borsuk_4.miz



    begin

    registration

      cluster -> non trivial for Simple_closed_curve;

      coherence

      proof

        let D be Simple_closed_curve;

        ex p1,p2 be Point of ( TOP-REAL 2) st p1 <> p2 & p1 in D & p2 in D by TOPREAL2: 5;

        hence thesis;

      end;

    end

    ::$Canceled

    theorem :: BORSUK_4:4

    

     Th1: for f,g be Function, a be set st f is one-to-one & g is one-to-one & (( dom f) /\ ( dom g)) = {a} & (( rng f) /\ ( rng g)) = {(f . a)} holds (f +* g) is one-to-one

    proof

      let f,g be Function, a be set;

      assume that

       A1: f is one-to-one and

       A2: g is one-to-one and

       A3: (( dom f) /\ ( dom g)) = {a} and

       A4: (( rng f) /\ ( rng g)) = {(f . a)};

      for x1,x2 be set st x1 in ( dom g) & x2 in (( dom f) \ ( dom g)) holds (g . x1) <> (f . x2)

      proof

         {a} c= ( dom g) by A3, XBOOLE_1: 17;

        then

         A5: a in ( dom g) by ZFMISC_1: 31;

         {a} c= ( dom f) by A3, XBOOLE_1: 17;

        then

         A6: a in ( dom f) by ZFMISC_1: 31;

        let x1,x2 be set;

        assume that

         A7: x1 in ( dom g) and

         A8: x2 in (( dom f) \ ( dom g));

        

         A9: (f . x2) in ( rng f) by A8, FUNCT_1: 3;

        assume

         A10: (g . x1) = (f . x2);

        (g . x1) in ( rng g) by A7, FUNCT_1: 3;

        then (f . x2) in (( rng f) /\ ( rng g)) by A9, A10, XBOOLE_0:def 4;

        then (f . x2) = (f . a) by A4, TARSKI:def 1;

        then x2 = a by A1, A8, A6, FUNCT_1:def 4;

        then ( dom g) meets (( dom f) \ ( dom g)) by A8, A5, XBOOLE_0: 3;

        hence thesis by XBOOLE_1: 79;

      end;

      hence thesis by A1, A2, TOPMETR2: 1;

    end;

    theorem :: BORSUK_4:5

    

     Th2: for f,g be Function, a be set st f is one-to-one & g is one-to-one & (( dom f) /\ ( dom g)) = {a} & (( rng f) /\ ( rng g)) = {(f . a)} & (f . a) = (g . a) holds ((f +* g) " ) = ((f " ) +* (g " ))

    proof

      let f,g be Function, a be set;

      assume that

       A1: f is one-to-one and

       A2: g is one-to-one and

       A3: (( dom f) /\ ( dom g)) = {a} and

       A4: (( rng f) /\ ( rng g)) = {(f . a)} and

       A5: (f . a) = (g . a);

      

       A6: ( dom (g " )) = ( rng g) by A2, FUNCT_1: 33;

      

       A7: ( dom (f " )) = ( rng f) by A1, FUNCT_1: 33;

      for x be object st x in (( dom (f " )) /\ ( dom (g " ))) holds ((f " ) . x) = ((g " ) . x)

      proof

        let x be object;

         {a} c= ( dom f) by A3, XBOOLE_1: 17;

        then

         A8: a in ( dom f) by ZFMISC_1: 31;

        assume

         A9: x in (( dom (f " )) /\ ( dom (g " )));

        then x = (f . a) by A4, A7, A6, TARSKI:def 1;

        then

         A10: a = ((f " ) . x) by A1, A8, FUNCT_1: 32;

         {a} c= ( dom g) by A3, XBOOLE_1: 17;

        then

         A11: a in ( dom g) by ZFMISC_1: 31;

        x = (g . a) by A4, A5, A7, A6, A9, TARSKI:def 1;

        hence thesis by A2, A11, A10, FUNCT_1: 32;

      end;

      then

       A12: (f " ) tolerates (g " );

      set gf = ((f " ) +* (g " )), F = (f +* g);

      for x be object st x in (( dom f) /\ ( dom g)) holds (f . x) = (g . x)

      proof

        let x be object;

        assume x in (( dom f) /\ ( dom g));

        then x = a by A3, TARSKI:def 1;

        hence thesis by A5;

      end;

      then

       A13: f tolerates g;

      ( dom gf) = (( dom (f " )) \/ ( dom (g " ))) by FUNCT_4:def 1

      .= (( rng f) \/ ( dom (g " ))) by A1, FUNCT_1: 33

      .= (( rng f) \/ ( rng g)) by A2, FUNCT_1: 33;

      then

       A14: ( dom gf) = ( rng F) by A13, FRECHET: 35;

      

       A15: ( dom F) = (( dom f) \/ ( dom g)) by FUNCT_4:def 1;

      then

       A16: ( dom f) c= ( dom F) by XBOOLE_1: 7;

      

       A17: ( dom g) c= ( dom F) by A15, XBOOLE_1: 7;

      

       A18: ( rng F) = (( rng f) \/ ( rng g)) by A13, FRECHET: 35;

      

       A19: for y,x be object holds y in ( rng F) & x = (gf . y) iff x in ( dom F) & y = (F . x)

      proof

        let y,x be object;

        hereby

          assume that

           A20: y in ( rng F) and

           A21: x = (gf . y);

          per cases by A14, A20, FUNCT_4: 12;

            suppose

             A22: y in ( dom (f " ));

            then

             A23: y in ( rng f) by A1, FUNCT_1: 33;

            

             A24: x = ((f " ) . y) by A12, A21, A22, FUNCT_4: 15;

            then

             A25: y = (f . x) by A1, A23, FUNCT_1: 32;

            x in ( dom f) by A1, A23, A24, FUNCT_1: 32;

            hence x in ( dom F) & y = (F . x) by A13, A16, A25, FUNCT_4: 15;

          end;

            suppose

             A26: y in ( dom (g " ));

            then

             A27: x = ((g " ) . y) by A21, FUNCT_4: 13;

            

             A28: y in ( rng g) by A2, A26, FUNCT_1: 33;

            then

             A29: y = (g . x) by A2, A27, FUNCT_1: 32;

            x in ( dom g) by A2, A28, A27, FUNCT_1: 32;

            hence x in ( dom F) & y = (F . x) by A17, A29, FUNCT_4: 13;

          end;

        end;

        assume that

         A30: x in ( dom F) and

         A31: y = (F . x);

        per cases by A30, FUNCT_4: 12;

          suppose

           A32: x in ( dom f);

          then

           A33: y = (f . x) by A13, A31, FUNCT_4: 15;

          then

           A34: x = ((f " ) . y) by A1, A32, FUNCT_1: 32;

          ( rng F) = (( rng f) \/ ( rng g)) by A13, FRECHET: 35;

          then

           A35: ( rng f) c= ( rng F) by XBOOLE_1: 7;

          

           A36: y in ( rng f) by A32, A33, FUNCT_1: 3;

          then y in ( dom (f " )) by A1, FUNCT_1: 33;

          hence thesis by A12, A34, A36, A35, FUNCT_4: 15;

        end;

          suppose

           A37: x in ( dom g);

          then

           A38: y = (g . x) by A31, FUNCT_4: 13;

          then

           A39: x = ((g " ) . y) by A2, A37, FUNCT_1: 32;

          

           A40: ( rng g) c= ( rng F) by A18, XBOOLE_1: 7;

          

           A41: y in ( rng g) by A37, A38, FUNCT_1: 3;

          then y in ( dom (g " )) by A2, FUNCT_1: 33;

          hence thesis by A39, A41, A40, FUNCT_4: 13;

        end;

      end;

      F is one-to-one by A1, A2, A3, A4, Th1;

      hence thesis by A14, A19, FUNCT_1: 32;

    end;

    theorem :: BORSUK_4:6

    

     Th3: for n be Element of NAT , A be Subset of ( TOP-REAL n), p,q be Point of ( TOP-REAL n) st A is_an_arc_of (p,q) holds (A \ {p}) is non empty

    proof

      let n be Element of NAT , A be Subset of ( TOP-REAL n), p,q be Point of ( TOP-REAL n);

      assume A is_an_arc_of (p,q);

      then

       A1: (A \ {p, q}) <> {} by JORDAN6: 43;

       {p} c= {p, q} by ZFMISC_1: 7;

      hence thesis by A1, XBOOLE_1: 3, XBOOLE_1: 34;

    end;

    theorem :: BORSUK_4:7

    for s1,s3,s4,l be Real st s1 <= s3 & s1 < s4 & 0 <= l & l <= 1 holds s1 <= (((1 - l) * s3) + (l * s4))

    proof

      let s1,s3,s4,l be Real;

      assume that

       A1: s1 <= s3 and

       A2: s1 < s4 and

       A3: 0 <= l and

       A4: l <= 1;

      now

        per cases ;

          suppose l = 0 ;

          hence thesis by A1;

        end;

          suppose l = 1;

          hence thesis by A2;

        end;

          suppose

           A5: not (l = 0 or l = 1);

          then l < 1 by A4, XXREAL_0: 1;

          then (1 - l) > 0 by XREAL_1: 50;

          then

           A6: ((1 - l) * s1) <= ((1 - l) * s3) by A1, XREAL_1: 64;

          

           A7: (((1 - l) * s1) + (l * s1)) = (1 * s1);

          (l * s1) < (l * s4) by A2, A3, A5, XREAL_1: 68;

          hence thesis by A6, A7, XREAL_1: 8;

        end;

      end;

      hence thesis;

    end;

    theorem :: BORSUK_4:8

    

     Th5: for A be Subset of I[01] , a,b be Real st a < b & A = ].a, b.[ holds [.a, b.] c= the carrier of I[01]

    proof

      let A be Subset of I[01] , a,b be Real;

      assume

       A1: a < b;

      assume

       A2: A = ].a, b.[;

      then

       A3: b <= 1 by A1, BORSUK_1: 40, XXREAL_1: 51;

       0 <= a by A1, A2, BORSUK_1: 40, XXREAL_1: 51;

      hence thesis by A3, BORSUK_1: 40, XXREAL_1: 34;

    end;

    theorem :: BORSUK_4:9

    

     Th6: for A be Subset of I[01] , a,b be Real st a < b & A = ].a, b.] holds [.a, b.] c= the carrier of I[01]

    proof

      let A be Subset of I[01] , a,b be Real;

      assume

       A1: a < b;

      

       A2: ].a, b.[ c= ].a, b.] by XXREAL_1: 21;

      assume A = ].a, b.];

      then

       A3: ].a, b.[ c= [. 0 , 1.] by A2, BORSUK_1: 40, XBOOLE_1: 1;

      then

       A4: b <= 1 by A1, XXREAL_1: 51;

       0 <= a by A1, A3, XXREAL_1: 51;

      hence thesis by A4, BORSUK_1: 40, XXREAL_1: 34;

    end;

    theorem :: BORSUK_4:10

    

     Th7: for A be Subset of I[01] , a,b be Real st a < b & A = [.a, b.[ holds [.a, b.] c= the carrier of I[01]

    proof

      let A be Subset of I[01] , a,b be Real;

      assume

       A1: a < b;

      

       A2: ].a, b.[ c= [.a, b.[ by XXREAL_1: 22;

      assume A = [.a, b.[;

      then

       A3: ].a, b.[ c= [. 0 , 1.] by A2, BORSUK_1: 40, XBOOLE_1: 1;

      then

       A4: b <= 1 by A1, XXREAL_1: 51;

       0 <= a by A1, A3, XXREAL_1: 51;

      hence thesis by A4, BORSUK_1: 40, XXREAL_1: 34;

    end;

    theorem :: BORSUK_4:11

    

     Th8: for a,b be Real st a <> b holds ( Cl ].a, b.]) = [.a, b.]

    proof

      let a,b be Real;

      

       A1: ( Cl ].a, b.]) c= [.a, b.] by MEASURE6: 57, XXREAL_1: 23;

      

       A2: ( Cl ].a, b.[) c= ( Cl ].a, b.]) by MEASURE6: 62, XXREAL_1: 21;

      assume a <> b;

      then [.a, b.] c= ( Cl ].a, b.]) by A2, JORDAN5A: 26;

      hence thesis by A1, XBOOLE_0:def 10;

    end;

    theorem :: BORSUK_4:12

    

     Th9: for a,b be Real st a <> b holds ( Cl [.a, b.[) = [.a, b.]

    proof

      let a,b be Real;

      

       A1: ( Cl [.a, b.[) c= [.a, b.] by MEASURE6: 57, XXREAL_1: 24;

      

       A2: ( Cl ].a, b.[) c= ( Cl [.a, b.[) by MEASURE6: 62, XXREAL_1: 22;

      assume a <> b;

      then [.a, b.] c= ( Cl [.a, b.[) by A2, JORDAN5A: 26;

      hence thesis by A1, XBOOLE_0:def 10;

    end;

    theorem :: BORSUK_4:13

    for A be Subset of I[01] , a,b be Real st a < b & A = ].a, b.[ holds ( Cl A) = [.a, b.]

    proof

      let A be Subset of I[01] , a,b be Real;

      assume that

       A1: a < b and

       A2: A = ].a, b.[;

      reconsider A1 = ].a, b.[ as Subset of R^1 by TOPMETR: 17;

      

       A3: ( Cl ].a, b.[) = [.a, b.] by A1, JORDAN5A: 26;

      ( Cl A) = (( Cl A1) /\ ( [#] I[01] )) by A2, PRE_TOPC: 17

      .= ( [.a, b.] /\ ( [#] I[01] )) by A3, JORDAN5A: 24

      .= [.a, b.] by A1, A2, Th5, XBOOLE_1: 28;

      hence thesis;

    end;

    theorem :: BORSUK_4:14

    

     Th11: for A be Subset of I[01] , a,b be Real st a < b & A = ].a, b.] holds ( Cl A) = [.a, b.]

    proof

      let A be Subset of I[01] , a,b be Real;

      assume that

       A1: a < b and

       A2: A = ].a, b.];

      reconsider A1 = ].a, b.] as Subset of R^1 by TOPMETR: 17;

      

       A3: ( Cl ].a, b.]) = [.a, b.] by A1, Th8;

      ( Cl A) = (( Cl A1) /\ ( [#] I[01] )) by A2, PRE_TOPC: 17

      .= ( [.a, b.] /\ ( [#] I[01] )) by A3, JORDAN5A: 24

      .= [.a, b.] by A1, A2, Th6, XBOOLE_1: 28;

      hence thesis;

    end;

    theorem :: BORSUK_4:15

    

     Th12: for A be Subset of I[01] , a,b be Real st a < b & A = [.a, b.[ holds ( Cl A) = [.a, b.]

    proof

      let A be Subset of I[01] , a,b be Real;

      assume that

       A1: a < b and

       A2: A = [.a, b.[;

      reconsider A1 = [.a, b.[ as Subset of R^1 by TOPMETR: 17;

      

       A3: ( Cl [.a, b.[) = [.a, b.] by A1, Th9;

      ( Cl A) = (( Cl A1) /\ ( [#] I[01] )) by A2, PRE_TOPC: 17

      .= ( [.a, b.] /\ ( [#] I[01] )) by A3, JORDAN5A: 24

      .= [.a, b.] by A1, A2, Th7, XBOOLE_1: 28;

      hence thesis;

    end;

    theorem :: BORSUK_4:16

    

     Th13: for A be Subset of I[01] , a,b be Real st a <= b & A = [.a, b.] holds 0 <= a & b <= 1

    proof

      let A be Subset of I[01] , a,b be Real;

      assume that

       A1: a <= b and

       A2: A = [.a, b.];

      

       A3: b in A by A1, A2, XXREAL_1: 1;

      a in A by A1, A2, XXREAL_1: 1;

      hence thesis by A3, BORSUK_1: 43;

    end;

    theorem :: BORSUK_4:17

    

     Th14: for A,B be Subset of I[01] , a,b,c be Real st a < b & b < c & A = [.a, b.[ & B = ].b, c.] holds (A,B) are_separated

    proof

      let A,B be Subset of I[01] , a,b,c be Real;

      assume that

       A1: a < b and

       A2: b < c and

       A3: A = [.a, b.[ and

       A4: B = ].b, c.];

      ( Cl A) = [.a, b.] by A1, A3, Th12;

      hence ( Cl A) misses B by A4, XXREAL_1: 90;

      ( Cl B) = [.b, c.] by A2, A4, Th11;

      hence thesis by A3, XXREAL_1: 95;

    end;

    theorem :: BORSUK_4:18

    for p1,p2 be Point of I[01] holds [.p1, p2.] is Subset of I[01] by BORSUK_1: 40, XXREAL_2:def 12;

    theorem :: BORSUK_4:19

    

     Th16: for a,b be Point of I[01] holds ].a, b.[ is Subset of I[01]

    proof

      let a,b be Point of I[01] ;

      

       A1: [.a, b.] is Subset of I[01] by BORSUK_1: 40, XXREAL_2:def 12;

       ].a, b.[ c= [.a, b.] by XXREAL_1: 25;

      hence thesis by A1, XBOOLE_1: 1;

    end;

    begin

    theorem :: BORSUK_4:20

    for p be Real holds {p} is non empty closed_interval Subset of REAL

    proof

      let p be Real;

      

       A1: {p} = [.p, p.] by XXREAL_1: 17;

      thus thesis by A1, MEASURE5: 14;

    end;

    theorem :: BORSUK_4:21

    

     Th18: for A be non empty connected Subset of I[01] , a,b,c be Point of I[01] st a <= b & b <= c & a in A & c in A holds b in A

    proof

      let A be non empty connected Subset of I[01] , a,b,c be Point of I[01] ;

      assume that

       A1: a <= b and

       A2: b <= c and

       A3: a in A and

       A4: c in A;

      per cases by A1, A2, A3, A4, XXREAL_0: 1;

        suppose a = b or b = c;

        hence thesis by A3, A4;

      end;

        suppose

         A5: a < b & b < c & a in A & c in A;

        

         A6: ].b, 1.] c= [.b, 1.] by XXREAL_1: 23;

        

         A7: [. 0 , b.[ c= [. 0 , b.] by XXREAL_1: 24;

        

         A8: 0 <= a by BORSUK_1: 43;

        

         A9: c <= 1 by BORSUK_1: 43;

        then

         A10: b < 1 by A5, XXREAL_0: 2;

        then

         A11: b in [. 0 , 1.] by A5, A8, XXREAL_1: 1;

        1 in [. 0 , 1.] by XXREAL_1: 1;

        then

         A12: [.b, 1.] c= [. 0 , 1.] by A11, XXREAL_2:def 12;

         0 in [. 0 , 1.] by XXREAL_1: 1;

        then [. 0 , b.] c= [. 0 , 1.] by A11, XXREAL_2:def 12;

        then

        reconsider B = [. 0 , b.[, C = ].b, 1.] as non empty Subset of I[01] by A5, A8, A9, A7, A6, A12, BORSUK_1: 40, XBOOLE_1: 1, XXREAL_1: 2, XXREAL_1: 3;

        assume not b in A;

        then A c= ( [. 0 , 1.] \ {b}) by BORSUK_1: 40, ZFMISC_1: 34;

        then

         A13: A c= ( [. 0 , b.[ \/ ].b, 1.]) by A5, A8, A10, XXREAL_1: 201;

        now

          per cases by A5, A8, A10, A13, Th14, CONNSP_1: 16;

            suppose A c= B;

            hence contradiction by A5, XXREAL_1: 3;

          end;

            suppose A c= C;

            hence contradiction by A5, XXREAL_1: 2;

          end;

        end;

        hence thesis;

      end;

    end;

    theorem :: BORSUK_4:22

    

     Th19: for A be non empty connected Subset of I[01] , a,b be Real st a in A & b in A holds [.a, b.] c= A

    proof

      let A be non empty connected Subset of I[01] , a,b be Real;

      assume that

       A1: a in A and

       A2: b in A;

      let x be object;

      assume x in [.a, b.];

      then x in { y where y be Real : a <= y & y <= b } by RCOMP_1:def 1;

      then

      consider z be Real such that

       A3: z = x and

       A4: a <= z and

       A5: z <= b;

      

       A6: 0 <= z by A1, A4, BORSUK_1: 43;

      b <= 1 by A2, BORSUK_1: 43;

      then z <= 1 by A5, XXREAL_0: 2;

      then

      reconsider z as Point of I[01] by A6, BORSUK_1: 43;

      z in A by A1, A2, A4, A5, Th18;

      hence thesis by A3;

    end;

    theorem :: BORSUK_4:23

    

     Th20: for a,b be Real, A be Subset of I[01] st A = [.a, b.] holds A is closed

    proof

      let a,b be Real, A be Subset of I[01] ;

      assume

       A1: A = [.a, b.];

      per cases ;

        suppose

         A2: a <= b;

        then

         A3: b <= 1 by A1, Th13;

         0 <= a by A1, A2, Th13;

        then

         A4: ( Closed-Interval-TSpace (a,b)) is closed SubSpace of ( Closed-Interval-TSpace ( 0 ,1)) by A2, A3, TREAL_1: 3;

        then

        reconsider BA = the carrier of ( Closed-Interval-TSpace (a,b)) as Subset of ( Closed-Interval-TSpace ( 0 ,1)) by BORSUK_1: 1;

        BA is closed by A4, BORSUK_1:def 11;

        hence thesis by A1, A2, TOPMETR: 18, TOPMETR: 20;

      end;

        suppose a > b;

        then A = ( {} I[01] ) by A1, XXREAL_1: 29;

        hence thesis;

      end;

    end;

    theorem :: BORSUK_4:24

    

     Th21: for p1,p2 be Point of I[01] st p1 <= p2 holds [.p1, p2.] is non empty compact connected Subset of I[01]

    proof

      let p1,p2 be Point of I[01] ;

      

       A1: p2 <= 1 by BORSUK_1: 43;

      set S = [.p1, p2.];

      reconsider S as Subset of I[01] by BORSUK_1: 40, XXREAL_2:def 12;

      assume

       A2: p1 <= p2;

      then

       A3: ( Closed-Interval-TSpace (p1,p2)) is connected by TREAL_1: 20;

      

       A4: S is closed by Th20;

       0 <= p1 by BORSUK_1: 43;

      then ( I[01] | S) = ( Closed-Interval-TSpace (p1,p2)) by A2, A1, TOPMETR: 24;

      hence thesis by A4, A3, COMPTS_1: 8, CONNSP_1:def 3;

    end;

    theorem :: BORSUK_4:25

    

     Th22: for X be Subset of I[01] , X9 be Subset of REAL st X9 = X holds X9 is bounded_above bounded_below

    proof

      let X be Subset of I[01] , X9 be Subset of REAL ;

      assume

       A1: X9 = X;

      then for r be ExtReal st r in X9 holds r <= 1 by BORSUK_1: 43;

      then 1 is UpperBound of X9 by XXREAL_2:def 1;

      hence X9 is bounded_above by XXREAL_2:def 10;

      for r be ExtReal st r in X9 holds 0 <= r by A1, BORSUK_1: 43;

      then 0 is LowerBound of X9 by XXREAL_2:def 2;

      hence thesis by XXREAL_2:def 9;

    end;

    theorem :: BORSUK_4:26

    

     Th23: for X be Subset of I[01] , X9 be Subset of REAL , x be Real st x in X9 & X9 = X holds ( lower_bound X9) <= x & x <= ( upper_bound X9)

    proof

      let X be Subset of I[01] , X9 be Subset of REAL , x be Real;

      assume that

       A1: x in X9 and

       A2: X9 = X;

      X9 is bounded_above bounded_below by A2, Th22;

      hence thesis by A1, SEQ_4:def 1, SEQ_4:def 2;

    end;

    

     Lm1: I[01] is closed SubSpace of R^1 by TOPMETR: 20, TREAL_1: 2;

    theorem :: BORSUK_4:27

    

     Th24: for A be Subset of REAL , B be Subset of I[01] st A = B holds A is closed iff B is closed

    proof

      reconsider Z = the carrier of I[01] as Subset of R^1 by BORSUK_1: 1;

      let A be Subset of REAL , B be Subset of I[01] ;

      assume

       A1: A = B;

      the carrier of I[01] c= the carrier of R^1 by BORSUK_1: 1;

      then

      reconsider C = A as Subset of R^1 by A1, XBOOLE_1: 1;

      hereby

        assume A is closed;

        then

         A2: C is closed by JORDAN5A: 23;

        (C /\ ( [#] I[01] )) = B by A1, XBOOLE_1: 28;

        hence B is closed by A2, PRE_TOPC: 13;

      end;

      assume

       A3: B is closed;

      Z is closed by Lm1, BORSUK_1:def 11;

      then B is closed iff C is closed by A1, TSEP_1: 8;

      hence thesis by A3, JORDAN5A: 23;

    end;

    theorem :: BORSUK_4:28

    

     Th25: for C be non empty closed_interval Subset of REAL holds ( lower_bound C) <= ( upper_bound C)

    proof

      let C be non empty closed_interval Subset of REAL ;

      set c = the Element of C;

      

       A1: c <= ( upper_bound C) by INTEGRA2: 1;

      ( lower_bound C) <= c by INTEGRA2: 1;

      hence thesis by A1, XXREAL_0: 2;

    end;

    theorem :: BORSUK_4:29

    

     Th26: for C be non empty compact connected Subset of I[01] , C9 be Subset of REAL st C = C9 & [.( lower_bound C9), ( upper_bound C9).] c= C9 holds [.( lower_bound C9), ( upper_bound C9).] = C9

    proof

      let C be non empty compact connected Subset of I[01] , C9 be Subset of REAL ;

      assume that

       A1: C = C9 and

       A2: [.( lower_bound C9), ( upper_bound C9).] c= C9;

      assume [.( lower_bound C9), ( upper_bound C9).] <> C9;

      then not C9 c= [.( lower_bound C9), ( upper_bound C9).] by A2, XBOOLE_0:def 10;

      then

      consider c be object such that

       A3: c in C9 and

       A4: not c in [.( lower_bound C9), ( upper_bound C9).];

      reconsider c as Real by A3;

      

       A5: c <= ( upper_bound C9) by A1, A3, Th23;

      ( lower_bound C9) <= c by A1, A3, Th23;

      hence thesis by A4, A5, XXREAL_1: 1;

    end;

    theorem :: BORSUK_4:30

    

     Th27: for C be non empty compact connected Subset of I[01] holds C is non empty closed_interval Subset of REAL

    proof

      let C be non empty compact connected Subset of I[01] ;

      reconsider C9 = C as Subset of REAL by BORSUK_1: 40, XBOOLE_1: 1;

      C9 is bounded_below bounded_above by Th22;

      then

       A1: ( lower_bound C9) <= ( upper_bound C9) by SEQ_4: 11;

      

       A2: C9 is closed by Th24;

      then

       A3: ( upper_bound C9) in C9 by Th22, RCOMP_1: 12;

      ( lower_bound C9) in C9 by A2, Th22, RCOMP_1: 13;

      then [.( lower_bound C9), ( upper_bound C9).] = C9 by A3, Th19, Th26;

      hence thesis by A1, MEASURE5: 14;

    end;

    theorem :: BORSUK_4:31

    

     Th28: for C be non empty compact connected Subset of I[01] holds ex p1,p2 be Point of I[01] st p1 <= p2 & C = [.p1, p2.]

    proof

      let C be non empty compact connected Subset of I[01] ;

      reconsider C9 = C as non empty closed_interval Subset of REAL by Th27;

      

       A1: C9 = [.( lower_bound C9), ( upper_bound C9).] by INTEGRA1: 4;

      

       A2: ( lower_bound C9) <= ( upper_bound C9) by Th25;

      then

       A3: ( upper_bound C9) in C by A1, XXREAL_1: 1;

      ( lower_bound C9) in C by A1, A2, XXREAL_1: 1;

      then

      reconsider p1 = ( lower_bound C9), p2 = ( upper_bound C9) as Point of I[01] by A3;

      take p1, p2;

      thus p1 <= p2 by Th25;

      thus thesis by INTEGRA1: 4;

    end;

    begin

    definition

      :: BORSUK_4:def1

      func I(01) -> strict SubSpace of I[01] means

      : Def1: the carrier of it = ]. 0 , 1.[;

      existence

      proof

        reconsider E = ]. 0 , 1.[ as Subset of I[01] by BORSUK_1: 40, XXREAL_1: 25;

        take ( I[01] | E);

        thus thesis by PRE_TOPC: 8;

      end;

      uniqueness by TSEP_1: 5;

    end

    registration

      cluster I(01) -> non empty;

      coherence

      proof

        the carrier of I(01) = ]. 0 , 1.[ by Def1;

        hence the carrier of I(01) is non empty by XXREAL_1: 33;

      end;

    end

    theorem :: BORSUK_4:32

    for A be Subset of I[01] st A = the carrier of I(01) holds I(01) = ( I[01] | A) by PRE_TOPC: 8, TSEP_1: 5;

    theorem :: BORSUK_4:33

    

     Th30: the carrier of I(01) = (the carrier of I[01] \ { 0 , 1})

    proof

      

       A1: [. 0 , 1.] = ( ]. 0 , 1.[ \/ { 0 , 1}) by XXREAL_1: 128;

      the carrier of I(01) = ]. 0 , 1.[ by Def1;

      hence thesis by A1, BORSUK_1: 40, XBOOLE_1: 88, XXREAL_1: 86;

    end;

    registration

      cluster I(01) -> open;

      coherence by Th30, JORDAN6: 34, TSEP_1:def 1;

    end

    theorem :: BORSUK_4:34

     I(01) is open;

    theorem :: BORSUK_4:35

    

     Th32: for r be Real holds r in the carrier of I(01) iff 0 < r & r < 1

    proof

      let r be Real;

      hereby

        assume r in the carrier of I(01) ;

        then r in ]. 0 , 1.[ by Def1;

        hence 0 < r & r < 1 by XXREAL_1: 4;

      end;

      assume that

       A1: 0 < r and

       A2: r < 1;

      r in ]. 0 , 1.[ by A1, A2, XXREAL_1: 4;

      hence thesis by Def1;

    end;

    theorem :: BORSUK_4:36

    

     Th33: for a,b be Point of I[01] st a < b & b <> 1 holds ].a, b.] is non empty Subset of I(01)

    proof

      let a,b be Point of I[01] ;

      assume that

       A1: a < b and

       A2: b <> 1;

      b <= 1 by BORSUK_1: 43;

      then

       A3: b < 1 by A2, XXREAL_0: 1;

       ].a, b.] c= the carrier of I(01)

      proof

        let x be object;

        assume x in ].a, b.];

        then x in { r where r be Real : a < r & r <= b } by RCOMP_1:def 8;

        then

        consider r be Real such that

         A4: x = r and

         A5: a < r and

         A6: r <= b;

        

         A7: 0 < r by A5, BORSUK_1: 43;

        r < 1 by A3, A6, XXREAL_0: 2;

        hence thesis by A4, A7, Th32;

      end;

      hence thesis by A1, XXREAL_1: 2;

    end;

    theorem :: BORSUK_4:37

    

     Th34: for a,b be Point of I[01] st a < b & a <> 0 holds [.a, b.[ is non empty Subset of I(01)

    proof

      let a,b be Point of I[01] ;

      assume that

       A1: a < b and

       A2: a <> 0 ;

      

       A3: b <= 1 by BORSUK_1: 43;

       [.a, b.[ c= the carrier of I(01)

      proof

        let x be object;

        assume x in [.a, b.[;

        then x in { r where r be Real : a <= r & r < b } by RCOMP_1:def 7;

        then

        consider r be Real such that

         A4: x = r and

         A5: a <= r and

         A6: r < b;

        

         A7: r < 1 by A3, A6, XXREAL_0: 2;

         0 < r by A2, A5, BORSUK_1: 43;

        hence thesis by A4, A7, Th32;

      end;

      hence thesis by A1, XXREAL_1: 3;

    end;

    theorem :: BORSUK_4:38

    for D be Simple_closed_curve holds ((( TOP-REAL 2) | R^2-unit_square ),(( TOP-REAL 2) | D)) are_homeomorphic

    proof

      let D be Simple_closed_curve;

      ex f be Function of (( TOP-REAL 2) | R^2-unit_square ), (( TOP-REAL 2) | D) st f is being_homeomorphism by TOPREAL2:def 1;

      hence thesis by T_0TOPSP:def 1;

    end;

    theorem :: BORSUK_4:39

    for n be Element of NAT , D be non empty Subset of ( TOP-REAL n), p1,p2 be Point of ( TOP-REAL n) st D is_an_arc_of (p1,p2) holds ( I(01) ,(( TOP-REAL n) | (D \ {p1, p2}))) are_homeomorphic

    proof

      reconsider K0 = the carrier of I(01) as Subset of I[01] by BORSUK_1: 1;

      let n be Element of NAT , D be non empty Subset of ( TOP-REAL n), p1,p2 be Point of ( TOP-REAL n);

      assume

       A1: D is_an_arc_of (p1,p2);

      then

      consider f be Function of I[01] , (( TOP-REAL n) | D) such that

       A2: f is being_homeomorphism and

       A3: (f . 0 ) = p1 and

       A4: (f . 1) = p2 by TOPREAL1:def 1;

      

       A5: ( rng f) = ( [#] (( TOP-REAL n) | D)) by A2, TOPS_2:def 5

      .= D by PRE_TOPC: 8;

      

       A6: ( dom f) = the carrier of I[01] by FUNCT_2:def 1;

      then

       A7: 0 in ( dom f) by BORSUK_1: 43;

      

       A8: 1 in ( dom f) by A6, BORSUK_1: 43;

      

       A9: f is continuous one-to-one by A2, TOPS_2:def 5;

      

      then

       A10: (f .: the carrier of I(01) ) = ((f .: the carrier of I[01] ) \ (f .: { 0 , 1})) by Th30, FUNCT_1: 64

      .= (D \ (f .: { 0 , 1})) by A6, A5, RELAT_1: 113

      .= (D \ {p1, p2}) by A3, A4, A7, A8, FUNCT_1: 60;

      

       A11: (D \ {p1, p2}) c= D by XBOOLE_1: 36;

      then

      reconsider D0 = (D \ {p1, p2}) as Subset of (( TOP-REAL n) | D) by PRE_TOPC: 8;

      reconsider D1 = (D \ {p1, p2}) as non empty Subset of ( TOP-REAL n) by A1, JORDAN6: 43;

      

       A12: (( TOP-REAL n) | D1) = ((( TOP-REAL n) | D) | D0) by GOBOARD9: 2;

      set g = ((f " ) | D1);

      

       A13: D1 = the carrier of (( TOP-REAL n) | D1) by PRE_TOPC: 8;

      D1 c= the carrier of (( TOP-REAL n) | D) by A11, PRE_TOPC: 8;

      then

      reconsider ff = g as Function of (( TOP-REAL n) | D1), I[01] by A13, FUNCT_2: 32;

      (f " ) is continuous by A2, TOPS_2:def 5;

      then

       A14: ff is continuous by A12, TOPMETR: 7;

      set fD = (f | the carrier of I(01) );

      

       A15: I(01) = ( I[01] | K0) by PRE_TOPC: 8, TSEP_1: 5;

      then

      reconsider fD1 = fD as Function of ( I[01] | K0), (( TOP-REAL n) | D) by FUNCT_2: 32;

      

       A16: ( dom fD) = the carrier of I(01) by A6, BORSUK_1: 1, RELAT_1: 62;

      ( rng f) = ( [#] (( TOP-REAL n) | D)) by A2, TOPS_2:def 5;

      then f is onto by FUNCT_2:def 3;

      then

       A17: (f " ) = (f qua Function " ) by A9, TOPS_2:def 4;

      

       A18: ( rng fD) = (f .: the carrier of I(01) ) by RELAT_1: 115;

      then

       A19: ( rng fD) = the carrier of (( TOP-REAL n) | (D \ {p1, p2})) by A10, PRE_TOPC: 8;

      then

      reconsider fD as Function of I(01) , (( TOP-REAL n) | (D \ {p1, p2})) by A16, FUNCT_2: 1;

      

       A20: ( dom fD) = ( [#] I(01) ) by A6, BORSUK_1: 1, RELAT_1: 62;

      

       A21: fD is onto by A19, FUNCT_2:def 3;

      f is one-to-one by A2, TOPS_2:def 5;

      then

       A22: fD is one-to-one by FUNCT_1: 52;

      then (fD " ) = (fD qua Function " ) by A21, TOPS_2:def 4;

      then

       A23: (fD " ) is continuous by A9, A10, A15, A14, A17, RFUNCT_2: 17, TOPMETR: 6;

      fD1 is continuous by A9, TOPMETR: 7;

      then

       A24: fD is continuous by A15, A12, TOPMETR: 6;

      ( rng fD) = ( [#] (( TOP-REAL n) | (D \ {p1, p2}))) by A10, A18, PRE_TOPC: 8;

      then fD is being_homeomorphism by A20, A22, A24, A23, TOPS_2:def 5;

      hence thesis by T_0TOPSP:def 1;

    end;

    theorem :: BORSUK_4:40

    

     Th37: for n be Element of NAT , D be Subset of ( TOP-REAL n), p1,p2 be Point of ( TOP-REAL n) st D is_an_arc_of (p1,p2) holds ( I[01] ,(( TOP-REAL n) | D)) are_homeomorphic

    proof

      let n be Element of NAT , D be Subset of ( TOP-REAL n), p1,p2 be Point of ( TOP-REAL n);

      assume D is_an_arc_of (p1,p2);

      then ex f be Function of I[01] , (( TOP-REAL n) | D) st f is being_homeomorphism & (f . 0 ) = p1 & (f . 1) = p2 by TOPREAL1:def 1;

      hence thesis by T_0TOPSP:def 1;

    end;

    theorem :: BORSUK_4:41

    for n be Element of NAT , p1,p2 be Point of ( TOP-REAL n) st p1 <> p2 holds ( I[01] ,(( TOP-REAL n) | ( LSeg (p1,p2)))) are_homeomorphic by Th37, TOPREAL1: 9;

    theorem :: BORSUK_4:42

    

     Th39: for E be Subset of I(01) st (ex p1,p2 be Point of I[01] st p1 < p2 & E = [.p1, p2.]) holds ( I[01] ,( I(01) | E)) are_homeomorphic

    proof

      let E be Subset of I(01) ;

      given p1,p2 be Point of I[01] such that

       A1: p1 < p2 and

       A2: E = [.p1, p2.];

      

       A3: p2 <= 1 by BORSUK_1: 43;

       0 <= p1 by BORSUK_1: 43;

      then

      reconsider S = ( Closed-Interval-TSpace (p1,p2)) as SubSpace of I[01] by A1, A3, TOPMETR: 20, TREAL_1: 3;

      reconsider T = ( I(01) | E) as SubSpace of I[01] by TSEP_1: 7;

      the carrier of S = E by A1, A2, TOPMETR: 18;

      then

       A4: S = T by PRE_TOPC: 8, TSEP_1: 5;

      set f = ( L[01] (( (#) (p1,p2)),((p1,p2) (#) )));

      f is being_homeomorphism by A1, TREAL_1: 17;

      hence thesis by A4, TOPMETR: 20, T_0TOPSP:def 1;

    end;

    theorem :: BORSUK_4:43

    

     Th40: for n be Element of NAT , A be Subset of ( TOP-REAL n), p,q be Point of ( TOP-REAL n), a,b be Point of I[01] st A is_an_arc_of (p,q) & a < b holds ex E be non empty Subset of I[01] , f be Function of ( I[01] | E), (( TOP-REAL n) | A) st E = [.a, b.] & f is being_homeomorphism & (f . a) = p & (f . b) = q

    proof

      

       A1: 0 = ( (#) ( 0 ,1)) by TREAL_1:def 1;

      let n be Element of NAT , A be Subset of ( TOP-REAL n), p,q be Point of ( TOP-REAL n), a,b be Point of I[01] ;

      assume that

       A2: A is_an_arc_of (p,q) and

       A3: a < b;

      reconsider E = [.a, b.] as non empty Subset of I[01] by A3, Th21;

      

       A4: b <= 1 by BORSUK_1: 43;

       0 <= a by BORSUK_1: 43;

      then

       A5: ( I[01] | E) = ( Closed-Interval-TSpace (a,b)) by A3, A4, TOPMETR: 24;

      then

      reconsider e = ( P[01] (a,b,( (#) ( 0 ,1)),(( 0 ,1) (#) ))) as Function of ( I[01] | E), I[01] by TOPMETR: 20;

      take E;

      

       A6: a = ( (#) (a,b)) by A3, TREAL_1:def 1;

      reconsider B = A as non empty Subset of ( TOP-REAL n) by A2, TOPREAL1: 1;

      consider f be Function of I[01] , (( TOP-REAL n) | B) such that

       A7: f is being_homeomorphism and

       A8: (f . 0 ) = p and

       A9: (f . 1) = q by A2, TOPREAL1:def 1;

      set g = (f * e);

      reconsider g as Function of ( I[01] | E), (( TOP-REAL n) | A);

      take g;

      thus E = [.a, b.];

      e is being_homeomorphism by A3, A5, TOPMETR: 20, TREAL_1: 17;

      hence g is being_homeomorphism by A7, TOPS_2: 57;

      a in E by A3, XXREAL_1: 1;

      then a in the carrier of ( I[01] | E) by PRE_TOPC: 8;

      

      hence (g . a) = (f . (e . a)) by FUNCT_2: 15

      .= p by A3, A8, A1, A6, TREAL_1: 13;

      

       A10: 1 = (( 0 ,1) (#) ) by TREAL_1:def 2;

      

       A11: b = ((a,b) (#) ) by A3, TREAL_1:def 2;

      b in E by A3, XXREAL_1: 1;

      then b in the carrier of ( I[01] | E) by PRE_TOPC: 8;

      

      hence (g . b) = (f . (e . b)) by FUNCT_2: 15

      .= q by A3, A9, A10, A11, TREAL_1: 13;

    end;

    theorem :: BORSUK_4:44

    

     Th41: for A be TopSpace, B be non empty TopSpace, f be Function of A, B, C be TopSpace, X be Subset of A st f is continuous & C is SubSpace of B holds for h be Function of (A | X), C st h = (f | X) holds h is continuous

    proof

      let A be TopSpace, B be non empty TopSpace;

      let f be Function of A, B;

      let C be TopSpace, X be Subset of A;

      assume that

       A1: f is continuous and

       A2: C is SubSpace of B;

      the carrier of (A | X) = X by PRE_TOPC: 8;

      then

      reconsider g = (f | X) as Function of (A | X), B by FUNCT_2: 32;

      let h be Function of (A | X), C;

      assume

       A3: h = (f | X);

      g is continuous by A1, TOPMETR: 7;

      hence thesis by A2, A3, PRE_TOPC: 27;

    end;

    theorem :: BORSUK_4:45

    

     Th42: for X be Subset of I[01] , a,b be Point of I[01] st X = ].a, b.[ holds X is open

    proof

      let X be Subset of I[01] , a,b be Point of I[01] ;

      

       A1: 0 <= a by BORSUK_1: 43;

      1 in the carrier of I[01] by BORSUK_1: 43;

      then

      reconsider B = [.b, 1.] as Subset of I[01] by BORSUK_1: 40, XXREAL_2:def 12;

       0 in the carrier of I[01] by BORSUK_1: 43;

      then

      reconsider A = [. 0 , a.] as Subset of I[01] by BORSUK_1: 40, XXREAL_2:def 12;

      

       A2: b <= 1 by BORSUK_1: 43;

      

       A3: B is closed by Th20;

      

       A4: A is closed by Th20;

      assume X = ].a, b.[;

      then X = ((A \/ B) ` ) by A1, A2, BORSUK_1: 40, XXREAL_1: 200;

      hence thesis by A4, A3;

    end;

    theorem :: BORSUK_4:46

    

     Th43: for X be Subset of I(01) , a,b be Point of I[01] st X = ].a, b.[ holds X is open

    proof

      let X be Subset of I(01) , a,b be Point of I[01] ;

      assume

       A1: X = ].a, b.[;

      then

      reconsider X9 = X as Subset of I[01] by Th16;

      X9 is open by A1, Th42;

      hence thesis by TSEP_1: 17;

    end;

    theorem :: BORSUK_4:47

    

     Th44: for X be Subset of I(01) , a be Point of I[01] st X = ]. 0 , a.] holds X is closed

    proof

      let X be Subset of I(01) , a be Point of I[01] ;

      assume

       A1: X = ]. 0 , a.];

      per cases ;

        suppose

         A2: 0 < a;

        ( [#] I(01) ) = ]. 0 , 1.[ by Def1;

        then

         A3: (( [#] I(01) ) \ X) = ].a, 1.[ by A1, A2, XXREAL_1: 187;

        1 in the carrier of I[01] by BORSUK_1: 43;

        then (( [#] I(01) ) \ X) is open by A3, Th43;

        hence thesis by PRE_TOPC:def 3;

      end;

        suppose 0 >= a;

        then X = ( {} I(01) ) by A1, XXREAL_1: 26;

        hence thesis;

      end;

    end;

    theorem :: BORSUK_4:48

    

     Th45: for X be Subset of I(01) , a be Point of I[01] st X = [.a, 1.[ holds X is closed

    proof

      

       A1: 0 in the carrier of I[01] by BORSUK_1: 43;

      let X be Subset of I(01) , a be Point of I[01] ;

      assume

       A2: X = [.a, 1.[;

      per cases ;

        suppose

         A3: X is non empty;

        

         A4: a <= 1 by BORSUK_1: 43;

        a <> 1 by A2, A3, XXREAL_1: 18;

        then

         A5: a < 1 by A4, XXREAL_0: 1;

        ( [#] I(01) ) = ]. 0 , 1.[ by Def1;

        then (( [#] I(01) ) \ X) = ]. 0 , a.[ by A2, A5, XXREAL_1: 195;

        then (( [#] I(01) ) \ X) is open by A1, Th43;

        hence thesis by PRE_TOPC:def 3;

      end;

        suppose X is empty;

        hence thesis;

      end;

    end;

    theorem :: BORSUK_4:49

    

     Th46: for n be Element of NAT , A be Subset of ( TOP-REAL n), p,q be Point of ( TOP-REAL n), a,b be Point of I[01] st A is_an_arc_of (p,q) & a < b & b <> 1 holds ex E be non empty Subset of I(01) , f be Function of ( I(01) | E), (( TOP-REAL n) | (A \ {p})) st E = ].a, b.] & f is being_homeomorphism & (f . b) = q

    proof

      let n be Element of NAT , A be Subset of ( TOP-REAL n), p,q be Point of ( TOP-REAL n), a,b be Point of I[01] ;

      assume that

       A1: A is_an_arc_of (p,q) and

       A2: a < b and

       A3: b <> 1;

      reconsider B = A as non empty Subset of ( TOP-REAL n) by A1, TOPREAL1: 1;

      consider F be non empty Subset of I[01] , s be Function of ( I[01] | F), (( TOP-REAL n) | B) such that

       A4: F = [.a, b.] and

       A5: s is being_homeomorphism and

       A6: (s . a) = p and

       A7: (s . b) = q by A1, A2, Th40;

      

       A8: ( dom s) = ( [#] ( I[01] | F)) by A5, TOPS_2:def 5

      .= F by PRE_TOPC:def 5;

      then

       A9: a in ( dom s) by A2, A4, XXREAL_1: 1;

      reconsider E = ].a, b.] as non empty Subset of I(01) by A2, A3, Th33;

      set X = E;

      

       A10: ( I(01) | X) is SubSpace of I[01] by TSEP_1: 7;

      set sX = (s | E);

      

       A11: s is continuous one-to-one by A5, TOPS_2:def 5;

      

       A12: (s " ) is continuous by A5, TOPS_2:def 5;

      

       A13: the carrier of (( TOP-REAL n) | A) = A by PRE_TOPC: 8;

      then

      reconsider Ap = (A \ {p}) as Subset of (( TOP-REAL n) | A) by XBOOLE_1: 36;

      the carrier of (( TOP-REAL n) | (A \ {p})) = (A \ {p}) by PRE_TOPC: 8;

      then the carrier of (( TOP-REAL n) | (A \ {p})) c= the carrier of (( TOP-REAL n) | A) by A13, XBOOLE_1: 36;

      then

       A14: (( TOP-REAL n) | (A \ {p})) is SubSpace of (( TOP-REAL n) | A) by TSEP_1: 4;

      

       A15: E c= F by A4, XXREAL_1: 23;

      then

      reconsider X9 = E as Subset of ( I[01] | F) by PRE_TOPC: 8;

      

       A16: (( I[01] | F) | X9) is SubSpace of I[01] by TSEP_1: 7;

      the carrier of ( I(01) | E) = E by PRE_TOPC: 8;

      then the carrier of ( I(01) | X) c= the carrier of ( I[01] | F) by A15, PRE_TOPC: 8;

      then

       A17: ( I(01) | X) is SubSpace of ( I[01] | F) by A10, TSEP_1: 4;

      

       A18: ((( TOP-REAL n) | A) | Ap) = (( TOP-REAL n) | (A \ {p})) by PRE_TOPC: 7, XBOOLE_1: 36;

      

       A19: ( dom sX) = X by A4, A8, RELAT_1: 62, XXREAL_1: 23

      .= ( [#] ( I(01) | X)) by PRE_TOPC:def 5;

      

       A20: ( rng s) = ( [#] (( TOP-REAL n) | A)) by A5, TOPS_2:def 5;

      then

       A21: ( rng s) = A by PRE_TOPC:def 5;

      X = (F \ {a}) by A2, A4, XXREAL_1: 134;

      

      then

       A22: (s .: X) = ((s .: F) \ ( Im (s,a))) by A11, FUNCT_1: 64

      .= ((s .: F) \ {(s . a)}) by A9, FUNCT_1: 59

      .= (( rng s) \ {p}) by A6, A8, RELAT_1: 113

      .= ( [#] (( TOP-REAL n) | (A \ {p}))) by A21, PRE_TOPC:def 5;

      then

       A23: ( [#] (( TOP-REAL n) | (A \ {p}))) = ( rng sX) by RELAT_1: 115;

      ( rng (s | E)) = the carrier of (( TOP-REAL n) | (A \ {p})) by A22, RELAT_1: 115;

      then

      reconsider sX as Function of ( I(01) | E), (( TOP-REAL n) | (A \ {p})) by A19, FUNCT_2: 1;

      

       A24: s is onto by A20, FUNCT_2:def 3;

      

       A25: sX is onto by A23, FUNCT_2:def 3;

      b in X by A2, XXREAL_1: 2;

      then

       A26: (sX . b) = q by A7, FUNCT_1: 49;

      the carrier of ( I(01) | X) = X by PRE_TOPC: 8;

      then ( I(01) | X) = (( I[01] | F) | X9) by A10, A16, PRE_TOPC: 8, TSEP_1: 5;

      then

       A27: sX is continuous by A11, A14, Th41;

      

       A28: sX is one-to-one by A11, FUNCT_1: 52;

      

      then (sX " ) = (sX qua Function " ) by A25, TOPS_2:def 4

      .= ((s qua Function " ) | (s .: X)) by A11, RFUNCT_2: 17

      .= ((s " ) | ( [#] (( TOP-REAL n) | (A \ {p})))) by A24, A11, A22, TOPS_2:def 4

      .= ((s " ) | Ap) by PRE_TOPC:def 5;

      then (sX " ) is continuous by A12, A17, A18, Th41;

      then sX is being_homeomorphism by A23, A19, A27, A28, TOPS_2:def 5;

      hence thesis by A26;

    end;

    theorem :: BORSUK_4:50

    

     Th47: for n be Element of NAT , A be Subset of ( TOP-REAL n), p,q be Point of ( TOP-REAL n), a,b be Point of I[01] st A is_an_arc_of (p,q) & a < b & a <> 0 holds ex E be non empty Subset of I(01) , f be Function of ( I(01) | E), (( TOP-REAL n) | (A \ {q})) st E = [.a, b.[ & f is being_homeomorphism & (f . a) = p

    proof

      let n be Element of NAT , A be Subset of ( TOP-REAL n), p,q be Point of ( TOP-REAL n), a,b be Point of I[01] ;

      assume that

       A1: A is_an_arc_of (p,q) and

       A2: a < b and

       A3: a <> 0 ;

      reconsider B = A as non empty Subset of ( TOP-REAL n) by A1, TOPREAL1: 1;

      consider F be non empty Subset of I[01] , s be Function of ( I[01] | F), (( TOP-REAL n) | B) such that

       A4: F = [.a, b.] and

       A5: s is being_homeomorphism and

       A6: (s . a) = p and

       A7: (s . b) = q by A1, A2, Th40;

      

       A8: ( dom s) = ( [#] ( I[01] | F)) by A5, TOPS_2:def 5

      .= F by PRE_TOPC:def 5;

      then

       A9: b in ( dom s) by A2, A4, XXREAL_1: 1;

      reconsider E = [.a, b.[ as non empty Subset of I(01) by A2, A3, Th34;

      set X = E;

      

       A10: ( I(01) | X) is SubSpace of I[01] by TSEP_1: 7;

      set sX = (s | E);

      

       A11: s is continuous one-to-one by A5, TOPS_2:def 5;

      

       A12: (s " ) is continuous by A5, TOPS_2:def 5;

      

       A13: the carrier of (( TOP-REAL n) | A) = A by PRE_TOPC: 8;

      then

      reconsider Ap = (A \ {q}) as Subset of (( TOP-REAL n) | A) by XBOOLE_1: 36;

      the carrier of (( TOP-REAL n) | (A \ {q})) = (A \ {q}) by PRE_TOPC: 8;

      then the carrier of (( TOP-REAL n) | (A \ {q})) c= the carrier of (( TOP-REAL n) | A) by A13, XBOOLE_1: 36;

      then

       A14: (( TOP-REAL n) | (A \ {q})) is SubSpace of (( TOP-REAL n) | A) by TSEP_1: 4;

      

       A15: E c= F by A4, XXREAL_1: 24;

      then

      reconsider X9 = E as Subset of ( I[01] | F) by PRE_TOPC: 8;

      

       A16: (( I[01] | F) | X9) is SubSpace of I[01] by TSEP_1: 7;

      the carrier of ( I(01) | E) = E by PRE_TOPC: 8;

      then the carrier of ( I(01) | X) c= the carrier of ( I[01] | F) by A15, PRE_TOPC: 8;

      then

       A17: ( I(01) | X) is SubSpace of ( I[01] | F) by A10, TSEP_1: 4;

      

       A18: ((( TOP-REAL n) | A) | Ap) = (( TOP-REAL n) | (A \ {q})) by PRE_TOPC: 7, XBOOLE_1: 36;

      

       A19: ( dom sX) = X by A4, A8, RELAT_1: 62, XXREAL_1: 24

      .= ( [#] ( I(01) | X)) by PRE_TOPC:def 5;

      

       A20: ( rng s) = ( [#] (( TOP-REAL n) | A)) by A5, TOPS_2:def 5;

      then

       A21: ( rng s) = A by PRE_TOPC:def 5;

      X = (F \ {b}) by A2, A4, XXREAL_1: 135;

      

      then

       A22: (s .: X) = ((s .: F) \ ( Im (s,b))) by A11, FUNCT_1: 64

      .= ((s .: F) \ {(s . b)}) by A9, FUNCT_1: 59

      .= (( rng s) \ {q}) by A7, A8, RELAT_1: 113

      .= ( [#] (( TOP-REAL n) | (A \ {q}))) by A21, PRE_TOPC:def 5;

      then

       A23: ( [#] (( TOP-REAL n) | (A \ {q}))) = ( rng sX) by RELAT_1: 115;

      ( rng (s | E)) = the carrier of (( TOP-REAL n) | (A \ {q})) by A22, RELAT_1: 115;

      then

      reconsider sX as Function of ( I(01) | E), (( TOP-REAL n) | (A \ {q})) by A19, FUNCT_2: 1;

      

       A24: sX is onto by A23, FUNCT_2:def 3;

      

       A25: s is onto by A20, FUNCT_2:def 3;

      a in X by A2, XXREAL_1: 3;

      then

       A26: (sX . a) = p by A6, FUNCT_1: 49;

      the carrier of ( I(01) | X) = X by PRE_TOPC: 8;

      then ( I(01) | X) = (( I[01] | F) | X9) by A10, A16, PRE_TOPC: 8, TSEP_1: 5;

      then

       A27: sX is continuous by A11, A14, Th41;

      

       A28: sX is one-to-one by A11, FUNCT_1: 52;

      

      then (sX " ) = (sX qua Function " ) by A24, TOPS_2:def 4

      .= ((s qua Function " ) | (s .: X)) by A11, RFUNCT_2: 17

      .= ((s " ) | ( [#] (( TOP-REAL n) | (A \ {q})))) by A25, A11, A22, TOPS_2:def 4

      .= ((s " ) | Ap) by PRE_TOPC:def 5;

      then (sX " ) is continuous by A12, A17, A18, Th41;

      then sX is being_homeomorphism by A23, A19, A27, A28, TOPS_2:def 5;

      hence thesis by A26;

    end;

    theorem :: BORSUK_4:51

    

     Th48: for n be Element of NAT , A,B be Subset of ( TOP-REAL n), p,q be Point of ( TOP-REAL n) st A is_an_arc_of (p,q) & B is_an_arc_of (q,p) & (A /\ B) = {p, q} & p <> q holds ( I(01) ,(( TOP-REAL n) | ((A \ {p}) \/ (B \ {p})))) are_homeomorphic

    proof

      reconsider a = 0 , b = (1 / 2), c = 1 as Point of I[01] by BORSUK_1: 43;

      let n be Element of NAT , A,B be Subset of ( TOP-REAL n), p,q be Point of ( TOP-REAL n);

      assume that

       A1: A is_an_arc_of (p,q) and

       A2: B is_an_arc_of (q,p) and

       A3: (A /\ B) = {p, q} and

       A4: p <> q;

      consider E2 be non empty Subset of I(01) , ty be Function of ( I(01) | E2), (( TOP-REAL n) | (B \ {p})) such that

       A5: E2 = [.b, c.[ and

       A6: ty is being_homeomorphism and

       A7: (ty . b) = q by A2, Th47;

      consider E1 be non empty Subset of I(01) , sx be Function of ( I(01) | E1), (( TOP-REAL n) | (A \ {p})) such that

       A8: E1 = ].a, b.] and

       A9: sx is being_homeomorphism and

       A10: (sx . b) = q by A1, Th46;

      set T1 = ( I(01) | E1), T2 = ( I(01) | E2), T = I(01) , S = (( TOP-REAL n) | ((A \ {p}) \/ (B \ {p}))), U1 = (( TOP-REAL n) | (A \ {p})), U2 = (( TOP-REAL n) | (B \ {p}));

      

       A11: (A \ {p}) is non empty by A1, Th3;

      then

      reconsider S as non empty SubSpace of ( TOP-REAL n);

      (B \ {p}) is non empty by A2, Th3, JORDAN5B: 14;

      then

      reconsider U1, U2 as non empty SubSpace of ( TOP-REAL n) by A11;

      

       A12: the carrier of S = ((A \ {p}) \/ (B \ {p})) by PRE_TOPC: 8;

      the carrier of U2 = (B \ {p}) by PRE_TOPC: 8;

      then

       A13: the carrier of U2 c= the carrier of S by A12, XBOOLE_1: 7;

      then

      reconsider ty9 = ty as Function of T2, S by FUNCT_2: 7;

      

       A14: U2 is SubSpace of S by A13, TSEP_1: 4;

      ty is continuous by A6, TOPS_2:def 5;

      then

       A15: ty9 is continuous by A14, PRE_TOPC: 26;

      reconsider F1 = ( [#] T1), F2 = ( [#] T2) as non empty Subset of T by PRE_TOPC:def 5;

      

       A16: F2 = [.(1 / 2), 1.[ by A5, PRE_TOPC:def 5;

      the carrier of U1 = (A \ {p}) by PRE_TOPC: 8;

      then

       A17: the carrier of U1 c= the carrier of S by A12, XBOOLE_1: 7;

      then

      reconsider sx9 = sx as Function of T1, S by FUNCT_2: 7;

      

       A18: U1 is SubSpace of S by A17, TSEP_1: 4;

      

       A19: ( rng ty) = ( [#] (( TOP-REAL n) | (B \ {p}))) by A6, TOPS_2:def 5;

      then

       A20: ( rng ty) = (B \ {p}) by PRE_TOPC:def 5;

      

       A21: ty is onto by A19, FUNCT_2:def 3;

      

       A22: ( rng sx) = ( [#] (( TOP-REAL n) | (A \ {p}))) by A9, TOPS_2:def 5;

      then

       A23: ( rng sx) = (A \ {p}) by PRE_TOPC:def 5;

      

      then

       A24: (( rng sx9) /\ ( rng ty9)) = (((A \ {p}) /\ B) \ {p}) by A20, XBOOLE_1: 49

      .= (((A /\ B) \ {p}) \ {p}) by XBOOLE_1: 49

      .= ((A /\ B) \ ( {p} \/ {p})) by XBOOLE_1: 41

      .= {(sx9 . b)} by A3, A4, A10, ZFMISC_1: 17;

      sx is continuous by A9, TOPS_2:def 5;

      then

       A25: sx9 is continuous by A18, PRE_TOPC: 26;

      

       A26: (1 / 2) in the carrier of I[01] by BORSUK_1: 43;

      then

       A27: F2 is closed by A16, Th45;

      

       A28: F1 = ]. 0 , (1 / 2).] by A8, PRE_TOPC:def 5;

      

      then

       A29: (( [#] T1) \/ ( [#] T2)) = ]. 0 , 1.[ by A16, XXREAL_1: 172

      .= ( [#] T) by Def1;

      

       A30: (( [#] T1) /\ ( [#] T2)) = {(1 / 2)} by A28, A16, XXREAL_1: 138;

      

       A31: for d be object st d in (( [#] T1) /\ ( [#] T2)) holds (sx . d) = (ty . d)

      proof

        let d be object;

        assume d in (( [#] T1) /\ ( [#] T2));

        then d = b by A30, TARSKI:def 1;

        hence thesis by A10, A7;

      end;

      F1 is closed by A26, A28, Th44;

      then

      consider F be Function of T, S such that

       A32: F = (sx9 +* ty) and

       A33: F is continuous by A25, A15, A27, A29, A31, JGRAPH_2: 1;

      

       A34: ( [#] U2) = (B \ {p}) by PRE_TOPC:def 5;

      then

       A35: ( [#] U2) c= ((A \ {p}) \/ (B \ {p})) by XBOOLE_1: 7;

      the carrier of T2 c= the carrier of T by BORSUK_1: 1;

      then

      reconsider g = (ty " ) as Function of U2, T by FUNCT_2: 7;

      the carrier of T1 c= the carrier of T by BORSUK_1: 1;

      then

      reconsider f = (sx " ) as Function of U1, T by FUNCT_2: 7;

      

       A36: ( dom ty9) = ( [#] T2) by FUNCT_2:def 1;

      

       A37: ( [#] U1) = (A \ {p}) by PRE_TOPC:def 5;

      then ( [#] U1) c= ((A \ {p}) \/ (B \ {p})) by XBOOLE_1: 7;

      then

      reconsider V1 = ( [#] U1), V2 = ( [#] U2) as Subset of S by A35, PRE_TOPC: 8;

      

       A38: ( dom F) = ( [#] I(01) ) by FUNCT_2:def 1;

      

       A39: V2 is closed

      proof

        reconsider B9 = B as Subset of ( TOP-REAL n);

        

         A40: B9 is closed by A2, COMPTS_1: 7, JORDAN5A: 1;

        

         A41: not p in {q} by A4, TARSKI:def 1;

        q in B by A2, TOPREAL1: 1;

        then

         A42: {q} c= B by ZFMISC_1: 31;

        

         A43: (B /\ (A \ {p})) = ((B /\ A) \ {p}) by XBOOLE_1: 49

        .= {q} by A3, A4, ZFMISC_1: 17;

        (B9 /\ ( [#] S)) = (B9 /\ ((A \ {p}) \/ (B \ {p}))) by PRE_TOPC:def 5

        .= ((B /\ (A \ {p})) \/ (B /\ (B \ {p}))) by XBOOLE_1: 23

        .= ((B /\ (A \ {p})) \/ (B \ {p})) by XBOOLE_1: 28, XBOOLE_1: 36

        .= (B \ {p}) by A41, A42, A43, XBOOLE_1: 12, ZFMISC_1: 34

        .= V2 by PRE_TOPC:def 5;

        hence thesis by A40, PRE_TOPC: 13;

      end;

      

       A44: V1 is closed

      proof

        reconsider A9 = A as Subset of ( TOP-REAL n);

        

         A45: A9 is closed by A1, COMPTS_1: 7, JORDAN5A: 1;

        

         A46: not p in {q} by A4, TARSKI:def 1;

        q in A by A1, TOPREAL1: 1;

        then

         A47: {q} c= A by ZFMISC_1: 31;

        

         A48: (A /\ (B \ {p})) = ((A /\ B) \ {p}) by XBOOLE_1: 49

        .= {q} by A3, A4, ZFMISC_1: 17;

        (A9 /\ ( [#] S)) = (A9 /\ ((A \ {p}) \/ (B \ {p}))) by PRE_TOPC:def 5

        .= ((A /\ (A \ {p})) \/ (A /\ (B \ {p}))) by XBOOLE_1: 23

        .= ((A \ {p}) \/ (A /\ (B \ {p}))) by XBOOLE_1: 28, XBOOLE_1: 36

        .= (A \ {p}) by A46, A47, A48, XBOOLE_1: 12, ZFMISC_1: 34

        .= V1 by PRE_TOPC:def 5;

        hence thesis by A45, PRE_TOPC: 13;

      end;

      (ty " ) is continuous by A6, TOPS_2:def 5;

      then

       A49: g is continuous by PRE_TOPC: 26;

      (sx " ) is continuous by A9, TOPS_2:def 5;

      then

       A50: f is continuous by PRE_TOPC: 26;

      

       A51: ty9 is one-to-one by A6, TOPS_2:def 5;

      then

       A52: (ty " ) = (ty qua Function " ) by A21, TOPS_2:def 4;

      

       A53: ( dom sx9) = ( [#] T1) by FUNCT_2:def 1;

      then

       A54: (( dom sx9) /\ ( dom ty9)) = {b} by A28, A16, A36, XXREAL_1: 138;

      sx9 tolerates ty9

      proof

        let t be object;

        assume t in (( dom sx9) /\ ( dom ty9));

        then t = b by A54, TARSKI:def 1;

        hence thesis by A10, A7;

      end;

      

      then

       A55: ( rng F) = (( rng sx9) \/ ( rng ty9)) by A32, FRECHET: 35

      .= ( [#] S) by A23, A20, PRE_TOPC:def 5;

      

       A56: sx is onto by A22, FUNCT_2:def 3;

      

       A57: sx9 is one-to-one by A9, TOPS_2:def 5;

      then

       A58: (sx " ) = (sx qua Function " ) by A56, TOPS_2:def 4;

      

       A59: for r be object st r in (( [#] U1) /\ ( [#] U2)) holds (f . r) = (g . r)

      proof

        let r be object;

        b in E2 by A5, XXREAL_1: 3;

        then

         A60: b in ( dom ty) by A36, PRE_TOPC:def 5;

        b in E1 by A8, XXREAL_1: 2;

        then b in ( dom sx) by A53, PRE_TOPC:def 5;

        then

         A61: (f . q) = b by A10, A57, A58, FUNCT_1: 34;

        assume r in (( [#] U1) /\ ( [#] U2));

        then r = q by A10, A22, A19, A24, TARSKI:def 1;

        hence thesis by A7, A51, A52, A60, A61, FUNCT_1: 34;

      end;

      (( [#] U1) \/ ( [#] U2)) = ( [#] S) by A37, A34, PRE_TOPC:def 5;

      then

       A62: ex h be Function of S, T st h = (f +* g) & h is continuous by A18, A14, A44, A39, A50, A49, A59, JGRAPH_2: 1;

      

       A63: F is onto by A55, FUNCT_2:def 3;

      

       A64: F is one-to-one by A32, A57, A51, A54, A24, Th1;

      then (F " ) = (F qua Function " ) by A63, TOPS_2:def 4;

      then (F " ) = ((sx " ) +* (ty " )) by A10, A7, A32, A57, A51, A54, A24, A58, A52, Th2;

      then F is being_homeomorphism by A33, A38, A64, A55, A62, TOPS_2:def 5;

      hence thesis by T_0TOPSP:def 1;

    end;

    theorem :: BORSUK_4:52

    

     Th49: for D be Simple_closed_curve, p be Point of ( TOP-REAL 2) st p in D holds ((( TOP-REAL 2) | (D \ {p})), I(01) ) are_homeomorphic

    proof

      let D be Simple_closed_curve, p be Point of ( TOP-REAL 2);

      consider q be Point of ( TOP-REAL 2) such that

       A1: q in D and

       A2: p <> q by SUBSET_1: 51;

       not q in {p} by A2, TARSKI:def 1;

      then

      reconsider R2p = (D \ {p}) as non empty Subset of ( TOP-REAL 2) by A1, XBOOLE_0:def 5;

      assume p in D;

      then

      consider P1,P2 be non empty Subset of ( TOP-REAL 2) such that

       A3: P1 is_an_arc_of (p,q) and

       A4: P2 is_an_arc_of (p,q) and

       A5: D = (P1 \/ P2) and

       A6: (P1 /\ P2) = {p, q} by A1, A2, TOPREAL2: 5;

      

       A7: P2 is_an_arc_of (q,p) by A4, JORDAN5B: 14;

      (D \ {p}) = ((P1 \ {p}) \/ (P2 \ {p})) by A5, XBOOLE_1: 42;

      then ((( TOP-REAL 2) | R2p), I(01) ) are_homeomorphic by A2, A3, A6, A7, Th48;

      hence thesis;

    end;

    theorem :: BORSUK_4:53

    for D be Simple_closed_curve, p,q be Point of ( TOP-REAL 2) st p in D & q in D holds ((( TOP-REAL 2) | (D \ {p})),(( TOP-REAL 2) | (D \ {q}))) are_homeomorphic

    proof

      let D be Simple_closed_curve, p,q be Point of ( TOP-REAL 2);

      assume that

       A1: p in D and

       A2: q in D;

      per cases ;

        suppose p = q;

        hence thesis;

      end;

        suppose p <> q;

        then

        reconsider Dp = (D \ {p}), Dq = (D \ {q}) as non empty Subset of ( TOP-REAL 2) by A1, A2, ZFMISC_1: 56;

        

         A3: ((( TOP-REAL 2) | Dq), I(01) ) are_homeomorphic by A2, Th49;

        ((( TOP-REAL 2) | Dp), I(01) ) are_homeomorphic by A1, Th49;

        hence thesis by A3, BORSUK_3: 3;

      end;

    end;

    theorem :: BORSUK_4:54

    

     Th51: for n be Element of NAT , C be non empty Subset of ( TOP-REAL n), E be Subset of I(01) st (ex p1,p2 be Point of I[01] st p1 < p2 & E = [.p1, p2.]) & (( I(01) | E),(( TOP-REAL n) | C)) are_homeomorphic holds ex s1,s2 be Point of ( TOP-REAL n) st C is_an_arc_of (s1,s2)

    proof

      let n be Element of NAT , C be non empty Subset of ( TOP-REAL n), E be Subset of I(01) ;

      given p1,p2 be Point of I[01] such that

       A1: p1 < p2 and

       A2: E = [.p1, p2.];

      

       A3: ( I[01] ,( I(01) | E)) are_homeomorphic by A1, A2, Th39;

      assume

       A4: (( I(01) | E),(( TOP-REAL n) | C)) are_homeomorphic ;

      E is non empty by A1, A2, Th21;

      then ( I[01] ,(( TOP-REAL n) | C)) are_homeomorphic by A4, A3, BORSUK_3: 3;

      then

      consider g be Function of I[01] , (( TOP-REAL n) | C) such that

       A5: g is being_homeomorphism by T_0TOPSP:def 1;

      set s1 = (g . 0 ), s2 = (g . 1);

       0 in the carrier of I[01] by BORSUK_1: 43;

      then

       A6: (g . 0 ) in the carrier of (( TOP-REAL n) | C) by FUNCT_2: 5;

      1 in the carrier of I[01] by BORSUK_1: 43;

      then

       A7: (g . 1) in the carrier of (( TOP-REAL n) | C) by FUNCT_2: 5;

      the carrier of (( TOP-REAL n) | C) c= the carrier of ( TOP-REAL n) by BORSUK_1: 1;

      then

      reconsider s1, s2 as Point of ( TOP-REAL n) by A6, A7;

      C is_an_arc_of (s1,s2) by A5, TOPREAL1:def 1;

      hence thesis;

    end;

    theorem :: BORSUK_4:55

    

     Th52: for Dp be non empty Subset of ( TOP-REAL 2), f be Function of (( TOP-REAL 2) | Dp), I(01) , C be non empty Subset of ( TOP-REAL 2) st f is being_homeomorphism & C c= Dp & (ex p1,p2 be Point of I[01] st p1 < p2 & (f .: C) = [.p1, p2.]) holds ex s1,s2 be Point of ( TOP-REAL 2) st C is_an_arc_of (s1,s2)

    proof

      let Dp be non empty Subset of ( TOP-REAL 2), f be Function of (( TOP-REAL 2) | Dp), I(01) , C be non empty Subset of ( TOP-REAL 2);

      assume that

       A1: f is being_homeomorphism and

       A2: C c= Dp;

      reconsider C9 = C as Subset of (( TOP-REAL 2) | Dp) by A2, PRE_TOPC: 8;

      

       A3: the carrier of (( TOP-REAL 2) | Dp) = Dp by PRE_TOPC: 8;

      ( dom f) = the carrier of (( TOP-REAL 2) | Dp) by FUNCT_2:def 1;

      then C c= ( dom f) by A2, PRE_TOPC: 8;

      then

       A4: C c= (f " (f .: C)) by FUNCT_1: 76;

      given p1,p2 be Point of I[01] such that

       A5: p1 < p2 and

       A6: (f .: C) = [.p1, p2.];

      reconsider E = [.p1, p2.] as Subset of I(01) by A6;

      

       A7: ( rng f) = ( [#] I(01) ) by A1, TOPS_2:def 5;

      

       A8: f is continuous one-to-one by A1, TOPS_2:def 5;

      then (f " (f .: C)) c= C by FUNCT_1: 82;

      then (f " (f .: C)) = C by A4, XBOOLE_0:def 10;

      then

       A9: ((f " ) .: E) = C by A6, A8, A7, TOPS_2: 55;

      the carrier of (( TOP-REAL 2) | C) = C by PRE_TOPC: 8;

      then

       A10: (( TOP-REAL 2) | C) is SubSpace of (( TOP-REAL 2) | Dp) by A2, A3, TOPMETR: 3;

      set g = ((f " ) | E);

      the carrier of ( I(01) | E) = E by PRE_TOPC: 8;

      then

       A11: g is Function of the carrier of ( I(01) | E), the carrier of (( TOP-REAL 2) | Dp) by FUNCT_2: 32;

      

       A12: ( rng g) = ((f " ) .: E) by RELAT_1: 115

      .= ( [#] (( TOP-REAL 2) | C)) by A9, PRE_TOPC: 8;

      then

      reconsider g as Function of ( I(01) | E), (( TOP-REAL 2) | C) by A11, FUNCT_2: 6;

      (f " ) is being_homeomorphism by A1, TOPS_2: 56;

      then

       A13: (f " ) is one-to-one by TOPS_2:def 5;

      then

       A14: g is one-to-one by FUNCT_1: 52;

      

       A15: f is onto by A7, FUNCT_2:def 3;

      g is onto by A12, FUNCT_2:def 3;

      

      then

       A16: (g " ) = (g qua Function " ) by A14, TOPS_2:def 4

      .= (((f " ) qua Function " ) | ((f " ) .: E)) by A13, RFUNCT_2: 17

      .= (((f qua Function " ) " ) | ((f " ) .: E)) by A8, A15, TOPS_2:def 4

      .= (f | C) by A8, A9, FUNCT_1: 43;

      then

      reconsider t = (f | C) as Function of (( TOP-REAL 2) | C), ( I(01) | E);

      ( dom (f " )) = the carrier of I(01) by FUNCT_2:def 1;

      

      then ( dom g) = E by RELAT_1: 62

      .= the carrier of ( I(01) | E) by PRE_TOPC: 8;

      then

       A17: ( dom g) = ( [#] ( I(01) | E));

      (f " ) is continuous by A1, TOPS_2:def 5;

      then

       A18: g is continuous by A10, Th41;

      ((( TOP-REAL 2) | Dp) | C9) = (( TOP-REAL 2) | C) by A2, PRE_TOPC: 7;

      then t is continuous by A8, Th41;

      then g is being_homeomorphism by A12, A17, A14, A18, A16, TOPS_2:def 5;

      then (( I(01) | E),(( TOP-REAL 2) | C)) are_homeomorphic by T_0TOPSP:def 1;

      hence thesis by A5, Th51;

    end;

    theorem :: BORSUK_4:56

    for D be Simple_closed_curve, C be non empty compact connected Subset of ( TOP-REAL 2) st C c= D holds C = D or (ex p1,p2 be Point of ( TOP-REAL 2) st C is_an_arc_of (p1,p2)) or ex p be Point of ( TOP-REAL 2) st C = {p}

    proof

      let D be Simple_closed_curve, C be non empty compact connected Subset of ( TOP-REAL 2);

      assume

       A1: C c= D;

      assume

       A2: C <> D;

      per cases ;

        suppose C is trivial;

        hence thesis by SUBSET_1: 47;

      end;

        suppose

         A3: C is non trivial;

        C c< D by A1, A2, XBOOLE_0:def 8;

        then

        consider p be Point of ( TOP-REAL 2) such that

         A4: p in D and

         A5: C c= (D \ {p}) by SUBSET_1: 44;

        consider d1,d2 be Point of ( TOP-REAL 2) such that

         A6: d1 in C and

         A7: d2 in C and

         A8: d1 <> d2 by A3, SUBSET_1: 45;

        reconsider Dp = (D \ {p}) as non empty Subset of ( TOP-REAL 2) by A5;

        ((( TOP-REAL 2) | Dp), I(01) ) are_homeomorphic by A4, Th49;

        then

        consider f be Function of (( TOP-REAL 2) | Dp), I(01) such that

         A9: f is being_homeomorphism by T_0TOPSP:def 1;

        reconsider C9 = C as Subset of (( TOP-REAL 2) | Dp) by A5, PRE_TOPC: 8;

        C c= ( [#] (( TOP-REAL 2) | Dp)) by A5, PRE_TOPC: 8;

        then

         A10: C9 is compact by COMPTS_1: 2;

        set fC = (f .: C9);

        

         A11: C9 is connected by CONNSP_1: 23;

        

         A12: ( rng f) = ( [#] I(01) ) by A9, TOPS_2:def 5;

        f is continuous by A9, TOPS_2:def 5;

        then

        reconsider fC as compact connected Subset of I(01) by A10, A11, A12, COMPTS_1: 15, TOPS_2: 61;

        reconsider fC9 = fC as Subset of I[01] by PRE_TOPC: 11;

        

         A13: fC9 c= ( [#] I(01) );

        

         A14: for P be Subset of I(01) st P = fC9 holds P is compact;

        d1 in (D \ {p}) by A6, A5;

        then d1 in the carrier of (( TOP-REAL 2) | Dp) by PRE_TOPC: 8;

        then

         A15: d1 in ( dom f) by FUNCT_2:def 1;

        

         A16: f is one-to-one by A9, TOPS_2:def 5;

        d2 in (D \ {p}) by A7, A5;

        then d2 in the carrier of (( TOP-REAL 2) | Dp) by PRE_TOPC: 8;

        then

         A17: d2 in ( dom f) by FUNCT_2:def 1;

        

         A18: (f . d2) in (f .: C9) by A7, FUNCT_2: 35;

        then

        reconsider fC9 as non empty compact connected Subset of I[01] by A13, A14, COMPTS_1: 2, CONNSP_1: 23;

        consider p1,p2 be Point of I[01] such that

         A19: p1 <= p2 and

         A20: fC9 = [.p1, p2.] by Th28;

        

         A21: (f . d1) in (f .: C9) by A6, FUNCT_2: 35;

        p1 <> p2

        proof

          assume p1 = p2;

          then

           A22: fC9 = {p1} by A20, XXREAL_1: 17;

          then

           A23: (f . d2) = p1 by A18, TARSKI:def 1;

          (f . d1) = p1 by A21, A22, TARSKI:def 1;

          hence thesis by A8, A15, A17, A16, A23, FUNCT_1:def 4;

        end;

        then p1 < p2 by A19, XXREAL_0: 1;

        hence thesis by A5, A9, A20, Th52;

      end;

    end;

    begin

    theorem :: BORSUK_4:57

    

     Th54: for C be non empty compact Subset of I[01] st C c= ]. 0 , 1.[ holds ex D be non empty closed_interval Subset of REAL st C c= D & D c= ]. 0 , 1.[ & ( lower_bound C) = ( lower_bound D) & ( upper_bound C) = ( upper_bound D)

    proof

      let C be non empty compact Subset of I[01] ;

      assume

       A1: C c= ]. 0 , 1.[;

      reconsider C9 = C as Subset of REAL by BORSUK_1: 40, XBOOLE_1: 1;

      reconsider D = [.( lower_bound C9), ( upper_bound C9).] as Subset of REAL ;

      

       A2: C9 is bounded_below bounded_above by Th22;

      then

       A3: ( lower_bound C9) <= ( upper_bound C9) by SEQ_4: 11;

      

       A4: C c= D

      proof

        let x be object;

        assume

         A5: x in C;

        then x in the carrier of I[01] ;

        then

        reconsider x9 = x as Real;

        

         A6: x9 <= ( upper_bound C9) by A5, Th23;

        ( lower_bound C9) <= x9 by A5, Th23;

        hence thesis by A6, XXREAL_1: 1;

      end;

      

       A7: C9 is closed by Th24;

      then

       A8: ( lower_bound C9) in C9 by Th22, RCOMP_1: 13;

      

       A9: ( upper_bound C9) in C9 by A7, Th22, RCOMP_1: 12;

      then

       A10: D is non empty compact connected Subset of I[01] by A2, A8, Th21, SEQ_4: 11;

      then

       A11: D is non empty closed_interval Subset of REAL by Th27;

      then

       A12: D = [.( lower_bound D), ( upper_bound D).] by INTEGRA1: 4;

      then

       A13: ( upper_bound C9) = ( upper_bound D) by A3, XXREAL_1: 66;

      

       A14: not 1 in D

      proof

        assume 1 in D;

        then ( upper_bound D) >= 1 by A11, INTEGRA2: 1;

        hence thesis by A1, A9, A13, XXREAL_1: 4;

      end;

      

       A15: ( lower_bound C9) = ( lower_bound D) by A3, A12, XXREAL_1: 66;

      

       A16: not 0 in D

      proof

        assume 0 in D;

        then ( lower_bound D) <= 0 by A11, INTEGRA2: 1;

        hence thesis by A1, A8, A15, XXREAL_1: 4;

      end;

      

       A17: D c= ]. 0 , 1.[ by A10, A16, A14, BORSUK_1: 40, XXREAL_1: 5;

      reconsider D as non empty closed_interval Subset of REAL by A3, MEASURE5: 14;

      take D;

      thus thesis by A4, A3, A12, A17, XXREAL_1: 66;

    end;

    theorem :: BORSUK_4:58

    

     Th55: for C be non empty compact Subset of I[01] st C c= ]. 0 , 1.[ holds ex p1,p2 be Point of I[01] st p1 <= p2 & C c= [.p1, p2.] & [.p1, p2.] c= ]. 0 , 1.[

    proof

      let C be non empty compact Subset of I[01] ;

      assume C c= ]. 0 , 1.[;

      then

      consider D be non empty closed_interval Subset of REAL such that

       A1: C c= D and

       A2: D c= ]. 0 , 1.[ and ( lower_bound C) = ( lower_bound D) and ( upper_bound C) = ( upper_bound D) by Th54;

      consider p1,p2 be Real such that

       A3: p1 <= p2 and

       A4: D = [.p1, p2.] by MEASURE5: 14;

      p1 in D by A3, A4, XXREAL_1: 1;

      then

       A5: p1 in ]. 0 , 1.[ by A2;

      p2 in D by A3, A4, XXREAL_1: 1;

      then

       A6: p2 in ]. 0 , 1.[ by A2;

       ]. 0 , 1.[ c= [. 0 , 1.] by XXREAL_1: 25;

      then

      reconsider p1, p2 as Point of I[01] by A5, A6, BORSUK_1: 40;

      take p1, p2;

      thus p1 <= p2 by A3;

      thus thesis by A1, A2, A4;

    end;

    theorem :: BORSUK_4:59

    for D be Simple_closed_curve, C be closed Subset of ( TOP-REAL 2) st C c< D holds ex p1,p2 be Point of ( TOP-REAL 2), B be Subset of ( TOP-REAL 2) st B is_an_arc_of (p1,p2) & C c= B & B c= D

    proof

      let D be Simple_closed_curve, C be closed Subset of ( TOP-REAL 2);

      assume

       A1: C c< D;

      then

       A2: C c= D by XBOOLE_0:def 8;

      

       A3: for C be compact Subset of ( TOP-REAL 2) st C is non trivial & C c< D holds ex p1,p2 be Point of ( TOP-REAL 2), B be Subset of ( TOP-REAL 2) st B is_an_arc_of (p1,p2) & C c= B & B c= D

      proof

        let C be compact Subset of ( TOP-REAL 2);

        assume C is non trivial;

        then

        consider d1,d2 be Point of ( TOP-REAL 2) such that

         A4: d1 in C and

         A5: d2 in C and

         A6: d1 <> d2 by SUBSET_1: 45;

        assume C c< D;

        then

        consider p be Point of ( TOP-REAL 2) such that

         A7: p in D and

         A8: C c= (D \ {p}) by A4, SUBSET_1: 44;

        reconsider Dp = (D \ {p}) as non empty Subset of ( TOP-REAL 2) by A4, A8;

        ((( TOP-REAL 2) | Dp), I(01) ) are_homeomorphic by A7, Th49;

        then

        consider f be Function of (( TOP-REAL 2) | Dp), I(01) such that

         A9: f is being_homeomorphism by T_0TOPSP:def 1;

        d2 in (D \ {p}) by A5, A8;

        then d2 in the carrier of (( TOP-REAL 2) | Dp) by PRE_TOPC: 8;

        then

         A10: d2 in ( dom f) by FUNCT_2:def 1;

        d1 in (D \ {p}) by A4, A8;

        then d1 in the carrier of (( TOP-REAL 2) | Dp) by PRE_TOPC: 8;

        then

         A11: d1 in ( dom f) by FUNCT_2:def 1;

        

         A12: f is one-to-one by A9, TOPS_2:def 5;

        C c= the carrier of (( TOP-REAL 2) | Dp) by A8, PRE_TOPC: 8;

        then

         A13: C c= ( dom f) by FUNCT_2:def 1;

        ( dom f) = the carrier of (( TOP-REAL 2) | Dp) by FUNCT_2:def 1;

        then

         A14: ( dom f) c= the carrier of ( TOP-REAL 2) by BORSUK_1: 1;

        ( dom f) = the carrier of (( TOP-REAL 2) | Dp) by FUNCT_2:def 1;

        then

         A15: ( dom f) = Dp by PRE_TOPC: 8;

        reconsider C9 = C as Subset of (( TOP-REAL 2) | Dp) by A8, PRE_TOPC: 8;

        C c= ( [#] (( TOP-REAL 2) | Dp)) by A8, PRE_TOPC: 8;

        then

         A16: C9 is compact by COMPTS_1: 2;

        set fC = (f .: C9);

        

         A17: ( rng f) = ( [#] I(01) ) by A9, TOPS_2:def 5;

        f is continuous by A9, TOPS_2:def 5;

        then

        reconsider fC as compact Subset of I(01) by A16, A17, COMPTS_1: 15;

        reconsider fC9 = fC as Subset of I[01] by PRE_TOPC: 11;

        

         A18: fC9 c= ( [#] I(01) );

        

         A19: for P be Subset of I(01) st P = fC9 holds P is compact;

        fC9 c= the carrier of I(01) ;

        then

         A20: fC9 c= ]. 0 , 1.[ by Def1;

        

         A21: (f . d2) in (f .: C9) by A5, FUNCT_2: 35;

        then

        reconsider fC9 as non empty compact Subset of I[01] by A18, A19, COMPTS_1: 2;

        consider p1,p2 be Point of I[01] such that

         A22: p1 <= p2 and

         A23: fC9 c= [.p1, p2.] and

         A24: [.p1, p2.] c= ]. 0 , 1.[ by A20, Th55;

        reconsider E = [.p1, p2.] as non empty compact connected Subset of I[01] by A22, Th21;

        

         A25: (f " E) c= ( dom f) by RELAT_1: 132;

        

         A26: (f . d1) in (f .: C9) by A4, FUNCT_2: 35;

        p1 <> p2

        proof

          assume p1 = p2;

          then

           A27: fC9 c= {p1} by A23, XXREAL_1: 17;

          then

           A28: (f . d2) = p1 by A21, TARSKI:def 1;

          (f . d1) = p1 by A26, A27, TARSKI:def 1;

          hence thesis by A6, A11, A10, A12, A28, FUNCT_1:def 4;

        end;

        then

         A29: p1 < p2 by A22, XXREAL_0: 1;

        E c= ( rng f) by A17, A24, Def1;

        then

        reconsider B = (f " E) as non empty Subset of ( TOP-REAL 2) by A25, A14, RELAT_1: 139, XBOOLE_1: 1;

        ( rng f) = ]. 0 , 1.[ by A17, Def1;

        then (f .: (f " E)) = E by A24, FUNCT_1: 77;

        then

        consider s1,s2 be Point of ( TOP-REAL 2) such that

         A30: B is_an_arc_of (s1,s2) by A9, A29, A15, Th52, RELAT_1: 132;

        take s1, s2, B;

        thus B is_an_arc_of (s1,s2) by A30;

        Dp c= D by XBOOLE_1: 36;

        hence thesis by A23, A25, A15, A13, FUNCT_1: 93;

      end;

      

       A31: C is compact by A2, RLTOPSP1: 42, TOPREAL6: 79;

      per cases ;

        suppose

         A32: C is trivial;

        per cases ;

          suppose

           A33: C = {} ;

          consider p,q be Point of ( TOP-REAL 2) such that

           A34: p <> q and

           A35: p in D and

           A36: q in D by TOPREAL2: 4;

          reconsider CC = {p, q} as Subset of ( TOP-REAL 2);

          

           A37: q in CC by TARSKI:def 2;

          p in CC by TARSKI:def 2;

          then

           A38: CC is non trivial by A34, A37;

          reconsider pp = {p}, qq = {q} as Subset of ( TOP-REAL 2);

          CC = (pp \/ qq) by ENUMSET1: 1;

          then

           A39: CC is compact by COMPTS_1: 10;

          

           A40: CC <> D

          proof

            assume CC = D;

            then (D \ CC) = {} by XBOOLE_1: 37;

            then not ( {} (( TOP-REAL 2) | D)) is connected by A34, A35, A36, JORDAN6: 47;

            hence thesis;

          end;

          CC c= D by A35, A36, ZFMISC_1: 32;

          then CC c< D by A40, XBOOLE_0:def 8;

          then

          consider p1,p2 be Point of ( TOP-REAL 2), B be Subset of ( TOP-REAL 2) such that

           A41: B is_an_arc_of (p1,p2) and CC c= B and

           A42: B c= D by A3, A38, A39;

          take p1, p2, B;

          thus B is_an_arc_of (p1,p2) by A41;

          thus C c= B by A33;

          thus thesis by A42;

        end;

          suppose C <> {} ;

          then

          consider x be Element of ( TOP-REAL 2) such that

           A43: C = {x} by A32, SUBSET_1: 47;

          consider y be Element of D such that

           A44: x <> y by SUBSET_1: 50;

          reconsider y9 = y as Element of ( TOP-REAL 2);

          reconsider Y = {y9} as compact non empty Subset of ( TOP-REAL 2);

          reconsider Cy = (C \/ Y) as non empty compact Subset of ( TOP-REAL 2) by A31, COMPTS_1: 10;

          

           A45: x in C by A43, TARSKI:def 1;

          

           A46: Cy <> D

          proof

            assume Cy = D;

            then

             A47: (D \ Cy) = {} by XBOOLE_1: 37;

            Cy = {x, y} by A43, ENUMSET1: 1;

            then not ( {} (( TOP-REAL 2) | D)) is connected by A2, A45, A44, A47, JORDAN6: 47;

            hence thesis;

          end;

           {y} c= D;

          then Cy c= D by A2, XBOOLE_1: 8;

          then

           A48: Cy c< D by A46, XBOOLE_0:def 8;

          

           A49: C c= Cy by XBOOLE_1: 7;

          y in Y by TARSKI:def 1;

          then y in Cy by XBOOLE_0:def 3;

          then Cy is non trivial by A45, A44, A49;

          then

          consider p1,p2 be Point of ( TOP-REAL 2), B be Subset of ( TOP-REAL 2) such that

           A50: B is_an_arc_of (p1,p2) and

           A51: Cy c= B and

           A52: B c= D by A3, A48;

          take p1, p2, B;

          thus B is_an_arc_of (p1,p2) by A50;

          thus C c= B by A49, A51;

          thus thesis by A52;

        end;

      end;

        suppose C is non trivial;

        hence thesis by A1, A31, A3;

      end;

    end;