diophan1.miz
begin
reserve i,j,k,m,n,m1,n1 for
Nat;
reserve a,r,r1,r2 for
Real;
reserve m0,cn,cd for
Integer;
reserve x1,x2,o for
object;
theorem ::
DIOPHAN1:1
Th1: r
= ((
rfs r)
.
0 ) & r
= (((
scf r)
.
0 )
+ (1
/ ((
rfs r)
. 1))) & ((
rfs r)
. n)
= (((
scf r)
. n)
+ (1
/ ((
rfs r)
. (n
+ 1))))
proof
A1: ((
rfs r)
. 1)
= ((
rfs r)
. (
0
+ 1))
.= (1
/ (
frac ((
rfs r)
.
0 ))) by
REAL_3:def 3;
A2: (
frac ((
rfs r)
.
0 ))
= (
frac r) by
REAL_3:def 3
.= (r
- ((
scf r)
.
0 )) by
REAL_3: 35;
A4: (
frac ((
rfs r)
. n))
= (((
rfs r)
. n)
-
[\((
rfs r)
. n)/]) by
INT_1:def 8;
(1
/ ((
rfs r)
. (n
+ 1)))
= (1
/ (1
/ (
frac ((
rfs r)
. n)))) by
REAL_3:def 3
.= (
frac ((
rfs r)
. n));
then (((
scf r)
. n)
+ (1
/ ((
rfs r)
. (n
+ 1))))
= ((((
scf r)
. n)
+ ((
rfs r)
. n))
-
[\((
rfs r)
. n)/]) by
A4
.= ((((
scf r)
. n)
+ ((
rfs r)
. n))
- ((
scf r)
. n)) by
REAL_3:def 4
.= ((
rfs r)
. n);
hence thesis by
REAL_3:def 3,
A2,
A1;
end;
theorem ::
DIOPHAN1:2
Th2: r is
irrational implies ((
rfs r)
. n) is
irrational
proof
assume
A1: r is
irrational;
set rn = ((
rfs r)
. n);
A3: ((
scf rn)
.
0 )
=
[\((
rfs rn)
.
0 )/] by
REAL_3:def 4
.=
[\((
rfs r)
. n)/] by
REAL_3:def 3
.= ((
scf r)
. n) by
REAL_3:def 4;
A4: ((
scf rn)
. m)
= ((
scf r)
. (n
+ m)) & ((
rfs rn)
. m)
= ((
rfs r)
. (n
+ m))
proof
defpred
P[
Nat] means ((
scf rn)
. $1)
= ((
scf r)
. (n
+ $1)) & ((
rfs rn)
. $1)
= ((
rfs r)
. (n
+ $1));
A5:
P[
0 ] by
REAL_3:def 3,
A3;
A6: for m be
Nat st
P[m] holds
P[(m
+ 1)]
proof
let m be
Nat;
assume
A7:
P[m];
A9: ((
rfs rn)
. (m
+ 1))
= (1
/ (
frac ((
rfs rn)
. m))) by
REAL_3:def 3
.= ((
rfs r)
. ((n
+ m)
+ 1)) by
A7,
REAL_3:def 3;
((
scf rn)
. (m
+ 1))
=
[\((
rfs rn)
. (m
+ 1))/] by
REAL_3:def 4
.= ((
scf r)
. ((n
+ m)
+ 1)) by
A9,
REAL_3:def 4;
hence thesis by
A9;
end;
for m be
Nat holds
P[m] from
NAT_1:sch 2(
A5,
A6);
hence thesis;
end;
assume
A10: ((
rfs r)
. n) is
rational;
consider n1 such that
A12: for m1 st m1
>= n1 holds ((
scf rn)
. m1)
=
0 by
A10,
REAL_3: 42;
A13: for m1 st m1
>= n1 holds ((
scf r)
. (n
+ m1))
=
0
proof
let m1;
assume
A14: m1
>= n1;
((
scf r)
. (n
+ m1))
= ((
scf rn)
. m1) by
A4
.=
0 by
A12,
A14;
hence thesis;
end;
for m st m
>= (n1
+ n) holds ((
scf r)
. m)
=
0
proof
let m;
assume
A15: m
>= (n1
+ n);
A16: (m
- n)
>= ((n1
+ n)
- n) by
A15,
XREAL_1: 9;
(m
- n)
in
NAT by
A16,
INT_1: 3;
then
reconsider l = (m
- n) as
Nat;
((
scf r)
. (n
+ l))
=
0 by
A13,
A16;
hence thesis;
end;
hence contradiction by
A1,
REAL_3: 42;
end;
theorem ::
DIOPHAN1:3
Th3: r is
irrational implies ((
rfs r)
. n)
<>
0 & (((
rfs r)
. 1)
* ((
rfs r)
. 2))
<>
0 & ((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ 1)
<>
0
proof
assume
A1: r is
irrational;
A2: ((
rfs r)
. n)
<>
0
proof
assume ((
rfs r)
. n)
=
0 ;
then
consider n1 be
Nat such that
A4: ((
rfs r)
. n1)
=
0 ;
n1
<= m implies ((
scf r)
. m)
=
0 by
A4,
REAL_3: 28;
hence contradiction by
A1,
REAL_3: 42;
end;
A5: ((
rfs r)
. 1)
<>
0 & ((
rfs r)
. 2)
<>
0 by
A1,
Th2;
((
rfs r)
. 1)
= (((
scf r)
. 1)
+ (1
/ ((
rfs r)
. (1
+ 1)))) by
Th1;
then (((
rfs r)
. 1)
* ((
rfs r)
. 2))
= ((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ ((1
/ ((
rfs r)
. 2))
* ((
rfs r)
. 2)))
.= ((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ 1) by
XCMPLX_1: 106,
A5;
hence thesis by
A2,
A5;
end;
theorem ::
DIOPHAN1:4
Th4: r is
irrational implies ((
scf r)
. n)
< ((
rfs r)
. n) & ((
rfs r)
. n)
< (((
scf r)
. n)
+ 1) & 1
< ((
rfs r)
. (n
+ 1))
proof
assume r is
irrational;
then
A2: not ((
rfs r)
. n) is
integer by
Th2;
A3: (1
/ ((
rfs r)
. (n
+ 1)))
= (1
/ (1
/ (
frac ((
rfs r)
. n)))) by
REAL_3:def 3
.= (
frac ((
rfs r)
. n));
A4: (1
/ ((
rfs r)
. (n
+ 1)))
>
0 by
A2,
A3,
INT_1: 46;
A5: ((
rfs r)
. n)
= (((
scf r)
. n)
+ (1
/ ((
rfs r)
. (n
+ 1)))) by
Th1;
A6: ((((
rfs r)
. n)
- ((
scf r)
. n))
+ ((
scf r)
. n))
> (
0
+ ((
scf r)
. n)) by
A2,
A3,
A5,
INT_1: 46,
XREAL_1: 8;
(1
" )
< ((((
rfs r)
. (n
+ 1))
" )
" ) by
A3,
INT_1: 43,
A4,
XREAL_1: 88;
hence thesis by
A6,
A5,
A3,
INT_1: 43,
XREAL_1: 8;
end;
theorem ::
DIOPHAN1:5
Th5: r is
irrational implies
0
< ((
scf r)
. (n
+ 1))
proof
assume
A1: r is
irrational;
A2: (((
rfs r)
. (n
+ 1))
- 1)
> (1
- 1) by
A1,
Th4,
XREAL_1: 14;
((
rfs r)
. (n
+ 1))
< (((
scf r)
. (n
+ 1))
+ 1) by
A1,
Th4;
then (((
rfs r)
. (n
+ 1))
- 1)
< ((((
scf r)
. (n
+ 1))
+ 1)
- 1) by
XREAL_1: 14;
hence thesis by
A2;
end;
Th6: for n holds ((
c_n r)
. n) is
Integer
proof
defpred
P[
Nat] means ((
c_n r)
. $1) is
Integer;
A1: for n be
Nat st
P[n] &
P[(n
+ 1)] holds
P[(n
+ 2)]
proof
let n be
Nat;
assume that
A2: ((
c_n r)
. n) is
Integer and
A3: ((
c_n r)
. (n
+ 1)) is
Integer;
((
c_n r)
. (n
+ 2))
= ((((
scf r)
. (n
+ 2))
* ((
c_n r)
. (n
+ 1)))
+ ((
c_n r)
. n)) by
REAL_3:def 5;
hence thesis by
A2,
A3;
end;
A5:
P[1]
proof
((
c_n r)
. 1)
= ((((
scf r)
. 1)
* ((
scf r)
.
0 ))
+ 1) by
REAL_3:def 5;
hence thesis;
end;
A6:
P[
0 ]
proof
((
c_n r)
.
0 )
= ((
scf r)
.
0 ) by
REAL_3:def 5;
hence thesis;
end;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A6,
A5,
A1);
hence thesis;
end;
registration
let r, n;
cluster ((
c_n r)
. n) ->
integer;
coherence by
Th6;
end
theorem ::
DIOPHAN1:6
Th7: r is
irrational implies for n holds ((
c_d r)
. (n
+ 1))
>= ((
c_d r)
. n)
proof
assume
A1: r is
irrational;
defpred
P[
Nat] means ((
c_d r)
. $1)
<= ((
c_d r)
. ($1
+ 1));
A2:
P[
0 ]
proof
A3: ((
c_d r)
.
0 )
= 1 by
REAL_3:def 6;
((
rfs r)
. (
0
+ 1))
> 1 by
A1,
Th4;
then (((
rfs r)
. 1)
- 1)
> (1
- 1) by
XREAL_1: 14;
then
[\((
rfs r)
. 1)/]
>
0 by
INT_1:def 6;
then ((
scf r)
. 1)
>
0 by
REAL_3:def 4;
then (
0
+ 1)
<= ((
scf r)
. 1) by
INT_1: 7;
hence thesis by
A3,
REAL_3:def 6;
end;
A8: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
P[n];
A9: (((
c_d r)
. (n
+ 2))
- ((
c_d r)
. (n
+ 1)))
= (((((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
+ ((
c_d r)
. n))
- ((
c_d r)
. (n
+ 1))) by
REAL_3:def 6
.= (((((
scf r)
. (n
+ 2))
- 1)
* ((
c_d r)
. (n
+ 1)))
+ ((
c_d r)
. n));
A10: ((
scf r)
. (n
+ 2))
=
[\((
rfs r)
. (n
+ 2))/] by
REAL_3:def 4;
((
rfs r)
. ((n
+ 1)
+ 1))
> 1 by
A1,
Th4;
then (((
rfs r)
. (n
+ 2))
- 1)
> (1
- 1) by
XREAL_1: 14;
then ((
scf r)
. (n
+ 2))
>
0 by
A10,
INT_1:def 6;
then (
0
+ 1)
<= ((
scf r)
. (n
+ 2)) by
INT_1: 7;
then
A12: (((
scf r)
. (n
+ 2))
- 1)
>= (1
- 1) by
XREAL_1: 13;
((
c_d r)
. (n
+ 1))
>=
0 & ((
c_d r)
. n)
>=
0 by
REAL_3: 51;
then ((((
c_d r)
. (n
+ 2))
- ((
c_d r)
. (n
+ 1)))
+ ((
c_d r)
. (n
+ 1)))
>= (
0
+ ((
c_d r)
. (n
+ 1))) by
A9,
A12,
XREAL_1: 6;
hence thesis;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A8);
hence thesis;
end;
theorem ::
DIOPHAN1:7
Th8: r is
irrational implies ((
c_d r)
. n)
>= 1
proof
assume
A1: r is
irrational;
defpred
P[
Nat] means ((
c_d r)
. $1)
>= 1;
A2:
P[
0 ] by
REAL_3:def 6;
A3: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A4:
P[n];
((
c_d r)
. (n
+ 1))
>= ((
c_d r)
. n) by
A1,
Th7;
hence thesis by
A4,
XXREAL_0: 2;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A3);
hence thesis;
end;
theorem ::
DIOPHAN1:8
r is
irrational implies ((
c_d r)
. (n
+ 2))
> ((
c_d r)
. (n
+ 1))
proof
assume
A1: r is
irrational;
then
A2: ((
scf r)
. ((n
+ 1)
+ 1))
>
0 by
Th5;
A3: (n
+ 2)
>= (
0
+ 1) by
XREAL_1: 8;
A4: ((
c_d r)
. (n
+ 2))
= ((((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
+ ((
c_d r)
. n)) by
REAL_3:def 6;
((
c_d r)
. n)
>
0 by
A1,
Th8;
then
A5: (((
c_d r)
. (n
+ 2))
-
0 )
> (((((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
+ ((
c_d r)
. n))
- ((
c_d r)
. n)) by
A4,
XREAL_1: 15;
((
c_d r)
. (n
+ 1))
>= 1 by
A1,
Th8;
then (((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
>= ((
c_d r)
. (n
+ 1)) by
A2,
A3,
REAL_3: 40,
XREAL_1: 151;
hence thesis by
A5,
XXREAL_0: 2;
end;
theorem ::
DIOPHAN1:9
Th10: r is
irrational implies ((
c_d r)
. n)
>= n
proof
assume
A1: r is
irrational;
defpred
P[
Nat] means ((
c_d r)
. $1)
>= $1;
A2:
P[
0 ] by
REAL_3:def 6;
A3: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A4:
P[n];
set m = (n
- 1);
per cases ;
suppose n
=
0 ;
hence thesis by
A1,
Th8;
end;
suppose n
>
0 ;
then
reconsider m as
Nat;
A7: ((
scf r)
. ((m
+ 1)
+ 1))
>
0 by
A1,
Th5;
A8: (m
+ 2)
>= (
0
+ 1) by
XREAL_1: 8;
((
c_d r)
. (m
+ 1))
>= 1 by
A1,
Th8;
then
A9: (((
scf r)
. (m
+ 2))
* ((
c_d r)
. (m
+ 1)))
>= ((
c_d r)
. (m
+ 1)) by
A7,
A8,
REAL_3: 40,
XREAL_1: 151;
((((
scf r)
. (m
+ 2))
* ((
c_d r)
. (m
+ 1)))
+ ((
c_d r)
. m))
>= (((
c_d r)
. (m
+ 1))
+ ((
c_d r)
. m)) by
A9,
XREAL_1: 6;
then
A12: ((
c_d r)
. (m
+ 2))
>= (((
c_d r)
. (m
+ 1))
+ ((
c_d r)
. m)) by
REAL_3:def 6;
A13: (((
c_d r)
. (m
+ 1))
+ ((
c_d r)
. m))
>= (n
+ ((
c_d r)
. m)) by
A4,
XREAL_1: 6;
(n
+ ((
c_d r)
. m))
>= (n
+ 1) by
A1,
Th8,
XREAL_1: 6;
then (((
c_d r)
. (m
+ 1))
+ ((
c_d r)
. m))
>= (n
+ 1) by
A13,
XXREAL_0: 2;
hence thesis by
A12,
XXREAL_0: 2;
end;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A3);
hence thesis;
end;
theorem ::
DIOPHAN1:10
cn
= ((
c_n r)
. n) & cd
= ((
c_d r)
. n) & cn
<>
0 implies (cn,cd)
are_coprime
proof
((
c_d r)
. (n
+ 1))
in
NAT by
REAL_3: 50;
then
reconsider cd2 = ((
c_d r)
. (n
+ 1)) as
Integer;
reconsider cn2 = ((
c_n r)
. (n
+ 1)) as
Integer;
assume that
A2: cn
= ((
c_n r)
. n) and
A3: cd
= ((
c_d r)
. n) and
A4: cn
<>
0 ;
assume
A5: not ((cn,cd)
are_coprime );
A6: ((cn2
* cd)
- (cn
* cd2))
= ((
- 1)
|^ n) by
A2,
A3,
REAL_3: 64;
consider cn0,cd0 be
Integer such that
A8: cn
= ((cn
gcd cd)
* cn0) and
A9: cd
= ((cn
gcd cd)
* cd0) and (cn0,cd0)
are_coprime by
A4,
INT_2: 23;
(cn
gcd cd)
<>
0 by
A4,
INT_2: 5;
then (cn
gcd cd)
>= (
0
+ 1) by
INT_1: 7;
then
A11: (cn
gcd cd)
> 1 by
A5,
INT_2:def 3,
XXREAL_0: 1;
A12: ((
- 1)
|^ n)
= (((cn2
* (cn
gcd cd))
* cd0)
- (cn
* cd2)) by
A6,
A9
.= ((cn
gcd cd)
* ((cn2
* cd0)
- (cn0
* cd2))) by
A8;
A13: 1
=
|.((
- 1)
|^ n).| by
SERIES_2: 1
.=
|.((cn
gcd cd)
* ((cn2
* cd0)
- (cn0
* cd2))).| by
A12
.= (
|.(cn
gcd cd).|
*
|.((cn2
* cd0)
- (cn0
* cd2)).|) by
COMPLEX1: 65
.= ((cn
gcd cd)
*
|.((cn2
* cd0)
- (cn0
* cd2)).|) by
ABSVALUE:def 1;
((cn
gcd cd)
" )
< 1 by
A11,
XREAL_1: 212;
then
|.((cn2
* cd0)
- (cn0
* cd2)).|
< 1 by
A13,
XCMPLX_1: 210;
then
|.((cn2
* cd0)
- (cn0
* cd2)).|
=
0 by
NAT_1: 14;
hence contradiction by
A13;
end;
theorem ::
DIOPHAN1:11
Th12: r is
irrational implies ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))
>
0 & ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
- ((
c_d r)
. n))
>
0
proof
assume
A1: r is
irrational;
then
A2: ((
c_d r)
. (n
+ 1))
>= 1 by
Th8;
((
rfs r)
. ((n
+ 1)
+ 1))
> 1 by
A1,
Th4;
then
A4: (((
rfs r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
> (1
* ((
c_d r)
. (n
+ 1))) by
A2,
XREAL_1: 68;
then
A5: (((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
> 1 by
A2,
XXREAL_0: 2;
A6: (((
c_d r)
. n)
+ 1)
>= (1
+ 1) by
A1,
Th8,
XREAL_1: 6;
((
c_d r)
. (n
+ 1))
>= ((
c_d r)
. n) by
A1,
Th7;
then (((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
> ((
c_d r)
. n) by
A4,
XXREAL_0: 2;
then ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
- ((
c_d r)
. n))
> (((
c_d r)
. n)
- ((
c_d r)
. n)) by
XREAL_1: 14;
hence thesis by
A5,
A6,
XREAL_1: 6;
end;
theorem ::
DIOPHAN1:12
Th13: r is
irrational implies (((
c_d r)
. (n
+ 1))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n)))
>
0
proof
assume
A1: r is
irrational;
then
A2: ((
c_d r)
. (n
+ 1))
>= 1 by
Th8;
((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))
>
0 by
A1,
Th12;
hence thesis by
A2;
end;
theorem ::
DIOPHAN1:13
Th14: r is
irrational implies r
= (((((
c_n r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_n r)
. n))
/ ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n)))
proof
assume
A1: r is
irrational;
defpred
P[
Nat] means r
= (((((
c_n r)
. ($1
+ 1))
* ((
rfs r)
. ($1
+ 2)))
+ ((
c_n r)
. $1))
/ ((((
c_d r)
. ($1
+ 1))
* ((
rfs r)
. ($1
+ 2)))
+ ((
c_d r)
. $1)));
A2:
P[
0 ]
proof
A3: ((
rfs r)
. 1)
= (((
scf r)
. 1)
+ (1
/ ((
rfs r)
. (1
+ 1)))) by
Th1;
A4: ((((
c_n r)
. 1)
* ((
rfs r)
. 2))
+ ((
c_n r)
.
0 ))
= ((((((
scf r)
. 1)
* ((
scf r)
.
0 ))
+ 1)
* ((
rfs r)
. 2))
+ ((
c_n r)
.
0 )) by
REAL_3:def 5
.= ((((((
scf r)
. 1)
* ((
scf r)
.
0 ))
+ 1)
* ((
rfs r)
. 2))
+ ((
scf r)
.
0 )) by
REAL_3:def 5
.= ((((
scf r)
.
0 )
* ((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ 1))
+ ((
rfs r)
. 2));
A5: ((((
c_d r)
. 1)
* ((
rfs r)
. 2))
+ ((
c_d r)
.
0 ))
= ((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ ((
c_d r)
.
0 )) by
REAL_3:def 6
.= ((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ 1) by
REAL_3:def 6;
A6: ((
rfs r)
. 2)
<>
0 & ((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ 1)
<>
0 by
A1,
Th3;
(((((
c_n r)
. 1)
* ((
rfs r)
. 2))
+ ((
c_n r)
.
0 ))
/ ((((
c_d r)
. 1)
* ((
rfs r)
. 2))
+ ((
c_d r)
.
0 )))
= (((((
scf r)
.
0 )
* ((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ 1))
+ ((
rfs r)
. 2))
/ ((((
c_d r)
. 1)
* ((
rfs r)
. 2))
+ ((
c_d r)
.
0 ))) by
A4
.= ((((
scf r)
.
0 )
* (((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ 1)
/ ((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ 1)))
+ (((
rfs r)
. 2)
/ ((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ 1))) by
A5
.= ((((
scf r)
.
0 )
* 1)
+ (((
rfs r)
. 2)
/ ((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ 1))) by
A6,
XCMPLX_1: 60
.= (((
scf r)
.
0 )
+ ((((
rfs r)
. 2)
/ ((
rfs r)
. 2))
/ (((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ 1)
/ ((
rfs r)
. 2)))) by
A6,
XCMPLX_1: 55
.= (((
scf r)
.
0 )
+ (1
/ (((((
scf r)
. 1)
* ((
rfs r)
. 2))
+ 1)
/ ((
rfs r)
. 2)))) by
A6,
XCMPLX_1: 60
.= (((
scf r)
.
0 )
+ (1
/ ((((
scf r)
. 1)
* (((
rfs r)
. 2)
/ ((
rfs r)
. 2)))
+ (1
/ ((
rfs r)
. 2)))))
.= (((
scf r)
.
0 )
+ (1
/ ((((
scf r)
. 1)
* 1)
+ (1
/ ((
rfs r)
. 2))))) by
A1,
Th3,
XCMPLX_1: 60
.= r by
Th1,
A3;
hence thesis;
end;
A7: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A8:
P[n];
A9: ((
rfs r)
. (n
+ 2))
= (((
scf r)
. (n
+ 2))
+ (1
/ ((
rfs r)
. ((n
+ 2)
+ 1)))) by
Th1
.= (((
scf r)
. (n
+ 2))
+ (1
/ ((
rfs r)
. (n
+ 3))));
A10: 1
= (((
rfs r)
. (n
+ 3))
/ ((
rfs r)
. (n
+ 3))) by
A1,
Th3,
XCMPLX_1: 60;
A11: ((((
c_n r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_n r)
. n))
= ((((
c_n r)
. (n
+ 1))
* (((
scf r)
. (n
+ 2))
+ (1
/ ((
rfs r)
. (n
+ 3)))))
+ ((
c_n r)
. n)) by
A9
.= (((((
scf r)
. (n
+ 2))
* ((
c_n r)
. (n
+ 1)))
+ ((
c_n r)
. n))
+ (((
c_n r)
. (n
+ 1))
* (1
/ ((
rfs r)
. (n
+ 3)))))
.= (((
c_n r)
. (n
+ 2))
+ (((
c_n r)
. (n
+ 1))
* (1
/ ((
rfs r)
. (n
+ 3))))) by
REAL_3:def 5;
A12: ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))
= ((((
c_d r)
. (n
+ 1))
* (((
scf r)
. (n
+ 2))
+ (1
/ ((
rfs r)
. (n
+ 3)))))
+ ((
c_d r)
. n)) by
A9
.= (((((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
+ ((
c_d r)
. n))
+ (((
c_d r)
. (n
+ 1))
* (1
/ ((
rfs r)
. (n
+ 3)))))
.= (((
c_d r)
. (n
+ 2))
+ (((
c_d r)
. (n
+ 1))
* (1
/ ((
rfs r)
. (n
+ 3))))) by
REAL_3:def 6;
r
= (((((
c_n r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_n r)
. n))
/ ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))) by
A8
.= ((((
c_n r)
. (n
+ 2))
+ (((
c_n r)
. (n
+ 1))
* (1
/ ((
rfs r)
. (n
+ 3)))))
/ (((
c_d r)
. (n
+ 2))
+ (((
c_d r)
. (n
+ 1))
* (1
/ ((
rfs r)
. (n
+ 3)))))) by
A11,
A12
.= (((((
c_n r)
. (n
+ 2))
+ (((
c_n r)
. (n
+ 1))
* (1
/ ((
rfs r)
. (n
+ 3)))))
/ (((
c_d r)
. (n
+ 2))
+ (((
c_d r)
. (n
+ 1))
* (1
/ ((
rfs r)
. (n
+ 3))))))
* (((
rfs r)
. (n
+ 3))
/ ((
rfs r)
. (n
+ 3)))) by
A10
.= (((((
c_n r)
. (n
+ 2))
+ (((
c_n r)
. (n
+ 1))
* (1
/ ((
rfs r)
. (n
+ 3)))))
* ((
rfs r)
. (n
+ 3)))
/ ((((
c_d r)
. (n
+ 2))
+ (((
c_d r)
. (n
+ 1))
* (1
/ ((
rfs r)
. (n
+ 3)))))
* ((
rfs r)
. (n
+ 3)))) by
XCMPLX_1: 76
.= (((((
c_n r)
. (n
+ 2))
* ((
rfs r)
. (n
+ 3)))
+ (((
c_n r)
. (n
+ 1))
* ((1
/ ((
rfs r)
. (n
+ 3)))
* ((
rfs r)
. (n
+ 3)))))
/ ((((
c_d r)
. (n
+ 2))
* ((
rfs r)
. (n
+ 3)))
+ (((
c_d r)
. (n
+ 1))
* ((1
/ ((
rfs r)
. (n
+ 3)))
* ((
rfs r)
. (n
+ 3))))))
.= (((((
c_n r)
. (n
+ 2))
* ((
rfs r)
. (n
+ 3)))
+ (((
c_n r)
. (n
+ 1))
* 1))
/ ((((
c_d r)
. (n
+ 2))
* ((
rfs r)
. (n
+ 3)))
+ (((
c_d r)
. (n
+ 1))
* ((1
/ ((
rfs r)
. (n
+ 3)))
* ((
rfs r)
. (n
+ 3)))))) by
XCMPLX_1: 106,
A1,
Th3
.= (((((
c_n r)
. (n
+ 2))
* ((
rfs r)
. (n
+ 3)))
+ (((
c_n r)
. (n
+ 1))
* 1))
/ ((((
c_d r)
. (n
+ 2))
* ((
rfs r)
. (n
+ 3)))
+ (((
c_d r)
. (n
+ 1))
* 1))) by
XCMPLX_1: 106,
A1,
Th3
.= (((((
c_n r)
. ((n
+ 1)
+ 1))
* ((
rfs r)
. ((n
+ 1)
+ 2)))
+ ((
c_n r)
. (n
+ 1)))
/ ((((
c_d r)
. ((n
+ 1)
+ 1))
* ((
rfs r)
. ((n
+ 1)
+ 2)))
+ ((
c_d r)
. (n
+ 1))));
hence thesis;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A7);
hence thesis;
end;
theorem ::
DIOPHAN1:14
Th15: r is
irrational implies ((((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))
- r)
= (((
- 1)
|^ n)
/ (((
c_d r)
. (n
+ 1))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))))
proof
assume
A1: r is
irrational;
then
A3: ((
c_d r)
. (n
+ 1))
<>
0 by
Th8;
A4: ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))
<>
0 by
A1,
Th12;
A5: ((((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))
- r)
= ((((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))
- (((((
c_n r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_n r)
. n))
/ ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n)))) by
A1,
Th14
.= (((((
c_n r)
. (n
+ 1))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n)))
- (((((
c_n r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_n r)
. n))
* ((
c_d r)
. (n
+ 1))))
/ (((
c_d r)
. (n
+ 1))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n)))) by
A3,
A4,
XCMPLX_1: 130;
((((
c_n r)
. (n
+ 1))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n)))
- (((((
c_n r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_n r)
. n))
* ((
c_d r)
. (n
+ 1))))
= (((((((
c_n r)
. (n
+ 1))
* ((
c_d r)
. (n
+ 1)))
* ((
rfs r)
. (n
+ 2)))
+ (((
c_n r)
. (n
+ 1))
* ((
c_d r)
. n)))
- ((((
c_n r)
. (n
+ 1))
* ((
c_d r)
. (n
+ 1)))
* ((
rfs r)
. (n
+ 2))))
- (((
c_n r)
. n)
* ((
c_d r)
. (n
+ 1))))
.= ((
- 1)
|^ n) by
REAL_3: 64;
hence thesis by
A5;
end;
theorem ::
DIOPHAN1:15
Th16: r is
irrational & n is
even & n
>
0 implies r
> (((
c_n r)
. n)
/ ((
c_d r)
. n))
proof
assume
A1: r is
irrational;
assume
A2: n is
even;
assume n
>
0 ;
then
reconsider m = (n
- 1) as
odd
natural
number by
A2;
(((
c_d r)
. (m
+ 1))
* ((((
c_d r)
. (m
+ 1))
* ((
rfs r)
. (m
+ 2)))
+ ((
c_d r)
. m)))
>
0 by
A1,
Th13;
then (((
- 1)
|^ m)
/ (((
c_d r)
. (m
+ 1))
* ((((
c_d r)
. (m
+ 1))
* ((
rfs r)
. (m
+ 2)))
+ ((
c_d r)
. m))))
<
0 ;
then ((((
c_n r)
. (m
+ 1))
/ ((
c_d r)
. (m
+ 1)))
- r)
<
0 by
A1,
Th15;
then (((((
c_n r)
. ((n
- 1)
+ 1))
/ ((
c_d r)
. ((n
- 1)
+ 1)))
- r)
+ r)
< (
0
+ r) by
XREAL_1: 8;
hence thesis;
end;
theorem ::
DIOPHAN1:16
Th17: r is
irrational & n is
odd implies r
< (((
c_n r)
. n)
/ ((
c_d r)
. n))
proof
assume
A1: r is
irrational;
assume n is
odd;
then
reconsider m = (n
- 1) as
even
natural
number;
(((
c_d r)
. (m
+ 1))
* ((((
c_d r)
. (m
+ 1))
* ((
rfs r)
. (m
+ 2)))
+ ((
c_d r)
. m)))
>
0 by
A1,
Th13;
then (((
- 1)
|^ m)
/ (((
c_d r)
. (m
+ 1))
* ((((
c_d r)
. (m
+ 1))
* ((
rfs r)
. (m
+ 2)))
+ ((
c_d r)
. m))))
>
0 ;
then ((((
c_n r)
. (m
+ 1))
/ ((
c_d r)
. (m
+ 1)))
- r)
>
0 by
A1,
Th15;
then (((((
c_n r)
. (m
+ 1))
/ ((
c_d r)
. (m
+ 1)))
- r)
+ r)
> (
0
+ r) by
XREAL_1: 8;
hence thesis;
end;
theorem ::
DIOPHAN1:17
r is
irrational & n
>
0 implies (
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
+
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|)
=
|.((((
c_n r)
. n)
/ ((
c_d r)
. n))
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
proof
assume that
A1: r is
irrational and
A2: n
>
0 ;
per cases ;
suppose
A3: n is
even;
r
> (((
c_n r)
. n)
/ ((
c_d r)
. n)) by
A1,
A2,
A3,
Th16;
then
A4: (r
- (((
c_n r)
. n)
/ ((
c_d r)
. n)))
> ((((
c_n r)
. n)
/ ((
c_d r)
. n))
- (((
c_n r)
. n)
/ ((
c_d r)
. n))) by
XREAL_1: 14;
(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n)))
<>
0 by
A1,
A2,
A3,
Th16;
then
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
<>
0 by
ABSVALUE: 2;
then
A5:
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
>
0 by
COMPLEX1: 46;
A8: (r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1))))
< ((((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))) by
A1,
A3,
Th17,
XREAL_1: 14;
then
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
<>
0 by
ABSVALUE: 2;
then
A9:
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
>
0 by
COMPLEX1: 46;
A10: (
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
+
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|)
= ((r
- (((
c_n r)
. n)
/ ((
c_d r)
. n)))
+
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|) by
A4,
ABSVALUE:def 1
.= ((r
- (((
c_n r)
. n)
/ ((
c_d r)
. n)))
+ (
- (r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))))) by
A8,
ABSVALUE:def 1
.= (
- ((((
c_n r)
. n)
/ ((
c_d r)
. n))
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))));
((((
c_n r)
. n)
/ ((
c_d r)
. n))
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1))))
<
0 by
A5,
A9,
A10;
hence thesis by
A10,
ABSVALUE:def 1;
end;
suppose
A11: n is
odd;
then
A13: (r
- (((
c_n r)
. n)
/ ((
c_d r)
. n)))
< ((((
c_n r)
. n)
/ ((
c_d r)
. n))
- (((
c_n r)
. n)
/ ((
c_d r)
. n))) by
XREAL_1: 14,
A1,
Th17;
(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n)))
<>
0 by
A1,
A11,
Th17;
then
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
<>
0 by
ABSVALUE: 2;
then
A14:
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
>
0 by
COMPLEX1: 46;
r
> (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1))) by
A1,
A11,
Th16;
then
A18: (r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1))))
> ((((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))) by
XREAL_1: 14;
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
<>
0 by
A18,
ABSVALUE: 2;
then
A19:
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
>
0 by
COMPLEX1: 46;
(
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
+
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|)
= ((
- (r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))))
+
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|) by
A13,
ABSVALUE:def 1
.= (((
- r)
+ (((
c_n r)
. n)
/ ((
c_d r)
. n)))
+ (r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1))))) by
A18,
ABSVALUE:def 1
.= ((((
c_n r)
. n)
/ ((
c_d r)
. n))
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1))));
hence thesis by
A14,
A19,
ABSVALUE:def 1;
end;
end;
theorem ::
DIOPHAN1:18
Th19: r is
irrational implies
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
>
0
proof
assume
A1: r is
irrational;
assume not
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
>
0 ;
then
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
=
0 by
COMPLEX1: 46;
then
A3: (r
- (((
c_n r)
. n)
/ ((
c_d r)
. n)))
=
0 by
COMPLEX1: 45;
((
c_d r)
. n)
in
NAT by
REAL_3: 50;
hence contradiction by
A1,
A3;
end;
theorem ::
DIOPHAN1:19
r is
irrational implies ((
c_d r)
. (n
+ 2))
>= (2
* ((
c_d r)
. n))
proof
assume
A1: r is
irrational;
then ((
scf r)
. ((n
+ 1)
+ 1))
>
0 by
Th5;
then
A4: ((
scf r)
. (n
+ 2))
>= (
0
+ 1) by
INT_1: 7;
A5:
0
< ((
c_d r)
. n) by
A1,
Th8;
((
c_d r)
. n)
<= ((
c_d r)
. (n
+ 1)) by
A1,
Th7;
then (((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
>= (1
* ((
c_d r)
. n)) by
A4,
A5,
XREAL_1: 66;
then ((((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
+ ((
c_d r)
. n))
>= ((1
* ((
c_d r)
. n))
+ ((
c_d r)
. n)) by
XREAL_1: 6;
hence thesis by
REAL_3:def 6;
end;
theorem ::
DIOPHAN1:20
Th21: r is
irrational implies
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
< (1
/ (((
c_d r)
. (n
+ 1))
* ((
c_d r)
. (n
+ 2))))
proof
assume
A1: r is
irrational;
then
A2: ((
c_d r)
. (n
+ 1))
>= 1 by
Th8;
A3: ((
c_d r)
. ((n
+ 1)
+ 1))
>= 1 by
A1,
Th8;
(((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
< (((
rfs r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1))) by
A1,
Th4,
A2,
XREAL_1: 68;
then ((((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
+ ((
c_d r)
. n))
< ((((
rfs r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
+ ((
c_d r)
. n)) by
XREAL_1: 8;
then
A5: ((
c_d r)
. (n
+ 2))
< ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n)) by
REAL_3:def 6;
then
A6: (((
c_d r)
. (n
+ 1))
* ((
c_d r)
. (n
+ 2)))
< (((
c_d r)
. (n
+ 1))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))) by
A2,
XREAL_1: 68;
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
=
|.((
- 1)
* ((((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))
- r)).|
.=
|.((
- 1)
* (((
- 1)
|^ n)
/ (((
c_d r)
. (n
+ 1))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))))).| by
A1,
Th15
.=
|.(((
- 1)
* ((
- 1)
|^ n))
/ (((
c_d r)
. (n
+ 1))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n)))).|
.=
|.(((
- 1)
|^ (n
+ 1))
/ (((
c_d r)
. (n
+ 1))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n)))).| by
NEWTON: 6
.= (
|.((
- 1)
|^ (n
+ 1)).|
/
|.(((
c_d r)
. (n
+ 1))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))).|) by
COMPLEX1: 67
.= (1
/
|.(((
c_d r)
. (n
+ 1))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))).|) by
SERIES_2: 1
.= (1
/ (((
c_d r)
. (n
+ 1))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n)))) by
A2,
A3,
A5,
COMPLEX1: 43;
hence thesis by
A6,
A2,
A3,
XREAL_1: 88;
end;
theorem ::
DIOPHAN1:21
Th22: r is
irrational implies
|.((r
* ((
c_d r)
. (n
+ 1)))
- ((
c_n r)
. (n
+ 1))).|
<
|.((r
* ((
c_d r)
. n))
- ((
c_n r)
. n)).| &
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
<
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
proof
assume
A1: r is
irrational;
then
A2: r
= (((((
c_n r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_n r)
. n))
/ ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))) by
Th14
.= (((((
c_n r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_n r)
. n))
* (1
/ ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))));
A3: ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n))
<>
0 by
A1,
Th12;
A4: (((r
* ((
c_d r)
. (n
+ 1)))
* ((
rfs r)
. (n
+ 2)))
+ (r
* ((
c_d r)
. n)))
= (((((
c_n r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_n r)
. n))
* ((1
/ ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n)))
* ((((
c_d r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_d r)
. n)))) by
A2
.= (((((
c_n r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_n r)
. n))
* 1) by
A3,
XCMPLX_1: 106
.= ((((
c_n r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))
+ ((
c_n r)
. n));
A6: (
- ((r
* ((
c_d r)
. n))
- ((
c_n r)
. n)))
= (((r
* ((
c_d r)
. (n
+ 1)))
* ((
rfs r)
. (n
+ 2)))
- (((
c_n r)
. (n
+ 1))
* ((
rfs r)
. (n
+ 2)))) by
A4
.= (((
rfs r)
. (n
+ 2))
* ((r
* ((
c_d r)
. (n
+ 1)))
- ((
c_n r)
. (n
+ 1))));
A7: 1
< ((
rfs r)
. ((n
+ 1)
+ 1)) by
A1,
Th4;
A8:
|.((r
* ((
c_d r)
. n))
- ((
c_n r)
. n)).|
=
|.(
- ((r
* ((
c_d r)
. n))
- ((
c_n r)
. n))).| by
COMPLEX1: 52
.=
|.(((
rfs r)
. (n
+ 2))
* ((r
* ((
c_d r)
. (n
+ 1)))
- ((
c_n r)
. (n
+ 1)))).| by
A6
.= (
|.((
rfs r)
. (n
+ 2)).|
*
|.((r
* ((
c_d r)
. (n
+ 1)))
- ((
c_n r)
. (n
+ 1))).|) by
COMPLEX1: 65
.= (((
rfs r)
. (n
+ 2))
*
|.((r
* ((
c_d r)
. (n
+ 1)))
- ((
c_n r)
. (n
+ 1))).|) by
A7,
COMPLEX1: 43;
A9: ((
c_d r)
. (n
+ 1))
>= 1 & ((
c_d r)
. n)
>= 1 by
A1,
Th8;
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
>
0 by
A1,
Th19;
then
A11: (r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1))))
<>
0 by
COMPLEX1: 47;
A12: ((r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1))))
* ((
c_d r)
. (n
+ 1)))
= ((r
* ((
c_d r)
. (n
+ 1)))
- ((((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))
* ((
c_d r)
. (n
+ 1))))
.= ((r
* ((
c_d r)
. (n
+ 1)))
- ((
c_n r)
. (n
+ 1))) by
A9,
XCMPLX_1: 87;
then
A13:
|.((r
* ((
c_d r)
. n))
- ((
c_n r)
. n)).|
>
|.((r
* ((
c_d r)
. (n
+ 1)))
- ((
c_n r)
. (n
+ 1))).| by
A7,
A8,
A9,
A11,
COMPLEX1: 47,
XREAL_1: 155;
A14:
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
=
|.(((r
* ((
c_d r)
. (n
+ 1)))
/ ((
c_d r)
. (n
+ 1)))
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).| by
A9,
XCMPLX_1: 89
.=
|.(((r
* ((
c_d r)
. (n
+ 1)))
- ((
c_n r)
. (n
+ 1)))
/ ((
c_d r)
. (n
+ 1))).|
.= (
|.((r
* ((
c_d r)
. (n
+ 1)))
- ((
c_n r)
. (n
+ 1))).|
/
|.((
c_d r)
. (n
+ 1)).|) by
COMPLEX1: 67
.= (
|.((r
* ((
c_d r)
. (n
+ 1)))
- ((
c_n r)
. (n
+ 1))).|
/ ((
c_d r)
. (n
+ 1))) by
A9,
COMPLEX1: 43;
A15:
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
=
|.(((r
* ((
c_d r)
. n))
/ ((
c_d r)
. n))
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).| by
A9,
XCMPLX_1: 89
.=
|.(((r
* ((
c_d r)
. n))
- ((
c_n r)
. n))
/ ((
c_d r)
. n)).|
.= (
|.((r
* ((
c_d r)
. n))
- ((
c_n r)
. n)).|
/
|.((
c_d r)
. n).|) by
COMPLEX1: 67
.= (
|.((r
* ((
c_d r)
. n))
- ((
c_n r)
. n)).|
/ ((
c_d r)
. n)) by
A9,
COMPLEX1: 43;
A16: (
|.((r
* ((
c_d r)
. (n
+ 1)))
- ((
c_n r)
. (n
+ 1))).|
/ ((
c_d r)
. (n
+ 1)))
< (
|.((r
* ((
c_d r)
. n))
- ((
c_n r)
. n)).|
/ ((
c_d r)
. (n
+ 1))) by
A9,
A13,
XREAL_1: 74;
|.((r
* ((
c_d r)
. n))
- ((
c_n r)
. n)).|
>=
0 by
COMPLEX1: 46;
then (
|.((r
* ((
c_d r)
. n))
- ((
c_n r)
. n)).|
/ ((
c_d r)
. (n
+ 1)))
<= (
|.((r
* ((
c_d r)
. n))
- ((
c_n r)
. n)).|
/ ((
c_d r)
. n)) by
A1,
Th7,
A9,
XREAL_1: 118;
hence thesis by
A7,
A8,
A9,
A11,
A12,
A14,
A15,
A16,
COMPLEX1: 47,
XREAL_1: 155,
XXREAL_0: 2;
end;
theorem ::
DIOPHAN1:22
Th23: r is
irrational & m
> n implies
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
>
|.(r
- (((
c_n r)
. m)
/ ((
c_d r)
. m))).|
proof
assume that
A1: r is
irrational and
A3: m
> n;
defpred
P[
Nat] means
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
>
|.(r
- (((
c_n r)
. ((n
+ 1)
+ $1))
/ ((
c_d r)
. ((n
+ 1)
+ $1)))).|;
A4:
P[
0 ] by
A1,
Th22;
A5: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
then
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
>
|.(r
- (((
c_n r)
. (((n
+ 1)
+ k)
+ 1))
/ ((
c_d r)
. (((n
+ 1)
+ k)
+ 1)))).| by
A1,
Th22,
XXREAL_0: 2;
hence thesis;
end;
A8: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A4,
A5);
(m
- n)
> (n
- n) by
A3,
XREAL_1: 14;
then (m
- n)
>= (
0
+ 1) by
INT_1: 7;
then
A9: ((m
- n)
- 1)
>= (1
- 1) by
XREAL_1: 9;
reconsider i = ((m
- n)
- 1) as
Integer;
i
in
NAT by
A9,
INT_1: 3;
then
reconsider i as
Nat;
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
>
|.(r
- (((
c_n r)
. ((n
+ 1)
+ i))
/ ((
c_d r)
. ((n
+ 1)
+ i)))).| by
A8;
hence thesis;
end;
theorem ::
DIOPHAN1:23
Th24: r is
irrational implies
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
< (1
/ (((
c_d r)
. n)
|^ 2))
proof
assume
A1: r is
irrational;
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
< (1
/ (((
c_d r)
. n)
|^ 2))
proof
per cases ;
suppose
A3: n
=
0 ;
then
A6:
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
=
|.(r
- (((
c_n r)
.
0 )
/ 1)).| by
REAL_3:def 6
.=
|.(r
- ((
scf r)
.
0 )).| by
REAL_3:def 5
.=
|.(r
-
[\((
rfs r)
.
0 )/]).| by
REAL_3:def 4
.=
|.(r
-
[\r/]).| by
REAL_3:def 3
.=
|.(
frac r).| by
INT_1:def 8
.= (
frac r) by
ABSVALUE:def 1,
INT_1: 43;
(1
/ (((
c_d r)
. n)
|^ 2))
= (1
/ (((
c_d r)
.
0 )
|^ 2)) by
A3
.= (1
/ (1
|^ 2)) by
REAL_3:def 6
.= 1;
hence thesis by
A6,
INT_1: 43;
end;
suppose
A8: n
>
0 ;
set m = (n
- 1);
reconsider m as
Nat by
A8;
A10: ((
c_d r)
. (m
+ 1))
>= 1 by
A1,
Th8;
then (((
c_d r)
. (m
+ 1))
* ((
c_d r)
. (m
+ 1)))
>= 1 by
XREAL_1: 159;
then
A12: (((
c_d r)
. (m
+ 1))
|^ 2)
>= 1 by
WSIERP_1: 1;
(((
c_d r)
. ((m
+ 1)
+ 1))
* ((
c_d r)
. (m
+ 1)))
>= (((
c_d r)
. (m
+ 1))
* ((
c_d r)
. (m
+ 1))) by
A1,
A10,
Th7,
XREAL_1: 64;
then (((
c_d r)
. (m
+ 1))
* ((
c_d r)
. (m
+ 2)))
>= (((
c_d r)
. (m
+ 1))
|^ 2) by
WSIERP_1: 1;
then (1
/ (((
c_d r)
. (m
+ 1))
* ((
c_d r)
. (m
+ 2))))
<= (1
/ (((
c_d r)
. (m
+ 1))
|^ 2)) by
A12,
XREAL_1: 85;
hence thesis by
A1,
XXREAL_0: 2,
Th21;
end;
end;
hence thesis;
end;
theorem ::
DIOPHAN1:24
for S be
Subset of
RAT , r st r is
irrational & S
= { p where p be
Element of
RAT :
|.(r
- p).|
< (1
/ ((
denominator p)
|^ 2)) } holds S is
infinite
proof
let S be
Subset of
RAT , r;
assume that
A1: r is
irrational and
A2: S
= { p where p be
Element of
RAT :
|.(r
- p).|
< (1
/ ((
denominator p)
|^ 2)) };
deffunc
F(
Nat) = (((
c_n r)
. ($1
+ 1))
/ ((
c_d r)
. ($1
+ 1)));
consider f be
Real_Sequence such that
A3: for n be
Nat holds (f
. n)
=
F(n) from
SEQ_1:sch 1;
for o be
Real st o
in (
rng f) holds o
in S
proof
let o be
Real;
assume o
in (
rng f);
then
consider i be
object such that
A6: i
in (
dom f) and
A7: o
= (f
. i) by
FUNCT_1:def 3;
reconsider i as
Nat by
A6;
A8: o
=
F(i) by
A7,
A3
.= (((
c_n r)
. (i
+ 1))
/ ((
c_d r)
. (i
+ 1)));
A9: ((
c_d r)
. (i
+ 1))
in
NAT by
REAL_3: 50;
A11: o
in
RAT by
A8,
A9,
RAT_1:def 1;
reconsider o as
Rational by
A8,
A9;
set cn = ((
c_n r)
. (i
+ 1));
set cd = ((
c_d r)
. (i
+ 1));
reconsider cd as
Integer by
A9;
o
= (cn
/ cd) & cd
<>
0 by
A1,
Th8,
A8;
then
consider m0 such that cn
= ((
numerator o)
* m0) and
A14: cd
= ((
denominator o)
* m0) by
RAT_1: 28;
A19: (cd
|^ 2)
= (cd
* cd) by
WSIERP_1: 1
.= (cd
* ((
denominator o)
* m0)) by
A14
.= ((((
denominator o)
* (
denominator o))
* m0)
* m0) by
A14
.= ((((
denominator o)
|^ 2)
* m0)
* m0) by
WSIERP_1: 1
.= (((
denominator o)
|^ 2)
* (m0
* m0))
.= (((
denominator o)
|^ 2)
* (m0
|^ 2)) by
WSIERP_1: 1;
A20: m0
<>
0 by
A14,
A1,
Th8;
(m0
* m0)
= (m0
^2 ) by
SQUARE_1:def 1;
then
A22: (m0
^2 )
>= (
0
+ 1) by
A20,
SQUARE_1: 12,
INT_1: 7;
A23: (m0
|^ 2)
= (m0
* m0) by
WSIERP_1: 1
.= (m0
^2 ) by
SQUARE_1:def 1;
((
denominator o)
|^ 2)
<= (((
denominator o)
|^ 2)
* (m0
^2 )) by
A22,
XREAL_1: 151;
then (1
/ ((
denominator o)
|^ 2))
>= (1
/ (((
denominator o)
|^ 2)
* (m0
^2 ))) by
XREAL_1: 85;
then
|.(r
- o).|
< (1
/ ((
denominator o)
|^ 2)) by
A1,
A8,
A19,
Th24,
A23,
XXREAL_0: 2;
hence thesis by
A2,
A11;
end;
then
A28: (
rng f)
c= S;
reconsider f as
Function of
NAT ,
REAL ;
A29: f is
one-to-one
proof
for n1,n2 be
object st n1
in (
dom f) & n2
in (
dom f) & (f
. n1)
= (f
. n2) holds n1
= n2
proof
let n1,n2 be
object such that
A31: n1
in (
dom f) and
A32: n2
in (
dom f) and
A33: (f
. n1)
= (f
. n2);
consider m1 be
Nat such that
A34: n1
= m1 by
A31;
consider m2 be
Nat such that
A35: n2
= m2 by
A32;
A36: (f
. m1)
= (f
. n1) by
A34
.= (f
. m2) by
A33,
A35;
A37: (((
c_n r)
. (m1
+ 1))
/ ((
c_d r)
. (m1
+ 1)))
= (f
. m1) by
A3
.=
F(m2) by
A36,
A3
.= (((
c_n r)
. (m2
+ 1))
/ ((
c_d r)
. (m2
+ 1)));
assume n1
<> n2;
per cases by
A34,
A35,
XXREAL_0: 1;
suppose m1
> m2;
then (m1
+ 1)
> (m2
+ 1) by
XREAL_1: 8;
then
|.(r
- (((
c_n r)
. (m1
+ 1))
/ ((
c_d r)
. (m1
+ 1)))).|
<
|.(r
- (((
c_n r)
. (m2
+ 1))
/ ((
c_d r)
. (m2
+ 1)))).| by
A1,
Th23;
hence contradiction by
A37;
end;
suppose m1
< m2;
then (m1
+ 1)
< (m2
+ 1) by
XREAL_1: 8;
then
|.(r
- (((
c_n r)
. (m1
+ 1))
/ ((
c_d r)
. (m1
+ 1)))).|
>
|.(r
- (((
c_n r)
. (m2
+ 1))
/ ((
c_d r)
. (m2
+ 1)))).| by
A1,
Th23;
hence contradiction by
A37;
end;
end;
hence thesis;
end;
(
dom f) is
infinite by
FUNCT_2:def 1;
hence thesis by
A28,
A29,
CARD_1: 59;
end;
theorem ::
DIOPHAN1:25
r is
irrational implies (
cocf r) is
convergent & (
lim (
cocf r))
= r
proof
assume
A1: r is
irrational;
A2: for p be
Real st
0
< p holds ex n st for m st n
<= m holds
|.(((
cocf r)
. m)
- r).|
< p
proof
let p be
Real;
assume
A3: p
>
0 ;
then
A4: (
sqrt p)
>
0 by
SQUARE_1: 25;
A7:
[/(1
/ (
sqrt p))\]
>= (1
/ (
sqrt p)) by
INT_1:def 7;
[/(1
/ (
sqrt p))\]
>
0 by
A4,
INT_1:def 7;
then
[/(1
/ (
sqrt p))\]
in
NAT by
INT_1: 3;
then
consider n such that
A9: n
=
[/(1
/ (
sqrt p))\];
A10: n
>
0 by
A4,
INT_1:def 7,
A9;
for k be
Nat st k
>= n holds
|.(((
cocf r)
. k)
- r).|
< p
proof
let k be
Nat;
assume
A12: k
>= n;
A13: ((
cocf r)
. k)
= (((
c_n r)
/" (
c_d r))
. k) by
REAL_3:def 7
.= (((
c_n r)
. k)
* (((
c_d r)
" )
. k)) by
SEQ_1: 8
.= (((
c_n r)
. k)
/ ((
c_d r)
. k)) by
VALUED_1: 10;
A14:
|.(((
cocf r)
. k)
- r).|
=
|.(
- (((
cocf r)
. k)
- r)).| by
COMPLEX1: 52
.=
|.(r
- (((
c_n r)
. k)
/ ((
c_d r)
. k))).| by
A13;
((1
/ (
sqrt p))
^2 )
= (((
sqrt p)
" )
* ((
sqrt p)
" )) by
SQUARE_1:def 1
.= (((
sqrt p)
* (
sqrt p))
" ) by
XCMPLX_1: 204
.= (((
sqrt p)
^2 )
" ) by
SQUARE_1:def 1
.= (p
" ) by
A3,
SQUARE_1:def 2;
then (n
^2 )
>= (p
" ) by
A4,
A7,
SQUARE_1: 15,
A9;
then
A16: ((n
^2 )
" )
<= ((p
" )
" ) by
A3,
XREAL_1: 85;
(k
^2 )
>= (n
^2 ) by
A12,
SQUARE_1: 15;
then
A18: ((k
^2 )
" )
<= ((n
^2 )
" ) by
A10,
SQUARE_1: 12,
XREAL_1: 85;
A19: (((
c_d r)
. k)
^2 )
= (((
c_d r)
. k)
* ((
c_d r)
. k)) by
SQUARE_1:def 1
.= (((
c_d r)
. k)
|^ 2) by
WSIERP_1: 1;
A20: (((
c_d r)
. k)
^2 )
>= (k
^2 ) by
A1,
Th10,
SQUARE_1: 15;
((((
c_d r)
. k)
^2 )
" )
= ((((
c_d r)
. k)
|^ 2)
" ) by
A19
.= (1
/ (((
c_d r)
. k)
|^ 2));
then (1
/ (((
c_d r)
. k)
|^ 2))
<= ((k
^2 )
" ) by
A12,
A10,
SQUARE_1: 12,
XREAL_1: 85,
A20;
then (1
/ (((
c_d r)
. k)
|^ 2))
<= ((n
^2 )
" ) by
A18,
XXREAL_0: 2;
then (1
/ (((
c_d r)
. k)
|^ 2))
<= p by
A16,
XXREAL_0: 2;
hence thesis by
XXREAL_0: 2,
A1,
Th24,
A14;
end;
hence thesis;
end;
(
cocf r) is
convergent by
A2,
SEQ_2:def 6;
hence thesis by
A2,
SEQ_2:def 7;
end;
begin
registration
cluster 1
_greater for
Nat;
existence
proof
take 2;
thus thesis;
end;
end
reserve t for 1
_greater
Nat;
Lm1: t
>
0 & t
> 1 & (t
" )
>
0 & (t
* (t
" ))
= 1
proof
t is 1
_greater;
hence thesis by
XCMPLX_0:def 7;
end;
definition
let t;
::
DIOPHAN1:def1
func
Equal_Div_interval (t) ->
SetSequence of
REAL means
:
Def1: for n be
Nat holds (it
. n)
=
[.(n
/ t), ((n
/ t)
+ (t
" )).[;
existence
proof
deffunc
F(
Element of
NAT ) = (
halfline_fin (($1
/ t),(($1
/ t)
+ (t
" ))));
consider g be
SetSequence of
REAL such that
A1: for x be
Element of
NAT holds (g
. x)
=
F(x) from
FUNCT_2:sch 4;
take g;
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A1;
end;
uniqueness
proof
let i1,i2 be
SetSequence of
REAL ;
assume
A2: for n be
Nat holds (i1
. n)
=
[.(n
/ t), ((n
/ t)
+ (t
" )).[;
assume
A3: for n be
Nat holds (i2
. n)
=
[.(n
/ t), ((n
/ t)
+ (t
" )).[;
now
let n be
Element of
NAT ;
(i1
. n)
=
[.(n
/ t), ((n
/ t)
+ (t
" )).[ by
A2;
hence (i1
. n)
= (i2
. n) by
A3;
end;
hence i1
= i2;
end;
end
theorem ::
DIOPHAN1:26
Lm2: (
[.
0 , ((k
+ 1)
/ t).[
\/
[.((k
+ 1)
/ t), ((k
+ 2)
/ t).[)
=
[.
0 , ((k
+ 2)
/ t).[
proof
0
<= ((k
+ 1)
/ t) & ((k
+ 1)
/ t)
<= ((k
+ 2)
/ t)
proof
(k
+ 1)
<= ((k
+ 1)
+ 1) by
XREAL_1: 31;
hence thesis by
XREAL_1: 64;
end;
hence thesis by
XXREAL_1: 168;
end;
theorem ::
DIOPHAN1:27
Lm3: ((
Partial_Union (
Equal_Div_interval t))
. i)
=
[.
0 , ((i
+ 1)
/ t).[
proof
defpred
P[
Nat] means ((
Partial_Union (
Equal_Div_interval t))
. $1)
=
[.
0 , (($1
+ 1)
/ t).[;
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A2: ((
Partial_Union (
Equal_Div_interval t))
. k)
=
[.
0 , ((k
+ 1)
/ t).[;
((
Partial_Union (
Equal_Div_interval t))
. (k
+ 1))
= (((
Partial_Union (
Equal_Div_interval t))
. k)
\/ ((
Equal_Div_interval t)
. (k
+ 1))) by
PROB_3:def 2
.= (
[.
0 , ((k
+ 1)
/ t).[
\/
[.((k
+ 1)
/ t), (((k
+ 1)
/ t)
+ (t
" )).[) by
Def1,
A2
.=
[.
0 , ((k
+ 2)
/ t).[ by
Lm2;
hence thesis;
end;
((
Partial_Union (
Equal_Div_interval t))
.
0 )
= ((
Equal_Div_interval t)
.
0 ) by
PROB_3:def 2
.=
[.(
0
/ t), ((
0
/ t)
+ (t
" )).[ by
Def1
.=
[.
0 , (t
" ).[;
then
A3:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
DIOPHAN1:28
Lm4: for r be
Real, i be
Nat st
[\(r
* t)/]
= i holds r
in ((
Equal_Div_interval t)
. i)
proof
let r be
Real;
let i be
Nat;
assume
[\(r
* t)/]
= i;
then
A3: i
<= (r
* t) & ((r
* t)
- 1)
< i by
INT_1:def 6;
then (i
/ t)
<= ((r
* t)
/ t) by
XREAL_1: 64;
then (i
* (t
" ))
<= (r
* (t
* (t
" )));
then
A6: (i
* (t
" ))
<= (r
* 1) by
Lm1;
A7: (((r
* t)
- 1)
+ 1)
< (i
+ 1) by
A3,
XREAL_1: 8;
0
< (t
" ) by
Lm1;
then ((r
* t)
* (t
" ))
< ((i
+ 1)
* (t
" )) by
A7,
XREAL_1: 68;
then (r
* (t
* (t
" )))
< ((i
+ 1)
* (t
" ));
then (r
* 1)
< ((i
+ 1)
/ t) by
Lm1;
then r
in
[.(i
/ t), ((i
/ t)
+ (t
" )).[ by
A6,
XXREAL_1: 3;
hence thesis by
Def1;
end;
theorem ::
DIOPHAN1:29
Lm5: r1
in ((
Equal_Div_interval t)
. i) & r2
in ((
Equal_Div_interval t)
. i) implies
|.(r1
- r2).|
< (t
" )
proof
assume that
A2: r1
in ((
Equal_Div_interval t)
. i) and
A3: r2
in ((
Equal_Div_interval t)
. i);
A5: r1
in
[.(i
/ t), ((i
/ t)
+ (t
" )).[ & r1
in
[.(i
/ t), ((i
/ t)
+ (t
" )).[ & r2
in
[.(i
/ t), ((i
/ t)
+ (t
" )).[ by
A2,
A3,
Def1;
then
A6: (i
/ t)
<= r1 & (i
/ t)
<= r2 & r1
< ((i
/ t)
+ (t
" )) & r2
< ((i
/ t)
+ (t
" )) by
XXREAL_1: 3;
per cases by
XXREAL_0: 1;
suppose r1
= r2;
then
|.(r1
- r2).|
=
0 by
ABSVALUE: 2;
hence thesis by
Lm1;
end;
suppose r1
> r2;
then
A9: (r1
- r2)
>
0 by
XREAL_1: 50;
(((i
* (t
" ))
+ (t
" ))
- (i
* (t
" )))
> (r1
- r2) by
A6,
XREAL_1: 14;
hence thesis by
A9,
ABSVALUE:def 1;
end;
suppose
A10: r2
> r1;
r2
< ((i
* (t
" ))
+ (t
" )) by
A5,
XXREAL_1: 3;
then
A12: (((i
* (t
" ))
+ (t
" ))
- r1)
> (r2
- r1) by
XREAL_1: 14;
(i
* (t
" ))
<= r1 by
A5,
XXREAL_1: 3;
then
A13: (((i
* (t
" ))
+ (t
" ))
- (i
* (t
" )))
>= (((i
* (t
" ))
+ (t
" ))
- r1) by
XREAL_1: 13;
|.(r1
- r2).|
= (
- (r1
- r2)) by
A10,
XREAL_1: 49,
ABSVALUE:def 1;
hence thesis by
A13,
A12,
XXREAL_0: 2;
end;
end;
theorem ::
DIOPHAN1:30
Lm6: ((
Partial_Union (
Equal_Div_interval t))
. (t
- 1))
=
[.
0 , 1.[
proof
A0:
0
<= (t
- 1) by
Lm1,
XREAL_1: 50;
((
Partial_Union (
Equal_Div_interval t))
. (t
- 1))
=
[.
0 , (((t
- 1)
+ 1)
/ t).[ by
A0,
Lm3
.=
[.
0 , 1.[ by
Lm1;
hence thesis;
end;
theorem ::
DIOPHAN1:31
Lm7: for r be
Real st r
in
[.
0 , 1.[ holds ex i be
Nat st i
<= (t
- 1) & r
in ((
Equal_Div_interval t)
. i)
proof
let r be
Real;
assume r
in
[.
0 , 1.[;
then
A2: r
in ((
Partial_Union (
Equal_Div_interval t))
. (t
- 1)) by
Lm6;
A3: (t
- 1)
>
0 by
Lm1,
XREAL_1: 50;
(t
- 1)
in
NAT by
A3,
INT_1: 3;
hence thesis by
A2,
PROB_3: 13;
end;
theorem ::
DIOPHAN1:32
Lm8: for r be
Real, i be
Nat st r
in ((
Equal_Div_interval t)
. i) holds
[\(r
* t)/]
= i
proof
let r be
Real;
let i be
Nat;
assume
A1: r
in ((
Equal_Div_interval t)
. i);
r
in
[.(i
/ t), ((i
/ t)
+ (t
" )).[ by
A1,
Def1;
then
A3: (i
/ t)
<= r & r
< ((i
/ t)
+ (t
" )) by
XXREAL_1: 3;
then ((i
* (t
" ))
* t)
<= (r
* t) by
XREAL_1: 64;
then (i
* ((t
" )
* t))
<= (r
* t);
then
A4: (i
* 1)
<= (r
* t) by
Lm1;
t
>
0 by
Lm1;
then (r
* t)
< (((i
+ 1)
* (t
" ))
* t) by
A3,
XREAL_1: 68;
then (r
* t)
< ((i
+ 1)
* ((t
" )
* t));
then
A6: (r
* t)
< ((i
+ 1)
* 1) by
Lm1;
i
<= (r
* t) & ((r
* t)
- 1)
< ((i
+ 1)
- 1) by
A4,
A6,
XREAL_1: 9;
hence thesis by
INT_1:def 6;
end;
theorem ::
DIOPHAN1:33
Lm9: for r be
Real st r
in
[.
0 , 1.[ holds ex i be
Nat st i
<= (t
- 1) &
[\(r
* t)/]
= i
proof
let r be
Real;
assume r
in
[.
0 , 1.[;
then
consider i be
Nat such that
A2: i
<= (t
- 1) and
A3: r
in ((
Equal_Div_interval t)
. i) by
Lm7;
thus thesis by
A2,
Lm8,
A3;
end;
definition
let t, a;
::
DIOPHAN1:def2
func
F_dp1 (t,a) ->
FinSequence of (
Segm t) means
:
Def4: (
len it )
= (t
+ 1) & for i st i
in (
dom it ) holds (it
. i)
=
[\((
frac ((i
- 1)
* a))
* t)/];
existence
proof
deffunc
F(
Nat) =
[\((
frac (($1
- 1)
* a))
* t)/];
consider z be
FinSequence such that
A1: (
len z)
= (t
+ 1) & for k be
Nat st k
in (
dom z) holds (z
. k)
=
F(k) from
FINSEQ_1:sch 2;
take z;
z is
FinSequence of (
Segm t)
proof
A2: for y be
object st y
in (
rng z) holds y
in (
Segm t)
proof
let y be
object;
assume y
in (
rng z);
then
consider i be
object such that
A4: i
in (
dom z) and
A5: y
= (z
. i) by
FUNCT_1:def 3;
(
dom z)
= (
Seg (
len z)) by
FINSEQ_1:def 3
.= (
Seg (t
+ 1)) by
A1;
then
consider i0 be
Nat such that
A7: i0
= i and 1
<= i0 and i0
<= (t
+ 1) by
A4;
reconsider i as
Nat by
A7;
A8: (z
. i)
=
F(i) by
A1,
A4
.=
[\((
frac ((i
- 1)
* a))
* t)/];
0
<= (
frac ((i
- 1)
* a)) & (
frac ((i
- 1)
* a))
< 1 by
INT_1: 43;
then
consider j be
Nat such that
A10: j
<= (t
- 1) and
A11:
[\((
frac ((i
- 1)
* a))
* t)/]
= j by
Lm9,
XXREAL_1: 3;
j
< ((t
- 1)
+ 1) by
A10,
XREAL_1: 39;
hence thesis by
A5,
NAT_1: 44,
A11,
A8;
end;
(
rng z)
c= (
Segm t) by
A2;
hence thesis by
FINSEQ_1:def 4;
end;
hence thesis by
A1;
end;
uniqueness
proof
let z1,z2 be
FinSequence of (
Segm t) such that
A13: (
len z1)
= (t
+ 1) and
A14: for i be
Nat st i
in (
dom z1) holds (z1
. i)
=
[\((
frac ((i
- 1)
* a))
* t)/] and
A15: (
len z2)
= (t
+ 1) and
A16: for i be
Nat st i
in (
dom z2) holds (z2
. i)
=
[\((
frac ((i
- 1)
* a))
* t)/];
A17: (
dom z1)
= (
Seg (
len z1)) by
FINSEQ_1:def 3
.= (
dom z2) by
A13,
A15,
FINSEQ_1:def 3;
for x be
Nat st x
in (
dom z1) holds (z1
. x)
= (z2
. x)
proof
let x be
Nat;
assume
A18: x
in (
dom z1);
then
reconsider x9 = x as
Element of
NAT ;
thus (z1
. x)
=
[\((
frac ((x9
- 1)
* a))
* t)/] by
A14,
A18
.= (z2
. x) by
A16,
A17,
A18;
end;
hence thesis by
A17;
end;
end
registration
let t, a;
cluster (
rng (
F_dp1 (t,a))) -> non
empty;
coherence
proof
A8: 1
< (t
+ 1) by
Lm1,
XREAL_1: 39;
(
dom (
F_dp1 (t,a)))
= (
Seg (
len (
F_dp1 (t,a)))) by
FINSEQ_1:def 3
.= (
Seg (t
+ 1)) by
Def4;
then 1
in (
dom (
F_dp1 (t,a))) by
A8;
hence thesis by
FUNCT_1: 3;
end;
end
theorem ::
DIOPHAN1:34
Lm10: (
card (
rng (
F_dp1 (t,a))))
in (
card (
dom (
F_dp1 (t,a))))
proof
A1: (
card (
dom (
F_dp1 (t,a))))
= (
card (
Seg (
len (
F_dp1 (t,a))))) by
FINSEQ_1:def 3
.= (
card (
Seg (t
+ 1))) by
Def4
.= (t
+ 1) by
FINSEQ_1: 57;
per cases ;
suppose
A3: (
rng (
F_dp1 (t,a)))
= (
Segm t);
(
card (
Segm t))
in (
nextcard (
card (
Segm t))) by
CARD_1: 18;
then (
card (
Segm t))
in (
card (
Segm (t
+ 1))) by
NAT_1: 42;
hence thesis by
A1,
A3;
end;
suppose
A6: (
rng (
F_dp1 (t,a)))
c< (
Segm t);
(
Segm t)
c= (
Segm (t
+ 1)) by
NAT_1: 39,
XREAL_1: 31;
then (
rng (
F_dp1 (t,a)))
c< (
Segm (t
+ 1)) by
A6,
XBOOLE_1: 58;
then (
card (
rng (
F_dp1 (t,a))))
in (
Segm (
card (
Segm (t
+ 1)))) by
CARD_2: 48;
hence thesis by
A1;
end;
end;
Th27: ex x1, x2 st x1
in (
dom (
F_dp1 (t,a))) & x2
in (
dom (
F_dp1 (t,a))) & x1
<> x2 & ((
F_dp1 (t,a))
. x1)
= ((
F_dp1 (t,a))
. x2)
proof
set A = (
dom (
F_dp1 (t,a)));
set B = (
rng (
F_dp1 (t,a)));
A1: (
card B)
in (
card A) & B
<>
{} by
Lm10;
defpred
P[
object,
object] means ex m1 be
object st $1
in A & $2
= m1 & ((
F_dp1 (t,a))
. $1)
= m1;
A2: for x be
object st x
in A holds ex y be
object st y
in B &
P[x, y] by
FUNCT_1: 3;
consider h be
Function of A, B such that
A3: for x be
object st x
in A holds
P[x, (h
. x)] from
FUNCT_2:sch 1(
A2);
consider m1,m2 be
object such that
A4: m1
in A and
A5: m2
in A and
A6: m1
<> m2 and
A7: (h
. m1)
= (h
. m2) by
A1,
FINSEQ_4: 65;
A9:
P[m2, (h
. m2)] by
A3,
A5;
P[m1, (h
. m1)] by
A3,
A4;
then ((
F_dp1 (t,a))
. m1)
= (h
. m2) by
A7
.= ((
F_dp1 (t,a))
. m2) by
A9;
hence thesis by
A4,
A5,
A6;
end;
registration
let t, a;
cluster (
F_dp1 (t,a)) -> non
one-to-one;
coherence
proof
assume
a1: (
F_dp1 (t,a)) is
one-to-one;
consider x1, x2 such that
A2: x1
in (
dom (
F_dp1 (t,a))) & x2
in (
dom (
F_dp1 (t,a))) & x1
<> x2 & ((
F_dp1 (t,a))
. x1)
= ((
F_dp1 (t,a))
. x2) by
Th27;
thus thesis by
a1,
A2;
end;
end
begin
::$Notion-Name
theorem ::
DIOPHAN1:35
ex x,y be
Integer st
|.((x
* a)
- y).|
< (1
/ t) &
0
< x & x
<= t
proof
consider x1,x2 be
object such that
A1: x1
in (
dom (
F_dp1 (t,a))) and
A2: x2
in (
dom (
F_dp1 (t,a))) and
A3: x1
<> x2 and
A4: ((
F_dp1 (t,a))
. x1)
= ((
F_dp1 (t,a))
. x2) by
Th27;
A5: (
dom (
F_dp1 (t,a)))
= (
Seg (
len (
F_dp1 (t,a)))) by
FINSEQ_1:def 3
.= (
Seg (t
+ 1)) by
Def4;
consider n1 be
Nat such that
A6: x1
= n1 and
A7: 1
<= n1 and
A8: n1
<= (t
+ 1) by
A1,
A5;
reconsider x1 as
Nat by
A6;
consider n2 be
Nat such that
A9: x2
= n2 and
A10: 1
<= n2 and
A11: n2
<= (t
+ 1) by
A2,
A5;
reconsider x2 as
Nat by
A9;
((
F_dp1 (t,a))
. x1)
in (
rng (
F_dp1 (t,a))) by
A1,
FUNCT_1: 3;
then ((
F_dp1 (t,a))
. x1)
in (
Segm t);
then ((
F_dp1 (t,a))
. x1)
in { i where i be
Nat : i
< t } by
AXIOMS: 4;
then
consider i be
Nat such that
A13: ((
F_dp1 (t,a))
. x1)
= i and i
< t;
A14:
[\((
frac ((x1
- 1)
* a))
* t)/]
= i by
Def4,
A1,
A13;
reconsider r1 = (
frac ((x1
- 1)
* a)) as
Real;
((
F_dp1 (t,a))
. x2)
in (
rng (
F_dp1 (t,a))) by
A2,
FUNCT_1: 3;
then ((
F_dp1 (t,a))
. x2)
in (
Segm t);
then ((
F_dp1 (t,a))
. x2)
in { i where i be
Nat : i
< t } by
AXIOMS: 4;
then
consider i2 be
Nat such that
A16: ((
F_dp1 (t,a))
. x2)
= i2 and i2
< t;
A17:
[\((
frac ((x2
- 1)
* a))
* t)/]
= i2 by
Def4,
A2,
A16;
reconsider r2 = (
frac ((x2
- 1)
* a)) as
Real;
i
= ((
F_dp1 (t,a))
. x1) by
A13
.= ((
F_dp1 (t,a))
. x2) by
A4
.= i2 by
A16;
then
A18: r1
in ((
Equal_Div_interval t)
. i) & r2
in ((
Equal_Div_interval t)
. i) by
A14,
Lm4,
A17;
A19:
|.(r1
- r2).|
< (t
" ) by
Lm5,
A18;
set m1 = (x1
- 1);
set m2 = (x2
- 1);
A20: (r1
- r2)
= (((m1
* a)
-
[\(m1
* a)/])
- (
frac (m2
* a))) by
INT_1:def 8
.= (((m1
* a)
-
[\(m1
* a)/])
- ((m2
* a)
-
[\(m2
* a)/])) by
INT_1:def 8
.= (((m1
- m2)
* a)
- (
[\(m1
* a)/]
-
[\(m2
* a)/]));
per cases by
A3,
XXREAL_0: 1;
suppose
A21: x1
> x2;
set x = (m1
- m2);
set y = (
[\(m1
* a)/]
-
[\(m2
* a)/]);
A24: x
= (x1
- x2);
A25: ((t
+ 1)
- x2)
>= (x1
- x2) by
A6,
A8,
XREAL_1: 13;
((t
+ 1)
- 1)
>= ((t
+ 1)
- x2) by
A9,
A10,
XREAL_1: 10;
then
A27: x
<= t by
A25,
XXREAL_0: 2;
A28:
0
< x by
A21,
XREAL_1: 50,
A24;
|.((x
* a)
- y).|
< (t
" ) by
Lm5,
A18,
A20;
hence thesis by
A27,
A28;
end;
suppose
A29: x1
< x2;
set x = (m2
- m1);
set y = (
[\(m2
* a)/]
-
[\(m1
* a)/]);
A32: x
= (x2
- x1);
A33: ((t
+ 1)
- x1)
>= (x2
- x1) by
A9,
A11,
XREAL_1: 13;
((t
+ 1)
- 1)
>= ((t
+ 1)
- x1) by
A6,
A7,
XREAL_1: 10;
then
A35: x
<= t by
A33,
XXREAL_0: 2;
A36:
0
< x by
A29,
XREAL_1: 50,
A32;
(
- (r1
- r2))
= ((x
* a)
- y) by
A20;
then
|.((x
* a)
- y).|
< (t
" ) by
A19,
COMPLEX1: 52;
hence thesis by
A35,
A36;
end;
end;