diff_3.miz
    
    begin
    
    reserve n,m for
    Element of 
    NAT ; 
    
    reserve h,k,r,r1,r2,x,x0,x1,x2,x3 for
    Real;
    
    reserve f,f1,f2 for
    Function of 
    REAL , 
    REAL ; 
    
    theorem :: 
    
    DIFF_3:1
    
    
    
    
    
    Th1: (( 
    cD (f,h)) 
    . x) 
    = ((( 
    fD (f,(h 
    / 2))) 
    . x) 
    - (( 
    fD (f,( 
    - (h 
    / 2)))) 
    . x)) 
    
    proof
    
      ((
    cD (f,h)) 
    . x) 
    = ((((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . x)) 
    + (f 
    . x)) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= (((f
    . (x 
    + (h 
    / 2))) 
    - (f 
    . x)) 
    - ((f 
    . (x 
    - (h 
    / 2))) 
    - (f 
    . x))) 
    
      .= (((
    fD (f,(h 
    / 2))) 
    . x) 
    - ((f 
    . (x 
    - (h 
    / 2))) 
    - (f 
    . x))) by 
    DIFF_1: 3
    
      .= (((
    fD (f,(h 
    / 2))) 
    . x) 
    - (( 
    fD (f,( 
    - (h 
    / 2)))) 
    . x)) by 
    DIFF_1: 3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:2
    
    
    
    
    
    Th2: (( 
    fD (f,( 
    - (h 
    / 2)))) 
    . x) 
    = ( 
    - (( 
    bD (f,(h 
    / 2))) 
    . x)) 
    
    proof
    
      ((
    fD (f,( 
    - (h 
    / 2)))) 
    . x) 
    = ((f 
    . (x 
    - (h 
    / 2))) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= (
    - ((f 
    . x) 
    - (f 
    . (x 
    - (h 
    / 2))))) 
    
      .= (
    - (( 
    bD (f,(h 
    / 2))) 
    . x)) by 
    DIFF_1: 4;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:3
    
    ((
    cD (f,h)) 
    . x) 
    = ((( 
    bD (f,(h 
    / 2))) 
    . x) 
    - (( 
    bD (f,( 
    - (h 
    / 2)))) 
    . x)) 
    
    proof
    
      ((
    fD (f,(h 
    / 2))) 
    . x) 
    = ( 
    - (( 
    bD (f,( 
    - (h 
    / 2)))) 
    . x)) 
    
      proof
    
        ((
    fD (f,(h 
    / 2))) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
        .= (
    - ((f 
    . x) 
    - (f 
    . (x 
    - ( 
    - (h 
    / 2)))))) 
    
        .= (
    - (( 
    bD (f,( 
    - (h 
    / 2)))) 
    . x)) by 
    DIFF_1: 4;
    
        hence thesis;
    
      end;
    
      
    
      then ((
    cD (f,h)) 
    . x) 
    = (( 
    - (( 
    bD (f,( 
    - (h 
    / 2)))) 
    . x)) 
    - (( 
    fD (f,( 
    - (h 
    / 2)))) 
    . x)) by 
    Th1
    
      .= ((
    - (( 
    bD (f,( 
    - (h 
    / 2)))) 
    . x)) 
    - ( 
    - (( 
    bD (f,(h 
    / 2))) 
    . x))) by 
    Th2
    
      .= (((
    bD (f,(h 
    / 2))) 
    . x) 
    - (( 
    bD (f,( 
    - (h 
    / 2)))) 
    . x)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:4
    
    (((
    fdif (((r 
    (#) f1) 
    + f2),h)) 
    . (n 
    + 1)) 
    . x) 
    = ((r 
    * ((( 
    fdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    + ((( 
    fdif (f2,h)) 
    . (n 
    + 1)) 
    . x)) 
    
    proof
    
      set g = (r
    (#) f1); 
    
      (((
    fdif (((r 
    (#) f1) 
    + f2),h)) 
    . (n 
    + 1)) 
    . x) 
    = (((( 
    fdif (g,h)) 
    . (n 
    + 1)) 
    . x) 
    + ((( 
    fdif (f2,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 8
    
      .= ((r
    * ((( 
    fdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    + ((( 
    fdif (f2,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:5
    
    (((
    fdif ((f1 
    + (r 
    (#) f2)),h)) 
    . (n 
    + 1)) 
    . x) 
    = (((( 
    fdif (f1,h)) 
    . (n 
    + 1)) 
    . x) 
    + (r 
    * ((( 
    fdif (f2,h)) 
    . (n 
    + 1)) 
    . x))) 
    
    proof
    
      set g = (r
    (#) f2); 
    
      (((
    fdif ((f1 
    + (r 
    (#) f2)),h)) 
    . (n 
    + 1)) 
    . x) 
    = (((( 
    fdif (f1,h)) 
    . (n 
    + 1)) 
    . x) 
    + ((( 
    fdif (g,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 8
    
      .= ((((
    fdif (f1,h)) 
    . (n 
    + 1)) 
    . x) 
    + (r 
    * ((( 
    fdif (f2,h)) 
    . (n 
    + 1)) 
    . x))) by 
    DIFF_1: 7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:6
    
    (((
    fdif (((r1 
    (#) f1) 
    - (r2 
    (#) f2)),h)) 
    . (n 
    + 1)) 
    . x) 
    = ((r1 
    * ((( 
    fdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    - (r2 
    * ((( 
    fdif (f2,h)) 
    . (n 
    + 1)) 
    . x))) 
    
    proof
    
      set g1 = (r1
    (#) f1); 
    
      set g2 = (r2
    (#) f2); 
    
      (((
    fdif (((r1 
    (#) f1) 
    - (r2 
    (#) f2)),h)) 
    . (n 
    + 1)) 
    . x) 
    = (((( 
    fdif (g1,h)) 
    . (n 
    + 1)) 
    . x) 
    - ((( 
    fdif (g2,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 9
    
      .= ((r1
    * ((( 
    fdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    - ((( 
    fdif (g2,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 7
    
      .= ((r1
    * ((( 
    fdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    - (r2 
    * ((( 
    fdif (f2,h)) 
    . (n 
    + 1)) 
    . x))) by 
    DIFF_1: 7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:7
    
    ((
    fdif (f,h)) 
    . 1) 
    = ( 
    fD (f,h)) 
    
    proof
    
      ((
    fdif (f,h)) 
    . 1) 
    = (( 
    fdif (f,h)) 
    . ( 
    0  
    + 1)) 
    
      .= (
    fD ((( 
    fdif (f,h)) 
    .  
    0 ),h)) by 
    DIFF_1:def 6
    
      .= (
    fD (f,h)) by 
    DIFF_1:def 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:8
    
    (((
    bdif (((r 
    (#) f1) 
    + f2),h)) 
    . (n 
    + 1)) 
    . x) 
    = ((r 
    * ((( 
    bdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    + ((( 
    bdif (f2,h)) 
    . (n 
    + 1)) 
    . x)) 
    
    proof
    
      set g = (r
    (#) f1); 
    
      (((
    bdif (((r 
    (#) f1) 
    + f2),h)) 
    . (n 
    + 1)) 
    . x) 
    = (((( 
    bdif (g,h)) 
    . (n 
    + 1)) 
    . x) 
    + ((( 
    bdif (f2,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 15
    
      .= ((r
    * ((( 
    bdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    + ((( 
    bdif (f2,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 14;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:9
    
    (((
    bdif ((f1 
    + (r 
    (#) f2)),h)) 
    . (n 
    + 1)) 
    . x) 
    = (((( 
    bdif (f1,h)) 
    . (n 
    + 1)) 
    . x) 
    + (r 
    * ((( 
    bdif (f2,h)) 
    . (n 
    + 1)) 
    . x))) 
    
    proof
    
      set g = (r
    (#) f2); 
    
      (((
    bdif ((f1 
    + (r 
    (#) f2)),h)) 
    . (n 
    + 1)) 
    . x) 
    = (((( 
    bdif (f1,h)) 
    . (n 
    + 1)) 
    . x) 
    + ((( 
    bdif (g,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 15
    
      .= ((((
    bdif (f1,h)) 
    . (n 
    + 1)) 
    . x) 
    + (r 
    * ((( 
    bdif (f2,h)) 
    . (n 
    + 1)) 
    . x))) by 
    DIFF_1: 14;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:10
    
    (((
    bdif (((r1 
    (#) f1) 
    - (r2 
    (#) f2)),h)) 
    . (n 
    + 1)) 
    . x) 
    = ((r1 
    * ((( 
    bdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    - (r2 
    * ((( 
    bdif (f2,h)) 
    . (n 
    + 1)) 
    . x))) 
    
    proof
    
      set g1 = (r1
    (#) f1); 
    
      set g2 = (r2
    (#) f2); 
    
      (((
    bdif (((r1 
    (#) f1) 
    - (r2 
    (#) f2)),h)) 
    . (n 
    + 1)) 
    . x) 
    = (((( 
    bdif (g1,h)) 
    . (n 
    + 1)) 
    . x) 
    - ((( 
    bdif (g2,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 16
    
      .= ((r1
    * ((( 
    bdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    - ((( 
    bdif (g2,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 14
    
      .= ((r1
    * ((( 
    bdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    - (r2 
    * ((( 
    bdif (f2,h)) 
    . (n 
    + 1)) 
    . x))) by 
    DIFF_1: 14;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:11
    
    
    
    
    
    Th11: (( 
    bdif (f,h)) 
    . 1) 
    = ( 
    bD (f,h)) 
    
    proof
    
      ((
    bdif (f,h)) 
    . 1) 
    = (( 
    bdif (f,h)) 
    . ( 
    0  
    + 1)) 
    
      .= (
    bD ((( 
    bdif (f,h)) 
    .  
    0 ),h)) by 
    DIFF_1:def 7
    
      .= (
    bD (f,h)) by 
    DIFF_1:def 7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:12
    
    (((
    bdif ((( 
    bdif (f,h)) 
    . m),h)) 
    . n) 
    . x) 
    = ((( 
    bdif (f,h)) 
    . (m 
    + n)) 
    . x) 
    
    proof
    
      defpred
    
    X[
    Nat] means for x holds (((
    bdif ((( 
    bdif (f,h)) 
    . m),h)) 
    . $1) 
    . x) 
    = ((( 
    bdif (f,h)) 
    . (m 
    + $1)) 
    . x); 
    
      
    
      
    
    A1: 
    X[
    0 ] by 
    DIFF_1:def 7;
    
      
    
      
    
    A2: for i be 
    Nat st 
    X[i] holds
    X[(i
    + 1)] 
    
      proof
    
        let i be
    Nat;
    
        assume
    
        
    
    A3: for x holds ((( 
    bdif ((( 
    bdif (f,h)) 
    . m),h)) 
    . i) 
    . x) 
    = ((( 
    bdif (f,h)) 
    . (m 
    + i)) 
    . x); 
    
        let x;
    
        ((
    bdif (f,h)) 
    . m) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 12;
    
        then
    
        
    
    A4: (( 
    bdif ((( 
    bdif (f,h)) 
    . m),h)) 
    . i) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 12;
    
        
    
        
    
    A5: (( 
    bdif (f,h)) 
    . (m 
    + i)) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 12;
    
        (((
    bdif ((( 
    bdif (f,h)) 
    . m),h)) 
    . (i 
    + 1)) 
    . x) 
    = (( 
    bD ((( 
    bdif ((( 
    bdif (f,h)) 
    . m),h)) 
    . i),h)) 
    . x) by 
    DIFF_1:def 7
    
        .= ((((
    bdif ((( 
    bdif (f,h)) 
    . m),h)) 
    . i) 
    . x) 
    - ((( 
    bdif ((( 
    bdif (f,h)) 
    . m),h)) 
    . i) 
    . (x 
    - h))) by 
    A4,
    DIFF_1: 4
    
        .= ((((
    bdif (f,h)) 
    . (m 
    + i)) 
    . x) 
    - ((( 
    bdif ((( 
    bdif (f,h)) 
    . m),h)) 
    . i) 
    . (x 
    - h))) by 
    A3
    
        .= ((((
    bdif (f,h)) 
    . (m 
    + i)) 
    . x) 
    - ((( 
    bdif (f,h)) 
    . (m 
    + i)) 
    . (x 
    - h))) by 
    A3
    
        .= ((
    bD ((( 
    bdif (f,h)) 
    . (m 
    + i)),h)) 
    . x) by 
    A5,
    DIFF_1: 4
    
        .= (((
    bdif (f,h)) 
    . ((m 
    + i) 
    + 1)) 
    . x) by 
    DIFF_1:def 7;
    
        hence thesis;
    
      end;
    
      for n be
    Nat holds 
    X[n] from
    NAT_1:sch 2(
    A1,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:13
    
    (((
    cdif (((r 
    (#) f1) 
    + f2),h)) 
    . (n 
    + 1)) 
    . x) 
    = ((r 
    * ((( 
    cdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    + ((( 
    cdif (f2,h)) 
    . (n 
    + 1)) 
    . x)) 
    
    proof
    
      set g = (r
    (#) f1); 
    
      (((
    cdif (((r 
    (#) f1) 
    + f2),h)) 
    . (n 
    + 1)) 
    . x) 
    = (((( 
    cdif (g,h)) 
    . (n 
    + 1)) 
    . x) 
    + ((( 
    cdif (f2,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 22
    
      .= ((r
    * ((( 
    cdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    + ((( 
    cdif (f2,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 21;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:14
    
    (((
    cdif ((f1 
    + (r 
    (#) f2)),h)) 
    . (n 
    + 1)) 
    . x) 
    = (((( 
    cdif (f1,h)) 
    . (n 
    + 1)) 
    . x) 
    + (r 
    * ((( 
    cdif (f2,h)) 
    . (n 
    + 1)) 
    . x))) 
    
    proof
    
      set g = (r
    (#) f2); 
    
      (((
    cdif ((f1 
    + (r 
    (#) f2)),h)) 
    . (n 
    + 1)) 
    . x) 
    = (((( 
    cdif (f1,h)) 
    . (n 
    + 1)) 
    . x) 
    + ((( 
    cdif (g,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 22
    
      .= ((((
    cdif (f1,h)) 
    . (n 
    + 1)) 
    . x) 
    + (r 
    * ((( 
    cdif (f2,h)) 
    . (n 
    + 1)) 
    . x))) by 
    DIFF_1: 21;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:15
    
    (((
    cdif (((r1 
    (#) f1) 
    - (r2 
    (#) f2)),h)) 
    . (n 
    + 1)) 
    . x) 
    = ((r1 
    * ((( 
    cdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    - (r2 
    * ((( 
    cdif (f2,h)) 
    . (n 
    + 1)) 
    . x))) 
    
    proof
    
      set g1 = (r1
    (#) f1); 
    
      set g2 = (r2
    (#) f2); 
    
      (((
    cdif (((r1 
    (#) f1) 
    - (r2 
    (#) f2)),h)) 
    . (n 
    + 1)) 
    . x) 
    = (((( 
    cdif (g1,h)) 
    . (n 
    + 1)) 
    . x) 
    - ((( 
    cdif (g2,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 23
    
      .= ((r1
    * ((( 
    cdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    - ((( 
    cdif (g2,h)) 
    . (n 
    + 1)) 
    . x)) by 
    DIFF_1: 21
    
      .= ((r1
    * ((( 
    cdif (f1,h)) 
    . (n 
    + 1)) 
    . x)) 
    - (r2 
    * ((( 
    cdif (f2,h)) 
    . (n 
    + 1)) 
    . x))) by 
    DIFF_1: 21;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:16
    
    
    
    
    
    Th16: (( 
    cdif (f,h)) 
    . 1) 
    = ( 
    cD (f,h)) 
    
    proof
    
      ((
    cdif (f,h)) 
    . 1) 
    = (( 
    cdif (f,h)) 
    . ( 
    0  
    + 1)) 
    
      .= (
    cD ((( 
    cdif (f,h)) 
    .  
    0 ),h)) by 
    DIFF_1:def 8
    
      .= (
    cD (f,h)) by 
    DIFF_1:def 8;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:17
    
    (((
    cdif ((( 
    cdif (f,h)) 
    . m),h)) 
    . n) 
    . x) 
    = ((( 
    cdif (f,h)) 
    . (m 
    + n)) 
    . x) 
    
    proof
    
      defpred
    
    X[
    Nat] means for x holds (((
    cdif ((( 
    cdif (f,h)) 
    . m),h)) 
    . $1) 
    . x) 
    = ((( 
    cdif (f,h)) 
    . (m 
    + $1)) 
    . x); 
    
      
    
      
    
    A1: 
    X[
    0 ] by 
    DIFF_1:def 8;
    
      
    
      
    
    A2: for i be 
    Nat st 
    X[i] holds
    X[(i
    + 1)] 
    
      proof
    
        let i be
    Nat;
    
        assume
    
        
    
    A3: for x holds ((( 
    cdif ((( 
    cdif (f,h)) 
    . m),h)) 
    . i) 
    . x) 
    = ((( 
    cdif (f,h)) 
    . (m 
    + i)) 
    . x); 
    
        let x;
    
        ((
    cdif (f,h)) 
    . m) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 19;
    
        then
    
        
    
    A4: (( 
    cdif ((( 
    cdif (f,h)) 
    . m),h)) 
    . i) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 19;
    
        
    
        
    
    A5: (( 
    cdif (f,h)) 
    . (m 
    + i)) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 19;
    
        (((
    cdif ((( 
    cdif (f,h)) 
    . m),h)) 
    . (i 
    + 1)) 
    . x) 
    = (( 
    cD ((( 
    cdif ((( 
    cdif (f,h)) 
    . m),h)) 
    . i),h)) 
    . x) by 
    DIFF_1:def 8
    
        .= ((((
    cdif ((( 
    cdif (f,h)) 
    . m),h)) 
    . i) 
    . (x 
    + (h 
    / 2))) 
    - ((( 
    cdif ((( 
    cdif (f,h)) 
    . m),h)) 
    . i) 
    . (x 
    - (h 
    / 2)))) by 
    A4,
    DIFF_1: 5
    
        .= ((((
    cdif (f,h)) 
    . (m 
    + i)) 
    . (x 
    + (h 
    / 2))) 
    - ((( 
    cdif ((( 
    cdif (f,h)) 
    . m),h)) 
    . i) 
    . (x 
    - (h 
    / 2)))) by 
    A3
    
        .= ((((
    cdif (f,h)) 
    . (m 
    + i)) 
    . (x 
    + (h 
    / 2))) 
    - ((( 
    cdif (f,h)) 
    . (m 
    + i)) 
    . (x 
    - (h 
    / 2)))) by 
    A3
    
        .= ((
    cD ((( 
    cdif (f,h)) 
    . (m 
    + i)),h)) 
    . x) by 
    A5,
    DIFF_1: 5
    
        .= (((
    cdif (f,h)) 
    . ((m 
    + i) 
    + 1)) 
    . x) by 
    DIFF_1:def 8;
    
        hence thesis;
    
      end;
    
      for n be
    Nat holds 
    X[n] from
    NAT_1:sch 2(
    A1,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:18
    
    (((
    fdif (f,h)) 
    . n) 
    . x) 
    = ((( 
    cdif (f,h)) 
    . n) 
    . (x 
    + ((n 
    / 2) 
    * h))) implies ((( 
    bdif (f,h)) 
    . n) 
    . x) 
    = ((( 
    cdif (f,h)) 
    . n) 
    . (x 
    - ((n 
    / 2) 
    * h))) 
    
    proof
    
      defpred
    
    X[
    Nat] means for x holds (((
    bdif (f,h)) 
    . $1) 
    . x) 
    = ((( 
    cdif (f,h)) 
    . $1) 
    . (x 
    - (($1 
    / 2) 
    * h))); 
    
      
    
      
    
    A1: 
    X[
    0 ] 
    
      proof
    
        let x;
    
        (((
    bdif (f,h)) 
    .  
    0 ) 
    . x) 
    = (f 
    . x) by 
    DIFF_1:def 7
    
        .= (((
    cdif (f,h)) 
    .  
    0 ) 
    . (x 
    - (( 
    0  
    / 2) 
    * h))) by 
    DIFF_1:def 8;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A2: for i be 
    Nat st 
    X[i] holds
    X[(i
    + 1)] 
    
      proof
    
        let i be
    Nat;
    
        assume
    
        
    
    A3: for x holds ((( 
    bdif (f,h)) 
    . i) 
    . x) 
    = ((( 
    cdif (f,h)) 
    . i) 
    . (x 
    - ((i 
    / 2) 
    * h))); 
    
        let x;
    
        
    
        
    
    A4: (( 
    bdif (f,h)) 
    . i) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 12;
    
        
    
        
    
    A5: (( 
    cdif (f,h)) 
    . i) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 19;
    
        (((
    bdif (f,h)) 
    . (i 
    + 1)) 
    . x) 
    = (( 
    bD ((( 
    bdif (f,h)) 
    . i),h)) 
    . x) by 
    DIFF_1:def 7
    
        .= ((((
    bdif (f,h)) 
    . i) 
    . x) 
    - ((( 
    bdif (f,h)) 
    . i) 
    . (x 
    - h))) by 
    A4,
    DIFF_1: 4
    
        .= ((((
    cdif (f,h)) 
    . i) 
    . (x 
    - ((i 
    / 2) 
    * h))) 
    - ((( 
    bdif (f,h)) 
    . i) 
    . (x 
    - h))) by 
    A3
    
        .= ((((
    cdif (f,h)) 
    . i) 
    . (x 
    - ((i 
    / 2) 
    * h))) 
    - ((( 
    cdif (f,h)) 
    . i) 
    . ((x 
    - h) 
    - ((i 
    / 2) 
    * h)))) by 
    A3
    
        .= ((((
    cdif (f,h)) 
    . i) 
    . ((x 
    - (((i 
    + 1) 
    / 2) 
    * h)) 
    + (h 
    / 2))) 
    - ((( 
    cdif (f,h)) 
    . i) 
    . ((x 
    - (((i 
    + 1) 
    / 2) 
    * h)) 
    - (h 
    / 2)))) 
    
        .= ((
    cD ((( 
    cdif (f,h)) 
    . i),h)) 
    . (x 
    - (((i 
    + 1) 
    / 2) 
    * h))) by 
    A5,
    DIFF_1: 5
    
        .= (((
    cdif (f,h)) 
    . (i 
    + 1)) 
    . (x 
    - (((i 
    + 1) 
    / 2) 
    * h))) by 
    DIFF_1:def 8;
    
        hence thesis;
    
      end;
    
      for n be
    Nat holds 
    X[n] from
    NAT_1:sch 2(
    A1,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:19
    
    (((
    fdif (f,h)) 
    . n) 
    . x) 
    = ((( 
    cdif (f,h)) 
    . n) 
    . ((x 
    + (((n 
    - 1) 
    / 2) 
    * h)) 
    + (h 
    / 2))) implies ((( 
    bdif (f,h)) 
    . n) 
    . x) 
    = ((( 
    cdif (f,h)) 
    . n) 
    . ((x 
    - (((n 
    - 1) 
    / 2) 
    * h)) 
    - (h 
    / 2))) 
    
    proof
    
      defpred
    
    X[
    Nat] means for x holds (((
    bdif (f,h)) 
    . $1) 
    . x) 
    = ((( 
    cdif (f,h)) 
    . $1) 
    . ((x 
    - ((($1 
    - 1) 
    / 2) 
    * h)) 
    - (h 
    / 2))); 
    
      
    
      
    
    A1: 
    X[
    0 ] 
    
      proof
    
        let x;
    
        (((
    bdif (f,h)) 
    .  
    0 ) 
    . x) 
    = (f 
    . x) by 
    DIFF_1:def 7
    
        .= (((
    cdif (f,h)) 
    .  
    0 ) 
    . ((x 
    - ((( 
    0  
    - 1) 
    / 2) 
    * h)) 
    - (h 
    / 2))) by 
    DIFF_1:def 8;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A2: for i be 
    Nat st 
    X[i] holds
    X[(i
    + 1)] 
    
      proof
    
        let i be
    Nat;
    
        assume
    
        
    
    A3: for x holds ((( 
    bdif (f,h)) 
    . i) 
    . x) 
    = ((( 
    cdif (f,h)) 
    . i) 
    . ((x 
    - (((i 
    - 1) 
    / 2) 
    * h)) 
    - (h 
    / 2))); 
    
        let x;
    
        
    
        
    
    A4: (( 
    bdif (f,h)) 
    . i) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 12;
    
        
    
        
    
    A5: (( 
    cdif (f,h)) 
    . i) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 19;
    
        (((
    bdif (f,h)) 
    . (i 
    + 1)) 
    . x) 
    = (( 
    bD ((( 
    bdif (f,h)) 
    . i),h)) 
    . x) by 
    DIFF_1:def 7
    
        .= ((((
    bdif (f,h)) 
    . i) 
    . x) 
    - ((( 
    bdif (f,h)) 
    . i) 
    . (x 
    - h))) by 
    A4,
    DIFF_1: 4
    
        .= ((((
    cdif (f,h)) 
    . i) 
    . ((x 
    - (((i 
    - 1) 
    / 2) 
    * h)) 
    - (h 
    / 2))) 
    - ((( 
    bdif (f,h)) 
    . i) 
    . (x 
    - h))) by 
    A3
    
        .= ((((
    cdif (f,h)) 
    . i) 
    . ((x 
    - (((i 
    - 1) 
    / 2) 
    * h)) 
    - (h 
    / 2))) 
    - ((( 
    cdif (f,h)) 
    . i) 
    . (((x 
    - h) 
    - (((i 
    - 1) 
    / 2) 
    * h)) 
    - (h 
    / 2)))) by 
    A3
    
        .= ((((
    cdif (f,h)) 
    . i) 
    . (((x 
    - ((i 
    / 2) 
    * h)) 
    - (h 
    / 2)) 
    + (h 
    / 2))) 
    - ((( 
    cdif (f,h)) 
    . i) 
    . (((x 
    - ((i 
    / 2) 
    * h)) 
    - (h 
    / 2)) 
    - (h 
    / 2)))) 
    
        .= ((
    cD ((( 
    cdif (f,h)) 
    . i),h)) 
    . ((x 
    - ((i 
    / 2) 
    * h)) 
    - (h 
    / 2))) by 
    A5,
    DIFF_1: 5
    
        .= (((
    cdif (f,h)) 
    . (i 
    + 1)) 
    . ((x 
    - ((i 
    / 2) 
    * h)) 
    - (h 
    / 2))) by 
    DIFF_1:def 8;
    
        hence thesis;
    
      end;
    
      for n be
    Nat holds 
    X[n] from
    NAT_1:sch 2(
    A1,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:20
    
    
    [!f, x, (x
    + h)!] 
    = ((( 
    fD (f,h)) 
    . x) 
    / h) 
    
    proof
    
      
    [!f, x, (x
    + h)!] 
    = (( 
    - ((f 
    . (x 
    + h)) 
    - (f 
    . x))) 
    / ( 
    - h)) 
    
      .= (((f
    . (x 
    + h)) 
    - (f 
    . x)) 
    / h) by 
    XCMPLX_1: 191
    
      .= (((
    fD (f,h)) 
    . x) 
    / h) by 
    DIFF_1: 3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:21
    
    
    [!f, (x
    - h), x!] 
    = ((( 
    bD (f,h)) 
    . x) 
    / h) 
    
    proof
    
      
    [!f, (x
    - h), x!] 
    = (((( 
    bdif (f,h)) 
    . 1) 
    . x) 
    / h) by 
    DIFF_2: 3
    
      .= (((
    bD (f,h)) 
    . x) 
    / h) by 
    Th11;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:22
    
    
    
    
    
    Th22: 
    [!f, (x
    - (h 
    / 2)), (x 
    + (h 
    / 2))!] 
    = ((( 
    cD (f,h)) 
    . x) 
    / h) 
    
    proof
    
      
    [!f, (x
    - (h 
    / 2)), (x 
    + (h 
    / 2))!] 
    =  
    [!f, (x
    + (h 
    / 2)), (x 
    - (h 
    / 2))!] by 
    DIFF_1: 29
    
      .= (((
    cD (f,h)) 
    . x) 
    / h) by 
    DIFF_1: 5;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:23
    
    
    
    
    
    Th23: 
    [!f, (x
    - (h 
    / 2)), (x 
    + (h 
    / 2))!] 
    = (((( 
    cdif (f,h)) 
    . 1) 
    . x) 
    / h) 
    
    proof
    
      
    [!f, (x
    - (h 
    / 2)), (x 
    + (h 
    / 2))!] 
    = ((( 
    cD (f,h)) 
    . x) 
    / h) by 
    Th22
    
      .= ((((
    cdif (f,h)) 
    . 1) 
    . x) 
    / h) by 
    Th16;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:24
    
    h
    <>  
    0 implies 
    [!f, (x
    - h), x, (x 
    + h)!] 
    = (((( 
    cdif (f,h)) 
    . 2) 
    . x) 
    / ((2 
    * h) 
    * h)) 
    
    proof
    
      assume h
    <>  
    0 ; 
    
      then (x
    - h) 
    <> x & (x 
    - h) 
    <> (x 
    + h) & x 
    <> (x 
    + h); 
    
      then
    
      
    
    A1: ((x 
    - h),x,(x 
    + h)) 
    are_mutually_distinct by 
    ZFMISC_1:def 5;
    
      
    
      
    
    A2: (( 
    cdif (f,h)) 
    . 1) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 19;
    
      
    [!f, (x
    - h), x, (x 
    + h)!] 
    =  
    [!f, (x
    + h), x, (x 
    - h)!] by 
    A1,
    DIFF_1: 34
    
      .= ((
    [!f, x, (x
    + h)!] 
    -  
    [!f, x, (x
    - h)!]) 
    / ((x 
    + h) 
    - (x 
    - h))) by 
    DIFF_1: 29
    
      .= ((
    [!f, ((x
    + (h 
    / 2)) 
    - (h 
    / 2)), ((x 
    + (h 
    / 2)) 
    + (h 
    / 2))!] 
    -  
    [!f, ((x
    - (h 
    / 2)) 
    - (h 
    / 2)), ((x 
    - (h 
    / 2)) 
    + (h 
    / 2))!]) 
    / ((x 
    + h) 
    - (x 
    - h))) by 
    DIFF_1: 29
    
      .= ((((((
    cdif (f,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    / h) 
    -  
    [!f, ((x
    - (h 
    / 2)) 
    - (h 
    / 2)), ((x 
    - (h 
    / 2)) 
    + (h 
    / 2))!]) 
    / ((x 
    + h) 
    - (x 
    - h))) by 
    Th23
    
      .= ((((((
    cdif (f,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    / h) 
    - (((( 
    cdif (f,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))) 
    / h)) 
    / ((x 
    + h) 
    - (x 
    - h))) by 
    Th23
    
      .= ((((((
    cdif (f,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    - ((( 
    cdif (f,h)) 
    . 1) 
    . (x 
    - (h 
    / 2)))) 
    / h) 
    / ((x 
    + h) 
    - (x 
    - h))) 
    
      .= ((((
    cD ((( 
    cdif (f,h)) 
    . 1),h)) 
    . x) 
    / h) 
    / (2 
    * h)) by 
    A2,
    DIFF_1: 5
    
      .= (((((
    cdif (f,h)) 
    . (1 
    + 1)) 
    . x) 
    / h) 
    / (2 
    * h)) by 
    DIFF_1:def 8
    
      .= ((((
    cdif (f,h)) 
    . 2) 
    . x) 
    / ((2 
    * h) 
    * h)) by 
    XCMPLX_1: 78;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:25
    
    
    
    
    
    Th25: 
    [!(f1
    - f2), x0, x1!] 
    = ( 
    [!f1, x0, x1!]
    -  
    [!f2, x0, x1!])
    
    proof
    
      reconsider x0, x1 as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      
    [!(f1
    - f2), x0, x1!] 
    = ((((f1 
    . x0) 
    - (f2 
    . x0)) 
    - ((f1 
    - f2) 
    . x1)) 
    / (x0 
    - x1)) by 
    VALUED_1: 15
    
      .= ((((f1
    . x0) 
    - (f2 
    . x0)) 
    - ((f1 
    . x1) 
    - (f2 
    . x1))) 
    / (x0 
    - x1)) by 
    VALUED_1: 15
    
      .= (
    [!f1, x0, x1!]
    -  
    [!f2, x0, x1!]);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:26
    
    
    [!((r
    (#) f1) 
    + f2), x0, x1!] 
    = ((r 
    *  
    [!f1, x0, x1!])
    +  
    [!f2, x0, x1!])
    
    proof
    
      set g = (r
    (#) f1); 
    
      
    [!((r
    (#) f1) 
    + f2), x0, x1!] 
    = ( 
    [!g, x0, x1!]
    +  
    [!f2, x0, x1!]) by
    DIFF_1: 32
    
      .= ((r
    *  
    [!f1, x0, x1!])
    +  
    [!f2, x0, x1!]) by
    DIFF_1: 31;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:27
    
    
    [!((r
    (#) f1) 
    - f2), x0, x1!] 
    = ((r 
    *  
    [!f1, x0, x1!])
    -  
    [!f2, x0, x1!])
    
    proof
    
      set g = (r
    (#) f1); 
    
      
    [!((r
    (#) f1) 
    - f2), x0, x1!] 
    = ( 
    [!g, x0, x1!]
    -  
    [!f2, x0, x1!]) by
    Th25
    
      .= ((r
    *  
    [!f1, x0, x1!])
    -  
    [!f2, x0, x1!]) by
    DIFF_1: 31;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:28
    
    
    [!(f1
    + (r 
    (#) f2)), x0, x1!] 
    = ( 
    [!f1, x0, x1!]
    + (r 
    *  
    [!f2, x0, x1!]))
    
    proof
    
      set g = (r
    (#) f2); 
    
      
    [!(f1
    + (r 
    (#) f2)), x0, x1!] 
    = ( 
    [!f1, x0, x1!]
    +  
    [!g, x0, x1!]) by
    DIFF_1: 32
    
      .= (
    [!f1, x0, x1!]
    + (r 
    *  
    [!f2, x0, x1!])) by
    DIFF_1: 31;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:29
    
    
    [!(f1
    - (r 
    (#) f2)), x0, x1!] 
    = ( 
    [!f1, x0, x1!]
    - (r 
    *  
    [!f2, x0, x1!]))
    
    proof
    
      set g = (r
    (#) f2); 
    
      
    [!(f1
    - (r 
    (#) f2)), x0, x1!] 
    = ( 
    [!f1, x0, x1!]
    -  
    [!g, x0, x1!]) by
    Th25
    
      .= (
    [!f1, x0, x1!]
    - (r 
    *  
    [!f2, x0, x1!])) by
    DIFF_1: 31;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:30
    
    
    [!((r1
    (#) f1) 
    - (r2 
    (#) f2)), x0, x1!] 
    = ((r1 
    *  
    [!f1, x0, x1!])
    - (r2 
    *  
    [!f2, x0, x1!]))
    
    proof
    
      set g1 = (r1
    (#) f1); 
    
      set g2 = (r2
    (#) f2); 
    
      
    [!((r1
    (#) f1) 
    - (r2 
    (#) f2)), x0, x1!] 
    = ( 
    [!g1, x0, x1!]
    -  
    [!g2, x0, x1!]) by
    Th25
    
      .= ((r1
    *  
    [!f1, x0, x1!])
    -  
    [!g2, x0, x1!]) by
    DIFF_1: 31
    
      .= ((r1
    *  
    [!f1, x0, x1!])
    - (r2 
    *  
    [!f2, x0, x1!])) by
    DIFF_1: 31;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:31
    
    
    
    
    
    Th31: ((( 
    bdif ((f1 
    (#) f2),h)) 
    . 1) 
    . x) 
    = (((f1 
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . x)) 
    + ((f2 
    . (x 
    - h)) 
    * ((( 
    bdif (f1,h)) 
    . 1) 
    . x))) 
    
    proof
    
      (((
    bdif ((f1 
    (#) f2),h)) 
    . 1) 
    . x) 
    = ((( 
    bdif ((f1 
    (#) f2),h)) 
    . ( 
    0  
    + 1)) 
    . x) 
    
      .= ((
    bD ((( 
    bdif ((f1 
    (#) f2),h)) 
    .  
    0 ),h)) 
    . x) by 
    DIFF_1:def 7
    
      .= ((
    bD ((f1 
    (#) f2),h)) 
    . x) by 
    DIFF_1:def 7
    
      .= (((f1
    (#) f2) 
    . x) 
    - ((f1 
    (#) f2) 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= (((f1
    . x) 
    * (f2 
    . x)) 
    - ((f1 
    (#) f2) 
    . (x 
    - h))) by 
    VALUED_1: 5
    
      .= (((f1
    . x) 
    * (f2 
    . x)) 
    - ((f1 
    . (x 
    - h)) 
    * (f2 
    . (x 
    - h)))) by 
    VALUED_1: 5
    
      .= (((f1
    . x) 
    * ((f2 
    . x) 
    - (f2 
    . (x 
    - h)))) 
    + ((f2 
    . (x 
    - h)) 
    * ((f1 
    . x) 
    - (f1 
    . (x 
    - h))))) 
    
      .= (((f1
    . x) 
    * (( 
    bD (f2,h)) 
    . x)) 
    + ((f2 
    . (x 
    - h)) 
    * ((f1 
    . x) 
    - (f1 
    . (x 
    - h))))) by 
    DIFF_1: 4
    
      .= (((f1
    . x) 
    * (( 
    bD (f2,h)) 
    . x)) 
    + ((f2 
    . (x 
    - h)) 
    * (( 
    bD (f1,h)) 
    . x))) by 
    DIFF_1: 4
    
      .= (((f1
    . x) 
    * (( 
    bD ((( 
    bdif (f2,h)) 
    .  
    0 ),h)) 
    . x)) 
    + ((f2 
    . (x 
    - h)) 
    * (( 
    bD (f1,h)) 
    . x))) by 
    DIFF_1:def 7
    
      .= (((f1
    . x) 
    * (( 
    bD ((( 
    bdif (f2,h)) 
    .  
    0 ),h)) 
    . x)) 
    + ((f2 
    . (x 
    - h)) 
    * (( 
    bD ((( 
    bdif (f1,h)) 
    .  
    0 ),h)) 
    . x))) by 
    DIFF_1:def 7
    
      .= (((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . ( 
    0  
    + 1)) 
    . x)) 
    + ((f2 
    . (x 
    - h)) 
    * (( 
    bD ((( 
    bdif (f1,h)) 
    .  
    0 ),h)) 
    . x))) by 
    DIFF_1:def 7
    
      .= (((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . x)) 
    + ((f2 
    . (x 
    - h)) 
    * ((( 
    bdif (f1,h)) 
    . 1) 
    . x))) by 
    DIFF_1:def 7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:32
    
    (x0,x1,x2)
    are_mutually_distinct implies 
    [!f, x0, x1, x2!]
    =  
    [!f, x0, x2, x1!]
    
    proof
    
      assume (x0,x1,x2)
    are_mutually_distinct ; 
    
      then
    
      
    
    A1: (x2 
    - x1) 
    <>  
    0 & (x2 
    - x0) 
    <>  
    0 & (x1 
    - x0) 
    <>  
    0 by 
    ZFMISC_1:def 5;
    
      set x10 = (x1
    - x0); 
    
      set x20 = (x2
    - x0); 
    
      set x21 = (x2
    - x1); 
    
      
    
      
    
    A2: 
    [!f, x0, x2, x1!]
    = (((((f 
    . x0) 
    - (f 
    . x2)) 
    / ( 
    - (x2 
    - x0))) 
    - (((f 
    . x2) 
    - (f 
    . x1)) 
    / (x2 
    - x1))) 
    / ( 
    - (x1 
    - x0))) 
    
      .= (((
    - (((f 
    . x0) 
    - (f 
    . x2)) 
    / (x2 
    - x0))) 
    - (((f 
    . x2) 
    - (f 
    . x1)) 
    / (x2 
    - x1))) 
    / ( 
    - (x1 
    - x0))) by 
    XCMPLX_1: 188
    
      .= ((
    - ((((f 
    . x0) 
    - (f 
    . x2)) 
    / (x2 
    - x0)) 
    + (((f 
    . x2) 
    - (f 
    . x1)) 
    / (x2 
    - x1)))) 
    / ( 
    - (x1 
    - x0))) 
    
      .= (((((f
    . x0) 
    - (f 
    . x2)) 
    / (x2 
    - x0)) 
    + (((f 
    . x2) 
    - (f 
    . x1)) 
    / (x2 
    - x1))) 
    / (x1 
    - x0)) by 
    XCMPLX_1: 191
    
      .= ((((((f
    . x0) 
    - (f 
    . x2)) 
    * x21) 
    + (((f 
    . x2) 
    - (f 
    . x1)) 
    * x20)) 
    / (x20 
    * x21)) 
    / x10) by 
    A1,
    XCMPLX_1: 116
    
      .= (((((f
    . x0) 
    * x21) 
    - ((f 
    . x1) 
    * x20)) 
    + ((f 
    . x2) 
    * x10)) 
    / ((x20 
    * x21) 
    * x10)) by 
    XCMPLX_1: 78;
    
      
    [!f, x0, x1, x2!]
    = (((((f 
    . x0) 
    - (f 
    . x1)) 
    / ( 
    - (x1 
    - x0))) 
    - (((f 
    . x1) 
    - (f 
    . x2)) 
    / ( 
    - (x2 
    - x1)))) 
    / ( 
    - (x2 
    - x0))) 
    
      .= (((
    - (((f 
    . x0) 
    - (f 
    . x1)) 
    / (x1 
    - x0))) 
    - (((f 
    . x1) 
    - (f 
    . x2)) 
    / ( 
    - (x2 
    - x1)))) 
    / ( 
    - (x2 
    - x0))) by 
    XCMPLX_1: 188
    
      .= (((
    - (((f 
    . x0) 
    - (f 
    . x1)) 
    / (x1 
    - x0))) 
    - ( 
    - (((f 
    . x1) 
    - (f 
    . x2)) 
    / (x2 
    - x1)))) 
    / ( 
    - (x2 
    - x0))) by 
    XCMPLX_1: 188
    
      .= ((
    - ((((f 
    . x0) 
    - (f 
    . x1)) 
    / (x1 
    - x0)) 
    - (((f 
    . x1) 
    - (f 
    . x2)) 
    / (x2 
    - x1)))) 
    / ( 
    - (x2 
    - x0))) 
    
      .= (((((f
    . x0) 
    - (f 
    . x1)) 
    / (x1 
    - x0)) 
    - (((f 
    . x1) 
    - (f 
    . x2)) 
    / (x2 
    - x1))) 
    / (x2 
    - x0)) by 
    XCMPLX_1: 191
    
      .= ((((((f
    . x0) 
    - (f 
    . x1)) 
    * x21) 
    - (((f 
    . x1) 
    - (f 
    . x2)) 
    * x10)) 
    / (x10 
    * x21)) 
    / x20) by 
    A1,
    XCMPLX_1: 130
    
      .= (((((f
    . x0) 
    * x21) 
    - ((f 
    . x1) 
    * x20)) 
    + ((f 
    . x2) 
    * x10)) 
    / ((x10 
    * x21) 
    * x20)) by 
    XCMPLX_1: 78
    
      .=
    [!f, x0, x2, x1!] by
    A2;
    
      hence thesis;
    
    end;
    
    reserve S for
    Seq_Sequence;
    
    theorem :: 
    
    DIFF_3:33
    
    (for n,i be
    Nat st i 
    <= n holds ((S 
    . n) 
    . i) 
    = (((n 
    choose i) 
    * ((( 
    bdif (f1,h)) 
    . i) 
    . x)) 
    * ((( 
    bdif (f2,h)) 
    . (n 
    -' i)) 
    . (x 
    - (i 
    * h))))) implies ((( 
    bdif ((f1 
    (#) f2),h)) 
    . 1) 
    . x) 
    = ( 
    Sum ((S 
    . 1),1)) & ((( 
    bdif ((f1 
    (#) f2),h)) 
    . 2) 
    . x) 
    = ( 
    Sum ((S 
    . 2),2)) 
    
    proof
    
      assume
    
      
    
    A1: for n,i be 
    Nat st i 
    <= n holds ((S 
    . n) 
    . i) 
    = (((n 
    choose i) 
    * ((( 
    bdif (f1,h)) 
    . i) 
    . x)) 
    * ((( 
    bdif (f2,h)) 
    . (n 
    -' i)) 
    . (x 
    - (i 
    * h)))); 
    
      
    
      
    
    A2: (1 
    -'  
    0 ) 
    = (1 
    -  
    0 ) by 
    XREAL_1: 233
    
      .= 1;
    
      
    
      
    
    A3: ((S 
    . 1) 
    .  
    0 ) 
    = (((1 
    choose  
    0 ) 
    * ((( 
    bdif (f1,h)) 
    .  
    0 ) 
    . x)) 
    * ((( 
    bdif (f2,h)) 
    . (1 
    -'  
    0 )) 
    . (x 
    - ( 
    0  
    * h)))) by 
    A1
    
      .= ((1
    * ((( 
    bdif (f1,h)) 
    .  
    0 ) 
    . x)) 
    * ((( 
    bdif (f2,h)) 
    . (1 
    -'  
    0 )) 
    . (x 
    - ( 
    0  
    * h)))) by 
    NEWTON: 19
    
      .= ((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . x)) by 
    A2,
    DIFF_1:def 7;
    
      
    
      
    
    A4: (1 
    -' 1) 
    = (1 
    - 1) by 
    XREAL_1: 233
    
      .=
    0 ; 
    
      
    
      
    
    A5: ((S 
    . 1) 
    . 1) 
    = (((1 
    choose 1) 
    * ((( 
    bdif (f1,h)) 
    . 1) 
    . x)) 
    * ((( 
    bdif (f2,h)) 
    . (1 
    -' 1)) 
    . (x 
    - (1 
    * h)))) by 
    A1
    
      .= ((1
    * ((( 
    bdif (f1,h)) 
    . 1) 
    . x)) 
    * ((( 
    bdif (f2,h)) 
    . (1 
    -' 1)) 
    . (x 
    - (1 
    * h)))) by 
    NEWTON: 21
    
      .= ((f2
    . (x 
    - h)) 
    * ((( 
    bdif (f1,h)) 
    . 1) 
    . x)) by 
    A4,
    DIFF_1:def 7;
    
      
    
      
    
    A6: ( 
    Sum ((S 
    . 1),1)) 
    = (( 
    Partial_Sums (S 
    . 1)) 
    . ( 
    0  
    + 1)) by 
    SERIES_1:def 5
    
      .= (((
    Partial_Sums (S 
    . 1)) 
    .  
    0 ) 
    + ((S 
    . 1) 
    . 1)) by 
    SERIES_1:def 1
    
      .= (((S
    . 1) 
    .  
    0 ) 
    + ((S 
    . 1) 
    . 1)) by 
    SERIES_1:def 1
    
      .= (((
    bdif ((f1 
    (#) f2),h)) 
    . 1) 
    . x) by 
    A3,
    A5,
    Th31;
    
      
    
      
    
    A7: (( 
    bdif ((f1 
    (#) f2),h)) 
    . 1) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 12;
    
      
    
      
    
    A8: (( 
    bdif (f2,h)) 
    . 1) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 12;
    
      
    
      
    
    A9: (( 
    bdif (f1,h)) 
    . 1) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 12;
    
      
    
      
    
    A10: ((( 
    bdif ((f1 
    (#) f2),h)) 
    . 2) 
    . x) 
    = ((( 
    bdif ((f1 
    (#) f2),h)) 
    . (1 
    + 1)) 
    . x) 
    
      .= ((
    bD ((( 
    bdif ((f1 
    (#) f2),h)) 
    . 1),h)) 
    . x) by 
    DIFF_1:def 7
    
      .= ((((
    bdif ((f1 
    (#) f2),h)) 
    . 1) 
    . x) 
    - ((( 
    bdif ((f1 
    (#) f2),h)) 
    . 1) 
    . (x 
    - h))) by 
    A7,
    DIFF_1: 4
    
      .= ((((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . x)) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * (f2 
    . (x 
    - h)))) 
    - ((( 
    bdif ((f1 
    (#) f2),h)) 
    . 1) 
    . (x 
    - h))) by 
    Th31
    
      .= ((((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . x)) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * (f2 
    . (x 
    - h)))) 
    - (((f1 
    . (x 
    - h)) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h))) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . (x 
    - h)) 
    * (f2 
    . ((x 
    - h) 
    - h))))) by 
    Th31
    
      .= (((((f1
    . x) 
    * (((( 
    bdif (f2,h)) 
    . 1) 
    . x) 
    - ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h)))) 
    + (((f1 
    . x) 
    - (f1 
    . (x 
    - h))) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h)))) 
    - ((((( 
    bdif (f1,h)) 
    . 1) 
    . (x 
    - h)) 
    - ((( 
    bdif (f1,h)) 
    . 1) 
    . x)) 
    * (f2 
    . (x 
    - (2 
    * h))))) 
    - (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * ((f2 
    . (x 
    - (2 
    * h))) 
    - (f2 
    . (x 
    - h))))) 
    
      .= (((((f1
    . x) 
    * (( 
    bD ((( 
    bdif (f2,h)) 
    . 1),h)) 
    . x)) 
    + (((f1 
    . x) 
    - (f1 
    . (x 
    - h))) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h)))) 
    - ((((( 
    bdif (f1,h)) 
    . 1) 
    . (x 
    - h)) 
    - ((( 
    bdif (f1,h)) 
    . 1) 
    . x)) 
    * (f2 
    . (x 
    - (2 
    * h))))) 
    - (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * ((f2 
    . (x 
    - (2 
    * h))) 
    - (f2 
    . (x 
    - h))))) by 
    A8,
    DIFF_1: 4
    
      .= (((((f1
    . x) 
    * (( 
    bD ((( 
    bdif (f2,h)) 
    . 1),h)) 
    . x)) 
    + ((( 
    bD (f1,h)) 
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h)))) 
    + ((((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    - ((( 
    bdif (f1,h)) 
    . 1) 
    . (x 
    - h))) 
    * (f2 
    . (x 
    - (2 
    * h))))) 
    - (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * ((f2 
    . (x 
    - (2 
    * h))) 
    - (f2 
    . (x 
    - h))))) by 
    DIFF_1: 4
    
      .= (((((f1
    . x) 
    * (( 
    bD ((( 
    bdif (f2,h)) 
    . 1),h)) 
    . x)) 
    + ((( 
    bD (f1,h)) 
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h)))) 
    + ((( 
    bD ((( 
    bdif (f1,h)) 
    . 1),h)) 
    . x) 
    * (f2 
    . (x 
    - (2 
    * h))))) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * ((f2 
    . (x 
    - h)) 
    - (f2 
    . ((x 
    - h) 
    - h))))) by 
    A9,
    DIFF_1: 4
    
      .= (((((f1
    . x) 
    * (( 
    bD ((( 
    bdif (f2,h)) 
    . 1),h)) 
    . x)) 
    + ((( 
    bD (f1,h)) 
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h)))) 
    + ((( 
    bD ((( 
    bdif (f1,h)) 
    . 1),h)) 
    . x) 
    * (f2 
    . (x 
    - (2 
    * h))))) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * (( 
    bD (f2,h)) 
    . (x 
    - h)))) by 
    DIFF_1: 4
    
      .= (((((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . (1 
    + 1)) 
    . x)) 
    + ((( 
    bD (f1,h)) 
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h)))) 
    + ((( 
    bD ((( 
    bdif (f1,h)) 
    . 1),h)) 
    . x) 
    * (f2 
    . (x 
    - (2 
    * h))))) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * (( 
    bD (f2,h)) 
    . (x 
    - h)))) by 
    DIFF_1:def 7
    
      .= (((((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . (1 
    + 1)) 
    . x)) 
    + ((( 
    bD ((( 
    bdif (f1,h)) 
    .  
    0 ),h)) 
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h)))) 
    + ((( 
    bD ((( 
    bdif (f1,h)) 
    . 1),h)) 
    . x) 
    * (f2 
    . (x 
    - (2 
    * h))))) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * (( 
    bD (f2,h)) 
    . (x 
    - h)))) by 
    DIFF_1:def 7
    
      .= (((((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 2) 
    . x)) 
    + ((( 
    bD ((( 
    bdif (f1,h)) 
    .  
    0 ),h)) 
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h)))) 
    + (((( 
    bdif (f1,h)) 
    . 2) 
    . x) 
    * (f2 
    . (x 
    - (2 
    * h))))) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * (( 
    bD (f2,h)) 
    . (x 
    - h)))) by 
    DIFF_1:def 7
    
      .= (((((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 2) 
    . x)) 
    + (((( 
    bdif (f1,h)) 
    . ( 
    0  
    + 1)) 
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h)))) 
    + (((( 
    bdif (f1,h)) 
    . 2) 
    . x) 
    * (f2 
    . (x 
    - (2 
    * h))))) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * (( 
    bD (f2,h)) 
    . (x 
    - h)))) by 
    DIFF_1:def 7
    
      .= (((((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 2) 
    . x)) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h)))) 
    + (((( 
    bdif (f1,h)) 
    . 2) 
    . x) 
    * (f2 
    . (x 
    - (2 
    * h))))) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * (( 
    bD ((( 
    bdif (f2,h)) 
    .  
    0 ),h)) 
    . (x 
    - h)))) by 
    DIFF_1:def 7
    
      .= (((((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 2) 
    . x)) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h)))) 
    + (((( 
    bdif (f1,h)) 
    . 2) 
    . x) 
    * (f2 
    . (x 
    - (2 
    * h))))) 
    + (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * ((( 
    bdif (f2,h)) 
    . ( 
    0  
    + 1)) 
    . (x 
    - h)))) by 
    DIFF_1:def 7
    
      .= ((((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 2) 
    . x)) 
    + (2 
    * (((( 
    bdif (f1,h)) 
    . 1) 
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h))))) 
    + (((( 
    bdif (f1,h)) 
    . 2) 
    . x) 
    * (f2 
    . (x 
    - (2 
    * h))))); 
    
      
    
      
    
    A11: (2 
    -'  
    0 ) 
    = (2 
    -  
    0 ) by 
    XREAL_1: 233
    
      .= 2;
    
      
    
      
    
    A12: ((S 
    . 2) 
    .  
    0 ) 
    = (((2 
    choose  
    0 ) 
    * ((( 
    bdif (f1,h)) 
    .  
    0 ) 
    . x)) 
    * ((( 
    bdif (f2,h)) 
    . (2 
    -'  
    0 )) 
    . (x 
    - ( 
    0  
    * h)))) by 
    A1
    
      .= ((1
    * ((( 
    bdif (f1,h)) 
    .  
    0 ) 
    . x)) 
    * ((( 
    bdif (f2,h)) 
    . (2 
    -'  
    0 )) 
    . (x 
    - ( 
    0  
    * h)))) by 
    NEWTON: 19
    
      .= ((f1
    . x) 
    * ((( 
    bdif (f2,h)) 
    . 2) 
    . x)) by 
    A11,
    DIFF_1:def 7;
    
      
    
      
    
    A13: (2 
    -' 1) 
    = (2 
    - 1) by 
    XREAL_1: 233
    
      .= 1;
    
      
    
      
    
    A14: ((S 
    . 2) 
    . 1) 
    = (((2 
    choose 1) 
    * ((( 
    bdif (f1,h)) 
    . 1) 
    . x)) 
    * ((( 
    bdif (f2,h)) 
    . (2 
    -' 1)) 
    . (x 
    - (1 
    * h)))) by 
    A1
    
      .= ((2
    * ((( 
    bdif (f1,h)) 
    . 1) 
    . x)) 
    * ((( 
    bdif (f2,h)) 
    . 1) 
    . (x 
    - h))) by 
    A13,
    NEWTON: 23;
    
      
    
      
    
    A15: (2 
    -' 2) 
    = (2 
    - 2) by 
    XREAL_1: 233
    
      .=
    0 ; 
    
      
    
      
    
    A16: ((S 
    . 2) 
    . 2) 
    = (((2 
    choose 2) 
    * ((( 
    bdif (f1,h)) 
    . 2) 
    . x)) 
    * ((( 
    bdif (f2,h)) 
    . (2 
    -' 2)) 
    . (x 
    - (2 
    * h)))) by 
    A1
    
      .= ((1
    * ((( 
    bdif (f1,h)) 
    . 2) 
    . x)) 
    * ((( 
    bdif (f2,h)) 
    . (2 
    -' 2)) 
    . (x 
    - (2 
    * h)))) by 
    NEWTON: 21
    
      .= ((((
    bdif (f1,h)) 
    . 2) 
    . x) 
    * (f2 
    . (x 
    - (2 
    * h)))) by 
    A15,
    DIFF_1:def 7;
    
      (
    Sum ((S 
    . 2),2)) 
    = (( 
    Partial_Sums (S 
    . 2)) 
    . (1 
    + 1)) by 
    SERIES_1:def 5
    
      .= (((
    Partial_Sums (S 
    . 2)) 
    . ( 
    0  
    + 1)) 
    + ((S 
    . 2) 
    . 2)) by 
    SERIES_1:def 1
    
      .= ((((
    Partial_Sums (S 
    . 2)) 
    .  
    0 ) 
    + ((S 
    . 2) 
    . 1)) 
    + ((S 
    . 2) 
    . 2)) by 
    SERIES_1:def 1
    
      .= (((
    bdif ((f1 
    (#) f2),h)) 
    . 2) 
    . x) by 
    A10,
    A12,
    A14,
    A16,
    SERIES_1:def 1;
    
      hence thesis by
    A6;
    
    end;
    
    theorem :: 
    
    DIFF_3:34
    
    
    
    
    
    Th34: ((( 
    cdif ((f1 
    (#) f2),h)) 
    . 1) 
    . x) 
    = (((f1 
    . (x 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . x)) 
    + ((f2 
    . (x 
    - (h 
    / 2))) 
    * ((( 
    cdif (f1,h)) 
    . 1) 
    . x))) 
    
    proof
    
      (((
    cdif ((f1 
    (#) f2),h)) 
    . 1) 
    . x) 
    = ((( 
    cdif ((f1 
    (#) f2),h)) 
    . ( 
    0  
    + 1)) 
    . x) 
    
      .= ((
    cD ((( 
    cdif ((f1 
    (#) f2),h)) 
    .  
    0 ),h)) 
    . x) by 
    DIFF_1:def 8
    
      .= ((
    cD ((f1 
    (#) f2),h)) 
    . x) by 
    DIFF_1:def 8
    
      .= (((f1
    (#) f2) 
    . (x 
    + (h 
    / 2))) 
    - ((f1 
    (#) f2) 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= (((f1
    . (x 
    + (h 
    / 2))) 
    * (f2 
    . (x 
    + (h 
    / 2)))) 
    - ((f1 
    (#) f2) 
    . (x 
    - (h 
    / 2)))) by 
    VALUED_1: 5
    
      .= (((f1
    . (x 
    + (h 
    / 2))) 
    * (f2 
    . (x 
    + (h 
    / 2)))) 
    - ((f1 
    . (x 
    - (h 
    / 2))) 
    * (f2 
    . (x 
    - (h 
    / 2))))) by 
    VALUED_1: 5
    
      .= (((f1
    . (x 
    + (h 
    / 2))) 
    * ((f2 
    . (x 
    + (h 
    / 2))) 
    - (f2 
    . (x 
    - (h 
    / 2))))) 
    + ((f2 
    . (x 
    - (h 
    / 2))) 
    * ((f1 
    . (x 
    + (h 
    / 2))) 
    - (f1 
    . (x 
    - (h 
    / 2)))))) 
    
      .= (((f1
    . (x 
    + (h 
    / 2))) 
    * (( 
    cD (f2,h)) 
    . x)) 
    + ((f2 
    . (x 
    - (h 
    / 2))) 
    * ((f1 
    . (x 
    + (h 
    / 2))) 
    - (f1 
    . (x 
    - (h 
    / 2)))))) by 
    DIFF_1: 5
    
      .= (((f1
    . (x 
    + (h 
    / 2))) 
    * (( 
    cD (f2,h)) 
    . x)) 
    + ((f2 
    . (x 
    - (h 
    / 2))) 
    * (( 
    cD (f1,h)) 
    . x))) by 
    DIFF_1: 5
    
      .= (((f1
    . (x 
    + (h 
    / 2))) 
    * (( 
    cD ((( 
    cdif (f2,h)) 
    .  
    0 ),h)) 
    . x)) 
    + ((f2 
    . (x 
    - (h 
    / 2))) 
    * (( 
    cD (f1,h)) 
    . x))) by 
    DIFF_1:def 8
    
      .= (((f1
    . (x 
    + (h 
    / 2))) 
    * (( 
    cD ((( 
    cdif (f2,h)) 
    .  
    0 ),h)) 
    . x)) 
    + ((f2 
    . (x 
    - (h 
    / 2))) 
    * (( 
    cD ((( 
    cdif (f1,h)) 
    .  
    0 ),h)) 
    . x))) by 
    DIFF_1:def 8
    
      .= (((f1
    . (x 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . ( 
    0  
    + 1)) 
    . x)) 
    + ((f2 
    . (x 
    - (h 
    / 2))) 
    * (( 
    cD ((( 
    cdif (f1,h)) 
    .  
    0 ),h)) 
    . x))) by 
    DIFF_1:def 8
    
      .= (((f1
    . (x 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . x)) 
    + ((f2 
    . (x 
    - (h 
    / 2))) 
    * ((( 
    cdif (f1,h)) 
    . 1) 
    . x))) by 
    DIFF_1:def 8;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:35
    
    (for n,i be
    Nat st i 
    <= n holds ((S 
    . n) 
    . i) 
    = (((n 
    choose i) 
    * ((( 
    cdif (f1,h)) 
    . i) 
    . (x 
    + ((n 
    -' i) 
    * (h 
    / 2))))) 
    * ((( 
    cdif (f2,h)) 
    . (n 
    -' i)) 
    . (x 
    - (i 
    * (h 
    / 2)))))) implies ((( 
    cdif ((f1 
    (#) f2),h)) 
    . 1) 
    . x) 
    = ( 
    Sum ((S 
    . 1),1)) & ((( 
    cdif ((f1 
    (#) f2),h)) 
    . 2) 
    . x) 
    = ( 
    Sum ((S 
    . 2),2)) 
    
    proof
    
      assume
    
      
    
    A1: for n,i be 
    Nat st i 
    <= n holds ((S 
    . n) 
    . i) 
    = (((n 
    choose i) 
    * ((( 
    cdif (f1,h)) 
    . i) 
    . (x 
    + ((n 
    -' i) 
    * (h 
    / 2))))) 
    * ((( 
    cdif (f2,h)) 
    . (n 
    -' i)) 
    . (x 
    - (i 
    * (h 
    / 2))))); 
    
      
    
      
    
    A2: (1 
    -'  
    0 ) 
    = (1 
    -  
    0 ) by 
    XREAL_1: 233
    
      .= 1;
    
      
    
      
    
    A3: ((S 
    . 1) 
    .  
    0 ) 
    = (((1 
    choose  
    0 ) 
    * ((( 
    cdif (f1,h)) 
    .  
    0 ) 
    . (x 
    + ((1 
    -'  
    0 ) 
    * (h 
    / 2))))) 
    * ((( 
    cdif (f2,h)) 
    . (1 
    -'  
    0 )) 
    . (x 
    - ( 
    0  
    * (h 
    / 2))))) by 
    A1
    
      .= ((1
    * ((( 
    cdif (f1,h)) 
    .  
    0 ) 
    . (x 
    + ((1 
    -'  
    0 ) 
    * (h 
    / 2))))) 
    * ((( 
    cdif (f2,h)) 
    . (1 
    -'  
    0 )) 
    . (x 
    - ( 
    0  
    * (h 
    / 2))))) by 
    NEWTON: 19
    
      .= ((f1
    . (x 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . x)) by 
    A2,
    DIFF_1:def 8;
    
      
    
      
    
    A4: (1 
    -' 1) 
    = (1 
    - 1) by 
    XREAL_1: 233
    
      .=
    0 ; 
    
      
    
      
    
    A5: ((S 
    . 1) 
    . 1) 
    = (((1 
    choose 1) 
    * ((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + ((1 
    -' 1) 
    * (h 
    / 2))))) 
    * ((( 
    cdif (f2,h)) 
    . (1 
    -' 1)) 
    . (x 
    - (1 
    * (h 
    / 2))))) by 
    A1
    
      .= ((1
    * ((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + ((1 
    -' 1) 
    * (h 
    / 2))))) 
    * ((( 
    cdif (f2,h)) 
    . (1 
    -' 1)) 
    . (x 
    - (1 
    * (h 
    / 2))))) by 
    NEWTON: 21
    
      .= ((f2
    . (x 
    - (h 
    / 2))) 
    * ((( 
    cdif (f1,h)) 
    . 1) 
    . x)) by 
    A4,
    DIFF_1:def 8;
    
      
    
      
    
    A6: ( 
    Sum ((S 
    . 1),1)) 
    = (( 
    Partial_Sums (S 
    . 1)) 
    . ( 
    0  
    + 1)) by 
    SERIES_1:def 5
    
      .= (((
    Partial_Sums (S 
    . 1)) 
    .  
    0 ) 
    + ((S 
    . 1) 
    . 1)) by 
    SERIES_1:def 1
    
      .= (((S
    . 1) 
    .  
    0 ) 
    + ((S 
    . 1) 
    . 1)) by 
    SERIES_1:def 1
    
      .= (((
    cdif ((f1 
    (#) f2),h)) 
    . 1) 
    . x) by 
    A3,
    A5,
    Th34;
    
      
    
      
    
    A7: (( 
    cdif ((f1 
    (#) f2),h)) 
    . 1) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 19;
    
      
    
      
    
    A8: (( 
    cdif (f1,h)) 
    . 1) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 19;
    
      
    
      
    
    A9: (( 
    cdif (f2,h)) 
    . 1) is 
    Function of 
    REAL , 
    REAL by 
    DIFF_1: 19;
    
      
    
      
    
    A10: ((( 
    cdif ((f1 
    (#) f2),h)) 
    . 2) 
    . x) 
    = ((( 
    cdif ((f1 
    (#) f2),h)) 
    . (1 
    + 1)) 
    . x) 
    
      .= ((
    cD ((( 
    cdif ((f1 
    (#) f2),h)) 
    . 1),h)) 
    . x) by 
    DIFF_1:def 8
    
      .= ((((
    cdif ((f1 
    (#) f2),h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    - ((( 
    cdif ((f1 
    (#) f2),h)) 
    . 1) 
    . (x 
    - (h 
    / 2)))) by 
    A7,
    DIFF_1: 5
    
      .= ((((f1
    . ((x 
    + (h 
    / 2)) 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    + (h 
    / 2)))) 
    + (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * (f2 
    . ((x 
    + (h 
    / 2)) 
    - (h 
    / 2))))) 
    - ((( 
    cdif ((f1 
    (#) f2),h)) 
    . 1) 
    . (x 
    - (h 
    / 2)))) by 
    Th34
    
      .= ((((f1
    . (x 
    + h)) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    + (h 
    / 2)))) 
    + (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * (f2 
    . x))) 
    - (((f1 
    . ((x 
    - (h 
    / 2)) 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2)))) 
    + (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))) 
    * (f2 
    . ((x 
    - (h 
    / 2)) 
    - (h 
    / 2)))))) by 
    Th34
    
      .= (((((f1
    . (x 
    + h)) 
    * (((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    - ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))))) 
    + (((f1 
    . (x 
    + h)) 
    - (f1 
    . x)) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))))) 
    - ((((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))) 
    - ((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2)))) 
    * (f2 
    . (x 
    - h)))) 
    - (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * ((f2 
    . (x 
    - h)) 
    - (f2 
    . x)))) 
    
      .= (((((f1
    . (x 
    + h)) 
    * (( 
    cD ((( 
    cdif (f2,h)) 
    . 1),h)) 
    . x)) 
    + (((f1 
    . ((x 
    + (h 
    / 2)) 
    + (h 
    / 2))) 
    - (f1 
    . ((x 
    + (h 
    / 2)) 
    - (h 
    / 2)))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))))) 
    - ((((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))) 
    - ((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2)))) 
    * (f2 
    . (x 
    - h)))) 
    - (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * ((f2 
    . (x 
    - h)) 
    - (f2 
    . x)))) by 
    A9,
    DIFF_1: 5
    
      .= (((((f1
    . (x 
    + h)) 
    * (( 
    cD ((( 
    cdif (f2,h)) 
    . 1),h)) 
    . x)) 
    + ((( 
    cD (f1,h)) 
    . (x 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))))) 
    + ((((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    - ((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    - (h 
    / 2)))) 
    * (f2 
    . (x 
    - h)))) 
    - (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * ((f2 
    . (x 
    - h)) 
    - (f2 
    . x)))) by 
    DIFF_1: 5
    
      .= (((((f1
    . (x 
    + h)) 
    * (( 
    cD ((( 
    cdif (f2,h)) 
    . 1),h)) 
    . x)) 
    + ((( 
    cD (f1,h)) 
    . (x 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))))) 
    + ((( 
    cD ((( 
    cdif (f1,h)) 
    . 1),h)) 
    . x) 
    * (f2 
    . (x 
    - h)))) 
    + (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * ((f2 
    . ((x 
    - (h 
    / 2)) 
    + (h 
    / 2))) 
    - (f2 
    . ((x 
    - (h 
    / 2)) 
    - (h 
    / 2)))))) by 
    A8,
    DIFF_1: 5
    
      .= (((((f1
    . (x 
    + h)) 
    * (( 
    cD ((( 
    cdif (f2,h)) 
    . 1),h)) 
    . x)) 
    + ((( 
    cD (f1,h)) 
    . (x 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))))) 
    + ((( 
    cD ((( 
    cdif (f1,h)) 
    . 1),h)) 
    . x) 
    * (f2 
    . (x 
    - h)))) 
    + (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * (( 
    cD (f2,h)) 
    . (x 
    - (h 
    / 2))))) by 
    DIFF_1: 5
    
      .= (((((f1
    . (x 
    + h)) 
    * ((( 
    cdif (f2,h)) 
    . (1 
    + 1)) 
    . x)) 
    + ((( 
    cD (f1,h)) 
    . (x 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))))) 
    + ((( 
    cD ((( 
    cdif (f1,h)) 
    . 1),h)) 
    . x) 
    * (f2 
    . (x 
    - h)))) 
    + (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * (( 
    cD (f2,h)) 
    . (x 
    - (h 
    / 2))))) by 
    DIFF_1:def 8
    
      .= (((((f1
    . (x 
    + h)) 
    * ((( 
    cdif (f2,h)) 
    . 2) 
    . x)) 
    + (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))))) 
    + ((( 
    cD ((( 
    cdif (f1,h)) 
    . 1),h)) 
    . x) 
    * (f2 
    . (x 
    - h)))) 
    + (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * (( 
    cD (f2,h)) 
    . (x 
    - (h 
    / 2))))) by 
    Th16
    
      .= (((((f1
    . (x 
    + h)) 
    * ((( 
    cdif (f2,h)) 
    . 2) 
    . x)) 
    + (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))))) 
    + (((( 
    cdif (f1,h)) 
    . (1 
    + 1)) 
    . x) 
    * (f2 
    . (x 
    - h)))) 
    + (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * (( 
    cD (f2,h)) 
    . (x 
    - (h 
    / 2))))) by 
    DIFF_1:def 8
    
      .= (((((f1
    . (x 
    + h)) 
    * ((( 
    cdif (f2,h)) 
    . 2) 
    . x)) 
    + (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))))) 
    + (((( 
    cdif (f1,h)) 
    . 2) 
    . x) 
    * (f2 
    . (x 
    - h)))) 
    + (((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))))) by 
    Th16
    
      .= ((((f1
    . (x 
    + h)) 
    * ((( 
    cdif (f2,h)) 
    . 2) 
    . x)) 
    + ((2 
    * ((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2)))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2))))) 
    + (((( 
    cdif (f1,h)) 
    . 2) 
    . x) 
    * (f2 
    . (x 
    - h)))); 
    
      
    
      
    
    A11: (2 
    -'  
    0 ) 
    = (2 
    -  
    0 ) by 
    XREAL_1: 233
    
      .= 2;
    
      
    
      
    
    A12: ((S 
    . 2) 
    .  
    0 ) 
    = (((2 
    choose  
    0 ) 
    * ((( 
    cdif (f1,h)) 
    .  
    0 ) 
    . (x 
    + ((2 
    -'  
    0 ) 
    * (h 
    / 2))))) 
    * ((( 
    cdif (f2,h)) 
    . (2 
    -'  
    0 )) 
    . (x 
    - ( 
    0  
    * (h 
    / 2))))) by 
    A1
    
      .= ((1
    * ((( 
    cdif (f1,h)) 
    .  
    0 ) 
    . (x 
    + ((2 
    -'  
    0 ) 
    * (h 
    / 2))))) 
    * ((( 
    cdif (f2,h)) 
    . (2 
    -'  
    0 )) 
    . (x 
    - ( 
    0  
    * (h 
    / 2))))) by 
    NEWTON: 19
    
      .= ((f1
    . (x 
    + h)) 
    * ((( 
    cdif (f2,h)) 
    . 2) 
    . x)) by 
    A11,
    DIFF_1:def 8;
    
      
    
      
    
    A13: (2 
    -' 1) 
    = (2 
    - 1) by 
    XREAL_1: 233
    
      .= 1;
    
      
    
      
    
    A14: ((S 
    . 2) 
    . 1) 
    = (((2 
    choose 1) 
    * ((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + ((2 
    -' 1) 
    * (h 
    / 2))))) 
    * ((( 
    cdif (f2,h)) 
    . (2 
    -' 1)) 
    . (x 
    - (1 
    * (h 
    / 2))))) by 
    A1
    
      .= ((2
    * ((( 
    cdif (f1,h)) 
    . 1) 
    . (x 
    + (h 
    / 2)))) 
    * ((( 
    cdif (f2,h)) 
    . 1) 
    . (x 
    - (h 
    / 2)))) by 
    A13,
    NEWTON: 23;
    
      
    
      
    
    A15: (2 
    -' 2) 
    = (2 
    - 2) by 
    XREAL_1: 233
    
      .=
    0 ; 
    
      
    
      
    
    A16: ((S 
    . 2) 
    . 2) 
    = (((2 
    choose 2) 
    * ((( 
    cdif (f1,h)) 
    . 2) 
    . (x 
    + ((2 
    -' 2) 
    * (h 
    / 2))))) 
    * ((( 
    cdif (f2,h)) 
    . (2 
    -' 2)) 
    . (x 
    - (2 
    * (h 
    / 2))))) by 
    A1
    
      .= ((1
    * ((( 
    cdif (f1,h)) 
    . 2) 
    . (x 
    + ((2 
    -' 2) 
    * (h 
    / 2))))) 
    * ((( 
    cdif (f2,h)) 
    . (2 
    -' 2)) 
    . (x 
    - (2 
    * (h 
    / 2))))) by 
    NEWTON: 21
    
      .= ((((
    cdif (f1,h)) 
    . 2) 
    . x) 
    * (f2 
    . (x 
    - h))) by 
    A15,
    DIFF_1:def 8;
    
      (
    Sum ((S 
    . 2),2)) 
    = (( 
    Partial_Sums (S 
    . 2)) 
    . (1 
    + 1)) by 
    SERIES_1:def 5
    
      .= (((
    Partial_Sums (S 
    . 2)) 
    . ( 
    0  
    + 1)) 
    + ((S 
    . 2) 
    . 2)) by 
    SERIES_1:def 1
    
      .= ((((
    Partial_Sums (S 
    . 2)) 
    .  
    0 ) 
    + ((S 
    . 2) 
    . 1)) 
    + ((S 
    . 2) 
    . 2)) by 
    SERIES_1:def 1
    
      .= (((
    cdif ((f1 
    (#) f2),h)) 
    . 2) 
    . x) by 
    A10,
    A12,
    A14,
    A16,
    SERIES_1:def 1;
    
      hence thesis by
    A6;
    
    end;
    
    theorem :: 
    
    DIFF_3:36
    
    (for x holds (f
    . x) 
    = ( 
    sqrt x)) & x0 
    <> x1 & x0 
    >  
    0 & x1 
    >  
    0 implies 
    [!f, x0, x1!]
    = (1 
    / (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = ( 
    sqrt x) and 
    
      
    
    A2: x0 
    <> x1 and 
    
      
    
    A3: x0 
    >  
    0 & x1 
    >  
    0 ; 
    
      
    [!f, x0, x1!]
    = ((( 
    sqrt x0) 
    - (f 
    . x1)) 
    / (x0 
    - x1)) by 
    A1
    
      .= (((
    sqrt x0) 
    - ( 
    sqrt x1)) 
    / (x0 
    - x1)) by 
    A1
    
      .= (1
    / (( 
    sqrt x0) 
    + ( 
    sqrt x1))) by 
    A2,
    A3,
    SQUARE_1: 36;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:37
    
    (for x holds (f
    . x) 
    = ( 
    sqrt x)) & (x0,x1,x2) 
    are_mutually_distinct & x0 
    >  
    0 & x1 
    >  
    0 & x2 
    >  
    0 implies 
    [!f, x0, x1, x2!]
    = ( 
    - (1 
    / (((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = ( 
    sqrt x) and 
    
      
    
    A2: (x0,x1,x2) 
    are_mutually_distinct and 
    
      
    
    A3: x0 
    >  
    0 & x1 
    >  
    0 & x2 
    >  
    0 ; 
    
      
    
      
    
    A4: (f 
    . x0) 
    = ( 
    sqrt x0) & (f 
    . x1) 
    = ( 
    sqrt x1) & (f 
    . x2) 
    = ( 
    sqrt x2) by 
    A1;
    
      (
    sqrt x0) 
    >  
    0 & ( 
    sqrt x1) 
    >  
    0 & ( 
    sqrt x2) 
    >  
    0 by 
    A3,
    SQUARE_1: 25;
    
      then
    
      
    
    A5: (( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    >  
    0 & (( 
    sqrt x1) 
    + ( 
    sqrt x2)) 
    >  
    0 ; 
    
      
    
      
    
    A6: x0 
    <> x1 & x1 
    <> x2 & x2 
    <> x0 by 
    A2,
    ZFMISC_1:def 5;
    
      
    
      then
    [!f, x0, x1, x2!]
    = (((1 
    / (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    - ((( 
    sqrt x1) 
    - ( 
    sqrt x2)) 
    / (x1 
    - x2))) 
    / (x0 
    - x2)) by 
    A3,
    A4,
    SQUARE_1: 36
    
      .= (((1
    / (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    - (1 
    / (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / (x0 
    - x2)) by 
    A3,
    A6,
    SQUARE_1: 36
    
      .= ((((1
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    - (1 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1)))) 
    / ((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / (x0 
    - x2)) by 
    A5,
    XCMPLX_1: 130
    
      .= ((((
    sqrt x2) 
    - ( 
    sqrt x0)) 
    / ((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / ( 
    - (x2 
    - x0))) 
    
      .= (
    - (((( 
    sqrt x2) 
    - ( 
    sqrt x0)) 
    / ((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / (x2 
    - x0))) by 
    XCMPLX_1: 188
    
      .= (
    - ((1 
    / ((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    * ((( 
    sqrt x2) 
    - ( 
    sqrt x0)) 
    / (x2 
    - x0)))) 
    
      .= (
    - ((1 
    / ((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    * (1 
    / (( 
    sqrt x2) 
    + ( 
    sqrt x0))))) by 
    A3,
    A6,
    SQUARE_1: 36
    
      .= (
    - (1 
    / (((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))))) by 
    XCMPLX_1: 102;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:38
    
    (for x holds (f
    . x) 
    = ( 
    sqrt x)) & (x0,x1,x2,x3) 
    are_mutually_distinct & x0 
    >  
    0 & x1 
    >  
    0 & x2 
    >  
    0 & x3 
    >  
    0 implies 
    [!f, x0, x1, x2, x3!]
    = ((((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    + ( 
    sqrt x2)) 
    + ( 
    sqrt x3)) 
    / ((((((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x3))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x3))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3)))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = ( 
    sqrt x) and 
    
      
    
    A2: (x0,x1,x2,x3) 
    are_mutually_distinct and 
    
      
    
    A3: x0 
    >  
    0 & x1 
    >  
    0 & x2 
    >  
    0 & x3 
    >  
    0 ; 
    
      
    
      
    
    A4: (f 
    . x0) 
    = ( 
    sqrt x0) & (f 
    . x1) 
    = ( 
    sqrt x1) & (f 
    . x2) 
    = ( 
    sqrt x2) & (f 
    . x3) 
    = ( 
    sqrt x3) by 
    A1;
    
      (
    sqrt x0) 
    >  
    0 & ( 
    sqrt x1) 
    >  
    0 & ( 
    sqrt x2) 
    >  
    0 & ( 
    sqrt x3) 
    >  
    0 by 
    A3,
    SQUARE_1: 25;
    
      then
    
      
    
    A5: (( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    >  
    0 & (( 
    sqrt x1) 
    + ( 
    sqrt x2)) 
    >  
    0 & (( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    >  
    0 & (( 
    sqrt x2) 
    + ( 
    sqrt x0)) 
    >  
    0 & (( 
    sqrt x3) 
    + ( 
    sqrt x1)) 
    >  
    0 ; 
    
      
    
      
    
    A6: x0 
    <> x1 & x0 
    <> x2 & x0 
    <> x3 & x1 
    <> x2 & x1 
    <> x3 & x2 
    <> x3 by 
    A2,
    ZFMISC_1:def 6;
    
      
    
      then
    [!f, x0, x1, x2, x3!]
    = (((((1 
    / (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    - ((( 
    sqrt x1) 
    - ( 
    sqrt x2)) 
    / (x1 
    - x2))) 
    / (x0 
    - x2)) 
    - ((((( 
    sqrt x1) 
    - ( 
    sqrt x2)) 
    / (x1 
    - x2)) 
    - ((( 
    sqrt x2) 
    - ( 
    sqrt x3)) 
    / (x2 
    - x3))) 
    / (x1 
    - x3))) 
    / (x0 
    - x3)) by 
    A3,
    A4,
    SQUARE_1: 36
    
      .= (((((1
    / (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    - (1 
    / (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / (x0 
    - x2)) 
    - ((((( 
    sqrt x1) 
    - ( 
    sqrt x2)) 
    / (x1 
    - x2)) 
    - ((( 
    sqrt x2) 
    - ( 
    sqrt x3)) 
    / (x2 
    - x3))) 
    / (x1 
    - x3))) 
    / (x0 
    - x3)) by 
    A3,
    A6,
    SQUARE_1: 36
    
      .= (((((1
    / (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    - (1 
    / (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / (x0 
    - x2)) 
    - (((1 
    / (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    - ((( 
    sqrt x2) 
    - ( 
    sqrt x3)) 
    / (x2 
    - x3))) 
    / (x1 
    - x3))) 
    / (x0 
    - x3)) by 
    A3,
    A6,
    SQUARE_1: 36
    
      .= (((((1
    / (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    - (1 
    / (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / (x0 
    - x2)) 
    - (((1 
    / (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    - (1 
    / (( 
    sqrt x2) 
    + ( 
    sqrt x3)))) 
    / (x1 
    - x3))) 
    / (x0 
    - x3)) by 
    A3,
    A6,
    SQUARE_1: 36
    
      .= ((((((1
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    - (1 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1)))) 
    / ((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / (x0 
    - x2)) 
    - (((1 
    / (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    - (1 
    / (( 
    sqrt x2) 
    + ( 
    sqrt x3)))) 
    / (x1 
    - x3))) 
    / (x0 
    - x3)) by 
    A5,
    XCMPLX_1: 130
    
      .= ((((((1
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    - (1 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1)))) 
    / ((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / (x0 
    - x2)) 
    - ((((1 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3))) 
    - (1 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / ((( 
    sqrt x1) 
    + ( 
    sqrt x2)) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3)))) 
    / (x1 
    - x3))) 
    / (x0 
    - x3)) by 
    A5,
    XCMPLX_1: 130
    
      .= ((((((
    sqrt x2) 
    - ( 
    sqrt x0)) 
    / ((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / ( 
    - (x2 
    - x0))) 
    - (((( 
    sqrt x3) 
    - ( 
    sqrt x1)) 
    / ((( 
    sqrt x1) 
    + ( 
    sqrt x2)) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3)))) 
    / ( 
    - (x3 
    - x1)))) 
    / (x0 
    - x3)) 
    
      .= (((
    - (((( 
    sqrt x2) 
    - ( 
    sqrt x0)) 
    / ((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / (x2 
    - x0))) 
    - (((( 
    sqrt x3) 
    - ( 
    sqrt x1)) 
    / ((( 
    sqrt x1) 
    + ( 
    sqrt x2)) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3)))) 
    / ( 
    - (x3 
    - x1)))) 
    / (x0 
    - x3)) by 
    XCMPLX_1: 188
    
      .= (((
    - ((1 
    / ((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    * ((( 
    sqrt x2) 
    - ( 
    sqrt x0)) 
    / (x2 
    - x0)))) 
    - ( 
    - (((( 
    sqrt x3) 
    - ( 
    sqrt x1)) 
    / ((( 
    sqrt x1) 
    + ( 
    sqrt x2)) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3)))) 
    / (x3 
    - x1)))) 
    / (x0 
    - x3)) by 
    XCMPLX_1: 188
    
      .= (((
    - ((1 
    / ((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    * (1 
    / (( 
    sqrt x2) 
    + ( 
    sqrt x0))))) 
    - ( 
    - (((( 
    sqrt x3) 
    - ( 
    sqrt x1)) 
    / ((( 
    sqrt x1) 
    + ( 
    sqrt x2)) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3)))) 
    / (x3 
    - x1)))) 
    / (x0 
    - x3)) by 
    A3,
    A6,
    SQUARE_1: 36
    
      .= (((
    - (1 
    / (((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))))) 
    + ((1 
    / ((( 
    sqrt x1) 
    + ( 
    sqrt x2)) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3)))) 
    * ((( 
    sqrt x3) 
    - ( 
    sqrt x1)) 
    / (x3 
    - x1)))) 
    / (x0 
    - x3)) by 
    XCMPLX_1: 102
    
      .= (((
    - (1 
    / (((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))))) 
    + ((1 
    / ((( 
    sqrt x1) 
    + ( 
    sqrt x2)) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3)))) 
    * (1 
    / (( 
    sqrt x3) 
    + ( 
    sqrt x1))))) 
    / (x0 
    - x3)) by 
    A3,
    A6,
    SQUARE_1: 36
    
      .= (((1
    / (((( 
    sqrt x1) 
    + ( 
    sqrt x2)) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3))) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1)))) 
    - (1 
    / (((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))))) 
    / (x0 
    - x3)) by 
    XCMPLX_1: 102
    
      .= ((((1
    * (((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0)))) 
    - (1 
    * (((( 
    sqrt x1) 
    + ( 
    sqrt x2)) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3))) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))))) 
    / ((((( 
    sqrt x1) 
    + ( 
    sqrt x2)) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3))) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))))) 
    / (x0 
    - x3)) by 
    A5,
    XCMPLX_1: 130
    
      .= (((((((
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))) 
    - ((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1)))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    / ((((((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2)))) 
    / (x0 
    - x3)) 
    
      .= ((((((((
    sqrt x0) 
    * ( 
    sqrt x2)) 
    + (( 
    sqrt x0) 
    * ( 
    sqrt x0))) 
    + (( 
    sqrt x1) 
    * ( 
    sqrt x2))) 
    + (( 
    sqrt x1) 
    * ( 
    sqrt x0))) 
    - ((((( 
    sqrt x2) 
    * ( 
    sqrt x3)) 
    + (( 
    sqrt x2) 
    * ( 
    sqrt x1))) 
    + (( 
    sqrt x3) 
    * ( 
    sqrt x3))) 
    + (( 
    sqrt x3) 
    * ( 
    sqrt x1)))) 
    / (((((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0)))) 
    / (x0 
    - x3)) by 
    A5,
    XCMPLX_1: 91
    
      .= ((((((((
    sqrt x0) 
    * ( 
    sqrt x2)) 
    + ( 
    sqrt (x0 
    ^2 ))) 
    + (( 
    sqrt x1) 
    * ( 
    sqrt x2))) 
    + (( 
    sqrt x1) 
    * ( 
    sqrt x0))) 
    - ((((( 
    sqrt x2) 
    * ( 
    sqrt x3)) 
    + (( 
    sqrt x2) 
    * ( 
    sqrt x1))) 
    + (( 
    sqrt x3) 
    * ( 
    sqrt x3))) 
    + (( 
    sqrt x3) 
    * ( 
    sqrt x1)))) 
    / (((((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0)))) 
    / (x0 
    - x3)) by 
    A3,
    SQUARE_1: 29
    
      .= ((((((((
    sqrt x0) 
    * ( 
    sqrt x2)) 
    + x0) 
    + (( 
    sqrt x1) 
    * ( 
    sqrt x2))) 
    + (( 
    sqrt x1) 
    * ( 
    sqrt x0))) 
    - ((((( 
    sqrt x2) 
    * ( 
    sqrt x3)) 
    + (( 
    sqrt x2) 
    * ( 
    sqrt x1))) 
    + (( 
    sqrt x3) 
    * ( 
    sqrt x3))) 
    + (( 
    sqrt x3) 
    * ( 
    sqrt x1)))) 
    / (((((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0)))) 
    / (x0 
    - x3)) by 
    A3,
    SQUARE_1: 22
    
      .= ((((((((
    sqrt x0) 
    * ( 
    sqrt x2)) 
    + x0) 
    + (( 
    sqrt x1) 
    * ( 
    sqrt x2))) 
    + (( 
    sqrt x1) 
    * ( 
    sqrt x0))) 
    - ((((( 
    sqrt x2) 
    * ( 
    sqrt x3)) 
    + (( 
    sqrt x2) 
    * ( 
    sqrt x1))) 
    + ( 
    sqrt (x3 
    ^2 ))) 
    + (( 
    sqrt x3) 
    * ( 
    sqrt x1)))) 
    / (((((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0)))) 
    / (x0 
    - x3)) by 
    A3,
    SQUARE_1: 29
    
      .= ((((((((
    sqrt x0) 
    * ( 
    sqrt x2)) 
    + x0) 
    + (( 
    sqrt x1) 
    * ( 
    sqrt x2))) 
    + (( 
    sqrt x1) 
    * ( 
    sqrt x0))) 
    - ((((( 
    sqrt x2) 
    * ( 
    sqrt x3)) 
    + (( 
    sqrt x2) 
    * ( 
    sqrt x1))) 
    + x3) 
    + (( 
    sqrt x3) 
    * ( 
    sqrt x1)))) 
    / (((((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0)))) 
    / (x0 
    - x3)) by 
    A3,
    SQUARE_1: 22
    
      .= (((((
    sqrt x2) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x0) 
    - ( 
    sqrt x3))) 
    + (x0 
    - x3)) 
    / ((((((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))) 
    * (x0 
    - x3))) by 
    XCMPLX_1: 78
    
      .= (((((
    sqrt x0) 
    - ( 
    sqrt x3)) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x1))) 
    + ((( 
    sqrt x0) 
    - ( 
    sqrt x3)) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x3)))) 
    / ((((((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))) 
    * (x0 
    - x3))) by 
    A3,
    SQUARE_1: 35
    
      .= ((((
    sqrt x0) 
    - ( 
    sqrt x3)) 
    * (((( 
    sqrt x2) 
    + ( 
    sqrt x1)) 
    + ( 
    sqrt x0)) 
    + ( 
    sqrt x3))) 
    / ((((((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))) 
    * (x0 
    - x3))) 
    
      .= ((((
    sqrt x0) 
    - ( 
    sqrt x3)) 
    / (x0 
    - x3)) 
    * ((((( 
    sqrt x2) 
    + ( 
    sqrt x1)) 
    + ( 
    sqrt x0)) 
    + ( 
    sqrt x3)) 
    / (((((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))))) by 
    XCMPLX_1: 76
    
      .= ((1
    / (( 
    sqrt x0) 
    + ( 
    sqrt x3))) 
    * ((((( 
    sqrt x2) 
    + ( 
    sqrt x1)) 
    + ( 
    sqrt x0)) 
    + ( 
    sqrt x3)) 
    / (((((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))))) by 
    A3,
    A6,
    SQUARE_1: 36
    
      .= (((((
    sqrt x2) 
    + ( 
    sqrt x1)) 
    + ( 
    sqrt x0)) 
    + ( 
    sqrt x3)) 
    / ((((((( 
    sqrt x2) 
    + ( 
    sqrt x3)) 
    * (( 
    sqrt x3) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x1))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x0))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x3)))) by 
    XCMPLX_1: 103
    
      .= (((((
    sqrt x0) 
    + ( 
    sqrt x1)) 
    + ( 
    sqrt x2)) 
    + ( 
    sqrt x3)) 
    / ((((((( 
    sqrt x0) 
    + ( 
    sqrt x1)) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x0) 
    + ( 
    sqrt x3))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x2))) 
    * (( 
    sqrt x1) 
    + ( 
    sqrt x3))) 
    * (( 
    sqrt x2) 
    + ( 
    sqrt x3)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:39
    
    (for x holds (f
    . x) 
    = ( 
    sqrt x)) & x 
    >  
    0 & (x 
    + h) 
    >  
    0 implies (( 
    fD (f,h)) 
    . x) 
    = (( 
    sqrt (x 
    + h)) 
    - ( 
    sqrt x)) 
    
    proof
    
      assume
    
      
    
    A1: for x holds (f 
    . x) 
    = ( 
    sqrt x); 
    
      ((
    fD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= ((
    sqrt (x 
    + h)) 
    - (f 
    . x)) by 
    A1
    
      .= ((
    sqrt (x 
    + h)) 
    - ( 
    sqrt x)) by 
    A1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:40
    
    (for x holds (f
    . x) 
    = ( 
    sqrt x)) & x 
    >  
    0 & (x 
    - h) 
    >  
    0 implies (( 
    bD (f,h)) 
    . x) 
    = (( 
    sqrt x) 
    - ( 
    sqrt (x 
    - h))) 
    
    proof
    
      assume
    
      
    
    A1: for x holds (f 
    . x) 
    = ( 
    sqrt x); 
    
      ((
    bD (f,h)) 
    . x) 
    = ((f 
    . x) 
    - (f 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= ((
    sqrt x) 
    - (f 
    . (x 
    - h))) by 
    A1
    
      .= ((
    sqrt x) 
    - ( 
    sqrt (x 
    - h))) by 
    A1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:41
    
    (for x holds (f
    . x) 
    = ( 
    sqrt x)) & (x 
    + (h 
    / 2)) 
    >  
    0 & (x 
    - (h 
    / 2)) 
    >  
    0 implies (( 
    cD (f,h)) 
    . x) 
    = (( 
    sqrt (x 
    + (h 
    / 2))) 
    - ( 
    sqrt (x 
    - (h 
    / 2)))) 
    
    proof
    
      assume
    
      
    
    A1: for x holds (f 
    . x) 
    = ( 
    sqrt x); 
    
      ((
    cD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= ((
    sqrt (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= ((
    sqrt (x 
    + (h 
    / 2))) 
    - ( 
    sqrt (x 
    - (h 
    / 2)))) by 
    A1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:42
    
    (for x holds (f
    . x) 
    = (x 
    ^2 )) & x0 
    <> x1 implies 
    [!f, x0, x1!]
    = (x0 
    + x1) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (x 
    ^2 ) and 
    
      
    
    A2: x0 
    <> x1; 
    
      
    
      
    
    A3: (x0 
    - x1) 
    <>  
    0 by 
    A2;
    
      
    [!f, x0, x1!]
    = (((x0 
    ^2 ) 
    - (f 
    . x1)) 
    / (x0 
    - x1)) by 
    A1
    
      .= (((x0
    ^2 ) 
    - (x1 
    ^2 )) 
    / (x0 
    - x1)) by 
    A1
    
      .= (((x0
    - x1) 
    * (x0 
    + x1)) 
    / (x0 
    - x1)) 
    
      .= (x0
    + x1) by 
    A3,
    XCMPLX_1: 89;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:43
    
    (for x holds (f
    . x) 
    = (x 
    ^2 )) & (x0,x1,x2) 
    are_mutually_distinct implies 
    [!f, x0, x1, x2!]
    = 1 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (x 
    ^2 ) and 
    
      
    
    A2: (x0,x1,x2) 
    are_mutually_distinct ; 
    
      
    
      
    
    A3: (f 
    . x0) 
    = (x0 
    ^2 ) & (f 
    . x1) 
    = (x1 
    ^2 ) & (f 
    . x2) 
    = (x2 
    ^2 ) by 
    A1;
    
      
    
      
    
    A4: (x0 
    - x1) 
    <>  
    0 & (x1 
    - x2) 
    <>  
    0 & (x0 
    - x2) 
    <>  
    0 by 
    A2,
    ZFMISC_1:def 5;
    
      
    [!f, x0, x1, x2!]
    = (((((x0 
    - x1) 
    * (x0 
    + x1)) 
    / (x0 
    - x1)) 
    - (((x1 
    - x2) 
    * (x1 
    + x2)) 
    / (x1 
    - x2))) 
    / (x0 
    - x2)) by 
    A3
    
      .= (((x0
    + x1) 
    - (((x1 
    - x2) 
    * (x1 
    + x2)) 
    / (x1 
    - x2))) 
    / (x0 
    - x2)) by 
    A4,
    XCMPLX_1: 89
    
      .= (((x0
    + x1) 
    - (x1 
    + x2)) 
    / (x0 
    - x2)) by 
    A4,
    XCMPLX_1: 89
    
      .= 1 by
    A4,
    XCMPLX_1: 60;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:44
    
    (for x holds (f
    . x) 
    = (x 
    ^2 )) & (x0,x1,x2,x3) 
    are_mutually_distinct implies 
    [!f, x0, x1, x2, x3!]
    =  
    0  
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (x 
    ^2 ) and 
    
      
    
    A2: (x0,x1,x2,x3) 
    are_mutually_distinct ; 
    
      
    
      
    
    A3: (f 
    . x0) 
    = (x0 
    ^2 ) & (f 
    . x1) 
    = (x1 
    ^2 ) & (f 
    . x2) 
    = (x2 
    ^2 ) & (f 
    . x3) 
    = (x3 
    ^2 ) by 
    A1;
    
      
    
      
    
    A4: (x0 
    - x1) 
    <>  
    0 & (x1 
    - x2) 
    <>  
    0 & (x2 
    - x3) 
    <>  
    0 & (x0 
    - x2) 
    <>  
    0 & (x1 
    - x3) 
    <>  
    0 & (x0 
    - x3) 
    <>  
    0 by 
    A2,
    ZFMISC_1:def 6;
    
      
    [!f, x0, x1, x2, x3!]
    = (((((((x0 
    - x1) 
    * (x0 
    + x1)) 
    / (x0 
    - x1)) 
    - (((x1 
    - x2) 
    * (x1 
    + x2)) 
    / (x1 
    - x2))) 
    / (x0 
    - x2)) 
    - (((((x1 
    - x2) 
    * (x1 
    + x2)) 
    / (x1 
    - x2)) 
    - (((x2 
    - x3) 
    * (x2 
    + x3)) 
    / (x2 
    - x3))) 
    / (x1 
    - x3))) 
    / (x0 
    - x3)) by 
    A3
    
      .= (((((x0
    + x1) 
    - (((x1 
    - x2) 
    * (x1 
    + x2)) 
    / (x1 
    - x2))) 
    / (x0 
    - x2)) 
    - (((((x1 
    - x2) 
    * (x1 
    + x2)) 
    / (x1 
    - x2)) 
    - (((x2 
    - x3) 
    * (x2 
    + x3)) 
    / (x2 
    - x3))) 
    / (x1 
    - x3))) 
    / (x0 
    - x3)) by 
    A4,
    XCMPLX_1: 89
    
      .= (((((x0
    + x1) 
    - (x1 
    + x2)) 
    / (x0 
    - x2)) 
    - (((((x1 
    - x2) 
    * (x1 
    + x2)) 
    / (x1 
    - x2)) 
    - (((x2 
    - x3) 
    * (x2 
    + x3)) 
    / (x2 
    - x3))) 
    / (x1 
    - x3))) 
    / (x0 
    - x3)) by 
    A4,
    XCMPLX_1: 89
    
      .= (((((x0
    + x1) 
    - (x1 
    + x2)) 
    / (x0 
    - x2)) 
    - (((x1 
    + x2) 
    - (((x2 
    - x3) 
    * (x2 
    + x3)) 
    / (x2 
    - x3))) 
    / (x1 
    - x3))) 
    / (x0 
    - x3)) by 
    A4,
    XCMPLX_1: 89
    
      .= (((((x0
    + x1) 
    - (x1 
    + x2)) 
    / (x0 
    - x2)) 
    - (((x1 
    + x2) 
    - (x2 
    + x3)) 
    / (x1 
    - x3))) 
    / (x0 
    - x3)) by 
    A4,
    XCMPLX_1: 89
    
      .= ((1
    - ((x1 
    - x3) 
    / (x1 
    - x3))) 
    / (x0 
    - x3)) by 
    A4,
    XCMPLX_1: 60
    
      .= ((1
    - 1) 
    / (x0 
    - x3)) by 
    A4,
    XCMPLX_1: 60
    
      .=
    0 ; 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:45
    
    (for x holds (f
    . x) 
    = (x 
    ^2 )) implies (( 
    fD (f,h)) 
    . x) 
    = (((2 
    * x) 
    * h) 
    + (h 
    ^2 )) 
    
    proof
    
      assume
    
      
    
    A1: for x holds (f 
    . x) 
    = (x 
    ^2 ); 
    
      then (f
    . (x 
    + h)) 
    = ((x 
    + h) 
    ^2 ); 
    
      
    
      then ((
    fD (f,h)) 
    . x) 
    = (((x 
    + h) 
    ^2 ) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= ((((x
    ^2 ) 
    + ((2 
    * x) 
    * h)) 
    + (h 
    ^2 )) 
    - (x 
    ^2 )) by 
    A1
    
      .= (((2
    * x) 
    * h) 
    + (h 
    ^2 )); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:46
    
    (for x holds (f
    . x) 
    = (x 
    ^2 )) implies (( 
    bD (f,h)) 
    . x) 
    = (h 
    * ((2 
    * x) 
    - h)) 
    
    proof
    
      assume
    
      
    
    A1: for x holds (f 
    . x) 
    = (x 
    ^2 ); 
    
      then
    
      
    
    A2: (f 
    . (x 
    - h)) 
    = ((x 
    - h) 
    ^2 ); 
    
      ((
    bD (f,h)) 
    . x) 
    = ((f 
    . x) 
    - (f 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= ((x
    ^2 ) 
    - ((x 
    - h) 
    ^2 )) by 
    A1,
    A2
    
      .= (h
    * ((2 
    * x) 
    - h)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:47
    
    (for x holds (f
    . x) 
    = (x 
    ^2 )) implies (( 
    cD (f,h)) 
    . x) 
    = ((2 
    * h) 
    * x) 
    
    proof
    
      assume
    
      
    
    A1: for x holds (f 
    . x) 
    = (x 
    ^2 ); 
    
      ((
    cD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= (((x
    + (h 
    / 2)) 
    ^2 ) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= (((x
    + (h 
    / 2)) 
    ^2 ) 
    - ((x 
    - (h 
    / 2)) 
    ^2 )) by 
    A1
    
      .= (h
    * (2 
    * x)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:48
    
    (for x holds (f
    . x) 
    = (k 
    / (x 
    ^2 ))) & x0 
    <> x1 & x0 
    <>  
    0 & x1 
    <>  
    0 implies 
    [!f, x0, x1!]
    = ( 
    - ((k 
    / (x0 
    * x1)) 
    * ((1 
    / x0) 
    + (1 
    / x1)))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (k 
    / (x 
    ^2 )) and 
    
      
    
    A2: x0 
    <> x1 & x0 
    <>  
    0 & x1 
    <>  
    0 ; 
    
      
    
      
    
    A3: (x1 
    - x0) 
    <>  
    0 by 
    A2;
    
      (f
    . x0) 
    = (k 
    / (x0 
    ^2 )) & (f 
    . x1) 
    = (k 
    / (x1 
    ^2 )) by 
    A1;
    
      
    
      then
    [!f, x0, x1!]
    = ((k 
    * ((1 
    / (x0 
    ^2 )) 
    - (1 
    / (x1 
    ^2 )))) 
    / (x0 
    - x1)) 
    
      .= ((k
    * (((1 
    * (x1 
    ^2 )) 
    - (1 
    * (x0 
    ^2 ))) 
    / ((x0 
    ^2 ) 
    * (x1 
    ^2 )))) 
    / (x0 
    - x1)) by 
    A2,
    XCMPLX_1: 130
    
      .= (k
    * ((((x1 
    - x0) 
    * (x1 
    + x0)) 
    / ((x0 
    ^2 ) 
    * (x1 
    ^2 ))) 
    / ( 
    - (x1 
    - x0)))) 
    
      .= (k
    * ( 
    - ((((x1 
    - x0) 
    * (x1 
    + x0)) 
    / ((x0 
    ^2 ) 
    * (x1 
    ^2 ))) 
    / (x1 
    - x0)))) by 
    XCMPLX_1: 188
    
      .= (
    - (k 
    * ((((x1 
    - x0) 
    * (x1 
    + x0)) 
    / (x1 
    - x0)) 
    / ((x0 
    ^2 ) 
    * (x1 
    ^2 ))))) 
    
      .= (
    - (k 
    * ((x1 
    + x0) 
    / (((x0 
    * x0) 
    * x1) 
    * x1)))) by 
    A3,
    XCMPLX_1: 89
    
      .= (
    - (k 
    * ((x1 
    / (x1 
    * ((x0 
    * x0) 
    * x1))) 
    + (x0 
    / (x0 
    * ((x0 
    * x1) 
    * x1)))))) 
    
      .= (
    - (k 
    * (((1 
    / ((x0 
    * x0) 
    * x1)) 
    * (x1 
    / x1)) 
    + (x0 
    / (x0 
    * ((x0 
    * x1) 
    * x1)))))) by 
    XCMPLX_1: 103
    
      .= (
    - (k 
    * (((1 
    / ((x0 
    * x0) 
    * x1)) 
    * (x1 
    / x1)) 
    + ((1 
    / ((x0 
    * x1) 
    * x1)) 
    * (x0 
    / x0))))) by 
    XCMPLX_1: 103
    
      .= (
    - (k 
    * (((1 
    / ((x0 
    * x0) 
    * x1)) 
    * 1) 
    + ((1 
    / ((x0 
    * x1) 
    * x1)) 
    * (x0 
    / x0))))) by 
    A2,
    XCMPLX_1: 60
    
      .= (
    - (k 
    * ((1 
    / (x0 
    * (x0 
    * x1))) 
    + (1 
    / ((x0 
    * x1) 
    * x1))))) by 
    A2,
    XCMPLX_1: 60
    
      .= (
    - (k 
    * (((1 
    / x0) 
    * (1 
    / (x0 
    * x1))) 
    + (1 
    / ((x0 
    * x1) 
    * x1))))) by 
    XCMPLX_1: 102
    
      .= (
    - (k 
    * (((1 
    / x0) 
    * (1 
    / (x0 
    * x1))) 
    + ((1 
    / (x0 
    * x1)) 
    * (1 
    / x1))))) by 
    XCMPLX_1: 102
    
      .= (
    - ((k 
    / (x0 
    * x1)) 
    * ((1 
    / x0) 
    + (1 
    / x1)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:49
    
    (for x holds (f
    . x) 
    = (k 
    / (x 
    ^2 ))) & x0 
    <>  
    0 & x1 
    <>  
    0 & x2 
    <>  
    0 & (x0,x1,x2) 
    are_mutually_distinct implies 
    [!f, x0, x1, x2!]
    = ((k 
    / ((x0 
    * x1) 
    * x2)) 
    * (((1 
    / x0) 
    + (1 
    / x1)) 
    + (1 
    / x2))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (k 
    / (x 
    ^2 )) and 
    
      
    
    A2: x0 
    <>  
    0 & x1 
    <>  
    0 & x2 
    <>  
    0 and 
    
      
    
    A3: (x0,x1,x2) 
    are_mutually_distinct ; 
    
      
    
      
    
    A4: (f 
    . x0) 
    = (k 
    / (x0 
    ^2 )) & (f 
    . x1) 
    = (k 
    / (x1 
    ^2 )) & (f 
    . x2) 
    = (k 
    / (x2 
    ^2 )) by 
    A1;
    
      
    
      
    
    A5: (x1 
    - x0) 
    <>  
    0 & (x2 
    - x1) 
    <>  
    0 & (x0 
    - x2) 
    <>  
    0 by 
    A3,
    ZFMISC_1:def 5;
    
      
    [!f, x0, x1, x2!]
    = ((((k 
    * ((1 
    / (x0 
    ^2 )) 
    - (1 
    / (x1 
    ^2 )))) 
    / (x0 
    - x1)) 
    - ((k 
    * ((1 
    / (x1 
    ^2 )) 
    - (1 
    / (x2 
    ^2 )))) 
    / (x1 
    - x2))) 
    / (x0 
    - x2)) by 
    A4
    
      .= ((((k
    * (((1 
    * (x1 
    ^2 )) 
    - (1 
    * (x0 
    ^2 ))) 
    / ((x0 
    ^2 ) 
    * (x1 
    ^2 )))) 
    / (x0 
    - x1)) 
    - ((k 
    * ((1 
    / (x1 
    ^2 )) 
    - (1 
    / (x2 
    ^2 )))) 
    / (x1 
    - x2))) 
    / (x0 
    - x2)) by 
    A2,
    XCMPLX_1: 130
    
      .= ((((k
    * (((1 
    * (x1 
    ^2 )) 
    - (1 
    * (x0 
    ^2 ))) 
    / ((x0 
    ^2 ) 
    * (x1 
    ^2 )))) 
    / (x0 
    - x1)) 
    - ((k 
    * (((1 
    * (x2 
    ^2 )) 
    - (1 
    * (x1 
    ^2 ))) 
    / ((x1 
    ^2 ) 
    * (x2 
    ^2 )))) 
    / (x1 
    - x2))) 
    / (x0 
    - x2)) by 
    A2,
    XCMPLX_1: 130
    
      .= (((k
    * ((((x1 
    - x0) 
    * (x1 
    + x0)) 
    / ((x0 
    ^2 ) 
    * (x1 
    ^2 ))) 
    / ( 
    - (x1 
    - x0)))) 
    - (k 
    * ((((x2 
    - x1) 
    * (x2 
    + x1)) 
    / ((x1 
    ^2 ) 
    * (x2 
    ^2 ))) 
    / ( 
    - (x2 
    - x1))))) 
    / (x0 
    - x2)) 
    
      .= (((k
    * ( 
    - ((((x1 
    - x0) 
    * (x1 
    + x0)) 
    / ((x0 
    ^2 ) 
    * (x1 
    ^2 ))) 
    / (x1 
    - x0)))) 
    - (k 
    * ((((x2 
    - x1) 
    * (x2 
    + x1)) 
    / ((x1 
    ^2 ) 
    * (x2 
    ^2 ))) 
    / ( 
    - (x2 
    - x1))))) 
    / (x0 
    - x2)) by 
    XCMPLX_1: 188
    
      .= (((
    - (k 
    * ((((x1 
    - x0) 
    * (x1 
    + x0)) 
    / ((x0 
    ^2 ) 
    * (x1 
    ^2 ))) 
    / (x1 
    - x0)))) 
    - (k 
    * ( 
    - ((((x2 
    - x1) 
    * (x2 
    + x1)) 
    / ((x1 
    ^2 ) 
    * (x2 
    ^2 ))) 
    / (x2 
    - x1))))) 
    / (x0 
    - x2)) by 
    XCMPLX_1: 188
    
      .= (((
    - (k 
    * ((((x1 
    - x0) 
    * (x1 
    + x0)) 
    / (x1 
    - x0)) 
    / ((x0 
    ^2 ) 
    * (x1 
    ^2 ))))) 
    + (k 
    * ((((x2 
    - x1) 
    * (x2 
    + x1)) 
    / (x2 
    - x1)) 
    / ((x1 
    ^2 ) 
    * (x2 
    ^2 ))))) 
    / (x0 
    - x2)) 
    
      .= (((
    - (k 
    * ((x1 
    + x0) 
    / ((x0 
    ^2 ) 
    * (x1 
    ^2 ))))) 
    + (k 
    * ((((x2 
    - x1) 
    * (x2 
    + x1)) 
    / (x2 
    - x1)) 
    / ((x1 
    ^2 ) 
    * (x2 
    ^2 ))))) 
    / (x0 
    - x2)) by 
    A5,
    XCMPLX_1: 89
    
      .= (((
    - (k 
    * ((x1 
    / (((x0 
    * x0) 
    * x1) 
    * x1)) 
    + (x0 
    / (((x0 
    * x0) 
    * x1) 
    * x1))))) 
    + (k 
    * ((x2 
    + x1) 
    / (((x1 
    * x1) 
    * x2) 
    * x2)))) 
    / (x0 
    - x2)) by 
    A5,
    XCMPLX_1: 89
    
      .= (((
    - (k 
    * (((1 
    / ((x0 
    * x0) 
    * x1)) 
    * (x1 
    / x1)) 
    + (x0 
    / (x0 
    * ((x0 
    * x1) 
    * x1)))))) 
    + (k 
    * ((x2 
    / (x2 
    * ((x1 
    * x1) 
    * x2))) 
    + (x1 
    / (x1 
    * ((x1 
    * x2) 
    * x2)))))) 
    / (x0 
    - x2)) by 
    XCMPLX_1: 103
    
      .= (((
    - (k 
    * (((1 
    / ((x0 
    * x0) 
    * x1)) 
    * (x1 
    / x1)) 
    + (x0 
    / (x0 
    * ((x0 
    * x1) 
    * x1)))))) 
    + (k 
    * (((1 
    / ((x1 
    * x1) 
    * x2)) 
    * (x2 
    / x2)) 
    + (x1 
    / (x1 
    * ((x1 
    * x2) 
    * x2)))))) 
    / (x0 
    - x2)) by 
    XCMPLX_1: 103
    
      .= (((
    - (k 
    * (((1 
    / ((x0 
    * x0) 
    * x1)) 
    * (x1 
    / x1)) 
    + ((1 
    / ((x0 
    * x1) 
    * x1)) 
    * (x0 
    / x0))))) 
    + (k 
    * (((1 
    / ((x1 
    * x1) 
    * x2)) 
    * (x2 
    / x2)) 
    + (x1 
    / (x1 
    * ((x1 
    * x2) 
    * x2)))))) 
    / (x0 
    - x2)) by 
    XCMPLX_1: 103
    
      .= (((
    - (k 
    * (((1 
    / ((x0 
    * x0) 
    * x1)) 
    * (x1 
    / x1)) 
    + ((1 
    / ((x0 
    * x1) 
    * x1)) 
    * (x0 
    / x0))))) 
    + (k 
    * (((1 
    / ((x1 
    * x1) 
    * x2)) 
    * (x2 
    / x2)) 
    + ((1 
    / ((x1 
    * x2) 
    * x2)) 
    * (x1 
    / x1))))) 
    / (x0 
    - x2)) by 
    XCMPLX_1: 103
    
      .= (((
    - (k 
    * (((1 
    / ((x0 
    * x0) 
    * x1)) 
    * 1) 
    + ((1 
    / ((x0 
    * x1) 
    * x1)) 
    * (x0 
    / x0))))) 
    + (k 
    * (((1 
    / ((x1 
    * x1) 
    * x2)) 
    * (x2 
    / x2)) 
    + ((1 
    / ((x1 
    * x2) 
    * x2)) 
    * (x1 
    / x1))))) 
    / (x0 
    - x2)) by 
    A2,
    XCMPLX_1: 60
    
      .= (((
    - (k 
    * (((1 
    / ((x0 
    * x0) 
    * x1)) 
    * 1) 
    + ((1 
    / ((x0 
    * x1) 
    * x1)) 
    * (x0 
    / x0))))) 
    + (k 
    * (((1 
    / ((x1 
    * x1) 
    * x2)) 
    * 1) 
    + ((1 
    / ((x1 
    * x2) 
    * x2)) 
    * (x1 
    / x1))))) 
    / (x0 
    - x2)) by 
    A2,
    XCMPLX_1: 60
    
      .= (((
    - (k 
    * (((1 
    / ((x0 
    * x0) 
    * x1)) 
    * 1) 
    + ((1 
    / ((x0 
    * x1) 
    * x1)) 
    * 1)))) 
    + (k 
    * (((1 
    / ((x1 
    * x1) 
    * x2)) 
    * 1) 
    + ((1 
    / ((x1 
    * x2) 
    * x2)) 
    * (x1 
    / x1))))) 
    / (x0 
    - x2)) by 
    A2,
    XCMPLX_1: 60
    
      .= (((
    - (k 
    * ((1 
    / (x0 
    * (x0 
    * x1))) 
    + (1 
    / ((x0 
    * x1) 
    * x1))))) 
    + (k 
    * ((1 
    / (x1 
    * (x1 
    * x2))) 
    + (1 
    / ((x1 
    * x2) 
    * x2))))) 
    / (x0 
    - x2)) by 
    A2,
    XCMPLX_1: 60
    
      .= (((
    - (k 
    * (((1 
    / x0) 
    * (1 
    / (x0 
    * x1))) 
    + (1 
    / ((x0 
    * x1) 
    * x1))))) 
    + (k 
    * ((1 
    / (x1 
    * (x1 
    * x2))) 
    + (1 
    / ((x1 
    * x2) 
    * x2))))) 
    / (x0 
    - x2)) by 
    XCMPLX_1: 102
    
      .= (((
    - (k 
    * (((1 
    / x0) 
    * (1 
    / (x0 
    * x1))) 
    + (1 
    / ((x0 
    * x1) 
    * x1))))) 
    + (k 
    * (((1 
    / x1) 
    * (1 
    / (x1 
    * x2))) 
    + (1 
    / ((x1 
    * x2) 
    * x2))))) 
    / (x0 
    - x2)) by 
    XCMPLX_1: 102
    
      .= (((
    - (k 
    * (((1 
    / x0) 
    * (1 
    / (x0 
    * x1))) 
    + ((1 
    / (x0 
    * x1)) 
    * (1 
    / x1))))) 
    + (k 
    * (((1 
    / x1) 
    * (1 
    / (x1 
    * x2))) 
    + (1 
    / ((x1 
    * x2) 
    * x2))))) 
    / (x0 
    - x2)) by 
    XCMPLX_1: 102
    
      .= (((
    - ((k 
    * (1 
    / (x0 
    * x1))) 
    * ((1 
    / x0) 
    + (1 
    / x1)))) 
    + (k 
    * (((1 
    / x1) 
    * (1 
    / (x1 
    * x2))) 
    + ((1 
    / (x1 
    * x2)) 
    * (1 
    / x2))))) 
    / (x0 
    - x2)) by 
    XCMPLX_1: 102
    
      .= (k
    * ((((1 
    / (x1 
    * x2)) 
    / (x0 
    - x2)) 
    * ((1 
    / x1) 
    + (1 
    / x2))) 
    - (((1 
    / (x0 
    * x1)) 
    / (x0 
    - x2)) 
    * ((1 
    / x0) 
    + (1 
    / x1))))) 
    
      .= (k
    * (((1 
    / ((x1 
    * x2) 
    * (x0 
    - x2))) 
    * ((1 
    / x1) 
    + (1 
    / x2))) 
    - (((1 
    / (x0 
    * x1)) 
    / (x0 
    - x2)) 
    * ((1 
    / x0) 
    + (1 
    / x1))))) by 
    XCMPLX_1: 78
    
      .= (k
    * (((1 
    / ((x1 
    * x2) 
    * (x0 
    - x2))) 
    * ((1 
    / x1) 
    + (1 
    / x2))) 
    - ((1 
    / ((x0 
    * x1) 
    * (x0 
    - x2))) 
    * ((1 
    / x0) 
    + (1 
    / x1))))) by 
    XCMPLX_1: 78
    
      .= (k
    * (((1 
    / ((x1 
    * x2) 
    * (x0 
    - x2))) 
    * (((1 
    * x2) 
    + (1 
    * x1)) 
    / (x1 
    * x2))) 
    - ((1 
    / ((x0 
    * x1) 
    * (x0 
    - x2))) 
    * ((1 
    / x0) 
    + (1 
    / x1))))) by 
    A2,
    XCMPLX_1: 116
    
      .= (k
    * (((1 
    / ((x1 
    * x2) 
    * (x0 
    - x2))) 
    * (((1 
    * x2) 
    + (1 
    * x1)) 
    / (x1 
    * x2))) 
    - ((1 
    / ((x0 
    * x1) 
    * (x0 
    - x2))) 
    * (((1 
    * x1) 
    + (1 
    * x0)) 
    / (x0 
    * x1))))) by 
    A2,
    XCMPLX_1: 116
    
      .= (k
    * (((1 
    / ((x1 
    * x2) 
    * (x0 
    - x2))) 
    / ((x1 
    * x2) 
    / (x2 
    + x1))) 
    - ((1 
    / ((x0 
    * x1) 
    * (x0 
    - x2))) 
    * ((x1 
    + x0) 
    / (x0 
    * x1))))) by 
    XCMPLX_1: 79
    
      .= (k
    * (((1 
    / ((x1 
    * x2) 
    * (x0 
    - x2))) 
    / ((x1 
    * x2) 
    / (x2 
    + x1))) 
    - ((1 
    / ((x0 
    * x1) 
    * (x0 
    - x2))) 
    / ((x0 
    * x1) 
    / (x1 
    + x0))))) by 
    XCMPLX_1: 79
    
      .= (k
    * ((((1 
    / ((x1 
    * x2) 
    * (x0 
    - x2))) 
    / (x1 
    * x2)) 
    * (x2 
    + x1)) 
    - ((1 
    / ((x0 
    * x1) 
    * (x0 
    - x2))) 
    / ((x0 
    * x1) 
    / (x1 
    + x0))))) by 
    XCMPLX_1: 82
    
      .= (k
    * ((((1 
    / ((x1 
    * x2) 
    * (x0 
    - x2))) 
    / (x1 
    * x2)) 
    * (x2 
    + x1)) 
    - (((1 
    / ((x0 
    * x1) 
    * (x0 
    - x2))) 
    / (x0 
    * x1)) 
    * (x1 
    + x0)))) by 
    XCMPLX_1: 82
    
      .= (k
    * ((((x2 
    + x1) 
    / ((x1 
    * x2) 
    * (x0 
    - x2))) 
    / (x1 
    * x2)) 
    - (((x1 
    + x0) 
    / ((x0 
    * x1) 
    * (x0 
    - x2))) 
    / (x0 
    * x1)))) 
    
      .= (k
    * (((x2 
    + x1) 
    / (((x1 
    * x2) 
    * (x0 
    - x2)) 
    * (x1 
    * x2))) 
    - (((x1 
    + x0) 
    / ((x0 
    * x1) 
    * (x0 
    - x2))) 
    / (x0 
    * x1)))) by 
    XCMPLX_1: 78
    
      .= (k
    * (((x2 
    + x1) 
    / (((x1 
    * x2) 
    * (x0 
    - x2)) 
    * (x1 
    * x2))) 
    - ((x1 
    + x0) 
    / (((x0 
    * x1) 
    * (x0 
    - x2)) 
    * (x0 
    * x1))))) by 
    XCMPLX_1: 78
    
      .= (k
    * (((x2 
    + x1) 
    / (((x1 
    ^2 ) 
    * (x0 
    - x2)) 
    * (x2 
    ^2 ))) 
    - ((x1 
    + x0) 
    / (((x1 
    ^2 ) 
    * (x0 
    - x2)) 
    * (x0 
    ^2 ))))) 
    
      .= (k
    * ((((x2 
    + x1) 
    / ((x1 
    ^2 ) 
    * (x0 
    - x2))) 
    / (x2 
    ^2 )) 
    - ((x1 
    + x0) 
    / (((x1 
    ^2 ) 
    * (x0 
    - x2)) 
    * (x0 
    ^2 ))))) by 
    XCMPLX_1: 78
    
      .= (k
    * (((1 
    / ((x1 
    ^2 ) 
    * (x0 
    - x2))) 
    * ((x2 
    + x1) 
    / (x2 
    ^2 ))) 
    - (((x1 
    + x0) 
    / ((x1 
    ^2 ) 
    * (x0 
    - x2))) 
    / (x0 
    ^2 )))) by 
    XCMPLX_1: 78
    
      .= (k
    * ((1 
    / ((x1 
    ^2 ) 
    * (x0 
    - x2))) 
    * (((x2 
    + x1) 
    / (x2 
    ^2 )) 
    - ((x1 
    + x0) 
    / (x0 
    ^2 ))))) 
    
      .= (k
    * ((1 
    / ((x1 
    ^2 ) 
    * (x0 
    - x2))) 
    * ((((x2 
    + x1) 
    * (x0 
    ^2 )) 
    - ((x1 
    + x0) 
    * (x2 
    ^2 ))) 
    / ((x2 
    ^2 ) 
    * (x0 
    ^2 ))))) by 
    A2,
    XCMPLX_1: 130
    
      .= (k
    * ((((1 
    * (x0 
    - x2)) 
    / ((x1 
    ^2 ) 
    * (x0 
    - x2))) 
    * ((x1 
    * (x0 
    + x2)) 
    + (x0 
    * x2))) 
    / ((x2 
    ^2 ) 
    * (x0 
    ^2 )))) 
    
      .= (k
    * (((1 
    / (x1 
    ^2 )) 
    * (((x1 
    * x0) 
    + (x1 
    * x2)) 
    + (x0 
    * x2))) 
    / ((x2 
    ^2 ) 
    * (x0 
    ^2 )))) by 
    A5,
    XCMPLX_1: 91
    
      .= (k
    * (((((x1 
    * x0) 
    + (x1 
    * x2)) 
    + (x0 
    * x2)) 
    / (x1 
    ^2 )) 
    / ((x2 
    ^2 ) 
    * (x0 
    ^2 )))) 
    
      .= (k
    * ((((x1 
    * x0) 
    + (x1 
    * x2)) 
    + (x0 
    * x2)) 
    / ((x1 
    ^2 ) 
    * ((x2 
    ^2 ) 
    * (x0 
    ^2 ))))) by 
    XCMPLX_1: 78
    
      .= (k
    * ((((1 
    * (x1 
    * x0)) 
    / (((x1 
    * (x2 
    ^2 )) 
    * x0) 
    * (x1 
    * x0))) 
    + ((1 
    * (x1 
    * x2)) 
    / (((x1 
    * x2) 
    * (x0 
    ^2 )) 
    * (x1 
    * x2)))) 
    + ((1 
    * (x0 
    * x2)) 
    / ((((x1 
    ^2 ) 
    * x2) 
    * x0) 
    * (x0 
    * x2))))) 
    
      .= (k
    * (((1 
    / ((x1 
    * (x2 
    ^2 )) 
    * x0)) 
    + ((1 
    * (x1 
    * x2)) 
    / (((x1 
    * x2) 
    * (x0 
    ^2 )) 
    * (x1 
    * x2)))) 
    + ((1 
    * (x0 
    * x2)) 
    / ((((x1 
    ^2 ) 
    * x2) 
    * x0) 
    * (x0 
    * x2))))) by 
    A2,
    XCMPLX_1: 91
    
      .= (k
    * (((1 
    / ((x1 
    * (x2 
    ^2 )) 
    * x0)) 
    + (1 
    / ((x1 
    * x2) 
    * (x0 
    ^2 )))) 
    + ((1 
    * (x0 
    * x2)) 
    / ((((x1 
    ^2 ) 
    * x2) 
    * x0) 
    * (x0 
    * x2))))) by 
    A2,
    XCMPLX_1: 91
    
      .= (k
    * (((1 
    / (((x1 
    * x2) 
    * x0) 
    * x2)) 
    + (1 
    / (((x1 
    * x2) 
    * x0) 
    * x0))) 
    + (1 
    / (((x1 
    * x2) 
    * x0) 
    * x1)))) by 
    A2,
    XCMPLX_1: 91
    
      .= (k
    * ((((1 
    / ((x1 
    * x2) 
    * x0)) 
    * (1 
    / x2)) 
    + (1 
    / (((x1 
    * x2) 
    * x0) 
    * x0))) 
    + (1 
    / (((x1 
    * x2) 
    * x0) 
    * x1)))) by 
    XCMPLX_1: 102
    
      .= (k
    * ((((1 
    / ((x1 
    * x2) 
    * x0)) 
    * (1 
    / x2)) 
    + ((1 
    / ((x1 
    * x2) 
    * x0)) 
    * (1 
    / x0))) 
    + (1 
    / (((x1 
    * x2) 
    * x0) 
    * x1)))) by 
    XCMPLX_1: 102
    
      .= (k
    * ((((1 
    / ((x1 
    * x2) 
    * x0)) 
    * (1 
    / x2)) 
    + ((1 
    / ((x1 
    * x2) 
    * x0)) 
    * (1 
    / x0))) 
    + ((1 
    / ((x1 
    * x2) 
    * x0)) 
    * (1 
    / x1)))) by 
    XCMPLX_1: 102
    
      .= ((k
    / ((x0 
    * x1) 
    * x2)) 
    * (((1 
    / x0) 
    + (1 
    / x1)) 
    + (1 
    / x2))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:50
    
    (for x holds (f
    . x) 
    = (k 
    / (x 
    ^2 ))) & x 
    <>  
    0 & (x 
    + h) 
    <>  
    0 implies (( 
    fD (f,h)) 
    . x) 
    = (((( 
    - k) 
    * h) 
    * ((2 
    * x) 
    + h)) 
    / (((x 
    ^2 ) 
    + (h 
    * x)) 
    ^2 )) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (k 
    / (x 
    ^2 )) and 
    
      
    
    A2: x 
    <>  
    0 & (x 
    + h) 
    <>  
    0 ; 
    
      ((
    fD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= ((k
    / ((x 
    + h) 
    ^2 )) 
    - (f 
    . x)) by 
    A1
    
      .= ((k
    / ((x 
    + h) 
    ^2 )) 
    - (k 
    / (x 
    ^2 ))) by 
    A1
    
      .= (((k
    * (x 
    ^2 )) 
    - (k 
    * ((x 
    + h) 
    ^2 ))) 
    / (((x 
    + h) 
    ^2 ) 
    * (x 
    ^2 ))) by 
    A2,
    XCMPLX_1: 130
    
      .= ((((
    - k) 
    * h) 
    * ((2 
    * x) 
    + h)) 
    / (((x 
    ^2 ) 
    + (h 
    * x)) 
    ^2 )); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:51
    
    (for x holds (f
    . x) 
    = (k 
    / (x 
    ^2 ))) & x 
    <>  
    0 & (x 
    - h) 
    <>  
    0 implies (( 
    bD (f,h)) 
    . x) 
    = (((( 
    - k) 
    * h) 
    * ((2 
    * x) 
    - h)) 
    / (((x 
    ^2 ) 
    - (x 
    * h)) 
    ^2 )) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (k 
    / (x 
    ^2 )) and 
    
      
    
    A2: x 
    <>  
    0 & (x 
    - h) 
    <>  
    0 ; 
    
      
    
      
    
    A3: (f 
    . (x 
    - h)) 
    = (k 
    / ((x 
    - h) 
    ^2 )) by 
    A1;
    
      ((
    bD (f,h)) 
    . x) 
    = ((f 
    . x) 
    - (f 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= ((k
    / (x 
    ^2 )) 
    - (k 
    / ((x 
    - h) 
    ^2 ))) by 
    A1,
    A3
    
      .= (((k
    * ((x 
    - h) 
    ^2 )) 
    - (k 
    * (x 
    ^2 ))) 
    / ((x 
    ^2 ) 
    * ((x 
    - h) 
    ^2 ))) by 
    A2,
    XCMPLX_1: 130
    
      .= ((((
    - k) 
    * h) 
    * ((2 
    * x) 
    - h)) 
    / (((x 
    ^2 ) 
    - (x 
    * h)) 
    ^2 )); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:52
    
    (for x holds (f
    . x) 
    = (k 
    / (x 
    ^2 ))) & (x 
    + (h 
    / 2)) 
    <>  
    0 & (x 
    - (h 
    / 2)) 
    <>  
    0 implies (( 
    cD (f,h)) 
    . x) 
    = (( 
    - (((2 
    * h) 
    * k) 
    * x)) 
    / (((x 
    ^2 ) 
    - ((h 
    / 2) 
    ^2 )) 
    ^2 )) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (k 
    / (x 
    ^2 )) and 
    
      
    
    A2: (x 
    + (h 
    / 2)) 
    <>  
    0 & (x 
    - (h 
    / 2)) 
    <>  
    0 ; 
    
      ((
    cD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= ((k
    / ((x 
    + (h 
    / 2)) 
    ^2 )) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= ((k
    / ((x 
    + (h 
    / 2)) 
    ^2 )) 
    - (k 
    / ((x 
    - (h 
    / 2)) 
    ^2 ))) by 
    A1
    
      .= (((k
    * ((x 
    - (h 
    / 2)) 
    ^2 )) 
    - (k 
    * ((x 
    + (h 
    / 2)) 
    ^2 ))) 
    / (((x 
    + (h 
    / 2)) 
    ^2 ) 
    * ((x 
    - (h 
    / 2)) 
    ^2 ))) by 
    A2,
    XCMPLX_1: 130
    
      .= ((
    - (((2 
    * h) 
    * k) 
    * x)) 
    / (((x 
    ^2 ) 
    - ((h 
    / 2) 
    ^2 )) 
    ^2 )); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:53
    
    
    [!((
    sin  
    (#)  
    sin ) 
    (#)  
    sin ), x0, x1!] 
    = (((1 
    / 2) 
    * (((3 
    * ( 
    cos ((x0 
    + x1) 
    / 2))) 
    * ( 
    sin ((x0 
    - x1) 
    / 2))) 
    - (( 
    cos ((3 
    * (x0 
    + x1)) 
    / 2)) 
    * ( 
    sin ((3 
    * (x0 
    - x1)) 
    / 2))))) 
    / (x0 
    - x1)) 
    
    proof
    
      set y = (3
    * x0); 
    
      set z = (3
    * x1); 
    
      
    [!((
    sin  
    (#)  
    sin ) 
    (#)  
    sin ), x0, x1!] 
    = ((((( 
    sin  
    (#)  
    sin ) 
    . x0) 
    * ( 
    sin  
    . x0)) 
    - ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . x1)) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= (((((
    sin  
    . x0) 
    * ( 
    sin  
    . x0)) 
    * ( 
    sin  
    . x0)) 
    - ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . x1)) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= (((((
    sin  
    . x0) 
    * ( 
    sin  
    . x0)) 
    * ( 
    sin  
    . x0)) 
    - ((( 
    sin  
    (#)  
    sin ) 
    . x1) 
    * ( 
    sin  
    . x1))) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= (((((
    sin x0) 
    * ( 
    sin x0)) 
    * ( 
    sin x0)) 
    - ((( 
    sin x1) 
    * ( 
    sin x1)) 
    * ( 
    sin x1))) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= ((((1
    / 4) 
    * (((( 
    sin ((x0 
    + x0) 
    - x0)) 
    + ( 
    sin ((x0 
    + x0) 
    - x0))) 
    + ( 
    sin ((x0 
    + x0) 
    - x0))) 
    - ( 
    sin ((x0 
    + x0) 
    + x0)))) 
    - ((( 
    sin x1) 
    * ( 
    sin x1)) 
    * ( 
    sin x1))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 33
    
      .= ((((1
    / 4) 
    * ((3 
    * ( 
    sin x0)) 
    - ( 
    sin (3 
    * x0)))) 
    - ((1 
    / 4) 
    * (((( 
    sin ((x1 
    + x1) 
    - x1)) 
    + ( 
    sin ((x1 
    + x1) 
    - x1))) 
    + ( 
    sin ((x1 
    + x1) 
    - x1))) 
    - ( 
    sin ((x1 
    + x1) 
    + x1))))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 33
    
      .= (((1
    / 4) 
    * ((3 
    * (( 
    sin x0) 
    - ( 
    sin x1))) 
    - (( 
    sin y) 
    - ( 
    sin z)))) 
    / (x0 
    - x1)) 
    
      .= (((1
    / 4) 
    * ((3 
    * (2 
    * (( 
    cos ((x0 
    + x1) 
    / 2)) 
    * ( 
    sin ((x0 
    - x1) 
    / 2))))) 
    - (( 
    sin y) 
    - ( 
    sin z)))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 16
    
      .= (((1
    / 4) 
    * ((3 
    * (2 
    * (( 
    cos ((x0 
    + x1) 
    / 2)) 
    * ( 
    sin ((x0 
    - x1) 
    / 2))))) 
    - (2 
    * (( 
    cos ((y 
    + z) 
    / 2)) 
    * ( 
    sin ((y 
    - z) 
    / 2)))))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 16
    
      .= (((1
    / 2) 
    * (((3 
    * ( 
    cos ((x0 
    + x1) 
    / 2))) 
    * ( 
    sin ((x0 
    - x1) 
    / 2))) 
    - (( 
    cos ((3 
    * (x0 
    + x1)) 
    / 2)) 
    * ( 
    sin ((3 
    * (x0 
    - x1)) 
    / 2))))) 
    / (x0 
    - x1)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:54
    
    ((
    fD ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ),h)) 
    . x) 
    = ((1 
    / 2) 
    * (((3 
    * ( 
    cos (((2 
    * x) 
    + h) 
    / 2))) 
    * ( 
    sin (h 
    / 2))) 
    - (( 
    cos ((3 
    * ((2 
    * x) 
    + h)) 
    / 2)) 
    * ( 
    sin ((3 
    * h) 
    / 2))))) 
    
    proof
    
      ((
    fD ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ),h)) 
    . x) 
    = (((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . (x 
    + h)) 
    - ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . x)) by 
    DIFF_1: 3
    
      .= ((((
    sin  
    (#)  
    sin ) 
    . (x 
    + h)) 
    * ( 
    sin  
    . (x 
    + h))) 
    - ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . x)) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . (x 
    + h)) 
    * ( 
    sin  
    . (x 
    + h))) 
    * ( 
    sin  
    . (x 
    + h))) 
    - ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . x)) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . (x 
    + h)) 
    * ( 
    sin  
    . (x 
    + h))) 
    * ( 
    sin  
    . (x 
    + h))) 
    - ((( 
    sin  
    (#)  
    sin ) 
    . x) 
    * ( 
    sin  
    . x))) by 
    VALUED_1: 5
    
      .= ((((
    sin (x 
    + h)) 
    * ( 
    sin (x 
    + h))) 
    * ( 
    sin (x 
    + h))) 
    - ((( 
    sin x) 
    * ( 
    sin x)) 
    * ( 
    sin x))) by 
    VALUED_1: 5
    
      .= (((1
    / 4) 
    * (((( 
    sin (((x 
    + h) 
    + (x 
    + h)) 
    - (x 
    + h))) 
    + ( 
    sin (((x 
    + h) 
    + (x 
    + h)) 
    - (x 
    + h)))) 
    + ( 
    sin (((x 
    + h) 
    + (x 
    + h)) 
    - (x 
    + h)))) 
    - ( 
    sin (((x 
    + h) 
    + (x 
    + h)) 
    + (x 
    + h))))) 
    - ((( 
    sin x) 
    * ( 
    sin x)) 
    * ( 
    sin x))) by 
    SIN_COS4: 33
    
      .= (((1
    / 4) 
    * (((( 
    sin (x 
    + h)) 
    + ( 
    sin (x 
    + h))) 
    + ( 
    sin (x 
    + h))) 
    - ( 
    sin (3 
    * (x 
    + h))))) 
    - ((1 
    / 4) 
    * (((( 
    sin ((x 
    + x) 
    - x)) 
    + ( 
    sin ((x 
    + x) 
    - x))) 
    + ( 
    sin ((x 
    + x) 
    - x))) 
    - ( 
    sin ((x 
    + x) 
    + x))))) by 
    SIN_COS4: 33
    
      .= ((1
    / 4) 
    * ((3 
    * (( 
    sin (x 
    + h)) 
    - ( 
    sin x))) 
    - (( 
    sin (3 
    * (x 
    + h))) 
    - ( 
    sin (3 
    * x))))) 
    
      .= ((1
    / 4) 
    * ((3 
    * (2 
    * (( 
    cos (((x 
    + h) 
    + x) 
    / 2)) 
    * ( 
    sin (((x 
    + h) 
    - x) 
    / 2))))) 
    - (( 
    sin (3 
    * (x 
    + h))) 
    - ( 
    sin (3 
    * x))))) by 
    SIN_COS4: 16
    
      .= ((1
    / 4) 
    * ((3 
    * (2 
    * (( 
    cos (((x 
    + h) 
    + x) 
    / 2)) 
    * ( 
    sin (((x 
    + h) 
    - x) 
    / 2))))) 
    - (2 
    * (( 
    cos (((3 
    * (x 
    + h)) 
    + (3 
    * x)) 
    / 2)) 
    * ( 
    sin (((3 
    * (x 
    + h)) 
    - (3 
    * x)) 
    / 2)))))) by 
    SIN_COS4: 16
    
      .= ((1
    / 2) 
    * (((3 
    * ( 
    cos (((2 
    * x) 
    + h) 
    / 2))) 
    * ( 
    sin (h 
    / 2))) 
    - (( 
    cos ((3 
    * ((2 
    * x) 
    + h)) 
    / 2)) 
    * ( 
    sin ((3 
    * h) 
    / 2))))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:55
    
    ((
    bD ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ),h)) 
    . x) 
    = ((1 
    / 2) 
    * (((3 
    * ( 
    cos (((2 
    * x) 
    - h) 
    / 2))) 
    * ( 
    sin (h 
    / 2))) 
    - (( 
    cos ((3 
    * ((2 
    * x) 
    - h)) 
    / 2)) 
    * ( 
    sin ((3 
    * h) 
    / 2))))) 
    
    proof
    
      ((
    bD ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ),h)) 
    . x) 
    = (((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . x) 
    - ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= ((((
    sin  
    (#)  
    sin ) 
    . x) 
    * ( 
    sin  
    . x)) 
    - ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . (x 
    - h))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . x) 
    * ( 
    sin  
    . x)) 
    * ( 
    sin  
    . x)) 
    - ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . (x 
    - h))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . x) 
    * ( 
    sin  
    . x)) 
    * ( 
    sin  
    . x)) 
    - ((( 
    sin  
    (#)  
    sin ) 
    . (x 
    - h)) 
    * ( 
    sin  
    . (x 
    - h)))) by 
    VALUED_1: 5
    
      .= ((((
    sin x) 
    * ( 
    sin x)) 
    * ( 
    sin x)) 
    - ((( 
    sin (x 
    - h)) 
    * ( 
    sin (x 
    - h))) 
    * ( 
    sin (x 
    - h)))) by 
    VALUED_1: 5
    
      .= (((1
    / 4) 
    * (((( 
    sin ((x 
    + x) 
    - x)) 
    + ( 
    sin ((x 
    + x) 
    - x))) 
    + ( 
    sin ((x 
    + x) 
    - x))) 
    - ( 
    sin ((x 
    + x) 
    + x)))) 
    - ((( 
    sin (x 
    - h)) 
    * ( 
    sin (x 
    - h))) 
    * ( 
    sin (x 
    - h)))) by 
    SIN_COS4: 33
    
      .= (((1
    / 4) 
    * (((( 
    sin x) 
    + ( 
    sin x)) 
    + ( 
    sin x)) 
    - ( 
    sin (3 
    * x)))) 
    - ((1 
    / 4) 
    * (((( 
    sin (((x 
    - h) 
    + (x 
    - h)) 
    - (x 
    - h))) 
    + ( 
    sin (((x 
    - h) 
    + (x 
    - h)) 
    - (x 
    - h)))) 
    + ( 
    sin (((x 
    - h) 
    + (x 
    - h)) 
    - (x 
    - h)))) 
    - ( 
    sin (((x 
    - h) 
    + (x 
    - h)) 
    + (x 
    - h)))))) by 
    SIN_COS4: 33
    
      .= ((1
    / 4) 
    * ((3 
    * (( 
    sin x) 
    - ( 
    sin (x 
    - h)))) 
    - (( 
    sin (3 
    * x)) 
    - ( 
    sin (3 
    * (x 
    - h)))))) 
    
      .= ((1
    / 4) 
    * ((3 
    * (2 
    * (( 
    cos ((x 
    + (x 
    - h)) 
    / 2)) 
    * ( 
    sin ((x 
    - (x 
    - h)) 
    / 2))))) 
    - (( 
    sin (3 
    * x)) 
    - ( 
    sin (3 
    * (x 
    - h)))))) by 
    SIN_COS4: 16
    
      .= ((1
    / 4) 
    * ((3 
    * (2 
    * (( 
    cos (((2 
    * x) 
    - h) 
    / 2)) 
    * ( 
    sin (h 
    / 2))))) 
    - (2 
    * (( 
    cos (((3 
    * x) 
    + (3 
    * (x 
    - h))) 
    / 2)) 
    * ( 
    sin (((3 
    * x) 
    - (3 
    * (x 
    - h))) 
    / 2)))))) by 
    SIN_COS4: 16
    
      .= ((1
    / 2) 
    * (((3 
    * ( 
    cos (((2 
    * x) 
    - h) 
    / 2))) 
    * ( 
    sin (h 
    / 2))) 
    - (( 
    cos ((3 
    * ((2 
    * x) 
    - h)) 
    / 2)) 
    * ( 
    sin ((3 
    * h) 
    / 2))))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:56
    
    ((
    cD ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ),h)) 
    . x) 
    = ((1 
    / 2) 
    * (((3 
    * ( 
    cos x)) 
    * ( 
    sin (h 
    / 2))) 
    - (( 
    cos (3 
    * x)) 
    * ( 
    sin ((3 
    * h) 
    / 2))))) 
    
    proof
    
      ((
    cD ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ),h)) 
    . x) 
    = (((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . (x 
    + (h 
    / 2))) 
    - ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= ((((
    sin  
    (#)  
    sin ) 
    . (x 
    + (h 
    / 2))) 
    * ( 
    sin  
    . (x 
    + (h 
    / 2)))) 
    - ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . (x 
    - (h 
    / 2)))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . (x 
    + (h 
    / 2))) 
    * ( 
    sin  
    . (x 
    + (h 
    / 2)))) 
    * ( 
    sin  
    . (x 
    + (h 
    / 2)))) 
    - ((( 
    sin  
    (#)  
    sin ) 
    (#)  
    sin ) 
    . (x 
    - (h 
    / 2)))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . (x 
    + (h 
    / 2))) 
    * ( 
    sin  
    . (x 
    + (h 
    / 2)))) 
    * ( 
    sin  
    . (x 
    + (h 
    / 2)))) 
    - ((( 
    sin  
    (#)  
    sin ) 
    . (x 
    - (h 
    / 2))) 
    * ( 
    sin  
    . (x 
    - (h 
    / 2))))) by 
    VALUED_1: 5
    
      .= ((((
    sin (x 
    + (h 
    / 2))) 
    * ( 
    sin (x 
    + (h 
    / 2)))) 
    * ( 
    sin (x 
    + (h 
    / 2)))) 
    - ((( 
    sin (x 
    - (h 
    / 2))) 
    * ( 
    sin (x 
    - (h 
    / 2)))) 
    * ( 
    sin (x 
    - (h 
    / 2))))) by 
    VALUED_1: 5
    
      .= (((1
    / 4) 
    * (((( 
    sin (((x 
    + (h 
    / 2)) 
    + (x 
    + (h 
    / 2))) 
    - (x 
    + (h 
    / 2)))) 
    + ( 
    sin (((x 
    + (h 
    / 2)) 
    + (x 
    + (h 
    / 2))) 
    - (x 
    + (h 
    / 2))))) 
    + ( 
    sin (((x 
    + (h 
    / 2)) 
    + (x 
    + (h 
    / 2))) 
    - (x 
    + (h 
    / 2))))) 
    - ( 
    sin (((x 
    + (h 
    / 2)) 
    + (x 
    + (h 
    / 2))) 
    + (x 
    + (h 
    / 2)))))) 
    - ((( 
    sin (x 
    - (h 
    / 2))) 
    * ( 
    sin (x 
    - (h 
    / 2)))) 
    * ( 
    sin (x 
    - (h 
    / 2))))) by 
    SIN_COS4: 33
    
      .= (((1
    / 4) 
    * (((( 
    sin (x 
    + (h 
    / 2))) 
    + ( 
    sin (x 
    + (h 
    / 2)))) 
    + ( 
    sin (x 
    + (h 
    / 2)))) 
    - ( 
    sin (3 
    * (x 
    + (h 
    / 2)))))) 
    - ((1 
    / 4) 
    * (((( 
    sin (((x 
    - (h 
    / 2)) 
    + (x 
    - (h 
    / 2))) 
    - (x 
    - (h 
    / 2)))) 
    + ( 
    sin (((x 
    - (h 
    / 2)) 
    + (x 
    - (h 
    / 2))) 
    - (x 
    - (h 
    / 2))))) 
    + ( 
    sin (((x 
    - (h 
    / 2)) 
    + (x 
    - (h 
    / 2))) 
    - (x 
    - (h 
    / 2))))) 
    - ( 
    sin (((x 
    - (h 
    / 2)) 
    + (x 
    - (h 
    / 2))) 
    + (x 
    - (h 
    / 2))))))) by 
    SIN_COS4: 33
    
      .= ((1
    / 4) 
    * ((3 
    * (( 
    sin (x 
    + (h 
    / 2))) 
    - ( 
    sin (x 
    - (h 
    / 2))))) 
    - (( 
    sin (3 
    * (x 
    + (h 
    / 2)))) 
    - ( 
    sin (3 
    * (x 
    - (h 
    / 2))))))) 
    
      .= ((1
    / 4) 
    * ((3 
    * (2 
    * (( 
    cos (((x 
    + (h 
    / 2)) 
    + (x 
    - (h 
    / 2))) 
    / 2)) 
    * ( 
    sin (((x 
    + (h 
    / 2)) 
    - (x 
    - (h 
    / 2))) 
    / 2))))) 
    - (( 
    sin (3 
    * (x 
    + (h 
    / 2)))) 
    - ( 
    sin (3 
    * (x 
    - (h 
    / 2))))))) by 
    SIN_COS4: 16
    
      .= ((1
    / 4) 
    * ((3 
    * (2 
    * (( 
    cos ((2 
    * x) 
    / 2)) 
    * ( 
    sin (h 
    / 2))))) 
    - (2 
    * (( 
    cos (((3 
    * (x 
    + (h 
    / 2))) 
    + (3 
    * (x 
    - (h 
    / 2)))) 
    / 2)) 
    * ( 
    sin (((3 
    * (x 
    + (h 
    / 2))) 
    - (3 
    * (x 
    - (h 
    / 2)))) 
    / 2)))))) by 
    SIN_COS4: 16
    
      .= ((1
    / 2) 
    * (((3 
    * ( 
    cos x)) 
    * ( 
    sin (h 
    / 2))) 
    - (( 
    cos (3 
    * x)) 
    * ( 
    sin ((3 
    * h) 
    / 2))))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:57
    
    
    [!((
    cos  
    (#)  
    cos ) 
    (#)  
    cos ), x0, x1!] 
    = ( 
    - (((1 
    / 2) 
    * (((3 
    * ( 
    sin ((x0 
    + x1) 
    / 2))) 
    * ( 
    sin ((x0 
    - x1) 
    / 2))) 
    + (( 
    sin (((3 
    * x0) 
    + (3 
    * x1)) 
    / 2)) 
    * ( 
    sin (((3 
    * x0) 
    - (3 
    * x1)) 
    / 2))))) 
    / (x0 
    - x1))) 
    
    proof
    
      
    [!((
    cos  
    (#)  
    cos ) 
    (#)  
    cos ), x0, x1!] 
    = ((((( 
    cos  
    (#)  
    cos ) 
    . x0) 
    * ( 
    cos  
    . x0)) 
    - ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . x1)) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= (((((
    cos  
    . x0) 
    * ( 
    cos  
    . x0)) 
    * ( 
    cos  
    . x0)) 
    - ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . x1)) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= (((((
    cos  
    . x0) 
    * ( 
    cos  
    . x0)) 
    * ( 
    cos  
    . x0)) 
    - ((( 
    cos  
    (#)  
    cos ) 
    . x1) 
    * ( 
    cos  
    . x1))) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= (((((
    cos x0) 
    * ( 
    cos x0)) 
    * ( 
    cos x0)) 
    - ((( 
    cos x1) 
    * ( 
    cos x1)) 
    * ( 
    cos x1))) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= ((((1
    / 4) 
    * (((( 
    cos ((x0 
    + x0) 
    - x0)) 
    + ( 
    cos ((x0 
    + x0) 
    - x0))) 
    + ( 
    cos ((x0 
    + x0) 
    - x0))) 
    + ( 
    cos ((x0 
    + x0) 
    + x0)))) 
    - ((( 
    cos x1) 
    * ( 
    cos x1)) 
    * ( 
    cos x1))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 36
    
      .= ((((1
    / 4) 
    * (((( 
    cos x0) 
    + ( 
    cos x0)) 
    + ( 
    cos x0)) 
    + ( 
    cos (3 
    * x0)))) 
    - ((1 
    / 4) 
    * (((( 
    cos ((x1 
    + x1) 
    - x1)) 
    + ( 
    cos ((x1 
    + x1) 
    - x1))) 
    + ( 
    cos ((x1 
    + x1) 
    - x1))) 
    + ( 
    cos ((x1 
    + x1) 
    + x1))))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 36
    
      .= (((1
    / 4) 
    * ((3 
    * (( 
    cos x0) 
    - ( 
    cos x1))) 
    + (( 
    cos (3 
    * x0)) 
    - ( 
    cos (3 
    * x1))))) 
    / (x0 
    - x1)) 
    
      .= (((1
    / 4) 
    * ((3 
    * ( 
    - (2 
    * (( 
    sin ((x0 
    + x1) 
    / 2)) 
    * ( 
    sin ((x0 
    - x1) 
    / 2)))))) 
    + (( 
    cos (3 
    * x0)) 
    - ( 
    cos (3 
    * x1))))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 18
    
      .= (((1
    / 4) 
    * (((3 
    * ( 
    - 2)) 
    * (( 
    sin ((x0 
    + x1) 
    / 2)) 
    * ( 
    sin ((x0 
    - x1) 
    / 2)))) 
    + ( 
    - (2 
    * (( 
    sin (((3 
    * x0) 
    + (3 
    * x1)) 
    / 2)) 
    * ( 
    sin (((3 
    * x0) 
    - (3 
    * x1)) 
    / 2))))))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 18
    
      .= ((
    - ((1 
    / 2) 
    * (((3 
    * ( 
    sin ((x0 
    + x1) 
    / 2))) 
    * ( 
    sin ((x0 
    - x1) 
    / 2))) 
    + (( 
    sin (((3 
    * x0) 
    + (3 
    * x1)) 
    / 2)) 
    * ( 
    sin (((3 
    * x0) 
    - (3 
    * x1)) 
    / 2)))))) 
    / (x0 
    - x1)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:58
    
    ((
    fD ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ),h)) 
    . x) 
    = ( 
    - ((1 
    / 2) 
    * (((3 
    * ( 
    sin (((2 
    * x) 
    + h) 
    / 2))) 
    * ( 
    sin (h 
    / 2))) 
    + (( 
    sin ((3 
    * ((2 
    * x) 
    + h)) 
    / 2)) 
    * ( 
    sin ((3 
    * h) 
    / 2)))))) 
    
    proof
    
      ((
    fD ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ),h)) 
    . x) 
    = (((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . (x 
    + h)) 
    - ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . x)) by 
    DIFF_1: 3
    
      .= ((((
    cos  
    (#)  
    cos ) 
    . (x 
    + h)) 
    * ( 
    cos  
    . (x 
    + h))) 
    - ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . x)) by 
    VALUED_1: 5
    
      .= ((((
    cos  
    . (x 
    + h)) 
    * ( 
    cos  
    . (x 
    + h))) 
    * ( 
    cos  
    . (x 
    + h))) 
    - ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . x)) by 
    VALUED_1: 5
    
      .= ((((
    cos  
    . (x 
    + h)) 
    * ( 
    cos  
    . (x 
    + h))) 
    * ( 
    cos  
    . (x 
    + h))) 
    - ((( 
    cos  
    (#)  
    cos ) 
    . x) 
    * ( 
    cos  
    . x))) by 
    VALUED_1: 5
    
      .= ((((
    cos (x 
    + h)) 
    * ( 
    cos (x 
    + h))) 
    * ( 
    cos (x 
    + h))) 
    - ((( 
    cos x) 
    * ( 
    cos x)) 
    * ( 
    cos x))) by 
    VALUED_1: 5
    
      .= (((1
    / 4) 
    * (((( 
    cos (((x 
    + h) 
    + (x 
    + h)) 
    - (x 
    + h))) 
    + ( 
    cos (((x 
    + h) 
    + (x 
    + h)) 
    - (x 
    + h)))) 
    + ( 
    cos (((x 
    + h) 
    + (x 
    + h)) 
    - (x 
    + h)))) 
    + ( 
    cos (((x 
    + h) 
    + (x 
    + h)) 
    + (x 
    + h))))) 
    - ((( 
    cos x) 
    * ( 
    cos x)) 
    * ( 
    cos x))) by 
    SIN_COS4: 36
    
      .= (((1
    / 4) 
    * (((( 
    cos (x 
    + h)) 
    + ( 
    cos (x 
    + h))) 
    + ( 
    cos (x 
    + h))) 
    + ( 
    cos (3 
    * (x 
    + h))))) 
    - ((1 
    / 4) 
    * (((( 
    cos ((x 
    + x) 
    - x)) 
    + ( 
    cos ((x 
    + x) 
    - x))) 
    + ( 
    cos ((x 
    + x) 
    - x))) 
    + ( 
    cos ((x 
    + x) 
    + x))))) by 
    SIN_COS4: 36
    
      .= ((1
    / 4) 
    * ((3 
    * (( 
    cos (x 
    + h)) 
    - ( 
    cos x))) 
    + (( 
    cos (3 
    * (x 
    + h))) 
    - ( 
    cos (3 
    * x))))) 
    
      .= ((1
    / 4) 
    * ((3 
    * ( 
    - (2 
    * (( 
    sin (((x 
    + h) 
    + x) 
    / 2)) 
    * ( 
    sin (((x 
    + h) 
    - x) 
    / 2)))))) 
    + (( 
    cos (3 
    * (x 
    + h))) 
    - ( 
    cos (3 
    * x))))) by 
    SIN_COS4: 18
    
      .= ((1
    / 4) 
    * ((3 
    * ( 
    - (2 
    * (( 
    sin (((2 
    * x) 
    + h) 
    / 2)) 
    * ( 
    sin (h 
    / 2)))))) 
    + ( 
    - (2 
    * (( 
    sin (((3 
    * (x 
    + h)) 
    + (3 
    * x)) 
    / 2)) 
    * ( 
    sin (((3 
    * (x 
    + h)) 
    - (3 
    * x)) 
    / 2))))))) by 
    SIN_COS4: 18
    
      .= ((
    - (1 
    / 2)) 
    * (((3 
    * ( 
    sin (((2 
    * x) 
    + h) 
    / 2))) 
    * ( 
    sin (h 
    / 2))) 
    + (( 
    sin ((3 
    * ((2 
    * x) 
    + h)) 
    / 2)) 
    * ( 
    sin ((3 
    * h) 
    / 2))))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:59
    
    ((
    bD ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ),h)) 
    . x) 
    = ( 
    - ((1 
    / 2) 
    * (((3 
    * ( 
    sin (((2 
    * x) 
    - h) 
    / 2))) 
    * ( 
    sin (h 
    / 2))) 
    + (( 
    sin ((3 
    * ((2 
    * x) 
    - h)) 
    / 2)) 
    * ( 
    sin ((3 
    * h) 
    / 2)))))) 
    
    proof
    
      ((
    bD ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ),h)) 
    . x) 
    = (((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . x) 
    - ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= ((((
    cos  
    (#)  
    cos ) 
    . x) 
    * ( 
    cos  
    . x)) 
    - ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . (x 
    - h))) by 
    VALUED_1: 5
    
      .= ((((
    cos  
    . x) 
    * ( 
    cos  
    . x)) 
    * ( 
    cos  
    . x)) 
    - ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . (x 
    - h))) by 
    VALUED_1: 5
    
      .= ((((
    cos  
    . x) 
    * ( 
    cos  
    . x)) 
    * ( 
    cos  
    . x)) 
    - ((( 
    cos  
    (#)  
    cos ) 
    . (x 
    - h)) 
    * ( 
    cos  
    . (x 
    - h)))) by 
    VALUED_1: 5
    
      .= ((((
    cos x) 
    * ( 
    cos x)) 
    * ( 
    cos x)) 
    - ((( 
    cos (x 
    - h)) 
    * ( 
    cos (x 
    - h))) 
    * ( 
    cos (x 
    - h)))) by 
    VALUED_1: 5
    
      .= (((1
    / 4) 
    * (((( 
    cos ((x 
    + x) 
    - x)) 
    + ( 
    cos ((x 
    + x) 
    - x))) 
    + ( 
    cos ((x 
    + x) 
    - x))) 
    + ( 
    cos ((x 
    + x) 
    + x)))) 
    - ((( 
    cos (x 
    - h)) 
    * ( 
    cos (x 
    - h))) 
    * ( 
    cos (x 
    - h)))) by 
    SIN_COS4: 36
    
      .= (((1
    / 4) 
    * (((( 
    cos x) 
    + ( 
    cos x)) 
    + ( 
    cos x)) 
    + ( 
    cos (3 
    * x)))) 
    - ((1 
    / 4) 
    * (((( 
    cos (((x 
    - h) 
    + (x 
    - h)) 
    - (x 
    - h))) 
    + ( 
    cos (((x 
    - h) 
    + (x 
    - h)) 
    - (x 
    - h)))) 
    + ( 
    cos (((x 
    - h) 
    + (x 
    - h)) 
    - (x 
    - h)))) 
    + ( 
    cos (((x 
    - h) 
    + (x 
    - h)) 
    + (x 
    - h)))))) by 
    SIN_COS4: 36
    
      .= ((1
    / 4) 
    * ((3 
    * (( 
    cos x) 
    - ( 
    cos (x 
    - h)))) 
    + (( 
    cos (3 
    * x)) 
    - ( 
    cos (3 
    * (x 
    - h)))))) 
    
      .= ((1
    / 4) 
    * ((3 
    * ( 
    - (2 
    * (( 
    sin ((x 
    + (x 
    - h)) 
    / 2)) 
    * ( 
    sin ((x 
    - (x 
    - h)) 
    / 2)))))) 
    + (( 
    cos (3 
    * x)) 
    - ( 
    cos (3 
    * (x 
    - h)))))) by 
    SIN_COS4: 18
    
      .= ((1
    / 4) 
    * ((3 
    * ( 
    - (2 
    * (( 
    sin (((2 
    * x) 
    - h) 
    / 2)) 
    * ( 
    sin (h 
    / 2)))))) 
    + ( 
    - (2 
    * (( 
    sin (((3 
    * x) 
    + (3 
    * (x 
    - h))) 
    / 2)) 
    * ( 
    sin (((3 
    * x) 
    - (3 
    * (x 
    - h))) 
    / 2))))))) by 
    SIN_COS4: 18
    
      .= ((
    - (1 
    / 2)) 
    * ((3 
    * (( 
    sin (((2 
    * x) 
    - h) 
    / 2)) 
    * ( 
    sin (h 
    / 2)))) 
    + (( 
    sin ((3 
    * ((2 
    * x) 
    - h)) 
    / 2)) 
    * ( 
    sin ((3 
    * h) 
    / 2))))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:60
    
    ((
    cD ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ),h)) 
    . x) 
    = ( 
    - ((1 
    / 2) 
    * (((3 
    * ( 
    sin x)) 
    * ( 
    sin (h 
    / 2))) 
    + (( 
    sin (3 
    * x)) 
    * ( 
    sin ((3 
    * h) 
    / 2)))))) 
    
    proof
    
      ((
    cD ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ),h)) 
    . x) 
    = (((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . (x 
    + (h 
    / 2))) 
    - ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= ((((
    cos  
    (#)  
    cos ) 
    . (x 
    + (h 
    / 2))) 
    * ( 
    cos  
    . (x 
    + (h 
    / 2)))) 
    - ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . (x 
    - (h 
    / 2)))) by 
    VALUED_1: 5
    
      .= ((((
    cos  
    . (x 
    + (h 
    / 2))) 
    * ( 
    cos  
    . (x 
    + (h 
    / 2)))) 
    * ( 
    cos  
    . (x 
    + (h 
    / 2)))) 
    - ((( 
    cos  
    (#)  
    cos ) 
    (#)  
    cos ) 
    . (x 
    - (h 
    / 2)))) by 
    VALUED_1: 5
    
      .= ((((
    cos  
    . (x 
    + (h 
    / 2))) 
    * ( 
    cos  
    . (x 
    + (h 
    / 2)))) 
    * ( 
    cos  
    . (x 
    + (h 
    / 2)))) 
    - ((( 
    cos  
    (#)  
    cos ) 
    . (x 
    - (h 
    / 2))) 
    * ( 
    cos  
    . (x 
    - (h 
    / 2))))) by 
    VALUED_1: 5
    
      .= ((((
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    + (h 
    / 2)))) 
    * ( 
    cos (x 
    + (h 
    / 2)))) 
    - ((( 
    cos (x 
    - (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2)))) 
    * ( 
    cos (x 
    - (h 
    / 2))))) by 
    VALUED_1: 5
    
      .= (((1
    / 4) 
    * (((( 
    cos (((x 
    + (h 
    / 2)) 
    + (x 
    + (h 
    / 2))) 
    - (x 
    + (h 
    / 2)))) 
    + ( 
    cos (((x 
    + (h 
    / 2)) 
    + (x 
    + (h 
    / 2))) 
    - (x 
    + (h 
    / 2))))) 
    + ( 
    cos (((x 
    + (h 
    / 2)) 
    + (x 
    + (h 
    / 2))) 
    - (x 
    + (h 
    / 2))))) 
    + ( 
    cos (((x 
    + (h 
    / 2)) 
    + (x 
    + (h 
    / 2))) 
    + (x 
    + (h 
    / 2)))))) 
    - ((( 
    cos (x 
    - (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2)))) 
    * ( 
    cos (x 
    - (h 
    / 2))))) by 
    SIN_COS4: 36
    
      .= (((1
    / 4) 
    * (((( 
    cos (x 
    + (h 
    / 2))) 
    + ( 
    cos (x 
    + (h 
    / 2)))) 
    + ( 
    cos (x 
    + (h 
    / 2)))) 
    + ( 
    cos (3 
    * (x 
    + (h 
    / 2)))))) 
    - ((1 
    / 4) 
    * (((( 
    cos (((x 
    - (h 
    / 2)) 
    + (x 
    - (h 
    / 2))) 
    - (x 
    - (h 
    / 2)))) 
    + ( 
    cos (((x 
    - (h 
    / 2)) 
    + (x 
    - (h 
    / 2))) 
    - (x 
    - (h 
    / 2))))) 
    + ( 
    cos (((x 
    - (h 
    / 2)) 
    + (x 
    - (h 
    / 2))) 
    - (x 
    - (h 
    / 2))))) 
    + ( 
    cos (((x 
    - (h 
    / 2)) 
    + (x 
    - (h 
    / 2))) 
    + (x 
    - (h 
    / 2))))))) by 
    SIN_COS4: 36
    
      .= ((1
    / 4) 
    * ((3 
    * (( 
    cos (x 
    + (h 
    / 2))) 
    - ( 
    cos (x 
    - (h 
    / 2))))) 
    + (( 
    cos (3 
    * (x 
    + (h 
    / 2)))) 
    - ( 
    cos (3 
    * (x 
    - (h 
    / 2))))))) 
    
      .= ((1
    / 4) 
    * ((3 
    * ( 
    - (2 
    * (( 
    sin (((x 
    + (h 
    / 2)) 
    + (x 
    - (h 
    / 2))) 
    / 2)) 
    * ( 
    sin (((x 
    + (h 
    / 2)) 
    - (x 
    - (h 
    / 2))) 
    / 2)))))) 
    + (( 
    cos (3 
    * (x 
    + (h 
    / 2)))) 
    - ( 
    cos (3 
    * (x 
    - (h 
    / 2))))))) by 
    SIN_COS4: 18
    
      .= ((1
    / 4) 
    * ((3 
    * ( 
    - (2 
    * (( 
    sin ((2 
    * x) 
    / 2)) 
    * ( 
    sin (h 
    / 2)))))) 
    + ( 
    - (2 
    * (( 
    sin (((3 
    * (x 
    + (h 
    / 2))) 
    + (3 
    * (x 
    - (h 
    / 2)))) 
    / 2)) 
    * ( 
    sin (((3 
    * (x 
    + (h 
    / 2))) 
    - (3 
    * (x 
    - (h 
    / 2)))) 
    / 2))))))) by 
    SIN_COS4: 18
    
      .= (
    - ((1 
    / 2) 
    * ((3 
    * (( 
    sin x) 
    * ( 
    sin (h 
    / 2)))) 
    + (( 
    sin (3 
    * x)) 
    * ( 
    sin ((3 
    * h) 
    / 2)))))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:61
    
    (for x holds (f
    . x) 
    = (1 
    / ( 
    sin x))) & ( 
    sin x0) 
    <>  
    0 & ( 
    sin x1) 
    <>  
    0 implies 
    [!f, x0, x1!]
    = ( 
    - (((2 
    * (( 
    sin x1) 
    - ( 
    sin x0))) 
    / (( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1)))) 
    / (x0 
    - x1))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / ( 
    sin x)) and 
    
      
    
    A2: ( 
    sin x0) 
    <>  
    0 & ( 
    sin x1) 
    <>  
    0 ; 
    
      (f
    . x0) 
    = (1 
    / ( 
    sin x0)) & (f 
    . x1) 
    = (1 
    / ( 
    sin x1)) by 
    A1;
    
      
    
      then
    [!f, x0, x1!]
    = ((((1 
    * ( 
    sin x1)) 
    - (1 
    * ( 
    sin x0))) 
    / (( 
    sin x0) 
    * ( 
    sin x1))) 
    / (x0 
    - x1)) by 
    A2,
    XCMPLX_1: 130
    
      .= ((((
    sin x1) 
    - ( 
    sin x0)) 
    / ( 
    - ((1 
    / 2) 
    * (( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1)))))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 29
    
      .= ((((
    sin x1) 
    - ( 
    sin x0)) 
    / (( 
    - (1 
    / 2)) 
    * (( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1))))) 
    / (x0 
    - x1)) 
    
      .= (((((
    sin x1) 
    - ( 
    sin x0)) 
    / ( 
    - (1 
    / 2))) 
    / (( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1)))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 78
    
      .= ((((
    - 2) 
    * (( 
    sin x1) 
    - ( 
    sin x0))) 
    / (( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1)))) 
    / (x0 
    - x1)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:62
    
    (for x holds (f
    . x) 
    = (1 
    / ( 
    sin x))) & ( 
    sin x) 
    <>  
    0 & ( 
    sin (x 
    + h)) 
    <>  
    0 implies (( 
    fD (f,h)) 
    . x) 
    = ( 
    - ((2 
    * (( 
    sin x) 
    - ( 
    sin (x 
    + h)))) 
    / (( 
    cos ((2 
    * x) 
    + h)) 
    - ( 
    cos h)))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / ( 
    sin x)) and 
    
      
    
    A2: ( 
    sin x) 
    <>  
    0 & ( 
    sin (x 
    + h)) 
    <>  
    0 ; 
    
      (f
    . (x 
    + h)) 
    = (1 
    / ( 
    sin (x 
    + h))) by 
    A1;
    
      
    
      then ((
    fD (f,h)) 
    . x) 
    = ((1 
    / ( 
    sin (x 
    + h))) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= ((1
    / ( 
    sin (x 
    + h))) 
    - (1 
    / ( 
    sin x))) by 
    A1
    
      .= (((1
    * ( 
    sin x)) 
    - (1 
    * ( 
    sin (x 
    + h)))) 
    / (( 
    sin (x 
    + h)) 
    * ( 
    sin x))) by 
    A2,
    XCMPLX_1: 130
    
      .= (((
    sin x) 
    - ( 
    sin (x 
    + h))) 
    / ( 
    - ((1 
    / 2) 
    * (( 
    cos ((x 
    + h) 
    + x)) 
    - ( 
    cos ((x 
    + h) 
    - x)))))) by 
    SIN_COS4: 29
    
      .= (((
    sin x) 
    - ( 
    sin (x 
    + h))) 
    / (( 
    - (1 
    / 2)) 
    * (( 
    cos ((x 
    + h) 
    + x)) 
    - ( 
    cos ((x 
    + h) 
    - x))))) 
    
      .= ((((
    sin x) 
    - ( 
    sin (x 
    + h))) 
    / ( 
    - (1 
    / 2))) 
    / (( 
    cos ((2 
    * x) 
    + h)) 
    - ( 
    cos h))) by 
    XCMPLX_1: 78
    
      .= ((
    - 2) 
    * ((( 
    sin x) 
    - ( 
    sin (x 
    + h))) 
    / (( 
    cos ((2 
    * x) 
    + h)) 
    - ( 
    cos h)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:63
    
    (for x holds (f
    . x) 
    = (1 
    / ( 
    sin x))) & ( 
    sin x) 
    <>  
    0 & ( 
    sin (x 
    - h)) 
    <>  
    0 implies (( 
    bD (f,h)) 
    . x) 
    = ((( 
    - 2) 
    * (( 
    sin (x 
    - h)) 
    - ( 
    sin x))) 
    / (( 
    cos ((2 
    * x) 
    - h)) 
    - ( 
    cos h))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / ( 
    sin x)) and 
    
      
    
    A2: ( 
    sin x) 
    <>  
    0 & ( 
    sin (x 
    - h)) 
    <>  
    0 ; 
    
      ((
    bD (f,h)) 
    . x) 
    = ((f 
    . x) 
    - (f 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= ((1
    / ( 
    sin x)) 
    - (f 
    . (x 
    - h))) by 
    A1
    
      .= ((1
    / ( 
    sin x)) 
    - (1 
    / ( 
    sin (x 
    - h)))) by 
    A1
    
      .= (((1
    * ( 
    sin (x 
    - h))) 
    - (1 
    * ( 
    sin x))) 
    / (( 
    sin x) 
    * ( 
    sin (x 
    - h)))) by 
    A2,
    XCMPLX_1: 130
    
      .= (((
    sin (x 
    - h)) 
    - ( 
    sin x)) 
    / ( 
    - ((1 
    / 2) 
    * (( 
    cos (x 
    + (x 
    - h))) 
    - ( 
    cos (x 
    - (x 
    - h))))))) by 
    SIN_COS4: 29
    
      .= (((
    sin (x 
    - h)) 
    - ( 
    sin x)) 
    / (( 
    - (1 
    / 2)) 
    * (( 
    cos ((2 
    * x) 
    - h)) 
    - ( 
    cos h)))) 
    
      .= ((((
    sin (x 
    - h)) 
    - ( 
    sin x)) 
    / ( 
    - (1 
    / 2))) 
    / (( 
    cos ((2 
    * x) 
    - h)) 
    - ( 
    cos h))) by 
    XCMPLX_1: 78
    
      .= ((
    - 2) 
    * ((( 
    sin (x 
    - h)) 
    - ( 
    sin x)) 
    / (( 
    cos ((2 
    * x) 
    - h)) 
    - ( 
    cos h)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:64
    
    (for x holds (f
    . x) 
    = (1 
    / ( 
    sin x))) & ( 
    sin (x 
    + (h 
    / 2))) 
    <>  
    0 & ( 
    sin (x 
    - (h 
    / 2))) 
    <>  
    0 implies (( 
    cD (f,h)) 
    . x) 
    = ( 
    - ((2 
    * (( 
    sin (x 
    - (h 
    / 2))) 
    - ( 
    sin (x 
    + (h 
    / 2))))) 
    / (( 
    cos (2 
    * x)) 
    - ( 
    cos h)))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / ( 
    sin x)) and 
    
      
    
    A2: ( 
    sin (x 
    + (h 
    / 2))) 
    <>  
    0 & ( 
    sin (x 
    - (h 
    / 2))) 
    <>  
    0 ; 
    
      ((
    cD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= ((1
    / ( 
    sin (x 
    + (h 
    / 2)))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= ((1
    / ( 
    sin (x 
    + (h 
    / 2)))) 
    - (1 
    / ( 
    sin (x 
    - (h 
    / 2))))) by 
    A1
    
      .= (((1
    * ( 
    sin (x 
    - (h 
    / 2)))) 
    - (1 
    * ( 
    sin (x 
    + (h 
    / 2))))) 
    / (( 
    sin (x 
    + (h 
    / 2))) 
    * ( 
    sin (x 
    - (h 
    / 2))))) by 
    A2,
    XCMPLX_1: 130
    
      .= (((
    sin (x 
    - (h 
    / 2))) 
    - ( 
    sin (x 
    + (h 
    / 2)))) 
    / ( 
    - ((1 
    / 2) 
    * (( 
    cos ((x 
    + (h 
    / 2)) 
    + (x 
    - (h 
    / 2)))) 
    - ( 
    cos ((x 
    + (h 
    / 2)) 
    - (x 
    - (h 
    / 2)))))))) by 
    SIN_COS4: 29
    
      .= (((
    sin (x 
    - (h 
    / 2))) 
    - ( 
    sin (x 
    + (h 
    / 2)))) 
    / (( 
    - (1 
    / 2)) 
    * (( 
    cos (2 
    * x)) 
    - ( 
    cos h)))) 
    
      .= ((((
    sin (x 
    - (h 
    / 2))) 
    - ( 
    sin (x 
    + (h 
    / 2)))) 
    / ( 
    - (1 
    / 2))) 
    / (( 
    cos (2 
    * x)) 
    - ( 
    cos h))) by 
    XCMPLX_1: 78
    
      .= ((
    - 2) 
    * ((( 
    sin (x 
    - (h 
    / 2))) 
    - ( 
    sin (x 
    + (h 
    / 2)))) 
    / (( 
    cos (2 
    * x)) 
    - ( 
    cos h)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:65
    
    (for x holds (f
    . x) 
    = (1 
    / ( 
    cos x))) & x0 
    <> x1 & ( 
    cos x0) 
    <>  
    0 & ( 
    cos x1) 
    <>  
    0 implies 
    [!f, x0, x1!]
    = (((2 
    * (( 
    cos x1) 
    - ( 
    cos x0))) 
    / (( 
    cos (x0 
    + x1)) 
    + ( 
    cos (x0 
    - x1)))) 
    / (x0 
    - x1)) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / ( 
    cos x)) and x0 
    <> x1 and 
    
      
    
    A2: ( 
    cos x0) 
    <>  
    0 & ( 
    cos x1) 
    <>  
    0 ; 
    
      (f
    . x0) 
    = (1 
    / ( 
    cos x0)) & (f 
    . x1) 
    = (1 
    / ( 
    cos x1)) by 
    A1;
    
      
    
      then
    [!f, x0, x1!]
    = ((((1 
    * ( 
    cos x1)) 
    - (1 
    * ( 
    cos x0))) 
    / (( 
    cos x0) 
    * ( 
    cos x1))) 
    / (x0 
    - x1)) by 
    A2,
    XCMPLX_1: 130
    
      .= ((((
    cos x1) 
    - ( 
    cos x0)) 
    / ((1 
    / 2) 
    * (( 
    cos (x0 
    + x1)) 
    + ( 
    cos (x0 
    - x1))))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 32
    
      .= (((((
    cos x1) 
    - ( 
    cos x0)) 
    / (1 
    / 2)) 
    / (( 
    cos (x0 
    + x1)) 
    + ( 
    cos (x0 
    - x1)))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 78
    
      .= ((2
    * ((( 
    cos x1) 
    - ( 
    cos x0)) 
    / (( 
    cos (x0 
    + x1)) 
    + ( 
    cos (x0 
    - x1))))) 
    / (x0 
    - x1)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:66
    
    (for x holds (f
    . x) 
    = (1 
    / ( 
    cos x))) & ( 
    cos x) 
    <>  
    0 & ( 
    cos (x 
    + h)) 
    <>  
    0 implies (( 
    fD (f,h)) 
    . x) 
    = ((2 
    * (( 
    cos x) 
    - ( 
    cos (x 
    + h)))) 
    / (( 
    cos ((2 
    * x) 
    + h)) 
    + ( 
    cos h))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / ( 
    cos x)) and 
    
      
    
    A2: ( 
    cos x) 
    <>  
    0 & ( 
    cos (x 
    + h)) 
    <>  
    0 ; 
    
      (f
    . (x 
    + h)) 
    = (1 
    / ( 
    cos (x 
    + h))) by 
    A1;
    
      
    
      then ((
    fD (f,h)) 
    . x) 
    = ((1 
    / ( 
    cos (x 
    + h))) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= ((1
    / ( 
    cos (x 
    + h))) 
    - (1 
    / ( 
    cos x))) by 
    A1
    
      .= (((1
    * ( 
    cos x)) 
    - (1 
    * ( 
    cos (x 
    + h)))) 
    / (( 
    cos (x 
    + h)) 
    * ( 
    cos x))) by 
    A2,
    XCMPLX_1: 130
    
      .= (((
    cos x) 
    - ( 
    cos (x 
    + h))) 
    / ((1 
    / 2) 
    * (( 
    cos ((x 
    + h) 
    + x)) 
    + ( 
    cos ((x 
    + h) 
    - x))))) by 
    SIN_COS4: 32
    
      .= ((((
    cos x) 
    - ( 
    cos (x 
    + h))) 
    / (1 
    / 2)) 
    / (( 
    cos ((2 
    * x) 
    + h)) 
    + ( 
    cos h))) by 
    XCMPLX_1: 78
    
      .= (2
    * ((( 
    cos x) 
    - ( 
    cos (x 
    + h))) 
    / (( 
    cos ((2 
    * x) 
    + h)) 
    + ( 
    cos h)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:67
    
    (for x holds (f
    . x) 
    = (1 
    / ( 
    cos x))) & ( 
    cos x) 
    <>  
    0 & ( 
    cos (x 
    - h)) 
    <>  
    0 implies (( 
    bD (f,h)) 
    . x) 
    = ((2 
    * (( 
    cos (x 
    - h)) 
    - ( 
    cos x))) 
    / (( 
    cos ((2 
    * x) 
    - h)) 
    + ( 
    cos h))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / ( 
    cos x)) and 
    
      
    
    A2: ( 
    cos x) 
    <>  
    0 & ( 
    cos (x 
    - h)) 
    <>  
    0 ; 
    
      ((
    bD (f,h)) 
    . x) 
    = ((f 
    . x) 
    - (f 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= ((1
    / ( 
    cos x)) 
    - (f 
    . (x 
    - h))) by 
    A1
    
      .= ((1
    / ( 
    cos x)) 
    - (1 
    / ( 
    cos (x 
    - h)))) by 
    A1
    
      .= (((1
    * ( 
    cos (x 
    - h))) 
    - (1 
    * ( 
    cos x))) 
    / (( 
    cos x) 
    * ( 
    cos (x 
    - h)))) by 
    A2,
    XCMPLX_1: 130
    
      .= (((
    cos (x 
    - h)) 
    - ( 
    cos x)) 
    / ((1 
    / 2) 
    * (( 
    cos (x 
    + (x 
    - h))) 
    + ( 
    cos (x 
    - (x 
    - h)))))) by 
    SIN_COS4: 32
    
      .= ((((
    cos (x 
    - h)) 
    - ( 
    cos x)) 
    / (1 
    / 2)) 
    / (( 
    cos ((2 
    * x) 
    - h)) 
    + ( 
    cos h))) by 
    XCMPLX_1: 78
    
      .= (2
    * ((( 
    cos (x 
    - h)) 
    - ( 
    cos x)) 
    / (( 
    cos ((2 
    * x) 
    - h)) 
    + ( 
    cos h)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:68
    
    (for x holds (f
    . x) 
    = (1 
    / ( 
    cos x))) & ( 
    cos (x 
    + (h 
    / 2))) 
    <>  
    0 & ( 
    cos (x 
    - (h 
    / 2))) 
    <>  
    0 implies (( 
    cD (f,h)) 
    . x) 
    = ((2 
    * (( 
    cos (x 
    - (h 
    / 2))) 
    - ( 
    cos (x 
    + (h 
    / 2))))) 
    / (( 
    cos (2 
    * x)) 
    + ( 
    cos h))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / ( 
    cos x)) and 
    
      
    
    A2: ( 
    cos (x 
    + (h 
    / 2))) 
    <>  
    0 & ( 
    cos (x 
    - (h 
    / 2))) 
    <>  
    0 ; 
    
      ((
    cD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= ((1
    / ( 
    cos (x 
    + (h 
    / 2)))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= ((1
    / ( 
    cos (x 
    + (h 
    / 2)))) 
    - (1 
    / ( 
    cos (x 
    - (h 
    / 2))))) by 
    A1
    
      .= (((1
    * ( 
    cos (x 
    - (h 
    / 2)))) 
    - (1 
    * ( 
    cos (x 
    + (h 
    / 2))))) 
    / (( 
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2))))) by 
    A2,
    XCMPLX_1: 130
    
      .= (((
    cos (x 
    - (h 
    / 2))) 
    - ( 
    cos (x 
    + (h 
    / 2)))) 
    / ((1 
    / 2) 
    * (( 
    cos ((x 
    + (h 
    / 2)) 
    + (x 
    - (h 
    / 2)))) 
    + ( 
    cos ((x 
    + (h 
    / 2)) 
    - (x 
    - (h 
    / 2))))))) by 
    SIN_COS4: 32
    
      .= ((((
    cos (x 
    - (h 
    / 2))) 
    - ( 
    cos (x 
    + (h 
    / 2)))) 
    / (1 
    / 2)) 
    / (( 
    cos (2 
    * x)) 
    + ( 
    cos h))) by 
    XCMPLX_1: 78
    
      .= (2
    * ((( 
    cos (x 
    - (h 
    / 2))) 
    - ( 
    cos (x 
    + (h 
    / 2)))) 
    / (( 
    cos (2 
    * x)) 
    + ( 
    cos h)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:69
    
    (for x holds (f
    . x) 
    = (1 
    / (( 
    sin x) 
    ^2 ))) & x0 
    <> x1 & ( 
    sin x0) 
    <>  
    0 & ( 
    sin x1) 
    <>  
    0 implies 
    [!f, x0, x1!]
    = (((((16 
    * ( 
    cos ((x1 
    + x0) 
    / 2))) 
    * ( 
    sin ((x1 
    - x0) 
    / 2))) 
    * ( 
    cos ((x1 
    - x0) 
    / 2))) 
    * ( 
    sin ((x1 
    + x0) 
    / 2))) 
    / (((( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1))) 
    ^2 ) 
    * (x0 
    - x1))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / (( 
    sin x) 
    ^2 )) and x0 
    <> x1 and 
    
      
    
    A2: ( 
    sin x0) 
    <>  
    0 & ( 
    sin x1) 
    <>  
    0 ; 
    
      (f
    . x0) 
    = (1 
    / (( 
    sin x0) 
    ^2 )) & (f 
    . x1) 
    = (1 
    / (( 
    sin x1) 
    ^2 )) by 
    A1;
    
      
    
      then
    [!f, x0, x1!]
    = ((((1 
    * (( 
    sin x1) 
    ^2 )) 
    - (1 
    * (( 
    sin x0) 
    ^2 ))) 
    / ((( 
    sin x0) 
    ^2 ) 
    * (( 
    sin x1) 
    ^2 ))) 
    / (x0 
    - x1)) by 
    A2,
    XCMPLX_1: 130
    
      .= (((((
    sin x1) 
    ^2 ) 
    - (( 
    sin x0) 
    ^2 )) 
    / ((( 
    sin x0) 
    * ( 
    sin x1)) 
    ^2 )) 
    / (x0 
    - x1)) 
    
      .= (((((
    sin x1) 
    ^2 ) 
    - (( 
    sin x0) 
    ^2 )) 
    / (( 
    - ((1 
    / 2) 
    * (( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1))))) 
    ^2 )) 
    / (x0 
    - x1)) by 
    SIN_COS4: 29
    
      .= (((((
    sin x1) 
    ^2 ) 
    - (( 
    sin x0) 
    ^2 )) 
    / ((1 
    / 4) 
    * ((( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1))) 
    ^2 ))) 
    / (x0 
    - x1)) 
    
      .= ((((((
    sin x1) 
    ^2 ) 
    - (( 
    sin x0) 
    ^2 )) 
    / (1 
    / 4)) 
    / ((( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1))) 
    ^2 )) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 78
    
      .= (((4
    * ((( 
    sin x1) 
    - ( 
    sin x0)) 
    * (( 
    sin x1) 
    + ( 
    sin x0)))) 
    / ((( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1))) 
    ^2 )) 
    / (x0 
    - x1)) 
    
      .= (((4
    * ((2 
    * (( 
    cos ((x1 
    + x0) 
    / 2)) 
    * ( 
    sin ((x1 
    - x0) 
    / 2)))) 
    * (( 
    sin x1) 
    + ( 
    sin x0)))) 
    / ((( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1))) 
    ^2 )) 
    / (x0 
    - x1)) by 
    SIN_COS4: 16
    
      .= (((4
    * ((2 
    * (( 
    cos ((x1 
    + x0) 
    / 2)) 
    * ( 
    sin ((x1 
    - x0) 
    / 2)))) 
    * (2 
    * (( 
    cos ((x1 
    - x0) 
    / 2)) 
    * ( 
    sin ((x1 
    + x0) 
    / 2)))))) 
    / ((( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1))) 
    ^2 )) 
    / (x0 
    - x1)) by 
    SIN_COS4: 15
    
      .= (((((16
    * ( 
    cos ((x1 
    + x0) 
    / 2))) 
    * ( 
    sin ((x1 
    - x0) 
    / 2))) 
    * ( 
    cos ((x1 
    - x0) 
    / 2))) 
    * ( 
    sin ((x1 
    + x0) 
    / 2))) 
    / (((( 
    cos (x0 
    + x1)) 
    - ( 
    cos (x0 
    - x1))) 
    ^2 ) 
    * (x0 
    - x1))) by 
    XCMPLX_1: 78;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:70
    
    (for x holds (f
    . x) 
    = (1 
    / (( 
    sin x) 
    ^2 ))) & ( 
    sin x) 
    <>  
    0 & ( 
    sin (x 
    + h)) 
    <>  
    0 implies (( 
    fD (f,h)) 
    . x) 
    = (((((16 
    * ( 
    cos (((2 
    * x) 
    + h) 
    / 2))) 
    * ( 
    sin (( 
    - h) 
    / 2))) 
    * ( 
    cos (( 
    - h) 
    / 2))) 
    * ( 
    sin (((2 
    * x) 
    + h) 
    / 2))) 
    / ((( 
    cos ((2 
    * x) 
    + h)) 
    - ( 
    cos h)) 
    ^2 )) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / (( 
    sin x) 
    ^2 )) and 
    
      
    
    A2: ( 
    sin x) 
    <>  
    0 & ( 
    sin (x 
    + h)) 
    <>  
    0 ; 
    
      ((
    fD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= ((1
    / (( 
    sin (x 
    + h)) 
    ^2 )) 
    - (f 
    . x)) by 
    A1
    
      .= ((1
    / (( 
    sin (x 
    + h)) 
    ^2 )) 
    - (1 
    / (( 
    sin x) 
    ^2 ))) by 
    A1
    
      .= (((1
    * (( 
    sin x) 
    ^2 )) 
    - (1 
    * (( 
    sin (x 
    + h)) 
    ^2 ))) 
    / ((( 
    sin (x 
    + h)) 
    ^2 ) 
    * (( 
    sin x) 
    ^2 ))) by 
    A2,
    XCMPLX_1: 130
    
      .= ((((
    sin x) 
    ^2 ) 
    - (( 
    sin (x 
    + h)) 
    ^2 )) 
    / ((( 
    sin (x 
    + h)) 
    * ( 
    sin x)) 
    ^2 )) 
    
      .= ((((
    sin x) 
    ^2 ) 
    - (( 
    sin (x 
    + h)) 
    ^2 )) 
    / (( 
    - ((1 
    / 2) 
    * (( 
    cos ((x 
    + h) 
    + x)) 
    - ( 
    cos ((x 
    + h) 
    - x))))) 
    ^2 )) by 
    SIN_COS4: 29
    
      .= ((((
    sin x) 
    ^2 ) 
    - (( 
    sin (x 
    + h)) 
    ^2 )) 
    / ((1 
    / 4) 
    * ((( 
    cos ((2 
    * x) 
    + h)) 
    - ( 
    cos h)) 
    ^2 ))) 
    
      .= (((((
    sin x) 
    ^2 ) 
    - (( 
    sin (x 
    + h)) 
    ^2 )) 
    / (1 
    / 4)) 
    / ((( 
    cos ((2 
    * x) 
    + h)) 
    - ( 
    cos h)) 
    ^2 )) by 
    XCMPLX_1: 78
    
      .= (4
    * (((( 
    sin x) 
    - ( 
    sin (x 
    + h))) 
    * (( 
    sin x) 
    + ( 
    sin (x 
    + h)))) 
    / ((( 
    cos ((2 
    * x) 
    + h)) 
    - ( 
    cos h)) 
    ^2 ))) 
    
      .= (4
    * (((2 
    * (( 
    cos ((x 
    + (x 
    + h)) 
    / 2)) 
    * ( 
    sin ((x 
    - (x 
    + h)) 
    / 2)))) 
    * (( 
    sin x) 
    + ( 
    sin (x 
    + h)))) 
    / ((( 
    cos ((2 
    * x) 
    + h)) 
    - ( 
    cos h)) 
    ^2 ))) by 
    SIN_COS4: 16
    
      .= (4
    * (((2 
    * (( 
    cos (((2 
    * x) 
    + h) 
    / 2)) 
    * ( 
    sin (( 
    - h) 
    / 2)))) 
    * (2 
    * (( 
    cos (( 
    - h) 
    / 2)) 
    * ( 
    sin (((2 
    * x) 
    + h) 
    / 2))))) 
    / ((( 
    cos ((2 
    * x) 
    + h)) 
    - ( 
    cos h)) 
    ^2 ))) by 
    SIN_COS4: 15
    
      .= (((((16
    * ( 
    cos (((2 
    * x) 
    + h) 
    / 2))) 
    * ( 
    sin (( 
    - h) 
    / 2))) 
    * ( 
    cos (( 
    - h) 
    / 2))) 
    * ( 
    sin (((2 
    * x) 
    + h) 
    / 2))) 
    / ((( 
    cos ((2 
    * x) 
    + h)) 
    - ( 
    cos h)) 
    ^2 )); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:71
    
    (for x holds (f
    . x) 
    = (1 
    / (( 
    sin x) 
    ^2 ))) & ( 
    sin x) 
    <>  
    0 & ( 
    sin (x 
    - h)) 
    <>  
    0 implies (( 
    bD (f,h)) 
    . x) 
    = (((((16 
    * ( 
    cos (((2 
    * x) 
    - h) 
    / 2))) 
    * ( 
    sin (( 
    - h) 
    / 2))) 
    * ( 
    cos (( 
    - h) 
    / 2))) 
    * ( 
    sin (((2 
    * x) 
    - h) 
    / 2))) 
    / ((( 
    cos ((2 
    * x) 
    - h)) 
    - ( 
    cos h)) 
    ^2 )) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / (( 
    sin x) 
    ^2 )) and 
    
      
    
    A2: ( 
    sin x) 
    <>  
    0 & ( 
    sin (x 
    - h)) 
    <>  
    0 ; 
    
      ((
    bD (f,h)) 
    . x) 
    = ((f 
    . x) 
    - (f 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= ((1
    / (( 
    sin x) 
    ^2 )) 
    - (f 
    . (x 
    - h))) by 
    A1
    
      .= ((1
    / (( 
    sin x) 
    ^2 )) 
    - (1 
    / (( 
    sin (x 
    - h)) 
    ^2 ))) by 
    A1
    
      .= (((1
    * (( 
    sin (x 
    - h)) 
    ^2 )) 
    - (1 
    * (( 
    sin x) 
    ^2 ))) 
    / ((( 
    sin x) 
    ^2 ) 
    * (( 
    sin (x 
    - h)) 
    ^2 ))) by 
    A2,
    XCMPLX_1: 130
    
      .= ((((
    sin (x 
    - h)) 
    ^2 ) 
    - (( 
    sin x) 
    ^2 )) 
    / ((( 
    sin x) 
    * ( 
    sin (x 
    - h))) 
    ^2 )) 
    
      .= ((((
    sin (x 
    - h)) 
    ^2 ) 
    - (( 
    sin x) 
    ^2 )) 
    / (( 
    - ((1 
    / 2) 
    * (( 
    cos (x 
    + (x 
    - h))) 
    - ( 
    cos (x 
    - (x 
    - h)))))) 
    ^2 )) by 
    SIN_COS4: 29
    
      .= ((((
    sin (x 
    - h)) 
    ^2 ) 
    - (( 
    sin x) 
    ^2 )) 
    / ((1 
    / 4) 
    * ((( 
    cos ((2 
    * x) 
    - h)) 
    - ( 
    cos h)) 
    ^2 ))) 
    
      .= (((((
    sin (x 
    - h)) 
    ^2 ) 
    - (( 
    sin x) 
    ^2 )) 
    / (1 
    / 4)) 
    / ((( 
    cos ((2 
    * x) 
    - h)) 
    - ( 
    cos h)) 
    ^2 )) by 
    XCMPLX_1: 78
    
      .= (4
    * (((( 
    sin (x 
    - h)) 
    - ( 
    sin x)) 
    * (( 
    sin (x 
    - h)) 
    + ( 
    sin x))) 
    / ((( 
    cos ((2 
    * x) 
    - h)) 
    - ( 
    cos h)) 
    ^2 ))) 
    
      .= (4
    * (((2 
    * (( 
    cos (((x 
    - h) 
    + x) 
    / 2)) 
    * ( 
    sin (((x 
    - h) 
    - x) 
    / 2)))) 
    * (( 
    sin (x 
    - h)) 
    + ( 
    sin x))) 
    / ((( 
    cos ((2 
    * x) 
    - h)) 
    - ( 
    cos h)) 
    ^2 ))) by 
    SIN_COS4: 16
    
      .= (4
    * (((2 
    * (( 
    cos (((2 
    * x) 
    - h) 
    / 2)) 
    * ( 
    sin (( 
    - h) 
    / 2)))) 
    * (2 
    * (( 
    cos (( 
    - h) 
    / 2)) 
    * ( 
    sin (((2 
    * x) 
    - h) 
    / 2))))) 
    / ((( 
    cos ((2 
    * x) 
    - h)) 
    - ( 
    cos h)) 
    ^2 ))) by 
    SIN_COS4: 15
    
      .= (((((16
    * ( 
    cos (((2 
    * x) 
    - h) 
    / 2))) 
    * ( 
    sin (( 
    - h) 
    / 2))) 
    * ( 
    cos (( 
    - h) 
    / 2))) 
    * ( 
    sin (((2 
    * x) 
    - h) 
    / 2))) 
    / ((( 
    cos ((2 
    * x) 
    - h)) 
    - ( 
    cos h)) 
    ^2 )); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:72
    
    (for x holds (f
    . x) 
    = (1 
    / (( 
    sin x) 
    ^2 ))) & ( 
    sin (x 
    + (h 
    / 2))) 
    <>  
    0 & ( 
    sin (x 
    - (h 
    / 2))) 
    <>  
    0 implies (( 
    cD (f,h)) 
    . x) 
    = (((((16 
    * ( 
    cos x)) 
    * ( 
    sin (( 
    - h) 
    / 2))) 
    * ( 
    cos (( 
    - h) 
    / 2))) 
    * ( 
    sin x)) 
    / ((( 
    cos (2 
    * x)) 
    - ( 
    cos h)) 
    ^2 )) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / (( 
    sin x) 
    ^2 )) and 
    
      
    
    A2: ( 
    sin (x 
    + (h 
    / 2))) 
    <>  
    0 & ( 
    sin (x 
    - (h 
    / 2))) 
    <>  
    0 ; 
    
      ((
    cD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= ((1
    / (( 
    sin (x 
    + (h 
    / 2))) 
    ^2 )) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= ((1
    / (( 
    sin (x 
    + (h 
    / 2))) 
    ^2 )) 
    - (1 
    / (( 
    sin (x 
    - (h 
    / 2))) 
    ^2 ))) by 
    A1
    
      .= (((1
    * (( 
    sin (x 
    - (h 
    / 2))) 
    ^2 )) 
    - (1 
    * (( 
    sin (x 
    + (h 
    / 2))) 
    ^2 ))) 
    / ((( 
    sin (x 
    + (h 
    / 2))) 
    ^2 ) 
    * (( 
    sin (x 
    - (h 
    / 2))) 
    ^2 ))) by 
    A2,
    XCMPLX_1: 130
    
      .= ((((
    sin (x 
    - (h 
    / 2))) 
    ^2 ) 
    - (( 
    sin (x 
    + (h 
    / 2))) 
    ^2 )) 
    / ((( 
    sin (x 
    + (h 
    / 2))) 
    * ( 
    sin (x 
    - (h 
    / 2)))) 
    ^2 )) 
    
      .= ((((
    sin (x 
    - (h 
    / 2))) 
    ^2 ) 
    - (( 
    sin (x 
    + (h 
    / 2))) 
    ^2 )) 
    / (( 
    - ((1 
    / 2) 
    * (( 
    cos ((x 
    + (h 
    / 2)) 
    + (x 
    - (h 
    / 2)))) 
    - ( 
    cos ((x 
    + (h 
    / 2)) 
    - (x 
    - (h 
    / 2))))))) 
    ^2 )) by 
    SIN_COS4: 29
    
      .= ((((
    sin (x 
    - (h 
    / 2))) 
    ^2 ) 
    - (( 
    sin (x 
    + (h 
    / 2))) 
    ^2 )) 
    / ((1 
    / 4) 
    * ((( 
    cos (2 
    * x)) 
    - ( 
    cos h)) 
    ^2 ))) 
    
      .= (((((
    sin (x 
    - (h 
    / 2))) 
    ^2 ) 
    - (( 
    sin (x 
    + (h 
    / 2))) 
    ^2 )) 
    / (1 
    / 4)) 
    / ((( 
    cos (2 
    * x)) 
    - ( 
    cos h)) 
    ^2 )) by 
    XCMPLX_1: 78
    
      .= (4
    * (((( 
    sin (x 
    - (h 
    / 2))) 
    - ( 
    sin (x 
    + (h 
    / 2)))) 
    * (( 
    sin (x 
    - (h 
    / 2))) 
    + ( 
    sin (x 
    + (h 
    / 2))))) 
    / ((( 
    cos (2 
    * x)) 
    - ( 
    cos h)) 
    ^2 ))) 
    
      .= (4
    * (((2 
    * (( 
    cos (((x 
    - (h 
    / 2)) 
    + (x 
    + (h 
    / 2))) 
    / 2)) 
    * ( 
    sin (((x 
    - (h 
    / 2)) 
    - (x 
    + (h 
    / 2))) 
    / 2)))) 
    * (( 
    sin (x 
    - (h 
    / 2))) 
    + ( 
    sin (x 
    + (h 
    / 2))))) 
    / ((( 
    cos (2 
    * x)) 
    - ( 
    cos h)) 
    ^2 ))) by 
    SIN_COS4: 16
    
      .= (4
    * (((2 
    * (( 
    cos ((2 
    * x) 
    / 2)) 
    * ( 
    sin (( 
    - h) 
    / 2)))) 
    * (2 
    * (( 
    cos (( 
    - h) 
    / 2)) 
    * ( 
    sin ((2 
    * x) 
    / 2))))) 
    / ((( 
    cos (2 
    * x)) 
    - ( 
    cos h)) 
    ^2 ))) by 
    SIN_COS4: 15
    
      .= (((((16
    * ( 
    cos x)) 
    * ( 
    sin (( 
    - h) 
    / 2))) 
    * ( 
    cos (( 
    - h) 
    / 2))) 
    * ( 
    sin x)) 
    / ((( 
    cos (2 
    * x)) 
    - ( 
    cos h)) 
    ^2 )); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:73
    
    (for x holds (f
    . x) 
    = (1 
    / (( 
    cos x) 
    ^2 ))) & x0 
    <> x1 & ( 
    cos x0) 
    <>  
    0 & ( 
    cos x1) 
    <>  
    0 implies 
    [!f, x0, x1!]
    = ((((((( 
    - 16) 
    * ( 
    sin ((x1 
    + x0) 
    / 2))) 
    * ( 
    sin ((x1 
    - x0) 
    / 2))) 
    * ( 
    cos ((x1 
    + x0) 
    / 2))) 
    * ( 
    cos ((x1 
    - x0) 
    / 2))) 
    / ((( 
    cos (x0 
    + x1)) 
    + ( 
    cos (x0 
    - x1))) 
    ^2 )) 
    / (x0 
    - x1)) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / (( 
    cos x) 
    ^2 )) and x0 
    <> x1 and 
    
      
    
    A2: ( 
    cos x0) 
    <>  
    0 & ( 
    cos x1) 
    <>  
    0 ; 
    
      (f
    . x0) 
    = (1 
    / (( 
    cos x0) 
    ^2 )) & (f 
    . x1) 
    = (1 
    / (( 
    cos x1) 
    ^2 )) by 
    A1;
    
      
    
      then
    [!f, x0, x1!]
    = ((((1 
    * (( 
    cos x1) 
    ^2 )) 
    - (1 
    * (( 
    cos x0) 
    ^2 ))) 
    / ((( 
    cos x0) 
    ^2 ) 
    * (( 
    cos x1) 
    ^2 ))) 
    / (x0 
    - x1)) by 
    A2,
    XCMPLX_1: 130
    
      .= (((((
    cos x1) 
    ^2 ) 
    - (( 
    cos x0) 
    ^2 )) 
    / ((( 
    cos x0) 
    * ( 
    cos x1)) 
    ^2 )) 
    / (x0 
    - x1)) 
    
      .= (((((
    cos x1) 
    ^2 ) 
    - (( 
    cos x0) 
    ^2 )) 
    / (((1 
    / 2) 
    * (( 
    cos (x0 
    + x1)) 
    + ( 
    cos (x0 
    - x1)))) 
    ^2 )) 
    / (x0 
    - x1)) by 
    SIN_COS4: 32
    
      .= (((((
    cos x1) 
    ^2 ) 
    - (( 
    cos x0) 
    ^2 )) 
    / ((1 
    / 4) 
    * ((( 
    cos (x0 
    + x1)) 
    + ( 
    cos (x0 
    - x1))) 
    ^2 ))) 
    / (x0 
    - x1)) 
    
      .= ((((((
    cos x1) 
    ^2 ) 
    - (( 
    cos x0) 
    ^2 )) 
    / (1 
    / 4)) 
    / ((( 
    cos (x0 
    + x1)) 
    + ( 
    cos (x0 
    - x1))) 
    ^2 )) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 78
    
      .= (((4
    * ((( 
    cos x1) 
    - ( 
    cos x0)) 
    * (( 
    cos x1) 
    + ( 
    cos x0)))) 
    / ((( 
    cos (x0 
    + x1)) 
    + ( 
    cos (x0 
    - x1))) 
    ^2 )) 
    / (x0 
    - x1)) 
    
      .= (((4
    * (( 
    - (2 
    * (( 
    sin ((x1 
    + x0) 
    / 2)) 
    * ( 
    sin ((x1 
    - x0) 
    / 2))))) 
    * (( 
    cos x1) 
    + ( 
    cos x0)))) 
    / ((( 
    cos (x0 
    + x1)) 
    + ( 
    cos (x0 
    - x1))) 
    ^2 )) 
    / (x0 
    - x1)) by 
    SIN_COS4: 18
    
      .= (((4
    * (( 
    - (2 
    * (( 
    sin ((x1 
    + x0) 
    / 2)) 
    * ( 
    sin ((x1 
    - x0) 
    / 2))))) 
    * (2 
    * (( 
    cos ((x1 
    + x0) 
    / 2)) 
    * ( 
    cos ((x1 
    - x0) 
    / 2)))))) 
    / ((( 
    cos (x0 
    + x1)) 
    + ( 
    cos (x0 
    - x1))) 
    ^2 )) 
    / (x0 
    - x1)) by 
    SIN_COS4: 17
    
      .= (((((((
    - 16) 
    * ( 
    sin ((x1 
    + x0) 
    / 2))) 
    * ( 
    sin ((x1 
    - x0) 
    / 2))) 
    * ( 
    cos ((x1 
    + x0) 
    / 2))) 
    * ( 
    cos ((x1 
    - x0) 
    / 2))) 
    / ((( 
    cos (x0 
    + x1)) 
    + ( 
    cos (x0 
    - x1))) 
    ^2 )) 
    / (x0 
    - x1)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:74
    
    (for x holds (f
    . x) 
    = (1 
    / (( 
    cos x) 
    ^2 ))) & ( 
    cos x) 
    <>  
    0 & ( 
    cos (x 
    + h)) 
    <>  
    0 implies (( 
    fD (f,h)) 
    . x) 
    = (((((( 
    - 16) 
    * ( 
    sin (((2 
    * x) 
    + h) 
    / 2))) 
    * ( 
    sin (( 
    - h) 
    / 2))) 
    * ( 
    cos (((2 
    * x) 
    + h) 
    / 2))) 
    * ( 
    cos (( 
    - h) 
    / 2))) 
    / ((( 
    cos ((2 
    * x) 
    + h)) 
    + ( 
    cos h)) 
    ^2 )) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / (( 
    cos x) 
    ^2 )) and 
    
      
    
    A2: ( 
    cos x) 
    <>  
    0 & ( 
    cos (x 
    + h)) 
    <>  
    0 ; 
    
      ((
    fD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= ((1
    / (( 
    cos (x 
    + h)) 
    ^2 )) 
    - (f 
    . x)) by 
    A1
    
      .= ((1
    / (( 
    cos (x 
    + h)) 
    ^2 )) 
    - (1 
    / (( 
    cos x) 
    ^2 ))) by 
    A1
    
      .= (((1
    * (( 
    cos x) 
    ^2 )) 
    - (1 
    * (( 
    cos (x 
    + h)) 
    ^2 ))) 
    / ((( 
    cos (x 
    + h)) 
    ^2 ) 
    * (( 
    cos x) 
    ^2 ))) by 
    A2,
    XCMPLX_1: 130
    
      .= ((((
    cos x) 
    ^2 ) 
    - (( 
    cos (x 
    + h)) 
    ^2 )) 
    / ((( 
    cos (x 
    + h)) 
    * ( 
    cos x)) 
    ^2 )) 
    
      .= ((((
    cos x) 
    ^2 ) 
    - (( 
    cos (x 
    + h)) 
    ^2 )) 
    / (((1 
    / 2) 
    * (( 
    cos ((x 
    + h) 
    + x)) 
    + ( 
    cos ((x 
    + h) 
    - x)))) 
    ^2 )) by 
    SIN_COS4: 32
    
      .= ((((
    cos x) 
    ^2 ) 
    - (( 
    cos (x 
    + h)) 
    ^2 )) 
    / ((1 
    / 4) 
    * ((( 
    cos ((2 
    * x) 
    + h)) 
    + ( 
    cos h)) 
    ^2 ))) 
    
      .= (((((
    cos x) 
    ^2 ) 
    - (( 
    cos (x 
    + h)) 
    ^2 )) 
    / (1 
    / 4)) 
    / ((( 
    cos ((2 
    * x) 
    + h)) 
    + ( 
    cos h)) 
    ^2 )) by 
    XCMPLX_1: 78
    
      .= (4
    * (((( 
    cos x) 
    - ( 
    cos (x 
    + h))) 
    * (( 
    cos x) 
    + ( 
    cos (x 
    + h)))) 
    / ((( 
    cos ((2 
    * x) 
    + h)) 
    + ( 
    cos h)) 
    ^2 ))) 
    
      .= (4
    * ((( 
    - (2 
    * (( 
    sin ((x 
    + (x 
    + h)) 
    / 2)) 
    * ( 
    sin ((x 
    - (x 
    + h)) 
    / 2))))) 
    * (( 
    cos x) 
    + ( 
    cos (x 
    + h)))) 
    / ((( 
    cos ((2 
    * x) 
    + h)) 
    + ( 
    cos h)) 
    ^2 ))) by 
    SIN_COS4: 18
    
      .= (4
    * ((( 
    - (2 
    * (( 
    sin (((2 
    * x) 
    + h) 
    / 2)) 
    * ( 
    sin (( 
    - h) 
    / 2))))) 
    * (2 
    * (( 
    cos (((2 
    * x) 
    + h) 
    / 2)) 
    * ( 
    cos (( 
    - h) 
    / 2))))) 
    / ((( 
    cos ((2 
    * x) 
    + h)) 
    + ( 
    cos h)) 
    ^2 ))) by 
    SIN_COS4: 17
    
      .= ((((((
    - 16) 
    * ( 
    sin (((2 
    * x) 
    + h) 
    / 2))) 
    * ( 
    sin (( 
    - h) 
    / 2))) 
    * ( 
    cos (((2 
    * x) 
    + h) 
    / 2))) 
    * ( 
    cos (( 
    - h) 
    / 2))) 
    / ((( 
    cos ((2 
    * x) 
    + h)) 
    + ( 
    cos h)) 
    ^2 )); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:75
    
    (for x holds (f
    . x) 
    = (1 
    / (( 
    cos x) 
    ^2 ))) & ( 
    cos x) 
    <>  
    0 & ( 
    cos (x 
    - h)) 
    <>  
    0 implies (( 
    bD (f,h)) 
    . x) 
    = (((((( 
    - 16) 
    * ( 
    sin (((2 
    * x) 
    - h) 
    / 2))) 
    * ( 
    sin (( 
    - h) 
    / 2))) 
    * ( 
    cos (((2 
    * x) 
    - h) 
    / 2))) 
    * ( 
    cos (( 
    - h) 
    / 2))) 
    / ((( 
    cos ((2 
    * x) 
    - h)) 
    + ( 
    cos h)) 
    ^2 )) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / (( 
    cos x) 
    ^2 )) and 
    
      
    
    A2: ( 
    cos x) 
    <>  
    0 & ( 
    cos (x 
    - h)) 
    <>  
    0 ; 
    
      ((
    bD (f,h)) 
    . x) 
    = ((f 
    . x) 
    - (f 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= ((1
    / (( 
    cos x) 
    ^2 )) 
    - (f 
    . (x 
    - h))) by 
    A1
    
      .= ((1
    / (( 
    cos x) 
    ^2 )) 
    - (1 
    / (( 
    cos (x 
    - h)) 
    ^2 ))) by 
    A1
    
      .= (((1
    * (( 
    cos (x 
    - h)) 
    ^2 )) 
    - (1 
    * (( 
    cos x) 
    ^2 ))) 
    / ((( 
    cos x) 
    ^2 ) 
    * (( 
    cos (x 
    - h)) 
    ^2 ))) by 
    A2,
    XCMPLX_1: 130
    
      .= ((((
    cos (x 
    - h)) 
    ^2 ) 
    - (( 
    cos x) 
    ^2 )) 
    / ((( 
    cos x) 
    * ( 
    cos (x 
    - h))) 
    ^2 )) 
    
      .= ((((
    cos (x 
    - h)) 
    ^2 ) 
    - (( 
    cos x) 
    ^2 )) 
    / (((1 
    / 2) 
    * (( 
    cos (x 
    + (x 
    - h))) 
    + ( 
    cos (x 
    - (x 
    - h))))) 
    ^2 )) by 
    SIN_COS4: 32
    
      .= ((((
    cos (x 
    - h)) 
    ^2 ) 
    - (( 
    cos x) 
    ^2 )) 
    / ((1 
    / 4) 
    * ((( 
    cos ((2 
    * x) 
    - h)) 
    + ( 
    cos h)) 
    ^2 ))) 
    
      .= (((((
    cos (x 
    - h)) 
    ^2 ) 
    - (( 
    cos x) 
    ^2 )) 
    / (1 
    / 4)) 
    / ((( 
    cos ((2 
    * x) 
    - h)) 
    + ( 
    cos h)) 
    ^2 )) by 
    XCMPLX_1: 78
    
      .= (4
    * (((( 
    cos (x 
    - h)) 
    - ( 
    cos x)) 
    * (( 
    cos (x 
    - h)) 
    + ( 
    cos x))) 
    / ((( 
    cos ((2 
    * x) 
    - h)) 
    + ( 
    cos h)) 
    ^2 ))) 
    
      .= (4
    * ((( 
    - (2 
    * (( 
    sin (((x 
    - h) 
    + x) 
    / 2)) 
    * ( 
    sin (((x 
    - h) 
    - x) 
    / 2))))) 
    * (( 
    cos (x 
    - h)) 
    + ( 
    cos x))) 
    / ((( 
    cos ((2 
    * x) 
    - h)) 
    + ( 
    cos h)) 
    ^2 ))) by 
    SIN_COS4: 18
    
      .= (4
    * ((( 
    - (2 
    * (( 
    sin (((2 
    * x) 
    - h) 
    / 2)) 
    * ( 
    sin (( 
    - h) 
    / 2))))) 
    * (2 
    * (( 
    cos (((2 
    * x) 
    - h) 
    / 2)) 
    * ( 
    cos (( 
    - h) 
    / 2))))) 
    / ((( 
    cos ((2 
    * x) 
    - h)) 
    + ( 
    cos h)) 
    ^2 ))) by 
    SIN_COS4: 17
    
      .= ((((((
    - 16) 
    * ( 
    sin (((2 
    * x) 
    - h) 
    / 2))) 
    * ( 
    sin (( 
    - h) 
    / 2))) 
    * ( 
    cos (((2 
    * x) 
    - h) 
    / 2))) 
    * ( 
    cos (( 
    - h) 
    / 2))) 
    / ((( 
    cos ((2 
    * x) 
    - h)) 
    + ( 
    cos h)) 
    ^2 )); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:76
    
    (for x holds (f
    . x) 
    = (1 
    / (( 
    cos x) 
    ^2 ))) & ( 
    cos (x 
    + (h 
    / 2))) 
    <>  
    0 & ( 
    cos (x 
    - (h 
    / 2))) 
    <>  
    0 implies (( 
    cD (f,h)) 
    . x) 
    = (((((( 
    - 16) 
    * ( 
    sin x)) 
    * ( 
    sin (( 
    - h) 
    / 2))) 
    * ( 
    cos x)) 
    * ( 
    cos (( 
    - h) 
    / 2))) 
    / ((( 
    cos (2 
    * x)) 
    + ( 
    cos h)) 
    ^2 )) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (1 
    / (( 
    cos x) 
    ^2 )) and 
    
      
    
    A2: ( 
    cos (x 
    + (h 
    / 2))) 
    <>  
    0 & ( 
    cos (x 
    - (h 
    / 2))) 
    <>  
    0 ; 
    
      ((
    cD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= ((1
    / (( 
    cos (x 
    + (h 
    / 2))) 
    ^2 )) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= ((1
    / (( 
    cos (x 
    + (h 
    / 2))) 
    ^2 )) 
    - (1 
    / (( 
    cos (x 
    - (h 
    / 2))) 
    ^2 ))) by 
    A1
    
      .= (((1
    * (( 
    cos (x 
    - (h 
    / 2))) 
    ^2 )) 
    - (1 
    * (( 
    cos (x 
    + (h 
    / 2))) 
    ^2 ))) 
    / ((( 
    cos (x 
    + (h 
    / 2))) 
    ^2 ) 
    * (( 
    cos (x 
    - (h 
    / 2))) 
    ^2 ))) by 
    A2,
    XCMPLX_1: 130
    
      .= ((((
    cos (x 
    - (h 
    / 2))) 
    ^2 ) 
    - (( 
    cos (x 
    + (h 
    / 2))) 
    ^2 )) 
    / ((( 
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2)))) 
    ^2 )) 
    
      .= ((((
    cos (x 
    - (h 
    / 2))) 
    ^2 ) 
    - (( 
    cos (x 
    + (h 
    / 2))) 
    ^2 )) 
    / (((1 
    / 2) 
    * (( 
    cos ((x 
    + (h 
    / 2)) 
    + (x 
    - (h 
    / 2)))) 
    + ( 
    cos ((x 
    + (h 
    / 2)) 
    - (x 
    - (h 
    / 2)))))) 
    ^2 )) by 
    SIN_COS4: 32
    
      .= ((((
    cos (x 
    - (h 
    / 2))) 
    ^2 ) 
    - (( 
    cos (x 
    + (h 
    / 2))) 
    ^2 )) 
    / ((1 
    / 4) 
    * ((( 
    cos (2 
    * x)) 
    + ( 
    cos h)) 
    ^2 ))) 
    
      .= (((((
    cos (x 
    - (h 
    / 2))) 
    ^2 ) 
    - (( 
    cos (x 
    + (h 
    / 2))) 
    ^2 )) 
    / (1 
    / 4)) 
    / ((( 
    cos (2 
    * x)) 
    + ( 
    cos h)) 
    ^2 )) by 
    XCMPLX_1: 78
    
      .= (4
    * (((( 
    cos (x 
    - (h 
    / 2))) 
    - ( 
    cos (x 
    + (h 
    / 2)))) 
    * (( 
    cos (x 
    - (h 
    / 2))) 
    + ( 
    cos (x 
    + (h 
    / 2))))) 
    / ((( 
    cos (2 
    * x)) 
    + ( 
    cos h)) 
    ^2 ))) 
    
      .= (4
    * ((( 
    - (2 
    * (( 
    sin (((x 
    - (h 
    / 2)) 
    + (x 
    + (h 
    / 2))) 
    / 2)) 
    * ( 
    sin (((x 
    - (h 
    / 2)) 
    - (x 
    + (h 
    / 2))) 
    / 2))))) 
    * (( 
    cos (x 
    - (h 
    / 2))) 
    + ( 
    cos (x 
    + (h 
    / 2))))) 
    / ((( 
    cos (2 
    * x)) 
    + ( 
    cos h)) 
    ^2 ))) by 
    SIN_COS4: 18
    
      .= (4
    * ((( 
    - (2 
    * (( 
    sin ((2 
    * x) 
    / 2)) 
    * ( 
    sin (( 
    - h) 
    / 2))))) 
    * (2 
    * (( 
    cos ((2 
    * x) 
    / 2)) 
    * ( 
    cos (( 
    - h) 
    / 2))))) 
    / ((( 
    cos (2 
    * x)) 
    + ( 
    cos h)) 
    ^2 ))) by 
    SIN_COS4: 17
    
      .= ((((((
    - 16) 
    * ( 
    sin x)) 
    * ( 
    sin (( 
    - h) 
    / 2))) 
    * ( 
    cos x)) 
    * ( 
    cos (( 
    - h) 
    / 2))) 
    / ((( 
    cos (2 
    * x)) 
    + ( 
    cos h)) 
    ^2 )); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:77
    
    x0
    in ( 
    dom  
    tan ) & x1 
    in ( 
    dom  
    tan ) implies 
    [!(
    tan  
    (#)  
    sin ), x0, x1!] 
    = (((((1 
    / ( 
    cos x0)) 
    - ( 
    cos x0)) 
    - (1 
    / ( 
    cos x1))) 
    + ( 
    cos x1)) 
    / (x0 
    - x1)) 
    
    proof
    
      assume
    
      
    
    A1: x0 
    in ( 
    dom  
    tan ) & x1 
    in ( 
    dom  
    tan ); 
    
      
    [!(
    tan  
    (#)  
    sin ), x0, x1!] 
    = (((( 
    tan  
    . x0) 
    * ( 
    sin  
    . x0)) 
    - (( 
    tan  
    (#)  
    sin ) 
    . x1)) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= ((((
    tan  
    . x0) 
    * ( 
    sin  
    . x0)) 
    - (( 
    tan  
    . x1) 
    * ( 
    sin  
    . x1))) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= (((((
    sin  
    . x0) 
    * (( 
    cos  
    . x0) 
    " )) 
    * ( 
    sin  
    . x0)) 
    - (( 
    tan  
    . x1) 
    * ( 
    sin  
    . x1))) 
    / (x0 
    - x1)) by 
    A1,
    RFUNCT_1:def 1
    
      .= (((((
    sin x0) 
    / ( 
    cos x0)) 
    * ( 
    sin x0)) 
    - ((( 
    sin x1) 
    / ( 
    cos x1)) 
    * ( 
    sin x1))) 
    / (x0 
    - x1)) by 
    A1,
    RFUNCT_1:def 1
    
      .= ((((
    sin x0) 
    / (( 
    cos x0) 
    / ( 
    sin x0))) 
    - ((( 
    sin x1) 
    / ( 
    cos x1)) 
    * ( 
    sin x1))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 82
    
      .= ((((
    sin x0) 
    / (( 
    cos x0) 
    / ( 
    sin x0))) 
    - (( 
    sin x1) 
    / (( 
    cos x1) 
    / ( 
    sin x1)))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 82
    
      .= (((((
    sin x0) 
    * ( 
    sin x0)) 
    / ( 
    cos x0)) 
    - (( 
    sin x1) 
    / (( 
    cos x1) 
    / ( 
    sin x1)))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 77
    
      .= (((((
    sin x0) 
    * ( 
    sin x0)) 
    / ( 
    cos x0)) 
    - ((( 
    sin x1) 
    * ( 
    sin x1)) 
    / ( 
    cos x1))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 77
    
      .= ((((1
    - (( 
    cos x0) 
    * ( 
    cos x0))) 
    / ( 
    cos x0)) 
    - ((( 
    sin x1) 
    * ( 
    sin x1)) 
    / ( 
    cos x1))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 4
    
      .= ((((1
    / ( 
    cos x0)) 
    - ((( 
    cos x0) 
    * ( 
    cos x0)) 
    / ( 
    cos x0))) 
    - ((1 
    - (( 
    cos x1) 
    * ( 
    cos x1))) 
    / ( 
    cos x1))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 4
    
      .= ((((1
    / ( 
    cos x0)) 
    - ( 
    cos x0)) 
    - ((1 
    / ( 
    cos x1)) 
    - ((( 
    cos x1) 
    * ( 
    cos x1)) 
    / ( 
    cos x1)))) 
    / (x0 
    - x1)) by 
    A1,
    FDIFF_8: 1,
    XCMPLX_1: 89
    
      .= ((((1
    / ( 
    cos x0)) 
    - ( 
    cos x0)) 
    - ((1 
    / ( 
    cos x1)) 
    - ( 
    cos x1))) 
    / (x0 
    - x1)) by 
    A1,
    FDIFF_8: 1,
    XCMPLX_1: 89
    
      .= (((((1
    / ( 
    cos x0)) 
    - ( 
    cos x0)) 
    - (1 
    / ( 
    cos x1))) 
    + ( 
    cos x1)) 
    / (x0 
    - x1)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:78
    
    (for x holds (f
    . x) 
    = (( 
    tan  
    (#)  
    sin ) 
    . x)) & x 
    in ( 
    dom  
    tan ) & (x 
    + h) 
    in ( 
    dom  
    tan ) implies (( 
    fD (f,h)) 
    . x) 
    = ((((1 
    / ( 
    cos (x 
    + h))) 
    - ( 
    cos (x 
    + h))) 
    - (1 
    / ( 
    cos x))) 
    + ( 
    cos x)) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    tan  
    (#)  
    sin ) 
    . x) and 
    
      
    
    A2: x 
    in ( 
    dom  
    tan ) & (x 
    + h) 
    in ( 
    dom  
    tan ); 
    
      ((
    fD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= (((
    tan  
    (#)  
    sin ) 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    A1
    
      .= (((
    tan  
    (#)  
    sin ) 
    . (x 
    + h)) 
    - (( 
    tan  
    (#)  
    sin ) 
    . x)) by 
    A1
    
      .= (((
    tan  
    . (x 
    + h)) 
    * ( 
    sin  
    . (x 
    + h))) 
    - (( 
    tan  
    (#)  
    sin ) 
    . x)) by 
    VALUED_1: 5
    
      .= (((
    tan  
    . (x 
    + h)) 
    * ( 
    sin  
    . (x 
    + h))) 
    - (( 
    tan  
    . x) 
    * ( 
    sin  
    . x))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . (x 
    + h)) 
    * (( 
    cos  
    . (x 
    + h)) 
    " )) 
    * ( 
    sin  
    . (x 
    + h))) 
    - (( 
    tan  
    . x) 
    * ( 
    sin  
    . x))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin (x 
    + h)) 
    / ( 
    cos (x 
    + h))) 
    * ( 
    sin (x 
    + h))) 
    - ((( 
    sin x) 
    / ( 
    cos x)) 
    * ( 
    sin x))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    sin (x 
    + h)) 
    / (( 
    cos (x 
    + h)) 
    / ( 
    sin (x 
    + h)))) 
    - ((( 
    sin x) 
    / ( 
    cos x)) 
    * ( 
    sin x))) by 
    XCMPLX_1: 82
    
      .= (((
    sin (x 
    + h)) 
    / (( 
    cos (x 
    + h)) 
    / ( 
    sin (x 
    + h)))) 
    - (( 
    sin x) 
    / (( 
    cos x) 
    / ( 
    sin x)))) by 
    XCMPLX_1: 82
    
      .= ((((
    sin (x 
    + h)) 
    * ( 
    sin (x 
    + h))) 
    / ( 
    cos (x 
    + h))) 
    - (( 
    sin x) 
    / (( 
    cos x) 
    / ( 
    sin x)))) by 
    XCMPLX_1: 77
    
      .= ((((
    sin (x 
    + h)) 
    * ( 
    sin (x 
    + h))) 
    / ( 
    cos (x 
    + h))) 
    - ((( 
    sin x) 
    * ( 
    sin x)) 
    / ( 
    cos x))) by 
    XCMPLX_1: 77
    
      .= (((1
    - (( 
    cos (x 
    + h)) 
    * ( 
    cos (x 
    + h)))) 
    / ( 
    cos (x 
    + h))) 
    - ((( 
    sin x) 
    * ( 
    sin x)) 
    / ( 
    cos x))) by 
    SIN_COS4: 4
    
      .= (((1
    / ( 
    cos (x 
    + h))) 
    - ((( 
    cos (x 
    + h)) 
    * ( 
    cos (x 
    + h))) 
    / ( 
    cos (x 
    + h)))) 
    - ((1 
    - (( 
    cos x) 
    * ( 
    cos x))) 
    / ( 
    cos x))) by 
    SIN_COS4: 4
    
      .= (((1
    / ( 
    cos (x 
    + h))) 
    - ( 
    cos (x 
    + h))) 
    - ((1 
    / ( 
    cos x)) 
    - ((( 
    cos x) 
    * ( 
    cos x)) 
    / ( 
    cos x)))) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 89
    
      .= (((1
    / ( 
    cos (x 
    + h))) 
    - ( 
    cos (x 
    + h))) 
    - ((1 
    / ( 
    cos x)) 
    - ( 
    cos x))) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 89
    
      .= ((((1
    / ( 
    cos (x 
    + h))) 
    - ( 
    cos (x 
    + h))) 
    - (1 
    / ( 
    cos x))) 
    + ( 
    cos x)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:79
    
    (for x holds (f
    . x) 
    = (( 
    tan  
    (#)  
    sin ) 
    . x)) & x 
    in ( 
    dom  
    tan ) & (x 
    - h) 
    in ( 
    dom  
    tan ) implies (( 
    bD (f,h)) 
    . x) 
    = ((((1 
    / ( 
    cos x)) 
    - ( 
    cos x)) 
    - (1 
    / ( 
    cos (x 
    - h)))) 
    + ( 
    cos (x 
    - h))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    tan  
    (#)  
    sin ) 
    . x) and 
    
      
    
    A2: x 
    in ( 
    dom  
    tan ) & (x 
    - h) 
    in ( 
    dom  
    tan ); 
    
      ((
    bD (f,h)) 
    . x) 
    = ((f 
    . x) 
    - (f 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= (((
    tan  
    (#)  
    sin ) 
    . x) 
    - (f 
    . (x 
    - h))) by 
    A1
    
      .= (((
    tan  
    (#)  
    sin ) 
    . x) 
    - (( 
    tan  
    (#)  
    sin ) 
    . (x 
    - h))) by 
    A1
    
      .= (((
    tan  
    . x) 
    * ( 
    sin  
    . x)) 
    - (( 
    tan  
    (#)  
    sin ) 
    . (x 
    - h))) by 
    VALUED_1: 5
    
      .= (((
    tan  
    . x) 
    * ( 
    sin  
    . x)) 
    - (( 
    tan  
    . (x 
    - h)) 
    * ( 
    sin  
    . (x 
    - h)))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . x) 
    * (( 
    cos  
    . x) 
    " )) 
    * ( 
    sin  
    . x)) 
    - (( 
    tan  
    . (x 
    - h)) 
    * ( 
    sin  
    . (x 
    - h)))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin x) 
    / ( 
    cos x)) 
    * ( 
    sin x)) 
    - ((( 
    sin (x 
    - h)) 
    / ( 
    cos (x 
    - h))) 
    * ( 
    sin (x 
    - h)))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    sin x) 
    / (( 
    cos x) 
    / ( 
    sin x))) 
    - ((( 
    sin (x 
    - h)) 
    / ( 
    cos (x 
    - h))) 
    * ( 
    sin (x 
    - h)))) by 
    XCMPLX_1: 82
    
      .= (((
    sin x) 
    / (( 
    cos x) 
    / ( 
    sin x))) 
    - (( 
    sin (x 
    - h)) 
    / (( 
    cos (x 
    - h)) 
    / ( 
    sin (x 
    - h))))) by 
    XCMPLX_1: 82
    
      .= ((((
    sin x) 
    * ( 
    sin x)) 
    / ( 
    cos x)) 
    - (( 
    sin (x 
    - h)) 
    / (( 
    cos (x 
    - h)) 
    / ( 
    sin (x 
    - h))))) by 
    XCMPLX_1: 77
    
      .= ((((
    sin x) 
    * ( 
    sin x)) 
    / ( 
    cos x)) 
    - ((( 
    sin (x 
    - h)) 
    * ( 
    sin (x 
    - h))) 
    / ( 
    cos (x 
    - h)))) by 
    XCMPLX_1: 77
    
      .= (((1
    - (( 
    cos x) 
    * ( 
    cos x))) 
    / ( 
    cos x)) 
    - ((( 
    sin (x 
    - h)) 
    * ( 
    sin (x 
    - h))) 
    / ( 
    cos (x 
    - h)))) by 
    SIN_COS4: 4
    
      .= (((1
    / ( 
    cos x)) 
    - ((( 
    cos x) 
    * ( 
    cos x)) 
    / ( 
    cos x))) 
    - ((1 
    - (( 
    cos (x 
    - h)) 
    * ( 
    cos (x 
    - h)))) 
    / ( 
    cos (x 
    - h)))) by 
    SIN_COS4: 4
    
      .= (((1
    / ( 
    cos x)) 
    - ( 
    cos x)) 
    - ((1 
    / ( 
    cos (x 
    - h))) 
    - ((( 
    cos (x 
    - h)) 
    * ( 
    cos (x 
    - h))) 
    / ( 
    cos (x 
    - h))))) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 89
    
      .= (((1
    / ( 
    cos x)) 
    - ( 
    cos x)) 
    - ((1 
    / ( 
    cos (x 
    - h))) 
    - ( 
    cos (x 
    - h)))) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 89
    
      .= ((((1
    / ( 
    cos x)) 
    - ( 
    cos x)) 
    - (1 
    / ( 
    cos (x 
    - h)))) 
    + ( 
    cos (x 
    - h))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:80
    
    (for x holds (f
    . x) 
    = (( 
    tan  
    (#)  
    sin ) 
    . x)) & (x 
    + (h 
    / 2)) 
    in ( 
    dom  
    tan ) & (x 
    - (h 
    / 2)) 
    in ( 
    dom  
    tan ) implies (( 
    cD (f,h)) 
    . x) 
    = ((((1 
    / ( 
    cos (x 
    + (h 
    / 2)))) 
    - ( 
    cos (x 
    + (h 
    / 2)))) 
    - (1 
    / ( 
    cos (x 
    - (h 
    / 2))))) 
    + ( 
    cos (x 
    - (h 
    / 2)))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    tan  
    (#)  
    sin ) 
    . x) and 
    
      
    
    A2: (x 
    + (h 
    / 2)) 
    in ( 
    dom  
    tan ) & (x 
    - (h 
    / 2)) 
    in ( 
    dom  
    tan ); 
    
      ((
    cD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= (((
    tan  
    (#)  
    sin ) 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= (((
    tan  
    (#)  
    sin ) 
    . (x 
    + (h 
    / 2))) 
    - (( 
    tan  
    (#)  
    sin ) 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= (((
    tan  
    . (x 
    + (h 
    / 2))) 
    * ( 
    sin  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    tan  
    (#)  
    sin ) 
    . (x 
    - (h 
    / 2)))) by 
    VALUED_1: 5
    
      .= (((
    tan  
    . (x 
    + (h 
    / 2))) 
    * ( 
    sin  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    tan  
    . (x 
    - (h 
    / 2))) 
    * ( 
    sin  
    . (x 
    - (h 
    / 2))))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . (x 
    + (h 
    / 2))) 
    * (( 
    cos  
    . (x 
    + (h 
    / 2))) 
    " )) 
    * ( 
    sin  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    tan  
    . (x 
    - (h 
    / 2))) 
    * ( 
    sin  
    . (x 
    - (h 
    / 2))))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin (x 
    + (h 
    / 2))) 
    / ( 
    cos (x 
    + (h 
    / 2)))) 
    * ( 
    sin (x 
    + (h 
    / 2)))) 
    - ((( 
    sin (x 
    - (h 
    / 2))) 
    / ( 
    cos (x 
    - (h 
    / 2)))) 
    * ( 
    sin (x 
    - (h 
    / 2))))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    sin (x 
    + (h 
    / 2))) 
    / (( 
    cos (x 
    + (h 
    / 2))) 
    / ( 
    sin (x 
    + (h 
    / 2))))) 
    - ((( 
    sin (x 
    - (h 
    / 2))) 
    / ( 
    cos (x 
    - (h 
    / 2)))) 
    * ( 
    sin (x 
    - (h 
    / 2))))) by 
    XCMPLX_1: 82
    
      .= (((
    sin (x 
    + (h 
    / 2))) 
    / (( 
    cos (x 
    + (h 
    / 2))) 
    / ( 
    sin (x 
    + (h 
    / 2))))) 
    - (( 
    sin (x 
    - (h 
    / 2))) 
    / (( 
    cos (x 
    - (h 
    / 2))) 
    / ( 
    sin (x 
    - (h 
    / 2)))))) by 
    XCMPLX_1: 82
    
      .= ((((
    sin (x 
    + (h 
    / 2))) 
    * ( 
    sin (x 
    + (h 
    / 2)))) 
    / ( 
    cos (x 
    + (h 
    / 2)))) 
    - (( 
    sin (x 
    - (h 
    / 2))) 
    / (( 
    cos (x 
    - (h 
    / 2))) 
    / ( 
    sin (x 
    - (h 
    / 2)))))) by 
    XCMPLX_1: 77
    
      .= ((((
    sin (x 
    + (h 
    / 2))) 
    * ( 
    sin (x 
    + (h 
    / 2)))) 
    / ( 
    cos (x 
    + (h 
    / 2)))) 
    - ((( 
    sin (x 
    - (h 
    / 2))) 
    * ( 
    sin (x 
    - (h 
    / 2)))) 
    / ( 
    cos (x 
    - (h 
    / 2))))) by 
    XCMPLX_1: 77
    
      .= (((1
    - (( 
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    + (h 
    / 2))))) 
    / ( 
    cos (x 
    + (h 
    / 2)))) 
    - ((( 
    sin (x 
    - (h 
    / 2))) 
    * ( 
    sin (x 
    - (h 
    / 2)))) 
    / ( 
    cos (x 
    - (h 
    / 2))))) by 
    SIN_COS4: 4
    
      .= (((1
    / ( 
    cos (x 
    + (h 
    / 2)))) 
    - ((( 
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    + (h 
    / 2)))) 
    / ( 
    cos (x 
    + (h 
    / 2))))) 
    - ((1 
    - (( 
    cos (x 
    - (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2))))) 
    / ( 
    cos (x 
    - (h 
    / 2))))) by 
    SIN_COS4: 4
    
      .= (((1
    / ( 
    cos (x 
    + (h 
    / 2)))) 
    - ( 
    cos (x 
    + (h 
    / 2)))) 
    - ((1 
    / ( 
    cos (x 
    - (h 
    / 2)))) 
    - ((( 
    cos (x 
    - (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2)))) 
    / ( 
    cos (x 
    - (h 
    / 2)))))) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 89
    
      .= (((1
    / ( 
    cos (x 
    + (h 
    / 2)))) 
    - ( 
    cos (x 
    + (h 
    / 2)))) 
    - ((1 
    / ( 
    cos (x 
    - (h 
    / 2)))) 
    - ( 
    cos (x 
    - (h 
    / 2))))) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 89
    
      .= ((((1
    / ( 
    cos (x 
    + (h 
    / 2)))) 
    - ( 
    cos (x 
    + (h 
    / 2)))) 
    - (1 
    / ( 
    cos (x 
    - (h 
    / 2))))) 
    + ( 
    cos (x 
    - (h 
    / 2)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:81
    
    (for x holds (f
    . x) 
    = (( 
    tan  
    (#)  
    cos ) 
    . x)) & x0 
    in ( 
    dom  
    tan ) & x1 
    in ( 
    dom  
    tan ) implies 
    [!f, x0, x1!]
    = ((( 
    sin x0) 
    - ( 
    sin x1)) 
    / (x0 
    - x1)) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    tan  
    (#)  
    cos ) 
    . x) and 
    
      
    
    A2: x0 
    in ( 
    dom  
    tan ) & x1 
    in ( 
    dom  
    tan ); 
    
      
    
      
    
    A3: (f 
    . x0) 
    = (( 
    tan  
    (#)  
    cos ) 
    . x0) by 
    A1;
    
      (f
    . x1) 
    = (( 
    tan  
    (#)  
    cos ) 
    . x1) by 
    A1;
    
      
    
      then
    [!f, x0, x1!]
    = (((( 
    tan  
    . x0) 
    * ( 
    cos  
    . x0)) 
    - (( 
    tan  
    (#)  
    cos ) 
    . x1)) 
    / (x0 
    - x1)) by 
    A3,
    VALUED_1: 5
    
      .= ((((
    tan  
    . x0) 
    * ( 
    cos  
    . x0)) 
    - (( 
    tan  
    . x1) 
    * ( 
    cos  
    . x1))) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= (((((
    sin  
    . x0) 
    * (( 
    cos  
    . x0) 
    " )) 
    * ( 
    cos  
    . x0)) 
    - (( 
    tan  
    . x1) 
    * ( 
    cos  
    . x1))) 
    / (x0 
    - x1)) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((((
    sin x0) 
    / ( 
    cos x0)) 
    * ( 
    cos x0)) 
    - ((( 
    sin x1) 
    / ( 
    cos x1)) 
    * ( 
    cos x1))) 
    / (x0 
    - x1)) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin x0) 
    / (( 
    cos x0) 
    / ( 
    cos x0))) 
    - ((( 
    sin x1) 
    / ( 
    cos x1)) 
    * ( 
    cos x1))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 82
    
      .= ((((
    sin x0) 
    / (( 
    cos x0) 
    * (1 
    / ( 
    cos x0)))) 
    - (( 
    sin x1) 
    / (( 
    cos x1) 
    / ( 
    cos x1)))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 82
    
      .= ((((
    sin x0) 
    / 1) 
    - (( 
    sin x1) 
    / (( 
    cos x1) 
    * (1 
    / ( 
    cos x1))))) 
    / (x0 
    - x1)) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 106
    
      .= ((((
    sin x0) 
    / 1) 
    - (( 
    sin x1) 
    / 1)) 
    / (x0 
    - x1)) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 106
    
      .= (((
    sin x0) 
    - ( 
    sin x1)) 
    / (x0 
    - x1)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:82
    
    (for x holds (f
    . x) 
    = (( 
    tan  
    (#)  
    cos ) 
    . x)) & x 
    in ( 
    dom  
    tan ) & (x 
    + h) 
    in ( 
    dom  
    tan ) implies (( 
    fD (f,h)) 
    . x) 
    = (( 
    sin (x 
    + h)) 
    - ( 
    sin x)) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    tan  
    (#)  
    cos ) 
    . x) and 
    
      
    
    A2: x 
    in ( 
    dom  
    tan ) & (x 
    + h) 
    in ( 
    dom  
    tan ); 
    
      ((
    fD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= (((
    tan  
    (#)  
    cos ) 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    A1
    
      .= (((
    tan  
    (#)  
    cos ) 
    . (x 
    + h)) 
    - (( 
    tan  
    (#)  
    cos ) 
    . x)) by 
    A1
    
      .= (((
    tan  
    . (x 
    + h)) 
    * ( 
    cos  
    . (x 
    + h))) 
    - (( 
    tan  
    (#)  
    cos ) 
    . x)) by 
    VALUED_1: 5
    
      .= (((
    tan  
    . (x 
    + h)) 
    * ( 
    cos  
    . (x 
    + h))) 
    - (( 
    tan  
    . x) 
    * ( 
    cos  
    . x))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . (x 
    + h)) 
    * (( 
    cos  
    . (x 
    + h)) 
    " )) 
    * ( 
    cos  
    . (x 
    + h))) 
    - (( 
    tan  
    . x) 
    * ( 
    cos  
    . x))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin (x 
    + h)) 
    / ( 
    cos (x 
    + h))) 
    * ( 
    cos (x 
    + h))) 
    - ((( 
    sin x) 
    / ( 
    cos x)) 
    * ( 
    cos x))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    sin (x 
    + h)) 
    / (( 
    cos (x 
    + h)) 
    / ( 
    cos (x 
    + h)))) 
    - ((( 
    sin x) 
    / ( 
    cos x)) 
    * ( 
    cos x))) by 
    XCMPLX_1: 82
    
      .= (((
    sin (x 
    + h)) 
    / (( 
    cos (x 
    + h)) 
    * (1 
    / ( 
    cos (x 
    + h))))) 
    - (( 
    sin x) 
    / (( 
    cos x) 
    / ( 
    cos x)))) by 
    XCMPLX_1: 82
    
      .= (((
    sin (x 
    + h)) 
    / 1) 
    - (( 
    sin x) 
    / (( 
    cos x) 
    * (1 
    / ( 
    cos x))))) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 106
    
      .= (((
    sin (x 
    + h)) 
    / 1) 
    - (( 
    sin x) 
    / 1)) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 106
    
      .= ((
    sin (x 
    + h)) 
    - ( 
    sin x)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:83
    
    (for x holds (f
    . x) 
    = (( 
    tan  
    (#)  
    cos ) 
    . x)) & x 
    in ( 
    dom  
    tan ) & (x 
    - h) 
    in ( 
    dom  
    tan ) implies (( 
    bD (f,h)) 
    . x) 
    = (( 
    sin x) 
    - ( 
    sin (x 
    - h))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    tan  
    (#)  
    cos ) 
    . x) and 
    
      
    
    A2: x 
    in ( 
    dom  
    tan ) & (x 
    - h) 
    in ( 
    dom  
    tan ); 
    
      ((
    bD (f,h)) 
    . x) 
    = ((f 
    . x) 
    - (f 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= (((
    tan  
    (#)  
    cos ) 
    . x) 
    - (f 
    . (x 
    - h))) by 
    A1
    
      .= (((
    tan  
    (#)  
    cos ) 
    . x) 
    - (( 
    tan  
    (#)  
    cos ) 
    . (x 
    - h))) by 
    A1
    
      .= (((
    tan  
    . x) 
    * ( 
    cos  
    . x)) 
    - (( 
    tan  
    (#)  
    cos ) 
    . (x 
    - h))) by 
    VALUED_1: 5
    
      .= (((
    tan  
    . x) 
    * ( 
    cos  
    . x)) 
    - (( 
    tan  
    . (x 
    - h)) 
    * ( 
    cos  
    . (x 
    - h)))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . x) 
    * (( 
    cos  
    . x) 
    " )) 
    * ( 
    cos  
    . x)) 
    - (( 
    tan  
    . (x 
    - h)) 
    * ( 
    cos  
    . (x 
    - h)))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin x) 
    / ( 
    cos x)) 
    * ( 
    cos x)) 
    - ((( 
    sin (x 
    - h)) 
    / ( 
    cos (x 
    - h))) 
    * ( 
    cos (x 
    - h)))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    sin x) 
    / (( 
    cos x) 
    / ( 
    cos x))) 
    - ((( 
    sin (x 
    - h)) 
    / ( 
    cos (x 
    - h))) 
    * ( 
    cos (x 
    - h)))) by 
    XCMPLX_1: 82
    
      .= (((
    sin x) 
    / (( 
    cos x) 
    * (1 
    / ( 
    cos x)))) 
    - (( 
    sin (x 
    - h)) 
    / (( 
    cos (x 
    - h)) 
    / ( 
    cos (x 
    - h))))) by 
    XCMPLX_1: 82
    
      .= (((
    sin x) 
    / 1) 
    - (( 
    sin (x 
    - h)) 
    / (( 
    cos (x 
    - h)) 
    * (1 
    / ( 
    cos (x 
    - h)))))) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 106
    
      .= (((
    sin x) 
    / 1) 
    - (( 
    sin (x 
    - h)) 
    / 1)) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 106
    
      .= ((
    sin x) 
    - ( 
    sin (x 
    - h))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:84
    
    (for x holds (f
    . x) 
    = (( 
    tan  
    (#)  
    cos ) 
    . x)) & (x 
    + (h 
    / 2)) 
    in ( 
    dom  
    tan ) & (x 
    - (h 
    / 2)) 
    in ( 
    dom  
    tan ) implies (( 
    cD (f,h)) 
    . x) 
    = (( 
    sin (x 
    + (h 
    / 2))) 
    - ( 
    sin (x 
    - (h 
    / 2)))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    tan  
    (#)  
    cos ) 
    . x) and 
    
      
    
    A2: (x 
    + (h 
    / 2)) 
    in ( 
    dom  
    tan ) & (x 
    - (h 
    / 2)) 
    in ( 
    dom  
    tan ); 
    
      ((
    cD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= (((
    tan  
    (#)  
    cos ) 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= (((
    tan  
    (#)  
    cos ) 
    . (x 
    + (h 
    / 2))) 
    - (( 
    tan  
    (#)  
    cos ) 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= (((
    tan  
    . (x 
    + (h 
    / 2))) 
    * ( 
    cos  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    tan  
    (#)  
    cos ) 
    . (x 
    - (h 
    / 2)))) by 
    VALUED_1: 5
    
      .= (((
    tan  
    . (x 
    + (h 
    / 2))) 
    * ( 
    cos  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    tan  
    . (x 
    - (h 
    / 2))) 
    * ( 
    cos  
    . (x 
    - (h 
    / 2))))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . (x 
    + (h 
    / 2))) 
    * (( 
    cos  
    . (x 
    + (h 
    / 2))) 
    " )) 
    * ( 
    cos  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    tan  
    . (x 
    - (h 
    / 2))) 
    * ( 
    cos  
    . (x 
    - (h 
    / 2))))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin (x 
    + (h 
    / 2))) 
    / ( 
    cos (x 
    + (h 
    / 2)))) 
    * ( 
    cos (x 
    + (h 
    / 2)))) 
    - ((( 
    sin (x 
    - (h 
    / 2))) 
    / ( 
    cos (x 
    - (h 
    / 2)))) 
    * ( 
    cos (x 
    - (h 
    / 2))))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    sin (x 
    + (h 
    / 2))) 
    / (( 
    cos (x 
    + (h 
    / 2))) 
    / ( 
    cos (x 
    + (h 
    / 2))))) 
    - ((( 
    sin (x 
    - (h 
    / 2))) 
    / ( 
    cos (x 
    - (h 
    / 2)))) 
    * ( 
    cos (x 
    - (h 
    / 2))))) by 
    XCMPLX_1: 82
    
      .= (((
    sin (x 
    + (h 
    / 2))) 
    / (( 
    cos (x 
    + (h 
    / 2))) 
    * (1 
    / ( 
    cos (x 
    + (h 
    / 2)))))) 
    - (( 
    sin (x 
    - (h 
    / 2))) 
    / (( 
    cos (x 
    - (h 
    / 2))) 
    / ( 
    cos (x 
    - (h 
    / 2)))))) by 
    XCMPLX_1: 82
    
      .= (((
    sin (x 
    + (h 
    / 2))) 
    / 1) 
    - (( 
    sin (x 
    - (h 
    / 2))) 
    / (( 
    cos (x 
    - (h 
    / 2))) 
    * (1 
    / ( 
    cos (x 
    - (h 
    / 2))))))) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 106
    
      .= (((
    sin (x 
    + (h 
    / 2))) 
    / 1) 
    - (( 
    sin (x 
    - (h 
    / 2))) 
    / 1)) by 
    A2,
    FDIFF_8: 1,
    XCMPLX_1: 106
    
      .= ((
    sin (x 
    + (h 
    / 2))) 
    - ( 
    sin (x 
    - (h 
    / 2)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:85
    
    (for x holds (f
    . x) 
    = (( 
    cot  
    (#)  
    cos ) 
    . x)) & x0 
    in ( 
    dom  
    cot ) & x1 
    in ( 
    dom  
    cot ) implies 
    [!f, x0, x1!]
    = (((((1 
    / ( 
    sin x0)) 
    - ( 
    sin x0)) 
    - (1 
    / ( 
    sin x1))) 
    + ( 
    sin x1)) 
    / (x0 
    - x1)) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    cot  
    (#)  
    cos ) 
    . x) and 
    
      
    
    A2: x0 
    in ( 
    dom  
    cot ) & x1 
    in ( 
    dom  
    cot ); 
    
      
    
      
    
    A3: (f 
    . x0) 
    = (( 
    cot  
    (#)  
    cos ) 
    . x0) by 
    A1;
    
      (f
    . x1) 
    = (( 
    cot  
    (#)  
    cos ) 
    . x1) by 
    A1;
    
      
    
      then
    [!f, x0, x1!]
    = (((( 
    cot  
    . x0) 
    * ( 
    cos  
    . x0)) 
    - (( 
    cot  
    (#)  
    cos ) 
    . x1)) 
    / (x0 
    - x1)) by 
    A3,
    VALUED_1: 5
    
      .= ((((
    cot  
    . x0) 
    * ( 
    cos  
    . x0)) 
    - (( 
    cot  
    . x1) 
    * ( 
    cos  
    . x1))) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= (((((
    cos  
    . x0) 
    * (( 
    sin  
    . x0) 
    " )) 
    * ( 
    cos  
    . x0)) 
    - (( 
    cot  
    . x1) 
    * ( 
    cos  
    . x1))) 
    / (x0 
    - x1)) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((((
    cos x0) 
    / ( 
    sin x0)) 
    * ( 
    cos x0)) 
    - ((( 
    cos x1) 
    / ( 
    sin x1)) 
    * ( 
    cos x1))) 
    / (x0 
    - x1)) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    cos x0) 
    / (( 
    sin x0) 
    / ( 
    cos x0))) 
    - ((( 
    cos x1) 
    / ( 
    sin x1)) 
    * ( 
    cos x1))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 82
    
      .= ((((
    cos x0) 
    / (( 
    sin x0) 
    / ( 
    cos x0))) 
    - (( 
    cos x1) 
    / (( 
    sin x1) 
    / ( 
    cos x1)))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 82
    
      .= (((((
    cos x0) 
    * ( 
    cos x0)) 
    / ( 
    sin x0)) 
    - (( 
    cos x1) 
    / (( 
    sin x1) 
    / ( 
    cos x1)))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 77
    
      .= (((((
    cos x0) 
    * ( 
    cos x0)) 
    / ( 
    sin x0)) 
    - ((( 
    cos x1) 
    * ( 
    cos x1)) 
    / ( 
    sin x1))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 77
    
      .= ((((1
    - (( 
    sin x0) 
    * ( 
    sin x0))) 
    / ( 
    sin x0)) 
    - ((( 
    cos x1) 
    * ( 
    cos x1)) 
    / ( 
    sin x1))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 5
    
      .= ((((1
    / ( 
    sin x0)) 
    - ((( 
    sin x0) 
    * ( 
    sin x0)) 
    / ( 
    sin x0))) 
    - ((1 
    - (( 
    sin x1) 
    * ( 
    sin x1))) 
    / ( 
    sin x1))) 
    / (x0 
    - x1)) by 
    SIN_COS4: 5
    
      .= ((((1
    / ( 
    sin x0)) 
    - ( 
    sin x0)) 
    - ((1 
    / ( 
    sin x1)) 
    - ((( 
    sin x1) 
    * ( 
    sin x1)) 
    / ( 
    sin x1)))) 
    / (x0 
    - x1)) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 89
    
      .= ((((1
    / ( 
    sin x0)) 
    - ( 
    sin x0)) 
    - ((1 
    / ( 
    sin x1)) 
    - ( 
    sin x1))) 
    / (x0 
    - x1)) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 89
    
      .= (((((1
    / ( 
    sin x0)) 
    - ( 
    sin x0)) 
    - (1 
    / ( 
    sin x1))) 
    + ( 
    sin x1)) 
    / (x0 
    - x1)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:86
    
    (for x holds (f
    . x) 
    = (( 
    cot  
    (#)  
    cos ) 
    . x)) & x 
    in ( 
    dom  
    cot ) & (x 
    + h) 
    in ( 
    dom  
    cot ) implies (( 
    fD (f,h)) 
    . x) 
    = ((((1 
    / ( 
    sin (x 
    + h))) 
    - ( 
    sin (x 
    + h))) 
    - (1 
    / ( 
    sin x))) 
    + ( 
    sin x)) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    cot  
    (#)  
    cos ) 
    . x) and 
    
      
    
    A2: x 
    in ( 
    dom  
    cot ) & (x 
    + h) 
    in ( 
    dom  
    cot ); 
    
      ((
    fD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= (((
    cot  
    (#)  
    cos ) 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    A1
    
      .= (((
    cot  
    (#)  
    cos ) 
    . (x 
    + h)) 
    - (( 
    cot  
    (#)  
    cos ) 
    . x)) by 
    A1
    
      .= (((
    cot  
    . (x 
    + h)) 
    * ( 
    cos  
    . (x 
    + h))) 
    - (( 
    cot  
    (#)  
    cos ) 
    . x)) by 
    VALUED_1: 5
    
      .= (((
    cot  
    . (x 
    + h)) 
    * ( 
    cos  
    . (x 
    + h))) 
    - (( 
    cot  
    . x) 
    * ( 
    cos  
    . x))) by 
    VALUED_1: 5
    
      .= ((((
    cos  
    . (x 
    + h)) 
    * (( 
    sin  
    . (x 
    + h)) 
    " )) 
    * ( 
    cos  
    . (x 
    + h))) 
    - (( 
    cot  
    . x) 
    * ( 
    cos  
    . x))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    cos (x 
    + h)) 
    / ( 
    sin (x 
    + h))) 
    * ( 
    cos (x 
    + h))) 
    - ((( 
    cos x) 
    / ( 
    sin x)) 
    * ( 
    cos x))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    cos (x 
    + h)) 
    / (( 
    sin (x 
    + h)) 
    / ( 
    cos (x 
    + h)))) 
    - ((( 
    cos x) 
    / ( 
    sin x)) 
    * ( 
    cos x))) by 
    XCMPLX_1: 82
    
      .= (((
    cos (x 
    + h)) 
    / (( 
    sin (x 
    + h)) 
    / ( 
    cos (x 
    + h)))) 
    - (( 
    cos x) 
    / (( 
    sin x) 
    / ( 
    cos x)))) by 
    XCMPLX_1: 82
    
      .= ((((
    cos (x 
    + h)) 
    * ( 
    cos (x 
    + h))) 
    / ( 
    sin (x 
    + h))) 
    - (( 
    cos x) 
    / (( 
    sin x) 
    / ( 
    cos x)))) by 
    XCMPLX_1: 77
    
      .= ((((
    cos (x 
    + h)) 
    * ( 
    cos (x 
    + h))) 
    / ( 
    sin (x 
    + h))) 
    - ((( 
    cos x) 
    * ( 
    cos x)) 
    / ( 
    sin x))) by 
    XCMPLX_1: 77
    
      .= (((1
    - (( 
    sin (x 
    + h)) 
    * ( 
    sin (x 
    + h)))) 
    / ( 
    sin (x 
    + h))) 
    - ((( 
    cos x) 
    * ( 
    cos x)) 
    / ( 
    sin x))) by 
    SIN_COS4: 5
    
      .= (((1
    / ( 
    sin (x 
    + h))) 
    - ((( 
    sin (x 
    + h)) 
    * ( 
    sin (x 
    + h))) 
    / ( 
    sin (x 
    + h)))) 
    - ((1 
    - (( 
    sin x) 
    * ( 
    sin x))) 
    / ( 
    sin x))) by 
    SIN_COS4: 5
    
      .= (((1
    / ( 
    sin (x 
    + h))) 
    - ( 
    sin (x 
    + h))) 
    - ((1 
    / ( 
    sin x)) 
    - ((( 
    sin x) 
    * ( 
    sin x)) 
    / ( 
    sin x)))) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 89
    
      .= (((1
    / ( 
    sin (x 
    + h))) 
    - ( 
    sin (x 
    + h))) 
    - ((1 
    / ( 
    sin x)) 
    - ( 
    sin x))) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 89
    
      .= ((((1
    / ( 
    sin (x 
    + h))) 
    - ( 
    sin (x 
    + h))) 
    - (1 
    / ( 
    sin x))) 
    + ( 
    sin x)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:87
    
    (for x holds (f
    . x) 
    = (( 
    cot  
    (#)  
    cos ) 
    . x)) & x 
    in ( 
    dom  
    cot ) & (x 
    - h) 
    in ( 
    dom  
    cot ) implies (( 
    bD (f,h)) 
    . x) 
    = ((((1 
    / ( 
    sin x)) 
    - ( 
    sin x)) 
    - (1 
    / ( 
    sin (x 
    - h)))) 
    + ( 
    sin (x 
    - h))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    cot  
    (#)  
    cos ) 
    . x) and 
    
      
    
    A2: x 
    in ( 
    dom  
    cot ) & (x 
    - h) 
    in ( 
    dom  
    cot ); 
    
      ((
    bD (f,h)) 
    . x) 
    = ((f 
    . x) 
    - (f 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= (((
    cot  
    (#)  
    cos ) 
    . x) 
    - (f 
    . (x 
    - h))) by 
    A1
    
      .= (((
    cot  
    (#)  
    cos ) 
    . x) 
    - (( 
    cot  
    (#)  
    cos ) 
    . (x 
    - h))) by 
    A1
    
      .= (((
    cot  
    . x) 
    * ( 
    cos  
    . x)) 
    - (( 
    cot  
    (#)  
    cos ) 
    . (x 
    - h))) by 
    VALUED_1: 5
    
      .= (((
    cot  
    . x) 
    * ( 
    cos  
    . x)) 
    - (( 
    cot  
    . (x 
    - h)) 
    * ( 
    cos  
    . (x 
    - h)))) by 
    VALUED_1: 5
    
      .= ((((
    cos  
    . x) 
    * (( 
    sin  
    . x) 
    " )) 
    * ( 
    cos  
    . x)) 
    - (( 
    cot  
    . (x 
    - h)) 
    * ( 
    cos  
    . (x 
    - h)))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    cos x) 
    / ( 
    sin x)) 
    * ( 
    cos x)) 
    - ((( 
    cos (x 
    - h)) 
    / ( 
    sin (x 
    - h))) 
    * ( 
    cos (x 
    - h)))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    cos x) 
    / (( 
    sin x) 
    / ( 
    cos x))) 
    - ((( 
    cos (x 
    - h)) 
    / ( 
    sin (x 
    - h))) 
    * ( 
    cos (x 
    - h)))) by 
    XCMPLX_1: 82
    
      .= (((
    cos x) 
    / (( 
    sin x) 
    / ( 
    cos x))) 
    - (( 
    cos (x 
    - h)) 
    / (( 
    sin (x 
    - h)) 
    / ( 
    cos (x 
    - h))))) by 
    XCMPLX_1: 82
    
      .= ((((
    cos x) 
    * ( 
    cos x)) 
    / ( 
    sin x)) 
    - (( 
    cos (x 
    - h)) 
    / (( 
    sin (x 
    - h)) 
    / ( 
    cos (x 
    - h))))) by 
    XCMPLX_1: 77
    
      .= ((((
    cos x) 
    * ( 
    cos x)) 
    / ( 
    sin x)) 
    - ((( 
    cos (x 
    - h)) 
    * ( 
    cos (x 
    - h))) 
    / ( 
    sin (x 
    - h)))) by 
    XCMPLX_1: 77
    
      .= (((1
    - (( 
    sin x) 
    * ( 
    sin x))) 
    / ( 
    sin x)) 
    - ((( 
    cos (x 
    - h)) 
    * ( 
    cos (x 
    - h))) 
    / ( 
    sin (x 
    - h)))) by 
    SIN_COS4: 5
    
      .= (((1
    / ( 
    sin x)) 
    - ((( 
    sin x) 
    * ( 
    sin x)) 
    / ( 
    sin x))) 
    - ((1 
    - (( 
    sin (x 
    - h)) 
    * ( 
    sin (x 
    - h)))) 
    / ( 
    sin (x 
    - h)))) by 
    SIN_COS4: 5
    
      .= (((1
    / ( 
    sin x)) 
    - ( 
    sin x)) 
    - ((1 
    / ( 
    sin (x 
    - h))) 
    - ((( 
    sin (x 
    - h)) 
    * ( 
    sin (x 
    - h))) 
    / ( 
    sin (x 
    - h))))) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 89
    
      .= (((1
    / ( 
    sin x)) 
    - ( 
    sin x)) 
    - ((1 
    / ( 
    sin (x 
    - h))) 
    - ( 
    sin (x 
    - h)))) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 89
    
      .= ((((1
    / ( 
    sin x)) 
    - ( 
    sin x)) 
    - (1 
    / ( 
    sin (x 
    - h)))) 
    + ( 
    sin (x 
    - h))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:88
    
    (for x holds (f
    . x) 
    = (( 
    cot  
    (#)  
    cos ) 
    . x)) & (x 
    + (h 
    / 2)) 
    in ( 
    dom  
    cot ) & (x 
    - (h 
    / 2)) 
    in ( 
    dom  
    cot ) implies (( 
    cD (f,h)) 
    . x) 
    = ((((1 
    / ( 
    sin (x 
    + (h 
    / 2)))) 
    - ( 
    sin (x 
    + (h 
    / 2)))) 
    - (1 
    / ( 
    sin (x 
    - (h 
    / 2))))) 
    + ( 
    sin (x 
    - (h 
    / 2)))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    cot  
    (#)  
    cos ) 
    . x) and 
    
      
    
    A2: (x 
    + (h 
    / 2)) 
    in ( 
    dom  
    cot ) & (x 
    - (h 
    / 2)) 
    in ( 
    dom  
    cot ); 
    
      ((
    cD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= (((
    cot  
    (#)  
    cos ) 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= (((
    cot  
    (#)  
    cos ) 
    . (x 
    + (h 
    / 2))) 
    - (( 
    cot  
    (#)  
    cos ) 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= (((
    cot  
    . (x 
    + (h 
    / 2))) 
    * ( 
    cos  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    cot  
    (#)  
    cos ) 
    . (x 
    - (h 
    / 2)))) by 
    VALUED_1: 5
    
      .= (((
    cot  
    . (x 
    + (h 
    / 2))) 
    * ( 
    cos  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    cot  
    . (x 
    - (h 
    / 2))) 
    * ( 
    cos  
    . (x 
    - (h 
    / 2))))) by 
    VALUED_1: 5
    
      .= ((((
    cos  
    . (x 
    + (h 
    / 2))) 
    * (( 
    sin  
    . (x 
    + (h 
    / 2))) 
    " )) 
    * ( 
    cos  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    cot  
    . (x 
    - (h 
    / 2))) 
    * ( 
    cos  
    . (x 
    - (h 
    / 2))))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    cos (x 
    + (h 
    / 2))) 
    / ( 
    sin (x 
    + (h 
    / 2)))) 
    * ( 
    cos (x 
    + (h 
    / 2)))) 
    - ((( 
    cos (x 
    - (h 
    / 2))) 
    / ( 
    sin (x 
    - (h 
    / 2)))) 
    * ( 
    cos (x 
    - (h 
    / 2))))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    cos (x 
    + (h 
    / 2))) 
    / (( 
    sin (x 
    + (h 
    / 2))) 
    / ( 
    cos (x 
    + (h 
    / 2))))) 
    - ((( 
    cos (x 
    - (h 
    / 2))) 
    / ( 
    sin (x 
    - (h 
    / 2)))) 
    * ( 
    cos (x 
    - (h 
    / 2))))) by 
    XCMPLX_1: 82
    
      .= (((
    cos (x 
    + (h 
    / 2))) 
    / (( 
    sin (x 
    + (h 
    / 2))) 
    / ( 
    cos (x 
    + (h 
    / 2))))) 
    - (( 
    cos (x 
    - (h 
    / 2))) 
    / (( 
    sin (x 
    - (h 
    / 2))) 
    / ( 
    cos (x 
    - (h 
    / 2)))))) by 
    XCMPLX_1: 82
    
      .= ((((
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    + (h 
    / 2)))) 
    / ( 
    sin (x 
    + (h 
    / 2)))) 
    - (( 
    cos (x 
    - (h 
    / 2))) 
    / (( 
    sin (x 
    - (h 
    / 2))) 
    / ( 
    cos (x 
    - (h 
    / 2)))))) by 
    XCMPLX_1: 77
    
      .= ((((
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    + (h 
    / 2)))) 
    / ( 
    sin (x 
    + (h 
    / 2)))) 
    - ((( 
    cos (x 
    - (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2)))) 
    / ( 
    sin (x 
    - (h 
    / 2))))) by 
    XCMPLX_1: 77
    
      .= (((1
    - (( 
    sin (x 
    + (h 
    / 2))) 
    * ( 
    sin (x 
    + (h 
    / 2))))) 
    / ( 
    sin (x 
    + (h 
    / 2)))) 
    - ((( 
    cos (x 
    - (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2)))) 
    / ( 
    sin (x 
    - (h 
    / 2))))) by 
    SIN_COS4: 5
    
      .= (((1
    / ( 
    sin (x 
    + (h 
    / 2)))) 
    - ((( 
    sin (x 
    + (h 
    / 2))) 
    * ( 
    sin (x 
    + (h 
    / 2)))) 
    / ( 
    sin (x 
    + (h 
    / 2))))) 
    - ((1 
    - (( 
    sin (x 
    - (h 
    / 2))) 
    * ( 
    sin (x 
    - (h 
    / 2))))) 
    / ( 
    sin (x 
    - (h 
    / 2))))) by 
    SIN_COS4: 5
    
      .= (((1
    / ( 
    sin (x 
    + (h 
    / 2)))) 
    - ( 
    sin (x 
    + (h 
    / 2)))) 
    - ((1 
    / ( 
    sin (x 
    - (h 
    / 2)))) 
    - ((( 
    sin (x 
    - (h 
    / 2))) 
    * ( 
    sin (x 
    - (h 
    / 2)))) 
    / ( 
    sin (x 
    - (h 
    / 2)))))) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 89
    
      .= (((1
    / ( 
    sin (x 
    + (h 
    / 2)))) 
    - ( 
    sin (x 
    + (h 
    / 2)))) 
    - ((1 
    / ( 
    sin (x 
    - (h 
    / 2)))) 
    - ( 
    sin (x 
    - (h 
    / 2))))) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 89
    
      .= ((((1
    / ( 
    sin (x 
    + (h 
    / 2)))) 
    - ( 
    sin (x 
    + (h 
    / 2)))) 
    - (1 
    / ( 
    sin (x 
    - (h 
    / 2))))) 
    + ( 
    sin (x 
    - (h 
    / 2)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:89
    
    (for x holds (f
    . x) 
    = (( 
    cot  
    (#)  
    sin ) 
    . x)) & x0 
    in ( 
    dom  
    cot ) & x1 
    in ( 
    dom  
    cot ) implies 
    [!f, x0, x1!]
    = ((( 
    cos x0) 
    - ( 
    cos x1)) 
    / (x0 
    - x1)) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    cot  
    (#)  
    sin ) 
    . x) and 
    
      
    
    A2: x0 
    in ( 
    dom  
    cot ) & x1 
    in ( 
    dom  
    cot ); 
    
      
    
      
    
    A3: (f 
    . x0) 
    = (( 
    cot  
    (#)  
    sin ) 
    . x0) by 
    A1;
    
      (f
    . x1) 
    = (( 
    cot  
    (#)  
    sin ) 
    . x1) by 
    A1;
    
      
    
      then
    [!f, x0, x1!]
    = (((( 
    cot  
    . x0) 
    * ( 
    sin  
    . x0)) 
    - (( 
    cot  
    (#)  
    sin ) 
    . x1)) 
    / (x0 
    - x1)) by 
    A3,
    VALUED_1: 5
    
      .= ((((
    cot  
    . x0) 
    * ( 
    sin  
    . x0)) 
    - (( 
    cot  
    . x1) 
    * ( 
    sin  
    . x1))) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= (((((
    cos  
    . x0) 
    * (( 
    sin  
    . x0) 
    " )) 
    * ( 
    sin  
    . x0)) 
    - (( 
    cot  
    . x1) 
    * ( 
    sin  
    . x1))) 
    / (x0 
    - x1)) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((((
    cos x0) 
    / ( 
    sin x0)) 
    * ( 
    sin x0)) 
    - ((( 
    cos x1) 
    / ( 
    sin x1)) 
    * ( 
    sin x1))) 
    / (x0 
    - x1)) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    cos x0) 
    / (( 
    sin x0) 
    / ( 
    sin x0))) 
    - ((( 
    cos x1) 
    / ( 
    sin x1)) 
    * ( 
    sin x1))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 82
    
      .= ((((
    cos x0) 
    / (( 
    sin x0) 
    * (1 
    / ( 
    sin x0)))) 
    - (( 
    cos x1) 
    / (( 
    sin x1) 
    / ( 
    sin x1)))) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 82
    
      .= ((((
    cos x0) 
    / 1) 
    - (( 
    cos x1) 
    / (( 
    sin x1) 
    * (1 
    / ( 
    sin x1))))) 
    / (x0 
    - x1)) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 106
    
      .= ((((
    cos x0) 
    / 1) 
    - (( 
    cos x1) 
    / 1)) 
    / (x0 
    - x1)) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 106
    
      .= (((
    cos x0) 
    - ( 
    cos x1)) 
    / (x0 
    - x1)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:90
    
    (for x holds (f
    . x) 
    = (( 
    cot  
    (#)  
    sin ) 
    . x)) & x 
    in ( 
    dom  
    cot ) & (x 
    + h) 
    in ( 
    dom  
    cot ) implies (( 
    fD (f,h)) 
    . x) 
    = (( 
    cos (x 
    + h)) 
    - ( 
    cos x)) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    cot  
    (#)  
    sin ) 
    . x) and 
    
      
    
    A2: x 
    in ( 
    dom  
    cot ) & (x 
    + h) 
    in ( 
    dom  
    cot ); 
    
      ((
    fD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= (((
    cot  
    (#)  
    sin ) 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    A1
    
      .= (((
    cot  
    (#)  
    sin ) 
    . (x 
    + h)) 
    - (( 
    cot  
    (#)  
    sin ) 
    . x)) by 
    A1
    
      .= (((
    cot  
    . (x 
    + h)) 
    * ( 
    sin  
    . (x 
    + h))) 
    - (( 
    cot  
    (#)  
    sin ) 
    . x)) by 
    VALUED_1: 5
    
      .= (((
    cot  
    . (x 
    + h)) 
    * ( 
    sin  
    . (x 
    + h))) 
    - (( 
    cot  
    . x) 
    * ( 
    sin  
    . x))) by 
    VALUED_1: 5
    
      .= ((((
    cos  
    . (x 
    + h)) 
    * (( 
    sin  
    . (x 
    + h)) 
    " )) 
    * ( 
    sin  
    . (x 
    + h))) 
    - (( 
    cot  
    . x) 
    * ( 
    sin  
    . x))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    cos (x 
    + h)) 
    / ( 
    sin (x 
    + h))) 
    * ( 
    sin (x 
    + h))) 
    - ((( 
    cos x) 
    / ( 
    sin x)) 
    * ( 
    sin x))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    cos (x 
    + h)) 
    / (( 
    sin (x 
    + h)) 
    / ( 
    sin (x 
    + h)))) 
    - ((( 
    cos x) 
    / ( 
    sin x)) 
    * ( 
    sin x))) by 
    XCMPLX_1: 82
    
      .= (((
    cos (x 
    + h)) 
    / (( 
    sin (x 
    + h)) 
    * (1 
    / ( 
    sin (x 
    + h))))) 
    - (( 
    cos x) 
    / (( 
    sin x) 
    / ( 
    sin x)))) by 
    XCMPLX_1: 82
    
      .= (((
    cos (x 
    + h)) 
    / 1) 
    - (( 
    cos x) 
    / (( 
    sin x) 
    * (1 
    / ( 
    sin x))))) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 106
    
      .= (((
    cos (x 
    + h)) 
    / 1) 
    - (( 
    cos x) 
    / 1)) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 106
    
      .= ((
    cos (x 
    + h)) 
    - ( 
    cos x)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:91
    
    (for x holds (f
    . x) 
    = (( 
    cot  
    (#)  
    sin ) 
    . x)) & x 
    in ( 
    dom  
    cot ) & (x 
    - h) 
    in ( 
    dom  
    cot ) implies (( 
    bD (f,h)) 
    . x) 
    = (( 
    cos x) 
    - ( 
    cos (x 
    - h))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    cot  
    (#)  
    sin ) 
    . x) and 
    
      
    
    A2: x 
    in ( 
    dom  
    cot ) & (x 
    - h) 
    in ( 
    dom  
    cot ); 
    
      ((
    bD (f,h)) 
    . x) 
    = ((f 
    . x) 
    - (f 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= (((
    cot  
    (#)  
    sin ) 
    . x) 
    - (f 
    . (x 
    - h))) by 
    A1
    
      .= (((
    cot  
    (#)  
    sin ) 
    . x) 
    - (( 
    cot  
    (#)  
    sin ) 
    . (x 
    - h))) by 
    A1
    
      .= (((
    cot  
    . x) 
    * ( 
    sin  
    . x)) 
    - (( 
    cot  
    (#)  
    sin ) 
    . (x 
    - h))) by 
    VALUED_1: 5
    
      .= (((
    cot  
    . x) 
    * ( 
    sin  
    . x)) 
    - (( 
    cot  
    . (x 
    - h)) 
    * ( 
    sin  
    . (x 
    - h)))) by 
    VALUED_1: 5
    
      .= ((((
    cos  
    . x) 
    * (( 
    sin  
    . x) 
    " )) 
    * ( 
    sin  
    . x)) 
    - (( 
    cot  
    . (x 
    - h)) 
    * ( 
    sin  
    . (x 
    - h)))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    cos x) 
    / ( 
    sin x)) 
    * ( 
    sin x)) 
    - ((( 
    cos (x 
    - h)) 
    / ( 
    sin (x 
    - h))) 
    * ( 
    sin (x 
    - h)))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    cos x) 
    / (( 
    sin x) 
    / ( 
    sin x))) 
    - ((( 
    cos (x 
    - h)) 
    / ( 
    sin (x 
    - h))) 
    * ( 
    sin (x 
    - h)))) by 
    XCMPLX_1: 82
    
      .= (((
    cos x) 
    / (( 
    sin x) 
    * (1 
    / ( 
    sin x)))) 
    - (( 
    cos (x 
    - h)) 
    / (( 
    sin (x 
    - h)) 
    / ( 
    sin (x 
    - h))))) by 
    XCMPLX_1: 82
    
      .= (((
    cos x) 
    / 1) 
    - (( 
    cos (x 
    - h)) 
    / (( 
    sin (x 
    - h)) 
    * (1 
    / ( 
    sin (x 
    - h)))))) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 106
    
      .= (((
    cos x) 
    / 1) 
    - (( 
    cos (x 
    - h)) 
    / 1)) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 106
    
      .= ((
    cos x) 
    - ( 
    cos (x 
    - h))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:92
    
    (for x holds (f
    . x) 
    = (( 
    cot  
    (#)  
    sin ) 
    . x)) & (x 
    + (h 
    / 2)) 
    in ( 
    dom  
    cot ) & (x 
    - (h 
    / 2)) 
    in ( 
    dom  
    cot ) implies (( 
    cD (f,h)) 
    . x) 
    = (( 
    cos (x 
    + (h 
    / 2))) 
    - ( 
    cos (x 
    - (h 
    / 2)))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    cot  
    (#)  
    sin ) 
    . x) and 
    
      
    
    A2: (x 
    + (h 
    / 2)) 
    in ( 
    dom  
    cot ) & (x 
    - (h 
    / 2)) 
    in ( 
    dom  
    cot ); 
    
      ((
    cD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= (((
    cot  
    (#)  
    sin ) 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= (((
    cot  
    (#)  
    sin ) 
    . (x 
    + (h 
    / 2))) 
    - (( 
    cot  
    (#)  
    sin ) 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= (((
    cot  
    . (x 
    + (h 
    / 2))) 
    * ( 
    sin  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    cot  
    (#)  
    sin ) 
    . (x 
    - (h 
    / 2)))) by 
    VALUED_1: 5
    
      .= (((
    cot  
    . (x 
    + (h 
    / 2))) 
    * ( 
    sin  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    cot  
    . (x 
    - (h 
    / 2))) 
    * ( 
    sin  
    . (x 
    - (h 
    / 2))))) by 
    VALUED_1: 5
    
      .= ((((
    cos  
    . (x 
    + (h 
    / 2))) 
    * (( 
    sin  
    . (x 
    + (h 
    / 2))) 
    " )) 
    * ( 
    sin  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    cot  
    . (x 
    - (h 
    / 2))) 
    * ( 
    sin  
    . (x 
    - (h 
    / 2))))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    cos (x 
    + (h 
    / 2))) 
    / ( 
    sin (x 
    + (h 
    / 2)))) 
    * ( 
    sin (x 
    + (h 
    / 2)))) 
    - ((( 
    cos (x 
    - (h 
    / 2))) 
    / ( 
    sin (x 
    - (h 
    / 2)))) 
    * ( 
    sin (x 
    - (h 
    / 2))))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    cos (x 
    + (h 
    / 2))) 
    / (( 
    sin (x 
    + (h 
    / 2))) 
    / ( 
    sin (x 
    + (h 
    / 2))))) 
    - ((( 
    cos (x 
    - (h 
    / 2))) 
    / ( 
    sin (x 
    - (h 
    / 2)))) 
    * ( 
    sin (x 
    - (h 
    / 2))))) by 
    XCMPLX_1: 82
    
      .= (((
    cos (x 
    + (h 
    / 2))) 
    / (( 
    sin (x 
    + (h 
    / 2))) 
    * (1 
    / ( 
    sin (x 
    + (h 
    / 2)))))) 
    - (( 
    cos (x 
    - (h 
    / 2))) 
    / (( 
    sin (x 
    - (h 
    / 2))) 
    / ( 
    sin (x 
    - (h 
    / 2)))))) by 
    XCMPLX_1: 82
    
      .= (((
    cos (x 
    + (h 
    / 2))) 
    / 1) 
    - (( 
    cos (x 
    - (h 
    / 2))) 
    / (( 
    sin (x 
    - (h 
    / 2))) 
    * (1 
    / ( 
    sin (x 
    - (h 
    / 2))))))) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 106
    
      .= (((
    cos (x 
    + (h 
    / 2))) 
    / 1) 
    - (( 
    cos (x 
    - (h 
    / 2))) 
    / 1)) by 
    A2,
    FDIFF_8: 2,
    XCMPLX_1: 106
    
      .= ((
    cos (x 
    + (h 
    / 2))) 
    - ( 
    cos (x 
    - (h 
    / 2)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:93
    
    (for x holds (f
    . x) 
    = (( 
    tan  
    (#)  
    tan ) 
    . x)) & x0 
    in ( 
    dom  
    tan ) & x1 
    in ( 
    dom  
    tan ) implies 
    [!f, x0, x1!]
    = (((( 
    cos x1) 
    ^2 ) 
    - (( 
    cos x0) 
    ^2 )) 
    / (((( 
    cos x0) 
    * ( 
    cos x1)) 
    ^2 ) 
    * (x0 
    - x1))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    tan  
    (#)  
    tan ) 
    . x) and 
    
      
    
    A2: x0 
    in ( 
    dom  
    tan ) & x1 
    in ( 
    dom  
    tan ); 
    
      
    
      
    
    A3: ( 
    cos x0) 
    <>  
    0 & ( 
    cos x1) 
    <>  
    0 by 
    A2,
    FDIFF_8: 1;
    
      
    
      
    
    A4: (f 
    . x0) 
    = (( 
    tan  
    (#)  
    tan ) 
    . x0) by 
    A1;
    
      (f
    . x1) 
    = (( 
    tan  
    (#)  
    tan ) 
    . x1) by 
    A1;
    
      
    
      then
    [!f, x0, x1!]
    = (((( 
    tan  
    . x0) 
    * ( 
    tan  
    . x0)) 
    - (( 
    tan  
    (#)  
    tan ) 
    . x1)) 
    / (x0 
    - x1)) by 
    A4,
    VALUED_1: 5
    
      .= ((((
    tan  
    . x0) 
    * ( 
    tan  
    . x0)) 
    - (( 
    tan  
    . x1) 
    * ( 
    tan  
    . x1))) 
    / (x0 
    - x1)) by 
    VALUED_1: 5
    
      .= (((((
    sin  
    . x0) 
    * (( 
    cos  
    . x0) 
    " )) 
    * ( 
    tan  
    . x0)) 
    - (( 
    tan  
    . x1) 
    * ( 
    tan  
    . x1))) 
    / (x0 
    - x1)) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((((
    sin  
    . x0) 
    * (( 
    cos  
    . x0) 
    " )) 
    * (( 
    sin  
    . x0) 
    * (( 
    cos  
    . x0) 
    " ))) 
    - (( 
    tan  
    . x1) 
    * ( 
    tan  
    . x1))) 
    / (x0 
    - x1)) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((((
    sin  
    . x0) 
    * (( 
    cos  
    . x0) 
    " )) 
    * (( 
    sin  
    . x0) 
    * (( 
    cos  
    . x0) 
    " ))) 
    - ((( 
    sin  
    . x1) 
    * (( 
    cos  
    . x1) 
    " )) 
    * ( 
    tan  
    . x1))) 
    / (x0 
    - x1)) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    tan x0) 
    ^2 ) 
    - (( 
    tan x1) 
    ^2 )) 
    / (x0 
    - x1)) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    tan x0) 
    - ( 
    tan x1)) 
    * (( 
    tan x0) 
    + ( 
    tan x1))) 
    / (x0 
    - x1)) 
    
      .= ((((
    sin (x0 
    - x1)) 
    / (( 
    cos x0) 
    * ( 
    cos x1))) 
    * (( 
    tan x0) 
    + ( 
    tan x1))) 
    / (x0 
    - x1)) by 
    A3,
    SIN_COS4: 20
    
      .= ((((
    sin (x0 
    - x1)) 
    / (( 
    cos x0) 
    * ( 
    cos x1))) 
    * (( 
    sin (x0 
    + x1)) 
    / (( 
    cos x0) 
    * ( 
    cos x1)))) 
    / (x0 
    - x1)) by 
    A3,
    SIN_COS4: 19
    
      .= ((((
    sin (x0 
    + x1)) 
    * ( 
    sin (x0 
    - x1))) 
    / ((( 
    cos x0) 
    * ( 
    cos x1)) 
    ^2 )) 
    / (x0 
    - x1)) by 
    XCMPLX_1: 76
    
      .= (((((
    cos x1) 
    ^2 ) 
    - (( 
    cos x0) 
    ^2 )) 
    / ((( 
    cos x0) 
    * ( 
    cos x1)) 
    ^2 )) 
    / (x0 
    - x1)) by 
    SIN_COS4: 38
    
      .= ((((
    cos x1) 
    ^2 ) 
    - (( 
    cos x0) 
    ^2 )) 
    / (((( 
    cos x0) 
    * ( 
    cos x1)) 
    ^2 ) 
    * (x0 
    - x1))) by 
    XCMPLX_1: 78;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:94
    
    (for x holds (f
    . x) 
    = (( 
    tan  
    (#)  
    tan ) 
    . x)) & x 
    in ( 
    dom  
    tan ) & (x 
    + h) 
    in ( 
    dom  
    tan ) implies (( 
    fD (f,h)) 
    . x) 
    = ( 
    - (((1 
    / 2) 
    * (( 
    cos (2 
    * (x 
    + h))) 
    - ( 
    cos (2 
    * x)))) 
    / ((( 
    cos (x 
    + h)) 
    * ( 
    cos x)) 
    ^2 ))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    tan  
    (#)  
    tan ) 
    . x) and 
    
      
    
    A2: x 
    in ( 
    dom  
    tan ) & (x 
    + h) 
    in ( 
    dom  
    tan ); 
    
      
    
      
    
    A3: ( 
    cos x) 
    <>  
    0 & ( 
    cos (x 
    + h)) 
    <>  
    0 by 
    A2,
    FDIFF_8: 1;
    
      ((
    fD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    DIFF_1: 3
    
      .= (((
    tan  
    (#)  
    tan ) 
    . (x 
    + h)) 
    - (f 
    . x)) by 
    A1
    
      .= (((
    tan  
    (#)  
    tan ) 
    . (x 
    + h)) 
    - (( 
    tan  
    (#)  
    tan ) 
    . x)) by 
    A1
    
      .= (((
    tan  
    . (x 
    + h)) 
    * ( 
    tan  
    . (x 
    + h))) 
    - (( 
    tan  
    (#)  
    tan ) 
    . x)) by 
    VALUED_1: 5
    
      .= (((
    tan  
    . (x 
    + h)) 
    * ( 
    tan  
    . (x 
    + h))) 
    - (( 
    tan  
    . x) 
    * ( 
    tan  
    . x))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . (x 
    + h)) 
    * (( 
    cos  
    . (x 
    + h)) 
    " )) 
    * ( 
    tan  
    . (x 
    + h))) 
    - (( 
    tan  
    . x) 
    * ( 
    tan  
    . x))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin  
    . (x 
    + h)) 
    * (( 
    cos  
    . (x 
    + h)) 
    " )) 
    * (( 
    sin  
    . (x 
    + h)) 
    * (( 
    cos  
    . (x 
    + h)) 
    " ))) 
    - (( 
    tan  
    . x) 
    * ( 
    tan  
    . x))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin  
    . (x 
    + h)) 
    * (( 
    cos  
    . (x 
    + h)) 
    " )) 
    * (( 
    sin  
    . (x 
    + h)) 
    * (( 
    cos  
    . (x 
    + h)) 
    " ))) 
    - ((( 
    sin  
    . x) 
    * (( 
    cos  
    . x) 
    " )) 
    * ( 
    tan  
    . x))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    tan (x 
    + h)) 
    ^2 ) 
    - (( 
    tan x) 
    ^2 )) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    tan (x 
    + h)) 
    - ( 
    tan x)) 
    * (( 
    tan (x 
    + h)) 
    + ( 
    tan x))) 
    
      .= (((
    sin ((x 
    + h) 
    - x)) 
    / (( 
    cos (x 
    + h)) 
    * ( 
    cos x))) 
    * (( 
    tan (x 
    + h)) 
    + ( 
    tan x))) by 
    A3,
    SIN_COS4: 20
    
      .= (((
    sin ((x 
    + h) 
    - x)) 
    / (( 
    cos (x 
    + h)) 
    * ( 
    cos x))) 
    * (( 
    sin ((x 
    + h) 
    + x)) 
    / (( 
    cos (x 
    + h)) 
    * ( 
    cos x)))) by 
    A3,
    SIN_COS4: 19
    
      .= (((
    sin ((2 
    * x) 
    + h)) 
    * ( 
    sin h)) 
    / ((( 
    cos (x 
    + h)) 
    * ( 
    cos x)) 
    ^2 )) by 
    XCMPLX_1: 76
    
      .= ((
    - ((1 
    / 2) 
    * (( 
    cos (((2 
    * x) 
    + h) 
    + h)) 
    - ( 
    cos (((2 
    * x) 
    + h) 
    - h))))) 
    / ((( 
    cos (x 
    + h)) 
    * ( 
    cos x)) 
    ^2 )) by 
    SIN_COS4: 29
    
      .= (
    - (((1 
    / 2) 
    * (( 
    cos (2 
    * (x 
    + h))) 
    - ( 
    cos (2 
    * x)))) 
    / ((( 
    cos (x 
    + h)) 
    * ( 
    cos x)) 
    ^2 ))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:95
    
    (for x holds (f
    . x) 
    = (( 
    tan  
    (#)  
    tan ) 
    . x)) & x 
    in ( 
    dom  
    tan ) & (x 
    - h) 
    in ( 
    dom  
    tan ) implies (( 
    bD (f,h)) 
    . x) 
    = ( 
    - (((1 
    / 2) 
    * (( 
    cos (2 
    * x)) 
    - ( 
    cos (2 
    * (h 
    - x))))) 
    / ((( 
    cos x) 
    * ( 
    cos (x 
    - h))) 
    ^2 ))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    tan  
    (#)  
    tan ) 
    . x) and 
    
      
    
    A2: x 
    in ( 
    dom  
    tan ) & (x 
    - h) 
    in ( 
    dom  
    tan ); 
    
      
    
      
    
    A3: ( 
    cos x) 
    <>  
    0 & ( 
    cos (x 
    - h)) 
    <>  
    0 by 
    A2,
    FDIFF_8: 1;
    
      ((
    bD (f,h)) 
    . x) 
    = ((f 
    . x) 
    - (f 
    . (x 
    - h))) by 
    DIFF_1: 4
    
      .= (((
    tan  
    (#)  
    tan ) 
    . x) 
    - (f 
    . (x 
    - h))) by 
    A1
    
      .= (((
    tan  
    (#)  
    tan ) 
    . x) 
    - (( 
    tan  
    (#)  
    tan ) 
    . (x 
    - h))) by 
    A1
    
      .= (((
    tan  
    . x) 
    * ( 
    tan  
    . x)) 
    - (( 
    tan  
    (#)  
    tan ) 
    . (x 
    - h))) by 
    VALUED_1: 5
    
      .= (((
    tan  
    . x) 
    * ( 
    tan  
    . x)) 
    - (( 
    tan  
    . (x 
    - h)) 
    * ( 
    tan  
    . (x 
    - h)))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . x) 
    * (( 
    cos  
    . x) 
    " )) 
    * ( 
    tan  
    . x)) 
    - (( 
    tan  
    . (x 
    - h)) 
    * ( 
    tan  
    . (x 
    - h)))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin  
    . x) 
    * (( 
    cos  
    . x) 
    " )) 
    * (( 
    sin  
    . x) 
    * (( 
    cos  
    . x) 
    " ))) 
    - (( 
    tan  
    . (x 
    - h)) 
    * ( 
    tan  
    . (x 
    - h)))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin  
    . x) 
    * (( 
    cos  
    . x) 
    " )) 
    * (( 
    sin  
    . x) 
    * (( 
    cos  
    . x) 
    " ))) 
    - ((( 
    sin  
    . (x 
    - h)) 
    * (( 
    cos  
    . (x 
    - h)) 
    " )) 
    * ( 
    tan  
    . (x 
    - h)))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    tan x) 
    ^2 ) 
    - (( 
    tan (x 
    - h)) 
    ^2 )) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    tan x) 
    - ( 
    tan (x 
    - h))) 
    * (( 
    tan x) 
    + ( 
    tan (x 
    - h)))) 
    
      .= (((
    sin (x 
    - (x 
    - h))) 
    / (( 
    cos x) 
    * ( 
    cos (x 
    - h)))) 
    * (( 
    tan x) 
    + ( 
    tan (x 
    - h)))) by 
    A3,
    SIN_COS4: 20
    
      .= (((
    sin h) 
    / (( 
    cos x) 
    * ( 
    cos (x 
    - h)))) 
    * (( 
    sin (x 
    + (x 
    - h))) 
    / (( 
    cos x) 
    * ( 
    cos (x 
    - h))))) by 
    A3,
    SIN_COS4: 19
    
      .= (((
    sin h) 
    * ( 
    sin ((2 
    * x) 
    - h))) 
    / ((( 
    cos x) 
    * ( 
    cos (x 
    - h))) 
    ^2 )) by 
    XCMPLX_1: 76
    
      .= ((
    - ((1 
    / 2) 
    * (( 
    cos (h 
    + ((2 
    * x) 
    - h))) 
    - ( 
    cos (h 
    - ((2 
    * x) 
    - h)))))) 
    / ((( 
    cos x) 
    * ( 
    cos (x 
    - h))) 
    ^2 )) by 
    SIN_COS4: 29
    
      .= (
    - (((1 
    / 2) 
    * (( 
    cos (2 
    * x)) 
    - ( 
    cos (2 
    * (h 
    - x))))) 
    / ((( 
    cos x) 
    * ( 
    cos (x 
    - h))) 
    ^2 ))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DIFF_3:96
    
    (for x holds (f
    . x) 
    = (( 
    tan  
    (#)  
    tan ) 
    . x)) & (x 
    + (h 
    / 2)) 
    in ( 
    dom  
    tan ) & (x 
    - (h 
    / 2)) 
    in ( 
    dom  
    tan ) implies (( 
    cD (f,h)) 
    . x) 
    = ( 
    - (((1 
    / 2) 
    * (( 
    cos (h 
    + (2 
    * x))) 
    - ( 
    cos (h 
    - (2 
    * x))))) 
    / ((( 
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2)))) 
    ^2 ))) 
    
    proof
    
      assume that
    
      
    
    A1: for x holds (f 
    . x) 
    = (( 
    tan  
    (#)  
    tan ) 
    . x) and 
    
      
    
    A2: (x 
    + (h 
    / 2)) 
    in ( 
    dom  
    tan ) & (x 
    - (h 
    / 2)) 
    in ( 
    dom  
    tan ); 
    
      
    
      
    
    A3: ( 
    cos (x 
    + (h 
    / 2))) 
    <>  
    0 & ( 
    cos (x 
    - (h 
    / 2))) 
    <>  
    0 by 
    A2,
    FDIFF_8: 1;
    
      ((
    cD (f,h)) 
    . x) 
    = ((f 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    DIFF_1: 5
    
      .= (((
    tan  
    (#)  
    tan ) 
    . (x 
    + (h 
    / 2))) 
    - (f 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= (((
    tan  
    (#)  
    tan ) 
    . (x 
    + (h 
    / 2))) 
    - (( 
    tan  
    (#)  
    tan ) 
    . (x 
    - (h 
    / 2)))) by 
    A1
    
      .= (((
    tan  
    . (x 
    + (h 
    / 2))) 
    * ( 
    tan  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    tan  
    (#)  
    tan ) 
    . (x 
    - (h 
    / 2)))) by 
    VALUED_1: 5
    
      .= (((
    tan  
    . (x 
    + (h 
    / 2))) 
    * ( 
    tan  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    tan  
    . (x 
    - (h 
    / 2))) 
    * ( 
    tan  
    . (x 
    - (h 
    / 2))))) by 
    VALUED_1: 5
    
      .= ((((
    sin  
    . (x 
    + (h 
    / 2))) 
    * (( 
    cos  
    . (x 
    + (h 
    / 2))) 
    " )) 
    * ( 
    tan  
    . (x 
    + (h 
    / 2)))) 
    - (( 
    tan  
    . (x 
    - (h 
    / 2))) 
    * ( 
    tan  
    . (x 
    - (h 
    / 2))))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin  
    . (x 
    + (h 
    / 2))) 
    * (( 
    cos  
    . (x 
    + (h 
    / 2))) 
    " )) 
    * (( 
    sin  
    . (x 
    + (h 
    / 2))) 
    * (( 
    cos  
    . (x 
    + (h 
    / 2))) 
    " ))) 
    - (( 
    tan  
    . (x 
    - (h 
    / 2))) 
    * ( 
    tan  
    . (x 
    - (h 
    / 2))))) by 
    A2,
    RFUNCT_1:def 1
    
      .= ((((
    sin  
    . (x 
    + (h 
    / 2))) 
    * (( 
    cos  
    . (x 
    + (h 
    / 2))) 
    " )) 
    * (( 
    sin  
    . (x 
    + (h 
    / 2))) 
    * (( 
    cos  
    . (x 
    + (h 
    / 2))) 
    " ))) 
    - ((( 
    sin  
    . (x 
    - (h 
    / 2))) 
    * (( 
    cos  
    . (x 
    - (h 
    / 2))) 
    " )) 
    * ( 
    tan  
    . (x 
    - (h 
    / 2))))) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    tan (x 
    + (h 
    / 2))) 
    ^2 ) 
    - (( 
    tan (x 
    - (h 
    / 2))) 
    ^2 )) by 
    A2,
    RFUNCT_1:def 1
    
      .= (((
    tan (x 
    + (h 
    / 2))) 
    - ( 
    tan (x 
    - (h 
    / 2)))) 
    * (( 
    tan (x 
    + (h 
    / 2))) 
    + ( 
    tan (x 
    - (h 
    / 2))))) 
    
      .= (((
    sin ((x 
    + (h 
    / 2)) 
    - (x 
    - (h 
    / 2)))) 
    / (( 
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2))))) 
    * (( 
    tan (x 
    + (h 
    / 2))) 
    + ( 
    tan (x 
    - (h 
    / 2))))) by 
    A3,
    SIN_COS4: 20
    
      .= (((
    sin h) 
    / (( 
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2))))) 
    * (( 
    sin ((x 
    + (h 
    / 2)) 
    + (x 
    - (h 
    / 2)))) 
    / (( 
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2)))))) by 
    A3,
    SIN_COS4: 19
    
      .= (((
    sin h) 
    * ( 
    sin (2 
    * x))) 
    / ((( 
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2)))) 
    ^2 )) by 
    XCMPLX_1: 76
    
      .= ((
    - ((1 
    / 2) 
    * (( 
    cos (h 
    + (2 
    * x))) 
    - ( 
    cos (h 
    - (2 
    * x)))))) 
    / ((( 
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2)))) 
    ^2 )) by 
    SIN_COS4: 29
    
      .= (
    - (((1 
    / 2) 
    * (( 
    cos (h 
    + (2 
    * x))) 
    - ( 
    cos (h 
    - (2 
    * x))))) 
    / ((( 
    cos (x 
    + (h 
    / 2))) 
    * ( 
    cos (x 
    - (h 
    / 2)))) 
    ^2 ))); 
    
      hence thesis;
    
    end;