real_3.miz
begin
reserve a,b,k,n,m for
Nat,
i for
Integer,
r for
Real,
p for
Rational,
c for
Complex,
x for
object,
f for
Function;
Lm1: for a,b,c,d be
Real st ((a
/ b)
- c)
<>
0 & d
<>
0 & b
<>
0 & a
= ((b
* c)
+ d) holds (1
/ ((a
/ b)
- c))
= (b
/ d)
proof
let a,b,c,d be
Real;
assume that
A1: ((a
/ b)
- c)
<>
0 & d
<>
0 and
A2: b
<>
0 ;
assume a
= ((b
* c)
+ d);
then d
= (b
* ((a
- (b
* c))
/ b)) by
A2,
XCMPLX_1: 87
.= (b
* ((a
/ b)
- ((b
* c)
/ b)));
then (1
* d)
= (b
* ((a
/ b)
- c)) by
A2,
XCMPLX_1: 89;
hence thesis by
A1,
XCMPLX_1: 94;
end;
registration
let n;
cluster (n
div
0 ) ->
zero;
coherence by
NAT_D:def 1;
cluster (n
mod
0 ) ->
zero;
coherence by
NAT_D:def 2;
cluster (
0
div n) ->
zero;
coherence by
NAT_2: 2;
cluster (
0
mod n) ->
zero;
coherence by
NAT_D: 26;
end
registration
let c;
cluster (c
- c) ->
zero;
coherence by
XCMPLX_1: 14;
cluster (c
/
0 ) ->
zero;
coherence ;
end
registration
cluster
[\
0 /] ->
zero;
coherence by
INT_1: 25;
end
theorem ::
REAL_3:1
Th1:
0
< r & r
< 1 implies 1
< (1
/ r)
proof
assume that
A1:
0
< r and
A2: r
< 1;
(1
* (r
" ))
> (r
* (r
" )) by
A1,
A2,
XREAL_1: 68;
hence thesis by
A1,
XCMPLX_0:def 7;
end;
theorem ::
REAL_3:2
Th2: i
<= r & r
< (i
+ 1) implies
[\r/]
= i
proof
assume
A1: i
<= r;
assume r
< (i
+ 1);
then (r
- 1)
< ((i
+ 1)
- 1) by
XREAL_1: 14;
hence thesis by
A1,
INT_1:def 6;
end;
theorem ::
REAL_3:3
[\(m
/ n)/]
= (m
div n);
theorem ::
REAL_3:4
Th4: (m
mod n)
=
0 implies (m
/ n)
= (m
div n)
proof
reconsider i = m as
Integer;
assume
A1: (m
mod n)
=
0 ;
per cases ;
suppose
A2: n
=
0 ;
hence (m
/ n)
=
0
.= (m
div n) by
A2;
end;
suppose
A3: n
<>
0 ;
then (i
- ((i
div n)
* n))
=
0 by
A1,
INT_1:def 10;
hence thesis by
A3,
XCMPLX_1: 89;
end;
end;
theorem ::
REAL_3:5
Th5: (m
/ n)
= (m
div n) implies (m
mod n)
=
0
proof
assume
A1: (m
/ n)
= (m
div n);
per cases ;
suppose n
=
0 ;
hence thesis;
end;
suppose
A2: n
>
0 ;
then (m
+
0 )
= ((n
* (m
/ n))
+ (m
mod n)) by
A1,
NAT_D: 2;
then ((m
mod n)
-
0 )
= (m
- (n
* (m
/ n)));
hence (m
mod n)
= (m
- m) by
A2,
XCMPLX_1: 87
.=
0 ;
end;
end;
theorem ::
REAL_3:6
Th6: (
frac (m
/ n))
= ((m
mod n)
/ n)
proof
per cases ;
suppose
A1: n
=
0 ;
hence (
frac (m
/ n))
= (
frac
0 )
.= ((m
mod n)
/ n) by
A1;
end;
suppose
A2: n
>
0 ;
then m
= ((n
* (m
div n))
+ (m
mod n)) by
NAT_D: 2;
then ((m
/ n)
+
0 )
= ((m
div n)
+ ((m
mod n)
/ n)) by
A2,
XCMPLX_1: 113;
hence thesis;
end;
end;
theorem ::
REAL_3:7
Th7: p
>=
0 implies ex m,n be
Nat st n
<>
0 & p
= (m
/ n)
proof
consider m be
Integer, k be
Nat such that
A1: k
<>
0 & p
= (m
/ k) by
RAT_1: 8;
assume p
>=
0 ;
then k
>
0 & m
>=
0 or k
<
0 & m
<=
0 by
A1,
XREAL_1: 141;
then
reconsider m as
Element of
NAT by
INT_1: 3;
take m, k;
thus thesis by
A1;
end;
registration
cluster
INT
-valued for
Real_Sequence;
existence
proof
set s = (
NAT
--> 1);
A1: (
dom s)
=
NAT by
FUNCOP_1: 13;
for n be
Nat holds (s
. n) is
real;
then
reconsider s as
Real_Sequence by
SEQ_1: 2,
A1;
take s;
thus thesis;
end;
end
definition
mode
Integer_Sequence is
INT
-valued
Real_Sequence;
end
theorem ::
REAL_3:8
Th8: f is
Integer_Sequence iff (
dom f)
=
NAT & for x st x
in
NAT holds (f
. x) is
integer
proof
thus f is
Integer_Sequence implies (
dom f)
=
NAT & for x st x
in
NAT holds (f
. x) is
integer by
SEQ_1: 1;
assume that
A1: (
dom f)
=
NAT and
A2: for x st x
in
NAT holds (f
. x) is
integer;
now
let y be
object;
assume y
in (
rng f);
then
consider x be
object such that
A3: x
in (
dom f) and
A4: y
= (f
. x) by
FUNCT_1:def 3;
(f
. x) is
integer by
A1,
A2,
A3;
hence y
in
INT by
A4;
end;
then
A5: (
rng f)
c=
INT ;
for x st x
in
NAT holds (f
. x) is
real
proof
let x;
assume x
in
NAT ;
then (f
. x) is
integer by
A2;
hence thesis;
end;
hence thesis by
A1,
A5,
RELAT_1:def 19,
SEQ_1: 1;
end;
theorem ::
REAL_3:9
Th9: f is
sequence of
INT iff f is
Integer_Sequence
proof
hereby
assume f is
sequence of
INT ;
then
reconsider g = f as
sequence of
INT ;
(
dom g)
=
NAT & for x st x
in
NAT holds (g
. x) is
integer by
FUNCT_2:def 1;
hence f is
Integer_Sequence by
Th8;
end;
assume f is
Integer_Sequence;
then (
dom f)
=
NAT & (
rng f)
c=
INT by
FUNCT_2:def 1,
RELAT_1:def 19;
hence thesis by
FUNCT_2: 2;
end;
theorem ::
REAL_3:10
f is
sequence of
NAT iff (
dom f)
=
NAT & for x st x
in
NAT holds (f
. x) is
natural
proof
thus f is
sequence of
NAT implies (
dom f)
=
NAT & for x st x
in
NAT holds (f
. x) is
natural by
FUNCT_2:def 1;
assume that
A1: (
dom f)
=
NAT and
A2: for x st x
in
NAT holds (f
. x) is
natural;
(
rng f)
c=
NAT
proof
let x be
object;
assume x
in (
rng f);
then ex y be
object st y
in
NAT & x
= (f
. y) by
A1,
FUNCT_1:def 3;
then x is
natural by
A2;
hence thesis by
ORDINAL1:def 12;
end;
hence thesis by
A1,
FUNCT_2:def 1,
RELSET_1: 4;
end;
theorem ::
REAL_3:11
f is
sequence of
NAT iff f is
sequence of
NAT ;
begin
definition
deffunc
F(
Nat,
Nat,
Nat) = ($2
mod $3);
let m,n be
Nat;
set a = (m
mod n);
set b = (n
mod (m
mod n));
::
REAL_3:def1
func
modSeq (m,n) ->
sequence of
NAT means
:
Def1: (it
.
0 )
= (m
mod n) & (it
. 1)
= (n
mod (m
mod n)) & for k be
Nat holds (it
. (k
+ 2))
= ((it
. k)
mod (it
. (k
+ 1)));
existence
proof
consider f be
sequence of
NAT such that
A1: (f
.
0 )
= a & (f
. 1)
= b and
A2: for n be
Nat holds (f
. (n
+ 2))
=
F(n,.,.) from
RECDEF_2:sch 5;
reconsider f as
sequence of
NAT ;
take f;
thus (f
.
0 )
= a & (f
. 1)
= b by
A1;
let k be
Nat;
thus thesis by
A2;
end;
uniqueness
proof
let f,g be
sequence of
NAT such that
A3: (f
.
0 )
= a & (f
. 1)
= b and
A4: for n be
Nat holds (f
. (n
+ 2))
= ((f
. n)
mod (f
. (n
+ 1))) and
A5: (g
.
0 )
= a & (g
. 1)
= b and
A6: for n be
Nat holds (g
. (n
+ 2))
= ((g
. n)
mod (g
. (n
+ 1)));
reconsider f, g as
sequence of
NAT ;
A7: (g
.
0 )
= a & (g
. 1)
= b by
A5;
A8: for n be
Nat holds (g
. (n
+ 2))
=
F(n,.,.) by
A6;
A9: for n be
Nat holds (f
. (n
+ 2))
=
F(n,.,.) by
A4;
A10: (f
.
0 )
= a & (f
. 1)
= b by
A3;
f
= g from
RECDEF_2:sch 7(
A10,
A9,
A7,
A8);
hence thesis;
end;
end
definition
let m,n be
Nat;
set a = (m
div n);
set b = (n
div (m
mod n));
deffunc
F(
Nat,
Nat,
Nat) = (((
modSeq (m,n))
. $1)
div ((
modSeq (m,n))
. ($1
+ 1)));
::
REAL_3:def2
func
divSeq (m,n) ->
sequence of
NAT means
:
Def2: (it
.
0 )
= (m
div n) & (it
. 1)
= (n
div (m
mod n)) & for k be
Nat holds (it
. (k
+ 2))
= (((
modSeq (m,n))
. k)
div ((
modSeq (m,n))
. (k
+ 1)));
existence
proof
consider f be
sequence of
NAT such that
A1: (f
.
0 )
= a & (f
. 1)
= b and
A2: for n be
Nat holds (f
. (n
+ 2))
=
F(n,.,.) from
RECDEF_2:sch 5;
reconsider f as
sequence of
NAT ;
take f;
thus (f
.
0 )
= a & (f
. 1)
= b by
A1;
let k be
Nat;
thus thesis by
A2;
end;
uniqueness
proof
let f,g be
sequence of
NAT such that
A3: (f
.
0 )
= a & (f
. 1)
= b and
A4: for k be
Nat holds (f
. (k
+ 2))
= (((
modSeq (m,n))
. k)
div ((
modSeq (m,n))
. (k
+ 1))) and
A5: (g
.
0 )
= a & (g
. 1)
= b and
A6: for k be
Nat holds (g
. (k
+ 2))
= (((
modSeq (m,n))
. k)
div ((
modSeq (m,n))
. (k
+ 1)));
reconsider f, g as
sequence of
NAT ;
A7: (g
.
0 )
= a & (g
. 1)
= b by
A5;
A8: for n be
Nat holds (g
. (n
+ 2))
=
F(n,,) by
A6;
A9: for n be
Nat holds (f
. (n
+ 2))
=
F(n,.,.) by
A4;
A10: (f
.
0 )
= a & (f
. 1)
= b by
A3;
f
= g from
RECDEF_2:sch 7(
A10,
A9,
A7,
A8);
hence thesis;
end;
end
theorem ::
REAL_3:12
Th12: ((
divSeq (m,n))
. 1)
= (n
div ((
modSeq (m,n))
.
0 ))
proof
thus ((
divSeq (m,n))
. 1)
= (n
div (m
mod n)) by
Def2
.= (n
div ((
modSeq (m,n))
.
0 )) by
Def1;
end;
theorem ::
REAL_3:13
Th13: ((
modSeq (m,n))
. 1)
= (n
mod ((
modSeq (m,n))
.
0 ))
proof
thus ((
modSeq (m,n))
. 1)
= (n
mod (m
mod n)) by
Def1
.= (n
mod ((
modSeq (m,n))
.
0 )) by
Def1;
end;
theorem ::
REAL_3:14
Th14: a
<= b & ((
modSeq (m,n))
. a)
=
0 implies ((
modSeq (m,n))
. b)
=
0
proof
set fm = (
modSeq (m,n));
assume that
A1: a
<= b and
A2: (fm
. a)
=
0 ;
A3: a
< b or a
= b by
A1,
XXREAL_0: 1;
defpred
P[
Nat] means a
< $1 implies (fm
. $1)
=
0 ;
A4: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A5:
P[k];
assume
A6: a
< (k
+ 1);
then
A7: a
<= k by
NAT_1: 13;
per cases by
NAT_1: 25;
suppose
A8: k
=
0 ;
then
A9: a
=
0 by
A6,
NAT_1: 13;
thus (fm
. (k
+ 1))
= (n
mod (fm
.
0 )) by
A8,
Th13
.=
0 by
A2,
A9;
end;
suppose
A10: k
= 1;
then
A11: a
=
0 or a
= 1 by
A7,
NAT_1: 25;
2
= (2
+
0 );
hence (fm
. (k
+ 1))
= ((fm
.
0 )
mod (fm
. (
0
+ 1))) by
A10,
Def1
.=
0 by
A2,
A11;
end;
suppose k
> 1;
then
reconsider k1 = (k
- 1) as
Nat;
per cases by
A7,
XXREAL_0: 1;
suppose
A12: a
= k;
thus (fm
. (k
+ 1))
= (fm
. (k1
+ 2))
.= ((fm
. k1)
mod (fm
. (k1
+ 1))) by
Def1
.=
0 by
A2,
A12;
end;
suppose
A13: a
< k;
thus (fm
. (k
+ 1))
= (fm
. (k1
+ 2))
.= ((fm
. k1)
mod (fm
. (k1
+ 1))) by
Def1
.=
0 by
A5,
A13;
end;
end;
end;
A14:
P[
0 ];
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A14,
A4);
hence thesis by
A2,
A3;
end;
Lm2: ((
modSeq (m,n))
. a)
> ((
modSeq (m,n))
. (a
+ 1)) or ((
modSeq (m,n))
. a)
=
0
proof
set fm = (
modSeq (m,n));
per cases by
NAT_1: 25;
suppose
A1: a
=
0 ;
(fm
. (
0
+ 1))
= (n
mod (m
mod n)) & (fm
.
0 )
= (m
mod n) by
Def1;
hence thesis by
A1,
NAT_D: 1;
end;
suppose
A2: a
= 1;
(fm
. (
0
+ 2))
= ((fm
.
0 )
mod (fm
. (
0
+ 1))) by
Def1;
hence thesis by
A2,
NAT_D: 1;
end;
suppose a
> 1;
then
reconsider a1 = (a
- 1) as
Nat;
(fm
. (a
+ 1))
= (fm
. (a1
+ (1
+ 1)))
.= ((fm
. a1)
mod (fm
. (a1
+ 1))) by
Def1;
hence thesis by
NAT_D: 1;
end;
end;
theorem ::
REAL_3:15
Th15: a
< b implies ((
modSeq (m,n))
. a)
> ((
modSeq (m,n))
. b) or ((
modSeq (m,n))
. a)
=
0
proof
set fm = (
modSeq (m,n));
assume
A1: a
< b;
per cases ;
suppose (fm
. a)
=
0 ;
hence thesis;
end;
suppose
A2: (fm
. a)
>
0 ;
defpred
P[
Nat] means a
< $1 implies (fm
. a)
> (fm
. $1);
A3: for x be
Nat st
P[x] holds
P[(x
+ 1)]
proof
let x be
Nat such that
A4:
P[x];
assume a
< (x
+ 1);
then
A5: a
<= x by
NAT_1: 13;
per cases by
A5,
XXREAL_0: 1;
suppose a
= x;
hence (fm
. a)
> (fm
. (x
+ 1)) by
A2,
Lm2;
end;
suppose
A6: a
< x;
thus (fm
. a)
> (fm
. (x
+ 1))
proof
per cases by
Lm2;
suppose (fm
. x)
> (fm
. (x
+ 1));
hence thesis by
A4,
A6,
XXREAL_0: 2;
end;
suppose (fm
. x)
=
0 ;
hence thesis by
A2,
Th14,
NAT_1: 11;
end;
end;
end;
end;
A7:
P[
0 ];
for x be
Nat holds
P[x] from
NAT_1:sch 2(
A7,
A3);
hence thesis by
A1;
end;
end;
theorem ::
REAL_3:16
Th16: ((
divSeq (m,n))
. (a
+ 1))
=
0 implies ((
modSeq (m,n))
. a)
=
0
proof
set fd = (
divSeq (m,n));
set fm = (
modSeq (m,n));
defpred
P[
Nat] means (fd
. ($1
+ 1))
=
0 implies (fm
. $1)
=
0 ;
A1:
P[b] implies
P[(b
+ 1)]
proof
assume
P[b];
set x = (fm
. (b
+ 1));
assume (fd
. ((b
+ 1)
+ 1))
=
0 ;
then (fd
. (b
+ (1
+ 1)))
=
0 ;
then
A2: ((fm
. b)
div (fm
. (b
+ 1)))
=
0 by
Def2;
assume
A3: (fm
. (b
+ 1))
<>
0 ;
then (fm
. b)
= ((x
* ((fm
. b)
div x))
+ ((fm
. b)
mod x)) by
NAT_D: 2;
then
A4: (fm
. b)
< x by
A2,
A3,
NAT_D: 1;
A5: (b
+
0 )
< (b
+ 1) by
XREAL_1: 6;
then (fm
. b)
<>
0 by
A3,
Th14;
hence thesis by
A4,
A5,
Th15;
end;
A6:
P[
0 ]
proof
set x = (m
mod n);
assume (fd
. (
0
+ 1))
=
0 ;
then
A7: (n
div (fm
.
0 ))
=
0 by
Th12;
assume
A8: (fm
.
0 )
<>
0 ;
then (m
mod n)
<>
0 by
Def1;
then
A9: n
<>
0 ;
A10: (fm
.
0 )
= x by
Def1;
then n
= ((x
* (n
div x))
+ (n
mod x)) by
A8,
NAT_D: 2;
then n
< x by
A7,
A10,
A8,
NAT_D: 1;
hence thesis by
A9,
NAT_D: 1;
end;
P[b] from
NAT_1:sch 2(
A6,
A1);
hence thesis;
end;
Lm3: ((
modSeq (m,n))
. a)
=
0 implies ((
divSeq (m,n))
. (a
+ 1))
=
0
proof
set fd = (
divSeq (m,n));
set fm = (
modSeq (m,n));
defpred
P[
Nat] means (fm
. $1)
=
0 implies (fd
. ($1
+ 1))
=
0 ;
A1:
P[b] implies
P[(b
+ 1)]
proof
assume that
P[b] and
A2: (fm
. (b
+ 1))
=
0 ;
thus (fd
. ((b
+ 1)
+ 1))
= (fd
. (b
+ (1
+ 1)))
.= ((fm
. b)
div (fm
. (b
+ 1))) by
Def2
.=
0 by
A2;
end;
A3:
P[
0 ]
proof
assume
A4: (fm
.
0 )
=
0 ;
thus (fd
. (
0
+ 1))
= (n
div (fm
.
0 )) by
Th12
.=
0 by
A4;
end;
P[b] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
REAL_3:17
Th17: a
<>
0 & a
<= b & ((
divSeq (m,n))
. a)
=
0 implies ((
divSeq (m,n))
. b)
=
0
proof
set fd = (
divSeq (m,n));
set fm = (
modSeq (m,n));
assume that
A1: a
<>
0 and
A2: a
<= b and
A3: (fd
. a)
=
0 ;
A4: a
< b or a
= b by
A2,
XXREAL_0: 1;
defpred
P[
Nat] means a
< $1 implies (fd
. $1)
=
0 & (fm
. $1)
=
0 ;
A5: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A6:
P[k];
assume
A7: a
< (k
+ 1);
then
A8: a
<= k by
NAT_1: 13;
per cases by
NAT_1: 25;
suppose k
=
0 ;
hence thesis by
A1,
A7,
NAT_1: 13;
end;
suppose
A9: k
= 1;
then (fd
. (
0
+ 1))
=
0 by
A1,
A3,
A8,
NAT_1: 25;
then
A10: (fm
.
0 )
=
0 by
Th16;
A11: 2
= (2
+
0 );
hence (fd
. (k
+ 1))
= ((fm
.
0 )
div (fm
. (
0
+ 1))) by
A9,
Def2
.=
0 by
A10;
thus (fm
. (k
+ 1))
= ((fm
.
0 )
mod (fm
. (
0
+ 1))) by
A9,
A11,
Def1
.=
0 by
A10;
end;
suppose k
> 1;
then
reconsider k1 = (k
- 1) as
Nat;
A12: k
= (k1
+ 1);
per cases by
A8,
XXREAL_0: 1;
suppose a
= k;
then
A13: (fm
. k1)
=
0 by
A3,
A12,
Th16;
thus (fd
. (k
+ 1))
= (fd
. (k1
+ 2))
.= ((fm
. k1)
div (fm
. (k1
+ 1))) by
Def2
.=
0 by
A13;
thus (fm
. (k
+ 1))
= (fm
. (k1
+ 2))
.= ((fm
. k1)
mod (fm
. (k1
+ 1))) by
Def1
.=
0 by
A13;
end;
suppose
A14: a
< k;
thus (fd
. (k
+ 1))
= (fd
. (k1
+ 2))
.= ((fm
. k1)
div (fm
. (k1
+ 1))) by
Def2
.=
0 by
A6,
A14;
thus (fm
. (k
+ 1))
= (fm
. (k1
+ 2))
.= ((fm
. k1)
mod (fm
. (k1
+ 1))) by
Def1
.=
0 by
A6,
A14;
end;
end;
end;
A15:
P[
0 ];
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A15,
A5);
hence thesis by
A3,
A4;
end;
theorem ::
REAL_3:18
Th18: a
< b & ((
modSeq (m,n))
. a)
=
0 implies ((
divSeq (m,n))
. b)
=
0
proof
set fd = (
divSeq (m,n));
set fm = (
modSeq (m,n));
assume a
< b;
then
A1: (a
+ 1)
<= b by
NAT_1: 13;
assume (fm
. a)
=
0 ;
then (fd
. (a
+ 1))
=
0 by
Lm3;
hence thesis by
A1,
Th17;
end;
theorem ::
REAL_3:19
Th19: n
<>
0 implies m
= ((((
divSeq (m,n))
.
0 )
* n)
+ ((
modSeq (m,n))
.
0 ))
proof
set fd = (
divSeq (m,n));
set fm = (
modSeq (m,n));
assume
A1: n
<>
0 ;
(fd
.
0 )
= (m
div n) & (fm
.
0 )
= (m
mod n) by
Def1,
Def2;
hence thesis by
A1,
NAT_D: 2;
end;
theorem ::
REAL_3:20
n
<>
0 implies (m
/ n)
= (((
divSeq (m,n))
.
0 )
+ (1
/ (n
/ ((
modSeq (m,n))
.
0 ))))
proof
set fd = (
divSeq (m,n));
set fm = (
modSeq (m,n));
assume
A1: n
<>
0 ;
hence (m
/ n)
= ((((fd
.
0 )
* n)
+ (fm
.
0 ))
/ n) by
Th19
.= (((fm
.
0 )
/ n)
+ (fd
.
0 )) by
A1,
XCMPLX_1: 113
.= ((fd
.
0 )
+ (1
/ (n
/ (fm
.
0 )))) by
XCMPLX_1: 57;
end;
set g = (
NAT
-->
0 );
theorem ::
REAL_3:21
Th21: (
divSeq (m,
0 ))
= (
NAT
-->
0 )
proof
set g = (
NAT
-->
0 );
set fd = (
divSeq (m,
0 ));
A1: for x be
object st x
in (
dom fd) holds (fd
. x)
= (g
. x)
proof
defpred
P[
Nat] means (fd
. $1)
=
0 ;
let x be
object;
assume x
in (
dom fd);
then
reconsider x as
Element of
NAT ;
A2: for n be
Nat holds
P[n] implies
P[(n
+ 1)]
proof
let n be
Nat;
assume
A3:
P[n];
per cases ;
suppose
A4: n
=
0 ;
(fd
. 1)
= (
0
div (m
mod
0 )) by
Def2
.=
0 ;
hence thesis by
A4;
end;
suppose
0
<> n;
hence thesis by
A3,
Th17,
NAT_1: 11;
end;
end;
(fd
.
0 )
= (m
div
0 ) by
Def2
.=
0 ;
then
A5:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A5,
A2);
then (fd
. x)
=
0 ;
hence thesis by
FUNCOP_1: 7;
end;
(
dom fd)
=
NAT by
FUNCT_2:def 1;
hence thesis by
A1;
end;
theorem ::
REAL_3:22
Th22: (
modSeq (m,
0 ))
= (
NAT
-->
0 )
proof
set fm = (
modSeq (m,
0 ));
A1: for x be
object st x
in (
dom fm) holds (fm
. x)
= (g
. x)
proof
defpred
P[
Nat] means (fm
. $1)
=
0 ;
let x be
object;
assume x
in (
dom fm);
then
reconsider x as
Element of
NAT ;
(fm
.
0 )
= (m
mod
0 ) by
Def1
.=
0 ;
then
A2:
P[
0 ];
A3: for n be
Nat holds
P[n] implies
P[(n
+ 1)] by
Th14,
NAT_1: 11;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A3);
then (fm
. x)
=
0 ;
hence thesis by
FUNCOP_1: 7;
end;
(
dom fm)
=
NAT by
FUNCT_2:def 1;
hence thesis by
A1;
end;
theorem ::
REAL_3:23
(
divSeq (
0 ,n))
= (
NAT
-->
0 )
proof
set fd = (
divSeq (
0 ,n));
A1: for x be
object st x
in (
dom fd) holds (fd
. x)
= (g
. x)
proof
defpred
P[
Nat] means (fd
. $1)
=
0 ;
let x be
object;
assume x
in (
dom fd);
then
reconsider x as
Element of
NAT ;
A2: for x be
Nat holds
P[x] implies
P[(x
+ 1)]
proof
let x be
Nat;
assume
A3:
P[x];
per cases ;
suppose
A4: x
=
0 ;
(fd
. 1)
= (n
div (
0
mod n)) by
Def2
.= (n
div
0 );
hence thesis by
A4;
end;
suppose
0
<> x;
hence thesis by
A3,
Th17,
NAT_1: 11;
end;
end;
(fd
.
0 )
= (
0
div n) by
Def2
.=
0 ;
then
A5:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A5,
A2);
then (fd
. x)
=
0 ;
hence thesis by
FUNCOP_1: 7;
end;
(
dom fd)
=
NAT by
FUNCT_2:def 1;
hence thesis by
A1;
end;
theorem ::
REAL_3:24
(
modSeq (
0 ,n))
= (
NAT
-->
0 )
proof
set fm = (
modSeq (
0 ,n));
A1: for x be
object st x
in (
dom fm) holds (fm
. x)
= (g
. x)
proof
defpred
P[
Nat] means (fm
. $1)
=
0 ;
let x be
object;
assume x
in (
dom fm);
then
reconsider x as
Element of
NAT ;
(fm
.
0 )
= (
0
mod n) by
Def1
.=
0 ;
then
A2:
P[
0 ];
A3: for x be
Nat holds
P[x] implies
P[(x
+ 1)] by
Th14,
NAT_1: 11;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A3);
then (fm
. x)
=
0 ;
hence thesis by
FUNCOP_1: 7;
end;
(
dom fm)
=
NAT by
FUNCT_2:def 1;
hence thesis by
A1;
end;
Lm4: ex k st ((
modSeq (m,n))
. k)
=
0
proof
set f = (
modSeq (m,n));
defpred
P[
Nat] means ex k st (f
. k)
= $1;
A1: for a be
Nat st a
<>
0 &
P[a] holds ex w be
Nat st w
< a &
P[w]
proof
let a be
Nat such that
A2: a
<>
0 ;
given k such that
A3: (f
. k)
= a;
take w = (f
. (k
+ 1));
(k
+
0 )
< (k
+ 1) by
XREAL_1: 6;
hence w
< a by
A2,
A3,
Th15;
thus thesis;
end;
A4: ex a be
Nat st
P[a]
proof
take (f
.
0 ),
0 ;
thus thesis;
end;
thus
P[
0 ] from
NAT_1:sch 7(
A4,
A1);
end;
theorem ::
REAL_3:25
Th25: ex k be
Nat st ((
divSeq (m,n))
. k)
=
0 & ((
modSeq (m,n))
. k)
=
0
proof
set f = (
modSeq (m,n));
consider k such that
A1: (f
. k)
=
0 by
Lm4;
take (k
+ 1);
A2: (k
+
0 )
< (k
+ 1) by
XREAL_1: 6;
hence ((
divSeq (m,n))
. (k
+ 1))
=
0 by
A1,
Th18;
thus (f
. (k
+ 1))
=
0 by
A1,
A2,
Th14;
end;
begin
defpred
P[
set,
Element of
REAL ,
object] means $3
= (1
/ (
frac $2));
definition
let r be
Real;
::
REAL_3:def3
func
remainders_for_scf r ->
Real_Sequence means
:
Def3: (it
.
0 )
= r & for n be
Nat holds (it
. (n
+ 1))
= (1
/ (
frac (it
. n)));
existence
proof
reconsider r1 = r as
Element of
REAL by
XREAL_0:def 1;
A1: for n be
Nat holds for x be
Element of
REAL holds ex y be
Element of
REAL st
P[n, x, y]
proof
let n be
Nat, x be
Element of
REAL ;
consider y be
Real such that
A2:
P[n, x, y];
reconsider y as
Element of
REAL by
XREAL_0:def 1;
take y;
thus
P[n, x, y] by
A2;
end;
consider f be
sequence of
REAL such that
A3: (f
.
0 )
= r1 and
A4: for n be
Nat holds
P[n, (f
. n), (f
. (n
+ 1))] from
RECDEF_1:sch 2(
A1);
take f;
thus (f
.
0 )
= r by
A3;
let n;
thus thesis by
A4;
end;
uniqueness
proof
A5: for n be
Nat, x,y1,y2 be
Element of
REAL st
P[n, x, y1] &
P[n, x, y2] holds y1
= y2;
reconsider r1 = r as
Element of
REAL by
XREAL_0:def 1;
let g1,g2 be
Real_Sequence such that
A6: (g1
.
0 )
= r and
A7: for n be
Nat holds (g1
. (n
+ 1))
= (1
/ (
frac (g1
. n))) and
A8: (g2
.
0 )
= r and
A9: for n be
Nat holds (g2
. (n
+ 1))
= (1
/ (
frac (g2
. n)));
A10: for n be
Nat holds
P[n, (g1
. n), (g1
. (n
+ 1))] by
A7;
A11: for n be
Nat holds
P[n, (g2
. n), (g2
. (n
+ 1))] by
A9;
A12: (g2
.
0 )
= r1 by
A8;
A13: (g1
.
0 )
= r1 by
A6;
thus g1
= g2 from
NAT_1:sch 14(
A13,
A10,
A12,
A11,
A5);
end;
end
notation
let r be
Real;
synonym
rfs r for
remainders_for_scf r;
end
definition
let r be
Real;
::
REAL_3:def4
func
SimpleContinuedFraction r ->
Integer_Sequence means
:
Def4: for n be
Nat holds (it
. n)
=
[\((
rfs r)
. n)/];
existence
proof
defpred
P[
set,
set] means $2
=
[\((
rfs r)
. $1)/];
A1: for x be
Element of
NAT holds ex y be
Element of
INT st
P[x, y]
proof
let x be
Element of
NAT ;
reconsider y =
[\((
rfs r)
. x)/] as
Element of
INT by
INT_1:def 2;
take y;
thus thesis;
end;
consider f be
sequence of
INT such that
A2: for x be
Element of
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 3(
A1);
reconsider f as
Integer_Sequence by
Th9;
take f;
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A2;
end;
uniqueness
proof
let f1,f2 be
Integer_Sequence such that
A3: for n be
Nat holds (f1
. n)
=
[\((
rfs r)
. n)/] and
A4: for n be
Nat holds (f2
. n)
=
[\((
rfs r)
. n)/];
let n be
Element of
NAT ;
thus (f1
. n)
=
[\((
rfs r)
. n)/] by
A3
.= (f2
. n) by
A4;
end;
end
notation
let r be
Real;
synonym
scf r for
SimpleContinuedFraction r;
end
theorem ::
REAL_3:26
Th26: ((
rfs r)
. (n
+ 1))
= (1
/ (((
rfs r)
. n)
- ((
scf r)
. n)))
proof
thus ((
rfs r)
. (n
+ 1))
= (1
/ (
frac ((
rfs r)
. n))) by
Def3
.= (1
/ (((
rfs r)
. n)
- ((
scf r)
. n))) by
Def4;
end;
theorem ::
REAL_3:27
Th27: ((
rfs r)
. n)
=
0 & n
<= m implies ((
rfs r)
. m)
=
0
proof
assume that
A1: ((
rfs r)
. n)
=
0 and
A2: n
<= m;
per cases by
A2,
XXREAL_0: 1;
suppose n
= m;
hence thesis by
A1;
end;
suppose
A3: n
< m;
defpred
P[
Nat] means n
< $1 implies ((
rfs r)
. $1)
=
0 ;
A4: for a be
Nat st
P[a] holds
P[(a
+ 1)]
proof
let a be
Nat;
assume
A5:
P[a];
assume n
< (a
+ 1);
then
A6: n
<= a by
NAT_1: 13;
per cases by
A6,
XXREAL_0: 1;
suppose
A7: n
= a;
thus ((
rfs r)
. (a
+ 1))
= (1
/ (
frac ((
rfs r)
. a))) by
Def3
.= (1
/ (((
rfs r)
. a)
- ((
rfs r)
. a))) by
A1,
A7
.=
0 ;
end;
suppose
A8: n
< a;
thus ((
rfs r)
. (a
+ 1))
= (1
/ (
frac ((
rfs r)
. a))) by
Def3
.= (1
/ (((
rfs r)
. a)
- ((
rfs r)
. a))) by
A5,
A8
.=
0 ;
end;
end;
A9:
P[
0 ];
for a be
Nat holds
P[a] from
NAT_1:sch 2(
A9,
A4);
hence thesis by
A3;
end;
end;
theorem ::
REAL_3:28
((
rfs r)
. n)
=
0 & n
<= m implies ((
scf r)
. m)
=
0
proof
assume
A1: ((
rfs r)
. n)
=
0 & n
<= m;
thus ((
scf r)
. m)
=
[\((
rfs r)
. m)/] by
Def4
.=
[\
0 /] by
A1,
Th27
.=
0 ;
end;
theorem ::
REAL_3:29
Th29: ((
rfs i)
. (n
+ 1))
=
0
proof
defpred
P[
Nat] means ((
rfs i)
. ($1
+ 1))
=
0 ;
A1: ((
rfs i)
.
0 )
= i by
Def3;
A2: for n st
P[n] holds
P[(n
+ 1)]
proof
let n such that
A3:
P[n];
thus ((
rfs i)
. ((n
+ 1)
+ 1))
= (1
/ (
frac ((
rfs i)
. (n
+ 1)))) by
Def3
.= (1
/ (
0
-
0 )) by
A3
.=
0 ;
end;
((
rfs i)
. (
0
+ 1))
= (1
/ (
frac ((
rfs i)
.
0 ))) by
Def3
.= (1
/ (i
- i)) by
A1,
INT_1: 25
.=
0 ;
then
A4:
P[
0 ];
for n holds
P[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
theorem ::
REAL_3:30
Th30: ((
scf i)
.
0 )
= i & ((
scf i)
. (n
+ 1))
=
0
proof
defpred
P[
Nat] means ((
rfs i)
. ($1
+ 1))
=
0 & ((
scf i)
. ($1
+ 1))
=
0 ;
thus ((
scf i)
.
0 )
=
[\((
rfs i)
.
0 )/] by
Def4
.=
[\i/] by
Def3
.= i by
INT_1: 25;
A1: for n st
P[n] holds
P[(n
+ 1)]
proof
let n such that
A2:
P[n];
thus ((
rfs i)
. ((n
+ 1)
+ 1))
= (1
/ (
frac ((
rfs i)
. (n
+ 1)))) by
Def3
.= (1
/ (
0
-
0 )) by
A2
.=
0 ;
thus ((
scf i)
. ((n
+ 1)
+ 1))
=
[\((
rfs i)
. ((n
+ 1)
+ 1))/] by
Def4
.=
[\
0 /] by
Th29
.=
0 ;
end;
((
scf i)
. (
0
+ 1))
=
[\((
rfs i)
. (
0
+ 1))/] by
Def4
.=
[\
0 /] by
Th29
.=
0 ;
then
A3:
P[
0 ] by
Th29;
for n holds
P[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
Lm5: i
> 1 implies ((
rfs (1
/ i))
. 1)
= i & ((
rfs (1
/ i))
. (n
+ 2))
=
0 & ((
scf (1
/ i))
.
0 )
=
0 & ((
scf (1
/ i))
. 1)
= i & ((
scf (1
/ i))
. (n
+ 2))
=
0
proof
set r = (1
/ i);
defpred
P[
Nat] means ((
rfs r)
. ($1
+ 2))
=
0 & ((
scf r)
. ($1
+ 2))
=
0 ;
assume
A1: i
> 1;
then
A2: r
< (
0
+ 1) by
XREAL_1: 189;
A3:
[\((
rfs r)
.
0 )/]
=
[\r/] by
Def3
.=
0 by
A1,
A2,
Th2;
thus
A4: ((
rfs r)
. 1)
= ((
rfs r)
. (
0
+ 1))
.= (1
/ (
frac ((
rfs r)
.
0 ))) by
Def3
.= (1
/ (r
-
0 )) by
A3,
Def3
.= i;
then
A5: ((
scf r)
. 1)
=
[\i/] by
Def4;
A6: for n st
P[n] holds
P[(n
+ 1)]
proof
let n such that
A7:
P[n];
thus ((
rfs r)
. ((n
+ 1)
+ 2))
= ((
rfs r)
. ((n
+ 2)
+ 1))
.= (1
/ (
frac ((
rfs r)
. (n
+ 2)))) by
Def3
.= (1
/ (
0
-
0 )) by
A7
.=
0 ;
hence ((
scf r)
. ((n
+ 1)
+ 2))
=
[\
0 /] by
Def4
.=
0 ;
end;
A8: ((
rfs r)
. (
0
+ 2))
= ((
rfs r)
. (1
+ 1))
.= (1
/ (
frac ((
rfs r)
. 1))) by
Def3
.= (1
/ (i
- i)) by
A4,
INT_1: 25
.=
0 ;
then ((
scf r)
. (
0
+ 2))
=
[\
0 /] by
Def4
.=
0 ;
then
A9:
P[
0 ] by
A8;
A10: for n holds
P[n] from
NAT_1:sch 2(
A9,
A6);
((
scf r)
.
0 )
=
[\((
rfs r)
.
0 )/] by
Def4
.=
[\r/] by
Def3
.=
0 by
A1,
A2,
Th2;
hence thesis by
A5,
A10,
INT_1: 25;
end;
theorem ::
REAL_3:31
i
> 1 implies ((
rfs (1
/ i))
. 1)
= i & ((
rfs (1
/ i))
. (n
+ 2))
=
0 by
Lm5;
theorem ::
REAL_3:32
i
> 1 implies ((
scf (1
/ i))
.
0 )
=
0 & ((
scf (1
/ i))
. 1)
= i & ((
scf (1
/ i))
. (n
+ 2))
=
0 by
Lm5;
theorem ::
REAL_3:33
Th33: (for n holds ((
scf r)
. n)
=
0 ) implies ((
rfs r)
. n)
=
0
proof
assume that
A1: for n holds ((
scf r)
. n)
=
0 and
A2: ((
rfs r)
. n)
<>
0 ;
A3: ((
scf r)
. n)
=
0 by
A1;
set x = ((
rfs r)
. n);
A4: ((
scf r)
. n)
=
[\x/] by
Def4;
per cases by
A2;
suppose x
<
0 ;
hence thesis by
A3,
A4,
INT_1:def 6;
end;
suppose x
>= 1;
hence thesis by
A3,
A4,
INT_1: 54;
end;
suppose
0
< x & x
< 1;
then
A5: (1
/ x)
> 1 by
Th1;
A6: ((
scf r)
. (n
+ 1))
=
0 & ((
scf r)
. (n
+ 1))
=
[\((
rfs r)
. (n
+ 1))/] by
A1,
Def4;
((
rfs r)
. (n
+ 1))
= (1
/ (
frac x)) by
Def3
.= (1
/ (x
- ((
scf r)
. n))) by
Def4
.= (1
/ (x
-
0 )) by
A1
.= (1
/ x);
hence thesis by
A5,
A6,
INT_1: 54;
end;
end;
theorem ::
REAL_3:34
Th34: (for n holds ((
scf r)
. n)
=
0 ) implies r
=
0
proof
assume for n holds ((
scf r)
. n)
=
0 ;
then ((
rfs r)
.
0 )
=
0 by
Th33;
hence thesis by
Def3;
end;
Lm6: ((
rfs (1
/ (r
- ((
scf r)
.
0 ))))
. n)
= ((
rfs r)
. (n
+ 1)) & ((
scf (1
/ (r
- ((
scf r)
.
0 ))))
. n)
= ((
scf r)
. (n
+ 1))
proof
set x = (r
- ((
scf r)
.
0 ));
defpred
P[
Nat] means ((
rfs (1
/ x))
. $1)
= ((
rfs r)
. ($1
+ 1)) & ((
scf (1
/ x))
. $1)
= ((
scf r)
. ($1
+ 1));
A1: for n st
P[n] holds
P[(n
+ 1)]
proof
let n;
assume
P[n];
hence ((
rfs (1
/ x))
. (n
+ 1))
= (1
/ (
frac ((
rfs r)
. (n
+ 1)))) by
Def3
.= ((
rfs r)
. ((n
+ 1)
+ 1)) by
Def3;
hence ((
scf (1
/ x))
. (n
+ 1))
=
[\((
rfs r)
. ((n
+ 1)
+ 1))/] by
Def4
.= ((
scf r)
. ((n
+ 1)
+ 1)) by
Def4;
end;
A2: ((
rfs (1
/ x))
.
0 )
= (1
/ x) by
Def3
.= (1
/ (((
rfs r)
.
0 )
- ((
scf r)
.
0 ))) by
Def3
.= (1
/ (
frac ((
rfs r)
.
0 ))) by
Def4
.= ((
rfs r)
. (
0
+ 1)) by
Def3;
then ((
scf (1
/ x))
.
0 )
=
[\((
rfs r)
. 1)/] by
Def4
.= ((
scf r)
. (
0
+ 1)) by
Def4;
then
A3:
P[
0 ] by
A2;
for n holds
P[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
REAL_3:35
Th35: (
frac r)
= (r
- ((
scf r)
.
0 ))
proof
thus (
frac r)
= (r
-
[\((
rfs r)
.
0 )/]) by
Def3
.= (r
- ((
scf r)
.
0 )) by
Def4;
end;
theorem ::
REAL_3:36
((
rfs r)
. (n
+ 1))
= ((
rfs (1
/ (
frac r)))
. n)
proof
(
frac r)
= (r
- ((
scf r)
.
0 )) by
Th35;
hence thesis by
Lm6;
end;
theorem ::
REAL_3:37
Th37: ((
scf r)
. (n
+ 1))
= ((
scf (1
/ (
frac r)))
. n)
proof
(
frac r)
= (r
- ((
scf r)
.
0 )) by
Th35;
hence thesis by
Lm6;
end;
theorem ::
REAL_3:38
Th38: n
>= 1 implies ((
scf r)
. n)
>=
0
proof
defpred
P[
Nat] means ((
scf r)
. $1)
>=
0 ;
[\r/]
<= r by
INT_1:def 6;
then (
frac r)
>=
0 by
XREAL_1: 48;
then
A1: ((1
/ (
frac r))
- 1)
>= (
0
- 1) by
XREAL_1: 9;
A2: for n be
Nat st n
>= 1 holds
P[n] implies
P[(n
+ 1)]
proof
let n be
Nat;
assume n
>= 1;
[\((
rfs r)
. n)/]
<= ((
rfs r)
. n) by
INT_1:def 6;
then (
frac ((
rfs r)
. n))
>=
0 by
XREAL_1: 48;
then
A3: ((1
/ (
frac ((
rfs r)
. n)))
- 1)
>= (
0
- 1) by
XREAL_1: 9;
((
scf r)
. (n
+ 1))
=
[\((
rfs r)
. (n
+ 1))/] by
Def4
.=
[\(1
/ (
frac ((
rfs r)
. n)))/] by
Def3;
then ((
scf r)
. (n
+ 1))
> ((1
/ (((
rfs r)
. n)
-
[\((
rfs r)
. n)/]))
- 1) by
INT_1:def 6;
then (((
scf r)
. (n
+ 1))
- (
- 1))
> (((1
/ (
frac ((
rfs r)
. n)))
- 1)
- ((1
/ (
frac ((
rfs r)
. n)))
- 1)) by
A3,
XREAL_1: 14;
hence thesis by
INT_1: 7;
end;
((
scf r)
. 1)
=
[\((
rfs r)
. (
0
+ 1))/] by
Def4
.=
[\(1
/ (
frac ((
rfs r)
.
0 )))/] by
Def3
.=
[\(1
/ (
frac r))/] by
Def3;
then ((
scf r)
. 1)
> ((1
/ (
frac r))
- 1) by
INT_1:def 6;
then (((
scf r)
. 1)
- (
- 1))
> (((1
/ (
frac r))
- 1)
- ((1
/ (
frac r))
- 1)) by
A1,
XREAL_1: 14;
then
A4:
P[1] by
INT_1: 7;
for n be
Nat st n
>= 1 holds
P[n] from
NAT_1:sch 8(
A4,
A2);
hence thesis;
end;
theorem ::
REAL_3:39
n
>= 1 implies ((
scf r)
. n)
in
NAT by
Th38,
INT_1: 3;
theorem ::
REAL_3:40
Th40: n
>= 1 & ((
scf r)
. n)
<>
0 implies ((
scf r)
. n)
>= 1
proof
assume n
>= 1 & ((
scf r)
. n)
<>
0 ;
then ((
scf r)
. n)
>
0 by
Th38;
then ((
scf r)
. n)
>= (
0
+ 1) by
INT_1: 7;
hence thesis;
end;
theorem ::
REAL_3:41
Th41: ((
scf (m
/ n))
. k)
= ((
divSeq (m,n))
. k) & ((
rfs (m
/ n))
. 1)
= (n
/ ((
modSeq (m,n))
.
0 )) & ((
rfs (m
/ n))
. (k
+ 2))
= (((
modSeq (m,n))
. k)
/ ((
modSeq (m,n))
. (k
+ 1)))
proof
set fd = (
divSeq (m,n));
set fm = (
modSeq (m,n));
set r = (m
/ n);
A1: ((
scf r)
.
0 )
=
[\((
rfs r)
.
0 )/] by
Def4
.= (m
div n) by
Def3;
per cases ;
suppose
A2: n
=
0 ;
then
A3: fm
= (
NAT
-->
0 ) by
Th22;
A4: fd
= (
NAT
-->
0 ) by
A2,
Th21;
A5: k
in
NAT by
ORDINAL1:def 12;
k
=
0 or ex x be
Nat st k
= (x
+ 1) by
NAT_1: 6;
hence ((
scf r)
. k)
=
0 by
A2,
Th30
.= (fd
. k) by
A4,
A5,
FUNCOP_1: 7;
thus ((
rfs (m
/ n))
. 1)
= ((
rfs r)
. (
0
+ 1))
.= (n
/ (fm
.
0 )) by
A2,
Th29;
thus ((
rfs (m
/ n))
. (k
+ 2))
= ((
rfs r)
. ((k
+ 1)
+ 1))
.= (
0
/ (fm
. (k
+ 1))) by
A2,
Th29
.= ((fm
. k)
/ (fm
. (k
+ 1))) by
A3,
A5,
FUNCOP_1: 7;
end;
suppose
A6:
0
< n;
then m
= ((n
* (m
div n))
+ (m
mod n)) by
NAT_D: 2;
then
A7: r
= ((m
div n)
+ ((m
mod n)
/ n)) by
A6,
XCMPLX_1: 113;
defpred
P[
Nat] means (for i be
Nat st i
<= $1 holds ((
scf r)
. i)
= (fd
. i)) & for i be
Nat st (i
+ 1)
<= $1 holds ((
rfs r)
. (i
+ 2))
= ((fm
. i)
/ (fm
. (i
+ 1)));
A8: ((
rfs r)
. (
0
+ 1))
= (1
/ (
frac ((
rfs r)
.
0 ))) by
Def3
.= (1
/ (((
rfs r)
.
0 )
- ((
scf r)
.
0 ))) by
Def4
.= (1
/ (r
- (m
div n))) by
A1,
Def3
.= (n
/ (m
mod n)) by
A7,
XCMPLX_1: 57
.= (n
/ (fm
.
0 )) by
Def1;
A9:
P[
0 ]
proof
hereby
let i be
Nat;
assume i
<=
0 ;
then i
=
0 ;
hence ((
scf r)
. i)
= (fd
. i) by
A1,
Def2;
end;
let i be
Nat;
assume (i
+ 1)
<=
0 ;
hence thesis;
end;
A10: for a be
Nat st
P[a] holds
P[(a
+ 1)]
proof
let a be
Nat such that
A11:
P[a];
per cases ;
suppose
A12: a
=
0 ;
set x = (m
mod n);
A13: ((
scf r)
. (
0
+ 1))
= ((
scf (1
/ (
frac r)))
.
0 ) by
Th37
.=
[\((
rfs (1
/ (
frac r)))
.
0 )/] by
Def4
.=
[\(1
/ (
frac r))/] by
Def3
.=
[\(1
/ ((m
mod n)
/ n))/] by
Th6
.= (n
div (m
mod n)) by
XCMPLX_1: 57
.= (n
div (fm
.
0 )) by
Def1
.= (fd
. 1) by
Th12;
hereby
let i be
Nat;
assume i
<= (a
+ 1);
then i
=
0 or i
= 1 by
A12,
NAT_1: 25;
hence ((
scf r)
. i)
= (fd
. i) by
A9,
A13;
end;
let i be
Nat;
assume (i
+ 1)
<= (a
+ 1);
then
A14: (i
+ 1)
=
0 or (i
+ 1)
= (
0
+ 1) by
A12,
NAT_1: 25;
per cases ;
suppose
A15: x
=
0 ;
thus ((
rfs r)
. (i
+ 2))
= ((
rfs r)
. (1
+ 1)) by
A14
.= (1
/ (
frac ((
rfs r)
. 1))) by
Def3
.= (1
/ ((n
/ (fm
.
0 ))
- (fd
. 1))) by
A8,
A13,
Def4
.= (1
/ ((n
/ x)
- (fd
. 1))) by
Def1
.= (1
/ ((n
/ x)
- (n
div x))) by
Def2
.= (1
/ (
0
- (n
div x))) by
A15
.= (1
/ (
0
-
0 )) by
A15
.= ((fm
. i)
/
0 )
.= ((fm
. i)
/ (n
mod x)) by
A15
.= ((fm
. i)
/ (fm
. (i
+ 1))) by
A14,
Def1;
end;
suppose
A16:
0
< x;
then
A17: (n
+
0 )
= ((x
* (n
div x))
+ (n
mod x)) by
NAT_D: 2;
per cases ;
suppose
A18: (n
mod x)
=
0 ;
then
A19: (n
div x)
= (n
/ x) by
Th4;
thus ((
rfs r)
. (i
+ 2))
= ((
rfs r)
. (1
+ 1)) by
A14
.= (1
/ (
frac ((
rfs r)
. 1))) by
Def3
.= (1
/ ((n
/ (fm
.
0 ))
- (fd
. 1))) by
A8,
A13,
Def4
.= (1
/ ((n
/ x)
- (fd
. 1))) by
Def1
.= (1
/ ((n
/ x)
- (n
div x))) by
Def2
.= (1
/
0 ) by
A19
.= ((fm
. i)
/ (n
mod x)) by
A18
.= ((fm
. i)
/ (fm
. (i
+ 1))) by
A14,
Def1;
end;
suppose
A20: (n
mod x)
<>
0 ;
then
A21: ((n
/ x)
- (n
div x))
<>
0 by
Th5;
thus ((
rfs r)
. (i
+ 2))
= ((
rfs r)
. (1
+ 1)) by
A14
.= (1
/ (
frac ((
rfs r)
. 1))) by
Def3
.= (1
/ ((n
/ (fm
.
0 ))
- (fd
. 1))) by
A8,
A13,
Def4
.= (1
/ ((n
/ x)
- (fd
. 1))) by
Def1
.= (1
/ ((n
/ x)
- (n
div x))) by
Def2
.= (x
/ (n
mod x)) by
A16,
A17,
A20,
A21,
Lm1
.= ((fm
. i)
/ (n
mod x)) by
A14,
Def1
.= ((fm
. i)
/ (fm
. (i
+ 1))) by
A14,
Def1;
end;
end;
end;
suppose a
>
0 ;
then
A22: (
0
+ 1)
<= a by
NAT_1: 13;
now
let b be
Nat;
assume b
<= (a
+ 1);
then
A24: b
< (a
+ 1) or b
= (a
+ 1) by
XXREAL_0: 1;
per cases by
A24,
NAT_1: 13;
suppose b
<= a;
hence ((
scf r)
. b)
= (fd
. b) by
A11;
end;
suppose
A25: (b
- 1)
= a;
reconsider a2 = (a
- 1) as
Element of
NAT by
A22,
INT_1: 5;
A26: b
= ((a
- 1)
+ 2) by
A25;
thus ((
scf r)
. b)
=
[\((
rfs r)
. b)/] by
Def4
.= ((fm
. a2)
div (fm
. (a2
+ 1))) by
A11,
A26
.= (fd
. b) by
A26,
Def2;
end;
end;
let b be
Nat;
assume
A27: (b
+ 1)
<= (a
+ 1);
per cases by
A27,
XXREAL_0: 1;
suppose (b
+ 1)
< (a
+ 1);
then (b
+ 1)
<= a by
NAT_1: 13;
hence thesis by
A11;
end;
suppose
A28: (b
+ 1)
= (a
+ 1);
then
reconsider b1 = (b
- 1) as
Element of
NAT by
A22,
INT_1: 5;
A29: (b
+ 1)
= (b1
+ (1
+ 1));
A30: (b1
+ 2)
= ((b1
+ 1)
+ 1);
A31: (b
+ 2)
= ((b
+ 1)
+ 1);
per cases ;
suppose
A32:
0
= (fm
. (b1
+ 1));
thus ((
rfs r)
. (b
+ 2))
= (1
/ (((
rfs r)
. (b
+ 1))
- ((
scf r)
. (b
+ 1)))) by
A31,
Th26
.= (1
/ (((
rfs r)
. (b
+ 1))
- (fd
. (b
+ 1)))) by
A23,
A28
.= (1
/ (((fm
. b1)
/ (fm
. (b1
+ 1)))
- (fd
. ((b1
+ 1)
+ 1)))) by
A11,
A28,
A29
.= (1
/ (((fm
. b1)
/
0 )
- ((fm
. b1)
div
0 ))) by
A30,
A32,
Def2
.= ((fm
. b)
/ (fm
. (b
+ 1))) by
A32;
end;
suppose
A33:
0
< (fm
. (b1
+ 1));
then
A34: ((fm
. b1)
+
0 )
= (((fm
. (b1
+ 1))
* ((fm
. b1)
div (fm
. (b1
+ 1))))
+ ((fm
. b1)
mod (fm
. (b1
+ 1)))) by
NAT_D: 2;
per cases ;
suppose
A35: ((fm
. b1)
mod (fm
. (b1
+ 1)))
=
0 ;
then ((fm
. b1)
/ (fm
. (b1
+ 1)))
= ((fm
. b1)
div (fm
. (b1
+ 1))) by
Th4;
then
A36: (((fm
. b1)
/ (fm
. (b1
+ 1)))
- ((fm
. b1)
div (fm
. (b1
+ 1))))
=
0 ;
thus ((
rfs r)
. (b
+ 2))
= (1
/ (((
rfs r)
. (b
+ 1))
- ((
scf r)
. (b
+ 1)))) by
A31,
Th26
.= (1
/ (((
rfs r)
. (b
+ 1))
- (fd
. (b
+ 1)))) by
A23,
A28
.= (1
/ (((fm
. b1)
/ (fm
. (b1
+ 1)))
- (fd
. ((b1
+ 1)
+ 1)))) by
A11,
A28,
A29
.= (1
/
0 ) by
A30,
A36,
Def2
.= ((fm
. (b1
+ 1))
/ ((fm
. b1)
mod (fm
. (b1
+ 1)))) by
A35
.= ((fm
. b)
/ (fm
. (b
+ 1))) by
A30,
Def1;
end;
suppose
A37: ((fm
. b1)
mod (fm
. (b1
+ 1)))
<>
0 ;
then
A38: (((fm
. b1)
/ (fm
. (b1
+ 1)))
- ((fm
. b1)
div (fm
. (b1
+ 1))))
<>
0 by
Th5;
thus ((
rfs r)
. (b
+ 2))
= (1
/ (((
rfs r)
. (b
+ 1))
- ((
scf r)
. (b
+ 1)))) by
A31,
Th26
.= (1
/ (((
rfs r)
. (b
+ 1))
- (fd
. (b
+ 1)))) by
A23,
A28
.= (1
/ (((fm
. b1)
/ (fm
. (b1
+ 1)))
- (fd
. ((b1
+ 1)
+ 1)))) by
A11,
A28,
A29
.= (1
/ (((fm
. b1)
/ (fm
. (b1
+ 1)))
- ((fm
. b1)
div (fm
. (b1
+ 1))))) by
A30,
Def2
.= ((fm
. (b1
+ 1))
/ ((fm
. b1)
mod (fm
. (b1
+ 1)))) by
A33,
A34,
A37,
A38,
Lm1
.= ((fm
. b)
/ (fm
. (b
+ 1))) by
A30,
Def1;
end;
end;
end;
end;
end;
for a be
Nat holds
P[a] from
NAT_1:sch 2(
A9,
A10);
hence thesis by
A8;
end;
end;
theorem ::
REAL_3:42
Th42: r is
rational iff ex n st for m st m
>= n holds ((
scf r)
. m)
=
0
proof
defpred
A[
Nat] means for s be
Real st for m st m
>= $1 holds ((
scf s)
. m)
=
0 holds s is
rational;
A1: for m st
A[m] holds
A[(m
+ 1)]
proof
let m;
assume
A2:
A[m];
let s be
Real such that
A3: for n st n
>= (m
+ 1) holds ((
scf s)
. n)
=
0 ;
set B = (1
/ (s
- ((
scf s)
.
0 )));
for n st n
>= m holds ((
scf B)
. n)
=
0
proof
let n;
assume n
>= m;
then
A4: (n
+ 1)
>= (m
+ 1) by
XREAL_1: 6;
thus ((
scf B)
. n)
= ((
scf s)
. (n
+ 1)) by
Lm6
.=
0 by
A3,
A4;
end;
then
reconsider B as
Rational by
A2;
(((
scf s)
.
0 )
+ (1
/ B)) is
rational;
hence thesis;
end;
thus r is
rational implies ex n st for m st m
>= n holds ((
scf r)
. m)
=
0
proof
assume r is
rational;
then
reconsider r as
Rational;
consider m,n be
Nat such that
A5: n
<>
0 and
A6: (
frac r)
= (m
/ n) by
Th7,
INT_1: 43;
(
frac r)
< 1 by
INT_1: 43;
then
A7: m
< n by
A5,
A6,
XREAL_1: 181;
set fm = (
modSeq (n,m));
set fd = (
divSeq (n,m));
per cases ;
suppose
A8: m
=
0 ;
take 1;
let a;
assume a
>= 1;
then ex x be
Nat st a
= (x
+ 1) by
NAT_1: 6;
hence thesis by
A6,
A8,
Th30;
end;
suppose
A9: m
<>
0 ;
consider k such that
A10: (fd
. k)
=
0 and (fm
. k)
=
0 by
Th25;
A11:
now
assume
A12: k
=
0 ;
m
<=
0 or (n
div m)
<>
0 by
A7,
NAT_2: 12;
hence contradiction by
A9,
A10,
A12,
Def2;
end;
take (k
+ 1);
let a;
assume
A13: a
>= (k
+ 1);
1
<= (k
+ 1) by
NAT_1: 11;
then
reconsider a1 = (a
- 1) as
Element of
NAT by
A13,
INT_1: 5,
XXREAL_0: 2;
A14: a
= (a1
+ 1);
(k
+
0 )
< (k
+ 1) by
XREAL_1: 6;
then k
< a by
A13,
XXREAL_0: 2;
then
A15: k
<= a1 by
A14,
NAT_1: 13;
((
scf r)
. a)
= ((
scf (1
/ (
frac r)))
. a1) by
A14,
Th37
.= ((
scf (n
/ m))
. a1) by
A6,
XCMPLX_1: 57
.= (fd
. a1) by
Th41
.=
0 by
A10,
A11,
A15,
Th17;
hence thesis;
end;
end;
given n such that
A16: for m st m
>= n holds ((
scf r)
. m)
=
0 ;
A17:
A[
0 ]
proof
let s be
Real;
assume for m st m
>=
0 holds ((
scf s)
. m)
=
0 ;
then for m holds ((
scf s)
. m)
=
0 ;
hence thesis by
Th34;
end;
for n holds
A[n] from
NAT_1:sch 2(
A17,
A1);
hence thesis by
A16;
end;
theorem ::
REAL_3:43
(for n holds ((
scf r)
. n)
<>
0 ) implies r is
irrational
proof
assume
A1: for n holds ((
scf r)
. n)
<>
0 ;
not ex n st for m st m
>= n holds ((
scf r)
. m)
=
0
proof
let n;
take n;
thus thesis by
A1;
end;
hence thesis by
Th42;
end;
begin
reserve l,n1,n2 for
Nat;
reserve s1,s2 for
Real_Sequence;
definition
let r be
Real;
::
REAL_3:def5
func
convergent_numerators (r) ->
Real_Sequence means
:
Def5: (it
.
0 )
= ((
scf r)
.
0 ) & (it
. 1)
= ((((
scf r)
. 1)
* ((
scf r)
.
0 ))
+ 1) & for n be
Nat holds (it
. (n
+ 2))
= ((((
scf r)
. (n
+ 2))
* (it
. (n
+ 1)))
+ (it
. n));
existence
proof
set s = (
scf r);
deffunc
U(
Nat,
Real,
Real) = (
In ((((s
. ($1
+ 2))
* $3)
+ $2),
REAL ));
reconsider s0 = (s
.
0 ), s1 = (((s
. 1)
* (s
.
0 ))
+ 1) as
Element of
REAL by
XREAL_0:def 1;
consider f be
Real_Sequence such that
A1: (f
.
0 )
= s0 & (f
. 1)
= s1 and
A2: for n be
Nat holds (f
. (n
+ 2))
=
U(n,.,.) from
RECDEF_2:sch 5;
take f;
thus (f
.
0 )
= (s
.
0 ) & (f
. 1)
= (((s
. 1)
* (s
.
0 ))
+ 1) by
A1;
let n;
(f
. (n
+ 2))
=
U(n,.,.) by
A2;
hence thesis;
end;
uniqueness
proof
set s = (
scf r);
deffunc
U(
Nat,
Real,
Real) = (
In ((((s
. ($1
+ 2))
* $3)
+ $2),
REAL ));
let f,g be
Real_Sequence such that
A3: (f
.
0 )
= (s
.
0 ) & (f
. 1)
= (((s
. 1)
* (s
.
0 ))
+ 1) and
A4: for k be
Nat holds (f
. (k
+ 2))
= (((s
. (k
+ 2))
* (f
. (k
+ 1)))
+ (f
. k)) and
A5: (g
.
0 )
= (s
.
0 ) & (g
. 1)
= (((s
. 1)
* (s
.
0 ))
+ 1) and
A6: for k be
Nat holds (g
. (k
+ 2))
= (((s
. (k
+ 2))
* (g
. (k
+ 1)))
+ (g
. k));
reconsider s0 = (s
.
0 ), s1 = (((s
. 1)
* (s
.
0 ))
+ 1) as
Element of
REAL by
XREAL_0:def 1;
A7: (g
.
0 )
= s0 & (g
. 1)
= s1 by
A5;
A8: for k be
Nat holds (g
. (k
+ 2))
=
U(k,.,.) by
A6;
A9: for k be
Nat holds (f
. (k
+ 2))
=
U(k,.,.) by
A4;
A10: (f
.
0 )
= s0 & (f
. 1)
= s1 by
A3;
f
= g from
RECDEF_2:sch 7(
A10,
A9,
A7,
A8);
hence thesis;
end;
end
reconsider jj = 1 as
Element of
REAL by
XREAL_0:def 1;
definition
let r be
Real;
set s = (
scf r);
::
REAL_3:def6
func
convergent_denominators (r) ->
Real_Sequence means
:
Def6: (it
.
0 )
= 1 & (it
. 1)
= ((
scf r)
. 1) & for n be
Nat holds (it
. (n
+ 2))
= ((((
scf r)
. (n
+ 2))
* (it
. (n
+ 1)))
+ (it
. n));
existence
proof
deffunc
U(
Nat,
Real,
Real) = (
In ((((s
. ($1
+ 2))
* $3)
+ $2),
REAL ));
consider f be
Real_Sequence such that
A1: (f
.
0 )
= jj & (f
. 1)
= (s
. 1) and
A2: for n be
Nat holds (f
. (n
+ 2))
=
U(n,.,.) from
RECDEF_2:sch 5;
take f;
thus (f
.
0 )
= 1 & (f
. 1)
= ((
scf r)
. 1) by
A1;
let n be
Nat;
(f
. (n
+ 2))
=
U(n,.,.) by
A2;
hence thesis;
end;
uniqueness
proof
deffunc
U(
Nat,
Real,
Real) = (
In ((((s
. ($1
+ 2))
* $3)
+ $2),
REAL ));
let f,g be
Real_Sequence such that
A3: (f
.
0 )
= 1 & (f
. 1)
= (s
. 1) and
A4: for k be
Nat holds (f
. (k
+ 2))
= (((s
. (k
+ 2))
* (f
. (k
+ 1)))
+ (f
. k)) and
A5: (g
.
0 )
= 1 & (g
. 1)
= (s
. 1) and
A6: for k be
Nat holds (g
. (k
+ 2))
= (((s
. (k
+ 2))
* (g
. (k
+ 1)))
+ (g
. k));
A7: (g
.
0 )
= jj & (g
. 1)
= (s
. 1) by
A5;
A8: for k be
Nat holds (g
. (k
+ 2))
=
U(k,.,.) by
A6;
A9: for k be
Nat holds (f
. (k
+ 2))
=
U(k,.,.) by
A4;
A10: (f
.
0 )
= jj & (f
. 1)
= (s
. 1) by
A3;
f
= g from
RECDEF_2:sch 7(
A10,
A9,
A7,
A8);
hence thesis;
end;
end
notation
let r be
Real;
synonym
c_n (r) for
convergent_numerators (r);
synonym
c_d (r) for
convergent_denominators (r);
end
theorem ::
REAL_3:44
Th44: ((
scf r)
.
0 )
>
0 implies for n holds ((
c_n r)
. n)
in
NAT
proof
set s1 = (
c_n r);
set s = (
scf r);
defpred
P[
Nat] means (s1
. $1)
in
NAT ;
A1: for n be
Nat st
P[n] &
P[(n
+ 1)] holds
P[(n
+ 2)]
proof
let n be
Nat;
assume that
A2: (s1
. n)
in
NAT and
A3: (s1
. (n
+ 1))
in
NAT ;
reconsider n2 = (s1
. (n
+ 1)) as
Element of
NAT by
A3;
reconsider n1 = (s1
. n) as
Element of
NAT by
A2;
(n
+ 2)
>= (
0
+ 1) by
XREAL_1: 7;
then
reconsider n3 = (s
. (n
+ 2)) as
Element of
NAT by
Th38,
INT_1: 3;
((n3
* n2)
+ n1)
in
NAT ;
hence thesis by
Def5;
end;
assume
A4: ((
scf r)
.
0 )
>
0 ;
A5:
P[1]
proof
reconsider n2 = (s
.
0 ) as
Element of
NAT by
A4,
INT_1: 3;
reconsider n1 = (s
. 1) as
Element of
NAT by
Th38,
INT_1: 3;
((n1
* n2)
+ 1)
in
NAT ;
hence thesis by
Def5;
end;
let n;
(s
.
0 )
in
NAT by
A4,
INT_1: 3;
then
A6:
P[
0 ] by
Def5;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A6,
A5,
A1);
hence thesis;
end;
theorem ::
REAL_3:45
Th45: ((
scf r)
.
0 )
>
0 implies for n holds ((
c_n r)
. n)
>
0
proof
assume
A1: ((
scf r)
.
0 )
>
0 ;
set s1 = (
c_n r);
set s = (
scf r);
defpred
P[
Nat] means (s1
. $1)
>
0 ;
(s1
. 1)
= (((s
. 1)
* (s
.
0 ))
+ 1) & (s
. 1)
>=
0 by
Def5,
Th38;
then
A2:
P[1] by
A1;
let n;
A3: for n be
Nat st
P[n] &
P[(n
+ 1)] holds
P[(n
+ 2)]
proof
let n be
Nat;
assume
A4: (s1
. n)
>
0 & (s1
. (n
+ 1))
>
0 ;
(n
+ 2)
> (1
+
0 ) by
XREAL_1: 8;
then
A5: (s
. (n
+ 2))
>=
0 by
Th38;
(s1
. (n
+ 2))
= (((s
. (n
+ 2))
* (s1
. (n
+ 1)))
+ (s1
. n)) by
Def5;
hence thesis by
A5,
A4;
end;
A6:
P[
0 ] by
A1,
Def5;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A6,
A2,
A3);
hence thesis;
end;
theorem ::
REAL_3:46
((
scf r)
.
0 )
>
0 implies for n holds ((
c_n r)
. (n
+ 2))
> (((
scf r)
. (n
+ 2))
* ((
c_n r)
. (n
+ 1)))
proof
assume
A1: ((
scf r)
.
0 )
>
0 ;
let n;
set s = (
scf r);
set s1 = (
c_n r);
set m = ((s
. (n
+ 2))
* (s1
. (n
+ 1)));
((s1
. (n
+ 2))
- m)
= ((m
+ (s1
. n))
- m) by
Def5;
then ((s1
. (n
+ 2))
- ((s
. (n
+ 2))
* (s1
. (n
+ 1))))
>
0 by
A1,
Th45;
then (((s1
. (n
+ 2))
- m)
+ m)
> (
0
+ m) by
XREAL_1: 6;
hence thesis;
end;
theorem ::
REAL_3:47
((
scf r)
.
0 )
>
0 implies for n st n1
= ((
c_n r)
. (n
+ 1)) & n2
= ((
c_n r)
. n) holds (n1
gcd n2)
= 1
proof
set s1 = (
c_n r);
set s = (
scf r);
defpred
X[
Nat] means for n1, n2 st n1
= (s1
. ($1
+ 1)) & n2
= (s1
. $1) holds (n1
gcd n2)
= 1;
assume
A1: ((
scf r)
.
0 )
>
0 ;
A2: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
reconsider n3 = (s1
. (k
+ 2)) as
Element of
NAT by
A1,
Th44;
reconsider n2 = (s1
. k) as
Element of
NAT by
A1,
Th44;
(k
+ 2)
>= (
0
+ 1) by
XREAL_1: 7;
then
reconsider n4 = (s
. (k
+ 2)) as
Element of
NAT by
Th38,
INT_1: 3;
reconsider n1 = (s1
. (k
+ 1)) as
Element of
NAT by
A1,
Th44;
assume for n1, n2 st n1
= (s1
. (k
+ 1)) & n2
= (s1
. k) holds (n1
gcd n2)
= 1;
then
A3: (n1
gcd n2)
= 1;
n3
= ((n4
* n1)
+ n2) by
Def5;
hence thesis by
A3,
EULER_1: 8;
end;
A4:
X[
0 ]
proof
reconsider u = (s
. 1) as
Element of
NAT by
Th38,
INT_1: 3;
let n1, n2 such that
A5: n1
= (s1
. (
0
+ 1)) and
A6: n2
= (s1
.
0 );
n1
= ((u
* (s
.
0 ))
+ 1) by
A5,
Def5;
then
A7: n1
= ((u
* n2)
+ 1) by
A6,
Def5;
(1
gcd n2)
= 1 by
NEWTON: 51;
hence thesis by
A7,
EULER_1: 8;
end;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
theorem ::
REAL_3:48
((
scf r)
.
0 )
>
0 & (for n holds ((
scf r)
. n)
<>
0 ) implies for n holds ((
c_n r)
. n)
>= (
tau
|^ n)
proof
assume that
A1: ((
scf r)
.
0 )
>
0 and
A2: for n holds ((
scf r)
. n)
<>
0 ;
set s = (
scf r);
A3: (s
.
0 )
>= (
0
+ 1) by
A1,
INT_1: 7;
set s1 = (
c_n r);
defpred
P[
Nat] means (s1
. $1)
>= (
tau
|^ $1);
A4: for n be
Nat st
P[n] &
P[(n
+ 1)] holds
P[(n
+ 2)]
proof
let n be
Nat;
assume that
A5: (s1
. n)
>= (
tau
|^ n) and
A6: (s1
. (n
+ 1))
>= (
tau
|^ (n
+ 1));
A7: ((
tau
|^ (n
+ 1))
+ (
tau
|^ n))
= (((((1
+ (
sqrt 5))
/ 2)
|^ n)
* ((1
+ (
sqrt 5))
/ 2))
+ (((1
+ (
sqrt 5))
/ 2)
|^ n)) by
FIB_NUM:def 1,
NEWTON: 6
.= ((((1
+ (
sqrt 5))
/ 2)
|^ n)
* ((6
+ (2
* (
sqrt 5)))
/ 4));
(
sqrt 5)
>=
0 by
SQUARE_1:def 2;
then ((1
+ (
sqrt 5))
/ 2)
>
0 by
XREAL_1: 139;
then
A8: (
tau
|^ (n
+ 1))
>
0 by
FIB_NUM:def 1,
PREPOWER: 6;
A9: (
tau
|^ (n
+ 2))
= ((((1
+ (
sqrt 5))
/ 2)
|^ n)
* (((1
+ (
sqrt 5))
/ 2)
|^ 2)) by
FIB_NUM:def 1,
NEWTON: 8
.= ((((1
+ (
sqrt 5))
/ 2)
|^ n)
* (((1
+ (
sqrt 5))
/ 2)
^2 )) by
WSIERP_1: 1
.= ((((1
+ (
sqrt 5))
/ 2)
|^ n)
* ((((1
^2 )
+ ((2
* 1)
* (
sqrt 5)))
+ ((
sqrt 5)
^2 ))
/ 4))
.= ((((1
+ (
sqrt 5))
/ 2)
|^ n)
* (((1
+ (2
* (
sqrt 5)))
+ 5)
/ 4)) by
SQUARE_1:def 2
.= ((((1
+ (
sqrt 5))
/ 2)
|^ n)
* ((6
+ (2
* (
sqrt 5)))
/ 4));
A10: (s1
. ((n
+ 1)
+ 1))
= (((s
. (n
+ 2))
* (s1
. (n
+ 1)))
+ (s1
. n)) by
Def5;
(n
+ 2)
>= (
0
+ 1) by
XREAL_1: 7;
then (s
. (n
+ 2))
>= 1 by
A2,
Th40;
then ((s
. (n
+ 2))
* (s1
. (n
+ 1)))
>= (1
* (
tau
|^ (n
+ 1))) by
A6,
A8,
XREAL_1: 66;
hence thesis by
A5,
A10,
A7,
A9,
XREAL_1: 7;
end;
(s1
.
0 )
= (s
.
0 ) by
Def5;
then
A11:
P[
0 ] by
A3,
NEWTON: 4;
(s
. 1)
>= 1 by
A2,
Th40;
then ((s
. 1)
* (s
.
0 ))
>= 1 by
A3,
XREAL_1: 159;
then
A12: (((s
. 1)
* (s
.
0 ))
+ 1)
>= (1
+ 1) by
XREAL_1: 6;
let n;
(
sqrt 5)
< (
sqrt (3
^2 )) by
SQUARE_1: 27;
then (
sqrt 5)
< 3 by
SQUARE_1: 22;
then (1
+ (
sqrt 5))
< (1
+ 3) by
XREAL_1: 8;
then
A13: ((1
+ (
sqrt 5))
/ 2)
< (4
/ 2) by
XREAL_1: 74;
(s1
. 1)
= (((s
. 1)
* (s
.
0 ))
+ 1) & (((1
+ (
sqrt 5))
/ 2)
|^ 1)
= ((1
+ (
sqrt 5))
/ 2) by
Def5;
then
A14:
P[1] by
A12,
A13,
FIB_NUM:def 1,
XXREAL_0: 2;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A11,
A14,
A4);
hence thesis;
end;
theorem ::
REAL_3:49
((
scf r)
.
0 )
>
0 & (for n holds ((
scf r)
. n)
<= b) implies for n holds ((
c_n r)
. n)
<= (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
proof
assume that
A1: ((
scf r)
.
0 )
>
0 and
A2: for n holds ((
scf r)
. n)
<= b;
set s1 = (
c_n r);
set s = (
scf r);
A3: (s
.
0 )
<= b by
A2;
defpred
P[
Nat] means (s1
. $1)
<= (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ ($1
+ 1));
A4: for n be
Nat st
P[n] &
P[(n
+ 1)] holds
P[(n
+ 2)]
proof
let n be
Nat;
assume that
A5: (s1
. n)
<= (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1)) and
A6: (s1
. (n
+ 1))
<= (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ ((n
+ 1)
+ 1));
(n
+ 2)
>= (
0
+ 1) by
XREAL_1: 7;
then
A7: (s
. (n
+ 2))
>=
0 by
Th38;
(s
. (n
+ 2))
<= b & (s1
. (n
+ 1))
>
0 by
A1,
A2,
Th45;
then
A8: ((s
. (n
+ 2))
* (s1
. (n
+ 1)))
<= (b
* (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ ((n
+ 1)
+ 1))) by
A6,
A7,
XREAL_1: 66;
A9: ((b
* (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ ((n
+ 1)
+ 1)))
+ (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1)))
= ((b
* ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* ((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)))
+ (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))) by
NEWTON: 6
.= ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* ((((b
^2 )
+ (b
* (
sqrt ((b
^2 )
+ 4))))
+ 2)
/ 2));
A10: (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ ((n
+ 2)
+ 1))
= (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ ((n
+ 1)
+ 2))
.= ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ 2)) by
NEWTON: 8
.= ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
^2 )) by
WSIERP_1: 1
.= ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* ((((b
^2 )
+ ((2
* b)
* (
sqrt ((b
^2 )
+ 4))))
+ ((
sqrt ((b
^2 )
+ 4))
^2 ))
/ (2
* 2)))
.= ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* ((((b
^2 )
+ ((2
* b)
* (
sqrt ((b
^2 )
+ 4))))
+ ((b
^2 )
+ 4))
/ (2
* 2))) by
SQUARE_1:def 2
.= ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* ((((b
^2 )
+ (b
* (
sqrt ((b
^2 )
+ 4))))
+ 2)
/ 2));
(s1
. ((n
+ 1)
+ 1))
= (((s
. (n
+ 2))
* (s1
. (n
+ 1)))
+ (s1
. n)) by
Def5;
hence thesis by
A5,
A8,
A9,
A10,
XREAL_1: 7;
end;
let n;
((b
^2 )
+ 4)
> (b
^2 ) by
XREAL_1: 39;
then (
sqrt ((b
^2 )
+ 4))
> (
sqrt (b
^2 )) by
SQUARE_1: 27;
then
A11: (
sqrt ((b
^2 )
+ 4))
> b by
SQUARE_1: 22;
then (b
+ (
sqrt ((b
^2 )
+ 4)))
> (b
+ b) by
XREAL_1: 8;
then ((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
> ((2
* b)
/ 2) by
XREAL_1: 74;
then
A12: (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (
0
+ 1))
> b;
A13: (s
. 1)
>=
0 by
Th38;
A14: (s1
. 1)
= (((s
. 1)
* (s
.
0 ))
+ 1) by
Def5;
(s
. 1)
<= b by
A2;
then ((s
. 1)
* (s
.
0 ))
<= (b
^2 ) by
A1,
A3,
A13,
XREAL_1: 66;
then
A15: (s1
. 1)
<= ((b
^2 )
+ 1) by
A14,
XREAL_1: 6;
(b
* (
sqrt ((b
^2 )
+ 4)))
>= (b
* b) by
A11,
XREAL_1: 64;
then ((b
^2 )
+ (b
* (
sqrt ((b
^2 )
+ 4))))
>= ((b
^2 )
+ (b
* b)) by
XREAL_1: 6;
then (((b
^2 )
+ (b
* (
sqrt ((b
^2 )
+ 4))))
+ 2)
>= (((b
^2 )
+ (b
^2 ))
+ 2) by
XREAL_1: 6;
then
A16: ((((b
^2 )
+ (b
* (
sqrt ((b
^2 )
+ 4))))
+ 2)
/ 2)
>= ((2
* ((b
^2 )
+ 1))
/ 2) by
XREAL_1: 72;
(((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (1
+ 1))
= (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
^2 ) by
WSIERP_1: 1
.= ((((b
^2 )
+ ((2
* b)
* (
sqrt ((b
^2 )
+ 4))))
+ ((
sqrt ((b
^2 )
+ 4))
^2 ))
/ (2
* 2))
.= ((((b
^2 )
+ ((2
* b)
* (
sqrt ((b
^2 )
+ 4))))
+ ((b
^2 )
+ 4))
/ (2
* 2)) by
SQUARE_1:def 2
.= ((((b
^2 )
+ (b
* (
sqrt ((b
^2 )
+ 4))))
+ 2)
/ 2);
then
A17:
P[1] by
A15,
A16,
XXREAL_0: 2;
(s1
.
0 )
= (s
.
0 ) by
Def5;
then
A18:
P[
0 ] by
A3,
A12,
XXREAL_0: 2;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A18,
A17,
A4);
hence thesis;
end;
theorem ::
REAL_3:50
Th50: ((
c_d r)
. n)
in
NAT
proof
set s = (
scf r);
set s2 = (
c_d r);
defpred
P[
Nat] means (s2
. $1)
in
NAT ;
(s2
.
0 )
= 1 by
Def6;
then
A1:
P[
0 ];
A2: for n be
Nat st
P[n] &
P[(n
+ 1)] holds
P[(n
+ 2)]
proof
let n be
Nat;
assume that
A3: (s2
. n)
in
NAT and
A4: (s2
. (n
+ 1))
in
NAT ;
reconsider n2 = (s2
. (n
+ 1)) as
Element of
NAT by
A4;
reconsider n1 = (s2
. n) as
Element of
NAT by
A3;
(n
+ 2)
>= (
0
+ 1) by
XREAL_1: 7;
then
reconsider n3 = (s
. (n
+ 2)) as
Element of
NAT by
Th38,
INT_1: 3;
((n3
* n2)
+ n1)
in
NAT ;
hence thesis by
Def6;
end;
(s2
. 1)
= (s
. 1) by
Def6;
then
A5:
P[1] by
Th38,
INT_1: 3;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A1,
A5,
A2);
hence thesis;
end;
theorem ::
REAL_3:51
Th51: ((
c_d r)
. n)
>=
0
proof
set s = (
scf r);
set s1 = (
c_d r);
defpred
P[
Nat] means (s1
. $1)
>=
0 ;
A1: for n be
Nat st
P[n] &
P[(n
+ 1)] holds
P[(n
+ 2)]
proof
let n be
Nat;
assume
A2: (s1
. n)
>=
0 ;
A3: (s1
. (n
+ 2))
= (((s
. (n
+ 2))
* (s1
. (n
+ 1)))
+ (s1
. n)) by
Def6;
(n
+ 2)
> (1
+
0 ) by
XREAL_1: 8;
then
A4: (s
. (n
+ 2))
>=
0 by
Th38;
assume (s1
. (n
+ 1))
>=
0 ;
hence thesis by
A4,
A3,
A2;
end;
(s
. 1)
>=
0 by
Th38;
then
A5:
P[1] by
Def6;
A6:
P[
0 ] by
Def6;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A6,
A5,
A1);
hence thesis;
end;
theorem ::
REAL_3:52
Th52: ((
scf r)
. 1)
>
0 implies for n holds ((
c_d r)
. n)
>
0
proof
set s = (
scf r);
set s1 = (
c_d r);
defpred
P[
Nat] means (s1
. $1)
>
0 ;
assume ((
scf r)
. 1)
>
0 ;
then
A1:
P[1] by
Def6;
let n;
A2: for n be
Nat st
P[n] &
P[(n
+ 1)] holds
P[(n
+ 2)]
proof
let n be
Nat;
assume
A3: (s1
. n)
>
0 ;
A4: (s1
. (n
+ 2))
= (((s
. (n
+ 2))
* (s1
. (n
+ 1)))
+ (s1
. n)) by
Def6;
(n
+ 2)
> (1
+
0 ) by
XREAL_1: 8;
then
A5: (s
. (n
+ 2))
>=
0 by
Th38;
assume (s1
. (n
+ 1))
>
0 ;
hence thesis by
A5,
A4,
A3;
end;
A6:
P[
0 ] by
Def6;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A6,
A1,
A2);
hence thesis;
end;
theorem ::
REAL_3:53
((
c_d r)
. (n
+ 2))
>= (((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
proof
set s = (
scf r);
set s1 = (
c_d r);
set m = ((s
. (n
+ 2))
* (s1
. (n
+ 1)));
((s1
. (n
+ 2))
- ((s
. (n
+ 2))
* (s1
. (n
+ 1))))
= ((((s
. (n
+ 2))
* (s1
. (n
+ 1)))
+ (s1
. n))
- ((s
. (n
+ 2))
* (s1
. (n
+ 1)))) by
Def6;
then ((s1
. (n
+ 2))
- ((s
. (n
+ 2))
* (s1
. (n
+ 1))))
>=
0 by
Th51;
then (((s1
. (n
+ 2))
- m)
+ m)
>= (
0
+ m) by
XREAL_1: 6;
hence thesis;
end;
theorem ::
REAL_3:54
((
scf r)
. 1)
>
0 implies for n holds ((
c_d r)
. (n
+ 2))
> (((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
proof
assume
A1: ((
scf r)
. 1)
>
0 ;
let n;
set s1 = (
c_d r);
set s = (
scf r);
set m = ((s
. (n
+ 2))
* (s1
. (n
+ 1)));
((s1
. (n
+ 2))
- ((s
. (n
+ 2))
* (s1
. (n
+ 1))))
= ((((s
. (n
+ 2))
* (s1
. (n
+ 1)))
+ (s1
. n))
- ((s
. (n
+ 2))
* (s1
. (n
+ 1)))) by
Def6;
then ((s1
. (n
+ 2))
- ((s
. (n
+ 2))
* (s1
. (n
+ 1))))
>
0 by
A1,
Th52;
then (((s1
. (n
+ 2))
- m)
+ m)
> (
0
+ m) by
XREAL_1: 6;
hence thesis;
end;
theorem ::
REAL_3:55
(for n holds ((
scf r)
. n)
>
0 ) implies for n st n
>= 1 holds (1
/ (((
c_d r)
. n)
* ((
c_d r)
. (n
+ 1))))
< (1
/ (((
scf r)
. (n
+ 1))
* (((
c_d r)
. n)
^2 )))
proof
set s = (
scf r), s2 = (
c_d r);
defpred
X[
Nat] means (1
/ ((s2
. $1)
* (s2
. ($1
+ 1))))
< (1
/ ((s
. ($1
+ 1))
* ((s2
. $1)
^2 )));
assume
A1: for n holds ((
scf r)
. n)
>
0 ;
then
A2: (s
. 2)
>
0 ;
A3: ((
scf r)
. 1)
>
0 by
A1;
A4: for n be
Nat st n
>= 1 &
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume that n
>= 1 and (1
/ ((s2
. n)
* (s2
. (n
+ 1))))
< (1
/ (((
scf r)
. (n
+ 1))
* ((s2
. n)
^2 )));
A5: (s2
. (n
+ 1))
>
0 by
A3,
Th52;
then
A6: ((s2
. (n
+ 1))
^2 )
>
0 by
SQUARE_1: 12;
(s
. (n
+ 2))
>
0 by
A1;
then
A7: ((s
. (n
+ 2))
* ((s2
. (n
+ 1))
^2 ))
>
0 by
A6,
XREAL_1: 129;
(s2
. n)
>
0 by
A3,
Th52;
then
A8: ((s2
. (n
+ 1))
* (s2
. n))
>
0 by
A5,
XREAL_1: 129;
((s2
. (n
+ 1))
* (s2
. ((n
+ 1)
+ 1)))
= ((s2
. (n
+ 1))
* (((s
. (n
+ 2))
* (s2
. (n
+ 1)))
+ (s2
. n))) by
Def6
.= (((s
. (n
+ 2))
* ((s2
. (n
+ 1))
^2 ))
+ ((s2
. (n
+ 1))
* (s2
. n)));
hence thesis by
A8,
A7,
XREAL_1: 29,
XREAL_1: 76;
end;
A9: (s
. 1)
>
0 by
A1;
then ((s
. 1)
^2 )
>
0 by
SQUARE_1: 12;
then ((s
. 2)
* ((s
. 1)
^2 ))
>
0 by
A2,
XREAL_1: 129;
then
A10: (1
/ (((s
. 2)
* ((s
. 1)
^2 ))
+ (s
. 1)))
< (1
/ ((s
. 2)
* ((s
. 1)
^2 ))) by
A9,
XREAL_1: 29,
XREAL_1: 76;
let n;
(1
/ ((s2
. 1)
* (s2
. (1
+ 1))))
= (1
/ ((s2
. 1)
* (((s
. (
0
+ 2))
* (s2
. (
0
+ 1)))
+ (s2
.
0 )))) by
Def6
.= (1
/ ((s2
. 1)
* (((s
. 2)
* (s
. 1))
+ (s2
.
0 )))) by
Def6
.= (1
/ ((s
. 1)
* (((s
. 2)
* (s
. 1))
+ (s2
.
0 )))) by
Def6
.= (1
/ ((s
. 1)
* (((s
. 2)
* (s
. 1))
+ 1))) by
Def6
.= (1
/ (((s
. 2)
* ((s
. 1)
^2 ))
+ (s
. 1)));
then
A11:
X[1] by
A10,
Def6;
for n be
Nat st n
>= 1 holds
X[n] from
NAT_1:sch 8(
A11,
A4);
hence thesis;
end;
theorem ::
REAL_3:56
(for n holds ((
scf r)
. n)
<= b) implies for n holds ((
c_d r)
. (n
+ 1))
<= (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
proof
set s = (
scf r);
set s2 = (
c_d r);
defpred
P[
Nat] means (s2
. ($1
+ 1))
<= (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ ($1
+ 1));
assume
A1: for n holds ((
scf r)
. n)
<= b;
then
A2: (s
. 1)
<= b;
A3: (s
. 2)
<= b by
A1;
(s
. 2)
>=
0 & (s
. 1)
>=
0 by
Th38;
then
A4: ((s
. 2)
* (s
. 1))
<= (b
^2 ) by
A2,
A3,
XREAL_1: 66;
(s2
. (1
+ 1))
= (((s
. (
0
+ 2))
* (s2
. (
0
+ 1)))
+ (s2
.
0 )) by
Def6
.= (((s
. 2)
* (s2
. 1))
+ 1) by
Def6
.= (((s
. 2)
* (s
. 1))
+ 1) by
Def6;
then
A5: (s2
. (1
+ 1))
<= ((b
^2 )
+ 1) by
A4,
XREAL_1: 6;
let n;
((b
^2 )
+ 4)
> (b
^2 ) by
XREAL_1: 39;
then (
sqrt ((b
^2 )
+ 4))
> (
sqrt (b
^2 )) by
SQUARE_1: 27;
then
A6: (
sqrt ((b
^2 )
+ 4))
> b by
SQUARE_1: 22;
then (b
+ (
sqrt ((b
^2 )
+ 4)))
> (b
+ b) by
XREAL_1: 8;
then ((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
> ((2
* b)
/ 2) by
XREAL_1: 74;
then
A7: (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (
0
+ 1))
> b;
A8: for n be
Nat st
P[n] &
P[(n
+ 1)] holds
P[(n
+ 2)]
proof
let n be
Nat;
assume that
A9: (s2
. (n
+ 1))
<= (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1)) and
A10: (s2
. ((n
+ 1)
+ 1))
<= (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ ((n
+ 1)
+ 1));
A11: ((b
* (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ ((n
+ 1)
+ 1)))
+ (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1)))
= ((b
* ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* ((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)))
+ (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))) by
NEWTON: 6
.= ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* ((((b
^2 )
+ (b
* (
sqrt ((b
^2 )
+ 4))))
+ 2)
/ 2));
(n
+ 3)
>= (
0
+ 1) by
XREAL_1: 7;
then
A12: (s
. (n
+ 3))
>=
0 by
Th38;
A13: (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ ((n
+ 2)
+ 1))
= (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ ((n
+ 1)
+ 2))
.= ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ 2)) by
NEWTON: 8
.= ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
^2 )) by
WSIERP_1: 1
.= ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* ((((b
^2 )
+ ((2
* b)
* (
sqrt ((b
^2 )
+ 4))))
+ ((
sqrt ((b
^2 )
+ 4))
^2 ))
/ (2
* 2)))
.= ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* ((((b
^2 )
+ ((2
* b)
* (
sqrt ((b
^2 )
+ 4))))
+ ((b
^2 )
+ 4))
/ (2
* 2))) by
SQUARE_1:def 2
.= ((((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
* ((((b
^2 )
+ (b
* (
sqrt ((b
^2 )
+ 4))))
+ 2)
/ 2));
A14: (s2
. ((n
+ 2)
+ 1))
= (((s
. ((n
+ 1)
+ 2))
* (s2
. ((n
+ 1)
+ 1)))
+ (s2
. (n
+ 1))) by
Def6
.= (((s
. (n
+ 3))
* (s2
. ((n
+ 1)
+ 1)))
+ (s2
. (n
+ 1)));
(s
. (n
+ 3))
<= b & (s2
. ((n
+ 1)
+ 1))
>=
0 by
A1,
Th51;
then ((s
. (n
+ 3))
* (s2
. ((n
+ 1)
+ 1)))
<= (b
* (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ ((n
+ 1)
+ 1))) by
A10,
A12,
XREAL_1: 66;
hence thesis by
A9,
A14,
A11,
A13,
XREAL_1: 7;
end;
(b
* (
sqrt ((b
^2 )
+ 4)))
>= (b
* b) by
A6,
XREAL_1: 64;
then ((b
^2 )
+ (b
* (
sqrt ((b
^2 )
+ 4))))
>= ((b
^2 )
+ (b
* b)) by
XREAL_1: 6;
then (((b
^2 )
+ (b
* (
sqrt ((b
^2 )
+ 4))))
+ 2)
>= (((b
^2 )
+ (b
^2 ))
+ 2) by
XREAL_1: 6;
then
A15: ((((b
^2 )
+ (b
* (
sqrt ((b
^2 )
+ 4))))
+ 2)
/ 2)
>= ((2
* ((b
^2 )
+ 1))
/ 2) by
XREAL_1: 72;
(((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
|^ (1
+ 1))
= (((b
+ (
sqrt ((b
^2 )
+ 4)))
/ 2)
^2 ) by
WSIERP_1: 1
.= ((((b
^2 )
+ ((2
* b)
* (
sqrt ((b
^2 )
+ 4))))
+ ((
sqrt ((b
^2 )
+ 4))
^2 ))
/ (2
* 2))
.= ((((b
^2 )
+ ((2
* b)
* (
sqrt ((b
^2 )
+ 4))))
+ ((b
^2 )
+ 4))
/ (2
* 2)) by
SQUARE_1:def 2
.= ((((b
^2 )
+ (b
* (
sqrt ((b
^2 )
+ 4))))
+ 2)
/ 2);
then
A16:
P[1] by
A5,
A15,
XXREAL_0: 2;
(s2
. (
0
+ 1))
= (s
. 1) by
Def6;
then
A17:
P[
0 ] by
A2,
A7,
XXREAL_0: 2;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A17,
A16,
A8);
hence thesis;
end;
theorem ::
REAL_3:57
n1
= ((
c_d r)
. (n
+ 1)) & n2
= ((
c_d r)
. n) implies (n1
gcd n2)
= 1
proof
set s = (
scf r);
set s2 = (
c_d r);
defpred
X[
Nat] means for n1, n2 st n1
= (s2
. ($1
+ 1)) & n2
= (s2
. $1) holds (n1
gcd n2)
= 1;
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
(k
+ 2)
>= (
0
+ 1) by
XREAL_1: 7;
then
reconsider n4 = (s
. (k
+ 2)) as
Element of
NAT by
Th38,
INT_1: 3;
reconsider n3 = (s2
. (k
+ 2)) as
Element of
NAT by
Th50;
reconsider n2 = (s2
. k) as
Element of
NAT by
Th50;
reconsider n1 = (s2
. (k
+ 1)) as
Element of
NAT by
Th50;
assume for n1, n2 st n1
= (s2
. (k
+ 1)) & n2
= (s2
. k) holds (n1
gcd n2)
= 1;
then
A2: (n1
gcd n2)
= 1;
n3
= ((n4
* n1)
+ n2) by
Def6;
hence thesis by
A2,
EULER_1: 8;
end;
A3:
X[
0 ]
proof
let n1, n2 such that n1
= (s2
. (
0
+ 1)) and
A4: n2
= (s2
.
0 );
(n1
gcd 1)
= 1 by
NEWTON: 51;
hence thesis by
A4,
Def6;
end;
for n holds
X[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
REAL_3:58
Th58: (for n holds ((
scf r)
. n)
>
0 ) implies for n holds (((
c_d r)
. (n
+ 1))
/ ((
c_d r)
. n))
>= (1
/ ((
scf r)
. (n
+ 2)))
proof
set s = (
scf r);
set s1 = (
c_d r);
defpred
X[
Nat] means ((s1
. ($1
+ 1))
/ (s1
. $1))
>= (1
/ (s
. ($1
+ 2)));
assume
A1: for n holds ((
scf r)
. n)
>
0 ;
then
A2: ((
scf r)
. 1)
<>
0 ;
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((s1
. (n
+ 1))
/ (s1
. n))
>= (1
/ (s
. (n
+ 2)));
set r = (s1
. (n
+ 1));
A4: (s
. 1)
>
0 by
A1;
then
A5: (s1
. (n
+ 1))
>
0 by
Th52;
(n
+ 3)
>= (
0
+ 1) & (s
. (n
+ 3))
<>
0 by
A1,
XREAL_1: 7;
then (s
. (n
+ 3))
>= 1 by
Th40;
then
A6: (1
/ (s
. (n
+ 3)))
<= (1
/ 1) by
XREAL_1: 118;
(n
+ 2)
>= (
0
+ 1) & (s
. (n
+ 2))
<>
0 by
A1,
XREAL_1: 7;
then
A7: (s
. (n
+ 2))
>= 1 by
Th40;
A8: (s1
. n)
>
0 by
A4,
Th52;
((s1
. (n
+ 2))
/ (s1
. (n
+ 1)))
= ((((s
. (n
+ 2))
* r)
+ (s1
. n))
/ r) by
Def6
.= ((((s
. (n
+ 2))
* r)
/ r)
+ ((s1
. n)
/ r))
.= (((s
. (n
+ 2))
* (r
/ r))
+ ((s1
. n)
/ r))
.= ((s
. (n
+ 2))
+ ((s1
. n)
/ r)) by
A5,
XCMPLX_1: 88;
then ((s1
. (n
+ 2))
/ (s1
. (n
+ 1)))
>= (1
+
0 ) by
A5,
A8,
A7,
XREAL_1: 7;
hence thesis by
A6,
XXREAL_0: 2;
end;
((
scf r)
. 2)
<>
0 by
A1;
then (s
. (
0
+ 2))
>= 1 by
Th40;
then
A9: (1
/ (s
. (
0
+ 2)))
<= (1
/ 1) by
XREAL_1: 118;
(s1
.
0 )
= 1 & (s1
. 1)
= (s
. 1) by
Def6;
then ((s1
. (
0
+ 1))
/ (s1
.
0 ))
>= 1 by
A2,
Th40;
then
A10:
X[
0 ] by
A9,
XXREAL_0: 2;
for n holds
X[n] from
NAT_1:sch 2(
A10,
A3);
hence thesis;
end;
theorem ::
REAL_3:59
(for n holds ((
scf r)
. n)
>
0 ) implies for n holds ((
c_d r)
. (n
+ 2))
<= ((2
* ((
scf r)
. (n
+ 2)))
* ((
c_d r)
. (n
+ 1)))
proof
assume
A1: for n holds ((
scf r)
. n)
>
0 ;
let n;
set s = (
scf r);
set s1 = (
c_d r);
A2: (s
. (n
+ 2))
>
0 by
A1;
(s
. 1)
>
0 by
A1;
then
A3: (s1
. n)
>
0 by
Th52;
A4: ((s1
. (n
+ 1))
/ (s1
. n))
>= (1
/ (s
. (n
+ 2))) by
A1,
Th58;
(((s1
. (n
+ 1))
/ (s1
. n))
* (s1
. n))
= (((s1
. n)
/ (s1
. n))
* (s1
. (n
+ 1)))
.= (s1
. (n
+ 1)) by
A3,
XCMPLX_1: 88;
then
A5: (s1
. (n
+ 1))
>= ((s1
. n)
/ (s
. (n
+ 2))) by
A4,
A3,
XREAL_1: 64;
(((s1
. n)
/ (s
. (n
+ 2)))
* (s
. (n
+ 2)))
= (((s
. (n
+ 2))
/ (s
. (n
+ 2)))
* (s1
. n))
.= (s1
. n) by
A2,
XCMPLX_1: 88;
then ((s1
. (n
+ 1))
* (s
. (n
+ 2)))
>= (s1
. n) by
A5,
A2,
XREAL_1: 64;
then (((s1
. (n
+ 1))
* (s
. (n
+ 2)))
+ ((s1
. (n
+ 1))
* (s
. (n
+ 2))))
>= ((s1
. n)
+ ((s1
. (n
+ 1))
* (s
. (n
+ 2)))) by
XREAL_1: 6;
hence thesis by
Def6;
end;
theorem ::
REAL_3:60
(for n holds ((
scf r)
. n)
<>
0 ) implies for n holds (1
/ (((
scf r)
. (n
+ 1))
* (((
c_d r)
. n)
^2 )))
<= (1
/ (((
c_d r)
. n)
^2 ))
proof
assume
A1: for n holds ((
scf r)
. n)
<>
0 ;
let n;
set s = (
scf r);
set s2 = (
c_d r);
(s
. 1)
<>
0 by
A1;
then (s
. 1)
>
0 by
Th38;
then
A2: (s2
. n)
>
0 by
Th52;
(n
+ 1)
>= (1
+
0 ) & (s
. (n
+ 1))
<>
0 by
A1,
XREAL_1: 7;
then ((s
. (n
+ 1))
* ((s2
. n)
^2 ))
>= (1
* ((s2
. n)
^2 )) by
A2,
Th40,
XREAL_1: 64;
hence thesis by
A2,
SQUARE_1: 12,
XREAL_1: 118;
end;
theorem ::
REAL_3:61
(for n holds ((
scf r)
. n)
<>
0 ) implies for n holds ((
c_d r)
. (n
+ 1))
>= (
tau
|^ n)
proof
set s2 = (
c_d r);
set s = (
scf r);
defpred
P[
Nat] means (s2
. ($1
+ 1))
>= (
tau
|^ $1);
(
sqrt 5)
< (
sqrt (3
^2 )) by
SQUARE_1: 27;
then (
sqrt 5)
< 3 by
SQUARE_1: 22;
then (1
+ (
sqrt 5))
< (1
+ 3) by
XREAL_1: 8;
then
A1: (((1
+ (
sqrt 5))
/ 2)
|^ 1)
= ((1
+ (
sqrt 5))
/ 2) & ((1
+ (
sqrt 5))
/ 2)
< (4
/ 2) by
XREAL_1: 74;
assume
A2: for n holds ((
scf r)
. n)
<>
0 ;
then
A3: (s
. 1)
>= 1 by
Th40;
then (s2
. (
0
+ 1))
>= 1 by
Def6;
then
A4:
P[
0 ] by
NEWTON: 4;
let n;
A5: for n be
Nat st
P[n] &
P[(n
+ 1)] holds
P[(n
+ 2)]
proof
let n be
Nat;
assume that
A6: (s2
. (n
+ 1))
>= (
tau
|^ n) and
A7: (s2
. ((n
+ 1)
+ 1))
>= (
tau
|^ (n
+ 1));
A8: ((
tau
|^ (n
+ 1))
+ (
tau
|^ n))
= (((((1
+ (
sqrt 5))
/ 2)
|^ n)
* ((1
+ (
sqrt 5))
/ 2))
+ (((1
+ (
sqrt 5))
/ 2)
|^ n)) by
FIB_NUM:def 1,
NEWTON: 6
.= ((((1
+ (
sqrt 5))
/ 2)
|^ n)
* ((6
+ (2
* (
sqrt 5)))
/ 4));
(
sqrt 5)
>=
0 by
SQUARE_1:def 2;
then ((1
+ (
sqrt 5))
/ 2)
>
0 by
XREAL_1: 139;
then
A9: (
tau
|^ (n
+ 1))
>
0 by
FIB_NUM:def 1,
PREPOWER: 6;
A10: (
tau
|^ (n
+ 2))
= ((((1
+ (
sqrt 5))
/ 2)
|^ n)
* (((1
+ (
sqrt 5))
/ 2)
|^ 2)) by
FIB_NUM:def 1,
NEWTON: 8
.= ((((1
+ (
sqrt 5))
/ 2)
|^ n)
* (((1
+ (
sqrt 5))
/ 2)
^2 )) by
WSIERP_1: 1
.= ((((1
+ (
sqrt 5))
/ 2)
|^ n)
* ((((1
^2 )
+ ((2
* 1)
* (
sqrt 5)))
+ ((
sqrt 5)
^2 ))
/ 4))
.= ((((1
+ (
sqrt 5))
/ 2)
|^ n)
* (((1
+ (2
* (
sqrt 5)))
+ 5)
/ 4)) by
SQUARE_1:def 2
.= ((((1
+ (
sqrt 5))
/ 2)
|^ n)
* ((6
+ (2
* (
sqrt 5)))
/ 4));
A11: (s2
. ((n
+ 2)
+ 1))
= (((s
. ((n
+ 1)
+ 2))
* (s2
. ((n
+ 1)
+ 1)))
+ (s2
. (n
+ 1))) by
Def6
.= (((s
. (n
+ 3))
* (s2
. ((n
+ 1)
+ 1)))
+ (s2
. (n
+ 1)));
(n
+ 3)
>= (
0
+ 1) by
XREAL_1: 7;
then (s
. (n
+ 3))
>= 1 by
A2,
Th40;
then ((s
. (n
+ 3))
* (s2
. ((n
+ 1)
+ 1)))
>= (1
* (
tau
|^ (n
+ 1))) by
A7,
A9,
XREAL_1: 66;
hence thesis by
A6,
A11,
A8,
A10,
XREAL_1: 7;
end;
(s
. 2)
>= 1 by
A2,
Th40;
then ((s
. 2)
* (s
. 1))
>= 1 by
A3,
XREAL_1: 159;
then
A12: (((s
. 2)
* (s
. 1))
+ 1)
>= (1
+ 1) by
XREAL_1: 6;
(s2
. (1
+ 1))
= (((s
. (
0
+ 2))
* (s2
. (
0
+ 1)))
+ (s2
.
0 )) by
Def6
.= (((s
. 2)
* (s2
. 1))
+ 1) by
Def6
.= (((s
. 2)
* (s
. 1))
+ 1) by
Def6;
then
A13:
P[1] by
A12,
A1,
FIB_NUM:def 1,
XXREAL_0: 2;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A4,
A13,
A5);
hence thesis;
end;
theorem ::
REAL_3:62
a
>
0 & (for n holds ((
scf r)
. n)
>= a) implies for n holds ((
c_d r)
. (n
+ 1))
>= (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ n)
proof
assume that
A1: a
>
0 and
A2: for n holds ((
scf r)
. n)
>= a;
set s = (
scf r);
set s2 = (
c_d r);
defpred
P[
Nat] means (s2
. ($1
+ 1))
>= (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ $1);
A3: (s
. 1)
>
0 by
A1,
A2;
then (s
. 1)
>= 1 by
Th40;
then (s2
. (
0
+ 1))
>= 1 by
Def6;
then
A4:
P[
0 ] by
NEWTON: 4;
(s
. 2)
>
0 by
A1,
A2;
then ((s
. 2)
* (s
. 1))
>= (1
* (s
. 1)) by
A3,
Th40,
XREAL_1: 64;
then
A5: (((s
. 2)
* (s
. 1))
+ 1)
>= ((s
. 1)
+ 1) by
XREAL_1: 6;
(s
. 1)
>= a by
A2;
then ((s
. 1)
+ 1)
>= (a
+ 1) by
XREAL_1: 6;
then
A6: (((s
. 2)
* (s
. 1))
+ 1)
>= (a
+ 1) by
A5,
XXREAL_0: 2;
(4
* a)
>
0 by
A1,
XREAL_1: 129;
then ((a
^2 )
+ 4)
< (((a
^2 )
+ 4)
+ (4
* a)) by
XREAL_1: 39;
then (
sqrt ((a
^2 )
+ 4))
< (
sqrt ((a
+ 2)
^2 )) by
SQUARE_1: 27;
then (
sqrt ((a
^2 )
+ 4))
< (a
+ 2) by
SQUARE_1: 22;
then (a
+ (
sqrt ((a
^2 )
+ 4)))
< (a
+ (a
+ 2)) by
XREAL_1: 8;
then
A7: (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ 1)
= ((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2) & ((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
< (((2
* a)
+ (2
* 1))
/ 2) by
XREAL_1: 74;
let n;
A8: for n be
Nat st
P[n] &
P[(n
+ 1)] holds
P[(n
+ 2)]
proof
let n be
Nat;
assume that
A9: (s2
. (n
+ 1))
>= (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ n) and
A10: (s2
. ((n
+ 1)
+ 1))
>= (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ (n
+ 1));
A11: ((a
* (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ (n
+ 1)))
+ (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ n))
= ((a
* ((((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ n)
* ((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)))
+ (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ n)) by
NEWTON: 6
.= ((((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ n)
* ((((a
^2 )
+ (a
* (
sqrt ((a
^2 )
+ 4))))
+ 2)
/ 2));
(
sqrt ((a
^2 )
+ 4))
>
0 by
SQUARE_1: 25;
then ((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
>
0 by
XREAL_1: 139;
then
A12: (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))
>
0 by
PREPOWER: 6;
A13: (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ (n
+ 2))
= ((((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ n)
* (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ 2)) by
NEWTON: 8
.= ((((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ n)
* (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
^2 )) by
WSIERP_1: 1
.= ((((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ n)
* ((((a
^2 )
+ ((2
* a)
* (
sqrt ((a
^2 )
+ 4))))
+ ((
sqrt ((a
^2 )
+ 4))
^2 ))
/ (2
* 2)))
.= ((((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ n)
* ((((a
^2 )
+ ((2
* a)
* (
sqrt ((a
^2 )
+ 4))))
+ ((a
^2 )
+ 4))
/ (2
* 2))) by
SQUARE_1:def 2
.= ((((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ n)
* ((((a
^2 )
+ (a
* (
sqrt ((a
^2 )
+ 4))))
+ 2)
/ 2));
A14: (s2
. ((n
+ 2)
+ 1))
= (((s
. ((n
+ 1)
+ 2))
* (s2
. ((n
+ 1)
+ 1)))
+ (s2
. (n
+ 1))) by
Def6
.= (((s
. (n
+ 3))
* (s2
. ((n
+ 1)
+ 1)))
+ (s2
. (n
+ 1)));
(s
. (n
+ 3))
>= a by
A2;
then ((s
. (n
+ 3))
* (s2
. ((n
+ 1)
+ 1)))
>= (a
* (((a
+ (
sqrt ((a
^2 )
+ 4)))
/ 2)
|^ (n
+ 1))) by
A10,
A12,
XREAL_1: 66;
hence thesis by
A9,
A14,
A11,
A13,
XREAL_1: 7;
end;
(s2
. (1
+ 1))
= (((s
. (
0
+ 2))
* (s2
. (
0
+ 1)))
+ (s2
.
0 )) by
Def6
.= (((s
. 2)
* (s2
. 1))
+ 1) by
Def6
.= (((s
. 2)
* (s
. 1))
+ 1) by
Def6;
then
A15:
P[1] by
A6,
A7,
XXREAL_0: 2;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A4,
A15,
A8);
hence thesis;
end;
theorem ::
REAL_3:63
(((
c_n r)
. (n
+ 2))
/ ((
c_d r)
. (n
+ 2)))
= (((((
scf r)
. (n
+ 2))
* ((
c_n r)
. (n
+ 1)))
+ ((
c_n r)
. n))
/ ((((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
+ ((
c_d r)
. n)))
proof
((
c_n r)
. (n
+ 2))
= ((((
scf r)
. (n
+ 2))
* ((
c_n r)
. (n
+ 1)))
+ ((
c_n r)
. n)) by
Def5;
hence thesis by
Def6;
end;
theorem ::
REAL_3:64
Th64: ((((
c_n r)
. (n
+ 1))
* ((
c_d r)
. n))
- (((
c_n r)
. n)
* ((
c_d r)
. (n
+ 1))))
= ((
- 1)
|^ n)
proof
set s = (
scf r), s1 = (
c_n r), s2 = (
c_d r);
defpred
G[
Nat] means (((s1
. ($1
+ 1))
* (s2
. $1))
- ((s1
. $1)
* (s2
. ($1
+ 1))))
= ((
- 1)
|^ $1);
A1: (s2
.
0 )
= 1 & (s2
. 1)
= (s
. 1) by
Def6;
A2: for n st
G[n] holds
G[(n
+ 1)]
proof
let l;
assume
A3: (((s1
. (l
+ 1))
* (s2
. l))
- ((s1
. l)
* (s2
. (l
+ 1))))
= ((
- 1)
|^ l);
(((s1
. (l
+ 2))
* (s2
. (l
+ 1)))
- ((s1
. (l
+ 1))
* (s2
. (l
+ 2))))
= (((((s
. (l
+ 2))
* (s1
. (l
+ 1)))
+ (s1
. l))
* (s2
. (l
+ 1)))
- ((s1
. (l
+ 1))
* (s2
. (l
+ 2)))) by
Def5
.= (((((s
. (l
+ 2))
* (s1
. (l
+ 1)))
* (s2
. (l
+ 1)))
+ ((s1
. l)
* (s2
. (l
+ 1))))
- ((s1
. (l
+ 1))
* (((s
. (l
+ 2))
* (s2
. (l
+ 1)))
+ (s2
. l)))) by
Def6
.= ((
- 1)
* (((s1
. (l
+ 1))
* (s2
. l))
- ((s1
. l)
* (s2
. (l
+ 1)))))
.= ((
- 1)
|^ (l
+ 1)) by
A3,
NEWTON: 6;
hence thesis;
end;
(s1
.
0 )
= (s
.
0 ) & (s1
. 1)
= (((s
. 1)
* (s
.
0 ))
+ 1) by
Def5;
then
A4:
G[
0 ] by
A1,
NEWTON: 4;
for n holds
G[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
theorem ::
REAL_3:65
Th65: (for n holds ((
c_d r)
. n)
<>
0 ) implies ((((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))
- (((
c_n r)
. n)
/ ((
c_d r)
. n)))
= (((
- 1)
|^ n)
/ (((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n)))
proof
set s1 = (
c_n r), s2 = (
c_d r);
assume for n holds (s2
. n)
<>
0 ;
then (s2
. n)
<>
0 & (s2
. (n
+ 1))
<>
0 ;
then (((s1
. (n
+ 1))
/ (s2
. (n
+ 1)))
- ((s1
. n)
/ (s2
. n)))
= ((((s1
. (n
+ 1))
* (s2
. n))
- ((s1
. n)
* (s2
. (n
+ 1))))
/ ((s2
. (n
+ 1))
* (s2
. n))) by
XCMPLX_1: 130
.= (((
- 1)
|^ n)
/ ((s2
. (n
+ 1))
* (s2
. n))) by
Th64;
hence thesis;
end;
theorem ::
REAL_3:66
Th66: ((((
c_n r)
. (n
+ 2))
* ((
c_d r)
. n))
- (((
c_n r)
. n)
* ((
c_d r)
. (n
+ 2))))
= (((
- 1)
|^ n)
* ((
scf r)
. (n
+ 2)))
proof
set s1 = (
c_n r), s2 = (
c_d r), s = (
scf r);
(((s1
. (n
+ 2))
* (s2
. n))
- ((s1
. n)
* (s2
. (n
+ 2))))
= (((((s
. (n
+ 2))
* (s1
. (n
+ 1)))
+ (s1
. n))
* (s2
. n))
- ((s1
. n)
* (s2
. (n
+ 2)))) by
Def5
.= (((((s
. (n
+ 2))
* (s1
. (n
+ 1)))
+ (s1
. n))
* (s2
. n))
- ((s1
. n)
* (((s
. (n
+ 2))
* (s2
. (n
+ 1)))
+ (s2
. n)))) by
Def6
.= ((s
. (n
+ 2))
* (((s1
. (n
+ 1))
* (s2
. n))
- ((s1
. n)
* (s2
. (n
+ 1)))))
.= (((
- 1)
|^ n)
* (s
. (n
+ 2))) by
Th64;
hence thesis;
end;
theorem ::
REAL_3:67
(for n holds ((
c_d r)
. n)
<>
0 ) implies ((((
c_n r)
. (n
+ 2))
/ ((
c_d r)
. (n
+ 2)))
- (((
c_n r)
. n)
/ ((
c_d r)
. n)))
= ((((
- 1)
|^ n)
* ((
scf r)
. (n
+ 2)))
/ (((
c_d r)
. (n
+ 2))
* ((
c_d r)
. n)))
proof
set s1 = (
c_n r), s2 = (
c_d r), s = (
scf r);
assume for n holds (s2
. n)
<>
0 ;
then (s2
. n)
<>
0 & (s2
. (n
+ 2))
<>
0 ;
then (((s1
. (n
+ 2))
/ (s2
. (n
+ 2)))
- ((s1
. n)
/ (s2
. n)))
= ((((s1
. (n
+ 2))
* (s2
. n))
- ((s1
. n)
* (s2
. (n
+ 2))))
/ ((s2
. (n
+ 2))
* (s2
. n))) by
XCMPLX_1: 130
.= ((((
- 1)
|^ n)
* (s
. (n
+ 2)))
/ ((s2
. (n
+ 2))
* (s2
. n))) by
Th66;
hence thesis;
end;
theorem ::
REAL_3:68
(for n holds ((
scf r)
. n)
<>
0 ) implies for n st n
>= 1 holds (((
c_n r)
. n)
/ ((
c_d r)
. n))
= ((((
c_n r)
. (n
+ 1))
- ((
c_n r)
. (n
- 1)))
/ (((
c_d r)
. (n
+ 1))
- ((
c_d r)
. (n
- 1))))
proof
set s1 = (
c_n r), s2 = (
c_d r);
set s = (
scf r);
defpred
P[
Nat] means ((s1
. $1)
/ (s2
. $1))
= (((s1
. ($1
+ 1))
- (s1
. ($1
- 1)))
/ ((s2
. ($1
+ 1))
- (s2
. ($1
- 1))));
assume
A1: for n holds ((
scf r)
. n)
<>
0 ;
A2: for n be
Nat st n
>= 1 holds
P[n] implies
P[(n
+ 1)]
proof
let n be
Nat;
assume that n
>= 1 and ((s1
. n)
/ (s2
. n))
= (((s1
. (n
+ 1))
- (s1
. (n
- 1)))
/ ((s2
. (n
+ 1))
- (s2
. (n
- 1))));
((((s
. (n
+ 2))
* (s1
. (n
+ 1)))
+ (s1
. n))
- (s1
. n))
= ((s1
. (n
+ 2))
- (s1
. n)) & ((s2
. (n
+ 2))
- (s2
. n))
= ((((s
. (n
+ 2))
* (s2
. (n
+ 1)))
+ (s2
. n))
- (s2
. n)) by
Def5,
Def6;
hence thesis by
A1,
XCMPLX_1: 91;
end;
let n;
(((s1
. (1
+ 1))
- (s1
. (1
- 1)))
/ ((s2
. (1
+ 1))
- (s2
. (1
- 1))))
= (((((s
. (2
+
0 ))
* (s1
. (
0
+ 1)))
+ (s1
.
0 ))
- (s1
.
0 ))
/ ((s2
. (2
+
0 ))
- (s2
.
0 ))) by
Def5
.= (((((s
. 2)
* (s1
. 1))
+ (s1
.
0 ))
- (s1
.
0 ))
/ ((((s
. 2)
* (s2
. 1))
+ (s2
.
0 ))
- (s2
.
0 ))) by
Def6
.= ((s1
. 1)
/ (s2
. 1)) by
A1,
XCMPLX_1: 91;
then
A3:
P[1];
for n be
Nat st n
>= 1 holds
P[n] from
NAT_1:sch 8(
A3,
A2);
hence thesis;
end;
theorem ::
REAL_3:69
(for n holds ((
c_d r)
. n)
<>
0 ) implies for n holds
|.((((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
= (1
/
|.(((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n)).|)
proof
set s1 = (
c_n r), s2 = (
c_d r);
assume
A1: for n holds (s2
. n)
<>
0 ;
let n;
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
|.(((s1
. (n
+ 1))
/ (s2
. (n
+ 1)))
- ((s1
. n)
/ (s2
. n))).|
=
|.(((
- 1)
|^ n)
/ ((s2
. (n
+ 1))
* (s2
. n))).| by
A1,
Th65
.= (
|.((
- 1)
|^ n).|
/
|.((s2
. (n
+ 1))
* (s2
. n)).|) by
COMPLEX1: 67
.= (
|.((
- 1)
to_power n).|
/
|.((s2
. (n
+ 1))
* (s2
. n)).|) by
POWER: 41
.= ((
|.(
- 1).|
to_power n)
/
|.((s2
. (n
+ 1))
* (s2
. n)).|) by
SERIES_1: 2
.= (((
- (
- 1))
to_power n)
/
|.((s2
. (n
+ 1))
* (s2
. n)).|) by
ABSVALUE:def 1
.= (1
/
|.((s2
. (n
+ 1))
* (s2
. n)).|) by
POWER: 26;
hence thesis;
end;
theorem ::
REAL_3:70
((
scf r)
. 1)
>
0 implies for n holds (((
c_n r)
. ((2
* n)
+ 1))
/ ((
c_d r)
. ((2
* n)
+ 1)))
> (((
c_n r)
. (2
* n))
/ ((
c_d r)
. (2
* n)))
proof
set s1 = (
c_n r), s2 = (
c_d r), s = (
scf r);
defpred
X[
Nat] means ((s1
. ((2
* $1)
+ 1))
/ (s2
. ((2
* $1)
+ 1)))
> ((s1
. (2
* $1))
/ (s2
. (2
* $1)));
A1: ((s1
. (2
*
0 ))
/ (s2
. (2
*
0 )))
= ((s
.
0 )
/ (s2
.
0 )) by
Def5
.= ((s
.
0 )
/ 1) by
Def6
.= (s
.
0 );
assume
A2: ((
scf r)
. 1)
>
0 ;
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((s1
. ((2
* n)
+ 1))
/ (s2
. ((2
* n)
+ 1)))
> ((s1
. (2
* n))
/ (s2
. (2
* n)));
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
(((s1
. ((2
* (n
+ 1))
+ 1))
* (s2
. (2
* (n
+ 1))))
- ((s1
. (2
* (n
+ 1)))
* (s2
. ((2
* (n
+ 1))
+ 1))))
= ((
- 1)
|^ (2
* (n
+ 1))) by
Th64
.= (1
|^ (2
* (n
+ 1))) by
WSIERP_1: 2
.= 1;
then
A4: ((s1
. ((2
* (n
+ 1))
+ 1))
* (s2
. (2
* (n
+ 1))))
> ((s1
. (2
* (n
+ 1)))
* (s2
. ((2
* (n
+ 1))
+ 1))) by
XREAL_1: 47;
(s2
. ((2
* (n
+ 1))
+ 1))
>
0 & (s2
. (2
* (n
+ 1)))
>
0 by
A2,
Th52;
hence thesis by
A4,
XREAL_1: 106;
end;
((s1
. ((2
*
0 )
+ 1))
/ (s2
. ((2
*
0 )
+ 1)))
= ((((s
. 1)
* (s
.
0 ))
+ 1)
/ (s2
. 1)) by
Def5
.= ((((s
. 1)
* (s
.
0 ))
+ 1)
/ (s
. 1)) by
Def6
.= ((s
.
0 )
+ (1
/ (s
. 1))) by
A2,
XCMPLX_1: 113;
then
A5:
X[
0 ] by
A2,
A1,
XREAL_1: 29;
for n holds
X[n] from
NAT_1:sch 2(
A5,
A3);
hence thesis;
end;
definition
let r be
Real;
::$Notion-Name
::
REAL_3:def7
func
convergents_of_continued_fractions (r) ->
Real_Sequence equals ((
c_n r)
/" (
c_d r));
coherence ;
end
notation
let r be
Real;
synonym
cocf (r) for
convergents_of_continued_fractions (r);
end
theorem ::
REAL_3:71
((
cocf r)
.
0 )
= ((
scf r)
.
0 )
proof
thus ((
cocf r)
.
0 )
= (((
c_n r)
.
0 )
* (((
c_d r)
" )
.
0 )) by
SEQ_1: 8
.= (((
c_n r)
.
0 )
* (((
c_d r)
.
0 )
" )) by
VALUED_1: 10
.= (((
c_n r)
.
0 )
* (1
/ ((
c_d r)
.
0 )))
.= (((
c_n r)
.
0 )
/ ((
c_d r)
.
0 ))
.= (((
scf r)
.
0 )
/ ((
c_d r)
.
0 )) by
Def5
.= (((
scf r)
.
0 )
/ 1) by
Def6
.= ((
scf r)
.
0 );
end;
theorem ::
REAL_3:72
Th72: ((
scf r)
. 1)
<>
0 implies ((
cocf r)
. 1)
= (((
scf r)
.
0 )
+ (1
/ ((
scf r)
. 1)))
proof
set s = (
scf r);
assume
A1: ((
scf r)
. 1)
<>
0 ;
thus ((
cocf r)
. 1)
= (((
c_n r)
. 1)
* (((
c_d r)
" )
. 1)) by
SEQ_1: 8
.= (((
c_n r)
. 1)
* (((
c_d r)
. 1)
" )) by
VALUED_1: 10
.= (((
c_n r)
. 1)
* (1
/ ((
c_d r)
. 1)))
.= (((
c_n r)
. 1)
/ ((
c_d r)
. 1))
.= ((((s
. 1)
* (s
.
0 ))
+ 1)
/ ((
c_d r)
. 1)) by
Def5
.= ((((s
. 1)
* (s
.
0 ))
+ 1)
/ (s
. 1)) by
Def6
.= ((s
.
0 )
+ (1
/ (s
. 1))) by
A1,
XCMPLX_1: 113;
end;
theorem ::
REAL_3:73
Th73: (for n holds ((
scf r)
. n)
>
0 ) implies ((
cocf r)
. 2)
= (((
scf r)
.
0 )
+ (1
/ (((
scf r)
. 1)
+ (1
/ ((
scf r)
. 2)))))
proof
set s = (
scf r);
A1: ((
cocf r)
. 2)
= (((
c_n r)
. 2)
* (((
c_d r)
" )
. 2)) by
SEQ_1: 8
.= (((
c_n r)
. 2)
* (((
c_d r)
. 2)
" )) by
VALUED_1: 10
.= (((
c_n r)
. 2)
* (1
/ ((
c_d r)
. 2)))
.= (((
c_n r)
. 2)
/ ((
c_d r)
. 2));
assume
A2: for n holds ((
scf r)
. n)
>
0 ;
then
A3: (s
. 1)
>
0 ;
A4: ((
c_d r)
. 2)
= (((s
. (
0
+ 2))
* ((
c_d r)
. (
0
+ 1)))
+ ((
c_d r)
.
0 )) by
Def6
.= (((s
. 2)
* (s
. 1))
+ ((
c_d r)
.
0 )) by
Def6
.= (((s
. 2)
* (s
. 1))
+ 1) by
Def6;
A5: ((
c_n r)
. 2)
= (((s
. (
0
+ 2))
* ((
c_n r)
. (
0
+ 1)))
+ ((
c_n r)
.
0 )) by
Def5
.= (((s
. 2)
* (((s
. 1)
* (s
.
0 ))
+ 1))
+ ((
c_n r)
.
0 )) by
Def5
.= (((((s
. 2)
* (s
. 1))
* (s
.
0 ))
+ (s
. 2))
+ (s
.
0 )) by
Def5;
A6: (s
. 2)
>
0 by
A2;
then ((s
.
0 )
+ (1
/ ((s
. 1)
+ (1
/ (s
. 2)))))
= ((s
.
0 )
+ (1
/ ((((s
. 1)
* (s
. 2))
+ 1)
/ (s
. 2)))) by
XCMPLX_1: 113
.= ((s
.
0 )
+ ((s
. 2)
/ (((s
. 1)
* (s
. 2))
+ 1))) by
XCMPLX_1: 57
.= ((((s
.
0 )
* (((s
. 1)
* (s
. 2))
+ 1))
+ (s
. 2))
/ (((s
. 1)
* (s
. 2))
+ 1)) by
A3,
A6,
XCMPLX_1: 113
.= ((
cocf r)
. 2) by
A1,
A5,
A4;
hence thesis;
end;
theorem ::
REAL_3:74
Th74: (for n holds ((
scf r)
. n)
>
0 ) implies ((
cocf r)
. 3)
= (((
scf r)
.
0 )
+ (1
/ (((
scf r)
. 1)
+ (1
/ (((
scf r)
. 2)
+ (1
/ ((
scf r)
. 3)))))))
proof
set s = (
scf r);
A1: ((
cocf r)
. 3)
= (((
c_n r)
. 3)
* (((
c_d r)
" )
. 3)) by
SEQ_1: 8
.= (((
c_n r)
. 3)
* (((
c_d r)
. 3)
" )) by
VALUED_1: 10
.= (((
c_n r)
. 3)
* (1
/ ((
c_d r)
. 3)))
.= (((
c_n r)
. 3)
/ ((
c_d r)
. 3));
assume
A2: for n holds ((
scf r)
. n)
>
0 ;
then
A3: (s
. 1)
>
0 ;
A4: ((
c_d r)
. 2)
= (((s
. (
0
+ 2))
* ((
c_d r)
. (
0
+ 1)))
+ ((
c_d r)
.
0 )) by
Def6
.= (((s
. 2)
* (s
. 1))
+ ((
c_d r)
.
0 )) by
Def6
.= (((s
. 2)
* (s
. 1))
+ 1) by
Def6;
A5: ((
c_d r)
. 3)
= (((s
. (1
+ 2))
* ((
c_d r)
. (1
+ 1)))
+ ((
c_d r)
. 1)) by
Def6
.= (((s
. 3)
* (((s
. 2)
* (s
. 1))
+ 1))
+ (s
. 1)) by
A4,
Def6
.= (((s
. 1)
* (((s
. 2)
* (s
. 3))
+ 1))
+ (s
. 3));
A6: ((
c_n r)
. 2)
= (((s
. (
0
+ 2))
* ((
c_n r)
. (
0
+ 1)))
+ ((
c_n r)
.
0 )) by
Def5
.= (((s
. 2)
* (((s
. 1)
* (s
.
0 ))
+ 1))
+ ((
c_n r)
.
0 )) by
Def5
.= (((((s
. 2)
* (s
. 1))
* (s
.
0 ))
+ (s
. 2))
+ (s
.
0 )) by
Def5;
A7: ((
c_n r)
. 3)
= (((s
. (1
+ 2))
* ((
c_n r)
. (1
+ 1)))
+ ((
c_n r)
. 1)) by
Def5
.= (((s
. 3)
* (((((s
. 2)
* (s
. 1))
* (s
.
0 ))
+ (s
. 2))
+ (s
.
0 )))
+ (((s
. 1)
* (s
.
0 ))
+ 1)) by
A6,
Def5
.= ((((((((s
. 3)
* (s
. 2))
* (s
. 1))
* (s
.
0 ))
+ ((s
. 3)
* (s
. 2)))
+ ((s
. 3)
* (s
.
0 )))
+ ((s
. 1)
* (s
.
0 )))
+ 1);
A8: (s
. 2)
>
0 by
A2;
A9: (s
. 3)
>
0 by
A2;
then ((s
.
0 )
+ (1
/ ((s
. 1)
+ (1
/ ((s
. 2)
+ (1
/ (s
. 3)))))))
= ((s
.
0 )
+ (1
/ ((s
. 1)
+ (1
/ ((((s
. 2)
* (s
. 3))
+ 1)
/ (s
. 3)))))) by
XCMPLX_1: 113
.= ((s
.
0 )
+ (1
/ ((s
. 1)
+ ((s
. 3)
/ (((s
. 2)
* (s
. 3))
+ 1))))) by
XCMPLX_1: 57
.= ((s
.
0 )
+ (1
/ ((((s
. 1)
* (((s
. 2)
* (s
. 3))
+ 1))
+ (s
. 3))
/ (((s
. 2)
* (s
. 3))
+ 1)))) by
A8,
A9,
XCMPLX_1: 113
.= ((s
.
0 )
+ ((((s
. 2)
* (s
. 3))
+ 1)
/ (((s
. 1)
* (((s
. 2)
* (s
. 3))
+ 1))
+ (s
. 3)))) by
XCMPLX_1: 57
.= ((((s
.
0 )
* (((s
. 1)
* (((s
. 2)
* (s
. 3))
+ 1))
+ (s
. 3)))
+ (((s
. 2)
* (s
. 3))
+ 1))
/ (((s
. 1)
* (((s
. 2)
* (s
. 3))
+ 1))
+ (s
. 3))) by
A3,
A8,
A9,
XCMPLX_1: 113;
hence thesis by
A1,
A7,
A5;
end;
theorem ::
REAL_3:75
(for n holds ((
scf r)
. n)
>
0 ) implies for n st n
>= 1 holds (((
c_n r)
. ((2
* n)
+ 1))
/ ((
c_d r)
. ((2
* n)
+ 1)))
< (((
c_n r)
. ((2
* n)
- 1))
/ ((
c_d r)
. ((2
* n)
- 1)))
proof
set s = (
scf r), s1 = (
c_n r), s2 = (
c_d r);
defpred
X[
Nat] means ((s1
. ((2
* $1)
+ 1))
/ (s2
. ((2
* $1)
+ 1)))
< ((s1
. ((2
* $1)
- 1))
/ (s2
. ((2
* $1)
- 1)));
assume
A1: for n holds ((
scf r)
. n)
>
0 ;
then
A2: (s
. 3)
>
0 ;
((
cocf r)
. 3)
= (((
c_n r)
. 3)
* (((
c_d r)
" )
. 3)) by
SEQ_1: 8
.= (((
c_n r)
. 3)
* (((
c_d r)
. 3)
" )) by
VALUED_1: 10
.= (((
c_n r)
. 3)
* (1
/ ((
c_d r)
. 3)))
.= (((
c_n r)
. 3)
/ ((
c_d r)
. 3));
then
A3: ((s1
. ((2
* 1)
+ 1))
/ (s2
. ((2
* 1)
+ 1)))
= ((s
.
0 )
+ (1
/ ((s
. 1)
+ (1
/ ((s
. 2)
+ (1
/ (s
. 3))))))) by
A1,
Th74
.= ((s
.
0 )
+ (1
/ ((s
. 1)
+ (1
/ ((((s
. 2)
* (s
. 3))
+ 1)
/ (s
. 3)))))) by
A2,
XCMPLX_1: 113
.= ((s
.
0 )
+ (1
/ ((s
. 1)
+ ((s
. 3)
/ (((s
. 2)
* (s
. 3))
+ 1))))) by
XCMPLX_1: 57;
let n;
A4: (s
. 1)
>
0 by
A1;
A5: ((
scf r)
. 1)
>
0 by
A1;
A6: for n be
Nat st n
>= 1 &
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume that n
>= 1 and ((s1
. ((2
* n)
+ 1))
/ (s2
. ((2
* n)
+ 1)))
< ((s1
. ((2
* n)
- 1))
/ (s2
. ((2
* n)
- 1)));
(((s1
. ((2
* (n
+ 1))
+ 1))
* (s2
. ((2
* (n
+ 1))
- 1)))
- ((s1
. ((2
* (n
+ 1))
- 1))
* (s2
. ((2
* (n
+ 1))
+ 1))))
= (((((s
. (((2
* n)
+ 1)
+ 2))
* (s1
. (((2
* n)
+ 1)
+ 1)))
+ (s1
. ((2
* n)
+ 1)))
* (s2
. ((2
* n)
+ 1)))
- ((s1
. ((2
* n)
+ 1))
* (s2
. ((2
* n)
+ 3)))) by
Def5
.= (((((s
. (((2
* n)
+ 1)
+ 2))
* (s1
. (((2
* n)
+ 1)
+ 1)))
+ (s1
. ((2
* n)
+ 1)))
* (s2
. ((2
* n)
+ 1)))
- ((s1
. ((2
* n)
+ 1))
* (((s
. (((2
* n)
+ 1)
+ 2))
* (s2
. (((2
* n)
+ 1)
+ 1)))
+ (s2
. ((2
* n)
+ 1))))) by
Def6
.= ((s
. (((2
* n)
+ 1)
+ 2))
* (((s1
. (((2
* n)
+ 1)
+ 1))
* (s2
. ((2
* n)
+ 1)))
- ((s1
. ((2
* n)
+ 1))
* (s2
. (((2
* n)
+ 1)
+ 1)))))
.= ((s
. (((2
* n)
+ 1)
+ 2))
* ((
- 1)
|^ ((2
* n)
+ 1))) by
Th64
.= ((s
. (((2
* n)
+ 1)
+ 2))
* (
- (1
|^ ((2
* n)
+ 1)))) by
WSIERP_1: 2
.= ((s
. (((2
* n)
+ 1)
+ 2))
* (
- 1));
then (((s1
. ((2
* (n
+ 1))
+ 1))
* (s2
. ((2
* (n
+ 1))
- 1)))
- ((s1
. ((2
* (n
+ 1))
- 1))
* (s2
. ((2
* (n
+ 1))
+ 1))))
<
0 by
A1,
XREAL_1: 132;
then
A7: ((s1
. ((2
* (n
+ 1))
+ 1))
* (s2
. ((2
* (n
+ 1))
- 1)))
< ((s1
. ((2
* (n
+ 1))
- 1))
* (s2
. ((2
* (n
+ 1))
+ 1))) by
XREAL_1: 48;
(s2
. ((2
* n)
+ 1))
>
0 & (s2
. ((2
* n)
+ 3))
>
0 by
A5,
Th52;
hence thesis by
A7,
XREAL_1: 106;
end;
(s
. 2)
>
0 by
A1;
then ((s
. 3)
/ (((s
. 2)
* (s
. 3))
+ 1))
>
0 by
A2,
XREAL_1: 139;
then
A8: (1
/ ((s
. 1)
+ ((s
. 3)
/ (((s
. 2)
* (s
. 3))
+ 1))))
< (1
/ (s
. 1)) by
A4,
XREAL_1: 29,
XREAL_1: 76;
((s1
. ((2
* 1)
- 1))
/ (s2
. ((2
* 1)
- 1)))
= ((((s
. 1)
* (s
.
0 ))
+ 1)
/ (s2
. 1)) by
Def5
.= ((((s
. 1)
* (s
.
0 ))
+ 1)
/ (s
. 1)) by
Def6
.= ((s
.
0 )
+ (1
/ (s
. 1))) by
A4,
XCMPLX_1: 113;
then
A9:
X[1] by
A8,
A3,
XREAL_1: 8;
for n be
Nat st n
>= 1 holds
X[n] from
NAT_1:sch 8(
A9,
A6);
hence thesis;
end;
theorem ::
REAL_3:76
(for n holds ((
scf r)
. n)
>
0 ) implies for n st n
>= 1 holds (((
c_n r)
. (2
* n))
/ ((
c_d r)
. (2
* n)))
> (((
c_n r)
. ((2
* n)
- 2))
/ ((
c_d r)
. ((2
* n)
- 2)))
proof
set s = (
scf r), s1 = (
c_n r), s2 = (
c_d r);
defpred
X[
Nat] means ((s1
. (2
* $1))
/ (s2
. (2
* $1)))
> ((s1
. ((2
* $1)
- 2))
/ (s2
. ((2
* $1)
- 2)));
assume
A1: for n holds ((
scf r)
. n)
>
0 ;
then
A2: (s
. 1)
>
0 ;
A3: ((
scf r)
. 1)
>
0 by
A1;
A4: for n be
Nat st n
>= 1 &
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume that n
>= 1 and ((s1
. (2
* n))
/ (s2
. (2
* n)))
> ((s1
. ((2
* n)
- 2))
/ (s2
. ((2
* n)
- 2)));
(((s1
. (2
* (n
+ 1)))
* (s2
. ((2
* (n
+ 1))
- 2)))
- ((s1
. ((2
* (n
+ 1))
- 2))
* (s2
. (2
* (n
+ 1)))))
= (((((s
. ((2
* n)
+ 2))
* (s1
. ((2
* n)
+ 1)))
+ (s1
. (2
* n)))
* (s2
. (2
* n)))
- ((s1
. (2
* n))
* (s2
. ((2
* n)
+ 2)))) by
Def5
.= (((((s
. ((2
* n)
+ 2))
* (s1
. ((2
* n)
+ 1)))
+ (s1
. (2
* n)))
* (s2
. (2
* n)))
- ((s1
. (2
* n))
* (((s
. ((2
* n)
+ 2))
* (s2
. ((2
* n)
+ 1)))
+ (s2
. (2
* n))))) by
Def6
.= ((s
. ((2
* n)
+ 2))
* (((s1
. ((2
* n)
+ 1))
* (s2
. (2
* n)))
- ((s1
. (2
* n))
* (s2
. ((2
* n)
+ 1)))))
.= ((s
. ((2
* n)
+ 2))
* ((
- 1)
|^ (2
* n))) by
Th64
.= ((s
. ((2
* n)
+ 2))
* (1
|^ (2
* n))) by
WSIERP_1: 2
.= ((s
. ((2
* n)
+ 2))
* 1)
.= (s
. ((2
* n)
+ 2));
then
A5: ((s1
. (2
* (n
+ 1)))
* (s2
. ((2
* (n
+ 1))
- 2)))
> ((s1
. ((2
* (n
+ 1))
- 2))
* (s2
. (2
* (n
+ 1)))) by
A1,
XREAL_1: 47;
(s2
. (2
* n))
>
0 & (s2
. ((2
* n)
+ 2))
>
0 by
A3,
Th52;
hence thesis by
A5,
XREAL_1: 106;
end;
let n;
A6: ((s1
. ((2
* 1)
- 2))
/ (s2
. ((2
* 1)
- 2)))
= ((s
.
0 )
/ (s2
.
0 )) by
Def5
.= ((s
.
0 )
/ 1) by
Def6
.= (s
.
0 );
A7: (s
. 2)
>
0 by
A1;
((
cocf r)
. 2)
= (((
c_n r)
. 2)
* (((
c_d r)
" )
. 2)) by
SEQ_1: 8
.= (((
c_n r)
. 2)
* (((
c_d r)
. 2)
" )) by
VALUED_1: 10
.= (((
c_n r)
. 2)
* (1
/ ((
c_d r)
. 2)))
.= (((
c_n r)
. 2)
/ ((
c_d r)
. 2));
then ((s1
. (2
* 1))
/ (s2
. (2
* 1)))
= ((s
.
0 )
+ (1
/ ((s
. 1)
+ (1
/ (s
. 2))))) by
A1,
Th73
.= ((s
.
0 )
+ (1
/ ((((s
. 1)
* (s
. 2))
+ 1)
/ (s
. 2)))) by
A7,
XCMPLX_1: 113
.= ((s
.
0 )
+ ((s
. 2)
/ (((s
. 1)
* (s
. 2))
+ 1))) by
XCMPLX_1: 57;
then
A8:
X[1] by
A2,
A7,
A6,
XREAL_1: 29,
XREAL_1: 139;
for n be
Nat st n
>= 1 holds
X[n] from
NAT_1:sch 8(
A8,
A4);
hence thesis;
end;
theorem ::
REAL_3:77
(for n holds ((
scf r)
. n)
>
0 ) implies for n st n
>= 1 holds (((
c_n r)
. (2
* n))
/ ((
c_d r)
. (2
* n)))
< (((
c_n r)
. ((2
* n)
- 1))
/ ((
c_d r)
. ((2
* n)
- 1)))
proof
set s = (
scf r), s1 = (
c_n r), s2 = (
c_d r);
defpred
X[
Nat] means ((s1
. (2
* $1))
/ (s2
. (2
* $1)))
< ((s1
. ((2
* $1)
- 1))
/ (s2
. ((2
* $1)
- 1)));
assume
A1: for n holds ((
scf r)
. n)
>
0 ;
then (s
. 1)
>
0 & (s
. 2)
>
0 ;
then
A2: (1
/ ((s
. 1)
+ (1
/ (s
. 2))))
< (1
/ (s
. 1)) by
XREAL_1: 29,
XREAL_1: 76;
let n;
A3: ((
scf r)
. 1)
>
0 by
A1;
A4: for n be
Nat st n
>= 1 &
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume that n
>= 1 and ((s1
. (2
* n))
/ (s2
. (2
* n)))
< ((s1
. ((2
* n)
- 1))
/ (s2
. ((2
* n)
- 1)));
(((s1
. (2
* (n
+ 1)))
* (s2
. ((2
* (n
+ 1))
- 1)))
- ((s1
. ((2
* (n
+ 1))
- 1))
* (s2
. (2
* (n
+ 1)))))
= (((s1
. (((2
* n)
+ 1)
+ 1))
* (s2
. ((2
* n)
+ 1)))
- ((s1
. ((2
* n)
+ 1))
* (s2
. (((2
* n)
+ 1)
+ 1))))
.= ((
- 1)
|^ ((2
* n)
+ 1)) by
Th64
.= (
- (1
|^ ((2
* n)
+ 1))) by
WSIERP_1: 2
.= (
- 1);
then
A5: ((s1
. (2
* (n
+ 1)))
* (s2
. ((2
* (n
+ 1))
- 1)))
< ((s1
. ((2
* (n
+ 1))
- 1))
* (s2
. (2
* (n
+ 1)))) by
XREAL_1: 48;
(s2
. ((2
* n)
+ 1))
>
0 & (s2
. ((2
* n)
+ 2))
>
0 by
A3,
Th52;
hence thesis by
A5,
XREAL_1: 106;
end;
((
cocf r)
. 1)
= (((
c_n r)
. 1)
* (((
c_d r)
" )
. 1)) by
SEQ_1: 8
.= (((
c_n r)
. 1)
* (((
c_d r)
. 1)
" )) by
VALUED_1: 10
.= (((
c_n r)
. 1)
* (1
/ ((
c_d r)
. 1)))
.= ((s1
. ((2
* 1)
- 1))
/ (s2
. ((2
* 1)
- 1)));
then
A6: ((s1
. ((2
* 1)
- 1))
/ (s2
. ((2
* 1)
- 1)))
= ((s
.
0 )
+ (1
/ (s
. 1))) by
A3,
Th72;
((
cocf r)
. 2)
= (((
c_n r)
. 2)
* (((
c_d r)
" )
. 2)) by
SEQ_1: 8
.= (((
c_n r)
. 2)
* (((
c_d r)
. 2)
" )) by
VALUED_1: 10
.= (((
c_n r)
. 2)
* (1
/ ((
c_d r)
. 2)))
.= ((s1
. (2
* 1))
/ (s2
. (2
* 1)));
then ((s1
. (2
* 1))
/ (s2
. (2
* 1)))
= ((s
.
0 )
+ (1
/ ((s
. 1)
+ (1
/ (s
. 2))))) by
A1,
Th73;
then
A7:
X[1] by
A6,
A2,
XREAL_1: 8;
for n be
Nat st n
>= 1 holds
X[n] from
NAT_1:sch 8(
A7,
A4);
hence thesis;
end;
definition
let r be
Real;
set s = (
scf r);
::
REAL_3:def8
func
backContinued_fraction r ->
Real_Sequence means
:
Def8: (it
.
0 )
= ((
scf r)
.
0 ) & for n be
Nat holds (it
. (n
+ 1))
= ((1
/ (it
. n))
+ ((
scf r)
. (n
+ 1)));
existence
proof
deffunc
U(
Nat,
Real) = (
In (((1
/ $2)
+ (s
. ($1
+ 1))),
REAL ));
consider f be
Real_Sequence such that
A1: (f
.
0 )
= (s
.
0 ) and
A2: for n be
Nat holds (f
. (n
+ 1))
=
U(n,.) from
NAT_1:sch 12;
take f;
thus (f
.
0 )
= ((
scf r)
.
0 ) by
A1;
let n;
(f
. (n
+ 1))
=
U(n,.) by
A2;
hence thesis;
end;
uniqueness
proof
let s1, s2;
assume that
A3: (s1
.
0 )
= (s
.
0 ) and
A4: for n holds (s1
. (n
+ 1))
= ((1
/ (s1
. n))
+ (s
. (n
+ 1))) and
A5: (s2
.
0 )
= (s
.
0 ) and
A6: for n holds (s2
. (n
+ 1))
= ((1
/ (s2
. n))
+ (s
. (n
+ 1)));
defpred
X[
Nat] means (s1
. $1)
= (s2
. $1);
A7: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume (s1
. k)
= (s2
. k);
hence (s1
. (k
+ 1))
= ((1
/ (s2
. k))
+ (s
. (k
+ 1))) by
A4
.= (s2
. (k
+ 1)) by
A6;
end;
let x be
Element of
NAT ;
A8:
X[
0 ] by
A3,
A5;
for n holds
X[n] from
NAT_1:sch 2(
A8,
A7);
hence (s1
. x)
= (s2
. x);
end;
end
notation
let r be
Real;
synonym
bcf r for
backContinued_fraction r;
end
theorem ::
REAL_3:78
((
scf r)
.
0 )
>
0 implies for n holds ((
bcf r)
. (n
+ 1))
= (((
c_n r)
. (n
+ 1))
/ ((
c_n r)
. n))
proof
set s1 = (
c_n r);
set s = (
scf r);
defpred
X[
Nat] means ((
bcf r)
. ($1
+ 1))
= ((s1
. ($1
+ 1))
/ (s1
. $1));
set s3 = (
bcf r);
assume
A1: ((
scf r)
.
0 )
>
0 ;
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A3: ((
bcf r)
. (n
+ 1))
= ((s1
. (n
+ 1))
/ (s1
. n));
A4: (s1
. (n
+ 1))
>
0 by
A1,
Th45;
((
bcf r)
. ((n
+ 1)
+ 1))
= ((1
/ (s3
. (n
+ 1)))
+ (s
. ((n
+ 1)
+ 1))) by
Def8
.= (((s1
. n)
/ (s1
. (n
+ 1)))
+ (s
. ((n
+ 1)
+ 1))) by
A3,
XCMPLX_1: 57
.= (((s1
. n)
+ ((s
. (n
+ 2))
* (s1
. (n
+ 1))))
/ (s1
. (n
+ 1))) by
A4,
XCMPLX_1: 113
.= ((s1
. (n
+ 2))
/ (s1
. (n
+ 1))) by
Def5;
hence thesis;
end;
((
bcf r)
. (
0
+ 1))
= ((1
/ (s3
.
0 ))
+ (s
. (
0
+ 1))) by
Def8
.= ((1
/ (s
.
0 ))
+ (s
. 1)) by
Def8
.= ((1
+ ((s
.
0 )
* (s
. 1)))
/ (s
.
0 )) by
A1,
XCMPLX_1: 113
.= ((s1
. 1)
/ (s
.
0 )) by
Def5
.= ((s1
. (
0
+ 1))
/ (s1
.
0 )) by
Def5;
then
A5:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A5,
A2);
hence thesis;
end;