pdiff_2.miz
begin
reserve x,x0,x1,x2,y,y0,y1,y2,r,r1,s,p,p1 for
Real;
reserve z,z0 for
Element of (
REAL 2);
reserve n,m,k for
Element of
NAT ;
reserve Z for
Subset of (
REAL 2);
reserve s1 for
Real_Sequence;
reserve f,f1,f2 for
PartFunc of (
REAL 2),
REAL ;
reserve R,R1,R2 for
RestFunc;
reserve L,L1,L2 for
LinearFunc;
theorem ::
PDIFF_2:1
Th1: (
dom (
proj (1,2)))
= (
REAL 2) & (
rng (
proj (1,2)))
=
REAL & for x,y be
Real holds ((
proj (1,2))
.
<*x, y*>)
= x
proof
set f = (
proj (1,2));
for x be
object st x
in
REAL holds ex z be
object st z
in (
REAL 2) & x
= (f
. z)
proof
set y = the
Element of
REAL ;
let x be
object;
assume x
in
REAL ;
then
reconsider x1 = x as
Element of
REAL ;
reconsider z =
<*x1, y*> as
Element of (
REAL 2) by
FINSEQ_2: 101;
(f
. z)
= (z
. 1) by
PDIFF_1:def 1;
then (f
. z)
= x by
FINSEQ_1: 44;
hence thesis;
end;
hence (
dom (
proj (1,2)))
= (
REAL 2) & (
rng (
proj (1,2)))
=
REAL by
FUNCT_2: 10,
FUNCT_2:def 1;
let x,y be
Real;
reconsider x, y as
Element of
REAL by
XREAL_0:def 1;
now
let x,y be
Element of
REAL ;
<*x, y*> is
Element of (2
-tuples_on
REAL ) by
FINSEQ_2: 101;
then ((
proj (1,2))
.
<*x, y*>)
= (
<*x, y*>
. 1) by
PDIFF_1:def 1;
hence ((
proj (1,2))
.
<*x, y*>)
= x by
FINSEQ_1: 44;
end;
then ((
proj (1,2))
.
<*x, y*>)
= x;
hence thesis;
end;
theorem ::
PDIFF_2:2
Th2: (
dom (
proj (2,2)))
= (
REAL 2) & (
rng (
proj (2,2)))
=
REAL & for x,y be
Real holds ((
proj (2,2))
.
<*x, y*>)
= y
proof
set f = (
proj (2,2));
for y be
object st y
in
REAL holds ex z be
object st z
in (
REAL 2) & y
= (f
. z)
proof
set x = the
Element of
REAL ;
let y be
object;
assume y
in
REAL ;
then
reconsider y1 = y as
Element of
REAL ;
reconsider z =
<*x, y1*> as
Element of (
REAL 2) by
FINSEQ_2: 101;
(f
. z)
= (z
. 2) by
PDIFF_1:def 1;
then (f
. z)
= y by
FINSEQ_1: 44;
hence thesis;
end;
hence (
dom (
proj (2,2)))
= (
REAL 2) & (
rng (
proj (2,2)))
=
REAL by
FUNCT_2: 10,
FUNCT_2:def 1;
let x,y be
Real;
reconsider x, y as
Element of
REAL by
XREAL_0:def 1;
now
let x,y be
Element of
REAL ;
<*x, y*> is
Element of (2
-tuples_on
REAL ) by
FINSEQ_2: 101;
then ((
proj (2,2))
.
<*x, y*>)
= (
<*x, y*>
. 2) by
PDIFF_1:def 1;
hence ((
proj (2,2))
.
<*x, y*>)
= y by
FINSEQ_1: 44;
end;
then ((
proj (2,2))
.
<*x, y*>)
= y;
hence thesis;
end;
begin
definition
let n,i be
Element of
NAT ;
let f be
PartFunc of (
REAL n),
REAL ;
let z be
Element of (
REAL n);
::
PDIFF_2:def1
func
SVF1 (i,f,z) ->
PartFunc of
REAL ,
REAL equals (f
* (
reproj (i,z)));
coherence ;
end
theorem ::
PDIFF_2:3
Th3: z
=
<*x, y*> & f
is_partial_differentiable_in (z,1) implies (
SVF1 (1,f,z))
is_differentiable_in x by
Th1;
theorem ::
PDIFF_2:4
Th4: z
=
<*x, y*> & f
is_partial_differentiable_in (z,2) implies (
SVF1 (2,f,z))
is_differentiable_in y by
Th2;
theorem ::
PDIFF_2:5
Th5: for f be
PartFunc of (
REAL 2),
REAL holds for z be
Element of (
REAL 2) holds (ex x0,y0 be
Real st z
=
<*x0, y0*> & (
SVF1 (1,f,z))
is_differentiable_in x0) iff f
is_partial_differentiable_in (z,1)
proof
let f be
PartFunc of (
REAL 2),
REAL ;
let z be
Element of (
REAL 2);
consider x0,y0 be
Element of
REAL such that
A1: z
=
<*x0, y0*> by
FINSEQ_2: 100;
thus (ex x0,y0 be
Real st z
=
<*x0, y0*> & (
SVF1 (1,f,z))
is_differentiable_in x0) implies f
is_partial_differentiable_in (z,1) by
Th1;
assume
A2: f
is_partial_differentiable_in (z,1);
((
proj (1,2))
. z)
= x0 by
A1,
Th1;
then (
SVF1 (1,f,z))
is_differentiable_in x0 by
A2;
hence thesis by
A1;
end;
theorem ::
PDIFF_2:6
Th6: for f be
PartFunc of (
REAL 2),
REAL holds for z be
Element of (
REAL 2) holds (ex x0,y0 be
Real st z
=
<*x0, y0*> & (
SVF1 (2,f,z))
is_differentiable_in y0) iff f
is_partial_differentiable_in (z,2)
proof
let f be
PartFunc of (
REAL 2),
REAL ;
let z be
Element of (
REAL 2);
consider x0,y0 be
Element of
REAL such that
A1: z
=
<*x0, y0*> by
FINSEQ_2: 100;
thus (ex x0,y0 be
Real st z
=
<*x0, y0*> & (
SVF1 (2,f,z))
is_differentiable_in y0) implies f
is_partial_differentiable_in (z,2) by
Th2;
assume
A2: f
is_partial_differentiable_in (z,2);
((
proj (2,2))
. z)
= y0 by
A1,
Th2;
then (
SVF1 (2,f,z))
is_differentiable_in y0 by
A2;
hence thesis by
A1;
end;
theorem ::
PDIFF_2:7
z
=
<*x0, y0*> & f
is_partial_differentiable_in (z,1) implies ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,z))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)))
proof
assume that
A1: z
=
<*x0, y0*> and
A2: f
is_partial_differentiable_in (z,1);
ex x1, y1 st z
=
<*x1, y1*> & (
SVF1 (1,f,z))
is_differentiable_in x1 by
A2,
Th5;
then (
SVF1 (1,f,z))
is_differentiable_in x0 by
A1,
FINSEQ_1: 77;
hence thesis by
FDIFF_1:def 4;
end;
theorem ::
PDIFF_2:8
z
=
<*x0, y0*> & f
is_partial_differentiable_in (z,2) implies ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,z))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)))
proof
assume that
A1: z
=
<*x0, y0*> and
A2: f
is_partial_differentiable_in (z,2);
ex x1, y1 st z
=
<*x1, y1*> & (
SVF1 (2,f,z))
is_differentiable_in y1 by
A2,
Th6;
then (
SVF1 (2,f,z))
is_differentiable_in y0 by
A1,
FINSEQ_1: 77;
hence thesis by
FDIFF_1:def 4;
end;
theorem ::
PDIFF_2:9
Th9: for f be
PartFunc of (
REAL 2),
REAL holds for z be
Element of (
REAL 2) holds f
is_partial_differentiable_in (z,1) iff ex x0,y0 be
Real st z
=
<*x0, y0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,z))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)))
proof
let f be
PartFunc of (
REAL 2),
REAL ;
let z be
Element of (
REAL 2);
hereby
assume
A1: f
is_partial_differentiable_in (z,1);
thus ex x0,y0 be
Real st z
=
<*x0, y0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,z))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)))
proof
consider x0, y0 such that
A2: z
=
<*x0, y0*> and
A3: (
SVF1 (1,f,z))
is_differentiable_in x0 by
A1,
Th5;
ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,z))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A3,
FDIFF_1:def 4;
hence thesis by
A2;
end;
end;
given x0,y0 be
Real such that
A4: z
=
<*x0, y0*> and
A5: ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,z))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
(
SVF1 (1,f,z))
is_differentiable_in x0 by
A5,
FDIFF_1:def 4;
hence thesis by
A4,
Th5;
end;
theorem ::
PDIFF_2:10
Th10: for f be
PartFunc of (
REAL 2),
REAL holds for z be
Element of (
REAL 2) holds f
is_partial_differentiable_in (z,2) iff ex x0,y0 be
Real st z
=
<*x0, y0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,z))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)))
proof
let f be
PartFunc of (
REAL 2),
REAL ;
let z be
Element of (
REAL 2);
hereby
assume
A1: f
is_partial_differentiable_in (z,2);
thus ex x0,y0 be
Real st z
=
<*x0, y0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,z))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)))
proof
consider x0, y0 such that
A2: z
=
<*x0, y0*> and
A3: (
SVF1 (2,f,z))
is_differentiable_in y0 by
A1,
Th6;
ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,z))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A3,
FDIFF_1:def 4;
hence thesis by
A2;
end;
end;
given x0, y0 such that
A4: z
=
<*x0, y0*> and
A5: ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,z))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)));
(
SVF1 (2,f,z))
is_differentiable_in y0 by
A5,
FDIFF_1:def 4;
hence thesis by
A4,
Th6;
end;
Lm1: z
=
<*x0, y0*> & f
is_partial_differentiable_in (z,1) implies (r
= (
diff ((
SVF1 (1,f,z)),x0)) iff ex x0,y0 be
Real st z
=
<*x0, y0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,z))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))))
proof
set F1 = (
SVF1 (1,f,z));
assume that
A1: z
=
<*x0, y0*> and
A2: f
is_partial_differentiable_in (z,1);
A3: F1
is_differentiable_in x0 by
A1,
A2,
Th3;
hereby
assume
A4: r
= (
diff (F1,x0));
F1
is_differentiable_in x0 by
A1,
A2,
Th3;
then ex N be
Neighbourhood of x0 st N
c= (
dom F1) & ex L, R st r
= (L
. 1) & for x st x
in N holds ((F1
. x)
- (F1
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A4,
FDIFF_1:def 5;
hence ex x0,y0 be
Real st z
=
<*x0, y0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,z))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A1;
end;
given x1,y1 be
Real such that
A5: z
=
<*x1, y1*> and
A6: ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,f,z))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1)));
x1
= x0 by
A1,
A5,
FINSEQ_1: 77;
hence thesis by
A6,
A3,
FDIFF_1:def 5;
end;
Lm2: z
=
<*x0, y0*> & f
is_partial_differentiable_in (z,2) implies (r
= (
diff ((
SVF1 (2,f,z)),y0)) iff ex x0,y0 be
Real st z
=
<*x0, y0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,z))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))))
proof
set F1 = (
SVF1 (2,f,z));
assume that
A1: z
=
<*x0, y0*> and
A2: f
is_partial_differentiable_in (z,2);
A3: F1
is_differentiable_in y0 by
A1,
A2,
Th4;
hereby
assume
A4: r
= (
diff (F1,y0));
F1
is_differentiable_in y0 by
A1,
A2,
Th4;
then ex N be
Neighbourhood of y0 st N
c= (
dom F1) & ex L, R st r
= (L
. 1) & for y st y
in N holds ((F1
. y)
- (F1
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A4,
FDIFF_1:def 5;
hence ex x0,y0 be
Real st z
=
<*x0, y0*> & ex N be
Neighbourhood of y0 st N
c= (
dom F1) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A1;
end;
given x1,y1 be
Real such that
A5: z
=
<*x1, y1*> and
A6: ex N be
Neighbourhood of y1 st N
c= (
dom F1) & ex L, R st r
= (L
. 1) & for y st y
in N holds ((F1
. y)
- (F1
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1)));
y1
= y0 by
A1,
A5,
FINSEQ_1: 77;
hence thesis by
A6,
A3,
FDIFF_1:def 5;
end;
theorem ::
PDIFF_2:11
Th11: z
=
<*x0, y0*> & f
is_partial_differentiable_in (z,1) implies (r
= (
partdiff (f,z,1)) iff ex x0,y0 be
Real st z
=
<*x0, y0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,z))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))))
proof
assume that
A1: z
=
<*x0, y0*> and
A2: f
is_partial_differentiable_in (z,1);
hereby
assume r
= (
partdiff (f,z,1));
then r
= (
diff ((
SVF1 (1,f,z)),x0)) by
A1,
Th1;
hence ex x0,y0 be
Real st z
=
<*x0, y0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,z))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A1,
A2,
Lm1;
end;
given x1,y1 be
Real such that
A3: z
=
<*x1, y1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,f,z))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1)));
r
= (
diff ((
SVF1 (1,f,z)),x0)) by
A1,
A2,
A3,
Lm1;
hence thesis by
A1,
Th1;
end;
theorem ::
PDIFF_2:12
Th12: z
=
<*x0, y0*> & f
is_partial_differentiable_in (z,2) implies (r
= (
partdiff (f,z,2)) iff ex x0,y0 be
Real st z
=
<*x0, y0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,z))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))))
proof
assume that
A1: z
=
<*x0, y0*> and
A2: f
is_partial_differentiable_in (z,2);
hereby
assume r
= (
partdiff (f,z,2));
then r
= (
diff ((
SVF1 (2,f,z)),y0)) by
A1,
Th2;
hence ex x0,y0 be
Real st z
=
<*x0, y0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,z))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A1,
A2,
Lm2;
end;
given x1,y1 be
Real such that
A3: z
=
<*x1, y1*> & ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,f,z))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1)));
r
= (
diff ((
SVF1 (2,f,z)),y0)) by
A1,
A2,
A3,
Lm2;
hence thesis by
A1,
Th2;
end;
theorem ::
PDIFF_2:13
z
=
<*x0, y0*> & f
is_partial_differentiable_in (z,1) implies (
partdiff (f,z,1))
= (
diff ((
SVF1 (1,f,z)),x0))
proof
set r = (
partdiff (f,z,1));
assume that
A1: z
=
<*x0, y0*> and
A2: f
is_partial_differentiable_in (z,1);
consider x1,y1 be
Real such that
A3: z
=
<*x1, y1*> and
A4: ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,f,z))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A1,
A2,
Th11;
x0
= x1 by
A1,
A3,
FINSEQ_1: 77;
then
consider N be
Neighbourhood of x0 such that N
c= (
dom (
SVF1 (1,f,z))) and
A5: ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A4;
consider L, R such that
A6: r
= (L
. 1) and
A7: for x st x
in N holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A5;
consider r1 such that
A8: for p holds (L
. p)
= (r1
* p) by
FDIFF_1:def 3;
A9: r
= (r1
* 1) by
A6,
A8;
consider x2, y2 such that
A10: z
=
<*x2, y2*> and
A11: (
SVF1 (1,f,z))
is_differentiable_in x2 by
A2,
Th5;
consider N1 be
Neighbourhood of x2 such that N1
c= (
dom (
SVF1 (1,f,z))) and
A12: ex L, R st (
diff ((
SVF1 (1,f,z)),x2))
= (L
. 1) & for x st x
in N1 holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x2))
= ((L
. (x
- x2))
+ (R
. (x
- x2))) by
A11,
FDIFF_1:def 5;
consider L1, R1 such that
A13: (
diff ((
SVF1 (1,f,z)),x2))
= (L1
. 1) and
A14: for x st x
in N1 holds (((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x2))
= ((L1
. (x
- x2))
+ (R1
. (x
- x2))) by
A12;
consider p1 such that
A15: for p holds (L1
. p)
= (p1
* p) by
FDIFF_1:def 3;
A16: x0
= x2 by
A1,
A10,
FINSEQ_1: 77;
then
consider N0 be
Neighbourhood of x0 such that
A17: N0
c= N & N0
c= N1 by
RCOMP_1: 17;
consider g be
Real such that
A18:
0
< g and
A19: N0
=
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 6;
deffunc
F(
Nat) = (g
/ ($1
+ 2));
consider s1 such that
A20: for n be
Nat holds (s1
. n)
=
F(n) from
SEQ_1:sch 1;
now
let n be
Nat;
(g
/ (n
+ 2))
<>
0 by
A18,
XREAL_1: 139;
hence (s1
. n)
<>
0 by
A20;
end;
then
A21: s1 is
non-zero by
SEQ_1: 5;
s1 is
convergent & (
lim s1)
=
0 by
A20,
SEQ_4: 31;
then
reconsider h = s1 as
0
-convergent
non-zero
Real_Sequence by
A21,
FDIFF_1:def 1;
A22: for n holds ex x st x
in N & x
in N1 & (h
. n)
= (x
- x0)
proof
let n;
take (x0
+ (g
/ (n
+ 2)));
(
0
+ 1)
< ((n
+ 1)
+ 1) by
XREAL_1: 6;
then (g
/ (n
+ 2))
< (g
/ 1) by
A18,
XREAL_1: 76;
then
A23: (x0
+ (g
/ (n
+ 2)))
< (x0
+ g) by
XREAL_1: 6;
(g
/ (n
+ 2))
>
0 by
A18,
XREAL_1: 139;
then (x0
+ (
- g))
< (x0
+ (g
/ (n
+ 2))) by
A18,
XREAL_1: 6;
then (x0
+ (g
/ (n
+ 2)))
in
].(x0
- g), (x0
+ g).[ by
A23;
hence thesis by
A17,
A19,
A20;
end;
A24: (
diff ((
SVF1 (1,f,z)),x2))
= (p1
* 1) by
A13,
A15;
A25:
now
let x;
assume that
A26: x
in N and
A27: x
in N1;
(((
SVF1 (1,f,z))
. x)
- ((
SVF1 (1,f,z))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A7,
A26;
then ((L
. (x
- x0))
+ (R
. (x
- x0)))
= ((L1
. (x
- x0))
+ (R1
. (x
- x0))) by
A14,
A16,
A27;
then ((r1
* (x
- x0))
+ (R
. (x
- x0)))
= ((L1
. (x
- x0))
+ (R1
. (x
- x0))) by
A8;
hence ((r
* (x
- x0))
+ (R
. (x
- x0)))
= (((
diff ((
SVF1 (1,f,z)),x2))
* (x
- x0))
+ (R1
. (x
- x0))) by
A15,
A9,
A24;
end;
reconsider rd = (r
- (
diff ((
SVF1 (1,f,z)),x2))) as
Element of
REAL by
XREAL_0:def 1;
now
R1 is
total by
FDIFF_1:def 2;
then (
dom R1)
=
REAL by
PARTFUN1:def 2;
then
A28: (
rng h)
c= (
dom R1);
let n be
Nat;
R is
total by
FDIFF_1:def 2;
then (
dom R)
=
REAL by
PARTFUN1:def 2;
then
A29: (
rng h)
c= (
dom R);
A30: n
in
NAT by
ORDINAL1:def 12;
then ex x st x
in N & x
in N1 & (h
. n)
= (x
- x0) by
A22;
then ((r
* (h
. n))
+ (R
. (h
. n)))
= (((
diff ((
SVF1 (1,f,z)),x2))
* (h
. n))
+ (R1
. (h
. n))) by
A25;
then
A31: (((r
* (h
. n))
/ (h
. n))
+ ((R
. (h
. n))
/ (h
. n)))
= ((((
diff ((
SVF1 (1,f,z)),x2))
* (h
. n))
+ (R1
. (h
. n)))
/ (h
. n)) by
XCMPLX_1: 62;
A32: ((R
. (h
. n))
/ (h
. n))
= ((R
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R
/* h)
. n)
* ((h
" )
. n)) by
A30,
A29,
FUNCT_2: 108
.= (((h
" )
(#) (R
/* h))
. n) by
SEQ_1: 8;
A33: (h
. n)
<>
0 by
SEQ_1: 5;
A34: ((R1
. (h
. n))
/ (h
. n))
= ((R1
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R1
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R1
/* h)
. n)
* ((h
" )
. n)) by
A30,
A28,
FUNCT_2: 108
.= (((h
" )
(#) (R1
/* h))
. n) by
SEQ_1: 8;
A35: (((
diff ((
SVF1 (1,f,z)),x2))
* (h
. n))
/ (h
. n))
= ((
diff ((
SVF1 (1,f,z)),x2))
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= ((
diff ((
SVF1 (1,f,z)),x2))
* 1) by
A33,
XCMPLX_1: 60
.= (
diff ((
SVF1 (1,f,z)),x2));
((r
* (h
. n))
/ (h
. n))
= (r
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (r
* 1) by
A33,
XCMPLX_1: 60
.= r;
then (r
+ ((R
. (h
. n))
/ (h
. n)))
= ((
diff ((
SVF1 (1,f,z)),x2))
+ ((R1
. (h
. n))
/ (h
. n))) by
A31,
A35,
XCMPLX_1: 62;
then r
= ((
diff ((
SVF1 (1,f,z)),x2))
+ ((((h
" )
(#) (R1
/* h))
. n)
- (((h
" )
(#) (R
/* h))
. n))) by
A32,
A34;
hence rd
= ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. n) by
RFUNCT_2: 1;
end;
then (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))) is
constant & ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. 1)
= (r
- (
diff ((
SVF1 (1,f,z)),x2))) by
VALUED_0:def 18;
then
A36: (
lim (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))))
= (r
- (
diff ((
SVF1 (1,f,z)),x2))) by
SEQ_4: 25;
A37: ((h
" )
(#) (R1
/* h)) is
convergent & (
lim ((h
" )
(#) (R1
/* h)))
=
0 by
FDIFF_1:def 2;
((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
=
0 by
FDIFF_1:def 2;
then (r
- (
diff ((
SVF1 (1,f,z)),x2)))
= (
0
-
0 ) by
A36,
A37,
SEQ_2: 12;
hence thesis by
A1,
A10,
FINSEQ_1: 77;
end;
theorem ::
PDIFF_2:14
z
=
<*x0, y0*> & f
is_partial_differentiable_in (z,2) implies (
partdiff (f,z,2))
= (
diff ((
SVF1 (2,f,z)),y0))
proof
set r = (
partdiff (f,z,2));
assume that
A1: z
=
<*x0, y0*> and
A2: f
is_partial_differentiable_in (z,2);
consider x1,y1 be
Real such that
A3: z
=
<*x1, y1*> and
A4: ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,f,z))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A1,
A2,
Th12;
y0
= y1 by
A1,
A3,
FINSEQ_1: 77;
then
consider N be
Neighbourhood of y0 such that N
c= (
dom (
SVF1 (2,f,z))) and
A5: ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A4;
consider L, R such that
A6: r
= (L
. 1) and
A7: for y st y
in N holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A5;
consider r1 such that
A8: for p holds (L
. p)
= (r1
* p) by
FDIFF_1:def 3;
A9: r
= (r1
* 1) by
A6,
A8;
consider x2, y2 such that
A10: z
=
<*x2, y2*> and
A11: (
SVF1 (2,f,z))
is_differentiable_in y2 by
A2,
Th6;
consider N1 be
Neighbourhood of y2 such that N1
c= (
dom (
SVF1 (2,f,z))) and
A12: ex L, R st (
diff ((
SVF1 (2,f,z)),y2))
= (L
. 1) & for y st y
in N1 holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y2))
= ((L
. (y
- y2))
+ (R
. (y
- y2))) by
A11,
FDIFF_1:def 5;
consider L1, R1 such that
A13: (
diff ((
SVF1 (2,f,z)),y2))
= (L1
. 1) and
A14: for y st y
in N1 holds (((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y2))
= ((L1
. (y
- y2))
+ (R1
. (y
- y2))) by
A12;
consider p1 such that
A15: for p holds (L1
. p)
= (p1
* p) by
FDIFF_1:def 3;
A16: y0
= y2 by
A1,
A10,
FINSEQ_1: 77;
then
consider N0 be
Neighbourhood of y0 such that
A17: N0
c= N & N0
c= N1 by
RCOMP_1: 17;
consider g be
Real such that
A18:
0
< g and
A19: N0
=
].(y0
- g), (y0
+ g).[ by
RCOMP_1:def 6;
deffunc
F(
Nat) = (g
/ ($1
+ 2));
consider s1 such that
A20: for n be
Nat holds (s1
. n)
=
F(n) from
SEQ_1:sch 1;
now
let n be
Nat;
(g
/ (n
+ 2))
<>
0 by
A18,
XREAL_1: 139;
hence (s1
. n)
<>
0 by
A20;
end;
then
A21: s1 is
non-zero by
SEQ_1: 5;
s1 is
convergent & (
lim s1)
=
0 by
A20,
SEQ_4: 31;
then
reconsider h = s1 as
0
-convergent
non-zero
Real_Sequence by
A21,
FDIFF_1:def 1;
A22: for n holds ex y st y
in N & y
in N1 & (h
. n)
= (y
- y0)
proof
let n;
take (y0
+ (g
/ (n
+ 2)));
(
0
+ 1)
< ((n
+ 1)
+ 1) by
XREAL_1: 6;
then (g
/ (n
+ 2))
< (g
/ 1) by
A18,
XREAL_1: 76;
then
A23: (y0
+ (g
/ (n
+ 2)))
< (y0
+ g) by
XREAL_1: 6;
(g
/ (n
+ 2))
>
0 by
A18,
XREAL_1: 139;
then (y0
+ (
- g))
< (y0
+ (g
/ (n
+ 2))) by
A18,
XREAL_1: 6;
then (y0
+ (g
/ (n
+ 2)))
in
].(y0
- g), (y0
+ g).[ by
A23;
hence thesis by
A17,
A19,
A20;
end;
A24: (
diff ((
SVF1 (2,f,z)),y2))
= (p1
* 1) by
A13,
A15;
A25:
now
let y;
assume that
A26: y
in N and
A27: y
in N1;
(((
SVF1 (2,f,z))
. y)
- ((
SVF1 (2,f,z))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A7,
A26;
then ((L
. (y
- y0))
+ (R
. (y
- y0)))
= ((L1
. (y
- y0))
+ (R1
. (y
- y0))) by
A14,
A16,
A27;
then ((r1
* (y
- y0))
+ (R
. (y
- y0)))
= ((L1
. (y
- y0))
+ (R1
. (y
- y0))) by
A8;
hence ((r
* (y
- y0))
+ (R
. (y
- y0)))
= (((
diff ((
SVF1 (2,f,z)),y2))
* (y
- y0))
+ (R1
. (y
- y0))) by
A15,
A9,
A24;
end;
reconsider rd = (r
- (
diff ((
SVF1 (2,f,z)),y2))) as
Element of
REAL by
XREAL_0:def 1;
now
R1 is
total by
FDIFF_1:def 2;
then (
dom R1)
=
REAL by
PARTFUN1:def 2;
then
A28: (
rng h)
c= (
dom R1);
let n be
Nat;
R is
total by
FDIFF_1:def 2;
then (
dom R)
=
REAL by
PARTFUN1:def 2;
then
A29: (
rng h)
c= (
dom R);
A30: n
in
NAT by
ORDINAL1:def 12;
then ex y st y
in N & y
in N1 & (h
. n)
= (y
- y0) by
A22;
then ((r
* (h
. n))
+ (R
. (h
. n)))
= (((
diff ((
SVF1 (2,f,z)),y2))
* (h
. n))
+ (R1
. (h
. n))) by
A25;
then
A31: (((r
* (h
. n))
/ (h
. n))
+ ((R
. (h
. n))
/ (h
. n)))
= ((((
diff ((
SVF1 (2,f,z)),y2))
* (h
. n))
+ (R1
. (h
. n)))
/ (h
. n)) by
XCMPLX_1: 62;
A32: ((R
. (h
. n))
/ (h
. n))
= ((R
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R
/* h)
. n)
* ((h
" )
. n)) by
A30,
A29,
FUNCT_2: 108
.= (((h
" )
(#) (R
/* h))
. n) by
SEQ_1: 8;
A33: (h
. n)
<>
0 by
SEQ_1: 5;
A34: ((R1
. (h
. n))
/ (h
. n))
= ((R1
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R1
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R1
/* h)
. n)
* ((h
" )
. n)) by
A30,
A28,
FUNCT_2: 108
.= (((h
" )
(#) (R1
/* h))
. n) by
SEQ_1: 8;
A35: (((
diff ((
SVF1 (2,f,z)),y2))
* (h
. n))
/ (h
. n))
= ((
diff ((
SVF1 (2,f,z)),y2))
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= ((
diff ((
SVF1 (2,f,z)),y2))
* 1) by
A33,
XCMPLX_1: 60
.= (
diff ((
SVF1 (2,f,z)),y2));
((r
* (h
. n))
/ (h
. n))
= (r
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (r
* 1) by
A33,
XCMPLX_1: 60
.= r;
then (r
+ ((R
. (h
. n))
/ (h
. n)))
= ((
diff ((
SVF1 (2,f,z)),y2))
+ ((R1
. (h
. n))
/ (h
. n))) by
A31,
A35,
XCMPLX_1: 62;
then r
= ((
diff ((
SVF1 (2,f,z)),y2))
+ ((((h
" )
(#) (R1
/* h))
. n)
- (((h
" )
(#) (R
/* h))
. n))) by
A32,
A34;
hence rd
= ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. n) by
RFUNCT_2: 1;
end;
then (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))) is
constant & ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. 1)
= (r
- (
diff ((
SVF1 (2,f,z)),y2))) by
VALUED_0:def 18;
then
A36: (
lim (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))))
= (r
- (
diff ((
SVF1 (2,f,z)),y2))) by
SEQ_4: 25;
A37: ((h
" )
(#) (R1
/* h)) is
convergent & (
lim ((h
" )
(#) (R1
/* h)))
=
0 by
FDIFF_1:def 2;
((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
=
0 by
FDIFF_1:def 2;
then (r
- (
diff ((
SVF1 (2,f,z)),y2)))
= (
0
-
0 ) by
A36,
A37,
SEQ_2: 12;
hence thesis by
A1,
A10,
FINSEQ_1: 77;
end;
definition
let f be
PartFunc of (
REAL 2),
REAL ;
let Z be
set;
::
PDIFF_2:def2
pred f
is_partial_differentiable`1_on Z means Z
c= (
dom f) & for z be
Element of (
REAL 2) st z
in Z holds (f
| Z)
is_partial_differentiable_in (z,1);
::
PDIFF_2:def3
pred f
is_partial_differentiable`2_on Z means Z
c= (
dom f) & for z be
Element of (
REAL 2) st z
in Z holds (f
| Z)
is_partial_differentiable_in (z,2);
end
theorem ::
PDIFF_2:15
f
is_partial_differentiable`1_on Z implies Z
c= (
dom f) & for z st z
in Z holds f
is_partial_differentiable_in (z,1)
proof
set g = (f
| Z);
assume
A1: f
is_partial_differentiable`1_on Z;
hence Z
c= (
dom f);
let z0 be
Element of (
REAL 2);
assume z0
in Z;
then g
is_partial_differentiable_in (z0,1) by
A1;
then
consider x0,y0 be
Real such that
A2: z0
=
<*x0, y0*> and
A3: ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,g,z0))) & ex L, R st for x st x
in N holds (((
SVF1 (1,g,z0))
. x)
- ((
SVF1 (1,g,z0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
Th9;
consider N be
Neighbourhood of x0 such that
A4: N
c= (
dom (
SVF1 (1,g,z0))) and
A5: ex L, R st for x st x
in N holds (((
SVF1 (1,g,z0))
. x)
- ((
SVF1 (1,g,z0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A3;
consider L, R such that
A6: for x st x
in N holds (((
SVF1 (1,g,z0))
. x)
- ((
SVF1 (1,g,z0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A5;
A7: for x st x
in N holds (((
SVF1 (1,f,z0))
. x)
- ((
SVF1 (1,f,z0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)))
proof
let x;
A8: for x st x
in (
dom (
SVF1 (1,g,z0))) holds ((
SVF1 (1,g,z0))
. x)
= ((
SVF1 (1,f,z0))
. x)
proof
let x;
assume
A9: x
in (
dom (
SVF1 (1,g,z0)));
then
A10: x
in (
dom (
reproj (1,z0))) by
FUNCT_1: 11;
A11: ((
reproj (1,z0))
. x)
in (
dom (f
| Z)) by
A9,
FUNCT_1: 11;
((
SVF1 (1,g,z0))
. x)
= ((f
| Z)
. ((
reproj (1,z0))
. x)) by
A9,
FUNCT_1: 12
.= (f
. ((
reproj (1,z0))
. x)) by
A11,
FUNCT_1: 47
.= ((
SVF1 (1,f,z0))
. x) by
A10,
FUNCT_1: 13;
hence thesis;
end;
A12: x0
in N by
RCOMP_1: 16;
assume
A13: x
in N;
then ((L
. (x
- x0))
+ (R
. (x
- x0)))
= (((
SVF1 (1,g,z0))
. x)
- ((
SVF1 (1,g,z0))
. x0)) by
A6
.= (((
SVF1 (1,f,z0))
. x)
- ((
SVF1 (1,g,z0))
. x0)) by
A4,
A13,
A8
.= (((
SVF1 (1,f,z0))
. x)
- ((
SVF1 (1,f,z0))
. x0)) by
A4,
A8,
A12;
hence thesis;
end;
for x st x
in (
dom (
SVF1 (1,g,z0))) holds x
in (
dom (
SVF1 (1,f,z0)))
proof
let x;
(
dom (f
| Z))
= ((
dom f)
/\ Z) by
RELAT_1: 61;
then
A14: (
dom (f
| Z))
c= (
dom f) by
XBOOLE_1: 17;
assume x
in (
dom (
SVF1 (1,g,z0)));
then x
in (
dom (
reproj (1,z0))) & ((
reproj (1,z0))
. x)
in (
dom (f
| Z)) by
FUNCT_1: 11;
hence thesis by
A14,
FUNCT_1: 11;
end;
then for x be
object st x
in (
dom (
SVF1 (1,g,z0))) holds x
in (
dom (
SVF1 (1,f,z0)));
then (
dom (
SVF1 (1,g,z0)))
c= (
dom (
SVF1 (1,f,z0)));
then N
c= (
dom (
SVF1 (1,f,z0))) by
A4;
hence thesis by
A2,
A7,
Th9;
end;
theorem ::
PDIFF_2:16
f
is_partial_differentiable`2_on Z implies Z
c= (
dom f) & for z st z
in Z holds f
is_partial_differentiable_in (z,2)
proof
set g = (f
| Z);
assume
A1: f
is_partial_differentiable`2_on Z;
hence Z
c= (
dom f);
let z0 be
Element of (
REAL 2);
assume z0
in Z;
then g
is_partial_differentiable_in (z0,2) by
A1;
then
consider x0,y0 be
Real such that
A2: z0
=
<*x0, y0*> and
A3: ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,g,z0))) & ex L, R st for y st y
in N holds (((
SVF1 (2,g,z0))
. y)
- ((
SVF1 (2,g,z0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
Th10;
consider N be
Neighbourhood of y0 such that
A4: N
c= (
dom (
SVF1 (2,g,z0))) and
A5: ex L, R st for y st y
in N holds (((
SVF1 (2,g,z0))
. y)
- ((
SVF1 (2,g,z0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A3;
consider L, R such that
A6: for y st y
in N holds (((
SVF1 (2,g,z0))
. y)
- ((
SVF1 (2,g,z0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A5;
A7: for y st y
in N holds (((
SVF1 (2,f,z0))
. y)
- ((
SVF1 (2,f,z0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)))
proof
let y;
A8: for y st y
in (
dom (
SVF1 (2,g,z0))) holds ((
SVF1 (2,g,z0))
. y)
= ((
SVF1 (2,f,z0))
. y)
proof
let y;
assume
A9: y
in (
dom (
SVF1 (2,g,z0)));
then
A10: y
in (
dom (
reproj (2,z0))) by
FUNCT_1: 11;
A11: ((
reproj (2,z0))
. y)
in (
dom (f
| Z)) by
A9,
FUNCT_1: 11;
((
SVF1 (2,g,z0))
. y)
= ((f
| Z)
. ((
reproj (2,z0))
. y)) by
A9,
FUNCT_1: 12
.= (f
. ((
reproj (2,z0))
. y)) by
A11,
FUNCT_1: 47
.= ((
SVF1 (2,f,z0))
. y) by
A10,
FUNCT_1: 13;
hence thesis;
end;
A12: y0
in N by
RCOMP_1: 16;
assume
A13: y
in N;
then ((L
. (y
- y0))
+ (R
. (y
- y0)))
= (((
SVF1 (2,g,z0))
. y)
- ((
SVF1 (2,g,z0))
. y0)) by
A6
.= (((
SVF1 (2,f,z0))
. y)
- ((
SVF1 (2,g,z0))
. y0)) by
A4,
A13,
A8
.= (((
SVF1 (2,f,z0))
. y)
- ((
SVF1 (2,f,z0))
. y0)) by
A4,
A8,
A12;
hence thesis;
end;
for y st y
in (
dom (
SVF1 (2,g,z0))) holds y
in (
dom (
SVF1 (2,f,z0)))
proof
let y;
(
dom (f
| Z))
= ((
dom f)
/\ Z) by
RELAT_1: 61;
then
A14: (
dom (f
| Z))
c= (
dom f) by
XBOOLE_1: 17;
assume y
in (
dom (
SVF1 (2,g,z0)));
then y
in (
dom (
reproj (2,z0))) & ((
reproj (2,z0))
. y)
in (
dom (f
| Z)) by
FUNCT_1: 11;
hence thesis by
A14,
FUNCT_1: 11;
end;
then for y be
object st y
in (
dom (
SVF1 (2,g,z0))) holds y
in (
dom (
SVF1 (2,f,z0)));
then (
dom (
SVF1 (2,g,z0)))
c= (
dom (
SVF1 (2,f,z0)));
then N
c= (
dom (
SVF1 (2,f,z0))) by
A4;
hence thesis by
A2,
A7,
Th10;
end;
definition
let f be
PartFunc of (
REAL 2),
REAL ;
let Z be
set;
assume
A1: f
is_partial_differentiable`1_on Z;
::
PDIFF_2:def4
func f
`partial1| Z ->
PartFunc of (
REAL 2),
REAL means (
dom it )
= Z & for z be
Element of (
REAL 2) st z
in Z holds (it
. z)
= (
partdiff (f,z,1));
existence
proof
deffunc
F(
Element of (
REAL 2)) = (
In ((
partdiff (f,$1,1)),
REAL ));
defpred
P[
Element of (
REAL 2)] means $1
in Z;
consider F be
PartFunc of (
REAL 2),
REAL such that
A2: (for z be
Element of (
REAL 2) holds z
in (
dom F) iff
P[z]) & for z be
Element of (
REAL 2) st z
in (
dom F) holds (F
. z)
=
F(z) from
SEQ_1:sch 3;
take F;
now
Z
c= (
dom f) by
A1;
then
A3: Z is
Subset of (
REAL 2) by
XBOOLE_1: 1;
let y be
object;
assume y
in Z;
hence y
in (
dom F) by
A2,
A3;
end;
then
A4: Z
c= (
dom F);
for y be
object st y
in (
dom F) holds y
in Z by
A2;
then (
dom F)
c= Z;
hence (
dom F)
= Z by
A4,
XBOOLE_0:def 10;
let z be
Element of (
REAL 2);
assume z
in Z;
then z
in (
dom F) by
A2;
then (F
. z)
=
F(z) by
A2;
hence thesis;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 2),
REAL ;
assume that
A5: (
dom F)
= Z and
A6: for z be
Element of (
REAL 2) st z
in Z holds (F
. z)
= (
partdiff (f,z,1)) and
A7: (
dom G)
= Z and
A8: for z be
Element of (
REAL 2) st z
in Z holds (G
. z)
= (
partdiff (f,z,1));
now
let z be
Element of (
REAL 2);
assume
A9: z
in (
dom F);
then (F
. z)
= (
partdiff (f,z,1)) by
A5,
A6;
hence (F
. z)
= (G
. z) by
A5,
A8,
A9;
end;
hence thesis by
A5,
A7,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of (
REAL 2),
REAL ;
let Z be
set;
assume
A1: f
is_partial_differentiable`2_on Z;
::
PDIFF_2:def5
func f
`partial2| Z ->
PartFunc of (
REAL 2),
REAL means (
dom it )
= Z & for z be
Element of (
REAL 2) st z
in Z holds (it
. z)
= (
partdiff (f,z,2));
existence
proof
deffunc
F(
Element of (
REAL 2)) = (
In ((
partdiff (f,$1,2)),
REAL ));
defpred
P[
Element of (
REAL 2)] means $1
in Z;
consider F be
PartFunc of (
REAL 2),
REAL such that
A2: (for z be
Element of (
REAL 2) holds z
in (
dom F) iff
P[z]) & for z be
Element of (
REAL 2) st z
in (
dom F) holds (F
. z)
=
F(z) from
SEQ_1:sch 3;
take F;
now
Z
c= (
dom f) by
A1;
then
A3: Z is
Subset of (
REAL 2) by
XBOOLE_1: 1;
let y be
object;
assume y
in Z;
hence y
in (
dom F) by
A2,
A3;
end;
then
A4: Z
c= (
dom F);
for y be
object st y
in (
dom F) holds y
in Z by
A2;
then (
dom F)
c= Z;
hence (
dom F)
= Z by
A4,
XBOOLE_0:def 10;
let z be
Element of (
REAL 2);
assume z
in Z;
then z
in (
dom F) by
A2;
then (F
. z)
=
F(z) by
A2;
hence thesis;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 2),
REAL ;
assume that
A5: (
dom F)
= Z and
A6: for z be
Element of (
REAL 2) st z
in Z holds (F
. z)
= (
partdiff (f,z,2)) and
A7: (
dom G)
= Z and
A8: for z be
Element of (
REAL 2) st z
in Z holds (G
. z)
= (
partdiff (f,z,2));
now
let z be
Element of (
REAL 2);
assume
A9: z
in (
dom F);
then (F
. z)
= (
partdiff (f,z,2)) by
A5,
A6;
hence (F
. z)
= (G
. z) by
A5,
A8,
A9;
end;
hence thesis by
A5,
A7,
PARTFUN1: 5;
end;
end
begin
theorem ::
PDIFF_2:17
for z0 be
Element of (
REAL 2) holds for N be
Neighbourhood of ((
proj (1,2))
. z0) st f
is_partial_differentiable_in (z0,1) & N
c= (
dom (
SVF1 (1,f,z0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (1,2))
. z0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (1,f,z0))
/* (h
+ c))
- ((
SVF1 (1,f,z0))
/* c))) is
convergent & (
partdiff (f,z0,1))
= (
lim ((h
" )
(#) (((
SVF1 (1,f,z0))
/* (h
+ c))
- ((
SVF1 (1,f,z0))
/* c))))
proof
let z0 be
Element of (
REAL 2);
let N be
Neighbourhood of ((
proj (1,2))
. z0);
assume that
A1: f
is_partial_differentiable_in (z0,1) and
A2: N
c= (
dom (
SVF1 (1,f,z0)));
consider x0,y0 be
Real such that
A3: z0
=
<*x0, y0*> and
A4: ex N1 be
Neighbourhood of x0 st N1
c= (
dom (
SVF1 (1,f,z0))) & ex L, R st for x st x
in N1 holds (((
SVF1 (1,f,z0))
. x)
- ((
SVF1 (1,f,z0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A1,
Th9;
consider N1 be
Neighbourhood of x0 such that N1
c= (
dom (
SVF1 (1,f,z0))) and
A5: ex L, R st for x st x
in N1 holds (((
SVF1 (1,f,z0))
. x)
- ((
SVF1 (1,f,z0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A4;
A6: ((
proj (1,2))
. z0)
= x0 by
A3,
Th1;
then
consider N2 be
Neighbourhood of x0 such that
A7: N2
c= N and
A8: N2
c= N1 by
RCOMP_1: 17;
A9: N2
c= (
dom (
SVF1 (1,f,z0))) by
A2,
A7;
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A10: (
rng c)
=
{((
proj (1,2))
. z0)} and
A11: (
rng (h
+ c))
c= N;
consider g be
Real such that
A12:
0
< g and
A13: N2
=
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 6;
(x0
+
0 )
< (x0
+ g) & (x0
- g)
< (x0
-
0 ) by
A12,
XREAL_1: 8,
XREAL_1: 44;
then
A14: x0
in N2 by
A13;
A15: (
rng c)
c= (
dom (
SVF1 (1,f,z0)))
proof
let y be
object;
assume y
in (
rng c);
then y
= x0 by
A10,
A6,
TARSKI:def 1;
then y
in N by
A7,
A14;
hence thesis by
A2;
end;
ex n st (
rng (c
^\ n))
c= N2 & (
rng ((h
+ c)
^\ n))
c= N2
proof
x0
in (
rng c) by
A10,
A6,
TARSKI:def 1;
then
A16: (
lim c)
= x0 by
SEQ_4: 25;
(
lim h)
=
0 ;
then (
lim (h
+ c))
= (
0
+ x0) by
A16,
SEQ_2: 6
.= x0;
then
consider n be
Nat such that
A17: for m be
Nat st n
<= m holds
|.(((h
+ c)
. m)
- x0).|
< g by
A12,
SEQ_2:def 7;
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
take n;
A18: (
rng (c
^\ n))
=
{x0} by
A10,
A6,
VALUED_0: 26;
thus (
rng (c
^\ n))
c= N2 by
A14,
A18,
TARSKI:def 1;
let y be
object;
assume y
in (
rng ((h
+ c)
^\ n));
then
consider m such that
A19: y
= (((h
+ c)
^\ n)
. m) by
FUNCT_2: 113;
(n
+
0 )
<= (n
+ m) by
XREAL_1: 7;
then
A20:
|.(((h
+ c)
. (n
+ m))
- x0).|
< g by
A17;
then (((h
+ c)
. (m
+ n))
- x0)
< g by
SEQ_2: 1;
then ((((h
+ c)
^\ n)
. m)
- x0)
< g by
NAT_1:def 3;
then
A21: (((h
+ c)
^\ n)
. m)
< (x0
+ g) by
XREAL_1: 19;
(
- g)
< (((h
+ c)
. (m
+ n))
- x0) by
A20,
SEQ_2: 1;
then (
- g)
< ((((h
+ c)
^\ n)
. m)
- x0) by
NAT_1:def 3;
then (x0
+ (
- g))
< (((h
+ c)
^\ n)
. m) by
XREAL_1: 20;
hence thesis by
A13,
A19,
A21;
end;
then
consider n such that (
rng (c
^\ n))
c= N2 and
A22: (
rng ((h
+ c)
^\ n))
c= N2;
consider L, R such that
A23: for x st x
in N1 holds (((
SVF1 (1,f,z0))
. x)
- ((
SVF1 (1,f,z0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A5;
A24: (
rng (c
^\ n))
c= (
dom (
SVF1 (1,f,z0)))
proof
let y be
object;
assume
A25: y
in (
rng (c
^\ n));
(
rng (c
^\ n))
= (
rng c) by
VALUED_0: 26;
then y
= x0 by
A10,
A6,
A25,
TARSKI:def 1;
then y
in N by
A7,
A14;
hence thesis by
A2;
end;
A26: L is
total by
FDIFF_1:def 3;
A27: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )) is
convergent & (
lim (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )))
= (L
. 1)
proof
deffunc
F(
Nat) = ((L
. 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. $1));
consider s1 such that
A28: for k be
Nat holds (s1
. k)
=
F(k) from
SEQ_1:sch 1;
A29:
now
A30: (((h
^\ n)
" )
(#) (R
/* (h
^\ n))) is
convergent & (
lim (((h
^\ n)
" )
(#) (R
/* (h
^\ n))))
=
0 by
FDIFF_1:def 2;
let r be
Real;
assume
0
< r;
then
consider m be
Nat such that
A31: for k be
Nat st m
<= k holds
|.(((((h
^\ n)
" )
(#) (R
/* (h
^\ n)))
. k)
-
0 ).|
< r by
A30,
SEQ_2:def 7;
take n1 = m;
let k be
Nat such that
A32: n1
<= k;
|.((s1
. k)
- (L
. 1)).|
=
|.(((L
. 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. k))
- (L
. 1)).| by
A28
.=
|.(((((h
^\ n)
" )
(#) (R
/* (h
^\ n)))
. k)
-
0 ).|;
hence
|.((s1
. k)
- (L
. 1)).|
< r by
A31,
A32;
end;
consider s such that
A33: for p1 holds (L
. p1)
= (s
* p1) by
FDIFF_1:def 3;
A34: (L
. 1)
= (s
* 1) by
A33
.= s;
now
let m;
A35: ((h
^\ n)
. m)
<>
0 by
SEQ_1: 5;
thus ((((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
. m)
= ((((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
. m)
* (((h
^\ n)
" )
. m)) by
SEQ_1: 8
.= ((((L
/* (h
^\ n))
. m)
+ ((R
/* (h
^\ n))
. m))
* (((h
^\ n)
" )
. m)) by
SEQ_1: 7
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m))
+ (((R
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m)))
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
SEQ_1: 8
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
VALUED_1: 10
.= (((L
. ((h
^\ n)
. m))
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A26,
FUNCT_2: 115
.= (((s
* ((h
^\ n)
. m))
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A33
.= ((s
* (((h
^\ n)
. m)
* (((h
^\ n)
. m)
" )))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m))
.= ((s
* 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A35,
XCMPLX_0:def 7
.= (s1
. m) by
A28,
A34;
end;
then
A36: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
= s1 by
FUNCT_2: 63;
hence (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )) is
convergent by
A29,
SEQ_2:def 6;
hence thesis by
A36,
A29,
SEQ_2:def 7;
end;
A37: (
rng ((h
+ c)
^\ n))
c= (
dom (
SVF1 (1,f,z0))) by
A22,
A7,
A2;
A38: (
rng (h
+ c))
c= (
dom (
SVF1 (1,f,z0))) by
A11,
A2;
A39: for k holds (((
SVF1 (1,f,z0))
. (((h
+ c)
^\ n)
. k))
- ((
SVF1 (1,f,z0))
. ((c
^\ n)
. k)))
= ((L
. ((h
^\ n)
. k))
+ (R
. ((h
^\ n)
. k)))
proof
let k;
(((h
+ c)
^\ n)
. k)
in (
rng ((h
+ c)
^\ n)) by
VALUED_0: 28;
then
A40: (((h
+ c)
^\ n)
. k)
in N2 by
A22;
((c
^\ n)
. k)
in (
rng (c
^\ n)) & (
rng (c
^\ n))
= (
rng c) by
VALUED_0: 26,
VALUED_0: 28;
then
A41: ((c
^\ n)
. k)
= x0 by
A10,
A6,
TARSKI:def 1;
((((h
+ c)
^\ n)
. k)
- ((c
^\ n)
. k))
= ((((h
^\ n)
+ (c
^\ n))
. k)
- ((c
^\ n)
. k)) by
SEQM_3: 15
.= ((((h
^\ n)
. k)
+ ((c
^\ n)
. k))
- ((c
^\ n)
. k)) by
SEQ_1: 7
.= ((h
^\ n)
. k);
hence thesis by
A23,
A8,
A40,
A41;
end;
A42: R is
total by
FDIFF_1:def 2;
now
let k;
thus ((((
SVF1 (1,f,z0))
/* ((h
+ c)
^\ n))
- ((
SVF1 (1,f,z0))
/* (c
^\ n)))
. k)
= ((((
SVF1 (1,f,z0))
/* ((h
+ c)
^\ n))
. k)
- (((
SVF1 (1,f,z0))
/* (c
^\ n))
. k)) by
RFUNCT_2: 1
.= (((
SVF1 (1,f,z0))
. (((h
+ c)
^\ n)
. k))
- (((
SVF1 (1,f,z0))
/* (c
^\ n))
. k)) by
A37,
FUNCT_2: 108
.= (((
SVF1 (1,f,z0))
. (((h
+ c)
^\ n)
. k))
- ((
SVF1 (1,f,z0))
. ((c
^\ n)
. k))) by
A24,
FUNCT_2: 108
.= ((L
. ((h
^\ n)
. k))
+ (R
. ((h
^\ n)
. k))) by
A39
.= (((L
/* (h
^\ n))
. k)
+ (R
. ((h
^\ n)
. k))) by
A26,
FUNCT_2: 115
.= (((L
/* (h
^\ n))
. k)
+ ((R
/* (h
^\ n))
. k)) by
A42,
FUNCT_2: 115
.= (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
. k) by
SEQ_1: 7;
end;
then (((
SVF1 (1,f,z0))
/* ((h
+ c)
^\ n))
- ((
SVF1 (1,f,z0))
/* (c
^\ n)))
= ((L
/* (h
^\ n))
+ (R
/* (h
^\ n))) by
FUNCT_2: 63;
then
A43: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
= (((((
SVF1 (1,f,z0))
/* (h
+ c))
^\ n)
- ((
SVF1 (1,f,z0))
/* (c
^\ n)))
(#) ((h
^\ n)
" )) by
A38,
VALUED_0: 27
.= (((((
SVF1 (1,f,z0))
/* (h
+ c))
^\ n)
- (((
SVF1 (1,f,z0))
/* c)
^\ n))
(#) ((h
^\ n)
" )) by
A15,
VALUED_0: 27
.= (((((
SVF1 (1,f,z0))
/* (h
+ c))
- ((
SVF1 (1,f,z0))
/* c))
^\ n)
(#) ((h
^\ n)
" )) by
SEQM_3: 17
.= (((((
SVF1 (1,f,z0))
/* (h
+ c))
- ((
SVF1 (1,f,z0))
/* c))
^\ n)
(#) ((h
" )
^\ n)) by
SEQM_3: 18
.= (((((
SVF1 (1,f,z0))
/* (h
+ c))
- ((
SVF1 (1,f,z0))
/* c))
(#) (h
" ))
^\ n) by
SEQM_3: 19;
then
A44: (L
. 1)
= (
lim ((h
" )
(#) (((
SVF1 (1,f,z0))
/* (h
+ c))
- ((
SVF1 (1,f,z0))
/* c)))) by
A27,
SEQ_4: 22;
thus ((h
" )
(#) (((
SVF1 (1,f,z0))
/* (h
+ c))
- ((
SVF1 (1,f,z0))
/* c))) is
convergent by
A27,
A43,
SEQ_4: 21;
for x st x
in N2 holds (((
SVF1 (1,f,z0))
. x)
- ((
SVF1 (1,f,z0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A23,
A8;
hence thesis by
A1,
A3,
A9,
A44,
Th11;
end;
theorem ::
PDIFF_2:18
for z0 be
Element of (
REAL 2) holds for N be
Neighbourhood of ((
proj (2,2))
. z0) st f
is_partial_differentiable_in (z0,2) & N
c= (
dom (
SVF1 (2,f,z0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (2,2))
. z0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (2,f,z0))
/* (h
+ c))
- ((
SVF1 (2,f,z0))
/* c))) is
convergent & (
partdiff (f,z0,2))
= (
lim ((h
" )
(#) (((
SVF1 (2,f,z0))
/* (h
+ c))
- ((
SVF1 (2,f,z0))
/* c))))
proof
let z0 be
Element of (
REAL 2);
let N be
Neighbourhood of ((
proj (2,2))
. z0);
assume that
A1: f
is_partial_differentiable_in (z0,2) and
A2: N
c= (
dom (
SVF1 (2,f,z0)));
consider x0,y0 be
Real such that
A3: z0
=
<*x0, y0*> and
A4: ex N1 be
Neighbourhood of y0 st N1
c= (
dom (
SVF1 (2,f,z0))) & ex L, R st for y st y
in N1 holds (((
SVF1 (2,f,z0))
. y)
- ((
SVF1 (2,f,z0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A1,
Th10;
consider N1 be
Neighbourhood of y0 such that N1
c= (
dom (
SVF1 (2,f,z0))) and
A5: ex L, R st for y st y
in N1 holds (((
SVF1 (2,f,z0))
. y)
- ((
SVF1 (2,f,z0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A4;
A6: ((
proj (2,2))
. z0)
= y0 by
A3,
Th2;
then
consider N2 be
Neighbourhood of y0 such that
A7: N2
c= N and
A8: N2
c= N1 by
RCOMP_1: 17;
A9: N2
c= (
dom (
SVF1 (2,f,z0))) by
A2,
A7;
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A10: (
rng c)
=
{((
proj (2,2))
. z0)} and
A11: (
rng (h
+ c))
c= N;
consider g be
Real such that
A12:
0
< g and
A13: N2
=
].(y0
- g), (y0
+ g).[ by
RCOMP_1:def 6;
(y0
+
0 )
< (y0
+ g) & (y0
- g)
< (y0
-
0 ) by
A12,
XREAL_1: 8,
XREAL_1: 44;
then
A14: y0
in N2 by
A13;
A15: (
rng c)
c= (
dom (
SVF1 (2,f,z0)))
proof
let y be
object;
assume y
in (
rng c);
then y
= y0 by
A10,
A6,
TARSKI:def 1;
then y
in N by
A7,
A14;
hence thesis by
A2;
end;
ex n st (
rng (c
^\ n))
c= N2 & (
rng ((h
+ c)
^\ n))
c= N2
proof
y0
in (
rng c) by
A10,
A6,
TARSKI:def 1;
then
A16: (
lim c)
= y0 by
SEQ_4: 25;
(
lim h)
=
0 ;
then (
lim (h
+ c))
= (
0
+ y0) by
A16,
SEQ_2: 6
.= y0;
then
consider n be
Nat such that
A17: for m be
Nat st n
<= m holds
|.(((h
+ c)
. m)
- y0).|
< g by
A12,
SEQ_2:def 7;
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
take n;
A18: (
rng (c
^\ n))
=
{y0} by
A10,
A6,
VALUED_0: 26;
thus (
rng (c
^\ n))
c= N2 by
A14,
A18,
TARSKI:def 1;
let y be
object;
assume y
in (
rng ((h
+ c)
^\ n));
then
consider m such that
A19: y
= (((h
+ c)
^\ n)
. m) by
FUNCT_2: 113;
(n
+
0 )
<= (n
+ m) by
XREAL_1: 7;
then
A20:
|.(((h
+ c)
. (n
+ m))
- y0).|
< g by
A17;
then (((h
+ c)
. (m
+ n))
- y0)
< g by
SEQ_2: 1;
then ((((h
+ c)
^\ n)
. m)
- y0)
< g by
NAT_1:def 3;
then
A21: (((h
+ c)
^\ n)
. m)
< (y0
+ g) by
XREAL_1: 19;
(
- g)
< (((h
+ c)
. (m
+ n))
- y0) by
A20,
SEQ_2: 1;
then (
- g)
< ((((h
+ c)
^\ n)
. m)
- y0) by
NAT_1:def 3;
then (y0
+ (
- g))
< (((h
+ c)
^\ n)
. m) by
XREAL_1: 20;
hence thesis by
A13,
A19,
A21;
end;
then
consider n such that (
rng (c
^\ n))
c= N2 and
A22: (
rng ((h
+ c)
^\ n))
c= N2;
consider L, R such that
A23: for y st y
in N1 holds (((
SVF1 (2,f,z0))
. y)
- ((
SVF1 (2,f,z0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A5;
A24: (
rng (c
^\ n))
c= (
dom (
SVF1 (2,f,z0)))
proof
let y be
object;
assume
A25: y
in (
rng (c
^\ n));
(
rng (c
^\ n))
= (
rng c) by
VALUED_0: 26;
then y
= y0 by
A10,
A6,
A25,
TARSKI:def 1;
then y
in N by
A7,
A14;
hence thesis by
A2;
end;
A26: L is
total by
FDIFF_1:def 3;
A27: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )) is
convergent & (
lim (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )))
= (L
. 1)
proof
deffunc
F(
Nat) = ((L
. 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. $1));
consider s1 such that
A28: for k be
Nat holds (s1
. k)
=
F(k) from
SEQ_1:sch 1;
A29:
now
A30: (((h
^\ n)
" )
(#) (R
/* (h
^\ n))) is
convergent & (
lim (((h
^\ n)
" )
(#) (R
/* (h
^\ n))))
=
0 by
FDIFF_1:def 2;
let r be
Real;
assume
0
< r;
then
consider m be
Nat such that
A31: for k be
Nat st m
<= k holds
|.(((((h
^\ n)
" )
(#) (R
/* (h
^\ n)))
. k)
-
0 ).|
< r by
A30,
SEQ_2:def 7;
take n1 = m;
let k be
Nat such that
A32: n1
<= k;
|.((s1
. k)
- (L
. 1)).|
=
|.(((L
. 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. k))
- (L
. 1)).| by
A28
.=
|.(((((h
^\ n)
" )
(#) (R
/* (h
^\ n)))
. k)
-
0 ).|;
hence
|.((s1
. k)
- (L
. 1)).|
< r by
A31,
A32;
end;
consider s such that
A33: for p1 holds (L
. p1)
= (s
* p1) by
FDIFF_1:def 3;
A34: (L
. 1)
= (s
* 1) by
A33
.= s;
now
let m;
A35: ((h
^\ n)
. m)
<>
0 by
SEQ_1: 5;
thus ((((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
. m)
= ((((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
. m)
* (((h
^\ n)
" )
. m)) by
SEQ_1: 8
.= ((((L
/* (h
^\ n))
. m)
+ ((R
/* (h
^\ n))
. m))
* (((h
^\ n)
" )
. m)) by
SEQ_1: 7
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m))
+ (((R
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m)))
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
SEQ_1: 8
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
VALUED_1: 10
.= (((L
. ((h
^\ n)
. m))
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A26,
FUNCT_2: 115
.= (((s
* ((h
^\ n)
. m))
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A33
.= ((s
* (((h
^\ n)
. m)
* (((h
^\ n)
. m)
" )))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m))
.= ((s
* 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A35,
XCMPLX_0:def 7
.= (s1
. m) by
A28,
A34;
end;
then
A36: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
= s1 by
FUNCT_2: 63;
hence (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )) is
convergent by
A29,
SEQ_2:def 6;
hence thesis by
A36,
A29,
SEQ_2:def 7;
end;
A37: (
rng ((h
+ c)
^\ n))
c= (
dom (
SVF1 (2,f,z0))) by
A22,
A7,
A2;
A38: (
rng (h
+ c))
c= (
dom (
SVF1 (2,f,z0))) by
A11,
A2;
A39: for k holds (((
SVF1 (2,f,z0))
. (((h
+ c)
^\ n)
. k))
- ((
SVF1 (2,f,z0))
. ((c
^\ n)
. k)))
= ((L
. ((h
^\ n)
. k))
+ (R
. ((h
^\ n)
. k)))
proof
let k;
(((h
+ c)
^\ n)
. k)
in (
rng ((h
+ c)
^\ n)) by
VALUED_0: 28;
then
A40: (((h
+ c)
^\ n)
. k)
in N2 by
A22;
((c
^\ n)
. k)
in (
rng (c
^\ n)) & (
rng (c
^\ n))
= (
rng c) by
VALUED_0: 26,
VALUED_0: 28;
then
A41: ((c
^\ n)
. k)
= y0 by
A10,
A6,
TARSKI:def 1;
((((h
+ c)
^\ n)
. k)
- ((c
^\ n)
. k))
= ((((h
^\ n)
+ (c
^\ n))
. k)
- ((c
^\ n)
. k)) by
SEQM_3: 15
.= ((((h
^\ n)
. k)
+ ((c
^\ n)
. k))
- ((c
^\ n)
. k)) by
SEQ_1: 7
.= ((h
^\ n)
. k);
hence thesis by
A23,
A8,
A40,
A41;
end;
A42: R is
total by
FDIFF_1:def 2;
now
let k;
thus ((((
SVF1 (2,f,z0))
/* ((h
+ c)
^\ n))
- ((
SVF1 (2,f,z0))
/* (c
^\ n)))
. k)
= ((((
SVF1 (2,f,z0))
/* ((h
+ c)
^\ n))
. k)
- (((
SVF1 (2,f,z0))
/* (c
^\ n))
. k)) by
RFUNCT_2: 1
.= (((
SVF1 (2,f,z0))
. (((h
+ c)
^\ n)
. k))
- (((
SVF1 (2,f,z0))
/* (c
^\ n))
. k)) by
A37,
FUNCT_2: 108
.= (((
SVF1 (2,f,z0))
. (((h
+ c)
^\ n)
. k))
- ((
SVF1 (2,f,z0))
. ((c
^\ n)
. k))) by
A24,
FUNCT_2: 108
.= ((L
. ((h
^\ n)
. k))
+ (R
. ((h
^\ n)
. k))) by
A39
.= (((L
/* (h
^\ n))
. k)
+ (R
. ((h
^\ n)
. k))) by
A26,
FUNCT_2: 115
.= (((L
/* (h
^\ n))
. k)
+ ((R
/* (h
^\ n))
. k)) by
A42,
FUNCT_2: 115
.= (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
. k) by
SEQ_1: 7;
end;
then (((
SVF1 (2,f,z0))
/* ((h
+ c)
^\ n))
- ((
SVF1 (2,f,z0))
/* (c
^\ n)))
= ((L
/* (h
^\ n))
+ (R
/* (h
^\ n))) by
FUNCT_2: 63;
then
A43: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
= (((((
SVF1 (2,f,z0))
/* (h
+ c))
^\ n)
- ((
SVF1 (2,f,z0))
/* (c
^\ n)))
(#) ((h
^\ n)
" )) by
A38,
VALUED_0: 27
.= (((((
SVF1 (2,f,z0))
/* (h
+ c))
^\ n)
- (((
SVF1 (2,f,z0))
/* c)
^\ n))
(#) ((h
^\ n)
" )) by
A15,
VALUED_0: 27
.= (((((
SVF1 (2,f,z0))
/* (h
+ c))
- ((
SVF1 (2,f,z0))
/* c))
^\ n)
(#) ((h
^\ n)
" )) by
SEQM_3: 17
.= (((((
SVF1 (2,f,z0))
/* (h
+ c))
- ((
SVF1 (2,f,z0))
/* c))
^\ n)
(#) ((h
" )
^\ n)) by
SEQM_3: 18
.= (((((
SVF1 (2,f,z0))
/* (h
+ c))
- ((
SVF1 (2,f,z0))
/* c))
(#) (h
" ))
^\ n) by
SEQM_3: 19;
then
A44: (L
. 1)
= (
lim ((h
" )
(#) (((
SVF1 (2,f,z0))
/* (h
+ c))
- ((
SVF1 (2,f,z0))
/* c)))) by
A27,
SEQ_4: 22;
thus ((h
" )
(#) (((
SVF1 (2,f,z0))
/* (h
+ c))
- ((
SVF1 (2,f,z0))
/* c))) is
convergent by
A27,
A43,
SEQ_4: 21;
for y st y
in N2 holds (((
SVF1 (2,f,z0))
. y)
- ((
SVF1 (2,f,z0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A23,
A8;
hence thesis by
A1,
A3,
A9,
A44,
Th12;
end;
theorem ::
PDIFF_2:19
f1
is_partial_differentiable_in (z0,1) & f2
is_partial_differentiable_in (z0,1) implies (f1
(#) f2)
is_partial_differentiable_in (z0,1)
proof
assume that
A1: f1
is_partial_differentiable_in (z0,1) and
A2: f2
is_partial_differentiable_in (z0,1);
consider x0,y0 be
Real such that
A3: z0
=
<*x0, y0*> and
A4: ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f1,z0))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f1,z0))
. x)
- ((
SVF1 (1,f1,z0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A1,
Th9;
reconsider x0, y0 as
Element of
REAL by
XREAL_0:def 1;
consider N1 be
Neighbourhood of x0 such that
A5: N1
c= (
dom (
SVF1 (1,f1,z0))) and
A6: ex L, R st for x st x
in N1 holds (((
SVF1 (1,f1,z0))
. x)
- ((
SVF1 (1,f1,z0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A4;
consider L1, R1 such that
A7: for x st x
in N1 holds (((
SVF1 (1,f1,z0))
. x)
- ((
SVF1 (1,f1,z0))
. x0))
= ((L1
. (x
- x0))
+ (R1
. (x
- x0))) by
A6;
consider x1,y1 be
Real such that
A8: z0
=
<*x1, y1*> and
A9: ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,f2,z0))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f2,z0))
. x)
- ((
SVF1 (1,f2,z0))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A2,
Th9;
x0
= x1 by
A3,
A8,
FINSEQ_1: 77;
then
consider N2 be
Neighbourhood of x0 such that
A10: N2
c= (
dom (
SVF1 (1,f2,z0))) and
A11: ex L, R st for x st x
in N2 holds (((
SVF1 (1,f2,z0))
. x)
- ((
SVF1 (1,f2,z0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A9;
consider L2, R2 such that
A12: for x st x
in N2 holds (((
SVF1 (1,f2,z0))
. x)
- ((
SVF1 (1,f2,z0))
. x0))
= ((L2
. (x
- x0))
+ (R2
. (x
- x0))) by
A11;
consider N be
Neighbourhood of x0 such that
A13: N
c= N1 and
A14: N
c= N2 by
RCOMP_1: 17;
A15: N
c= (
dom (
SVF1 (1,f2,z0))) by
A10,
A14;
A16: N
c= (
dom (
SVF1 (1,f1,z0))) by
A5,
A13;
A17: for y st y
in N holds y
in (
dom (
SVF1 (1,(f1
(#) f2),z0)))
proof
let y;
assume
A18: y
in N;
then ((
reproj (1,z0))
. y)
in (
dom f1) & ((
reproj (1,z0))
. y)
in (
dom f2) by
A16,
A15,
FUNCT_1: 11;
then ((
reproj (1,z0))
. y)
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A19: ((
reproj (1,z0))
. y)
in (
dom (f1
(#) f2)) by
VALUED_1:def 4;
y
in (
dom (
reproj (1,z0))) by
A15,
A18,
FUNCT_1: 11;
hence thesis by
A19,
FUNCT_1: 11;
end;
then for y be
object st y
in N holds y
in (
dom (
SVF1 (1,(f1
(#) f2),z0)));
then
A20: N
c= (
dom (
SVF1 (1,(f1
(#) f2),z0)));
reconsider R12 = (((
SVF1 (1,f1,z0))
. x0)
(#) R2) as
RestFunc by
FDIFF_1: 5;
A21: L2 is
total by
FDIFF_1:def 3;
reconsider R11 = (((
SVF1 (1,f2,z0))
. x0)
(#) R1) as
RestFunc by
FDIFF_1: 5;
A22: L1 is
total by
FDIFF_1:def 3;
A23: R1 is
total by
FDIFF_1:def 2;
reconsider R17 = (R1
(#) R2) as
RestFunc by
FDIFF_1: 4;
reconsider R16 = (R1
(#) L2), R18 = (R2
(#) L1) as
RestFunc by
FDIFF_1: 7;
reconsider R14 = (L1
(#) L2) as
RestFunc by
FDIFF_1: 6;
reconsider R19 = (R16
+ R17) as
RestFunc by
FDIFF_1: 4;
reconsider R20 = (R19
+ R18) as
RestFunc by
FDIFF_1: 4;
A24: R14 is
total by
FDIFF_1:def 2;
A25: R18 is
total by
FDIFF_1:def 2;
A26: R2 is
total by
FDIFF_1:def 2;
reconsider R13 = (R11
+ R12) as
RestFunc by
FDIFF_1: 4;
reconsider L11 = (((
SVF1 (1,f2,z0))
. x0)
(#) L1), L12 = (((
SVF1 (1,f1,z0))
. x0)
(#) L2) as
LinearFunc by
FDIFF_1: 3;
reconsider L = (L11
+ L12) as
LinearFunc by
FDIFF_1: 2;
reconsider R15 = (R13
+ R14) as
RestFunc by
FDIFF_1: 4;
reconsider R = (R15
+ R20) as
RestFunc by
FDIFF_1: 4;
A27: R16 is
total by
FDIFF_1:def 2;
A28: L11 is
total & L12 is
total by
FDIFF_1:def 3;
now
A29: x0
in (
dom ((f1
(#) f2)
* (
reproj (1,z0)))) by
A17,
RCOMP_1: 16;
then
A30: x0
in (
dom (
reproj (1,z0))) by
FUNCT_1: 11;
((
reproj (1,z0))
. x0)
in (
dom (f1
(#) f2)) by
A29,
FUNCT_1: 11;
then
A31: ((
reproj (1,z0))
. x0)
in ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then ((
reproj (1,z0))
. x0)
in (
dom f1) by
XBOOLE_0:def 4;
then
A32: x0
in (
dom (f1
* (
reproj (1,z0)))) by
A30,
FUNCT_1: 11;
((
reproj (1,z0))
. x0)
in (
dom f2) by
A31,
XBOOLE_0:def 4;
then
A33: x0
in (
dom (f2
* (
reproj (1,z0)))) by
A30,
FUNCT_1: 11;
let x;
A34: x0
in N by
RCOMP_1: 16;
assume
A35: x
in N;
then
A36: ((((
SVF1 (1,f1,z0))
. x)
- ((
SVF1 (1,f1,z0))
. x0))
+ ((
SVF1 (1,f1,z0))
. x0))
= (((L1
. (x
- x0))
+ (R1
. (x
- x0)))
+ ((
SVF1 (1,f1,z0))
. x0)) by
A7,
A13;
A37: x
in (
dom ((f1
(#) f2)
* (
reproj (1,z0)))) by
A17,
A35;
then
A38: x
in (
dom (
reproj (1,z0))) by
FUNCT_1: 11;
((
reproj (1,z0))
. x)
in (
dom (f1
(#) f2)) by
A37,
FUNCT_1: 11;
then
A39: ((
reproj (1,z0))
. x)
in ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then ((
reproj (1,z0))
. x)
in (
dom f1) by
XBOOLE_0:def 4;
then
A40: x
in (
dom (f1
* (
reproj (1,z0)))) by
A38,
FUNCT_1: 11;
reconsider xx0 = (x
- x0) as
Element of
REAL by
XREAL_0:def 1;
((
reproj (1,z0))
. x)
in (
dom f2) by
A39,
XBOOLE_0:def 4;
then
A41: x
in (
dom (f2
* (
reproj (1,z0)))) by
A38,
FUNCT_1: 11;
thus (((
SVF1 (1,(f1
(#) f2),z0))
. x)
- ((
SVF1 (1,(f1
(#) f2),z0))
. x0))
= (((f1
(#) f2)
. ((
reproj (1,z0))
. x))
- ((
SVF1 (1,(f1
(#) f2),z0))
. x0)) by
A20,
A35,
FUNCT_1: 12
.= (((f1
. ((
reproj (1,z0))
. x))
* (f2
. ((
reproj (1,z0))
. x)))
- ((
SVF1 (1,(f1
(#) f2),z0))
. x0)) by
VALUED_1: 5
.= ((((
SVF1 (1,f1,z0))
. x)
* (f2
. ((
reproj (1,z0))
. x)))
- ((
SVF1 (1,(f1
(#) f2),z0))
. x0)) by
A40,
FUNCT_1: 12
.= ((((
SVF1 (1,f1,z0))
. x)
* ((
SVF1 (1,f2,z0))
. x))
- (((f1
(#) f2)
* (
reproj (1,z0)))
. x0)) by
A41,
FUNCT_1: 12
.= ((((
SVF1 (1,f1,z0))
. x)
* ((
SVF1 (1,f2,z0))
. x))
- ((f1
(#) f2)
. ((
reproj (1,z0))
. x0))) by
A20,
A34,
FUNCT_1: 12
.= ((((
SVF1 (1,f1,z0))
. x)
* ((
SVF1 (1,f2,z0))
. x))
- ((f1
. ((
reproj (1,z0))
. x0))
* (f2
. ((
reproj (1,z0))
. x0)))) by
VALUED_1: 5
.= ((((
SVF1 (1,f1,z0))
. x)
* ((
SVF1 (1,f2,z0))
. x))
- (((
SVF1 (1,f1,z0))
. x0)
* (f2
. ((
reproj (1,z0))
. x0)))) by
A32,
FUNCT_1: 12
.= ((((((
SVF1 (1,f1,z0))
. x)
* ((
SVF1 (1,f2,z0))
. x))
+ (
- (((
SVF1 (1,f1,z0))
. x)
* ((
SVF1 (1,f2,z0))
. x0))))
+ (((
SVF1 (1,f1,z0))
. x)
* ((
SVF1 (1,f2,z0))
. x0)))
- (((
SVF1 (1,f1,z0))
. x0)
* ((
SVF1 (1,f2,z0))
. x0))) by
A33,
FUNCT_1: 12
.= ((((
SVF1 (1,f1,z0))
. x)
* (((
SVF1 (1,f2,z0))
. x)
- ((
SVF1 (1,f2,z0))
. x0)))
+ ((((
SVF1 (1,f1,z0))
. x)
- ((
SVF1 (1,f1,z0))
. x0))
* ((
SVF1 (1,f2,z0))
. x0)))
.= ((((
SVF1 (1,f1,z0))
. x)
* (((
SVF1 (1,f2,z0))
. x)
- ((
SVF1 (1,f2,z0))
. x0)))
+ (((L1
. (x
- x0))
+ (R1
. (x
- x0)))
* ((
SVF1 (1,f2,z0))
. x0))) by
A7,
A13,
A35
.= ((((
SVF1 (1,f1,z0))
. x)
* (((
SVF1 (1,f2,z0))
. x)
- ((
SVF1 (1,f2,z0))
. x0)))
+ ((((
SVF1 (1,f2,z0))
. x0)
* (L1
. (x
- x0)))
+ (((
SVF1 (1,f2,z0))
. x0)
* (R1
. (x
- x0)))))
.= ((((
SVF1 (1,f1,z0))
. x)
* (((
SVF1 (1,f2,z0))
. x)
- ((
SVF1 (1,f2,z0))
. x0)))
+ ((L11
. (x
- x0))
+ (((
SVF1 (1,f2,z0))
. x0)
* (R1
. xx0)))) by
A22,
RFUNCT_1: 57
.= (((((L1
. (x
- x0))
+ (R1
. xx0))
+ ((
SVF1 (1,f1,z0))
. x0))
* (((
SVF1 (1,f2,z0))
. x)
- ((
SVF1 (1,f2,z0))
. x0)))
+ ((L11
. (x
- x0))
+ (R11
. (x
- x0)))) by
A23,
A36,
RFUNCT_1: 57
.= (((((L1
. (x
- x0))
+ (R1
. (x
- x0)))
+ ((
SVF1 (1,f1,z0))
. x0))
* ((L2
. (x
- x0))
+ (R2
. (x
- x0))))
+ ((L11
. (x
- x0))
+ (R11
. (x
- x0)))) by
A12,
A14,
A35
.= (((((L1
. (x
- x0))
+ (R1
. (x
- x0)))
* ((L2
. (x
- x0))
+ (R2
. (x
- x0))))
+ ((((
SVF1 (1,f1,z0))
. x0)
* (L2
. (x
- x0)))
+ (((
SVF1 (1,f1,z0))
. x0)
* (R2
. (x
- x0)))))
+ ((L11
. (x
- x0))
+ (R11
. (x
- x0))))
.= (((((L1
. (x
- x0))
+ (R1
. (x
- x0)))
* ((L2
. (x
- x0))
+ (R2
. (x
- x0))))
+ ((L12
. (x
- x0))
+ (((
SVF1 (1,f1,z0))
. x0)
* (R2
. (x
- x0)))))
+ ((L11
. (x
- x0))
+ (R11
. xx0))) by
A21,
RFUNCT_1: 57
.= (((((L1
. (x
- x0))
+ (R1
. xx0))
* ((L2
. (x
- x0))
+ (R2
. (x
- x0))))
+ ((L12
. (x
- x0))
+ (R12
. (x
- x0))))
+ ((L11
. (x
- x0))
+ (R11
. (x
- x0)))) by
A26,
RFUNCT_1: 57
.= ((((L1
. (x
- x0))
+ (R1
. (x
- x0)))
* ((L2
. (x
- x0))
+ (R2
. (x
- x0))))
+ ((L12
. (x
- x0))
+ ((L11
. (x
- x0))
+ ((R11
. (x
- x0))
+ (R12
. (x
- x0))))))
.= ((((L1
. (x
- x0))
+ (R1
. xx0))
* ((L2
. (x
- x0))
+ (R2
. (x
- x0))))
+ ((L12
. (x
- x0))
+ ((L11
. (x
- x0))
+ (R13
. (x
- x0))))) by
A23,
A26,
RFUNCT_1: 56
.= ((((L1
. (x
- x0))
+ (R1
. (x
- x0)))
* ((L2
. (x
- x0))
+ (R2
. (x
- x0))))
+ (((L11
. (x
- x0))
+ (L12
. (x
- x0)))
+ (R13
. (x
- x0))))
.= (((((L1
. (x
- x0))
* (L2
. (x
- x0)))
+ ((L1
. xx0)
* (R2
. (x
- x0))))
+ ((R1
. (x
- x0))
* ((L2
. (x
- x0))
+ (R2
. (x
- x0)))))
+ ((L
. (x
- x0))
+ (R13
. (x
- x0)))) by
A28,
RFUNCT_1: 56
.= ((((R14
. (x
- x0))
+ ((R2
. xx0)
* (L1
. (x
- x0))))
+ ((R1
. (x
- x0))
* ((L2
. (x
- x0))
+ (R2
. (x
- x0)))))
+ ((L
. (x
- x0))
+ (R13
. (x
- x0)))) by
A22,
A21,
RFUNCT_1: 56
.= ((((R14
. (x
- x0))
+ (R18
. xx0))
+ (((R1
. (x
- x0))
* (L2
. (x
- x0)))
+ ((R1
. (x
- x0))
* (R2
. (x
- x0)))))
+ ((L
. (x
- x0))
+ (R13
. (x
- x0)))) by
A22,
A26,
RFUNCT_1: 56
.= ((((R14
. (x
- x0))
+ (R18
. xx0))
+ ((R16
. (x
- x0))
+ ((R1
. (x
- x0))
* (R2
. (x
- x0)))))
+ ((L
. (x
- x0))
+ (R13
. (x
- x0)))) by
A21,
A23,
RFUNCT_1: 56
.= ((((R14
. (x
- x0))
+ (R18
. xx0))
+ ((R16
. (x
- x0))
+ (R17
. (x
- x0))))
+ ((L
. (x
- x0))
+ (R13
. (x
- x0)))) by
A23,
A26,
RFUNCT_1: 56
.= ((((R14
. (x
- x0))
+ (R18
. xx0))
+ (R19
. (x
- x0)))
+ ((L
. (x
- x0))
+ (R13
. (x
- x0)))) by
A23,
A26,
A27,
RFUNCT_1: 56
.= (((R14
. (x
- x0))
+ ((R19
. (x
- x0))
+ (R18
. (x
- x0))))
+ ((L
. (x
- x0))
+ (R13
. (x
- x0))))
.= (((L
. (x
- x0))
+ (R13
. xx0))
+ ((R14
. (x
- x0))
+ (R20
. (x
- x0)))) by
A23,
A26,
A27,
A25,
RFUNCT_1: 56
.= ((L
. (x
- x0))
+ (((R13
. (x
- x0))
+ (R14
. (x
- x0)))
+ (R20
. (x
- x0))))
.= ((L
. (x
- x0))
+ ((R15
. xx0)
+ (R20
. (x
- x0)))) by
A23,
A26,
A24,
RFUNCT_1: 56
.= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A23,
A26,
A24,
A27,
A25,
RFUNCT_1: 56;
end;
hence thesis by
A3,
A20,
Th9;
end;
theorem ::
PDIFF_2:20
f1
is_partial_differentiable_in (z0,2) & f2
is_partial_differentiable_in (z0,2) implies (f1
(#) f2)
is_partial_differentiable_in (z0,2)
proof
assume that
A1: f1
is_partial_differentiable_in (z0,2) and
A2: f2
is_partial_differentiable_in (z0,2);
consider x0,y0 be
Real such that
A3: z0
=
<*x0, y0*> and
A4: ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f1,z0))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f1,z0))
. y)
- ((
SVF1 (2,f1,z0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A1,
Th10;
reconsider x0, y0 as
Real;
consider N1 be
Neighbourhood of y0 such that
A5: N1
c= (
dom (
SVF1 (2,f1,z0))) and
A6: ex L, R st for y st y
in N1 holds (((
SVF1 (2,f1,z0))
. y)
- ((
SVF1 (2,f1,z0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A4;
consider L1, R1 such that
A7: for y st y
in N1 holds (((
SVF1 (2,f1,z0))
. y)
- ((
SVF1 (2,f1,z0))
. y0))
= ((L1
. (y
- y0))
+ (R1
. (y
- y0))) by
A6;
consider x1,y1 be
Real such that
A8: z0
=
<*x1, y1*> and
A9: ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,f2,z0))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f2,z0))
. y)
- ((
SVF1 (2,f2,z0))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A2,
Th10;
y0
= y1 by
A3,
A8,
FINSEQ_1: 77;
then
consider N2 be
Neighbourhood of y0 such that
A10: N2
c= (
dom (
SVF1 (2,f2,z0))) and
A11: ex L, R st for y st y
in N2 holds (((
SVF1 (2,f2,z0))
. y)
- ((
SVF1 (2,f2,z0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A9;
consider L2, R2 such that
A12: for y st y
in N2 holds (((
SVF1 (2,f2,z0))
. y)
- ((
SVF1 (2,f2,z0))
. y0))
= ((L2
. (y
- y0))
+ (R2
. (y
- y0))) by
A11;
consider N be
Neighbourhood of y0 such that
A13: N
c= N1 and
A14: N
c= N2 by
RCOMP_1: 17;
A15: N
c= (
dom (
SVF1 (2,f2,z0))) by
A10,
A14;
A16: N
c= (
dom (
SVF1 (2,f1,z0))) by
A5,
A13;
A17: for y st y
in N holds y
in (
dom (
SVF1 (2,(f1
(#) f2),z0)))
proof
let y;
assume
A18: y
in N;
then ((
reproj (2,z0))
. y)
in (
dom f1) & ((
reproj (2,z0))
. y)
in (
dom f2) by
A16,
A15,
FUNCT_1: 11;
then ((
reproj (2,z0))
. y)
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A19: ((
reproj (2,z0))
. y)
in (
dom (f1
(#) f2)) by
VALUED_1:def 4;
y
in (
dom (
reproj (2,z0))) by
A15,
A18,
FUNCT_1: 11;
hence thesis by
A19,
FUNCT_1: 11;
end;
then for y be
object st y
in N holds y
in (
dom (
SVF1 (2,(f1
(#) f2),z0)));
then
A20: N
c= (
dom (
SVF1 (2,(f1
(#) f2),z0)));
reconsider L12 = (((
SVF1 (2,f1,z0))
. y0)
(#) L2) as
LinearFunc by
FDIFF_1: 3;
A21: L2 is
total by
FDIFF_1:def 3;
reconsider L11 = (((
SVF1 (2,f2,z0))
. y0)
(#) L1) as
LinearFunc by
FDIFF_1: 3;
A22: L1 is
total by
FDIFF_1:def 3;
reconsider L = (L11
+ L12) as
LinearFunc by
FDIFF_1: 2;
A23: R1 is
total by
FDIFF_1:def 2;
reconsider R16 = (R1
(#) L2), R18 = (R2
(#) L1) as
RestFunc by
FDIFF_1: 7;
reconsider R14 = (L1
(#) L2) as
RestFunc by
FDIFF_1: 6;
reconsider R11 = (((
SVF1 (2,f2,z0))
. y0)
(#) R1), R12 = (((
SVF1 (2,f1,z0))
. y0)
(#) R2) as
RestFunc by
FDIFF_1: 5;
reconsider R13 = (R11
+ R12) as
RestFunc by
FDIFF_1: 4;
reconsider R15 = (R13
+ R14), R17 = (R1
(#) R2) as
RestFunc by
FDIFF_1: 4;
reconsider R19 = (R16
+ R17) as
RestFunc by
FDIFF_1: 4;
reconsider R20 = (R19
+ R18) as
RestFunc by
FDIFF_1: 4;
reconsider R = (R15
+ R20) as
RestFunc by
FDIFF_1: 4;
A24: R14 is
total by
FDIFF_1:def 2;
A25: R16 is
total by
FDIFF_1:def 2;
A26: R18 is
total by
FDIFF_1:def 2;
A27: R2 is
total by
FDIFF_1:def 2;
A28: L11 is
total & L12 is
total by
FDIFF_1:def 3;
now
A29: y0
in (
dom ((f1
(#) f2)
* (
reproj (2,z0)))) by
A17,
RCOMP_1: 16;
then
A30: y0
in (
dom (
reproj (2,z0))) by
FUNCT_1: 11;
((
reproj (2,z0))
. y0)
in (
dom (f1
(#) f2)) by
A29,
FUNCT_1: 11;
then
A31: ((
reproj (2,z0))
. y0)
in ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then ((
reproj (2,z0))
. y0)
in (
dom f1) by
XBOOLE_0:def 4;
then
A32: y0
in (
dom (f1
* (
reproj (2,z0)))) by
A30,
FUNCT_1: 11;
((
reproj (2,z0))
. y0)
in (
dom f2) by
A31,
XBOOLE_0:def 4;
then
A33: y0
in (
dom (f2
* (
reproj (2,z0)))) by
A30,
FUNCT_1: 11;
let y;
A34: y0
in N by
RCOMP_1: 16;
reconsider yy0 = (y
- y0) as
Element of
REAL by
XREAL_0:def 1;
assume
A35: y
in N;
then
A36: ((((
SVF1 (2,f1,z0))
. y)
- ((
SVF1 (2,f1,z0))
. y0))
+ ((
SVF1 (2,f1,z0))
. y0))
= (((L1
. (y
- y0))
+ (R1
. (y
- y0)))
+ ((
SVF1 (2,f1,z0))
. y0)) by
A7,
A13;
A37: y
in (
dom ((f1
(#) f2)
* (
reproj (2,z0)))) by
A17,
A35;
then
A38: y
in (
dom (
reproj (2,z0))) by
FUNCT_1: 11;
((
reproj (2,z0))
. y)
in (
dom (f1
(#) f2)) by
A37,
FUNCT_1: 11;
then
A39: ((
reproj (2,z0))
. y)
in ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then ((
reproj (2,z0))
. y)
in (
dom f1) by
XBOOLE_0:def 4;
then
A40: y
in (
dom (f1
* (
reproj (2,z0)))) by
A38,
FUNCT_1: 11;
((
reproj (2,z0))
. y)
in (
dom f2) by
A39,
XBOOLE_0:def 4;
then
A41: y
in (
dom (f2
* (
reproj (2,z0)))) by
A38,
FUNCT_1: 11;
thus (((
SVF1 (2,(f1
(#) f2),z0))
. y)
- ((
SVF1 (2,(f1
(#) f2),z0))
. y0))
= (((f1
(#) f2)
. ((
reproj (2,z0))
. y))
- ((
SVF1 (2,(f1
(#) f2),z0))
. y0)) by
A20,
A35,
FUNCT_1: 12
.= (((f1
. ((
reproj (2,z0))
. y))
* (f2
. ((
reproj (2,z0))
. y)))
- ((
SVF1 (2,(f1
(#) f2),z0))
. y0)) by
VALUED_1: 5
.= ((((
SVF1 (2,f1,z0))
. y)
* (f2
. ((
reproj (2,z0))
. y)))
- ((
SVF1 (2,(f1
(#) f2),z0))
. y0)) by
A40,
FUNCT_1: 12
.= ((((
SVF1 (2,f1,z0))
. y)
* ((
SVF1 (2,f2,z0))
. y))
- (((f1
(#) f2)
* (
reproj (2,z0)))
. y0)) by
A41,
FUNCT_1: 12
.= ((((
SVF1 (2,f1,z0))
. y)
* ((
SVF1 (2,f2,z0))
. y))
- ((f1
(#) f2)
. ((
reproj (2,z0))
. y0))) by
A20,
A34,
FUNCT_1: 12
.= ((((
SVF1 (2,f1,z0))
. y)
* ((
SVF1 (2,f2,z0))
. y))
- ((f1
. ((
reproj (2,z0))
. y0))
* (f2
. ((
reproj (2,z0))
. y0)))) by
VALUED_1: 5
.= ((((
SVF1 (2,f1,z0))
. y)
* ((
SVF1 (2,f2,z0))
. y))
- (((
SVF1 (2,f1,z0))
. y0)
* (f2
. ((
reproj (2,z0))
. y0)))) by
A32,
FUNCT_1: 12
.= ((((((
SVF1 (2,f1,z0))
. y)
* ((
SVF1 (2,f2,z0))
. y))
+ (
- (((
SVF1 (2,f1,z0))
. y)
* ((
SVF1 (2,f2,z0))
. y0))))
+ (((
SVF1 (2,f1,z0))
. y)
* ((
SVF1 (2,f2,z0))
. y0)))
- (((
SVF1 (2,f1,z0))
. y0)
* ((
SVF1 (2,f2,z0))
. y0))) by
A33,
FUNCT_1: 12
.= ((((
SVF1 (2,f1,z0))
. y)
* (((
SVF1 (2,f2,z0))
. y)
- ((
SVF1 (2,f2,z0))
. y0)))
+ ((((
SVF1 (2,f1,z0))
. y)
- ((
SVF1 (2,f1,z0))
. y0))
* ((
SVF1 (2,f2,z0))
. y0)))
.= ((((
SVF1 (2,f1,z0))
. y)
* (((
SVF1 (2,f2,z0))
. y)
- ((
SVF1 (2,f2,z0))
. y0)))
+ (((L1
. (y
- y0))
+ (R1
. (y
- y0)))
* ((
SVF1 (2,f2,z0))
. y0))) by
A7,
A13,
A35
.= ((((
SVF1 (2,f1,z0))
. y)
* (((
SVF1 (2,f2,z0))
. y)
- ((
SVF1 (2,f2,z0))
. y0)))
+ ((((
SVF1 (2,f2,z0))
. y0)
* (L1
. (y
- y0)))
+ (((
SVF1 (2,f2,z0))
. y0)
* (R1
. (y
- y0)))))
.= ((((
SVF1 (2,f1,z0))
. y)
* (((
SVF1 (2,f2,z0))
. y)
- ((
SVF1 (2,f2,z0))
. y0)))
+ ((L11
. (y
- y0))
+ (((
SVF1 (2,f2,z0))
. y0)
* (R1
. yy0)))) by
A22,
RFUNCT_1: 57
.= (((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
+ ((
SVF1 (2,f1,z0))
. y0))
* (((
SVF1 (2,f2,z0))
. y)
- ((
SVF1 (2,f2,z0))
. y0)))
+ ((L11
. (y
- y0))
+ (R11
. yy0))) by
A23,
A36,
RFUNCT_1: 57
.= (((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
+ ((
SVF1 (2,f1,z0))
. y0))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ ((L11
. (y
- y0))
+ (R11
. (y
- y0)))) by
A12,
A14,
A35
.= (((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ ((((
SVF1 (2,f1,z0))
. y0)
* (L2
. (y
- y0)))
+ (((
SVF1 (2,f1,z0))
. y0)
* (R2
. (y
- y0)))))
+ ((L11
. (y
- y0))
+ (R11
. (y
- y0))))
.= (((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ ((L12
. (y
- y0))
+ (((
SVF1 (2,f1,z0))
. y0)
* (R2
. (y
- y0)))))
+ ((L11
. yy0)
+ (R11
. (y
- y0)))) by
A21,
RFUNCT_1: 57
.= (((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ ((L12
. (y
- y0))
+ (R12
. (y
- y0))))
+ ((L11
. (y
- y0))
+ (R11
. yy0))) by
A27,
RFUNCT_1: 57
.= ((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ ((L12
. (y
- y0))
+ ((L11
. (y
- y0))
+ ((R11
. (y
- y0))
+ (R12
. (y
- y0))))))
.= ((((L1
. (y
- y0))
+ (R1
. yy0))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ ((L12
. (y
- y0))
+ ((L11
. (y
- y0))
+ (R13
. (y
- y0))))) by
A23,
A27,
RFUNCT_1: 56
.= ((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ (((L11
. (y
- y0))
+ (L12
. (y
- y0)))
+ (R13
. (y
- y0))))
.= (((((L1
. (y
- y0))
* (L2
. (y
- y0)))
+ ((L1
. (y
- y0))
* (R2
. (y
- y0))))
+ ((R1
. (y
- y0))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0)))))
+ ((L
. (y
- y0))
+ (R13
. yy0))) by
A28,
RFUNCT_1: 56
.= ((((R14
. (y
- y0))
+ ((R2
. (y
- y0))
* (L1
. (y
- y0))))
+ ((R1
. (y
- y0))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0)))))
+ ((L
. (y
- y0))
+ (R13
. yy0))) by
A22,
A21,
RFUNCT_1: 56
.= ((((R14
. (y
- y0))
+ (R18
. (y
- y0)))
+ (((R1
. (y
- y0))
* (L2
. (y
- y0)))
+ ((R1
. (y
- y0))
* (R2
. (y
- y0)))))
+ ((L
. (y
- y0))
+ (R13
. yy0))) by
A22,
A27,
RFUNCT_1: 56
.= ((((R14
. (y
- y0))
+ (R18
. (y
- y0)))
+ ((R16
. (y
- y0))
+ ((R1
. (y
- y0))
* (R2
. (y
- y0)))))
+ ((L
. (y
- y0))
+ (R13
. yy0))) by
A21,
A23,
RFUNCT_1: 56
.= ((((R14
. yy0)
+ (R18
. (y
- y0)))
+ ((R16
. (y
- y0))
+ (R17
. (y
- y0))))
+ ((L
. (y
- y0))
+ (R13
. (y
- y0)))) by
A23,
A27,
RFUNCT_1: 56
.= ((((R14
. yy0)
+ (R18
. (y
- y0)))
+ (R19
. (y
- y0)))
+ ((L
. (y
- y0))
+ (R13
. (y
- y0)))) by
A23,
A27,
A25,
RFUNCT_1: 56
.= (((R14
. (y
- y0))
+ ((R19
. (y
- y0))
+ (R18
. (y
- y0))))
+ ((L
. (y
- y0))
+ (R13
. (y
- y0))))
.= (((L
. yy0)
+ (R13
. (y
- y0)))
+ ((R14
. (y
- y0))
+ (R20
. (y
- y0)))) by
A23,
A27,
A25,
A26,
RFUNCT_1: 56
.= ((L
. yy0)
+ (((R13
. (y
- y0))
+ (R14
. (y
- y0)))
+ (R20
. (y
- y0))))
.= ((L
. yy0)
+ ((R15
. (y
- y0))
+ (R20
. (y
- y0)))) by
A23,
A27,
A24,
RFUNCT_1: 56
.= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A23,
A27,
A24,
A25,
A26,
RFUNCT_1: 56;
end;
hence thesis by
A3,
A20,
Th10;
end;
theorem ::
PDIFF_2:21
for z0 be
Element of (
REAL 2) holds f
is_partial_differentiable_in (z0,1) implies (
SVF1 (1,f,z0))
is_continuous_in ((
proj (1,2))
. z0) by
FDIFF_1: 24;
theorem ::
PDIFF_2:22
for z0 be
Element of (
REAL 2) holds f
is_partial_differentiable_in (z0,2) implies (
SVF1 (2,f,z0))
is_continuous_in ((
proj (2,2))
. z0) by
FDIFF_1: 24;