reconsider g as continuous Function of X, I[01] by A4, JGRAPH_1: 45;

      take g;

      thus thesis by A3;

    end;

    begin

    reserve T for non empty TopSpace,

a,b,c,d for Point of T;

    theorem :: BORSUK_6:39

    

     Th39: for P be Path of a, b st P is continuous holds (P * ( L[01] ((( 0 ,1) (#) ),( (#) ( 0 ,1))))) is continuous Function of I[01] , T

    proof

      reconsider g = ( L[01] ((( 0 ,1) (#) ),( (#) ( 0 ,1)))) as Function of I[01] , I[01] by TOPMETR: 20;

      let P be Path of a, b such that

       A1: P is continuous;

      reconsider f = (P * g) as Function of I[01] , T;

      g is continuous by TOPMETR: 20, TREAL_1: 8;

      then f is continuous by A1;

      hence thesis;

    end;

    theorem :: BORSUK_6:40

    

     Th40: for X be non empty TopStruct, a,b be Point of X, P be Path of a, b st (P . 0 ) = a & (P . 1) = b holds ((P * ( L[01] ((( 0 ,1) (#) ),( (#) ( 0 ,1))))) . 0 ) = b & ((P * ( L[01] ((( 0 ,1) (#) ),( (#) ( 0 ,1))))) . 1) = a

    proof

      

       A1: 0 in [. 0 , 1.] by XXREAL_1: 1;

      set e = ( L[01] ((( 0 ,1) (#) ),( (#) ( 0 ,1))));

      let X be non empty TopStruct, a,b be Point of X;

      let P be Path of a, b such that

       A2: (P . 0 ) = a and

       A3: (P . 1) = b;

      

       A4: the carrier of ( Closed-Interval-TSpace ( 0 ,1)) = [. 0 , 1.] by TOPMETR: 18;

      (e . 0 ) = (e . ( (#) ( 0 ,1))) by TREAL_1:def 1

      .= (( 0 ,1) (#) ) by TREAL_1: 9

      .= 1 by TREAL_1:def 2;

      hence ((P * e) . 0 ) = b by A3, A4, A1, FUNCT_2: 15;

      

       A5: 1 in [. 0 , 1.] by XXREAL_1: 1;

      (e . 1) = (e . (( 0 ,1) (#) )) by TREAL_1:def 2

      .= ( (#) ( 0 ,1)) by TREAL_1: 9

      .= 0 by TREAL_1:def 1;

      hence thesis by A2, A4, A5, FUNCT_2: 15;

    end;

    theorem :: BORSUK_6:41

    

     Th41: for P be Path of a, b st P is continuous & (P . 0 ) = a & (P . 1) = b holds ( - P) is continuous & (( - P) . 0 ) = b & (( - P) . 1) = a

    proof

      let P be Path of a, b such that

       A1: P is continuous and

       A2: (P . 0 ) = a & (P . 1) = b;

      

       A3: ((P * ( L[01] ((( 0 ,1) (#) ),( (#) ( 0 ,1))))) . 1) = a by A2, Th40;

      (P * ( L[01] ((( 0 ,1) (#) ),( (#) ( 0 ,1))))) is continuous Function of I[01] , T & ((P * ( L[01] ((( 0 ,1) (#) ),( (#) ( 0 ,1))))) . 0 ) = b by A1, A2, Th39, Th40;

      then (b,a) are_connected by A3;

      hence thesis by BORSUK_2:def 2;

    end;

    definition

      let T be non empty TopSpace, a,b be Point of T;

      :: original: are_connected

      redefine

      pred a,b are_connected ;

      reflexivity

      proof

        let a be Point of T;

        thus (a,a) are_connected ;

      end;

      symmetry

      proof

        let a,b be Point of T;

        set P = the Path of a, b;

        assume

         A1: (a,b) are_connected ;

        then

         A2: (P . 1) = b by BORSUK_2:def 2;

        take ( - P);

        P is continuous & (P . 0 ) = a by A1, BORSUK_2:def 2;

        hence thesis by A2, Th41;

      end;

    end

    theorem :: BORSUK_6:42

    

     Th42: (a,b) are_connected & (b,c) are_connected implies (a,c) are_connected

    proof

      assume that

       A1: (a,b) are_connected and

       A2: (b,c) are_connected ;

      set P = the Path of a, b, R = the Path of b, c;

      

       A3: P is continuous & (P . 0 ) = a by A1, BORSUK_2:def 2;

      take (P + R);

      

       A4: (R . 0 ) = b & (R . 1) = c by A2, BORSUK_2:def 2;

      (P . 1) = b & R is continuous by A1, A2, BORSUK_2:def 2;

      hence thesis by A3, A4, BORSUK_2: 14;

    end;

    theorem :: BORSUK_6:43

    

     Th43: (a,b) are_connected implies for A be Path of a, b holds A = ( - ( - A))

    proof

      set I = the carrier of I[01] ;

      assume

       A1: (a,b) are_connected ;

      let A be Path of a, b;

      for x be Element of I holds (A . x) = (( - ( - A)) . x)

      proof

        let x be Element of I;

        reconsider z = (1 - x) as Point of I[01] by JORDAN5B: 4;

        

        thus (( - ( - A)) . x) = (( - A) . (1 - x)) by A1, BORSUK_2:def 6

        .= (A . (1 - z)) by A1, BORSUK_2:def 6

        .= (A . x);

      end;

      hence thesis by FUNCT_2: 63;

    end;

    theorem :: BORSUK_6:44

    for T be non empty pathwise_connected TopSpace, a,b be Point of T holds for A be Path of a, b holds A = ( - ( - A)) by Th43, BORSUK_2:def 3;

    begin

    definition

      let T be non empty pathwise_connected TopSpace;

      let a,b,c be Point of T;

      let P be Path of a, b, Q be Path of b, c;

      :: original: +

      redefine

      :: BORSUK_6:def2

      func P + Q means for t be Point of I[01] holds (t <= (1 / 2) implies (it . t) = (P . (2 * t))) & ((1 / 2) <= t implies (it . t) = (Q . ((2 * t) - 1)));

      compatibility

      proof

        let X be Path of a, c;

        (a,b) are_connected & (b,c) are_connected by BORSUK_2:def 3;

        hence thesis by BORSUK_2:def 5;

      end;

    end

    definition

      let T be non empty pathwise_connected TopSpace;

      let a,b be Point of T;

      let P be Path of a, b;

      :: original: -

      redefine

      :: BORSUK_6:def3

      func - P means

      : Def3: for t be Point of I[01] holds (it . t) = (P . (1 - t));

      compatibility

      proof

        let X be Path of b, a;

        (b,a) are_connected by BORSUK_2:def 3;

        hence thesis by BORSUK_2:def 6;

      end;

    end

    begin

    definition

      let T be non empty TopSpace, a,b be Point of T;

      let P be Path of a, b;

      let f be continuous Function of I[01] , I[01] ;

      assume that

       A1: (f . 0 ) = 0 and

       A2: (f . 1) = 1 and

       A3: (a,b) are_connected ;

      :: BORSUK_6:def4

      func RePar (P,f) -> Path of a, b equals

      : Def4: (P * f);

      coherence

      proof

        set PF = (P * f);

         0 in the carrier of I[01] by BORSUK_1: 43;

        then 0 in ( dom f) by FUNCT_2:def 1;

        

        then

         A4: (PF . 0 ) = (P . (f . 0 )) by FUNCT_1: 13

        .= a by A1, A3, BORSUK_2:def 2;

        1 in the carrier of I[01] by BORSUK_1: 43;

        then 1 in ( dom f) by FUNCT_2:def 1;

        

        then

         A5: (PF . 1) = (P . (f . 1)) by FUNCT_1: 13

        .= b by A2, A3, BORSUK_2:def 2;

        P is continuous by A3, BORSUK_2:def 2;

        hence thesis by A3, A4, A5, BORSUK_2:def 2;

      end;

    end

    theorem :: BORSUK_6:45

    

     Th45: for P be Path of a, b, f be continuous Function of I[01] , I[01] st (f . 0 ) = 0 & (f . 1) = 1 & (a,b) are_connected holds (( RePar (P,f)),P) are_homotopic

    proof

      set X = [: I[01] , I[01] :];

      reconsider G2 = ( pr2 (the carrier of I[01] ,the carrier of I[01] )) as continuous Function of X, I[01] by YELLOW12: 40;

      reconsider F2 = ( pr1 (the carrier of I[01] ,the carrier of I[01] )) as continuous Function of X, I[01] by YELLOW12: 39;

      reconsider f3 = ( pr1 (the carrier of I[01] ,the carrier of I[01] )) as continuous Function of X, I[01] by YELLOW12: 39;

      reconsider f4 = ( pr2 (the carrier of I[01] ,the carrier of I[01] )) as continuous Function of X, I[01] by YELLOW12: 40;

      reconsider ID = ( id I[01] ) as Path of 0[01] , 1[01] by Th8;

      let P be Path of a, b, f be continuous Function of I[01] , I[01] ;

      assume that

       A1: (f . 0 ) = 0 and

       A2: (f . 1) = 1 and

       A3: (a,b) are_connected ;

      reconsider f2 = (f * F2) as continuous Function of X, I[01] ;

      set G1 = ( - ID);

      reconsider f1 = (G1 * G2) as continuous Function of X, I[01] ;

      

       A4: for s,t be Point of I[01] holds (f1 . [s, t]) = (1 - t)

      proof

        let s,t be Point of I[01] ;

        

         A5: (1 - t) in the carrier of I[01] by JORDAN5B: 4;

         [s, t] in [:the carrier of I[01] , the carrier of I[01] :] by ZFMISC_1: 87;

        then [s, t] in ( dom G2) by FUNCT_2:def 1;

        

        then (f1 . [s, t]) = (G1 . (G2 . (s,t))) by FUNCT_1: 13

        .= (G1 . t) by FUNCT_3:def 5

        .= (ID . (1 - t)) by Def3

        .= (1 - t) by A5, FUNCT_1: 18;

        hence thesis;

      end;

      for p be Point of X holds ((f3 . p) * (f4 . p)) is Point of I[01] by Th5;

      then

      consider g2 be Function of X, I[01] such that

       A6: for p be Point of X, r1,r2 be Real st (f3 . p) = r1 & (f4 . p) = r2 holds (g2 . p) = (r1 * r2) and

       A7: g2 is continuous by Th36;

      for p be Point of X holds ((f1 . p) * (f2 . p)) is Point of I[01] by Th5;

      then

      consider g1 be Function of X, I[01] such that

       A8: for p be Point of X, r1,r2 be Real st (f1 . p) = r1 & (f2 . p) = r2 holds (g1 . p) = (r1 * r2) and

       A9: g1 is continuous by Th36;

      

       A10: for s,t be Point of I[01] holds (f2 . (s,t)) = (f . s)

      proof

        let s,t be Point of I[01] ;

         [s, t] in [:the carrier of I[01] , the carrier of I[01] :] by ZFMISC_1: 87;

        then [s, t] in ( dom F2) by FUNCT_2:def 1;

        

        hence (f2 . (s,t)) = (f . (F2 . (s,t))) by FUNCT_1: 13

        .= (f . s) by FUNCT_3:def 4;

      end;

      

       A11: for t,s be Point of I[01] holds (g1 . [s, t]) = ((1 - t) * (f . s))

      proof

        let t,s be Point of I[01] ;

        (f1 . (s,t)) = (1 - t) & (f2 . (s,t)) = (f . s) by A4, A10;

        hence thesis by A8;

      end;

      

       A12: for t,s be Point of I[01] holds (g2 . [s, t]) = (t * s)

      proof

        let t,s be Point of I[01] ;

        (f3 . (s,t)) = s & (f4 . (s,t)) = t by FUNCT_3:def 4, FUNCT_3:def 5;

        hence thesis by A6;

      end;

      for p be Point of X holds ((g1 . p) + (g2 . p)) is Point of I[01]

      proof

        let p be Point of X;

        p in the carrier of [: I[01] , I[01] :];

        then p in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

        then

        consider s,t be object such that

         A13: s in the carrier of I[01] & t in the carrier of I[01] and

         A14: p = [s, t] by ZFMISC_1:def 2;

        reconsider s, t as Point of I[01] by A13;

        set a = (f . s);

        per cases ;

          suppose

           A15: (f . s) <= s;

          

           A16: s <= 1 by BORSUK_1: 40, XXREAL_1: 1;

          

           A17: t <= 1 by BORSUK_1: 40, XXREAL_1: 1;

          then (((1 - t) * a) + (t * s)) <= s by A15, XREAL_1: 172;

          then

           A18: 0 <= a & (((1 - t) * a) + (t * s)) <= 1 by A16, BORSUK_1: 40, XXREAL_0: 2, XXREAL_1: 1;

           0 <= t by BORSUK_1: 40, XXREAL_1: 1;

          then

           A19: a <= (((1 - t) * a) + (t * s)) by A15, A17, XREAL_1: 173;

          ((g1 . p) + (g2 . p)) = (((1 - t) * (f . s)) + (g2 . p)) by A11, A14

          .= (((1 - t) * (f . s)) + (t * s)) by A12, A14;

          hence thesis by A19, A18, BORSUK_1: 40, XXREAL_1: 1;

        end;

          suppose

           A20: a > s;

          set j = (1 - t);

          

           A21: a <= 1 by BORSUK_1: 40, XXREAL_1: 1;

          

           A22: j in the carrier of I[01] by JORDAN5B: 4;

          then

           A23: j <= 1 by BORSUK_1: 43;

          then (((1 - j) * s) + (j * a)) <= a by A20, XREAL_1: 172;

          then

           A24: 0 <= s & (((1 - t) * a) + (t * s)) <= 1 by A21, BORSUK_1: 40, XXREAL_0: 2, XXREAL_1: 1;

           0 <= j by A22, BORSUK_1: 43;

          then

           A25: s <= (((1 - j) * s) + (j * a)) by A20, A23, XREAL_1: 173;

          ((g1 . p) + (g2 . p)) = (((1 - t) * (f . s)) + (g2 . p)) by A11, A14

          .= (((1 - t) * (f . s)) + (t * s)) by A12, A14;

          hence thesis by A25, A24, BORSUK_1: 40, XXREAL_1: 1;

        end;

      end;

      then

      consider h be Function of X, I[01] such that

       A26: for p be Point of X, r1,r2 be Real st (g1 . p) = r1 & (g2 . p) = r2 holds (h . p) = (r1 + r2) and

       A27: h is continuous by A9, A7, Th37;

      

       A28: for t,s be Point of I[01] holds (h . [s, t]) = (((1 - t) * (f . s)) + (t * s))

      proof

        let t,s be Point of I[01] ;

        (g1 . [s, t]) = ((1 - t) * (f . s)) & (g2 . [s, t]) = (t * s) by A11, A12;

        hence thesis by A26;

      end;

      

       A29: for t be Point of I[01] holds (h . [1, t]) = 1

      proof

        reconsider oo = 1 as Point of I[01] by BORSUK_1: 43;

        let t be Point of I[01] ;

        

        thus (h . [1, t]) = (((1 - t) * (f . oo)) + (t * 1)) by A28

        .= 1 by A2;

      end;

      set H = (P * h);

      

       A30: ( dom h) = the carrier of [: I[01] , I[01] :] by FUNCT_2:def 1

      .= [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

      set Q = ( RePar (P,f));

      

       A31: 1 is Point of I[01] by BORSUK_1: 43;

      

       A32: for s be Point of I[01] holds (h . [s, 1]) = s

      proof

        let s be Point of I[01] ;

        

        thus (h . [s, 1]) = (((1 - 1) * (f . s)) + (1 * s)) by A31, A28

        .= s;

      end;

      

       A33: 0 is Point of I[01] by BORSUK_1: 43;

      

       A34: for s be Point of I[01] holds (h . [s, 0 ]) = (f . s)

      proof

        let s be Point of I[01] ;

        

        thus (h . [s, 0 ]) = (((1 - 0 ) * (f . s)) + ( 0 * s)) by A33, A28

        .= (f . s);

      end;

      

       A35: for s be Point of I[01] holds (H . (s, 0 )) = (Q . s) & (H . (s,1)) = (P . s)

      proof

        let s be Point of I[01] ;

        s in the carrier of I[01] ;

        then

         A36: s in ( dom f) by FUNCT_2:def 1;

         0 in the carrier of I[01] by BORSUK_1: 43;

        then [s, 0 ] in ( dom h) by A30, ZFMISC_1: 87;

        

        hence (H . (s, 0 )) = (P . (h . [s, 0 ])) by FUNCT_1: 13

        .= (P . (f . s)) by A34

        .= ((P * f) . s) by A36, FUNCT_1: 13

        .= (Q . s) by A1, A2, A3, Def4;

        1 in the carrier of I[01] by BORSUK_1: 43;

        then [s, 1] in ( dom h) by A30, ZFMISC_1: 87;

        

        hence (H . (s,1)) = (P . (h . [s, 1])) by FUNCT_1: 13

        .= (P . s) by A32;

      end;

      

       A37: for t be Point of I[01] holds (h . [ 0 , t]) = 0

      proof

        reconsider oo = 0 as Point of I[01] by BORSUK_1: 43;

        let t be Point of I[01] ;

        

        thus (h . [ 0 , t]) = (((1 - t) * (f . oo)) + (t * 0 )) by A28

        .= 0 by A1;

      end;

      

       A38: for t be Point of I[01] holds (H . ( 0 ,t)) = a & (H . (1,t)) = b

      proof

        let t be Point of I[01] ;

         0 in the carrier of I[01] by BORSUK_1: 43;

        then [ 0 , t] in ( dom h) by A30, ZFMISC_1: 87;

        

        hence (H . ( 0 ,t)) = (P . (h . [ 0 , t])) by FUNCT_1: 13

        .= (P . 0 ) by A37

        .= a by A3, BORSUK_2:def 2;

        1 in the carrier of I[01] by BORSUK_1: 43;

        then [1, t] in ( dom h) by A30, ZFMISC_1: 87;

        

        hence (H . (1,t)) = (P . (h . [1, t])) by FUNCT_1: 13

        .= (P . 1) by A29

        .= b by A3, BORSUK_2:def 2;

      end;

      P is continuous by A3, BORSUK_2:def 2;

      hence thesis by A27, A35, A38;

    end;

    theorem :: BORSUK_6:46

    for T be non empty pathwise_connected TopSpace, a,b be Point of T, P be Path of a, b, f be continuous Function of I[01] , I[01] st (f . 0 ) = 0 & (f . 1) = 1 holds (( RePar (P,f)),P) are_homotopic by Th45, BORSUK_2:def 3;

    definition

      :: BORSUK_6:def5

      func 1RP -> Function of I[01] , I[01] means

      : Def5: for t be Point of I[01] holds (t <= (1 / 2) implies (it . t) = (2 * t)) & (t > (1 / 2) implies (it . t) = 1);

      existence

      proof

        deffunc G( set) = 1;

        deffunc F( Real) = (2 * $1);

        defpred P[ Real] means $1 <= (1 / 2);

        consider f be Function such that

         A1: ( dom f) = the carrier of I[01] & for x be Element of I[01] holds ( P[x] implies (f . x) = F(x)) & ( not P[x] implies (f . x) = G(x)) from PARTFUN1:sch 4;

        for x be object st x in the carrier of I[01] holds (f . x) in the carrier of I[01]

        proof

          let x be object;

          assume x in the carrier of I[01] ;

          then

          reconsider x as Point of I[01] ;

          per cases ;

            suppose

             A2: P[x];

            then (f . x) = (2 * x) by A1;

            then (f . x) is Point of I[01] by A2, Th3;

            hence thesis;

          end;

            suppose not P[x];

            then (f . x) = G(x) by A1;

            hence thesis by BORSUK_1: 43;

          end;

        end;

        then

        reconsider f as Function of I[01] , I[01] by A1, FUNCT_2: 3;

        for t be Point of I[01] holds (t <= (1 / 2) implies (f . t) = (2 * t)) & (t > (1 / 2) implies (f . t) = 1) by A1;

        hence thesis;

      end;

      uniqueness

      proof

        let f1,f2 be Function of I[01] , I[01] ;

        assume that

         A3: for t be Point of I[01] holds (t <= (1 / 2) implies (f1 . t) = (2 * t)) & (t > (1 / 2) implies (f1 . t) = 1) and

         A4: for t be Point of I[01] holds (t <= (1 / 2) implies (f2 . t) = (2 * t)) & (t > (1 / 2) implies (f2 . t) = 1);

        for t be Point of I[01] holds (f1 . t) = (f2 . t)

        proof

          let t be Point of I[01] ;

          per cases ;

            suppose

             A5: t <= (1 / 2);

            

            then (f1 . t) = (2 * t) by A3

            .= (f2 . t) by A4, A5;

            hence thesis;

          end;

            suppose

             A6: t > (1 / 2);

            

            then (f1 . t) = 1 by A3

            .= (f2 . t) by A4, A6;

            hence thesis;

          end;

        end;

        hence thesis by FUNCT_2: 63;

      end;

    end

    registration

      cluster 1RP -> continuous;

      coherence

      proof

        

         A1: (1 / 2) is Point of I[01] by BORSUK_1: 43;

        1 is Point of I[01] by BORSUK_1: 43;

        then

        reconsider B = [.(1 / 2), 1.] as non empty compact Subset of I[01] by A1, BORSUK_4: 24;

         0 is Point of I[01] by BORSUK_1: 43;

        then

        reconsider A = [. 0 , (1 / 2).] as non empty compact Subset of I[01] by A1, BORSUK_4: 24;

        set T1 = ( I[01] | A), T2 = ( I[01] | B), T = I[01] ;

        reconsider g = (T2 --> 1[01] ) as continuous Function of T2, I[01] ;

        T1 = ( Closed-Interval-TSpace ( 0 ,(1 / 2))) by TOPMETR: 24;

        then

        reconsider f = ( L[01] ( 0 ,(1 / 2), 0 ,1)) as continuous Function of T1, I[01] by Th34, TOPMETR: 20;

        

         A2: for p be set st p in (( [#] T1) /\ ( [#] T2)) holds (f . p) = (g . p)

        proof

          let p be set;

          assume p in (( [#] T1) /\ ( [#] T2));

          then p in ( [. 0 , (1 / 2).] /\ ( [#] T2)) by PRE_TOPC:def 5;

          then p in ( [. 0 , (1 / 2).] /\ [.(1 / 2), 1.]) by PRE_TOPC:def 5;

          then p in {(1 / 2)} by XXREAL_1: 418;

          then

           A3: p = (1 / 2) by TARSKI:def 1;

          then p in [.(1 / 2), 1.] by XXREAL_1: 1;

          then

           A4: p in the carrier of T2 by PRE_TOPC: 8;

          (f . p) = ((((1 - 0 ) / ((1 / 2) - 0 )) * ((1 / 2) - 0 )) + 0 ) by A3, Th35

          .= (g . p) by A4, BORSUK_1:def 15, FUNCOP_1: 7;

          hence thesis;

        end;

        

         A5: for x be Element of I[01] holds ( 1RP . x) = ((f +* g) . x)

        proof

          let x be Element of I[01] ;

          

           A6: ( dom g) = the carrier of T2 by FUNCT_2:def 1

          .= [.(1 / 2), 1.] by PRE_TOPC: 8;

          per cases by XXREAL_0: 1;

            suppose

             A7: x < (1 / 2);

             0 <= x by BORSUK_1: 43;

            

            then

             A8: (f . x) = ((((1 - 0 ) / ((1 / 2) - 0 )) * (x - 0 )) + 0 ) by A7, Th35

            .= ((1 / (1 / 2)) * x);

            

             A9: not x in ( dom g) by A6, A7, XXREAL_1: 1;

            

            thus ( 1RP . x) = (2 * x) by A7, Def5

            .= ((f +* g) . x) by A9, A8, FUNCT_4: 11;

          end;

            suppose

             A10: x = (1 / 2);

            then

             A11: x in ( dom g) by A6, XXREAL_1: 1;

            

            thus ( 1RP . x) = (2 * (1 / 2)) by A10, Def5

            .= (g . x) by A11, BORSUK_1:def 15, FUNCOP_1: 7

            .= ((f +* g) . x) by A11, FUNCT_4: 13;

          end;

            suppose

             A12: x > (1 / 2);

            x <= 1 by BORSUK_1: 43;

            then

             A13: x in ( dom g) by A6, A12, XXREAL_1: 1;

            

            thus ( 1RP . x) = 1 by A12, Def5

            .= (g . x) by A13, BORSUK_1:def 15, FUNCOP_1: 7

            .= ((f +* g) . x) by A13, FUNCT_4: 13;

          end;

        end;

        (( [#] T1) \/ ( [#] T2)) = ( [. 0 , (1 / 2).] \/ ( [#] T2)) by PRE_TOPC:def 5

        .= ( [. 0 , (1 / 2).] \/ [.(1 / 2), 1.]) by PRE_TOPC:def 5

        .= ( [#] T) by BORSUK_1: 40, XXREAL_1: 174;

        then ex h be Function of I[01] , I[01] st h = (f +* g) & h is continuous by A2, BORSUK_2: 1;

        hence thesis by A5, FUNCT_2: 63;

      end;

    end

    theorem :: BORSUK_6:47

    

     Th47: ( 1RP . 0 ) = 0 & ( 1RP . 1) = 1

    proof

      reconsider x = 0 , y = 1 as Point of I[01] by BORSUK_1: 43;

      

      thus ( 1RP . 0 ) = (2 * x) by Def5

      .= 0 ;

      

      thus ( 1RP . 1) = ( 1RP . y)

      .= 1 by Def5;

    end;

    definition

      :: BORSUK_6:def6

      func 2RP -> Function of I[01] , I[01] means

      : Def6: for t be Point of I[01] holds (t <= (1 / 2) implies (it . t) = 0 ) & (t > (1 / 2) implies (it . t) = ((2 * t) - 1));

      existence

      proof

        deffunc F( set) = 0 ;

        deffunc G( Real) = ((2 * $1) - 1);

        defpred P[ Real] means $1 <= (1 / 2);

        consider f be Function such that

         A1: ( dom f) = the carrier of I[01] & for x be Element of I[01] holds ( P[x] implies (f . x) = F(x)) & ( not P[x] implies (f . x) = G(x)) from PARTFUN1:sch 4;

        for x be object st x in the carrier of I[01] holds (f . x) in the carrier of I[01]

        proof

          let x be object;

          assume x in the carrier of I[01] ;

          then

          reconsider x as Point of I[01] ;

          per cases ;

            suppose P[x];

            then (f . x) = 0 by A1;

            hence thesis by BORSUK_1: 43;

          end;

            suppose

             A2: not P[x];

            then (f . x) = G(x) by A1;

            then (f . x) is Point of I[01] by A2, Th4;

            hence thesis;

          end;

        end;

        then

        reconsider f as Function of I[01] , I[01] by A1, FUNCT_2: 3;

        for t be Point of I[01] holds (t <= (1 / 2) implies (f . t) = 0 ) & (t > (1 / 2) implies (f . t) = ((2 * t) - 1)) by A1;

        hence thesis;

      end;

      uniqueness

      proof

        let f1,f2 be Function of I[01] , I[01] ;

        assume that

         A3: for t be Point of I[01] holds (t <= (1 / 2) implies (f1 . t) = 0 ) & (t > (1 / 2) implies (f1 . t) = ((2 * t) - 1)) and

         A4: for t be Point of I[01] holds (t <= (1 / 2) implies (f2 . t) = 0 ) & (t > (1 / 2) implies (f2 . t) = ((2 * t) - 1));

        for t be Point of I[01] holds (f1 . t) = (f2 . t)

        proof

          let t be Point of I[01] ;

          per cases ;

            suppose

             A5: t <= (1 / 2);

            

            then (f1 . t) = 0 by A3

            .= (f2 . t) by A4, A5;

            hence thesis;

          end;

            suppose

             A6: t > (1 / 2);

            

            then (f1 . t) = ((2 * t) - 1) by A3

            .= (f2 . t) by A4, A6;

            hence thesis;

          end;

        end;

        hence thesis by FUNCT_2: 63;

      end;

    end

    registration

      cluster 2RP -> continuous;

      coherence

      proof

        

         A1: (1 / 2) is Point of I[01] by BORSUK_1: 43;

        1 is Point of I[01] by BORSUK_1: 43;

        then

        reconsider B = [.(1 / 2), 1.] as non empty compact Subset of I[01] by A1, BORSUK_4: 24;

         0 is Point of I[01] by BORSUK_1: 43;

        then

        reconsider A = [. 0 , (1 / 2).] as non empty compact Subset of I[01] by A1, BORSUK_4: 24;

        set T1 = ( I[01] | A), T2 = ( I[01] | B), T = I[01] ;

        reconsider g = (T1 --> 0[01] ) as continuous Function of T1, I[01] ;

        T2 = ( Closed-Interval-TSpace ((1 / 2),1)) by TOPMETR: 24;

        then

        reconsider f = ( L[01] ((1 / 2),1, 0 ,1)) as continuous Function of T2, I[01] by Th34, TOPMETR: 20;

        

         A2: for p be set st p in (( [#] T2) /\ ( [#] T1)) holds (f . p) = (g . p)

        proof

          let p be set;

          assume p in (( [#] T2) /\ ( [#] T1));

          then p in ( [. 0 , (1 / 2).] /\ ( [#] T2)) by PRE_TOPC:def 5;

          then p in ( [. 0 , (1 / 2).] /\ [.(1 / 2), 1.]) by PRE_TOPC:def 5;

          then p in {(1 / 2)} by XXREAL_1: 418;

          then

           A3: p = (1 / 2) by TARSKI:def 1;

          then p in [. 0 , (1 / 2).] by XXREAL_1: 1;

          then

           A4: p in the carrier of T1 by PRE_TOPC: 8;

          (f . p) = ((((1 - 0 ) / (1 - (1 / 2))) * ((1 / 2) - (1 / 2))) + 0 ) by A3, Th35

          .= (g . p) by A4, BORSUK_1:def 14, FUNCOP_1: 7;

          hence thesis;

        end;

        

         A5: for x be Element of I[01] holds ( 2RP . x) = ((g +* f) . x)

        proof

          let x be Element of I[01] ;

          

           A6: ( dom f) = the carrier of T2 by FUNCT_2:def 1

          .= [.(1 / 2), 1.] by PRE_TOPC: 8;

          per cases by XXREAL_0: 1;

            suppose

             A7: x > (1 / 2);

            1 >= x by BORSUK_1: 43;

            

            then

             A8: (f . x) = ((((1 - 0 ) / (1 - (1 / 2))) * (x - (1 / 2))) + 0 ) by A7, Th35

            .= ((2 * x) - 1);

            x <= 1 by BORSUK_1: 43;

            then

             A9: x in ( dom f) by A6, A7, XXREAL_1: 1;

            

            thus ( 2RP . x) = ((2 * x) - 1) by A7, Def6

            .= ((g +* f) . x) by A9, A8, FUNCT_4: 13;

          end;

            suppose

             A10: x = (1 / 2);

            then

             A11: x in ( dom f) by A6, XXREAL_1: 1;

            

            thus ( 2RP . x) = ((((1 - 0 ) / (1 - (1 / 2))) * ((1 / 2) - (1 / 2))) + 0 ) by A10, Def6

            .= (f . x) by A10, Th35

            .= ((g +* f) . x) by A11, FUNCT_4: 13;

          end;

            suppose

             A12: x < (1 / 2);

            x >= 0 by BORSUK_1: 43;

            then x in [. 0 , (1 / 2).] by A12, XXREAL_1: 1;

            then

             A13: x in the carrier of T1 by PRE_TOPC: 8;

            

             A14: not x in ( dom f) by A6, A12, XXREAL_1: 1;

            

            thus ( 2RP . x) = 0 by A12, Def6

            .= (g . x) by A13, BORSUK_1:def 14, FUNCOP_1: 7

            .= ((g +* f) . x) by A14, FUNCT_4: 11;

          end;

        end;

        (( [#] T2) \/ ( [#] T1)) = ( [. 0 , (1 / 2).] \/ ( [#] T2)) by PRE_TOPC:def 5

        .= ( [. 0 , (1 / 2).] \/ [.(1 / 2), 1.]) by PRE_TOPC:def 5

        .= ( [#] T) by BORSUK_1: 40, XXREAL_1: 174;

        then ex h be Function of I[01] , I[01] st h = (g +* f) & h is continuous by A2, BORSUK_2: 1;

        hence thesis by A5, FUNCT_2: 63;

      end;

    end

    theorem :: BORSUK_6:48

    

     Th48: ( 2RP . 0 ) = 0 & ( 2RP . 1) = 1

    proof

      reconsider x = 0 , y = 1 as Point of I[01] by BORSUK_1: 43;

      

      thus ( 2RP . 0 ) = ( 2RP . x)

      .= 0 by Def6;

      

      thus ( 2RP . 1) = ((2 * y) - 1) by Def6

      .= 1;

    end;

    definition

      :: BORSUK_6:def7

      func 3RP -> Function of I[01] , I[01] means

      : Def7: for x be Point of I[01] holds (x <= (1 / 2) implies (it . x) = ((1 / 2) * x)) & (x > (1 / 2) & x <= (3 / 4) implies (it . x) = (x - (1 / 4))) & (x > (3 / 4) implies (it . x) = ((2 * x) - 1));

      existence

      proof

        deffunc H( Real) = ((2 * $1) - 1);

        deffunc G( Real) = ($1 - (1 / 4));

        deffunc F( Real) = ((1 / 2) * $1);

        defpred R[ Real] means $1 > (3 / 4);

        defpred Q[ Real] means $1 > (1 / 2) & $1 <= (3 / 4);

        defpred P[ Real] means $1 <= (1 / 2);

        

         A1: for c be Element of I[01] holds P[c] or Q[c] or R[c];

        

         A2: for c be Element of I[01] holds ( P[c] implies not Q[c]) & ( P[c] implies not R[c]) & ( Q[c] implies not R[c]) by XXREAL_0: 2;

        consider f be Function such that

         A3: ( dom f) = the carrier of I[01] & for c be Element of I[01] holds ( P[c] implies (f . c) = F(c)) & ( Q[c] implies (f . c) = G(c)) & ( R[c] implies (f . c) = H(c)) from ExFunc3CondD( A2, A1);

        for x be object st x in the carrier of I[01] holds (f . x) in the carrier of I[01]

        proof

          let x be object;

          assume x in the carrier of I[01] ;

          then

          reconsider x as Point of I[01] ;

          per cases ;

            suppose P[x];

            then (f . x) = ((1 / 2) * x) by A3;

            then (f . x) is Point of I[01] by Th6;

            hence thesis;

          end;

            suppose

             A4: Q[x];

            then (f . x) = G(x) by A3;

            then (f . x) is Point of I[01] by A4, Th7;

            hence thesis;

          end;

            suppose

             A5: R[x];

            then (f . x) = ((2 * x) - 1) by A3;

            then (f . x) is Point of I[01] by A5, Th4, XXREAL_0: 2;

            hence thesis;

          end;

        end;

        then

        reconsider f as Function of I[01] , I[01] by A3, FUNCT_2: 3;

        for x be Point of I[01] holds (x <= (1 / 2) implies (f . x) = ((1 / 2) * x)) & (x > (1 / 2) & x <= (3 / 4) implies (f . x) = (x - (1 / 4))) & (x > (3 / 4) implies (f . x) = ((2 * x) - 1)) by A3;

        hence thesis;

      end;

      uniqueness

      proof

        let f1,f2 be Function of I[01] , I[01] ;

        assume that

         A6: for x be Point of I[01] holds (x <= (1 / 2) implies (f1 . x) = ((1 / 2) * x)) & (x > (1 / 2) & x <= (3 / 4) implies (f1 . x) = (x - (1 / 4))) & (x > (3 / 4) implies (f1 . x) = ((2 * x) - 1)) and

         A7: for x be Point of I[01] holds (x <= (1 / 2) implies (f2 . x) = ((1 / 2) * x)) & (x > (1 / 2) & x <= (3 / 4) implies (f2 . x) = (x - (1 / 4))) & (x > (3 / 4) implies (f2 . x) = ((2 * x) - 1));

        for x be Point of I[01] holds (f1 . x) = (f2 . x)

        proof

          let x be Point of I[01] ;

          per cases ;

            suppose

             A8: x <= (1 / 2);

            

            then (f1 . x) = ((1 / 2) * x) by A6

            .= (f2 . x) by A7, A8;

            hence thesis;

          end;

            suppose

             A9: x > (1 / 2) & x <= (3 / 4);

            

            then (f1 . x) = (x - (1 / 4)) by A6

            .= (f2 . x) by A7, A9;

            hence thesis;

          end;

            suppose

             A10: x > (3 / 4);

            

            then (f1 . x) = ((2 * x) - 1) by A6

            .= (f2 . x) by A7, A10;

            hence thesis;

          end;

        end;

        hence thesis by FUNCT_2: 63;

      end;

    end

    registration

      cluster 3RP -> continuous;

      coherence

      proof

        

         A1: (1 / 2) is Point of I[01] by BORSUK_1: 43;

        

         A2: (3 / 4) is Point of I[01] by BORSUK_1: 43;

        then

        reconsider B = [.(1 / 2), (3 / 4).] as non empty compact Subset of I[01] by A1, BORSUK_4: 24;

        

         A3: 0 is Point of I[01] by BORSUK_1: 43;

        then

        reconsider A = [. 0 , (1 / 2).] as non empty compact Subset of I[01] by A1, BORSUK_4: 24;

        reconsider G = [. 0 , (3 / 4).] as non empty compact Subset of I[01] by A3, A2, BORSUK_4: 24;

        

         A4: (1 / 4) is Point of I[01] by BORSUK_1: 43;

        then

        reconsider E = [.(1 / 4), (1 / 2).] as non empty compact Subset of I[01] by A1, BORSUK_4: 24;

        reconsider F = [. 0 , (1 / 4).] as non empty compact Subset of I[01] by A3, A4, BORSUK_4: 24;

        

         A5: 1 is Point of I[01] by BORSUK_1: 43;

        then

        reconsider C = [.(3 / 4), 1.] as non empty compact Subset of I[01] by A2, BORSUK_4: 24;

        reconsider D = [.(1 / 2), 1.] as non empty compact Subset of I[01] by A1, A5, BORSUK_4: 24;

        set T = I[01] ;

        set T1 = (T | A), T2 = (T | B), T3 = (T | C), T4 = (T | D), T5 = (T | E), T6 = (T | F);

        set f = ( L[01] ( 0 ,(1 / 2), 0 ,(1 / 4)));

        set g = ( L[01] ((1 / 2),(3 / 4),(1 / 4),(1 / 2)));

        set h = ( L[01] ((3 / 4),1,(1 / 2),1));

        reconsider TT1 = T1, TT2 = T2 as SubSpace of (T | G) by TOPMETR: 22, XXREAL_1: 34;

        ( Closed-Interval-TSpace ((3 / 4),1)) = T3 & ( Closed-Interval-TSpace ((1 / 2),1)) = T4 by TOPMETR: 24;

        then

        reconsider h as continuous Function of T3, T4 by Th34;

        reconsider h as continuous Function of T3, T by JORDAN6: 3;

        

         A6: for x be Point of T3 holds (h . x) = ((2 * x) - 1)

        proof

          let x be Point of T3;

          x in the carrier of T3;

          then x in C by PRE_TOPC: 8;

          then (3 / 4) <= x & x <= 1 by XXREAL_1: 1;

          

          then (h . x) = ((((1 - (1 / 2)) / (1 - (3 / 4))) * (x - (3 / 4))) + (1 / 2)) by Th35

          .= ((2 * x) - 1);

          hence thesis;

        end;

        ( Closed-Interval-TSpace ( 0 ,(1 / 4))) = T6 & ( Closed-Interval-TSpace ( 0 ,(1 / 2))) = T1 by TOPMETR: 24;

        then

        reconsider f as continuous Function of T1, T6 by Th34;

        ( Closed-Interval-TSpace ((1 / 4),(1 / 2))) = T5 & ( Closed-Interval-TSpace ((1 / 2),(3 / 4))) = T2 by TOPMETR: 24;

        then

        reconsider g as continuous Function of T2, T5 by Th34;

        reconsider g as continuous Function of T2, T by JORDAN6: 3;

        reconsider f as continuous Function of T1, T by JORDAN6: 3;

        set f1 = f, g1 = g;

        

         A7: for x be Point of T2 holds (g . x) = (x - (1 / 4))

        proof

          let x be Point of T2;

          x in the carrier of T2;

          then x in B by PRE_TOPC: 8;

          then (1 / 2) <= x & x <= (3 / 4) by XXREAL_1: 1;

          

          then (g . x) = (((((1 / 2) - (1 / 4)) / ((3 / 4) - (1 / 2))) * (x - (1 / 2))) + (1 / 4)) by Th35

          .= (x - (1 / 4));

          hence thesis;

        end;

        

         A8: (( [#] TT1) /\ ( [#] TT2)) = (A /\ ( [#] TT2)) by PRE_TOPC:def 5

        .= (A /\ B) by PRE_TOPC:def 5

        .= {(1 / 2)} by XXREAL_1: 418;

        

         A9: for p be set st p in (( [#] TT1) /\ ( [#] TT2)) holds (f1 . p) = (g1 . p)

        proof

          let p be set;

          assume p in (( [#] TT1) /\ ( [#] TT2));

          then

           A10: p = (1 / 2) by A8, TARSKI:def 1;

          then

          reconsider p as Point of I[01] by BORSUK_1: 40, XXREAL_1: 1;

          (f1 . p) = (((((1 / 4) - 0 ) / ((1 / 2) - 0 )) * (p - 0 )) + 0 ) by A10, Th35

          .= (((((1 / 2) - (1 / 4)) / ((3 / 4) - (1 / 2))) * (p - (1 / 2))) + (1 / 4)) by A10

          .= (g1 . p) by A10, Th35;

          hence thesis;

        end;

        (( [#] TT1) \/ ( [#] TT2)) = (A \/ ( [#] TT2)) by PRE_TOPC:def 5

        .= (A \/ B) by PRE_TOPC:def 5

        .= [. 0 , (3 / 4).] by XXREAL_1: 174

        .= ( [#] (T | G)) by PRE_TOPC:def 5;

        then

        consider FF be Function of (T | G), T such that

         A11: FF = (f1 +* g1) and

         A12: FF is continuous by A9, BORSUK_2: 1;

        

         A13: (( [#] (T | G)) /\ ( [#] T3)) = (G /\ ( [#] T3)) by PRE_TOPC:def 5

        .= (G /\ C) by PRE_TOPC:def 5

        .= {(3 / 4)} by XXREAL_1: 418;

        

         A14: for p be set st p in (( [#] (T | G)) /\ ( [#] T3)) holds (FF . p) = (h . p)

        proof

          let p be set;

          assume p in (( [#] (T | G)) /\ ( [#] T3));

          then

           A15: p = (3 / 4) by A13, TARSKI:def 1;

          then

          reconsider p as Point of T by BORSUK_1: 43;

          p in [.(1 / 2), (3 / 4).] by A15, XXREAL_1: 1;

          then p in the carrier of T2 by PRE_TOPC: 8;

          then p in ( dom g) by FUNCT_2:def 1;

          

          then (FF . p) = (g . p) by A11, FUNCT_4: 13

          .= (1 / 2) by A15, Th33

          .= (h . p) by A15, Th33;

          hence thesis;

        end;

        (( [#] (T | G)) \/ ( [#] T3)) = (G \/ ( [#] T3)) by PRE_TOPC:def 5

        .= (G \/ C) by PRE_TOPC:def 5

        .= ( [#] T) by BORSUK_1: 40, XXREAL_1: 174;

        then

        consider HH be Function of T, T such that

         A16: HH = (FF +* h) and

         A17: HH is continuous by A12, A14, BORSUK_2: 1;

        

         A18: for x be Point of T1 holds (f . x) = ((1 / 2) * x)

        proof

          let x be Point of T1;

          x in the carrier of T1;

          then x in A by PRE_TOPC: 8;

          then 0 <= x & x <= (1 / 2) by XXREAL_1: 1;

          

          then (f . x) = (((((1 / 4) - 0 ) / ((1 / 2) - 0 )) * (x - 0 )) + 0 ) by Th35

          .= ((1 / 2) * x);

          hence thesis;

        end;

        for x be Element of T holds (HH . x) = ( 3RP . x)

        proof

          let x be Element of T;

          

           A19: 0 <= x by BORSUK_1: 43;

          

           A20: x <= 1 by BORSUK_1: 43;

          per cases by XXREAL_0: 1;

            suppose

             A21: x < (1 / 2);

            then not x in [.(1 / 2), (3 / 4).] by XXREAL_1: 1;

            then not x in the carrier of T2 by PRE_TOPC: 8;

            then

             A22: not x in ( dom g);

            x in [. 0 , (1 / 2).] by A19, A21, XXREAL_1: 1;

            then

             A23: x is Point of T1 by PRE_TOPC: 8;

            x < (3 / 4) by A21, XXREAL_0: 2;

            then not x in [.(3 / 4), 1.] by XXREAL_1: 1;

            then not x in the carrier of T3 by PRE_TOPC: 8;

            then not x in ( dom h);

            

            then (HH . x) = (FF . x) by A16, FUNCT_4: 11

            .= (f . x) by A11, A22, FUNCT_4: 11

            .= ((1 / 2) * x) by A18, A23

            .= ( 3RP . x) by A21, Def7;

            hence thesis;

          end;

            suppose

             A24: x = (1 / 2);

            then x in [.(1 / 2), (3 / 4).] by XXREAL_1: 1;

            then x in the carrier of T2 by PRE_TOPC: 8;

            then

             A25: x in ( dom g) by FUNCT_2:def 1;

             not x in [.(3 / 4), 1.] by A24, XXREAL_1: 1;

            then not x in the carrier of T3 by PRE_TOPC: 8;

            then not x in ( dom h);

            

            then (HH . x) = (FF . x) by A16, FUNCT_4: 11

            .= (g . x) by A11, A25, FUNCT_4: 13

            .= ((1 / 2) * x) by A24, Th33

            .= ( 3RP . x) by A24, Def7;

            hence thesis;

          end;

            suppose

             A26: x > (1 / 2) & x < (3 / 4);

            then x in [.(1 / 2), (3 / 4).] by XXREAL_1: 1;

            then

             A27: x in the carrier of T2 by PRE_TOPC: 8;

            then

             A28: x in ( dom g) by FUNCT_2:def 1;

             not x in [.(3 / 4), 1.] by A26, XXREAL_1: 1;

            then not x in the carrier of T3 by PRE_TOPC: 8;

            then not x in ( dom h);

            

            then (HH . x) = (FF . x) by A16, FUNCT_4: 11

            .= (g . x) by A11, A28, FUNCT_4: 13

            .= (x - (1 / 4)) by A7, A27

            .= ( 3RP . x) by A26, Def7;

            hence thesis;

          end;

            suppose

             A29: x = (3 / 4);

            then x in [.(3 / 4), 1.] by XXREAL_1: 1;

            then x in the carrier of T3 by PRE_TOPC: 8;

            then x in ( dom h) by FUNCT_2:def 1;

            

            then (HH . x) = (h . x) by A16, FUNCT_4: 13

            .= (x - (1 / 4)) by A29, Th33

            .= ( 3RP . x) by A29, Def7;

            hence thesis;

          end;

            suppose

             A30: x > (3 / 4);

            then x in [.(3 / 4), 1.] by A20, XXREAL_1: 1;

            then

             A31: x in the carrier of T3 by PRE_TOPC: 8;

            then x in ( dom h) by FUNCT_2:def 1;

            

            then (HH . x) = (h . x) by A16, FUNCT_4: 13

            .= ((2 * x) - 1) by A6, A31

            .= ( 3RP . x) by A30, Def7;

            hence thesis;

          end;

        end;

        hence thesis by A17, FUNCT_2: 63;

      end;

    end

    theorem :: BORSUK_6:49

    

     Th49: ( 3RP . 0 ) = 0 & ( 3RP . 1) = 1

    proof

       0 is Point of I[01] by BORSUK_1: 43;

      

      hence ( 3RP . 0 ) = ((1 / 2) * 0 ) by Def7

      .= 0 ;

      1 is Point of I[01] by BORSUK_1: 43;

      

      hence ( 3RP . 1) = ((2 * 1) - 1) by Def7

      .= 1;

    end;

    theorem :: BORSUK_6:50

    

     Th50: for P be Path of a, b, Q be constant Path of b, b st (a,b) are_connected holds ( RePar (P, 1RP )) = (P + Q)

    proof

      let P be Path of a, b, Q be constant Path of b, b;

      set f = ( RePar (P, 1RP )), g = (P + Q);

      assume

       A1: (a,b) are_connected ;

      

       A2: (b,b) are_connected ;

      for p be Element of I[01] holds (f . p) = (g . p)

      proof

         0 in the carrier of I[01] by BORSUK_1: 43;

        then

         A3: 0 in ( dom Q) by FUNCT_2:def 1;

        let p be Element of I[01] ;

        p in the carrier of I[01] ;

        then

         A4: p in ( dom 1RP ) by FUNCT_2:def 1;

        

         A5: (f . p) = ((P * 1RP ) . p) by A1, Def4, Th47

        .= (P . ( 1RP . p)) by A4, FUNCT_1: 13;

        per cases ;

          suppose

           A6: p <= (1 / 2);

          

          then (f . p) = (P . (2 * p)) by A5, Def5

          .= (g . p) by A1, A6, BORSUK_2:def 5;

          hence thesis;

        end;

          suppose

           A7: p > (1 / 2);

          then ((2 * p) - 1) is Point of I[01] by Th4;

          then ((2 * p) - 1) in the carrier of I[01] ;

          then

           A8: ((2 * p) - 1) in ( dom Q) by FUNCT_2:def 1;

          (f . p) = (P . 1) by A5, A7, Def5

          .= b by A1, BORSUK_2:def 2

          .= (Q . 0 ) by A2, BORSUK_2:def 2

          .= (Q . ((2 * p) - 1)) by A3, A8, FUNCT_1:def 10

          .= (g . p) by A1, A7, BORSUK_2:def 5;

          hence thesis;

        end;

      end;

      hence thesis by FUNCT_2: 63;

    end;

    theorem :: BORSUK_6:51

    

     Th51: for P be Path of a, b, Q be constant Path of a, a st (a,b) are_connected holds ( RePar (P, 2RP )) = (Q + P)

    proof

      let P be Path of a, b, Q be constant Path of a, a;

      assume

       A1: (a,b) are_connected ;

      set f = ( RePar (P, 2RP )), g = (Q + P);

      

       A2: (a,a) are_connected ;

      for p be Element of I[01] holds (f . p) = (g . p)

      proof

         0 in the carrier of I[01] by BORSUK_1: 43;

        then

         A3: 0 in ( dom Q) by FUNCT_2:def 1;

        let p be Element of I[01] ;

        p in the carrier of I[01] ;

        then

         A4: p in ( dom 2RP ) by FUNCT_2:def 1;

        

         A5: (f . p) = ((P * 2RP ) . p) by A1, Def4, Th48

        .= (P . ( 2RP . p)) by A4, FUNCT_1: 13;

        per cases ;

          suppose

           A6: p <= (1 / 2);

          then (2 * p) is Point of I[01] by Th3;

          then (2 * p) in the carrier of I[01] ;

          then

           A7: (2 * p) in ( dom Q) by FUNCT_2:def 1;

          (f . p) = (P . 0 ) by A5, A6, Def6

          .= a by A1, BORSUK_2:def 2

          .= (Q . 0 ) by A2, BORSUK_2:def 2

          .= (Q . (2 * p)) by A3, A7, FUNCT_1:def 10

          .= (g . p) by A1, A6, BORSUK_2:def 5;

          hence thesis;

        end;

          suppose

           A8: p > (1 / 2);

          

          then (f . p) = (P . ((2 * p) - 1)) by A5, Def6

          .= (g . p) by A1, A8, BORSUK_2:def 5;

          hence thesis;

        end;

      end;

      hence thesis by FUNCT_2: 63;

    end;

    theorem :: BORSUK_6:52

    

     Th52: for P be Path of a, b, Q be Path of b, c, R be Path of c, d st (a,b) are_connected & (b,c) are_connected & (c,d) are_connected holds ( RePar (((P + Q) + R), 3RP )) = (P + (Q + R))

    proof

      let P be Path of a, b, Q be Path of b, c, R be Path of c, d;

      assume that

       A1: (a,b) are_connected and

       A2: (b,c) are_connected and

       A3: (c,d) are_connected ;

      set F = ((P + Q) + R);

      set f = ( RePar (F, 3RP )), g = (P + (Q + R));

      

       A4: (a,c) are_connected by A1, A2, Th42;

      

       A5: (b,d) are_connected by A2, A3, Th42;

      for x be Point of I[01] holds (f . x) = (g . x)

      proof

        let x be Point of I[01] ;

        x in the carrier of I[01] ;

        then

         A6: x in ( dom 3RP ) by FUNCT_2:def 1;

        

         A7: (f . x) = ((F * 3RP ) . x) by A3, A4, Def4, Th42, Th49

        .= (F . ( 3RP . x)) by A6, FUNCT_1: 13;

        per cases ;

          suppose

           A8: x <= (1 / 2);

          reconsider y = ((1 / 2) * x) as Point of I[01] by Th6;

          ((1 / 2) * x) <= ((1 / 2) * (1 / 2)) by A8, XREAL_1: 64;

          then

           A9: y <= (1 / 2) by XXREAL_0: 2;

          reconsider z = (2 * y) as Point of I[01] ;

          (f . x) = (F . y) by A7, A8, Def7

          .= ((P + Q) . z) by A3, A4, A9, BORSUK_2:def 5

          .= (P . (2 * x)) by A1, A2, A8, BORSUK_2:def 5

          .= (g . x) by A1, A5, A8, BORSUK_2:def 5;

          hence thesis;

        end;

          suppose

           A10: x > (1 / 2) & x <= (3 / 4);

          then

           A11: ((1 / 2) - (1 / 4)) <= (x - (1 / 4)) by XREAL_1: 9;

          

           A12: (x - (1 / 4)) <= ((3 / 4) - (1 / 4)) by A10, XREAL_1: 9;

          then (x - (1 / 4)) <= 1 by XXREAL_0: 2;

          then

          reconsider y = (x - (1 / 4)) as Point of I[01] by A11, BORSUK_1: 43;

          reconsider z = (2 * y) as Point of I[01] by A12, Th3;

          

           A13: (2 * y) >= (2 * (1 / 4)) by A11, XREAL_1: 64;

          reconsider w = ((2 * x) - 1) as Point of I[01] by A10, Th4;

          (2 * x) <= (2 * (3 / 4)) by A10, XREAL_1: 64;

          then

           A14: ((2 * x) - 1) <= ((3 / 2) - 1) by XREAL_1: 9;

          (f . x) = (F . y) by A7, A10, Def7

          .= ((P + Q) . z) by A3, A4, A12, BORSUK_2:def 5

          .= (Q . ((2 * z) - 1)) by A1, A2, A13, BORSUK_2:def 5

          .= (Q . (2 * w))

          .= ((Q + R) . w) by A2, A3, A14, BORSUK_2:def 5

          .= (g . x) by A1, A5, A10, BORSUK_2:def 5;

          hence thesis;

        end;

          suppose

           A15: x > (3 / 4);

          then

          reconsider w = ((2 * x) - 1) as Point of I[01] by Th4, XXREAL_0: 2;

          (2 * x) > (2 * (3 / 4)) by A15, XREAL_1: 68;

          then

           A16: ((2 * x) - 1) > ((2 * (3 / 4)) - 1) by XREAL_1: 14;

          reconsider y = ((2 * x) - 1) as Point of I[01] by A15, Th4, XXREAL_0: 2;

          

           A17: x > (1 / 2) by A15, XXREAL_0: 2;

          (f . x) = (F . y) by A7, A15, Def7

          .= (R . ((2 * y) - 1)) by A3, A4, A16, BORSUK_2:def 5

          .= ((Q + R) . w) by A2, A3, A16, BORSUK_2:def 5

          .= (g . x) by A1, A5, A17, BORSUK_2:def 5;

          hence thesis;

        end;

      end;

      hence thesis by FUNCT_2: 63;

    end;

    begin

    definition

      :: BORSUK_6:def8

      func LowerLeftUnitTriangle -> Subset of [: I[01] , I[01] :] means

      : Def8: for x be set holds x in it iff ex a,b be Point of I[01] st x = [a, b] & b <= (1 - (2 * a));

      existence

      proof

        defpred P[ object] means ex a,b be Point of I[01] st $1 = [a, b] & b <= (1 - (2 * a));

        consider X be set such that

         A1: for x be object holds x in X iff x in the carrier of [: I[01] , I[01] :] & P[x] from XBOOLE_0:sch 1;

        X c= the carrier of [: I[01] , I[01] :] by A1;

        then

        reconsider X as Subset of [: I[01] , I[01] :];

        take X;

        thus thesis by A1;

      end;

      uniqueness

      proof

        let X1,X2 be Subset of [: I[01] , I[01] :] such that

         A2: for x be set holds x in X1 iff ex a,b be Point of I[01] st x = [a, b] & b <= (1 - (2 * a)) and

         A3: for x be set holds x in X2 iff ex a,b be Point of I[01] st x = [a, b] & b <= (1 - (2 * a));

        X1 = X2

        proof

          thus X1 c= X2

          proof

            let x be object;

            assume x in X1;

            then ex a,b be Point of I[01] st x = [a, b] & b <= (1 - (2 * a)) by A2;

            hence thesis by A3;

          end;

          let x be object;

          assume x in X2;

          then ex a,b be Point of I[01] st x = [a, b] & b <= (1 - (2 * a)) by A3;

          hence thesis by A2;

        end;

        hence thesis;

      end;

    end

    notation

      synonym IAA for LowerLeftUnitTriangle ;

    end

    definition

      :: BORSUK_6:def9

      func UpperUnitTriangle -> Subset of [: I[01] , I[01] :] means

      : Def9: for x be set holds x in it iff ex a,b be Point of I[01] st x = [a, b] & b >= (1 - (2 * a)) & b >= ((2 * a) - 1);

      existence

      proof

        defpred P[ object] means ex a,b be Point of I[01] st $1 = [a, b] & b >= (1 - (2 * a)) & b >= ((2 * a) - 1);

        consider X be set such that

         A1: for x be object holds x in X iff x in the carrier of [: I[01] , I[01] :] & P[x] from XBOOLE_0:sch 1;

        X c= the carrier of [: I[01] , I[01] :] by A1;

        then

        reconsider X as Subset of [: I[01] , I[01] :];

        take X;

        thus thesis by A1;

      end;

      uniqueness

      proof

        let X1,X2 be Subset of [: I[01] , I[01] :] such that

         A2: for x be set holds x in X1 iff ex a,b be Point of I[01] st x = [a, b] & b >= (1 - (2 * a)) & b >= ((2 * a) - 1) and

         A3: for x be set holds x in X2 iff ex a,b be Point of I[01] st x = [a, b] & b >= (1 - (2 * a)) & b >= ((2 * a) - 1);

        X1 = X2

        proof

          thus X1 c= X2

          proof

            let x be object;

            assume x in X1;

            then ex a,b be Point of I[01] st x = [a, b] & b >= (1 - (2 * a)) & b >= ((2 * a) - 1) by A2;

            hence thesis by A3;

          end;

          let x be object;

          assume x in X2;

          then ex a,b be Point of I[01] st x = [a, b] & b >= (1 - (2 * a)) & b >= ((2 * a) - 1) by A3;

          hence thesis by A2;

        end;

        hence thesis;

      end;

    end

    notation

      synonym IBB for UpperUnitTriangle ;

    end

    definition

      :: BORSUK_6:def10

      func LowerRightUnitTriangle -> Subset of [: I[01] , I[01] :] means

      : Def10: for x be set holds x in it iff ex a,b be Point of I[01] st x = [a, b] & b <= ((2 * a) - 1);

      existence

      proof

        defpred P[ object] means ex a,b be Point of I[01] st $1 = [a, b] & b <= ((2 * a) - 1);

        consider X be set such that

         A1: for x be object holds x in X iff x in the carrier of [: I[01] , I[01] :] & P[x] from XBOOLE_0:sch 1;

        X c= the carrier of [: I[01] , I[01] :] by A1;

        then

        reconsider X as Subset of [: I[01] , I[01] :];

        take X;

        thus thesis by A1;

      end;

      uniqueness

      proof

        let X1,X2 be Subset of [: I[01] , I[01] :] such that

         A2: for x be set holds x in X1 iff ex a,b be Point of I[01] st x = [a, b] & b <= ((2 * a) - 1) and

         A3: for x be set holds x in X2 iff ex a,b be Point of I[01] st x = [a, b] & b <= ((2 * a) - 1);

        X1 = X2

        proof

          thus X1 c= X2

          proof

            let x be object;

            assume x in X1;

            then ex a,b be Point of I[01] st x = [a, b] & b <= ((2 * a) - 1) by A2;

            hence thesis by A3;

          end;

          let x be object;

          assume x in X2;

          then ex a,b be Point of I[01] st x = [a, b] & b <= ((2 * a) - 1) by A3;

          hence thesis by A2;

        end;

        hence thesis;

      end;

    end

    notation

      synonym ICC for LowerRightUnitTriangle ;

    end

    theorem :: BORSUK_6:53

    

     Th53: IAA = { p where p be Point of [: I[01] , I[01] :] : (p `2 ) <= (1 - (2 * (p `1 ))) }

    proof

      set P = { p where p be Point of [: I[01] , I[01] :] : (p `2 ) <= (1 - (2 * (p `1 ))) };

      thus IAA c= P

      proof

        let x be object;

        assume

         A1: x in IAA ;

        then

        reconsider x9 = x as Point of [: I[01] , I[01] :];

        consider a,b be Point of I[01] such that

         A2: x = [a, b] and

         A3: b <= (1 - (2 * a)) by A1, Def8;

        (x9 `1 ) = a & (x9 `2 ) = b by A2;

        hence thesis by A3;

      end;

      let x be object;

      assume x in P;

      then

      consider p be Point of [: I[01] , I[01] :] such that

       A4: p = x and

       A5: (p `2 ) <= (1 - (2 * (p `1 )));

      x in the carrier of [: I[01] , I[01] :] by A4;

      then x in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

      then

       A6: x = [(x `1 ), (x `2 )] by MCART_1: 21;

      (p `1 ) is Point of I[01] & (p `2 ) is Point of I[01] by Th27;

      hence thesis by A4, A5, A6, Def8;

    end;

    theorem :: BORSUK_6:54

    

     Th54: IBB = { p where p be Point of [: I[01] , I[01] :] : (p `2 ) >= (1 - (2 * (p `1 ))) & (p `2 ) >= ((2 * (p `1 )) - 1) }

    proof

      set P = { p where p be Point of [: I[01] , I[01] :] : (p `2 ) >= (1 - (2 * (p `1 ))) & (p `2 ) >= ((2 * (p `1 )) - 1) };

      thus IBB c= P

      proof

        let x be object;

        assume

         A1: x in IBB ;

        then

        reconsider x9 = x as Point of [: I[01] , I[01] :];

        consider a,b be Point of I[01] such that

         A2: x = [a, b] and

         A3: b >= (1 - (2 * a)) & b >= ((2 * a) - 1) by A1, Def9;

        (x9 `1 ) = a & (x9 `2 ) = b by A2;

        hence thesis by A3;

      end;

      let x be object;

      assume x in P;

      then

      consider p be Point of [: I[01] , I[01] :] such that

       A4: p = x and

       A5: (p `2 ) >= (1 - (2 * (p `1 ))) & (p `2 ) >= ((2 * (p `1 )) - 1);

      x in the carrier of [: I[01] , I[01] :] by A4;

      then x in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

      then

       A6: x = [(x `1 ), (x `2 )] by MCART_1: 21;

      (p `1 ) is Point of I[01] & (p `2 ) is Point of I[01] by Th27;

      hence thesis by A4, A5, A6, Def9;

    end;

    theorem :: BORSUK_6:55

    

     Th55: ICC = { p where p be Point of [: I[01] , I[01] :] : (p `2 ) <= ((2 * (p `1 )) - 1) }

    proof

      set P = { p where p be Point of [: I[01] , I[01] :] : (p `2 ) <= ((2 * (p `1 )) - 1) };

      thus ICC c= P

      proof

        let x be object;

        assume

         A1: x in ICC ;

        then

        reconsider x9 = x as Point of [: I[01] , I[01] :];

        consider a,b be Point of I[01] such that

         A2: x = [a, b] and

         A3: b <= ((2 * a) - 1) by A1, Def10;

        (x9 `1 ) = a & (x9 `2 ) = b by A2;

        hence thesis by A3;

      end;

      let x be object;

      assume x in P;

      then

      consider p be Point of [: I[01] , I[01] :] such that

       A4: p = x and

       A5: (p `2 ) <= ((2 * (p `1 )) - 1);

      x in the carrier of [: I[01] , I[01] :] by A4;

      then x in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

      then

       A6: x = [(x `1 ), (x `2 )] by MCART_1: 21;

      (p `1 ) is Point of I[01] & (p `2 ) is Point of I[01] by Th27;

      hence thesis by A4, A5, A6, Def10;

    end;

    registration

      cluster IAA -> closed non empty;

      coherence by Th24, Th53;

      cluster IBB -> closed non empty;

      coherence by Th25, Th54;

      cluster ICC -> closed non empty;

      coherence by Th26, Th55;

    end

    theorem :: BORSUK_6:56

    

     Th56: (( IAA \/ IBB ) \/ ICC ) = [: [. 0 , 1.], [. 0 , 1.]:]

    proof

      thus (( IAA \/ IBB ) \/ ICC ) c= [: [. 0 , 1.], [. 0 , 1.]:] by Th1;

      let x be object;

      assume

       A1: x in [: [. 0 , 1.], [. 0 , 1.]:];

      then

      reconsider q = (x `1 ), p = (x `2 ) as Point of I[01] by BORSUK_1: 40, MCART_1: 10;

      

       A2: x = [q, p] by A1, MCART_1: 21;

      x in IAA or x in IBB or x in ICC

      proof

        per cases ;

          suppose

           A3: p >= (1 - (2 * q));

          now

            per cases ;

              suppose p >= ((2 * q) - 1);

              hence thesis by A2, A3, Def9;

            end;

              suppose p < ((2 * q) - 1);

              hence thesis by A2, Def10;

            end;

          end;

          hence thesis;

        end;

          suppose p < (1 - (2 * q));

          hence thesis by A2, Def8;

        end;

      end;

      then x in ( IAA \/ IBB ) or x in ICC by XBOOLE_0:def 3;

      hence thesis by XBOOLE_0:def 3;

    end;

    theorem :: BORSUK_6:57

    

     Th57: ( IAA /\ IBB ) = { p where p be Point of [: I[01] , I[01] :] : (p `2 ) = (1 - (2 * (p `1 ))) }

    proof

      set KK = { p where p be Point of [: I[01] , I[01] :] : (p `2 ) = (1 - (2 * (p `1 ))) };

      thus ( IAA /\ IBB ) c= KK

      proof

        let x be object;

        assume

         A1: x in ( IAA /\ IBB );

        then x in IAA by XBOOLE_0:def 4;

        then

        consider p be Point of [: I[01] , I[01] :] such that

         A2: x = p and

         A3: (p `2 ) <= (1 - (2 * (p `1 ))) by Th53;

        x in IBB by A1, XBOOLE_0:def 4;

        then ex q be Point of [: I[01] , I[01] :] st x = q & (q `2 ) >= (1 - (2 * (q `1 ))) & (q `2 ) >= ((2 * (q `1 )) - 1) by Th54;

        then (p `2 ) = (1 - (2 * (p `1 ))) by A2, A3, XXREAL_0: 1;

        hence thesis by A2;

      end;

      let x be object;

      assume x in KK;

      then

      consider p be Point of [: I[01] , I[01] :] such that

       A4: p = x and

       A5: (p `2 ) = (1 - (2 * (p `1 )));

      x in the carrier of [: I[01] , I[01] :] by A4;

      then

       A6: x in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

      then

       A7: x = [(p `1 ), (p `2 )] & (p `1 ) in the carrier of I[01] by A4, MCART_1: 10, MCART_1: 21;

      

       A8: (p `2 ) in the carrier of I[01] by A4, A6, MCART_1: 10;

      then

       A9: x in IAA by A5, A7, Def8;

      (1 - (2 * (p `1 ))) >= 0 by A5, A8, BORSUK_1: 43;

      then ( 0 + (2 * (p `1 ))) <= 1 by XREAL_1: 19;

      then ((2 * (p `1 )) / 2) <= (1 / 2) by XREAL_1: 72;

      then ((2 * (p `1 )) - 1) <= 0 & 0 <= (1 - (2 * (p `1 ))) by XREAL_1: 217, XREAL_1: 218;

      then x in IBB by A5, A7, A8, Def9;

      hence thesis by A9, XBOOLE_0:def 4;

    end;

    theorem :: BORSUK_6:58

    

     Th58: ( ICC /\ IBB ) = { p where p be Point of [: I[01] , I[01] :] : (p `2 ) = ((2 * (p `1 )) - 1) }

    proof

      set KK = { p where p be Point of [: I[01] , I[01] :] : (p `2 ) = ((2 * (p `1 )) - 1) };

      thus ( ICC /\ IBB ) c= KK

      proof

        let x be object;

        assume

         A1: x in ( ICC /\ IBB );

        then x in ICC by XBOOLE_0:def 4;

        then

        consider p be Point of [: I[01] , I[01] :] such that

         A2: x = p and

         A3: (p `2 ) <= ((2 * (p `1 )) - 1) by Th55;

        x in IBB by A1, XBOOLE_0:def 4;

        then ex q be Point of [: I[01] , I[01] :] st x = q & (q `2 ) >= (1 - (2 * (q `1 ))) & (q `2 ) >= ((2 * (q `1 )) - 1) by Th54;

        then (p `2 ) = ((2 * (p `1 )) - 1) by A2, A3, XXREAL_0: 1;

        hence thesis by A2;

      end;

      let x be object;

      assume x in KK;

      then

      consider p be Point of [: I[01] , I[01] :] such that

       A4: p = x and

       A5: (p `2 ) = ((2 * (p `1 )) - 1);

      x in the carrier of [: I[01] , I[01] :] by A4;

      then

       A6: x in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

      then

       A7: x = [(p `1 ), (p `2 )] & (p `1 ) in the carrier of I[01] by A4, MCART_1: 10, MCART_1: 21;

      

       A8: (p `2 ) in the carrier of I[01] by A4, A6, MCART_1: 10;

      then

       A9: x in ICC by A5, A7, Def10;

      ((2 * (p `1 )) - 1) >= 0 by A5, A8, BORSUK_1: 43;

      then (2 * (p `1 )) >= ( 0 + 1) by XREAL_1: 19;

      then ((2 * (p `1 )) / 2) >= (1 / 2) by XREAL_1: 72;

      then ((2 * (p `1 )) - 1) >= 0 & 0 >= (1 - (2 * (p `1 ))) by XREAL_1: 219, XREAL_1: 220;

      then x in IBB by A5, A7, A8, Def9;

      hence thesis by A9, XBOOLE_0:def 4;

    end;

    theorem :: BORSUK_6:59

    

     Th59: for x be Point of [: I[01] , I[01] :] st x in IAA holds (x `1 ) <= (1 / 2)

    proof

      set GG = [: I[01] , I[01] :];

      let x be Point of GG;

      assume x in IAA ;

      then

      consider a,b be Point of I[01] such that

       A1: x = [a, b] and

       A2: b <= (1 - (2 * a)) by Def8;

      b >= 0 by BORSUK_1: 43;

      then 1 >= ( 0 + (2 * a)) by A2, XREAL_1: 19;

      then

       A3: (1 / 2) >= ((2 * a) / 2) by XREAL_1: 72;

      thus thesis by A1, A3;

    end;

    theorem :: BORSUK_6:60

    

     Th60: for x be Point of [: I[01] , I[01] :] st x in ICC holds (x `1 ) >= (1 / 2)

    proof

      set GG = [: I[01] , I[01] :];

      let x be Point of GG;

      assume x in ICC ;

      then

      consider a,b be Point of I[01] such that

       A1: x = [a, b] and

       A2: b <= ((2 * a) - 1) by Def10;

      b >= 0 by BORSUK_1: 43;

      then ( 0 + 1) <= (2 * a) by A2, XREAL_1: 19;

      then

       A3: (1 / 2) <= ((2 * a) / 2) by XREAL_1: 72;

      thus thesis by A1, A3;

    end;

    theorem :: BORSUK_6:61

    

     Th61: for x be Point of I[01] holds [ 0 , x] in IAA

    proof

      let x be Point of I[01] ;

       0 is Point of I[01] & x <= (1 - (2 * 0 )) by BORSUK_1: 43;

      hence thesis by Def8;

    end;

    theorem :: BORSUK_6:62

    

     Th62: for s be set holds [ 0 , s] in IBB implies s = 1

    proof

      let s be set;

      assume [ 0 , s] in IBB ;

      then

      consider a,b be Point of I[01] such that

       A1: [ 0 , s] = [a, b] and

       A2: b >= (1 - (2 * a)) and b >= ((2 * a) - 1) by Def9;

      

       A3: b <= 1 by BORSUK_1: 43;

      a = 0 & b = s by A1, XTUPLE_0: 1;

      hence thesis by A2, A3, XXREAL_0: 1;

    end;

    theorem :: BORSUK_6:63

    

     Th63: for s be set holds [s, 1] in ICC implies s = 1

    proof

      let s be set;

      assume [s, 1] in ICC ;

      then

      consider a,b be Point of I[01] such that

       A1: [s, 1] = [a, b] and

       A2: b <= ((2 * a) - 1) by Def10;

      b = 1 by A1, XTUPLE_0: 1;

      then (1 + 1) <= (2 * a) by A2, XREAL_1: 19;

      then

       A3: (2 / 2) <= ((2 * a) / 2) by XREAL_1: 72;

      a <= 1 & a = s by A1, BORSUK_1: 43, XTUPLE_0: 1;

      hence thesis by A3, XXREAL_0: 1;

    end;

    theorem :: BORSUK_6:64

    

     Th64: [ 0 , 1] in IBB

    proof

      

       A1: 1 >= (1 - (2 * 0 )) & 1 >= ((2 * 0 ) - 1);

       0 is Point of I[01] & 1 is Point of I[01] by BORSUK_1: 43;

      hence thesis by A1, Def9;

    end;

    theorem :: BORSUK_6:65

    

     Th65: for x be Point of I[01] holds [x, 1] in IBB

    proof

      let x be Point of I[01] ;

      x <= 1 by BORSUK_1: 43;

      then (2 * x) <= (2 * 1) by XREAL_1: 64;

      then

       A1: 1 is Point of I[01] & ((2 * x) - 1) <= ((2 * 1) - 1) by BORSUK_1: 43, XREAL_1: 13;

      x >= 0 by BORSUK_1: 43;

      then (1 - (2 * x)) <= (1 - (2 * 0 )) by XREAL_1: 13;

      hence thesis by A1, Def9;

    end;

    theorem :: BORSUK_6:66

    

     Th66: [(1 / 2), 0 ] in ICC & [1, 1] in ICC

    proof

      

       A1: 0 <= ((2 * (1 / 2)) - 1);

      (1 / 2) is Point of I[01] & 0 is Point of I[01] by BORSUK_1: 43;

      hence [(1 / 2), 0 ] in ICC by A1, Def10;

      1 is Point of I[01] & 1 <= ((2 * 1) - 1) by BORSUK_1: 43;

      hence thesis by Def10;

    end;

    theorem :: BORSUK_6:67

    

     Th67: [(1 / 2), 0 ] in IBB

    proof

      

       A1: 0 <= (1 - (2 * (1 / 2)));

      (1 / 2) is Point of I[01] & 0 is Point of I[01] by BORSUK_1: 43;

      hence thesis by A1, Def9;

    end;

    theorem :: BORSUK_6:68

    

     Th68: for x be Point of I[01] holds [1, x] in ICC

    proof

      let x be Point of I[01] ;

      1 is Point of I[01] & x <= ((2 * 1) - 1) by BORSUK_1: 43;

      hence thesis by Def10;

    end;

    theorem :: BORSUK_6:69

    

     Th69: for x be Point of I[01] st x >= (1 / 2) holds [x, 0 ] in ICC

    proof

      let x be Point of I[01] ;

      assume x >= (1 / 2);

      then (2 * x) >= (2 * (1 / 2)) by XREAL_1: 64;

      then

       A1: ((2 * x) - 1) >= ((2 * (1 / 2)) - 1) by XREAL_1: 13;

       0 is Point of I[01] by BORSUK_1: 43;

      hence thesis by A1, Def10;

    end;

    theorem :: BORSUK_6:70

    

     Th70: for x be Point of I[01] st x <= (1 / 2) holds [x, 0 ] in IAA

    proof

      let x be Point of I[01] ;

      assume x <= (1 / 2);

      then (2 * x) <= (2 * (1 / 2)) by XREAL_1: 64;

      then

       A1: (1 - (2 * x)) >= (1 - (2 * (1 / 2))) by XREAL_1: 13;

       0 is Point of I[01] by BORSUK_1: 43;

      hence thesis by A1, Def8;

    end;

    theorem :: BORSUK_6:71

    

     Th71: for x be Point of I[01] st x < (1 / 2) holds not [x, 0 ] in IBB & not [x, 0 ] in ICC

    proof

      let x be Point of I[01] ;

      assume

       A1: x < (1 / 2);

      thus not [x, 0 ] in IBB

      proof

        assume [x, 0 ] in IBB ;

        then

        consider a,b be Point of I[01] such that

         A2: [x, 0 ] = [a, b] and

         A3: b >= (1 - (2 * a)) and b >= ((2 * a) - 1) by Def9;

        x = a & b = 0 by A2, XTUPLE_0: 1;

        then ( 0 + (2 * x)) >= 1 by A3, XREAL_1: 20;

        then ((2 * x) / 2) >= (1 / 2) by XREAL_1: 72;

        hence thesis by A1;

      end;

       not [x, 0 ] in ICC

      proof

        assume [x, 0 ] in ICC ;

        then

        consider a,b be Point of I[01] such that

         A4: [x, 0 ] = [a, b] and

         A5: b <= ((2 * a) - 1) by Def10;

        x = a & b = 0 by A4, XTUPLE_0: 1;

        then ( 0 + 1) <= (2 * x) by A5, XREAL_1: 19;

        then (1 / 2) <= ((2 * x) / 2) by XREAL_1: 72;

        hence thesis by A1;

      end;

      hence thesis;

    end;

    theorem :: BORSUK_6:72

    

     Th72: ( IAA /\ ICC ) = { [(1 / 2), 0 ]}

    proof

      thus ( IAA /\ ICC ) c= { [(1 / 2), 0 ]}

      proof

        let x be object;

        assume

         A1: x in ( IAA /\ ICC );

        then

        reconsider y = x as Point of [: I[01] , I[01] :];

        x in IAA by A1, XBOOLE_0:def 4;

        then

         A2: (y `1 ) <= (1 / 2) by Th59;

        

         A3: x in ICC by A1, XBOOLE_0:def 4;

        then (y `1 ) >= (1 / 2) by Th60;

        then

         A4: (y `1 ) = (1 / 2) by A2, XXREAL_0: 1;

        y in the carrier of [: I[01] , I[01] :];

        then

         A5: y in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

        

         A6: (y `2 ) is Point of I[01] by Th27;

        ex q be Point of [: I[01] , I[01] :] st q = y & (q `2 ) <= ((2 * (q `1 )) - 1) by A3, Th55;

        then (y `2 ) = 0 by A4, A6, BORSUK_1: 43;

        then y = [(1 / 2), 0 ] by A5, A4, MCART_1: 21;

        hence thesis by TARSKI:def 1;

      end;

      (1 / 2) is Point of I[01] by BORSUK_1: 43;

      then [(1 / 2), 0 ] in IAA & [(1 / 2), 0 ] in ICC by Th69, Th70;

      then [(1 / 2), 0 ] in ( IAA /\ ICC ) by XBOOLE_0:def 4;

      hence thesis by ZFMISC_1: 31;

    end;

    

     Lm1: for x,y be Point of I[01] holds [x, y] in the carrier of [: I[01] , I[01] :];

    begin

    reserve X for non empty pathwise_connected TopSpace,

a1,b1,c1,d1 for Point of X;

    theorem :: BORSUK_6:73

    

     Th73: for P be Path of a, b, Q be Path of b, c, R be Path of c, d st (a,b) are_connected & (b,c) are_connected & (c,d) are_connected holds (((P + Q) + R),(P + (Q + R))) are_homotopic

    proof

      let P be Path of a, b, Q be Path of b, c, R be Path of c, d such that

       A1: (a,b) are_connected & (b,c) are_connected and

       A2: (c,d) are_connected ;

      (a,c) are_connected & ( RePar (((P + Q) + R), 3RP )) = (P + (Q + R)) by A1, A2, Th42, Th52;

      hence thesis by A2, Th42, Th45, Th49;

    end;

    theorem :: BORSUK_6:74

    for P be Path of a1, b1, Q be Path of b1, c1, R be Path of c1, d1 holds (((P + Q) + R),(P + (Q + R))) are_homotopic

    proof

      let P be Path of a1, b1, Q be Path of b1, c1, R be Path of c1, d1;

      

       A1: (c1,d1) are_connected by BORSUK_2:def 3;

      (a1,b1) are_connected & (b1,c1) are_connected by BORSUK_2:def 3;

      hence thesis by A1, Th73;

    end;

    theorem :: BORSUK_6:75

    

     Th75: for P1,P2 be Path of a, b, Q1,Q2 be Path of b, c st (a,b) are_connected & (b,c) are_connected & (P1,P2) are_homotopic & (Q1,Q2) are_homotopic holds ((P1 + Q1),(P2 + Q2)) are_homotopic

    proof

      set BB = [: I[01] , I[01] :];

      reconsider R1 = ( L[01] ( 0 ,(1 / 2), 0 ,1)) as continuous Function of ( Closed-Interval-TSpace ( 0 ,(1 / 2))), I[01] by Th34, TOPMETR: 20;

      let P1,P2 be Path of a, b, Q1,Q2 be Path of b, c;

      assume that

       A1: (a,b) are_connected & (b,c) are_connected and

       A2: (P1,P2) are_homotopic and

       A3: (Q1,Q2) are_homotopic ;

      reconsider R2 = ( L[01] ((1 / 2),1, 0 ,1)) as continuous Function of ( Closed-Interval-TSpace ((1 / 2),1)), I[01] by Th34, TOPMETR: 20;

      

       A4: 1 is Point of I[01] by BORSUK_1: 43;

      

       A5: 0 is Point of I[01] by BORSUK_1: 43;

      then

      reconsider A01 = [. 0 , 1.] as non empty Subset of I[01] by A4, BORSUK_4: 24;

      

       A6: (1 / 2) is Point of I[01] by BORSUK_1: 43;

      then

      reconsider B01 = [. 0 , (1 / 2).] as non empty Subset of I[01] by A5, BORSUK_4: 24;

      reconsider N2 = [: [.(1 / 2), 1.], [. 0 , 1.]:] as compact non empty Subset of BB by A5, A4, A6, Th9;

      reconsider N1 = [: [. 0 , (1 / 2).], [. 0 , 1.]:] as compact non empty Subset of BB by A5, A4, A6, Th9;

      set T1 = (BB | N1);

      set T2 = (BB | N2);

      A01 = ( [#] I[01] ) by BORSUK_1: 40;

      then

       A7: I[01] = ( I[01] | A01) by TSEP_1: 93;

      set f1 = [:R1, ( id I[01] ):], g1 = [:R2, ( id I[01] ):];

      reconsider f1 as continuous Function of [:( Closed-Interval-TSpace ( 0 ,(1 / 2))), I[01] :], [: I[01] , I[01] :];

      reconsider g1 as continuous Function of [:( Closed-Interval-TSpace ((1 / 2),1)), I[01] :], [: I[01] , I[01] :];

      

       A8: ( dom g1) = the carrier of [:( Closed-Interval-TSpace ((1 / 2),1)), I[01] :] by FUNCT_2:def 1

      .= [:the carrier of ( Closed-Interval-TSpace ((1 / 2),1)), the carrier of I[01] :] by BORSUK_1:def 2;

      reconsider B02 = [.(1 / 2), 1.] as non empty Subset of I[01] by A4, A6, BORSUK_4: 24;

      consider f be Function of [: I[01] , I[01] :], T such that

       A9: f is continuous and

       A10: for s be Point of I[01] holds (f . (s, 0 )) = (P1 . s) & (f . (s,1)) = (P2 . s) & for t be Point of I[01] holds (f . ( 0 ,t)) = a & (f . (1,t)) = b by A2;

      ( Closed-Interval-TSpace ( 0 ,(1 / 2))) = ( I[01] | B01) by TOPMETR: 24;

      then T1 = [:( Closed-Interval-TSpace ( 0 ,(1 / 2))), I[01] :] by A7, BORSUK_3: 22;

      then

      reconsider K1 = (f * f1) as continuous Function of T1, T by A9;

      consider g be Function of [: I[01] , I[01] :], T such that

       A11: g is continuous and

       A12: for s be Point of I[01] holds (g . (s, 0 )) = (Q1 . s) & (g . (s,1)) = (Q2 . s) & for t be Point of I[01] holds (g . ( 0 ,t)) = b & (g . (1,t)) = c by A3;

      ( Closed-Interval-TSpace ((1 / 2),1)) = ( I[01] | B02) by TOPMETR: 24;

      then T2 = [:( Closed-Interval-TSpace ((1 / 2),1)), I[01] :] by A7, BORSUK_3: 22;

      then

      reconsider K2 = (g * g1) as continuous Function of T2, T by A11;

      

       A13: ( dom K2) = the carrier of [:( Closed-Interval-TSpace ((1 / 2),1)), I[01] :] by FUNCT_2:def 1

      .= [:the carrier of ( Closed-Interval-TSpace ((1 / 2),1)), the carrier of I[01] :] by BORSUK_1:def 2;

      

       A14: for p be set st p in (( [#] T1) /\ ( [#] T2)) holds (K1 . p) = (K2 . p)

      proof

        

         A15: (R2 . (1 / 2)) = 0 by Th33;

        let p be set;

        

         A16: (R1 . (1 / 2)) = 1 by Th33;

        assume p in (( [#] T1) /\ ( [#] T2));

        then p in [: {(1 / 2)}, [. 0 , 1.]:] by Th29;

        then

        consider x,y be object such that

         A17: x in {(1 / 2)} and

         A18: y in [. 0 , 1.] and

         A19: p = [x, y] by ZFMISC_1:def 2;

        

         A20: y in the carrier of I[01] by A18, TOPMETR: 18, TOPMETR: 20;

        reconsider y as Point of I[01] by A18, TOPMETR: 18, TOPMETR: 20;

        

         A21: x = (1 / 2) by A17, TARSKI:def 1;

        then x in [.(1 / 2), 1.] by XXREAL_1: 1;

        then

         A22: x in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by TOPMETR: 18;

        then p in [:the carrier of ( Closed-Interval-TSpace ((1 / 2),1)), the carrier of I[01] :] by A19, A20, ZFMISC_1: 87;

        then p in the carrier of [:( Closed-Interval-TSpace ((1 / 2),1)), I[01] :] by BORSUK_1:def 2;

        then

         A23: p in ( dom g1) by FUNCT_2:def 1;

        x in [. 0 , (1 / 2).] by A21, XXREAL_1: 1;

        then

         A24: x in the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))) by TOPMETR: 18;

        then x in ( dom R1) by FUNCT_2:def 1;

        then

         A25: [x, y] in [:( dom R1), ( dom ( id I[01] )):] by ZFMISC_1: 87;

        x in ( dom R2) by A22, FUNCT_2:def 1;

        then

         A26: [x, y] in [:( dom R2), ( dom ( id I[01] )):] by ZFMISC_1: 87;

        p in [:the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))), the carrier of I[01] :] by A19, A20, A24, ZFMISC_1: 87;

        then p in the carrier of [:( Closed-Interval-TSpace ( 0 ,(1 / 2))), I[01] :] by BORSUK_1:def 2;

        then p in ( dom f1) by FUNCT_2:def 1;

        

        then (K1 . p) = (f . (f1 . (x,y))) by A19, FUNCT_1: 13

        .= (f . ((R1 . x),(( id I[01] ) . y))) by A25, FUNCT_3: 65

        .= b by A10, A21, A16

        .= (g . ((R2 . x),(( id I[01] ) . y))) by A12, A21, A15

        .= (g . (g1 . (x,y))) by A26, FUNCT_3: 65

        .= (K2 . p) by A19, A23, FUNCT_1: 13;

        hence thesis;

      end;

      (( [#] T1) \/ ( [#] T2)) = ( [#] BB) by Th28;

      then

      consider h be Function of [: I[01] , I[01] :], T such that

       A27: h = (K1 +* K2) and

       A28: h is continuous by A14, BORSUK_2: 1;

      

       A29: ( dom f1) = the carrier of [:( Closed-Interval-TSpace ( 0 ,(1 / 2))), I[01] :] by FUNCT_2:def 1

      .= [:the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))), the carrier of I[01] :] by BORSUK_1:def 2;

      

       A30: for s be Point of I[01] holds (h . (s, 0 )) = ((P1 + Q1) . s) & (h . (s,1)) = ((P2 + Q2) . s)

      proof

        let s be Point of I[01] ;

        

         A31: (h . (s,1)) = ((P2 + Q2) . s)

        proof

          per cases ;

            suppose

             A32: s < (1 / 2);

            then

             A33: (2 * s) is Point of I[01] by Th3;

            

             A34: 1 in the carrier of I[01] by BORSUK_1: 43;

            then

             A35: 1 in ( dom ( id I[01] ));

            

             A36: s >= 0 by BORSUK_1: 43;

            

            then

             A37: (R1 . s) = ((((1 - 0 ) / ((1 / 2) - 0 )) * (s - 0 )) + 0 ) by A32, Th35

            .= (2 * s);

            s in [. 0 , (1 / 2).] by A32, A36, XXREAL_1: 1;

            then

             A38: s in the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))) by TOPMETR: 18;

            then

             A39: [s, 1] in ( dom f1) by A29, A34, ZFMISC_1: 87;

            s in ( dom R1) by A38, FUNCT_2:def 1;

            then

             A40: [s, 1] in [:( dom R1), ( dom ( id I[01] )):] by A35, ZFMISC_1: 87;

             not s in [.(1 / 2), 1.] by A32, XXREAL_1: 1;

            then not s in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by TOPMETR: 18;

            then not [s, 1] in ( dom K2) by A13, ZFMISC_1: 87;

            

            then (h . (s,1)) = (K1 . (s,1)) by A27, FUNCT_4: 11

            .= (f . (f1 . (s,1))) by A39, FUNCT_1: 13

            .= (f . ((R1 . s),(( id I[01] ) . 1))) by A40, FUNCT_3: 65

            .= (f . ((2 * s),1)) by A4, A37, FUNCT_1: 18

            .= (P2 . (2 * s)) by A10, A33;

            hence thesis by A1, A32, BORSUK_2:def 5;

          end;

            suppose

             A41: s >= (1 / 2);

            

             A42: s <= 1 by BORSUK_1: 43;

            

            then

             A43: (R2 . s) = ((((1 - 0 ) / (1 - (1 / 2))) * (s - (1 / 2))) + 0 ) by A41, Th35

            .= ((2 * s) - 1);

            

             A44: ((2 * s) - 1) is Point of I[01] by A41, Th4;

            

             A45: 1 in the carrier of I[01] by BORSUK_1: 43;

            then

             A46: 1 in ( dom ( id I[01] ));

            s in [.(1 / 2), 1.] by A41, A42, XXREAL_1: 1;

            then

             A47: s in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by TOPMETR: 18;

            then

             A48: [s, 1] in ( dom g1) by A8, A45, ZFMISC_1: 87;

            s in ( dom R2) by A47, FUNCT_2:def 1;

            then

             A49: [s, 1] in [:( dom R2), ( dom ( id I[01] )):] by A46, ZFMISC_1: 87;

             [s, 1] in ( dom K2) by A13, A47, A45, ZFMISC_1: 87;

            

            then (h . (s,1)) = (K2 . (s,1)) by A27, FUNCT_4: 13

            .= (g . (g1 . (s,1))) by A48, FUNCT_1: 13

            .= (g . ((R2 . s),(( id I[01] ) . 1))) by A49, FUNCT_3: 65

            .= (g . (((2 * s) - 1),1)) by A4, A43, FUNCT_1: 18

            .= (Q2 . ((2 * s) - 1)) by A12, A44;

            hence thesis by A1, A41, BORSUK_2:def 5;

          end;

        end;

        (h . (s, 0 )) = ((P1 + Q1) . s)

        proof

          per cases ;

            suppose

             A50: s < (1 / 2);

            then

             A51: (2 * s) is Point of I[01] by Th3;

            

             A52: 0 in the carrier of I[01] by BORSUK_1: 43;

            then

             A53: 0 in ( dom ( id I[01] ));

            

             A54: s >= 0 by BORSUK_1: 43;

            

            then

             A55: (R1 . s) = ((((1 - 0 ) / ((1 / 2) - 0 )) * (s - 0 )) + 0 ) by A50, Th35

            .= (2 * s);

            s in [. 0 , (1 / 2).] by A50, A54, XXREAL_1: 1;

            then

             A56: s in the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))) by TOPMETR: 18;

            then

             A57: [s, 0 ] in ( dom f1) by A29, A52, ZFMISC_1: 87;

            s in ( dom R1) by A56, FUNCT_2:def 1;

            then

             A58: [s, 0 ] in [:( dom R1), ( dom ( id I[01] )):] by A53, ZFMISC_1: 87;

             not s in [.(1 / 2), 1.] by A50, XXREAL_1: 1;

            then not s in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by TOPMETR: 18;

            then not [s, 0 ] in ( dom K2) by A13, ZFMISC_1: 87;

            

            then (h . (s, 0 )) = (K1 . (s, 0 )) by A27, FUNCT_4: 11

            .= (f . (f1 . (s, 0 ))) by A57, FUNCT_1: 13

            .= (f . ((R1 . s),(( id I[01] ) . 0 ))) by A58, FUNCT_3: 65

            .= (f . ((2 * s), 0 )) by A5, A55, FUNCT_1: 18

            .= (P1 . (2 * s)) by A10, A51;

            hence thesis by A1, A50, BORSUK_2:def 5;

          end;

            suppose

             A59: s >= (1 / 2);

            

             A60: s <= 1 by BORSUK_1: 43;

            

            then

             A61: (R2 . s) = ((((1 - 0 ) / (1 - (1 / 2))) * (s - (1 / 2))) + 0 ) by A59, Th35

            .= ((2 * s) - 1);

            

             A62: ((2 * s) - 1) is Point of I[01] by A59, Th4;

            

             A63: 0 in the carrier of I[01] by BORSUK_1: 43;

            then

             A64: 0 in ( dom ( id I[01] ));

            s in [.(1 / 2), 1.] by A59, A60, XXREAL_1: 1;

            then

             A65: s in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by TOPMETR: 18;

            then

             A66: [s, 0 ] in ( dom g1) by A8, A63, ZFMISC_1: 87;

            s in ( dom R2) by A65, FUNCT_2:def 1;

            then

             A67: [s, 0 ] in [:( dom R2), ( dom ( id I[01] )):] by A64, ZFMISC_1: 87;

             [s, 0 ] in ( dom K2) by A13, A65, A63, ZFMISC_1: 87;

            

            then (h . (s, 0 )) = (K2 . (s, 0 )) by A27, FUNCT_4: 13

            .= (g . (g1 . (s, 0 ))) by A66, FUNCT_1: 13

            .= (g . ((R2 . s),(( id I[01] ) . 0 ))) by A67, FUNCT_3: 65

            .= (g . (((2 * s) - 1), 0 )) by A5, A61, FUNCT_1: 18

            .= (Q1 . ((2 * s) - 1)) by A12, A62;

            hence thesis by A1, A59, BORSUK_2:def 5;

          end;

        end;

        hence thesis by A31;

      end;

      take h;

      for t be Point of I[01] holds (h . ( 0 ,t)) = a & (h . (1,t)) = c

      proof

        let t be Point of I[01] ;

        

         A68: ( dom K2) = the carrier of [:( Closed-Interval-TSpace ((1 / 2),1)), I[01] :] by FUNCT_2:def 1

        .= [:the carrier of ( Closed-Interval-TSpace ((1 / 2),1)), the carrier of I[01] :] by BORSUK_1:def 2;

         0 in [. 0 , (1 / 2).] by XXREAL_1: 1;

        then

         A69: 0 in the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))) by TOPMETR: 18;

        then

         A70: [ 0 , t] in ( dom f1) by A29, ZFMISC_1: 87;

         0 in ( dom R1) by A69, FUNCT_2:def 1;

        then

         A71: [ 0 , t] in [:( dom R1), ( dom ( id I[01] )):] by ZFMISC_1: 87;

         not 0 in [.(1 / 2), 1.] by XXREAL_1: 1;

        then not 0 in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by TOPMETR: 18;

        then not [ 0 , t] in ( dom K2) by A68, ZFMISC_1: 87;

        

        hence (h . ( 0 ,t)) = (K1 . ( 0 ,t)) by A27, FUNCT_4: 11

        .= (f . (f1 . ( 0 ,t))) by A70, FUNCT_1: 13

        .= (f . ((R1 . 0 ),(( id I[01] ) . t))) by A71, FUNCT_3: 65

        .= (f . ((R1 . 0 ),t)) by FUNCT_1: 18

        .= (f . ( 0 ,t)) by Th33

        .= a by A10;

        1 in [.(1 / 2), 1.] by XXREAL_1: 1;

        then

         A72: 1 in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by TOPMETR: 18;

        then 1 in ( dom R2) by FUNCT_2:def 1;

        then

         A73: [1, t] in [:( dom R2), ( dom ( id I[01] )):] by ZFMISC_1: 87;

        1 in [.(1 / 2), 1.] by XXREAL_1: 1;

        then 1 in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by TOPMETR: 18;

        then

         A74: [1, t] in ( dom g1) by A8, ZFMISC_1: 87;

         [1, t] in ( dom K2) by A68, A72, ZFMISC_1: 87;

        

        then (h . (1,t)) = (K2 . (1,t)) by A27, FUNCT_4: 13

        .= (g . (g1 . (1,t))) by A74, FUNCT_1: 13

        .= (g . ((R2 . 1),(( id I[01] ) . t))) by A73, FUNCT_3: 65

        .= (g . ((R2 . 1),t)) by FUNCT_1: 18

        .= (g . (1,t)) by Th33

        .= c by A12;

        hence thesis;

      end;

      hence thesis by A28, A30;

    end;

    theorem :: BORSUK_6:76

    for P1,P2 be Path of a1, b1, Q1,Q2 be Path of b1, c1 st (P1,P2) are_homotopic & (Q1,Q2) are_homotopic holds ((P1 + Q1),(P2 + Q2)) are_homotopic

    proof

      let P1,P2 be Path of a1, b1, Q1,Q2 be Path of b1, c1;

      (a1,b1) are_connected & (b1,c1) are_connected by BORSUK_2:def 3;

      hence thesis by Th75;

    end;

    theorem :: BORSUK_6:77

    

     Th77: for P,Q be Path of a, b st (a,b) are_connected & (P,Q) are_homotopic holds (( - P),( - Q)) are_homotopic

    proof

      reconsider fF = ( id I[01] ) as continuous Function of I[01] , I[01] ;

      reconsider fB = ( L[01] ((( 0 ,1) (#) ),( (#) ( 0 ,1)))) as continuous Function of I[01] , I[01] by TOPMETR: 20, TREAL_1: 8;

      let P,Q be Path of a, b;

      assume

       A1: (a,b) are_connected ;

      set F = [:fB, fF:];

      

       A2: ( dom fB) = the carrier of I[01] by FUNCT_2:def 1;

      assume (P,Q) are_homotopic ;

      then

      consider f be Function of [: I[01] , I[01] :], T such that

       A3: f is continuous and

       A4: for s be Point of I[01] holds (f . (s, 0 )) = (P . s) & (f . (s,1)) = (Q . s) & for t be Point of I[01] holds (f . ( 0 ,t)) = a & (f . (1,t)) = b;

      reconsider ff = (f * F) as Function of [: I[01] , I[01] :], T;

      take ff;

      thus ff is continuous by A3;

      

       A5: 0 is Point of I[01] by BORSUK_1: 43;

      

       A6: for t be Point of I[01] holds (ff . ( 0 ,t)) = b & (ff . (1,t)) = a

      proof

        

         A7: for t be Point of I[01] , t9 be Real st t = t9 holds (fB . t) = (1 - t9)

        proof

          let t be Point of I[01] , t9 be Real;

          assume

           A8: t = t9;

          reconsider ee = t as Point of ( Closed-Interval-TSpace ( 0 ,1)) by TOPMETR: 20;

          

           A9: (( 0 ,1) (#) ) = 1 & ( (#) ( 0 ,1)) = 0 by TREAL_1:def 1, TREAL_1:def 2;

          (fB . t) = (fB . ee)

          .= ((( 0 - 1) * t9) + 1) by A8, A9, TREAL_1: 7

          .= (1 - (1 * t9));

          hence thesis;

        end;

        

        then

         A10: (fB . 0 ) = (1 - 0 ) by A5

        .= 1;

        1 is Point of I[01] by BORSUK_1: 43;

        

        then

         A11: (fB . 1) = (1 - 1) by A7

        .= 0 ;

        let t be Point of I[01] ;

        

         A12: ( dom fF) = the carrier of I[01] ;

        reconsider tt = t as Real;

        

         A13: ( dom fB) = the carrier of I[01] by FUNCT_2:def 1;

        then

         A14: 0 in ( dom fB) by BORSUK_1: 43;

        

         A15: ( dom F) = [:( dom fB), ( dom fF):] by FUNCT_3:def 8;

        then

         A16: [ 0 , t] in ( dom F) by A14, ZFMISC_1: 87;

        

         A17: 1 in ( dom fB) by A13, BORSUK_1: 43;

        then

         A18: [1, t] in ( dom F) by A15, ZFMISC_1: 87;

        (F . (1,t)) = [(fB . 1), (fF . t)] by A12, A17, FUNCT_3:def 8

        .= [ 0 , tt] by A11, FUNCT_1: 18;

        

        then

         A19: (ff . (1,t)) = (f . ( 0 ,t)) by A18, FUNCT_1: 13

        .= a by A4;

        (F . ( 0 ,t)) = [(fB . 0 ), (fF . t)] by A12, A14, FUNCT_3:def 8

        .= [1, tt] by A10, FUNCT_1: 18;

        

        then (ff . ( 0 ,t)) = (f . (1,t)) by A16, FUNCT_1: 13

        .= b by A4;

        hence thesis by A19;

      end;

      for s be Point of I[01] holds (ff . (s, 0 )) = (( - P) . s) & (ff . (s,1)) = (( - Q) . s)

      proof

        let s be Point of I[01] ;

        

         A20: for t be Point of I[01] , t9 be Real st t = t9 holds (fB . t) = (1 - t9)

        proof

          let t be Point of I[01] , t9 be Real;

          assume

           A21: t = t9;

          reconsider ee = t as Point of ( Closed-Interval-TSpace ( 0 ,1)) by TOPMETR: 20;

          

           A22: (( 0 ,1) (#) ) = 1 & ( (#) ( 0 ,1)) = 0 by TREAL_1:def 1, TREAL_1:def 2;

          (fB . t) = (fB . ee)

          .= ((( 0 - 1) * t9) + 1) by A21, A22, TREAL_1: 7

          .= (1 - (1 * t9));

          hence thesis;

        end;

        

         A23: (fB . s) = (1 - s) by A20;

        

         A24: 1 is Point of I[01] by BORSUK_1: 43;

        

         A25: ( dom F) = [:( dom fB), ( dom fF):] by FUNCT_3:def 8;

        

         A26: 1 in ( dom fF) by BORSUK_1: 43;

        then

         A27: [s, 1] in ( dom F) by A2, A25, ZFMISC_1: 87;

        

         A28: 0 in ( dom fF) by BORSUK_1: 43;

        then

         A29: [s, 0 ] in ( dom F) by A2, A25, ZFMISC_1: 87;

        

         A30: (1 - s) is Point of I[01] by JORDAN5B: 4;

        (F . (s,1)) = [(fB . s), (fF . 1)] by A2, A26, FUNCT_3:def 8

        .= [(1 - s), 1] by A23, A24, FUNCT_1: 18;

        

        then

         A31: (ff . (s,1)) = (f . ((1 - s),1)) by A27, FUNCT_1: 13

        .= (Q . (1 - s)) by A4, A30

        .= (( - Q) . s) by A1, BORSUK_2:def 6;

        (F . (s, 0 )) = [(fB . s), (fF . 0 )] by A2, A28, FUNCT_3:def 8

        .= [(1 - s), 0 ] by A5, A23, FUNCT_1: 18;

        

        then (ff . (s, 0 )) = (f . ((1 - s), 0 )) by A29, FUNCT_1: 13

        .= (P . (1 - s)) by A4, A30

        .= (( - P) . s) by A1, BORSUK_2:def 6;

        hence thesis by A31;

      end;

      hence thesis by A6;

    end;

    theorem :: BORSUK_6:78

    for P,Q be Path of a1, b1 st (P,Q) are_homotopic holds (( - P),( - Q)) are_homotopic by Th77, BORSUK_2:def 3;

    theorem :: BORSUK_6:79

    for P,Q,R be Path of a, b holds (P,Q) are_homotopic & (Q,R) are_homotopic implies (P,R) are_homotopic

    proof

      (1 / 2) in [. 0 , (1 / 2).] by XXREAL_1: 1;

      then

       A1: (1 / 2) in the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))) by TOPMETR: 18;

      reconsider B02 = [.(1 / 2), 1.] as non empty Subset of I[01] by BORSUK_1: 40, XXREAL_1: 1, XXREAL_1: 34;

      

       A2: 1 in [. 0 , 1.] by XXREAL_1: 1;

      

       A3: (1 / 2) in [.(1 / 2), 1.] by XXREAL_1: 1;

      then

       A4: (1 / 2) in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by TOPMETR: 18;

       [. 0 , (1 / 2).] c= the carrier of I[01] by BORSUK_1: 40, XXREAL_1: 34;

      then

       A5: [: [. 0 , 1.], [. 0 , (1 / 2).]:] c= [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1: 40, ZFMISC_1: 96;

      

       A6: the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))) = [. 0 , (1 / 2).] by TOPMETR: 18;

       0 in [. 0 , (1 / 2).] by XXREAL_1: 1;

      then

      reconsider Ewa = [: [. 0 , 1.], [. 0 , (1 / 2).]:] as non empty Subset of [: I[01] , I[01] :] by A5, A2, BORSUK_1:def 2;

      set T1 = ( [: I[01] , I[01] :] | Ewa);

      reconsider P2 = ( P[01] ((1 / 2),1,( (#) ( 0 ,1)),(( 0 ,1) (#) ))) as continuous Function of ( Closed-Interval-TSpace ((1 / 2),1)), I[01] by TOPMETR: 20, TREAL_1: 12;

      reconsider P1 = ( P[01] ( 0 ,(1 / 2),( (#) ( 0 ,1)),(( 0 ,1) (#) ))) as continuous Function of ( Closed-Interval-TSpace ( 0 ,(1 / 2))), I[01] by TOPMETR: 20, TREAL_1: 12;

      let P,Q,R be Path of a, b;

      assume that

       A7: (P,Q) are_homotopic and

       A8: (Q,R) are_homotopic ;

      consider f be Function of [: I[01] , I[01] :], T such that

       A9: f is continuous and

       A10: for s be Point of I[01] holds (f . (s, 0 )) = (P . s) & (f . (s,1)) = (Q . s) & for t be Point of I[01] holds (f . ( 0 ,t)) = a & (f . (1,t)) = b by A7;

      

       A11: the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) = [.(1 / 2), 1.] by TOPMETR: 18;

       [. 0 , 1.] c= the carrier of I[01] by BORSUK_1: 40;

      then

      reconsider A01 = [. 0 , 1.] as non empty Subset of I[01] by XXREAL_1: 1;

      reconsider B01 = [. 0 , (1 / 2).] as non empty Subset of I[01] by BORSUK_1: 40, XXREAL_1: 1, XXREAL_1: 34;

      

       A12: the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) = [.(1 / 2), 1.] by TOPMETR: 18;

      A01 = ( [#] I[01] ) by BORSUK_1: 40;

      then

       A13: I[01] = ( I[01] | A01) by TSEP_1: 93;

       [.(1 / 2), 1.] c= the carrier of I[01] by BORSUK_1: 40, XXREAL_1: 34;

      then

       A14: [: [. 0 , 1.], [.(1 / 2), 1.]:] c= [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1: 40, ZFMISC_1: 96;

      

       A15: 1 in the carrier of I[01] by BORSUK_1: 43;

      1 in [.(1 / 2), 1.] by XXREAL_1: 1;

      then

      reconsider Ewa1 = [: [. 0 , 1.], [.(1 / 2), 1.]:] as non empty Subset of [: I[01] , I[01] :] by A2, A14, BORSUK_1:def 2;

      set T2 = ( [: I[01] , I[01] :] | Ewa1);

      set e1 = [:( id I[01] ), P1:], e2 = [:( id I[01] ), P2:];

      

       A16: ( dom ( id I[01] )) = the carrier of I[01] & ( dom ( P[01] ((1 / 2),1,( (#) ( 0 ,1)),(( 0 ,1) (#) )))) = the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by FUNCT_2:def 1;

      

       A17: ( rng e2) = [:( rng ( id I[01] )), ( rng ( P[01] ((1 / 2),1,( (#) ( 0 ,1)),(( 0 ,1) (#) )))):] by FUNCT_3: 67;

      consider g be Function of [: I[01] , I[01] :], T such that

       A18: g is continuous and

       A19: for s be Point of I[01] holds (g . (s, 0 )) = (Q . s) & (g . (s,1)) = (R . s) & for t be Point of I[01] holds (g . ( 0 ,t)) = a & (g . (1,t)) = b by A8;

      set f1 = (f * e1), g1 = (g * e2);

      ( dom g) = the carrier of [: I[01] , I[01] :] by FUNCT_2:def 1

      .= [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

      

      then

       A20: ( dom g1) = ( dom e2) by A17, RELAT_1: 27, TOPMETR: 20, ZFMISC_1: 96

      .= [:the carrier of I[01] , the carrier of ( Closed-Interval-TSpace ((1 / 2),1)):] by A16, FUNCT_3:def 8;

      ( Closed-Interval-TSpace ((1 / 2),1)) = ( I[01] | B02) by TOPMETR: 24;

      then e2 is continuous Function of [: I[01] , ( Closed-Interval-TSpace ((1 / 2),1)):], [: I[01] , I[01] :] & T2 = [: I[01] , ( Closed-Interval-TSpace ((1 / 2),1)):] by A13, BORSUK_3: 22;

      then

      reconsider g1 as continuous Function of T2, T by A18;

      ( Closed-Interval-TSpace ( 0 ,(1 / 2))) = ( I[01] | B01) by TOPMETR: 24;

      then e1 is continuous Function of [: I[01] , ( Closed-Interval-TSpace ( 0 ,(1 / 2))):], [: I[01] , I[01] :] & T1 = [: I[01] , ( Closed-Interval-TSpace ( 0 ,(1 / 2))):] by A13, BORSUK_3: 22;

      then

      reconsider f1 as continuous Function of T1, T by A9;

      

       A21: 1 is Point of I[01] by BORSUK_1: 43;

      

       A22: 0 is Point of I[01] by BORSUK_1: 43;

      then

       A23: [. 0 , 1.] is compact Subset of I[01] by A21, BORSUK_4: 24;

      

       A24: (1 / 2) is Point of I[01] by BORSUK_1: 43;

      then [. 0 , (1 / 2).] is compact Subset of I[01] by A22, BORSUK_4: 24;

      then

       A25: Ewa is compact Subset of [: I[01] , I[01] :] by A23, BORSUK_3: 23;

       [.(1 / 2), 1.] is compact Subset of I[01] by A21, A24, BORSUK_4: 24;

      then

       A26: Ewa1 is compact Subset of [: I[01] , I[01] :] by A23, BORSUK_3: 23;

      

       A27: ( dom e1) = the carrier of [: I[01] , ( Closed-Interval-TSpace ( 0 ,(1 / 2))):] by FUNCT_2:def 1

      .= [:the carrier of I[01] , the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))):] by BORSUK_1:def 2;

      

       A28: ( dom e2) = [:( dom ( id I[01] )), ( dom P2):] by FUNCT_3:def 8;

      

       A29: ( dom e1) = [:( dom ( id I[01] )), ( dom P1):] by FUNCT_3:def 8;

      

       A30: ( dom e2) = the carrier of [: I[01] , ( Closed-Interval-TSpace ((1 / 2),1)):] by FUNCT_2:def 1

      .= [:the carrier of I[01] , the carrier of ( Closed-Interval-TSpace ((1 / 2),1)):] by BORSUK_1:def 2;

      

       A31: ( [#] T1) = Ewa & ( [#] T2) = Ewa1 by PRE_TOPC:def 5;

      

      then

       A32: (( [#] T1) /\ ( [#] T2)) = [: [. 0 , 1.], ( [. 0 , (1 / 2).] /\ [.(1 / 2), 1.]):] by ZFMISC_1: 99

      .= [: [. 0 , 1.], {(1 / 2)}:] by XXREAL_1: 418;

      

       A33: for p be set st p in (( [#] T1) /\ ( [#] T2)) holds (f1 . p) = (g1 . p)

      proof

        let p be set;

        assume p in (( [#] T1) /\ ( [#] T2));

        then

        consider x,y be object such that

         A34: x in [. 0 , 1.] and

         A35: y in {(1 / 2)} and

         A36: p = [x, y] by A32, ZFMISC_1:def 2;

        x in { r where r be Real : 0 <= r & r <= 1 } by A34, RCOMP_1:def 1;

        then

         A37: ex r1 be Real st r1 = x & 0 <= r1 & r1 <= 1;

        then

        reconsider x9 = x as Point of I[01] by BORSUK_1: 43;

        

         A38: y = (1 / 2) by A35, TARSKI:def 1;

        (f1 . p) = (g1 . p)

        proof

          (1 / 2) in [. 0 , (1 / 2).] by XXREAL_1: 1;

          then

          reconsider y9 = (1 / 2) as Point of ( Closed-Interval-TSpace ( 0 ,(1 / 2))) by TOPMETR: 18;

          set t9 = (1 / 2);

          reconsider r1 = ( (#) ( 0 ,1)), r2 = (( 0 ,1) (#) ) as Real;

          

           A39: (P1 . y9) = ((((r2 - r1) / ((1 / 2) - 0 )) * t9) + ((((1 / 2) * r1) - ( 0 * r2)) / ((1 / 2) - 0 ))) by TREAL_1: 11

          .= ((((1 - r1) / ((1 / 2) - 0 )) * t9) + ((((1 / 2) * r1) - ( 0 * r2)) / ((1 / 2) - 0 ))) by TREAL_1:def 2

          .= ((((1 - 0 ) / ((1 / 2) - 0 )) * t9) + ((((1 / 2) * r1) - ( 0 * r2)) / ((1 / 2) - 0 ))) by TREAL_1:def 1

          .= ((((1 - 0 ) / ((1 / 2) - 0 )) * t9) + ((((1 / 2) * 0 ) - ( 0 * 1)) / ((1 / 2) - 0 ))) by TREAL_1:def 1

          .= 1;

          reconsider y9 = (1 / 2) as Point of ( Closed-Interval-TSpace ((1 / 2),1)) by A3, TOPMETR: 18;

          

           A40: (P2 . y9) = ((((r2 - r1) / (1 - (1 / 2))) * t9) + (((1 * r1) - ((1 / 2) * r2)) / (1 - (1 / 2)))) by TREAL_1: 11

          .= 0 by BORSUK_1:def 14, TREAL_1: 5;

          

           A41: x in the carrier of I[01] by A37, BORSUK_1: 43;

          then

           A42: [x, y] in ( dom e2) by A30, A4, A38, ZFMISC_1: 87;

          

           A43: [x, y] in ( dom e1) by A1, A27, A38, A41, ZFMISC_1: 87;

          

          then (f1 . p) = (f . (e1 . (x,y))) by A36, FUNCT_1: 13

          .= (f . ((( id I[01] ) . x),(P1 . y))) by A29, A43, FUNCT_3: 65

          .= (f . (x9,1)) by A38, A39, FUNCT_1: 18

          .= (Q . x9) by A10

          .= (g . (x9, 0 )) by A19

          .= (g . ((( id I[01] ) . x9),(P2 . y))) by A38, A40, FUNCT_1: 18

          .= (g . (e2 . (x,y))) by A28, A42, FUNCT_3: 65

          .= (g1 . p) by A36, A42, FUNCT_1: 13;

          hence thesis;

        end;

        hence thesis;

      end;

      (( [#] T1) \/ ( [#] T2)) = [: [. 0 , 1.], ( [. 0 , (1 / 2).] \/ [.(1 / 2), 1.]):] by A31, ZFMISC_1: 97

      .= [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1: 40, XXREAL_1: 174

      .= ( [#] [: I[01] , I[01] :]) by BORSUK_1:def 2;

      then

      consider h be Function of [: I[01] , I[01] :], T such that

       A44: h = (f1 +* g1) and

       A45: h is continuous by A25, A26, A33, BORSUK_2: 1;

      

       A46: the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))) = [. 0 , (1 / 2).] by TOPMETR: 18;

      

       A47: for t be Point of I[01] holds (h . ( 0 ,t)) = a & (h . (1,t)) = b

      proof

        let t be Point of I[01] ;

        per cases ;

          suppose

           A48: t < (1 / 2);

          reconsider r1 = ( (#) ( 0 ,1)), r2 = (( 0 ,1) (#) ) as Real;

          

           A49: 0 <= t by BORSUK_1: 43;

          then

           A50: t in the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))) by A6, A48, XXREAL_1: 1;

           0 in the carrier of I[01] by BORSUK_1: 43;

          then

           A51: [ 0 , t] in ( dom e1) by A27, A50, ZFMISC_1: 87;

          (P1 . t) = ((((r2 - r1) / ((1 / 2) - 0 )) * t) + ((((1 / 2) * r1) - ( 0 * r2)) / ((1 / 2) - 0 ))) by A50, TREAL_1: 11

          .= ((((1 - r1) / (1 / 2)) * t) + (((1 / 2) * r1) / (1 / 2))) by TREAL_1:def 2

          .= ((((1 - 0 ) / (1 / 2)) * t) + (((1 / 2) * r1) / (1 / 2))) by TREAL_1:def 1

          .= (((1 / (1 / 2)) * t) + (((1 / 2) * 0 ) / (1 / 2))) by TREAL_1:def 1

          .= (2 * t);

          then

           A52: (P1 . t) is Point of I[01] by A48, Th3;

           not t in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by A11, A48, XXREAL_1: 1;

          then not [ 0 , t] in ( dom g1) by A20, ZFMISC_1: 87;

          

          hence (h . ( 0 ,t)) = (f1 . ( 0 ,t)) by A44, FUNCT_4: 11

          .= (f . (e1 . ( 0 ,t))) by A51, FUNCT_1: 13

          .= (f . ((( id I[01] ) . 0 ),(P1 . t))) by A29, A51, FUNCT_3: 65

          .= (f . ( 0 ,(P1 . t))) by A22, FUNCT_1: 18

          .= a by A10, A52;

          t in the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))) by A46, A48, A49, XXREAL_1: 1;

          then

           A53: [1, t] in ( dom e1) by A27, A15, ZFMISC_1: 87;

          (P1 . t) = ((((r2 - r1) / ((1 / 2) - 0 )) * t) + ((((1 / 2) * r1) - ( 0 * r2)) / ((1 / 2) - 0 ))) by A50, TREAL_1: 11

          .= ((((1 - r1) / (1 / 2)) * t) + (((1 / 2) * r1) / (1 / 2))) by TREAL_1:def 2

          .= ((((1 - 0 ) / (1 / 2)) * t) + (((1 / 2) * r1) / (1 / 2))) by TREAL_1:def 1

          .= (((1 / (1 / 2)) * t) + (((1 / 2) * 0 ) / (1 / 2))) by TREAL_1:def 1

          .= (2 * t);

          then

           A54: (P1 . t) is Point of I[01] by A48, Th3;

           not t in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by A12, A48, XXREAL_1: 1;

          then not [1, t] in ( dom g1) by A20, ZFMISC_1: 87;

          

          hence (h . (1,t)) = (f1 . (1,t)) by A44, FUNCT_4: 11

          .= (f . (e1 . (1,t))) by A53, FUNCT_1: 13

          .= (f . ((( id I[01] ) . 1),(P1 . t))) by A29, A53, FUNCT_3: 65

          .= (f . (1,(P1 . t))) by A21, FUNCT_1: 18

          .= b by A10, A54;

        end;

          suppose

           A55: t >= (1 / 2);

          reconsider r1 = ( (#) ( 0 ,1)), r2 = (( 0 ,1) (#) ) as Real;

          t <= 1 by BORSUK_1: 43;

          then

           A56: t in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by A11, A55, XXREAL_1: 1;

          then

           A57: [1, t] in ( dom e2) by A30, A15, ZFMISC_1: 87;

          (P2 . t) = ((((r2 - r1) / (1 - (1 / 2))) * t) + (((1 * r1) - ((1 / 2) * r2)) / (1 - (1 / 2)))) by A56, TREAL_1: 11

          .= ((((1 - r1) / (1 / 2)) * t) + (((1 * r1) - ((1 / 2) * r2)) / (1 / 2))) by TREAL_1:def 2

          .= ((((1 - 0 ) / (1 / 2)) * t) + (((1 * r1) - ((1 / 2) * r2)) / (1 / 2))) by TREAL_1:def 1

          .= ((2 * t) + (((1 * 0 ) - ((1 / 2) * r2)) / (1 / 2))) by TREAL_1:def 1

          .= ((2 * t) + (( - ((1 / 2) * r2)) / (1 / 2)))

          .= ((2 * t) + (( - ((1 / 2) * 1)) / (1 / 2))) by TREAL_1:def 2

          .= ((2 * t) - 1);

          then

           A58: (P2 . t) is Point of I[01] by A55, Th4;

          (P2 . t) = ((((r2 - r1) / (1 - (1 / 2))) * t) + (((1 * r1) - ((1 / 2) * r2)) / (1 - (1 / 2)))) by A56, TREAL_1: 11

          .= ((((1 - r1) / (1 / 2)) * t) + (((1 * r1) - ((1 / 2) * r2)) / (1 / 2))) by TREAL_1:def 2

          .= ((((1 - 0 ) / (1 / 2)) * t) + (((1 * r1) - ((1 / 2) * r2)) / (1 / 2))) by TREAL_1:def 1

          .= (((1 / (1 / 2)) * t) + (((1 * 0 ) - ((1 / 2) * r2)) / (1 / 2))) by TREAL_1:def 1

          .= (((1 / (1 / 2)) * t) + (((1 * 0 ) - ((1 / 2) * 1)) / (1 / 2))) by TREAL_1:def 2

          .= ((2 * t) - 1);

          then

           A59: (P2 . t) is Point of I[01] by A55, Th4;

          

           A60: 0 in the carrier of I[01] by BORSUK_1: 43;

          then

           A61: [ 0 , t] in ( dom e2) by A30, A56, ZFMISC_1: 87;

           [ 0 , t] in ( dom g1) by A20, A60, A56, ZFMISC_1: 87;

          

          hence (h . ( 0 ,t)) = (g1 . ( 0 ,t)) by A44, FUNCT_4: 13

          .= (g . (e2 . ( 0 ,t))) by A61, FUNCT_1: 13

          .= (g . ((( id I[01] ) . 0 ),(P2 . t))) by A28, A61, FUNCT_3: 65

          .= (g . ( 0 ,(P2 . t))) by A22, FUNCT_1: 18

          .= a by A19, A59;

           [1, t] in ( dom g1) by A20, A15, A56, ZFMISC_1: 87;

          

          hence (h . (1,t)) = (g1 . (1,t)) by A44, FUNCT_4: 13

          .= (g . (e2 . (1,t))) by A57, FUNCT_1: 13

          .= (g . ((( id I[01] ) . 1),(P2 . t))) by A28, A57, FUNCT_3: 65

          .= (g . (1,(P2 . t))) by A21, FUNCT_1: 18

          .= b by A19, A58;

        end;

      end;

      for s be Point of I[01] holds (h . (s, 0 )) = (P . s) & (h . (s,1)) = (R . s)

      proof

        reconsider r1 = ( (#) ( 0 ,1)), r2 = (( 0 ,1) (#) ) as Real;

        let s be Point of I[01] ;

        1 = (( 0 ,1) (#) ) & 1 = (((1 / 2),1) (#) ) by TREAL_1:def 2;

        then

         A62: (P2 . 1) = 1 by TREAL_1: 13;

        

         A63: the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) = [.(1 / 2), 1.] by TOPMETR: 18;

        then

         A64: 1 in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by XXREAL_1: 1;

        then

         A65: [s, 1] in ( dom e2) by A30, ZFMISC_1: 87;

         [s, 1] in ( dom g1) by A20, A64, ZFMISC_1: 87;

        

        then

         A66: (h . (s,1)) = (g1 . (s,1)) by A44, FUNCT_4: 13

        .= (g . (e2 . (s,1))) by A65, FUNCT_1: 13

        .= (g . ((( id I[01] ) . s),(P2 . 1))) by A28, A65, FUNCT_3: 65

        .= (g . (s,1)) by A62, FUNCT_1: 18

        .= (R . s) by A19;

        

         A67: 0 in the carrier of ( Closed-Interval-TSpace ( 0 ,(1 / 2))) by A6, XXREAL_1: 1;

        

        then

         A68: (P1 . 0 ) = ((((r2 - r1) / ((1 / 2) - 0 )) * 0 ) + ((((1 / 2) * r1) - ( 0 * r2)) / ((1 / 2) - 0 ))) by TREAL_1: 11

        .= ((((1 / 2) * 0 ) - ( 0 * r2)) / ((1 / 2) - 0 )) by TREAL_1:def 1;

        

         A69: [s, 0 ] in ( dom e1) by A27, A67, ZFMISC_1: 87;

         not 0 in the carrier of ( Closed-Interval-TSpace ((1 / 2),1)) by A63, XXREAL_1: 1;

        then not [s, 0 ] in ( dom g1) by A20, ZFMISC_1: 87;

        

        then (h . (s, 0 )) = (f1 . (s, 0 )) by A44, FUNCT_4: 11

        .= (f . (e1 . (s, 0 ))) by A69, FUNCT_1: 13

        .= (f . ((( id I[01] ) . s),(P1 . 0 ))) by A29, A69, FUNCT_3: 65

        .= (f . (s, 0 )) by A68, FUNCT_1: 18

        .= (P . s) by A10;

        hence thesis by A66;

      end;

      hence thesis by A45, A47;

    end;

    theorem :: BORSUK_6:80

    

     Th80: for P be Path of a, b, Q be constant Path of b, b st (a,b) are_connected holds ((P + Q),P) are_homotopic

    proof

      let P be Path of a, b, Q be constant Path of b, b such that

       A1: (a,b) are_connected ;

      ( RePar (P, 1RP )) = (P + Q) by A1, Th50;

      hence thesis by A1, Th45, Th47;

    end;

    theorem :: BORSUK_6:81

    for P be Path of a1, b1, Q be constant Path of b1, b1 holds ((P + Q),P) are_homotopic by Th80, BORSUK_2:def 3;

    theorem :: BORSUK_6:82

    

     Th82: for P be Path of a, b, Q be constant Path of a, a st (a,b) are_connected holds ((Q + P),P) are_homotopic

    proof

      let P be Path of a, b, Q be constant Path of a, a such that

       A1: (a,b) are_connected ;

      ( RePar (P, 2RP )) = (Q + P) by A1, Th51;

      hence thesis by A1, Th45, Th48;

    end;

    theorem :: BORSUK_6:83

    for P be Path of a1, b1, Q be constant Path of a1, a1 holds ((Q + P),P) are_homotopic by Th82, BORSUK_2:def 3;

    theorem :: BORSUK_6:84

    

     Th84: for P be Path of a, b, Q be constant Path of a, a st (a,b) are_connected holds ((P + ( - P)),Q) are_homotopic

    proof

      set S = [: I[01] , I[01] :];

      let P be Path of a, b, Q be constant Path of a, a such that

       A1: (a,b) are_connected ;

      reconsider e2 = ( pr2 (the carrier of I[01] ,the carrier of I[01] )) as continuous Function of S, I[01] by YELLOW12: 40;

      set gg = (( - P) * e2);

      ( - P) is continuous by A1, BORSUK_2:def 2;

      then

      reconsider gg as continuous Function of S, T;

      set S2 = (S | IBB );

      reconsider g = (gg | IBB ) as Function of S2, T by PRE_TOPC: 9;

      reconsider g as continuous Function of S2, T by TOPMETR: 7;

      

       A2: for x be Point of S2 holds (g . x) = (P . (1 - (x `2 )))

      proof

        let x be Point of S2;

        x in the carrier of S2;

        then

         A3: x in IBB by PRE_TOPC: 8;

        then

         A4: x in the carrier of S;

        then

         A5: x in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

        then

         A6: x = [(x `1 ), (x `2 )] by MCART_1: 21;

        then

         A7: (x `2 ) in the carrier of I[01] by A5, ZFMISC_1: 87;

        (x `1 ) in the carrier of I[01] by A5, A6, ZFMISC_1: 87;

        then

         A8: (e2 . ((x `1 ),(x `2 ))) = (x `2 ) by A7, FUNCT_3:def 5;

        

         A9: x in ( dom e2) by A4, FUNCT_2:def 1;

        (g . x) = (gg . x) by A3, FUNCT_1: 49

        .= (( - P) . (e2 . x)) by A9, FUNCT_1: 13

        .= (P . (1 - (x `2 ))) by A1, A6, A7, A8, BORSUK_2:def 6;

        hence thesis;

      end;

      set S3 = (S | ICC );

      set S1 = (S | IAA );

      reconsider e1 = ( pr1 (the carrier of I[01] ,the carrier of I[01] )) as continuous Function of S, I[01] by YELLOW12: 39;

      

       A10: (a,a) are_connected ;

      then

      reconsider PP = (P + ( - P)) as continuous Path of a, a by BORSUK_2:def 2;

      set ff = (PP * e1);

      reconsider f = (ff | IAA ) as Function of S1, T by PRE_TOPC: 9;

      reconsider f as continuous Function of S1, T by TOPMETR: 7;

      set S12 = (S | ( IAA \/ IBB ));

      reconsider S12 as non empty SubSpace of S;

      

       A11: the carrier of S12 = ( IAA \/ IBB ) by PRE_TOPC: 8;

      set hh = (PP * e1);

      reconsider h = (hh | ICC ) as Function of S3, T by PRE_TOPC: 9;

      reconsider h as continuous Function of S3, T by TOPMETR: 7;

      

       A12: for x be Point of S3 holds (h . x) = (( - P) . ((2 * (x `1 )) - 1))

      proof

        let x be Point of S3;

        x in the carrier of S3;

        then

         A13: x in ICC by PRE_TOPC: 8;

        then

         A14: (x `1 ) >= (1 / 2) by Th60;

        

         A15: x in the carrier of S by A13;

        then

         A16: x in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

        then

         A17: x = [(x `1 ), (x `2 )] by MCART_1: 21;

        then

         A18: (x `1 ) in the carrier of I[01] by A16, ZFMISC_1: 87;

        (x `2 ) in the carrier of I[01] by A16, A17, ZFMISC_1: 87;

        then

         A19: (e1 . ((x `1 ),(x `2 ))) = (x `1 ) by A18, FUNCT_3:def 4;

        

         A20: x in ( dom e1) by A15, FUNCT_2:def 1;

        (h . x) = (hh . x) by A13, FUNCT_1: 49

        .= ((P + ( - P)) . (e1 . x)) by A20, FUNCT_1: 13

        .= (( - P) . ((2 * (x `1 )) - 1)) by A1, A17, A18, A19, A14, BORSUK_2:def 5;

        hence thesis;

      end;

      

       A21: for x be Point of S1 holds (f . x) = (P . (2 * (x `1 )))

      proof

        let x be Point of S1;

        x in the carrier of S1;

        then

         A22: x in IAA by PRE_TOPC: 8;

        then

         A23: (x `1 ) <= (1 / 2) by Th59;

        

         A24: x in the carrier of S by A22;

        then

         A25: x in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

        then

         A26: x = [(x `1 ), (x `2 )] by MCART_1: 21;

        then

         A27: (x `1 ) in the carrier of I[01] by A25, ZFMISC_1: 87;

        (x `2 ) in the carrier of I[01] by A25, A26, ZFMISC_1: 87;

        then

         A28: (e1 . ((x `1 ),(x `2 ))) = (x `1 ) by A27, FUNCT_3:def 4;

        

         A29: x in ( dom e1) by A24, FUNCT_2:def 1;

        (f . x) = (ff . x) by A22, FUNCT_1: 49

        .= ((P + ( - P)) . (e1 . x)) by A29, FUNCT_1: 13

        .= (P . (2 * (x `1 ))) by A1, A26, A27, A28, A23, BORSUK_2:def 5;

        hence thesis;

      end;

      

       A30: for p be object st p in (( [#] S1) /\ ( [#] S2)) holds (f . p) = (g . p)

      proof

        let p be object;

        assume p in (( [#] S1) /\ ( [#] S2));

        then

         A31: p in (( [#] S1) /\ IBB ) by PRE_TOPC:def 5;

        then

         A32: p in ( IAA /\ IBB ) by PRE_TOPC:def 5;

        then

        consider r be Point of S such that

         A33: r = p and

         A34: (r `2 ) = (1 - (2 * (r `1 ))) by Th57;

        

         A35: (2 * (r `1 )) = (1 - (r `2 )) by A34;

        p in IAA by A32, XBOOLE_0:def 4;

        then

        reconsider pp = p as Point of S1 by PRE_TOPC: 8;

        p in IBB by A31, XBOOLE_0:def 4;

        then

         A36: pp is Point of S2 by PRE_TOPC: 8;

        (f . p) = (P . (2 * (pp `1 ))) by A21

        .= (g . p) by A2, A33, A35, A36;

        hence thesis;

      end;

      reconsider s3 = ( [#] S3) as Subset of S by PRE_TOPC:def 5;

      

       A37: s3 = ICC by PRE_TOPC:def 5;

      

       A38: S1 is SubSpace of S12 & S2 is SubSpace of S12 by TOPMETR: 22, XBOOLE_1: 7;

      

       A39: ( [#] S2) = IBB by PRE_TOPC:def 5;

      

       A40: ( [#] S1) = IAA by PRE_TOPC:def 5;

      then

      reconsider s1 = ( [#] S1), s2 = ( [#] S2) as Subset of S12 by A11, A39, XBOOLE_1: 7;

      

       A41: s1 is closed by A40, TOPS_2: 26;

      

       A42: s2 is closed by A39, TOPS_2: 26;

      (( [#] S1) \/ ( [#] S2)) = ( [#] S12) by A11, A39, PRE_TOPC:def 5;

      then

      consider fg be Function of S12, T such that

       A43: fg = (f +* g) and

       A44: fg is continuous by A30, A38, A41, A42, JGRAPH_2: 1;

      

       A45: ( [#] S3) = ICC by PRE_TOPC:def 5;

      

       A46: for p be object st p in (( [#] S12) /\ ( [#] S3)) holds (fg . p) = (h . p)

      proof

        let p be object;

         [(1 / 2), 0 ] in ( IBB /\ ICC ) by Th66, Th67, XBOOLE_0:def 4;

        then

         A47: { [(1 / 2), 0 ]} c= ( IBB /\ ICC ) by ZFMISC_1: 31;

        assume p in (( [#] S12) /\ ( [#] S3));

        then p in ( { [(1 / 2), 0 ]} \/ ( IBB /\ ICC )) by A11, A45, Th72, XBOOLE_1: 23;

        then

         A48: p in ( IBB /\ ICC ) by A47, XBOOLE_1: 12;

        then p in ICC by XBOOLE_0:def 4;

        then

        reconsider pp = p as Point of S3 by PRE_TOPC: 8;

        

         A49: p in IBB by A48, XBOOLE_0:def 4;

        then

         A50: pp is Point of S2 by PRE_TOPC: 8;

        

         A51: ex q be Point of S st q = p & (q `2 ) = ((2 * (q `1 )) - 1) by A48, Th58;

        then

         A52: ((2 * (pp `1 )) - 1) is Point of I[01] by Th27;

        p in the carrier of S2 by A49, PRE_TOPC: 8;

        then p in ( dom g) by FUNCT_2:def 1;

        

        then (fg . p) = (g . p) by A43, FUNCT_4: 13

        .= (P . (1 - (pp `2 ))) by A2, A50

        .= (( - P) . ((2 * (pp `1 )) - 1)) by A1, A51, A52, BORSUK_2:def 6

        .= (h . p) by A12;

        hence thesis;

      end;

      (( [#] S12) \/ ( [#] S3)) = (( IAA \/ IBB ) \/ ICC ) by A11, PRE_TOPC:def 5

      .= ( [#] S) by Th56, BORSUK_1: 40, BORSUK_1:def 2;

      then

      consider H be Function of S, T such that

       A53: H = (fg +* h) and

       A54: H is continuous by A11, A44, A46, A37, JGRAPH_2: 1;

      

       A55: for s be Point of I[01] holds (H . (s, 0 )) = ((P + ( - P)) . s) & (H . (s,1)) = (Q . s)

      proof

        let s be Point of I[01] ;

        thus (H . (s, 0 )) = ((P + ( - P)) . s)

        proof

          

           A56: ( [s, 0 ] `1 ) = s;

          per cases by XXREAL_0: 1;

            suppose

             A57: s < (1 / 2);

            then not [s, 0 ] in IBB by Th71;

            then not [s, 0 ] in the carrier of S2 by PRE_TOPC: 8;

            then

             A58: not [s, 0 ] in ( dom g);

             [s, 0 ] in IAA by A57, Th70;

            then

             A59: [s, 0 ] in the carrier of S1 by PRE_TOPC: 8;

             not [s, 0 ] in ICC by A57, Th71;

            then not [s, 0 ] in the carrier of S3 by PRE_TOPC: 8;

            then not [s, 0 ] in ( dom h);

            

            then (H . [s, 0 ]) = (fg . [s, 0 ]) by A53, FUNCT_4: 11

            .= (f . [s, 0 ]) by A43, A58, FUNCT_4: 11

            .= (P . (2 * s)) by A21, A56, A59

            .= ((P + ( - P)) . s) by A1, A57, BORSUK_2:def 5;

            hence thesis;

          end;

            suppose

             A60: s = (1 / 2);

            then

             A61: [s, 0 ] in the carrier of S3 by Th66, PRE_TOPC: 8;

            then [s, 0 ] in ( dom h) by FUNCT_2:def 1;

            

            then (H . [s, 0 ]) = (h . [s, 0 ]) by A53, FUNCT_4: 13

            .= (( - P) . ((2 * s) - 1)) by A12, A56, A61

            .= b by A1, A60, BORSUK_2:def 2

            .= (P . (2 * (1 / 2))) by A1, BORSUK_2:def 2

            .= ((P + ( - P)) . s) by A1, A60, BORSUK_2:def 5;

            hence thesis;

          end;

            suppose

             A62: s > (1 / 2);

            then [s, 0 ] in ICC by Th69;

            then

             A63: [s, 0 ] in the carrier of S3 by PRE_TOPC: 8;

            then [s, 0 ] in ( dom h) by FUNCT_2:def 1;

            

            then (H . [s, 0 ]) = (h . [s, 0 ]) by A53, FUNCT_4: 13

            .= (( - P) . ((2 * s) - 1)) by A12, A56, A63

            .= ((P + ( - P)) . s) by A1, A62, BORSUK_2:def 5;

            hence thesis;

          end;

        end;

        thus (H . (s,1)) = (Q . s)

        proof

          

           A64: ( [s, 1] `2 ) = 1;

          

           A65: ( [s, 1] `1 ) = s;

          

           A66: ( dom Q) = the carrier of I[01] by FUNCT_2:def 1;

          then

           A67: 0 in ( dom Q) by BORSUK_1: 43;

          per cases ;

            suppose

             A68: s <> 1;

             [s, 1] in IBB by Th65;

            then

             A69: [s, 1] in the carrier of S2 by PRE_TOPC: 8;

            then

             A70: [s, 1] in ( dom g) by FUNCT_2:def 1;

             not [s, 1] in ICC by A68, Th63;

            then not [s, 1] in the carrier of S3 by PRE_TOPC: 8;

            then not [s, 1] in ( dom h);

            

            then (H . [s, 1]) = (fg . [s, 1]) by A53, FUNCT_4: 11

            .= (g . [s, 1]) by A43, A70, FUNCT_4: 13

            .= (P . (1 - 1)) by A2, A64, A69

            .= a by A1, BORSUK_2:def 2

            .= (Q . 0 ) by A10, BORSUK_2:def 2

            .= (Q . s) by A66, A67, FUNCT_1:def 10;

            hence thesis;

          end;

            suppose

             A71: s = 1;

            then

             A72: [s, 1] in the carrier of S3 by Th66, PRE_TOPC: 8;

            then [s, 1] in ( dom h) by FUNCT_2:def 1;

            

            then (H . [s, 1]) = (h . [s, 1]) by A53, FUNCT_4: 13

            .= (( - P) . ((2 * s) - 1)) by A12, A65, A72

            .= a by A1, A71, BORSUK_2:def 2

            .= (Q . 0 ) by A10, BORSUK_2:def 2

            .= (Q . s) by A66, A67, FUNCT_1:def 10;

            hence thesis;

          end;

        end;

      end;

      for t be Point of I[01] holds (H . ( 0 ,t)) = a & (H . (1,t)) = a

      proof

        let t be Point of I[01] ;

        thus (H . ( 0 ,t)) = a

        proof

           0 in the carrier of I[01] by BORSUK_1: 43;

          then

          reconsider x = [ 0 , t] as Point of S by Lm1;

          x in IAA by Th61;

          then

           A73: x is Point of S1 by PRE_TOPC: 8;

          (x `1 ) = 0 ;

          then not x in ICC by Th60;

          then not x in the carrier of S3 by PRE_TOPC: 8;

          then

           A74: not [ 0 , t] in ( dom h);

          per cases ;

            suppose t <> 1;

            then not x in IBB by Th62;

            then not x in the carrier of S2 by PRE_TOPC: 8;

            then not x in ( dom g);

            

            then (fg . [ 0 , t]) = (f . [ 0 , t]) by A43, FUNCT_4: 11

            .= (P . (2 * (x `1 ))) by A21, A73

            .= a by A1, BORSUK_2:def 2;

            hence thesis by A53, A74, FUNCT_4: 11;

          end;

            suppose

             A75: t = 1;

            then

             A76: x in the carrier of S2 by Th64, PRE_TOPC: 8;

            then x in ( dom g) by FUNCT_2:def 1;

            

            then (fg . [ 0 , t]) = (g . [ 0 , 1]) by A43, A75, FUNCT_4: 13

            .= (P . (1 - (x `2 ))) by A2, A75, A76

            .= a by A1, A75, BORSUK_2:def 2;

            hence thesis by A53, A74, FUNCT_4: 11;

          end;

        end;

        thus (H . (1,t)) = a

        proof

          1 in the carrier of I[01] by BORSUK_1: 43;

          then

          reconsider x = [1, t] as Point of S by Lm1;

          x in ICC by Th68;

          then

           A77: x in the carrier of S3 by PRE_TOPC: 8;

          then

           A78: [1, t] in ( dom h) by FUNCT_2:def 1;

          (h . [1, t]) = (( - P) . ((2 * (x `1 )) - 1)) by A12, A77

          .= a by A1, BORSUK_2:def 2;

          hence thesis by A53, A78, FUNCT_4: 13;

        end;

      end;

      hence thesis by A54, A55;

    end;

    theorem :: BORSUK_6:85

    for P be Path of a1, b1, Q be constant Path of a1, a1 holds ((P + ( - P)),Q) are_homotopic by Th84, BORSUK_2:def 3;

    theorem :: BORSUK_6:86

    

     Th86: for P be Path of b, a, Q be constant Path of a, a st (b,a) are_connected holds ((( - P) + P),Q) are_homotopic

    proof

      set S = [: I[01] , I[01] :];

      let P be Path of b, a, Q be constant Path of a, a such that

       A1: (b,a) are_connected ;

      reconsider e2 = ( pr2 (the carrier of I[01] ,the carrier of I[01] )) as continuous Function of S, I[01] by YELLOW12: 40;

      set gg = (P * e2);

      P is continuous by A1, BORSUK_2:def 2;

      then

      reconsider gg as continuous Function of S, T;

      set S2 = (S | IBB );

      reconsider g = (gg | IBB ) as Function of S2, T by PRE_TOPC: 9;

      reconsider g as continuous Function of S2, T by TOPMETR: 7;

      

       A2: for x be Point of S2 holds (g . x) = (( - P) . (1 - (x `2 )))

      proof

        let x be Point of S2;

        x in the carrier of S2;

        then

         A3: x in IBB by PRE_TOPC: 8;

        then

         A4: x in the carrier of S;

        then

         A5: x in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

        then

         A6: x = [(x `1 ), (x `2 )] by MCART_1: 21;

        then

         A7: (x `2 ) in the carrier of I[01] by A5, ZFMISC_1: 87;

        then

         A8: (1 - (x `2 )) in the carrier of I[01] by JORDAN5B: 4;

        (x `1 ) in the carrier of I[01] by A5, A6, ZFMISC_1: 87;

        then

         A9: (e2 . ((x `1 ),(x `2 ))) = (x `2 ) by A7, FUNCT_3:def 5;

        

         A10: x in ( dom e2) by A4, FUNCT_2:def 1;

        (g . x) = (gg . ((x `1 ),(x `2 ))) by A3, A6, FUNCT_1: 49

        .= (P . (1 - (1 - (x `2 )))) by A6, A9, A10, FUNCT_1: 13

        .= (( - P) . (1 - (x `2 ))) by A1, A8, BORSUK_2:def 6;

        hence thesis;

      end;

      set S3 = (S | ICC );

      set S1 = (S | IAA );

      reconsider e1 = ( pr1 (the carrier of I[01] ,the carrier of I[01] )) as continuous Function of S, I[01] by YELLOW12: 39;

      

       A11: (a,a) are_connected ;

      then

      reconsider PP = (( - P) + P) as continuous Path of a, a by BORSUK_2:def 2;

      set ff = (PP * e1);

      reconsider f = (ff | IAA ) as Function of S1, T by PRE_TOPC: 9;

      reconsider f as continuous Function of S1, T by TOPMETR: 7;

      set S12 = (S | ( IAA \/ IBB ));

      reconsider S12 as non empty SubSpace of S;

      

       A12: the carrier of S12 = ( IAA \/ IBB ) by PRE_TOPC: 8;

      set hh = (PP * e1);

      reconsider h = (hh | ICC ) as Function of S3, T by PRE_TOPC: 9;

      reconsider h as continuous Function of S3, T by TOPMETR: 7;

      

       A13: for x be Point of S3 holds (h . x) = (P . ((2 * (x `1 )) - 1))

      proof

        let x be Point of S3;

        x in the carrier of S3;

        then

         A14: x in ICC by PRE_TOPC: 8;

        then

         A15: (x `1 ) >= (1 / 2) by Th60;

        

         A16: x in the carrier of S by A14;

        then

         A17: x in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

        then

         A18: x = [(x `1 ), (x `2 )] by MCART_1: 21;

        then

         A19: (x `1 ) in the carrier of I[01] by A17, ZFMISC_1: 87;

        (x `2 ) in the carrier of I[01] by A17, A18, ZFMISC_1: 87;

        then

         A20: (e1 . ((x `1 ),(x `2 ))) = (x `1 ) by A19, FUNCT_3:def 4;

        

         A21: x in ( dom e1) by A16, FUNCT_2:def 1;

        (h . x) = (hh . x) by A14, FUNCT_1: 49

        .= ((( - P) + P) . (e1 . ((x `1 ),(x `2 )))) by A18, A21, FUNCT_1: 13

        .= (P . ((2 * (x `1 )) - 1)) by A1, A19, A20, A15, BORSUK_2:def 5;

        hence thesis;

      end;

      

       A22: for x be Point of S1 holds (f . x) = (( - P) . (2 * (x `1 )))

      proof

        let x be Point of S1;

        x in the carrier of S1;

        then

         A23: x in IAA by PRE_TOPC: 8;

        then

         A24: (x `1 ) <= (1 / 2) by Th59;

        

         A25: x in the carrier of S by A23;

        then

         A26: x in [:the carrier of I[01] , the carrier of I[01] :] by BORSUK_1:def 2;

        then

         A27: x = [(x `1 ), (x `2 )] by MCART_1: 21;

        then

         A28: (x `1 ) in the carrier of I[01] by A26, ZFMISC_1: 87;

        (x `2 ) in the carrier of I[01] by A26, A27, ZFMISC_1: 87;

        then

         A29: (e1 . ((x `1 ),(x `2 ))) = (x `1 ) by A28, FUNCT_3:def 4;

        

         A30: x in ( dom e1) by A25, FUNCT_2:def 1;

        (f . x) = (ff . x) by A23, FUNCT_1: 49

        .= ((( - P) + P) . (e1 . x)) by A30, FUNCT_1: 13

        .= (( - P) . (2 * (x `1 ))) by A1, A27, A28, A29, A24, BORSUK_2:def 5;

        hence thesis;

      end;

      

       A31: for p be object st p in (( [#] S1) /\ ( [#] S2)) holds (f . p) = (g . p)

      proof

        let p be object;

        assume p in (( [#] S1) /\ ( [#] S2));

        then

         A32: p in (( [#] S1) /\ IBB ) by PRE_TOPC:def 5;

        then

         A33: p in ( IAA /\ IBB ) by PRE_TOPC:def 5;

        then

        consider r be Point of S such that

         A34: r = p and

         A35: (r `2 ) = (1 - (2 * (r `1 ))) by Th57;

        

         A36: (2 * (r `1 )) = (1 - (r `2 )) by A35;

        p in IAA by A33, XBOOLE_0:def 4;

        then

        reconsider pp = p as Point of S1 by PRE_TOPC: 8;

        p in IBB by A32, XBOOLE_0:def 4;

        then

         A37: pp is Point of S2 by PRE_TOPC: 8;

        (f . p) = (( - P) . (2 * (pp `1 ))) by A22

        .= (g . p) by A2, A34, A36, A37;

        hence thesis;

      end;

      reconsider s3 = ( [#] S3) as Subset of S by PRE_TOPC:def 5;

      

       A38: s3 = ICC by PRE_TOPC:def 5;

      

       A39: S1 is SubSpace of S12 & S2 is SubSpace of S12 by TOPMETR: 22, XBOOLE_1: 7;

      

       A40: ( [#] S2) = IBB by PRE_TOPC:def 5;

      

       A41: ( [#] S1) = IAA by PRE_TOPC:def 5;

      then

      reconsider s1 = ( [#] S1), s2 = ( [#] S2) as Subset of S12 by A12, A40, XBOOLE_1: 7;

      

       A42: s1 is closed by A41, TOPS_2: 26;

      

       A43: s2 is closed by A40, TOPS_2: 26;

      (( [#] S1) \/ ( [#] S2)) = ( [#] S12) by A12, A40, PRE_TOPC:def 5;

      then

      consider fg be Function of S12, T such that

       A44: fg = (f +* g) and

       A45: fg is continuous by A31, A39, A42, A43, JGRAPH_2: 1;

      

       A46: ( [#] S3) = ICC by PRE_TOPC:def 5;

      

       A47: for p be object st p in (( [#] S12) /\ ( [#] S3)) holds (fg . p) = (h . p)

      proof

        let p be object;

         [(1 / 2), 0 ] in ( IBB /\ ICC ) by Th66, Th67, XBOOLE_0:def 4;

        then

         A48: { [(1 / 2), 0 ]} c= ( IBB /\ ICC ) by ZFMISC_1: 31;

        assume p in (( [#] S12) /\ ( [#] S3));

        then p in ( { [(1 / 2), 0 ]} \/ ( IBB /\ ICC )) by A12, A46, Th72, XBOOLE_1: 23;

        then

         A49: p in ( IBB /\ ICC ) by A48, XBOOLE_1: 12;

        then p in ICC by XBOOLE_0:def 4;

        then

        reconsider pp = p as Point of S3 by PRE_TOPC: 8;

        

         A50: ex q be Point of S st q = p & (q `2 ) = ((2 * (q `1 )) - 1) by A49, Th58;

        (pp `2 ) is Point of I[01] by A49, Th27;

        then

         A51: (1 - (pp `2 )) in the carrier of I[01] by JORDAN5B: 4;

        

         A52: p in IBB by A49, XBOOLE_0:def 4;

        then

         A53: pp is Point of S2 by PRE_TOPC: 8;

        p in the carrier of S2 by A52, PRE_TOPC: 8;

        then p in ( dom g) by FUNCT_2:def 1;

        

        then (fg . p) = (g . p) by A44, FUNCT_4: 13

        .= (( - P) . (1 - (pp `2 ))) by A2, A53

        .= (P . (1 - (1 - (pp `2 )))) by A1, A51, BORSUK_2:def 6

        .= (h . p) by A13, A50;

        hence thesis;

      end;

      (( [#] S12) \/ ( [#] S3)) = ( [#] S) by A12, A46, Th56, BORSUK_1: 40, BORSUK_1:def 2;

      then

      consider H be Function of S, T such that

       A54: H = (fg +* h) and

       A55: H is continuous by A12, A45, A47, A38, JGRAPH_2: 1;

      

       A56: for s be Point of I[01] holds (H . (s, 0 )) = ((( - P) + P) . s) & (H . (s,1)) = (Q . s)

      proof

        let s be Point of I[01] ;

        thus (H . (s, 0 )) = ((( - P) + P) . s)

        proof

          

           A57: ( [s, 0 ] `1 ) = s;

          per cases by XXREAL_0: 1;

            suppose

             A58: s < (1 / 2);

            then not [s, 0 ] in IBB by Th71;

            then not [s, 0 ] in the carrier of S2 by PRE_TOPC: 8;

            then

             A59: not [s, 0 ] in ( dom g);

             [s, 0 ] in IAA by A58, Th70;

            then

             A60: [s, 0 ] in the carrier of S1 by PRE_TOPC: 8;

             not [s, 0 ] in ICC by A58, Th71;

            then not [s, 0 ] in the carrier of S3 by PRE_TOPC: 8;

            then not [s, 0 ] in ( dom h);

            

            then (H . [s, 0 ]) = (fg . [s, 0 ]) by A54, FUNCT_4: 11

            .= (f . [s, 0 ]) by A44, A59, FUNCT_4: 11

            .= (( - P) . (2 * s)) by A22, A57, A60

            .= ((( - P) + P) . s) by A1, A58, BORSUK_2:def 5;

            hence thesis;

          end;

            suppose

             A61: s = (1 / 2);

            then

             A62: [s, 0 ] in the carrier of S3 by Th66, PRE_TOPC: 8;

            then [s, 0 ] in ( dom h) by FUNCT_2:def 1;

            

            then (H . [s, 0 ]) = (h . [s, 0 ]) by A54, FUNCT_4: 13

            .= (P . ((2 * s) - 1)) by A13, A57, A62

            .= b by A1, A61, BORSUK_2:def 2

            .= (( - P) . (2 * (1 / 2))) by A1, BORSUK_2:def 2

            .= ((( - P) + P) . s) by A1, A61, BORSUK_2:def 5;

            hence thesis;

          end;

            suppose

             A63: s > (1 / 2);

            then [s, 0 ] in ICC by Th69;

            then

             A64: [s, 0 ] in the carrier of S3 by PRE_TOPC: 8;

            then [s, 0 ] in ( dom h) by FUNCT_2:def 1;

            

            then (H . [s, 0 ]) = (h . [s, 0 ]) by A54, FUNCT_4: 13

            .= (P . ((2 * s) - 1)) by A13, A57, A64

            .= ((( - P) + P) . s) by A1, A63, BORSUK_2:def 5;

            hence thesis;

          end;

        end;

        thus (H . (s,1)) = (Q . s)

        proof

          

           A65: ( [s, 1] `2 ) = 1;

          

           A66: ( [s, 1] `1 ) = s;

          

           A67: ( dom Q) = the carrier of I[01] by FUNCT_2:def 1;

          then

           A68: 0 in ( dom Q) by BORSUK_1: 43;

          per cases ;

            suppose

             A69: s <> 1;

             [s, 1] in IBB by Th65;

            then

             A70: [s, 1] in the carrier of S2 by PRE_TOPC: 8;

            then

             A71: [s, 1] in ( dom g) by FUNCT_2:def 1;

             not [s, 1] in ICC by A69, Th63;

            then not [s, 1] in the carrier of S3 by PRE_TOPC: 8;

            then not [s, 1] in ( dom h);

            

            then (H . [s, 1]) = (fg . [s, 1]) by A54, FUNCT_4: 11

            .= (g . [s, 1]) by A44, A71, FUNCT_4: 13

            .= (( - P) . (1 - 1)) by A2, A65, A70

            .= a by A1, BORSUK_2:def 2

            .= (Q . 0 ) by A11, BORSUK_2:def 2

            .= (Q . s) by A67, A68, FUNCT_1:def 10;

            hence thesis;

          end;

            suppose

             A72: s = 1;

            then

             A73: [s, 1] in the carrier of S3 by Th66, PRE_TOPC: 8;

            then [s, 1] in ( dom h) by FUNCT_2:def 1;

            

            then (H . [s, 1]) = (h . [s, 1]) by A54, FUNCT_4: 13

            .= (P . ((2 * s) - 1)) by A13, A66, A73

            .= a by A1, A72, BORSUK_2:def 2

            .= (Q . 0 ) by A11, BORSUK_2:def 2

            .= (Q . s) by A67, A68, FUNCT_1:def 10;

            hence thesis;

          end;

        end;

      end;

      for t be Point of I[01] holds (H . ( 0 ,t)) = a & (H . (1,t)) = a

      proof

        let t be Point of I[01] ;

        thus (H . ( 0 ,t)) = a

        proof

           0 in the carrier of I[01] by BORSUK_1: 43;

          then

          reconsider x = [ 0 , t] as Point of S by Lm1;

          x in IAA by Th61;

          then

           A74: x is Point of S1 by PRE_TOPC: 8;

          (x `1 ) = 0 ;

          then not x in ICC by Th60;

          then not x in the carrier of S3 by PRE_TOPC: 8;

          then

           A75: not [ 0 , t] in ( dom h);

          per cases ;

            suppose t <> 1;

            then not x in IBB by Th62;

            then not x in the carrier of S2 by PRE_TOPC: 8;

            then not x in ( dom g);

            

            then (fg . [ 0 , t]) = (f . [ 0 , t]) by A44, FUNCT_4: 11

            .= (( - P) . (2 * (x `1 ))) by A22, A74

            .= a by A1, BORSUK_2:def 2;

            hence thesis by A54, A75, FUNCT_4: 11;

          end;

            suppose

             A76: t = 1;

            then

             A77: x in the carrier of S2 by Th64, PRE_TOPC: 8;

            then x in ( dom g) by FUNCT_2:def 1;

            

            then (fg . [ 0 , t]) = (g . [ 0 , 1]) by A44, A76, FUNCT_4: 13

            .= (( - P) . (1 - (x `2 ))) by A2, A76, A77

            .= a by A1, A76, BORSUK_2:def 2;

            hence thesis by A54, A75, FUNCT_4: 11;

          end;

        end;

        thus (H . (1,t)) = a

        proof

          1 in the carrier of I[01] by BORSUK_1: 43;

          then

          reconsider x = [1, t] as Point of S by Lm1;

          x in ICC by Th68;

          then

           A78: x in the carrier of S3 by PRE_TOPC: 8;

          then

           A79: [1, t] in ( dom h) by FUNCT_2:def 1;

          (h . [1, t]) = (P . ((2 * (x `1 )) - 1)) by A13, A78

          .= a by A1, BORSUK_2:def 2;

          hence thesis by A54, A79, FUNCT_4: 13;

        end;

      end;

      hence thesis by A55, A56;

    end;

    theorem :: BORSUK_6:87

    for P be Path of b1, a1, Q be constant Path of a1, a1 holds ((( - P) + P),Q) are_homotopic by Th86, BORSUK_2:def 3;

    theorem :: BORSUK_6:88

    for P,Q be constant Path of a, a holds (P,Q) are_homotopic

    proof

      let P,Q be constant Path of a, a;

      P = ( I[01] --> a) & Q = ( I[01] --> a) by BORSUK_2: 5;

      hence thesis by BORSUK_2: 12;

    end;

    definition

      let T be non empty TopSpace;

      let a,b be Point of T;

      let P,Q be Path of a, b;

      assume

       A1: (P,Q) are_homotopic ;

      :: BORSUK_6:def11

      mode Homotopy of P,Q -> Function of [: I[01] , I[01] :], T means it is continuous & for t be Point of I[01] holds (it . (t, 0 )) = (P . t) & (it . (t,1)) = (Q . t) & (it . ( 0 ,t)) = a & (it . (1,t)) = b;

      existence by A1;

    end