pdiff_5.miz
begin
reserve x,x0,x1,y,y0,y1,z,z0,z1,r,r1,s,p,p1 for
Real;
reserve u,u0 for
Element of (
REAL 3);
reserve n for
Element of
NAT ;
reserve s1 for
Real_Sequence;
reserve f,f1,f2 for
PartFunc of (
REAL 3),
REAL ;
reserve R,R1 for
RestFunc;
reserve L,L1 for
LinearFunc;
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
::
PDIFF_5:def1
pred f
is_hpartial_differentiable`11_in u means ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
::
PDIFF_5:def2
pred f
is_hpartial_differentiable`12_in u means ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)));
::
PDIFF_5:def3
pred f
is_hpartial_differentiable`13_in u means ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)));
::
PDIFF_5:def4
pred f
is_hpartial_differentiable`21_in u means ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
::
PDIFF_5:def5
pred f
is_hpartial_differentiable`22_in u means ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)));
::
PDIFF_5:def6
pred f
is_hpartial_differentiable`23_in u means ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)));
::
PDIFF_5:def7
pred f
is_hpartial_differentiable`31_in u means ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
::
PDIFF_5:def8
pred f
is_hpartial_differentiable`32_in u means ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)));
::
PDIFF_5:def9
pred f
is_hpartial_differentiable`33_in u means ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)));
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
assume
A1: f
is_hpartial_differentiable`11_in u;
::
PDIFF_5:def10
func
hpartdiff11 (f,u) ->
Real means
:
Def10: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st it
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
existence
proof
consider x0,y0,z0 be
Real such that
A2: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A1;
consider N be
Neighbourhood of x0 such that
A3: N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A2;
consider L, R such that
A4: for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A3;
consider r such that
A5: for p holds (L
. p)
= (r
* p) by
FDIFF_1:def 3;
take r;
(L
. 1)
= (r
* 1) by
A5
.= r;
hence thesis by
A2,
A3,
A4;
end;
uniqueness
proof
let r,s be
Real;
assume that
A6: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) and
A7: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st s
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
consider x0,y0,z0 be
Real such that
A8: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A6;
consider N be
Neighbourhood of x0 such that
A9: N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A8;
consider L, R such that
A10: r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A9;
consider x1,y1,z1 be
Real such that
A11: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st s
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A7;
consider N1 be
Neighbourhood of x1 such that
A12: N1
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st s
= (L
. 1) & for x st x
in N1 holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A11;
consider L1, R1 such that
A13: s
= (L1
. 1) & for x st x
in N1 holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x1))
= ((L1
. (x
- x1))
+ (R1
. (x
- x1))) by
A12;
consider r1 such that
A14: for p holds (L
. p)
= (r1
* p) by
FDIFF_1:def 3;
consider p1 such that
A15: for p holds (L1
. p)
= (p1
* p) by
FDIFF_1:def 3;
A16: r
= (r1
* 1) by
A10,
A14;
A17: s
= (p1
* 1) by
A13,
A15;
A18: x0
= x1 & y0
= y1 & z0
= z1 by
A8,
A11,
FINSEQ_1: 78;
A19:
now
let x;
assume
A20: x
in N & x
in N1;
then (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A10;
then ((L
. (x
- x0))
+ (R
. (x
- x0)))
= ((L1
. (x
- x0))
+ (R1
. (x
- x0))) by
A13,
A18,
A20;
then ((r1
* (x
- x0))
+ (R
. (x
- x0)))
= ((L1
. (x
- x0))
+ (R1
. (x
- x0))) by
A14;
hence ((r
* (x
- x0))
+ (R
. (x
- x0)))
= ((s
* (x
- x0))
+ (R1
. (x
- x0))) by
A15,
A16,
A17;
end;
consider N0 be
Neighbourhood of x0 such that
A21: N0
c= N & N0
c= N1 by
A18,
RCOMP_1: 17;
consider g be
Real such that
A22:
0
< g & N0
=
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 6;
deffunc
F(
Nat) = (g
/ ($1
+ 2));
consider s1 such that
A23: for n be
Nat holds (s1
. n)
=
F(n) from
SEQ_1:sch 1;
now
let n be
Nat;
(g
/ (n
+ 2))
<>
0 by
A22,
XREAL_1: 139;
hence (s1
. n)
<>
0 by
A23;
end;
then
A24: s1 is
non-zero by
SEQ_1: 5;
s1 is
convergent & (
lim s1)
=
0 by
A23,
SEQ_4: 31;
then
reconsider h = s1 as
0
-convergent
non-zero
Real_Sequence by
A24,
FDIFF_1:def 1;
A25: for n holds ex x st x
in N & x
in N1 & (h
. n)
= (x
- x0)
proof
let n;
A26: (g
/ (n
+ 2))
>
0 by
A22,
XREAL_1: 139;
(
0
+ 1)
< ((n
+ 1)
+ 1) by
XREAL_1: 6;
then (g
/ (n
+ 2))
< (g
/ 1) by
A22,
XREAL_1: 76;
then
A27: (x0
+ (g
/ (n
+ 2)))
< (x0
+ g) by
XREAL_1: 6;
(x0
+ (
- g))
< (x0
+ (g
/ (n
+ 2))) by
A22,
A26,
XREAL_1: 6;
then
A28: (x0
+ (g
/ (n
+ 2)))
in
].(x0
- g), (x0
+ g).[ by
A27;
take (x0
+ (g
/ (n
+ 2)));
thus thesis by
A21,
A22,
A23,
A28;
end;
A29: (r
- s)
in
REAL by
XREAL_0:def 1;
A30: for n be
Nat holds (r
- s)
= ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. n)
proof
let n be
Nat;
A31: n
in
NAT by
ORDINAL1:def 12;
then ex x st x
in N & x
in N1 & (h
. n)
= (x
- x0) by
A25;
then
A32: ((r
* (h
. n))
+ (R
. (h
. n)))
= ((s
* (h
. n))
+ (R1
. (h
. n))) by
A19;
A33: (h
. n)
<>
0 by
SEQ_1: 5;
A34: (((r
* (h
. n))
/ (h
. n))
+ ((R
. (h
. n))
/ (h
. n)))
= (((s
* (h
. n))
+ (R1
. (h
. n)))
/ (h
. n)) by
A32,
XCMPLX_1: 62;
A35: ((r
* (h
. n))
/ (h
. n))
= (r
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (r
* 1) by
A33,
XCMPLX_1: 60
.= r;
((s
* (h
. n))
/ (h
. n))
= (s
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (s
* 1) by
A33,
XCMPLX_1: 60
.= s;
then
A36: (r
+ ((R
. (h
. n))
/ (h
. n)))
= (s
+ ((R1
. (h
. n))
/ (h
. n))) by
A34,
A35,
XCMPLX_1: 62;
(
dom R)
=
REAL by
PARTFUN1:def 2;
then
A37: (
rng h)
c= (
dom R);
(
dom R1)
=
REAL by
PARTFUN1:def 2;
then
A38: (
rng h)
c= (
dom R1);
A39: ((R
. (h
. n))
/ (h
. n))
= ((R
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R
/* h)
. n)
* ((h
" )
. n)) by
A37,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R
/* h))
. n) by
VALUED_1: 5;
((R1
. (h
. n))
/ (h
. n))
= ((R1
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R1
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R1
/* h)
. n)
* ((h
" )
. n)) by
A38,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R1
/* h))
. n) by
VALUED_1: 5;
then r
= (s
+ ((((h
" )
(#) (R1
/* h))
. n)
- (((h
" )
(#) (R
/* h))
. n))) by
A36,
A39;
hence thesis by
RFUNCT_2: 1;
end;
then
A40: (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))) is
constant by
VALUED_0:def 18,
A29;
((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. 1)
= (r
- s) by
A30;
then
A41: (
lim (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))))
= (r
- s) by
A40,
SEQ_4: 25;
A42: ((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
=
0 by
FDIFF_1:def 2;
((h
" )
(#) (R1
/* h)) is
convergent & (
lim ((h
" )
(#) (R1
/* h)))
=
0 by
FDIFF_1:def 2;
then (r
- s)
= (
0
-
0 ) by
A41,
A42,
SEQ_2: 12;
hence thesis;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
assume
A1: f
is_hpartial_differentiable`12_in u;
::
PDIFF_5:def11
func
hpartdiff12 (f,u) ->
Real means
:
Def11: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st it
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)));
existence
proof
consider x0,y0,z0 be
Real such that
A2: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A1;
consider N be
Neighbourhood of y0 such that
A3: N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A2;
consider L, R such that
A4: for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A3;
consider r such that
A5: for p holds (L
. p)
= (r
* p) by
FDIFF_1:def 3;
take r;
(L
. 1)
= (r
* 1) by
A5
.= r;
hence thesis by
A2,
A3,
A4;
end;
uniqueness
proof
let r,s be
Real;
assume that
A6: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) and
A7: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st s
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)));
consider x0,y0,z0 be
Real such that
A8: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A6;
consider N be
Neighbourhood of y0 such that
A9: N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A8;
consider L, R such that
A10: r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A9;
consider x1,y1,z1 be
Real such that
A11: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st s
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A7;
consider N1 be
Neighbourhood of y1 such that
A12: N1
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st s
= (L
. 1) & for y st y
in N1 holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A11;
consider L1, R1 such that
A13: s
= (L1
. 1) & for y st y
in N1 holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y1))
= ((L1
. (y
- y1))
+ (R1
. (y
- y1))) by
A12;
consider r1 such that
A14: for p holds (L
. p)
= (r1
* p) by
FDIFF_1:def 3;
consider p1 such that
A15: for p holds (L1
. p)
= (p1
* p) by
FDIFF_1:def 3;
A16: r
= (r1
* 1) by
A10,
A14;
A17: s
= (p1
* 1) by
A13,
A15;
A18: x0
= x1 & y0
= y1 & z0
= z1 by
A8,
A11,
FINSEQ_1: 78;
A19:
now
let y;
assume
A20: y
in N & y
in N1;
then (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A10;
then ((L
. (y
- y0))
+ (R
. (y
- y0)))
= ((L1
. (y
- y0))
+ (R1
. (y
- y0))) by
A13,
A18,
A20;
then ((r1
* (y
- y0))
+ (R
. (y
- y0)))
= ((L1
. (y
- y0))
+ (R1
. (y
- y0))) by
A14;
hence ((r
* (y
- y0))
+ (R
. (y
- y0)))
= ((s
* (y
- y0))
+ (R1
. (y
- y0))) by
A15,
A16,
A17;
end;
consider N0 be
Neighbourhood of y0 such that
A21: N0
c= N & N0
c= N1 by
A18,
RCOMP_1: 17;
consider g be
Real such that
A22:
0
< g & N0
=
].(y0
- g), (y0
+ g).[ by
RCOMP_1:def 6;
deffunc
F(
Nat) = (g
/ ($1
+ 2));
consider s1 such that
A23: for n be
Nat holds (s1
. n)
=
F(n) from
SEQ_1:sch 1;
now
let n be
Nat;
(g
/ (n
+ 2))
<>
0 by
A22,
XREAL_1: 139;
hence (s1
. n)
<>
0 by
A23;
end;
then
A24: s1 is
non-zero by
SEQ_1: 5;
s1 is
convergent & (
lim s1)
=
0 by
A23,
SEQ_4: 31;
then
reconsider h = s1 as
0
-convergent
non-zero
Real_Sequence by
A24,
FDIFF_1:def 1;
A25: for n holds ex y st y
in N & y
in N1 & (h
. n)
= (y
- y0)
proof
let n;
A26: (g
/ (n
+ 2))
>
0 by
A22,
XREAL_1: 139;
(
0
+ 1)
< ((n
+ 1)
+ 1) by
XREAL_1: 6;
then (g
/ (n
+ 2))
< (g
/ 1) by
A22,
XREAL_1: 76;
then
A27: (y0
+ (g
/ (n
+ 2)))
< (y0
+ g) by
XREAL_1: 6;
(y0
+ (
- g))
< (y0
+ (g
/ (n
+ 2))) by
A22,
A26,
XREAL_1: 6;
then
A28: (y0
+ (g
/ (n
+ 2)))
in
].(y0
- g), (y0
+ g).[ by
A27;
take (y0
+ (g
/ (n
+ 2)));
thus thesis by
A21,
A22,
A23,
A28;
end;
A29: (r
- s)
in
REAL by
XREAL_0:def 1;
A30:
now
let n be
Nat;
A31: n
in
NAT by
ORDINAL1:def 12;
then ex y st y
in N & y
in N1 & (h
. n)
= (y
- y0) by
A25;
then
A32: ((r
* (h
. n))
+ (R
. (h
. n)))
= ((s
* (h
. n))
+ (R1
. (h
. n))) by
A19;
A33: (h
. n)
<>
0 by
SEQ_1: 5;
A34: (((r
* (h
. n))
/ (h
. n))
+ ((R
. (h
. n))
/ (h
. n)))
= (((s
* (h
. n))
+ (R1
. (h
. n)))
/ (h
. n)) by
A32,
XCMPLX_1: 62;
A35: ((r
* (h
. n))
/ (h
. n))
= (r
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (r
* 1) by
A33,
XCMPLX_1: 60
.= r;
((s
* (h
. n))
/ (h
. n))
= (s
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (s
* 1) by
A33,
XCMPLX_1: 60
.= s;
then
A36: (r
+ ((R
. (h
. n))
/ (h
. n)))
= (s
+ ((R1
. (h
. n))
/ (h
. n))) by
A34,
A35,
XCMPLX_1: 62;
(
dom R)
=
REAL by
PARTFUN1:def 2;
then
A37: (
rng h)
c= (
dom R);
(
dom R1)
=
REAL by
PARTFUN1:def 2;
then
A38: (
rng h)
c= (
dom R1);
A39: ((R
. (h
. n))
/ (h
. n))
= ((R
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R
/* h)
. n)
* ((h
" )
. n)) by
A37,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R
/* h))
. n) by
VALUED_1: 5;
((R1
. (h
. n))
/ (h
. n))
= ((R1
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R1
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R1
/* h)
. n)
* ((h
" )
. n)) by
A38,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R1
/* h))
. n) by
VALUED_1: 5;
then r
= (s
+ ((((h
" )
(#) (R1
/* h))
. n)
- (((h
" )
(#) (R
/* h))
. n))) by
A36,
A39;
hence (r
- s)
= ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. n) by
RFUNCT_2: 1;
end;
then
A40: (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))) is
constant by
VALUED_0:def 18,
A29;
((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. 1)
= (r
- s) by
A30;
then
A41: (
lim (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))))
= (r
- s) by
A40,
SEQ_4: 25;
A42: ((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
=
0 by
FDIFF_1:def 2;
((h
" )
(#) (R1
/* h)) is
convergent & (
lim ((h
" )
(#) (R1
/* h)))
=
0 by
FDIFF_1:def 2;
then (r
- s)
= (
0
-
0 ) by
A41,
A42,
SEQ_2: 12;
hence thesis;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
assume
A1: f
is_hpartial_differentiable`13_in u;
::
PDIFF_5:def12
func
hpartdiff13 (f,u) ->
Real means
:
Def12: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st it
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)));
existence
proof
consider x0,y0,z0 be
Real such that
A2: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A1;
consider N be
Neighbourhood of z0 such that
A3: N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A2;
consider L, R such that
A4: for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A3;
consider r such that
A5: for p holds (L
. p)
= (r
* p) by
FDIFF_1:def 3;
take r;
(L
. 1)
= (r
* 1) by
A5
.= r;
hence thesis by
A2,
A3,
A4;
end;
uniqueness
proof
let r,s be
Real;
assume that
A6: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) and
A7: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st s
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)));
consider x0,y0,z0 be
Real such that
A8: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A6;
consider N be
Neighbourhood of z0 such that
A9: N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A8;
consider L, R such that
A10: r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A9;
consider x1,y1,z1 be
Real such that
A11: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of z1 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st s
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A7;
consider N1 be
Neighbourhood of z1 such that
A12: N1
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st s
= (L
. 1) & for z st z
in N1 holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A11;
consider L1, R1 such that
A13: s
= (L1
. 1) & for z st z
in N1 holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z1))
= ((L1
. (z
- z1))
+ (R1
. (z
- z1))) by
A12;
consider r1 such that
A14: for p holds (L
. p)
= (r1
* p) by
FDIFF_1:def 3;
consider p1 such that
A15: for p holds (L1
. p)
= (p1
* p) by
FDIFF_1:def 3;
A16: r
= (r1
* 1) by
A10,
A14;
A17: s
= (p1
* 1) by
A13,
A15;
A18: x0
= x1 & y0
= y1 & z0
= z1 by
A8,
A11,
FINSEQ_1: 78;
A19:
now
let z;
assume
A20: z
in N & z
in N1;
then (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A10;
then ((L
. (z
- z0))
+ (R
. (z
- z0)))
= ((L1
. (z
- z0))
+ (R1
. (z
- z0))) by
A13,
A18,
A20;
then ((r1
* (z
- z0))
+ (R
. (z
- z0)))
= ((L1
. (z
- z0))
+ (R1
. (z
- z0))) by
A14;
hence ((r
* (z
- z0))
+ (R
. (z
- z0)))
= ((s
* (z
- z0))
+ (R1
. (z
- z0))) by
A15,
A16,
A17;
end;
consider N0 be
Neighbourhood of z0 such that
A21: N0
c= N & N0
c= N1 by
A18,
RCOMP_1: 17;
consider g be
Real such that
A22:
0
< g & N0
=
].(z0
- g), (z0
+ g).[ by
RCOMP_1:def 6;
deffunc
F(
Nat) = (g
/ ($1
+ 2));
consider s1 such that
A23: for n be
Nat holds (s1
. n)
=
F(n) from
SEQ_1:sch 1;
now
let n be
Nat;
(g
/ (n
+ 2))
<>
0 by
A22,
XREAL_1: 139;
hence (s1
. n)
<>
0 by
A23;
end;
then
A24: s1 is
non-zero by
SEQ_1: 5;
s1 is
convergent & (
lim s1)
=
0 by
A23,
SEQ_4: 31;
then
reconsider h = s1 as
0
-convergent
non-zero
Real_Sequence by
A24,
FDIFF_1:def 1;
A25: for n holds ex z st z
in N & z
in N1 & (h
. n)
= (z
- z0)
proof
let n;
A26: (g
/ (n
+ 2))
>
0 by
A22,
XREAL_1: 139;
(
0
+ 1)
< ((n
+ 1)
+ 1) by
XREAL_1: 6;
then (g
/ (n
+ 2))
< (g
/ 1) by
A22,
XREAL_1: 76;
then
A27: (z0
+ (g
/ (n
+ 2)))
< (z0
+ g) by
XREAL_1: 6;
(z0
+ (
- g))
< (z0
+ (g
/ (n
+ 2))) by
A22,
A26,
XREAL_1: 6;
then
A28: (z0
+ (g
/ (n
+ 2)))
in
].(z0
- g), (z0
+ g).[ by
A27;
take (z0
+ (g
/ (n
+ 2)));
thus thesis by
A21,
A22,
A23,
A28;
end;
A29: (r
- s)
in
REAL by
XREAL_0:def 1;
A30:
now
let n be
Nat;
A31: n
in
NAT by
ORDINAL1:def 12;
then ex z st z
in N & z
in N1 & (h
. n)
= (z
- z0) by
A25;
then
A32: ((r
* (h
. n))
+ (R
. (h
. n)))
= ((s
* (h
. n))
+ (R1
. (h
. n))) by
A19;
A33: (h
. n)
<>
0 by
SEQ_1: 5;
A34: (((r
* (h
. n))
/ (h
. n))
+ ((R
. (h
. n))
/ (h
. n)))
= (((s
* (h
. n))
+ (R1
. (h
. n)))
/ (h
. n)) by
A32,
XCMPLX_1: 62;
A35: ((r
* (h
. n))
/ (h
. n))
= (r
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (r
* 1) by
A33,
XCMPLX_1: 60
.= r;
((s
* (h
. n))
/ (h
. n))
= (s
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (s
* 1) by
A33,
XCMPLX_1: 60
.= s;
then
A36: (r
+ ((R
. (h
. n))
/ (h
. n)))
= (s
+ ((R1
. (h
. n))
/ (h
. n))) by
A34,
A35,
XCMPLX_1: 62;
(
dom R)
=
REAL by
PARTFUN1:def 2;
then
A37: (
rng h)
c= (
dom R);
(
dom R1)
=
REAL by
PARTFUN1:def 2;
then
A38: (
rng h)
c= (
dom R1);
A39: ((R
. (h
. n))
/ (h
. n))
= ((R
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R
/* h)
. n)
* ((h
" )
. n)) by
A37,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R
/* h))
. n) by
VALUED_1: 5;
((R1
. (h
. n))
/ (h
. n))
= ((R1
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R1
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R1
/* h)
. n)
* ((h
" )
. n)) by
A38,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R1
/* h))
. n) by
VALUED_1: 5;
then r
= (s
+ ((((h
" )
(#) (R1
/* h))
. n)
- (((h
" )
(#) (R
/* h))
. n))) by
A36,
A39;
hence (r
- s)
= ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. n) by
RFUNCT_2: 1;
end;
then
A40: (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))) is
constant by
VALUED_0:def 18,
A29;
((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. 1)
= (r
- s) by
A30;
then
A41: (
lim (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))))
= (r
- s) by
A40,
SEQ_4: 25;
A42: ((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
=
0 by
FDIFF_1:def 2;
((h
" )
(#) (R1
/* h)) is
convergent & (
lim ((h
" )
(#) (R1
/* h)))
=
0 by
FDIFF_1:def 2;
then (r
- s)
= (
0
-
0 ) by
A41,
A42,
SEQ_2: 12;
hence thesis;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
assume
A1: f
is_hpartial_differentiable`21_in u;
::
PDIFF_5:def13
func
hpartdiff21 (f,u) ->
Real means
:
Def13: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st it
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
existence
proof
consider x0,y0,z0 be
Real such that
A2: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A1;
consider N be
Neighbourhood of x0 such that
A3: N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A2;
consider L, R such that
A4: for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A3;
consider r such that
A5: for p holds (L
. p)
= (r
* p) by
FDIFF_1:def 3;
take r;
(L
. 1)
= (r
* 1) by
A5
.= r;
hence thesis by
A2,
A3,
A4;
end;
uniqueness
proof
let r,s be
Real;
assume that
A6: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) and
A7: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st s
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
consider x0,y0,z0 be
Real such that
A8: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A6;
consider N be
Neighbourhood of x0 such that
A9: N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A8;
consider L, R such that
A10: r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A9;
consider x1,y1,z1 be
Real such that
A11: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st s
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A7;
consider N1 be
Neighbourhood of x1 such that
A12: N1
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st s
= (L
. 1) & for x st x
in N1 holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A11;
consider L1, R1 such that
A13: s
= (L1
. 1) & for x st x
in N1 holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x1))
= ((L1
. (x
- x1))
+ (R1
. (x
- x1))) by
A12;
consider r1 such that
A14: for p holds (L
. p)
= (r1
* p) by
FDIFF_1:def 3;
consider p1 such that
A15: for p holds (L1
. p)
= (p1
* p) by
FDIFF_1:def 3;
A16: r
= (r1
* 1) by
A10,
A14;
A17: s
= (p1
* 1) by
A13,
A15;
A18: x0
= x1 & y0
= y1 & z0
= z1 by
A8,
A11,
FINSEQ_1: 78;
A19:
now
let x;
assume
A20: x
in N & x
in N1;
then (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A10;
then ((L
. (x
- x0))
+ (R
. (x
- x0)))
= ((L1
. (x
- x0))
+ (R1
. (x
- x0))) by
A13,
A18,
A20;
then ((r1
* (x
- x0))
+ (R
. (x
- x0)))
= ((L1
. (x
- x0))
+ (R1
. (x
- x0))) by
A14;
hence ((r
* (x
- x0))
+ (R
. (x
- x0)))
= ((s
* (x
- x0))
+ (R1
. (x
- x0))) by
A15,
A16,
A17;
end;
consider N0 be
Neighbourhood of x0 such that
A21: N0
c= N & N0
c= N1 by
A18,
RCOMP_1: 17;
consider g be
Real such that
A22:
0
< g & N0
=
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 6;
deffunc
F(
Nat) = (g
/ ($1
+ 2));
consider s1 such that
A23: for n be
Nat holds (s1
. n)
=
F(n) from
SEQ_1:sch 1;
now
let n be
Nat;
(g
/ (n
+ 2))
<>
0 by
A22,
XREAL_1: 139;
hence (s1
. n)
<>
0 by
A23;
end;
then
A24: s1 is
non-zero by
SEQ_1: 5;
s1 is
convergent & (
lim s1)
=
0 by
A23,
SEQ_4: 31;
then
reconsider h = s1 as
0
-convergent
non-zero
Real_Sequence by
A24,
FDIFF_1:def 1;
A25: for n holds ex x st x
in N & x
in N1 & (h
. n)
= (x
- x0)
proof
let n;
A26: (g
/ (n
+ 2))
>
0 by
A22,
XREAL_1: 139;
(
0
+ 1)
< ((n
+ 1)
+ 1) by
XREAL_1: 6;
then (g
/ (n
+ 2))
< (g
/ 1) by
A22,
XREAL_1: 76;
then
A27: (x0
+ (g
/ (n
+ 2)))
< (x0
+ g) by
XREAL_1: 6;
(x0
+ (
- g))
< (x0
+ (g
/ (n
+ 2))) by
A22,
A26,
XREAL_1: 6;
then
A28: (x0
+ (g
/ (n
+ 2)))
in
].(x0
- g), (x0
+ g).[ by
A27;
take (x0
+ (g
/ (n
+ 2)));
thus thesis by
A21,
A22,
A23,
A28;
end;
A29: (r
- s)
in
REAL by
XREAL_0:def 1;
A30:
now
let n be
Nat;
A31: n
in
NAT by
ORDINAL1:def 12;
then ex x st x
in N & x
in N1 & (h
. n)
= (x
- x0) by
A25;
then
A32: ((r
* (h
. n))
+ (R
. (h
. n)))
= ((s
* (h
. n))
+ (R1
. (h
. n))) by
A19;
A33: (h
. n)
<>
0 by
SEQ_1: 5;
A34: (((r
* (h
. n))
/ (h
. n))
+ ((R
. (h
. n))
/ (h
. n)))
= (((s
* (h
. n))
+ (R1
. (h
. n)))
/ (h
. n)) by
A32,
XCMPLX_1: 62;
A35: ((r
* (h
. n))
/ (h
. n))
= (r
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (r
* 1) by
A33,
XCMPLX_1: 60
.= r;
((s
* (h
. n))
/ (h
. n))
= (s
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (s
* 1) by
A33,
XCMPLX_1: 60
.= s;
then
A36: (r
+ ((R
. (h
. n))
/ (h
. n)))
= (s
+ ((R1
. (h
. n))
/ (h
. n))) by
A34,
A35,
XCMPLX_1: 62;
(
dom R)
=
REAL by
PARTFUN1:def 2;
then
A37: (
rng h)
c= (
dom R);
(
dom R1)
=
REAL by
PARTFUN1:def 2;
then
A38: (
rng h)
c= (
dom R1);
A39: ((R
. (h
. n))
/ (h
. n))
= ((R
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R
/* h)
. n)
* ((h
" )
. n)) by
A37,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R
/* h))
. n) by
VALUED_1: 5;
((R1
. (h
. n))
/ (h
. n))
= ((R1
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R1
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R1
/* h)
. n)
* ((h
" )
. n)) by
A38,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R1
/* h))
. n) by
VALUED_1: 5;
then r
= (s
+ ((((h
" )
(#) (R1
/* h))
. n)
- (((h
" )
(#) (R
/* h))
. n))) by
A36,
A39;
hence (r
- s)
= ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. n) by
A31,
VALUED_1: 15;
end;
then
A40: (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))) is
constant by
VALUED_0:def 18,
A29;
((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. 1)
= (r
- s) by
A30;
then
A41: (
lim (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))))
= (r
- s) by
A40,
SEQ_4: 25;
A42: ((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
=
0 by
FDIFF_1:def 2;
((h
" )
(#) (R1
/* h)) is
convergent & (
lim ((h
" )
(#) (R1
/* h)))
=
0 by
FDIFF_1:def 2;
then (r
- s)
= (
0
-
0 ) by
A41,
A42,
SEQ_2: 12;
hence thesis;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
assume
A1: f
is_hpartial_differentiable`22_in u;
::
PDIFF_5:def14
func
hpartdiff22 (f,u) ->
Real means
:
Def14: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st it
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)));
existence
proof
consider x0,y0,z0 be
Real such that
A2: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A1;
consider N be
Neighbourhood of y0 such that
A3: N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A2;
consider L, R such that
A4: for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A3;
consider r such that
A5: for p holds (L
. p)
= (r
* p) by
FDIFF_1:def 3;
take r;
(L
. 1)
= (r
* 1) by
A5
.= r;
hence thesis by
A2,
A3,
A4;
end;
uniqueness
proof
let r,s be
Real;
assume that
A6: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) and
A7: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st s
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)));
consider x0,y0,z0 be
Real such that
A8: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A6;
consider N be
Neighbourhood of y0 such that
A9: N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A8;
consider L, R such that
A10: r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A9;
consider x1,y1,z1 be
Real such that
A11: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st s
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A7;
consider N1 be
Neighbourhood of y1 such that
A12: N1
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st s
= (L
. 1) & for y st y
in N1 holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A11;
consider L1, R1 such that
A13: s
= (L1
. 1) & for y st y
in N1 holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y1))
= ((L1
. (y
- y1))
+ (R1
. (y
- y1))) by
A12;
consider r1 such that
A14: for p holds (L
. p)
= (r1
* p) by
FDIFF_1:def 3;
consider p1 such that
A15: for p holds (L1
. p)
= (p1
* p) by
FDIFF_1:def 3;
A16: r
= (r1
* 1) by
A10,
A14;
A17: s
= (p1
* 1) by
A13,
A15;
A18: x0
= x1 & y0
= y1 & z0
= z1 by
A8,
A11,
FINSEQ_1: 78;
A19:
now
let y;
assume
A20: y
in N & y
in N1;
then (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A10;
then ((L
. (y
- y0))
+ (R
. (y
- y0)))
= ((L1
. (y
- y0))
+ (R1
. (y
- y0))) by
A13,
A18,
A20;
then ((r1
* (y
- y0))
+ (R
. (y
- y0)))
= ((L1
. (y
- y0))
+ (R1
. (y
- y0))) by
A14;
hence ((r
* (y
- y0))
+ (R
. (y
- y0)))
= ((s
* (y
- y0))
+ (R1
. (y
- y0))) by
A15,
A16,
A17;
end;
consider N0 be
Neighbourhood of y0 such that
A21: N0
c= N & N0
c= N1 by
A18,
RCOMP_1: 17;
consider g be
Real such that
A22:
0
< g & N0
=
].(y0
- g), (y0
+ g).[ by
RCOMP_1:def 6;
deffunc
F(
Nat) = (g
/ ($1
+ 2));
consider s1 such that
A23: for n be
Nat holds (s1
. n)
=
F(n) from
SEQ_1:sch 1;
now
let n be
Nat;
(g
/ (n
+ 2))
<>
0 by
A22,
XREAL_1: 139;
hence (s1
. n)
<>
0 by
A23;
end;
then
A24: s1 is
non-zero by
SEQ_1: 5;
s1 is
convergent & (
lim s1)
=
0 by
A23,
SEQ_4: 31;
then
reconsider h = s1 as
0
-convergent
non-zero
Real_Sequence by
A24,
FDIFF_1:def 1;
A25: for n holds ex y st y
in N & y
in N1 & (h
. n)
= (y
- y0)
proof
let n;
A26: (g
/ (n
+ 2))
>
0 by
A22,
XREAL_1: 139;
(
0
+ 1)
< ((n
+ 1)
+ 1) by
XREAL_1: 6;
then (g
/ (n
+ 2))
< (g
/ 1) by
A22,
XREAL_1: 76;
then
A27: (y0
+ (g
/ (n
+ 2)))
< (y0
+ g) by
XREAL_1: 6;
(y0
+ (
- g))
< (y0
+ (g
/ (n
+ 2))) by
A22,
A26,
XREAL_1: 6;
then
A28: (y0
+ (g
/ (n
+ 2)))
in
].(y0
- g), (y0
+ g).[ by
A27;
take (y0
+ (g
/ (n
+ 2)));
thus thesis by
A21,
A22,
A23,
A28;
end;
A29: (r
- s)
in
REAL by
XREAL_0:def 1;
A30:
now
let n be
Nat;
A31: n
in
NAT by
ORDINAL1:def 12;
then ex y st y
in N & y
in N1 & (h
. n)
= (y
- y0) by
A25;
then
A32: ((r
* (h
. n))
+ (R
. (h
. n)))
= ((s
* (h
. n))
+ (R1
. (h
. n))) by
A19;
A33: (h
. n)
<>
0 by
SEQ_1: 5;
A34: (((r
* (h
. n))
/ (h
. n))
+ ((R
. (h
. n))
/ (h
. n)))
= (((s
* (h
. n))
+ (R1
. (h
. n)))
/ (h
. n)) by
A32,
XCMPLX_1: 62;
A35: ((r
* (h
. n))
/ (h
. n))
= (r
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (r
* 1) by
A33,
XCMPLX_1: 60
.= r;
((s
* (h
. n))
/ (h
. n))
= (s
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (s
* 1) by
A33,
XCMPLX_1: 60
.= s;
then
A36: (r
+ ((R
. (h
. n))
/ (h
. n)))
= (s
+ ((R1
. (h
. n))
/ (h
. n))) by
A34,
A35,
XCMPLX_1: 62;
(
dom R)
=
REAL by
PARTFUN1:def 2;
then
A37: (
rng h)
c= (
dom R);
(
dom R1)
=
REAL by
PARTFUN1:def 2;
then
A38: (
rng h)
c= (
dom R1);
A39: ((R
. (h
. n))
/ (h
. n))
= ((R
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R
/* h)
. n)
* ((h
" )
. n)) by
A37,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R
/* h))
. n) by
VALUED_1: 5;
((R1
. (h
. n))
/ (h
. n))
= ((R1
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R1
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R1
/* h)
. n)
* ((h
" )
. n)) by
A38,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R1
/* h))
. n) by
VALUED_1: 5;
then r
= (s
+ ((((h
" )
(#) (R1
/* h))
. n)
- (((h
" )
(#) (R
/* h))
. n))) by
A36,
A39;
hence (r
- s)
= ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. n) by
RFUNCT_2: 1;
end;
then
A40: (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))) is
constant by
VALUED_0:def 18,
A29;
((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. 1)
= (r
- s) by
A30;
then
A41: (
lim (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))))
= (r
- s) by
A40,
SEQ_4: 25;
A42: ((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
=
0 by
FDIFF_1:def 2;
((h
" )
(#) (R1
/* h)) is
convergent & (
lim ((h
" )
(#) (R1
/* h)))
=
0 by
FDIFF_1:def 2;
then (r
- s)
= (
0
-
0 ) by
A41,
A42,
SEQ_2: 12;
hence thesis;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
assume
A1: f
is_hpartial_differentiable`23_in u;
::
PDIFF_5:def15
func
hpartdiff23 (f,u) ->
Real means
:
Def15: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st it
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)));
existence
proof
consider x0,y0,z0 be
Real such that
A2: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A1;
consider N be
Neighbourhood of z0 such that
A3: N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A2;
consider L, R such that
A4: for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A3;
consider r such that
A5: for p holds (L
. p)
= (r
* p) by
FDIFF_1:def 3;
take r;
(L
. 1)
= (r
* 1) by
A5
.= r;
hence thesis by
A2,
A3,
A4;
end;
uniqueness
proof
let r,s be
Real;
assume that
A6: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) and
A7: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st s
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)));
consider x0,y0,z0 be
Real such that
A8: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A6;
consider N be
Neighbourhood of z0 such that
A9: N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A8;
consider L, R such that
A10: r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A9;
consider x1,y1,z1 be
Real such that
A11: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of z1 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st s
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A7;
consider N1 be
Neighbourhood of z1 such that
A12: N1
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st s
= (L
. 1) & for z st z
in N1 holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A11;
consider L1, R1 such that
A13: s
= (L1
. 1) & for z st z
in N1 holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z1))
= ((L1
. (z
- z1))
+ (R1
. (z
- z1))) by
A12;
consider r1 such that
A14: for p holds (L
. p)
= (r1
* p) by
FDIFF_1:def 3;
consider p1 such that
A15: for p holds (L1
. p)
= (p1
* p) by
FDIFF_1:def 3;
A16: r
= (r1
* 1) by
A10,
A14;
A17: s
= (p1
* 1) by
A13,
A15;
A18: x0
= x1 & y0
= y1 & z0
= z1 by
A8,
A11,
FINSEQ_1: 78;
A19:
now
let z;
assume
A20: z
in N & z
in N1;
then (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A10;
then ((L
. (z
- z0))
+ (R
. (z
- z0)))
= ((L1
. (z
- z0))
+ (R1
. (z
- z0))) by
A13,
A18,
A20;
then ((r1
* (z
- z0))
+ (R
. (z
- z0)))
= ((L1
. (z
- z0))
+ (R1
. (z
- z0))) by
A14;
hence ((r
* (z
- z0))
+ (R
. (z
- z0)))
= ((s
* (z
- z0))
+ (R1
. (z
- z0))) by
A15,
A16,
A17;
end;
consider N0 be
Neighbourhood of z0 such that
A21: N0
c= N & N0
c= N1 by
A18,
RCOMP_1: 17;
consider g be
Real such that
A22:
0
< g & N0
=
].(z0
- g), (z0
+ g).[ by
RCOMP_1:def 6;
deffunc
F(
Nat) = (g
/ ($1
+ 2));
consider s1 such that
A23: for n be
Nat holds (s1
. n)
=
F(n) from
SEQ_1:sch 1;
now
let n be
Nat;
(g
/ (n
+ 2))
<>
0 by
A22,
XREAL_1: 139;
hence (s1
. n)
<>
0 by
A23;
end;
then
A24: s1 is
non-zero by
SEQ_1: 5;
s1 is
convergent & (
lim s1)
=
0 by
A23,
SEQ_4: 31;
then
reconsider h = s1 as
0
-convergent
non-zero
Real_Sequence by
A24,
FDIFF_1:def 1;
A25: for n holds ex z st z
in N & z
in N1 & (h
. n)
= (z
- z0)
proof
let n;
A26: (g
/ (n
+ 2))
>
0 by
A22,
XREAL_1: 139;
(
0
+ 1)
< ((n
+ 1)
+ 1) by
XREAL_1: 6;
then (g
/ (n
+ 2))
< (g
/ 1) by
A22,
XREAL_1: 76;
then
A27: (z0
+ (g
/ (n
+ 2)))
< (z0
+ g) by
XREAL_1: 6;
(z0
+ (
- g))
< (z0
+ (g
/ (n
+ 2))) by
A22,
A26,
XREAL_1: 6;
then
A28: (z0
+ (g
/ (n
+ 2)))
in
].(z0
- g), (z0
+ g).[ by
A27;
take (z0
+ (g
/ (n
+ 2)));
thus thesis by
A21,
A22,
A23,
A28;
end;
A29: (r
- s)
in
REAL by
XREAL_0:def 1;
A30:
now
let n be
Nat;
A31: n
in
NAT by
ORDINAL1:def 12;
then ex z st z
in N & z
in N1 & (h
. n)
= (z
- z0) by
A25;
then
A32: ((r
* (h
. n))
+ (R
. (h
. n)))
= ((s
* (h
. n))
+ (R1
. (h
. n))) by
A19;
A33: (h
. n)
<>
0 by
SEQ_1: 5;
A34: (((r
* (h
. n))
/ (h
. n))
+ ((R
. (h
. n))
/ (h
. n)))
= (((s
* (h
. n))
+ (R1
. (h
. n)))
/ (h
. n)) by
A32,
XCMPLX_1: 62;
A35: ((r
* (h
. n))
/ (h
. n))
= (r
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (r
* 1) by
A33,
XCMPLX_1: 60
.= r;
((s
* (h
. n))
/ (h
. n))
= (s
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (s
* 1) by
A33,
XCMPLX_1: 60
.= s;
then
A36: (r
+ ((R
. (h
. n))
/ (h
. n)))
= (s
+ ((R1
. (h
. n))
/ (h
. n))) by
A34,
A35,
XCMPLX_1: 62;
(
dom R)
=
REAL by
PARTFUN1:def 2;
then
A37: (
rng h)
c= (
dom R);
(
dom R1)
=
REAL by
PARTFUN1:def 2;
then
A38: (
rng h)
c= (
dom R1);
A39: ((R
. (h
. n))
/ (h
. n))
= ((R
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R
/* h)
. n)
* ((h
" )
. n)) by
A37,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R
/* h))
. n) by
VALUED_1: 5;
((R1
. (h
. n))
/ (h
. n))
= ((R1
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R1
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R1
/* h)
. n)
* ((h
" )
. n)) by
A38,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R1
/* h))
. n) by
VALUED_1: 5;
then r
= (s
+ ((((h
" )
(#) (R1
/* h))
. n)
- (((h
" )
(#) (R
/* h))
. n))) by
A36,
A39;
hence (r
- s)
= ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. n) by
RFUNCT_2: 1;
end;
then
A40: (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))) is
constant by
VALUED_0:def 18,
A29;
((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. 1)
= (r
- s) by
A30;
then
A41: (
lim (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))))
= (r
- s) by
A40,
SEQ_4: 25;
A42: ((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
=
0 by
FDIFF_1:def 2;
((h
" )
(#) (R1
/* h)) is
convergent & (
lim ((h
" )
(#) (R1
/* h)))
=
0 by
FDIFF_1:def 2;
then (r
- s)
= (
0
-
0 ) by
A41,
A42,
SEQ_2: 12;
hence thesis;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
assume
A1: f
is_hpartial_differentiable`31_in u;
::
PDIFF_5:def16
func
hpartdiff31 (f,u) ->
Real means
:
Def16: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st it
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
existence
proof
consider x0,y0,z0 be
Real such that
A2: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A1;
consider N be
Neighbourhood of x0 such that
A3: N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A2;
consider L, R such that
A4: for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A3;
consider r such that
A5: for p holds (L
. p)
= (r
* p) by
FDIFF_1:def 3;
take r;
(L
. 1)
= (r
* 1) by
A5
.= r;
hence thesis by
A2,
A3,
A4;
end;
uniqueness
proof
let r,s be
Real;
assume that
A6: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) and
A7: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st s
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
consider x0,y0,z0 be
Real such that
A8: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A6;
consider N be
Neighbourhood of x0 such that
A9: N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A8;
consider L, R such that
A10: r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A9;
consider x1,y1,z1 be
Real such that
A11: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st s
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A7;
consider N1 be
Neighbourhood of x1 such that
A12: N1
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st s
= (L
. 1) & for x st x
in N1 holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A11;
consider L1, R1 such that
A13: s
= (L1
. 1) & for x st x
in N1 holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x1))
= ((L1
. (x
- x1))
+ (R1
. (x
- x1))) by
A12;
consider r1 such that
A14: for p holds (L
. p)
= (r1
* p) by
FDIFF_1:def 3;
consider p1 such that
A15: for p holds (L1
. p)
= (p1
* p) by
FDIFF_1:def 3;
A16: r
= (r1
* 1) by
A10,
A14;
A17: s
= (p1
* 1) by
A13,
A15;
A18: x0
= x1 & y0
= y1 & z0
= z1 by
A8,
A11,
FINSEQ_1: 78;
A19:
now
let x;
assume
A20: x
in N & x
in N1;
then (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A10;
then ((L
. (x
- x0))
+ (R
. (x
- x0)))
= ((L1
. (x
- x0))
+ (R1
. (x
- x0))) by
A13,
A18,
A20;
then ((r1
* (x
- x0))
+ (R
. (x
- x0)))
= ((L1
. (x
- x0))
+ (R1
. (x
- x0))) by
A14;
hence ((r
* (x
- x0))
+ (R
. (x
- x0)))
= ((s
* (x
- x0))
+ (R1
. (x
- x0))) by
A15,
A16,
A17;
end;
consider N0 be
Neighbourhood of x0 such that
A21: N0
c= N & N0
c= N1 by
A18,
RCOMP_1: 17;
consider g be
Real such that
A22:
0
< g & N0
=
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 6;
deffunc
F(
Nat) = (g
/ ($1
+ 2));
consider s1 such that
A23: for n be
Nat holds (s1
. n)
=
F(n) from
SEQ_1:sch 1;
now
let n be
Nat;
(g
/ (n
+ 2))
<>
0 by
A22,
XREAL_1: 139;
hence (s1
. n)
<>
0 by
A23;
end;
then
A24: s1 is
non-zero by
SEQ_1: 5;
s1 is
convergent & (
lim s1)
=
0 by
A23,
SEQ_4: 31;
then
reconsider h = s1 as
0
-convergent
non-zero
Real_Sequence by
A24,
FDIFF_1:def 1;
A25: for n holds ex x st x
in N & x
in N1 & (h
. n)
= (x
- x0)
proof
let n;
A26: (g
/ (n
+ 2))
>
0 by
A22,
XREAL_1: 139;
(
0
+ 1)
< ((n
+ 1)
+ 1) by
XREAL_1: 6;
then (g
/ (n
+ 2))
< (g
/ 1) by
A22,
XREAL_1: 76;
then
A27: (x0
+ (g
/ (n
+ 2)))
< (x0
+ g) by
XREAL_1: 6;
(x0
+ (
- g))
< (x0
+ (g
/ (n
+ 2))) by
A22,
A26,
XREAL_1: 6;
then
A28: (x0
+ (g
/ (n
+ 2)))
in
].(x0
- g), (x0
+ g).[ by
A27;
take (x0
+ (g
/ (n
+ 2)));
thus thesis by
A21,
A22,
A23,
A28;
end;
A29: (r
- s)
in
REAL by
XREAL_0:def 1;
A30:
now
let n be
Nat;
A31: n
in
NAT by
ORDINAL1:def 12;
then ex x st x
in N & x
in N1 & (h
. n)
= (x
- x0) by
A25;
then
A32: ((r
* (h
. n))
+ (R
. (h
. n)))
= ((s
* (h
. n))
+ (R1
. (h
. n))) by
A19;
A33: (h
. n)
<>
0 by
SEQ_1: 5;
A34: (((r
* (h
. n))
/ (h
. n))
+ ((R
. (h
. n))
/ (h
. n)))
= (((s
* (h
. n))
+ (R1
. (h
. n)))
/ (h
. n)) by
A32,
XCMPLX_1: 62;
A35: ((r
* (h
. n))
/ (h
. n))
= (r
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (r
* 1) by
A33,
XCMPLX_1: 60
.= r;
((s
* (h
. n))
/ (h
. n))
= (s
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (s
* 1) by
A33,
XCMPLX_1: 60
.= s;
then
A36: (r
+ ((R
. (h
. n))
/ (h
. n)))
= (s
+ ((R1
. (h
. n))
/ (h
. n))) by
A34,
A35,
XCMPLX_1: 62;
(
dom R)
=
REAL by
PARTFUN1:def 2;
then
A37: (
rng h)
c= (
dom R);
(
dom R1)
=
REAL by
PARTFUN1:def 2;
then
A38: (
rng h)
c= (
dom R1);
A39: ((R
. (h
. n))
/ (h
. n))
= ((R
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R
/* h)
. n)
* ((h
" )
. n)) by
A37,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R
/* h))
. n) by
VALUED_1: 5;
((R1
. (h
. n))
/ (h
. n))
= ((R1
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R1
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R1
/* h)
. n)
* ((h
" )
. n)) by
A38,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R1
/* h))
. n) by
VALUED_1: 5;
then r
= (s
+ ((((h
" )
(#) (R1
/* h))
. n)
- (((h
" )
(#) (R
/* h))
. n))) by
A36,
A39;
hence (r
- s)
= ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. n) by
A31,
VALUED_1: 15;
end;
then
A40: (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))) is
constant by
VALUED_0:def 18,
A29;
((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. 1)
= (r
- s) by
A30;
then
A41: (
lim (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))))
= (r
- s) by
A40,
SEQ_4: 25;
A42: ((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
=
0 by
FDIFF_1:def 2;
((h
" )
(#) (R1
/* h)) is
convergent & (
lim ((h
" )
(#) (R1
/* h)))
=
0 by
FDIFF_1:def 2;
then (r
- s)
= (
0
-
0 ) by
A41,
A42,
SEQ_2: 12;
hence thesis;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
assume
A1: f
is_hpartial_differentiable`32_in u;
::
PDIFF_5:def17
func
hpartdiff32 (f,u) ->
Real means
:
Def17: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st it
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)));
existence
proof
consider x0,y0,z0 be
Real such that
A2: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A1;
consider N be
Neighbourhood of y0 such that
A3: N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A2;
consider L, R such that
A4: for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A3;
consider r such that
A5: for p holds (L
. p)
= (r
* p) by
FDIFF_1:def 3;
take r;
(L
. 1)
= (r
* 1) by
A5
.= r;
hence thesis by
A2,
A3,
A4;
end;
uniqueness
proof
let r,s be
Real;
assume that
A6: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) and
A7: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st s
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)));
consider x0,y0,z0 be
Real such that
A8: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A6;
consider N be
Neighbourhood of y0 such that
A9: N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A8;
consider L, R such that
A10: r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A9;
consider x1,y1,z1 be
Real such that
A11: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st s
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A7;
consider N1 be
Neighbourhood of y1 such that
A12: N1
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st s
= (L
. 1) & for y st y
in N1 holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A11;
consider L1, R1 such that
A13: s
= (L1
. 1) & for y st y
in N1 holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y1))
= ((L1
. (y
- y1))
+ (R1
. (y
- y1))) by
A12;
consider r1 such that
A14: for p holds (L
. p)
= (r1
* p) by
FDIFF_1:def 3;
consider p1 such that
A15: for p holds (L1
. p)
= (p1
* p) by
FDIFF_1:def 3;
A16: r
= (r1
* 1) by
A10,
A14;
A17: s
= (p1
* 1) by
A13,
A15;
A18: x0
= x1 & y0
= y1 & z0
= z1 by
A8,
A11,
FINSEQ_1: 78;
A19:
now
let y;
assume
A20: y
in N & y
in N1;
then (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A10;
then ((L
. (y
- y0))
+ (R
. (y
- y0)))
= ((L1
. (y
- y0))
+ (R1
. (y
- y0))) by
A13,
A18,
A20;
then ((r1
* (y
- y0))
+ (R
. (y
- y0)))
= ((L1
. (y
- y0))
+ (R1
. (y
- y0))) by
A14;
hence ((r
* (y
- y0))
+ (R
. (y
- y0)))
= ((s
* (y
- y0))
+ (R1
. (y
- y0))) by
A15,
A16,
A17;
end;
consider N0 be
Neighbourhood of y0 such that
A21: N0
c= N & N0
c= N1 by
A18,
RCOMP_1: 17;
consider g be
Real such that
A22:
0
< g & N0
=
].(y0
- g), (y0
+ g).[ by
RCOMP_1:def 6;
deffunc
F(
Nat) = (g
/ ($1
+ 2));
consider s1 such that
A23: for n be
Nat holds (s1
. n)
=
F(n) from
SEQ_1:sch 1;
now
let n be
Nat;
(g
/ (n
+ 2))
<>
0 by
A22,
XREAL_1: 139;
hence (s1
. n)
<>
0 by
A23;
end;
then
A24: s1 is
non-zero by
SEQ_1: 5;
s1 is
convergent & (
lim s1)
=
0 by
A23,
SEQ_4: 31;
then
reconsider h = s1 as
0
-convergent
non-zero
Real_Sequence by
A24,
FDIFF_1:def 1;
A25: for n holds ex y st y
in N & y
in N1 & (h
. n)
= (y
- y0)
proof
let n;
A26: (g
/ (n
+ 2))
>
0 by
A22,
XREAL_1: 139;
(
0
+ 1)
< ((n
+ 1)
+ 1) by
XREAL_1: 6;
then (g
/ (n
+ 2))
< (g
/ 1) by
A22,
XREAL_1: 76;
then
A27: (y0
+ (g
/ (n
+ 2)))
< (y0
+ g) by
XREAL_1: 6;
(y0
+ (
- g))
< (y0
+ (g
/ (n
+ 2))) by
A22,
A26,
XREAL_1: 6;
then
A28: (y0
+ (g
/ (n
+ 2)))
in
].(y0
- g), (y0
+ g).[ by
A27;
take (y0
+ (g
/ (n
+ 2)));
thus thesis by
A21,
A22,
A23,
A28;
end;
A29: (r
- s)
in
REAL by
XREAL_0:def 1;
A30:
now
let n be
Nat;
A31: n
in
NAT by
ORDINAL1:def 12;
then ex y st y
in N & y
in N1 & (h
. n)
= (y
- y0) by
A25;
then
A32: ((r
* (h
. n))
+ (R
. (h
. n)))
= ((s
* (h
. n))
+ (R1
. (h
. n))) by
A19;
A33: (h
. n)
<>
0 by
SEQ_1: 5;
A34: (((r
* (h
. n))
/ (h
. n))
+ ((R
. (h
. n))
/ (h
. n)))
= (((s
* (h
. n))
+ (R1
. (h
. n)))
/ (h
. n)) by
A32,
XCMPLX_1: 62;
A35: ((r
* (h
. n))
/ (h
. n))
= (r
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (r
* 1) by
A33,
XCMPLX_1: 60
.= r;
((s
* (h
. n))
/ (h
. n))
= (s
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (s
* 1) by
A33,
XCMPLX_1: 60
.= s;
then
A36: (r
+ ((R
. (h
. n))
/ (h
. n)))
= (s
+ ((R1
. (h
. n))
/ (h
. n))) by
A34,
A35,
XCMPLX_1: 62;
(
dom R)
=
REAL by
PARTFUN1:def 2;
then
A37: (
rng h)
c= (
dom R);
(
dom R1)
=
REAL by
PARTFUN1:def 2;
then
A38: (
rng h)
c= (
dom R1);
A39: ((R
. (h
. n))
/ (h
. n))
= ((R
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R
/* h)
. n)
* ((h
" )
. n)) by
A37,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R
/* h))
. n) by
VALUED_1: 5;
((R1
. (h
. n))
/ (h
. n))
= ((R1
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R1
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R1
/* h)
. n)
* ((h
" )
. n)) by
A38,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R1
/* h))
. n) by
VALUED_1: 5;
then r
= (s
+ ((((h
" )
(#) (R1
/* h))
. n)
- (((h
" )
(#) (R
/* h))
. n))) by
A36,
A39;
hence (r
- s)
= ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. n) by
RFUNCT_2: 1;
end;
then
A40: (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))) is
constant by
VALUED_0:def 18,
A29;
((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. 1)
= (r
- s) by
A30;
then
A41: (
lim (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))))
= (r
- s) by
A40,
SEQ_4: 25;
A42: ((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
=
0 by
FDIFF_1:def 2;
((h
" )
(#) (R1
/* h)) is
convergent & (
lim ((h
" )
(#) (R1
/* h)))
=
0 by
FDIFF_1:def 2;
then (r
- s)
= (
0
-
0 ) by
A41,
A42,
SEQ_2: 12;
hence thesis;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
assume
A1: f
is_hpartial_differentiable`33_in u;
::
PDIFF_5:def18
func
hpartdiff33 (f,u) ->
Real means
:
Def18: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st it
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)));
existence
proof
consider x0,y0,z0 be
Real such that
A2: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A1;
consider N be
Neighbourhood of z0 such that
A3: N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A2;
consider L, R such that
A4: for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A3;
consider r such that
A5: for p holds (L
. p)
= (r
* p) by
FDIFF_1:def 3;
take r;
(L
. 1)
= (r
* 1) by
A5
.= r;
hence thesis by
A2,
A3,
A4;
end;
uniqueness
proof
let r,s be
Real;
assume that
A6: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) and
A7: ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st s
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)));
consider x0,y0,z0 be
Real such that
A8: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A6;
consider N be
Neighbourhood of z0 such that
A9: N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A8;
consider L, R such that
A10: r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A9;
consider x1,y1,z1 be
Real such that
A11: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of z1 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st s
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A7;
consider N1 be
Neighbourhood of z1 such that
A12: N1
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st s
= (L
. 1) & for z st z
in N1 holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A11;
consider L1, R1 such that
A13: s
= (L1
. 1) & for z st z
in N1 holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z1))
= ((L1
. (z
- z1))
+ (R1
. (z
- z1))) by
A12;
consider r1 such that
A14: for p holds (L
. p)
= (r1
* p) by
FDIFF_1:def 3;
consider p1 such that
A15: for p holds (L1
. p)
= (p1
* p) by
FDIFF_1:def 3;
A16: r
= (r1
* 1) by
A10,
A14;
A17: s
= (p1
* 1) by
A13,
A15;
A18: x0
= x1 & y0
= y1 & z0
= z1 by
A8,
A11,
FINSEQ_1: 78;
A19:
now
let z;
assume
A20: z
in N & z
in N1;
then (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A10;
then ((L
. (z
- z0))
+ (R
. (z
- z0)))
= ((L1
. (z
- z0))
+ (R1
. (z
- z0))) by
A13,
A18,
A20;
then ((r1
* (z
- z0))
+ (R
. (z
- z0)))
= ((L1
. (z
- z0))
+ (R1
. (z
- z0))) by
A14;
hence ((r
* (z
- z0))
+ (R
. (z
- z0)))
= ((s
* (z
- z0))
+ (R1
. (z
- z0))) by
A15,
A16,
A17;
end;
consider N0 be
Neighbourhood of z0 such that
A21: N0
c= N & N0
c= N1 by
A18,
RCOMP_1: 17;
consider g be
Real such that
A22:
0
< g & N0
=
].(z0
- g), (z0
+ g).[ by
RCOMP_1:def 6;
deffunc
F(
Nat) = (g
/ ($1
+ 2));
consider s1 such that
A23: for n be
Nat holds (s1
. n)
=
F(n) from
SEQ_1:sch 1;
now
let n be
Nat;
(g
/ (n
+ 2))
<>
0 by
A22,
XREAL_1: 139;
hence (s1
. n)
<>
0 by
A23;
end;
then
A24: s1 is
non-zero by
SEQ_1: 5;
s1 is
convergent & (
lim s1)
=
0 by
A23,
SEQ_4: 31;
then
reconsider h = s1 as
0
-convergent
non-zero
Real_Sequence by
A24,
FDIFF_1:def 1;
A25: for n holds ex z st z
in N & z
in N1 & (h
. n)
= (z
- z0)
proof
let n;
A26: (g
/ (n
+ 2))
>
0 by
A22,
XREAL_1: 139;
(
0
+ 1)
< ((n
+ 1)
+ 1) by
XREAL_1: 6;
then (g
/ (n
+ 2))
< (g
/ 1) by
A22,
XREAL_1: 76;
then
A27: (z0
+ (g
/ (n
+ 2)))
< (z0
+ g) by
XREAL_1: 6;
(z0
+ (
- g))
< (z0
+ (g
/ (n
+ 2))) by
A22,
A26,
XREAL_1: 6;
then
A28: (z0
+ (g
/ (n
+ 2)))
in
].(z0
- g), (z0
+ g).[ by
A27;
take (z0
+ (g
/ (n
+ 2)));
thus thesis by
A21,
A22,
A23,
A28;
end;
A29: (r
- s)
in
REAL by
XREAL_0:def 1;
A30:
now
let n be
Nat;
A31: n
in
NAT by
ORDINAL1:def 12;
then ex z st z
in N & z
in N1 & (h
. n)
= (z
- z0) by
A25;
then
A32: ((r
* (h
. n))
+ (R
. (h
. n)))
= ((s
* (h
. n))
+ (R1
. (h
. n))) by
A19;
A33: (h
. n)
<>
0 by
SEQ_1: 5;
A34: (((r
* (h
. n))
/ (h
. n))
+ ((R
. (h
. n))
/ (h
. n)))
= (((s
* (h
. n))
+ (R1
. (h
. n)))
/ (h
. n)) by
A32,
XCMPLX_1: 62;
A35: ((r
* (h
. n))
/ (h
. n))
= (r
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (r
* 1) by
A33,
XCMPLX_1: 60
.= r;
((s
* (h
. n))
/ (h
. n))
= (s
* ((h
. n)
/ (h
. n))) by
XCMPLX_1: 74
.= (s
* 1) by
A33,
XCMPLX_1: 60
.= s;
then
A36: (r
+ ((R
. (h
. n))
/ (h
. n)))
= (s
+ ((R1
. (h
. n))
/ (h
. n))) by
A34,
A35,
XCMPLX_1: 62;
(
dom R)
=
REAL by
PARTFUN1:def 2;
then
A37: (
rng h)
c= (
dom R);
(
dom R1)
=
REAL by
PARTFUN1:def 2;
then
A38: (
rng h)
c= (
dom R1);
A39: ((R
. (h
. n))
/ (h
. n))
= ((R
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R
/* h)
. n)
* ((h
" )
. n)) by
A37,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R
/* h))
. n) by
VALUED_1: 5;
((R1
. (h
. n))
/ (h
. n))
= ((R1
. (h
. n))
* ((h
. n)
" )) by
XCMPLX_0:def 9
.= ((R1
. (h
. n))
* ((h
" )
. n)) by
VALUED_1: 10
.= (((R1
/* h)
. n)
* ((h
" )
. n)) by
A38,
A31,
FUNCT_2: 108
.= (((h
" )
(#) (R1
/* h))
. n) by
VALUED_1: 5;
then r
= (s
+ ((((h
" )
(#) (R1
/* h))
. n)
- (((h
" )
(#) (R
/* h))
. n))) by
A36,
A39;
hence (r
- s)
= ((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. n) by
RFUNCT_2: 1;
end;
then
A40: (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))) is
constant by
VALUED_0:def 18,
A29;
((((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h)))
. 1)
= (r
- s) by
A30;
then
A41: (
lim (((h
" )
(#) (R1
/* h))
- ((h
" )
(#) (R
/* h))))
= (r
- s) by
A40,
SEQ_4: 25;
A42: ((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
=
0 by
FDIFF_1:def 2;
((h
" )
(#) (R1
/* h)) is
convergent & (
lim ((h
" )
(#) (R1
/* h)))
=
0 by
FDIFF_1:def 2;
then (r
- s)
= (
0
-
0 ) by
A41,
A42,
SEQ_2: 12;
hence thesis;
end;
end
theorem ::
PDIFF_5:1
u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`11_in u implies (
SVF1 (1,(
pdiff1 (f,1)),u))
is_differentiable_in x0
proof
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`11_in u;
consider x1, y1, z1 such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A2;
x0
= x1 by
A1,
A3,
FINSEQ_1: 78;
hence thesis by
A3,
FDIFF_1:def 4;
end;
theorem ::
PDIFF_5:2
u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`12_in u implies (
SVF1 (2,(
pdiff1 (f,1)),u))
is_differentiable_in y0
proof
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`12_in u;
consider x1, y1, z1 such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A2;
y0
= y1 by
A1,
A3,
FINSEQ_1: 78;
hence thesis by
A3,
FDIFF_1:def 4;
end;
theorem ::
PDIFF_5:3
u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`13_in u implies (
SVF1 (3,(
pdiff1 (f,1)),u))
is_differentiable_in z0
proof
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`13_in u;
consider x1, y1, z1 such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of z1 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A2;
z0
= z1 by
A1,
A3,
FINSEQ_1: 78;
hence thesis by
A3,
FDIFF_1:def 4;
end;
theorem ::
PDIFF_5:4
u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`21_in u implies (
SVF1 (1,(
pdiff1 (f,2)),u))
is_differentiable_in x0
proof
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`21_in u;
consider x1, y1, z1 such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A2;
x0
= x1 by
A1,
A3,
FINSEQ_1: 78;
hence thesis by
A3,
FDIFF_1:def 4;
end;
theorem ::
PDIFF_5:5
u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`22_in u implies (
SVF1 (2,(
pdiff1 (f,2)),u))
is_differentiable_in y0
proof
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`22_in u;
consider x1, y1, z1 such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A2;
y0
= y1 by
A1,
A3,
FINSEQ_1: 78;
hence thesis by
A3,
FDIFF_1:def 4;
end;
theorem ::
PDIFF_5:6
u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`23_in u implies (
SVF1 (3,(
pdiff1 (f,2)),u))
is_differentiable_in z0
proof
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`23_in u;
consider x1, y1, z1 such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of z1 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A2;
z0
= z1 by
A1,
A3,
FINSEQ_1: 78;
hence thesis by
A3,
FDIFF_1:def 4;
end;
theorem ::
PDIFF_5:7
u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`31_in u implies (
SVF1 (1,(
pdiff1 (f,3)),u))
is_differentiable_in x0
proof
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`31_in u;
consider x1, y1, z1 such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A2;
x0
= x1 by
A1,
A3,
FINSEQ_1: 78;
hence thesis by
A3,
FDIFF_1:def 4;
end;
theorem ::
PDIFF_5:8
u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`32_in u implies (
SVF1 (2,(
pdiff1 (f,3)),u))
is_differentiable_in y0
proof
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`32_in u;
consider x1, y1, z1 such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A2;
y0
= y1 by
A1,
A3,
FINSEQ_1: 78;
hence thesis by
A3,
FDIFF_1:def 4;
end;
theorem ::
PDIFF_5:9
u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`33_in u implies (
SVF1 (3,(
pdiff1 (f,3)),u))
is_differentiable_in z0
proof
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`33_in u;
consider x1, y1, z1 such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of z1 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A2;
z0
= z1 by
A1,
A3,
FINSEQ_1: 78;
hence thesis by
A3,
FDIFF_1:def 4;
end;
theorem ::
PDIFF_5:10
Th10: u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`11_in u implies (
hpartdiff11 (f,u))
= (
diff ((
SVF1 (1,(
pdiff1 (f,1)),u)),x0))
proof
set r = (
hpartdiff11 (f,u));
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`11_in u;
consider x1,y1,z1 be
Real such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A2;
consider N be
Neighbourhood of x1 such that
A4: N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A3;
consider L, R such that
A5: for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,1)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,1)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A4;
A6: x0
= x1 & y0
= y1 & z0
= z1 by
A1,
A3,
FINSEQ_1: 78;
A7: r
= (L
. 1) by
A2,
A3,
A4,
A5,
Def10;
(
SVF1 (1,(
pdiff1 (f,1)),u))
is_differentiable_in x0 by
A4,
A6,
FDIFF_1:def 4;
hence thesis by
A4,
A5,
A6,
A7,
FDIFF_1:def 5;
end;
theorem ::
PDIFF_5:11
Th11: u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`12_in u implies (
hpartdiff12 (f,u))
= (
diff ((
SVF1 (2,(
pdiff1 (f,1)),u)),y0))
proof
set r = (
hpartdiff12 (f,u));
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`12_in u;
consider x1,y1,z1 be
Real such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A2;
consider N be
Neighbourhood of y1 such that
A4: N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A3;
consider L, R such that
A5: for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,1)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,1)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A4;
A6: x0
= x1 & y0
= y1 & z0
= z1 by
A1,
A3,
FINSEQ_1: 78;
A7: r
= (L
. 1) by
A2,
A3,
A4,
A5,
Def11;
(
SVF1 (2,(
pdiff1 (f,1)),u))
is_differentiable_in y0 by
A4,
A6,
FDIFF_1:def 4;
hence thesis by
A4,
A5,
A6,
A7,
FDIFF_1:def 5;
end;
theorem ::
PDIFF_5:12
Th12: u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`13_in u implies (
hpartdiff13 (f,u))
= (
diff ((
SVF1 (3,(
pdiff1 (f,1)),u)),z0))
proof
set r = (
hpartdiff13 (f,u));
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`13_in u;
consider x1,y1,z1 be
Real such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of z1 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A2;
consider N be
Neighbourhood of z1 such that
A4: N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A3;
consider L, R such that
A5: for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,1)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,1)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A4;
A6: x0
= x1 & y0
= y1 & z0
= z1 by
A1,
A3,
FINSEQ_1: 78;
A7: r
= (L
. 1) by
A2,
A3,
A4,
A5,
Def12;
(
SVF1 (3,(
pdiff1 (f,1)),u))
is_differentiable_in z0 by
A4,
A6,
FDIFF_1:def 4;
hence thesis by
A4,
A5,
A6,
A7,
FDIFF_1:def 5;
end;
theorem ::
PDIFF_5:13
Th13: u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`21_in u implies (
hpartdiff21 (f,u))
= (
diff ((
SVF1 (1,(
pdiff1 (f,2)),u)),x0))
proof
set r = (
hpartdiff21 (f,u));
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`21_in u;
consider x1,y1,z1 be
Real such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A2;
consider N be
Neighbourhood of x1 such that
A4: N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A3;
consider L, R such that
A5: for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,2)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,2)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A4;
A6: x0
= x1 & y0
= y1 & z0
= z1 by
A1,
A3,
FINSEQ_1: 78;
A7: r
= (L
. 1) by
A2,
A3,
A4,
A5,
Def13;
(
SVF1 (1,(
pdiff1 (f,2)),u))
is_differentiable_in x0 by
A4,
A6,
FDIFF_1:def 4;
hence thesis by
A4,
A5,
A6,
A7,
FDIFF_1:def 5;
end;
theorem ::
PDIFF_5:14
Th14: u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`22_in u implies (
hpartdiff22 (f,u))
= (
diff ((
SVF1 (2,(
pdiff1 (f,2)),u)),y0))
proof
set r = (
hpartdiff22 (f,u));
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`22_in u;
consider x1,y1,z1 be
Real such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A2;
consider N be
Neighbourhood of y1 such that
A4: N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A3;
consider L, R such that
A5: for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,2)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,2)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A4;
A6: x0
= x1 & y0
= y1 & z0
= z1 by
A1,
A3,
FINSEQ_1: 78;
A7: r
= (L
. 1) by
A2,
A3,
A4,
A5,
Def14;
(
SVF1 (2,(
pdiff1 (f,2)),u))
is_differentiable_in y0 by
A4,
A6,
FDIFF_1:def 4;
hence thesis by
A4,
A5,
A6,
A7,
FDIFF_1:def 5;
end;
theorem ::
PDIFF_5:15
Th15: u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`23_in u implies (
hpartdiff23 (f,u))
= (
diff ((
SVF1 (3,(
pdiff1 (f,2)),u)),z0))
proof
set r = (
hpartdiff23 (f,u));
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`23_in u;
consider x1,y1,z1 be
Real such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of z1 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A2;
consider N be
Neighbourhood of z1 such that
A4: N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A3;
consider L, R such that
A5: for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,2)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,2)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A4;
A6: x0
= x1 & y0
= y1 & z0
= z1 by
A1,
A3,
FINSEQ_1: 78;
A7: r
= (L
. 1) by
A2,
A3,
A4,
A5,
Def15;
(
SVF1 (3,(
pdiff1 (f,2)),u))
is_differentiable_in z0 by
A4,
A6,
FDIFF_1:def 4;
hence thesis by
A4,
A5,
A6,
A7,
FDIFF_1:def 5;
end;
theorem ::
PDIFF_5:16
Th16: u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`31_in u implies (
hpartdiff31 (f,u))
= (
diff ((
SVF1 (1,(
pdiff1 (f,3)),u)),x0))
proof
set r = (
hpartdiff31 (f,u));
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`31_in u;
consider x1,y1,z1 be
Real such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A2;
consider N be
Neighbourhood of x1 such that
A4: N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A3;
consider L, R such that
A5: for x st x
in N holds (((
SVF1 (1,(
pdiff1 (f,3)),u))
. x)
- ((
SVF1 (1,(
pdiff1 (f,3)),u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A4;
A6: x0
= x1 & y0
= y1 & z0
= z1 by
A1,
A3,
FINSEQ_1: 78;
A7: r
= (L
. 1) by
A2,
A3,
A4,
A5,
Def16;
(
SVF1 (1,(
pdiff1 (f,3)),u))
is_differentiable_in x0 by
A4,
A6,
FDIFF_1:def 4;
hence thesis by
A4,
A5,
A6,
A7,
FDIFF_1:def 5;
end;
theorem ::
PDIFF_5:17
Th17: u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`32_in u implies (
hpartdiff32 (f,u))
= (
diff ((
SVF1 (2,(
pdiff1 (f,3)),u)),y0))
proof
set r = (
hpartdiff32 (f,u));
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`32_in u;
consider x1,y1,z1 be
Real such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A2;
consider N be
Neighbourhood of y1 such that
A4: N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A3;
consider L, R such that
A5: for y st y
in N holds (((
SVF1 (2,(
pdiff1 (f,3)),u))
. y)
- ((
SVF1 (2,(
pdiff1 (f,3)),u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A4;
A6: x0
= x1 & y0
= y1 & z0
= z1 by
A1,
A3,
FINSEQ_1: 78;
A7: r
= (L
. 1) by
A2,
A3,
A4,
A5,
Def17;
(
SVF1 (2,(
pdiff1 (f,3)),u))
is_differentiable_in y0 by
A4,
A6,
FDIFF_1:def 4;
hence thesis by
A4,
A5,
A6,
A7,
FDIFF_1:def 5;
end;
theorem ::
PDIFF_5:18
Th18: u
=
<*x0, y0, z0*> & f
is_hpartial_differentiable`33_in u implies (
hpartdiff33 (f,u))
= (
diff ((
SVF1 (3,(
pdiff1 (f,3)),u)),z0))
proof
set r = (
hpartdiff33 (f,u));
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_hpartial_differentiable`33_in u;
consider x1,y1,z1 be
Real such that
A3: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of z1 st N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A2;
consider N be
Neighbourhood of z1 such that
A4: N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A3;
consider L, R such that
A5: for z st z
in N holds (((
SVF1 (3,(
pdiff1 (f,3)),u))
. z)
- ((
SVF1 (3,(
pdiff1 (f,3)),u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A4;
A6: x0
= x1 & y0
= y1 & z0
= z1 by
A1,
A3,
FINSEQ_1: 78;
A7: r
= (L
. 1) by
A2,
A3,
A4,
A5,
Def18;
(
SVF1 (3,(
pdiff1 (f,3)),u))
is_differentiable_in z0 by
A4,
A6,
FDIFF_1:def 4;
hence thesis by
A4,
A5,
A6,
A7,
FDIFF_1:def 5;
end;
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
::
PDIFF_5:def19
pred f
is_hpartial_differentiable`11_on D means D
c= (
dom f) & for u be
Element of (
REAL 3) st u
in D holds (f
| D)
is_hpartial_differentiable`11_in u;
::
PDIFF_5:def20
pred f
is_hpartial_differentiable`12_on D means D
c= (
dom f) & for u be
Element of (
REAL 3) st u
in D holds (f
| D)
is_hpartial_differentiable`12_in u;
::
PDIFF_5:def21
pred f
is_hpartial_differentiable`13_on D means D
c= (
dom f) & for u be
Element of (
REAL 3) st u
in D holds (f
| D)
is_hpartial_differentiable`13_in u;
::
PDIFF_5:def22
pred f
is_hpartial_differentiable`21_on D means D
c= (
dom f) & for u be
Element of (
REAL 3) st u
in D holds (f
| D)
is_hpartial_differentiable`21_in u;
::
PDIFF_5:def23
pred f
is_hpartial_differentiable`22_on D means D
c= (
dom f) & for u be
Element of (
REAL 3) st u
in D holds (f
| D)
is_hpartial_differentiable`22_in u;
::
PDIFF_5:def24
pred f
is_hpartial_differentiable`23_on D means D
c= (
dom f) & for u be
Element of (
REAL 3) st u
in D holds (f
| D)
is_hpartial_differentiable`23_in u;
::
PDIFF_5:def25
pred f
is_hpartial_differentiable`31_on D means D
c= (
dom f) & for u be
Element of (
REAL 3) st u
in D holds (f
| D)
is_hpartial_differentiable`31_in u;
::
PDIFF_5:def26
pred f
is_hpartial_differentiable`32_on D means D
c= (
dom f) & for u be
Element of (
REAL 3) st u
in D holds (f
| D)
is_hpartial_differentiable`32_in u;
::
PDIFF_5:def27
pred f
is_hpartial_differentiable`33_on D means D
c= (
dom f) & for u be
Element of (
REAL 3) st u
in D holds (f
| D)
is_hpartial_differentiable`33_in u;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
assume
A1: f
is_hpartial_differentiable`11_on D;
::
PDIFF_5:def28
func f
`hpartial11| D ->
PartFunc of (
REAL 3),
REAL means (
dom it )
= D & for u be
Element of (
REAL 3) st u
in D holds (it
. u)
= (
hpartdiff11 (f,u));
existence
proof
defpred
P[
Element of (
REAL 3)] means $1
in D;
deffunc
F(
Element of (
REAL 3)) = (
In ((
hpartdiff11 (f,$1)),
REAL ));
consider F be
PartFunc of (
REAL 3),
REAL such that
A2: (for u be
Element of (
REAL 3) holds u
in (
dom F) iff
P[u]) & for u be
Element of (
REAL 3) st u
in (
dom F) holds (F
. u)
=
F(u) from
SEQ_1:sch 3;
take F;
for y be
object st y
in (
dom F) holds y
in D by
A2;
then
A3: (
dom F)
c= D by
TARSKI:def 3;
now
let y be
object such that
A4: y
in D;
D
c= (
dom f) by
A1;
then D is
Subset of (
REAL 3) by
XBOOLE_1: 1;
hence y
in (
dom F) by
A2,
A4;
end;
then D
c= (
dom F) by
TARSKI:def 3;
hence (
dom F)
= D by
A3;
hereby
let u be
Element of (
REAL 3);
assume u
in D;
then u
in (
dom F) by
A2;
hence (F
. u)
=
F(u) by
A2
.= (
hpartdiff11 (f,u));
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 3),
REAL ;
assume that
A5: (
dom F)
= D & for u be
Element of (
REAL 3) st u
in D holds (F
. u)
= (
hpartdiff11 (f,u)) and
A6: (
dom G)
= D & for u be
Element of (
REAL 3) st u
in D holds (G
. u)
= (
hpartdiff11 (f,u));
now
let u be
Element of (
REAL 3);
assume
A7: u
in (
dom F);
then (F
. u)
= (
hpartdiff11 (f,u)) by
A5;
hence (F
. u)
= (G
. u) by
A5,
A6,
A7;
end;
hence thesis by
A5,
A6,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
assume
A1: f
is_hpartial_differentiable`12_on D;
::
PDIFF_5:def29
func f
`hpartial12| D ->
PartFunc of (
REAL 3),
REAL means (
dom it )
= D & for u be
Element of (
REAL 3) st u
in D holds (it
. u)
= (
hpartdiff12 (f,u));
existence
proof
defpred
P[
Element of (
REAL 3)] means $1
in D;
deffunc
F(
Element of (
REAL 3)) = (
In ((
hpartdiff12 (f,$1)),
REAL ));
consider F be
PartFunc of (
REAL 3),
REAL such that
A2: (for u be
Element of (
REAL 3) holds u
in (
dom F) iff
P[u]) & for u be
Element of (
REAL 3) st u
in (
dom F) holds (F
. u)
=
F(u) from
SEQ_1:sch 3;
take F;
for y be
object st y
in (
dom F) holds y
in D by
A2;
then
A3: (
dom F)
c= D by
TARSKI:def 3;
now
let y be
object such that
A4: y
in D;
D
c= (
dom f) by
A1;
then D is
Subset of (
REAL 3) by
XBOOLE_1: 1;
hence y
in (
dom F) by
A2,
A4;
end;
then D
c= (
dom F) by
TARSKI:def 3;
hence (
dom F)
= D by
A3;
hereby
let u be
Element of (
REAL 3);
assume u
in D;
then u
in (
dom F) by
A2;
hence (F
. u)
=
F(u) by
A2
.= (
hpartdiff12 (f,u));
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 3),
REAL ;
assume that
A5: (
dom F)
= D & for u be
Element of (
REAL 3) st u
in D holds (F
. u)
= (
hpartdiff12 (f,u)) and
A6: (
dom G)
= D & for u be
Element of (
REAL 3) st u
in D holds (G
. u)
= (
hpartdiff12 (f,u));
now
let u be
Element of (
REAL 3);
assume
A7: u
in (
dom F);
then (F
. u)
= (
hpartdiff12 (f,u)) by
A5;
hence (F
. u)
= (G
. u) by
A5,
A6,
A7;
end;
hence thesis by
A5,
A6,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
assume
A1: f
is_hpartial_differentiable`13_on D;
::
PDIFF_5:def30
func f
`hpartial13| D ->
PartFunc of (
REAL 3),
REAL means (
dom it )
= D & for u be
Element of (
REAL 3) st u
in D holds (it
. u)
= (
hpartdiff13 (f,u));
existence
proof
defpred
P[
Element of (
REAL 3)] means $1
in D;
deffunc
F(
Element of (
REAL 3)) = (
In ((
hpartdiff13 (f,$1)),
REAL ));
consider F be
PartFunc of (
REAL 3),
REAL such that
A2: (for u be
Element of (
REAL 3) holds u
in (
dom F) iff
P[u]) & for u be
Element of (
REAL 3) st u
in (
dom F) holds (F
. u)
=
F(u) from
SEQ_1:sch 3;
take F;
for y be
object st y
in (
dom F) holds y
in D by
A2;
then
A3: (
dom F)
c= D by
TARSKI:def 3;
now
let y be
object such that
A4: y
in D;
D
c= (
dom f) by
A1;
then D is
Subset of (
REAL 3) by
XBOOLE_1: 1;
hence y
in (
dom F) by
A2,
A4;
end;
then D
c= (
dom F) by
TARSKI:def 3;
hence (
dom F)
= D by
A3;
hereby
let u be
Element of (
REAL 3);
assume u
in D;
then u
in (
dom F) by
A2;
hence (F
. u)
=
F(u) by
A2
.= (
hpartdiff13 (f,u));
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 3),
REAL ;
assume that
A5: (
dom F)
= D & for u be
Element of (
REAL 3) st u
in D holds (F
. u)
= (
hpartdiff13 (f,u)) and
A6: (
dom G)
= D & for u be
Element of (
REAL 3) st u
in D holds (G
. u)
= (
hpartdiff13 (f,u));
now
let u be
Element of (
REAL 3);
assume
A7: u
in (
dom F);
then (F
. u)
= (
hpartdiff13 (f,u)) by
A5;
hence (F
. u)
= (G
. u) by
A5,
A6,
A7;
end;
hence thesis by
A5,
A6,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
assume
A1: f
is_hpartial_differentiable`21_on D;
::
PDIFF_5:def31
func f
`hpartial21| D ->
PartFunc of (
REAL 3),
REAL means (
dom it )
= D & for u be
Element of (
REAL 3) st u
in D holds (it
. u)
= (
hpartdiff21 (f,u));
existence
proof
defpred
P[
Element of (
REAL 3)] means $1
in D;
deffunc
F(
Element of (
REAL 3)) = (
In ((
hpartdiff21 (f,$1)),
REAL ));
consider F be
PartFunc of (
REAL 3),
REAL such that
A2: (for u be
Element of (
REAL 3) holds u
in (
dom F) iff
P[u]) & for u be
Element of (
REAL 3) st u
in (
dom F) holds (F
. u)
=
F(u) from
SEQ_1:sch 3;
take F;
for y be
object st y
in (
dom F) holds y
in D by
A2;
then
A3: (
dom F)
c= D by
TARSKI:def 3;
now
let y be
object such that
A4: y
in D;
D
c= (
dom f) by
A1;
then D is
Subset of (
REAL 3) by
XBOOLE_1: 1;
hence y
in (
dom F) by
A2,
A4;
end;
then D
c= (
dom F) by
TARSKI:def 3;
hence (
dom F)
= D by
A3;
hereby
let u be
Element of (
REAL 3);
assume u
in D;
then u
in (
dom F) by
A2;
hence (F
. u)
=
F(u) by
A2
.= (
hpartdiff21 (f,u));
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 3),
REAL ;
assume that
A5: (
dom F)
= D & for u be
Element of (
REAL 3) st u
in D holds (F
. u)
= (
hpartdiff21 (f,u)) and
A6: (
dom G)
= D & for u be
Element of (
REAL 3) st u
in D holds (G
. u)
= (
hpartdiff21 (f,u));
now
let u be
Element of (
REAL 3);
assume
A7: u
in (
dom F);
then (F
. u)
= (
hpartdiff21 (f,u)) by
A5;
hence (F
. u)
= (G
. u) by
A5,
A6,
A7;
end;
hence thesis by
A5,
A6,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
assume
A1: f
is_hpartial_differentiable`22_on D;
::
PDIFF_5:def32
func f
`hpartial22| D ->
PartFunc of (
REAL 3),
REAL means (
dom it )
= D & for u be
Element of (
REAL 3) st u
in D holds (it
. u)
= (
hpartdiff22 (f,u));
existence
proof
defpred
P[
Element of (
REAL 3)] means $1
in D;
deffunc
F(
Element of (
REAL 3)) = (
In ((
hpartdiff22 (f,$1)),
REAL ));
consider F be
PartFunc of (
REAL 3),
REAL such that
A2: (for u be
Element of (
REAL 3) holds u
in (
dom F) iff
P[u]) & for u be
Element of (
REAL 3) st u
in (
dom F) holds (F
. u)
=
F(u) from
SEQ_1:sch 3;
take F;
for y be
object st y
in (
dom F) holds y
in D by
A2;
then
A3: (
dom F)
c= D by
TARSKI:def 3;
now
let y be
object such that
A4: y
in D;
D
c= (
dom f) by
A1;
then D is
Subset of (
REAL 3) by
XBOOLE_1: 1;
hence y
in (
dom F) by
A2,
A4;
end;
then D
c= (
dom F) by
TARSKI:def 3;
hence (
dom F)
= D by
A3;
hereby
let u be
Element of (
REAL 3);
assume u
in D;
then u
in (
dom F) by
A2;
hence (F
. u)
=
F(u) by
A2
.= (
hpartdiff22 (f,u));
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 3),
REAL ;
assume that
A5: (
dom F)
= D & for u be
Element of (
REAL 3) st u
in D holds (F
. u)
= (
hpartdiff22 (f,u)) and
A6: (
dom G)
= D & for u be
Element of (
REAL 3) st u
in D holds (G
. u)
= (
hpartdiff22 (f,u));
now
let u be
Element of (
REAL 3);
assume
A7: u
in (
dom F);
then (F
. u)
= (
hpartdiff22 (f,u)) by
A5;
hence (F
. u)
= (G
. u) by
A5,
A6,
A7;
end;
hence thesis by
A5,
A6,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
assume
A1: f
is_hpartial_differentiable`23_on D;
::
PDIFF_5:def33
func f
`hpartial23| D ->
PartFunc of (
REAL 3),
REAL means (
dom it )
= D & for u be
Element of (
REAL 3) st u
in D holds (it
. u)
= (
hpartdiff23 (f,u));
existence
proof
defpred
P[
Element of (
REAL 3)] means $1
in D;
deffunc
F(
Element of (
REAL 3)) = (
In ((
hpartdiff23 (f,$1)),
REAL ));
consider F be
PartFunc of (
REAL 3),
REAL such that
A2: (for u be
Element of (
REAL 3) holds u
in (
dom F) iff
P[u]) & for u be
Element of (
REAL 3) st u
in (
dom F) holds (F
. u)
=
F(u) from
SEQ_1:sch 3;
take F;
for y be
object st y
in (
dom F) holds y
in D by
A2;
then
A3: (
dom F)
c= D by
TARSKI:def 3;
now
let y be
object such that
A4: y
in D;
D
c= (
dom f) by
A1;
then D is
Subset of (
REAL 3) by
XBOOLE_1: 1;
hence y
in (
dom F) by
A2,
A4;
end;
then D
c= (
dom F) by
TARSKI:def 3;
hence (
dom F)
= D by
A3;
hereby
let u be
Element of (
REAL 3);
assume u
in D;
then u
in (
dom F) by
A2;
hence (F
. u)
=
F(u) by
A2
.= (
hpartdiff23 (f,u));
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 3),
REAL ;
assume that
A5: (
dom F)
= D & for u be
Element of (
REAL 3) st u
in D holds (F
. u)
= (
hpartdiff23 (f,u)) and
A6: (
dom G)
= D & for u be
Element of (
REAL 3) st u
in D holds (G
. u)
= (
hpartdiff23 (f,u));
now
let u be
Element of (
REAL 3);
assume
A7: u
in (
dom F);
then (F
. u)
= (
hpartdiff23 (f,u)) by
A5;
hence (F
. u)
= (G
. u) by
A5,
A6,
A7;
end;
hence thesis by
A5,
A6,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
assume
A1: f
is_hpartial_differentiable`31_on D;
::
PDIFF_5:def34
func f
`hpartial31| D ->
PartFunc of (
REAL 3),
REAL means (
dom it )
= D & for u be
Element of (
REAL 3) st u
in D holds (it
. u)
= (
hpartdiff31 (f,u));
existence
proof
defpred
P[
Element of (
REAL 3)] means $1
in D;
deffunc
F(
Element of (
REAL 3)) = (
In ((
hpartdiff31 (f,$1)),
REAL ));
consider F be
PartFunc of (
REAL 3),
REAL such that
A2: (for u be
Element of (
REAL 3) holds u
in (
dom F) iff
P[u]) & for u be
Element of (
REAL 3) st u
in (
dom F) holds (F
. u)
=
F(u) from
SEQ_1:sch 3;
take F;
for y be
object st y
in (
dom F) holds y
in D by
A2;
then
A3: (
dom F)
c= D by
TARSKI:def 3;
now
let y be
object such that
A4: y
in D;
D
c= (
dom f) by
A1;
then D is
Subset of (
REAL 3) by
XBOOLE_1: 1;
hence y
in (
dom F) by
A2,
A4;
end;
then D
c= (
dom F) by
TARSKI:def 3;
hence (
dom F)
= D by
A3;
hereby
let u be
Element of (
REAL 3);
assume u
in D;
then u
in (
dom F) by
A2;
hence (F
. u)
=
F(u) by
A2
.= (
hpartdiff31 (f,u));
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 3),
REAL ;
assume that
A5: (
dom F)
= D & for u be
Element of (
REAL 3) st u
in D holds (F
. u)
= (
hpartdiff31 (f,u)) and
A6: (
dom G)
= D & for u be
Element of (
REAL 3) st u
in D holds (G
. u)
= (
hpartdiff31 (f,u));
now
let u be
Element of (
REAL 3);
assume
A7: u
in (
dom F);
then (F
. u)
= (
hpartdiff31 (f,u)) by
A5;
hence (F
. u)
= (G
. u) by
A5,
A6,
A7;
end;
hence thesis by
A5,
A6,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
assume
A1: f
is_hpartial_differentiable`32_on D;
::
PDIFF_5:def35
func f
`hpartial32| D ->
PartFunc of (
REAL 3),
REAL means (
dom it )
= D & for u be
Element of (
REAL 3) st u
in D holds (it
. u)
= (
hpartdiff32 (f,u));
existence
proof
defpred
P[
Element of (
REAL 3)] means $1
in D;
deffunc
F(
Element of (
REAL 3)) = (
In ((
hpartdiff32 (f,$1)),
REAL ));
consider F be
PartFunc of (
REAL 3),
REAL such that
A2: (for u be
Element of (
REAL 3) holds u
in (
dom F) iff
P[u]) & for u be
Element of (
REAL 3) st u
in (
dom F) holds (F
. u)
=
F(u) from
SEQ_1:sch 3;
take F;
for y be
object st y
in (
dom F) holds y
in D by
A2;
then
A3: (
dom F)
c= D by
TARSKI:def 3;
now
let y be
object such that
A4: y
in D;
D
c= (
dom f) by
A1;
then D is
Subset of (
REAL 3) by
XBOOLE_1: 1;
hence y
in (
dom F) by
A2,
A4;
end;
then D
c= (
dom F) by
TARSKI:def 3;
hence (
dom F)
= D by
A3;
hereby
let u be
Element of (
REAL 3);
assume u
in D;
then u
in (
dom F) by
A2;
hence (F
. u)
=
F(u) by
A2
.= (
hpartdiff32 (f,u));
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 3),
REAL ;
assume that
A5: (
dom F)
= D & for u be
Element of (
REAL 3) st u
in D holds (F
. u)
= (
hpartdiff32 (f,u)) and
A6: (
dom G)
= D & for u be
Element of (
REAL 3) st u
in D holds (G
. u)
= (
hpartdiff32 (f,u));
now
let u be
Element of (
REAL 3);
assume
A7: u
in (
dom F);
then (F
. u)
= (
hpartdiff32 (f,u)) by
A5;
hence (F
. u)
= (G
. u) by
A5,
A6,
A7;
end;
hence thesis by
A5,
A6,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
assume
A1: f
is_hpartial_differentiable`33_on D;
::
PDIFF_5:def36
func f
`hpartial33| D ->
PartFunc of (
REAL 3),
REAL means (
dom it )
= D & for u be
Element of (
REAL 3) st u
in D holds (it
. u)
= (
hpartdiff33 (f,u));
existence
proof
defpred
P[
Element of (
REAL 3)] means $1
in D;
deffunc
F(
Element of (
REAL 3)) = (
In ((
hpartdiff33 (f,$1)),
REAL ));
consider F be
PartFunc of (
REAL 3),
REAL such that
A2: (for u be
Element of (
REAL 3) holds u
in (
dom F) iff
P[u]) & for u be
Element of (
REAL 3) st u
in (
dom F) holds (F
. u)
=
F(u) from
SEQ_1:sch 3;
take F;
for y be
object st y
in (
dom F) holds y
in D by
A2;
then
A3: (
dom F)
c= D by
TARSKI:def 3;
now
let y be
object such that
A4: y
in D;
D
c= (
dom f) by
A1;
then D is
Subset of (
REAL 3) by
XBOOLE_1: 1;
hence y
in (
dom F) by
A2,
A4;
end;
then D
c= (
dom F) by
TARSKI:def 3;
hence (
dom F)
= D by
A3;
hereby
let u be
Element of (
REAL 3);
assume u
in D;
then u
in (
dom F) by
A2;
hence (F
. u)
=
F(u) by
A2
.= (
hpartdiff33 (f,u));
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 3),
REAL ;
assume that
A5: (
dom F)
= D & for u be
Element of (
REAL 3) st u
in D holds (F
. u)
= (
hpartdiff33 (f,u)) and
A6: (
dom G)
= D & for u be
Element of (
REAL 3) st u
in D holds (G
. u)
= (
hpartdiff33 (f,u));
now
let u be
Element of (
REAL 3);
assume
A7: u
in (
dom F);
then (F
. u)
= (
hpartdiff33 (f,u)) by
A5;
hence (F
. u)
= (G
. u) by
A5,
A6,
A7;
end;
hence thesis by
A5,
A6,
PARTFUN1: 5;
end;
end
begin
theorem ::
PDIFF_5:19
Th19: f
is_hpartial_differentiable`11_in u iff (
pdiff1 (f,1))
is_partial_differentiable_in (u,1) by
PDIFF_4: 13;
theorem ::
PDIFF_5:20
Th20: f
is_hpartial_differentiable`12_in u iff (
pdiff1 (f,1))
is_partial_differentiable_in (u,2) by
PDIFF_4: 14;
theorem ::
PDIFF_5:21
Th21: f
is_hpartial_differentiable`13_in u iff (
pdiff1 (f,1))
is_partial_differentiable_in (u,3) by
PDIFF_4: 15;
theorem ::
PDIFF_5:22
Th22: f
is_hpartial_differentiable`21_in u iff (
pdiff1 (f,2))
is_partial_differentiable_in (u,1) by
PDIFF_4: 13;
theorem ::
PDIFF_5:23
Th23: f
is_hpartial_differentiable`22_in u iff (
pdiff1 (f,2))
is_partial_differentiable_in (u,2) by
PDIFF_4: 14;
theorem ::
PDIFF_5:24
Th24: f
is_hpartial_differentiable`23_in u iff (
pdiff1 (f,2))
is_partial_differentiable_in (u,3) by
PDIFF_4: 15;
theorem ::
PDIFF_5:25
Th25: f
is_hpartial_differentiable`31_in u iff (
pdiff1 (f,3))
is_partial_differentiable_in (u,1) by
PDIFF_4: 13;
theorem ::
PDIFF_5:26
Th26: f
is_hpartial_differentiable`32_in u iff (
pdiff1 (f,3))
is_partial_differentiable_in (u,2) by
PDIFF_4: 14;
theorem ::
PDIFF_5:27
Th27: f
is_hpartial_differentiable`33_in u iff (
pdiff1 (f,3))
is_partial_differentiable_in (u,3) by
PDIFF_4: 15;
theorem ::
PDIFF_5:28
Th28: f
is_hpartial_differentiable`11_in u implies (
hpartdiff11 (f,u))
= (
partdiff ((
pdiff1 (f,1)),u,1))
proof
assume
A1: f
is_hpartial_differentiable`11_in u;
consider x0,y0,z0 be
Element of
REAL such that
A2: u
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
hpartdiff11 (f,u))
= (
diff ((
SVF1 (1,(
pdiff1 (f,1)),u)),x0)) by
A1,
A2,
Th10
.= (
partdiff ((
pdiff1 (f,1)),u,1)) by
A2,
PDIFF_4: 19;
hence thesis;
end;
theorem ::
PDIFF_5:29
Th29: f
is_hpartial_differentiable`12_in u implies (
hpartdiff12 (f,u))
= (
partdiff ((
pdiff1 (f,1)),u,2))
proof
assume
A1: f
is_hpartial_differentiable`12_in u;
consider x0,y0,z0 be
Element of
REAL such that
A2: u
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
hpartdiff12 (f,u))
= (
diff ((
SVF1 (2,(
pdiff1 (f,1)),u)),y0)) by
A1,
A2,
Th11
.= (
partdiff ((
pdiff1 (f,1)),u,2)) by
A2,
PDIFF_4: 20;
hence thesis;
end;
theorem ::
PDIFF_5:30
Th30: f
is_hpartial_differentiable`13_in u implies (
hpartdiff13 (f,u))
= (
partdiff ((
pdiff1 (f,1)),u,3))
proof
assume
A1: f
is_hpartial_differentiable`13_in u;
consider x0,y0,z0 be
Element of
REAL such that
A2: u
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
hpartdiff13 (f,u))
= (
diff ((
SVF1 (3,(
pdiff1 (f,1)),u)),z0)) by
A1,
A2,
Th12
.= (
partdiff ((
pdiff1 (f,1)),u,3)) by
A2,
PDIFF_4: 21;
hence thesis;
end;
theorem ::
PDIFF_5:31
Th31: f
is_hpartial_differentiable`21_in u implies (
hpartdiff21 (f,u))
= (
partdiff ((
pdiff1 (f,2)),u,1))
proof
assume
A1: f
is_hpartial_differentiable`21_in u;
consider x0,y0,z0 be
Element of
REAL such that
A2: u
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
hpartdiff21 (f,u))
= (
diff ((
SVF1 (1,(
pdiff1 (f,2)),u)),x0)) by
A1,
A2,
Th13
.= (
partdiff ((
pdiff1 (f,2)),u,1)) by
A2,
PDIFF_4: 19;
hence thesis;
end;
theorem ::
PDIFF_5:32
Th32: f
is_hpartial_differentiable`22_in u implies (
hpartdiff22 (f,u))
= (
partdiff ((
pdiff1 (f,2)),u,2))
proof
assume
A1: f
is_hpartial_differentiable`22_in u;
consider x0,y0,z0 be
Element of
REAL such that
A2: u
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
hpartdiff22 (f,u))
= (
diff ((
SVF1 (2,(
pdiff1 (f,2)),u)),y0)) by
A1,
A2,
Th14
.= (
partdiff ((
pdiff1 (f,2)),u,2)) by
A2,
PDIFF_4: 20;
hence thesis;
end;
theorem ::
PDIFF_5:33
Th33: f
is_hpartial_differentiable`23_in u implies (
hpartdiff23 (f,u))
= (
partdiff ((
pdiff1 (f,2)),u,3))
proof
assume
A1: f
is_hpartial_differentiable`23_in u;
consider x0,y0,z0 be
Element of
REAL such that
A2: u
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
hpartdiff23 (f,u))
= (
diff ((
SVF1 (3,(
pdiff1 (f,2)),u)),z0)) by
A1,
A2,
Th15
.= (
partdiff ((
pdiff1 (f,2)),u,3)) by
A2,
PDIFF_4: 21;
hence thesis;
end;
theorem ::
PDIFF_5:34
Th34: f
is_hpartial_differentiable`31_in u implies (
hpartdiff31 (f,u))
= (
partdiff ((
pdiff1 (f,3)),u,1))
proof
assume
A1: f
is_hpartial_differentiable`31_in u;
consider x0,y0,z0 be
Element of
REAL such that
A2: u
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
hpartdiff31 (f,u))
= (
diff ((
SVF1 (1,(
pdiff1 (f,3)),u)),x0)) by
A1,
A2,
Th16
.= (
partdiff ((
pdiff1 (f,3)),u,1)) by
A2,
PDIFF_4: 19;
hence thesis;
end;
theorem ::
PDIFF_5:35
Th35: f
is_hpartial_differentiable`32_in u implies (
hpartdiff32 (f,u))
= (
partdiff ((
pdiff1 (f,3)),u,2))
proof
assume
A1: f
is_hpartial_differentiable`32_in u;
consider x0,y0,z0 be
Element of
REAL such that
A2: u
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
hpartdiff32 (f,u))
= (
diff ((
SVF1 (2,(
pdiff1 (f,3)),u)),y0)) by
A1,
A2,
Th17
.= (
partdiff ((
pdiff1 (f,3)),u,2)) by
A2,
PDIFF_4: 20;
hence thesis;
end;
theorem ::
PDIFF_5:36
Th36: f
is_hpartial_differentiable`33_in u implies (
hpartdiff33 (f,u))
= (
partdiff ((
pdiff1 (f,3)),u,3))
proof
assume
A1: f
is_hpartial_differentiable`33_in u;
consider x0,y0,z0 be
Element of
REAL such that
A2: u
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
hpartdiff33 (f,u))
= (
diff ((
SVF1 (3,(
pdiff1 (f,3)),u)),z0)) by
A1,
A2,
Th18
.= (
partdiff ((
pdiff1 (f,3)),u,3)) by
A2,
PDIFF_4: 21;
hence thesis;
end;
theorem ::
PDIFF_5:37
for u0 be
Element of (
REAL 3) holds for N be
Neighbourhood of ((
proj (1,3))
. u0) st f
is_hpartial_differentiable`11_in u0 & N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (1,3))
. u0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (1,(
pdiff1 (f,1)),u0))
/* (h
+ c))
- ((
SVF1 (1,(
pdiff1 (f,1)),u0))
/* c))) is
convergent & (
hpartdiff11 (f,u0))
= (
lim ((h
" )
(#) (((
SVF1 (1,(
pdiff1 (f,1)),u0))
/* (h
+ c))
- ((
SVF1 (1,(
pdiff1 (f,1)),u0))
/* c))))
proof
let u0 be
Element of (
REAL 3);
let N be
Neighbourhood of ((
proj (1,3))
. u0);
assume
A1: f
is_hpartial_differentiable`11_in u0 & N
c= (
dom (
SVF1 (1,(
pdiff1 (f,1)),u0)));
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A2: (
rng c)
=
{((
proj (1,3))
. u0)} & (
rng (h
+ c))
c= N;
A3: (
pdiff1 (f,1))
is_partial_differentiable_in (u0,1) by
A1,
Th19;
consider x0,y0,z0 be
Element of
REAL such that
A4: u0
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
partdiff ((
pdiff1 (f,1)),u0,1))
= (
diff ((
SVF1 (1,(
pdiff1 (f,1)),u0)),x0)) by
A4,
PDIFF_4: 19
.= (
hpartdiff11 (f,u0)) by
A1,
A4,
Th10;
hence thesis by
A1,
A2,
A3,
PDIFF_4: 25;
end;
theorem ::
PDIFF_5:38
for u0 be
Element of (
REAL 3) holds for N be
Neighbourhood of ((
proj (2,3))
. u0) st f
is_hpartial_differentiable`12_in u0 & N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (2,3))
. u0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (2,(
pdiff1 (f,1)),u0))
/* (h
+ c))
- ((
SVF1 (2,(
pdiff1 (f,1)),u0))
/* c))) is
convergent & (
hpartdiff12 (f,u0))
= (
lim ((h
" )
(#) (((
SVF1 (2,(
pdiff1 (f,1)),u0))
/* (h
+ c))
- ((
SVF1 (2,(
pdiff1 (f,1)),u0))
/* c))))
proof
let u0 be
Element of (
REAL 3);
let N be
Neighbourhood of ((
proj (2,3))
. u0);
assume
A1: f
is_hpartial_differentiable`12_in u0 & N
c= (
dom (
SVF1 (2,(
pdiff1 (f,1)),u0)));
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A2: (
rng c)
=
{((
proj (2,3))
. u0)} & (
rng (h
+ c))
c= N;
A3: (
pdiff1 (f,1))
is_partial_differentiable_in (u0,2) by
A1,
Th20;
consider x0,y0,z0 be
Element of
REAL such that
A4: u0
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
partdiff ((
pdiff1 (f,1)),u0,2))
= (
diff ((
SVF1 (2,(
pdiff1 (f,1)),u0)),y0)) by
A4,
PDIFF_4: 20
.= (
hpartdiff12 (f,u0)) by
A1,
A4,
Th11;
hence thesis by
A1,
A2,
A3,
PDIFF_4: 26;
end;
theorem ::
PDIFF_5:39
for u0 be
Element of (
REAL 3) holds for N be
Neighbourhood of ((
proj (3,3))
. u0) st f
is_hpartial_differentiable`13_in u0 & N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (3,3))
. u0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (3,(
pdiff1 (f,1)),u0))
/* (h
+ c))
- ((
SVF1 (3,(
pdiff1 (f,1)),u0))
/* c))) is
convergent & (
hpartdiff13 (f,u0))
= (
lim ((h
" )
(#) (((
SVF1 (3,(
pdiff1 (f,1)),u0))
/* (h
+ c))
- ((
SVF1 (3,(
pdiff1 (f,1)),u0))
/* c))))
proof
let u0 be
Element of (
REAL 3);
let N be
Neighbourhood of ((
proj (3,3))
. u0);
assume
A1: f
is_hpartial_differentiable`13_in u0 & N
c= (
dom (
SVF1 (3,(
pdiff1 (f,1)),u0)));
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A2: (
rng c)
=
{((
proj (3,3))
. u0)} & (
rng (h
+ c))
c= N;
A3: (
pdiff1 (f,1))
is_partial_differentiable_in (u0,3) by
A1,
Th21;
consider x0,y0,z0 be
Element of
REAL such that
A4: u0
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
partdiff ((
pdiff1 (f,1)),u0,3))
= (
diff ((
SVF1 (3,(
pdiff1 (f,1)),u0)),z0)) by
A4,
PDIFF_4: 21
.= (
hpartdiff13 (f,u0)) by
A1,
A4,
Th12;
hence thesis by
A1,
A2,
A3,
PDIFF_4: 27;
end;
theorem ::
PDIFF_5:40
for u0 be
Element of (
REAL 3) holds for N be
Neighbourhood of ((
proj (1,3))
. u0) st f
is_hpartial_differentiable`21_in u0 & N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (1,3))
. u0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (1,(
pdiff1 (f,2)),u0))
/* (h
+ c))
- ((
SVF1 (1,(
pdiff1 (f,2)),u0))
/* c))) is
convergent & (
hpartdiff21 (f,u0))
= (
lim ((h
" )
(#) (((
SVF1 (1,(
pdiff1 (f,2)),u0))
/* (h
+ c))
- ((
SVF1 (1,(
pdiff1 (f,2)),u0))
/* c))))
proof
let u0 be
Element of (
REAL 3);
let N be
Neighbourhood of ((
proj (1,3))
. u0);
assume
A1: f
is_hpartial_differentiable`21_in u0 & N
c= (
dom (
SVF1 (1,(
pdiff1 (f,2)),u0)));
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A2: (
rng c)
=
{((
proj (1,3))
. u0)} & (
rng (h
+ c))
c= N;
A3: (
pdiff1 (f,2))
is_partial_differentiable_in (u0,1) by
A1,
Th22;
consider x0,y0,z0 be
Element of
REAL such that
A4: u0
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
partdiff ((
pdiff1 (f,2)),u0,1))
= (
diff ((
SVF1 (1,(
pdiff1 (f,2)),u0)),x0)) by
A4,
PDIFF_4: 19
.= (
hpartdiff21 (f,u0)) by
A1,
A4,
Th13;
hence thesis by
A1,
A2,
A3,
PDIFF_4: 25;
end;
theorem ::
PDIFF_5:41
for u0 be
Element of (
REAL 3) holds for N be
Neighbourhood of ((
proj (2,3))
. u0) st f
is_hpartial_differentiable`22_in u0 & N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (2,3))
. u0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (2,(
pdiff1 (f,2)),u0))
/* (h
+ c))
- ((
SVF1 (2,(
pdiff1 (f,2)),u0))
/* c))) is
convergent & (
hpartdiff22 (f,u0))
= (
lim ((h
" )
(#) (((
SVF1 (2,(
pdiff1 (f,2)),u0))
/* (h
+ c))
- ((
SVF1 (2,(
pdiff1 (f,2)),u0))
/* c))))
proof
let u0 be
Element of (
REAL 3);
let N be
Neighbourhood of ((
proj (2,3))
. u0);
assume
A1: f
is_hpartial_differentiable`22_in u0 & N
c= (
dom (
SVF1 (2,(
pdiff1 (f,2)),u0)));
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A2: (
rng c)
=
{((
proj (2,3))
. u0)} & (
rng (h
+ c))
c= N;
A3: (
pdiff1 (f,2))
is_partial_differentiable_in (u0,2) by
A1,
Th23;
consider x0,y0,z0 be
Element of
REAL such that
A4: u0
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
partdiff ((
pdiff1 (f,2)),u0,2))
= (
diff ((
SVF1 (2,(
pdiff1 (f,2)),u0)),y0)) by
A4,
PDIFF_4: 20
.= (
hpartdiff22 (f,u0)) by
A1,
A4,
Th14;
hence thesis by
A1,
A2,
A3,
PDIFF_4: 26;
end;
theorem ::
PDIFF_5:42
for u0 be
Element of (
REAL 3) holds for N be
Neighbourhood of ((
proj (3,3))
. u0) st f
is_hpartial_differentiable`23_in u0 & N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (3,3))
. u0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (3,(
pdiff1 (f,2)),u0))
/* (h
+ c))
- ((
SVF1 (3,(
pdiff1 (f,2)),u0))
/* c))) is
convergent & (
hpartdiff23 (f,u0))
= (
lim ((h
" )
(#) (((
SVF1 (3,(
pdiff1 (f,2)),u0))
/* (h
+ c))
- ((
SVF1 (3,(
pdiff1 (f,2)),u0))
/* c))))
proof
let u0 be
Element of (
REAL 3);
let N be
Neighbourhood of ((
proj (3,3))
. u0);
assume
A1: f
is_hpartial_differentiable`23_in u0 & N
c= (
dom (
SVF1 (3,(
pdiff1 (f,2)),u0)));
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A2: (
rng c)
=
{((
proj (3,3))
. u0)} & (
rng (h
+ c))
c= N;
A3: (
pdiff1 (f,2))
is_partial_differentiable_in (u0,3) by
A1,
Th24;
consider x0,y0,z0 be
Element of
REAL such that
A4: u0
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
partdiff ((
pdiff1 (f,2)),u0,3))
= (
diff ((
SVF1 (3,(
pdiff1 (f,2)),u0)),z0)) by
A4,
PDIFF_4: 21
.= (
hpartdiff23 (f,u0)) by
A1,
A4,
Th15;
hence thesis by
A1,
A2,
A3,
PDIFF_4: 27;
end;
theorem ::
PDIFF_5:43
for u0 be
Element of (
REAL 3) holds for N be
Neighbourhood of ((
proj (1,3))
. u0) st f
is_hpartial_differentiable`31_in u0 & N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (1,3))
. u0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (1,(
pdiff1 (f,3)),u0))
/* (h
+ c))
- ((
SVF1 (1,(
pdiff1 (f,3)),u0))
/* c))) is
convergent & (
hpartdiff31 (f,u0))
= (
lim ((h
" )
(#) (((
SVF1 (1,(
pdiff1 (f,3)),u0))
/* (h
+ c))
- ((
SVF1 (1,(
pdiff1 (f,3)),u0))
/* c))))
proof
let u0 be
Element of (
REAL 3);
let N be
Neighbourhood of ((
proj (1,3))
. u0);
assume
A1: f
is_hpartial_differentiable`31_in u0 & N
c= (
dom (
SVF1 (1,(
pdiff1 (f,3)),u0)));
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A2: (
rng c)
=
{((
proj (1,3))
. u0)} & (
rng (h
+ c))
c= N;
A3: (
pdiff1 (f,3))
is_partial_differentiable_in (u0,1) by
A1,
Th25;
consider x0,y0,z0 be
Element of
REAL such that
A4: u0
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
partdiff ((
pdiff1 (f,3)),u0,1))
= (
diff ((
SVF1 (1,(
pdiff1 (f,3)),u0)),x0)) by
A4,
PDIFF_4: 19
.= (
hpartdiff31 (f,u0)) by
A1,
A4,
Th16;
hence thesis by
A1,
A2,
A3,
PDIFF_4: 25;
end;
theorem ::
PDIFF_5:44
for u0 be
Element of (
REAL 3) holds for N be
Neighbourhood of ((
proj (2,3))
. u0) st f
is_hpartial_differentiable`32_in u0 & N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (2,3))
. u0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (2,(
pdiff1 (f,3)),u0))
/* (h
+ c))
- ((
SVF1 (2,(
pdiff1 (f,3)),u0))
/* c))) is
convergent & (
hpartdiff32 (f,u0))
= (
lim ((h
" )
(#) (((
SVF1 (2,(
pdiff1 (f,3)),u0))
/* (h
+ c))
- ((
SVF1 (2,(
pdiff1 (f,3)),u0))
/* c))))
proof
let u0 be
Element of (
REAL 3);
let N be
Neighbourhood of ((
proj (2,3))
. u0);
assume
A1: f
is_hpartial_differentiable`32_in u0 & N
c= (
dom (
SVF1 (2,(
pdiff1 (f,3)),u0)));
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A2: (
rng c)
=
{((
proj (2,3))
. u0)} & (
rng (h
+ c))
c= N;
A3: (
pdiff1 (f,3))
is_partial_differentiable_in (u0,2) by
A1,
Th26;
consider x0,y0,z0 be
Element of
REAL such that
A4: u0
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
partdiff ((
pdiff1 (f,3)),u0,2))
= (
diff ((
SVF1 (2,(
pdiff1 (f,3)),u0)),y0)) by
A4,
PDIFF_4: 20
.= (
hpartdiff32 (f,u0)) by
A1,
A4,
Th17;
hence thesis by
A1,
A2,
A3,
PDIFF_4: 26;
end;
theorem ::
PDIFF_5:45
for u0 be
Element of (
REAL 3) holds for N be
Neighbourhood of ((
proj (3,3))
. u0) st f
is_hpartial_differentiable`33_in u0 & N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (3,3))
. u0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (3,(
pdiff1 (f,3)),u0))
/* (h
+ c))
- ((
SVF1 (3,(
pdiff1 (f,3)),u0))
/* c))) is
convergent & (
hpartdiff33 (f,u0))
= (
lim ((h
" )
(#) (((
SVF1 (3,(
pdiff1 (f,3)),u0))
/* (h
+ c))
- ((
SVF1 (3,(
pdiff1 (f,3)),u0))
/* c))))
proof
let u0 be
Element of (
REAL 3);
let N be
Neighbourhood of ((
proj (3,3))
. u0);
assume
A1: f
is_hpartial_differentiable`33_in u0 & N
c= (
dom (
SVF1 (3,(
pdiff1 (f,3)),u0)));
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A2: (
rng c)
=
{((
proj (3,3))
. u0)} & (
rng (h
+ c))
c= N;
A3: (
pdiff1 (f,3))
is_partial_differentiable_in (u0,3) by
A1,
Th27;
consider x0,y0,z0 be
Element of
REAL such that
A4: u0
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
(
partdiff ((
pdiff1 (f,3)),u0,3))
= (
diff ((
SVF1 (3,(
pdiff1 (f,3)),u0)),z0)) by
A4,
PDIFF_4: 21
.= (
hpartdiff33 (f,u0)) by
A1,
A4,
Th18;
hence thesis by
A1,
A2,
A3,
PDIFF_4: 27;
end;
theorem ::
PDIFF_5:46
f1
is_hpartial_differentiable`11_in u0 & f2
is_hpartial_differentiable`11_in u0 implies ((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,1) & (
partdiff (((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1))),u0,1))
= ((
hpartdiff11 (f1,u0))
+ (
hpartdiff11 (f2,u0)))
proof
assume that
A1: f1
is_hpartial_differentiable`11_in u0 and
A2: f2
is_hpartial_differentiable`11_in u0;
A3: (
pdiff1 (f1,1))
is_partial_differentiable_in (u0,1) by
A1,
Th19;
A4: (
pdiff1 (f2,1))
is_partial_differentiable_in (u0,1) by
A2,
Th19;
then ((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,1) & (
partdiff (((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1))),u0,1))
= ((
partdiff ((
pdiff1 (f1,1)),u0,1))
+ (
partdiff ((
pdiff1 (f2,1)),u0,1))) by
A3,
PDIFF_1: 29;
then (
partdiff (((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1))),u0,1))
= ((
hpartdiff11 (f1,u0))
+ (
partdiff ((
pdiff1 (f2,1)),u0,1))) by
A1,
Th28
.= ((
hpartdiff11 (f1,u0))
+ (
hpartdiff11 (f2,u0))) by
A2,
Th28;
hence thesis by
A3,
A4,
PDIFF_1: 29;
end;
theorem ::
PDIFF_5:47
f1
is_hpartial_differentiable`12_in u0 & f2
is_hpartial_differentiable`12_in u0 implies ((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,2) & (
partdiff (((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1))),u0,2))
= ((
hpartdiff12 (f1,u0))
+ (
hpartdiff12 (f2,u0)))
proof
assume that
A1: f1
is_hpartial_differentiable`12_in u0 and
A2: f2
is_hpartial_differentiable`12_in u0;
A3: (
pdiff1 (f1,1))
is_partial_differentiable_in (u0,2) by
A1,
Th20;
A4: (
pdiff1 (f2,1))
is_partial_differentiable_in (u0,2) by
A2,
Th20;
then ((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,2) & (
partdiff (((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1))),u0,2))
= ((
partdiff ((
pdiff1 (f1,1)),u0,2))
+ (
partdiff ((
pdiff1 (f2,1)),u0,2))) by
A3,
PDIFF_1: 29;
then (
partdiff (((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1))),u0,2))
= ((
hpartdiff12 (f1,u0))
+ (
partdiff ((
pdiff1 (f2,1)),u0,2))) by
A1,
Th29
.= ((
hpartdiff12 (f1,u0))
+ (
hpartdiff12 (f2,u0))) by
A2,
Th29;
hence thesis by
A3,
A4,
PDIFF_1: 29;
end;
theorem ::
PDIFF_5:48
f1
is_hpartial_differentiable`13_in u0 & f2
is_hpartial_differentiable`13_in u0 implies ((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,3) & (
partdiff (((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1))),u0,3))
= ((
hpartdiff13 (f1,u0))
+ (
hpartdiff13 (f2,u0)))
proof
assume that
A1: f1
is_hpartial_differentiable`13_in u0 and
A2: f2
is_hpartial_differentiable`13_in u0;
A3: (
pdiff1 (f1,1))
is_partial_differentiable_in (u0,3) by
A1,
Th21;
A4: (
pdiff1 (f2,1))
is_partial_differentiable_in (u0,3) by
A2,
Th21;
then ((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,3) & (
partdiff (((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1))),u0,3))
= ((
partdiff ((
pdiff1 (f1,1)),u0,3))
+ (
partdiff ((
pdiff1 (f2,1)),u0,3))) by
A3,
PDIFF_1: 29;
then (
partdiff (((
pdiff1 (f1,1))
+ (
pdiff1 (f2,1))),u0,3))
= ((
hpartdiff13 (f1,u0))
+ (
partdiff ((
pdiff1 (f2,1)),u0,3))) by
A1,
Th30
.= ((
hpartdiff13 (f1,u0))
+ (
hpartdiff13 (f2,u0))) by
A2,
Th30;
hence thesis by
A3,
A4,
PDIFF_1: 29;
end;
theorem ::
PDIFF_5:49
f1
is_hpartial_differentiable`21_in u0 & f2
is_hpartial_differentiable`21_in u0 implies ((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,1) & (
partdiff (((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2))),u0,1))
= ((
hpartdiff21 (f1,u0))
+ (
hpartdiff21 (f2,u0)))
proof
assume that
A1: f1
is_hpartial_differentiable`21_in u0 and
A2: f2
is_hpartial_differentiable`21_in u0;
A3: (
pdiff1 (f1,2))
is_partial_differentiable_in (u0,1) by
A1,
Th22;
A4: (
pdiff1 (f2,2))
is_partial_differentiable_in (u0,1) by
A2,
Th22;
then ((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,1) & (
partdiff (((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2))),u0,1))
= ((
partdiff ((
pdiff1 (f1,2)),u0,1))
+ (
partdiff ((
pdiff1 (f2,2)),u0,1))) by
A3,
PDIFF_1: 29;
then (
partdiff (((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2))),u0,1))
= ((
hpartdiff21 (f1,u0))
+ (
partdiff ((
pdiff1 (f2,2)),u0,1))) by
A1,
Th31
.= ((
hpartdiff21 (f1,u0))
+ (
hpartdiff21 (f2,u0))) by
A2,
Th31;
hence thesis by
A3,
A4,
PDIFF_1: 29;
end;
theorem ::
PDIFF_5:50
f1
is_hpartial_differentiable`22_in u0 & f2
is_hpartial_differentiable`22_in u0 implies ((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,2) & (
partdiff (((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2))),u0,2))
= ((
hpartdiff22 (f1,u0))
+ (
hpartdiff22 (f2,u0)))
proof
assume that
A1: f1
is_hpartial_differentiable`22_in u0 and
A2: f2
is_hpartial_differentiable`22_in u0;
A3: (
pdiff1 (f1,2))
is_partial_differentiable_in (u0,2) by
A1,
Th23;
A4: (
pdiff1 (f2,2))
is_partial_differentiable_in (u0,2) by
A2,
Th23;
then ((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,2) & (
partdiff (((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2))),u0,2))
= ((
partdiff ((
pdiff1 (f1,2)),u0,2))
+ (
partdiff ((
pdiff1 (f2,2)),u0,2))) by
A3,
PDIFF_1: 29;
then (
partdiff (((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2))),u0,2))
= ((
hpartdiff22 (f1,u0))
+ (
partdiff ((
pdiff1 (f2,2)),u0,2))) by
A1,
Th32
.= ((
hpartdiff22 (f1,u0))
+ (
hpartdiff22 (f2,u0))) by
A2,
Th32;
hence thesis by
A3,
A4,
PDIFF_1: 29;
end;
theorem ::
PDIFF_5:51
f1
is_hpartial_differentiable`23_in u0 & f2
is_hpartial_differentiable`23_in u0 implies ((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,3) & (
partdiff (((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2))),u0,3))
= ((
hpartdiff23 (f1,u0))
+ (
hpartdiff23 (f2,u0)))
proof
assume that
A1: f1
is_hpartial_differentiable`23_in u0 and
A2: f2
is_hpartial_differentiable`23_in u0;
A3: (
pdiff1 (f1,2))
is_partial_differentiable_in (u0,3) by
A1,
Th24;
A4: (
pdiff1 (f2,2))
is_partial_differentiable_in (u0,3) by
A2,
Th24;
then ((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,3) & (
partdiff (((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2))),u0,3))
= ((
partdiff ((
pdiff1 (f1,2)),u0,3))
+ (
partdiff ((
pdiff1 (f2,2)),u0,3))) by
A3,
PDIFF_1: 29;
then (
partdiff (((
pdiff1 (f1,2))
+ (
pdiff1 (f2,2))),u0,3))
= ((
hpartdiff23 (f1,u0))
+ (
partdiff ((
pdiff1 (f2,2)),u0,3))) by
A1,
Th33
.= ((
hpartdiff23 (f1,u0))
+ (
hpartdiff23 (f2,u0))) by
A2,
Th33;
hence thesis by
A3,
A4,
PDIFF_1: 29;
end;
theorem ::
PDIFF_5:52
f1
is_hpartial_differentiable`11_in u0 & f2
is_hpartial_differentiable`11_in u0 implies ((
pdiff1 (f1,1))
- (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,1) & (
partdiff (((
pdiff1 (f1,1))
- (
pdiff1 (f2,1))),u0,1))
= ((
hpartdiff11 (f1,u0))
- (
hpartdiff11 (f2,u0)))
proof
assume that
A1: f1
is_hpartial_differentiable`11_in u0 and
A2: f2
is_hpartial_differentiable`11_in u0;
A3: (
pdiff1 (f1,1))
is_partial_differentiable_in (u0,1) by
A1,
Th19;
A4: (
pdiff1 (f2,1))
is_partial_differentiable_in (u0,1) by
A2,
Th19;
then ((
pdiff1 (f1,1))
- (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,1) & (
partdiff (((
pdiff1 (f1,1))
- (
pdiff1 (f2,1))),u0,1))
= ((
partdiff ((
pdiff1 (f1,1)),u0,1))
- (
partdiff ((
pdiff1 (f2,1)),u0,1))) by
A3,
PDIFF_1: 31;
then (
partdiff (((
pdiff1 (f1,1))
- (
pdiff1 (f2,1))),u0,1))
= ((
hpartdiff11 (f1,u0))
- (
partdiff ((
pdiff1 (f2,1)),u0,1))) by
A1,
Th28
.= ((
hpartdiff11 (f1,u0))
- (
hpartdiff11 (f2,u0))) by
A2,
Th28;
hence thesis by
A3,
A4,
PDIFF_1: 31;
end;
theorem ::
PDIFF_5:53
f1
is_hpartial_differentiable`12_in u0 & f2
is_hpartial_differentiable`12_in u0 implies ((
pdiff1 (f1,1))
- (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,2) & (
partdiff (((
pdiff1 (f1,1))
- (
pdiff1 (f2,1))),u0,2))
= ((
hpartdiff12 (f1,u0))
- (
hpartdiff12 (f2,u0)))
proof
assume that
A1: f1
is_hpartial_differentiable`12_in u0 and
A2: f2
is_hpartial_differentiable`12_in u0;
A3: (
pdiff1 (f1,1))
is_partial_differentiable_in (u0,2) by
A1,
Th20;
A4: (
pdiff1 (f2,1))
is_partial_differentiable_in (u0,2) by
A2,
Th20;
then ((
pdiff1 (f1,1))
- (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,2) & (
partdiff (((
pdiff1 (f1,1))
- (
pdiff1 (f2,1))),u0,2))
= ((
partdiff ((
pdiff1 (f1,1)),u0,2))
- (
partdiff ((
pdiff1 (f2,1)),u0,2))) by
A3,
PDIFF_1: 31;
then (
partdiff (((
pdiff1 (f1,1))
- (
pdiff1 (f2,1))),u0,2))
= ((
hpartdiff12 (f1,u0))
- (
partdiff ((
pdiff1 (f2,1)),u0,2))) by
A1,
Th29
.= ((
hpartdiff12 (f1,u0))
- (
hpartdiff12 (f2,u0))) by
A2,
Th29;
hence thesis by
A3,
A4,
PDIFF_1: 31;
end;
theorem ::
PDIFF_5:54
f1
is_hpartial_differentiable`13_in u0 & f2
is_hpartial_differentiable`13_in u0 implies ((
pdiff1 (f1,1))
- (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,3) & (
partdiff (((
pdiff1 (f1,1))
- (
pdiff1 (f2,1))),u0,3))
= ((
hpartdiff13 (f1,u0))
- (
hpartdiff13 (f2,u0)))
proof
assume that
A1: f1
is_hpartial_differentiable`13_in u0 and
A2: f2
is_hpartial_differentiable`13_in u0;
A3: (
pdiff1 (f1,1))
is_partial_differentiable_in (u0,3) by
A1,
Th21;
A4: (
pdiff1 (f2,1))
is_partial_differentiable_in (u0,3) by
A2,
Th21;
then ((
pdiff1 (f1,1))
- (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,3) & (
partdiff (((
pdiff1 (f1,1))
- (
pdiff1 (f2,1))),u0,3))
= ((
partdiff ((
pdiff1 (f1,1)),u0,3))
- (
partdiff ((
pdiff1 (f2,1)),u0,3))) by
A3,
PDIFF_1: 31;
then (
partdiff (((
pdiff1 (f1,1))
- (
pdiff1 (f2,1))),u0,3))
= ((
hpartdiff13 (f1,u0))
- (
partdiff ((
pdiff1 (f2,1)),u0,3))) by
A1,
Th30
.= ((
hpartdiff13 (f1,u0))
- (
hpartdiff13 (f2,u0))) by
A2,
Th30;
hence thesis by
A3,
A4,
PDIFF_1: 31;
end;
theorem ::
PDIFF_5:55
f1
is_hpartial_differentiable`21_in u0 & f2
is_hpartial_differentiable`21_in u0 implies ((
pdiff1 (f1,2))
- (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,1) & (
partdiff (((
pdiff1 (f1,2))
- (
pdiff1 (f2,2))),u0,1))
= ((
hpartdiff21 (f1,u0))
- (
hpartdiff21 (f2,u0)))
proof
assume that
A1: f1
is_hpartial_differentiable`21_in u0 and
A2: f2
is_hpartial_differentiable`21_in u0;
A3: (
pdiff1 (f1,2))
is_partial_differentiable_in (u0,1) by
A1,
Th22;
A4: (
pdiff1 (f2,2))
is_partial_differentiable_in (u0,1) by
A2,
Th22;
then ((
pdiff1 (f1,2))
- (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,1) & (
partdiff (((
pdiff1 (f1,2))
- (
pdiff1 (f2,2))),u0,1))
= ((
partdiff ((
pdiff1 (f1,2)),u0,1))
- (
partdiff ((
pdiff1 (f2,2)),u0,1))) by
A3,
PDIFF_1: 31;
then (
partdiff (((
pdiff1 (f1,2))
- (
pdiff1 (f2,2))),u0,1))
= ((
hpartdiff21 (f1,u0))
- (
partdiff ((
pdiff1 (f2,2)),u0,1))) by
A1,
Th31
.= ((
hpartdiff21 (f1,u0))
- (
hpartdiff21 (f2,u0))) by
A2,
Th31;
hence thesis by
A3,
A4,
PDIFF_1: 31;
end;
theorem ::
PDIFF_5:56
f1
is_hpartial_differentiable`22_in u0 & f2
is_hpartial_differentiable`22_in u0 implies ((
pdiff1 (f1,2))
- (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,2) & (
partdiff (((
pdiff1 (f1,2))
- (
pdiff1 (f2,2))),u0,2))
= ((
hpartdiff22 (f1,u0))
- (
hpartdiff22 (f2,u0)))
proof
assume that
A1: f1
is_hpartial_differentiable`22_in u0 and
A2: f2
is_hpartial_differentiable`22_in u0;
A3: (
pdiff1 (f1,2))
is_partial_differentiable_in (u0,2) by
A1,
Th23;
A4: (
pdiff1 (f2,2))
is_partial_differentiable_in (u0,2) by
A2,
Th23;
then ((
pdiff1 (f1,2))
- (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,2) & (
partdiff (((
pdiff1 (f1,2))
- (
pdiff1 (f2,2))),u0,2))
= ((
partdiff ((
pdiff1 (f1,2)),u0,2))
- (
partdiff ((
pdiff1 (f2,2)),u0,2))) by
A3,
PDIFF_1: 31;
then (
partdiff (((
pdiff1 (f1,2))
- (
pdiff1 (f2,2))),u0,2))
= ((
hpartdiff22 (f1,u0))
- (
partdiff ((
pdiff1 (f2,2)),u0,2))) by
A1,
Th32
.= ((
hpartdiff22 (f1,u0))
- (
hpartdiff22 (f2,u0))) by
A2,
Th32;
hence thesis by
A3,
A4,
PDIFF_1: 31;
end;
theorem ::
PDIFF_5:57
f1
is_hpartial_differentiable`23_in u0 & f2
is_hpartial_differentiable`23_in u0 implies ((
pdiff1 (f1,2))
- (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,3) & (
partdiff (((
pdiff1 (f1,2))
- (
pdiff1 (f2,2))),u0,3))
= ((
hpartdiff23 (f1,u0))
- (
hpartdiff23 (f2,u0)))
proof
assume that
A1: f1
is_hpartial_differentiable`23_in u0 and
A2: f2
is_hpartial_differentiable`23_in u0;
A3: (
pdiff1 (f1,2))
is_partial_differentiable_in (u0,3) by
A1,
Th24;
A4: (
pdiff1 (f2,2))
is_partial_differentiable_in (u0,3) by
A2,
Th24;
then ((
pdiff1 (f1,2))
- (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,3) & (
partdiff (((
pdiff1 (f1,2))
- (
pdiff1 (f2,2))),u0,3))
= ((
partdiff ((
pdiff1 (f1,2)),u0,3))
- (
partdiff ((
pdiff1 (f2,2)),u0,3))) by
A3,
PDIFF_1: 31;
then (
partdiff (((
pdiff1 (f1,2))
- (
pdiff1 (f2,2))),u0,3))
= ((
hpartdiff23 (f1,u0))
- (
partdiff ((
pdiff1 (f2,2)),u0,3))) by
A1,
Th33
.= ((
hpartdiff23 (f1,u0))
- (
hpartdiff23 (f2,u0))) by
A2,
Th33;
hence thesis by
A3,
A4,
PDIFF_1: 31;
end;
theorem ::
PDIFF_5:58
f
is_hpartial_differentiable`11_in u0 implies (r
(#) (
pdiff1 (f,1)))
is_partial_differentiable_in (u0,1) & (
partdiff ((r
(#) (
pdiff1 (f,1))),u0,1))
= (r
* (
hpartdiff11 (f,u0)))
proof
assume
A1: f
is_hpartial_differentiable`11_in u0;
then (
pdiff1 (f,1))
is_partial_differentiable_in (u0,1) by
Th19;
then (r
(#) (
pdiff1 (f,1)))
is_partial_differentiable_in (u0,1) & (
partdiff ((r
(#) (
pdiff1 (f,1))),u0,1))
= (r
* (
partdiff ((
pdiff1 (f,1)),u0,1))) by
PDIFF_1: 33;
hence thesis by
A1,
Th28;
end;
theorem ::
PDIFF_5:59
f
is_hpartial_differentiable`12_in u0 implies (r
(#) (
pdiff1 (f,1)))
is_partial_differentiable_in (u0,2) & (
partdiff ((r
(#) (
pdiff1 (f,1))),u0,2))
= (r
* (
hpartdiff12 (f,u0)))
proof
assume
A1: f
is_hpartial_differentiable`12_in u0;
then (
pdiff1 (f,1))
is_partial_differentiable_in (u0,2) by
Th20;
then (r
(#) (
pdiff1 (f,1)))
is_partial_differentiable_in (u0,2) & (
partdiff ((r
(#) (
pdiff1 (f,1))),u0,2))
= (r
* (
partdiff ((
pdiff1 (f,1)),u0,2))) by
PDIFF_1: 33;
hence thesis by
A1,
Th29;
end;
theorem ::
PDIFF_5:60
f
is_hpartial_differentiable`13_in u0 implies (r
(#) (
pdiff1 (f,1)))
is_partial_differentiable_in (u0,3) & (
partdiff ((r
(#) (
pdiff1 (f,1))),u0,3))
= (r
* (
hpartdiff13 (f,u0)))
proof
assume
A1: f
is_hpartial_differentiable`13_in u0;
then (
pdiff1 (f,1))
is_partial_differentiable_in (u0,3) by
Th21;
then (r
(#) (
pdiff1 (f,1)))
is_partial_differentiable_in (u0,3) & (
partdiff ((r
(#) (
pdiff1 (f,1))),u0,3))
= (r
* (
partdiff ((
pdiff1 (f,1)),u0,3))) by
PDIFF_1: 33;
hence thesis by
A1,
Th30;
end;
theorem ::
PDIFF_5:61
f
is_hpartial_differentiable`21_in u0 implies (r
(#) (
pdiff1 (f,2)))
is_partial_differentiable_in (u0,1) & (
partdiff ((r
(#) (
pdiff1 (f,2))),u0,1))
= (r
* (
hpartdiff21 (f,u0)))
proof
assume
A1: f
is_hpartial_differentiable`21_in u0;
then (
pdiff1 (f,2))
is_partial_differentiable_in (u0,1) by
Th22;
then (r
(#) (
pdiff1 (f,2)))
is_partial_differentiable_in (u0,1) & (
partdiff ((r
(#) (
pdiff1 (f,2))),u0,1))
= (r
* (
partdiff ((
pdiff1 (f,2)),u0,1))) by
PDIFF_1: 33;
hence thesis by
A1,
Th31;
end;
theorem ::
PDIFF_5:62
f
is_hpartial_differentiable`22_in u0 implies (r
(#) (
pdiff1 (f,2)))
is_partial_differentiable_in (u0,2) & (
partdiff ((r
(#) (
pdiff1 (f,2))),u0,2))
= (r
* (
hpartdiff22 (f,u0)))
proof
assume
A1: f
is_hpartial_differentiable`22_in u0;
then (
pdiff1 (f,2))
is_partial_differentiable_in (u0,2) by
Th23;
then (r
(#) (
pdiff1 (f,2)))
is_partial_differentiable_in (u0,2) & (
partdiff ((r
(#) (
pdiff1 (f,2))),u0,2))
= (r
* (
partdiff ((
pdiff1 (f,2)),u0,2))) by
PDIFF_1: 33;
hence thesis by
A1,
Th32;
end;
theorem ::
PDIFF_5:63
f
is_hpartial_differentiable`23_in u0 implies (r
(#) (
pdiff1 (f,2)))
is_partial_differentiable_in (u0,3) & (
partdiff ((r
(#) (
pdiff1 (f,2))),u0,3))
= (r
* (
hpartdiff23 (f,u0)))
proof
assume
A1: f
is_hpartial_differentiable`23_in u0;
then (
pdiff1 (f,2))
is_partial_differentiable_in (u0,3) by
Th24;
then (r
(#) (
pdiff1 (f,2)))
is_partial_differentiable_in (u0,3) & (
partdiff ((r
(#) (
pdiff1 (f,2))),u0,3))
= (r
* (
partdiff ((
pdiff1 (f,2)),u0,3))) by
PDIFF_1: 33;
hence thesis by
A1,
Th33;
end;
theorem ::
PDIFF_5:64
f
is_hpartial_differentiable`31_in u0 implies (r
(#) (
pdiff1 (f,3)))
is_partial_differentiable_in (u0,1) & (
partdiff ((r
(#) (
pdiff1 (f,3))),u0,1))
= (r
* (
hpartdiff31 (f,u0)))
proof
assume
A1: f
is_hpartial_differentiable`31_in u0;
then (
pdiff1 (f,3))
is_partial_differentiable_in (u0,1) by
Th25;
then (r
(#) (
pdiff1 (f,3)))
is_partial_differentiable_in (u0,1) & (
partdiff ((r
(#) (
pdiff1 (f,3))),u0,1))
= (r
* (
partdiff ((
pdiff1 (f,3)),u0,1))) by
PDIFF_1: 33;
hence thesis by
A1,
Th34;
end;
theorem ::
PDIFF_5:65
f
is_hpartial_differentiable`32_in u0 implies (r
(#) (
pdiff1 (f,3)))
is_partial_differentiable_in (u0,2) & (
partdiff ((r
(#) (
pdiff1 (f,3))),u0,2))
= (r
* (
hpartdiff32 (f,u0)))
proof
assume
A1: f
is_hpartial_differentiable`32_in u0;
then (
pdiff1 (f,3))
is_partial_differentiable_in (u0,2) by
Th26;
then (r
(#) (
pdiff1 (f,3)))
is_partial_differentiable_in (u0,2) & (
partdiff ((r
(#) (
pdiff1 (f,3))),u0,2))
= (r
* (
partdiff ((
pdiff1 (f,3)),u0,2))) by
PDIFF_1: 33;
hence thesis by
A1,
Th35;
end;
theorem ::
PDIFF_5:66
f
is_hpartial_differentiable`33_in u0 implies (r
(#) (
pdiff1 (f,3)))
is_partial_differentiable_in (u0,3) & (
partdiff ((r
(#) (
pdiff1 (f,3))),u0,3))
= (r
* (
hpartdiff33 (f,u0)))
proof
assume
A1: f
is_hpartial_differentiable`33_in u0;
then (
pdiff1 (f,3))
is_partial_differentiable_in (u0,3) by
Th27;
then (r
(#) (
pdiff1 (f,3)))
is_partial_differentiable_in (u0,3) & (
partdiff ((r
(#) (
pdiff1 (f,3))),u0,3))
= (r
* (
partdiff ((
pdiff1 (f,3)),u0,3))) by
PDIFF_1: 33;
hence thesis by
A1,
Th36;
end;
theorem ::
PDIFF_5:67
f1
is_hpartial_differentiable`11_in u0 & f2
is_hpartial_differentiable`11_in u0 implies ((
pdiff1 (f1,1))
(#) (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,1)
proof
assume f1
is_hpartial_differentiable`11_in u0 & f2
is_hpartial_differentiable`11_in u0;
then (
pdiff1 (f1,1))
is_partial_differentiable_in (u0,1) & (
pdiff1 (f2,1))
is_partial_differentiable_in (u0,1) by
Th19;
hence thesis by
PDIFF_4: 28;
end;
theorem ::
PDIFF_5:68
f1
is_hpartial_differentiable`12_in u0 & f2
is_hpartial_differentiable`12_in u0 implies ((
pdiff1 (f1,1))
(#) (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,2)
proof
assume f1
is_hpartial_differentiable`12_in u0 & f2
is_hpartial_differentiable`12_in u0;
then (
pdiff1 (f1,1))
is_partial_differentiable_in (u0,2) & (
pdiff1 (f2,1))
is_partial_differentiable_in (u0,2) by
Th20;
hence thesis by
PDIFF_4: 29;
end;
theorem ::
PDIFF_5:69
f1
is_hpartial_differentiable`13_in u0 & f2
is_hpartial_differentiable`13_in u0 implies ((
pdiff1 (f1,1))
(#) (
pdiff1 (f2,1)))
is_partial_differentiable_in (u0,3)
proof
assume f1
is_hpartial_differentiable`13_in u0 & f2
is_hpartial_differentiable`13_in u0;
then (
pdiff1 (f1,1))
is_partial_differentiable_in (u0,3) & (
pdiff1 (f2,1))
is_partial_differentiable_in (u0,3) by
Th21;
hence thesis by
PDIFF_4: 30;
end;
theorem ::
PDIFF_5:70
f1
is_hpartial_differentiable`21_in u0 & f2
is_hpartial_differentiable`21_in u0 implies ((
pdiff1 (f1,2))
(#) (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,1)
proof
assume f1
is_hpartial_differentiable`21_in u0 & f2
is_hpartial_differentiable`21_in u0;
then (
pdiff1 (f1,2))
is_partial_differentiable_in (u0,1) & (
pdiff1 (f2,2))
is_partial_differentiable_in (u0,1) by
Th22;
hence thesis by
PDIFF_4: 28;
end;
theorem ::
PDIFF_5:71
f1
is_hpartial_differentiable`22_in u0 & f2
is_hpartial_differentiable`22_in u0 implies ((
pdiff1 (f1,2))
(#) (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,2)
proof
assume f1
is_hpartial_differentiable`22_in u0 & f2
is_hpartial_differentiable`22_in u0;
then (
pdiff1 (f1,2))
is_partial_differentiable_in (u0,2) & (
pdiff1 (f2,2))
is_partial_differentiable_in (u0,2) by
Th23;
hence thesis by
PDIFF_4: 29;
end;
theorem ::
PDIFF_5:72
f1
is_hpartial_differentiable`23_in u0 & f2
is_hpartial_differentiable`23_in u0 implies ((
pdiff1 (f1,2))
(#) (
pdiff1 (f2,2)))
is_partial_differentiable_in (u0,3)
proof
assume f1
is_hpartial_differentiable`23_in u0 & f2
is_hpartial_differentiable`23_in u0;
then (
pdiff1 (f1,2))
is_partial_differentiable_in (u0,3) & (
pdiff1 (f2,2))
is_partial_differentiable_in (u0,3) by
Th24;
hence thesis by
PDIFF_4: 30;
end;
theorem ::
PDIFF_5:73
f1
is_hpartial_differentiable`31_in u0 & f2
is_hpartial_differentiable`31_in u0 implies ((
pdiff1 (f1,3))
(#) (
pdiff1 (f2,3)))
is_partial_differentiable_in (u0,1)
proof
assume f1
is_hpartial_differentiable`31_in u0 & f2
is_hpartial_differentiable`31_in u0;
then (
pdiff1 (f1,3))
is_partial_differentiable_in (u0,1) & (
pdiff1 (f2,3))
is_partial_differentiable_in (u0,1) by
Th25;
hence thesis by
PDIFF_4: 28;
end;
theorem ::
PDIFF_5:74
f1
is_hpartial_differentiable`32_in u0 & f2
is_hpartial_differentiable`32_in u0 implies ((
pdiff1 (f1,3))
(#) (
pdiff1 (f2,3)))
is_partial_differentiable_in (u0,2)
proof
assume f1
is_hpartial_differentiable`32_in u0 & f2
is_hpartial_differentiable`32_in u0;
then (
pdiff1 (f1,3))
is_partial_differentiable_in (u0,2) & (
pdiff1 (f2,3))
is_partial_differentiable_in (u0,2) by
Th26;
hence thesis by
PDIFF_4: 29;
end;
theorem ::
PDIFF_5:75
f1
is_hpartial_differentiable`33_in u0 & f2
is_hpartial_differentiable`33_in u0 implies ((
pdiff1 (f1,3))
(#) (
pdiff1 (f2,3)))
is_partial_differentiable_in (u0,3)
proof
assume f1
is_hpartial_differentiable`33_in u0 & f2
is_hpartial_differentiable`33_in u0;
then (
pdiff1 (f1,3))
is_partial_differentiable_in (u0,3) & (
pdiff1 (f2,3))
is_partial_differentiable_in (u0,3) by
Th27;
hence thesis by
PDIFF_4: 30;
end;
theorem ::
PDIFF_5:76
for u0 be
Element of (
REAL 3) holds f
is_hpartial_differentiable`11_in u0 implies (
SVF1 (1,(
pdiff1 (f,1)),u0))
is_continuous_in ((
proj (1,3))
. u0) by
Th19,
PDIFF_4: 31;
theorem ::
PDIFF_5:77
for u0 be
Element of (
REAL 3) holds f
is_hpartial_differentiable`12_in u0 implies (
SVF1 (2,(
pdiff1 (f,1)),u0))
is_continuous_in ((
proj (2,3))
. u0) by
Th20,
PDIFF_4: 32;
theorem ::
PDIFF_5:78
for u0 be
Element of (
REAL 3) holds f
is_hpartial_differentiable`13_in u0 implies (
SVF1 (3,(
pdiff1 (f,1)),u0))
is_continuous_in ((
proj (3,3))
. u0) by
Th21,
PDIFF_4: 33;
theorem ::
PDIFF_5:79
for u0 be
Element of (
REAL 3) holds f
is_hpartial_differentiable`21_in u0 implies (
SVF1 (1,(
pdiff1 (f,2)),u0))
is_continuous_in ((
proj (1,3))
. u0) by
Th22,
PDIFF_4: 31;
theorem ::
PDIFF_5:80
for u0 be
Element of (
REAL 3) holds f
is_hpartial_differentiable`22_in u0 implies (
SVF1 (2,(
pdiff1 (f,2)),u0))
is_continuous_in ((
proj (2,3))
. u0) by
Th23,
PDIFF_4: 32;
theorem ::
PDIFF_5:81
for u0 be
Element of (
REAL 3) holds f
is_hpartial_differentiable`23_in u0 implies (
SVF1 (3,(
pdiff1 (f,2)),u0))
is_continuous_in ((
proj (3,3))
. u0) by
Th24,
PDIFF_4: 33;
theorem ::
PDIFF_5:82
for u0 be
Element of (
REAL 3) holds f
is_hpartial_differentiable`31_in u0 implies (
SVF1 (1,(
pdiff1 (f,3)),u0))
is_continuous_in ((
proj (1,3))
. u0) by
Th25,
PDIFF_4: 31;
theorem ::
PDIFF_5:83
for u0 be
Element of (
REAL 3) holds f
is_hpartial_differentiable`32_in u0 implies (
SVF1 (2,(
pdiff1 (f,3)),u0))
is_continuous_in ((
proj (2,3))
. u0) by
Th26,
PDIFF_4: 32;
theorem ::
PDIFF_5:84
for u0 be
Element of (
REAL 3) holds f
is_hpartial_differentiable`33_in u0 implies (
SVF1 (3,(
pdiff1 (f,3)),u0))
is_continuous_in ((
proj (3,3))
. u0) by
Th27,
PDIFF_4: 33;