fdiff_4.miz
begin
reserve y for
set;
reserve x,a,b,c for
Real;
reserve n for
Element of
NAT ;
reserve Z for
open
Subset of
REAL ;
reserve f,f1,f2 for
PartFunc of
REAL ,
REAL ;
theorem ::
FDIFF_4:1
Th1: Z
c= (
dom (
ln
* f)) & (for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 ) implies (
ln
* f)
is_differentiable_on Z & for x st x
in Z holds (((
ln
* f)
`| Z)
. x)
= (1
/ (a
+ x))
proof
assume that
A1: Z
c= (
dom (
ln
* f)) and
A2: for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 ;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom f) by
TARSKI:def 3;
A4: for x st x
in Z holds (f
. x)
= ((1
* x)
+ a) by
A2;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6: for x st x
in Z holds (
ln
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A5,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A7: (
ln
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* f)
`| Z)
. x)
= (1
/ (a
+ x))
proof
let x;
assume
A8: x
in Z;
then
A9: (f
. x)
= (a
+ x) by
A2;
f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A5,
A8,
FDIFF_1: 9;
then (
diff ((
ln
* f),x))
= ((
diff (f,x))
/ (f
. x)) by
TAYLOR_1: 20
.= (((f
`| Z)
. x)
/ (f
. x)) by
A5,
A8,
FDIFF_1:def 7
.= (1
/ (a
+ x)) by
A3,
A4,
A8,
A9,
FDIFF_1: 23;
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:2
Th2: Z
c= (
dom (
ln
* f)) & (for x st x
in Z holds (f
. x)
= (x
- a) & (f
. x)
>
0 ) implies (
ln
* f)
is_differentiable_on Z & for x st x
in Z holds (((
ln
* f)
`| Z)
. x)
= (1
/ (x
- a))
proof
assume that
A1: Z
c= (
dom (
ln
* f)) and
A2: for x st x
in Z holds (f
. x)
= (x
- a) & (f
. x)
>
0 ;
A3: for x st x
in Z holds (f
. x)
= ((1
* x)
+ (
- a))
proof
let x;
A4: ((1
* x)
+ (
- a))
= ((1
* x)
- a);
assume x
in Z;
hence thesis by
A2,
A4;
end;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A5: Z
c= (
dom f) by
TARSKI:def 3;
then
A6: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A7: for x st x
in Z holds (
ln
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A8: (
ln
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* f)
`| Z)
. x)
= (1
/ (x
- a))
proof
let x;
assume
A9: x
in Z;
then
A10: (f
. x)
= (x
- a) by
A2;
f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
A9,
FDIFF_1: 9;
then (
diff ((
ln
* f),x))
= ((
diff (f,x))
/ (f
. x)) by
TAYLOR_1: 20
.= (((f
`| Z)
. x)
/ (f
. x)) by
A6,
A9,
FDIFF_1:def 7
.= (1
/ (x
- a)) by
A5,
A3,
A9,
A10,
FDIFF_1: 23;
hence thesis by
A8,
A9,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A7,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:3
Z
c= (
dom (
- (
ln
* f))) & (for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
>
0 ) implies (
- (
ln
* f))
is_differentiable_on Z & for x st x
in Z holds (((
- (
ln
* f))
`| Z)
. x)
= (1
/ (a
- x))
proof
assume that
A1: Z
c= (
dom (
- (
ln
* f))) and
A2: for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
>
0 ;
now
let y be
object;
assume y
in Z;
then y
in (
dom ((
- 1)
(#) (
ln
* f))) by
A1;
hence y
in (
dom (
ln
* f)) by
VALUED_1:def 5;
end;
then
A3: Z
c= (
dom (
ln
* f)) by
TARSKI:def 3;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A4: Z
c= (
dom f) by
TARSKI:def 3;
A5: for x st x
in Z holds (f
. x)
= (((
- 1)
* x)
+ a)
proof
let x;
assume x
in Z;
then (f
. x)
= (a
- x) by
A2;
hence thesis;
end;
then
A6: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
now
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
FDIFF_1: 9;
hence (
ln
* f)
is_differentiable_in x by
TAYLOR_1: 20;
end;
then
A7: (
ln
* f)
is_differentiable_on Z by
A3,
FDIFF_1: 9;
A8: for x st x
in Z holds (((
- (
ln
* f))
`| Z)
. x)
= (1
/ (a
- x))
proof
let x;
assume
A9: x
in Z;
then
A10: (f
. x)
= (a
- x) by
A2;
(f
. x)
>
0 & f
is_differentiable_in x by
A2,
A6,
A9,
FDIFF_1: 9;
then (
diff ((
ln
* f),x))
= ((
diff (f,x))
/ (f
. x)) by
TAYLOR_1: 20
.= (((f
`| Z)
. x)
/ (f
. x)) by
A6,
A9,
FDIFF_1:def 7
.= ((
- 1)
/ (a
- x)) by
A4,
A5,
A9,
A10,
FDIFF_1: 23;
then ((((
- 1)
(#) (
ln
* f))
`| Z)
. x)
= ((
- 1)
* ((
- 1)
/ (a
- x))) by
A1,
A7,
A9,
FDIFF_1: 20
.= (((
- 1)
* (
- 1))
/ (a
- x)) by
XCMPLX_1: 74
.= (1
/ (a
- x));
hence thesis;
end;
Z
c= (
dom ((
- 1)
(#) (
ln
* f))) by
A1;
hence thesis by
A7,
A8,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:4
Z
c= (
dom ((
id Z)
- (a
(#) f))) & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (a
+ x) & (f1
. x)
>
0 ) implies ((
id Z)
- (a
(#) f))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
- (a
(#) f))
`| Z)
. x)
= (x
/ (a
+ x))
proof
assume that
A1: Z
c= (
dom ((
id Z)
- (a
(#) f))) and
A2: f
= (
ln
* f1) and
A3: for x st x
in Z holds (f1
. x)
= (a
+ x) & (f1
. x)
>
0 ;
A4: Z
c= ((
dom (
id Z))
/\ (
dom (a
(#) f))) by
A1,
VALUED_1: 12;
then
A5: Z
c= (
dom (a
(#) f)) by
XBOOLE_1: 18;
then
A6: Z
c= (
dom (
ln
* f1)) by
A2,
VALUED_1:def 5;
then
A7: f
is_differentiable_on Z by
A2,
A3,
Th1;
then
A8: (a
(#) f)
is_differentiable_on Z by
A5,
FDIFF_1: 20;
A9: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A10: Z
c= (
dom (
id Z)) by
A4,
XBOOLE_1: 18;
then
A11: (
id Z)
is_differentiable_on Z by
A9,
FDIFF_1: 23;
A12: for x st x
in Z holds (((a
(#) f)
`| Z)
. x)
= (a
/ (a
+ x))
proof
let x;
assume
A13: x
in Z;
hence (((a
(#) f)
`| Z)
. x)
= (a
* (
diff (f,x))) by
A5,
A7,
FDIFF_1: 20
.= (a
* ((f
`| Z)
. x)) by
A7,
A13,
FDIFF_1:def 7
.= (a
* (1
/ (a
+ x))) by
A2,
A3,
A6,
A13,
Th1
.= (a
/ (a
+ x)) by
XCMPLX_1: 99;
end;
for x st x
in Z holds ((((
id Z)
- (a
(#) f))
`| Z)
. x)
= (x
/ (a
+ x))
proof
let x;
assume
A14: x
in Z;
then
A15: (f1
. x)
= (a
+ x) & (f1
. x)
>
0 by
A3;
((((
id Z)
- (a
(#) f))
`| Z)
. x)
= ((
diff ((
id Z),x))
- (
diff ((a
(#) f),x))) by
A1,
A11,
A8,
A14,
FDIFF_1: 19
.= ((((
id Z)
`| Z)
. x)
- (
diff ((a
(#) f),x))) by
A11,
A14,
FDIFF_1:def 7
.= ((((
id Z)
`| Z)
. x)
- (((a
(#) f)
`| Z)
. x)) by
A8,
A14,
FDIFF_1:def 7
.= (1
- (((a
(#) f)
`| Z)
. x)) by
A10,
A9,
A14,
FDIFF_1: 23
.= (1
- (a
/ (a
+ x))) by
A12,
A14
.= (((1
* (a
+ x))
- a)
/ (a
+ x)) by
A15,
XCMPLX_1: 127
.= (x
/ (a
+ x));
hence thesis;
end;
hence thesis by
A1,
A11,
A8,
FDIFF_1: 19;
end;
theorem ::
FDIFF_4:5
Z
c= (
dom (((2
* a)
(#) f)
- (
id Z))) & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (a
+ x) & (f1
. x)
>
0 ) implies (((2
* a)
(#) f)
- (
id Z))
is_differentiable_on Z & for x st x
in Z holds (((((2
* a)
(#) f)
- (
id Z))
`| Z)
. x)
= ((a
- x)
/ (a
+ x))
proof
assume that
A1: Z
c= (
dom (((2
* a)
(#) f)
- (
id Z))) and
A2: f
= (
ln
* f1) and
A3: for x st x
in Z holds (f1
. x)
= (a
+ x) & (f1
. x)
>
0 ;
A4: Z
c= ((
dom ((2
* a)
(#) f))
/\ (
dom (
id Z))) by
A1,
VALUED_1: 12;
then
A5: Z
c= (
dom ((2
* a)
(#) f)) by
XBOOLE_1: 18;
then
A6: Z
c= (
dom (
ln
* f1)) by
A2,
VALUED_1:def 5;
then
A7: f
is_differentiable_on Z by
A2,
A3,
Th1;
then
A8: ((2
* a)
(#) f)
is_differentiable_on Z by
A5,
FDIFF_1: 20;
A9: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A10: Z
c= (
dom (
id Z)) by
A4,
XBOOLE_1: 18;
then
A11: (
id Z)
is_differentiable_on Z by
A9,
FDIFF_1: 23;
A12: for x st x
in Z holds ((((2
* a)
(#) f)
`| Z)
. x)
= ((2
* a)
/ (a
+ x))
proof
let x;
assume
A13: x
in Z;
hence ((((2
* a)
(#) f)
`| Z)
. x)
= ((2
* a)
* (
diff (f,x))) by
A5,
A7,
FDIFF_1: 20
.= ((2
* a)
* ((f
`| Z)
. x)) by
A7,
A13,
FDIFF_1:def 7
.= ((2
* a)
* (1
/ (a
+ x))) by
A2,
A3,
A6,
A13,
Th1
.= ((2
* a)
/ (a
+ x)) by
XCMPLX_1: 99;
end;
for x st x
in Z holds (((((2
* a)
(#) f)
- (
id Z))
`| Z)
. x)
= ((a
- x)
/ (a
+ x))
proof
let x;
assume
A14: x
in Z;
then
A15: (f1
. x)
= (a
+ x) & (f1
. x)
>
0 by
A3;
(((((2
* a)
(#) f)
- (
id Z))
`| Z)
. x)
= ((
diff (((2
* a)
(#) f),x))
- (
diff ((
id Z),x))) by
A1,
A11,
A8,
A14,
FDIFF_1: 19
.= ((
diff (((2
* a)
(#) f),x))
- (((
id Z)
`| Z)
. x)) by
A11,
A14,
FDIFF_1:def 7
.= (((((2
* a)
(#) f)
`| Z)
. x)
- (((
id Z)
`| Z)
. x)) by
A8,
A14,
FDIFF_1:def 7
.= (((((2
* a)
(#) f)
`| Z)
. x)
- 1) by
A10,
A9,
A14,
FDIFF_1: 23
.= (((2
* a)
/ (a
+ x))
- 1) by
A12,
A14
.= (((2
* a)
- (1
* (a
+ x)))
/ (a
+ x)) by
A15,
XCMPLX_1: 126
.= ((a
- x)
/ (a
+ x));
hence thesis;
end;
hence thesis by
A1,
A11,
A8,
FDIFF_1: 19;
end;
theorem ::
FDIFF_4:6
Z
c= (
dom ((
id Z)
- ((2
* a)
(#) f))) & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (x
+ a) & (f1
. x)
>
0 ) implies ((
id Z)
- ((2
* a)
(#) f))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
- ((2
* a)
(#) f))
`| Z)
. x)
= ((x
- a)
/ (x
+ a))
proof
assume that
A1: Z
c= (
dom ((
id Z)
- ((2
* a)
(#) f))) and
A2: f
= (
ln
* f1) and
A3: for x st x
in Z holds (f1
. x)
= (x
+ a) & (f1
. x)
>
0 ;
A4: for x st x
in Z holds (f1
. x)
= (a
+ x) & (f1
. x)
>
0 by
A3;
A5: Z
c= ((
dom (
id Z))
/\ (
dom ((2
* a)
(#) f))) by
A1,
VALUED_1: 12;
then
A6: Z
c= (
dom ((2
* a)
(#) f)) by
XBOOLE_1: 18;
then
A7: Z
c= (
dom (
ln
* f1)) by
A2,
VALUED_1:def 5;
then
A8: f
is_differentiable_on Z by
A2,
A4,
Th1;
then
A9: ((2
* a)
(#) f)
is_differentiable_on Z by
A6,
FDIFF_1: 20;
A10: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A11: Z
c= (
dom (
id Z)) by
A5,
XBOOLE_1: 18;
then
A12: (
id Z)
is_differentiable_on Z by
A10,
FDIFF_1: 23;
A13: for x st x
in Z holds ((((2
* a)
(#) f)
`| Z)
. x)
= ((2
* a)
/ (x
+ a))
proof
let x;
assume
A14: x
in Z;
hence ((((2
* a)
(#) f)
`| Z)
. x)
= ((2
* a)
* (
diff (f,x))) by
A6,
A8,
FDIFF_1: 20
.= ((2
* a)
* ((f
`| Z)
. x)) by
A8,
A14,
FDIFF_1:def 7
.= ((2
* a)
* (1
/ (x
+ a))) by
A2,
A7,
A4,
A14,
Th1
.= ((2
* a)
/ (x
+ a)) by
XCMPLX_1: 99;
end;
for x st x
in Z holds ((((
id Z)
- ((2
* a)
(#) f))
`| Z)
. x)
= ((x
- a)
/ (x
+ a))
proof
let x;
assume
A15: x
in Z;
then
A16: (f1
. x)
= (x
+ a) & (f1
. x)
>
0 by
A3;
((((
id Z)
- ((2
* a)
(#) f))
`| Z)
. x)
= ((
diff ((
id Z),x))
- (
diff (((2
* a)
(#) f),x))) by
A1,
A12,
A9,
A15,
FDIFF_1: 19
.= ((((
id Z)
`| Z)
. x)
- (
diff (((2
* a)
(#) f),x))) by
A12,
A15,
FDIFF_1:def 7
.= ((((
id Z)
`| Z)
. x)
- ((((2
* a)
(#) f)
`| Z)
. x)) by
A9,
A15,
FDIFF_1:def 7
.= (1
- ((((2
* a)
(#) f)
`| Z)
. x)) by
A11,
A10,
A15,
FDIFF_1: 23
.= (1
- ((2
* a)
/ (x
+ a))) by
A13,
A15
.= (((1
* (x
+ a))
- (2
* a))
/ (x
+ a)) by
A16,
XCMPLX_1: 127
.= ((x
- a)
/ (x
+ a));
hence thesis;
end;
hence thesis by
A1,
A12,
A9,
FDIFF_1: 19;
end;
theorem ::
FDIFF_4:7
Z
c= (
dom ((
id Z)
+ ((2
* a)
(#) f))) & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 ) implies ((
id Z)
+ ((2
* a)
(#) f))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
+ ((2
* a)
(#) f))
`| Z)
. x)
= ((x
+ a)
/ (x
- a))
proof
assume that
A1: Z
c= (
dom ((
id Z)
+ ((2
* a)
(#) f))) and
A2: f
= (
ln
* f1) and
A3: for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 ;
A4: Z
c= ((
dom (
id Z))
/\ (
dom ((2
* a)
(#) f))) by
A1,
VALUED_1:def 1;
then
A5: Z
c= (
dom ((2
* a)
(#) f)) by
XBOOLE_1: 18;
then
A6: Z
c= (
dom (
ln
* f1)) by
A2,
VALUED_1:def 5;
then
A7: f
is_differentiable_on Z by
A2,
A3,
Th2;
then
A8: ((2
* a)
(#) f)
is_differentiable_on Z by
A5,
FDIFF_1: 20;
A9: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A10: Z
c= (
dom (
id Z)) by
A4,
XBOOLE_1: 18;
then
A11: (
id Z)
is_differentiable_on Z by
A9,
FDIFF_1: 23;
A12: for x st x
in Z holds ((((2
* a)
(#) f)
`| Z)
. x)
= ((2
* a)
/ (x
- a))
proof
let x;
assume
A13: x
in Z;
hence ((((2
* a)
(#) f)
`| Z)
. x)
= ((2
* a)
* (
diff (f,x))) by
A5,
A7,
FDIFF_1: 20
.= ((2
* a)
* ((f
`| Z)
. x)) by
A7,
A13,
FDIFF_1:def 7
.= ((2
* a)
* (1
/ (x
- a))) by
A2,
A3,
A6,
A13,
Th2
.= ((2
* a)
/ (x
- a)) by
XCMPLX_1: 99;
end;
for x st x
in Z holds ((((
id Z)
+ ((2
* a)
(#) f))
`| Z)
. x)
= ((x
+ a)
/ (x
- a))
proof
let x;
assume
A14: x
in Z;
then
A15: (f1
. x)
= (x
- a) & (f1
. x)
>
0 by
A3;
((((
id Z)
+ ((2
* a)
(#) f))
`| Z)
. x)
= ((
diff ((
id Z),x))
+ (
diff (((2
* a)
(#) f),x))) by
A1,
A11,
A8,
A14,
FDIFF_1: 18
.= ((((
id Z)
`| Z)
. x)
+ (
diff (((2
* a)
(#) f),x))) by
A11,
A14,
FDIFF_1:def 7
.= ((((
id Z)
`| Z)
. x)
+ ((((2
* a)
(#) f)
`| Z)
. x)) by
A8,
A14,
FDIFF_1:def 7
.= (1
+ ((((2
* a)
(#) f)
`| Z)
. x)) by
A10,
A9,
A14,
FDIFF_1: 23
.= (1
+ ((2
* a)
/ (x
- a))) by
A12,
A14
.= (((1
* (x
- a))
+ (2
* a))
/ (x
- a)) by
A15,
XCMPLX_1: 113
.= ((x
+ a)
/ (x
- a));
hence thesis;
end;
hence thesis by
A1,
A11,
A8,
FDIFF_1: 18;
end;
theorem ::
FDIFF_4:8
Z
c= (
dom ((
id Z)
+ ((a
- b)
(#) f))) & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (x
+ b) & (f1
. x)
>
0 ) implies ((
id Z)
+ ((a
- b)
(#) f))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
+ ((a
- b)
(#) f))
`| Z)
. x)
= ((x
+ a)
/ (x
+ b))
proof
assume that
A1: Z
c= (
dom ((
id Z)
+ ((a
- b)
(#) f))) and
A2: f
= (
ln
* f1) and
A3: for x st x
in Z holds (f1
. x)
= (x
+ b) & (f1
. x)
>
0 ;
A4: for x st x
in Z holds (f1
. x)
= (b
+ x) & (f1
. x)
>
0 by
A3;
A5: Z
c= ((
dom (
id Z))
/\ (
dom ((a
- b)
(#) f))) by
A1,
VALUED_1:def 1;
then
A6: Z
c= (
dom ((a
- b)
(#) f)) by
XBOOLE_1: 18;
then
A7: Z
c= (
dom (
ln
* f1)) by
A2,
VALUED_1:def 5;
then
A8: f
is_differentiable_on Z by
A2,
A4,
Th1;
then
A9: ((a
- b)
(#) f)
is_differentiable_on Z by
A6,
FDIFF_1: 20;
A10: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A11: Z
c= (
dom (
id Z)) by
A5,
XBOOLE_1: 18;
then
A12: (
id Z)
is_differentiable_on Z by
A10,
FDIFF_1: 23;
A13: for x st x
in Z holds ((((a
- b)
(#) f)
`| Z)
. x)
= ((a
- b)
/ (x
+ b))
proof
let x;
assume
A14: x
in Z;
hence ((((a
- b)
(#) f)
`| Z)
. x)
= ((a
- b)
* (
diff (f,x))) by
A6,
A8,
FDIFF_1: 20
.= ((a
- b)
* ((f
`| Z)
. x)) by
A8,
A14,
FDIFF_1:def 7
.= ((a
- b)
* (1
/ (x
+ b))) by
A2,
A7,
A4,
A14,
Th1
.= ((a
- b)
/ (x
+ b)) by
XCMPLX_1: 99;
end;
for x st x
in Z holds ((((
id Z)
+ ((a
- b)
(#) f))
`| Z)
. x)
= ((x
+ a)
/ (x
+ b))
proof
let x;
assume
A15: x
in Z;
then
A16: (f1
. x)
= (x
+ b) & (f1
. x)
>
0 by
A3;
((((
id Z)
+ ((a
- b)
(#) f))
`| Z)
. x)
= ((
diff ((
id Z),x))
+ (
diff (((a
- b)
(#) f),x))) by
A1,
A12,
A9,
A15,
FDIFF_1: 18
.= ((((
id Z)
`| Z)
. x)
+ (
diff (((a
- b)
(#) f),x))) by
A12,
A15,
FDIFF_1:def 7
.= ((((
id Z)
`| Z)
. x)
+ ((((a
- b)
(#) f)
`| Z)
. x)) by
A9,
A15,
FDIFF_1:def 7
.= (1
+ ((((a
- b)
(#) f)
`| Z)
. x)) by
A11,
A10,
A15,
FDIFF_1: 23
.= (1
+ ((a
- b)
/ (x
+ b))) by
A13,
A15
.= (((1
* (x
+ b))
+ (a
- b))
/ (x
+ b)) by
A16,
XCMPLX_1: 113
.= ((x
+ a)
/ (x
+ b));
hence thesis;
end;
hence thesis by
A1,
A12,
A9,
FDIFF_1: 18;
end;
theorem ::
FDIFF_4:9
Z
c= (
dom ((
id Z)
+ ((a
+ b)
(#) f))) & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (x
- b) & (f1
. x)
>
0 ) implies ((
id Z)
+ ((a
+ b)
(#) f))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
+ ((a
+ b)
(#) f))
`| Z)
. x)
= ((x
+ a)
/ (x
- b))
proof
assume that
A1: Z
c= (
dom ((
id Z)
+ ((a
+ b)
(#) f))) and
A2: f
= (
ln
* f1) and
A3: for x st x
in Z holds (f1
. x)
= (x
- b) & (f1
. x)
>
0 ;
A4: Z
c= ((
dom (
id Z))
/\ (
dom ((a
+ b)
(#) f))) by
A1,
VALUED_1:def 1;
then
A5: Z
c= (
dom ((a
+ b)
(#) f)) by
XBOOLE_1: 18;
then
A6: Z
c= (
dom (
ln
* f1)) by
A2,
VALUED_1:def 5;
then
A7: f
is_differentiable_on Z by
A2,
A3,
Th2;
then
A8: ((a
+ b)
(#) f)
is_differentiable_on Z by
A5,
FDIFF_1: 20;
A9: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A10: Z
c= (
dom (
id Z)) by
A4,
XBOOLE_1: 18;
then
A11: (
id Z)
is_differentiable_on Z by
A9,
FDIFF_1: 23;
A12: for x st x
in Z holds ((((a
+ b)
(#) f)
`| Z)
. x)
= ((a
+ b)
/ (x
- b))
proof
let x;
assume
A13: x
in Z;
hence ((((a
+ b)
(#) f)
`| Z)
. x)
= ((a
+ b)
* (
diff (f,x))) by
A5,
A7,
FDIFF_1: 20
.= ((a
+ b)
* ((f
`| Z)
. x)) by
A7,
A13,
FDIFF_1:def 7
.= ((a
+ b)
* (1
/ (x
- b))) by
A2,
A3,
A6,
A13,
Th2
.= ((a
+ b)
/ (x
- b)) by
XCMPLX_1: 99;
end;
for x st x
in Z holds ((((
id Z)
+ ((a
+ b)
(#) f))
`| Z)
. x)
= ((x
+ a)
/ (x
- b))
proof
let x;
assume
A14: x
in Z;
then
A15: (f1
. x)
= (x
- b) & (f1
. x)
>
0 by
A3;
((((
id Z)
+ ((a
+ b)
(#) f))
`| Z)
. x)
= ((
diff ((
id Z),x))
+ (
diff (((a
+ b)
(#) f),x))) by
A1,
A11,
A8,
A14,
FDIFF_1: 18
.= ((((
id Z)
`| Z)
. x)
+ (
diff (((a
+ b)
(#) f),x))) by
A11,
A14,
FDIFF_1:def 7
.= ((((
id Z)
`| Z)
. x)
+ ((((a
+ b)
(#) f)
`| Z)
. x)) by
A8,
A14,
FDIFF_1:def 7
.= (1
+ ((((a
+ b)
(#) f)
`| Z)
. x)) by
A10,
A9,
A14,
FDIFF_1: 23
.= (1
+ ((a
+ b)
/ (x
- b))) by
A12,
A14
.= (((1
* (x
- b))
+ (a
+ b))
/ (x
- b)) by
A15,
XCMPLX_1: 113
.= ((x
+ a)
/ (x
- b));
hence thesis;
end;
hence thesis by
A1,
A11,
A8,
FDIFF_1: 18;
end;
theorem ::
FDIFF_4:10
Z
c= (
dom ((
id Z)
- ((a
+ b)
(#) f))) & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (x
+ b) & (f1
. x)
>
0 ) implies ((
id Z)
- ((a
+ b)
(#) f))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
- ((a
+ b)
(#) f))
`| Z)
. x)
= ((x
- a)
/ (x
+ b))
proof
assume that
A1: Z
c= (
dom ((
id Z)
- ((a
+ b)
(#) f))) and
A2: f
= (
ln
* f1) and
A3: for x st x
in Z holds (f1
. x)
= (x
+ b) & (f1
. x)
>
0 ;
A4: for x st x
in Z holds (f1
. x)
= (b
+ x) & (f1
. x)
>
0 by
A3;
A5: Z
c= ((
dom (
id Z))
/\ (
dom ((a
+ b)
(#) f))) by
A1,
VALUED_1: 12;
then
A6: Z
c= (
dom ((a
+ b)
(#) f)) by
XBOOLE_1: 18;
then
A7: Z
c= (
dom (
ln
* f1)) by
A2,
VALUED_1:def 5;
then
A8: f
is_differentiable_on Z by
A2,
A4,
Th1;
then
A9: ((a
+ b)
(#) f)
is_differentiable_on Z by
A6,
FDIFF_1: 20;
A10: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A11: Z
c= (
dom (
id Z)) by
A5,
XBOOLE_1: 18;
then
A12: (
id Z)
is_differentiable_on Z by
A10,
FDIFF_1: 23;
A13: for x st x
in Z holds ((((a
+ b)
(#) f)
`| Z)
. x)
= ((a
+ b)
/ (x
+ b))
proof
let x;
assume
A14: x
in Z;
hence ((((a
+ b)
(#) f)
`| Z)
. x)
= ((a
+ b)
* (
diff (f,x))) by
A6,
A8,
FDIFF_1: 20
.= ((a
+ b)
* ((f
`| Z)
. x)) by
A8,
A14,
FDIFF_1:def 7
.= ((a
+ b)
* (1
/ (x
+ b))) by
A2,
A7,
A4,
A14,
Th1
.= ((a
+ b)
/ (x
+ b)) by
XCMPLX_1: 99;
end;
for x st x
in Z holds ((((
id Z)
- ((a
+ b)
(#) f))
`| Z)
. x)
= ((x
- a)
/ (x
+ b))
proof
let x;
assume
A15: x
in Z;
then
A16: (f1
. x)
= (x
+ b) & (f1
. x)
>
0 by
A3;
((((
id Z)
- ((a
+ b)
(#) f))
`| Z)
. x)
= ((
diff ((
id Z),x))
- (
diff (((a
+ b)
(#) f),x))) by
A1,
A12,
A9,
A15,
FDIFF_1: 19
.= ((((
id Z)
`| Z)
. x)
- (
diff (((a
+ b)
(#) f),x))) by
A12,
A15,
FDIFF_1:def 7
.= ((((
id Z)
`| Z)
. x)
- ((((a
+ b)
(#) f)
`| Z)
. x)) by
A9,
A15,
FDIFF_1:def 7
.= (1
- ((((a
+ b)
(#) f)
`| Z)
. x)) by
A11,
A10,
A15,
FDIFF_1: 23
.= (1
- ((a
+ b)
/ (x
+ b))) by
A13,
A15
.= (((1
* (x
+ b))
- (a
+ b))
/ (x
+ b)) by
A16,
XCMPLX_1: 127
.= ((x
- a)
/ (x
+ b));
hence thesis;
end;
hence thesis by
A1,
A12,
A9,
FDIFF_1: 19;
end;
theorem ::
FDIFF_4:11
Z
c= (
dom ((
id Z)
+ ((b
- a)
(#) f))) & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (x
- b) & (f1
. x)
>
0 ) implies ((
id Z)
+ ((b
- a)
(#) f))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
+ ((b
- a)
(#) f))
`| Z)
. x)
= ((x
- a)
/ (x
- b))
proof
assume that
A1: Z
c= (
dom ((
id Z)
+ ((b
- a)
(#) f))) and
A2: f
= (
ln
* f1) and
A3: for x st x
in Z holds (f1
. x)
= (x
- b) & (f1
. x)
>
0 ;
A4: Z
c= ((
dom (
id Z))
/\ (
dom ((b
- a)
(#) f))) by
A1,
VALUED_1:def 1;
then
A5: Z
c= (
dom ((b
- a)
(#) f)) by
XBOOLE_1: 18;
then
A6: Z
c= (
dom (
ln
* f1)) by
A2,
VALUED_1:def 5;
then
A7: f
is_differentiable_on Z by
A2,
A3,
Th2;
then
A8: ((b
- a)
(#) f)
is_differentiable_on Z by
A5,
FDIFF_1: 20;
A9: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A10: Z
c= (
dom (
id Z)) by
A4,
XBOOLE_1: 18;
then
A11: (
id Z)
is_differentiable_on Z by
A9,
FDIFF_1: 23;
A12: for x st x
in Z holds ((((b
- a)
(#) f)
`| Z)
. x)
= ((b
- a)
/ (x
- b))
proof
let x;
assume
A13: x
in Z;
hence ((((b
- a)
(#) f)
`| Z)
. x)
= ((b
- a)
* (
diff (f,x))) by
A5,
A7,
FDIFF_1: 20
.= ((b
- a)
* ((f
`| Z)
. x)) by
A7,
A13,
FDIFF_1:def 7
.= ((b
- a)
* (1
/ (x
- b))) by
A2,
A3,
A6,
A13,
Th2
.= ((b
- a)
/ (x
- b)) by
XCMPLX_1: 99;
end;
for x st x
in Z holds ((((
id Z)
+ ((b
- a)
(#) f))
`| Z)
. x)
= ((x
- a)
/ (x
- b))
proof
let x;
assume
A14: x
in Z;
then
A15: (f1
. x)
= (x
- b) & (f1
. x)
>
0 by
A3;
((((
id Z)
+ ((b
- a)
(#) f))
`| Z)
. x)
= ((
diff ((
id Z),x))
+ (
diff (((b
- a)
(#) f),x))) by
A1,
A11,
A8,
A14,
FDIFF_1: 18
.= ((((
id Z)
`| Z)
. x)
+ (
diff (((b
- a)
(#) f),x))) by
A11,
A14,
FDIFF_1:def 7
.= ((((
id Z)
`| Z)
. x)
+ ((((b
- a)
(#) f)
`| Z)
. x)) by
A8,
A14,
FDIFF_1:def 7
.= (1
+ ((((b
- a)
(#) f)
`| Z)
. x)) by
A10,
A9,
A14,
FDIFF_1: 23
.= (1
+ ((b
- a)
/ (x
- b))) by
A12,
A14
.= (((1
* (x
- b))
+ (b
- a))
/ (x
- b)) by
A15,
XCMPLX_1: 113
.= ((x
- a)
/ (x
- b));
hence thesis;
end;
hence thesis by
A1,
A11,
A8,
FDIFF_1: 18;
end;
theorem ::
FDIFF_4:12
Th12: Z
c= (
dom (f1
+ (c
(#) f2))) & (for x st x
in Z holds (f1
. x)
= (a
+ (b
* x))) & f2
= (
#Z 2) implies (f1
+ (c
(#) f2))
is_differentiable_on Z & for x st x
in Z holds (((f1
+ (c
(#) f2))
`| Z)
. x)
= (b
+ ((2
* c)
* x))
proof
assume that
A1: Z
c= (
dom (f1
+ (c
(#) f2))) and
A2: for x st x
in Z holds (f1
. x)
= (a
+ (b
* x)) and
A3: f2
= (
#Z 2);
A4: for x st x
in Z holds f2
is_differentiable_in x by
A3,
TAYLOR_1: 2;
A5: Z
c= ((
dom f1)
/\ (
dom (c
(#) f2))) by
A1,
VALUED_1:def 1;
then
A6: Z
c= (
dom f1) by
XBOOLE_1: 18;
A7: for x st x
in Z holds (f1
. x)
= ((b
* x)
+ a) by
A2;
then
A8: f1
is_differentiable_on Z by
A6,
FDIFF_1: 23;
A9: Z
c= (
dom (c
(#) f2)) by
A5,
XBOOLE_1: 18;
then Z
c= (
dom f2) by
VALUED_1:def 5;
then
A10: f2
is_differentiable_on Z by
A4,
FDIFF_1: 9;
then
A11: (c
(#) f2)
is_differentiable_on Z by
A9,
FDIFF_1: 20;
A12: for x st x
in Z holds ((f2
`| Z)
. x)
= (2
* x)
proof
let x;
(2
* (x
#Z (2
- 1)))
= (2
* x) by
PREPOWER: 35;
then
A13: (
diff (f2,x))
= (2
* x) by
A3,
TAYLOR_1: 2;
assume x
in Z;
hence thesis by
A10,
A13,
FDIFF_1:def 7;
end;
A14: for x st x
in Z holds (((c
(#) f2)
`| Z)
. x)
= ((2
* c)
* x)
proof
let x;
assume
A15: x
in Z;
hence (((c
(#) f2)
`| Z)
. x)
= (c
* (
diff (f2,x))) by
A9,
A10,
FDIFF_1: 20
.= (c
* ((f2
`| Z)
. x)) by
A10,
A15,
FDIFF_1:def 7
.= (c
* (2
* x)) by
A12,
A15
.= ((2
* c)
* x);
end;
for x st x
in Z holds (((f1
+ (c
(#) f2))
`| Z)
. x)
= (b
+ ((2
* c)
* x))
proof
let x;
assume
A16: x
in Z;
then (((f1
+ (c
(#) f2))
`| Z)
. x)
= ((
diff (f1,x))
+ (
diff ((c
(#) f2),x))) by
A1,
A8,
A11,
FDIFF_1: 18
.= (((f1
`| Z)
. x)
+ (
diff ((c
(#) f2),x))) by
A8,
A16,
FDIFF_1:def 7
.= (((f1
`| Z)
. x)
+ (((c
(#) f2)
`| Z)
. x)) by
A11,
A16,
FDIFF_1:def 7
.= (b
+ (((c
(#) f2)
`| Z)
. x)) by
A6,
A7,
A16,
FDIFF_1: 23
.= (b
+ ((2
* c)
* x)) by
A14,
A16;
hence thesis;
end;
hence thesis by
A1,
A8,
A11,
FDIFF_1: 18;
end;
theorem ::
FDIFF_4:13
Th13: Z
c= (
dom (
ln
* (f1
+ (c
(#) f2)))) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
+ (b
* x)) & ((f1
+ (c
(#) f2))
. x)
>
0 ) implies (
ln
* (f1
+ (c
(#) f2)))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* (f1
+ (c
(#) f2)))
`| Z)
. x)
= ((b
+ ((2
* c)
* x))
/ ((a
+ (b
* x))
+ (c
* (x
|^ 2))))
proof
assume that
A1: Z
c= (
dom (
ln
* (f1
+ (c
(#) f2)))) and
A2: f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= (a
+ (b
* x)) & ((f1
+ (c
(#) f2))
. x)
>
0 ;
for y be
object st y
in Z holds y
in (
dom (f1
+ (c
(#) f2))) by
A1,
FUNCT_1: 11;
then
A4: Z
c= (
dom (f1
+ (c
(#) f2))) by
TARSKI:def 3;
then Z
c= ((
dom f1)
/\ (
dom (c
(#) f2))) by
VALUED_1:def 1;
then
A5: Z
c= (
dom (c
(#) f2)) by
XBOOLE_1: 18;
A6: for x st x
in Z holds (f1
. x)
= (a
+ (b
* x)) by
A3;
then
A7: (f1
+ (c
(#) f2))
is_differentiable_on Z by
A2,
A4,
Th12;
A8: for x st x
in Z holds (
ln
* (f1
+ (c
(#) f2)))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (f1
+ (c
(#) f2))
is_differentiable_in x & ((f1
+ (c
(#) f2))
. x)
>
0 by
A3,
A7,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A9: (
ln
* (f1
+ (c
(#) f2)))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* (f1
+ (c
(#) f2)))
`| Z)
. x)
= ((b
+ ((2
* c)
* x))
/ ((a
+ (b
* x))
+ (c
* (x
|^ 2))))
proof
let x;
assume
A10: x
in Z;
then x
in (
dom (f1
+ (c
(#) f2))) by
A1,
FUNCT_1: 11;
then
A11: ((f1
+ (c
(#) f2))
. x)
= ((f1
. x)
+ ((c
(#) f2)
. x)) by
VALUED_1:def 1
.= ((f1
. x)
+ (c
* (f2
. x))) by
A5,
A10,
VALUED_1:def 5
.= ((a
+ (b
* x))
+ (c
* (f2
. x))) by
A3,
A10
.= ((a
+ (b
* x))
+ (c
* (x
#Z 2))) by
A2,
TAYLOR_1:def 1
.= ((a
+ (b
* x))
+ (c
* (x
|^ 2))) by
PREPOWER: 36;
(f1
+ (c
(#) f2))
is_differentiable_in x & ((f1
+ (c
(#) f2))
. x)
>
0 by
A3,
A7,
A10,
FDIFF_1: 9;
then (
diff ((
ln
* (f1
+ (c
(#) f2))),x))
= ((
diff ((f1
+ (c
(#) f2)),x))
/ ((f1
+ (c
(#) f2))
. x)) by
TAYLOR_1: 20
.= ((((f1
+ (c
(#) f2))
`| Z)
. x)
/ ((f1
+ (c
(#) f2))
. x)) by
A7,
A10,
FDIFF_1:def 7
.= ((b
+ ((2
* c)
* x))
/ ((a
+ (b
* x))
+ (c
* (x
|^ 2)))) by
A2,
A4,
A6,
A10,
A11,
Th12;
hence thesis by
A9,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A8,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:14
Th14: Z
c= (
dom f) & (for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
<>
0 ) implies (f
^ )
is_differentiable_on Z & for x st x
in Z holds (((f
^ )
`| Z)
. x)
= (
- (1
/ ((a
+ x)
^2 )))
proof
assume that
A1: Z
c= (
dom f) and
A2: for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
<>
0 ;
A3: for x st x
in Z holds (f
. x)
= ((1
* x)
+ a) by
A2;
then
A4: f
is_differentiable_on Z by
A1,
FDIFF_1: 23;
A5: for x st x
in Z holds (f
. x)
<>
0 by
A2;
then
A6: (f
^ )
is_differentiable_on Z by
A4,
FDIFF_2: 22;
now
let x;
assume
A7: x
in Z;
then
A8: (f
. x)
<>
0 & f
is_differentiable_in x by
A2,
A4,
FDIFF_1: 9;
(((f
^ )
`| Z)
. x)
= (
diff ((f
^ ),x)) by
A6,
A7,
FDIFF_1:def 7
.= (
- ((
diff (f,x))
/ ((f
. x)
^2 ))) by
A8,
FDIFF_2: 15
.= (
- (((f
`| Z)
. x)
/ ((f
. x)
^2 ))) by
A4,
A7,
FDIFF_1:def 7
.= (
- (1
/ ((f
. x)
^2 ))) by
A1,
A3,
A7,
FDIFF_1: 23
.= (
- (1
/ ((a
+ x)
^2 ))) by
A2,
A7;
hence (((f
^ )
`| Z)
. x)
= (
- (1
/ ((a
+ x)
^2 )));
end;
hence thesis by
A4,
A5,
FDIFF_2: 22;
end;
theorem ::
FDIFF_4:15
Z
c= (
dom ((
- 1)
(#) (f
^ ))) & (for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
<>
0 ) implies ((
- 1)
(#) (f
^ ))
is_differentiable_on Z & for x st x
in Z holds ((((
- 1)
(#) (f
^ ))
`| Z)
. x)
= (1
/ ((a
+ x)
^2 ))
proof
assume that
A1: Z
c= (
dom ((
- 1)
(#) (f
^ ))) and
A2: for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
<>
0 ;
A3: (
dom (f
^ ))
c= (
dom f) by
RFUNCT_1: 1;
Z
c= (
dom (f
^ )) by
A1,
VALUED_1:def 5;
then
A4: Z
c= (
dom f) by
A3,
XBOOLE_1: 1;
then
A5: (f
^ )
is_differentiable_on Z by
A2,
Th14;
now
let x;
assume
A6: x
in Z;
hence ((((
- 1)
(#) (f
^ ))
`| Z)
. x)
= ((
- 1)
* (
diff ((f
^ ),x))) by
A1,
A5,
FDIFF_1: 20
.= ((
- 1)
* (((f
^ )
`| Z)
. x)) by
A5,
A6,
FDIFF_1:def 7
.= ((
- 1)
* (
- (1
/ ((a
+ x)
^2 )))) by
A2,
A4,
A6,
Th14
.= (1
/ ((a
+ x)
^2 ));
end;
hence thesis by
A1,
A5,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:16
Z
c= (
dom f) & (for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
<>
0 ) implies (f
^ )
is_differentiable_on Z & for x st x
in Z holds (((f
^ )
`| Z)
. x)
= (1
/ ((a
- x)
^2 ))
proof
assume that
A1: Z
c= (
dom f) and
A2: for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
<>
0 ;
A3: for x st x
in Z holds (f
. x)
= (((
- 1)
* x)
+ a)
proof
let x;
assume x
in Z;
then (f
. x)
= (a
- x) by
A2;
hence thesis;
end;
then
A4: f
is_differentiable_on Z by
A1,
FDIFF_1: 23;
A5: for x st x
in Z holds (f
. x)
<>
0 by
A2;
then
A6: (f
^ )
is_differentiable_on Z by
A4,
FDIFF_2: 22;
now
let x;
assume
A7: x
in Z;
then
A8: (f
. x)
<>
0 & f
is_differentiable_in x by
A2,
A4,
FDIFF_1: 9;
(((f
^ )
`| Z)
. x)
= (
diff ((f
^ ),x)) by
A6,
A7,
FDIFF_1:def 7
.= (
- ((
diff (f,x))
/ ((f
. x)
^2 ))) by
A8,
FDIFF_2: 15
.= (
- (((f
`| Z)
. x)
/ ((f
. x)
^2 ))) by
A4,
A7,
FDIFF_1:def 7
.= (
- ((
- 1)
/ ((f
. x)
^2 ))) by
A1,
A3,
A7,
FDIFF_1: 23
.= (
- (
- (1
/ ((f
. x)
^2 )))) by
XCMPLX_1: 187
.= (1
/ ((a
- x)
^2 )) by
A2,
A7;
hence (((f
^ )
`| Z)
. x)
= (1
/ ((a
- x)
^2 ));
end;
hence thesis by
A4,
A5,
FDIFF_2: 22;
end;
theorem ::
FDIFF_4:17
Th17: Z
c= (
dom (f1
+ f2)) & (for x st x
in Z holds (f1
. x)
= (a
^2 )) & f2
= (
#Z 2) implies (f1
+ f2)
is_differentiable_on Z & for x st x
in Z holds (((f1
+ f2)
`| Z)
. x)
= (2
* x)
proof
assume that
A1: Z
c= (
dom (f1
+ f2)) & for x st x
in Z holds (f1
. x)
= (a
^2 ) and
A2: f2
= (
#Z 2);
A3: Z
c= (
dom (f1
+ (1
(#) f2))) & for x st x
in Z holds (f1
. x)
= ((a
^2 )
+ (
0
* x)) by
A1,
RFUNCT_1: 21;
A4: for x st x
in Z holds (((f1
+ f2)
`| Z)
. x)
= (2
* x)
proof
let x;
assume
A5: x
in Z;
(((f1
+ f2)
`| Z)
. x)
= (((f1
+ (1
(#) f2))
`| Z)
. x) by
RFUNCT_1: 21
.= (
0
+ ((2
* 1)
* x)) by
A2,
A3,
A5,
Th12
.= (2
* x);
hence thesis;
end;
(f1
+ (1
(#) f2))
is_differentiable_on Z by
A2,
A3,
Th12;
hence thesis by
A4,
RFUNCT_1: 21;
end;
theorem ::
FDIFF_4:18
Z
c= (
dom (
ln
* (f1
+ f2))) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
^2 ) & ((f1
+ f2)
. x)
>
0 ) implies (
ln
* (f1
+ f2))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* (f1
+ f2))
`| Z)
. x)
= ((2
* x)
/ ((a
^2 )
+ (x
|^ 2)))
proof
assume that
A1: Z
c= (
dom (
ln
* (f1
+ f2))) and
A2: f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= (a
^2 ) & ((f1
+ f2)
. x)
>
0 ;
f2
= (1
(#) f2) by
RFUNCT_1: 21;
then
A4: for x st x
in Z holds (f1
. x)
= ((a
^2 )
+ (
0
* x)) & ((f1
+ (1
(#) f2))
. x)
>
0 by
A3;
A5: Z
c= (
dom (
ln
* (f1
+ (1
(#) f2)))) by
A1,
RFUNCT_1: 21;
A6: for x st x
in Z holds (((
ln
* (f1
+ f2))
`| Z)
. x)
= ((2
* x)
/ ((a
^2 )
+ (x
|^ 2)))
proof
let x;
assume
A7: x
in Z;
(((
ln
* (f1
+ f2))
`| Z)
. x)
= (((
ln
* (f1
+ (1
(#) f2)))
`| Z)
. x) by
RFUNCT_1: 21
.= ((
0
+ ((2
* 1)
* x))
/ (((a
^2 )
+ (
0
* x))
+ (1
* (x
|^ 2)))) by
A2,
A5,
A4,
A7,
Th13
.= ((2
* x)
/ ((a
^2 )
+ (x
|^ 2)));
hence thesis;
end;
(
ln
* (f1
+ (1
(#) f2)))
is_differentiable_on Z by
A2,
A5,
A4,
Th13;
hence thesis by
A6,
RFUNCT_1: 21;
end;
theorem ::
FDIFF_4:19
Z
c= (
dom (
- (
ln
* (f1
- f2)))) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
^2 ) & ((f1
- f2)
. x)
>
0 ) implies (
- (
ln
* (f1
- f2)))
is_differentiable_on Z & for x st x
in Z holds (((
- (
ln
* (f1
- f2)))
`| Z)
. x)
= ((2
* x)
/ ((a
^2 )
- (x
|^ 2)))
proof
assume that
A1: Z
c= (
dom (
- (
ln
* (f1
- f2)))) and
A2: f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= (a
^2 ) & ((f1
- f2)
. x)
>
0 ;
A4: Z
c= (
dom (
ln
* (f1
+ ((
- 1)
(#) f2)))) & for x st x
in Z holds (f1
. x)
= ((a
^2 )
+ (
0
* x)) & ((f1
+ ((
- 1)
(#) f2))
. x)
>
0 by
A1,
A3,
VALUED_1: 8;
then
A5: (
ln
* (f1
+ ((
- 1)
(#) f2)))
is_differentiable_on Z by
A2,
Th13;
for x st x
in Z holds (((
- (
ln
* (f1
- f2)))
`| Z)
. x)
= ((2
* x)
/ ((a
^2 )
- (x
|^ 2)))
proof
let x;
assume
A6: x
in Z;
then (((
- (
ln
* (f1
- f2)))
`| Z)
. x)
= ((
- 1)
* (
diff ((
ln
* (f1
+ ((
- 1)
(#) f2))),x))) by
A1,
A5,
FDIFF_1: 20
.= ((
- 1)
* (((
ln
* (f1
+ ((
- 1)
(#) f2)))
`| Z)
. x)) by
A5,
A6,
FDIFF_1:def 7
.= ((
- 1)
* ((
0
+ ((2
* (
- 1))
* x))
/ (((a
^2 )
+ (
0
* x))
+ ((
- 1)
* (x
|^ 2))))) by
A2,
A4,
A6,
Th13
.= (((
- 1)
* ((2
* (
- 1))
* x))
/ ((a
^2 )
+ ((
- 1)
* (x
|^ 2)))) by
XCMPLX_1: 74
.= ((2
* x)
/ ((a
^2 )
- (x
|^ 2)));
hence thesis;
end;
hence thesis by
A1,
A5,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:20
Th20: Z
c= (
dom (f1
+ f2)) & (for x st x
in Z holds (f1
. x)
= a) & f2
= (
#Z 3) implies (f1
+ f2)
is_differentiable_on Z & for x st x
in Z holds (((f1
+ f2)
`| Z)
. x)
= (3
* (x
|^ 2))
proof
assume that
A1: Z
c= (
dom (f1
+ f2)) and
A2: for x st x
in Z holds (f1
. x)
= a and
A3: f2
= (
#Z 3);
A4: for x st x
in Z holds f2
is_differentiable_in x by
A3,
TAYLOR_1: 2;
A5: Z
c= ((
dom f1)
/\ (
dom f2)) by
A1,
VALUED_1:def 1;
then
A6: Z
c= (
dom f1) by
XBOOLE_1: 18;
A7: for x st x
in Z holds (f1
. x)
= ((
0
* x)
+ a) by
A2;
then
A8: f1
is_differentiable_on Z by
A6,
FDIFF_1: 23;
Z
c= (
dom f2) by
A5,
XBOOLE_1: 18;
then
A9: f2
is_differentiable_on Z by
A4,
FDIFF_1: 9;
A10: for x st x
in Z holds ((f2
`| Z)
. x)
= (3
* (x
#Z (3
- 1)))
proof
let x;
assume
A11: x
in Z;
(
diff (f2,x))
= (3
* (x
#Z (3
- 1))) by
A3,
TAYLOR_1: 2;
hence thesis by
A9,
A11,
FDIFF_1:def 7;
end;
for x st x
in Z holds (((f1
+ f2)
`| Z)
. x)
= (3
* (x
|^ 2))
proof
let x;
assume
A12: x
in Z;
then (((f1
+ f2)
`| Z)
. x)
= ((
diff (f1,x))
+ (
diff (f2,x))) by
A1,
A8,
A9,
FDIFF_1: 18;
hence (((f1
+ f2)
`| Z)
. x)
= (((f1
`| Z)
. x)
+ (
diff (f2,x))) by
A8,
A12,
FDIFF_1:def 7
.= (((f1
`| Z)
. x)
+ ((f2
`| Z)
. x)) by
A9,
A12,
FDIFF_1:def 7
.= (
0
+ ((f2
`| Z)
. x)) by
A6,
A7,
A12,
FDIFF_1: 23
.= (3
* (x
#Z (3
- 1))) by
A10,
A12
.= (3
* (x
|^ 2)) by
PREPOWER: 36;
end;
hence thesis by
A1,
A8,
A9,
FDIFF_1: 18;
end;
theorem ::
FDIFF_4:21
Z
c= (
dom (
ln
* (f1
+ f2))) & f2
= (
#Z 3) & (for x st x
in Z holds (f1
. x)
= a & ((f1
+ f2)
. x)
>
0 ) implies (
ln
* (f1
+ f2))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* (f1
+ f2))
`| Z)
. x)
= ((3
* (x
|^ 2))
/ (a
+ (x
|^ 3)))
proof
assume that
A1: Z
c= (
dom (
ln
* (f1
+ f2))) and
A2: f2
= (
#Z 3) and
A3: for x st x
in Z holds (f1
. x)
= a & ((f1
+ f2)
. x)
>
0 ;
for y be
object st y
in Z holds y
in (
dom (f1
+ f2)) by
A1,
FUNCT_1: 11;
then
A4: Z
c= (
dom (f1
+ f2)) by
TARSKI:def 3;
A5: for x st x
in Z holds (f1
. x)
= a by
A3;
then
A6: (f1
+ f2)
is_differentiable_on Z by
A2,
A4,
Th20;
A7: for x st x
in Z holds (
ln
* (f1
+ f2))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (f1
+ f2)
is_differentiable_in x & ((f1
+ f2)
. x)
>
0 by
A3,
A6,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A8: (
ln
* (f1
+ f2))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* (f1
+ f2))
`| Z)
. x)
= ((3
* (x
|^ 2))
/ (a
+ (x
|^ 3)))
proof
let x;
assume
A9: x
in Z;
then
A10: x
in (
dom (f1
+ f2)) by
A1,
FUNCT_1: 11;
(f1
+ f2)
is_differentiable_in x & ((f1
+ f2)
. x)
>
0 by
A3,
A6,
A9,
FDIFF_1: 9;
then (
diff ((
ln
* (f1
+ f2)),x))
= ((
diff ((f1
+ f2),x))
/ ((f1
+ f2)
. x)) by
TAYLOR_1: 20
.= ((((f1
+ f2)
`| Z)
. x)
/ ((f1
+ f2)
. x)) by
A6,
A9,
FDIFF_1:def 7
.= ((3
* (x
|^ 2))
/ ((f1
+ f2)
. x)) by
A2,
A4,
A5,
A9,
Th20
.= ((3
* (x
|^ 2))
/ ((f1
. x)
+ (f2
. x))) by
A10,
VALUED_1:def 1
.= ((3
* (x
|^ 2))
/ (a
+ (f2
. x))) by
A3,
A9
.= ((3
* (x
|^ 2))
/ (a
+ (x
#Z 3))) by
A2,
TAYLOR_1:def 1
.= ((3
* (x
|^ 2))
/ (a
+ (x
|^ 3))) by
PREPOWER: 36;
hence thesis by
A8,
A9,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A7,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:22
Z
c= (
dom (
ln
* (f1
/ f2))) & (for x st x
in Z holds (f1
. x)
= (a
+ x) & (f1
. x)
>
0 & (f2
. x)
= (a
- x) & (f2
. x)
>
0 ) implies (
ln
* (f1
/ f2))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* (f1
/ f2))
`| Z)
. x)
= ((2
* a)
/ ((a
^2 )
- (x
^2 )))
proof
assume that
A1: Z
c= (
dom (
ln
* (f1
/ f2))) and
A2: for x st x
in Z holds (f1
. x)
= (a
+ x) & (f1
. x)
>
0 & (f2
. x)
= (a
- x) & (f2
. x)
>
0 ;
for y be
object st y
in Z holds y
in (
dom (f1
/ f2)) by
A1,
FUNCT_1: 11;
then Z
c= (
dom (f1
/ f2)) by
TARSKI:def 3;
then
A3: Z
c= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
RFUNCT_1:def 1;
then
A4: Z
c= (
dom f1) by
XBOOLE_1: 18;
A5: for x st x
in Z holds (f1
. x)
= ((1
* x)
+ a) by
A2;
then
A6: f1
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A7: for x st x
in Z holds (f2
. x)
= (((
- 1)
* x)
+ a)
proof
let x;
assume x
in Z;
then (f2
. x)
= (a
- x) by
A2;
hence thesis;
end;
A8: Z
c= (
dom f2) by
A3,
XBOOLE_1: 1;
then
A9: f2
is_differentiable_on Z by
A7,
FDIFF_1: 23;
for x st x
in Z holds (f2
. x)
<>
0 by
A2;
then
A10: (f1
/ f2)
is_differentiable_on Z by
A6,
A9,
FDIFF_2: 21;
A11: for x st x
in Z holds (((f1
/ f2)
`| Z)
. x)
= ((2
* a)
/ ((a
- x)
^2 ))
proof
let x;
assume
A12: x
in Z;
then
A13: (f2
. x)
<>
0 by
A2;
A14: (f1
. x)
= (a
+ x) & (f2
. x)
= (a
- x) by
A2,
A12;
f1
is_differentiable_in x & f2
is_differentiable_in x by
A6,
A9,
A12,
FDIFF_1: 9;
then (
diff ((f1
/ f2),x))
= ((((
diff (f1,x))
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A13,
FDIFF_2: 14
.= (((((f1
`| Z)
. x)
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A6,
A12,
FDIFF_1:def 7
.= (((((f1
`| Z)
. x)
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A9,
A12,
FDIFF_1:def 7
.= (((1
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A4,
A5,
A12,
FDIFF_1: 23
.= (((1
* (f2
. x))
- ((
- 1)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A8,
A7,
A12,
FDIFF_1: 23
.= ((2
* a)
/ ((a
- x)
^2 )) by
A14;
hence thesis by
A10,
A12,
FDIFF_1:def 7;
end;
A15: for x st x
in Z holds ((f1
/ f2)
. x)
>
0
proof
let x;
assume
A16: x
in Z;
then x
in (
dom (f1
/ f2)) by
A1,
FUNCT_1: 11;
then
A17: ((f1
/ f2)
. x)
= ((f1
. x)
* ((f2
. x)
" )) by
RFUNCT_1:def 1
.= ((f1
. x)
/ (f2
. x)) by
XCMPLX_0:def 9;
(f1
. x)
>
0 & (f2
. x)
>
0 by
A2,
A16;
hence thesis by
A17,
XREAL_1: 139;
end;
A18: for x st x
in Z holds (
ln
* (f1
/ f2))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (f1
/ f2)
is_differentiable_in x & ((f1
/ f2)
. x)
>
0 by
A10,
A15,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A19: (
ln
* (f1
/ f2))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* (f1
/ f2))
`| Z)
. x)
= ((2
* a)
/ ((a
^2 )
- (x
^2 )))
proof
let x;
assume
A20: x
in Z;
then
A21: (f2
. x)
= (a
- x) & (f2
. x)
>
0 by
A2;
A22: (f1
. x)
= (a
+ x) & (f2
. x)
= (a
- x) by
A2,
A20;
A23: x
in (
dom (f1
/ f2)) by
A1,
A20,
FUNCT_1: 11;
(f1
/ f2)
is_differentiable_in x & ((f1
/ f2)
. x)
>
0 by
A10,
A15,
A20,
FDIFF_1: 9;
then (
diff ((
ln
* (f1
/ f2)),x))
= ((
diff ((f1
/ f2),x))
/ ((f1
/ f2)
. x)) by
TAYLOR_1: 20
.= ((((f1
/ f2)
`| Z)
. x)
/ ((f1
/ f2)
. x)) by
A10,
A20,
FDIFF_1:def 7
.= (((2
* a)
/ ((a
- x)
^2 ))
/ ((f1
/ f2)
. x)) by
A11,
A20
.= (((2
* a)
/ ((a
- x)
^2 ))
/ ((f1
. x)
* ((f2
. x)
" ))) by
A23,
RFUNCT_1:def 1
.= (((2
* a)
/ ((a
- x)
* (a
- x)))
/ ((a
+ x)
/ (a
- x))) by
A22,
XCMPLX_0:def 9
.= ((((2
* a)
/ (a
- x))
/ (a
- x))
/ ((a
+ x)
/ (a
- x))) by
XCMPLX_1: 78
.= ((((2
* a)
/ (a
- x))
/ ((a
+ x)
/ (a
- x)))
/ (a
- x)) by
XCMPLX_1: 48
.= (((2
* a)
/ (a
+ x))
/ (a
- x)) by
A21,
XCMPLX_1: 55
.= ((2
* a)
/ ((a
+ x)
* (a
- x))) by
XCMPLX_1: 78
.= ((2
* a)
/ ((a
^2 )
- (x
^2 )));
hence thesis by
A19,
A20,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A18,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:23
Z
c= (
dom (
ln
* (f1
/ f2))) & (for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 & (f2
. x)
= (x
+ a) & (f2
. x)
>
0 ) implies (
ln
* (f1
/ f2))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* (f1
/ f2))
`| Z)
. x)
= ((2
* a)
/ ((x
^2 )
- (a
^2 )))
proof
assume that
A1: Z
c= (
dom (
ln
* (f1
/ f2))) and
A2: for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 & (f2
. x)
= (x
+ a) & (f2
. x)
>
0 ;
A3: for x st x
in Z holds (f2
. x)
= ((1
* x)
+ a) by
A2;
for y be
object st y
in Z holds y
in (
dom (f1
/ f2)) by
A1,
FUNCT_1: 11;
then Z
c= (
dom (f1
/ f2)) by
TARSKI:def 3;
then
A4: Z
c= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
RFUNCT_1:def 1;
then
A5: Z
c= (
dom f1) by
XBOOLE_1: 18;
A6: Z
c= (
dom f2) by
A4,
XBOOLE_1: 1;
then
A7: f2
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A8: for x st x
in Z holds (f1
. x)
= ((1
* x)
+ (
- a))
proof
let x;
A9: ((1
* x)
+ (
- a))
= ((1
* x)
- a);
assume x
in Z;
hence thesis by
A2,
A9;
end;
then
A10: f1
is_differentiable_on Z by
A5,
FDIFF_1: 23;
for x st x
in Z holds (f2
. x)
<>
0 by
A2;
then
A11: (f1
/ f2)
is_differentiable_on Z by
A10,
A7,
FDIFF_2: 21;
A12: for x st x
in Z holds (((f1
/ f2)
`| Z)
. x)
= ((2
* a)
/ ((x
+ a)
^2 ))
proof
let x;
assume
A13: x
in Z;
then
A14: (f2
. x)
<>
0 by
A2;
A15: (f1
. x)
= (x
- a) & (f2
. x)
= (x
+ a) by
A2,
A13;
f1
is_differentiable_in x & f2
is_differentiable_in x by
A10,
A7,
A13,
FDIFF_1: 9;
then (
diff ((f1
/ f2),x))
= ((((
diff (f1,x))
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A14,
FDIFF_2: 14
.= (((((f1
`| Z)
. x)
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A10,
A13,
FDIFF_1:def 7
.= (((((f1
`| Z)
. x)
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A7,
A13,
FDIFF_1:def 7
.= (((1
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A5,
A8,
A13,
FDIFF_1: 23
.= (((1
* (f2
. x))
- (1
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A6,
A3,
A13,
FDIFF_1: 23
.= ((2
* a)
/ ((x
+ a)
^2 )) by
A15;
hence thesis by
A11,
A13,
FDIFF_1:def 7;
end;
A16: for x st x
in Z holds ((f1
/ f2)
. x)
>
0
proof
let x;
assume
A17: x
in Z;
then x
in (
dom (f1
/ f2)) by
A1,
FUNCT_1: 11;
then
A18: ((f1
/ f2)
. x)
= ((f1
. x)
* ((f2
. x)
" )) by
RFUNCT_1:def 1
.= ((f1
. x)
/ (f2
. x)) by
XCMPLX_0:def 9;
(f1
. x)
>
0 & (f2
. x)
>
0 by
A2,
A17;
hence thesis by
A18,
XREAL_1: 139;
end;
A19: for x st x
in Z holds (
ln
* (f1
/ f2))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (f1
/ f2)
is_differentiable_in x & ((f1
/ f2)
. x)
>
0 by
A11,
A16,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A20: (
ln
* (f1
/ f2))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* (f1
/ f2))
`| Z)
. x)
= ((2
* a)
/ ((x
^2 )
- (a
^2 )))
proof
let x;
assume
A21: x
in Z;
then
A22: (f2
. x)
= (x
+ a) & (f2
. x)
>
0 by
A2;
A23: (f1
. x)
= (x
- a) & (f2
. x)
= (x
+ a) by
A2,
A21;
A24: x
in (
dom (f1
/ f2)) by
A1,
A21,
FUNCT_1: 11;
(f1
/ f2)
is_differentiable_in x & ((f1
/ f2)
. x)
>
0 by
A11,
A16,
A21,
FDIFF_1: 9;
then (
diff ((
ln
* (f1
/ f2)),x))
= ((
diff ((f1
/ f2),x))
/ ((f1
/ f2)
. x)) by
TAYLOR_1: 20
.= ((((f1
/ f2)
`| Z)
. x)
/ ((f1
/ f2)
. x)) by
A11,
A21,
FDIFF_1:def 7
.= (((2
* a)
/ ((x
+ a)
^2 ))
/ ((f1
/ f2)
. x)) by
A12,
A21
.= (((2
* a)
/ ((x
+ a)
^2 ))
/ ((f1
. x)
* ((f2
. x)
" ))) by
A24,
RFUNCT_1:def 1
.= (((2
* a)
/ ((x
+ a)
* (x
+ a)))
/ ((x
- a)
/ (x
+ a))) by
A23,
XCMPLX_0:def 9
.= ((((2
* a)
/ (x
+ a))
/ (x
+ a))
/ ((x
- a)
/ (x
+ a))) by
XCMPLX_1: 78
.= ((((2
* a)
/ (x
+ a))
/ ((x
- a)
/ (x
+ a)))
/ (x
+ a)) by
XCMPLX_1: 48
.= (((2
* a)
/ (x
- a))
/ (x
+ a)) by
A22,
XCMPLX_1: 55
.= ((2
* a)
/ ((x
- a)
* (x
+ a))) by
XCMPLX_1: 78
.= ((2
* a)
/ ((x
^2 )
- (a
^2 )));
hence thesis by
A20,
A21,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A19,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:24
Th24: Z
c= (
dom (
ln
* (f1
/ f2))) & (for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 & (f2
. x)
= (x
- b) & (f2
. x)
>
0 ) implies (
ln
* (f1
/ f2))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* (f1
/ f2))
`| Z)
. x)
= ((a
- b)
/ ((x
- a)
* (x
- b)))
proof
assume that
A1: Z
c= (
dom (
ln
* (f1
/ f2))) and
A2: for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 & (f2
. x)
= (x
- b) & (f2
. x)
>
0 ;
A3: for x st x
in Z holds (f1
. x)
= ((1
* x)
+ (
- a)) & (f2
. x)
= ((1
* x)
+ (
- b))
proof
let x;
A4: ((1
* x)
+ (
- a))
= ((1
* x)
- a) & ((1
* x)
+ (
- b))
= ((1
* x)
- b);
assume x
in Z;
hence thesis by
A2,
A4;
end;
then
A5: for x st x
in Z holds (f1
. x)
= ((1
* x)
+ (
- a));
for y be
object st y
in Z holds y
in (
dom (f1
/ f2)) by
A1,
FUNCT_1: 11;
then Z
c= (
dom (f1
/ f2)) by
TARSKI:def 3;
then
A6: Z
c= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
RFUNCT_1:def 1;
then
A7: Z
c= (
dom f1) by
XBOOLE_1: 18;
then
A8: f1
is_differentiable_on Z by
A5,
FDIFF_1: 23;
A9: for x st x
in Z holds (f2
. x)
= ((1
* x)
+ (
- b)) by
A3;
A10: Z
c= (
dom f2) by
A6,
XBOOLE_1: 1;
then
A11: f2
is_differentiable_on Z by
A9,
FDIFF_1: 23;
for x st x
in Z holds (f2
. x)
<>
0 by
A2;
then
A12: (f1
/ f2)
is_differentiable_on Z by
A8,
A11,
FDIFF_2: 21;
A13: for x st x
in Z holds (((f1
/ f2)
`| Z)
. x)
= ((a
- b)
/ ((x
- b)
^2 ))
proof
let x;
assume
A14: x
in Z;
then
A15: (f2
. x)
<>
0 by
A2;
A16: (f1
. x)
= (x
- a) & (f2
. x)
= (x
- b) by
A2,
A14;
f1
is_differentiable_in x & f2
is_differentiable_in x by
A8,
A11,
A14,
FDIFF_1: 9;
then (
diff ((f1
/ f2),x))
= ((((
diff (f1,x))
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A15,
FDIFF_2: 14
.= (((((f1
`| Z)
. x)
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A8,
A14,
FDIFF_1:def 7
.= (((((f1
`| Z)
. x)
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A11,
A14,
FDIFF_1:def 7
.= (((1
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A7,
A5,
A14,
FDIFF_1: 23
.= (((1
* (f2
. x))
- (1
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A10,
A9,
A14,
FDIFF_1: 23
.= ((a
- b)
/ ((x
- b)
^2 )) by
A16;
hence thesis by
A12,
A14,
FDIFF_1:def 7;
end;
A17: for x st x
in Z holds ((f1
/ f2)
. x)
>
0
proof
let x;
assume
A18: x
in Z;
then x
in (
dom (f1
/ f2)) by
A1,
FUNCT_1: 11;
then
A19: ((f1
/ f2)
. x)
= ((f1
. x)
* ((f2
. x)
" )) by
RFUNCT_1:def 1
.= ((f1
. x)
/ (f2
. x)) by
XCMPLX_0:def 9;
(f1
. x)
>
0 & (f2
. x)
>
0 by
A2,
A18;
hence thesis by
A19,
XREAL_1: 139;
end;
A20: for x st x
in Z holds (
ln
* (f1
/ f2))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (f1
/ f2)
is_differentiable_in x & ((f1
/ f2)
. x)
>
0 by
A12,
A17,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A21: (
ln
* (f1
/ f2))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* (f1
/ f2))
`| Z)
. x)
= ((a
- b)
/ ((x
- a)
* (x
- b)))
proof
let x;
assume
A22: x
in Z;
then
A23: (f2
. x)
= (x
- b) & (f2
. x)
>
0 by
A2;
A24: (f1
. x)
= (x
- a) & (f2
. x)
= (x
- b) by
A2,
A22;
A25: x
in (
dom (f1
/ f2)) by
A1,
A22,
FUNCT_1: 11;
(f1
/ f2)
is_differentiable_in x & ((f1
/ f2)
. x)
>
0 by
A12,
A17,
A22,
FDIFF_1: 9;
then (
diff ((
ln
* (f1
/ f2)),x))
= ((
diff ((f1
/ f2),x))
/ ((f1
/ f2)
. x)) by
TAYLOR_1: 20
.= ((((f1
/ f2)
`| Z)
. x)
/ ((f1
/ f2)
. x)) by
A12,
A22,
FDIFF_1:def 7
.= (((a
- b)
/ ((x
- b)
^2 ))
/ ((f1
/ f2)
. x)) by
A13,
A22
.= (((a
- b)
/ ((x
- b)
^2 ))
/ ((f1
. x)
* ((f2
. x)
" ))) by
A25,
RFUNCT_1:def 1
.= (((a
- b)
/ ((x
- b)
* (x
- b)))
/ ((x
- a)
/ (x
- b))) by
A24,
XCMPLX_0:def 9
.= ((((a
- b)
/ (x
- b))
/ (x
- b))
/ ((x
- a)
/ (x
- b))) by
XCMPLX_1: 78
.= ((((a
- b)
/ (x
- b))
/ ((x
- a)
/ (x
- b)))
/ (x
- b)) by
XCMPLX_1: 48
.= (((a
- b)
/ (x
- a))
/ (x
- b)) by
A23,
XCMPLX_1: 55
.= ((a
- b)
/ ((x
- a)
* (x
- b))) by
XCMPLX_1: 78;
hence thesis by
A21,
A22,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A20,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:25
Z
c= (
dom ((1
/ (a
- b))
(#) f)) & f
= (
ln
* (f1
/ f2)) & (for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 & (f2
. x)
= (x
- b) & (f2
. x)
>
0 & (a
- b)
<>
0 ) implies ((1
/ (a
- b))
(#) f)
is_differentiable_on Z & for x st x
in Z holds ((((1
/ (a
- b))
(#) f)
`| Z)
. x)
= (1
/ ((x
- a)
* (x
- b)))
proof
assume that
A1: Z
c= (
dom ((1
/ (a
- b))
(#) f)) and
A2: f
= (
ln
* (f1
/ f2)) and
A3: for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 & (f2
. x)
= (x
- b) & (f2
. x)
>
0 & (a
- b)
<>
0 ;
A4: (for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 & (f2
. x)
= (x
- b) & (f2
. x)
>
0 ) & Z
c= (
dom f) by
A1,
A3,
VALUED_1:def 5;
then
A5: f
is_differentiable_on Z by
A2,
Th24;
for x st x
in Z holds ((((1
/ (a
- b))
(#) f)
`| Z)
. x)
= (1
/ ((x
- a)
* (x
- b)))
proof
let x;
assume
A6: x
in Z;
then
A7: (a
- b)
<>
0 by
A3;
((((1
/ (a
- b))
(#) f)
`| Z)
. x)
= ((1
/ (a
- b))
* (
diff (f,x))) by
A1,
A5,
A6,
FDIFF_1: 20
.= ((1
/ (a
- b))
* ((f
`| Z)
. x)) by
A5,
A6,
FDIFF_1:def 7
.= ((1
/ (a
- b))
* ((a
- b)
/ ((x
- a)
* (x
- b)))) by
A2,
A4,
A6,
Th24
.= (((1
/ (a
- b))
* (a
- b))
/ ((x
- a)
* (x
- b))) by
XCMPLX_1: 74
.= (1
/ ((x
- a)
* (x
- b))) by
A7,
XCMPLX_1: 106;
hence thesis;
end;
hence thesis by
A1,
A5,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:26
Z
c= (
dom (
ln
* (f1
/ f2))) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 & (f2
. x)
>
0 & x
<>
0 ) implies (
ln
* (f1
/ f2))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* (f1
/ f2))
`| Z)
. x)
= (((2
* a)
- x)
/ (x
* (x
- a)))
proof
assume that
A1: Z
c= (
dom (
ln
* (f1
/ f2))) and
A2: f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 & (f2
. x)
>
0 & x
<>
0 ;
A4: for x st x
in Z holds f2
is_differentiable_in x by
A2,
TAYLOR_1: 2;
for y be
object st y
in Z holds y
in (
dom (f1
/ f2)) by
A1,
FUNCT_1: 11;
then Z
c= (
dom (f1
/ f2)) by
TARSKI:def 3;
then
A5: Z
c= ((
dom f1)
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
RFUNCT_1:def 1;
then
A6: Z
c= (
dom f1) by
XBOOLE_1: 18;
A7: for x st x
in Z holds (f1
. x)
= ((1
* x)
+ (
- a))
proof
let x;
A8: ((1
* x)
+ (
- a))
= ((1
* x)
- a);
assume x
in Z;
hence thesis by
A3,
A8;
end;
then
A9: f1
is_differentiable_on Z by
A6,
FDIFF_1: 23;
A10: Z
c= (
dom f2) by
A5,
XBOOLE_1: 1;
then
A11: f2
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (f2
. x)
<>
0 by
A3;
then
A12: (f1
/ f2)
is_differentiable_on Z by
A9,
A11,
FDIFF_2: 21;
A13: f2
is_differentiable_on Z by
A10,
A4,
FDIFF_1: 9;
A14: for x st x
in Z holds ((f2
`| Z)
. x)
= (2
* x)
proof
let x;
(2
* (x
#Z (2
- 1)))
= (2
* x) by
PREPOWER: 35;
then
A15: (
diff (f2,x))
= (2
* x) by
A2,
TAYLOR_1: 2;
assume x
in Z;
hence thesis by
A13,
A15,
FDIFF_1:def 7;
end;
A16: for x st x
in Z holds (((f1
/ f2)
`| Z)
. x)
= (((2
* a)
- x)
/ (x
|^ 3))
proof
let x;
A17: f2
is_differentiable_in x by
A2,
TAYLOR_1: 2;
A18: (f2
. x)
= (x
#Z 2) by
A2,
TAYLOR_1:def 1
.= (x
|^ 2) by
PREPOWER: 36;
assume
A19: x
in Z;
then
A20: x
<>
0 by
A3;
f1
is_differentiable_in x & (f2
. x)
<>
0 by
A3,
A9,
A19,
FDIFF_1: 9;
then (
diff ((f1
/ f2),x))
= ((((
diff (f1,x))
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A17,
FDIFF_2: 14
.= (((((f1
`| Z)
. x)
* (f2
. x))
- ((
diff (f2,x))
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A9,
A19,
FDIFF_1:def 7
.= (((((f1
`| Z)
. x)
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A11,
A19,
FDIFF_1:def 7
.= (((1
* (f2
. x))
- (((f2
`| Z)
. x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A6,
A7,
A19,
FDIFF_1: 23
.= (((1
* (f2
. x))
- ((2
* x)
* (f1
. x)))
/ ((f2
. x)
^2 )) by
A14,
A19
.= (((x
|^ (1
+ 1))
- ((2
* x)
* (x
- a)))
/ ((x
|^ 2)
^2 )) by
A3,
A19,
A18
.= ((((x
|^ 1)
* x)
- ((2
* x)
* (x
- a)))
/ ((x
|^ 2)
^2 )) by
NEWTON: 6
.= (((x
* x)
- ((2
* x)
* (x
- a)))
/ ((x
|^ 2)
^2 ))
.= ((x
* ((2
* a)
- x))
/ (x
|^ (2
+ 2))) by
NEWTON: 8
.= ((x
* ((2
* a)
- x))
/ (x
|^ (3
+ 1)))
.= ((x
* ((2
* a)
- x))
/ ((x
|^ 3)
* x)) by
NEWTON: 6
.= (((2
* a)
- x)
/ (x
|^ 3)) by
A20,
XCMPLX_1: 91;
hence thesis by
A12,
A19,
FDIFF_1:def 7;
end;
A21: for x st x
in Z holds ((f1
/ f2)
. x)
>
0
proof
let x;
assume
A22: x
in Z;
then x
in (
dom (f1
/ f2)) by
A1,
FUNCT_1: 11;
then
A23: ((f1
/ f2)
. x)
= ((f1
. x)
* ((f2
. x)
" )) by
RFUNCT_1:def 1
.= ((f1
. x)
/ (f2
. x)) by
XCMPLX_0:def 9;
(f1
. x)
>
0 & (f2
. x)
>
0 by
A3,
A22;
hence thesis by
A23,
XREAL_1: 139;
end;
A24: for x st x
in Z holds (
ln
* (f1
/ f2))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (f1
/ f2)
is_differentiable_in x & ((f1
/ f2)
. x)
>
0 by
A12,
A21,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A25: (
ln
* (f1
/ f2))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* (f1
/ f2))
`| Z)
. x)
= (((2
* a)
- x)
/ (x
* (x
- a)))
proof
let x;
assume
A26: x
in Z;
then
A27: x
in (
dom (f1
/ f2)) by
A1,
FUNCT_1: 11;
A28: (f2
. x)
= (x
#Z 2) by
A2,
TAYLOR_1:def 1
.= (x
|^ 2) by
PREPOWER: 36;
then
A29: (x
|^ 2)
>
0 by
A3,
A26;
A30: (f1
. x)
= (x
- a) by
A3,
A26;
(f1
/ f2)
is_differentiable_in x & ((f1
/ f2)
. x)
>
0 by
A12,
A21,
A26,
FDIFF_1: 9;
then (
diff ((
ln
* (f1
/ f2)),x))
= ((
diff ((f1
/ f2),x))
/ ((f1
/ f2)
. x)) by
TAYLOR_1: 20
.= ((((f1
/ f2)
`| Z)
. x)
/ ((f1
/ f2)
. x)) by
A12,
A26,
FDIFF_1:def 7
.= ((((2
* a)
- x)
/ (x
|^ 3))
/ ((f1
/ f2)
. x)) by
A16,
A26
.= ((((2
* a)
- x)
/ (x
|^ 3))
/ ((f1
. x)
* ((f2
. x)
" ))) by
A27,
RFUNCT_1:def 1
.= ((((2
* a)
- x)
/ (x
|^ (2
+ 1)))
/ ((x
- a)
/ (x
|^ 2))) by
A28,
A30,
XCMPLX_0:def 9
.= ((((2
* a)
- x)
/ ((x
|^ 2)
* x))
/ ((x
- a)
/ (x
|^ 2))) by
NEWTON: 6
.= (((((2
* a)
- x)
/ (x
|^ 2))
/ x)
/ ((x
- a)
/ (x
|^ 2))) by
XCMPLX_1: 78
.= (((((2
* a)
- x)
/ (x
|^ 2))
/ ((x
- a)
/ (x
|^ 2)))
/ x) by
XCMPLX_1: 48
.= ((((2
* a)
- x)
/ (x
- a))
/ x) by
A29,
XCMPLX_1: 55
.= (((2
* a)
- x)
/ (x
* (x
- a))) by
XCMPLX_1: 78;
hence thesis by
A25,
A26,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A24,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:27
Th27: Z
c= (
dom ((
#R (3
/ 2))
* f)) & (for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 ) implies ((
#R (3
/ 2))
* f)
is_differentiable_on Z & for x st x
in Z holds ((((
#R (3
/ 2))
* f)
`| Z)
. x)
= ((3
/ 2)
* ((a
+ x)
#R (1
/ 2)))
proof
assume that
A1: Z
c= (
dom ((
#R (3
/ 2))
* f)) and
A2: for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 ;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom f) by
TARSKI:def 3;
A4: for x st x
in Z holds (f
. x)
= ((1
* x)
+ a) by
A2;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6: for x st x
in Z holds ((
#R (3
/ 2))
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A5,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 22;
end;
then
A7: ((
#R (3
/ 2))
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#R (3
/ 2))
* f)
`| Z)
. x)
= ((3
/ 2)
* ((a
+ x)
#R (1
/ 2)))
proof
let x;
assume
A8: x
in Z;
then
A9: (f
. x)
= (a
+ x) by
A2;
f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A5,
A8,
FDIFF_1: 9;
then (
diff (((
#R (3
/ 2))
* f),x))
= (((3
/ 2)
* ((f
. x)
#R ((3
/ 2)
- 1)))
* (
diff (f,x))) by
TAYLOR_1: 22
.= (((3
/ 2)
* ((f
. x)
#R ((3
/ 2)
- 1)))
* ((f
`| Z)
. x)) by
A5,
A8,
FDIFF_1:def 7
.= (((3
/ 2)
* ((a
+ x)
#R ((3
/ 2)
- 1)))
* 1) by
A3,
A4,
A8,
A9,
FDIFF_1: 23
.= ((3
/ 2)
* ((a
+ x)
#R (1
/ 2)));
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:28
Z
c= (
dom ((2
/ 3)
(#) ((
#R (3
/ 2))
* f))) & (for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 ) implies ((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
is_differentiable_on Z & for x st x
in Z holds ((((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((a
+ x)
#R (1
/ 2))
proof
assume that
A1: Z
c= (
dom ((2
/ 3)
(#) ((
#R (3
/ 2))
* f))) and
A2: for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 ;
A3: Z
c= (
dom ((
#R (3
/ 2))
* f)) by
A1,
VALUED_1:def 5;
then
A4: ((
#R (3
/ 2))
* f)
is_differentiable_on Z by
A2,
Th27;
for x st x
in Z holds ((((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((a
+ x)
#R (1
/ 2))
proof
let x;
assume
A5: x
in Z;
hence ((((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((2
/ 3)
* (
diff (((
#R (3
/ 2))
* f),x))) by
A1,
A4,
FDIFF_1: 20
.= ((2
/ 3)
* ((((
#R (3
/ 2))
* f)
`| Z)
. x)) by
A4,
A5,
FDIFF_1:def 7
.= ((2
/ 3)
* ((3
/ 2)
* ((a
+ x)
#R (1
/ 2)))) by
A2,
A3,
A5,
Th27
.= ((a
+ x)
#R (1
/ 2));
end;
hence thesis by
A1,
A4,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:29
Z
c= (
dom ((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))) & (for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
>
0 ) implies ((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
is_differentiable_on Z & for x st x
in Z holds ((((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((a
- x)
#R (1
/ 2))
proof
assume that
A1: Z
c= (
dom ((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))) and
A2: for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
>
0 ;
A3: Z
c= (
dom ((
#R (3
/ 2))
* f)) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A4: Z
c= (
dom f) by
TARSKI:def 3;
A5: for x st x
in Z holds (f
. x)
= (((
- 1)
* x)
+ a)
proof
let x;
assume x
in Z;
then (f
. x)
= (a
- x) by
A2;
hence thesis;
end;
then
A6: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
now
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
FDIFF_1: 9;
hence ((
#R (3
/ 2))
* f)
is_differentiable_in x by
TAYLOR_1: 22;
end;
then
A7: ((
#R (3
/ 2))
* f)
is_differentiable_on Z by
A3,
FDIFF_1: 9;
for x st x
in Z holds ((((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((a
- x)
#R (1
/ 2))
proof
let x;
assume
A8: x
in Z;
then
A9: (f
. x)
= (a
- x) by
A2;
A10: f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
A8,
FDIFF_1: 9;
((((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((
- (2
/ 3))
* (
diff (((
#R (3
/ 2))
* f),x))) by
A1,
A7,
A8,
FDIFF_1: 20
.= ((
- (2
/ 3))
* (((3
/ 2)
* ((f
. x)
#R ((3
/ 2)
- 1)))
* (
diff (f,x)))) by
A10,
TAYLOR_1: 22
.= ((
- (2
/ 3))
* (((3
/ 2)
* ((f
. x)
#R ((3
/ 2)
- 1)))
* ((f
`| Z)
. x))) by
A6,
A8,
FDIFF_1:def 7
.= ((
- (2
/ 3))
* (((3
/ 2)
* ((a
- x)
#R ((3
/ 2)
- 1)))
* (
- 1))) by
A4,
A5,
A8,
A9,
FDIFF_1: 23
.= ((a
- x)
#R (1
/ 2));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:30
Z
c= (
dom (2
(#) ((
#R (1
/ 2))
* f))) & (for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 ) implies (2
(#) ((
#R (1
/ 2))
* f))
is_differentiable_on Z & for x st x
in Z holds (((2
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((a
+ x)
#R (
- (1
/ 2)))
proof
assume that
A1: Z
c= (
dom (2
(#) ((
#R (1
/ 2))
* f))) and
A2: for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 ;
A3: Z
c= (
dom ((
#R (1
/ 2))
* f)) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A4: Z
c= (
dom f) by
TARSKI:def 3;
A5: for x st x
in Z holds (f
. x)
= ((1
* x)
+ a) by
A2;
then
A6: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
now
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
FDIFF_1: 9;
hence ((
#R (1
/ 2))
* f)
is_differentiable_in x by
TAYLOR_1: 22;
end;
then
A7: ((
#R (1
/ 2))
* f)
is_differentiable_on Z by
A3,
FDIFF_1: 9;
for x st x
in Z holds (((2
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((a
+ x)
#R (
- (1
/ 2)))
proof
let x;
assume
A8: x
in Z;
then
A9: (f
. x)
= (a
+ x) by
A2;
A10: f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
A8,
FDIFF_1: 9;
(((2
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (2
* (
diff (((
#R (1
/ 2))
* f),x))) by
A1,
A7,
A8,
FDIFF_1: 20
.= (2
* (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* (
diff (f,x)))) by
A10,
TAYLOR_1: 22
.= (2
* (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* ((f
`| Z)
. x))) by
A6,
A8,
FDIFF_1:def 7
.= (2
* (((1
/ 2)
* ((a
+ x)
#R ((1
/ 2)
- 1)))
* 1)) by
A4,
A5,
A8,
A9,
FDIFF_1: 23
.= ((a
+ x)
#R (
- (1
/ 2)));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:31
Z
c= (
dom ((
- 2)
(#) ((
#R (1
/ 2))
* f))) & (for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
>
0 ) implies ((
- 2)
(#) ((
#R (1
/ 2))
* f))
is_differentiable_on Z & for x st x
in Z holds ((((
- 2)
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((a
- x)
#R (
- (1
/ 2)))
proof
assume that
A1: Z
c= (
dom ((
- 2)
(#) ((
#R (1
/ 2))
* f))) and
A2: for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
>
0 ;
A3: Z
c= (
dom ((
#R (1
/ 2))
* f)) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A4: Z
c= (
dom f) by
TARSKI:def 3;
A5: for x st x
in Z holds (f
. x)
= (((
- 1)
* x)
+ a)
proof
let x;
assume x
in Z;
then (f
. x)
= (a
- x) by
A2;
hence thesis;
end;
then
A6: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
now
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
FDIFF_1: 9;
hence ((
#R (1
/ 2))
* f)
is_differentiable_in x by
TAYLOR_1: 22;
end;
then
A7: ((
#R (1
/ 2))
* f)
is_differentiable_on Z by
A3,
FDIFF_1: 9;
for x st x
in Z holds ((((
- 2)
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((a
- x)
#R (
- (1
/ 2)))
proof
let x;
assume
A8: x
in Z;
then
A9: (f
. x)
= (a
- x) by
A2;
A10: f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
A8,
FDIFF_1: 9;
((((
- 2)
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((
- 2)
* (
diff (((
#R (1
/ 2))
* f),x))) by
A1,
A7,
A8,
FDIFF_1: 20
.= ((
- 2)
* (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* (
diff (f,x)))) by
A10,
TAYLOR_1: 22
.= ((
- 2)
* (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* ((f
`| Z)
. x))) by
A6,
A8,
FDIFF_1:def 7
.= ((
- 2)
* (((1
/ 2)
* ((a
- x)
#R ((1
/ 2)
- 1)))
* (
- 1))) by
A4,
A5,
A8,
A9,
FDIFF_1: 23
.= ((a
- x)
#R (
- (1
/ 2)));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:32
Z
c= (
dom ((2
/ (3
* b))
(#) ((
#R (3
/ 2))
* f))) & (for x st x
in Z holds (f
. x)
= (a
+ (b
* x)) & b
<>
0 & (f
. x)
>
0 ) implies ((2
/ (3
* b))
(#) ((
#R (3
/ 2))
* f))
is_differentiable_on Z & for x st x
in Z holds ((((2
/ (3
* b))
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((a
+ (b
* x))
#R (1
/ 2))
proof
assume that
A1: Z
c= (
dom ((2
/ (3
* b))
(#) ((
#R (3
/ 2))
* f))) and
A2: for x st x
in Z holds (f
. x)
= (a
+ (b
* x)) & b
<>
0 & (f
. x)
>
0 ;
A3: Z
c= (
dom ((
#R (3
/ 2))
* f)) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A4: Z
c= (
dom f) by
TARSKI:def 3;
A5: for x st x
in Z holds (f
. x)
= ((b
* x)
+ a) by
A2;
then
A6: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
now
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
FDIFF_1: 9;
hence ((
#R (3
/ 2))
* f)
is_differentiable_in x by
TAYLOR_1: 22;
end;
then
A7: ((
#R (3
/ 2))
* f)
is_differentiable_on Z by
A3,
FDIFF_1: 9;
for x st x
in Z holds ((((2
/ (3
* b))
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((a
+ (b
* x))
#R (1
/ 2))
proof
let x;
assume
A8: x
in Z;
then
A9: (3
* b)
<>
0 by
A2;
A10: (f
. x)
= (a
+ (b
* x)) by
A2,
A8;
A11: f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
A8,
FDIFF_1: 9;
((((2
/ (3
* b))
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((2
/ (3
* b))
* (
diff (((
#R (3
/ 2))
* f),x))) by
A1,
A7,
A8,
FDIFF_1: 20
.= ((2
/ (3
* b))
* (((3
/ 2)
* ((f
. x)
#R ((3
/ 2)
- 1)))
* (
diff (f,x)))) by
A11,
TAYLOR_1: 22
.= ((2
/ (3
* b))
* (((3
/ 2)
* ((f
. x)
#R ((3
/ 2)
- 1)))
* ((f
`| Z)
. x))) by
A6,
A8,
FDIFF_1:def 7
.= ((2
/ (3
* b))
* (((3
/ 2)
* ((a
+ (b
* x))
#R ((3
/ 2)
- 1)))
* b)) by
A4,
A5,
A8,
A10,
FDIFF_1: 23
.= (((2
/ (3
* b))
* ((3
* b)
/ 2))
* ((a
+ (b
* x))
#R ((3
/ 2)
- 1)))
.= (1
* ((a
+ (b
* x))
#R ((3
/ 2)
- 1))) by
A9,
XCMPLX_1: 112
.= ((a
+ (b
* x))
#R (1
/ 2));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:33
Z
c= (
dom ((
- (2
/ (3
* b)))
(#) ((
#R (3
/ 2))
* f))) & (for x st x
in Z holds (f
. x)
= (a
- (b
* x)) & b
<>
0 & (f
. x)
>
0 ) implies ((
- (2
/ (3
* b)))
(#) ((
#R (3
/ 2))
* f))
is_differentiable_on Z & for x st x
in Z holds ((((
- (2
/ (3
* b)))
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((a
- (b
* x))
#R (1
/ 2))
proof
assume that
A1: Z
c= (
dom ((
- (2
/ (3
* b)))
(#) ((
#R (3
/ 2))
* f))) and
A2: for x st x
in Z holds (f
. x)
= (a
- (b
* x)) & b
<>
0 & (f
. x)
>
0 ;
A3: Z
c= (
dom ((
#R (3
/ 2))
* f)) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A4: Z
c= (
dom f) by
TARSKI:def 3;
A5: for x st x
in Z holds (f
. x)
= (((
- b)
* x)
+ a)
proof
let x;
assume x
in Z;
then (f
. x)
= (a
- (b
* x)) by
A2;
hence thesis;
end;
then
A6: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
now
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
FDIFF_1: 9;
hence ((
#R (3
/ 2))
* f)
is_differentiable_in x by
TAYLOR_1: 22;
end;
then
A7: ((
#R (3
/ 2))
* f)
is_differentiable_on Z by
A3,
FDIFF_1: 9;
for x st x
in Z holds ((((
- (2
/ (3
* b)))
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((a
- (b
* x))
#R (1
/ 2))
proof
let x;
assume
A8: x
in Z;
then
A9: (3
* b)
<>
0 by
A2;
A10: (f
. x)
= (a
- (b
* x)) by
A2,
A8;
A11: f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
A8,
FDIFF_1: 9;
((((
- (2
/ (3
* b)))
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((
- (2
/ (3
* b)))
* (
diff (((
#R (3
/ 2))
* f),x))) by
A1,
A7,
A8,
FDIFF_1: 20
.= ((
- (2
/ (3
* b)))
* (((3
/ 2)
* ((f
. x)
#R ((3
/ 2)
- 1)))
* (
diff (f,x)))) by
A11,
TAYLOR_1: 22
.= ((
- (2
/ (3
* b)))
* (((3
/ 2)
* ((f
. x)
#R ((3
/ 2)
- 1)))
* ((f
`| Z)
. x))) by
A6,
A8,
FDIFF_1:def 7
.= ((
- (2
/ (3
* b)))
* (((3
/ 2)
* ((a
- (b
* x))
#R ((3
/ 2)
- 1)))
* (
- b))) by
A4,
A5,
A8,
A10,
FDIFF_1: 23
.= (((2
/ (3
* b))
* ((3
* b)
/ 2))
* ((a
- (b
* x))
#R ((3
/ 2)
- 1)))
.= (1
* ((a
- (b
* x))
#R ((3
/ 2)
- 1))) by
A9,
XCMPLX_1: 112
.= ((a
- (b
* x))
#R (1
/ 2));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:34
Z
c= (
dom ((
#R (1
/ 2))
* f)) & f
= (f1
+ f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 ) implies ((
#R (1
/ 2))
* f)
is_differentiable_on Z & for x st x
in Z holds ((((
#R (1
/ 2))
* f)
`| Z)
. x)
= (x
* (((a
^2 )
+ (x
|^ 2))
#R (
- (1
/ 2))))
proof
assume that
A1: Z
c= (
dom ((
#R (1
/ 2))
* f)) and
A2: f
= (f1
+ f2) and
A3: f2
= (
#Z 2) and
A4: for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 ;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A5: Z
c= (
dom (f1
+ f2)) by
A2,
TARSKI:def 3;
A6: for x st x
in Z holds (f1
. x)
= (a
^2 ) by
A4;
then
A7: f
is_differentiable_on Z by
A2,
A3,
A5,
Th17;
A8: for x st x
in Z holds ((
#R (1
/ 2))
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A4,
A7,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 22;
end;
then
A9: ((
#R (1
/ 2))
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#R (1
/ 2))
* f)
`| Z)
. x)
= (x
* (((a
^2 )
+ (x
|^ 2))
#R (
- (1
/ 2))))
proof
let x;
assume
A10: x
in Z;
then x
in (
dom (f1
+ f2)) by
A1,
A2,
FUNCT_1: 11;
then
A11: ((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
VALUED_1:def 1
.= ((a
^2 )
+ (f2
. x)) by
A4,
A10
.= ((a
^2 )
+ (x
#Z 2)) by
A3,
TAYLOR_1:def 1
.= ((a
^2 )
+ (x
|^ 2)) by
PREPOWER: 36;
f
is_differentiable_in x & (f
. x)
>
0 by
A4,
A7,
A10,
FDIFF_1: 9;
then (
diff (((
#R (1
/ 2))
* f),x))
= (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* (
diff (f,x))) by
TAYLOR_1: 22
.= (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* ((f
`| Z)
. x)) by
A7,
A10,
FDIFF_1:def 7
.= (((1
/ 2)
* (((a
^2 )
+ (x
|^ 2))
#R ((1
/ 2)
- 1)))
* (2
* x)) by
A2,
A3,
A5,
A6,
A10,
A11,
Th17
.= (x
* (((a
^2 )
+ (x
|^ 2))
#R (
- (1
/ 2))));
hence thesis by
A9,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A8,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:35
Z
c= (
dom (
- ((
#R (1
/ 2))
* f))) & f
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 ) implies (
- ((
#R (1
/ 2))
* f))
is_differentiable_on Z & for x st x
in Z holds (((
- ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (x
* (((a
^2 )
- (x
|^ 2))
#R (
- (1
/ 2))))
proof
assume that
A1: Z
c= (
dom (
- ((
#R (1
/ 2))
* f))) and
A2: f
= (f1
- f2) and
A3: f2
= (
#Z 2) and
A4: for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 ;
A5: for x st x
in Z holds (f1
. x)
= ((a
^2 )
+ (
0
* x)) by
A4;
A6: Z
c= (
dom ((
#R (1
/ 2))
* f)) by
A1,
VALUED_1: 8;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A7: Z
c= (
dom (f1
+ ((
- 1)
(#) f2))) by
A2,
TARSKI:def 3;
then
A8: f
is_differentiable_on Z by
A2,
A3,
A5,
Th12;
now
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A4,
A8,
FDIFF_1: 9;
hence ((
#R (1
/ 2))
* f)
is_differentiable_in x by
TAYLOR_1: 22;
end;
then
A9: ((
#R (1
/ 2))
* f)
is_differentiable_on Z by
A6,
FDIFF_1: 9;
for x st x
in Z holds ((((
- 1)
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (x
* (((a
^2 )
- (x
|^ 2))
#R (
- (1
/ 2))))
proof
let x;
assume
A10: x
in Z;
then
A11: f
is_differentiable_in x & (f
. x)
>
0 by
A4,
A8,
FDIFF_1: 9;
x
in (
dom (f1
- f2)) by
A2,
A6,
A10,
FUNCT_1: 11;
then
A12: ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
VALUED_1: 13
.= ((a
^2 )
- (f2
. x)) by
A4,
A10
.= ((a
^2 )
- (x
#Z 2)) by
A3,
TAYLOR_1:def 1
.= ((a
^2 )
- (x
|^ 2)) by
PREPOWER: 36;
((((
- 1)
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((
- 1)
* (
diff (((
#R (1
/ 2))
* f),x))) by
A1,
A9,
A10,
FDIFF_1: 20
.= ((
- 1)
* (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* (
diff (f,x)))) by
A11,
TAYLOR_1: 22
.= ((
- 1)
* (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* ((f
`| Z)
. x))) by
A8,
A10,
FDIFF_1:def 7
.= ((
- 1)
* (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* (
0
+ ((2
* (
- 1))
* x)))) by
A2,
A3,
A7,
A5,
A10,
Th12
.= (x
* (((a
^2 )
- (x
|^ 2))
#R (
- (1
/ 2)))) by
A2,
A12;
hence thesis;
end;
hence thesis by
A1,
A9,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:36
Z
c= (
dom (2
(#) ((
#R (1
/ 2))
* f))) & f
= (f1
+ f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= x & (f
. x)
>
0 ) implies (2
(#) ((
#R (1
/ 2))
* f))
is_differentiable_on Z & for x st x
in Z holds (((2
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (((2
* x)
+ 1)
* (((x
|^ 2)
+ x)
#R (
- (1
/ 2))))
proof
assume that
A1: Z
c= (
dom (2
(#) ((
#R (1
/ 2))
* f))) and
A2: f
= (f1
+ f2) and
A3: f2
= (
#Z 2) and
A4: for x st x
in Z holds (f1
. x)
= x & (f
. x)
>
0 ;
A5: for x st x
in Z holds (f1
. x)
= (
0
+ (1
* x)) by
A4;
A6: f2
= (1
(#) f2) by
RFUNCT_1: 21;
A7: Z
c= (
dom ((
#R (1
/ 2))
* f)) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A8: Z
c= (
dom (f1
+ (1
(#) f2))) by
A2,
A6,
TARSKI:def 3;
then
A9: (f1
+ f2)
is_differentiable_on Z by
A3,
A6,
A5,
Th12;
now
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A4,
A9,
FDIFF_1: 9;
hence ((
#R (1
/ 2))
* f)
is_differentiable_in x by
TAYLOR_1: 22;
end;
then
A10: ((
#R (1
/ 2))
* f)
is_differentiable_on Z by
A7,
FDIFF_1: 9;
A11: for x st x
in Z holds (((f1
+ f2)
`| Z)
. x)
= (1
+ ((2
* 1)
* x)) by
A3,
A6,
A8,
A5,
Th12;
for x st x
in Z holds (((2
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (((2
* x)
+ 1)
* (((x
|^ 2)
+ x)
#R (
- (1
/ 2))))
proof
let x;
assume
A12: x
in Z;
then
A13: f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A4,
A9,
FDIFF_1: 9;
x
in (
dom (f1
+ f2)) by
A2,
A7,
A12,
FUNCT_1: 11;
then
A14: ((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
VALUED_1:def 1
.= (x
+ (f2
. x)) by
A4,
A12
.= (x
+ (x
#Z 2)) by
A3,
TAYLOR_1:def 1
.= (x
+ (x
|^ 2)) by
PREPOWER: 36;
(((2
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (2
* (
diff (((
#R (1
/ 2))
* f),x))) by
A1,
A10,
A12,
FDIFF_1: 20
.= (2
* (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* (
diff (f,x)))) by
A13,
TAYLOR_1: 22
.= (2
* (((1
/ 2)
* ((f
. x)
#R ((1
/ 2)
- 1)))
* ((f
`| Z)
. x))) by
A2,
A9,
A12,
FDIFF_1:def 7
.= (((2
* (1
/ 2))
* ((f
. x)
#R ((1
/ 2)
- 1)))
* ((f
`| Z)
. x))
.= (((2
* x)
+ 1)
* (((x
|^ 2)
+ x)
#R (
- (1
/ 2)))) by
A2,
A11,
A12,
A14;
hence thesis;
end;
hence thesis by
A1,
A10,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:37
Z
c= (
dom (
sin
* f)) & (for x st x
in Z holds (f
. x)
= ((a
* x)
+ b)) implies (
sin
* f)
is_differentiable_on Z & for x st x
in Z holds (((
sin
* f)
`| Z)
. x)
= (a
* (
cos
. ((a
* x)
+ b)))
proof
assume that
A1: Z
c= (
dom (
sin
* f)) and
A2: for x st x
in Z holds (f
. x)
= ((a
* x)
+ b);
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom f) by
TARSKI:def 3;
then
A4: f
is_differentiable_on Z by
A2,
FDIFF_1: 23;
A5: for x st x
in Z holds (
sin
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A6: f
is_differentiable_in x by
A4,
FDIFF_1: 9;
sin
is_differentiable_in (f
. x) by
SIN_COS: 64;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
sin
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
* f)
`| Z)
. x)
= (a
* (
cos
. ((a
* x)
+ b)))
proof
let x;
A8:
sin
is_differentiable_in (f
. x) by
SIN_COS: 64;
assume
A9: x
in Z;
then f
is_differentiable_in x by
A4,
FDIFF_1: 9;
then (
diff ((
sin
* f),x))
= ((
diff (
sin ,(f
. x)))
* (
diff (f,x))) by
A8,
FDIFF_2: 13
.= ((
cos
. (f
. x))
* (
diff (f,x))) by
SIN_COS: 64
.= ((
cos
. ((a
* x)
+ b))
* (
diff (f,x))) by
A2,
A9
.= ((
cos
. ((a
* x)
+ b))
* ((f
`| Z)
. x)) by
A4,
A9,
FDIFF_1:def 7
.= (a
* (
cos
. ((a
* x)
+ b))) by
A2,
A3,
A9,
FDIFF_1: 23;
hence thesis by
A7,
A9,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A5,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:38
Z
c= (
dom (
cos
* f)) & (for x st x
in Z holds (f
. x)
= ((a
* x)
+ b)) implies (
cos
* f)
is_differentiable_on Z & for x st x
in Z holds (((
cos
* f)
`| Z)
. x)
= (
- (a
* (
sin
. ((a
* x)
+ b))))
proof
assume that
A1: Z
c= (
dom (
cos
* f)) and
A2: for x st x
in Z holds (f
. x)
= ((a
* x)
+ b);
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom f) by
TARSKI:def 3;
then
A4: f
is_differentiable_on Z by
A2,
FDIFF_1: 23;
A5: for x st x
in Z holds (
cos
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A6: f
is_differentiable_in x by
A4,
FDIFF_1: 9;
cos
is_differentiable_in (f
. x) by
SIN_COS: 63;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
cos
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
* f)
`| Z)
. x)
= (
- (a
* (
sin
. ((a
* x)
+ b))))
proof
let x;
A8: (
diff (
cos ,(f
. x)))
= (
- (
sin
. (f
. x))) by
SIN_COS: 63;
A9:
cos
is_differentiable_in (f
. x) by
SIN_COS: 63;
assume
A10: x
in Z;
then f
is_differentiable_in x by
A4,
FDIFF_1: 9;
then (
diff ((
cos
* f),x))
= ((
diff (
cos ,(f
. x)))
* (
diff (f,x))) by
A9,
FDIFF_2: 13
.= (
- ((
sin
. (f
. x))
* (
diff (f,x)))) by
A8
.= (
- ((
sin
. ((a
* x)
+ b))
* (
diff (f,x)))) by
A2,
A10
.= (
- ((
sin
. ((a
* x)
+ b))
* ((f
`| Z)
. x))) by
A4,
A10,
FDIFF_1:def 7
.= (
- (a
* (
sin
. ((a
* x)
+ b)))) by
A2,
A3,
A10,
FDIFF_1: 23;
hence thesis by
A7,
A10,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A5,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:39
(for x st x
in Z holds (
cos
. x)
<>
0 ) implies (
cos
^ )
is_differentiable_on Z & for x st x
in Z holds (((
cos
^ )
`| Z)
. x)
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
assume
A1: for x st x
in Z holds (
cos
. x)
<>
0 ;
A2:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then
A3: (
cos
^ )
is_differentiable_on Z by
A1,
FDIFF_2: 22;
for x st x
in Z holds (((
cos
^ )
`| Z)
. x)
= ((
sin
. x)
/ ((
cos
. x)
^2 ))
proof
let x;
A4:
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A5: x
in Z;
then
A6: (
cos
. x)
<>
0 by
A1;
(((
cos
^ )
`| Z)
. x)
= (
diff ((
cos
^ ),x)) by
A3,
A5,
FDIFF_1:def 7
.= (
- ((
diff (
cos ,x))
/ ((
cos
. x)
^2 ))) by
A6,
A4,
FDIFF_2: 15
.= (
- ((
- (
sin
. x))
/ ((
cos
. x)
^2 ))) by
SIN_COS: 63
.= (
- (
- ((
sin
. x)
/ ((
cos
. x)
^2 )))) by
XCMPLX_1: 187
.= ((
sin
. x)
/ ((
cos
. x)
^2 ));
hence thesis;
end;
hence thesis by
A1,
A2,
FDIFF_2: 22;
end;
theorem ::
FDIFF_4:40
(for x st x
in Z holds (
sin
. x)
<>
0 ) implies (
sin
^ )
is_differentiable_on Z & for x st x
in Z holds (((
sin
^ )
`| Z)
. x)
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
A1:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
assume
A2: for x st x
in Z holds (
sin
. x)
<>
0 ;
then
A3: (
sin
^ )
is_differentiable_on Z by
A1,
FDIFF_2: 22;
for x st x
in Z holds (((
sin
^ )
`| Z)
. x)
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A4: x
in Z;
then
A5: (
sin
. x)
<>
0 &
sin
is_differentiable_in x by
A2,
A1,
FDIFF_1: 9;
(((
sin
^ )
`| Z)
. x)
= (
diff ((
sin
^ ),x)) by
A3,
A4,
FDIFF_1:def 7
.= (
- ((
diff (
sin ,x))
/ ((
sin
. x)
^2 ))) by
A5,
FDIFF_2: 15
.= (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))) by
SIN_COS: 64;
hence thesis;
end;
hence thesis by
A2,
A1,
FDIFF_2: 22;
end;
theorem ::
FDIFF_4:41
Z
c= (
dom (
sin
(#)
cos )) implies (
sin
(#)
cos )
is_differentiable_on Z & for x st x
in Z holds (((
sin
(#)
cos )
`| Z)
. x)
= (
cos (2
* x))
proof
A1:
sin
is_differentiable_on Z &
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67,
SIN_COS: 68;
assume
A2: Z
c= (
dom (
sin
(#)
cos ));
now
let x;
assume x
in Z;
hence (((
sin
(#)
cos )
`| Z)
. x)
= (((
cos
. x)
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff (
cos ,x)))) by
A2,
A1,
FDIFF_1: 21
.= (((
cos
. x)
* (
cos
. x))
+ ((
sin
. x)
* (
diff (
cos ,x)))) by
SIN_COS: 64
.= (((
cos
. x)
* (
cos
. x))
+ ((
sin
. x)
* (
- (
sin
. x)))) by
SIN_COS: 63
.= (((
cos
. x)
^2 )
- ((
sin
. x)
* (
sin
. x)))
.= (((
cos x)
^2 )
- ((
sin
. x)
^2 )) by
SIN_COS:def 19
.= (((
cos x)
^2 )
- ((
sin x)
^2 )) by
SIN_COS:def 17
.= (
cos (2
* x)) by
SIN_COS5: 7;
end;
hence thesis by
A2,
A1,
FDIFF_1: 21;
end;
theorem ::
FDIFF_4:42
Z
c= (
dom (
ln
*
cos )) & (for x st x
in Z holds (
cos
. x)
>
0 ) implies (
ln
*
cos )
is_differentiable_on Z & for x st x
in Z holds (((
ln
*
cos )
`| Z)
. x)
= (
- (
tan x))
proof
assume that
A1: Z
c= (
dom (
ln
*
cos )) and
A2: for x st x
in Z holds (
cos
. x)
>
0 ;
A3:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
A4: for x st x
in Z holds (
ln
*
cos )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
cos
is_differentiable_in x & (
cos
. x)
>
0 by
A2,
A3,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A5: (
ln
*
cos )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
*
cos )
`| Z)
. x)
= (
- (
tan x))
proof
let x;
assume
A6: x
in Z;
then
cos
is_differentiable_in x & (
cos
. x)
>
0 by
A2,
A3,
FDIFF_1: 9;
then (
diff ((
ln
*
cos ),x))
= ((
diff (
cos ,x))
/ (
cos
. x)) by
TAYLOR_1: 20
.= ((
- (
sin
. x))
/ (
cos
. x)) by
SIN_COS: 63
.= (
- ((
sin
. x)
/ (
cos
. x))) by
XCMPLX_1: 187
.= (
- ((
sin x)
/ (
cos
. x))) by
SIN_COS:def 17
.= (
- ((
sin x)
/ (
cos x))) by
SIN_COS:def 19
.= (
- (
tan x)) by
SIN_COS4:def 1;
hence thesis by
A5,
A6,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:43
Z
c= (
dom (
ln
*
sin )) & (for x st x
in Z holds (
sin
. x)
>
0 ) implies (
ln
*
sin )
is_differentiable_on Z & for x st x
in Z holds (((
ln
*
sin )
`| Z)
. x)
= (
cot x)
proof
assume that
A1: Z
c= (
dom (
ln
*
sin )) and
A2: for x st x
in Z holds (
sin
. x)
>
0 ;
A3:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
A4: for x st x
in Z holds (
ln
*
sin )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
sin
is_differentiable_in x & (
sin
. x)
>
0 by
A2,
A3,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A5: (
ln
*
sin )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
*
sin )
`| Z)
. x)
= (
cot x)
proof
let x;
assume
A6: x
in Z;
then
sin
is_differentiable_in x & (
sin
. x)
>
0 by
A2,
A3,
FDIFF_1: 9;
then (
diff ((
ln
*
sin ),x))
= ((
diff (
sin ,x))
/ (
sin
. x)) by
TAYLOR_1: 20
.= ((
cos
. x)
/ (
sin
. x)) by
SIN_COS: 64
.= ((
cos x)
/ (
sin
. x)) by
SIN_COS:def 19
.= ((
cos x)
/ (
sin x)) by
SIN_COS:def 17
.= (
cot x) by
SIN_COS4:def 2;
hence thesis by
A5,
A6,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:44
Th44: Z
c= (
dom ((
- (
id Z))
(#)
cos )) implies ((
- (
id Z))
(#)
cos )
is_differentiable_on Z & for x st x
in Z holds ((((
- (
id Z))
(#)
cos )
`| Z)
. x)
= ((
- (
cos
. x))
+ (x
* (
sin
. x)))
proof
A1: for x st x
in Z holds ((
- (
id Z))
. x)
= (((
- 1)
* x)
+
0 )
proof
let x;
assume
A2: x
in Z;
((
- (
id Z))
. x)
= (
- ((
id Z)
. x)) by
VALUED_1: 8
.= (
- x) by
A2,
FUNCT_1: 18
.= (((
- 1)
* x)
+
0 );
hence thesis;
end;
assume
A3: Z
c= (
dom ((
- (
id Z))
(#)
cos ));
then Z
c= ((
dom (
- (
id Z)))
/\ (
dom
cos )) by
VALUED_1:def 4;
then
A4: Z
c= (
dom (
- (
id Z))) by
XBOOLE_1: 18;
then
A5: (
- (
id Z))
is_differentiable_on Z by
A1,
FDIFF_1: 23;
A6:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
now
let x;
assume
A7: x
in Z;
hence ((((
- (
id Z))
(#)
cos )
`| Z)
. x)
= (((
cos
. x)
* (
diff ((
- (
id Z)),x)))
+ (((
- (
id Z))
. x)
* (
diff (
cos ,x)))) by
A3,
A5,
A6,
FDIFF_1: 21
.= (((
cos
. x)
* (((
- (
id Z))
`| Z)
. x))
+ (((
- (
id Z))
. x)
* (
diff (
cos ,x)))) by
A5,
A7,
FDIFF_1:def 7
.= (((
cos
. x)
* (
- 1))
+ (((
- (
id Z))
. x)
* (
diff (
cos ,x)))) by
A4,
A1,
A7,
FDIFF_1: 23
.= (((
cos
. x)
* (
- 1))
+ (((
- (
id Z))
. x)
* (
- (
sin
. x)))) by
SIN_COS: 63
.= ((
- (
cos
. x))
+ ((((
- 1)
* x)
+
0 )
* (
- (
sin
. x)))) by
A1,
A7
.= ((
- (
cos
. x))
+ (x
* (
sin
. x)));
end;
hence thesis by
A3,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
FDIFF_4:45
Th45: Z
c= (
dom ((
id Z)
(#)
sin )) implies ((
id Z)
(#)
sin )
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#)
sin )
`| Z)
. x)
= ((
sin
. x)
+ (x
* (
cos
. x)))
proof
A1: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
assume
A2: Z
c= (
dom ((
id Z)
(#)
sin ));
then Z
c= ((
dom (
id Z))
/\ (
dom
sin )) by
VALUED_1:def 4;
then
A3: Z
c= (
dom (
id Z)) by
XBOOLE_1: 18;
then
A4: (
id Z)
is_differentiable_on Z by
A1,
FDIFF_1: 23;
A5:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
now
let x;
assume
A6: x
in Z;
hence ((((
id Z)
(#)
sin )
`| Z)
. x)
= (((
sin
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff (
sin ,x)))) by
A2,
A4,
A5,
FDIFF_1: 21
.= (((
sin
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff (
sin ,x)))) by
A4,
A6,
FDIFF_1:def 7
.= (((
sin
. x)
* 1)
+ (((
id Z)
. x)
* (
diff (
sin ,x)))) by
A3,
A1,
A6,
FDIFF_1: 23
.= (((
sin
. x)
* 1)
+ (((
id Z)
. x)
* (
cos
. x))) by
SIN_COS: 64
.= ((
sin
. x)
+ (x
* (
cos
. x))) by
A6,
FUNCT_1: 18;
end;
hence thesis by
A2,
A4,
A5,
FDIFF_1: 21;
end;
theorem ::
FDIFF_4:46
Z
c= (
dom (((
- (
id Z))
(#)
cos )
+
sin )) implies (((
- (
id Z))
(#)
cos )
+
sin )
is_differentiable_on Z & for x st x
in Z holds (((((
- (
id Z))
(#)
cos )
+
sin )
`| Z)
. x)
= (x
* (
sin
. x))
proof
assume
A1: Z
c= (
dom (((
- (
id Z))
(#)
cos )
+
sin ));
then Z
c= ((
dom ((
- (
id Z))
(#)
cos ))
/\ (
dom
sin )) by
VALUED_1:def 1;
then
A2: Z
c= (
dom ((
- (
id Z))
(#)
cos )) by
XBOOLE_1: 18;
then
A3: ((
- (
id Z))
(#)
cos )
is_differentiable_on Z by
Th44;
A4:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
now
let x;
assume
A5: x
in Z;
hence (((((
- (
id Z))
(#)
cos )
+
sin )
`| Z)
. x)
= ((
diff (((
- (
id Z))
(#)
cos ),x))
+ (
diff (
sin ,x))) by
A1,
A3,
A4,
FDIFF_1: 18
.= (((((
- (
id Z))
(#)
cos )
`| Z)
. x)
+ (
diff (
sin ,x))) by
A3,
A5,
FDIFF_1:def 7
.= (((
- (
cos
. x))
+ (x
* (
sin
. x)))
+ (
diff (
sin ,x))) by
A2,
A5,
Th44
.= (((
- (
cos
. x))
+ (x
* (
sin
. x)))
+ (
cos
. x)) by
SIN_COS: 64
.= (x
* (
sin
. x));
end;
hence thesis by
A1,
A3,
A4,
FDIFF_1: 18;
end;
theorem ::
FDIFF_4:47
Z
c= (
dom (((
id Z)
(#)
sin )
+
cos )) implies (((
id Z)
(#)
sin )
+
cos )
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
(#)
sin )
+
cos )
`| Z)
. x)
= (x
* (
cos
. x))
proof
assume
A1: Z
c= (
dom (((
id Z)
(#)
sin )
+
cos ));
then Z
c= ((
dom ((
id Z)
(#)
sin ))
/\ (
dom
cos )) by
VALUED_1:def 1;
then
A2: Z
c= (
dom ((
id Z)
(#)
sin )) by
XBOOLE_1: 18;
then
A3: ((
id Z)
(#)
sin )
is_differentiable_on Z by
Th45;
A4:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
now
let x;
assume
A5: x
in Z;
hence (((((
id Z)
(#)
sin )
+
cos )
`| Z)
. x)
= ((
diff (((
id Z)
(#)
sin ),x))
+ (
diff (
cos ,x))) by
A1,
A3,
A4,
FDIFF_1: 18
.= (((((
id Z)
(#)
sin )
`| Z)
. x)
+ (
diff (
cos ,x))) by
A3,
A5,
FDIFF_1:def 7
.= (((
sin
. x)
+ (x
* (
cos
. x)))
+ (
diff (
cos ,x))) by
A2,
A5,
Th45
.= (((
sin
. x)
+ (x
* (
cos
. x)))
+ (
- (
sin
. x))) by
SIN_COS: 63
.= (x
* (
cos
. x));
end;
hence thesis by
A1,
A3,
A4,
FDIFF_1: 18;
end;
theorem ::
FDIFF_4:48
Z
c= (
dom (2
(#) ((
#R (1
/ 2))
*
sin ))) & (for x st x
in Z holds (
sin
. x)
>
0 ) implies (2
(#) ((
#R (1
/ 2))
*
sin ))
is_differentiable_on Z & for x st x
in Z holds (((2
(#) ((
#R (1
/ 2))
*
sin ))
`| Z)
. x)
= ((
cos
. x)
* ((
sin
. x)
#R (
- (1
/ 2))))
proof
assume that
A1: Z
c= (
dom (2
(#) ((
#R (1
/ 2))
*
sin ))) and
A2: for x st x
in Z holds (
sin
. x)
>
0 ;
A3:
now
let x;
assume x
in Z;
then
sin
is_differentiable_in x & (
sin
. x)
>
0 by
A2,
SIN_COS: 64;
hence ((
#R (1
/ 2))
*
sin )
is_differentiable_in x by
TAYLOR_1: 22;
end;
Z
c= (
dom ((
#R (1
/ 2))
*
sin )) by
A1,
VALUED_1:def 5;
then
A4: ((
#R (1
/ 2))
*
sin )
is_differentiable_on Z by
A3,
FDIFF_1: 9;
for x st x
in Z holds (((2
(#) ((
#R (1
/ 2))
*
sin ))
`| Z)
. x)
= ((
cos
. x)
* ((
sin
. x)
#R (
- (1
/ 2))))
proof
let x;
assume
A5: x
in Z;
then
A6:
sin
is_differentiable_in x & (
sin
. x)
>
0 by
A2,
SIN_COS: 64;
(((2
(#) ((
#R (1
/ 2))
*
sin ))
`| Z)
. x)
= (2
* (
diff (((
#R (1
/ 2))
*
sin ),x))) by
A1,
A4,
A5,
FDIFF_1: 20
.= (2
* (((1
/ 2)
* ((
sin
. x)
#R ((1
/ 2)
- 1)))
* (
diff (
sin ,x)))) by
A6,
TAYLOR_1: 22
.= (2
* (((1
/ 2)
* ((
sin
. x)
#R ((1
/ 2)
- 1)))
* (
cos
. x))) by
SIN_COS: 64
.= ((
cos
. x)
* ((
sin
. x)
#R (
- (1
/ 2))));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:49
Th49: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
sin ))) implies ((1
/ 2)
(#) ((
#Z 2)
*
sin ))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) ((
#Z 2)
*
sin ))
`| Z)
. x)
= ((
sin
. x)
* (
cos
. x))
proof
A1:
now
let x;
assume x
in Z;
sin
is_differentiable_in x by
SIN_COS: 64;
hence ((
#Z 2)
*
sin )
is_differentiable_in x by
TAYLOR_1: 3;
end;
assume
A2: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
sin )));
then Z
c= (
dom ((
#Z 2)
*
sin )) by
VALUED_1:def 5;
then
A3: ((
#Z 2)
*
sin )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((1
/ 2)
(#) ((
#Z 2)
*
sin ))
`| Z)
. x)
= ((
sin
. x)
* (
cos
. x))
proof
let x;
A4:
sin
is_differentiable_in x by
SIN_COS: 64;
assume x
in Z;
then ((((1
/ 2)
(#) ((
#Z 2)
*
sin ))
`| Z)
. x)
= ((1
/ 2)
* (
diff (((
#Z 2)
*
sin ),x))) by
A2,
A3,
FDIFF_1: 20
.= ((1
/ 2)
* ((2
* ((
sin
. x)
#Z (2
- 1)))
* (
diff (
sin ,x)))) by
A4,
TAYLOR_1: 3
.= ((1
/ 2)
* ((2
* ((
sin
. x)
#Z (2
- 1)))
* (
cos
. x))) by
SIN_COS: 64
.= (((
sin
. x)
#Z (2
- 1))
* (
cos
. x))
.= ((
sin
. x)
* (
cos
. x)) by
PREPOWER: 35;
hence thesis;
end;
hence thesis by
A2,
A3,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:50
Z
c= (
dom (
sin
+ ((1
/ 2)
(#) ((
#Z 2)
*
sin )))) & (for x st x
in Z holds (
sin
. x)
>
0 & (
sin
. x)
< 1) implies (
sin
+ ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
is_differentiable_on Z & for x st x
in Z holds (((
sin
+ ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
`| Z)
. x)
= (((
cos
. x)
|^ 3)
/ (1
- (
sin
. x)))
proof
assume that
A1: Z
c= (
dom (
sin
+ ((1
/ 2)
(#) ((
#Z 2)
*
sin )))) and
A2: for x st x
in Z holds (
sin
. x)
>
0 & (
sin
. x)
< 1;
Z
c= ((
dom ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
/\ (
dom
sin )) by
A1,
VALUED_1:def 1;
then
A3: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
sin ))) by
XBOOLE_1: 18;
then
A4: ((1
/ 2)
(#) ((
#Z 2)
*
sin ))
is_differentiable_on Z by
Th49;
A5:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
now
let x;
assume
A6: x
in Z;
then (
sin
. x)
< 1 by
A2;
then
A7: (1
- (
sin
. x))
>
0 by
XREAL_1: 50;
(((
sin
+ ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
`| Z)
. x)
= ((
diff (
sin ,x))
+ (
diff (((1
/ 2)
(#) ((
#Z 2)
*
sin )),x))) by
A1,
A4,
A5,
A6,
FDIFF_1: 18
.= ((
cos
. x)
+ (
diff (((1
/ 2)
(#) ((
#Z 2)
*
sin )),x))) by
SIN_COS: 64
.= ((
cos
. x)
+ ((((1
/ 2)
(#) ((
#Z 2)
*
sin ))
`| Z)
. x)) by
A4,
A6,
FDIFF_1:def 7
.= ((
cos
. x)
+ ((
sin
. x)
* (
cos
. x))) by
A3,
A6,
Th49
.= ((((
cos
. x)
* (1
+ (
sin
. x)))
* (1
- (
sin
. x)))
/ (1
- (
sin
. x))) by
A7,
XCMPLX_1: 89
.= (((
cos
. x)
* (1
- ((
sin
. x)
^2 )))
/ (1
- (
sin
. x)))
.= (((
cos
. x)
* (1
- ((
sin x)
^2 )))
/ (1
- (
sin
. x))) by
SIN_COS:def 17
.= (((
cos
. x)
* ((
cos x)
* (
cos x)))
/ (1
- (
sin
. x))) by
SIN_COS4: 5
.= (((
cos
. x)
* ((
cos x)
|^ 2))
/ (1
- (
sin
. x))) by
WSIERP_1: 1
.= (((
cos
. x)
* ((
cos
. x)
|^ 2))
/ (1
- (
sin
. x))) by
SIN_COS:def 19
.= (((
cos
. x)
|^ (2
+ 1))
/ (1
- (
sin
. x))) by
NEWTON: 6
.= (((
cos
. x)
|^ 3)
/ (1
- (
sin
. x)));
hence (((
sin
+ ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
`| Z)
. x)
= (((
cos
. x)
|^ 3)
/ (1
- (
sin
. x)));
end;
hence thesis by
A1,
A4,
A5,
FDIFF_1: 18;
end;
theorem ::
FDIFF_4:51
Z
c= (
dom (((1
/ 2)
(#) ((
#Z 2)
*
sin ))
-
cos )) & (for x st x
in Z holds (
sin
. x)
>
0 & (
cos
. x)
< 1) implies (((1
/ 2)
(#) ((
#Z 2)
*
sin ))
-
cos )
is_differentiable_on Z & for x st x
in Z holds (((((1
/ 2)
(#) ((
#Z 2)
*
sin ))
-
cos )
`| Z)
. x)
= (((
sin
. x)
|^ 3)
/ (1
- (
cos
. x)))
proof
assume that
A1: Z
c= (
dom (((1
/ 2)
(#) ((
#Z 2)
*
sin ))
-
cos )) and
A2: for x st x
in Z holds (
sin
. x)
>
0 & (
cos
. x)
< 1;
Z
c= ((
dom ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
/\ (
dom
cos )) by
A1,
VALUED_1: 12;
then
A3: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
sin ))) by
XBOOLE_1: 18;
then
A4: ((1
/ 2)
(#) ((
#Z 2)
*
sin ))
is_differentiable_on Z by
Th49;
A5:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
now
let x;
assume
A6: x
in Z;
then
A7: (1
- (
cos
. x))
>
0 by
A2,
XREAL_1: 50;
(((((1
/ 2)
(#) ((
#Z 2)
*
sin ))
-
cos )
`| Z)
. x)
= ((
diff (((1
/ 2)
(#) ((
#Z 2)
*
sin )),x))
- (
diff (
cos ,x))) by
A1,
A4,
A5,
A6,
FDIFF_1: 19
.= ((
diff (((1
/ 2)
(#) ((
#Z 2)
*
sin )),x))
- (
- (
sin
. x))) by
SIN_COS: 63
.= (((((1
/ 2)
(#) ((
#Z 2)
*
sin ))
`| Z)
. x)
- (
- (
sin
. x))) by
A4,
A6,
FDIFF_1:def 7
.= (((
sin
. x)
* (
cos
. x))
- (
- (
sin
. x))) by
A3,
A6,
Th49
.= ((((
sin
. x)
* (1
+ (
cos
. x)))
* (1
- (
cos
. x)))
/ (1
- (
cos
. x))) by
A7,
XCMPLX_1: 89
.= (((
sin
. x)
* (1
- ((
cos
. x)
^2 )))
/ (1
- (
cos
. x)))
.= (((
sin
. x)
* (1
- ((
cos x)
^2 )))
/ (1
- (
cos
. x))) by
SIN_COS:def 19
.= (((
sin
. x)
* ((
sin x)
* (
sin x)))
/ (1
- (
cos
. x))) by
SIN_COS4: 4
.= (((
sin
. x)
* ((
sin x)
|^ 2))
/ (1
- (
cos
. x))) by
WSIERP_1: 1
.= (((
sin
. x)
* ((
sin
. x)
|^ 2))
/ (1
- (
cos
. x))) by
SIN_COS:def 17
.= (((
sin
. x)
|^ (2
+ 1))
/ (1
- (
cos
. x))) by
NEWTON: 6
.= (((
sin
. x)
|^ 3)
/ (1
- (
cos
. x)));
hence (((((1
/ 2)
(#) ((
#Z 2)
*
sin ))
-
cos )
`| Z)
. x)
= (((
sin
. x)
|^ 3)
/ (1
- (
cos
. x)));
end;
hence thesis by
A1,
A4,
A5,
FDIFF_1: 19;
end;
theorem ::
FDIFF_4:52
Z
c= (
dom (
sin
- ((1
/ 2)
(#) ((
#Z 2)
*
sin )))) & (for x st x
in Z holds (
sin
. x)
>
0 & (
sin
. x)
> (
- 1)) implies (
sin
- ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
is_differentiable_on Z & for x st x
in Z holds (((
sin
- ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
`| Z)
. x)
= (((
cos
. x)
|^ 3)
/ (1
+ (
sin
. x)))
proof
assume that
A1: Z
c= (
dom (
sin
- ((1
/ 2)
(#) ((
#Z 2)
*
sin )))) and
A2: for x st x
in Z holds (
sin
. x)
>
0 & (
sin
. x)
> (
- 1);
Z
c= ((
dom ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
/\ (
dom
sin )) by
A1,
VALUED_1: 12;
then
A3: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
sin ))) by
XBOOLE_1: 18;
then
A4: ((1
/ 2)
(#) ((
#Z 2)
*
sin ))
is_differentiable_on Z by
Th49;
A5:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
now
let x;
assume
A6: x
in Z;
then (
sin
. x)
> (
- 1) by
A2;
then
A7: ((
sin
. x)
- (
- 1))
>
0 by
XREAL_1: 50;
(((
sin
- ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
`| Z)
. x)
= ((
diff (
sin ,x))
- (
diff (((1
/ 2)
(#) ((
#Z 2)
*
sin )),x))) by
A1,
A4,
A5,
A6,
FDIFF_1: 19
.= ((
cos
. x)
- (
diff (((1
/ 2)
(#) ((
#Z 2)
*
sin )),x))) by
SIN_COS: 64
.= ((
cos
. x)
- ((((1
/ 2)
(#) ((
#Z 2)
*
sin ))
`| Z)
. x)) by
A4,
A6,
FDIFF_1:def 7
.= ((
cos
. x)
- ((
sin
. x)
* (
cos
. x))) by
A3,
A6,
Th49
.= ((((
cos
. x)
* (1
- (
sin
. x)))
* (1
+ (
sin
. x)))
/ (1
+ (
sin
. x))) by
A7,
XCMPLX_1: 89
.= (((
cos
. x)
* (1
- ((
sin
. x)
^2 )))
/ (1
+ (
sin
. x)))
.= (((
cos
. x)
* (1
- ((
sin x)
^2 )))
/ (1
+ (
sin
. x))) by
SIN_COS:def 17
.= (((
cos
. x)
* ((
cos x)
* (
cos x)))
/ (1
+ (
sin
. x))) by
SIN_COS4: 5
.= (((
cos
. x)
* ((
cos x)
|^ 2))
/ (1
+ (
sin
. x))) by
WSIERP_1: 1
.= (((
cos
. x)
* ((
cos
. x)
|^ 2))
/ (1
+ (
sin
. x))) by
SIN_COS:def 19
.= (((
cos
. x)
|^ (2
+ 1))
/ (1
+ (
sin
. x))) by
NEWTON: 6
.= (((
cos
. x)
|^ 3)
/ (1
+ (
sin
. x)));
hence (((
sin
- ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
`| Z)
. x)
= (((
cos
. x)
|^ 3)
/ (1
+ (
sin
. x)));
end;
hence thesis by
A1,
A4,
A5,
FDIFF_1: 19;
end;
theorem ::
FDIFF_4:53
Z
c= (
dom ((
-
cos )
- ((1
/ 2)
(#) ((
#Z 2)
*
sin )))) & (for x st x
in Z holds (
sin
. x)
>
0 & (
cos
. x)
> (
- 1)) implies ((
-
cos )
- ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
is_differentiable_on Z & for x st x
in Z holds ((((
-
cos )
- ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
`| Z)
. x)
= (((
sin
. x)
|^ 3)
/ (1
+ (
cos
. x)))
proof
assume that
A1: Z
c= (
dom ((
-
cos )
- ((1
/ 2)
(#) ((
#Z 2)
*
sin )))) and
A2: for x st x
in Z holds (
sin
. x)
>
0 & (
cos
. x)
> (
- 1);
A3: Z
c= ((
dom ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
/\ (
dom (
-
cos ))) by
A1,
VALUED_1: 12;
then
A4: Z
c= (
dom (
-
cos )) by
XBOOLE_1: 18;
A5: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
sin ))) by
A3,
XBOOLE_1: 18;
then
A6: ((1
/ 2)
(#) ((
#Z 2)
*
sin ))
is_differentiable_on Z by
Th49;
A7:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
A8: (
-
cos )
is_differentiable_on Z by
A4,
A7,
FDIFF_1: 20;
now
let x;
assume
A9: x
in Z;
then
A10: ((
cos
. x)
- (
- 1))
>
0 by
A2,
XREAL_1: 50;
((((
-
cos )
- ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
`| Z)
. x)
= ((
diff ((
-
cos ),x))
- (
diff (((1
/ 2)
(#) ((
#Z 2)
*
sin )),x))) by
A1,
A6,
A8,
A9,
FDIFF_1: 19
.= ((((
-
cos )
`| Z)
. x)
- (
diff (((1
/ 2)
(#) ((
#Z 2)
*
sin )),x))) by
A8,
A9,
FDIFF_1:def 7
.= (((
- 1)
* (
diff (
cos ,x)))
- (
diff (((1
/ 2)
(#) ((
#Z 2)
*
sin )),x))) by
A4,
A7,
A9,
FDIFF_1: 20
.= (((
- 1)
* (
- (
sin
. x)))
- (
diff (((1
/ 2)
(#) ((
#Z 2)
*
sin )),x))) by
SIN_COS: 63
.= ((
sin
. x)
- ((((1
/ 2)
(#) ((
#Z 2)
*
sin ))
`| Z)
. x)) by
A6,
A9,
FDIFF_1:def 7
.= ((
sin
. x)
- ((
sin
. x)
* (
cos
. x))) by
A5,
A9,
Th49
.= ((((
sin
. x)
* (1
- (
cos
. x)))
* (1
+ (
cos
. x)))
/ (1
+ (
cos
. x))) by
A10,
XCMPLX_1: 89
.= (((
sin
. x)
* (1
- ((
cos
. x)
^2 )))
/ (1
+ (
cos
. x)))
.= (((
sin
. x)
* (1
- ((
cos x)
^2 )))
/ (1
+ (
cos
. x))) by
SIN_COS:def 19
.= (((
sin
. x)
* ((
sin x)
* (
sin x)))
/ (1
+ (
cos
. x))) by
SIN_COS4: 4
.= (((
sin
. x)
* ((
sin x)
|^ 2))
/ (1
+ (
cos
. x))) by
WSIERP_1: 1
.= (((
sin
. x)
* ((
sin
. x)
|^ 2))
/ (1
+ (
cos
. x))) by
SIN_COS:def 17
.= (((
sin
. x)
|^ (2
+ 1))
/ (1
+ (
cos
. x))) by
NEWTON: 6
.= (((
sin
. x)
|^ 3)
/ (1
+ (
cos
. x)));
hence ((((
-
cos )
- ((1
/ 2)
(#) ((
#Z 2)
*
sin )))
`| Z)
. x)
= (((
sin
. x)
|^ 3)
/ (1
+ (
cos
. x)));
end;
hence thesis by
A1,
A6,
A8,
FDIFF_1: 19;
end;
theorem ::
FDIFF_4:54
Z
c= (
dom ((1
/ n)
(#) ((
#Z n)
*
sin ))) & n
>
0 implies ((1
/ n)
(#) ((
#Z n)
*
sin ))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ n)
(#) ((
#Z n)
*
sin ))
`| Z)
. x)
= (((
sin
. x)
#Z (n
- 1))
* (
cos
. x))
proof
assume that
A1: Z
c= (
dom ((1
/ n)
(#) ((
#Z n)
*
sin ))) and
A2: n
>
0 ;
A3:
now
let x;
assume x
in Z;
sin
is_differentiable_in x by
SIN_COS: 64;
hence ((
#Z n)
*
sin )
is_differentiable_in x by
TAYLOR_1: 3;
end;
Z
c= (
dom ((
#Z n)
*
sin )) by
A1,
VALUED_1:def 5;
then
A4: ((
#Z n)
*
sin )
is_differentiable_on Z by
A3,
FDIFF_1: 9;
for x st x
in Z holds ((((1
/ n)
(#) ((
#Z n)
*
sin ))
`| Z)
. x)
= (((
sin
. x)
#Z (n
- 1))
* (
cos
. x))
proof
let x;
A5:
sin
is_differentiable_in x by
SIN_COS: 64;
assume x
in Z;
then ((((1
/ n)
(#) ((
#Z n)
*
sin ))
`| Z)
. x)
= ((1
/ n)
* (
diff (((
#Z n)
*
sin ),x))) by
A1,
A4,
FDIFF_1: 20
.= ((1
/ n)
* ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
diff (
sin ,x)))) by
A5,
TAYLOR_1: 3
.= ((1
/ n)
* ((n
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x))) by
SIN_COS: 64
.= ((((1
/ n)
* n)
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x))
.= ((((n
" )
* n)
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x)) by
XCMPLX_1: 215
.= ((1
* ((
sin
. x)
#Z (n
- 1)))
* (
cos
. x)) by
A2,
XCMPLX_0:def 7
.= (((
sin
. x)
#Z (n
- 1))
* (
cos
. x));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 20;
end;
theorem ::
FDIFF_4:55
Z
c= (
dom (
exp_R
(#) f)) & (for x st x
in Z holds (f
. x)
= (x
- 1)) implies (
exp_R
(#) f)
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#) f)
`| Z)
. x)
= (x
* (
exp_R
. x))
proof
assume that
A1: Z
c= (
dom (
exp_R
(#) f)) and
A2: for x st x
in Z holds (f
. x)
= (x
- 1);
A3: for x st x
in Z holds (f
. x)
= ((1
* x)
+ (
- 1))
proof
let x;
A4: ((1
* x)
+ (
- 1))
= ((1
* x)
- 1);
assume x
in Z;
hence thesis by
A2,
A4;
end;
Z
c= ((
dom f)
/\ (
dom
exp_R )) by
A1,
VALUED_1:def 4;
then
A5: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A6: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A7:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
now
let x;
assume
A8: x
in Z;
hence (((
exp_R
(#) f)
`| Z)
. x)
= (((f
. x)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff (f,x)))) by
A1,
A6,
A7,
FDIFF_1: 21
.= (((x
- 1)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff (f,x)))) by
A2,
A8
.= (((x
- 1)
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
diff (f,x)))) by
TAYLOR_1: 16
.= (((x
- 1)
* (
exp_R
. x))
+ ((
exp_R
. x)
* ((f
`| Z)
. x))) by
A6,
A8,
FDIFF_1:def 7
.= (((x
- 1)
* (
exp_R
. x))
+ ((
exp_R
. x)
* 1)) by
A5,
A3,
A8,
FDIFF_1: 23
.= (x
* (
exp_R
. x));
end;
hence thesis by
A1,
A6,
A7,
FDIFF_1: 21;
end;
theorem ::
FDIFF_4:56
Z
c= (
dom (
ln
* (
exp_R
/ (
exp_R
+ f)))) & (for x st x
in Z holds (f
. x)
= 1) implies (
ln
* (
exp_R
/ (
exp_R
+ f)))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* (
exp_R
/ (
exp_R
+ f)))
`| Z)
. x)
= (1
/ ((
exp_R
. x)
+ 1))
proof
assume that
A1: Z
c= (
dom (
ln
* (
exp_R
/ (
exp_R
+ f)))) and
A2: for x st x
in Z holds (f
. x)
= 1;
A3: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
for y be
object st y
in Z holds y
in (
dom (
exp_R
/ (
exp_R
+ f))) by
A1,
FUNCT_1: 11;
then Z
c= (
dom (
exp_R
/ (
exp_R
+ f))) by
TARSKI:def 3;
then Z
c= ((
dom
exp_R )
/\ ((
dom (
exp_R
+ f))
\ ((
exp_R
+ f)
"
{
0 }))) by
RFUNCT_1:def 1;
then
A4: Z
c= (
dom (
exp_R
+ f)) by
XBOOLE_1: 1;
then Z
c= ((
dom
exp_R )
/\ (
dom f)) by
VALUED_1:def 1;
then
A5: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A6: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A7:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A8: (
exp_R
+ f)
is_differentiable_on Z by
A4,
A6,
FDIFF_1: 18;
A9: for x st x
in Z holds ((
exp_R
+ f)
. x)
>
0
proof
let x;
assume
A10: x
in Z;
then ((
exp_R
+ f)
. x)
= ((
exp_R
. x)
+ (f
. x)) by
A4,
VALUED_1:def 1
.= ((
exp_R
. x)
+ 1) by
A2,
A10;
hence thesis by
SIN_COS: 54,
XREAL_1: 34;
end;
then for x st x
in Z holds ((
exp_R
+ f)
. x)
<>
0 ;
then
A11: (
exp_R
/ (
exp_R
+ f))
is_differentiable_on Z by
A7,
A8,
FDIFF_2: 21;
A12: for x st x
in Z holds (((
exp_R
+ f)
`| Z)
. x)
= (
exp_R
. x)
proof
let x;
assume
A13: x
in Z;
hence (((
exp_R
+ f)
`| Z)
. x)
= ((
diff (
exp_R ,x))
+ (
diff (f,x))) by
A4,
A6,
A7,
FDIFF_1: 18
.= ((
exp_R
. x)
+ (
diff (f,x))) by
SIN_COS: 65
.= ((
exp_R
. x)
+ ((f
`| Z)
. x)) by
A6,
A13,
FDIFF_1:def 7
.= ((
exp_R
. x)
+
0 ) by
A5,
A3,
A13,
FDIFF_1: 23
.= (
exp_R
. x);
end;
A14: for x st x
in Z holds (((
exp_R
/ (
exp_R
+ f))
`| Z)
. x)
= ((
exp_R
. x)
/ (((
exp_R
. x)
+ 1)
^2 ))
proof
let x;
A15:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A16: x
in Z;
then
A17: ((
exp_R
+ f)
. x)
= ((
exp_R
. x)
+ (f
. x)) by
A4,
VALUED_1:def 1
.= ((
exp_R
. x)
+ 1) by
A2,
A16;
(
exp_R
+ f)
is_differentiable_in x & ((
exp_R
+ f)
. x)
<>
0 by
A8,
A9,
A16,
FDIFF_1: 9;
then (
diff ((
exp_R
/ (
exp_R
+ f)),x))
= ((((
diff (
exp_R ,x))
* ((
exp_R
+ f)
. x))
- ((
diff ((
exp_R
+ f),x))
* (
exp_R
. x)))
/ (((
exp_R
+ f)
. x)
^2 )) by
A15,
FDIFF_2: 14
.= ((((
exp_R
. x)
* ((
exp_R
+ f)
. x))
- ((
diff ((
exp_R
+ f),x))
* (
exp_R
. x)))
/ (((
exp_R
+ f)
. x)
^2 )) by
SIN_COS: 65
.= ((((
exp_R
. x)
* ((
exp_R
. x)
+ 1))
- ((((
exp_R
+ f)
`| Z)
. x)
* (
exp_R
. x)))
/ (((
exp_R
. x)
+ 1)
^2 )) by
A8,
A16,
A17,
FDIFF_1:def 7
.= ((((
exp_R
. x)
* ((
exp_R
. x)
+ 1))
- ((
exp_R
. x)
* (
exp_R
. x)))
/ (((
exp_R
. x)
+ 1)
^2 )) by
A12,
A16
.= ((
exp_R
. x)
/ (((
exp_R
. x)
+ 1)
^2 ));
hence thesis by
A11,
A16,
FDIFF_1:def 7;
end;
A18: for x st x
in Z holds ((
exp_R
/ (
exp_R
+ f))
. x)
>
0
proof
let x;
A19: (
exp_R
. x)
>
0 by
SIN_COS: 54;
assume
A20: x
in Z;
then x
in (
dom (
exp_R
/ (
exp_R
+ f))) by
A1,
FUNCT_1: 11;
then
A21: ((
exp_R
/ (
exp_R
+ f))
. x)
= ((
exp_R
. x)
* (((
exp_R
+ f)
. x)
" )) by
RFUNCT_1:def 1
.= ((
exp_R
. x)
* (1
/ ((
exp_R
+ f)
. x))) by
XCMPLX_1: 215
.= ((
exp_R
. x)
/ ((
exp_R
+ f)
. x)) by
XCMPLX_1: 99;
((
exp_R
+ f)
. x)
>
0 by
A9,
A20;
hence thesis by
A21,
A19,
XREAL_1: 139;
end;
A22: for x st x
in Z holds (
ln
* (
exp_R
/ (
exp_R
+ f)))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
exp_R
/ (
exp_R
+ f))
is_differentiable_in x & ((
exp_R
/ (
exp_R
+ f))
. x)
>
0 by
A11,
A18,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A23: (
ln
* (
exp_R
/ (
exp_R
+ f)))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* (
exp_R
/ (
exp_R
+ f)))
`| Z)
. x)
= (1
/ ((
exp_R
. x)
+ 1))
proof
let x;
assume
A24: x
in Z;
then x
in (
dom (
exp_R
/ (
exp_R
+ f))) by
A1,
FUNCT_1: 11;
then
A25: ((
exp_R
/ (
exp_R
+ f))
. x)
= ((
exp_R
. x)
* (((
exp_R
+ f)
. x)
" )) by
RFUNCT_1:def 1
.= ((
exp_R
. x)
* (1
/ ((
exp_R
+ f)
. x))) by
XCMPLX_1: 215
.= ((
exp_R
. x)
/ ((
exp_R
+ f)
. x)) by
XCMPLX_1: 99
.= ((
exp_R
. x)
/ ((
exp_R
. x)
+ (f
. x))) by
A4,
A24,
VALUED_1:def 1
.= ((
exp_R
. x)
/ ((
exp_R
. x)
+ 1)) by
A2,
A24;
then
A26: ((
exp_R
. x)
/ ((
exp_R
. x)
+ 1))
>
0 by
A18,
A24;
(
exp_R
/ (
exp_R
+ f))
is_differentiable_in x & ((
exp_R
/ (
exp_R
+ f))
. x)
>
0 by
A11,
A18,
A24,
FDIFF_1: 9;
then (
diff ((
ln
* (
exp_R
/ (
exp_R
+ f))),x))
= ((
diff ((
exp_R
/ (
exp_R
+ f)),x))
/ ((
exp_R
/ (
exp_R
+ f))
. x)) by
TAYLOR_1: 20
.= ((((
exp_R
/ (
exp_R
+ f))
`| Z)
. x)
/ ((
exp_R
/ (
exp_R
+ f))
. x)) by
A11,
A24,
FDIFF_1:def 7
.= (((
exp_R
. x)
/ (((
exp_R
. x)
+ 1)
^2 ))
/ ((
exp_R
. x)
/ ((
exp_R
. x)
+ 1))) by
A14,
A24,
A25
.= ((((
exp_R
. x)
/ ((
exp_R
. x)
+ 1))
/ ((
exp_R
. x)
+ 1))
/ ((
exp_R
. x)
/ ((
exp_R
. x)
+ 1))) by
XCMPLX_1: 78
.= ((((
exp_R
. x)
/ ((
exp_R
. x)
+ 1))
/ ((
exp_R
. x)
/ ((
exp_R
. x)
+ 1)))
/ ((
exp_R
. x)
+ 1)) by
XCMPLX_1: 48
.= (1
/ ((
exp_R
. x)
+ 1)) by
A26,
XCMPLX_1: 60;
hence thesis by
A23,
A24,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A22,
FDIFF_1: 9;
end;
theorem ::
FDIFF_4:57
Z
c= (
dom (
ln
* ((
exp_R
- f)
/
exp_R ))) & (for x st x
in Z holds (f
. x)
= 1 & ((
exp_R
- f)
. x)
>
0 ) implies (
ln
* ((
exp_R
- f)
/
exp_R ))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* ((
exp_R
- f)
/
exp_R ))
`| Z)
. x)
= (1
/ ((
exp_R
. x)
- 1))
proof
assume that
A1: Z
c= (
dom (
ln
* ((
exp_R
- f)
/
exp_R ))) and
A2: for x st x
in Z holds (f
. x)
= 1 & ((
exp_R
- f)
. x)
>
0 ;
A3: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
for y be
object st y
in Z holds y
in (
dom ((
exp_R
- f)
/
exp_R )) by
A1,
FUNCT_1: 11;
then Z
c= (
dom ((
exp_R
- f)
/
exp_R )) by
TARSKI:def 3;
then Z
c= ((
dom (
exp_R
- f))
/\ ((
dom
exp_R )
\ (
exp_R
"
{
0 }))) by
RFUNCT_1:def 1;
then
A4: Z
c= (
dom (
exp_R
- f)) by
XBOOLE_1: 18;
then Z
c= ((
dom
exp_R )
/\ (
dom f)) by
VALUED_1: 12;
then
A5: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A6: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A7:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A8: (
exp_R
- f)
is_differentiable_on Z by
A4,
A6,
FDIFF_1: 19;
for x st x
in Z holds (
exp_R
. x)
<>
0 by
SIN_COS: 54;
then
A9: ((
exp_R
- f)
/
exp_R )
is_differentiable_on Z by
A7,
A8,
FDIFF_2: 21;
A10: for x st x
in Z holds (((
exp_R
- f)
`| Z)
. x)
= (
exp_R
. x)
proof
let x;
assume
A11: x
in Z;
hence (((
exp_R
- f)
`| Z)
. x)
= ((
diff (
exp_R ,x))
- (
diff (f,x))) by
A4,
A6,
A7,
FDIFF_1: 19
.= ((
exp_R
. x)
- (
diff (f,x))) by
SIN_COS: 65
.= ((
exp_R
. x)
- ((f
`| Z)
. x)) by
A6,
A11,
FDIFF_1:def 7
.= ((
exp_R
. x)
-
0 ) by
A5,
A3,
A11,
FDIFF_1: 23
.= (
exp_R
. x);
end;
A12: for x st x
in Z holds ((((
exp_R
- f)
/
exp_R )
`| Z)
. x)
= (1
/ (
exp_R
. x))
proof
let x;
A13: (
exp_R
. x)
<>
0 by
SIN_COS: 54;
assume
A14: x
in Z;
then
A15: ((
exp_R
- f)
. x)
= ((
exp_R
. x)
- (f
. x)) by
A4,
VALUED_1: 13
.= ((
exp_R
. x)
- 1) by
A2,
A14;
exp_R
is_differentiable_in x & (
exp_R
- f)
is_differentiable_in x by
A8,
A14,
FDIFF_1: 9,
SIN_COS: 65;
then (
diff (((
exp_R
- f)
/
exp_R ),x))
= ((((
diff ((
exp_R
- f),x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
exp_R
- f)
. x)))
/ ((
exp_R
. x)
^2 )) by
A13,
FDIFF_2: 14
.= ((((((
exp_R
- f)
`| Z)
. x)
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
exp_R
- f)
. x)))
/ ((
exp_R
. x)
^2 )) by
A8,
A14,
FDIFF_1:def 7
.= ((((
exp_R
. x)
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
exp_R
- f)
. x)))
/ ((
exp_R
. x)
^2 )) by
A10,
A14
.= ((((
exp_R
. x)
* (
exp_R
. x))
- ((
exp_R
. x)
* ((
exp_R
. x)
- 1)))
/ ((
exp_R
. x)
^2 )) by
A15,
SIN_COS: 65
.= (((
exp_R
. x)
/ (
exp_R
. x))
/ (
exp_R
. x)) by
XCMPLX_1: 78
.= (1
/ (
exp_R
. x)) by
A13,
XCMPLX_1: 60;
hence thesis by
A9,
A14,
FDIFF_1:def 7;
end;
A16: for x st x
in Z holds (((
exp_R
- f)
/
exp_R )
. x)
>
0
proof
let x;
A17: (
exp_R
. x)
>
0 by
SIN_COS: 54;
assume
A18: x
in Z;
then x
in (
dom ((
exp_R
- f)
/
exp_R )) by
A1,
FUNCT_1: 11;
then
A19: (((
exp_R
- f)
/
exp_R )
. x)
= (((
exp_R
- f)
. x)
* ((
exp_R
. x)
" )) by
RFUNCT_1:def 1
.= (((
exp_R
- f)
. x)
* (1
/ (
exp_R
. x))) by
XCMPLX_1: 215
.= (((
exp_R
- f)
. x)
/ (
exp_R
. x)) by
XCMPLX_1: 99;
((
exp_R
- f)
. x)
>
0 by
A2,
A18;
hence thesis by
A19,
A17,
XREAL_1: 139;
end;
A20: for x st x
in Z holds (
ln
* ((
exp_R
- f)
/
exp_R ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then ((
exp_R
- f)
/
exp_R )
is_differentiable_in x & (((
exp_R
- f)
/
exp_R )
. x)
>
0 by
A9,
A16,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A21: (
ln
* ((
exp_R
- f)
/
exp_R ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* ((
exp_R
- f)
/
exp_R ))
`| Z)
. x)
= (1
/ ((
exp_R
. x)
- 1))
proof
let x;
A22: (
exp_R
. x)
>
0 by
SIN_COS: 54;
assume
A23: x
in Z;
then x
in (
dom ((
exp_R
- f)
/
exp_R )) by
A1,
FUNCT_1: 11;
then
A24: (((
exp_R
- f)
/
exp_R )
. x)
= (((
exp_R
- f)
. x)
* ((
exp_R
. x)
" )) by
RFUNCT_1:def 1
.= (((
exp_R
- f)
. x)
* (1
/ (
exp_R
. x))) by
XCMPLX_1: 215
.= (((
exp_R
- f)
. x)
/ (
exp_R
. x)) by
XCMPLX_1: 99
.= (((
exp_R
. x)
- (f
. x))
/ (
exp_R
. x)) by
A4,
A23,
VALUED_1: 13
.= (((
exp_R
. x)
- 1)
/ (
exp_R
. x)) by
A2,
A23;
((
exp_R
- f)
/
exp_R )
is_differentiable_in x & (((
exp_R
- f)
/
exp_R )
. x)
>
0 by
A9,
A16,
A23,
FDIFF_1: 9;
then (
diff ((
ln
* ((
exp_R
- f)
/
exp_R )),x))
= ((
diff (((
exp_R
- f)
/
exp_R ),x))
/ (((
exp_R
- f)
/
exp_R )
. x)) by
TAYLOR_1: 20
.= (((((
exp_R
- f)
/
exp_R )
`| Z)
. x)
/ (((
exp_R
- f)
/
exp_R )
. x)) by
A9,
A23,
FDIFF_1:def 7
.= ((1
/ (
exp_R
. x))
/ (((
exp_R
. x)
- 1)
/ (
exp_R
. x))) by
A12,
A23,
A24
.= (1
/ ((
exp_R
. x)
- 1)) by
A22,
XCMPLX_1: 55;
hence thesis by
A21,
A23,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A20,
FDIFF_1: 9;
end;