integr22.miz
begin
definition
let A be
Subset of
REAL ;
let rho be
real-valued
Function;
::
INTEGR22:def1
func
vol (A,rho) ->
Real equals
:
Defvol:
0 if A is
empty
otherwise ((rho
. (
upper_bound A))
- (rho
. (
lower_bound A)));
correctness ;
end
LmINTEGR208: for rho be
real-valued
Function, A be non
empty
closed_interval
Subset of
REAL , D be
Division of A, B be non
empty
closed_interval
Subset of
REAL , v be
FinSequence of
REAL st A
c= (
dom rho) & B
c= A & (
len D)
= (
len v) & for i be
Nat st i
in (
dom v) holds (v
. i)
= (
vol ((B
/\ (
divset (D,i))),rho)) holds (
Sum v)
= (
vol (B,rho))
proof
let rho be
real-valued
Function;
defpred
P[
Nat] means for A be non
empty
closed_interval
Subset of
REAL , D be
Division of A, B be non
empty
closed_interval
Subset of
REAL , v be
FinSequence of
REAL st A
c= (
dom rho) & $1
= (
len D) & B
c= A & (
len D)
= (
len v) & for k be
Nat st k
in (
dom v) holds (v
. k)
= (
vol ((B
/\ (
divset (D,k))),rho)) holds (
Sum v)
= (
vol (B,rho));
A1:
P[
0 ];
A2: for i be
Nat st
P[i] holds
P[(i
+ 1)]
proof
let i be
Nat;
assume
A3:
P[i];
let A be non
empty
closed_interval
Subset of
REAL , D be
Division of A, B be non
empty
closed_interval
Subset of
REAL , v be
FinSequence of
REAL ;
set D1 = (D
| i), v1 = (v
| i);
assume
A4: A
c= (
dom rho) & (i
+ 1)
= (
len D) & B
c= A & (
len D)
= (
len v) & for k be
Nat st k
in (
dom v) holds (v
. k)
= (
vol ((B
/\ (
divset (D,k))),rho));
A5: (
dom D)
= (
Seg (i
+ 1)) & (
dom D)
= (
dom v) by
A4,
FINSEQ_1:def 3,
FINSEQ_3: 29;
A7: 1
<= (i
+ 1) & (i
+ 1)
<= (
len v) by
A4,
NAT_1: 11;
v
= ((v
| i)
^
<*(v
/. (i
+ 1))*>) by
A4,
FINSEQ_5: 21;
then
A8: v
= (v1
^
<*(v
. (i
+ 1))*>) by
A7,
FINSEQ_4: 15;
A9: (
lower_bound A)
<= (
lower_bound B) & (
upper_bound B)
<= (
upper_bound A) by
A4,
SEQ_4: 47,
SEQ_4: 48;
A11: (
rng D1)
c= (
rng D) by
RELAT_1: 70;
A12: (
Seg i)
c= (
dom D) by
A5,
FINSEQ_1: 5,
NAT_1: 11;
A13: i
= (
len D1) & i
= (
len v1) by
FINSEQ_1: 59,
A4,
NAT_1: 11;
then
A14: (
dom v1)
= (
Seg i) by
FINSEQ_1:def 3;
per cases ;
suppose
A15: i
<>
0 ;
then
A16: i
in (
dom D) by
A12,
FINSEQ_1: 3,
TARSKI:def 3;
then
consider A1,A2 be non
empty
closed_interval
Subset of
REAL such that
A17: A1
=
[.(
lower_bound A), (D
. i).] & A2
=
[.(D
. i), (
upper_bound A).] & A
= (A1
\/ A2) by
INTEGRA1: 32;
A1
c= A by
A17,
XBOOLE_1: 7;
then
B17: A1
c= (
dom rho) by
A4,
XBOOLE_1: 1;
B23: for y be
object st y
in (
rng D1) holds y
in A1
proof
let y be
object;
assume
A18: y
in (
rng D1);
then y
in A by
A11,
TARSKI:def 3,
INTEGRA1:def 2;
then y
in
[.(
lower_bound A), (
upper_bound A).] by
INTEGRA1: 4;
then
consider y1 be
Real such that
A19: y
= y1 & (
lower_bound A)
<= y1 & y1
<= (
upper_bound A);
consider x be
object such that
A20: x
in (
dom D1) & y1
= (D1
. x) by
A18,
A19,
FUNCT_1:def 3;
reconsider x as
Nat by
A20;
A21: x
in (
Seg i) by
A13,
FINSEQ_1:def 3,
A20;
then
A22: x
<= i by
FINSEQ_1: 1;
now
assume x
<> i;
then x
< i by
A22,
XXREAL_0: 1;
hence (D
. x)
<= (D
. i) by
A16,
A12,
A21,
VALUED_0:def 13;
end;
then y1
<= (D
. i) by
A20,
A21,
FUNCT_1: 49;
hence y
in A1 by
A19,
A17;
end;
A24: (D1
. i)
= (D
. i) by
A15,
FINSEQ_1: 3,
FUNCT_1: 49;
for e1,e2 be
ExtReal st e1
in (
dom D1) & e2
in (
dom D1) & e1
< e2 holds (D1
. e1)
< (D1
. e2)
proof
let e1,e2 be
ExtReal;
assume
A25: e1
in (
dom D1) & e2
in (
dom D1) & e1
< e2;
then
A26: e1
in (
Seg i) & e2
in (
Seg i) by
A13,
FINSEQ_1:def 3;
then (D1
. e1)
= (D
. e1) & (D1
. e2)
= (D
. e2) by
FUNCT_1: 49;
hence thesis by
A25,
VALUED_0:def 13,
A26,
A12;
end;
then
reconsider D1 as non
empty
increasing
FinSequence of
REAL by
A15,
VALUED_0:def 13;
A27: A1
=
[.(
lower_bound A1), (
upper_bound A1).] by
INTEGRA1: 4;
then (D1
. (
len D1))
= (
upper_bound A1) by
A13,
A24,
A17,
INTEGRA1: 5;
then
reconsider D1 as
Division of A1 by
INTEGRA1:def 2,
TARSKI:def 3,
B23;
A28: 1
< (i
+ 1) by
A15,
NAT_1: 16;
(i
+ 1)
in (
dom D) by
A5,
FINSEQ_1: 4;
then
A29: (
lower_bound (
divset (D,(i
+ 1))))
= (D
. ((i
+ 1)
- 1)) & (
upper_bound (
divset (D,(i
+ 1))))
= (D
. (i
+ 1)) by
A28,
INTEGRA1:def 4;
then
A30: B
=
[.(
lower_bound B), (
upper_bound B).] & (
divset (D,(i
+ 1)))
=
[.(D
. i), (D
. (i
+ 1)).] by
INTEGRA1: 4;
A31: (D
. i)
<= (D
. (i
+ 1)) by
A29,
SEQ_4: 11;
per cases ;
suppose
A32: (
upper_bound B)
< (D
. i);
then
[.(
lower_bound B), (
upper_bound B).]
c=
[.(
lower_bound A), (D
. i).] by
A9,
XXREAL_1: 34;
then
A33: B
c= A1 by
A17,
INTEGRA1: 4;
for k be
Nat st k
in (
dom v1) holds (v1
. k)
= (
vol ((B
/\ (
divset (D1,k))),rho))
proof
let k be
Nat;
assume
A34: k
in (
dom v1);
then
A35: k
in (
Seg i) & k
in (
dom v) by
RELAT_1: 57;
then
A36: (v
. k)
= (v1
. k) by
FUNCT_1: 49;
A37: k
in (
dom D) & k
in (
dom D1) by
A34,
A35,
A4,
FINSEQ_3: 29,
A13;
A38: (
divset (D,k))
=
[.(
lower_bound (
divset (D,k))), (
upper_bound (
divset (D,k))).] & (
divset (D1,k))
=
[.(
lower_bound (
divset (D1,k))), (
upper_bound (
divset (D1,k))).] by
INTEGRA1: 4;
(
divset (D,k))
= (
divset (D1,k))
proof
per cases ;
suppose k
= 1;
then
A39: (
lower_bound (
divset (D,k)))
= (
lower_bound A) & (
upper_bound (
divset (D,k)))
= (D
. k) & (
lower_bound (
divset (D1,k)))
= (
lower_bound A1) & (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A37,
INTEGRA1:def 4;
(
lower_bound A)
= (
lower_bound A1) by
A17,
A27,
INTEGRA1: 5;
hence (
divset (D,k))
= (
divset (D1,k)) by
A39,
A35,
A38,
FUNCT_1: 49;
end;
suppose
A40: k
<> 1;
then
A41: (
lower_bound (
divset (D,k)))
= (D
. (k
- 1)) & (
upper_bound (
divset (D,k)))
= (D
. k) & (
lower_bound (
divset (D1,k)))
= (D1
. (k
- 1)) & (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A37,
INTEGRA1:def 4;
A42: 1
<= k by
A35,
FINSEQ_1: 1;
then (k
- 1)
in
NAT by
INT_1: 5;
then
reconsider k1 = (k
- 1) as
Nat;
1
< k by
A40,
A42,
XXREAL_0: 1;
then (D
. k1)
= (D1
. k1) by
A35,
FINSEQ_3: 12,
FUNCT_1: 49;
hence (
divset (D,k))
= (
divset (D1,k)) by
A41,
A35,
A38,
FUNCT_1: 49;
end;
end;
hence thesis by
A4,
A35,
A36;
end;
then
A43: (
Sum v1)
= (
vol (B,rho)) by
A3,
A33,
A13,
B17;
(
lower_bound B)
<= (
upper_bound B) by
SEQ_4: 11;
then (
lower_bound B)
<= (D
. i) & (
upper_bound B)
<= (D
. (i
+ 1)) by
A32,
A31,
XXREAL_0: 2;
then (B
/\ (
divset (D,(i
+ 1))))
=
[.(D
. i), (
upper_bound B).] by
A30,
XXREAL_1: 143
.=
{} by
A32,
XXREAL_1: 29;
then (
vol ((B
/\ (
divset (D,(i
+ 1)))),rho))
=
0 by
Defvol;
then (v
. (i
+ 1))
=
0 by
A5,
A4,
FINSEQ_1: 4;
then (
Sum v)
= ((
vol (B,rho))
+
0 ) by
A43,
A8,
RVSUM_1: 74;
hence (
Sum v)
= (
vol (B,rho));
end;
suppose
A49: (D
. i)
<= (
upper_bound B);
per cases ;
suppose
A50: (
lower_bound B)
<= (D
. i);
then
reconsider B1 =
[.(
lower_bound B), (D
. i).], B2 =
[.(D
. i), (
upper_bound B).] as non
empty
closed_interval
Subset of
REAL by
XXREAL_1: 30,
A49,
MEASURE5:def 3;
(B1
\/ B2)
=
[.(
lower_bound B), (
upper_bound B).] by
A50,
A49,
XXREAL_1: 165;
then
A51: (B1
\/ B2)
= B by
INTEGRA1: 4;
B1
=
[.(
lower_bound B1), (
upper_bound B1).] & B2
=
[.(
lower_bound B2), (
upper_bound B2).] by
INTEGRA1: 4;
then
A52: (
lower_bound B)
= (
lower_bound B1) & (D
. i)
= (
upper_bound B1) & (D
. i)
= (
lower_bound B2) & (
upper_bound B)
= (
upper_bound B2) by
INTEGRA1: 5;
for k be
Nat st k
in (
dom v1) holds (v1
. k)
= (
vol ((B1
/\ (
divset (D1,k))),rho))
proof
let k be
Nat;
assume
A53: k
in (
dom v1);
then
A54: k
in (
Seg i) & k
in (
dom v) by
RELAT_1: 57;
then
A55: (v
. k)
= (
vol ((B
/\ (
divset (D,k))),rho)) by
A4;
A56: (v
. k)
= (v1
. k) by
A54,
FUNCT_1: 49;
A57: k
in (
dom D) & k
in (
dom D1) by
A53,
A54,
A4,
A13,
FINSEQ_3: 29;
A58: (
divset (D,k))
=
[.(
lower_bound (
divset (D,k))), (
upper_bound (
divset (D,k))).] & (
divset (D1,k))
=
[.(
lower_bound (
divset (D1,k))), (
upper_bound (
divset (D1,k))).] by
INTEGRA1: 4;
A59: (
divset (D,k))
= (
divset (D1,k))
proof
per cases ;
suppose k
= 1;
then
A60: (
lower_bound (
divset (D,k)))
= (
lower_bound A) & (
upper_bound (
divset (D,k)))
= (D
. k) & (
lower_bound (
divset (D1,k)))
= (
lower_bound A1) & (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A57,
INTEGRA1:def 4;
(
lower_bound A)
= (
lower_bound A1) by
A27,
A17,
INTEGRA1: 5;
hence (
divset (D,k))
= (
divset (D1,k)) by
A60,
A54,
A58,
FUNCT_1: 49;
end;
suppose
A61: k
<> 1;
then
A62: (
lower_bound (
divset (D,k)))
= (D
. (k
- 1)) & (
upper_bound (
divset (D,k)))
= (D
. k) & (
lower_bound (
divset (D1,k)))
= (D1
. (k
- 1)) & (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A57,
INTEGRA1:def 4;
A63: 1
<= k by
A54,
FINSEQ_1: 1;
then (k
- 1)
in
NAT by
INT_1: 5;
then
reconsider k1 = (k
- 1) as
Nat;
1
< k by
A61,
A63,
XXREAL_0: 1;
then (D
. k1)
= (D1
. k1) by
A54,
FINSEQ_3: 12,
FUNCT_1: 49;
hence (
divset (D,k))
= (
divset (D1,k)) by
A62,
A54,
A58,
FUNCT_1: 49;
end;
end;
then
A64: (B1
/\ (
divset (D1,k)))
c= (B
/\ (
divset (D,k))) by
A51,
XBOOLE_1: 7,
XBOOLE_1: 26;
for x be
object st x
in (B
/\ (
divset (D,k))) holds x
in (B1
/\ (
divset (D1,k)))
proof
let x be
object;
assume
A65: x
in (B
/\ (
divset (D,k)));
then
reconsider r = x as
Real;
A66: x
in B & x
in (
divset (D,k)) by
A65,
XBOOLE_0:def 4;
then
A67: ex r0 be
Real st r
= r0 & (
lower_bound B)
<= r0 & r0
<= (
upper_bound B) by
A30;
A68: ex r1 be
Real st r
= r1 & (
lower_bound (
divset (D,k)))
<= r1 & r1
<= (
upper_bound (
divset (D,k))) by
A58,
A66;
A69: k
<= i by
A54,
FINSEQ_1: 1;
A70:
now
assume k
<> i;
then k
< i by
A69,
XXREAL_0: 1;
hence (D
. k)
<= (D
. i) by
A16,
A57,
VALUED_0:def 13;
end;
k
= 1 or k
<> 1;
then (
upper_bound (
divset (D,k)))
<= (D
. i) by
A70,
A57,
INTEGRA1:def 4;
then r
<= (D
. i) by
A68,
XXREAL_0: 2;
then r
in B1 by
A67;
hence x
in (B1
/\ (
divset (D1,k))) by
XBOOLE_0:def 4,
A59,
A66;
end;
then (B
/\ (
divset (D,k)))
c= (B1
/\ (
divset (D1,k))) by
TARSKI:def 3;
hence thesis by
A55,
A56,
A64,
XBOOLE_0:def 10;
end;
then
A71: (
Sum v1)
= (
vol (B1,rho)) by
A3,
A17,
A9,
XXREAL_1: 34,
A13,
B17;
(B
/\ (
divset (D,(i
+ 1))))
= ((B1
/\ (
divset (D,(i
+ 1))))
\/ (B2
/\ (
divset (D,(i
+ 1))))) by
A51,
XBOOLE_1: 23;
then (B
/\ (
divset (D,(i
+ 1))))
= (
[.(D
. i), (D
. i).]
\/ (B2
/\
[.(D
. i), (D
. (i
+ 1)).])) by
A30,
A50,
A31,
XXREAL_1: 143;
then
A72: (B
/\ (
divset (D,(i
+ 1))))
= ((
[.(D
. i), (D
. i).]
\/
[.(D
. i), (
upper_bound B).])
/\ (
[.(D
. i), (D
. i).]
\/
[.(D
. i), (D
. (i
+ 1)).])) by
XBOOLE_1: 24;
(D
. i)
<= (
upper_bound B) by
A52,
SEQ_4: 11;
then
A73: (
[.(D
. i), (D
. i).]
\/
[.(D
. i), (
upper_bound B).])
= B2 by
XXREAL_1: 165;
(
[.(D
. i), (D
. i).]
\/
[.(D
. i), (D
. (i
+ 1)).])
=
[.(D
. i), (D
. (i
+ 1)).] by
A31,
XXREAL_1: 165;
then
A74: (
[.(D
. i), (D
. i).]
\/
[.(D
. i), (D
. (i
+ 1)).])
= (
divset (D,(i
+ 1))) by
A29,
INTEGRA1: 4;
A75: (
upper_bound B)
<= (D
. (i
+ 1)) by
A4,
A9,
INTEGRA1:def 2;
C78: for x be
object st x
in B2 holds x
in (
divset (D,(i
+ 1)))
proof
let x be
object;
assume
A76: x
in B2;
then
reconsider r = x as
Real;
A77: ex r0 be
Real st r
= r0 & (D
. i)
<= r0 & r0
<= (
upper_bound B) by
A76;
r
<= (D
. (i
+ 1)) by
A75,
XXREAL_0: 2,
A77;
hence x
in (
divset (D,(i
+ 1))) by
A30,
A77;
end;
(v
. (i
+ 1))
= (
vol ((B
/\ (
divset (D,(i
+ 1)))),rho)) by
A4,
A5,
FINSEQ_1: 4;
then
D78: (v
. (i
+ 1))
= (
vol (B2,rho)) by
TARSKI:def 3,
C78,
A74,
A72,
A73,
XBOOLE_1: 28;
B79: (
vol (B1,rho))
= ((rho
. (D
. i))
- (rho
. (
lower_bound B))) by
A52,
Defvol;
(
vol (B2,rho))
= ((rho
. (
upper_bound B))
- (rho
. (D
. i))) by
A52,
Defvol;
then ((
vol (B1,rho))
+ (
vol (B2,rho)))
= ((rho
. (
upper_bound B))
- (rho
. (
lower_bound B))) by
B79
.= (
vol (B,rho)) by
Defvol;
hence (
Sum v)
= (
vol (B,rho)) by
D78,
A8,
RVSUM_1: 74,
A71;
end;
suppose
A79: (D
. i)
< (
lower_bound B);
then
A80:
[.(
lower_bound B), (D
. i).]
=
{} by
XXREAL_1: 29;
reconsider B1 =
[.(
lower_bound B), (D
. i).] as
Subset of
REAL ;
reconsider B2 = B as non
empty
closed_interval
Subset of
REAL ;
now
let k0 be
object;
assume
A81: k0
in (
dom v1);
then
A82: k0
in (
Seg i) & k0
in (
dom v) by
RELAT_1: 57;
reconsider k = k0 as
Nat by
A81;
A83: k
in (
dom D) & k
in (
dom D1) by
A81,
A82,
A4,
A13,
FINSEQ_3: 29;
A84: (
divset (D,k))
=
[.(
lower_bound (
divset (D,k))), (
upper_bound (
divset (D,k))).] & (
divset (D1,k))
=
[.(
lower_bound (
divset (D1,k))), (
upper_bound (
divset (D1,k))).] by
INTEGRA1: 4;
A85: (
divset (D,k))
= (
divset (D1,k))
proof
per cases ;
suppose k
= 1;
then
A86: (
lower_bound (
divset (D,k)))
= (
lower_bound A) & (
upper_bound (
divset (D,k)))
= (D
. k) & (
lower_bound (
divset (D1,k)))
= (
lower_bound A1) & (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A83,
INTEGRA1:def 4;
(
lower_bound A)
= (
lower_bound A1) by
A27,
A17,
INTEGRA1: 5;
hence (
divset (D,k))
= (
divset (D1,k)) by
A84,
A86,
A82,
FUNCT_1: 49;
end;
suppose
A87: k
<> 1;
then
A88: (
lower_bound (
divset (D,k)))
= (D
. (k
- 1)) & (
upper_bound (
divset (D,k)))
= (D
. k) & (
lower_bound (
divset (D1,k)))
= (D1
. (k
- 1)) & (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A83,
INTEGRA1:def 4;
A89: 1
<= k by
A82,
FINSEQ_1: 1;
then (k
- 1)
in
NAT by
INT_1: 5;
then
reconsider k1 = (k
- 1) as
Nat;
1
< k by
A87,
A89,
XXREAL_0: 1;
then (D
. k1)
= (D1
. k1) by
A82,
FINSEQ_3: 12,
FUNCT_1: 49;
hence (
divset (D,k))
= (
divset (D1,k)) by
A88,
A82,
A84,
FUNCT_1: 49;
end;
end;
B95: for x be
object st x
in (B
/\ (
divset (D,k))) holds x
in (B1
/\ (
divset (D1,k)))
proof
let x be
object;
assume
A90: x
in (B
/\ (
divset (D,k)));
then
reconsider r = x as
Real;
A91: x
in B & x
in (
divset (D,k)) by
A90,
XBOOLE_0:def 4;
then
A92: (ex r0 be
Real st r
= r0 & (
lower_bound B)
<= r0 & r0
<= (
upper_bound B)) & (ex r1 be
Real st r
= r1 & (
lower_bound (
divset (D,k)))
<= r1 & r1
<= (
upper_bound (
divset (D,k)))) by
A30,
A84;
k
in (
Seg i) by
A81,
RELAT_1: 57;
then
A93: k
<= i by
FINSEQ_1: 1;
A94:
now
assume k
<> i;
then k
< i by
A93,
XXREAL_0: 1;
hence (D
. k)
<= (D
. i) by
A16,
A83,
VALUED_0:def 13;
end;
k
= 1 or k
<> 1;
then (
upper_bound (
divset (D,k)))
<= (D
. i) by
A94,
A83,
INTEGRA1:def 4;
then r
<= (D
. i) by
A92,
XXREAL_0: 2;
then r
in B1 by
A92;
hence x
in (B1
/\ (
divset (D1,k))) by
XBOOLE_0:def 4,
A85,
A91;
end;
C95: (B
/\ (
divset (D,k)))
=
{} by
TARSKI:def 3,
B95,
XBOOLE_1: 3,
A80;
(v
. k)
= (
vol ((B
/\ (
divset (D,k))),rho)) by
A82,
A4;
then (v
. k0)
=
0 by
C95,
Defvol;
hence (v1
. k0)
=
0 by
A82,
FUNCT_1: 49;
end;
then v1
= ((
dom v1)
-->
0 ) by
FUNCOP_1: 11;
then v1
= (i
|->
0 ) by
A14,
FINSEQ_2:def 2;
then
A96: (
Sum v1)
=
0 by
RVSUM_1: 81;
A97: (
upper_bound B)
<= (D
. (i
+ 1)) by
A4,
A9,
INTEGRA1:def 2;
B99: for x be
object st x
in B2 holds x
in (
divset (D,(i
+ 1)))
proof
let x be
object;
assume
A98: x
in B2;
then
reconsider r = x as
Real;
B
=
[.(
lower_bound B), (
upper_bound B).] by
INTEGRA1: 4;
then ex r0 be
Real st r
= r0 & (
lower_bound B)
<= r0 & r0
<= (
upper_bound B) by
A98;
then (D
. i)
<= r & r
<= (D
. (i
+ 1)) by
A97,
XXREAL_0: 2,
A79;
hence x
in (
divset (D,(i
+ 1))) by
A30;
end;
(v
. (i
+ 1))
= (
vol ((B
/\ (
divset (D,(i
+ 1)))),rho)) by
A4,
A5,
FINSEQ_1: 4;
then (v
. (i
+ 1))
= (
vol (B,rho)) by
TARSKI:def 3,
B99,
XBOOLE_1: 28;
then (
Sum v)
= (
0
+ (
vol (B,rho))) by
A8,
RVSUM_1: 74,
A96;
hence (
Sum v)
= (
vol (B,rho));
end;
end;
end;
suppose
A100: i
=
0 ;
then
A101: (D
. 1)
= (
upper_bound A) by
A4,
INTEGRA1:def 2;
(
dom D)
= (
Seg 1) by
A100,
A4,
FINSEQ_1:def 3;
then 1
in (
dom D);
then (
lower_bound (
divset (D,1)))
= (
lower_bound A) & (
upper_bound (
divset (D,1)))
= (D
. 1) by
INTEGRA1:def 4;
then (
divset (D,1))
=
[.(
lower_bound A), (
upper_bound A).] by
A101,
INTEGRA1: 4;
then
A102: (
divset (D,1))
= A by
INTEGRA1: 4;
(v
. 1)
= (
vol ((B
/\ (
divset (D,1))),rho)) by
A100,
A4,
A5,
FINSEQ_1: 4;
then
A103: (v
. 1)
= (
vol (B,rho)) by
A102,
A4,
XBOOLE_1: 28;
(
Sum v)
= ((
Sum v1)
+ (v
. 1)) by
A100,
A8,
RVSUM_1: 74;
then (
Sum v)
= (
0
+ (
vol (B,rho))) by
A100,
RVSUM_1: 72,
A103;
hence (
Sum v)
= (
vol (B,rho));
end;
end;
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
INTEGR22:1
for A be non
empty
closed_interval
Subset of
REAL , D be
Division of A, rho be
Function of A,
REAL , B be non
empty
closed_interval
Subset of
REAL , v be
FinSequence of
REAL st B
c= A & (
len D)
= (
len v) & for i be
Nat st i
in (
dom v) holds (v
. i)
= (
vol ((B
/\ (
divset (D,i))),rho)) holds (
Sum v)
= (
vol (B,rho))
proof
let A be non
empty
closed_interval
Subset of
REAL , D be
Division of A, rho be
Function of A,
REAL , B be non
empty
closed_interval
Subset of
REAL , v be
FinSequence of
REAL ;
assume
AS: B
c= A & (
len D)
= (
len v) & for i be
Nat st i
in (
dom v) holds (v
. i)
= (
vol ((B
/\ (
divset (D,i))),rho));
(
dom rho)
= A by
FUNCT_2:def 1;
hence (
Sum v)
= (
vol (B,rho)) by
AS,
LmINTEGR208;
end;
theorem ::
INTEGR22:2
for n,m be
Nat, a be
Function of
[:(
Seg n), (
Seg m):],
REAL holds for p,q be
FinSequence of
REAL st ((
dom p)
= (
Seg n) & for i be
Nat st i
in (
dom p) holds ex r be
FinSequence of
REAL st ((
dom r)
= (
Seg m) & (p
. i)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (a
. (i,j)))) & ((
dom q)
= (
Seg m) & for j be
Nat st j
in (
dom q) holds ex s be
FinSequence of
REAL st ((
dom s)
= (
Seg n) & (q
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (a
. (i,j)))) holds (
Sum p)
= (
Sum q)
proof
let n,m be
Nat, a be
Function of
[:(
Seg n), (
Seg m):],
REAL ;
let p,q be
FinSequence of
REAL ;
assume that
A1: (
dom p)
= (
Seg n) and
A2: for i be
Nat st i
in (
dom p) holds ex r be
FinSequence of
REAL st ((
dom r)
= (
Seg m) & (p
. i)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (a
. (i,j))) and
A3: (
dom q)
= (
Seg m) and
A4: for j be
Nat st j
in (
dom q) holds ex s be
FinSequence of
REAL st ((
dom s)
= (
Seg n) & (q
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (a
. (i,j)));
A5: for i be
Nat st i
in (
dom p) holds ex r be
FinSequence of
REAL st (
dom r)
= (
Seg m) & (p
. i)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (a
.
[i, j])
proof
let i be
Nat;
assume
B0: i
in (
dom p);
consider r be
FinSequence of
REAL such that
B2: (
dom r)
= (
Seg m) & (p
. i)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (a
. (i,j)) by
B0,
A2;
B3: for j be
Nat st j
in (
dom r) holds (r
. j)
= (a
.
[i, j])
proof
let j be
Nat;
assume j
in (
dom r);
then (r
. j)
= (a
. (i,j)) by
B2;
hence (r
. j)
= (a
.
[i, j]);
end;
take r;
thus thesis by
B2,
B3;
end;
for j be
Nat st j
in (
dom q) holds ex s be
FinSequence of
REAL st (
dom s)
= (
Seg n) & (q
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (a
.
[i, j])
proof
let j be
Nat;
assume
C0: j
in (
dom q);
consider s be
FinSequence of
REAL such that
C2: (
dom s)
= (
Seg n) & (q
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (a
. (i,j)) by
C0,
A4;
C3: for i be
Nat st i
in (
dom s) holds (s
. i)
= (a
.
[i, j])
proof
let i be
Nat;
assume i
in (
dom s);
then (s
. i)
= (a
. (i,j)) by
C2;
hence (s
. i)
= (a
.
[i, j]);
end;
take s;
thus thesis by
C2,
C3;
end;
hence (
Sum p)
= (
Sum q) by
MESFUNC3: 1,
A1,
A5,
A3;
end;
begin
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let rho be
real-valued
Function;
let t be
Division of A;
::
INTEGR22:def2
mode
var_volume of rho,t ->
FinSequence of
REAL means
:
defvm: (
len it )
= (
len t) & for k be
Nat st k
in (
dom t) holds (it
. k)
=
|.(
vol ((
divset (t,k)),rho)).|;
correctness
proof
defpred
P1[
Nat,
Real] means $2
=
|.(
vol ((
divset (t,$1)),rho)).|;
A1: (
Seg (
len t))
= (
dom t) by
FINSEQ_1:def 3;
A2: for k be
Nat st k
in (
Seg (
len t)) holds ex x be
Element of
REAL st
P1[k, x]
proof
let k be
Nat;
assume k
in (
Seg (
len t));
|.(
vol ((
divset (t,k)),rho)).| is
Element of
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider p be
FinSequence of
REAL such that
A5: (
dom p)
= (
Seg (
len t)) & for k be
Nat st k
in (
Seg (
len t)) holds
P1[k, (p
. k)] from
FINSEQ_1:sch 5(
A2);
(
len p)
= (
len t) by
A5,
FINSEQ_1:def 3;
hence thesis by
A5,
A1;
end;
end
theorem ::
INTEGR22:3
LM1: for A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , t be
Division of A, F be
var_volume of rho, t holds for k be
Nat st k
in (
dom F) holds
0
<= (F
. k)
proof
let A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , t be
Division of A, F be
var_volume of rho, t;
let k be
Nat;
assume k
in (
dom F);
then k
in (
Seg (
len F)) by
FINSEQ_1:def 3;
then k
in (
Seg (
len t)) by
defvm;
then k
in (
dom t) by
FINSEQ_1:def 3;
then (F
. k)
=
|.(
vol ((
divset (t,k)),rho)).| by
defvm;
hence thesis by
COMPLEX1: 46;
end;
theorem ::
INTEGR22:4
LM2: for A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , t be
Division of A, F be
var_volume of rho, t holds
0
<= (
Sum F)
proof
let A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , t be
Division of A, F be
var_volume of rho, t;
for k be
Nat st k
in (
dom F) holds
0
<= (F
. k) by
LM1;
hence
0
<= (
Sum F) by
RVSUM_1: 84;
end;
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let rho be
Function of A,
REAL ;
::
INTEGR22:def3
attr rho is
bounded_variation means ex d be
Real st
0
< d & for t be
Division of A, F be
var_volume of rho, t holds (
Sum F)
<= d;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let rho be
Function of A,
REAL ;
assume
AS: rho is
bounded_variation;
::
INTEGR22:def4
func
total_vd (rho) ->
Real means
:
DeftotalVD: ex VD be non
empty
Subset of
REAL st VD is
bounded_above & VD
= { r where r be
Real : ex t be
Division of A, F be
var_volume of rho, t st r
= (
Sum F) } & it
= (
upper_bound VD);
existence
proof
set VD = { r where r be
Real : ex t be
Division of A, F be
var_volume of rho, t st r
= (
Sum F) };
set t0 = the
Division of A;
set F0 = the
var_volume of rho, t0;
A11: (
Sum F0)
in VD;
for z be
object st z
in VD holds z
in
REAL
proof
let z be
object;
assume z
in VD;
then
consider r be
Real such that
A2: z
= r & ex t be
Division of A, F be
var_volume of rho, t st r
= (
Sum F);
thus z
in
REAL by
A2,
XREAL_0:def 1;
end;
then
reconsider VD as non
empty
Subset of
REAL by
A11,
TARSKI:def 3;
consider d be
Real such that
A3:
0
<= d & for t be
Division of A, F be
var_volume of rho, t holds (
Sum F)
<= d by
AS;
for p be
ExtReal st p
in VD holds p
<= d
proof
let p be
ExtReal;
assume p
in VD;
then
consider r be
Real such that
A4: p
= r & ex t be
Division of A, F be
var_volume of rho, t st r
= (
Sum F);
consider t be
Division of A, F be
var_volume of rho, t such that
A5: r
= (
Sum F) by
A4;
(
Sum F)
<= d by
A3;
hence p
<= d by
A4,
A5;
end;
then d is
UpperBound of VD by
XXREAL_2:def 1;
then
B1: VD is
bounded_above by
XXREAL_2:def 10;
set z = (
upper_bound VD);
take z;
thus thesis by
B1;
end;
uniqueness ;
end
theorem ::
INTEGR22:5
for A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , T be
Division of A st rho is
bounded_variation holds for F be
var_volume of rho, T holds (
Sum F)
<= (
total_vd rho)
proof
let A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , T be
Division of A;
assume rho is
bounded_variation;
then
consider VD be non
empty
Subset of
REAL such that
A1: VD is
bounded_above and
A2: VD
= { r where r be
Real : ex t be
Division of A, F be
var_volume of rho, t st r
= (
Sum F) } and
A3: (
total_vd rho)
= (
upper_bound VD) by
DeftotalVD;
let F be
var_volume of rho, T;
(
Sum F)
in VD by
A2;
hence thesis by
A1,
SEQ_4:def 1,
A3;
end;
theorem ::
INTEGR22:6
for A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL st rho is
bounded_variation holds
0
<= (
total_vd rho)
proof
let A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL ;
assume rho is
bounded_variation;
then
consider VD be non
empty
Subset of
REAL such that
A1: VD is
bounded_above and
A2: VD
= { r where r be
Real : ex t be
Division of A, F be
var_volume of rho, t st r
= (
Sum F) } and
A3: (
total_vd rho)
= (
upper_bound VD) by
DeftotalVD;
reconsider p0 =
0 as
Real;
for p be
ExtReal st p
in VD holds p0
<= p
proof
let p be
ExtReal;
assume p
in VD;
then
consider r be
Real such that
B1: p
= r and
B2: ex t be
Division of A, F be
var_volume of rho, t st r
= (
Sum F) by
A2;
ex t be
Division of A, F be
var_volume of rho, t st r
= (
Sum F) by
B2;
hence p0
<= p by
B1,
LM2;
end;
then p0 is
LowerBound of VD by
XXREAL_2:def 2;
then
B4: VD is
bounded_below by
XXREAL_2:def 9;
B5: for s be
Real st s
in VD holds
0
<= s
proof
let s be
Real;
assume s
in VD;
then
consider r be
Real such that
B1: s
= r and
B2: ex t be
Division of A, F be
var_volume of rho, t st r
= (
Sum F) by
A2;
ex t be
Division of A, F be
var_volume of rho, t st r
= (
Sum F) by
B2;
hence
0
<= s by
B1,
LM2;
end;
(
lower_bound VD)
<= (
upper_bound VD) by
A1,
B4,
SEQ_4: 11;
hence
0
<= (
total_vd rho) by
A3,
SEQ_4: 43,
B5;
end;
begin
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let rho be
Function of A,
REAL ;
let u be
PartFunc of
REAL ,
REAL ;
assume
AS: rho is
bounded_variation & (
dom u)
= A;
let t be
Division of A;
::
INTEGR22:def5
mode
middle_volume of rho,u,t ->
FinSequence of
REAL means
:
Def1: (
len it )
= (
len t) & for k be
Nat st k
in (
dom t) holds ex r be
Real st r
in (
rng (u
| (
divset (t,k)))) & (it
. k)
= (r
* (
vol ((
divset (t,k)),rho)));
correctness
proof
defpred
P1[
Nat,
Real] means ex r be
Real st r
in (
rng (u
| (
divset (t,$1)))) & $2
= (r
* (
vol ((
divset (t,$1)),rho)));
A1: (
Seg (
len t))
= (
dom t) by
FINSEQ_1:def 3;
A2: for k be
Nat st k
in (
Seg (
len t)) holds ex x be
Element of
REAL st
P1[k, x]
proof
let k be
Nat;
assume k
in (
Seg (
len t));
then
A3: k
in (
dom t) by
FINSEQ_1:def 3;
(
dom (u
| (
divset (t,k))))
= (
divset (t,k)) by
A3,
INTEGRA1: 8,
RELAT_1: 62,
AS;
then (
rng (u
| (
divset (t,k)))) is non
empty by
RELAT_1: 42;
then
consider r be
object such that
A4: r
in (
rng (u
| (
divset (t,k))));
reconsider r as
Element of
REAL by
A4;
(r
* (
vol ((
divset (t,k)),rho))) is
Element of
REAL by
XREAL_0:def 1;
hence thesis by
A4;
end;
consider p be
FinSequence of
REAL such that
A5: (
dom p)
= (
Seg (
len t)) & for k be
Nat st k
in (
Seg (
len t)) holds
P1[k, (p
. k)] from
FINSEQ_1:sch 5(
A2);
(
len p)
= (
len t) by
A5,
FINSEQ_1:def 3;
hence thesis by
A5,
A1;
end;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let rho be
Function of A,
REAL ;
let u be
PartFunc of
REAL ,
REAL ;
let T be
DivSequence of A;
::
INTEGR22:def6
mode
middle_volume_Sequence of rho,u,T ->
sequence of (
REAL
* ) means
:
Def3: for k be
Element of
NAT holds (it
. k) is
middle_volume of rho, u, (T
. k);
correctness
proof
defpred
P[
Element of
NAT ,
set] means $2 is
middle_volume of rho, u, (T
. $1);
A1: for x be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P[x, y]
proof
let x be
Element of
NAT ;
set y = the
middle_volume of rho, u, (T
. x);
reconsider y as
Element of (
REAL
* ) by
FINSEQ_1:def 11;
y is
middle_volume of rho, u, (T
. x);
hence thesis;
end;
ex f be
sequence of (
REAL
* ) st for x be
Element of
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 3(
A1);
hence thesis;
end;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let rho be
Function of A,
REAL ;
let u be
PartFunc of
REAL ,
REAL ;
let T be
DivSequence of A;
let S be
middle_volume_Sequence of rho, u, T;
let k be
Nat;
:: original:
.
redefine
func S
. k ->
middle_volume of rho, u, (T
. k) ;
coherence
proof
k
in
NAT by
ORDINAL1:def 12;
hence thesis by
Def3;
end;
end
reserve A for non
empty
closed_interval
Subset of
REAL ;
reserve rho for
Function of A,
REAL ;
reserve u for
PartFunc of
REAL ,
REAL ;
reserve T for
DivSequence of A;
reserve S for
middle_volume_Sequence of rho, u, T;
reserve k for
Nat;
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let rho be
Function of A,
REAL ;
let u be
PartFunc of
REAL ,
REAL ;
let T be
DivSequence of A;
let S be
middle_volume_Sequence of rho, u, T;
::
INTEGR22:def7
func
middle_sum (S) ->
Real_Sequence means
:
Def4: for i be
Nat holds (it
. i)
= (
Sum (S
. i));
existence
proof
deffunc
H1(
Nat) = (
Sum (S
. (
In ($1,
NAT ))));
consider IT be
Real_Sequence such that
A1: for i be
Nat holds (IT
. i)
=
H1(i) from
SEQ_1:sch 1;
take IT;
let i be
Nat;
(IT
. i)
=
H1(i) by
A1;
hence thesis;
end;
uniqueness
proof
let F1,F2 be
Real_Sequence;
assume that
A2: for i be
Nat holds (F1
. i)
= (
Sum (S
. i)) and
A3: for i be
Nat holds (F2
. i)
= (
Sum (S
. i));
for i be
Element of
NAT holds (F1
. i)
= (F2
. i)
proof
let i be
Element of
NAT ;
(F1
. i)
= (
Sum (S
. i)) by
A2
.= (F2
. i) by
A3;
hence (F1
. i)
= (F2
. i);
end;
hence F1
= F2;
end;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let rho be
Function of A,
REAL ;
let u be
PartFunc of
REAL ,
REAL ;
::
INTEGR22:def8
pred u
is_RiemannStieltjes_integrable_with rho means ex I be
Real st for T be
DivSequence of A, S be
middle_volume_Sequence of rho, u, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum S) is
convergent & (
lim (
middle_sum S))
= I;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let rho be
Function of A,
REAL ;
let u be
PartFunc of
REAL ,
REAL ;
assume
A1: rho is
bounded_variation & (
dom u)
= A & u
is_RiemannStieltjes_integrable_with rho;
::
INTEGR22:def9
func
integral (u,rho) ->
Real means
:
Def6: for T be
DivSequence of A, S be
middle_volume_Sequence of rho, u, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum S) is
convergent & (
lim (
middle_sum S))
= it ;
existence by
A1;
uniqueness
proof
let I1,I2 be
Real;
assume
A2: for T be
DivSequence of A, S be
middle_volume_Sequence of rho, u, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum S) is
convergent & (
lim (
middle_sum S))
= I1;
assume
A3: for T be
DivSequence of A, S be
middle_volume_Sequence of rho, u, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum S) is
convergent & (
lim (
middle_sum S))
= I2;
consider T be
DivSequence of A such that
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 by
INTEGRA4: 11;
set S = the
middle_volume_Sequence of rho, u, T;
thus I1
= (
lim (
middle_sum S)) by
A2,
A4
.= I2 by
A3,
A4;
end;
end
begin
theorem ::
INTEGR22:7
Th4: for A be non
empty
closed_interval
Subset of
REAL , r be
Real, rho be
Function of A,
REAL , u,w be
PartFunc of
REAL ,
REAL st rho is
bounded_variation & (
dom u)
= A & (
dom w)
= A & w
= (r
(#) u) & u
is_RiemannStieltjes_integrable_with rho holds w
is_RiemannStieltjes_integrable_with rho & (
integral (w,rho))
= (r
* (
integral (u,rho)))
proof
let A be non
empty
closed_interval
Subset of
REAL , r be
Real, rho be
Function of A,
REAL , u,w be
PartFunc of
REAL ,
REAL ;
assume
A1: rho is
bounded_variation & (
dom u)
= A & (
dom w)
= A & w
= (r
(#) u) & u
is_RiemannStieltjes_integrable_with rho;
A3:
now
let T be
DivSequence of A, S be
middle_volume_Sequence of rho, w, T;
assume
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
defpred
P[
Element of
NAT ,
set] means ex p be
FinSequence of
REAL st p
= $2 & (
len p)
= (
len (T
. $1)) & for i be
Nat st i
in (
dom (T
. $1)) holds (p
. i)
in (
dom (w
| (
divset ((T
. $1),i)))) & ex z be
Real st z
= ((w
| (
divset ((T
. $1),i)))
. (p
. i)) & ((S
. $1)
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho)));
A5: for k be
Element of
NAT holds ex p be
Element of (
REAL
* ) st
P[k, p]
proof
let k be
Element of
NAT ;
defpred
P1[
Nat,
set] means $2
in (
dom (w
| (
divset ((T
. k),$1)))) & ex c be
Real st c
= ((w
| (
divset ((T
. k),$1)))
. $2) & ((S
. k)
. $1)
= (c
* (
vol ((
divset ((T
. k),$1)),rho)));
A6: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A7: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A8: c
in (
rng (w
| (
divset ((T
. k),i)))) & ((S
. k)
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho))) by
Def1,
A1;
consider x be
object such that
A9: x
in (
dom (w
| (
divset ((T
. k),i)))) & c
= ((w
| (
divset ((T
. k),i)))
. x) by
A8,
FUNCT_1:def 3;
reconsider x as
Element of
REAL by
A9;
take x;
thus thesis by
A8,
A9;
end;
consider p be
FinSequence of
REAL such that
A10: (
dom p)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P1[i, (p
. i)] from
FINSEQ_1:sch 5(
A7);
take p;
(
len p)
= (
len (T
. k)) by
A10,
FINSEQ_1:def 3;
hence thesis by
A10,
A6,
FINSEQ_1:def 11;
end;
consider F be
sequence of (
REAL
* ) such that
A11: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A5);
defpred
P1[
Element of
NAT ,
set] means ex q be
middle_volume of rho, u, (T
. $1) st q
= $2 & for i be
Nat st i
in (
dom (T
. $1)) holds ex z be
Real st ((F
. $1)
. i)
in (
dom (u
| (
divset ((T
. $1),i)))) & z
= ((u
| (
divset ((T
. $1),i)))
. ((F
. $1)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho)));
A12: for k be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P1[k, y]
proof
let k be
Element of
NAT ;
defpred
P11[
Nat,
set] means ex c be
Real st ((F
. k)
. $1)
in (
dom (u
| (
divset ((T
. k),$1)))) & c
= ((u
| (
divset ((T
. k),$1)))
. ((F
. k)
. $1)) & $2
= (c
* (
vol ((
divset ((T
. k),$1)),rho)));
A13: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A14: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then
A15: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
consider p be
FinSequence of
REAL such that
A16: p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (w
| (
divset ((T
. k),i)))) & ex z be
Real st z
= ((w
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho))) by
A11;
(p
. i)
in (
dom (w
| (
divset ((T
. k),i)))) by
A15,
A16;
then
A17: (p
. i)
in (
dom w) & (p
. i)
in (
divset ((T
. k),i)) by
RELAT_1: 57;
then (p
. i)
in (
dom (u
| (
divset ((T
. k),i)))) by
A1,
RELAT_1: 57;
then ((u
| (
divset ((T
. k),i)))
. (p
. i))
in (
rng (u
| (
divset ((T
. k),i)))) by
FUNCT_1: 3;
then
reconsider x = ((u
| (
divset ((T
. k),i)))
. (p
. i)) as
Element of
REAL ;
(x
* (
vol ((
divset ((T
. k),i)),rho))) is
Element of
REAL by
XREAL_0:def 1;
hence thesis by
A16,
A17,
A1,
RELAT_1: 57;
end;
consider q be
FinSequence of
REAL such that
A19: (
dom q)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P11[i, (q
. i)] from
FINSEQ_1:sch 5(
A14);
A20: (
len q)
= (
len (T
. k)) by
A19,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (T
. k));
then i
in (
Seg (
len (T
. k))) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A21: ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & c
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho))) by
A19;
thus ex c be
Real st c
in (
rng (u
| (
divset ((T
. k),i)))) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho))) by
A21,
FUNCT_1: 3;
end;
then
reconsider q as
middle_volume of rho, u, (T
. k) by
A20,
Def1,
A1;
q is
Element of (
REAL
* ) by
FINSEQ_1:def 11;
hence thesis by
A13,
A19;
end;
consider Sf be
sequence of (
REAL
* ) such that
A22: for x be
Element of
NAT holds
P1[x, (Sf
. x)] from
FUNCT_2:sch 3(
A12);
now
let k be
Element of
NAT ;
ex q be
middle_volume of rho, u, (T
. k) st q
= (Sf
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Real st ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & z
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho))) by
A22;
hence (Sf
. k) is
middle_volume of rho, u, (T
. k);
end;
then
reconsider Sf as
middle_volume_Sequence of rho, u, T by
Def3;
A23: (
middle_sum Sf) is
convergent & (
lim (
middle_sum Sf))
= (
integral (u,rho)) by
A1,
A4,
Def6;
A24: (r
(#) (
middle_sum Sf))
= (
middle_sum S)
proof
now
let n be
Nat;
A25: n
in
NAT by
ORDINAL1:def 12;
consider p be
FinSequence of
REAL such that
A26: p
= (F
. n) & (
len p)
= (
len (T
. n)) & for i be
Nat st i
in (
dom (T
. n)) holds (p
. i)
in (
dom (w
| (
divset ((T
. n),i)))) & ex z be
Real st z
= ((w
| (
divset ((T
. n),i)))
. (p
. i)) & ((S
. n)
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho))) by
A11,
A25;
consider q be
middle_volume of rho, u, (T
. n) such that
A27: q
= (Sf
. n) & for i be
Nat st i
in (
dom (T
. n)) holds ex z be
Real st ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & z
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho))) by
A22,
A25;
(
len (Sf
. n))
= (
len (T
. n)) & (
len (S
. n))
= (
len (T
. n)) by
A1,
Def1;
then
A28: (
dom (Sf
. n))
= (
dom (T
. n)) & (
dom (S
. n))
= (
dom (T
. n)) by
FINSEQ_3: 29;
now
let x be
object;
assume
A29: x
in (
dom (S
. n));
then
reconsider i = x as
Nat;
consider t be
Real such that
A30: t
= ((w
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & ((S
. n)
. i)
= (t
* (
vol ((
divset ((T
. n),i)),rho))) by
A29,
A28,
A26;
consider z be
Real such that
A31: ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & z
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho))) by
A27,
A29,
A28;
A32: ((F
. n)
. i)
in (
divset ((T
. n),i)) by
A31,
RELAT_1: 57;
A33: ((F
. n)
. i)
in (
dom w) by
A1,
A31,
RELAT_1: 57;
A36: t
= (w
. ((F
. n)
. i)) by
A32,
FUNCT_1: 49,
A30
.= (r
* (u
. ((F
. n)
. i))) by
A1,
A33,
VALUED_1:def 5
.= (r
* z) by
A31,
A32,
FUNCT_1: 49;
thus ((S
. n)
. x)
= (r
* ((Sf
. n)
. x)) by
A31,
A27,
A36,
A30;
end;
then
A38: (r
(#) (Sf
. n))
= (S
. n) by
A28,
VALUED_1:def 5;
thus (r
* ((
middle_sum Sf)
. n))
= (r
* (
Sum (Sf
. n))) by
Def4
.= (
Sum (S
. n)) by
A38,
RVSUM_1: 87
.= ((
middle_sum S)
. n) by
Def4;
end;
hence thesis by
SEQ_1: 9;
end;
thus (
middle_sum S) is
convergent by
A23,
A24;
thus (
lim (
middle_sum S))
= (r
* (
integral (u,rho))) by
A24,
A23,
SEQ_2: 8;
end;
hence w
is_RiemannStieltjes_integrable_with rho;
hence thesis by
Def6,
A3,
A1;
end;
reconsider jj = 1 as
Real;
theorem ::
INTEGR22:8
Th5: for A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , u,w be
PartFunc of
REAL ,
REAL st rho is
bounded_variation & (
dom u)
= A & (
dom w)
= A & w
= (
- u) & u
is_RiemannStieltjes_integrable_with rho holds w
is_RiemannStieltjes_integrable_with rho & (
integral (w,rho))
= (
- (
integral (u,rho)))
proof
let A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , u,w be
PartFunc of
REAL ,
REAL ;
assume
A1: rho is
bounded_variation & (
dom u)
= A & (
dom w)
= A & w
= (
- u) & u
is_RiemannStieltjes_integrable_with rho;
then
A2: w
= ((
- jj)
(#) u) by
VALUED_1:def 6;
hence w
is_RiemannStieltjes_integrable_with rho by
A1,
Th4;
(
integral (w,rho))
= ((
- jj)
* (
integral (u,rho))) by
A1,
A2,
Th4;
hence (
integral (w,rho))
= (
- (
integral (u,rho)));
end;
theorem ::
INTEGR22:9
Th6: for A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , u,v,w be
PartFunc of
REAL ,
REAL st rho is
bounded_variation & (
dom u)
= A & (
dom v)
= A & (
dom w)
= A & w
= (u
+ v) & u
is_RiemannStieltjes_integrable_with rho & v
is_RiemannStieltjes_integrable_with rho holds w
is_RiemannStieltjes_integrable_with rho & (
integral (w,rho))
= ((
integral (u,rho))
+ (
integral (v,rho)))
proof
let A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , u,v,w be
PartFunc of
REAL ,
REAL ;
assume
A1: rho is
bounded_variation & (
dom u)
= A & (
dom v)
= A & (
dom w)
= A & w
= (u
+ v) & u
is_RiemannStieltjes_integrable_with rho & v
is_RiemannStieltjes_integrable_with rho;
A3:
now
let T be
DivSequence of A, S be
middle_volume_Sequence of rho, w, T;
assume
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
defpred
P[
Element of
NAT ,
set] means ex p be
FinSequence of
REAL st p
= $2 & (
len p)
= (
len (T
. $1)) & for i be
Nat st i
in (
dom (T
. $1)) holds (p
. i)
in (
dom (w
| (
divset ((T
. $1),i)))) & ex z be
Real st z
= ((w
| (
divset ((T
. $1),i)))
. (p
. i)) & ((S
. $1)
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho)));
A5: for k be
Element of
NAT holds ex p be
Element of (
REAL
* ) st
P[k, p]
proof
let k be
Element of
NAT ;
defpred
P1[
Nat,
set] means $2
in (
dom (w
| (
divset ((T
. k),$1)))) & ex c be
Real st c
= ((w
| (
divset ((T
. k),$1)))
. $2) & ((S
. k)
. $1)
= (c
* (
vol ((
divset ((T
. k),$1)),rho)));
A6: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A7: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A8: c
in (
rng (w
| (
divset ((T
. k),i)))) & ((S
. k)
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho))) by
Def1,
A1;
consider x be
object such that
A9: x
in (
dom (w
| (
divset ((T
. k),i)))) & c
= ((w
| (
divset ((T
. k),i)))
. x) by
A8,
FUNCT_1:def 3;
reconsider x as
Element of
REAL by
A9;
take x;
thus thesis by
A8,
A9;
end;
consider p be
FinSequence of
REAL such that
A10: (
dom p)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P1[i, (p
. i)] from
FINSEQ_1:sch 5(
A7);
take p;
(
len p)
= (
len (T
. k)) by
A10,
FINSEQ_1:def 3;
hence thesis by
A10,
A6,
FINSEQ_1:def 11;
end;
consider F be
sequence of (
REAL
* ) such that
A11: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A5);
defpred
P1[
Element of
NAT ,
set] means ex q be
middle_volume of rho, u, (T
. $1) st q
= $2 & for i be
Nat st i
in (
dom (T
. $1)) holds ex z be
Real st ((F
. $1)
. i)
in (
dom (u
| (
divset ((T
. $1),i)))) & z
= ((u
| (
divset ((T
. $1),i)))
. ((F
. $1)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho)));
A12: for k be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P1[k, y]
proof
let k be
Element of
NAT ;
defpred
P11[
Nat,
set] means ex c be
Real st ((F
. k)
. $1)
in (
dom (u
| (
divset ((T
. k),$1)))) & c
= ((u
| (
divset ((T
. k),$1)))
. ((F
. k)
. $1)) & $2
= (c
* (
vol ((
divset ((T
. k),$1)),rho)));
A13: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A14: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then
A15: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
consider p be
FinSequence of
REAL such that
A16: p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (w
| (
divset ((T
. k),i)))) & ex z be
Real st z
= ((w
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho))) by
A11;
(p
. i)
in (
dom (w
| (
divset ((T
. k),i)))) by
A15,
A16;
then
A17: (p
. i)
in (
dom w) & (p
. i)
in (
divset ((T
. k),i)) by
RELAT_1: 57;
then (p
. i)
in (
dom (u
| (
divset ((T
. k),i)))) by
A1,
RELAT_1: 57;
then ((u
| (
divset ((T
. k),i)))
. (p
. i))
in (
rng (u
| (
divset ((T
. k),i)))) by
FUNCT_1: 3;
then
reconsider x = ((u
| (
divset ((T
. k),i)))
. (p
. i)) as
Element of
REAL ;
(x
* (
vol ((
divset ((T
. k),i)),rho))) is
Element of
REAL by
XREAL_0:def 1;
hence thesis by
A16,
A17,
A1,
RELAT_1: 57;
end;
consider q be
FinSequence of
REAL such that
A19: (
dom q)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P11[i, (q
. i)] from
FINSEQ_1:sch 5(
A14);
A20: (
len q)
= (
len (T
. k)) by
A19,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (T
. k));
then i
in (
Seg (
len (T
. k))) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A21: ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & c
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho))) by
A19;
thus ex c be
Real st c
in (
rng (u
| (
divset ((T
. k),i)))) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho))) by
A21,
FUNCT_1: 3;
end;
then
reconsider q as
middle_volume of rho, u, (T
. k) by
A20,
Def1,
A1;
q is
Element of (
REAL
* ) by
FINSEQ_1:def 11;
hence thesis by
A13,
A19;
end;
consider Sf be
sequence of (
REAL
* ) such that
A22: for x be
Element of
NAT holds
P1[x, (Sf
. x)] from
FUNCT_2:sch 3(
A12);
now
let k be
Element of
NAT ;
ex q be
middle_volume of rho, u, (T
. k) st q
= (Sf
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Real st ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & z
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho))) by
A22;
hence (Sf
. k) is
middle_volume of rho, u, (T
. k);
end;
then
reconsider Sf as
middle_volume_Sequence of rho, u, T by
Def3;
defpred
Q1[
Element of
NAT ,
set] means ex q be
middle_volume of rho, v, (T
. $1) st q
= $2 & for i be
Nat st i
in (
dom (T
. $1)) holds ex z be
Real st ((F
. $1)
. i)
in (
dom (v
| (
divset ((T
. $1),i)))) & z
= ((v
| (
divset ((T
. $1),i)))
. ((F
. $1)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho)));
A23: for k be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
Q1[k, y]
proof
let k be
Element of
NAT ;
defpred
Q11[
Nat,
set] means ex c be
Real st ((F
. k)
. $1)
in (
dom (v
| (
divset ((T
. k),$1)))) & c
= ((v
| (
divset ((T
. k),$1)))
. ((F
. k)
. $1)) & $2
= (c
* (
vol ((
divset ((T
. k),$1)),rho)));
A24: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A25: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
Q11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then
A26: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
consider p be
FinSequence of
REAL such that
A27: p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (w
| (
divset ((T
. k),i)))) & ex z be
Real st z
= ((w
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho))) by
A11;
(p
. i)
in (
dom (w
| (
divset ((T
. k),i)))) by
A26,
A27;
then
A28: (p
. i)
in (
dom w) & (p
. i)
in (
divset ((T
. k),i)) by
RELAT_1: 57;
then (p
. i)
in (
dom (v
| (
divset ((T
. k),i)))) by
A1,
RELAT_1: 57;
then ((v
| (
divset ((T
. k),i)))
. (p
. i))
in (
rng (v
| (
divset ((T
. k),i)))) by
FUNCT_1: 3;
then
reconsider x = ((v
| (
divset ((T
. k),i)))
. (p
. i)) as
Element of
REAL ;
(x
* (
vol ((
divset ((T
. k),i)),rho))) is
Element of
REAL by
XREAL_0:def 1;
hence thesis by
A27,
A28,
A1,
RELAT_1: 57;
end;
consider q be
FinSequence of
REAL such that
A30: (
dom q)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
Q11[i, (q
. i)] from
FINSEQ_1:sch 5(
A25);
A31: (
len q)
= (
len (T
. k)) by
A30,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (T
. k));
then i
in (
Seg (
len (T
. k))) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A32: ((F
. k)
. i)
in (
dom (v
| (
divset ((T
. k),i)))) & c
= ((v
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho))) by
A30;
thus ex c be
Real st c
in (
rng (v
| (
divset ((T
. k),i)))) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho))) by
A32,
FUNCT_1: 3;
end;
then
reconsider q as
middle_volume of rho, v, (T
. k) by
A31,
Def1,
A1;
q is
Element of (
REAL
* ) by
FINSEQ_1:def 11;
hence thesis by
A24,
A30;
end;
consider Sg be
sequence of (
REAL
* ) such that
A33: for x be
Element of
NAT holds
Q1[x, (Sg
. x)] from
FUNCT_2:sch 3(
A23);
now
let k be
Element of
NAT ;
ex q be
middle_volume of rho, v, (T
. k) st q
= (Sg
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Real st ((F
. k)
. i)
in (
dom (v
| (
divset ((T
. k),i)))) & z
= ((v
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho))) by
A33;
hence (Sg
. k) is
middle_volume of rho, v, (T
. k);
end;
then
reconsider Sg as
middle_volume_Sequence of rho, v, T by
Def3;
A34: (
middle_sum Sf) is
convergent & (
lim (
middle_sum Sf))
= (
integral (u,rho)) by
A1,
A4,
Def6;
A35: (
middle_sum Sg) is
convergent & (
lim (
middle_sum Sg))
= (
integral (v,rho)) by
A1,
A4,
Def6;
A36: ((
middle_sum Sf)
+ (
middle_sum Sg))
= (
middle_sum S)
proof
now
let n be
Nat;
A37: n
in
NAT by
ORDINAL1:def 12;
consider p be
FinSequence of
REAL such that
A38: p
= (F
. n) & (
len p)
= (
len (T
. n)) & for i be
Nat st i
in (
dom (T
. n)) holds (p
. i)
in (
dom (w
| (
divset ((T
. n),i)))) & ex z be
Real st z
= ((w
| (
divset ((T
. n),i)))
. (p
. i)) & ((S
. n)
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho))) by
A11,
A37;
consider q be
middle_volume of rho, u, (T
. n) such that
A39: q
= (Sf
. n) & for i be
Nat st i
in (
dom (T
. n)) holds ex z be
Real st ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & z
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho))) by
A22,
A37;
consider r be
middle_volume of rho, v, (T
. n) such that
A40: r
= (Sg
. n) & for i be
Nat st i
in (
dom (T
. n)) holds ex z be
Real st ((F
. n)
. i)
in (
dom (v
| (
divset ((T
. n),i)))) & z
= ((v
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (r
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho))) by
A33,
A37;
A41: (
len (Sf
. n))
= (
len (T
. n)) & (
len (Sg
. n))
= (
len (T
. n)) & (
len (S
. n))
= (
len (T
. n)) by
A1,
Def1;
A42: (
dom (Sf
. n))
= (
dom (T
. n)) & (
dom (Sg
. n))
= (
dom (T
. n)) & (
dom (S
. n))
= (
dom (T
. n)) by
A41,
FINSEQ_3: 29;
B42: (
dom (S
. n))
= ((
dom (Sf
. n))
/\ (
dom (Sg
. n))) by
A42;
now
let j be
object;
assume
A43: j
in (
dom (S
. n));
then
reconsider i = j as
Nat;
consider t be
Real such that
A44: t
= ((w
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & ((S
. n)
. i)
= (t
* (
vol ((
divset ((T
. n),i)),rho))) by
A43,
A42,
A38;
consider z be
Real such that
A45: ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & z
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho))) by
A39,
A43,
A42;
consider w1 be
Real such that
A46: ((F
. n)
. i)
in (
dom (v
| (
divset ((T
. n),i)))) & w1
= ((v
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (r
. i)
= (w1
* (
vol ((
divset ((T
. n),i)),rho))) by
A40,
A43,
A42;
A47: ((F
. n)
. i)
in (
divset ((T
. n),i)) by
A46,
RELAT_1: 57;
A50: ((F
. n)
. i)
in (
dom w) by
A1,
A46,
RELAT_1: 57;
A53: (v
. ((F
. n)
. i))
= w1 by
A46,
A47,
FUNCT_1: 49;
A54: t
= (w
. ((F
. n)
. i)) by
A47,
FUNCT_1: 49,
A44
.= ((u
. ((F
. n)
. i))
+ (v
. ((F
. n)
. i))) by
A50,
A1,
VALUED_1:def 1
.= (z
+ w1) by
A45,
A47,
FUNCT_1: 49,
A53;
thus ((S
. n)
. j)
= (((Sf
. n)
. j)
+ ((Sg
. n)
. j)) by
A45,
A39,
A46,
A40,
A54,
A44;
end;
then
A57: ((Sf
. n)
+ (Sg
. n))
= (S
. n) by
B42,
VALUED_1:def 1;
set k = (
len (T
. n));
X1: (Sf
. n) is
Element of (k
-tuples_on
REAL ) by
FINSEQ_2: 92,
A41;
X2: (Sg
. n) is
Element of (k
-tuples_on
REAL ) by
FINSEQ_2: 92,
A41;
thus (((
middle_sum Sf)
. n)
+ ((
middle_sum Sg)
. n))
= ((
Sum (Sf
. n))
+ ((
middle_sum Sg)
. n)) by
Def4
.= ((
Sum (Sf
. n))
+ (
Sum (Sg
. n))) by
Def4
.= (
Sum (S
. n)) by
A57,
X1,
X2,
RVSUM_1: 89
.= ((
middle_sum S)
. n) by
Def4;
end;
hence thesis by
SEQ_1: 7;
end;
hence (
middle_sum S) is
convergent by
A34,
A35;
thus (
lim (
middle_sum S))
= ((
integral (u,rho))
+ (
integral (v,rho))) by
A34,
A35,
A36,
SEQ_2: 6;
end;
hence w
is_RiemannStieltjes_integrable_with rho;
hence thesis by
Def6,
A3,
A1;
end;
theorem ::
INTEGR22:10
for A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , u,v,w be
PartFunc of
REAL ,
REAL st rho is
bounded_variation & (
dom u)
= A & (
dom v)
= A & (
dom w)
= A & w
= (u
- v) & u
is_RiemannStieltjes_integrable_with rho & v
is_RiemannStieltjes_integrable_with rho holds w
is_RiemannStieltjes_integrable_with rho & (
integral (w,rho))
= ((
integral (u,rho))
- (
integral (v,rho)))
proof
let A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , u,v,w be
PartFunc of
REAL ,
REAL ;
assume
A1: rho is
bounded_variation & (
dom u)
= A & (
dom v)
= A & (
dom w)
= A & w
= (u
- v) & u
is_RiemannStieltjes_integrable_with rho & v
is_RiemannStieltjes_integrable_with rho;
then
A2: w
= (u
+ (
- v)) by
VALUED_1:def 9;
A3: (
dom (
- v))
= A by
A1,
VALUED_1: 8;
reconsider gg = (
- v) as
PartFunc of
REAL ,
REAL ;
A5: gg
is_RiemannStieltjes_integrable_with rho by
A1,
Th5,
A3;
hence w
is_RiemannStieltjes_integrable_with rho by
A1,
A2,
Th6,
A3;
(
integral (w,rho))
= ((
integral (u,rho))
+ (
integral (gg,rho))) by
A1,
A2,
A5,
Th6,
A3;
then (
integral (w,rho))
= ((
integral (u,rho))
+ (
- (
integral (v,rho)))) by
A1,
Th5,
A3;
hence (
integral (w,rho))
= ((
integral (u,rho))
- (
integral (v,rho)));
end;
theorem ::
INTEGR22:11
Lm4A: for A,B be non
empty
closed_interval
Subset of
REAL , r be
Real, rho,rho1 be
Function of A,
REAL st B
c= A & rho
= (r
(#) rho1) holds (
vol (B,rho))
= (r
* (
vol (B,rho1)))
proof
let A,B be non
empty
closed_interval
Subset of
REAL , r be
Real, rho,rho1 be
Function of A,
REAL ;
assume
AS: B
c= A & rho
= (r
(#) rho1);
A2: (
dom (r
(#) rho1))
= A by
FUNCT_2:def 1;
set x1 = (
upper_bound B);
set x2 = (
lower_bound B);
A3: B
=
[.x2, x1.] by
INTEGRA1: 4;
A5: (x1
- x2)
>=
0 by
XREAL_1: 48,
SEQ_4: 11;
|.(x2
- x1).|
= (x1
- x2)
proof
per cases by
SEQ_4: 11,
XREAL_1: 47;
suppose (x2
- x1)
<
0 ;
hence
|.(x2
- x1).|
= (
- (x2
- x1)) by
ABSVALUE:def 1
.= (x1
- x2);
end;
suppose (x2
- x1)
=
0 ;
hence
|.(x2
- x1).|
= (x1
- x2) by
COMPLEX1: 44;
end;
end;
then
|.((x1
+ x2)
- (2
* x1)).|
= (x1
- x2);
then
A8: x1
in B by
A3,
RCOMP_1: 2;
|.((x1
+ x2)
- (2
* x2)).|
= (x1
- x2) by
A5,
ABSVALUE:def 1;
then
C9: x2
in B by
A3,
RCOMP_1: 2;
thus (
vol (B,rho))
= (((r
(#) rho1)
. x1)
- ((r
(#) rho1)
. x2)) by
AS,
Defvol
.= ((r
* (rho1
. x1))
- ((r
(#) rho1)
. x2)) by
A2,
AS,
A8,
VALUED_1:def 5
.= ((r
* (rho1
. x1))
- (r
* (rho1
. x2))) by
A2,
AS,
C9,
VALUED_1:def 5
.= (r
* ((rho1
. x1)
- (rho1
. x2)))
.= (r
* (
vol (B,rho1))) by
Defvol;
end;
theorem ::
INTEGR22:12
Th4A: for A be non
empty
closed_interval
Subset of
REAL , r be
Real, rho,rho1 be
Function of A,
REAL , u be
PartFunc of
REAL ,
REAL st rho is
bounded_variation & rho1 is
bounded_variation & (
dom u)
= A & rho
= (r
(#) rho1) & u
is_RiemannStieltjes_integrable_with rho1 holds u
is_RiemannStieltjes_integrable_with rho & (
integral (u,rho))
= (r
* (
integral (u,rho1)))
proof
let A be non
empty
closed_interval
Subset of
REAL , r be
Real, rho,rho1 be
Function of A,
REAL , u be
PartFunc of
REAL ,
REAL ;
assume
A1: rho is
bounded_variation & rho1 is
bounded_variation & (
dom u)
= A & rho
= (r
(#) rho1) & u
is_RiemannStieltjes_integrable_with rho1;
A3:
now
let T be
DivSequence of A, S be
middle_volume_Sequence of rho, u, T;
assume
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
defpred
P[
Element of
NAT ,
set] means ex p be
FinSequence of
REAL st p
= $2 & (
len p)
= (
len (T
. $1)) & for i be
Nat st i
in (
dom (T
. $1)) holds (p
. i)
in (
dom (u
| (
divset ((T
. $1),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. $1),i)))
. (p
. i)) & ((S
. $1)
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho)));
A5: for k be
Element of
NAT holds ex p be
Element of (
REAL
* ) st
P[k, p]
proof
let k be
Element of
NAT ;
defpred
P1[
Nat,
set] means $2
in (
dom (u
| (
divset ((T
. k),$1)))) & ex c be
Real st c
= ((u
| (
divset ((T
. k),$1)))
. $2) & ((S
. k)
. $1)
= (c
* (
vol ((
divset ((T
. k),$1)),rho)));
A6: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A7: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A8: c
in (
rng (u
| (
divset ((T
. k),i)))) & ((S
. k)
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho))) by
Def1,
A1;
consider x be
object such that
A9: x
in (
dom (u
| (
divset ((T
. k),i)))) & c
= ((u
| (
divset ((T
. k),i)))
. x) by
A8,
FUNCT_1:def 3;
reconsider x as
Element of
REAL by
A9;
take x;
thus thesis by
A8,
A9;
end;
consider p be
FinSequence of
REAL such that
A10: (
dom p)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P1[i, (p
. i)] from
FINSEQ_1:sch 5(
A7);
take p;
(
len p)
= (
len (T
. k)) by
A10,
FINSEQ_1:def 3;
hence thesis by
A10,
A6,
FINSEQ_1:def 11;
end;
consider F be
sequence of (
REAL
* ) such that
A11: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A5);
defpred
P1[
Element of
NAT ,
set] means ex q be
middle_volume of rho1, u, (T
. $1) st q
= $2 & for i be
Nat st i
in (
dom (T
. $1)) holds ex z be
Real st ((F
. $1)
. i)
in (
dom (u
| (
divset ((T
. $1),i)))) & z
= ((u
| (
divset ((T
. $1),i)))
. ((F
. $1)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho1)));
A12: for k be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P1[k, y]
proof
let k be
Element of
NAT ;
defpred
P11[
Nat,
set] means ex c be
Real st ((F
. k)
. $1)
in (
dom (u
| (
divset ((T
. k),$1)))) & c
= ((u
| (
divset ((T
. k),$1)))
. ((F
. k)
. $1)) & $2
= (c
* (
vol ((
divset ((T
. k),$1)),rho1)));
A13: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A14: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then
A15: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
consider p be
FinSequence of
REAL such that
A16: p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho))) by
A11;
(p
. i)
in (
dom (u
| (
divset ((T
. k),i)))) by
A15,
A16;
then ((u
| (
divset ((T
. k),i)))
. (p
. i))
in (
rng (u
| (
divset ((T
. k),i)))) by
FUNCT_1: 3;
then
reconsider x = ((u
| (
divset ((T
. k),i)))
. (p
. i)) as
Element of
REAL ;
(x
* (
vol ((
divset ((T
. k),i)),rho1))) is
Element of
REAL by
XREAL_0:def 1;
hence thesis by
A16,
A15;
end;
consider q be
FinSequence of
REAL such that
A19: (
dom q)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P11[i, (q
. i)] from
FINSEQ_1:sch 5(
A14);
A20: (
len q)
= (
len (T
. k)) by
A19,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (T
. k));
then i
in (
Seg (
len (T
. k))) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A21: ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & c
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho1))) by
A19;
thus ex c be
Real st c
in (
rng (u
| (
divset ((T
. k),i)))) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho1))) by
A21,
FUNCT_1: 3;
end;
then
reconsider q as
middle_volume of rho1, u, (T
. k) by
A20,
Def1,
A1;
q is
Element of (
REAL
* ) by
FINSEQ_1:def 11;
hence thesis by
A13,
A19;
end;
consider Sf be
sequence of (
REAL
* ) such that
A22: for x be
Element of
NAT holds
P1[x, (Sf
. x)] from
FUNCT_2:sch 3(
A12);
now
let k be
Element of
NAT ;
ex q be
middle_volume of rho1, u, (T
. k) st q
= (Sf
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Real st ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & z
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho1))) by
A22;
hence (Sf
. k) is
middle_volume of rho1, u, (T
. k);
end;
then
reconsider Sf as
middle_volume_Sequence of rho1, u, T by
Def3;
A23: (
middle_sum Sf) is
convergent & (
lim (
middle_sum Sf))
= (
integral (u,rho1)) by
A1,
A4,
Def6;
A24: (r
(#) (
middle_sum Sf))
= (
middle_sum S)
proof
now
let n be
Nat;
A25: n
in
NAT by
ORDINAL1:def 12;
consider p be
FinSequence of
REAL such that
A26: p
= (F
. n) & (
len p)
= (
len (T
. n)) & for i be
Nat st i
in (
dom (T
. n)) holds (p
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. n),i)))
. (p
. i)) & ((S
. n)
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho))) by
A11,
A25;
consider q be
middle_volume of rho1, u, (T
. n) such that
A27: q
= (Sf
. n) & for i be
Nat st i
in (
dom (T
. n)) holds ex z be
Real st ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & z
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho1))) by
A22,
A25;
B28: (
len (Sf
. n))
= (
len (T
. n)) & (
len (S
. n))
= (
len (T
. n)) by
A1,
Def1;
then
A28: (
dom (Sf
. n))
= (
dom (T
. n)) & (
dom (S
. n))
= (
dom (T
. n)) by
FINSEQ_3: 29;
now
let x be
object;
assume
A29: x
in (
dom (S
. n));
then
reconsider i = x as
Nat;
consider t be
Real such that
A30: t
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & ((S
. n)
. i)
= (t
* (
vol ((
divset ((T
. n),i)),rho))) by
A29,
A28,
A26;
consider z be
Real such that
A31: ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & z
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho1))) by
A27,
A29,
A28;
i
in (
dom (T
. n)) by
A29,
FINSEQ_3: 29,
B28;
then (
vol ((
divset ((T
. n),i)),rho))
= (r
* (
vol ((
divset ((T
. n),i)),rho1))) by
A1,
Lm4A,
INTEGRA1: 8;
hence ((S
. n)
. x)
= (r
* ((Sf
. n)
. x)) by
A31,
A27,
A30;
end;
then
A38: (r
(#) (Sf
. n))
= (S
. n) by
A28,
VALUED_1:def 5;
thus (r
* ((
middle_sum Sf)
. n))
= (r
* (
Sum (Sf
. n))) by
Def4
.= (
Sum (S
. n)) by
A38,
RVSUM_1: 87
.= ((
middle_sum S)
. n) by
Def4;
end;
hence thesis by
SEQ_1: 9;
end;
thus (
middle_sum S) is
convergent by
A23,
A24;
thus (
lim (
middle_sum S))
= (r
* (
integral (u,rho1))) by
A24,
A23,
SEQ_2: 8;
end;
hence u
is_RiemannStieltjes_integrable_with rho;
hence (
integral (u,rho))
= (r
* (
integral (u,rho1))) by
Def6,
A3,
A1;
end;
theorem ::
INTEGR22:13
for A be non
empty
closed_interval
Subset of
REAL , rho,rho1 be
Function of A,
REAL , u be
PartFunc of
REAL ,
REAL st rho is
bounded_variation & rho1 is
bounded_variation & (
dom u)
= A & rho
= (
- rho1) & u
is_RiemannStieltjes_integrable_with rho1 holds u
is_RiemannStieltjes_integrable_with rho & (
integral (u,rho))
= (
- (
integral (u,rho1)))
proof
let A be non
empty
closed_interval
Subset of
REAL , rho,rho1 be
Function of A,
REAL , u be
PartFunc of
REAL ,
REAL ;
assume
A1: rho is
bounded_variation & rho1 is
bounded_variation & (
dom u)
= A & rho
= (
- rho1) & u
is_RiemannStieltjes_integrable_with rho1;
then
A2: rho
= ((
- jj)
(#) rho1) by
VALUED_1:def 6;
hence u
is_RiemannStieltjes_integrable_with rho by
A1,
Th4A;
(
integral (u,rho))
= ((
- jj)
* (
integral (u,rho1))) by
A1,
A2,
Th4A;
hence (
integral (u,rho))
= (
- (
integral (u,rho1)));
end;
theorem ::
INTEGR22:14
Lm6A: for A,B be non
empty
closed_interval
Subset of
REAL , rho,rho1,rho2 be
Function of A,
REAL st B
c= A & rho
= (rho1
+ rho2) holds (
vol (B,rho))
= ((
vol (B,rho1))
+ (
vol (B,rho2)))
proof
let A,B be non
empty
closed_interval
Subset of
REAL , rho,rho1,rho2 be
Function of A,
REAL ;
assume
AS: B
c= A & rho
= (rho1
+ rho2);
A1: (
dom rho1)
= A & (
dom rho2)
= A by
FUNCT_2:def 1;
A2: (
dom (rho1
+ rho2))
= ((
dom rho1)
/\ (
dom rho2)) by
VALUED_1:def 1
.= A by
A1;
set x1 = (
upper_bound B);
set x2 = (
lower_bound B);
A3: B
=
[.x2, x1.] by
INTEGRA1: 4;
A5: (x1
- x2)
>=
0 by
XREAL_1: 48,
SEQ_4: 11;
|.(x2
- x1).|
= (x1
- x2)
proof
per cases by
SEQ_4: 11,
XREAL_1: 47;
suppose (x2
- x1)
<
0 ;
hence
|.(x2
- x1).|
= (
- (x2
- x1)) by
ABSVALUE:def 1
.= (x1
- x2);
end;
suppose (x2
- x1)
=
0 ;
hence
|.(x2
- x1).|
= (x1
- x2) by
COMPLEX1: 44;
end;
end;
then
|.((x1
+ x2)
- (2
* x1)).|
= (x1
- x2);
then
A8: x1
in B by
A3,
RCOMP_1: 2;
|.((x1
+ x2)
- (2
* x2)).|
= (x1
- x2) by
A5,
ABSVALUE:def 1;
then
B9: x2
in B by
A3,
RCOMP_1: 2;
thus (
vol (B,rho))
= (((rho1
+ rho2)
. x1)
- ((rho1
+ rho2)
. x2)) by
AS,
Defvol
.= (((rho1
. x1)
+ (rho2
. x1))
- ((rho1
+ rho2)
. x2)) by
A2,
AS,
A8,
VALUED_1:def 1
.= (((rho1
. x1)
+ (rho2
. x1))
- ((rho1
. x2)
+ (rho2
. x2))) by
B9,
A2,
AS,
VALUED_1:def 1
.= (((rho1
. x1)
- (rho1
. x2))
+ ((rho2
. x1)
- (rho2
. x2)))
.= ((
vol (B,rho1))
+ ((rho2
. x1)
- (rho2
. x2))) by
Defvol
.= ((
vol (B,rho1))
+ (
vol (B,rho2))) by
Defvol;
end;
theorem ::
INTEGR22:15
for A be non
empty
closed_interval
Subset of
REAL , rho,rho1,rho2 be
Function of A,
REAL , u be
PartFunc of
REAL ,
REAL st rho is
bounded_variation & rho1 is
bounded_variation & rho2 is
bounded_variation & (
dom u)
= A & rho
= (rho1
+ rho2) & u
is_RiemannStieltjes_integrable_with rho1 & u
is_RiemannStieltjes_integrable_with rho2 holds u
is_RiemannStieltjes_integrable_with rho & (
integral (u,rho))
= ((
integral (u,rho1))
+ (
integral (u,rho2)))
proof
let A be non
empty
closed_interval
Subset of
REAL , rho,rho1,rho2 be
Function of A,
REAL , u be
PartFunc of
REAL ,
REAL ;
assume
A1: rho is
bounded_variation & rho1 is
bounded_variation & rho2 is
bounded_variation & (
dom u)
= A & rho
= (rho1
+ rho2) & u
is_RiemannStieltjes_integrable_with rho1 & u
is_RiemannStieltjes_integrable_with rho2;
A3:
now
let T be
DivSequence of A, S be
middle_volume_Sequence of rho, u, T;
assume
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
defpred
P[
Element of
NAT ,
set] means ex p be
FinSequence of
REAL st p
= $2 & (
len p)
= (
len (T
. $1)) & for i be
Nat st i
in (
dom (T
. $1)) holds (p
. i)
in (
dom (u
| (
divset ((T
. $1),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. $1),i)))
. (p
. i)) & ((S
. $1)
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho)));
A5: for k be
Element of
NAT holds ex p be
Element of (
REAL
* ) st
P[k, p]
proof
let k be
Element of
NAT ;
defpred
P1[
Nat,
set] means $2
in (
dom (u
| (
divset ((T
. k),$1)))) & ex c be
Real st c
= ((u
| (
divset ((T
. k),$1)))
. $2) & ((S
. k)
. $1)
= (c
* (
vol ((
divset ((T
. k),$1)),rho)));
A6: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A7: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A8: c
in (
rng (u
| (
divset ((T
. k),i)))) & ((S
. k)
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho))) by
Def1,
A1;
consider x be
object such that
A9: x
in (
dom (u
| (
divset ((T
. k),i)))) & c
= ((u
| (
divset ((T
. k),i)))
. x) by
A8,
FUNCT_1:def 3;
reconsider x as
Element of
REAL by
A9;
take x;
thus thesis by
A8,
A9;
end;
consider p be
FinSequence of
REAL such that
A10: (
dom p)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P1[i, (p
. i)] from
FINSEQ_1:sch 5(
A7);
take p;
(
len p)
= (
len (T
. k)) by
A10,
FINSEQ_1:def 3;
hence thesis by
A10,
A6,
FINSEQ_1:def 11;
end;
consider F be
sequence of (
REAL
* ) such that
A11: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A5);
defpred
P1[
Element of
NAT ,
set] means ex q be
middle_volume of rho1, u, (T
. $1) st q
= $2 & for i be
Nat st i
in (
dom (T
. $1)) holds ex z be
Real st ((F
. $1)
. i)
in (
dom (u
| (
divset ((T
. $1),i)))) & z
= ((u
| (
divset ((T
. $1),i)))
. ((F
. $1)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho1)));
A12: for k be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P1[k, y]
proof
let k be
Element of
NAT ;
defpred
P11[
Nat,
set] means ex c be
Real st ((F
. k)
. $1)
in (
dom (u
| (
divset ((T
. k),$1)))) & c
= ((u
| (
divset ((T
. k),$1)))
. ((F
. k)
. $1)) & $2
= (c
* (
vol ((
divset ((T
. k),$1)),rho1)));
A13: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A14: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then
A15: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
consider p be
FinSequence of
REAL such that
A16: p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho))) by
A11;
(p
. i)
in (
dom (u
| (
divset ((T
. k),i)))) by
A15,
A16;
then ((u
| (
divset ((T
. k),i)))
. (p
. i))
in (
rng (u
| (
divset ((T
. k),i)))) by
FUNCT_1: 3;
then
reconsider x = ((u
| (
divset ((T
. k),i)))
. (p
. i)) as
Element of
REAL ;
(x
* (
vol ((
divset ((T
. k),i)),rho1))) is
Element of
REAL by
XREAL_0:def 1;
hence thesis by
A16,
A15;
end;
consider q be
FinSequence of
REAL such that
A19: (
dom q)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P11[i, (q
. i)] from
FINSEQ_1:sch 5(
A14);
A20: (
len q)
= (
len (T
. k)) by
A19,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (T
. k));
then i
in (
Seg (
len (T
. k))) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A21: ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & c
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho1))) by
A19;
thus ex c be
Real st c
in (
rng (u
| (
divset ((T
. k),i)))) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho1))) by
A21,
FUNCT_1: 3;
end;
then
reconsider q as
middle_volume of rho1, u, (T
. k) by
A20,
Def1,
A1;
q is
Element of (
REAL
* ) by
FINSEQ_1:def 11;
hence thesis by
A13,
A19;
end;
consider Sf be
sequence of (
REAL
* ) such that
A22: for x be
Element of
NAT holds
P1[x, (Sf
. x)] from
FUNCT_2:sch 3(
A12);
now
let k be
Element of
NAT ;
ex q be
middle_volume of rho1, u, (T
. k) st q
= (Sf
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Real st ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & z
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho1))) by
A22;
hence (Sf
. k) is
middle_volume of rho1, u, (T
. k);
end;
then
reconsider Sf as
middle_volume_Sequence of rho1, u, T by
Def3;
defpred
Q1[
Element of
NAT ,
set] means ex q be
middle_volume of rho2, u, (T
. $1) st q
= $2 & for i be
Nat st i
in (
dom (T
. $1)) holds ex z be
Real st ((F
. $1)
. i)
in (
dom (u
| (
divset ((T
. $1),i)))) & z
= ((u
| (
divset ((T
. $1),i)))
. ((F
. $1)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho2)));
A23: for k be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
Q1[k, y]
proof
let k be
Element of
NAT ;
defpred
Q11[
Nat,
set] means ex c be
Real st ((F
. k)
. $1)
in (
dom (u
| (
divset ((T
. k),$1)))) & c
= ((u
| (
divset ((T
. k),$1)))
. ((F
. k)
. $1)) & $2
= (c
* (
vol ((
divset ((T
. k),$1)),rho2)));
A24: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A25: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
Q11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then
A26: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
consider p be
FinSequence of
REAL such that
A27: p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho))) by
A11;
(p
. i)
in (
dom (u
| (
divset ((T
. k),i)))) by
A26,
A27;
then ((u
| (
divset ((T
. k),i)))
. (p
. i))
in (
rng (u
| (
divset ((T
. k),i)))) by
FUNCT_1: 3;
then
reconsider x = ((u
| (
divset ((T
. k),i)))
. (p
. i)) as
Element of
REAL ;
(x
* (
vol ((
divset ((T
. k),i)),rho2))) is
Element of
REAL by
XREAL_0:def 1;
hence thesis by
A27,
A26;
end;
consider q be
FinSequence of
REAL such that
A30: (
dom q)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
Q11[i, (q
. i)] from
FINSEQ_1:sch 5(
A25);
A31: (
len q)
= (
len (T
. k)) by
A30,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (T
. k));
then i
in (
Seg (
len (T
. k))) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A32: ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & c
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho2))) by
A30;
thus ex c be
Real st c
in (
rng (u
| (
divset ((T
. k),i)))) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho2))) by
A32,
FUNCT_1: 3;
end;
then
reconsider q as
middle_volume of rho2, u, (T
. k) by
A31,
Def1,
A1;
q is
Element of (
REAL
* ) by
FINSEQ_1:def 11;
hence thesis by
A24,
A30;
end;
consider Sg be
sequence of (
REAL
* ) such that
A33: for x be
Element of
NAT holds
Q1[x, (Sg
. x)] from
FUNCT_2:sch 3(
A23);
now
let k be
Element of
NAT ;
ex q be
middle_volume of rho2, u, (T
. k) st q
= (Sg
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Real st ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & z
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho2))) by
A33;
hence (Sg
. k) is
middle_volume of rho2, u, (T
. k);
end;
then
reconsider Sg as
middle_volume_Sequence of rho2, u, T by
Def3;
A34: (
middle_sum Sf) is
convergent & (
lim (
middle_sum Sf))
= (
integral (u,rho1)) by
A1,
A4,
Def6;
A35: (
middle_sum Sg) is
convergent & (
lim (
middle_sum Sg))
= (
integral (u,rho2)) by
A1,
A4,
Def6;
A36: ((
middle_sum Sf)
+ (
middle_sum Sg))
= (
middle_sum S)
proof
now
let n be
Nat;
A37: n
in
NAT by
ORDINAL1:def 12;
consider p be
FinSequence of
REAL such that
A38: p
= (F
. n) & (
len p)
= (
len (T
. n)) & for i be
Nat st i
in (
dom (T
. n)) holds (p
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. n),i)))
. (p
. i)) & ((S
. n)
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho))) by
A11,
A37;
consider q be
middle_volume of rho1, u, (T
. n) such that
A39: q
= (Sf
. n) & for i be
Nat st i
in (
dom (T
. n)) holds ex z be
Real st ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & z
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho1))) by
A22,
A37;
consider r be
middle_volume of rho2, u, (T
. n) such that
A40: r
= (Sg
. n) & for i be
Nat st i
in (
dom (T
. n)) holds ex z be
Real st ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & z
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (r
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho2))) by
A33,
A37;
A41: (
len (Sf
. n))
= (
len (T
. n)) & (
len (Sg
. n))
= (
len (T
. n)) & (
len (S
. n))
= (
len (T
. n)) by
A1,
Def1;
then
A42: (
dom (Sf
. n))
= (
dom (T
. n)) & (
dom (Sg
. n))
= (
dom (T
. n)) & (
dom (S
. n))
= (
dom (T
. n)) by
FINSEQ_3: 29;
B42: (
dom (S
. n))
= ((
dom (Sf
. n))
/\ (
dom (Sg
. n))) by
A42;
now
let j be
object;
assume
A43: j
in (
dom (S
. n));
then
reconsider i = j as
Nat;
consider t be
Real such that
A44: t
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & ((S
. n)
. i)
= (t
* (
vol ((
divset ((T
. n),i)),rho))) by
A43,
A42,
A38;
consider z be
Real such that
A45: ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & z
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho1))) by
A39,
A43,
A42;
consider w1 be
Real such that
A46: ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & w1
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (r
. i)
= (w1
* (
vol ((
divset ((T
. n),i)),rho2))) by
A40,
A43,
A42;
i
in (
dom (T
. n)) by
A41,
FINSEQ_3: 29,
A43;
then (
vol ((
divset ((T
. n),i)),rho))
= ((
vol ((
divset ((T
. n),i)),rho1))
+ (
vol ((
divset ((T
. n),i)),rho2))) by
A1,
Lm6A,
INTEGRA1: 8;
hence ((S
. n)
. j)
= (((Sf
. n)
. j)
+ ((Sg
. n)
. j)) by
A45,
A39,
A46,
A40,
A44;
end;
then
A57: ((Sf
. n)
+ (Sg
. n))
= (S
. n) by
B42,
VALUED_1:def 1;
set k = (
len (T
. n));
X1: (Sf
. n) is
Element of (k
-tuples_on
REAL ) by
FINSEQ_2: 92,
A41;
X2: (Sg
. n) is
Element of (k
-tuples_on
REAL ) by
FINSEQ_2: 92,
A41;
thus (((
middle_sum Sf)
. n)
+ ((
middle_sum Sg)
. n))
= ((
Sum (Sf
. n))
+ ((
middle_sum Sg)
. n)) by
Def4
.= ((
Sum (Sf
. n))
+ (
Sum (Sg
. n))) by
Def4
.= (
Sum (S
. n)) by
A57,
X1,
X2,
RVSUM_1: 89
.= ((
middle_sum S)
. n) by
Def4;
end;
hence thesis by
SEQ_1: 7;
end;
hence (
middle_sum S) is
convergent by
A34,
A35;
thus (
lim (
middle_sum S))
= ((
integral (u,rho1))
+ (
integral (u,rho2))) by
A34,
A35,
A36,
SEQ_2: 6;
end;
hence u
is_RiemannStieltjes_integrable_with rho;
hence thesis by
Def6,
A3,
A1;
end;
theorem ::
INTEGR22:16
Lm7A: for A,B be non
empty
closed_interval
Subset of
REAL , rho,rho1,rho2 be
Function of A,
REAL st B
c= A & rho
= (rho1
- rho2) holds (
vol (B,rho))
= ((
vol (B,rho1))
- (
vol (B,rho2)))
proof
let A,B be non
empty
closed_interval
Subset of
REAL , rho,rho1,rho2 be
Function of A,
REAL ;
assume
AS: B
c= A & rho
= (rho1
- rho2);
then
A1: rho
= (rho1
+ (
- rho2)) by
VALUED_1:def 9;
set x1 = (
upper_bound B);
set x2 = (
lower_bound B);
thus (
vol (B,rho))
= ((
vol (B,rho1))
+ (
vol (B,(
- rho2)))) by
AS,
A1,
Lm6A
.= ((
vol (B,rho1))
+ (((
- rho2)
. x1)
- ((
- rho2)
. x2))) by
Defvol
.= ((
vol (B,rho1))
+ ((
- (rho2
. x1))
- ((
- rho2)
. x2))) by
VALUED_1: 8
.= ((
vol (B,rho1))
+ ((
- (rho2
. x1))
- (
- (rho2
. x2)))) by
VALUED_1: 8
.= ((
vol (B,rho1))
- ((rho2
. x1)
- (rho2
. x2)))
.= ((
vol (B,rho1))
- (
vol (B,rho2))) by
Defvol;
end;
theorem ::
INTEGR22:17
for A be non
empty
closed_interval
Subset of
REAL , rho,rho1,rho2 be
Function of A,
REAL , u be
PartFunc of
REAL ,
REAL st rho is
bounded_variation & rho1 is
bounded_variation & rho2 is
bounded_variation & (
dom u)
= A & rho
= (rho1
- rho2) & u
is_RiemannStieltjes_integrable_with rho1 & u
is_RiemannStieltjes_integrable_with rho2 holds u
is_RiemannStieltjes_integrable_with rho & (
integral (u,rho))
= ((
integral (u,rho1))
- (
integral (u,rho2)))
proof
let A be non
empty
closed_interval
Subset of
REAL , rho,rho1,rho2 be
Function of A,
REAL , u be
PartFunc of
REAL ,
REAL ;
assume
A1: rho is
bounded_variation & rho1 is
bounded_variation & rho2 is
bounded_variation & (
dom u)
= A & rho
= (rho1
- rho2) & u
is_RiemannStieltjes_integrable_with rho1 & u
is_RiemannStieltjes_integrable_with rho2;
A3:
now
let T be
DivSequence of A, S be
middle_volume_Sequence of rho, u, T;
assume
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
defpred
P[
Element of
NAT ,
set] means ex p be
FinSequence of
REAL st p
= $2 & (
len p)
= (
len (T
. $1)) & for i be
Nat st i
in (
dom (T
. $1)) holds (p
. i)
in (
dom (u
| (
divset ((T
. $1),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. $1),i)))
. (p
. i)) & ((S
. $1)
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho)));
A5: for k be
Element of
NAT holds ex p be
Element of (
REAL
* ) st
P[k, p]
proof
let k be
Element of
NAT ;
defpred
P1[
Nat,
set] means $2
in (
dom (u
| (
divset ((T
. k),$1)))) & ex c be
Real st c
= ((u
| (
divset ((T
. k),$1)))
. $2) & ((S
. k)
. $1)
= (c
* (
vol ((
divset ((T
. k),$1)),rho)));
A6: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A7: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A8: c
in (
rng (u
| (
divset ((T
. k),i)))) & ((S
. k)
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho))) by
Def1,
A1;
consider x be
object such that
A9: x
in (
dom (u
| (
divset ((T
. k),i)))) & c
= ((u
| (
divset ((T
. k),i)))
. x) by
A8,
FUNCT_1:def 3;
reconsider x as
Element of
REAL by
A9;
take x;
thus thesis by
A8,
A9;
end;
consider p be
FinSequence of
REAL such that
A10: (
dom p)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P1[i, (p
. i)] from
FINSEQ_1:sch 5(
A7);
take p;
(
len p)
= (
len (T
. k)) by
A10,
FINSEQ_1:def 3;
hence thesis by
A10,
A6,
FINSEQ_1:def 11;
end;
consider F be
sequence of (
REAL
* ) such that
A11: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A5);
defpred
P1[
Element of
NAT ,
set] means ex q be
middle_volume of rho1, u, (T
. $1) st q
= $2 & for i be
Nat st i
in (
dom (T
. $1)) holds ex z be
Real st ((F
. $1)
. i)
in (
dom (u
| (
divset ((T
. $1),i)))) & z
= ((u
| (
divset ((T
. $1),i)))
. ((F
. $1)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho1)));
A12: for k be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P1[k, y]
proof
let k be
Element of
NAT ;
defpred
P11[
Nat,
set] means ex c be
Real st ((F
. k)
. $1)
in (
dom (u
| (
divset ((T
. k),$1)))) & c
= ((u
| (
divset ((T
. k),$1)))
. ((F
. k)
. $1)) & $2
= (c
* (
vol ((
divset ((T
. k),$1)),rho1)));
A13: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A14: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then
A15: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
consider p be
FinSequence of
REAL such that
A16: p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho))) by
A11;
(p
. i)
in (
dom (u
| (
divset ((T
. k),i)))) by
A15,
A16;
then ((u
| (
divset ((T
. k),i)))
. (p
. i))
in (
rng (u
| (
divset ((T
. k),i)))) by
FUNCT_1: 3;
then
reconsider x = ((u
| (
divset ((T
. k),i)))
. (p
. i)) as
Element of
REAL ;
(x
* (
vol ((
divset ((T
. k),i)),rho1))) is
Element of
REAL by
XREAL_0:def 1;
hence thesis by
A16,
A15;
end;
consider q be
FinSequence of
REAL such that
A19: (
dom q)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P11[i, (q
. i)] from
FINSEQ_1:sch 5(
A14);
A20: (
len q)
= (
len (T
. k)) by
A19,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (T
. k));
then i
in (
Seg (
len (T
. k))) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A21: ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & c
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho1))) by
A19;
thus ex c be
Real st c
in (
rng (u
| (
divset ((T
. k),i)))) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho1))) by
A21,
FUNCT_1: 3;
end;
then
reconsider q as
middle_volume of rho1, u, (T
. k) by
A20,
Def1,
A1;
q is
Element of (
REAL
* ) by
FINSEQ_1:def 11;
hence thesis by
A13,
A19;
end;
consider Sf be
sequence of (
REAL
* ) such that
A22: for x be
Element of
NAT holds
P1[x, (Sf
. x)] from
FUNCT_2:sch 3(
A12);
now
let k be
Element of
NAT ;
ex q be
middle_volume of rho1, u, (T
. k) st q
= (Sf
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Real st ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & z
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho1))) by
A22;
hence (Sf
. k) is
middle_volume of rho1, u, (T
. k);
end;
then
reconsider Sf as
middle_volume_Sequence of rho1, u, T by
Def3;
defpred
Q1[
Element of
NAT ,
set] means ex q be
middle_volume of rho2, u, (T
. $1) st q
= $2 & for i be
Nat st i
in (
dom (T
. $1)) holds ex z be
Real st ((F
. $1)
. i)
in (
dom (u
| (
divset ((T
. $1),i)))) & z
= ((u
| (
divset ((T
. $1),i)))
. ((F
. $1)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho2)));
A23: for k be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
Q1[k, y]
proof
let k be
Element of
NAT ;
defpred
Q11[
Nat,
set] means ex c be
Real st ((F
. k)
. $1)
in (
dom (u
| (
divset ((T
. k),$1)))) & c
= ((u
| (
divset ((T
. k),$1)))
. ((F
. k)
. $1)) & $2
= (c
* (
vol ((
divset ((T
. k),$1)),rho2)));
A24: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A25: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
Q11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then
A26: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
consider p be
FinSequence of
REAL such that
A27: p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho))) by
A11;
(p
. i)
in (
dom (u
| (
divset ((T
. k),i)))) by
A26,
A27;
then ((u
| (
divset ((T
. k),i)))
. (p
. i))
in (
rng (u
| (
divset ((T
. k),i)))) by
FUNCT_1: 3;
then
reconsider x = ((u
| (
divset ((T
. k),i)))
. (p
. i)) as
Element of
REAL ;
(x
* (
vol ((
divset ((T
. k),i)),rho2))) is
Element of
REAL by
XREAL_0:def 1;
hence thesis by
A27,
A26;
end;
consider q be
FinSequence of
REAL such that
A30: (
dom q)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
Q11[i, (q
. i)] from
FINSEQ_1:sch 5(
A25);
A31: (
len q)
= (
len (T
. k)) by
A30,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (T
. k));
then i
in (
Seg (
len (T
. k))) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A32: ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & c
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho2))) by
A30;
thus ex c be
Real st c
in (
rng (u
| (
divset ((T
. k),i)))) & (q
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho2))) by
A32,
FUNCT_1: 3;
end;
then
reconsider q as
middle_volume of rho2, u, (T
. k) by
A31,
Def1,
A1;
q is
Element of (
REAL
* ) by
FINSEQ_1:def 11;
hence thesis by
A24,
A30;
end;
consider Sg be
sequence of (
REAL
* ) such that
A33: for x be
Element of
NAT holds
Q1[x, (Sg
. x)] from
FUNCT_2:sch 3(
A23);
now
let k be
Element of
NAT ;
ex q be
middle_volume of rho2, u, (T
. k) st q
= (Sg
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Real st ((F
. k)
. i)
in (
dom (u
| (
divset ((T
. k),i)))) & z
= ((u
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. k),i)),rho2))) by
A33;
hence (Sg
. k) is
middle_volume of rho2, u, (T
. k);
end;
then
reconsider Sg as
middle_volume_Sequence of rho2, u, T by
Def3;
A34: (
middle_sum Sf) is
convergent & (
lim (
middle_sum Sf))
= (
integral (u,rho1)) by
A1,
A4,
Def6;
A35: (
middle_sum Sg) is
convergent & (
lim (
middle_sum Sg))
= (
integral (u,rho2)) by
A1,
A4,
Def6;
A36: ((
middle_sum Sf)
- (
middle_sum Sg))
= (
middle_sum S)
proof
now
let n be
Nat;
A37: n
in
NAT by
ORDINAL1:def 12;
consider p be
FinSequence of
REAL such that
A38: p
= (F
. n) & (
len p)
= (
len (T
. n)) & for i be
Nat st i
in (
dom (T
. n)) holds (p
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. n),i)))
. (p
. i)) & ((S
. n)
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho))) by
A11,
A37;
consider q be
middle_volume of rho1, u, (T
. n) such that
A39: q
= (Sf
. n) & for i be
Nat st i
in (
dom (T
. n)) holds ex z be
Real st ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & z
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho1))) by
A22,
A37;
consider r be
middle_volume of rho2, u, (T
. n) such that
A40: r
= (Sg
. n) & for i be
Nat st i
in (
dom (T
. n)) holds ex z be
Real st ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & z
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (r
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho2))) by
A33,
A37;
A41: (
len (Sf
. n))
= (
len (T
. n)) & (
len (Sg
. n))
= (
len (T
. n)) & (
len (S
. n))
= (
len (T
. n)) by
A1,
Def1;
then
A42: (
dom (Sf
. n))
= (
dom (T
. n)) & (
dom (Sg
. n))
= (
dom (T
. n)) & (
dom (S
. n))
= (
dom (T
. n)) by
FINSEQ_3: 29;
B42: (
dom (S
. n))
= ((
dom (Sf
. n))
/\ (
dom (Sg
. n))) by
A42
.= (
dom ((Sf
. n)
- (Sg
. n))) by
VALUED_1: 12;
now
let j be
object;
assume
A43: j
in (
dom (S
. n));
then
reconsider i = j as
Nat;
consider t be
Real such that
A44: t
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & ((S
. n)
. i)
= (t
* (
vol ((
divset ((T
. n),i)),rho))) by
A43,
A42,
A38;
consider z be
Real such that
A45: ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & z
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho1))) by
A39,
A43,
A42;
consider w1 be
Real such that
A46: ((F
. n)
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & w1
= ((u
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (r
. i)
= (w1
* (
vol ((
divset ((T
. n),i)),rho2))) by
A40,
A43,
A42;
i
in (
dom (T
. n)) by
A41,
FINSEQ_3: 29,
A43;
then (
vol ((
divset ((T
. n),i)),rho))
= ((
vol ((
divset ((T
. n),i)),rho1))
- (
vol ((
divset ((T
. n),i)),rho2))) by
A1,
Lm7A,
INTEGRA1: 8;
hence ((S
. n)
. j)
= (((Sf
. n)
. j)
- ((Sg
. n)
. j)) by
A45,
A39,
A46,
A40,
A44;
end;
then
A57: ((Sf
. n)
- (Sg
. n))
= (S
. n) by
B42,
VALUED_1: 14;
set k = (
len (T
. n));
X1: (Sf
. n) is
Element of (k
-tuples_on
REAL ) by
FINSEQ_2: 92,
A41;
X2: (Sg
. n) is
Element of (k
-tuples_on
REAL ) by
FINSEQ_2: 92,
A41;
B57: (((
middle_sum Sf)
. n)
- ((
middle_sum Sg)
. n))
= ((
Sum (Sf
. n))
- ((
middle_sum Sg)
. n)) by
Def4
.= ((
Sum (Sf
. n))
- (
Sum (Sg
. n))) by
Def4
.= (
Sum (S
. n)) by
A57,
X1,
X2,
RVSUM_1: 90
.= ((
middle_sum S)
. n) by
Def4;
thus (((
middle_sum Sf)
. n)
+ ((
- (
middle_sum Sg))
. n))
= (((
middle_sum Sf)
. n)
+ (
- ((
middle_sum Sg)
. n))) by
VALUED_1: 8
.= ((
middle_sum S)
. n) by
B57;
end;
then ((
middle_sum Sf)
+ (
- (
middle_sum Sg)))
= (
middle_sum S) by
SEQ_1: 7;
hence thesis by
SEQ_1: 11;
end;
hence (
middle_sum S) is
convergent by
A34,
A35;
thus (
lim (
middle_sum S))
= ((
integral (u,rho1))
- (
integral (u,rho2))) by
A34,
A35,
A36,
SEQ_2: 12;
end;
hence u
is_RiemannStieltjes_integrable_with rho;
hence thesis by
Def6,
A3,
A1;
end;