diff_3.miz
begin
reserve n,m for
Element of
NAT ;
reserve h,k,r,r1,r2,x,x0,x1,x2,x3 for
Real;
reserve f,f1,f2 for
Function of
REAL ,
REAL ;
theorem ::
DIFF_3:1
Th1: ((
cD (f,h))
. x)
= (((
fD (f,(h
/ 2)))
. x)
- ((
fD (f,(
- (h
/ 2))))
. x))
proof
((
cD (f,h))
. x)
= ((((f
. (x
+ (h
/ 2)))
- (f
. x))
+ (f
. x))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((f
. (x
+ (h
/ 2)))
- (f
. x))
- ((f
. (x
- (h
/ 2)))
- (f
. x)))
.= (((
fD (f,(h
/ 2)))
. x)
- ((f
. (x
- (h
/ 2)))
- (f
. x))) by
DIFF_1: 3
.= (((
fD (f,(h
/ 2)))
. x)
- ((
fD (f,(
- (h
/ 2))))
. x)) by
DIFF_1: 3;
hence thesis;
end;
theorem ::
DIFF_3:2
Th2: ((
fD (f,(
- (h
/ 2))))
. x)
= (
- ((
bD (f,(h
/ 2)))
. x))
proof
((
fD (f,(
- (h
/ 2))))
. x)
= ((f
. (x
- (h
/ 2)))
- (f
. x)) by
DIFF_1: 3
.= (
- ((f
. x)
- (f
. (x
- (h
/ 2)))))
.= (
- ((
bD (f,(h
/ 2)))
. x)) by
DIFF_1: 4;
hence thesis;
end;
theorem ::
DIFF_3:3
((
cD (f,h))
. x)
= (((
bD (f,(h
/ 2)))
. x)
- ((
bD (f,(
- (h
/ 2))))
. x))
proof
((
fD (f,(h
/ 2)))
. x)
= (
- ((
bD (f,(
- (h
/ 2))))
. x))
proof
((
fD (f,(h
/ 2)))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. x)) by
DIFF_1: 3
.= (
- ((f
. x)
- (f
. (x
- (
- (h
/ 2))))))
.= (
- ((
bD (f,(
- (h
/ 2))))
. x)) by
DIFF_1: 4;
hence thesis;
end;
then ((
cD (f,h))
. x)
= ((
- ((
bD (f,(
- (h
/ 2))))
. x))
- ((
fD (f,(
- (h
/ 2))))
. x)) by
Th1
.= ((
- ((
bD (f,(
- (h
/ 2))))
. x))
- (
- ((
bD (f,(h
/ 2)))
. x))) by
Th2
.= (((
bD (f,(h
/ 2)))
. x)
- ((
bD (f,(
- (h
/ 2))))
. x));
hence thesis;
end;
theorem ::
DIFF_3:4
(((
fdif (((r
(#) f1)
+ f2),h))
. (n
+ 1))
. x)
= ((r
* (((
fdif (f1,h))
. (n
+ 1))
. x))
+ (((
fdif (f2,h))
. (n
+ 1))
. x))
proof
set g = (r
(#) f1);
(((
fdif (((r
(#) f1)
+ f2),h))
. (n
+ 1))
. x)
= ((((
fdif (g,h))
. (n
+ 1))
. x)
+ (((
fdif (f2,h))
. (n
+ 1))
. x)) by
DIFF_1: 8
.= ((r
* (((
fdif (f1,h))
. (n
+ 1))
. x))
+ (((
fdif (f2,h))
. (n
+ 1))
. x)) by
DIFF_1: 7;
hence thesis;
end;
theorem ::
DIFF_3:5
(((
fdif ((f1
+ (r
(#) f2)),h))
. (n
+ 1))
. x)
= ((((
fdif (f1,h))
. (n
+ 1))
. x)
+ (r
* (((
fdif (f2,h))
. (n
+ 1))
. x)))
proof
set g = (r
(#) f2);
(((
fdif ((f1
+ (r
(#) f2)),h))
. (n
+ 1))
. x)
= ((((
fdif (f1,h))
. (n
+ 1))
. x)
+ (((
fdif (g,h))
. (n
+ 1))
. x)) by
DIFF_1: 8
.= ((((
fdif (f1,h))
. (n
+ 1))
. x)
+ (r
* (((
fdif (f2,h))
. (n
+ 1))
. x))) by
DIFF_1: 7;
hence thesis;
end;
theorem ::
DIFF_3:6
(((
fdif (((r1
(#) f1)
- (r2
(#) f2)),h))
. (n
+ 1))
. x)
= ((r1
* (((
fdif (f1,h))
. (n
+ 1))
. x))
- (r2
* (((
fdif (f2,h))
. (n
+ 1))
. x)))
proof
set g1 = (r1
(#) f1);
set g2 = (r2
(#) f2);
(((
fdif (((r1
(#) f1)
- (r2
(#) f2)),h))
. (n
+ 1))
. x)
= ((((
fdif (g1,h))
. (n
+ 1))
. x)
- (((
fdif (g2,h))
. (n
+ 1))
. x)) by
DIFF_1: 9
.= ((r1
* (((
fdif (f1,h))
. (n
+ 1))
. x))
- (((
fdif (g2,h))
. (n
+ 1))
. x)) by
DIFF_1: 7
.= ((r1
* (((
fdif (f1,h))
. (n
+ 1))
. x))
- (r2
* (((
fdif (f2,h))
. (n
+ 1))
. x))) by
DIFF_1: 7;
hence thesis;
end;
theorem ::
DIFF_3:7
((
fdif (f,h))
. 1)
= (
fD (f,h))
proof
((
fdif (f,h))
. 1)
= ((
fdif (f,h))
. (
0
+ 1))
.= (
fD (((
fdif (f,h))
.
0 ),h)) by
DIFF_1:def 6
.= (
fD (f,h)) by
DIFF_1:def 6;
hence thesis;
end;
theorem ::
DIFF_3:8
(((
bdif (((r
(#) f1)
+ f2),h))
. (n
+ 1))
. x)
= ((r
* (((
bdif (f1,h))
. (n
+ 1))
. x))
+ (((
bdif (f2,h))
. (n
+ 1))
. x))
proof
set g = (r
(#) f1);
(((
bdif (((r
(#) f1)
+ f2),h))
. (n
+ 1))
. x)
= ((((
bdif (g,h))
. (n
+ 1))
. x)
+ (((
bdif (f2,h))
. (n
+ 1))
. x)) by
DIFF_1: 15
.= ((r
* (((
bdif (f1,h))
. (n
+ 1))
. x))
+ (((
bdif (f2,h))
. (n
+ 1))
. x)) by
DIFF_1: 14;
hence thesis;
end;
theorem ::
DIFF_3:9
(((
bdif ((f1
+ (r
(#) f2)),h))
. (n
+ 1))
. x)
= ((((
bdif (f1,h))
. (n
+ 1))
. x)
+ (r
* (((
bdif (f2,h))
. (n
+ 1))
. x)))
proof
set g = (r
(#) f2);
(((
bdif ((f1
+ (r
(#) f2)),h))
. (n
+ 1))
. x)
= ((((
bdif (f1,h))
. (n
+ 1))
. x)
+ (((
bdif (g,h))
. (n
+ 1))
. x)) by
DIFF_1: 15
.= ((((
bdif (f1,h))
. (n
+ 1))
. x)
+ (r
* (((
bdif (f2,h))
. (n
+ 1))
. x))) by
DIFF_1: 14;
hence thesis;
end;
theorem ::
DIFF_3:10
(((
bdif (((r1
(#) f1)
- (r2
(#) f2)),h))
. (n
+ 1))
. x)
= ((r1
* (((
bdif (f1,h))
. (n
+ 1))
. x))
- (r2
* (((
bdif (f2,h))
. (n
+ 1))
. x)))
proof
set g1 = (r1
(#) f1);
set g2 = (r2
(#) f2);
(((
bdif (((r1
(#) f1)
- (r2
(#) f2)),h))
. (n
+ 1))
. x)
= ((((
bdif (g1,h))
. (n
+ 1))
. x)
- (((
bdif (g2,h))
. (n
+ 1))
. x)) by
DIFF_1: 16
.= ((r1
* (((
bdif (f1,h))
. (n
+ 1))
. x))
- (((
bdif (g2,h))
. (n
+ 1))
. x)) by
DIFF_1: 14
.= ((r1
* (((
bdif (f1,h))
. (n
+ 1))
. x))
- (r2
* (((
bdif (f2,h))
. (n
+ 1))
. x))) by
DIFF_1: 14;
hence thesis;
end;
theorem ::
DIFF_3:11
Th11: ((
bdif (f,h))
. 1)
= (
bD (f,h))
proof
((
bdif (f,h))
. 1)
= ((
bdif (f,h))
. (
0
+ 1))
.= (
bD (((
bdif (f,h))
.
0 ),h)) by
DIFF_1:def 7
.= (
bD (f,h)) by
DIFF_1:def 7;
hence thesis;
end;
theorem ::
DIFF_3:12
(((
bdif (((
bdif (f,h))
. m),h))
. n)
. x)
= (((
bdif (f,h))
. (m
+ n))
. x)
proof
defpred
X[
Nat] means for x holds (((
bdif (((
bdif (f,h))
. m),h))
. $1)
. x)
= (((
bdif (f,h))
. (m
+ $1))
. x);
A1:
X[
0 ] by
DIFF_1:def 7;
A2: for i be
Nat st
X[i] holds
X[(i
+ 1)]
proof
let i be
Nat;
assume
A3: for x holds (((
bdif (((
bdif (f,h))
. m),h))
. i)
. x)
= (((
bdif (f,h))
. (m
+ i))
. x);
let x;
((
bdif (f,h))
. m) is
Function of
REAL ,
REAL by
DIFF_1: 12;
then
A4: ((
bdif (((
bdif (f,h))
. m),h))
. i) is
Function of
REAL ,
REAL by
DIFF_1: 12;
A5: ((
bdif (f,h))
. (m
+ i)) is
Function of
REAL ,
REAL by
DIFF_1: 12;
(((
bdif (((
bdif (f,h))
. m),h))
. (i
+ 1))
. x)
= ((
bD (((
bdif (((
bdif (f,h))
. m),h))
. i),h))
. x) by
DIFF_1:def 7
.= ((((
bdif (((
bdif (f,h))
. m),h))
. i)
. x)
- (((
bdif (((
bdif (f,h))
. m),h))
. i)
. (x
- h))) by
A4,
DIFF_1: 4
.= ((((
bdif (f,h))
. (m
+ i))
. x)
- (((
bdif (((
bdif (f,h))
. m),h))
. i)
. (x
- h))) by
A3
.= ((((
bdif (f,h))
. (m
+ i))
. x)
- (((
bdif (f,h))
. (m
+ i))
. (x
- h))) by
A3
.= ((
bD (((
bdif (f,h))
. (m
+ i)),h))
. x) by
A5,
DIFF_1: 4
.= (((
bdif (f,h))
. ((m
+ i)
+ 1))
. x) by
DIFF_1:def 7;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
DIFF_3:13
(((
cdif (((r
(#) f1)
+ f2),h))
. (n
+ 1))
. x)
= ((r
* (((
cdif (f1,h))
. (n
+ 1))
. x))
+ (((
cdif (f2,h))
. (n
+ 1))
. x))
proof
set g = (r
(#) f1);
(((
cdif (((r
(#) f1)
+ f2),h))
. (n
+ 1))
. x)
= ((((
cdif (g,h))
. (n
+ 1))
. x)
+ (((
cdif (f2,h))
. (n
+ 1))
. x)) by
DIFF_1: 22
.= ((r
* (((
cdif (f1,h))
. (n
+ 1))
. x))
+ (((
cdif (f2,h))
. (n
+ 1))
. x)) by
DIFF_1: 21;
hence thesis;
end;
theorem ::
DIFF_3:14
(((
cdif ((f1
+ (r
(#) f2)),h))
. (n
+ 1))
. x)
= ((((
cdif (f1,h))
. (n
+ 1))
. x)
+ (r
* (((
cdif (f2,h))
. (n
+ 1))
. x)))
proof
set g = (r
(#) f2);
(((
cdif ((f1
+ (r
(#) f2)),h))
. (n
+ 1))
. x)
= ((((
cdif (f1,h))
. (n
+ 1))
. x)
+ (((
cdif (g,h))
. (n
+ 1))
. x)) by
DIFF_1: 22
.= ((((
cdif (f1,h))
. (n
+ 1))
. x)
+ (r
* (((
cdif (f2,h))
. (n
+ 1))
. x))) by
DIFF_1: 21;
hence thesis;
end;
theorem ::
DIFF_3:15
(((
cdif (((r1
(#) f1)
- (r2
(#) f2)),h))
. (n
+ 1))
. x)
= ((r1
* (((
cdif (f1,h))
. (n
+ 1))
. x))
- (r2
* (((
cdif (f2,h))
. (n
+ 1))
. x)))
proof
set g1 = (r1
(#) f1);
set g2 = (r2
(#) f2);
(((
cdif (((r1
(#) f1)
- (r2
(#) f2)),h))
. (n
+ 1))
. x)
= ((((
cdif (g1,h))
. (n
+ 1))
. x)
- (((
cdif (g2,h))
. (n
+ 1))
. x)) by
DIFF_1: 23
.= ((r1
* (((
cdif (f1,h))
. (n
+ 1))
. x))
- (((
cdif (g2,h))
. (n
+ 1))
. x)) by
DIFF_1: 21
.= ((r1
* (((
cdif (f1,h))
. (n
+ 1))
. x))
- (r2
* (((
cdif (f2,h))
. (n
+ 1))
. x))) by
DIFF_1: 21;
hence thesis;
end;
theorem ::
DIFF_3:16
Th16: ((
cdif (f,h))
. 1)
= (
cD (f,h))
proof
((
cdif (f,h))
. 1)
= ((
cdif (f,h))
. (
0
+ 1))
.= (
cD (((
cdif (f,h))
.
0 ),h)) by
DIFF_1:def 8
.= (
cD (f,h)) by
DIFF_1:def 8;
hence thesis;
end;
theorem ::
DIFF_3:17
(((
cdif (((
cdif (f,h))
. m),h))
. n)
. x)
= (((
cdif (f,h))
. (m
+ n))
. x)
proof
defpred
X[
Nat] means for x holds (((
cdif (((
cdif (f,h))
. m),h))
. $1)
. x)
= (((
cdif (f,h))
. (m
+ $1))
. x);
A1:
X[
0 ] by
DIFF_1:def 8;
A2: for i be
Nat st
X[i] holds
X[(i
+ 1)]
proof
let i be
Nat;
assume
A3: for x holds (((
cdif (((
cdif (f,h))
. m),h))
. i)
. x)
= (((
cdif (f,h))
. (m
+ i))
. x);
let x;
((
cdif (f,h))
. m) is
Function of
REAL ,
REAL by
DIFF_1: 19;
then
A4: ((
cdif (((
cdif (f,h))
. m),h))
. i) is
Function of
REAL ,
REAL by
DIFF_1: 19;
A5: ((
cdif (f,h))
. (m
+ i)) is
Function of
REAL ,
REAL by
DIFF_1: 19;
(((
cdif (((
cdif (f,h))
. m),h))
. (i
+ 1))
. x)
= ((
cD (((
cdif (((
cdif (f,h))
. m),h))
. i),h))
. x) by
DIFF_1:def 8
.= ((((
cdif (((
cdif (f,h))
. m),h))
. i)
. (x
+ (h
/ 2)))
- (((
cdif (((
cdif (f,h))
. m),h))
. i)
. (x
- (h
/ 2)))) by
A4,
DIFF_1: 5
.= ((((
cdif (f,h))
. (m
+ i))
. (x
+ (h
/ 2)))
- (((
cdif (((
cdif (f,h))
. m),h))
. i)
. (x
- (h
/ 2)))) by
A3
.= ((((
cdif (f,h))
. (m
+ i))
. (x
+ (h
/ 2)))
- (((
cdif (f,h))
. (m
+ i))
. (x
- (h
/ 2)))) by
A3
.= ((
cD (((
cdif (f,h))
. (m
+ i)),h))
. x) by
A5,
DIFF_1: 5
.= (((
cdif (f,h))
. ((m
+ i)
+ 1))
. x) by
DIFF_1:def 8;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
DIFF_3:18
(((
fdif (f,h))
. n)
. x)
= (((
cdif (f,h))
. n)
. (x
+ ((n
/ 2)
* h))) implies (((
bdif (f,h))
. n)
. x)
= (((
cdif (f,h))
. n)
. (x
- ((n
/ 2)
* h)))
proof
defpred
X[
Nat] means for x holds (((
bdif (f,h))
. $1)
. x)
= (((
cdif (f,h))
. $1)
. (x
- (($1
/ 2)
* h)));
A1:
X[
0 ]
proof
let x;
(((
bdif (f,h))
.
0 )
. x)
= (f
. x) by
DIFF_1:def 7
.= (((
cdif (f,h))
.
0 )
. (x
- ((
0
/ 2)
* h))) by
DIFF_1:def 8;
hence thesis;
end;
A2: for i be
Nat st
X[i] holds
X[(i
+ 1)]
proof
let i be
Nat;
assume
A3: for x holds (((
bdif (f,h))
. i)
. x)
= (((
cdif (f,h))
. i)
. (x
- ((i
/ 2)
* h)));
let x;
A4: ((
bdif (f,h))
. i) is
Function of
REAL ,
REAL by
DIFF_1: 12;
A5: ((
cdif (f,h))
. i) is
Function of
REAL ,
REAL by
DIFF_1: 19;
(((
bdif (f,h))
. (i
+ 1))
. x)
= ((
bD (((
bdif (f,h))
. i),h))
. x) by
DIFF_1:def 7
.= ((((
bdif (f,h))
. i)
. x)
- (((
bdif (f,h))
. i)
. (x
- h))) by
A4,
DIFF_1: 4
.= ((((
cdif (f,h))
. i)
. (x
- ((i
/ 2)
* h)))
- (((
bdif (f,h))
. i)
. (x
- h))) by
A3
.= ((((
cdif (f,h))
. i)
. (x
- ((i
/ 2)
* h)))
- (((
cdif (f,h))
. i)
. ((x
- h)
- ((i
/ 2)
* h)))) by
A3
.= ((((
cdif (f,h))
. i)
. ((x
- (((i
+ 1)
/ 2)
* h))
+ (h
/ 2)))
- (((
cdif (f,h))
. i)
. ((x
- (((i
+ 1)
/ 2)
* h))
- (h
/ 2))))
.= ((
cD (((
cdif (f,h))
. i),h))
. (x
- (((i
+ 1)
/ 2)
* h))) by
A5,
DIFF_1: 5
.= (((
cdif (f,h))
. (i
+ 1))
. (x
- (((i
+ 1)
/ 2)
* h))) by
DIFF_1:def 8;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
DIFF_3:19
(((
fdif (f,h))
. n)
. x)
= (((
cdif (f,h))
. n)
. ((x
+ (((n
- 1)
/ 2)
* h))
+ (h
/ 2))) implies (((
bdif (f,h))
. n)
. x)
= (((
cdif (f,h))
. n)
. ((x
- (((n
- 1)
/ 2)
* h))
- (h
/ 2)))
proof
defpred
X[
Nat] means for x holds (((
bdif (f,h))
. $1)
. x)
= (((
cdif (f,h))
. $1)
. ((x
- ((($1
- 1)
/ 2)
* h))
- (h
/ 2)));
A1:
X[
0 ]
proof
let x;
(((
bdif (f,h))
.
0 )
. x)
= (f
. x) by
DIFF_1:def 7
.= (((
cdif (f,h))
.
0 )
. ((x
- (((
0
- 1)
/ 2)
* h))
- (h
/ 2))) by
DIFF_1:def 8;
hence thesis;
end;
A2: for i be
Nat st
X[i] holds
X[(i
+ 1)]
proof
let i be
Nat;
assume
A3: for x holds (((
bdif (f,h))
. i)
. x)
= (((
cdif (f,h))
. i)
. ((x
- (((i
- 1)
/ 2)
* h))
- (h
/ 2)));
let x;
A4: ((
bdif (f,h))
. i) is
Function of
REAL ,
REAL by
DIFF_1: 12;
A5: ((
cdif (f,h))
. i) is
Function of
REAL ,
REAL by
DIFF_1: 19;
(((
bdif (f,h))
. (i
+ 1))
. x)
= ((
bD (((
bdif (f,h))
. i),h))
. x) by
DIFF_1:def 7
.= ((((
bdif (f,h))
. i)
. x)
- (((
bdif (f,h))
. i)
. (x
- h))) by
A4,
DIFF_1: 4
.= ((((
cdif (f,h))
. i)
. ((x
- (((i
- 1)
/ 2)
* h))
- (h
/ 2)))
- (((
bdif (f,h))
. i)
. (x
- h))) by
A3
.= ((((
cdif (f,h))
. i)
. ((x
- (((i
- 1)
/ 2)
* h))
- (h
/ 2)))
- (((
cdif (f,h))
. i)
. (((x
- h)
- (((i
- 1)
/ 2)
* h))
- (h
/ 2)))) by
A3
.= ((((
cdif (f,h))
. i)
. (((x
- ((i
/ 2)
* h))
- (h
/ 2))
+ (h
/ 2)))
- (((
cdif (f,h))
. i)
. (((x
- ((i
/ 2)
* h))
- (h
/ 2))
- (h
/ 2))))
.= ((
cD (((
cdif (f,h))
. i),h))
. ((x
- ((i
/ 2)
* h))
- (h
/ 2))) by
A5,
DIFF_1: 5
.= (((
cdif (f,h))
. (i
+ 1))
. ((x
- ((i
/ 2)
* h))
- (h
/ 2))) by
DIFF_1:def 8;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
DIFF_3:20
[!f, x, (x
+ h)!]
= (((
fD (f,h))
. x)
/ h)
proof
[!f, x, (x
+ h)!]
= ((
- ((f
. (x
+ h))
- (f
. x)))
/ (
- h))
.= (((f
. (x
+ h))
- (f
. x))
/ h) by
XCMPLX_1: 191
.= (((
fD (f,h))
. x)
/ h) by
DIFF_1: 3;
hence thesis;
end;
theorem ::
DIFF_3:21
[!f, (x
- h), x!]
= (((
bD (f,h))
. x)
/ h)
proof
[!f, (x
- h), x!]
= ((((
bdif (f,h))
. 1)
. x)
/ h) by
DIFF_2: 3
.= (((
bD (f,h))
. x)
/ h) by
Th11;
hence thesis;
end;
theorem ::
DIFF_3:22
Th22:
[!f, (x
- (h
/ 2)), (x
+ (h
/ 2))!]
= (((
cD (f,h))
. x)
/ h)
proof
[!f, (x
- (h
/ 2)), (x
+ (h
/ 2))!]
=
[!f, (x
+ (h
/ 2)), (x
- (h
/ 2))!] by
DIFF_1: 29
.= (((
cD (f,h))
. x)
/ h) by
DIFF_1: 5;
hence thesis;
end;
theorem ::
DIFF_3:23
Th23:
[!f, (x
- (h
/ 2)), (x
+ (h
/ 2))!]
= ((((
cdif (f,h))
. 1)
. x)
/ h)
proof
[!f, (x
- (h
/ 2)), (x
+ (h
/ 2))!]
= (((
cD (f,h))
. x)
/ h) by
Th22
.= ((((
cdif (f,h))
. 1)
. x)
/ h) by
Th16;
hence thesis;
end;
theorem ::
DIFF_3:24
h
<>
0 implies
[!f, (x
- h), x, (x
+ h)!]
= ((((
cdif (f,h))
. 2)
. x)
/ ((2
* h)
* h))
proof
assume h
<>
0 ;
then (x
- h)
<> x & (x
- h)
<> (x
+ h) & x
<> (x
+ h);
then
A1: ((x
- h),x,(x
+ h))
are_mutually_distinct by
ZFMISC_1:def 5;
A2: ((
cdif (f,h))
. 1) is
Function of
REAL ,
REAL by
DIFF_1: 19;
[!f, (x
- h), x, (x
+ h)!]
=
[!f, (x
+ h), x, (x
- h)!] by
A1,
DIFF_1: 34
.= ((
[!f, x, (x
+ h)!]
-
[!f, x, (x
- h)!])
/ ((x
+ h)
- (x
- h))) by
DIFF_1: 29
.= ((
[!f, ((x
+ (h
/ 2))
- (h
/ 2)), ((x
+ (h
/ 2))
+ (h
/ 2))!]
-
[!f, ((x
- (h
/ 2))
- (h
/ 2)), ((x
- (h
/ 2))
+ (h
/ 2))!])
/ ((x
+ h)
- (x
- h))) by
DIFF_1: 29
.= ((((((
cdif (f,h))
. 1)
. (x
+ (h
/ 2)))
/ h)
-
[!f, ((x
- (h
/ 2))
- (h
/ 2)), ((x
- (h
/ 2))
+ (h
/ 2))!])
/ ((x
+ h)
- (x
- h))) by
Th23
.= ((((((
cdif (f,h))
. 1)
. (x
+ (h
/ 2)))
/ h)
- ((((
cdif (f,h))
. 1)
. (x
- (h
/ 2)))
/ h))
/ ((x
+ h)
- (x
- h))) by
Th23
.= ((((((
cdif (f,h))
. 1)
. (x
+ (h
/ 2)))
- (((
cdif (f,h))
. 1)
. (x
- (h
/ 2))))
/ h)
/ ((x
+ h)
- (x
- h)))
.= ((((
cD (((
cdif (f,h))
. 1),h))
. x)
/ h)
/ (2
* h)) by
A2,
DIFF_1: 5
.= (((((
cdif (f,h))
. (1
+ 1))
. x)
/ h)
/ (2
* h)) by
DIFF_1:def 8
.= ((((
cdif (f,h))
. 2)
. x)
/ ((2
* h)
* h)) by
XCMPLX_1: 78;
hence thesis;
end;
theorem ::
DIFF_3:25
Th25:
[!(f1
- f2), x0, x1!]
= (
[!f1, x0, x1!]
-
[!f2, x0, x1!])
proof
reconsider x0, x1 as
Element of
REAL by
XREAL_0:def 1;
[!(f1
- f2), x0, x1!]
= ((((f1
. x0)
- (f2
. x0))
- ((f1
- f2)
. x1))
/ (x0
- x1)) by
VALUED_1: 15
.= ((((f1
. x0)
- (f2
. x0))
- ((f1
. x1)
- (f2
. x1)))
/ (x0
- x1)) by
VALUED_1: 15
.= (
[!f1, x0, x1!]
-
[!f2, x0, x1!]);
hence thesis;
end;
theorem ::
DIFF_3:26
[!((r
(#) f1)
+ f2), x0, x1!]
= ((r
*
[!f1, x0, x1!])
+
[!f2, x0, x1!])
proof
set g = (r
(#) f1);
[!((r
(#) f1)
+ f2), x0, x1!]
= (
[!g, x0, x1!]
+
[!f2, x0, x1!]) by
DIFF_1: 32
.= ((r
*
[!f1, x0, x1!])
+
[!f2, x0, x1!]) by
DIFF_1: 31;
hence thesis;
end;
theorem ::
DIFF_3:27
[!((r
(#) f1)
- f2), x0, x1!]
= ((r
*
[!f1, x0, x1!])
-
[!f2, x0, x1!])
proof
set g = (r
(#) f1);
[!((r
(#) f1)
- f2), x0, x1!]
= (
[!g, x0, x1!]
-
[!f2, x0, x1!]) by
Th25
.= ((r
*
[!f1, x0, x1!])
-
[!f2, x0, x1!]) by
DIFF_1: 31;
hence thesis;
end;
theorem ::
DIFF_3:28
[!(f1
+ (r
(#) f2)), x0, x1!]
= (
[!f1, x0, x1!]
+ (r
*
[!f2, x0, x1!]))
proof
set g = (r
(#) f2);
[!(f1
+ (r
(#) f2)), x0, x1!]
= (
[!f1, x0, x1!]
+
[!g, x0, x1!]) by
DIFF_1: 32
.= (
[!f1, x0, x1!]
+ (r
*
[!f2, x0, x1!])) by
DIFF_1: 31;
hence thesis;
end;
theorem ::
DIFF_3:29
[!(f1
- (r
(#) f2)), x0, x1!]
= (
[!f1, x0, x1!]
- (r
*
[!f2, x0, x1!]))
proof
set g = (r
(#) f2);
[!(f1
- (r
(#) f2)), x0, x1!]
= (
[!f1, x0, x1!]
-
[!g, x0, x1!]) by
Th25
.= (
[!f1, x0, x1!]
- (r
*
[!f2, x0, x1!])) by
DIFF_1: 31;
hence thesis;
end;
theorem ::
DIFF_3:30
[!((r1
(#) f1)
- (r2
(#) f2)), x0, x1!]
= ((r1
*
[!f1, x0, x1!])
- (r2
*
[!f2, x0, x1!]))
proof
set g1 = (r1
(#) f1);
set g2 = (r2
(#) f2);
[!((r1
(#) f1)
- (r2
(#) f2)), x0, x1!]
= (
[!g1, x0, x1!]
-
[!g2, x0, x1!]) by
Th25
.= ((r1
*
[!f1, x0, x1!])
-
[!g2, x0, x1!]) by
DIFF_1: 31
.= ((r1
*
[!f1, x0, x1!])
- (r2
*
[!f2, x0, x1!])) by
DIFF_1: 31;
hence thesis;
end;
theorem ::
DIFF_3:31
Th31: (((
bdif ((f1
(#) f2),h))
. 1)
. x)
= (((f1
. x)
* (((
bdif (f2,h))
. 1)
. x))
+ ((f2
. (x
- h))
* (((
bdif (f1,h))
. 1)
. x)))
proof
(((
bdif ((f1
(#) f2),h))
. 1)
. x)
= (((
bdif ((f1
(#) f2),h))
. (
0
+ 1))
. x)
.= ((
bD (((
bdif ((f1
(#) f2),h))
.
0 ),h))
. x) by
DIFF_1:def 7
.= ((
bD ((f1
(#) f2),h))
. x) by
DIFF_1:def 7
.= (((f1
(#) f2)
. x)
- ((f1
(#) f2)
. (x
- h))) by
DIFF_1: 4
.= (((f1
. x)
* (f2
. x))
- ((f1
(#) f2)
. (x
- h))) by
VALUED_1: 5
.= (((f1
. x)
* (f2
. x))
- ((f1
. (x
- h))
* (f2
. (x
- h)))) by
VALUED_1: 5
.= (((f1
. x)
* ((f2
. x)
- (f2
. (x
- h))))
+ ((f2
. (x
- h))
* ((f1
. x)
- (f1
. (x
- h)))))
.= (((f1
. x)
* ((
bD (f2,h))
. x))
+ ((f2
. (x
- h))
* ((f1
. x)
- (f1
. (x
- h))))) by
DIFF_1: 4
.= (((f1
. x)
* ((
bD (f2,h))
. x))
+ ((f2
. (x
- h))
* ((
bD (f1,h))
. x))) by
DIFF_1: 4
.= (((f1
. x)
* ((
bD (((
bdif (f2,h))
.
0 ),h))
. x))
+ ((f2
. (x
- h))
* ((
bD (f1,h))
. x))) by
DIFF_1:def 7
.= (((f1
. x)
* ((
bD (((
bdif (f2,h))
.
0 ),h))
. x))
+ ((f2
. (x
- h))
* ((
bD (((
bdif (f1,h))
.
0 ),h))
. x))) by
DIFF_1:def 7
.= (((f1
. x)
* (((
bdif (f2,h))
. (
0
+ 1))
. x))
+ ((f2
. (x
- h))
* ((
bD (((
bdif (f1,h))
.
0 ),h))
. x))) by
DIFF_1:def 7
.= (((f1
. x)
* (((
bdif (f2,h))
. 1)
. x))
+ ((f2
. (x
- h))
* (((
bdif (f1,h))
. 1)
. x))) by
DIFF_1:def 7;
hence thesis;
end;
theorem ::
DIFF_3:32
(x0,x1,x2)
are_mutually_distinct implies
[!f, x0, x1, x2!]
=
[!f, x0, x2, x1!]
proof
assume (x0,x1,x2)
are_mutually_distinct ;
then
A1: (x2
- x1)
<>
0 & (x2
- x0)
<>
0 & (x1
- x0)
<>
0 by
ZFMISC_1:def 5;
set x10 = (x1
- x0);
set x20 = (x2
- x0);
set x21 = (x2
- x1);
A2:
[!f, x0, x2, x1!]
= (((((f
. x0)
- (f
. x2))
/ (
- (x2
- x0)))
- (((f
. x2)
- (f
. x1))
/ (x2
- x1)))
/ (
- (x1
- x0)))
.= (((
- (((f
. x0)
- (f
. x2))
/ (x2
- x0)))
- (((f
. x2)
- (f
. x1))
/ (x2
- x1)))
/ (
- (x1
- x0))) by
XCMPLX_1: 188
.= ((
- ((((f
. x0)
- (f
. x2))
/ (x2
- x0))
+ (((f
. x2)
- (f
. x1))
/ (x2
- x1))))
/ (
- (x1
- x0)))
.= (((((f
. x0)
- (f
. x2))
/ (x2
- x0))
+ (((f
. x2)
- (f
. x1))
/ (x2
- x1)))
/ (x1
- x0)) by
XCMPLX_1: 191
.= ((((((f
. x0)
- (f
. x2))
* x21)
+ (((f
. x2)
- (f
. x1))
* x20))
/ (x20
* x21))
/ x10) by
A1,
XCMPLX_1: 116
.= (((((f
. x0)
* x21)
- ((f
. x1)
* x20))
+ ((f
. x2)
* x10))
/ ((x20
* x21)
* x10)) by
XCMPLX_1: 78;
[!f, x0, x1, x2!]
= (((((f
. x0)
- (f
. x1))
/ (
- (x1
- x0)))
- (((f
. x1)
- (f
. x2))
/ (
- (x2
- x1))))
/ (
- (x2
- x0)))
.= (((
- (((f
. x0)
- (f
. x1))
/ (x1
- x0)))
- (((f
. x1)
- (f
. x2))
/ (
- (x2
- x1))))
/ (
- (x2
- x0))) by
XCMPLX_1: 188
.= (((
- (((f
. x0)
- (f
. x1))
/ (x1
- x0)))
- (
- (((f
. x1)
- (f
. x2))
/ (x2
- x1))))
/ (
- (x2
- x0))) by
XCMPLX_1: 188
.= ((
- ((((f
. x0)
- (f
. x1))
/ (x1
- x0))
- (((f
. x1)
- (f
. x2))
/ (x2
- x1))))
/ (
- (x2
- x0)))
.= (((((f
. x0)
- (f
. x1))
/ (x1
- x0))
- (((f
. x1)
- (f
. x2))
/ (x2
- x1)))
/ (x2
- x0)) by
XCMPLX_1: 191
.= ((((((f
. x0)
- (f
. x1))
* x21)
- (((f
. x1)
- (f
. x2))
* x10))
/ (x10
* x21))
/ x20) by
A1,
XCMPLX_1: 130
.= (((((f
. x0)
* x21)
- ((f
. x1)
* x20))
+ ((f
. x2)
* x10))
/ ((x10
* x21)
* x20)) by
XCMPLX_1: 78
.=
[!f, x0, x2, x1!] by
A2;
hence thesis;
end;
reserve S for
Seq_Sequence;
theorem ::
DIFF_3:33
(for n,i be
Nat st i
<= n holds ((S
. n)
. i)
= (((n
choose i)
* (((
bdif (f1,h))
. i)
. x))
* (((
bdif (f2,h))
. (n
-' i))
. (x
- (i
* h))))) implies (((
bdif ((f1
(#) f2),h))
. 1)
. x)
= (
Sum ((S
. 1),1)) & (((
bdif ((f1
(#) f2),h))
. 2)
. x)
= (
Sum ((S
. 2),2))
proof
assume
A1: for n,i be
Nat st i
<= n holds ((S
. n)
. i)
= (((n
choose i)
* (((
bdif (f1,h))
. i)
. x))
* (((
bdif (f2,h))
. (n
-' i))
. (x
- (i
* h))));
A2: (1
-'
0 )
= (1
-
0 ) by
XREAL_1: 233
.= 1;
A3: ((S
. 1)
.
0 )
= (((1
choose
0 )
* (((
bdif (f1,h))
.
0 )
. x))
* (((
bdif (f2,h))
. (1
-'
0 ))
. (x
- (
0
* h)))) by
A1
.= ((1
* (((
bdif (f1,h))
.
0 )
. x))
* (((
bdif (f2,h))
. (1
-'
0 ))
. (x
- (
0
* h)))) by
NEWTON: 19
.= ((f1
. x)
* (((
bdif (f2,h))
. 1)
. x)) by
A2,
DIFF_1:def 7;
A4: (1
-' 1)
= (1
- 1) by
XREAL_1: 233
.=
0 ;
A5: ((S
. 1)
. 1)
= (((1
choose 1)
* (((
bdif (f1,h))
. 1)
. x))
* (((
bdif (f2,h))
. (1
-' 1))
. (x
- (1
* h)))) by
A1
.= ((1
* (((
bdif (f1,h))
. 1)
. x))
* (((
bdif (f2,h))
. (1
-' 1))
. (x
- (1
* h)))) by
NEWTON: 21
.= ((f2
. (x
- h))
* (((
bdif (f1,h))
. 1)
. x)) by
A4,
DIFF_1:def 7;
A6: (
Sum ((S
. 1),1))
= ((
Partial_Sums (S
. 1))
. (
0
+ 1)) by
SERIES_1:def 5
.= (((
Partial_Sums (S
. 1))
.
0 )
+ ((S
. 1)
. 1)) by
SERIES_1:def 1
.= (((S
. 1)
.
0 )
+ ((S
. 1)
. 1)) by
SERIES_1:def 1
.= (((
bdif ((f1
(#) f2),h))
. 1)
. x) by
A3,
A5,
Th31;
A7: ((
bdif ((f1
(#) f2),h))
. 1) is
Function of
REAL ,
REAL by
DIFF_1: 12;
A8: ((
bdif (f2,h))
. 1) is
Function of
REAL ,
REAL by
DIFF_1: 12;
A9: ((
bdif (f1,h))
. 1) is
Function of
REAL ,
REAL by
DIFF_1: 12;
A10: (((
bdif ((f1
(#) f2),h))
. 2)
. x)
= (((
bdif ((f1
(#) f2),h))
. (1
+ 1))
. x)
.= ((
bD (((
bdif ((f1
(#) f2),h))
. 1),h))
. x) by
DIFF_1:def 7
.= ((((
bdif ((f1
(#) f2),h))
. 1)
. x)
- (((
bdif ((f1
(#) f2),h))
. 1)
. (x
- h))) by
A7,
DIFF_1: 4
.= ((((f1
. x)
* (((
bdif (f2,h))
. 1)
. x))
+ ((((
bdif (f1,h))
. 1)
. x)
* (f2
. (x
- h))))
- (((
bdif ((f1
(#) f2),h))
. 1)
. (x
- h))) by
Th31
.= ((((f1
. x)
* (((
bdif (f2,h))
. 1)
. x))
+ ((((
bdif (f1,h))
. 1)
. x)
* (f2
. (x
- h))))
- (((f1
. (x
- h))
* (((
bdif (f2,h))
. 1)
. (x
- h)))
+ ((((
bdif (f1,h))
. 1)
. (x
- h))
* (f2
. ((x
- h)
- h))))) by
Th31
.= (((((f1
. x)
* ((((
bdif (f2,h))
. 1)
. x)
- (((
bdif (f2,h))
. 1)
. (x
- h))))
+ (((f1
. x)
- (f1
. (x
- h)))
* (((
bdif (f2,h))
. 1)
. (x
- h))))
- (((((
bdif (f1,h))
. 1)
. (x
- h))
- (((
bdif (f1,h))
. 1)
. x))
* (f2
. (x
- (2
* h)))))
- ((((
bdif (f1,h))
. 1)
. x)
* ((f2
. (x
- (2
* h)))
- (f2
. (x
- h)))))
.= (((((f1
. x)
* ((
bD (((
bdif (f2,h))
. 1),h))
. x))
+ (((f1
. x)
- (f1
. (x
- h)))
* (((
bdif (f2,h))
. 1)
. (x
- h))))
- (((((
bdif (f1,h))
. 1)
. (x
- h))
- (((
bdif (f1,h))
. 1)
. x))
* (f2
. (x
- (2
* h)))))
- ((((
bdif (f1,h))
. 1)
. x)
* ((f2
. (x
- (2
* h)))
- (f2
. (x
- h))))) by
A8,
DIFF_1: 4
.= (((((f1
. x)
* ((
bD (((
bdif (f2,h))
. 1),h))
. x))
+ (((
bD (f1,h))
. x)
* (((
bdif (f2,h))
. 1)
. (x
- h))))
+ (((((
bdif (f1,h))
. 1)
. x)
- (((
bdif (f1,h))
. 1)
. (x
- h)))
* (f2
. (x
- (2
* h)))))
- ((((
bdif (f1,h))
. 1)
. x)
* ((f2
. (x
- (2
* h)))
- (f2
. (x
- h))))) by
DIFF_1: 4
.= (((((f1
. x)
* ((
bD (((
bdif (f2,h))
. 1),h))
. x))
+ (((
bD (f1,h))
. x)
* (((
bdif (f2,h))
. 1)
. (x
- h))))
+ (((
bD (((
bdif (f1,h))
. 1),h))
. x)
* (f2
. (x
- (2
* h)))))
+ ((((
bdif (f1,h))
. 1)
. x)
* ((f2
. (x
- h))
- (f2
. ((x
- h)
- h))))) by
A9,
DIFF_1: 4
.= (((((f1
. x)
* ((
bD (((
bdif (f2,h))
. 1),h))
. x))
+ (((
bD (f1,h))
. x)
* (((
bdif (f2,h))
. 1)
. (x
- h))))
+ (((
bD (((
bdif (f1,h))
. 1),h))
. x)
* (f2
. (x
- (2
* h)))))
+ ((((
bdif (f1,h))
. 1)
. x)
* ((
bD (f2,h))
. (x
- h)))) by
DIFF_1: 4
.= (((((f1
. x)
* (((
bdif (f2,h))
. (1
+ 1))
. x))
+ (((
bD (f1,h))
. x)
* (((
bdif (f2,h))
. 1)
. (x
- h))))
+ (((
bD (((
bdif (f1,h))
. 1),h))
. x)
* (f2
. (x
- (2
* h)))))
+ ((((
bdif (f1,h))
. 1)
. x)
* ((
bD (f2,h))
. (x
- h)))) by
DIFF_1:def 7
.= (((((f1
. x)
* (((
bdif (f2,h))
. (1
+ 1))
. x))
+ (((
bD (((
bdif (f1,h))
.
0 ),h))
. x)
* (((
bdif (f2,h))
. 1)
. (x
- h))))
+ (((
bD (((
bdif (f1,h))
. 1),h))
. x)
* (f2
. (x
- (2
* h)))))
+ ((((
bdif (f1,h))
. 1)
. x)
* ((
bD (f2,h))
. (x
- h)))) by
DIFF_1:def 7
.= (((((f1
. x)
* (((
bdif (f2,h))
. 2)
. x))
+ (((
bD (((
bdif (f1,h))
.
0 ),h))
. x)
* (((
bdif (f2,h))
. 1)
. (x
- h))))
+ ((((
bdif (f1,h))
. 2)
. x)
* (f2
. (x
- (2
* h)))))
+ ((((
bdif (f1,h))
. 1)
. x)
* ((
bD (f2,h))
. (x
- h)))) by
DIFF_1:def 7
.= (((((f1
. x)
* (((
bdif (f2,h))
. 2)
. x))
+ ((((
bdif (f1,h))
. (
0
+ 1))
. x)
* (((
bdif (f2,h))
. 1)
. (x
- h))))
+ ((((
bdif (f1,h))
. 2)
. x)
* (f2
. (x
- (2
* h)))))
+ ((((
bdif (f1,h))
. 1)
. x)
* ((
bD (f2,h))
. (x
- h)))) by
DIFF_1:def 7
.= (((((f1
. x)
* (((
bdif (f2,h))
. 2)
. x))
+ ((((
bdif (f1,h))
. 1)
. x)
* (((
bdif (f2,h))
. 1)
. (x
- h))))
+ ((((
bdif (f1,h))
. 2)
. x)
* (f2
. (x
- (2
* h)))))
+ ((((
bdif (f1,h))
. 1)
. x)
* ((
bD (((
bdif (f2,h))
.
0 ),h))
. (x
- h)))) by
DIFF_1:def 7
.= (((((f1
. x)
* (((
bdif (f2,h))
. 2)
. x))
+ ((((
bdif (f1,h))
. 1)
. x)
* (((
bdif (f2,h))
. 1)
. (x
- h))))
+ ((((
bdif (f1,h))
. 2)
. x)
* (f2
. (x
- (2
* h)))))
+ ((((
bdif (f1,h))
. 1)
. x)
* (((
bdif (f2,h))
. (
0
+ 1))
. (x
- h)))) by
DIFF_1:def 7
.= ((((f1
. x)
* (((
bdif (f2,h))
. 2)
. x))
+ (2
* ((((
bdif (f1,h))
. 1)
. x)
* (((
bdif (f2,h))
. 1)
. (x
- h)))))
+ ((((
bdif (f1,h))
. 2)
. x)
* (f2
. (x
- (2
* h)))));
A11: (2
-'
0 )
= (2
-
0 ) by
XREAL_1: 233
.= 2;
A12: ((S
. 2)
.
0 )
= (((2
choose
0 )
* (((
bdif (f1,h))
.
0 )
. x))
* (((
bdif (f2,h))
. (2
-'
0 ))
. (x
- (
0
* h)))) by
A1
.= ((1
* (((
bdif (f1,h))
.
0 )
. x))
* (((
bdif (f2,h))
. (2
-'
0 ))
. (x
- (
0
* h)))) by
NEWTON: 19
.= ((f1
. x)
* (((
bdif (f2,h))
. 2)
. x)) by
A11,
DIFF_1:def 7;
A13: (2
-' 1)
= (2
- 1) by
XREAL_1: 233
.= 1;
A14: ((S
. 2)
. 1)
= (((2
choose 1)
* (((
bdif (f1,h))
. 1)
. x))
* (((
bdif (f2,h))
. (2
-' 1))
. (x
- (1
* h)))) by
A1
.= ((2
* (((
bdif (f1,h))
. 1)
. x))
* (((
bdif (f2,h))
. 1)
. (x
- h))) by
A13,
NEWTON: 23;
A15: (2
-' 2)
= (2
- 2) by
XREAL_1: 233
.=
0 ;
A16: ((S
. 2)
. 2)
= (((2
choose 2)
* (((
bdif (f1,h))
. 2)
. x))
* (((
bdif (f2,h))
. (2
-' 2))
. (x
- (2
* h)))) by
A1
.= ((1
* (((
bdif (f1,h))
. 2)
. x))
* (((
bdif (f2,h))
. (2
-' 2))
. (x
- (2
* h)))) by
NEWTON: 21
.= ((((
bdif (f1,h))
. 2)
. x)
* (f2
. (x
- (2
* h)))) by
A15,
DIFF_1:def 7;
(
Sum ((S
. 2),2))
= ((
Partial_Sums (S
. 2))
. (1
+ 1)) by
SERIES_1:def 5
.= (((
Partial_Sums (S
. 2))
. (
0
+ 1))
+ ((S
. 2)
. 2)) by
SERIES_1:def 1
.= ((((
Partial_Sums (S
. 2))
.
0 )
+ ((S
. 2)
. 1))
+ ((S
. 2)
. 2)) by
SERIES_1:def 1
.= (((
bdif ((f1
(#) f2),h))
. 2)
. x) by
A10,
A12,
A14,
A16,
SERIES_1:def 1;
hence thesis by
A6;
end;
theorem ::
DIFF_3:34
Th34: (((
cdif ((f1
(#) f2),h))
. 1)
. x)
= (((f1
. (x
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. x))
+ ((f2
. (x
- (h
/ 2)))
* (((
cdif (f1,h))
. 1)
. x)))
proof
(((
cdif ((f1
(#) f2),h))
. 1)
. x)
= (((
cdif ((f1
(#) f2),h))
. (
0
+ 1))
. x)
.= ((
cD (((
cdif ((f1
(#) f2),h))
.
0 ),h))
. x) by
DIFF_1:def 8
.= ((
cD ((f1
(#) f2),h))
. x) by
DIFF_1:def 8
.= (((f1
(#) f2)
. (x
+ (h
/ 2)))
- ((f1
(#) f2)
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((f1
. (x
+ (h
/ 2)))
* (f2
. (x
+ (h
/ 2))))
- ((f1
(#) f2)
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((f1
. (x
+ (h
/ 2)))
* (f2
. (x
+ (h
/ 2))))
- ((f1
. (x
- (h
/ 2)))
* (f2
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((f1
. (x
+ (h
/ 2)))
* ((f2
. (x
+ (h
/ 2)))
- (f2
. (x
- (h
/ 2)))))
+ ((f2
. (x
- (h
/ 2)))
* ((f1
. (x
+ (h
/ 2)))
- (f1
. (x
- (h
/ 2))))))
.= (((f1
. (x
+ (h
/ 2)))
* ((
cD (f2,h))
. x))
+ ((f2
. (x
- (h
/ 2)))
* ((f1
. (x
+ (h
/ 2)))
- (f1
. (x
- (h
/ 2)))))) by
DIFF_1: 5
.= (((f1
. (x
+ (h
/ 2)))
* ((
cD (f2,h))
. x))
+ ((f2
. (x
- (h
/ 2)))
* ((
cD (f1,h))
. x))) by
DIFF_1: 5
.= (((f1
. (x
+ (h
/ 2)))
* ((
cD (((
cdif (f2,h))
.
0 ),h))
. x))
+ ((f2
. (x
- (h
/ 2)))
* ((
cD (f1,h))
. x))) by
DIFF_1:def 8
.= (((f1
. (x
+ (h
/ 2)))
* ((
cD (((
cdif (f2,h))
.
0 ),h))
. x))
+ ((f2
. (x
- (h
/ 2)))
* ((
cD (((
cdif (f1,h))
.
0 ),h))
. x))) by
DIFF_1:def 8
.= (((f1
. (x
+ (h
/ 2)))
* (((
cdif (f2,h))
. (
0
+ 1))
. x))
+ ((f2
. (x
- (h
/ 2)))
* ((
cD (((
cdif (f1,h))
.
0 ),h))
. x))) by
DIFF_1:def 8
.= (((f1
. (x
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. x))
+ ((f2
. (x
- (h
/ 2)))
* (((
cdif (f1,h))
. 1)
. x))) by
DIFF_1:def 8;
hence thesis;
end;
theorem ::
DIFF_3:35
(for n,i be
Nat st i
<= n holds ((S
. n)
. i)
= (((n
choose i)
* (((
cdif (f1,h))
. i)
. (x
+ ((n
-' i)
* (h
/ 2)))))
* (((
cdif (f2,h))
. (n
-' i))
. (x
- (i
* (h
/ 2)))))) implies (((
cdif ((f1
(#) f2),h))
. 1)
. x)
= (
Sum ((S
. 1),1)) & (((
cdif ((f1
(#) f2),h))
. 2)
. x)
= (
Sum ((S
. 2),2))
proof
assume
A1: for n,i be
Nat st i
<= n holds ((S
. n)
. i)
= (((n
choose i)
* (((
cdif (f1,h))
. i)
. (x
+ ((n
-' i)
* (h
/ 2)))))
* (((
cdif (f2,h))
. (n
-' i))
. (x
- (i
* (h
/ 2)))));
A2: (1
-'
0 )
= (1
-
0 ) by
XREAL_1: 233
.= 1;
A3: ((S
. 1)
.
0 )
= (((1
choose
0 )
* (((
cdif (f1,h))
.
0 )
. (x
+ ((1
-'
0 )
* (h
/ 2)))))
* (((
cdif (f2,h))
. (1
-'
0 ))
. (x
- (
0
* (h
/ 2))))) by
A1
.= ((1
* (((
cdif (f1,h))
.
0 )
. (x
+ ((1
-'
0 )
* (h
/ 2)))))
* (((
cdif (f2,h))
. (1
-'
0 ))
. (x
- (
0
* (h
/ 2))))) by
NEWTON: 19
.= ((f1
. (x
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. x)) by
A2,
DIFF_1:def 8;
A4: (1
-' 1)
= (1
- 1) by
XREAL_1: 233
.=
0 ;
A5: ((S
. 1)
. 1)
= (((1
choose 1)
* (((
cdif (f1,h))
. 1)
. (x
+ ((1
-' 1)
* (h
/ 2)))))
* (((
cdif (f2,h))
. (1
-' 1))
. (x
- (1
* (h
/ 2))))) by
A1
.= ((1
* (((
cdif (f1,h))
. 1)
. (x
+ ((1
-' 1)
* (h
/ 2)))))
* (((
cdif (f2,h))
. (1
-' 1))
. (x
- (1
* (h
/ 2))))) by
NEWTON: 21
.= ((f2
. (x
- (h
/ 2)))
* (((
cdif (f1,h))
. 1)
. x)) by
A4,
DIFF_1:def 8;
A6: (
Sum ((S
. 1),1))
= ((
Partial_Sums (S
. 1))
. (
0
+ 1)) by
SERIES_1:def 5
.= (((
Partial_Sums (S
. 1))
.
0 )
+ ((S
. 1)
. 1)) by
SERIES_1:def 1
.= (((S
. 1)
.
0 )
+ ((S
. 1)
. 1)) by
SERIES_1:def 1
.= (((
cdif ((f1
(#) f2),h))
. 1)
. x) by
A3,
A5,
Th34;
A7: ((
cdif ((f1
(#) f2),h))
. 1) is
Function of
REAL ,
REAL by
DIFF_1: 19;
A8: ((
cdif (f1,h))
. 1) is
Function of
REAL ,
REAL by
DIFF_1: 19;
A9: ((
cdif (f2,h))
. 1) is
Function of
REAL ,
REAL by
DIFF_1: 19;
A10: (((
cdif ((f1
(#) f2),h))
. 2)
. x)
= (((
cdif ((f1
(#) f2),h))
. (1
+ 1))
. x)
.= ((
cD (((
cdif ((f1
(#) f2),h))
. 1),h))
. x) by
DIFF_1:def 8
.= ((((
cdif ((f1
(#) f2),h))
. 1)
. (x
+ (h
/ 2)))
- (((
cdif ((f1
(#) f2),h))
. 1)
. (x
- (h
/ 2)))) by
A7,
DIFF_1: 5
.= ((((f1
. ((x
+ (h
/ 2))
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. (x
+ (h
/ 2))))
+ ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* (f2
. ((x
+ (h
/ 2))
- (h
/ 2)))))
- (((
cdif ((f1
(#) f2),h))
. 1)
. (x
- (h
/ 2)))) by
Th34
.= ((((f1
. (x
+ h))
* (((
cdif (f2,h))
. 1)
. (x
+ (h
/ 2))))
+ ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* (f2
. x)))
- (((f1
. ((x
- (h
/ 2))
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2))))
+ ((((
cdif (f1,h))
. 1)
. (x
- (h
/ 2)))
* (f2
. ((x
- (h
/ 2))
- (h
/ 2)))))) by
Th34
.= (((((f1
. (x
+ h))
* ((((
cdif (f2,h))
. 1)
. (x
+ (h
/ 2)))
- (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2)))))
+ (((f1
. (x
+ h))
- (f1
. x))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2)))))
- (((((
cdif (f1,h))
. 1)
. (x
- (h
/ 2)))
- (((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2))))
* (f2
. (x
- h))))
- ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* ((f2
. (x
- h))
- (f2
. x))))
.= (((((f1
. (x
+ h))
* ((
cD (((
cdif (f2,h))
. 1),h))
. x))
+ (((f1
. ((x
+ (h
/ 2))
+ (h
/ 2)))
- (f1
. ((x
+ (h
/ 2))
- (h
/ 2))))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2)))))
- (((((
cdif (f1,h))
. 1)
. (x
- (h
/ 2)))
- (((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2))))
* (f2
. (x
- h))))
- ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* ((f2
. (x
- h))
- (f2
. x)))) by
A9,
DIFF_1: 5
.= (((((f1
. (x
+ h))
* ((
cD (((
cdif (f2,h))
. 1),h))
. x))
+ (((
cD (f1,h))
. (x
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2)))))
+ (((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
- (((
cdif (f1,h))
. 1)
. (x
- (h
/ 2))))
* (f2
. (x
- h))))
- ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* ((f2
. (x
- h))
- (f2
. x)))) by
DIFF_1: 5
.= (((((f1
. (x
+ h))
* ((
cD (((
cdif (f2,h))
. 1),h))
. x))
+ (((
cD (f1,h))
. (x
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2)))))
+ (((
cD (((
cdif (f1,h))
. 1),h))
. x)
* (f2
. (x
- h))))
+ ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* ((f2
. ((x
- (h
/ 2))
+ (h
/ 2)))
- (f2
. ((x
- (h
/ 2))
- (h
/ 2)))))) by
A8,
DIFF_1: 5
.= (((((f1
. (x
+ h))
* ((
cD (((
cdif (f2,h))
. 1),h))
. x))
+ (((
cD (f1,h))
. (x
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2)))))
+ (((
cD (((
cdif (f1,h))
. 1),h))
. x)
* (f2
. (x
- h))))
+ ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* ((
cD (f2,h))
. (x
- (h
/ 2))))) by
DIFF_1: 5
.= (((((f1
. (x
+ h))
* (((
cdif (f2,h))
. (1
+ 1))
. x))
+ (((
cD (f1,h))
. (x
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2)))))
+ (((
cD (((
cdif (f1,h))
. 1),h))
. x)
* (f2
. (x
- h))))
+ ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* ((
cD (f2,h))
. (x
- (h
/ 2))))) by
DIFF_1:def 8
.= (((((f1
. (x
+ h))
* (((
cdif (f2,h))
. 2)
. x))
+ ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2)))))
+ (((
cD (((
cdif (f1,h))
. 1),h))
. x)
* (f2
. (x
- h))))
+ ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* ((
cD (f2,h))
. (x
- (h
/ 2))))) by
Th16
.= (((((f1
. (x
+ h))
* (((
cdif (f2,h))
. 2)
. x))
+ ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2)))))
+ ((((
cdif (f1,h))
. (1
+ 1))
. x)
* (f2
. (x
- h))))
+ ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* ((
cD (f2,h))
. (x
- (h
/ 2))))) by
DIFF_1:def 8
.= (((((f1
. (x
+ h))
* (((
cdif (f2,h))
. 2)
. x))
+ ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2)))))
+ ((((
cdif (f1,h))
. 2)
. x)
* (f2
. (x
- h))))
+ ((((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2)))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2))))) by
Th16
.= ((((f1
. (x
+ h))
* (((
cdif (f2,h))
. 2)
. x))
+ ((2
* (((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2))))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2)))))
+ ((((
cdif (f1,h))
. 2)
. x)
* (f2
. (x
- h))));
A11: (2
-'
0 )
= (2
-
0 ) by
XREAL_1: 233
.= 2;
A12: ((S
. 2)
.
0 )
= (((2
choose
0 )
* (((
cdif (f1,h))
.
0 )
. (x
+ ((2
-'
0 )
* (h
/ 2)))))
* (((
cdif (f2,h))
. (2
-'
0 ))
. (x
- (
0
* (h
/ 2))))) by
A1
.= ((1
* (((
cdif (f1,h))
.
0 )
. (x
+ ((2
-'
0 )
* (h
/ 2)))))
* (((
cdif (f2,h))
. (2
-'
0 ))
. (x
- (
0
* (h
/ 2))))) by
NEWTON: 19
.= ((f1
. (x
+ h))
* (((
cdif (f2,h))
. 2)
. x)) by
A11,
DIFF_1:def 8;
A13: (2
-' 1)
= (2
- 1) by
XREAL_1: 233
.= 1;
A14: ((S
. 2)
. 1)
= (((2
choose 1)
* (((
cdif (f1,h))
. 1)
. (x
+ ((2
-' 1)
* (h
/ 2)))))
* (((
cdif (f2,h))
. (2
-' 1))
. (x
- (1
* (h
/ 2))))) by
A1
.= ((2
* (((
cdif (f1,h))
. 1)
. (x
+ (h
/ 2))))
* (((
cdif (f2,h))
. 1)
. (x
- (h
/ 2)))) by
A13,
NEWTON: 23;
A15: (2
-' 2)
= (2
- 2) by
XREAL_1: 233
.=
0 ;
A16: ((S
. 2)
. 2)
= (((2
choose 2)
* (((
cdif (f1,h))
. 2)
. (x
+ ((2
-' 2)
* (h
/ 2)))))
* (((
cdif (f2,h))
. (2
-' 2))
. (x
- (2
* (h
/ 2))))) by
A1
.= ((1
* (((
cdif (f1,h))
. 2)
. (x
+ ((2
-' 2)
* (h
/ 2)))))
* (((
cdif (f2,h))
. (2
-' 2))
. (x
- (2
* (h
/ 2))))) by
NEWTON: 21
.= ((((
cdif (f1,h))
. 2)
. x)
* (f2
. (x
- h))) by
A15,
DIFF_1:def 8;
(
Sum ((S
. 2),2))
= ((
Partial_Sums (S
. 2))
. (1
+ 1)) by
SERIES_1:def 5
.= (((
Partial_Sums (S
. 2))
. (
0
+ 1))
+ ((S
. 2)
. 2)) by
SERIES_1:def 1
.= ((((
Partial_Sums (S
. 2))
.
0 )
+ ((S
. 2)
. 1))
+ ((S
. 2)
. 2)) by
SERIES_1:def 1
.= (((
cdif ((f1
(#) f2),h))
. 2)
. x) by
A10,
A12,
A14,
A16,
SERIES_1:def 1;
hence thesis by
A6;
end;
theorem ::
DIFF_3:36
(for x holds (f
. x)
= (
sqrt x)) & x0
<> x1 & x0
>
0 & x1
>
0 implies
[!f, x0, x1!]
= (1
/ ((
sqrt x0)
+ (
sqrt x1)))
proof
assume that
A1: for x holds (f
. x)
= (
sqrt x) and
A2: x0
<> x1 and
A3: x0
>
0 & x1
>
0 ;
[!f, x0, x1!]
= (((
sqrt x0)
- (f
. x1))
/ (x0
- x1)) by
A1
.= (((
sqrt x0)
- (
sqrt x1))
/ (x0
- x1)) by
A1
.= (1
/ ((
sqrt x0)
+ (
sqrt x1))) by
A2,
A3,
SQUARE_1: 36;
hence thesis;
end;
theorem ::
DIFF_3:37
(for x holds (f
. x)
= (
sqrt x)) & (x0,x1,x2)
are_mutually_distinct & x0
>
0 & x1
>
0 & x2
>
0 implies
[!f, x0, x1, x2!]
= (
- (1
/ ((((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x0)
+ (
sqrt x2)))
* ((
sqrt x1)
+ (
sqrt x2)))))
proof
assume that
A1: for x holds (f
. x)
= (
sqrt x) and
A2: (x0,x1,x2)
are_mutually_distinct and
A3: x0
>
0 & x1
>
0 & x2
>
0 ;
A4: (f
. x0)
= (
sqrt x0) & (f
. x1)
= (
sqrt x1) & (f
. x2)
= (
sqrt x2) by
A1;
(
sqrt x0)
>
0 & (
sqrt x1)
>
0 & (
sqrt x2)
>
0 by
A3,
SQUARE_1: 25;
then
A5: ((
sqrt x0)
+ (
sqrt x1))
>
0 & ((
sqrt x1)
+ (
sqrt x2))
>
0 ;
A6: x0
<> x1 & x1
<> x2 & x2
<> x0 by
A2,
ZFMISC_1:def 5;
then
[!f, x0, x1, x2!]
= (((1
/ ((
sqrt x0)
+ (
sqrt x1)))
- (((
sqrt x1)
- (
sqrt x2))
/ (x1
- x2)))
/ (x0
- x2)) by
A3,
A4,
SQUARE_1: 36
.= (((1
/ ((
sqrt x0)
+ (
sqrt x1)))
- (1
/ ((
sqrt x1)
+ (
sqrt x2))))
/ (x0
- x2)) by
A3,
A6,
SQUARE_1: 36
.= ((((1
* ((
sqrt x1)
+ (
sqrt x2)))
- (1
* ((
sqrt x0)
+ (
sqrt x1))))
/ (((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2))))
/ (x0
- x2)) by
A5,
XCMPLX_1: 130
.= ((((
sqrt x2)
- (
sqrt x0))
/ (((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2))))
/ (
- (x2
- x0)))
.= (
- ((((
sqrt x2)
- (
sqrt x0))
/ (((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2))))
/ (x2
- x0))) by
XCMPLX_1: 188
.= (
- ((1
/ (((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2))))
* (((
sqrt x2)
- (
sqrt x0))
/ (x2
- x0))))
.= (
- ((1
/ (((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2))))
* (1
/ ((
sqrt x2)
+ (
sqrt x0))))) by
A3,
A6,
SQUARE_1: 36
.= (
- (1
/ ((((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0))))) by
XCMPLX_1: 102;
hence thesis;
end;
theorem ::
DIFF_3:38
(for x holds (f
. x)
= (
sqrt x)) & (x0,x1,x2,x3)
are_mutually_distinct & x0
>
0 & x1
>
0 & x2
>
0 & x3
>
0 implies
[!f, x0, x1, x2, x3!]
= (((((
sqrt x0)
+ (
sqrt x1))
+ (
sqrt x2))
+ (
sqrt x3))
/ (((((((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x0)
+ (
sqrt x2)))
* ((
sqrt x0)
+ (
sqrt x3)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x1)
+ (
sqrt x3)))
* ((
sqrt x2)
+ (
sqrt x3))))
proof
assume that
A1: for x holds (f
. x)
= (
sqrt x) and
A2: (x0,x1,x2,x3)
are_mutually_distinct and
A3: x0
>
0 & x1
>
0 & x2
>
0 & x3
>
0 ;
A4: (f
. x0)
= (
sqrt x0) & (f
. x1)
= (
sqrt x1) & (f
. x2)
= (
sqrt x2) & (f
. x3)
= (
sqrt x3) by
A1;
(
sqrt x0)
>
0 & (
sqrt x1)
>
0 & (
sqrt x2)
>
0 & (
sqrt x3)
>
0 by
A3,
SQUARE_1: 25;
then
A5: ((
sqrt x0)
+ (
sqrt x1))
>
0 & ((
sqrt x1)
+ (
sqrt x2))
>
0 & ((
sqrt x2)
+ (
sqrt x3))
>
0 & ((
sqrt x2)
+ (
sqrt x0))
>
0 & ((
sqrt x3)
+ (
sqrt x1))
>
0 ;
A6: x0
<> x1 & x0
<> x2 & x0
<> x3 & x1
<> x2 & x1
<> x3 & x2
<> x3 by
A2,
ZFMISC_1:def 6;
then
[!f, x0, x1, x2, x3!]
= (((((1
/ ((
sqrt x0)
+ (
sqrt x1)))
- (((
sqrt x1)
- (
sqrt x2))
/ (x1
- x2)))
/ (x0
- x2))
- (((((
sqrt x1)
- (
sqrt x2))
/ (x1
- x2))
- (((
sqrt x2)
- (
sqrt x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
A3,
A4,
SQUARE_1: 36
.= (((((1
/ ((
sqrt x0)
+ (
sqrt x1)))
- (1
/ ((
sqrt x1)
+ (
sqrt x2))))
/ (x0
- x2))
- (((((
sqrt x1)
- (
sqrt x2))
/ (x1
- x2))
- (((
sqrt x2)
- (
sqrt x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
A3,
A6,
SQUARE_1: 36
.= (((((1
/ ((
sqrt x0)
+ (
sqrt x1)))
- (1
/ ((
sqrt x1)
+ (
sqrt x2))))
/ (x0
- x2))
- (((1
/ ((
sqrt x1)
+ (
sqrt x2)))
- (((
sqrt x2)
- (
sqrt x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
A3,
A6,
SQUARE_1: 36
.= (((((1
/ ((
sqrt x0)
+ (
sqrt x1)))
- (1
/ ((
sqrt x1)
+ (
sqrt x2))))
/ (x0
- x2))
- (((1
/ ((
sqrt x1)
+ (
sqrt x2)))
- (1
/ ((
sqrt x2)
+ (
sqrt x3))))
/ (x1
- x3)))
/ (x0
- x3)) by
A3,
A6,
SQUARE_1: 36
.= ((((((1
* ((
sqrt x1)
+ (
sqrt x2)))
- (1
* ((
sqrt x0)
+ (
sqrt x1))))
/ (((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2))))
/ (x0
- x2))
- (((1
/ ((
sqrt x1)
+ (
sqrt x2)))
- (1
/ ((
sqrt x2)
+ (
sqrt x3))))
/ (x1
- x3)))
/ (x0
- x3)) by
A5,
XCMPLX_1: 130
.= ((((((1
* ((
sqrt x1)
+ (
sqrt x2)))
- (1
* ((
sqrt x0)
+ (
sqrt x1))))
/ (((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2))))
/ (x0
- x2))
- ((((1
* ((
sqrt x2)
+ (
sqrt x3)))
- (1
* ((
sqrt x1)
+ (
sqrt x2))))
/ (((
sqrt x1)
+ (
sqrt x2))
* ((
sqrt x2)
+ (
sqrt x3))))
/ (x1
- x3)))
/ (x0
- x3)) by
A5,
XCMPLX_1: 130
.= ((((((
sqrt x2)
- (
sqrt x0))
/ (((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2))))
/ (
- (x2
- x0)))
- ((((
sqrt x3)
- (
sqrt x1))
/ (((
sqrt x1)
+ (
sqrt x2))
* ((
sqrt x2)
+ (
sqrt x3))))
/ (
- (x3
- x1))))
/ (x0
- x3))
.= (((
- ((((
sqrt x2)
- (
sqrt x0))
/ (((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2))))
/ (x2
- x0)))
- ((((
sqrt x3)
- (
sqrt x1))
/ (((
sqrt x1)
+ (
sqrt x2))
* ((
sqrt x2)
+ (
sqrt x3))))
/ (
- (x3
- x1))))
/ (x0
- x3)) by
XCMPLX_1: 188
.= (((
- ((1
/ (((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2))))
* (((
sqrt x2)
- (
sqrt x0))
/ (x2
- x0))))
- (
- ((((
sqrt x3)
- (
sqrt x1))
/ (((
sqrt x1)
+ (
sqrt x2))
* ((
sqrt x2)
+ (
sqrt x3))))
/ (x3
- x1))))
/ (x0
- x3)) by
XCMPLX_1: 188
.= (((
- ((1
/ (((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2))))
* (1
/ ((
sqrt x2)
+ (
sqrt x0)))))
- (
- ((((
sqrt x3)
- (
sqrt x1))
/ (((
sqrt x1)
+ (
sqrt x2))
* ((
sqrt x2)
+ (
sqrt x3))))
/ (x3
- x1))))
/ (x0
- x3)) by
A3,
A6,
SQUARE_1: 36
.= (((
- (1
/ ((((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0)))))
+ ((1
/ (((
sqrt x1)
+ (
sqrt x2))
* ((
sqrt x2)
+ (
sqrt x3))))
* (((
sqrt x3)
- (
sqrt x1))
/ (x3
- x1))))
/ (x0
- x3)) by
XCMPLX_1: 102
.= (((
- (1
/ ((((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0)))))
+ ((1
/ (((
sqrt x1)
+ (
sqrt x2))
* ((
sqrt x2)
+ (
sqrt x3))))
* (1
/ ((
sqrt x3)
+ (
sqrt x1)))))
/ (x0
- x3)) by
A3,
A6,
SQUARE_1: 36
.= (((1
/ ((((
sqrt x1)
+ (
sqrt x2))
* ((
sqrt x2)
+ (
sqrt x3)))
* ((
sqrt x3)
+ (
sqrt x1))))
- (1
/ ((((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0)))))
/ (x0
- x3)) by
XCMPLX_1: 102
.= ((((1
* ((((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0))))
- (1
* ((((
sqrt x1)
+ (
sqrt x2))
* ((
sqrt x2)
+ (
sqrt x3)))
* ((
sqrt x3)
+ (
sqrt x1)))))
/ (((((
sqrt x1)
+ (
sqrt x2))
* ((
sqrt x2)
+ (
sqrt x3)))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0)))))
/ (x0
- x3)) by
A5,
XCMPLX_1: 130
.= (((((((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x2)
+ (
sqrt x0)))
- (((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1))))
* ((
sqrt x1)
+ (
sqrt x2)))
/ (((((((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((
sqrt x0)
+ (
sqrt x1)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0)))
* ((
sqrt x1)
+ (
sqrt x2))))
/ (x0
- x3))
.= ((((((((
sqrt x0)
* (
sqrt x2))
+ ((
sqrt x0)
* (
sqrt x0)))
+ ((
sqrt x1)
* (
sqrt x2)))
+ ((
sqrt x1)
* (
sqrt x0)))
- (((((
sqrt x2)
* (
sqrt x3))
+ ((
sqrt x2)
* (
sqrt x1)))
+ ((
sqrt x3)
* (
sqrt x3)))
+ ((
sqrt x3)
* (
sqrt x1))))
/ ((((((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((
sqrt x0)
+ (
sqrt x1)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0))))
/ (x0
- x3)) by
A5,
XCMPLX_1: 91
.= ((((((((
sqrt x0)
* (
sqrt x2))
+ (
sqrt (x0
^2 )))
+ ((
sqrt x1)
* (
sqrt x2)))
+ ((
sqrt x1)
* (
sqrt x0)))
- (((((
sqrt x2)
* (
sqrt x3))
+ ((
sqrt x2)
* (
sqrt x1)))
+ ((
sqrt x3)
* (
sqrt x3)))
+ ((
sqrt x3)
* (
sqrt x1))))
/ ((((((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((
sqrt x0)
+ (
sqrt x1)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0))))
/ (x0
- x3)) by
A3,
SQUARE_1: 29
.= ((((((((
sqrt x0)
* (
sqrt x2))
+ x0)
+ ((
sqrt x1)
* (
sqrt x2)))
+ ((
sqrt x1)
* (
sqrt x0)))
- (((((
sqrt x2)
* (
sqrt x3))
+ ((
sqrt x2)
* (
sqrt x1)))
+ ((
sqrt x3)
* (
sqrt x3)))
+ ((
sqrt x3)
* (
sqrt x1))))
/ ((((((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((
sqrt x0)
+ (
sqrt x1)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0))))
/ (x0
- x3)) by
A3,
SQUARE_1: 22
.= ((((((((
sqrt x0)
* (
sqrt x2))
+ x0)
+ ((
sqrt x1)
* (
sqrt x2)))
+ ((
sqrt x1)
* (
sqrt x0)))
- (((((
sqrt x2)
* (
sqrt x3))
+ ((
sqrt x2)
* (
sqrt x1)))
+ (
sqrt (x3
^2 )))
+ ((
sqrt x3)
* (
sqrt x1))))
/ ((((((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((
sqrt x0)
+ (
sqrt x1)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0))))
/ (x0
- x3)) by
A3,
SQUARE_1: 29
.= ((((((((
sqrt x0)
* (
sqrt x2))
+ x0)
+ ((
sqrt x1)
* (
sqrt x2)))
+ ((
sqrt x1)
* (
sqrt x0)))
- (((((
sqrt x2)
* (
sqrt x3))
+ ((
sqrt x2)
* (
sqrt x1)))
+ x3)
+ ((
sqrt x3)
* (
sqrt x1))))
/ ((((((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((
sqrt x0)
+ (
sqrt x1)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0))))
/ (x0
- x3)) by
A3,
SQUARE_1: 22
.= (((((
sqrt x2)
+ (
sqrt x1))
* ((
sqrt x0)
- (
sqrt x3)))
+ (x0
- x3))
/ (((((((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((
sqrt x0)
+ (
sqrt x1)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0)))
* (x0
- x3))) by
XCMPLX_1: 78
.= (((((
sqrt x0)
- (
sqrt x3))
* ((
sqrt x2)
+ (
sqrt x1)))
+ (((
sqrt x0)
- (
sqrt x3))
* ((
sqrt x0)
+ (
sqrt x3))))
/ (((((((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((
sqrt x0)
+ (
sqrt x1)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0)))
* (x0
- x3))) by
A3,
SQUARE_1: 35
.= ((((
sqrt x0)
- (
sqrt x3))
* ((((
sqrt x2)
+ (
sqrt x1))
+ (
sqrt x0))
+ (
sqrt x3)))
/ (((((((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((
sqrt x0)
+ (
sqrt x1)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0)))
* (x0
- x3)))
.= ((((
sqrt x0)
- (
sqrt x3))
/ (x0
- x3))
* (((((
sqrt x2)
+ (
sqrt x1))
+ (
sqrt x0))
+ (
sqrt x3))
/ ((((((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((
sqrt x0)
+ (
sqrt x1)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0))))) by
XCMPLX_1: 76
.= ((1
/ ((
sqrt x0)
+ (
sqrt x3)))
* (((((
sqrt x2)
+ (
sqrt x1))
+ (
sqrt x0))
+ (
sqrt x3))
/ ((((((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((
sqrt x0)
+ (
sqrt x1)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0))))) by
A3,
A6,
SQUARE_1: 36
.= (((((
sqrt x2)
+ (
sqrt x1))
+ (
sqrt x0))
+ (
sqrt x3))
/ (((((((
sqrt x2)
+ (
sqrt x3))
* ((
sqrt x3)
+ (
sqrt x1)))
* ((
sqrt x0)
+ (
sqrt x1)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x2)
+ (
sqrt x0)))
* ((
sqrt x0)
+ (
sqrt x3)))) by
XCMPLX_1: 103
.= (((((
sqrt x0)
+ (
sqrt x1))
+ (
sqrt x2))
+ (
sqrt x3))
/ (((((((
sqrt x0)
+ (
sqrt x1))
* ((
sqrt x0)
+ (
sqrt x2)))
* ((
sqrt x0)
+ (
sqrt x3)))
* ((
sqrt x1)
+ (
sqrt x2)))
* ((
sqrt x1)
+ (
sqrt x3)))
* ((
sqrt x2)
+ (
sqrt x3))));
hence thesis;
end;
theorem ::
DIFF_3:39
(for x holds (f
. x)
= (
sqrt x)) & x
>
0 & (x
+ h)
>
0 implies ((
fD (f,h))
. x)
= ((
sqrt (x
+ h))
- (
sqrt x))
proof
assume
A1: for x holds (f
. x)
= (
sqrt x);
((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x)) by
DIFF_1: 3
.= ((
sqrt (x
+ h))
- (f
. x)) by
A1
.= ((
sqrt (x
+ h))
- (
sqrt x)) by
A1;
hence thesis;
end;
theorem ::
DIFF_3:40
(for x holds (f
. x)
= (
sqrt x)) & x
>
0 & (x
- h)
>
0 implies ((
bD (f,h))
. x)
= ((
sqrt x)
- (
sqrt (x
- h)))
proof
assume
A1: for x holds (f
. x)
= (
sqrt x);
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= ((
sqrt x)
- (f
. (x
- h))) by
A1
.= ((
sqrt x)
- (
sqrt (x
- h))) by
A1;
hence thesis;
end;
theorem ::
DIFF_3:41
(for x holds (f
. x)
= (
sqrt x)) & (x
+ (h
/ 2))
>
0 & (x
- (h
/ 2))
>
0 implies ((
cD (f,h))
. x)
= ((
sqrt (x
+ (h
/ 2)))
- (
sqrt (x
- (h
/ 2))))
proof
assume
A1: for x holds (f
. x)
= (
sqrt x);
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((
sqrt (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
A1
.= ((
sqrt (x
+ (h
/ 2)))
- (
sqrt (x
- (h
/ 2)))) by
A1;
hence thesis;
end;
theorem ::
DIFF_3:42
(for x holds (f
. x)
= (x
^2 )) & x0
<> x1 implies
[!f, x0, x1!]
= (x0
+ x1)
proof
assume that
A1: for x holds (f
. x)
= (x
^2 ) and
A2: x0
<> x1;
A3: (x0
- x1)
<>
0 by
A2;
[!f, x0, x1!]
= (((x0
^2 )
- (f
. x1))
/ (x0
- x1)) by
A1
.= (((x0
^2 )
- (x1
^2 ))
/ (x0
- x1)) by
A1
.= (((x0
- x1)
* (x0
+ x1))
/ (x0
- x1))
.= (x0
+ x1) by
A3,
XCMPLX_1: 89;
hence thesis;
end;
theorem ::
DIFF_3:43
(for x holds (f
. x)
= (x
^2 )) & (x0,x1,x2)
are_mutually_distinct implies
[!f, x0, x1, x2!]
= 1
proof
assume that
A1: for x holds (f
. x)
= (x
^2 ) and
A2: (x0,x1,x2)
are_mutually_distinct ;
A3: (f
. x0)
= (x0
^2 ) & (f
. x1)
= (x1
^2 ) & (f
. x2)
= (x2
^2 ) by
A1;
A4: (x0
- x1)
<>
0 & (x1
- x2)
<>
0 & (x0
- x2)
<>
0 by
A2,
ZFMISC_1:def 5;
[!f, x0, x1, x2!]
= (((((x0
- x1)
* (x0
+ x1))
/ (x0
- x1))
- (((x1
- x2)
* (x1
+ x2))
/ (x1
- x2)))
/ (x0
- x2)) by
A3
.= (((x0
+ x1)
- (((x1
- x2)
* (x1
+ x2))
/ (x1
- x2)))
/ (x0
- x2)) by
A4,
XCMPLX_1: 89
.= (((x0
+ x1)
- (x1
+ x2))
/ (x0
- x2)) by
A4,
XCMPLX_1: 89
.= 1 by
A4,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
DIFF_3:44
(for x holds (f
. x)
= (x
^2 )) & (x0,x1,x2,x3)
are_mutually_distinct implies
[!f, x0, x1, x2, x3!]
=
0
proof
assume that
A1: for x holds (f
. x)
= (x
^2 ) and
A2: (x0,x1,x2,x3)
are_mutually_distinct ;
A3: (f
. x0)
= (x0
^2 ) & (f
. x1)
= (x1
^2 ) & (f
. x2)
= (x2
^2 ) & (f
. x3)
= (x3
^2 ) by
A1;
A4: (x0
- x1)
<>
0 & (x1
- x2)
<>
0 & (x2
- x3)
<>
0 & (x0
- x2)
<>
0 & (x1
- x3)
<>
0 & (x0
- x3)
<>
0 by
A2,
ZFMISC_1:def 6;
[!f, x0, x1, x2, x3!]
= (((((((x0
- x1)
* (x0
+ x1))
/ (x0
- x1))
- (((x1
- x2)
* (x1
+ x2))
/ (x1
- x2)))
/ (x0
- x2))
- (((((x1
- x2)
* (x1
+ x2))
/ (x1
- x2))
- (((x2
- x3)
* (x2
+ x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
A3
.= (((((x0
+ x1)
- (((x1
- x2)
* (x1
+ x2))
/ (x1
- x2)))
/ (x0
- x2))
- (((((x1
- x2)
* (x1
+ x2))
/ (x1
- x2))
- (((x2
- x3)
* (x2
+ x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
A4,
XCMPLX_1: 89
.= (((((x0
+ x1)
- (x1
+ x2))
/ (x0
- x2))
- (((((x1
- x2)
* (x1
+ x2))
/ (x1
- x2))
- (((x2
- x3)
* (x2
+ x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
A4,
XCMPLX_1: 89
.= (((((x0
+ x1)
- (x1
+ x2))
/ (x0
- x2))
- (((x1
+ x2)
- (((x2
- x3)
* (x2
+ x3))
/ (x2
- x3)))
/ (x1
- x3)))
/ (x0
- x3)) by
A4,
XCMPLX_1: 89
.= (((((x0
+ x1)
- (x1
+ x2))
/ (x0
- x2))
- (((x1
+ x2)
- (x2
+ x3))
/ (x1
- x3)))
/ (x0
- x3)) by
A4,
XCMPLX_1: 89
.= ((1
- ((x1
- x3)
/ (x1
- x3)))
/ (x0
- x3)) by
A4,
XCMPLX_1: 60
.= ((1
- 1)
/ (x0
- x3)) by
A4,
XCMPLX_1: 60
.=
0 ;
hence thesis;
end;
theorem ::
DIFF_3:45
(for x holds (f
. x)
= (x
^2 )) implies ((
fD (f,h))
. x)
= (((2
* x)
* h)
+ (h
^2 ))
proof
assume
A1: for x holds (f
. x)
= (x
^2 );
then (f
. (x
+ h))
= ((x
+ h)
^2 );
then ((
fD (f,h))
. x)
= (((x
+ h)
^2 )
- (f
. x)) by
DIFF_1: 3
.= ((((x
^2 )
+ ((2
* x)
* h))
+ (h
^2 ))
- (x
^2 )) by
A1
.= (((2
* x)
* h)
+ (h
^2 ));
hence thesis;
end;
theorem ::
DIFF_3:46
(for x holds (f
. x)
= (x
^2 )) implies ((
bD (f,h))
. x)
= (h
* ((2
* x)
- h))
proof
assume
A1: for x holds (f
. x)
= (x
^2 );
then
A2: (f
. (x
- h))
= ((x
- h)
^2 );
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= ((x
^2 )
- ((x
- h)
^2 )) by
A1,
A2
.= (h
* ((2
* x)
- h));
hence thesis;
end;
theorem ::
DIFF_3:47
(for x holds (f
. x)
= (x
^2 )) implies ((
cD (f,h))
. x)
= ((2
* h)
* x)
proof
assume
A1: for x holds (f
. x)
= (x
^2 );
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((x
+ (h
/ 2))
^2 )
- (f
. (x
- (h
/ 2)))) by
A1
.= (((x
+ (h
/ 2))
^2 )
- ((x
- (h
/ 2))
^2 )) by
A1
.= (h
* (2
* x));
hence thesis;
end;
theorem ::
DIFF_3:48
(for x holds (f
. x)
= (k
/ (x
^2 ))) & x0
<> x1 & x0
<>
0 & x1
<>
0 implies
[!f, x0, x1!]
= (
- ((k
/ (x0
* x1))
* ((1
/ x0)
+ (1
/ x1))))
proof
assume that
A1: for x holds (f
. x)
= (k
/ (x
^2 )) and
A2: x0
<> x1 & x0
<>
0 & x1
<>
0 ;
A3: (x1
- x0)
<>
0 by
A2;
(f
. x0)
= (k
/ (x0
^2 )) & (f
. x1)
= (k
/ (x1
^2 )) by
A1;
then
[!f, x0, x1!]
= ((k
* ((1
/ (x0
^2 ))
- (1
/ (x1
^2 ))))
/ (x0
- x1))
.= ((k
* (((1
* (x1
^2 ))
- (1
* (x0
^2 )))
/ ((x0
^2 )
* (x1
^2 ))))
/ (x0
- x1)) by
A2,
XCMPLX_1: 130
.= (k
* ((((x1
- x0)
* (x1
+ x0))
/ ((x0
^2 )
* (x1
^2 )))
/ (
- (x1
- x0))))
.= (k
* (
- ((((x1
- x0)
* (x1
+ x0))
/ ((x0
^2 )
* (x1
^2 )))
/ (x1
- x0)))) by
XCMPLX_1: 188
.= (
- (k
* ((((x1
- x0)
* (x1
+ x0))
/ (x1
- x0))
/ ((x0
^2 )
* (x1
^2 )))))
.= (
- (k
* ((x1
+ x0)
/ (((x0
* x0)
* x1)
* x1)))) by
A3,
XCMPLX_1: 89
.= (
- (k
* ((x1
/ (x1
* ((x0
* x0)
* x1)))
+ (x0
/ (x0
* ((x0
* x1)
* x1))))))
.= (
- (k
* (((1
/ ((x0
* x0)
* x1))
* (x1
/ x1))
+ (x0
/ (x0
* ((x0
* x1)
* x1)))))) by
XCMPLX_1: 103
.= (
- (k
* (((1
/ ((x0
* x0)
* x1))
* (x1
/ x1))
+ ((1
/ ((x0
* x1)
* x1))
* (x0
/ x0))))) by
XCMPLX_1: 103
.= (
- (k
* (((1
/ ((x0
* x0)
* x1))
* 1)
+ ((1
/ ((x0
* x1)
* x1))
* (x0
/ x0))))) by
A2,
XCMPLX_1: 60
.= (
- (k
* ((1
/ (x0
* (x0
* x1)))
+ (1
/ ((x0
* x1)
* x1))))) by
A2,
XCMPLX_1: 60
.= (
- (k
* (((1
/ x0)
* (1
/ (x0
* x1)))
+ (1
/ ((x0
* x1)
* x1))))) by
XCMPLX_1: 102
.= (
- (k
* (((1
/ x0)
* (1
/ (x0
* x1)))
+ ((1
/ (x0
* x1))
* (1
/ x1))))) by
XCMPLX_1: 102
.= (
- ((k
/ (x0
* x1))
* ((1
/ x0)
+ (1
/ x1))));
hence thesis;
end;
theorem ::
DIFF_3:49
(for x holds (f
. x)
= (k
/ (x
^2 ))) & x0
<>
0 & x1
<>
0 & x2
<>
0 & (x0,x1,x2)
are_mutually_distinct implies
[!f, x0, x1, x2!]
= ((k
/ ((x0
* x1)
* x2))
* (((1
/ x0)
+ (1
/ x1))
+ (1
/ x2)))
proof
assume that
A1: for x holds (f
. x)
= (k
/ (x
^2 )) and
A2: x0
<>
0 & x1
<>
0 & x2
<>
0 and
A3: (x0,x1,x2)
are_mutually_distinct ;
A4: (f
. x0)
= (k
/ (x0
^2 )) & (f
. x1)
= (k
/ (x1
^2 )) & (f
. x2)
= (k
/ (x2
^2 )) by
A1;
A5: (x1
- x0)
<>
0 & (x2
- x1)
<>
0 & (x0
- x2)
<>
0 by
A3,
ZFMISC_1:def 5;
[!f, x0, x1, x2!]
= ((((k
* ((1
/ (x0
^2 ))
- (1
/ (x1
^2 ))))
/ (x0
- x1))
- ((k
* ((1
/ (x1
^2 ))
- (1
/ (x2
^2 ))))
/ (x1
- x2)))
/ (x0
- x2)) by
A4
.= ((((k
* (((1
* (x1
^2 ))
- (1
* (x0
^2 )))
/ ((x0
^2 )
* (x1
^2 ))))
/ (x0
- x1))
- ((k
* ((1
/ (x1
^2 ))
- (1
/ (x2
^2 ))))
/ (x1
- x2)))
/ (x0
- x2)) by
A2,
XCMPLX_1: 130
.= ((((k
* (((1
* (x1
^2 ))
- (1
* (x0
^2 )))
/ ((x0
^2 )
* (x1
^2 ))))
/ (x0
- x1))
- ((k
* (((1
* (x2
^2 ))
- (1
* (x1
^2 )))
/ ((x1
^2 )
* (x2
^2 ))))
/ (x1
- x2)))
/ (x0
- x2)) by
A2,
XCMPLX_1: 130
.= (((k
* ((((x1
- x0)
* (x1
+ x0))
/ ((x0
^2 )
* (x1
^2 )))
/ (
- (x1
- x0))))
- (k
* ((((x2
- x1)
* (x2
+ x1))
/ ((x1
^2 )
* (x2
^2 )))
/ (
- (x2
- x1)))))
/ (x0
- x2))
.= (((k
* (
- ((((x1
- x0)
* (x1
+ x0))
/ ((x0
^2 )
* (x1
^2 )))
/ (x1
- x0))))
- (k
* ((((x2
- x1)
* (x2
+ x1))
/ ((x1
^2 )
* (x2
^2 )))
/ (
- (x2
- x1)))))
/ (x0
- x2)) by
XCMPLX_1: 188
.= (((
- (k
* ((((x1
- x0)
* (x1
+ x0))
/ ((x0
^2 )
* (x1
^2 )))
/ (x1
- x0))))
- (k
* (
- ((((x2
- x1)
* (x2
+ x1))
/ ((x1
^2 )
* (x2
^2 )))
/ (x2
- x1)))))
/ (x0
- x2)) by
XCMPLX_1: 188
.= (((
- (k
* ((((x1
- x0)
* (x1
+ x0))
/ (x1
- x0))
/ ((x0
^2 )
* (x1
^2 )))))
+ (k
* ((((x2
- x1)
* (x2
+ x1))
/ (x2
- x1))
/ ((x1
^2 )
* (x2
^2 )))))
/ (x0
- x2))
.= (((
- (k
* ((x1
+ x0)
/ ((x0
^2 )
* (x1
^2 )))))
+ (k
* ((((x2
- x1)
* (x2
+ x1))
/ (x2
- x1))
/ ((x1
^2 )
* (x2
^2 )))))
/ (x0
- x2)) by
A5,
XCMPLX_1: 89
.= (((
- (k
* ((x1
/ (((x0
* x0)
* x1)
* x1))
+ (x0
/ (((x0
* x0)
* x1)
* x1)))))
+ (k
* ((x2
+ x1)
/ (((x1
* x1)
* x2)
* x2))))
/ (x0
- x2)) by
A5,
XCMPLX_1: 89
.= (((
- (k
* (((1
/ ((x0
* x0)
* x1))
* (x1
/ x1))
+ (x0
/ (x0
* ((x0
* x1)
* x1))))))
+ (k
* ((x2
/ (x2
* ((x1
* x1)
* x2)))
+ (x1
/ (x1
* ((x1
* x2)
* x2))))))
/ (x0
- x2)) by
XCMPLX_1: 103
.= (((
- (k
* (((1
/ ((x0
* x0)
* x1))
* (x1
/ x1))
+ (x0
/ (x0
* ((x0
* x1)
* x1))))))
+ (k
* (((1
/ ((x1
* x1)
* x2))
* (x2
/ x2))
+ (x1
/ (x1
* ((x1
* x2)
* x2))))))
/ (x0
- x2)) by
XCMPLX_1: 103
.= (((
- (k
* (((1
/ ((x0
* x0)
* x1))
* (x1
/ x1))
+ ((1
/ ((x0
* x1)
* x1))
* (x0
/ x0)))))
+ (k
* (((1
/ ((x1
* x1)
* x2))
* (x2
/ x2))
+ (x1
/ (x1
* ((x1
* x2)
* x2))))))
/ (x0
- x2)) by
XCMPLX_1: 103
.= (((
- (k
* (((1
/ ((x0
* x0)
* x1))
* (x1
/ x1))
+ ((1
/ ((x0
* x1)
* x1))
* (x0
/ x0)))))
+ (k
* (((1
/ ((x1
* x1)
* x2))
* (x2
/ x2))
+ ((1
/ ((x1
* x2)
* x2))
* (x1
/ x1)))))
/ (x0
- x2)) by
XCMPLX_1: 103
.= (((
- (k
* (((1
/ ((x0
* x0)
* x1))
* 1)
+ ((1
/ ((x0
* x1)
* x1))
* (x0
/ x0)))))
+ (k
* (((1
/ ((x1
* x1)
* x2))
* (x2
/ x2))
+ ((1
/ ((x1
* x2)
* x2))
* (x1
/ x1)))))
/ (x0
- x2)) by
A2,
XCMPLX_1: 60
.= (((
- (k
* (((1
/ ((x0
* x0)
* x1))
* 1)
+ ((1
/ ((x0
* x1)
* x1))
* (x0
/ x0)))))
+ (k
* (((1
/ ((x1
* x1)
* x2))
* 1)
+ ((1
/ ((x1
* x2)
* x2))
* (x1
/ x1)))))
/ (x0
- x2)) by
A2,
XCMPLX_1: 60
.= (((
- (k
* (((1
/ ((x0
* x0)
* x1))
* 1)
+ ((1
/ ((x0
* x1)
* x1))
* 1))))
+ (k
* (((1
/ ((x1
* x1)
* x2))
* 1)
+ ((1
/ ((x1
* x2)
* x2))
* (x1
/ x1)))))
/ (x0
- x2)) by
A2,
XCMPLX_1: 60
.= (((
- (k
* ((1
/ (x0
* (x0
* x1)))
+ (1
/ ((x0
* x1)
* x1)))))
+ (k
* ((1
/ (x1
* (x1
* x2)))
+ (1
/ ((x1
* x2)
* x2)))))
/ (x0
- x2)) by
A2,
XCMPLX_1: 60
.= (((
- (k
* (((1
/ x0)
* (1
/ (x0
* x1)))
+ (1
/ ((x0
* x1)
* x1)))))
+ (k
* ((1
/ (x1
* (x1
* x2)))
+ (1
/ ((x1
* x2)
* x2)))))
/ (x0
- x2)) by
XCMPLX_1: 102
.= (((
- (k
* (((1
/ x0)
* (1
/ (x0
* x1)))
+ (1
/ ((x0
* x1)
* x1)))))
+ (k
* (((1
/ x1)
* (1
/ (x1
* x2)))
+ (1
/ ((x1
* x2)
* x2)))))
/ (x0
- x2)) by
XCMPLX_1: 102
.= (((
- (k
* (((1
/ x0)
* (1
/ (x0
* x1)))
+ ((1
/ (x0
* x1))
* (1
/ x1)))))
+ (k
* (((1
/ x1)
* (1
/ (x1
* x2)))
+ (1
/ ((x1
* x2)
* x2)))))
/ (x0
- x2)) by
XCMPLX_1: 102
.= (((
- ((k
* (1
/ (x0
* x1)))
* ((1
/ x0)
+ (1
/ x1))))
+ (k
* (((1
/ x1)
* (1
/ (x1
* x2)))
+ ((1
/ (x1
* x2))
* (1
/ x2)))))
/ (x0
- x2)) by
XCMPLX_1: 102
.= (k
* ((((1
/ (x1
* x2))
/ (x0
- x2))
* ((1
/ x1)
+ (1
/ x2)))
- (((1
/ (x0
* x1))
/ (x0
- x2))
* ((1
/ x0)
+ (1
/ x1)))))
.= (k
* (((1
/ ((x1
* x2)
* (x0
- x2)))
* ((1
/ x1)
+ (1
/ x2)))
- (((1
/ (x0
* x1))
/ (x0
- x2))
* ((1
/ x0)
+ (1
/ x1))))) by
XCMPLX_1: 78
.= (k
* (((1
/ ((x1
* x2)
* (x0
- x2)))
* ((1
/ x1)
+ (1
/ x2)))
- ((1
/ ((x0
* x1)
* (x0
- x2)))
* ((1
/ x0)
+ (1
/ x1))))) by
XCMPLX_1: 78
.= (k
* (((1
/ ((x1
* x2)
* (x0
- x2)))
* (((1
* x2)
+ (1
* x1))
/ (x1
* x2)))
- ((1
/ ((x0
* x1)
* (x0
- x2)))
* ((1
/ x0)
+ (1
/ x1))))) by
A2,
XCMPLX_1: 116
.= (k
* (((1
/ ((x1
* x2)
* (x0
- x2)))
* (((1
* x2)
+ (1
* x1))
/ (x1
* x2)))
- ((1
/ ((x0
* x1)
* (x0
- x2)))
* (((1
* x1)
+ (1
* x0))
/ (x0
* x1))))) by
A2,
XCMPLX_1: 116
.= (k
* (((1
/ ((x1
* x2)
* (x0
- x2)))
/ ((x1
* x2)
/ (x2
+ x1)))
- ((1
/ ((x0
* x1)
* (x0
- x2)))
* ((x1
+ x0)
/ (x0
* x1))))) by
XCMPLX_1: 79
.= (k
* (((1
/ ((x1
* x2)
* (x0
- x2)))
/ ((x1
* x2)
/ (x2
+ x1)))
- ((1
/ ((x0
* x1)
* (x0
- x2)))
/ ((x0
* x1)
/ (x1
+ x0))))) by
XCMPLX_1: 79
.= (k
* ((((1
/ ((x1
* x2)
* (x0
- x2)))
/ (x1
* x2))
* (x2
+ x1))
- ((1
/ ((x0
* x1)
* (x0
- x2)))
/ ((x0
* x1)
/ (x1
+ x0))))) by
XCMPLX_1: 82
.= (k
* ((((1
/ ((x1
* x2)
* (x0
- x2)))
/ (x1
* x2))
* (x2
+ x1))
- (((1
/ ((x0
* x1)
* (x0
- x2)))
/ (x0
* x1))
* (x1
+ x0)))) by
XCMPLX_1: 82
.= (k
* ((((x2
+ x1)
/ ((x1
* x2)
* (x0
- x2)))
/ (x1
* x2))
- (((x1
+ x0)
/ ((x0
* x1)
* (x0
- x2)))
/ (x0
* x1))))
.= (k
* (((x2
+ x1)
/ (((x1
* x2)
* (x0
- x2))
* (x1
* x2)))
- (((x1
+ x0)
/ ((x0
* x1)
* (x0
- x2)))
/ (x0
* x1)))) by
XCMPLX_1: 78
.= (k
* (((x2
+ x1)
/ (((x1
* x2)
* (x0
- x2))
* (x1
* x2)))
- ((x1
+ x0)
/ (((x0
* x1)
* (x0
- x2))
* (x0
* x1))))) by
XCMPLX_1: 78
.= (k
* (((x2
+ x1)
/ (((x1
^2 )
* (x0
- x2))
* (x2
^2 )))
- ((x1
+ x0)
/ (((x1
^2 )
* (x0
- x2))
* (x0
^2 )))))
.= (k
* ((((x2
+ x1)
/ ((x1
^2 )
* (x0
- x2)))
/ (x2
^2 ))
- ((x1
+ x0)
/ (((x1
^2 )
* (x0
- x2))
* (x0
^2 ))))) by
XCMPLX_1: 78
.= (k
* (((1
/ ((x1
^2 )
* (x0
- x2)))
* ((x2
+ x1)
/ (x2
^2 )))
- (((x1
+ x0)
/ ((x1
^2 )
* (x0
- x2)))
/ (x0
^2 )))) by
XCMPLX_1: 78
.= (k
* ((1
/ ((x1
^2 )
* (x0
- x2)))
* (((x2
+ x1)
/ (x2
^2 ))
- ((x1
+ x0)
/ (x0
^2 )))))
.= (k
* ((1
/ ((x1
^2 )
* (x0
- x2)))
* ((((x2
+ x1)
* (x0
^2 ))
- ((x1
+ x0)
* (x2
^2 )))
/ ((x2
^2 )
* (x0
^2 ))))) by
A2,
XCMPLX_1: 130
.= (k
* ((((1
* (x0
- x2))
/ ((x1
^2 )
* (x0
- x2)))
* ((x1
* (x0
+ x2))
+ (x0
* x2)))
/ ((x2
^2 )
* (x0
^2 ))))
.= (k
* (((1
/ (x1
^2 ))
* (((x1
* x0)
+ (x1
* x2))
+ (x0
* x2)))
/ ((x2
^2 )
* (x0
^2 )))) by
A5,
XCMPLX_1: 91
.= (k
* (((((x1
* x0)
+ (x1
* x2))
+ (x0
* x2))
/ (x1
^2 ))
/ ((x2
^2 )
* (x0
^2 ))))
.= (k
* ((((x1
* x0)
+ (x1
* x2))
+ (x0
* x2))
/ ((x1
^2 )
* ((x2
^2 )
* (x0
^2 ))))) by
XCMPLX_1: 78
.= (k
* ((((1
* (x1
* x0))
/ (((x1
* (x2
^2 ))
* x0)
* (x1
* x0)))
+ ((1
* (x1
* x2))
/ (((x1
* x2)
* (x0
^2 ))
* (x1
* x2))))
+ ((1
* (x0
* x2))
/ ((((x1
^2 )
* x2)
* x0)
* (x0
* x2)))))
.= (k
* (((1
/ ((x1
* (x2
^2 ))
* x0))
+ ((1
* (x1
* x2))
/ (((x1
* x2)
* (x0
^2 ))
* (x1
* x2))))
+ ((1
* (x0
* x2))
/ ((((x1
^2 )
* x2)
* x0)
* (x0
* x2))))) by
A2,
XCMPLX_1: 91
.= (k
* (((1
/ ((x1
* (x2
^2 ))
* x0))
+ (1
/ ((x1
* x2)
* (x0
^2 ))))
+ ((1
* (x0
* x2))
/ ((((x1
^2 )
* x2)
* x0)
* (x0
* x2))))) by
A2,
XCMPLX_1: 91
.= (k
* (((1
/ (((x1
* x2)
* x0)
* x2))
+ (1
/ (((x1
* x2)
* x0)
* x0)))
+ (1
/ (((x1
* x2)
* x0)
* x1)))) by
A2,
XCMPLX_1: 91
.= (k
* ((((1
/ ((x1
* x2)
* x0))
* (1
/ x2))
+ (1
/ (((x1
* x2)
* x0)
* x0)))
+ (1
/ (((x1
* x2)
* x0)
* x1)))) by
XCMPLX_1: 102
.= (k
* ((((1
/ ((x1
* x2)
* x0))
* (1
/ x2))
+ ((1
/ ((x1
* x2)
* x0))
* (1
/ x0)))
+ (1
/ (((x1
* x2)
* x0)
* x1)))) by
XCMPLX_1: 102
.= (k
* ((((1
/ ((x1
* x2)
* x0))
* (1
/ x2))
+ ((1
/ ((x1
* x2)
* x0))
* (1
/ x0)))
+ ((1
/ ((x1
* x2)
* x0))
* (1
/ x1)))) by
XCMPLX_1: 102
.= ((k
/ ((x0
* x1)
* x2))
* (((1
/ x0)
+ (1
/ x1))
+ (1
/ x2)));
hence thesis;
end;
theorem ::
DIFF_3:50
(for x holds (f
. x)
= (k
/ (x
^2 ))) & x
<>
0 & (x
+ h)
<>
0 implies ((
fD (f,h))
. x)
= ((((
- k)
* h)
* ((2
* x)
+ h))
/ (((x
^2 )
+ (h
* x))
^2 ))
proof
assume that
A1: for x holds (f
. x)
= (k
/ (x
^2 )) and
A2: x
<>
0 & (x
+ h)
<>
0 ;
((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x)) by
DIFF_1: 3
.= ((k
/ ((x
+ h)
^2 ))
- (f
. x)) by
A1
.= ((k
/ ((x
+ h)
^2 ))
- (k
/ (x
^2 ))) by
A1
.= (((k
* (x
^2 ))
- (k
* ((x
+ h)
^2 )))
/ (((x
+ h)
^2 )
* (x
^2 ))) by
A2,
XCMPLX_1: 130
.= ((((
- k)
* h)
* ((2
* x)
+ h))
/ (((x
^2 )
+ (h
* x))
^2 ));
hence thesis;
end;
theorem ::
DIFF_3:51
(for x holds (f
. x)
= (k
/ (x
^2 ))) & x
<>
0 & (x
- h)
<>
0 implies ((
bD (f,h))
. x)
= ((((
- k)
* h)
* ((2
* x)
- h))
/ (((x
^2 )
- (x
* h))
^2 ))
proof
assume that
A1: for x holds (f
. x)
= (k
/ (x
^2 )) and
A2: x
<>
0 & (x
- h)
<>
0 ;
A3: (f
. (x
- h))
= (k
/ ((x
- h)
^2 )) by
A1;
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= ((k
/ (x
^2 ))
- (k
/ ((x
- h)
^2 ))) by
A1,
A3
.= (((k
* ((x
- h)
^2 ))
- (k
* (x
^2 )))
/ ((x
^2 )
* ((x
- h)
^2 ))) by
A2,
XCMPLX_1: 130
.= ((((
- k)
* h)
* ((2
* x)
- h))
/ (((x
^2 )
- (x
* h))
^2 ));
hence thesis;
end;
theorem ::
DIFF_3:52
(for x holds (f
. x)
= (k
/ (x
^2 ))) & (x
+ (h
/ 2))
<>
0 & (x
- (h
/ 2))
<>
0 implies ((
cD (f,h))
. x)
= ((
- (((2
* h)
* k)
* x))
/ (((x
^2 )
- ((h
/ 2)
^2 ))
^2 ))
proof
assume that
A1: for x holds (f
. x)
= (k
/ (x
^2 )) and
A2: (x
+ (h
/ 2))
<>
0 & (x
- (h
/ 2))
<>
0 ;
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((k
/ ((x
+ (h
/ 2))
^2 ))
- (f
. (x
- (h
/ 2)))) by
A1
.= ((k
/ ((x
+ (h
/ 2))
^2 ))
- (k
/ ((x
- (h
/ 2))
^2 ))) by
A1
.= (((k
* ((x
- (h
/ 2))
^2 ))
- (k
* ((x
+ (h
/ 2))
^2 )))
/ (((x
+ (h
/ 2))
^2 )
* ((x
- (h
/ 2))
^2 ))) by
A2,
XCMPLX_1: 130
.= ((
- (((2
* h)
* k)
* x))
/ (((x
^2 )
- ((h
/ 2)
^2 ))
^2 ));
hence thesis;
end;
theorem ::
DIFF_3:53
[!((
sin
(#)
sin )
(#)
sin ), x0, x1!]
= (((1
/ 2)
* (((3
* (
cos ((x0
+ x1)
/ 2)))
* (
sin ((x0
- x1)
/ 2)))
- ((
cos ((3
* (x0
+ x1))
/ 2))
* (
sin ((3
* (x0
- x1))
/ 2)))))
/ (x0
- x1))
proof
set y = (3
* x0);
set z = (3
* x1);
[!((
sin
(#)
sin )
(#)
sin ), x0, x1!]
= (((((
sin
(#)
sin )
. x0)
* (
sin
. x0))
- (((
sin
(#)
sin )
(#)
sin )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin
. x0)
* (
sin
. x0))
* (
sin
. x0))
- (((
sin
(#)
sin )
(#)
sin )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin
. x0)
* (
sin
. x0))
* (
sin
. x0))
- (((
sin
(#)
sin )
. x1)
* (
sin
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin x0)
* (
sin x0))
* (
sin x0))
- (((
sin x1)
* (
sin x1))
* (
sin x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((1
/ 4)
* ((((
sin ((x0
+ x0)
- x0))
+ (
sin ((x0
+ x0)
- x0)))
+ (
sin ((x0
+ x0)
- x0)))
- (
sin ((x0
+ x0)
+ x0))))
- (((
sin x1)
* (
sin x1))
* (
sin x1)))
/ (x0
- x1)) by
SIN_COS4: 33
.= ((((1
/ 4)
* ((3
* (
sin x0))
- (
sin (3
* x0))))
- ((1
/ 4)
* ((((
sin ((x1
+ x1)
- x1))
+ (
sin ((x1
+ x1)
- x1)))
+ (
sin ((x1
+ x1)
- x1)))
- (
sin ((x1
+ x1)
+ x1)))))
/ (x0
- x1)) by
SIN_COS4: 33
.= (((1
/ 4)
* ((3
* ((
sin x0)
- (
sin x1)))
- ((
sin y)
- (
sin z))))
/ (x0
- x1))
.= (((1
/ 4)
* ((3
* (2
* ((
cos ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2)))))
- ((
sin y)
- (
sin z))))
/ (x0
- x1)) by
SIN_COS4: 16
.= (((1
/ 4)
* ((3
* (2
* ((
cos ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2)))))
- (2
* ((
cos ((y
+ z)
/ 2))
* (
sin ((y
- z)
/ 2))))))
/ (x0
- x1)) by
SIN_COS4: 16
.= (((1
/ 2)
* (((3
* (
cos ((x0
+ x1)
/ 2)))
* (
sin ((x0
- x1)
/ 2)))
- ((
cos ((3
* (x0
+ x1))
/ 2))
* (
sin ((3
* (x0
- x1))
/ 2)))))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_3:54
((
fD (((
sin
(#)
sin )
(#)
sin ),h))
. x)
= ((1
/ 2)
* (((3
* (
cos (((2
* x)
+ h)
/ 2)))
* (
sin (h
/ 2)))
- ((
cos ((3
* ((2
* x)
+ h))
/ 2))
* (
sin ((3
* h)
/ 2)))))
proof
((
fD (((
sin
(#)
sin )
(#)
sin ),h))
. x)
= ((((
sin
(#)
sin )
(#)
sin )
. (x
+ h))
- (((
sin
(#)
sin )
(#)
sin )
. x)) by
DIFF_1: 3
.= ((((
sin
(#)
sin )
. (x
+ h))
* (
sin
. (x
+ h)))
- (((
sin
(#)
sin )
(#)
sin )
. x)) by
VALUED_1: 5
.= ((((
sin
. (x
+ h))
* (
sin
. (x
+ h)))
* (
sin
. (x
+ h)))
- (((
sin
(#)
sin )
(#)
sin )
. x)) by
VALUED_1: 5
.= ((((
sin
. (x
+ h))
* (
sin
. (x
+ h)))
* (
sin
. (x
+ h)))
- (((
sin
(#)
sin )
. x)
* (
sin
. x))) by
VALUED_1: 5
.= ((((
sin (x
+ h))
* (
sin (x
+ h)))
* (
sin (x
+ h)))
- (((
sin x)
* (
sin x))
* (
sin x))) by
VALUED_1: 5
.= (((1
/ 4)
* ((((
sin (((x
+ h)
+ (x
+ h))
- (x
+ h)))
+ (
sin (((x
+ h)
+ (x
+ h))
- (x
+ h))))
+ (
sin (((x
+ h)
+ (x
+ h))
- (x
+ h))))
- (
sin (((x
+ h)
+ (x
+ h))
+ (x
+ h)))))
- (((
sin x)
* (
sin x))
* (
sin x))) by
SIN_COS4: 33
.= (((1
/ 4)
* ((((
sin (x
+ h))
+ (
sin (x
+ h)))
+ (
sin (x
+ h)))
- (
sin (3
* (x
+ h)))))
- ((1
/ 4)
* ((((
sin ((x
+ x)
- x))
+ (
sin ((x
+ x)
- x)))
+ (
sin ((x
+ x)
- x)))
- (
sin ((x
+ x)
+ x))))) by
SIN_COS4: 33
.= ((1
/ 4)
* ((3
* ((
sin (x
+ h))
- (
sin x)))
- ((
sin (3
* (x
+ h)))
- (
sin (3
* x)))))
.= ((1
/ 4)
* ((3
* (2
* ((
cos (((x
+ h)
+ x)
/ 2))
* (
sin (((x
+ h)
- x)
/ 2)))))
- ((
sin (3
* (x
+ h)))
- (
sin (3
* x))))) by
SIN_COS4: 16
.= ((1
/ 4)
* ((3
* (2
* ((
cos (((x
+ h)
+ x)
/ 2))
* (
sin (((x
+ h)
- x)
/ 2)))))
- (2
* ((
cos (((3
* (x
+ h))
+ (3
* x))
/ 2))
* (
sin (((3
* (x
+ h))
- (3
* x))
/ 2)))))) by
SIN_COS4: 16
.= ((1
/ 2)
* (((3
* (
cos (((2
* x)
+ h)
/ 2)))
* (
sin (h
/ 2)))
- ((
cos ((3
* ((2
* x)
+ h))
/ 2))
* (
sin ((3
* h)
/ 2)))));
hence thesis;
end;
theorem ::
DIFF_3:55
((
bD (((
sin
(#)
sin )
(#)
sin ),h))
. x)
= ((1
/ 2)
* (((3
* (
cos (((2
* x)
- h)
/ 2)))
* (
sin (h
/ 2)))
- ((
cos ((3
* ((2
* x)
- h))
/ 2))
* (
sin ((3
* h)
/ 2)))))
proof
((
bD (((
sin
(#)
sin )
(#)
sin ),h))
. x)
= ((((
sin
(#)
sin )
(#)
sin )
. x)
- (((
sin
(#)
sin )
(#)
sin )
. (x
- h))) by
DIFF_1: 4
.= ((((
sin
(#)
sin )
. x)
* (
sin
. x))
- (((
sin
(#)
sin )
(#)
sin )
. (x
- h))) by
VALUED_1: 5
.= ((((
sin
. x)
* (
sin
. x))
* (
sin
. x))
- (((
sin
(#)
sin )
(#)
sin )
. (x
- h))) by
VALUED_1: 5
.= ((((
sin
. x)
* (
sin
. x))
* (
sin
. x))
- (((
sin
(#)
sin )
. (x
- h))
* (
sin
. (x
- h)))) by
VALUED_1: 5
.= ((((
sin x)
* (
sin x))
* (
sin x))
- (((
sin (x
- h))
* (
sin (x
- h)))
* (
sin (x
- h)))) by
VALUED_1: 5
.= (((1
/ 4)
* ((((
sin ((x
+ x)
- x))
+ (
sin ((x
+ x)
- x)))
+ (
sin ((x
+ x)
- x)))
- (
sin ((x
+ x)
+ x))))
- (((
sin (x
- h))
* (
sin (x
- h)))
* (
sin (x
- h)))) by
SIN_COS4: 33
.= (((1
/ 4)
* ((((
sin x)
+ (
sin x))
+ (
sin x))
- (
sin (3
* x))))
- ((1
/ 4)
* ((((
sin (((x
- h)
+ (x
- h))
- (x
- h)))
+ (
sin (((x
- h)
+ (x
- h))
- (x
- h))))
+ (
sin (((x
- h)
+ (x
- h))
- (x
- h))))
- (
sin (((x
- h)
+ (x
- h))
+ (x
- h)))))) by
SIN_COS4: 33
.= ((1
/ 4)
* ((3
* ((
sin x)
- (
sin (x
- h))))
- ((
sin (3
* x))
- (
sin (3
* (x
- h))))))
.= ((1
/ 4)
* ((3
* (2
* ((
cos ((x
+ (x
- h))
/ 2))
* (
sin ((x
- (x
- h))
/ 2)))))
- ((
sin (3
* x))
- (
sin (3
* (x
- h)))))) by
SIN_COS4: 16
.= ((1
/ 4)
* ((3
* (2
* ((
cos (((2
* x)
- h)
/ 2))
* (
sin (h
/ 2)))))
- (2
* ((
cos (((3
* x)
+ (3
* (x
- h)))
/ 2))
* (
sin (((3
* x)
- (3
* (x
- h)))
/ 2)))))) by
SIN_COS4: 16
.= ((1
/ 2)
* (((3
* (
cos (((2
* x)
- h)
/ 2)))
* (
sin (h
/ 2)))
- ((
cos ((3
* ((2
* x)
- h))
/ 2))
* (
sin ((3
* h)
/ 2)))));
hence thesis;
end;
theorem ::
DIFF_3:56
((
cD (((
sin
(#)
sin )
(#)
sin ),h))
. x)
= ((1
/ 2)
* (((3
* (
cos x))
* (
sin (h
/ 2)))
- ((
cos (3
* x))
* (
sin ((3
* h)
/ 2)))))
proof
((
cD (((
sin
(#)
sin )
(#)
sin ),h))
. x)
= ((((
sin
(#)
sin )
(#)
sin )
. (x
+ (h
/ 2)))
- (((
sin
(#)
sin )
(#)
sin )
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((((
sin
(#)
sin )
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
- (((
sin
(#)
sin )
(#)
sin )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
sin
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
* (
sin
. (x
+ (h
/ 2))))
- (((
sin
(#)
sin )
(#)
sin )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
sin
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
* (
sin
. (x
+ (h
/ 2))))
- (((
sin
(#)
sin )
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
sin (x
+ (h
/ 2)))
* (
sin (x
+ (h
/ 2))))
* (
sin (x
+ (h
/ 2))))
- (((
sin (x
- (h
/ 2)))
* (
sin (x
- (h
/ 2))))
* (
sin (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((1
/ 4)
* ((((
sin (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
- (x
+ (h
/ 2))))
+ (
sin (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
- (x
+ (h
/ 2)))))
+ (
sin (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
- (x
+ (h
/ 2)))))
- (
sin (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
+ (x
+ (h
/ 2))))))
- (((
sin (x
- (h
/ 2)))
* (
sin (x
- (h
/ 2))))
* (
sin (x
- (h
/ 2))))) by
SIN_COS4: 33
.= (((1
/ 4)
* ((((
sin (x
+ (h
/ 2)))
+ (
sin (x
+ (h
/ 2))))
+ (
sin (x
+ (h
/ 2))))
- (
sin (3
* (x
+ (h
/ 2))))))
- ((1
/ 4)
* ((((
sin (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
- (x
- (h
/ 2))))
+ (
sin (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
- (x
- (h
/ 2)))))
+ (
sin (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
- (x
- (h
/ 2)))))
- (
sin (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
+ (x
- (h
/ 2))))))) by
SIN_COS4: 33
.= ((1
/ 4)
* ((3
* ((
sin (x
+ (h
/ 2)))
- (
sin (x
- (h
/ 2)))))
- ((
sin (3
* (x
+ (h
/ 2))))
- (
sin (3
* (x
- (h
/ 2)))))))
.= ((1
/ 4)
* ((3
* (2
* ((
cos (((x
+ (h
/ 2))
+ (x
- (h
/ 2)))
/ 2))
* (
sin (((x
+ (h
/ 2))
- (x
- (h
/ 2)))
/ 2)))))
- ((
sin (3
* (x
+ (h
/ 2))))
- (
sin (3
* (x
- (h
/ 2))))))) by
SIN_COS4: 16
.= ((1
/ 4)
* ((3
* (2
* ((
cos ((2
* x)
/ 2))
* (
sin (h
/ 2)))))
- (2
* ((
cos (((3
* (x
+ (h
/ 2)))
+ (3
* (x
- (h
/ 2))))
/ 2))
* (
sin (((3
* (x
+ (h
/ 2)))
- (3
* (x
- (h
/ 2))))
/ 2)))))) by
SIN_COS4: 16
.= ((1
/ 2)
* (((3
* (
cos x))
* (
sin (h
/ 2)))
- ((
cos (3
* x))
* (
sin ((3
* h)
/ 2)))));
hence thesis;
end;
theorem ::
DIFF_3:57
[!((
cos
(#)
cos )
(#)
cos ), x0, x1!]
= (
- (((1
/ 2)
* (((3
* (
sin ((x0
+ x1)
/ 2)))
* (
sin ((x0
- x1)
/ 2)))
+ ((
sin (((3
* x0)
+ (3
* x1))
/ 2))
* (
sin (((3
* x0)
- (3
* x1))
/ 2)))))
/ (x0
- x1)))
proof
[!((
cos
(#)
cos )
(#)
cos ), x0, x1!]
= (((((
cos
(#)
cos )
. x0)
* (
cos
. x0))
- (((
cos
(#)
cos )
(#)
cos )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cos
. x0)
* (
cos
. x0))
* (
cos
. x0))
- (((
cos
(#)
cos )
(#)
cos )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cos
. x0)
* (
cos
. x0))
* (
cos
. x0))
- (((
cos
(#)
cos )
. x1)
* (
cos
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cos x0)
* (
cos x0))
* (
cos x0))
- (((
cos x1)
* (
cos x1))
* (
cos x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((1
/ 4)
* ((((
cos ((x0
+ x0)
- x0))
+ (
cos ((x0
+ x0)
- x0)))
+ (
cos ((x0
+ x0)
- x0)))
+ (
cos ((x0
+ x0)
+ x0))))
- (((
cos x1)
* (
cos x1))
* (
cos x1)))
/ (x0
- x1)) by
SIN_COS4: 36
.= ((((1
/ 4)
* ((((
cos x0)
+ (
cos x0))
+ (
cos x0))
+ (
cos (3
* x0))))
- ((1
/ 4)
* ((((
cos ((x1
+ x1)
- x1))
+ (
cos ((x1
+ x1)
- x1)))
+ (
cos ((x1
+ x1)
- x1)))
+ (
cos ((x1
+ x1)
+ x1)))))
/ (x0
- x1)) by
SIN_COS4: 36
.= (((1
/ 4)
* ((3
* ((
cos x0)
- (
cos x1)))
+ ((
cos (3
* x0))
- (
cos (3
* x1)))))
/ (x0
- x1))
.= (((1
/ 4)
* ((3
* (
- (2
* ((
sin ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2))))))
+ ((
cos (3
* x0))
- (
cos (3
* x1)))))
/ (x0
- x1)) by
SIN_COS4: 18
.= (((1
/ 4)
* (((3
* (
- 2))
* ((
sin ((x0
+ x1)
/ 2))
* (
sin ((x0
- x1)
/ 2))))
+ (
- (2
* ((
sin (((3
* x0)
+ (3
* x1))
/ 2))
* (
sin (((3
* x0)
- (3
* x1))
/ 2)))))))
/ (x0
- x1)) by
SIN_COS4: 18
.= ((
- ((1
/ 2)
* (((3
* (
sin ((x0
+ x1)
/ 2)))
* (
sin ((x0
- x1)
/ 2)))
+ ((
sin (((3
* x0)
+ (3
* x1))
/ 2))
* (
sin (((3
* x0)
- (3
* x1))
/ 2))))))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_3:58
((
fD (((
cos
(#)
cos )
(#)
cos ),h))
. x)
= (
- ((1
/ 2)
* (((3
* (
sin (((2
* x)
+ h)
/ 2)))
* (
sin (h
/ 2)))
+ ((
sin ((3
* ((2
* x)
+ h))
/ 2))
* (
sin ((3
* h)
/ 2))))))
proof
((
fD (((
cos
(#)
cos )
(#)
cos ),h))
. x)
= ((((
cos
(#)
cos )
(#)
cos )
. (x
+ h))
- (((
cos
(#)
cos )
(#)
cos )
. x)) by
DIFF_1: 3
.= ((((
cos
(#)
cos )
. (x
+ h))
* (
cos
. (x
+ h)))
- (((
cos
(#)
cos )
(#)
cos )
. x)) by
VALUED_1: 5
.= ((((
cos
. (x
+ h))
* (
cos
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
cos
(#)
cos )
(#)
cos )
. x)) by
VALUED_1: 5
.= ((((
cos
. (x
+ h))
* (
cos
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
cos
(#)
cos )
. x)
* (
cos
. x))) by
VALUED_1: 5
.= ((((
cos (x
+ h))
* (
cos (x
+ h)))
* (
cos (x
+ h)))
- (((
cos x)
* (
cos x))
* (
cos x))) by
VALUED_1: 5
.= (((1
/ 4)
* ((((
cos (((x
+ h)
+ (x
+ h))
- (x
+ h)))
+ (
cos (((x
+ h)
+ (x
+ h))
- (x
+ h))))
+ (
cos (((x
+ h)
+ (x
+ h))
- (x
+ h))))
+ (
cos (((x
+ h)
+ (x
+ h))
+ (x
+ h)))))
- (((
cos x)
* (
cos x))
* (
cos x))) by
SIN_COS4: 36
.= (((1
/ 4)
* ((((
cos (x
+ h))
+ (
cos (x
+ h)))
+ (
cos (x
+ h)))
+ (
cos (3
* (x
+ h)))))
- ((1
/ 4)
* ((((
cos ((x
+ x)
- x))
+ (
cos ((x
+ x)
- x)))
+ (
cos ((x
+ x)
- x)))
+ (
cos ((x
+ x)
+ x))))) by
SIN_COS4: 36
.= ((1
/ 4)
* ((3
* ((
cos (x
+ h))
- (
cos x)))
+ ((
cos (3
* (x
+ h)))
- (
cos (3
* x)))))
.= ((1
/ 4)
* ((3
* (
- (2
* ((
sin (((x
+ h)
+ x)
/ 2))
* (
sin (((x
+ h)
- x)
/ 2))))))
+ ((
cos (3
* (x
+ h)))
- (
cos (3
* x))))) by
SIN_COS4: 18
.= ((1
/ 4)
* ((3
* (
- (2
* ((
sin (((2
* x)
+ h)
/ 2))
* (
sin (h
/ 2))))))
+ (
- (2
* ((
sin (((3
* (x
+ h))
+ (3
* x))
/ 2))
* (
sin (((3
* (x
+ h))
- (3
* x))
/ 2))))))) by
SIN_COS4: 18
.= ((
- (1
/ 2))
* (((3
* (
sin (((2
* x)
+ h)
/ 2)))
* (
sin (h
/ 2)))
+ ((
sin ((3
* ((2
* x)
+ h))
/ 2))
* (
sin ((3
* h)
/ 2)))));
hence thesis;
end;
theorem ::
DIFF_3:59
((
bD (((
cos
(#)
cos )
(#)
cos ),h))
. x)
= (
- ((1
/ 2)
* (((3
* (
sin (((2
* x)
- h)
/ 2)))
* (
sin (h
/ 2)))
+ ((
sin ((3
* ((2
* x)
- h))
/ 2))
* (
sin ((3
* h)
/ 2))))))
proof
((
bD (((
cos
(#)
cos )
(#)
cos ),h))
. x)
= ((((
cos
(#)
cos )
(#)
cos )
. x)
- (((
cos
(#)
cos )
(#)
cos )
. (x
- h))) by
DIFF_1: 4
.= ((((
cos
(#)
cos )
. x)
* (
cos
. x))
- (((
cos
(#)
cos )
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= ((((
cos
. x)
* (
cos
. x))
* (
cos
. x))
- (((
cos
(#)
cos )
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= ((((
cos
. x)
* (
cos
. x))
* (
cos
. x))
- (((
cos
(#)
cos )
. (x
- h))
* (
cos
. (x
- h)))) by
VALUED_1: 5
.= ((((
cos x)
* (
cos x))
* (
cos x))
- (((
cos (x
- h))
* (
cos (x
- h)))
* (
cos (x
- h)))) by
VALUED_1: 5
.= (((1
/ 4)
* ((((
cos ((x
+ x)
- x))
+ (
cos ((x
+ x)
- x)))
+ (
cos ((x
+ x)
- x)))
+ (
cos ((x
+ x)
+ x))))
- (((
cos (x
- h))
* (
cos (x
- h)))
* (
cos (x
- h)))) by
SIN_COS4: 36
.= (((1
/ 4)
* ((((
cos x)
+ (
cos x))
+ (
cos x))
+ (
cos (3
* x))))
- ((1
/ 4)
* ((((
cos (((x
- h)
+ (x
- h))
- (x
- h)))
+ (
cos (((x
- h)
+ (x
- h))
- (x
- h))))
+ (
cos (((x
- h)
+ (x
- h))
- (x
- h))))
+ (
cos (((x
- h)
+ (x
- h))
+ (x
- h)))))) by
SIN_COS4: 36
.= ((1
/ 4)
* ((3
* ((
cos x)
- (
cos (x
- h))))
+ ((
cos (3
* x))
- (
cos (3
* (x
- h))))))
.= ((1
/ 4)
* ((3
* (
- (2
* ((
sin ((x
+ (x
- h))
/ 2))
* (
sin ((x
- (x
- h))
/ 2))))))
+ ((
cos (3
* x))
- (
cos (3
* (x
- h)))))) by
SIN_COS4: 18
.= ((1
/ 4)
* ((3
* (
- (2
* ((
sin (((2
* x)
- h)
/ 2))
* (
sin (h
/ 2))))))
+ (
- (2
* ((
sin (((3
* x)
+ (3
* (x
- h)))
/ 2))
* (
sin (((3
* x)
- (3
* (x
- h)))
/ 2))))))) by
SIN_COS4: 18
.= ((
- (1
/ 2))
* ((3
* ((
sin (((2
* x)
- h)
/ 2))
* (
sin (h
/ 2))))
+ ((
sin ((3
* ((2
* x)
- h))
/ 2))
* (
sin ((3
* h)
/ 2)))));
hence thesis;
end;
theorem ::
DIFF_3:60
((
cD (((
cos
(#)
cos )
(#)
cos ),h))
. x)
= (
- ((1
/ 2)
* (((3
* (
sin x))
* (
sin (h
/ 2)))
+ ((
sin (3
* x))
* (
sin ((3
* h)
/ 2))))))
proof
((
cD (((
cos
(#)
cos )
(#)
cos ),h))
. x)
= ((((
cos
(#)
cos )
(#)
cos )
. (x
+ (h
/ 2)))
- (((
cos
(#)
cos )
(#)
cos )
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((((
cos
(#)
cos )
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
- (((
cos
(#)
cos )
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
cos
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
cos
(#)
cos )
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
cos
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
cos
(#)
cos )
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
cos (x
+ (h
/ 2)))
* (
cos (x
+ (h
/ 2))))
* (
cos (x
+ (h
/ 2))))
- (((
cos (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((1
/ 4)
* ((((
cos (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
- (x
+ (h
/ 2))))
+ (
cos (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
- (x
+ (h
/ 2)))))
+ (
cos (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
- (x
+ (h
/ 2)))))
+ (
cos (((x
+ (h
/ 2))
+ (x
+ (h
/ 2)))
+ (x
+ (h
/ 2))))))
- (((
cos (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2))))) by
SIN_COS4: 36
.= (((1
/ 4)
* ((((
cos (x
+ (h
/ 2)))
+ (
cos (x
+ (h
/ 2))))
+ (
cos (x
+ (h
/ 2))))
+ (
cos (3
* (x
+ (h
/ 2))))))
- ((1
/ 4)
* ((((
cos (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
- (x
- (h
/ 2))))
+ (
cos (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
- (x
- (h
/ 2)))))
+ (
cos (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
- (x
- (h
/ 2)))))
+ (
cos (((x
- (h
/ 2))
+ (x
- (h
/ 2)))
+ (x
- (h
/ 2))))))) by
SIN_COS4: 36
.= ((1
/ 4)
* ((3
* ((
cos (x
+ (h
/ 2)))
- (
cos (x
- (h
/ 2)))))
+ ((
cos (3
* (x
+ (h
/ 2))))
- (
cos (3
* (x
- (h
/ 2)))))))
.= ((1
/ 4)
* ((3
* (
- (2
* ((
sin (((x
+ (h
/ 2))
+ (x
- (h
/ 2)))
/ 2))
* (
sin (((x
+ (h
/ 2))
- (x
- (h
/ 2)))
/ 2))))))
+ ((
cos (3
* (x
+ (h
/ 2))))
- (
cos (3
* (x
- (h
/ 2))))))) by
SIN_COS4: 18
.= ((1
/ 4)
* ((3
* (
- (2
* ((
sin ((2
* x)
/ 2))
* (
sin (h
/ 2))))))
+ (
- (2
* ((
sin (((3
* (x
+ (h
/ 2)))
+ (3
* (x
- (h
/ 2))))
/ 2))
* (
sin (((3
* (x
+ (h
/ 2)))
- (3
* (x
- (h
/ 2))))
/ 2))))))) by
SIN_COS4: 18
.= (
- ((1
/ 2)
* ((3
* ((
sin x)
* (
sin (h
/ 2))))
+ ((
sin (3
* x))
* (
sin ((3
* h)
/ 2))))));
hence thesis;
end;
theorem ::
DIFF_3:61
(for x holds (f
. x)
= (1
/ (
sin x))) & (
sin x0)
<>
0 & (
sin x1)
<>
0 implies
[!f, x0, x1!]
= (
- (((2
* ((
sin x1)
- (
sin x0)))
/ ((
cos (x0
+ x1))
- (
cos (x0
- x1))))
/ (x0
- x1)))
proof
assume that
A1: for x holds (f
. x)
= (1
/ (
sin x)) and
A2: (
sin x0)
<>
0 & (
sin x1)
<>
0 ;
(f
. x0)
= (1
/ (
sin x0)) & (f
. x1)
= (1
/ (
sin x1)) by
A1;
then
[!f, x0, x1!]
= ((((1
* (
sin x1))
- (1
* (
sin x0)))
/ ((
sin x0)
* (
sin x1)))
/ (x0
- x1)) by
A2,
XCMPLX_1: 130
.= ((((
sin x1)
- (
sin x0))
/ (
- ((1
/ 2)
* ((
cos (x0
+ x1))
- (
cos (x0
- x1))))))
/ (x0
- x1)) by
SIN_COS4: 29
.= ((((
sin x1)
- (
sin x0))
/ ((
- (1
/ 2))
* ((
cos (x0
+ x1))
- (
cos (x0
- x1)))))
/ (x0
- x1))
.= (((((
sin x1)
- (
sin x0))
/ (
- (1
/ 2)))
/ ((
cos (x0
+ x1))
- (
cos (x0
- x1))))
/ (x0
- x1)) by
XCMPLX_1: 78
.= ((((
- 2)
* ((
sin x1)
- (
sin x0)))
/ ((
cos (x0
+ x1))
- (
cos (x0
- x1))))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_3:62
(for x holds (f
. x)
= (1
/ (
sin x))) & (
sin x)
<>
0 & (
sin (x
+ h))
<>
0 implies ((
fD (f,h))
. x)
= (
- ((2
* ((
sin x)
- (
sin (x
+ h))))
/ ((
cos ((2
* x)
+ h))
- (
cos h))))
proof
assume that
A1: for x holds (f
. x)
= (1
/ (
sin x)) and
A2: (
sin x)
<>
0 & (
sin (x
+ h))
<>
0 ;
(f
. (x
+ h))
= (1
/ (
sin (x
+ h))) by
A1;
then ((
fD (f,h))
. x)
= ((1
/ (
sin (x
+ h)))
- (f
. x)) by
DIFF_1: 3
.= ((1
/ (
sin (x
+ h)))
- (1
/ (
sin x))) by
A1
.= (((1
* (
sin x))
- (1
* (
sin (x
+ h))))
/ ((
sin (x
+ h))
* (
sin x))) by
A2,
XCMPLX_1: 130
.= (((
sin x)
- (
sin (x
+ h)))
/ (
- ((1
/ 2)
* ((
cos ((x
+ h)
+ x))
- (
cos ((x
+ h)
- x)))))) by
SIN_COS4: 29
.= (((
sin x)
- (
sin (x
+ h)))
/ ((
- (1
/ 2))
* ((
cos ((x
+ h)
+ x))
- (
cos ((x
+ h)
- x)))))
.= ((((
sin x)
- (
sin (x
+ h)))
/ (
- (1
/ 2)))
/ ((
cos ((2
* x)
+ h))
- (
cos h))) by
XCMPLX_1: 78
.= ((
- 2)
* (((
sin x)
- (
sin (x
+ h)))
/ ((
cos ((2
* x)
+ h))
- (
cos h))));
hence thesis;
end;
theorem ::
DIFF_3:63
(for x holds (f
. x)
= (1
/ (
sin x))) & (
sin x)
<>
0 & (
sin (x
- h))
<>
0 implies ((
bD (f,h))
. x)
= (((
- 2)
* ((
sin (x
- h))
- (
sin x)))
/ ((
cos ((2
* x)
- h))
- (
cos h)))
proof
assume that
A1: for x holds (f
. x)
= (1
/ (
sin x)) and
A2: (
sin x)
<>
0 & (
sin (x
- h))
<>
0 ;
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= ((1
/ (
sin x))
- (f
. (x
- h))) by
A1
.= ((1
/ (
sin x))
- (1
/ (
sin (x
- h)))) by
A1
.= (((1
* (
sin (x
- h)))
- (1
* (
sin x)))
/ ((
sin x)
* (
sin (x
- h)))) by
A2,
XCMPLX_1: 130
.= (((
sin (x
- h))
- (
sin x))
/ (
- ((1
/ 2)
* ((
cos (x
+ (x
- h)))
- (
cos (x
- (x
- h))))))) by
SIN_COS4: 29
.= (((
sin (x
- h))
- (
sin x))
/ ((
- (1
/ 2))
* ((
cos ((2
* x)
- h))
- (
cos h))))
.= ((((
sin (x
- h))
- (
sin x))
/ (
- (1
/ 2)))
/ ((
cos ((2
* x)
- h))
- (
cos h))) by
XCMPLX_1: 78
.= ((
- 2)
* (((
sin (x
- h))
- (
sin x))
/ ((
cos ((2
* x)
- h))
- (
cos h))));
hence thesis;
end;
theorem ::
DIFF_3:64
(for x holds (f
. x)
= (1
/ (
sin x))) & (
sin (x
+ (h
/ 2)))
<>
0 & (
sin (x
- (h
/ 2)))
<>
0 implies ((
cD (f,h))
. x)
= (
- ((2
* ((
sin (x
- (h
/ 2)))
- (
sin (x
+ (h
/ 2)))))
/ ((
cos (2
* x))
- (
cos h))))
proof
assume that
A1: for x holds (f
. x)
= (1
/ (
sin x)) and
A2: (
sin (x
+ (h
/ 2)))
<>
0 & (
sin (x
- (h
/ 2)))
<>
0 ;
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((1
/ (
sin (x
+ (h
/ 2))))
- (f
. (x
- (h
/ 2)))) by
A1
.= ((1
/ (
sin (x
+ (h
/ 2))))
- (1
/ (
sin (x
- (h
/ 2))))) by
A1
.= (((1
* (
sin (x
- (h
/ 2))))
- (1
* (
sin (x
+ (h
/ 2)))))
/ ((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2))))) by
A2,
XCMPLX_1: 130
.= (((
sin (x
- (h
/ 2)))
- (
sin (x
+ (h
/ 2))))
/ (
- ((1
/ 2)
* ((
cos ((x
+ (h
/ 2))
+ (x
- (h
/ 2))))
- (
cos ((x
+ (h
/ 2))
- (x
- (h
/ 2)))))))) by
SIN_COS4: 29
.= (((
sin (x
- (h
/ 2)))
- (
sin (x
+ (h
/ 2))))
/ ((
- (1
/ 2))
* ((
cos (2
* x))
- (
cos h))))
.= ((((
sin (x
- (h
/ 2)))
- (
sin (x
+ (h
/ 2))))
/ (
- (1
/ 2)))
/ ((
cos (2
* x))
- (
cos h))) by
XCMPLX_1: 78
.= ((
- 2)
* (((
sin (x
- (h
/ 2)))
- (
sin (x
+ (h
/ 2))))
/ ((
cos (2
* x))
- (
cos h))));
hence thesis;
end;
theorem ::
DIFF_3:65
(for x holds (f
. x)
= (1
/ (
cos x))) & x0
<> x1 & (
cos x0)
<>
0 & (
cos x1)
<>
0 implies
[!f, x0, x1!]
= (((2
* ((
cos x1)
- (
cos x0)))
/ ((
cos (x0
+ x1))
+ (
cos (x0
- x1))))
/ (x0
- x1))
proof
assume that
A1: for x holds (f
. x)
= (1
/ (
cos x)) and x0
<> x1 and
A2: (
cos x0)
<>
0 & (
cos x1)
<>
0 ;
(f
. x0)
= (1
/ (
cos x0)) & (f
. x1)
= (1
/ (
cos x1)) by
A1;
then
[!f, x0, x1!]
= ((((1
* (
cos x1))
- (1
* (
cos x0)))
/ ((
cos x0)
* (
cos x1)))
/ (x0
- x1)) by
A2,
XCMPLX_1: 130
.= ((((
cos x1)
- (
cos x0))
/ ((1
/ 2)
* ((
cos (x0
+ x1))
+ (
cos (x0
- x1)))))
/ (x0
- x1)) by
SIN_COS4: 32
.= (((((
cos x1)
- (
cos x0))
/ (1
/ 2))
/ ((
cos (x0
+ x1))
+ (
cos (x0
- x1))))
/ (x0
- x1)) by
XCMPLX_1: 78
.= ((2
* (((
cos x1)
- (
cos x0))
/ ((
cos (x0
+ x1))
+ (
cos (x0
- x1)))))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_3:66
(for x holds (f
. x)
= (1
/ (
cos x))) & (
cos x)
<>
0 & (
cos (x
+ h))
<>
0 implies ((
fD (f,h))
. x)
= ((2
* ((
cos x)
- (
cos (x
+ h))))
/ ((
cos ((2
* x)
+ h))
+ (
cos h)))
proof
assume that
A1: for x holds (f
. x)
= (1
/ (
cos x)) and
A2: (
cos x)
<>
0 & (
cos (x
+ h))
<>
0 ;
(f
. (x
+ h))
= (1
/ (
cos (x
+ h))) by
A1;
then ((
fD (f,h))
. x)
= ((1
/ (
cos (x
+ h)))
- (f
. x)) by
DIFF_1: 3
.= ((1
/ (
cos (x
+ h)))
- (1
/ (
cos x))) by
A1
.= (((1
* (
cos x))
- (1
* (
cos (x
+ h))))
/ ((
cos (x
+ h))
* (
cos x))) by
A2,
XCMPLX_1: 130
.= (((
cos x)
- (
cos (x
+ h)))
/ ((1
/ 2)
* ((
cos ((x
+ h)
+ x))
+ (
cos ((x
+ h)
- x))))) by
SIN_COS4: 32
.= ((((
cos x)
- (
cos (x
+ h)))
/ (1
/ 2))
/ ((
cos ((2
* x)
+ h))
+ (
cos h))) by
XCMPLX_1: 78
.= (2
* (((
cos x)
- (
cos (x
+ h)))
/ ((
cos ((2
* x)
+ h))
+ (
cos h))));
hence thesis;
end;
theorem ::
DIFF_3:67
(for x holds (f
. x)
= (1
/ (
cos x))) & (
cos x)
<>
0 & (
cos (x
- h))
<>
0 implies ((
bD (f,h))
. x)
= ((2
* ((
cos (x
- h))
- (
cos x)))
/ ((
cos ((2
* x)
- h))
+ (
cos h)))
proof
assume that
A1: for x holds (f
. x)
= (1
/ (
cos x)) and
A2: (
cos x)
<>
0 & (
cos (x
- h))
<>
0 ;
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= ((1
/ (
cos x))
- (f
. (x
- h))) by
A1
.= ((1
/ (
cos x))
- (1
/ (
cos (x
- h)))) by
A1
.= (((1
* (
cos (x
- h)))
- (1
* (
cos x)))
/ ((
cos x)
* (
cos (x
- h)))) by
A2,
XCMPLX_1: 130
.= (((
cos (x
- h))
- (
cos x))
/ ((1
/ 2)
* ((
cos (x
+ (x
- h)))
+ (
cos (x
- (x
- h)))))) by
SIN_COS4: 32
.= ((((
cos (x
- h))
- (
cos x))
/ (1
/ 2))
/ ((
cos ((2
* x)
- h))
+ (
cos h))) by
XCMPLX_1: 78
.= (2
* (((
cos (x
- h))
- (
cos x))
/ ((
cos ((2
* x)
- h))
+ (
cos h))));
hence thesis;
end;
theorem ::
DIFF_3:68
(for x holds (f
. x)
= (1
/ (
cos x))) & (
cos (x
+ (h
/ 2)))
<>
0 & (
cos (x
- (h
/ 2)))
<>
0 implies ((
cD (f,h))
. x)
= ((2
* ((
cos (x
- (h
/ 2)))
- (
cos (x
+ (h
/ 2)))))
/ ((
cos (2
* x))
+ (
cos h)))
proof
assume that
A1: for x holds (f
. x)
= (1
/ (
cos x)) and
A2: (
cos (x
+ (h
/ 2)))
<>
0 & (
cos (x
- (h
/ 2)))
<>
0 ;
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((1
/ (
cos (x
+ (h
/ 2))))
- (f
. (x
- (h
/ 2)))) by
A1
.= ((1
/ (
cos (x
+ (h
/ 2))))
- (1
/ (
cos (x
- (h
/ 2))))) by
A1
.= (((1
* (
cos (x
- (h
/ 2))))
- (1
* (
cos (x
+ (h
/ 2)))))
/ ((
cos (x
+ (h
/ 2)))
* (
cos (x
- (h
/ 2))))) by
A2,
XCMPLX_1: 130
.= (((
cos (x
- (h
/ 2)))
- (
cos (x
+ (h
/ 2))))
/ ((1
/ 2)
* ((
cos ((x
+ (h
/ 2))
+ (x
- (h
/ 2))))
+ (
cos ((x
+ (h
/ 2))
- (x
- (h
/ 2))))))) by
SIN_COS4: 32
.= ((((
cos (x
- (h
/ 2)))
- (
cos (x
+ (h
/ 2))))
/ (1
/ 2))
/ ((
cos (2
* x))
+ (
cos h))) by
XCMPLX_1: 78
.= (2
* (((
cos (x
- (h
/ 2)))
- (
cos (x
+ (h
/ 2))))
/ ((
cos (2
* x))
+ (
cos h))));
hence thesis;
end;
theorem ::
DIFF_3:69
(for x holds (f
. x)
= (1
/ ((
sin x)
^2 ))) & x0
<> x1 & (
sin x0)
<>
0 & (
sin x1)
<>
0 implies
[!f, x0, x1!]
= (((((16
* (
cos ((x1
+ x0)
/ 2)))
* (
sin ((x1
- x0)
/ 2)))
* (
cos ((x1
- x0)
/ 2)))
* (
sin ((x1
+ x0)
/ 2)))
/ ((((
cos (x0
+ x1))
- (
cos (x0
- x1)))
^2 )
* (x0
- x1)))
proof
assume that
A1: for x holds (f
. x)
= (1
/ ((
sin x)
^2 )) and x0
<> x1 and
A2: (
sin x0)
<>
0 & (
sin x1)
<>
0 ;
(f
. x0)
= (1
/ ((
sin x0)
^2 )) & (f
. x1)
= (1
/ ((
sin x1)
^2 )) by
A1;
then
[!f, x0, x1!]
= ((((1
* ((
sin x1)
^2 ))
- (1
* ((
sin x0)
^2 )))
/ (((
sin x0)
^2 )
* ((
sin x1)
^2 )))
/ (x0
- x1)) by
A2,
XCMPLX_1: 130
.= (((((
sin x1)
^2 )
- ((
sin x0)
^2 ))
/ (((
sin x0)
* (
sin x1))
^2 ))
/ (x0
- x1))
.= (((((
sin x1)
^2 )
- ((
sin x0)
^2 ))
/ ((
- ((1
/ 2)
* ((
cos (x0
+ x1))
- (
cos (x0
- x1)))))
^2 ))
/ (x0
- x1)) by
SIN_COS4: 29
.= (((((
sin x1)
^2 )
- ((
sin x0)
^2 ))
/ ((1
/ 4)
* (((
cos (x0
+ x1))
- (
cos (x0
- x1)))
^2 )))
/ (x0
- x1))
.= ((((((
sin x1)
^2 )
- ((
sin x0)
^2 ))
/ (1
/ 4))
/ (((
cos (x0
+ x1))
- (
cos (x0
- x1)))
^2 ))
/ (x0
- x1)) by
XCMPLX_1: 78
.= (((4
* (((
sin x1)
- (
sin x0))
* ((
sin x1)
+ (
sin x0))))
/ (((
cos (x0
+ x1))
- (
cos (x0
- x1)))
^2 ))
/ (x0
- x1))
.= (((4
* ((2
* ((
cos ((x1
+ x0)
/ 2))
* (
sin ((x1
- x0)
/ 2))))
* ((
sin x1)
+ (
sin x0))))
/ (((
cos (x0
+ x1))
- (
cos (x0
- x1)))
^2 ))
/ (x0
- x1)) by
SIN_COS4: 16
.= (((4
* ((2
* ((
cos ((x1
+ x0)
/ 2))
* (
sin ((x1
- x0)
/ 2))))
* (2
* ((
cos ((x1
- x0)
/ 2))
* (
sin ((x1
+ x0)
/ 2))))))
/ (((
cos (x0
+ x1))
- (
cos (x0
- x1)))
^2 ))
/ (x0
- x1)) by
SIN_COS4: 15
.= (((((16
* (
cos ((x1
+ x0)
/ 2)))
* (
sin ((x1
- x0)
/ 2)))
* (
cos ((x1
- x0)
/ 2)))
* (
sin ((x1
+ x0)
/ 2)))
/ ((((
cos (x0
+ x1))
- (
cos (x0
- x1)))
^2 )
* (x0
- x1))) by
XCMPLX_1: 78;
hence thesis;
end;
theorem ::
DIFF_3:70
(for x holds (f
. x)
= (1
/ ((
sin x)
^2 ))) & (
sin x)
<>
0 & (
sin (x
+ h))
<>
0 implies ((
fD (f,h))
. x)
= (((((16
* (
cos (((2
* x)
+ h)
/ 2)))
* (
sin ((
- h)
/ 2)))
* (
cos ((
- h)
/ 2)))
* (
sin (((2
* x)
+ h)
/ 2)))
/ (((
cos ((2
* x)
+ h))
- (
cos h))
^2 ))
proof
assume that
A1: for x holds (f
. x)
= (1
/ ((
sin x)
^2 )) and
A2: (
sin x)
<>
0 & (
sin (x
+ h))
<>
0 ;
((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x)) by
DIFF_1: 3
.= ((1
/ ((
sin (x
+ h))
^2 ))
- (f
. x)) by
A1
.= ((1
/ ((
sin (x
+ h))
^2 ))
- (1
/ ((
sin x)
^2 ))) by
A1
.= (((1
* ((
sin x)
^2 ))
- (1
* ((
sin (x
+ h))
^2 )))
/ (((
sin (x
+ h))
^2 )
* ((
sin x)
^2 ))) by
A2,
XCMPLX_1: 130
.= ((((
sin x)
^2 )
- ((
sin (x
+ h))
^2 ))
/ (((
sin (x
+ h))
* (
sin x))
^2 ))
.= ((((
sin x)
^2 )
- ((
sin (x
+ h))
^2 ))
/ ((
- ((1
/ 2)
* ((
cos ((x
+ h)
+ x))
- (
cos ((x
+ h)
- x)))))
^2 )) by
SIN_COS4: 29
.= ((((
sin x)
^2 )
- ((
sin (x
+ h))
^2 ))
/ ((1
/ 4)
* (((
cos ((2
* x)
+ h))
- (
cos h))
^2 )))
.= (((((
sin x)
^2 )
- ((
sin (x
+ h))
^2 ))
/ (1
/ 4))
/ (((
cos ((2
* x)
+ h))
- (
cos h))
^2 )) by
XCMPLX_1: 78
.= (4
* ((((
sin x)
- (
sin (x
+ h)))
* ((
sin x)
+ (
sin (x
+ h))))
/ (((
cos ((2
* x)
+ h))
- (
cos h))
^2 )))
.= (4
* (((2
* ((
cos ((x
+ (x
+ h))
/ 2))
* (
sin ((x
- (x
+ h))
/ 2))))
* ((
sin x)
+ (
sin (x
+ h))))
/ (((
cos ((2
* x)
+ h))
- (
cos h))
^2 ))) by
SIN_COS4: 16
.= (4
* (((2
* ((
cos (((2
* x)
+ h)
/ 2))
* (
sin ((
- h)
/ 2))))
* (2
* ((
cos ((
- h)
/ 2))
* (
sin (((2
* x)
+ h)
/ 2)))))
/ (((
cos ((2
* x)
+ h))
- (
cos h))
^2 ))) by
SIN_COS4: 15
.= (((((16
* (
cos (((2
* x)
+ h)
/ 2)))
* (
sin ((
- h)
/ 2)))
* (
cos ((
- h)
/ 2)))
* (
sin (((2
* x)
+ h)
/ 2)))
/ (((
cos ((2
* x)
+ h))
- (
cos h))
^2 ));
hence thesis;
end;
theorem ::
DIFF_3:71
(for x holds (f
. x)
= (1
/ ((
sin x)
^2 ))) & (
sin x)
<>
0 & (
sin (x
- h))
<>
0 implies ((
bD (f,h))
. x)
= (((((16
* (
cos (((2
* x)
- h)
/ 2)))
* (
sin ((
- h)
/ 2)))
* (
cos ((
- h)
/ 2)))
* (
sin (((2
* x)
- h)
/ 2)))
/ (((
cos ((2
* x)
- h))
- (
cos h))
^2 ))
proof
assume that
A1: for x holds (f
. x)
= (1
/ ((
sin x)
^2 )) and
A2: (
sin x)
<>
0 & (
sin (x
- h))
<>
0 ;
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= ((1
/ ((
sin x)
^2 ))
- (f
. (x
- h))) by
A1
.= ((1
/ ((
sin x)
^2 ))
- (1
/ ((
sin (x
- h))
^2 ))) by
A1
.= (((1
* ((
sin (x
- h))
^2 ))
- (1
* ((
sin x)
^2 )))
/ (((
sin x)
^2 )
* ((
sin (x
- h))
^2 ))) by
A2,
XCMPLX_1: 130
.= ((((
sin (x
- h))
^2 )
- ((
sin x)
^2 ))
/ (((
sin x)
* (
sin (x
- h)))
^2 ))
.= ((((
sin (x
- h))
^2 )
- ((
sin x)
^2 ))
/ ((
- ((1
/ 2)
* ((
cos (x
+ (x
- h)))
- (
cos (x
- (x
- h))))))
^2 )) by
SIN_COS4: 29
.= ((((
sin (x
- h))
^2 )
- ((
sin x)
^2 ))
/ ((1
/ 4)
* (((
cos ((2
* x)
- h))
- (
cos h))
^2 )))
.= (((((
sin (x
- h))
^2 )
- ((
sin x)
^2 ))
/ (1
/ 4))
/ (((
cos ((2
* x)
- h))
- (
cos h))
^2 )) by
XCMPLX_1: 78
.= (4
* ((((
sin (x
- h))
- (
sin x))
* ((
sin (x
- h))
+ (
sin x)))
/ (((
cos ((2
* x)
- h))
- (
cos h))
^2 )))
.= (4
* (((2
* ((
cos (((x
- h)
+ x)
/ 2))
* (
sin (((x
- h)
- x)
/ 2))))
* ((
sin (x
- h))
+ (
sin x)))
/ (((
cos ((2
* x)
- h))
- (
cos h))
^2 ))) by
SIN_COS4: 16
.= (4
* (((2
* ((
cos (((2
* x)
- h)
/ 2))
* (
sin ((
- h)
/ 2))))
* (2
* ((
cos ((
- h)
/ 2))
* (
sin (((2
* x)
- h)
/ 2)))))
/ (((
cos ((2
* x)
- h))
- (
cos h))
^2 ))) by
SIN_COS4: 15
.= (((((16
* (
cos (((2
* x)
- h)
/ 2)))
* (
sin ((
- h)
/ 2)))
* (
cos ((
- h)
/ 2)))
* (
sin (((2
* x)
- h)
/ 2)))
/ (((
cos ((2
* x)
- h))
- (
cos h))
^2 ));
hence thesis;
end;
theorem ::
DIFF_3:72
(for x holds (f
. x)
= (1
/ ((
sin x)
^2 ))) & (
sin (x
+ (h
/ 2)))
<>
0 & (
sin (x
- (h
/ 2)))
<>
0 implies ((
cD (f,h))
. x)
= (((((16
* (
cos x))
* (
sin ((
- h)
/ 2)))
* (
cos ((
- h)
/ 2)))
* (
sin x))
/ (((
cos (2
* x))
- (
cos h))
^2 ))
proof
assume that
A1: for x holds (f
. x)
= (1
/ ((
sin x)
^2 )) and
A2: (
sin (x
+ (h
/ 2)))
<>
0 & (
sin (x
- (h
/ 2)))
<>
0 ;
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((1
/ ((
sin (x
+ (h
/ 2)))
^2 ))
- (f
. (x
- (h
/ 2)))) by
A1
.= ((1
/ ((
sin (x
+ (h
/ 2)))
^2 ))
- (1
/ ((
sin (x
- (h
/ 2)))
^2 ))) by
A1
.= (((1
* ((
sin (x
- (h
/ 2)))
^2 ))
- (1
* ((
sin (x
+ (h
/ 2)))
^2 )))
/ (((
sin (x
+ (h
/ 2)))
^2 )
* ((
sin (x
- (h
/ 2)))
^2 ))) by
A2,
XCMPLX_1: 130
.= ((((
sin (x
- (h
/ 2)))
^2 )
- ((
sin (x
+ (h
/ 2)))
^2 ))
/ (((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2))))
^2 ))
.= ((((
sin (x
- (h
/ 2)))
^2 )
- ((
sin (x
+ (h
/ 2)))
^2 ))
/ ((
- ((1
/ 2)
* ((
cos ((x
+ (h
/ 2))
+ (x
- (h
/ 2))))
- (
cos ((x
+ (h
/ 2))
- (x
- (h
/ 2)))))))
^2 )) by
SIN_COS4: 29
.= ((((
sin (x
- (h
/ 2)))
^2 )
- ((
sin (x
+ (h
/ 2)))
^2 ))
/ ((1
/ 4)
* (((
cos (2
* x))
- (
cos h))
^2 )))
.= (((((
sin (x
- (h
/ 2)))
^2 )
- ((
sin (x
+ (h
/ 2)))
^2 ))
/ (1
/ 4))
/ (((
cos (2
* x))
- (
cos h))
^2 )) by
XCMPLX_1: 78
.= (4
* ((((
sin (x
- (h
/ 2)))
- (
sin (x
+ (h
/ 2))))
* ((
sin (x
- (h
/ 2)))
+ (
sin (x
+ (h
/ 2)))))
/ (((
cos (2
* x))
- (
cos h))
^2 )))
.= (4
* (((2
* ((
cos (((x
- (h
/ 2))
+ (x
+ (h
/ 2)))
/ 2))
* (
sin (((x
- (h
/ 2))
- (x
+ (h
/ 2)))
/ 2))))
* ((
sin (x
- (h
/ 2)))
+ (
sin (x
+ (h
/ 2)))))
/ (((
cos (2
* x))
- (
cos h))
^2 ))) by
SIN_COS4: 16
.= (4
* (((2
* ((
cos ((2
* x)
/ 2))
* (
sin ((
- h)
/ 2))))
* (2
* ((
cos ((
- h)
/ 2))
* (
sin ((2
* x)
/ 2)))))
/ (((
cos (2
* x))
- (
cos h))
^2 ))) by
SIN_COS4: 15
.= (((((16
* (
cos x))
* (
sin ((
- h)
/ 2)))
* (
cos ((
- h)
/ 2)))
* (
sin x))
/ (((
cos (2
* x))
- (
cos h))
^2 ));
hence thesis;
end;
theorem ::
DIFF_3:73
(for x holds (f
. x)
= (1
/ ((
cos x)
^2 ))) & x0
<> x1 & (
cos x0)
<>
0 & (
cos x1)
<>
0 implies
[!f, x0, x1!]
= (((((((
- 16)
* (
sin ((x1
+ x0)
/ 2)))
* (
sin ((x1
- x0)
/ 2)))
* (
cos ((x1
+ x0)
/ 2)))
* (
cos ((x1
- x0)
/ 2)))
/ (((
cos (x0
+ x1))
+ (
cos (x0
- x1)))
^2 ))
/ (x0
- x1))
proof
assume that
A1: for x holds (f
. x)
= (1
/ ((
cos x)
^2 )) and x0
<> x1 and
A2: (
cos x0)
<>
0 & (
cos x1)
<>
0 ;
(f
. x0)
= (1
/ ((
cos x0)
^2 )) & (f
. x1)
= (1
/ ((
cos x1)
^2 )) by
A1;
then
[!f, x0, x1!]
= ((((1
* ((
cos x1)
^2 ))
- (1
* ((
cos x0)
^2 )))
/ (((
cos x0)
^2 )
* ((
cos x1)
^2 )))
/ (x0
- x1)) by
A2,
XCMPLX_1: 130
.= (((((
cos x1)
^2 )
- ((
cos x0)
^2 ))
/ (((
cos x0)
* (
cos x1))
^2 ))
/ (x0
- x1))
.= (((((
cos x1)
^2 )
- ((
cos x0)
^2 ))
/ (((1
/ 2)
* ((
cos (x0
+ x1))
+ (
cos (x0
- x1))))
^2 ))
/ (x0
- x1)) by
SIN_COS4: 32
.= (((((
cos x1)
^2 )
- ((
cos x0)
^2 ))
/ ((1
/ 4)
* (((
cos (x0
+ x1))
+ (
cos (x0
- x1)))
^2 )))
/ (x0
- x1))
.= ((((((
cos x1)
^2 )
- ((
cos x0)
^2 ))
/ (1
/ 4))
/ (((
cos (x0
+ x1))
+ (
cos (x0
- x1)))
^2 ))
/ (x0
- x1)) by
XCMPLX_1: 78
.= (((4
* (((
cos x1)
- (
cos x0))
* ((
cos x1)
+ (
cos x0))))
/ (((
cos (x0
+ x1))
+ (
cos (x0
- x1)))
^2 ))
/ (x0
- x1))
.= (((4
* ((
- (2
* ((
sin ((x1
+ x0)
/ 2))
* (
sin ((x1
- x0)
/ 2)))))
* ((
cos x1)
+ (
cos x0))))
/ (((
cos (x0
+ x1))
+ (
cos (x0
- x1)))
^2 ))
/ (x0
- x1)) by
SIN_COS4: 18
.= (((4
* ((
- (2
* ((
sin ((x1
+ x0)
/ 2))
* (
sin ((x1
- x0)
/ 2)))))
* (2
* ((
cos ((x1
+ x0)
/ 2))
* (
cos ((x1
- x0)
/ 2))))))
/ (((
cos (x0
+ x1))
+ (
cos (x0
- x1)))
^2 ))
/ (x0
- x1)) by
SIN_COS4: 17
.= (((((((
- 16)
* (
sin ((x1
+ x0)
/ 2)))
* (
sin ((x1
- x0)
/ 2)))
* (
cos ((x1
+ x0)
/ 2)))
* (
cos ((x1
- x0)
/ 2)))
/ (((
cos (x0
+ x1))
+ (
cos (x0
- x1)))
^2 ))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_3:74
(for x holds (f
. x)
= (1
/ ((
cos x)
^2 ))) & (
cos x)
<>
0 & (
cos (x
+ h))
<>
0 implies ((
fD (f,h))
. x)
= ((((((
- 16)
* (
sin (((2
* x)
+ h)
/ 2)))
* (
sin ((
- h)
/ 2)))
* (
cos (((2
* x)
+ h)
/ 2)))
* (
cos ((
- h)
/ 2)))
/ (((
cos ((2
* x)
+ h))
+ (
cos h))
^2 ))
proof
assume that
A1: for x holds (f
. x)
= (1
/ ((
cos x)
^2 )) and
A2: (
cos x)
<>
0 & (
cos (x
+ h))
<>
0 ;
((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x)) by
DIFF_1: 3
.= ((1
/ ((
cos (x
+ h))
^2 ))
- (f
. x)) by
A1
.= ((1
/ ((
cos (x
+ h))
^2 ))
- (1
/ ((
cos x)
^2 ))) by
A1
.= (((1
* ((
cos x)
^2 ))
- (1
* ((
cos (x
+ h))
^2 )))
/ (((
cos (x
+ h))
^2 )
* ((
cos x)
^2 ))) by
A2,
XCMPLX_1: 130
.= ((((
cos x)
^2 )
- ((
cos (x
+ h))
^2 ))
/ (((
cos (x
+ h))
* (
cos x))
^2 ))
.= ((((
cos x)
^2 )
- ((
cos (x
+ h))
^2 ))
/ (((1
/ 2)
* ((
cos ((x
+ h)
+ x))
+ (
cos ((x
+ h)
- x))))
^2 )) by
SIN_COS4: 32
.= ((((
cos x)
^2 )
- ((
cos (x
+ h))
^2 ))
/ ((1
/ 4)
* (((
cos ((2
* x)
+ h))
+ (
cos h))
^2 )))
.= (((((
cos x)
^2 )
- ((
cos (x
+ h))
^2 ))
/ (1
/ 4))
/ (((
cos ((2
* x)
+ h))
+ (
cos h))
^2 )) by
XCMPLX_1: 78
.= (4
* ((((
cos x)
- (
cos (x
+ h)))
* ((
cos x)
+ (
cos (x
+ h))))
/ (((
cos ((2
* x)
+ h))
+ (
cos h))
^2 )))
.= (4
* (((
- (2
* ((
sin ((x
+ (x
+ h))
/ 2))
* (
sin ((x
- (x
+ h))
/ 2)))))
* ((
cos x)
+ (
cos (x
+ h))))
/ (((
cos ((2
* x)
+ h))
+ (
cos h))
^2 ))) by
SIN_COS4: 18
.= (4
* (((
- (2
* ((
sin (((2
* x)
+ h)
/ 2))
* (
sin ((
- h)
/ 2)))))
* (2
* ((
cos (((2
* x)
+ h)
/ 2))
* (
cos ((
- h)
/ 2)))))
/ (((
cos ((2
* x)
+ h))
+ (
cos h))
^2 ))) by
SIN_COS4: 17
.= ((((((
- 16)
* (
sin (((2
* x)
+ h)
/ 2)))
* (
sin ((
- h)
/ 2)))
* (
cos (((2
* x)
+ h)
/ 2)))
* (
cos ((
- h)
/ 2)))
/ (((
cos ((2
* x)
+ h))
+ (
cos h))
^2 ));
hence thesis;
end;
theorem ::
DIFF_3:75
(for x holds (f
. x)
= (1
/ ((
cos x)
^2 ))) & (
cos x)
<>
0 & (
cos (x
- h))
<>
0 implies ((
bD (f,h))
. x)
= ((((((
- 16)
* (
sin (((2
* x)
- h)
/ 2)))
* (
sin ((
- h)
/ 2)))
* (
cos (((2
* x)
- h)
/ 2)))
* (
cos ((
- h)
/ 2)))
/ (((
cos ((2
* x)
- h))
+ (
cos h))
^2 ))
proof
assume that
A1: for x holds (f
. x)
= (1
/ ((
cos x)
^2 )) and
A2: (
cos x)
<>
0 & (
cos (x
- h))
<>
0 ;
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= ((1
/ ((
cos x)
^2 ))
- (f
. (x
- h))) by
A1
.= ((1
/ ((
cos x)
^2 ))
- (1
/ ((
cos (x
- h))
^2 ))) by
A1
.= (((1
* ((
cos (x
- h))
^2 ))
- (1
* ((
cos x)
^2 )))
/ (((
cos x)
^2 )
* ((
cos (x
- h))
^2 ))) by
A2,
XCMPLX_1: 130
.= ((((
cos (x
- h))
^2 )
- ((
cos x)
^2 ))
/ (((
cos x)
* (
cos (x
- h)))
^2 ))
.= ((((
cos (x
- h))
^2 )
- ((
cos x)
^2 ))
/ (((1
/ 2)
* ((
cos (x
+ (x
- h)))
+ (
cos (x
- (x
- h)))))
^2 )) by
SIN_COS4: 32
.= ((((
cos (x
- h))
^2 )
- ((
cos x)
^2 ))
/ ((1
/ 4)
* (((
cos ((2
* x)
- h))
+ (
cos h))
^2 )))
.= (((((
cos (x
- h))
^2 )
- ((
cos x)
^2 ))
/ (1
/ 4))
/ (((
cos ((2
* x)
- h))
+ (
cos h))
^2 )) by
XCMPLX_1: 78
.= (4
* ((((
cos (x
- h))
- (
cos x))
* ((
cos (x
- h))
+ (
cos x)))
/ (((
cos ((2
* x)
- h))
+ (
cos h))
^2 )))
.= (4
* (((
- (2
* ((
sin (((x
- h)
+ x)
/ 2))
* (
sin (((x
- h)
- x)
/ 2)))))
* ((
cos (x
- h))
+ (
cos x)))
/ (((
cos ((2
* x)
- h))
+ (
cos h))
^2 ))) by
SIN_COS4: 18
.= (4
* (((
- (2
* ((
sin (((2
* x)
- h)
/ 2))
* (
sin ((
- h)
/ 2)))))
* (2
* ((
cos (((2
* x)
- h)
/ 2))
* (
cos ((
- h)
/ 2)))))
/ (((
cos ((2
* x)
- h))
+ (
cos h))
^2 ))) by
SIN_COS4: 17
.= ((((((
- 16)
* (
sin (((2
* x)
- h)
/ 2)))
* (
sin ((
- h)
/ 2)))
* (
cos (((2
* x)
- h)
/ 2)))
* (
cos ((
- h)
/ 2)))
/ (((
cos ((2
* x)
- h))
+ (
cos h))
^2 ));
hence thesis;
end;
theorem ::
DIFF_3:76
(for x holds (f
. x)
= (1
/ ((
cos x)
^2 ))) & (
cos (x
+ (h
/ 2)))
<>
0 & (
cos (x
- (h
/ 2)))
<>
0 implies ((
cD (f,h))
. x)
= ((((((
- 16)
* (
sin x))
* (
sin ((
- h)
/ 2)))
* (
cos x))
* (
cos ((
- h)
/ 2)))
/ (((
cos (2
* x))
+ (
cos h))
^2 ))
proof
assume that
A1: for x holds (f
. x)
= (1
/ ((
cos x)
^2 )) and
A2: (
cos (x
+ (h
/ 2)))
<>
0 & (
cos (x
- (h
/ 2)))
<>
0 ;
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((1
/ ((
cos (x
+ (h
/ 2)))
^2 ))
- (f
. (x
- (h
/ 2)))) by
A1
.= ((1
/ ((
cos (x
+ (h
/ 2)))
^2 ))
- (1
/ ((
cos (x
- (h
/ 2)))
^2 ))) by
A1
.= (((1
* ((
cos (x
- (h
/ 2)))
^2 ))
- (1
* ((
cos (x
+ (h
/ 2)))
^2 )))
/ (((
cos (x
+ (h
/ 2)))
^2 )
* ((
cos (x
- (h
/ 2)))
^2 ))) by
A2,
XCMPLX_1: 130
.= ((((
cos (x
- (h
/ 2)))
^2 )
- ((
cos (x
+ (h
/ 2)))
^2 ))
/ (((
cos (x
+ (h
/ 2)))
* (
cos (x
- (h
/ 2))))
^2 ))
.= ((((
cos (x
- (h
/ 2)))
^2 )
- ((
cos (x
+ (h
/ 2)))
^2 ))
/ (((1
/ 2)
* ((
cos ((x
+ (h
/ 2))
+ (x
- (h
/ 2))))
+ (
cos ((x
+ (h
/ 2))
- (x
- (h
/ 2))))))
^2 )) by
SIN_COS4: 32
.= ((((
cos (x
- (h
/ 2)))
^2 )
- ((
cos (x
+ (h
/ 2)))
^2 ))
/ ((1
/ 4)
* (((
cos (2
* x))
+ (
cos h))
^2 )))
.= (((((
cos (x
- (h
/ 2)))
^2 )
- ((
cos (x
+ (h
/ 2)))
^2 ))
/ (1
/ 4))
/ (((
cos (2
* x))
+ (
cos h))
^2 )) by
XCMPLX_1: 78
.= (4
* ((((
cos (x
- (h
/ 2)))
- (
cos (x
+ (h
/ 2))))
* ((
cos (x
- (h
/ 2)))
+ (
cos (x
+ (h
/ 2)))))
/ (((
cos (2
* x))
+ (
cos h))
^2 )))
.= (4
* (((
- (2
* ((
sin (((x
- (h
/ 2))
+ (x
+ (h
/ 2)))
/ 2))
* (
sin (((x
- (h
/ 2))
- (x
+ (h
/ 2)))
/ 2)))))
* ((
cos (x
- (h
/ 2)))
+ (
cos (x
+ (h
/ 2)))))
/ (((
cos (2
* x))
+ (
cos h))
^2 ))) by
SIN_COS4: 18
.= (4
* (((
- (2
* ((
sin ((2
* x)
/ 2))
* (
sin ((
- h)
/ 2)))))
* (2
* ((
cos ((2
* x)
/ 2))
* (
cos ((
- h)
/ 2)))))
/ (((
cos (2
* x))
+ (
cos h))
^2 ))) by
SIN_COS4: 17
.= ((((((
- 16)
* (
sin x))
* (
sin ((
- h)
/ 2)))
* (
cos x))
* (
cos ((
- h)
/ 2)))
/ (((
cos (2
* x))
+ (
cos h))
^2 ));
hence thesis;
end;
theorem ::
DIFF_3:77
x0
in (
dom
tan ) & x1
in (
dom
tan ) implies
[!(
tan
(#)
sin ), x0, x1!]
= (((((1
/ (
cos x0))
- (
cos x0))
- (1
/ (
cos x1)))
+ (
cos x1))
/ (x0
- x1))
proof
assume
A1: x0
in (
dom
tan ) & x1
in (
dom
tan );
[!(
tan
(#)
sin ), x0, x1!]
= ((((
tan
. x0)
* (
sin
. x0))
- ((
tan
(#)
sin )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((
tan
. x0)
* (
sin
. x0))
- ((
tan
. x1)
* (
sin
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin
. x0)
* ((
cos
. x0)
" ))
* (
sin
. x0))
- ((
tan
. x1)
* (
sin
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= (((((
sin x0)
/ (
cos x0))
* (
sin x0))
- (((
sin x1)
/ (
cos x1))
* (
sin x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= ((((
sin x0)
/ ((
cos x0)
/ (
sin x0)))
- (((
sin x1)
/ (
cos x1))
* (
sin x1)))
/ (x0
- x1)) by
XCMPLX_1: 82
.= ((((
sin x0)
/ ((
cos x0)
/ (
sin x0)))
- ((
sin x1)
/ ((
cos x1)
/ (
sin x1))))
/ (x0
- x1)) by
XCMPLX_1: 82
.= (((((
sin x0)
* (
sin x0))
/ (
cos x0))
- ((
sin x1)
/ ((
cos x1)
/ (
sin x1))))
/ (x0
- x1)) by
XCMPLX_1: 77
.= (((((
sin x0)
* (
sin x0))
/ (
cos x0))
- (((
sin x1)
* (
sin x1))
/ (
cos x1)))
/ (x0
- x1)) by
XCMPLX_1: 77
.= ((((1
- ((
cos x0)
* (
cos x0)))
/ (
cos x0))
- (((
sin x1)
* (
sin x1))
/ (
cos x1)))
/ (x0
- x1)) by
SIN_COS4: 4
.= ((((1
/ (
cos x0))
- (((
cos x0)
* (
cos x0))
/ (
cos x0)))
- ((1
- ((
cos x1)
* (
cos x1)))
/ (
cos x1)))
/ (x0
- x1)) by
SIN_COS4: 4
.= ((((1
/ (
cos x0))
- (
cos x0))
- ((1
/ (
cos x1))
- (((
cos x1)
* (
cos x1))
/ (
cos x1))))
/ (x0
- x1)) by
A1,
FDIFF_8: 1,
XCMPLX_1: 89
.= ((((1
/ (
cos x0))
- (
cos x0))
- ((1
/ (
cos x1))
- (
cos x1)))
/ (x0
- x1)) by
A1,
FDIFF_8: 1,
XCMPLX_1: 89
.= (((((1
/ (
cos x0))
- (
cos x0))
- (1
/ (
cos x1)))
+ (
cos x1))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_3:78
(for x holds (f
. x)
= ((
tan
(#)
sin )
. x)) & x
in (
dom
tan ) & (x
+ h)
in (
dom
tan ) implies ((
fD (f,h))
. x)
= ((((1
/ (
cos (x
+ h)))
- (
cos (x
+ h)))
- (1
/ (
cos x)))
+ (
cos x))
proof
assume that
A1: for x holds (f
. x)
= ((
tan
(#)
sin )
. x) and
A2: x
in (
dom
tan ) & (x
+ h)
in (
dom
tan );
((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x)) by
DIFF_1: 3
.= (((
tan
(#)
sin )
. (x
+ h))
- (f
. x)) by
A1
.= (((
tan
(#)
sin )
. (x
+ h))
- ((
tan
(#)
sin )
. x)) by
A1
.= (((
tan
. (x
+ h))
* (
sin
. (x
+ h)))
- ((
tan
(#)
sin )
. x)) by
VALUED_1: 5
.= (((
tan
. (x
+ h))
* (
sin
. (x
+ h)))
- ((
tan
. x)
* (
sin
. x))) by
VALUED_1: 5
.= ((((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" ))
* (
sin
. (x
+ h)))
- ((
tan
. x)
* (
sin
. x))) by
A2,
RFUNCT_1:def 1
.= ((((
sin (x
+ h))
/ (
cos (x
+ h)))
* (
sin (x
+ h)))
- (((
sin x)
/ (
cos x))
* (
sin x))) by
A2,
RFUNCT_1:def 1
.= (((
sin (x
+ h))
/ ((
cos (x
+ h))
/ (
sin (x
+ h))))
- (((
sin x)
/ (
cos x))
* (
sin x))) by
XCMPLX_1: 82
.= (((
sin (x
+ h))
/ ((
cos (x
+ h))
/ (
sin (x
+ h))))
- ((
sin x)
/ ((
cos x)
/ (
sin x)))) by
XCMPLX_1: 82
.= ((((
sin (x
+ h))
* (
sin (x
+ h)))
/ (
cos (x
+ h)))
- ((
sin x)
/ ((
cos x)
/ (
sin x)))) by
XCMPLX_1: 77
.= ((((
sin (x
+ h))
* (
sin (x
+ h)))
/ (
cos (x
+ h)))
- (((
sin x)
* (
sin x))
/ (
cos x))) by
XCMPLX_1: 77
.= (((1
- ((
cos (x
+ h))
* (
cos (x
+ h))))
/ (
cos (x
+ h)))
- (((
sin x)
* (
sin x))
/ (
cos x))) by
SIN_COS4: 4
.= (((1
/ (
cos (x
+ h)))
- (((
cos (x
+ h))
* (
cos (x
+ h)))
/ (
cos (x
+ h))))
- ((1
- ((
cos x)
* (
cos x)))
/ (
cos x))) by
SIN_COS4: 4
.= (((1
/ (
cos (x
+ h)))
- (
cos (x
+ h)))
- ((1
/ (
cos x))
- (((
cos x)
* (
cos x))
/ (
cos x)))) by
A2,
FDIFF_8: 1,
XCMPLX_1: 89
.= (((1
/ (
cos (x
+ h)))
- (
cos (x
+ h)))
- ((1
/ (
cos x))
- (
cos x))) by
A2,
FDIFF_8: 1,
XCMPLX_1: 89
.= ((((1
/ (
cos (x
+ h)))
- (
cos (x
+ h)))
- (1
/ (
cos x)))
+ (
cos x));
hence thesis;
end;
theorem ::
DIFF_3:79
(for x holds (f
. x)
= ((
tan
(#)
sin )
. x)) & x
in (
dom
tan ) & (x
- h)
in (
dom
tan ) implies ((
bD (f,h))
. x)
= ((((1
/ (
cos x))
- (
cos x))
- (1
/ (
cos (x
- h))))
+ (
cos (x
- h)))
proof
assume that
A1: for x holds (f
. x)
= ((
tan
(#)
sin )
. x) and
A2: x
in (
dom
tan ) & (x
- h)
in (
dom
tan );
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= (((
tan
(#)
sin )
. x)
- (f
. (x
- h))) by
A1
.= (((
tan
(#)
sin )
. x)
- ((
tan
(#)
sin )
. (x
- h))) by
A1
.= (((
tan
. x)
* (
sin
. x))
- ((
tan
(#)
sin )
. (x
- h))) by
VALUED_1: 5
.= (((
tan
. x)
* (
sin
. x))
- ((
tan
. (x
- h))
* (
sin
. (x
- h)))) by
VALUED_1: 5
.= ((((
sin
. x)
* ((
cos
. x)
" ))
* (
sin
. x))
- ((
tan
. (x
- h))
* (
sin
. (x
- h)))) by
A2,
RFUNCT_1:def 1
.= ((((
sin x)
/ (
cos x))
* (
sin x))
- (((
sin (x
- h))
/ (
cos (x
- h)))
* (
sin (x
- h)))) by
A2,
RFUNCT_1:def 1
.= (((
sin x)
/ ((
cos x)
/ (
sin x)))
- (((
sin (x
- h))
/ (
cos (x
- h)))
* (
sin (x
- h)))) by
XCMPLX_1: 82
.= (((
sin x)
/ ((
cos x)
/ (
sin x)))
- ((
sin (x
- h))
/ ((
cos (x
- h))
/ (
sin (x
- h))))) by
XCMPLX_1: 82
.= ((((
sin x)
* (
sin x))
/ (
cos x))
- ((
sin (x
- h))
/ ((
cos (x
- h))
/ (
sin (x
- h))))) by
XCMPLX_1: 77
.= ((((
sin x)
* (
sin x))
/ (
cos x))
- (((
sin (x
- h))
* (
sin (x
- h)))
/ (
cos (x
- h)))) by
XCMPLX_1: 77
.= (((1
- ((
cos x)
* (
cos x)))
/ (
cos x))
- (((
sin (x
- h))
* (
sin (x
- h)))
/ (
cos (x
- h)))) by
SIN_COS4: 4
.= (((1
/ (
cos x))
- (((
cos x)
* (
cos x))
/ (
cos x)))
- ((1
- ((
cos (x
- h))
* (
cos (x
- h))))
/ (
cos (x
- h)))) by
SIN_COS4: 4
.= (((1
/ (
cos x))
- (
cos x))
- ((1
/ (
cos (x
- h)))
- (((
cos (x
- h))
* (
cos (x
- h)))
/ (
cos (x
- h))))) by
A2,
FDIFF_8: 1,
XCMPLX_1: 89
.= (((1
/ (
cos x))
- (
cos x))
- ((1
/ (
cos (x
- h)))
- (
cos (x
- h)))) by
A2,
FDIFF_8: 1,
XCMPLX_1: 89
.= ((((1
/ (
cos x))
- (
cos x))
- (1
/ (
cos (x
- h))))
+ (
cos (x
- h)));
hence thesis;
end;
theorem ::
DIFF_3:80
(for x holds (f
. x)
= ((
tan
(#)
sin )
. x)) & (x
+ (h
/ 2))
in (
dom
tan ) & (x
- (h
/ 2))
in (
dom
tan ) implies ((
cD (f,h))
. x)
= ((((1
/ (
cos (x
+ (h
/ 2))))
- (
cos (x
+ (h
/ 2))))
- (1
/ (
cos (x
- (h
/ 2)))))
+ (
cos (x
- (h
/ 2))))
proof
assume that
A1: for x holds (f
. x)
= ((
tan
(#)
sin )
. x) and
A2: (x
+ (h
/ 2))
in (
dom
tan ) & (x
- (h
/ 2))
in (
dom
tan );
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((
tan
(#)
sin )
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
A1
.= (((
tan
(#)
sin )
. (x
+ (h
/ 2)))
- ((
tan
(#)
sin )
. (x
- (h
/ 2)))) by
A1
.= (((
tan
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
- ((
tan
(#)
sin )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((
tan
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
- ((
tan
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" ))
* (
sin
. (x
+ (h
/ 2))))
- ((
tan
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 1
.= ((((
sin (x
+ (h
/ 2)))
/ (
cos (x
+ (h
/ 2))))
* (
sin (x
+ (h
/ 2))))
- (((
sin (x
- (h
/ 2)))
/ (
cos (x
- (h
/ 2))))
* (
sin (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 1
.= (((
sin (x
+ (h
/ 2)))
/ ((
cos (x
+ (h
/ 2)))
/ (
sin (x
+ (h
/ 2)))))
- (((
sin (x
- (h
/ 2)))
/ (
cos (x
- (h
/ 2))))
* (
sin (x
- (h
/ 2))))) by
XCMPLX_1: 82
.= (((
sin (x
+ (h
/ 2)))
/ ((
cos (x
+ (h
/ 2)))
/ (
sin (x
+ (h
/ 2)))))
- ((
sin (x
- (h
/ 2)))
/ ((
cos (x
- (h
/ 2)))
/ (
sin (x
- (h
/ 2)))))) by
XCMPLX_1: 82
.= ((((
sin (x
+ (h
/ 2)))
* (
sin (x
+ (h
/ 2))))
/ (
cos (x
+ (h
/ 2))))
- ((
sin (x
- (h
/ 2)))
/ ((
cos (x
- (h
/ 2)))
/ (
sin (x
- (h
/ 2)))))) by
XCMPLX_1: 77
.= ((((
sin (x
+ (h
/ 2)))
* (
sin (x
+ (h
/ 2))))
/ (
cos (x
+ (h
/ 2))))
- (((
sin (x
- (h
/ 2)))
* (
sin (x
- (h
/ 2))))
/ (
cos (x
- (h
/ 2))))) by
XCMPLX_1: 77
.= (((1
- ((
cos (x
+ (h
/ 2)))
* (
cos (x
+ (h
/ 2)))))
/ (
cos (x
+ (h
/ 2))))
- (((
sin (x
- (h
/ 2)))
* (
sin (x
- (h
/ 2))))
/ (
cos (x
- (h
/ 2))))) by
SIN_COS4: 4
.= (((1
/ (
cos (x
+ (h
/ 2))))
- (((
cos (x
+ (h
/ 2)))
* (
cos (x
+ (h
/ 2))))
/ (
cos (x
+ (h
/ 2)))))
- ((1
- ((
cos (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2)))))
/ (
cos (x
- (h
/ 2))))) by
SIN_COS4: 4
.= (((1
/ (
cos (x
+ (h
/ 2))))
- (
cos (x
+ (h
/ 2))))
- ((1
/ (
cos (x
- (h
/ 2))))
- (((
cos (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2))))
/ (
cos (x
- (h
/ 2)))))) by
A2,
FDIFF_8: 1,
XCMPLX_1: 89
.= (((1
/ (
cos (x
+ (h
/ 2))))
- (
cos (x
+ (h
/ 2))))
- ((1
/ (
cos (x
- (h
/ 2))))
- (
cos (x
- (h
/ 2))))) by
A2,
FDIFF_8: 1,
XCMPLX_1: 89
.= ((((1
/ (
cos (x
+ (h
/ 2))))
- (
cos (x
+ (h
/ 2))))
- (1
/ (
cos (x
- (h
/ 2)))))
+ (
cos (x
- (h
/ 2))));
hence thesis;
end;
theorem ::
DIFF_3:81
(for x holds (f
. x)
= ((
tan
(#)
cos )
. x)) & x0
in (
dom
tan ) & x1
in (
dom
tan ) implies
[!f, x0, x1!]
= (((
sin x0)
- (
sin x1))
/ (x0
- x1))
proof
assume that
A1: for x holds (f
. x)
= ((
tan
(#)
cos )
. x) and
A2: x0
in (
dom
tan ) & x1
in (
dom
tan );
A3: (f
. x0)
= ((
tan
(#)
cos )
. x0) by
A1;
(f
. x1)
= ((
tan
(#)
cos )
. x1) by
A1;
then
[!f, x0, x1!]
= ((((
tan
. x0)
* (
cos
. x0))
- ((
tan
(#)
cos )
. x1))
/ (x0
- x1)) by
A3,
VALUED_1: 5
.= ((((
tan
. x0)
* (
cos
. x0))
- ((
tan
. x1)
* (
cos
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin
. x0)
* ((
cos
. x0)
" ))
* (
cos
. x0))
- ((
tan
. x1)
* (
cos
. x1)))
/ (x0
- x1)) by
A2,
RFUNCT_1:def 1
.= (((((
sin x0)
/ (
cos x0))
* (
cos x0))
- (((
sin x1)
/ (
cos x1))
* (
cos x1)))
/ (x0
- x1)) by
A2,
RFUNCT_1:def 1
.= ((((
sin x0)
/ ((
cos x0)
/ (
cos x0)))
- (((
sin x1)
/ (
cos x1))
* (
cos x1)))
/ (x0
- x1)) by
XCMPLX_1: 82
.= ((((
sin x0)
/ ((
cos x0)
* (1
/ (
cos x0))))
- ((
sin x1)
/ ((
cos x1)
/ (
cos x1))))
/ (x0
- x1)) by
XCMPLX_1: 82
.= ((((
sin x0)
/ 1)
- ((
sin x1)
/ ((
cos x1)
* (1
/ (
cos x1)))))
/ (x0
- x1)) by
A2,
FDIFF_8: 1,
XCMPLX_1: 106
.= ((((
sin x0)
/ 1)
- ((
sin x1)
/ 1))
/ (x0
- x1)) by
A2,
FDIFF_8: 1,
XCMPLX_1: 106
.= (((
sin x0)
- (
sin x1))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_3:82
(for x holds (f
. x)
= ((
tan
(#)
cos )
. x)) & x
in (
dom
tan ) & (x
+ h)
in (
dom
tan ) implies ((
fD (f,h))
. x)
= ((
sin (x
+ h))
- (
sin x))
proof
assume that
A1: for x holds (f
. x)
= ((
tan
(#)
cos )
. x) and
A2: x
in (
dom
tan ) & (x
+ h)
in (
dom
tan );
((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x)) by
DIFF_1: 3
.= (((
tan
(#)
cos )
. (x
+ h))
- (f
. x)) by
A1
.= (((
tan
(#)
cos )
. (x
+ h))
- ((
tan
(#)
cos )
. x)) by
A1
.= (((
tan
. (x
+ h))
* (
cos
. (x
+ h)))
- ((
tan
(#)
cos )
. x)) by
VALUED_1: 5
.= (((
tan
. (x
+ h))
* (
cos
. (x
+ h)))
- ((
tan
. x)
* (
cos
. x))) by
VALUED_1: 5
.= ((((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" ))
* (
cos
. (x
+ h)))
- ((
tan
. x)
* (
cos
. x))) by
A2,
RFUNCT_1:def 1
.= ((((
sin (x
+ h))
/ (
cos (x
+ h)))
* (
cos (x
+ h)))
- (((
sin x)
/ (
cos x))
* (
cos x))) by
A2,
RFUNCT_1:def 1
.= (((
sin (x
+ h))
/ ((
cos (x
+ h))
/ (
cos (x
+ h))))
- (((
sin x)
/ (
cos x))
* (
cos x))) by
XCMPLX_1: 82
.= (((
sin (x
+ h))
/ ((
cos (x
+ h))
* (1
/ (
cos (x
+ h)))))
- ((
sin x)
/ ((
cos x)
/ (
cos x)))) by
XCMPLX_1: 82
.= (((
sin (x
+ h))
/ 1)
- ((
sin x)
/ ((
cos x)
* (1
/ (
cos x))))) by
A2,
FDIFF_8: 1,
XCMPLX_1: 106
.= (((
sin (x
+ h))
/ 1)
- ((
sin x)
/ 1)) by
A2,
FDIFF_8: 1,
XCMPLX_1: 106
.= ((
sin (x
+ h))
- (
sin x));
hence thesis;
end;
theorem ::
DIFF_3:83
(for x holds (f
. x)
= ((
tan
(#)
cos )
. x)) & x
in (
dom
tan ) & (x
- h)
in (
dom
tan ) implies ((
bD (f,h))
. x)
= ((
sin x)
- (
sin (x
- h)))
proof
assume that
A1: for x holds (f
. x)
= ((
tan
(#)
cos )
. x) and
A2: x
in (
dom
tan ) & (x
- h)
in (
dom
tan );
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= (((
tan
(#)
cos )
. x)
- (f
. (x
- h))) by
A1
.= (((
tan
(#)
cos )
. x)
- ((
tan
(#)
cos )
. (x
- h))) by
A1
.= (((
tan
. x)
* (
cos
. x))
- ((
tan
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= (((
tan
. x)
* (
cos
. x))
- ((
tan
. (x
- h))
* (
cos
. (x
- h)))) by
VALUED_1: 5
.= ((((
sin
. x)
* ((
cos
. x)
" ))
* (
cos
. x))
- ((
tan
. (x
- h))
* (
cos
. (x
- h)))) by
A2,
RFUNCT_1:def 1
.= ((((
sin x)
/ (
cos x))
* (
cos x))
- (((
sin (x
- h))
/ (
cos (x
- h)))
* (
cos (x
- h)))) by
A2,
RFUNCT_1:def 1
.= (((
sin x)
/ ((
cos x)
/ (
cos x)))
- (((
sin (x
- h))
/ (
cos (x
- h)))
* (
cos (x
- h)))) by
XCMPLX_1: 82
.= (((
sin x)
/ ((
cos x)
* (1
/ (
cos x))))
- ((
sin (x
- h))
/ ((
cos (x
- h))
/ (
cos (x
- h))))) by
XCMPLX_1: 82
.= (((
sin x)
/ 1)
- ((
sin (x
- h))
/ ((
cos (x
- h))
* (1
/ (
cos (x
- h)))))) by
A2,
FDIFF_8: 1,
XCMPLX_1: 106
.= (((
sin x)
/ 1)
- ((
sin (x
- h))
/ 1)) by
A2,
FDIFF_8: 1,
XCMPLX_1: 106
.= ((
sin x)
- (
sin (x
- h)));
hence thesis;
end;
theorem ::
DIFF_3:84
(for x holds (f
. x)
= ((
tan
(#)
cos )
. x)) & (x
+ (h
/ 2))
in (
dom
tan ) & (x
- (h
/ 2))
in (
dom
tan ) implies ((
cD (f,h))
. x)
= ((
sin (x
+ (h
/ 2)))
- (
sin (x
- (h
/ 2))))
proof
assume that
A1: for x holds (f
. x)
= ((
tan
(#)
cos )
. x) and
A2: (x
+ (h
/ 2))
in (
dom
tan ) & (x
- (h
/ 2))
in (
dom
tan );
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((
tan
(#)
cos )
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
A1
.= (((
tan
(#)
cos )
. (x
+ (h
/ 2)))
- ((
tan
(#)
cos )
. (x
- (h
/ 2)))) by
A1
.= (((
tan
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
- ((
tan
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((
tan
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
- ((
tan
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" ))
* (
cos
. (x
+ (h
/ 2))))
- ((
tan
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 1
.= ((((
sin (x
+ (h
/ 2)))
/ (
cos (x
+ (h
/ 2))))
* (
cos (x
+ (h
/ 2))))
- (((
sin (x
- (h
/ 2)))
/ (
cos (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 1
.= (((
sin (x
+ (h
/ 2)))
/ ((
cos (x
+ (h
/ 2)))
/ (
cos (x
+ (h
/ 2)))))
- (((
sin (x
- (h
/ 2)))
/ (
cos (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2))))) by
XCMPLX_1: 82
.= (((
sin (x
+ (h
/ 2)))
/ ((
cos (x
+ (h
/ 2)))
* (1
/ (
cos (x
+ (h
/ 2))))))
- ((
sin (x
- (h
/ 2)))
/ ((
cos (x
- (h
/ 2)))
/ (
cos (x
- (h
/ 2)))))) by
XCMPLX_1: 82
.= (((
sin (x
+ (h
/ 2)))
/ 1)
- ((
sin (x
- (h
/ 2)))
/ ((
cos (x
- (h
/ 2)))
* (1
/ (
cos (x
- (h
/ 2))))))) by
A2,
FDIFF_8: 1,
XCMPLX_1: 106
.= (((
sin (x
+ (h
/ 2)))
/ 1)
- ((
sin (x
- (h
/ 2)))
/ 1)) by
A2,
FDIFF_8: 1,
XCMPLX_1: 106
.= ((
sin (x
+ (h
/ 2)))
- (
sin (x
- (h
/ 2))));
hence thesis;
end;
theorem ::
DIFF_3:85
(for x holds (f
. x)
= ((
cot
(#)
cos )
. x)) & x0
in (
dom
cot ) & x1
in (
dom
cot ) implies
[!f, x0, x1!]
= (((((1
/ (
sin x0))
- (
sin x0))
- (1
/ (
sin x1)))
+ (
sin x1))
/ (x0
- x1))
proof
assume that
A1: for x holds (f
. x)
= ((
cot
(#)
cos )
. x) and
A2: x0
in (
dom
cot ) & x1
in (
dom
cot );
A3: (f
. x0)
= ((
cot
(#)
cos )
. x0) by
A1;
(f
. x1)
= ((
cot
(#)
cos )
. x1) by
A1;
then
[!f, x0, x1!]
= ((((
cot
. x0)
* (
cos
. x0))
- ((
cot
(#)
cos )
. x1))
/ (x0
- x1)) by
A3,
VALUED_1: 5
.= ((((
cot
. x0)
* (
cos
. x0))
- ((
cot
. x1)
* (
cos
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cos
. x0)
* ((
sin
. x0)
" ))
* (
cos
. x0))
- ((
cot
. x1)
* (
cos
. x1)))
/ (x0
- x1)) by
A2,
RFUNCT_1:def 1
.= (((((
cos x0)
/ (
sin x0))
* (
cos x0))
- (((
cos x1)
/ (
sin x1))
* (
cos x1)))
/ (x0
- x1)) by
A2,
RFUNCT_1:def 1
.= ((((
cos x0)
/ ((
sin x0)
/ (
cos x0)))
- (((
cos x1)
/ (
sin x1))
* (
cos x1)))
/ (x0
- x1)) by
XCMPLX_1: 82
.= ((((
cos x0)
/ ((
sin x0)
/ (
cos x0)))
- ((
cos x1)
/ ((
sin x1)
/ (
cos x1))))
/ (x0
- x1)) by
XCMPLX_1: 82
.= (((((
cos x0)
* (
cos x0))
/ (
sin x0))
- ((
cos x1)
/ ((
sin x1)
/ (
cos x1))))
/ (x0
- x1)) by
XCMPLX_1: 77
.= (((((
cos x0)
* (
cos x0))
/ (
sin x0))
- (((
cos x1)
* (
cos x1))
/ (
sin x1)))
/ (x0
- x1)) by
XCMPLX_1: 77
.= ((((1
- ((
sin x0)
* (
sin x0)))
/ (
sin x0))
- (((
cos x1)
* (
cos x1))
/ (
sin x1)))
/ (x0
- x1)) by
SIN_COS4: 5
.= ((((1
/ (
sin x0))
- (((
sin x0)
* (
sin x0))
/ (
sin x0)))
- ((1
- ((
sin x1)
* (
sin x1)))
/ (
sin x1)))
/ (x0
- x1)) by
SIN_COS4: 5
.= ((((1
/ (
sin x0))
- (
sin x0))
- ((1
/ (
sin x1))
- (((
sin x1)
* (
sin x1))
/ (
sin x1))))
/ (x0
- x1)) by
A2,
FDIFF_8: 2,
XCMPLX_1: 89
.= ((((1
/ (
sin x0))
- (
sin x0))
- ((1
/ (
sin x1))
- (
sin x1)))
/ (x0
- x1)) by
A2,
FDIFF_8: 2,
XCMPLX_1: 89
.= (((((1
/ (
sin x0))
- (
sin x0))
- (1
/ (
sin x1)))
+ (
sin x1))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_3:86
(for x holds (f
. x)
= ((
cot
(#)
cos )
. x)) & x
in (
dom
cot ) & (x
+ h)
in (
dom
cot ) implies ((
fD (f,h))
. x)
= ((((1
/ (
sin (x
+ h)))
- (
sin (x
+ h)))
- (1
/ (
sin x)))
+ (
sin x))
proof
assume that
A1: for x holds (f
. x)
= ((
cot
(#)
cos )
. x) and
A2: x
in (
dom
cot ) & (x
+ h)
in (
dom
cot );
((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x)) by
DIFF_1: 3
.= (((
cot
(#)
cos )
. (x
+ h))
- (f
. x)) by
A1
.= (((
cot
(#)
cos )
. (x
+ h))
- ((
cot
(#)
cos )
. x)) by
A1
.= (((
cot
. (x
+ h))
* (
cos
. (x
+ h)))
- ((
cot
(#)
cos )
. x)) by
VALUED_1: 5
.= (((
cot
. (x
+ h))
* (
cos
. (x
+ h)))
- ((
cot
. x)
* (
cos
. x))) by
VALUED_1: 5
.= ((((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" ))
* (
cos
. (x
+ h)))
- ((
cot
. x)
* (
cos
. x))) by
A2,
RFUNCT_1:def 1
.= ((((
cos (x
+ h))
/ (
sin (x
+ h)))
* (
cos (x
+ h)))
- (((
cos x)
/ (
sin x))
* (
cos x))) by
A2,
RFUNCT_1:def 1
.= (((
cos (x
+ h))
/ ((
sin (x
+ h))
/ (
cos (x
+ h))))
- (((
cos x)
/ (
sin x))
* (
cos x))) by
XCMPLX_1: 82
.= (((
cos (x
+ h))
/ ((
sin (x
+ h))
/ (
cos (x
+ h))))
- ((
cos x)
/ ((
sin x)
/ (
cos x)))) by
XCMPLX_1: 82
.= ((((
cos (x
+ h))
* (
cos (x
+ h)))
/ (
sin (x
+ h)))
- ((
cos x)
/ ((
sin x)
/ (
cos x)))) by
XCMPLX_1: 77
.= ((((
cos (x
+ h))
* (
cos (x
+ h)))
/ (
sin (x
+ h)))
- (((
cos x)
* (
cos x))
/ (
sin x))) by
XCMPLX_1: 77
.= (((1
- ((
sin (x
+ h))
* (
sin (x
+ h))))
/ (
sin (x
+ h)))
- (((
cos x)
* (
cos x))
/ (
sin x))) by
SIN_COS4: 5
.= (((1
/ (
sin (x
+ h)))
- (((
sin (x
+ h))
* (
sin (x
+ h)))
/ (
sin (x
+ h))))
- ((1
- ((
sin x)
* (
sin x)))
/ (
sin x))) by
SIN_COS4: 5
.= (((1
/ (
sin (x
+ h)))
- (
sin (x
+ h)))
- ((1
/ (
sin x))
- (((
sin x)
* (
sin x))
/ (
sin x)))) by
A2,
FDIFF_8: 2,
XCMPLX_1: 89
.= (((1
/ (
sin (x
+ h)))
- (
sin (x
+ h)))
- ((1
/ (
sin x))
- (
sin x))) by
A2,
FDIFF_8: 2,
XCMPLX_1: 89
.= ((((1
/ (
sin (x
+ h)))
- (
sin (x
+ h)))
- (1
/ (
sin x)))
+ (
sin x));
hence thesis;
end;
theorem ::
DIFF_3:87
(for x holds (f
. x)
= ((
cot
(#)
cos )
. x)) & x
in (
dom
cot ) & (x
- h)
in (
dom
cot ) implies ((
bD (f,h))
. x)
= ((((1
/ (
sin x))
- (
sin x))
- (1
/ (
sin (x
- h))))
+ (
sin (x
- h)))
proof
assume that
A1: for x holds (f
. x)
= ((
cot
(#)
cos )
. x) and
A2: x
in (
dom
cot ) & (x
- h)
in (
dom
cot );
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= (((
cot
(#)
cos )
. x)
- (f
. (x
- h))) by
A1
.= (((
cot
(#)
cos )
. x)
- ((
cot
(#)
cos )
. (x
- h))) by
A1
.= (((
cot
. x)
* (
cos
. x))
- ((
cot
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= (((
cot
. x)
* (
cos
. x))
- ((
cot
. (x
- h))
* (
cos
. (x
- h)))) by
VALUED_1: 5
.= ((((
cos
. x)
* ((
sin
. x)
" ))
* (
cos
. x))
- ((
cot
. (x
- h))
* (
cos
. (x
- h)))) by
A2,
RFUNCT_1:def 1
.= ((((
cos x)
/ (
sin x))
* (
cos x))
- (((
cos (x
- h))
/ (
sin (x
- h)))
* (
cos (x
- h)))) by
A2,
RFUNCT_1:def 1
.= (((
cos x)
/ ((
sin x)
/ (
cos x)))
- (((
cos (x
- h))
/ (
sin (x
- h)))
* (
cos (x
- h)))) by
XCMPLX_1: 82
.= (((
cos x)
/ ((
sin x)
/ (
cos x)))
- ((
cos (x
- h))
/ ((
sin (x
- h))
/ (
cos (x
- h))))) by
XCMPLX_1: 82
.= ((((
cos x)
* (
cos x))
/ (
sin x))
- ((
cos (x
- h))
/ ((
sin (x
- h))
/ (
cos (x
- h))))) by
XCMPLX_1: 77
.= ((((
cos x)
* (
cos x))
/ (
sin x))
- (((
cos (x
- h))
* (
cos (x
- h)))
/ (
sin (x
- h)))) by
XCMPLX_1: 77
.= (((1
- ((
sin x)
* (
sin x)))
/ (
sin x))
- (((
cos (x
- h))
* (
cos (x
- h)))
/ (
sin (x
- h)))) by
SIN_COS4: 5
.= (((1
/ (
sin x))
- (((
sin x)
* (
sin x))
/ (
sin x)))
- ((1
- ((
sin (x
- h))
* (
sin (x
- h))))
/ (
sin (x
- h)))) by
SIN_COS4: 5
.= (((1
/ (
sin x))
- (
sin x))
- ((1
/ (
sin (x
- h)))
- (((
sin (x
- h))
* (
sin (x
- h)))
/ (
sin (x
- h))))) by
A2,
FDIFF_8: 2,
XCMPLX_1: 89
.= (((1
/ (
sin x))
- (
sin x))
- ((1
/ (
sin (x
- h)))
- (
sin (x
- h)))) by
A2,
FDIFF_8: 2,
XCMPLX_1: 89
.= ((((1
/ (
sin x))
- (
sin x))
- (1
/ (
sin (x
- h))))
+ (
sin (x
- h)));
hence thesis;
end;
theorem ::
DIFF_3:88
(for x holds (f
. x)
= ((
cot
(#)
cos )
. x)) & (x
+ (h
/ 2))
in (
dom
cot ) & (x
- (h
/ 2))
in (
dom
cot ) implies ((
cD (f,h))
. x)
= ((((1
/ (
sin (x
+ (h
/ 2))))
- (
sin (x
+ (h
/ 2))))
- (1
/ (
sin (x
- (h
/ 2)))))
+ (
sin (x
- (h
/ 2))))
proof
assume that
A1: for x holds (f
. x)
= ((
cot
(#)
cos )
. x) and
A2: (x
+ (h
/ 2))
in (
dom
cot ) & (x
- (h
/ 2))
in (
dom
cot );
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((
cot
(#)
cos )
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
A1
.= (((
cot
(#)
cos )
. (x
+ (h
/ 2)))
- ((
cot
(#)
cos )
. (x
- (h
/ 2)))) by
A1
.= (((
cot
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
- ((
cot
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((
cot
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
- ((
cot
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" ))
* (
cos
. (x
+ (h
/ 2))))
- ((
cot
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 1
.= ((((
cos (x
+ (h
/ 2)))
/ (
sin (x
+ (h
/ 2))))
* (
cos (x
+ (h
/ 2))))
- (((
cos (x
- (h
/ 2)))
/ (
sin (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 1
.= (((
cos (x
+ (h
/ 2)))
/ ((
sin (x
+ (h
/ 2)))
/ (
cos (x
+ (h
/ 2)))))
- (((
cos (x
- (h
/ 2)))
/ (
sin (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2))))) by
XCMPLX_1: 82
.= (((
cos (x
+ (h
/ 2)))
/ ((
sin (x
+ (h
/ 2)))
/ (
cos (x
+ (h
/ 2)))))
- ((
cos (x
- (h
/ 2)))
/ ((
sin (x
- (h
/ 2)))
/ (
cos (x
- (h
/ 2)))))) by
XCMPLX_1: 82
.= ((((
cos (x
+ (h
/ 2)))
* (
cos (x
+ (h
/ 2))))
/ (
sin (x
+ (h
/ 2))))
- ((
cos (x
- (h
/ 2)))
/ ((
sin (x
- (h
/ 2)))
/ (
cos (x
- (h
/ 2)))))) by
XCMPLX_1: 77
.= ((((
cos (x
+ (h
/ 2)))
* (
cos (x
+ (h
/ 2))))
/ (
sin (x
+ (h
/ 2))))
- (((
cos (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2))))
/ (
sin (x
- (h
/ 2))))) by
XCMPLX_1: 77
.= (((1
- ((
sin (x
+ (h
/ 2)))
* (
sin (x
+ (h
/ 2)))))
/ (
sin (x
+ (h
/ 2))))
- (((
cos (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2))))
/ (
sin (x
- (h
/ 2))))) by
SIN_COS4: 5
.= (((1
/ (
sin (x
+ (h
/ 2))))
- (((
sin (x
+ (h
/ 2)))
* (
sin (x
+ (h
/ 2))))
/ (
sin (x
+ (h
/ 2)))))
- ((1
- ((
sin (x
- (h
/ 2)))
* (
sin (x
- (h
/ 2)))))
/ (
sin (x
- (h
/ 2))))) by
SIN_COS4: 5
.= (((1
/ (
sin (x
+ (h
/ 2))))
- (
sin (x
+ (h
/ 2))))
- ((1
/ (
sin (x
- (h
/ 2))))
- (((
sin (x
- (h
/ 2)))
* (
sin (x
- (h
/ 2))))
/ (
sin (x
- (h
/ 2)))))) by
A2,
FDIFF_8: 2,
XCMPLX_1: 89
.= (((1
/ (
sin (x
+ (h
/ 2))))
- (
sin (x
+ (h
/ 2))))
- ((1
/ (
sin (x
- (h
/ 2))))
- (
sin (x
- (h
/ 2))))) by
A2,
FDIFF_8: 2,
XCMPLX_1: 89
.= ((((1
/ (
sin (x
+ (h
/ 2))))
- (
sin (x
+ (h
/ 2))))
- (1
/ (
sin (x
- (h
/ 2)))))
+ (
sin (x
- (h
/ 2))));
hence thesis;
end;
theorem ::
DIFF_3:89
(for x holds (f
. x)
= ((
cot
(#)
sin )
. x)) & x0
in (
dom
cot ) & x1
in (
dom
cot ) implies
[!f, x0, x1!]
= (((
cos x0)
- (
cos x1))
/ (x0
- x1))
proof
assume that
A1: for x holds (f
. x)
= ((
cot
(#)
sin )
. x) and
A2: x0
in (
dom
cot ) & x1
in (
dom
cot );
A3: (f
. x0)
= ((
cot
(#)
sin )
. x0) by
A1;
(f
. x1)
= ((
cot
(#)
sin )
. x1) by
A1;
then
[!f, x0, x1!]
= ((((
cot
. x0)
* (
sin
. x0))
- ((
cot
(#)
sin )
. x1))
/ (x0
- x1)) by
A3,
VALUED_1: 5
.= ((((
cot
. x0)
* (
sin
. x0))
- ((
cot
. x1)
* (
sin
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cos
. x0)
* ((
sin
. x0)
" ))
* (
sin
. x0))
- ((
cot
. x1)
* (
sin
. x1)))
/ (x0
- x1)) by
A2,
RFUNCT_1:def 1
.= (((((
cos x0)
/ (
sin x0))
* (
sin x0))
- (((
cos x1)
/ (
sin x1))
* (
sin x1)))
/ (x0
- x1)) by
A2,
RFUNCT_1:def 1
.= ((((
cos x0)
/ ((
sin x0)
/ (
sin x0)))
- (((
cos x1)
/ (
sin x1))
* (
sin x1)))
/ (x0
- x1)) by
XCMPLX_1: 82
.= ((((
cos x0)
/ ((
sin x0)
* (1
/ (
sin x0))))
- ((
cos x1)
/ ((
sin x1)
/ (
sin x1))))
/ (x0
- x1)) by
XCMPLX_1: 82
.= ((((
cos x0)
/ 1)
- ((
cos x1)
/ ((
sin x1)
* (1
/ (
sin x1)))))
/ (x0
- x1)) by
A2,
FDIFF_8: 2,
XCMPLX_1: 106
.= ((((
cos x0)
/ 1)
- ((
cos x1)
/ 1))
/ (x0
- x1)) by
A2,
FDIFF_8: 2,
XCMPLX_1: 106
.= (((
cos x0)
- (
cos x1))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_3:90
(for x holds (f
. x)
= ((
cot
(#)
sin )
. x)) & x
in (
dom
cot ) & (x
+ h)
in (
dom
cot ) implies ((
fD (f,h))
. x)
= ((
cos (x
+ h))
- (
cos x))
proof
assume that
A1: for x holds (f
. x)
= ((
cot
(#)
sin )
. x) and
A2: x
in (
dom
cot ) & (x
+ h)
in (
dom
cot );
((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x)) by
DIFF_1: 3
.= (((
cot
(#)
sin )
. (x
+ h))
- (f
. x)) by
A1
.= (((
cot
(#)
sin )
. (x
+ h))
- ((
cot
(#)
sin )
. x)) by
A1
.= (((
cot
. (x
+ h))
* (
sin
. (x
+ h)))
- ((
cot
(#)
sin )
. x)) by
VALUED_1: 5
.= (((
cot
. (x
+ h))
* (
sin
. (x
+ h)))
- ((
cot
. x)
* (
sin
. x))) by
VALUED_1: 5
.= ((((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" ))
* (
sin
. (x
+ h)))
- ((
cot
. x)
* (
sin
. x))) by
A2,
RFUNCT_1:def 1
.= ((((
cos (x
+ h))
/ (
sin (x
+ h)))
* (
sin (x
+ h)))
- (((
cos x)
/ (
sin x))
* (
sin x))) by
A2,
RFUNCT_1:def 1
.= (((
cos (x
+ h))
/ ((
sin (x
+ h))
/ (
sin (x
+ h))))
- (((
cos x)
/ (
sin x))
* (
sin x))) by
XCMPLX_1: 82
.= (((
cos (x
+ h))
/ ((
sin (x
+ h))
* (1
/ (
sin (x
+ h)))))
- ((
cos x)
/ ((
sin x)
/ (
sin x)))) by
XCMPLX_1: 82
.= (((
cos (x
+ h))
/ 1)
- ((
cos x)
/ ((
sin x)
* (1
/ (
sin x))))) by
A2,
FDIFF_8: 2,
XCMPLX_1: 106
.= (((
cos (x
+ h))
/ 1)
- ((
cos x)
/ 1)) by
A2,
FDIFF_8: 2,
XCMPLX_1: 106
.= ((
cos (x
+ h))
- (
cos x));
hence thesis;
end;
theorem ::
DIFF_3:91
(for x holds (f
. x)
= ((
cot
(#)
sin )
. x)) & x
in (
dom
cot ) & (x
- h)
in (
dom
cot ) implies ((
bD (f,h))
. x)
= ((
cos x)
- (
cos (x
- h)))
proof
assume that
A1: for x holds (f
. x)
= ((
cot
(#)
sin )
. x) and
A2: x
in (
dom
cot ) & (x
- h)
in (
dom
cot );
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= (((
cot
(#)
sin )
. x)
- (f
. (x
- h))) by
A1
.= (((
cot
(#)
sin )
. x)
- ((
cot
(#)
sin )
. (x
- h))) by
A1
.= (((
cot
. x)
* (
sin
. x))
- ((
cot
(#)
sin )
. (x
- h))) by
VALUED_1: 5
.= (((
cot
. x)
* (
sin
. x))
- ((
cot
. (x
- h))
* (
sin
. (x
- h)))) by
VALUED_1: 5
.= ((((
cos
. x)
* ((
sin
. x)
" ))
* (
sin
. x))
- ((
cot
. (x
- h))
* (
sin
. (x
- h)))) by
A2,
RFUNCT_1:def 1
.= ((((
cos x)
/ (
sin x))
* (
sin x))
- (((
cos (x
- h))
/ (
sin (x
- h)))
* (
sin (x
- h)))) by
A2,
RFUNCT_1:def 1
.= (((
cos x)
/ ((
sin x)
/ (
sin x)))
- (((
cos (x
- h))
/ (
sin (x
- h)))
* (
sin (x
- h)))) by
XCMPLX_1: 82
.= (((
cos x)
/ ((
sin x)
* (1
/ (
sin x))))
- ((
cos (x
- h))
/ ((
sin (x
- h))
/ (
sin (x
- h))))) by
XCMPLX_1: 82
.= (((
cos x)
/ 1)
- ((
cos (x
- h))
/ ((
sin (x
- h))
* (1
/ (
sin (x
- h)))))) by
A2,
FDIFF_8: 2,
XCMPLX_1: 106
.= (((
cos x)
/ 1)
- ((
cos (x
- h))
/ 1)) by
A2,
FDIFF_8: 2,
XCMPLX_1: 106
.= ((
cos x)
- (
cos (x
- h)));
hence thesis;
end;
theorem ::
DIFF_3:92
(for x holds (f
. x)
= ((
cot
(#)
sin )
. x)) & (x
+ (h
/ 2))
in (
dom
cot ) & (x
- (h
/ 2))
in (
dom
cot ) implies ((
cD (f,h))
. x)
= ((
cos (x
+ (h
/ 2)))
- (
cos (x
- (h
/ 2))))
proof
assume that
A1: for x holds (f
. x)
= ((
cot
(#)
sin )
. x) and
A2: (x
+ (h
/ 2))
in (
dom
cot ) & (x
- (h
/ 2))
in (
dom
cot );
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((
cot
(#)
sin )
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
A1
.= (((
cot
(#)
sin )
. (x
+ (h
/ 2)))
- ((
cot
(#)
sin )
. (x
- (h
/ 2)))) by
A1
.= (((
cot
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
- ((
cot
(#)
sin )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((
cot
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
- ((
cot
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" ))
* (
sin
. (x
+ (h
/ 2))))
- ((
cot
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 1
.= ((((
cos (x
+ (h
/ 2)))
/ (
sin (x
+ (h
/ 2))))
* (
sin (x
+ (h
/ 2))))
- (((
cos (x
- (h
/ 2)))
/ (
sin (x
- (h
/ 2))))
* (
sin (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 1
.= (((
cos (x
+ (h
/ 2)))
/ ((
sin (x
+ (h
/ 2)))
/ (
sin (x
+ (h
/ 2)))))
- (((
cos (x
- (h
/ 2)))
/ (
sin (x
- (h
/ 2))))
* (
sin (x
- (h
/ 2))))) by
XCMPLX_1: 82
.= (((
cos (x
+ (h
/ 2)))
/ ((
sin (x
+ (h
/ 2)))
* (1
/ (
sin (x
+ (h
/ 2))))))
- ((
cos (x
- (h
/ 2)))
/ ((
sin (x
- (h
/ 2)))
/ (
sin (x
- (h
/ 2)))))) by
XCMPLX_1: 82
.= (((
cos (x
+ (h
/ 2)))
/ 1)
- ((
cos (x
- (h
/ 2)))
/ ((
sin (x
- (h
/ 2)))
* (1
/ (
sin (x
- (h
/ 2))))))) by
A2,
FDIFF_8: 2,
XCMPLX_1: 106
.= (((
cos (x
+ (h
/ 2)))
/ 1)
- ((
cos (x
- (h
/ 2)))
/ 1)) by
A2,
FDIFF_8: 2,
XCMPLX_1: 106
.= ((
cos (x
+ (h
/ 2)))
- (
cos (x
- (h
/ 2))));
hence thesis;
end;
theorem ::
DIFF_3:93
(for x holds (f
. x)
= ((
tan
(#)
tan )
. x)) & x0
in (
dom
tan ) & x1
in (
dom
tan ) implies
[!f, x0, x1!]
= ((((
cos x1)
^2 )
- ((
cos x0)
^2 ))
/ ((((
cos x0)
* (
cos x1))
^2 )
* (x0
- x1)))
proof
assume that
A1: for x holds (f
. x)
= ((
tan
(#)
tan )
. x) and
A2: x0
in (
dom
tan ) & x1
in (
dom
tan );
A3: (
cos x0)
<>
0 & (
cos x1)
<>
0 by
A2,
FDIFF_8: 1;
A4: (f
. x0)
= ((
tan
(#)
tan )
. x0) by
A1;
(f
. x1)
= ((
tan
(#)
tan )
. x1) by
A1;
then
[!f, x0, x1!]
= ((((
tan
. x0)
* (
tan
. x0))
- ((
tan
(#)
tan )
. x1))
/ (x0
- x1)) by
A4,
VALUED_1: 5
.= ((((
tan
. x0)
* (
tan
. x0))
- ((
tan
. x1)
* (
tan
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin
. x0)
* ((
cos
. x0)
" ))
* (
tan
. x0))
- ((
tan
. x1)
* (
tan
. x1)))
/ (x0
- x1)) by
A2,
RFUNCT_1:def 1
.= (((((
sin
. x0)
* ((
cos
. x0)
" ))
* ((
sin
. x0)
* ((
cos
. x0)
" )))
- ((
tan
. x1)
* (
tan
. x1)))
/ (x0
- x1)) by
A2,
RFUNCT_1:def 1
.= (((((
sin
. x0)
* ((
cos
. x0)
" ))
* ((
sin
. x0)
* ((
cos
. x0)
" )))
- (((
sin
. x1)
* ((
cos
. x1)
" ))
* (
tan
. x1)))
/ (x0
- x1)) by
A2,
RFUNCT_1:def 1
.= ((((
tan x0)
^2 )
- ((
tan x1)
^2 ))
/ (x0
- x1)) by
A2,
RFUNCT_1:def 1
.= ((((
tan x0)
- (
tan x1))
* ((
tan x0)
+ (
tan x1)))
/ (x0
- x1))
.= ((((
sin (x0
- x1))
/ ((
cos x0)
* (
cos x1)))
* ((
tan x0)
+ (
tan x1)))
/ (x0
- x1)) by
A3,
SIN_COS4: 20
.= ((((
sin (x0
- x1))
/ ((
cos x0)
* (
cos x1)))
* ((
sin (x0
+ x1))
/ ((
cos x0)
* (
cos x1))))
/ (x0
- x1)) by
A3,
SIN_COS4: 19
.= ((((
sin (x0
+ x1))
* (
sin (x0
- x1)))
/ (((
cos x0)
* (
cos x1))
^2 ))
/ (x0
- x1)) by
XCMPLX_1: 76
.= (((((
cos x1)
^2 )
- ((
cos x0)
^2 ))
/ (((
cos x0)
* (
cos x1))
^2 ))
/ (x0
- x1)) by
SIN_COS4: 38
.= ((((
cos x1)
^2 )
- ((
cos x0)
^2 ))
/ ((((
cos x0)
* (
cos x1))
^2 )
* (x0
- x1))) by
XCMPLX_1: 78;
hence thesis;
end;
theorem ::
DIFF_3:94
(for x holds (f
. x)
= ((
tan
(#)
tan )
. x)) & x
in (
dom
tan ) & (x
+ h)
in (
dom
tan ) implies ((
fD (f,h))
. x)
= (
- (((1
/ 2)
* ((
cos (2
* (x
+ h)))
- (
cos (2
* x))))
/ (((
cos (x
+ h))
* (
cos x))
^2 )))
proof
assume that
A1: for x holds (f
. x)
= ((
tan
(#)
tan )
. x) and
A2: x
in (
dom
tan ) & (x
+ h)
in (
dom
tan );
A3: (
cos x)
<>
0 & (
cos (x
+ h))
<>
0 by
A2,
FDIFF_8: 1;
((
fD (f,h))
. x)
= ((f
. (x
+ h))
- (f
. x)) by
DIFF_1: 3
.= (((
tan
(#)
tan )
. (x
+ h))
- (f
. x)) by
A1
.= (((
tan
(#)
tan )
. (x
+ h))
- ((
tan
(#)
tan )
. x)) by
A1
.= (((
tan
. (x
+ h))
* (
tan
. (x
+ h)))
- ((
tan
(#)
tan )
. x)) by
VALUED_1: 5
.= (((
tan
. (x
+ h))
* (
tan
. (x
+ h)))
- ((
tan
. x)
* (
tan
. x))) by
VALUED_1: 5
.= ((((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" ))
* (
tan
. (x
+ h)))
- ((
tan
. x)
* (
tan
. x))) by
A2,
RFUNCT_1:def 1
.= ((((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" ))
* ((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" )))
- ((
tan
. x)
* (
tan
. x))) by
A2,
RFUNCT_1:def 1
.= ((((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" ))
* ((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" )))
- (((
sin
. x)
* ((
cos
. x)
" ))
* (
tan
. x))) by
A2,
RFUNCT_1:def 1
.= (((
tan (x
+ h))
^2 )
- ((
tan x)
^2 )) by
A2,
RFUNCT_1:def 1
.= (((
tan (x
+ h))
- (
tan x))
* ((
tan (x
+ h))
+ (
tan x)))
.= (((
sin ((x
+ h)
- x))
/ ((
cos (x
+ h))
* (
cos x)))
* ((
tan (x
+ h))
+ (
tan x))) by
A3,
SIN_COS4: 20
.= (((
sin ((x
+ h)
- x))
/ ((
cos (x
+ h))
* (
cos x)))
* ((
sin ((x
+ h)
+ x))
/ ((
cos (x
+ h))
* (
cos x)))) by
A3,
SIN_COS4: 19
.= (((
sin ((2
* x)
+ h))
* (
sin h))
/ (((
cos (x
+ h))
* (
cos x))
^2 )) by
XCMPLX_1: 76
.= ((
- ((1
/ 2)
* ((
cos (((2
* x)
+ h)
+ h))
- (
cos (((2
* x)
+ h)
- h)))))
/ (((
cos (x
+ h))
* (
cos x))
^2 )) by
SIN_COS4: 29
.= (
- (((1
/ 2)
* ((
cos (2
* (x
+ h)))
- (
cos (2
* x))))
/ (((
cos (x
+ h))
* (
cos x))
^2 )));
hence thesis;
end;
theorem ::
DIFF_3:95
(for x holds (f
. x)
= ((
tan
(#)
tan )
. x)) & x
in (
dom
tan ) & (x
- h)
in (
dom
tan ) implies ((
bD (f,h))
. x)
= (
- (((1
/ 2)
* ((
cos (2
* x))
- (
cos (2
* (h
- x)))))
/ (((
cos x)
* (
cos (x
- h)))
^2 )))
proof
assume that
A1: for x holds (f
. x)
= ((
tan
(#)
tan )
. x) and
A2: x
in (
dom
tan ) & (x
- h)
in (
dom
tan );
A3: (
cos x)
<>
0 & (
cos (x
- h))
<>
0 by
A2,
FDIFF_8: 1;
((
bD (f,h))
. x)
= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= (((
tan
(#)
tan )
. x)
- (f
. (x
- h))) by
A1
.= (((
tan
(#)
tan )
. x)
- ((
tan
(#)
tan )
. (x
- h))) by
A1
.= (((
tan
. x)
* (
tan
. x))
- ((
tan
(#)
tan )
. (x
- h))) by
VALUED_1: 5
.= (((
tan
. x)
* (
tan
. x))
- ((
tan
. (x
- h))
* (
tan
. (x
- h)))) by
VALUED_1: 5
.= ((((
sin
. x)
* ((
cos
. x)
" ))
* (
tan
. x))
- ((
tan
. (x
- h))
* (
tan
. (x
- h)))) by
A2,
RFUNCT_1:def 1
.= ((((
sin
. x)
* ((
cos
. x)
" ))
* ((
sin
. x)
* ((
cos
. x)
" )))
- ((
tan
. (x
- h))
* (
tan
. (x
- h)))) by
A2,
RFUNCT_1:def 1
.= ((((
sin
. x)
* ((
cos
. x)
" ))
* ((
sin
. x)
* ((
cos
. x)
" )))
- (((
sin
. (x
- h))
* ((
cos
. (x
- h))
" ))
* (
tan
. (x
- h)))) by
A2,
RFUNCT_1:def 1
.= (((
tan x)
^2 )
- ((
tan (x
- h))
^2 )) by
A2,
RFUNCT_1:def 1
.= (((
tan x)
- (
tan (x
- h)))
* ((
tan x)
+ (
tan (x
- h))))
.= (((
sin (x
- (x
- h)))
/ ((
cos x)
* (
cos (x
- h))))
* ((
tan x)
+ (
tan (x
- h)))) by
A3,
SIN_COS4: 20
.= (((
sin h)
/ ((
cos x)
* (
cos (x
- h))))
* ((
sin (x
+ (x
- h)))
/ ((
cos x)
* (
cos (x
- h))))) by
A3,
SIN_COS4: 19
.= (((
sin h)
* (
sin ((2
* x)
- h)))
/ (((
cos x)
* (
cos (x
- h)))
^2 )) by
XCMPLX_1: 76
.= ((
- ((1
/ 2)
* ((
cos (h
+ ((2
* x)
- h)))
- (
cos (h
- ((2
* x)
- h))))))
/ (((
cos x)
* (
cos (x
- h)))
^2 )) by
SIN_COS4: 29
.= (
- (((1
/ 2)
* ((
cos (2
* x))
- (
cos (2
* (h
- x)))))
/ (((
cos x)
* (
cos (x
- h)))
^2 )));
hence thesis;
end;
theorem ::
DIFF_3:96
(for x holds (f
. x)
= ((
tan
(#)
tan )
. x)) & (x
+ (h
/ 2))
in (
dom
tan ) & (x
- (h
/ 2))
in (
dom
tan ) implies ((
cD (f,h))
. x)
= (
- (((1
/ 2)
* ((
cos (h
+ (2
* x)))
- (
cos (h
- (2
* x)))))
/ (((
cos (x
+ (h
/ 2)))
* (
cos (x
- (h
/ 2))))
^2 )))
proof
assume that
A1: for x holds (f
. x)
= ((
tan
(#)
tan )
. x) and
A2: (x
+ (h
/ 2))
in (
dom
tan ) & (x
- (h
/ 2))
in (
dom
tan );
A3: (
cos (x
+ (h
/ 2)))
<>
0 & (
cos (x
- (h
/ 2)))
<>
0 by
A2,
FDIFF_8: 1;
((
cD (f,h))
. x)
= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((
tan
(#)
tan )
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
A1
.= (((
tan
(#)
tan )
. (x
+ (h
/ 2)))
- ((
tan
(#)
tan )
. (x
- (h
/ 2)))) by
A1
.= (((
tan
. (x
+ (h
/ 2)))
* (
tan
. (x
+ (h
/ 2))))
- ((
tan
(#)
tan )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((
tan
. (x
+ (h
/ 2)))
* (
tan
. (x
+ (h
/ 2))))
- ((
tan
. (x
- (h
/ 2)))
* (
tan
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" ))
* (
tan
. (x
+ (h
/ 2))))
- ((
tan
. (x
- (h
/ 2)))
* (
tan
. (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 1
.= ((((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" ))
* ((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" )))
- ((
tan
. (x
- (h
/ 2)))
* (
tan
. (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 1
.= ((((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" ))
* ((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" )))
- (((
sin
. (x
- (h
/ 2)))
* ((
cos
. (x
- (h
/ 2)))
" ))
* (
tan
. (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 1
.= (((
tan (x
+ (h
/ 2)))
^2 )
- ((
tan (x
- (h
/ 2)))
^2 )) by
A2,
RFUNCT_1:def 1
.= (((
tan (x
+ (h
/ 2)))
- (
tan (x
- (h
/ 2))))
* ((
tan (x
+ (h
/ 2)))
+ (
tan (x
- (h
/ 2)))))
.= (((
sin ((x
+ (h
/ 2))
- (x
- (h
/ 2))))
/ ((
cos (x
+ (h
/ 2)))
* (
cos (x
- (h
/ 2)))))
* ((
tan (x
+ (h
/ 2)))
+ (
tan (x
- (h
/ 2))))) by
A3,
SIN_COS4: 20
.= (((
sin h)
/ ((
cos (x
+ (h
/ 2)))
* (
cos (x
- (h
/ 2)))))
* ((
sin ((x
+ (h
/ 2))
+ (x
- (h
/ 2))))
/ ((
cos (x
+ (h
/ 2)))
* (
cos (x
- (h
/ 2)))))) by
A3,
SIN_COS4: 19
.= (((
sin h)
* (
sin (2
* x)))
/ (((
cos (x
+ (h
/ 2)))
* (
cos (x
- (h
/ 2))))
^2 )) by
XCMPLX_1: 76
.= ((
- ((1
/ 2)
* ((
cos (h
+ (2
* x)))
- (
cos (h
- (2
* x))))))
/ (((
cos (x
+ (h
/ 2)))
* (
cos (x
- (h
/ 2))))
^2 )) by
SIN_COS4: 29
.= (
- (((1
/ 2)
* ((
cos (h
+ (2
* x)))
- (
cos (h
- (2
* x)))))
/ (((
cos (x
+ (h
/ 2)))
* (
cos (x
- (h
/ 2))))
^2 )));
hence thesis;
end;