pdiff_4.miz
begin
reserve D for
set;
reserve x,x0,x1,x2,y,y0,y1,y2,z,z0,z1,z2,r,s,t for
Real;
reserve p,a,u,u0 for
Element of (
REAL 3);
reserve n,m,k for
Element of
NAT ;
reserve f,f1,f2,f3,g for
PartFunc of (
REAL 3),
REAL ;
reserve R,R1,R2 for
RestFunc;
reserve L,L1,L2 for
LinearFunc;
theorem ::
PDIFF_4:1
Th1: (
dom (
proj (1,3)))
= (
REAL 3) & (
rng (
proj (1,3)))
=
REAL & for x,y,z be
Real holds ((
proj (1,3))
.
<*x, y, z*>)
= x
proof
set f = (
proj (1,3));
A1: for x be
object st x
in
REAL holds ex u be
object st u
in (
REAL 3) & x
= (f
. u)
proof
let x be
object;
assume x
in
REAL ;
then
reconsider x1 = x as
Element of
REAL ;
set y = the
Element of
REAL ;
reconsider u =
<*x1, y, y*> as
Element of (
REAL 3) by
FINSEQ_2: 104;
(f
. u)
= (u
. 1) by
PDIFF_1:def 1;
then (f
. u)
= x by
FINSEQ_1: 45;
hence thesis;
end;
now
let x, y, z;
reconsider xx = x, yy = y, zz = z as
Element of
REAL by
XREAL_0:def 1;
<*xx, yy, zz*> is
Element of (3
-tuples_on
REAL ) by
FINSEQ_2: 104;
then ((
proj (1,3))
.
<*x, y, z*>)
= (
<*x, y, z*>
. 1) by
PDIFF_1:def 1;
hence ((
proj (1,3))
.
<*x, y, z*>)
= x by
FINSEQ_1: 45;
end;
hence thesis by
A1,
FUNCT_2: 10,
FUNCT_2:def 1;
end;
theorem ::
PDIFF_4:2
Th2: (
dom (
proj (2,3)))
= (
REAL 3) & (
rng (
proj (2,3)))
=
REAL & for x,y,z be
Real holds ((
proj (2,3))
.
<*x, y, z*>)
= y
proof
set f = (
proj (2,3));
A1: for y be
object st y
in
REAL holds ex u be
object st u
in (
REAL 3) & y
= (f
. u)
proof
let y be
object;
assume y
in
REAL ;
then
reconsider y1 = y as
Element of
REAL ;
set x = the
Element of
REAL ;
reconsider u =
<*x, y1, x*> as
Element of (
REAL 3) by
FINSEQ_2: 104;
(f
. u)
= (u
. 2) by
PDIFF_1:def 1;
then (f
. u)
= y by
FINSEQ_1: 45;
hence thesis;
end;
now
let x, y, z;
reconsider xx = x, yy = y, zz = z as
Element of
REAL by
XREAL_0:def 1;
<*xx, yy, zz*> is
Element of (3
-tuples_on
REAL ) by
FINSEQ_2: 104;
then ((
proj (2,3))
.
<*x, y, z*>)
= (
<*x, y, z*>
. 2) by
PDIFF_1:def 1;
hence ((
proj (2,3))
.
<*x, y, z*>)
= y by
FINSEQ_1: 45;
end;
hence thesis by
A1,
FUNCT_2: 10,
FUNCT_2:def 1;
end;
theorem ::
PDIFF_4:3
Th3: (
dom (
proj (3,3)))
= (
REAL 3) & (
rng (
proj (3,3)))
=
REAL & for x,y,z be
Real holds ((
proj (3,3))
.
<*x, y, z*>)
= z
proof
set f = (
proj (3,3));
A1: for z be
object st z
in
REAL holds ex u be
object st u
in (
REAL 3) & z
= (f
. u)
proof
let z be
object;
assume z
in
REAL ;
then
reconsider z1 = z as
Element of
REAL ;
set x = the
Element of
REAL ;
reconsider u =
<*x, x, z1*> as
Element of (
REAL 3) by
FINSEQ_2: 104;
(f
. u)
= (u
. 3) by
PDIFF_1:def 1;
then (f
. u)
= z by
FINSEQ_1: 45;
hence thesis;
end;
now
let x,y,z be
Real;
reconsider xx = x, yy = y, zz = z as
Element of
REAL by
XREAL_0:def 1;
<*xx, yy, zz*> is
Element of (3
-tuples_on
REAL ) by
FINSEQ_2: 104;
then ((
proj (3,3))
.
<*x, y, z*>)
= (
<*x, y, z*>
. 3) by
PDIFF_1:def 1;
hence ((
proj (3,3))
.
<*x, y, z*>)
= z by
FINSEQ_1: 45;
end;
hence thesis by
A1,
FUNCT_2: 10,
FUNCT_2:def 1;
end;
begin
theorem ::
PDIFF_4:4
Th4: u
=
<*x, y, z*> & f
is_partial_differentiable_in (u,1) implies (
SVF1 (1,f,u))
is_differentiable_in x by
Th1;
theorem ::
PDIFF_4:5
Th5: u
=
<*x, y, z*> & f
is_partial_differentiable_in (u,2) implies (
SVF1 (2,f,u))
is_differentiable_in y by
Th2;
theorem ::
PDIFF_4:6
Th6: u
=
<*x, y, z*> & f
is_partial_differentiable_in (u,3) implies (
SVF1 (3,f,u))
is_differentiable_in z by
Th3;
theorem ::
PDIFF_4:7
Th7: for f be
PartFunc of (
REAL 3),
REAL holds for u be
Element of (
REAL 3) holds (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & (
SVF1 (1,f,u))
is_differentiable_in x0) iff f
is_partial_differentiable_in (u,1)
proof
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
thus (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & (
SVF1 (1,f,u))
is_differentiable_in x0) implies f
is_partial_differentiable_in (u,1) by
Th1;
assume
A1: f
is_partial_differentiable_in (u,1);
consider x0,y0,z0 be
Element of
REAL such that
A2: u
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
((
proj (1,3))
. u)
= x0 by
A2,
Th1;
then (
SVF1 (1,f,u))
is_differentiable_in x0 by
A1;
hence (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & (
SVF1 (1,f,u))
is_differentiable_in x0) by
A2;
end;
theorem ::
PDIFF_4:8
Th8: for f be
PartFunc of (
REAL 3),
REAL holds for u be
Element of (
REAL 3) holds (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & (
SVF1 (2,f,u))
is_differentiable_in y0) iff f
is_partial_differentiable_in (u,2)
proof
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
thus (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & (
SVF1 (2,f,u))
is_differentiable_in y0) implies f
is_partial_differentiable_in (u,2) by
Th2;
assume
A1: f
is_partial_differentiable_in (u,2);
consider x0,y0,z0 be
Element of
REAL such that
A2: u
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
((
proj (2,3))
. u)
= y0 by
A2,
Th2;
then (
SVF1 (2,f,u))
is_differentiable_in y0 by
A1;
hence (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & (
SVF1 (2,f,u))
is_differentiable_in y0) by
A2;
end;
theorem ::
PDIFF_4:9
Th9: for f be
PartFunc of (
REAL 3),
REAL holds for u be
Element of (
REAL 3) holds (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & (
SVF1 (3,f,u))
is_differentiable_in z0) iff f
is_partial_differentiable_in (u,3)
proof
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
thus (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & (
SVF1 (3,f,u))
is_differentiable_in z0) implies f
is_partial_differentiable_in (u,3) by
Th3;
assume
A1: f
is_partial_differentiable_in (u,3);
consider x0,y0,z0 be
Element of
REAL such that
A2: u
=
<*x0, y0, z0*> by
FINSEQ_2: 103;
((
proj (3,3))
. u)
= z0 by
A2,
Th3;
then (
SVF1 (3,f,u))
is_differentiable_in z0 by
A1;
hence (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & (
SVF1 (3,f,u))
is_differentiable_in z0) by
A2;
end;
theorem ::
PDIFF_4:10
u
=
<*x0, y0, z0*> & f
is_partial_differentiable_in (u,1) implies ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)))
proof
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_partial_differentiable_in (u,1);
consider x1, y1, z1 such that
A3: u
=
<*x1, y1, z1*> & (
SVF1 (1,f,u))
is_differentiable_in x1 by
A2,
Th7;
(
SVF1 (1,f,u))
is_differentiable_in x0 by
A1,
A3,
FINSEQ_1: 78;
hence thesis by
FDIFF_1:def 4;
end;
theorem ::
PDIFF_4:11
u
=
<*x0, y0, z0*> & f
is_partial_differentiable_in (u,2) implies ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f,u))
. y)
- ((
SVF1 (2,f,u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)))
proof
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_partial_differentiable_in (u,2);
consider x1, y1, z1 such that
A3: u
=
<*x1, y1, z1*> & (
SVF1 (2,f,u))
is_differentiable_in y1 by
A2,
Th8;
(
SVF1 (2,f,u))
is_differentiable_in y0 by
A1,
A3,
FINSEQ_1: 78;
hence thesis by
FDIFF_1:def 4;
end;
theorem ::
PDIFF_4:12
u
=
<*x0, y0, z0*> & f
is_partial_differentiable_in (u,3) implies ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,f,u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,f,u))
. z)
- ((
SVF1 (3,f,u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)))
proof
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_partial_differentiable_in (u,3);
consider x1, y1, z1 such that
A3: u
=
<*x1, y1, z1*> & (
SVF1 (3,f,u))
is_differentiable_in z1 by
A2,
Th9;
(
SVF1 (3,f,u))
is_differentiable_in z0 by
A1,
A3,
FINSEQ_1: 78;
hence thesis by
FDIFF_1:def 4;
end;
theorem ::
PDIFF_4:13
Th13: for f be
PartFunc of (
REAL 3),
REAL holds for u be
Element of (
REAL 3) holds f
is_partial_differentiable_in (u,1) iff ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)))
proof
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
hereby
assume
A1: f
is_partial_differentiable_in (u,1);
thus (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))))
proof
consider x0, y0, z0 such that
A2: u
=
<*x0, y0, z0*> & (
SVF1 (1,f,u))
is_differentiable_in x0 by
A1,
Th7;
ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A2,
FDIFF_1:def 4;
hence thesis by
A2;
end;
end;
assume (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))));
then
consider x0, y0, z0 such that
A3: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)));
consider N be
Neighbourhood of x0 such that
A4: N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A3;
(
SVF1 (1,f,u))
is_differentiable_in x0 by
A4,
FDIFF_1:def 4;
hence thesis by
A3,
Th7;
end;
theorem ::
PDIFF_4:14
Th14: for f be
PartFunc of (
REAL 3),
REAL holds for u be
Element of (
REAL 3) holds f
is_partial_differentiable_in (u,2) iff ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f,u))
. y)
- ((
SVF1 (2,f,u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)))
proof
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
hereby
assume
A1: f
is_partial_differentiable_in (u,2);
thus (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f,u))
. y)
- ((
SVF1 (2,f,u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))))
proof
consider x0, y0, z0 such that
A2: u
=
<*x0, y0, z0*> & (
SVF1 (2,f,u))
is_differentiable_in y0 by
A1,
Th8;
ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f,u))
. y)
- ((
SVF1 (2,f,u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A2,
FDIFF_1:def 4;
hence thesis by
A2;
end;
end;
assume (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f,u))
. y)
- ((
SVF1 (2,f,u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))));
then
consider x0, y0, z0 such that
A3: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f,u))
. y)
- ((
SVF1 (2,f,u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)));
consider N be
Neighbourhood of y0 such that
A4: N
c= (
dom (
SVF1 (2,f,u))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f,u))
. y)
- ((
SVF1 (2,f,u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A3;
(
SVF1 (2,f,u))
is_differentiable_in y0 by
A4,
FDIFF_1:def 4;
hence thesis by
A3,
Th8;
end;
theorem ::
PDIFF_4:15
Th15: for f be
PartFunc of (
REAL 3),
REAL holds for u be
Element of (
REAL 3) holds f
is_partial_differentiable_in (u,3) iff ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,f,u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,f,u))
. z)
- ((
SVF1 (3,f,u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)))
proof
let f be
PartFunc of (
REAL 3),
REAL ;
let u be
Element of (
REAL 3);
hereby
assume
A1: f
is_partial_differentiable_in (u,3);
thus (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,f,u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,f,u))
. z)
- ((
SVF1 (3,f,u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))))
proof
consider x0, y0, z0 such that
A2: u
=
<*x0, y0, z0*> & (
SVF1 (3,f,u))
is_differentiable_in z0 by
A1,
Th9;
ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,f,u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,f,u))
. z)
- ((
SVF1 (3,f,u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A2,
FDIFF_1:def 4;
hence thesis by
A2;
end;
end;
assume (ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,f,u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,f,u))
. z)
- ((
SVF1 (3,f,u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))));
then
consider x0, y0, z0 such that
A3: u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,f,u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,f,u))
. z)
- ((
SVF1 (3,f,u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)));
consider N be
Neighbourhood of z0 such that
A4: N
c= (
dom (
SVF1 (3,f,u))) & ex L, R st for z st z
in N holds (((
SVF1 (3,f,u))
. z)
- ((
SVF1 (3,f,u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A3;
(
SVF1 (3,f,u))
is_differentiable_in z0 by
A4,
FDIFF_1:def 4;
hence thesis by
A3,
Th9;
end;
Lm1: u
=
<*x0, y0, z0*> & f
is_partial_differentiable_in (u,1) implies (r
= (
diff ((
SVF1 (1,f,u)),x0)) iff ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))))
proof
set F1 = (
SVF1 (1,f,u));
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_partial_differentiable_in (u,1);
hereby
assume
A3: r
= (
diff (F1,x0));
F1
is_differentiable_in x0 by
A1,
A2,
Th4;
then
consider N be
Neighbourhood of x0 such that
A4: N
c= (
dom F1) & ex L, R st r
= (L
. 1) & for x st x
in N holds ((F1
. x)
- (F1
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A3,
FDIFF_1:def 5;
thus ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A1,
A4;
end;
given x1,y1,z1 be
Real such that
A5: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1)));
A6: x1
= x0 by
A5,
A1,
FINSEQ_1: 78;
F1
is_differentiable_in x0 by
A1,
A2,
Th4;
hence thesis by
A6,
A5,
FDIFF_1:def 5;
end;
Lm2: u
=
<*x0, y0, z0*> & f
is_partial_differentiable_in (u,2) implies (r
= (
diff ((
SVF1 (2,f,u)),y0)) iff ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,f,u))
. y)
- ((
SVF1 (2,f,u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))))
proof
set F1 = (
SVF1 (2,f,u));
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_partial_differentiable_in (u,2);
hereby
assume
A3: r
= (
diff (F1,y0));
F1
is_differentiable_in y0 by
A1,
A2,
Th5;
then
consider N be
Neighbourhood of y0 such that
A4: N
c= (
dom F1) & ex L, R st r
= (L
. 1) & for y st y
in N holds ((F1
. y)
- (F1
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A3,
FDIFF_1:def 5;
thus ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom F1) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,f,u))
. y)
- ((
SVF1 (2,f,u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A1,
A4;
end;
given x1,y1,z1 be
Real such that
A5: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of y1 st N
c= (
dom F1) & ex L, R st r
= (L
. 1) & for y st y
in N holds ((F1
. y)
- (F1
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1)));
A6: y1
= y0 by
A5,
A1,
FINSEQ_1: 78;
F1
is_differentiable_in y0 by
A1,
A2,
Th5;
hence thesis by
A6,
A5,
FDIFF_1:def 5;
end;
Lm3: u
=
<*x0, y0, z0*> & f
is_partial_differentiable_in (u,3) implies (r
= (
diff ((
SVF1 (3,f,u)),z0)) iff ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,f,u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,f,u))
. z)
- ((
SVF1 (3,f,u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))))
proof
set F1 = (
SVF1 (3,f,u));
assume that
A1: u
=
<*x0, y0, z0*> and
A2: f
is_partial_differentiable_in (u,3);
hereby
assume
A3: r
= (
diff (F1,z0));
F1
is_differentiable_in z0 by
A1,
A2,
Th6;
then
consider N be
Neighbourhood of z0 such that
A4: N
c= (
dom F1) & ex L, R st r
= (L
. 1) & for z st z
in N holds ((F1
. z)
- (F1
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A3,
FDIFF_1:def 5;
thus ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom F1) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,f,u))
. z)
- ((
SVF1 (3,f,u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A1,
A4;
end;
given x1,y1,z1 be
Real such that
A5: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of z1 st N
c= (
dom F1) & ex L, R st r
= (L
. 1) & for z st z
in N holds ((F1
. z)
- (F1
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1)));
A6: z1
= z0 by
A5,
A1,
FINSEQ_1: 78;
F1
is_differentiable_in z0 by
A1,
A2,
Th6;
hence thesis by
A6,
A5,
FDIFF_1:def 5;
end;
theorem ::
PDIFF_4:16
Th16: u
=
<*x0, y0, z0*> & f
is_partial_differentiable_in (u,1) implies (r
= (
partdiff (f,u,1)) iff ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))))
proof
assume
A1: u
=
<*x0, y0, z0*> & f
is_partial_differentiable_in (u,1);
hereby
assume r
= (
partdiff (f,u,1));
then r
= (
diff ((
SVF1 (1,f,u)),x0)) by
Th1,
A1;
hence ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
Lm1,
A1;
end;
given x1,y1,z1 be
Real such that
A2: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,f,u))) & ex L, R st r
= (L
. 1) & for x st x
in N holds (((
SVF1 (1,f,u))
. x)
- ((
SVF1 (1,f,u))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1)));
r
= (
diff ((
SVF1 (1,f,u)),x0)) by
A2,
A1,
Lm1;
hence thesis by
Th1,
A1;
end;
theorem ::
PDIFF_4:17
Th17: u
=
<*x0, y0, z0*> & f
is_partial_differentiable_in (u,2) implies (r
= (
partdiff (f,u,2)) iff ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,f,u))
. y)
- ((
SVF1 (2,f,u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))))
proof
assume
A1: u
=
<*x0, y0, z0*> & f
is_partial_differentiable_in (u,2);
hereby
assume r
= (
partdiff (f,u,2));
then r
= (
diff ((
SVF1 (2,f,u)),y0)) by
Th2,
A1;
hence ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f,u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,f,u))
. y)
- ((
SVF1 (2,f,u))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
Lm2,
A1;
end;
given x1,y1,z1 be
Real such that
A2: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,f,u))) & ex L, R st r
= (L
. 1) & for y st y
in N holds (((
SVF1 (2,f,u))
. y)
- ((
SVF1 (2,f,u))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1)));
r
= (
diff ((
SVF1 (2,f,u)),y0)) by
A2,
A1,
Lm2;
hence thesis by
Th2,
A1;
end;
theorem ::
PDIFF_4:18
Th18: u
=
<*x0, y0, z0*> & f
is_partial_differentiable_in (u,3) implies (r
= (
partdiff (f,u,3)) iff ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,f,u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,f,u))
. z)
- ((
SVF1 (3,f,u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))))
proof
assume
A1: u
=
<*x0, y0, z0*> & f
is_partial_differentiable_in (u,3);
hereby
assume r
= (
partdiff (f,u,3));
then r
= (
diff ((
SVF1 (3,f,u)),z0)) by
Th3,
A1;
hence ex x0,y0,z0 be
Real st u
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,f,u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,f,u))
. z)
- ((
SVF1 (3,f,u))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
Lm3,
A1;
end;
given x1,y1,z1 be
Real such that
A2: u
=
<*x1, y1, z1*> & ex N be
Neighbourhood of z1 st N
c= (
dom (
SVF1 (3,f,u))) & ex L, R st r
= (L
. 1) & for z st z
in N holds (((
SVF1 (3,f,u))
. z)
- ((
SVF1 (3,f,u))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1)));
r
= (
diff ((
SVF1 (3,f,u)),z0)) by
A2,
A1,
Lm3;
hence thesis by
Th3,
A1;
end;
theorem ::
PDIFF_4:19
u
=
<*x0, y0, z0*> implies (
partdiff (f,u,1))
= (
diff ((
SVF1 (1,f,u)),x0)) by
Th1;
theorem ::
PDIFF_4:20
u
=
<*x0, y0, z0*> implies (
partdiff (f,u,2))
= (
diff ((
SVF1 (2,f,u)),y0)) by
Th2;
theorem ::
PDIFF_4:21
u
=
<*x0, y0, z0*> implies (
partdiff (f,u,3))
= (
diff ((
SVF1 (3,f,u)),z0)) by
Th3;
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
::
PDIFF_4:def1
pred f
is_partial_differentiable`1_on D means D
c= (
dom f) & for u be
Element of (
REAL 3) st u
in D holds (f
| D)
is_partial_differentiable_in (u,1);
::
PDIFF_4:def2
pred f
is_partial_differentiable`2_on D means D
c= (
dom f) & for u be
Element of (
REAL 3) st u
in D holds (f
| D)
is_partial_differentiable_in (u,2);
::
PDIFF_4:def3
pred f
is_partial_differentiable`3_on D means D
c= (
dom f) & for u be
Element of (
REAL 3) st u
in D holds (f
| D)
is_partial_differentiable_in (u,3);
end
theorem ::
PDIFF_4:22
f
is_partial_differentiable`1_on D implies D
c= (
dom f) & for u st u
in D holds f
is_partial_differentiable_in (u,1)
proof
assume
A1: f
is_partial_differentiable`1_on D;
hence D
c= (
dom f);
set g = (f
| D);
let u0 be
Element of (
REAL 3);
assume u0
in D;
then g
is_partial_differentiable_in (u0,1) by
A1;
then
consider x0,y0,z0 be
Real such that
A2: u0
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,g,u0))) & ex L, R st for x st x
in N holds (((
SVF1 (1,g,u0))
. x)
- ((
SVF1 (1,g,u0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
Th13;
consider N be
Neighbourhood of x0 such that
A3: N
c= (
dom (
SVF1 (1,g,u0))) & ex L, R st for x st x
in N holds (((
SVF1 (1,g,u0))
. x)
- ((
SVF1 (1,g,u0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A2;
for x st x
in (
dom (
SVF1 (1,g,u0))) holds x
in (
dom (
SVF1 (1,f,u0)))
proof
let x;
assume x
in (
dom (
SVF1 (1,g,u0)));
then
A4: x
in (
dom (
reproj (1,u0))) & ((
reproj (1,u0))
. x)
in (
dom (f
| D)) by
FUNCT_1: 11;
(
dom (f
| D))
= ((
dom f)
/\ D) by
RELAT_1: 61;
then (
dom (f
| D))
c= (
dom f) by
XBOOLE_1: 17;
hence thesis by
A4,
FUNCT_1: 11;
end;
then for x be
object st x
in (
dom (
SVF1 (1,g,u0))) holds x
in (
dom (
SVF1 (1,f,u0)));
then (
dom (
SVF1 (1,g,u0)))
c= (
dom (
SVF1 (1,f,u0)));
then
A5: N
c= (
dom (
SVF1 (1,f,u0))) by
A3;
consider L, R such that
A6: for x st x
in N holds (((
SVF1 (1,g,u0))
. x)
- ((
SVF1 (1,g,u0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A3;
for x st x
in N holds (((
SVF1 (1,f,u0))
. x)
- ((
SVF1 (1,f,u0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)))
proof
let x;
assume
A7: x
in N;
A8: for x st x
in (
dom (
SVF1 (1,g,u0))) holds ((
SVF1 (1,g,u0))
. x)
= ((
SVF1 (1,f,u0))
. x)
proof
let x;
assume
A9: x
in (
dom (
SVF1 (1,g,u0)));
then
A10: x
in (
dom (
reproj (1,u0))) & ((
reproj (1,u0))
. x)
in (
dom (f
| D)) by
FUNCT_1: 11;
((
SVF1 (1,g,u0))
. x)
= ((f
| D)
. ((
reproj (1,u0))
. x)) by
A9,
FUNCT_1: 12
.= (f
. ((
reproj (1,u0))
. x)) by
A10,
FUNCT_1: 47
.= ((
SVF1 (1,f,u0))
. x) by
A10,
FUNCT_1: 13;
hence thesis;
end;
A11: x0
in N by
RCOMP_1: 16;
((L
. (x
- x0))
+ (R
. (x
- x0)))
= (((
SVF1 (1,g,u0))
. x)
- ((
SVF1 (1,g,u0))
. x0)) by
A6,
A7
.= (((
SVF1 (1,f,u0))
. x)
- ((
SVF1 (1,g,u0))
. x0)) by
A3,
A7,
A8
.= (((
SVF1 (1,f,u0))
. x)
- ((
SVF1 (1,f,u0))
. x0)) by
A3,
A8,
A11;
hence thesis;
end;
hence thesis by
A2,
A5,
Th13;
end;
theorem ::
PDIFF_4:23
f
is_partial_differentiable`2_on D implies D
c= (
dom f) & for u st u
in D holds f
is_partial_differentiable_in (u,2)
proof
assume
A1: f
is_partial_differentiable`2_on D;
hence D
c= (
dom f);
set g = (f
| D);
let u0 be
Element of (
REAL 3);
assume u0
in D;
then g
is_partial_differentiable_in (u0,2) by
A1;
then
consider x0,y0,z0 be
Real such that
A2: u0
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,g,u0))) & ex L, R st for y st y
in N holds (((
SVF1 (2,g,u0))
. y)
- ((
SVF1 (2,g,u0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
Th14;
consider N be
Neighbourhood of y0 such that
A3: N
c= (
dom (
SVF1 (2,g,u0))) & ex L, R st for y st y
in N holds (((
SVF1 (2,g,u0))
. y)
- ((
SVF1 (2,g,u0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A2;
for y st y
in (
dom (
SVF1 (2,g,u0))) holds y
in (
dom (
SVF1 (2,f,u0)))
proof
let y;
assume y
in (
dom (
SVF1 (2,g,u0)));
then
A4: y
in (
dom (
reproj (2,u0))) & ((
reproj (2,u0))
. y)
in (
dom (f
| D)) by
FUNCT_1: 11;
(
dom (f
| D))
= ((
dom f)
/\ D) by
RELAT_1: 61;
then (
dom (f
| D))
c= (
dom f) by
XBOOLE_1: 17;
hence thesis by
A4,
FUNCT_1: 11;
end;
then for y be
object st y
in (
dom (
SVF1 (2,g,u0))) holds y
in (
dom (
SVF1 (2,f,u0)));
then (
dom (
SVF1 (2,g,u0)))
c= (
dom (
SVF1 (2,f,u0)));
then
A5: N
c= (
dom (
SVF1 (2,f,u0))) by
A3;
consider L, R such that
A6: for y st y
in N holds (((
SVF1 (2,g,u0))
. y)
- ((
SVF1 (2,g,u0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A3;
for y st y
in N holds (((
SVF1 (2,f,u0))
. y)
- ((
SVF1 (2,f,u0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0)))
proof
let y;
assume
A7: y
in N;
A8: for y st y
in (
dom (
SVF1 (2,g,u0))) holds ((
SVF1 (2,g,u0))
. y)
= ((
SVF1 (2,f,u0))
. y)
proof
let y;
assume
A9: y
in (
dom (
SVF1 (2,g,u0)));
then
A10: y
in (
dom (
reproj (2,u0))) & ((
reproj (2,u0))
. y)
in (
dom (f
| D)) by
FUNCT_1: 11;
((
SVF1 (2,g,u0))
. y)
= ((f
| D)
. ((
reproj (2,u0))
. y)) by
A9,
FUNCT_1: 12
.= (f
. ((
reproj (2,u0))
. y)) by
A10,
FUNCT_1: 47
.= ((
SVF1 (2,f,u0))
. y) by
A10,
FUNCT_1: 13;
hence thesis;
end;
A11: y0
in N by
RCOMP_1: 16;
((L
. (y
- y0))
+ (R
. (y
- y0)))
= (((
SVF1 (2,g,u0))
. y)
- ((
SVF1 (2,g,u0))
. y0)) by
A6,
A7
.= (((
SVF1 (2,f,u0))
. y)
- ((
SVF1 (2,g,u0))
. y0)) by
A3,
A7,
A8
.= (((
SVF1 (2,f,u0))
. y)
- ((
SVF1 (2,f,u0))
. y0)) by
A3,
A8,
A11;
hence thesis;
end;
hence thesis by
A2,
A5,
Th14;
end;
theorem ::
PDIFF_4:24
f
is_partial_differentiable`3_on D implies D
c= (
dom f) & for u st u
in D holds f
is_partial_differentiable_in (u,3)
proof
assume
A1: f
is_partial_differentiable`3_on D;
hence D
c= (
dom f);
set g = (f
| D);
let u0 be
Element of (
REAL 3);
assume u0
in D;
then g
is_partial_differentiable_in (u0,3) by
A1;
then
consider x0,y0,z0 be
Real such that
A2: u0
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,g,u0))) & ex L, R st for z st z
in N holds (((
SVF1 (3,g,u0))
. z)
- ((
SVF1 (3,g,u0))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
Th15;
consider N be
Neighbourhood of z0 such that
A3: N
c= (
dom (
SVF1 (3,g,u0))) & ex L, R st for z st z
in N holds (((
SVF1 (3,g,u0))
. z)
- ((
SVF1 (3,g,u0))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A2;
for z st z
in (
dom (
SVF1 (3,g,u0))) holds z
in (
dom (
SVF1 (3,f,u0)))
proof
let z;
assume z
in (
dom (
SVF1 (3,g,u0)));
then
A4: z
in (
dom (
reproj (3,u0))) & ((
reproj (3,u0))
. z)
in (
dom (f
| D)) by
FUNCT_1: 11;
(
dom (f
| D))
= ((
dom f)
/\ D) by
RELAT_1: 61;
then (
dom (f
| D))
c= (
dom f) by
XBOOLE_1: 17;
hence thesis by
A4,
FUNCT_1: 11;
end;
then for z be
object st z
in (
dom (
SVF1 (3,g,u0))) holds z
in (
dom (
SVF1 (3,f,u0)));
then (
dom (
SVF1 (3,g,u0)))
c= (
dom (
SVF1 (3,f,u0)));
then
A5: N
c= (
dom (
SVF1 (3,f,u0))) by
A3;
consider L, R such that
A6: for z st z
in N holds (((
SVF1 (3,g,u0))
. z)
- ((
SVF1 (3,g,u0))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A3;
for z st z
in N holds (((
SVF1 (3,f,u0))
. z)
- ((
SVF1 (3,f,u0))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0)))
proof
let z;
assume
A7: z
in N;
A8: for z st z
in (
dom (
SVF1 (3,g,u0))) holds ((
SVF1 (3,g,u0))
. z)
= ((
SVF1 (3,f,u0))
. z)
proof
let z;
assume
A9: z
in (
dom (
SVF1 (3,g,u0)));
then
A10: z
in (
dom (
reproj (3,u0))) & ((
reproj (3,u0))
. z)
in (
dom (f
| D)) by
FUNCT_1: 11;
((
SVF1 (3,g,u0))
. z)
= ((f
| D)
. ((
reproj (3,u0))
. z)) by
A9,
FUNCT_1: 12
.= (f
. ((
reproj (3,u0))
. z)) by
A10,
FUNCT_1: 47
.= ((
SVF1 (3,f,u0))
. z) by
A10,
FUNCT_1: 13;
hence thesis;
end;
A11: z0
in N by
RCOMP_1: 16;
((L
. (z
- z0))
+ (R
. (z
- z0)))
= (((
SVF1 (3,g,u0))
. z)
- ((
SVF1 (3,g,u0))
. z0)) by
A6,
A7
.= (((
SVF1 (3,f,u0))
. z)
- ((
SVF1 (3,g,u0))
. z0)) by
A3,
A7,
A8
.= (((
SVF1 (3,f,u0))
. z)
- ((
SVF1 (3,f,u0))
. z0)) by
A3,
A8,
A11;
hence thesis;
end;
hence thesis by
A2,
A5,
Th15;
end;
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
assume
A1: f
is_partial_differentiable`1_on D;
::
PDIFF_4:def4
func f
`partial1| D ->
PartFunc of (
REAL 3),
REAL means (
dom it )
= D & for u be
Element of (
REAL 3) st u
in D holds (it
. u)
= (
partdiff (f,u,1));
existence
proof
defpred
P[
Element of (
REAL 3)] means $1
in D;
deffunc
F(
Element of (
REAL 3)) = (
In ((
partdiff (f,$1,1)),
REAL ));
consider F be
PartFunc of (
REAL 3),
REAL such that
A2: (for u be
Element of (
REAL 3) holds u
in (
dom F) iff
P[u]) & for u be
Element of (
REAL 3) st u
in (
dom F) holds (F
. u)
=
F(u) from
SEQ_1:sch 3;
take F;
for y be
object st y
in (
dom F) holds y
in D by
A2;
then
A3: (
dom F)
c= D;
now
let y be
object such that
A4: y
in D;
D
c= (
dom f) by
A1;
then D is
Subset of (
REAL 3) by
XBOOLE_1: 1;
hence y
in (
dom F) by
A2,
A4;
end;
then D
c= (
dom F);
hence (
dom F)
= D by
A3;
let u be
Element of (
REAL 3);
assume u
in D;
then u
in (
dom F) by
A2;
then (F
. u)
=
F(u) by
A2;
hence thesis;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 3),
REAL ;
assume that
A5: (
dom F)
= D & for u be
Element of (
REAL 3) st u
in D holds (F
. u)
= (
partdiff (f,u,1)) and
A6: (
dom G)
= D & for u be
Element of (
REAL 3) st u
in D holds (G
. u)
= (
partdiff (f,u,1));
now
let u be
Element of (
REAL 3);
assume
A7: u
in (
dom F);
then (F
. u)
= (
partdiff (f,u,1)) by
A5;
hence (F
. u)
= (G
. u) by
A5,
A6,
A7;
end;
hence thesis by
A5,
A6,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
assume
A1: f
is_partial_differentiable`2_on D;
::
PDIFF_4:def5
func f
`partial2| D ->
PartFunc of (
REAL 3),
REAL means (
dom it )
= D & for u be
Element of (
REAL 3) st u
in D holds (it
. u)
= (
partdiff (f,u,2));
existence
proof
defpred
P[
Element of (
REAL 3)] means $1
in D;
deffunc
F(
Element of (
REAL 3)) = (
In ((
partdiff (f,$1,2)),
REAL ));
consider F be
PartFunc of (
REAL 3),
REAL such that
A2: (for u be
Element of (
REAL 3) holds u
in (
dom F) iff
P[u]) & for u be
Element of (
REAL 3) st u
in (
dom F) holds (F
. u)
=
F(u) from
SEQ_1:sch 3;
take F;
for y be
object st y
in (
dom F) holds y
in D by
A2;
then
A3: (
dom F)
c= D;
now
let y be
object such that
A4: y
in D;
D
c= (
dom f) by
A1;
then D is
Subset of (
REAL 3) by
XBOOLE_1: 1;
hence y
in (
dom F) by
A2,
A4;
end;
then D
c= (
dom F);
hence (
dom F)
= D by
A3;
let u be
Element of (
REAL 3);
assume u
in D;
then u
in (
dom F) by
A2;
then (F
. u)
=
F(u) by
A2;
hence thesis;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 3),
REAL ;
assume that
A5: (
dom F)
= D & for u be
Element of (
REAL 3) st u
in D holds (F
. u)
= (
partdiff (f,u,2)) and
A6: (
dom G)
= D & for u be
Element of (
REAL 3) st u
in D holds (G
. u)
= (
partdiff (f,u,2));
now
let u be
Element of (
REAL 3);
assume
A7: u
in (
dom F);
then (F
. u)
= (
partdiff (f,u,2)) by
A5;
hence (F
. u)
= (G
. u) by
A5,
A6,
A7;
end;
hence thesis by
A5,
A6,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let D be
set;
assume
A1: f
is_partial_differentiable`3_on D;
::
PDIFF_4:def6
func f
`partial3| D ->
PartFunc of (
REAL 3),
REAL means (
dom it )
= D & for u be
Element of (
REAL 3) st u
in D holds (it
. u)
= (
partdiff (f,u,3));
existence
proof
defpred
P[
Element of (
REAL 3)] means $1
in D;
deffunc
F(
Element of (
REAL 3)) = (
In ((
partdiff (f,$1,3)),
REAL ));
consider F be
PartFunc of (
REAL 3),
REAL such that
A2: (for u be
Element of (
REAL 3) holds u
in (
dom F) iff
P[u]) & for u be
Element of (
REAL 3) st u
in (
dom F) holds (F
. u)
=
F(u) from
SEQ_1:sch 3;
take F;
for y be
object st y
in (
dom F) holds y
in D by
A2;
then
A3: (
dom F)
c= D;
now
let y be
object such that
A4: y
in D;
D
c= (
dom f) by
A1;
then D is
Subset of (
REAL 3) by
XBOOLE_1: 1;
hence y
in (
dom F) by
A2,
A4;
end;
then D
c= (
dom F);
hence (
dom F)
= D by
A3;
let u be
Element of (
REAL 3);
assume u
in D;
then u
in (
dom F) by
A2;
then (F
. u)
=
F(u) by
A2;
hence thesis;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL 3),
REAL ;
assume that
A5: (
dom F)
= D & for u be
Element of (
REAL 3) st u
in D holds (F
. u)
= (
partdiff (f,u,3)) and
A6: (
dom G)
= D & for u be
Element of (
REAL 3) st u
in D holds (G
. u)
= (
partdiff (f,u,3));
now
let u be
Element of (
REAL 3);
assume
A7: u
in (
dom F);
then (F
. u)
= (
partdiff (f,u,3)) by
A5;
hence (F
. u)
= (G
. u) by
A5,
A6,
A7;
end;
hence thesis by
A5,
A6,
PARTFUN1: 5;
end;
end
begin
theorem ::
PDIFF_4:25
for u0 be
Element of (
REAL 3) holds for N be
Neighbourhood of ((
proj (1,3))
. u0) st f
is_partial_differentiable_in (u0,1) & N
c= (
dom (
SVF1 (1,f,u0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (1,3))
. u0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (1,f,u0))
/* (h
+ c))
- ((
SVF1 (1,f,u0))
/* c))) is
convergent & (
partdiff (f,u0,1))
= (
lim ((h
" )
(#) (((
SVF1 (1,f,u0))
/* (h
+ c))
- ((
SVF1 (1,f,u0))
/* c))))
proof
let u0 be
Element of (
REAL 3);
let N be
Neighbourhood of ((
proj (1,3))
. u0);
assume
A1: f
is_partial_differentiable_in (u0,1) & N
c= (
dom (
SVF1 (1,f,u0)));
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A2: (
rng c)
=
{((
proj (1,3))
. u0)} & (
rng (h
+ c))
c= N;
consider x0,y0,z0 be
Real such that
A3: u0
=
<*x0, y0, z0*> & ex N1 be
Neighbourhood of x0 st N1
c= (
dom (
SVF1 (1,f,u0))) & ex L, R st for x st x
in N1 holds (((
SVF1 (1,f,u0))
. x)
- ((
SVF1 (1,f,u0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A1,
Th13;
consider N1 be
Neighbourhood of x0 such that
A4: N1
c= (
dom (
SVF1 (1,f,u0))) & ex L, R st for x st x
in N1 holds (((
SVF1 (1,f,u0))
. x)
- ((
SVF1 (1,f,u0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A3;
consider L, R such that
A5: for x st x
in N1 holds (((
SVF1 (1,f,u0))
. x)
- ((
SVF1 (1,f,u0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A4;
A6: ((
proj (1,3))
. u0)
= x0 by
A3,
Th1;
then
consider N2 be
Neighbourhood of x0 such that
A7: N2
c= N & N2
c= N1 by
RCOMP_1: 17;
consider g be
Real such that
A8:
0
< g & N2
=
].(x0
- g), (x0
+ g).[ by
RCOMP_1:def 6;
A9: x0
in N2
proof
A10: (x0
+
0 )
< (x0
+ g) by
A8,
XREAL_1: 8;
(x0
- g)
< (x0
-
0 ) by
A8,
XREAL_1: 44;
hence thesis by
A8,
A10;
end;
ex n st (
rng (c
^\ n))
c= N2 & (
rng ((h
+ c)
^\ n))
c= N2
proof
x0
in (
rng c) by
A2,
A6,
TARSKI:def 1;
then
A11: (
lim c)
= x0 by
SEQ_4: 25;
h is
convergent & (
lim h)
=
0 ;
then
A12: (
lim (h
+ c))
= (
0
+ x0) by
A11,
SEQ_2: 6
.= x0;
consider n be
Nat such that
A13: for m be
Nat st n
<= m holds
|.(((h
+ c)
. m)
- x0).|
< g by
A8,
A12,
SEQ_2:def 7;
A14: (
rng (c
^\ n))
=
{x0} by
A2,
A6,
VALUED_0: 26;
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
take n;
thus (
rng (c
^\ n))
c= N2 by
A9,
A14,
TARSKI:def 1;
let y be
object;
assume y
in (
rng ((h
+ c)
^\ n));
then
consider m such that
A15: y
= (((h
+ c)
^\ n)
. m) by
FUNCT_2: 113;
(n
+
0 )
<= (n
+ m) by
XREAL_1: 7;
then
|.(((h
+ c)
. (n
+ m))
- x0).|
< g by
A13;
then (
- g)
< (((h
+ c)
. (m
+ n))
- x0) & (((h
+ c)
. (m
+ n))
- x0)
< g by
SEQ_2: 1;
then (
- g)
< ((((h
+ c)
^\ n)
. m)
- x0) & ((((h
+ c)
^\ n)
. m)
- x0)
< g by
NAT_1:def 3;
then (x0
+ (
- g))
< (((h
+ c)
^\ n)
. m) & (((h
+ c)
^\ n)
. m)
< (x0
+ g) by
XREAL_1: 19,
XREAL_1: 20;
hence thesis by
A8,
A15;
end;
then
consider n such that
A16: (
rng (c
^\ n))
c= N2 & (
rng ((h
+ c)
^\ n))
c= N2;
A17: (
rng (c
^\ n))
c= (
dom (
SVF1 (1,f,u0)))
proof
let y be
object;
A18: (
rng (c
^\ n))
= (
rng c) by
VALUED_0: 26;
assume y
in (
rng (c
^\ n));
then y
= x0 by
A2,
A6,
A18,
TARSKI:def 1;
then y
in N by
A7,
A9;
hence thesis by
A1;
end;
A19: (
rng ((h
+ c)
^\ n))
c= (
dom (
SVF1 (1,f,u0))) by
A16,
A7,
A1;
A20: (
rng c)
c= (
dom (
SVF1 (1,f,u0)))
proof
let y be
object;
assume y
in (
rng c);
then y
= x0 by
A2,
A6,
TARSKI:def 1;
then y
in N by
A7,
A9;
hence thesis by
A1;
end;
A21: (
rng (h
+ c))
c= (
dom (
SVF1 (1,f,u0))) by
A2,
A1;
A22: for x st x
in N2 holds (((
SVF1 (1,f,u0))
. x)
- ((
SVF1 (1,f,u0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A5,
A7;
A23: for k holds (((
SVF1 (1,f,u0))
. (((h
+ c)
^\ n)
. k))
- ((
SVF1 (1,f,u0))
. ((c
^\ n)
. k)))
= ((L
. ((h
^\ n)
. k))
+ (R
. ((h
^\ n)
. k)))
proof
let k;
(((h
+ c)
^\ n)
. k)
in (
rng ((h
+ c)
^\ n)) by
VALUED_0: 28;
then
A24: (((h
+ c)
^\ n)
. k)
in N2 by
A16;
A25: ((((h
+ c)
^\ n)
. k)
- ((c
^\ n)
. k))
= ((((h
^\ n)
+ (c
^\ n))
. k)
- ((c
^\ n)
. k)) by
SEQM_3: 15
.= ((((h
^\ n)
. k)
+ ((c
^\ n)
. k))
- ((c
^\ n)
. k)) by
SEQ_1: 7
.= ((h
^\ n)
. k);
A26: ((c
^\ n)
. k)
in (
rng (c
^\ n)) by
VALUED_0: 28;
(
rng (c
^\ n))
= (
rng c) by
VALUED_0: 26;
then ((c
^\ n)
. k)
= x0 by
A2,
A6,
A26,
TARSKI:def 1;
hence thesis by
A5,
A7,
A24,
A25;
end;
A27: L is
total by
FDIFF_1:def 3;
A28: R is
total by
FDIFF_1:def 2;
A29: (((
SVF1 (1,f,u0))
/* ((h
+ c)
^\ n))
- ((
SVF1 (1,f,u0))
/* (c
^\ n)))
= ((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
proof
now
let k;
thus ((((
SVF1 (1,f,u0))
/* ((h
+ c)
^\ n))
- ((
SVF1 (1,f,u0))
/* (c
^\ n)))
. k)
= ((((
SVF1 (1,f,u0))
/* ((h
+ c)
^\ n))
. k)
- (((
SVF1 (1,f,u0))
/* (c
^\ n))
. k)) by
RFUNCT_2: 1
.= (((
SVF1 (1,f,u0))
. (((h
+ c)
^\ n)
. k))
- (((
SVF1 (1,f,u0))
/* (c
^\ n))
. k)) by
A19,
FUNCT_2: 108
.= (((
SVF1 (1,f,u0))
. (((h
+ c)
^\ n)
. k))
- ((
SVF1 (1,f,u0))
. ((c
^\ n)
. k))) by
A17,
FUNCT_2: 108
.= ((L
. ((h
^\ n)
. k))
+ (R
. ((h
^\ n)
. k))) by
A23
.= (((L
/* (h
^\ n))
. k)
+ (R
. ((h
^\ n)
. k))) by
A27,
FUNCT_2: 115
.= (((L
/* (h
^\ n))
. k)
+ ((R
/* (h
^\ n))
. k)) by
A28,
FUNCT_2: 115
.= (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
. k) by
SEQ_1: 7;
end;
hence thesis by
FUNCT_2: 63;
end;
A30: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )) is
convergent & (
lim (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )))
= (L
. 1)
proof
deffunc
F(
Nat) = ((L
. 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. $1));
consider s1 be
Real_Sequence such that
A31: for k be
Nat holds (s1
. k)
=
F(k) from
SEQ_1:sch 1;
consider s such that
A32: for p1 be
Real holds (L
. p1)
= (s
* p1) by
FDIFF_1:def 3;
A33: (L
. 1)
= (s
* 1) by
A32
.= s;
now
let m;
A34: ((h
^\ n)
. m)
<>
0 by
SEQ_1: 5;
thus ((((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
. m)
= ((((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
. m)
* (((h
^\ n)
" )
. m)) by
SEQ_1: 8
.= ((((L
/* (h
^\ n))
. m)
+ ((R
/* (h
^\ n))
. m))
* (((h
^\ n)
" )
. m)) by
SEQ_1: 7
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m))
+ (((R
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m)))
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
SEQ_1: 8
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
VALUED_1: 10
.= (((L
. ((h
^\ n)
. m))
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A27,
FUNCT_2: 115
.= (((s
* ((h
^\ n)
. m))
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A32
.= ((s
* (((h
^\ n)
. m)
* (((h
^\ n)
. m)
" )))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m))
.= ((s
* 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A34,
XCMPLX_0:def 7
.= (s1
. m) by
A31,
A33;
end;
then
A35: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
= s1 by
FUNCT_2: 63;
A36:
now
let r be
Real such that
A37:
0
< r;
(((h
^\ n)
" )
(#) (R
/* (h
^\ n))) is
convergent & (
lim (((h
^\ n)
" )
(#) (R
/* (h
^\ n))))
=
0 by
FDIFF_1:def 2;
then
consider m be
Nat such that
A38: for k be
Nat st m
<= k holds
|.(((((h
^\ n)
" )
(#) (R
/* (h
^\ n)))
. k)
-
0 ).|
< r by
A37,
SEQ_2:def 7;
take n1 = m;
let k be
Nat such that
A39: n1
<= k;
|.((s1
. k)
- (L
. 1)).|
=
|.(((L
. 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. k))
- (L
. 1)).| by
A31
.=
|.(((((h
^\ n)
" )
(#) (R
/* (h
^\ n)))
. k)
-
0 ).|;
hence
|.((s1
. k)
- (L
. 1)).|
< r by
A38,
A39;
end;
hence (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )) is
convergent by
A35,
SEQ_2:def 6;
hence thesis by
A35,
A36,
SEQ_2:def 7;
end;
A40: N2
c= (
dom (
SVF1 (1,f,u0))) by
A1,
A7;
A41: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
= (((((
SVF1 (1,f,u0))
/* (h
+ c))
^\ n)
- ((
SVF1 (1,f,u0))
/* (c
^\ n)))
(#) ((h
^\ n)
" )) by
A21,
A29,
VALUED_0: 27
.= (((((
SVF1 (1,f,u0))
/* (h
+ c))
^\ n)
- (((
SVF1 (1,f,u0))
/* c)
^\ n))
(#) ((h
^\ n)
" )) by
A20,
VALUED_0: 27
.= (((((
SVF1 (1,f,u0))
/* (h
+ c))
- ((
SVF1 (1,f,u0))
/* c))
^\ n)
(#) ((h
^\ n)
" )) by
SEQM_3: 17
.= (((((
SVF1 (1,f,u0))
/* (h
+ c))
- ((
SVF1 (1,f,u0))
/* c))
^\ n)
(#) ((h
" )
^\ n)) by
SEQM_3: 18
.= (((((
SVF1 (1,f,u0))
/* (h
+ c))
- ((
SVF1 (1,f,u0))
/* c))
(#) (h
" ))
^\ n) by
SEQM_3: 19;
then
A42: (L
. 1)
= (
lim ((h
" )
(#) (((
SVF1 (1,f,u0))
/* (h
+ c))
- ((
SVF1 (1,f,u0))
/* c)))) by
A30,
SEQ_4: 22;
thus ((h
" )
(#) (((
SVF1 (1,f,u0))
/* (h
+ c))
- ((
SVF1 (1,f,u0))
/* c))) is
convergent by
A30,
A41,
SEQ_4: 21;
thus thesis by
A1,
A3,
A22,
A40,
A42,
Th16;
end;
theorem ::
PDIFF_4:26
for u0 be
Element of (
REAL 3) holds for N be
Neighbourhood of ((
proj (2,3))
. u0) st f
is_partial_differentiable_in (u0,2) & N
c= (
dom (
SVF1 (2,f,u0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (2,3))
. u0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (2,f,u0))
/* (h
+ c))
- ((
SVF1 (2,f,u0))
/* c))) is
convergent & (
partdiff (f,u0,2))
= (
lim ((h
" )
(#) (((
SVF1 (2,f,u0))
/* (h
+ c))
- ((
SVF1 (2,f,u0))
/* c))))
proof
let u0 be
Element of (
REAL 3);
let N be
Neighbourhood of ((
proj (2,3))
. u0);
assume
A1: f
is_partial_differentiable_in (u0,2) & N
c= (
dom (
SVF1 (2,f,u0)));
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A2: (
rng c)
=
{((
proj (2,3))
. u0)} & (
rng (h
+ c))
c= N;
consider x0,y0,z0 be
Real such that
A3: u0
=
<*x0, y0, z0*> & ex N1 be
Neighbourhood of y0 st N1
c= (
dom (
SVF1 (2,f,u0))) & ex L, R st for y st y
in N1 holds (((
SVF1 (2,f,u0))
. y)
- ((
SVF1 (2,f,u0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A1,
Th14;
consider N1 be
Neighbourhood of y0 such that
A4: N1
c= (
dom (
SVF1 (2,f,u0))) & ex L, R st for y st y
in N1 holds (((
SVF1 (2,f,u0))
. y)
- ((
SVF1 (2,f,u0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A3;
consider L, R such that
A5: for y st y
in N1 holds (((
SVF1 (2,f,u0))
. y)
- ((
SVF1 (2,f,u0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A4;
A6: ((
proj (2,3))
. u0)
= y0 by
A3,
Th2;
then
consider N2 be
Neighbourhood of y0 such that
A7: N2
c= N & N2
c= N1 by
RCOMP_1: 17;
consider g be
Real such that
A8:
0
< g & N2
=
].(y0
- g), (y0
+ g).[ by
RCOMP_1:def 6;
A9: y0
in N2
proof
A10: (y0
+
0 )
< (y0
+ g) by
A8,
XREAL_1: 8;
(y0
- g)
< (y0
-
0 ) by
A8,
XREAL_1: 44;
hence thesis by
A8,
A10;
end;
ex n st (
rng (c
^\ n))
c= N2 & (
rng ((h
+ c)
^\ n))
c= N2
proof
y0
in (
rng c) by
A2,
A6,
TARSKI:def 1;
then
A11: (
lim c)
= y0 by
SEQ_4: 25;
h is
convergent & (
lim h)
=
0 ;
then
A12: (
lim (h
+ c))
= (
0
+ y0) by
A11,
SEQ_2: 6
.= y0;
consider n be
Nat such that
A13: for m be
Nat st n
<= m holds
|.(((h
+ c)
. m)
- y0).|
< g by
A8,
A12,
SEQ_2:def 7;
A14: (
rng (c
^\ n))
=
{y0} by
A2,
A6,
VALUED_0: 26;
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
take n;
thus (
rng (c
^\ n))
c= N2 by
A9,
A14,
TARSKI:def 1;
let y be
object;
assume y
in (
rng ((h
+ c)
^\ n));
then
consider m such that
A15: y
= (((h
+ c)
^\ n)
. m) by
FUNCT_2: 113;
(n
+
0 )
<= (n
+ m) by
XREAL_1: 7;
then
|.(((h
+ c)
. (n
+ m))
- y0).|
< g by
A13;
then (
- g)
< (((h
+ c)
. (m
+ n))
- y0) & (((h
+ c)
. (m
+ n))
- y0)
< g by
SEQ_2: 1;
then (
- g)
< ((((h
+ c)
^\ n)
. m)
- y0) & ((((h
+ c)
^\ n)
. m)
- y0)
< g by
NAT_1:def 3;
then (y0
+ (
- g))
< (((h
+ c)
^\ n)
. m) & (((h
+ c)
^\ n)
. m)
< (y0
+ g) by
XREAL_1: 19,
XREAL_1: 20;
hence thesis by
A8,
A15;
end;
then
consider n such that
A16: (
rng (c
^\ n))
c= N2 & (
rng ((h
+ c)
^\ n))
c= N2;
A17: (
rng (c
^\ n))
c= (
dom (
SVF1 (2,f,u0)))
proof
let y be
object;
A18: (
rng (c
^\ n))
= (
rng c) by
VALUED_0: 26;
assume y
in (
rng (c
^\ n));
then y
= y0 by
A2,
A6,
A18,
TARSKI:def 1;
then y
in N by
A7,
A9;
hence thesis by
A1;
end;
A19: (
rng ((h
+ c)
^\ n))
c= (
dom (
SVF1 (2,f,u0))) by
A16,
A7,
A1;
A20: (
rng c)
c= (
dom (
SVF1 (2,f,u0)))
proof
let y be
object;
assume y
in (
rng c);
then y
= y0 by
A2,
A6,
TARSKI:def 1;
then y
in N by
A7,
A9;
hence thesis by
A1;
end;
A21: (
rng (h
+ c))
c= (
dom (
SVF1 (2,f,u0))) by
A2,
A1;
A22: for y st y
in N2 holds (((
SVF1 (2,f,u0))
. y)
- ((
SVF1 (2,f,u0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A5,
A7;
A23: for k holds (((
SVF1 (2,f,u0))
. (((h
+ c)
^\ n)
. k))
- ((
SVF1 (2,f,u0))
. ((c
^\ n)
. k)))
= ((L
. ((h
^\ n)
. k))
+ (R
. ((h
^\ n)
. k)))
proof
let k;
(((h
+ c)
^\ n)
. k)
in (
rng ((h
+ c)
^\ n)) by
VALUED_0: 28;
then
A24: (((h
+ c)
^\ n)
. k)
in N2 by
A16;
A25: ((((h
+ c)
^\ n)
. k)
- ((c
^\ n)
. k))
= ((((h
^\ n)
+ (c
^\ n))
. k)
- ((c
^\ n)
. k)) by
SEQM_3: 15
.= ((((h
^\ n)
. k)
+ ((c
^\ n)
. k))
- ((c
^\ n)
. k)) by
SEQ_1: 7
.= ((h
^\ n)
. k);
A26: ((c
^\ n)
. k)
in (
rng (c
^\ n)) by
VALUED_0: 28;
(
rng (c
^\ n))
= (
rng c) by
VALUED_0: 26;
then ((c
^\ n)
. k)
= y0 by
A2,
A6,
A26,
TARSKI:def 1;
hence thesis by
A5,
A7,
A24,
A25;
end;
A27: L is
total by
FDIFF_1:def 3;
A28: R is
total by
FDIFF_1:def 2;
A29: (((
SVF1 (2,f,u0))
/* ((h
+ c)
^\ n))
- ((
SVF1 (2,f,u0))
/* (c
^\ n)))
= ((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
proof
now
let k;
thus ((((
SVF1 (2,f,u0))
/* ((h
+ c)
^\ n))
- ((
SVF1 (2,f,u0))
/* (c
^\ n)))
. k)
= ((((
SVF1 (2,f,u0))
/* ((h
+ c)
^\ n))
. k)
- (((
SVF1 (2,f,u0))
/* (c
^\ n))
. k)) by
RFUNCT_2: 1
.= (((
SVF1 (2,f,u0))
. (((h
+ c)
^\ n)
. k))
- (((
SVF1 (2,f,u0))
/* (c
^\ n))
. k)) by
A19,
FUNCT_2: 108
.= (((
SVF1 (2,f,u0))
. (((h
+ c)
^\ n)
. k))
- ((
SVF1 (2,f,u0))
. ((c
^\ n)
. k))) by
A17,
FUNCT_2: 108
.= ((L
. ((h
^\ n)
. k))
+ (R
. ((h
^\ n)
. k))) by
A23
.= (((L
/* (h
^\ n))
. k)
+ (R
. ((h
^\ n)
. k))) by
A27,
FUNCT_2: 115
.= (((L
/* (h
^\ n))
. k)
+ ((R
/* (h
^\ n))
. k)) by
A28,
FUNCT_2: 115
.= (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
. k) by
SEQ_1: 7;
end;
hence thesis by
FUNCT_2: 63;
end;
A30: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )) is
convergent & (
lim (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )))
= (L
. 1)
proof
deffunc
F(
Nat) = ((L
. 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. $1));
consider s1 be
Real_Sequence such that
A31: for k be
Nat holds (s1
. k)
=
F(k) from
SEQ_1:sch 1;
consider s such that
A32: for p1 be
Real holds (L
. p1)
= (s
* p1) by
FDIFF_1:def 3;
A33: (L
. 1)
= (s
* 1) by
A32
.= s;
now
let m;
A34: ((h
^\ n)
. m)
<>
0 by
SEQ_1: 5;
thus ((((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
. m)
= ((((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
. m)
* (((h
^\ n)
" )
. m)) by
SEQ_1: 8
.= ((((L
/* (h
^\ n))
. m)
+ ((R
/* (h
^\ n))
. m))
* (((h
^\ n)
" )
. m)) by
SEQ_1: 7
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m))
+ (((R
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m)))
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
SEQ_1: 8
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
VALUED_1: 10
.= (((L
. ((h
^\ n)
. m))
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A27,
FUNCT_2: 115
.= (((s
* ((h
^\ n)
. m))
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A32
.= ((s
* (((h
^\ n)
. m)
* (((h
^\ n)
. m)
" )))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m))
.= ((s
* 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A34,
XCMPLX_0:def 7
.= (s1
. m) by
A31,
A33;
end;
then
A35: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
= s1 by
FUNCT_2: 63;
A36:
now
let r be
Real such that
A37:
0
< r;
(((h
^\ n)
" )
(#) (R
/* (h
^\ n))) is
convergent & (
lim (((h
^\ n)
" )
(#) (R
/* (h
^\ n))))
=
0 by
FDIFF_1:def 2;
then
consider m be
Nat such that
A38: for k be
Nat st m
<= k holds
|.(((((h
^\ n)
" )
(#) (R
/* (h
^\ n)))
. k)
-
0 ).|
< r by
A37,
SEQ_2:def 7;
take n1 = m;
let k be
Nat such that
A39: n1
<= k;
|.((s1
. k)
- (L
. 1)).|
=
|.(((L
. 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. k))
- (L
. 1)).| by
A31
.=
|.(((((h
^\ n)
" )
(#) (R
/* (h
^\ n)))
. k)
-
0 ).|;
hence
|.((s1
. k)
- (L
. 1)).|
< r by
A38,
A39;
end;
hence (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )) is
convergent by
A35,
SEQ_2:def 6;
hence thesis by
A35,
A36,
SEQ_2:def 7;
end;
A40: N2
c= (
dom (
SVF1 (2,f,u0))) by
A1,
A7;
A41: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
= (((((
SVF1 (2,f,u0))
/* (h
+ c))
^\ n)
- ((
SVF1 (2,f,u0))
/* (c
^\ n)))
(#) ((h
^\ n)
" )) by
A21,
A29,
VALUED_0: 27
.= (((((
SVF1 (2,f,u0))
/* (h
+ c))
^\ n)
- (((
SVF1 (2,f,u0))
/* c)
^\ n))
(#) ((h
^\ n)
" )) by
A20,
VALUED_0: 27
.= (((((
SVF1 (2,f,u0))
/* (h
+ c))
- ((
SVF1 (2,f,u0))
/* c))
^\ n)
(#) ((h
^\ n)
" )) by
SEQM_3: 17
.= (((((
SVF1 (2,f,u0))
/* (h
+ c))
- ((
SVF1 (2,f,u0))
/* c))
^\ n)
(#) ((h
" )
^\ n)) by
SEQM_3: 18
.= (((((
SVF1 (2,f,u0))
/* (h
+ c))
- ((
SVF1 (2,f,u0))
/* c))
(#) (h
" ))
^\ n) by
SEQM_3: 19;
then
A42: (L
. 1)
= (
lim ((h
" )
(#) (((
SVF1 (2,f,u0))
/* (h
+ c))
- ((
SVF1 (2,f,u0))
/* c)))) by
A30,
SEQ_4: 22;
thus ((h
" )
(#) (((
SVF1 (2,f,u0))
/* (h
+ c))
- ((
SVF1 (2,f,u0))
/* c))) is
convergent by
A30,
A41,
SEQ_4: 21;
thus thesis by
A1,
A3,
A22,
A40,
A42,
Th17;
end;
theorem ::
PDIFF_4:27
for u0 be
Element of (
REAL 3) holds for N be
Neighbourhood of ((
proj (3,3))
. u0) st f
is_partial_differentiable_in (u0,3) & N
c= (
dom (
SVF1 (3,f,u0))) holds for h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence st (
rng c)
=
{((
proj (3,3))
. u0)} & (
rng (h
+ c))
c= N holds ((h
" )
(#) (((
SVF1 (3,f,u0))
/* (h
+ c))
- ((
SVF1 (3,f,u0))
/* c))) is
convergent & (
partdiff (f,u0,3))
= (
lim ((h
" )
(#) (((
SVF1 (3,f,u0))
/* (h
+ c))
- ((
SVF1 (3,f,u0))
/* c))))
proof
let u0 be
Element of (
REAL 3);
let N be
Neighbourhood of ((
proj (3,3))
. u0);
assume
A1: f
is_partial_differentiable_in (u0,3) & N
c= (
dom (
SVF1 (3,f,u0)));
let h be
0
-convergent
non-zero
Real_Sequence, c be
constant
Real_Sequence such that
A2: (
rng c)
=
{((
proj (3,3))
. u0)} & (
rng (h
+ c))
c= N;
consider x0,y0,z0 be
Real such that
A3: u0
=
<*x0, y0, z0*> & ex N1 be
Neighbourhood of z0 st N1
c= (
dom (
SVF1 (3,f,u0))) & ex L, R st for z st z
in N1 holds (((
SVF1 (3,f,u0))
. z)
- ((
SVF1 (3,f,u0))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A1,
Th15;
consider N1 be
Neighbourhood of z0 such that
A4: N1
c= (
dom (
SVF1 (3,f,u0))) & ex L, R st for z st z
in N1 holds (((
SVF1 (3,f,u0))
. z)
- ((
SVF1 (3,f,u0))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A3;
consider L, R such that
A5: for z st z
in N1 holds (((
SVF1 (3,f,u0))
. z)
- ((
SVF1 (3,f,u0))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A4;
A6: ((
proj (3,3))
. u0)
= z0 by
A3,
Th3;
then
consider N2 be
Neighbourhood of z0 such that
A7: N2
c= N & N2
c= N1 by
RCOMP_1: 17;
consider g be
Real such that
A8:
0
< g & N2
=
].(z0
- g), (z0
+ g).[ by
RCOMP_1:def 6;
A9: z0
in N2
proof
A10: (z0
+
0 )
< (z0
+ g) by
A8,
XREAL_1: 8;
(z0
- g)
< (z0
-
0 ) by
A8,
XREAL_1: 44;
hence thesis by
A8,
A10;
end;
ex n st (
rng (c
^\ n))
c= N2 & (
rng ((h
+ c)
^\ n))
c= N2
proof
z0
in (
rng c) by
A2,
A6,
TARSKI:def 1;
then
A11: (
lim c)
= z0 by
SEQ_4: 25;
h is
convergent & (
lim h)
=
0 ;
then
A12: (
lim (h
+ c))
= (
0
+ z0) by
A11,
SEQ_2: 6
.= z0;
consider n be
Nat such that
A13: for m be
Nat st n
<= m holds
|.(((h
+ c)
. m)
- z0).|
< g by
A8,
A12,
SEQ_2:def 7;
A14: (
rng (c
^\ n))
=
{z0} by
A2,
A6,
VALUED_0: 26;
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
take n;
thus (
rng (c
^\ n))
c= N2 by
A9,
A14,
TARSKI:def 1;
let z be
object;
assume z
in (
rng ((h
+ c)
^\ n));
then
consider m such that
A15: z
= (((h
+ c)
^\ n)
. m) by
FUNCT_2: 113;
(n
+
0 )
<= (n
+ m) by
XREAL_1: 7;
then
|.(((h
+ c)
. (n
+ m))
- z0).|
< g by
A13;
then (
- g)
< (((h
+ c)
. (m
+ n))
- z0) & (((h
+ c)
. (m
+ n))
- z0)
< g by
SEQ_2: 1;
then (
- g)
< ((((h
+ c)
^\ n)
. m)
- z0) & ((((h
+ c)
^\ n)
. m)
- z0)
< g by
NAT_1:def 3;
then (z0
+ (
- g))
< (((h
+ c)
^\ n)
. m) & (((h
+ c)
^\ n)
. m)
< (z0
+ g) by
XREAL_1: 19,
XREAL_1: 20;
hence thesis by
A8,
A15;
end;
then
consider n such that
A16: (
rng (c
^\ n))
c= N2 & (
rng ((h
+ c)
^\ n))
c= N2;
A17: (
rng (c
^\ n))
c= (
dom (
SVF1 (3,f,u0)))
proof
let z be
object;
A18: (
rng (c
^\ n))
= (
rng c) by
VALUED_0: 26;
assume z
in (
rng (c
^\ n));
then z
= z0 by
A2,
A6,
A18,
TARSKI:def 1;
then z
in N by
A7,
A9;
hence thesis by
A1;
end;
A19: (
rng ((h
+ c)
^\ n))
c= (
dom (
SVF1 (3,f,u0))) by
A16,
A7,
A1;
A20: (
rng c)
c= (
dom (
SVF1 (3,f,u0)))
proof
let z be
object;
assume z
in (
rng c);
then z
= z0 by
A2,
A6,
TARSKI:def 1;
then z
in N by
A7,
A9;
hence thesis by
A1;
end;
A21: (
rng (h
+ c))
c= (
dom (
SVF1 (3,f,u0))) by
A2,
A1;
A22: for z st z
in N2 holds (((
SVF1 (3,f,u0))
. z)
- ((
SVF1 (3,f,u0))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A5,
A7;
A23: for k holds (((
SVF1 (3,f,u0))
. (((h
+ c)
^\ n)
. k))
- ((
SVF1 (3,f,u0))
. ((c
^\ n)
. k)))
= ((L
. ((h
^\ n)
. k))
+ (R
. ((h
^\ n)
. k)))
proof
let k;
(((h
+ c)
^\ n)
. k)
in (
rng ((h
+ c)
^\ n)) by
VALUED_0: 28;
then
A24: (((h
+ c)
^\ n)
. k)
in N2 by
A16;
A25: ((((h
+ c)
^\ n)
. k)
- ((c
^\ n)
. k))
= ((((h
^\ n)
+ (c
^\ n))
. k)
- ((c
^\ n)
. k)) by
SEQM_3: 15
.= ((((h
^\ n)
. k)
+ ((c
^\ n)
. k))
- ((c
^\ n)
. k)) by
SEQ_1: 7
.= ((h
^\ n)
. k);
A26: ((c
^\ n)
. k)
in (
rng (c
^\ n)) by
VALUED_0: 28;
(
rng (c
^\ n))
= (
rng c) by
VALUED_0: 26;
then ((c
^\ n)
. k)
= z0 by
A2,
A6,
A26,
TARSKI:def 1;
hence thesis by
A5,
A7,
A24,
A25;
end;
A27: L is
total by
FDIFF_1:def 3;
A28: R is
total by
FDIFF_1:def 2;
A29: (((
SVF1 (3,f,u0))
/* ((h
+ c)
^\ n))
- ((
SVF1 (3,f,u0))
/* (c
^\ n)))
= ((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
proof
now
let k;
thus ((((
SVF1 (3,f,u0))
/* ((h
+ c)
^\ n))
- ((
SVF1 (3,f,u0))
/* (c
^\ n)))
. k)
= ((((
SVF1 (3,f,u0))
/* ((h
+ c)
^\ n))
. k)
- (((
SVF1 (3,f,u0))
/* (c
^\ n))
. k)) by
RFUNCT_2: 1
.= (((
SVF1 (3,f,u0))
. (((h
+ c)
^\ n)
. k))
- (((
SVF1 (3,f,u0))
/* (c
^\ n))
. k)) by
A19,
FUNCT_2: 108
.= (((
SVF1 (3,f,u0))
. (((h
+ c)
^\ n)
. k))
- ((
SVF1 (3,f,u0))
. ((c
^\ n)
. k))) by
A17,
FUNCT_2: 108
.= ((L
. ((h
^\ n)
. k))
+ (R
. ((h
^\ n)
. k))) by
A23
.= (((L
/* (h
^\ n))
. k)
+ (R
. ((h
^\ n)
. k))) by
A27,
FUNCT_2: 115
.= (((L
/* (h
^\ n))
. k)
+ ((R
/* (h
^\ n))
. k)) by
A28,
FUNCT_2: 115
.= (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
. k) by
SEQ_1: 7;
end;
hence thesis by
FUNCT_2: 63;
end;
A30: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )) is
convergent & (
lim (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )))
= (L
. 1)
proof
deffunc
F(
Nat) = ((L
. 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. $1));
consider s1 be
Real_Sequence such that
A31: for k be
Nat holds (s1
. k)
=
F(k) from
SEQ_1:sch 1;
consider s such that
A32: for p1 be
Real holds (L
. p1)
= (s
* p1) by
FDIFF_1:def 3;
A33: (L
. 1)
= (s
* 1) by
A32
.= s;
now
let m;
A34: ((h
^\ n)
. m)
<>
0 by
SEQ_1: 5;
thus ((((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
. m)
= ((((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
. m)
* (((h
^\ n)
" )
. m)) by
SEQ_1: 8
.= ((((L
/* (h
^\ n))
. m)
+ ((R
/* (h
^\ n))
. m))
* (((h
^\ n)
" )
. m)) by
SEQ_1: 7
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m))
+ (((R
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m)))
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
" )
. m))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
SEQ_1: 8
.= ((((L
/* (h
^\ n))
. m)
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
VALUED_1: 10
.= (((L
. ((h
^\ n)
. m))
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A27,
FUNCT_2: 115
.= (((s
* ((h
^\ n)
. m))
* (((h
^\ n)
. m)
" ))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A32
.= ((s
* (((h
^\ n)
. m)
* (((h
^\ n)
. m)
" )))
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m))
.= ((s
* 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. m)) by
A34,
XCMPLX_0:def 7
.= (s1
. m) by
A31,
A33;
end;
then
A35: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
= s1 by
FUNCT_2: 63;
A36:
now
let r be
Real such that
A37:
0
< r;
(((h
^\ n)
" )
(#) (R
/* (h
^\ n))) is
convergent & (
lim (((h
^\ n)
" )
(#) (R
/* (h
^\ n))))
=
0 by
FDIFF_1:def 2;
then
consider m be
Nat such that
A38: for k be
Nat st m
<= k holds
|.(((((h
^\ n)
" )
(#) (R
/* (h
^\ n)))
. k)
-
0 ).|
< r by
A37,
SEQ_2:def 7;
take n1 = m;
let k be
Nat such that
A39: n1
<= k;
|.((s1
. k)
- (L
. 1)).|
=
|.(((L
. 1)
+ (((R
/* (h
^\ n))
(#) ((h
^\ n)
" ))
. k))
- (L
. 1)).| by
A31
.=
|.(((((h
^\ n)
" )
(#) (R
/* (h
^\ n)))
. k)
-
0 ).|;
hence
|.((s1
. k)
- (L
. 1)).|
< r by
A38,
A39;
end;
hence (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" )) is
convergent by
A35,
SEQ_2:def 6;
hence thesis by
A35,
A36,
SEQ_2:def 7;
end;
A40: N2
c= (
dom (
SVF1 (3,f,u0))) by
A1,
A7;
A41: (((L
/* (h
^\ n))
+ (R
/* (h
^\ n)))
(#) ((h
^\ n)
" ))
= (((((
SVF1 (3,f,u0))
/* (h
+ c))
^\ n)
- ((
SVF1 (3,f,u0))
/* (c
^\ n)))
(#) ((h
^\ n)
" )) by
A21,
A29,
VALUED_0: 27
.= (((((
SVF1 (3,f,u0))
/* (h
+ c))
^\ n)
- (((
SVF1 (3,f,u0))
/* c)
^\ n))
(#) ((h
^\ n)
" )) by
A20,
VALUED_0: 27
.= (((((
SVF1 (3,f,u0))
/* (h
+ c))
- ((
SVF1 (3,f,u0))
/* c))
^\ n)
(#) ((h
^\ n)
" )) by
SEQM_3: 17
.= (((((
SVF1 (3,f,u0))
/* (h
+ c))
- ((
SVF1 (3,f,u0))
/* c))
^\ n)
(#) ((h
" )
^\ n)) by
SEQM_3: 18
.= (((((
SVF1 (3,f,u0))
/* (h
+ c))
- ((
SVF1 (3,f,u0))
/* c))
(#) (h
" ))
^\ n) by
SEQM_3: 19;
then
A42: (L
. 1)
= (
lim ((h
" )
(#) (((
SVF1 (3,f,u0))
/* (h
+ c))
- ((
SVF1 (3,f,u0))
/* c)))) by
A30,
SEQ_4: 22;
thus ((h
" )
(#) (((
SVF1 (3,f,u0))
/* (h
+ c))
- ((
SVF1 (3,f,u0))
/* c))) is
convergent by
A30,
A41,
SEQ_4: 21;
thus thesis by
A1,
A3,
A22,
A40,
A42,
Th18;
end;
theorem ::
PDIFF_4:28
f1
is_partial_differentiable_in (u0,1) & f2
is_partial_differentiable_in (u0,1) implies (f1
(#) f2)
is_partial_differentiable_in (u0,1)
proof
assume that
A1: f1
is_partial_differentiable_in (u0,1) and
A2: f2
is_partial_differentiable_in (u0,1);
consider x0,y0,z0 be
Real such that
A3: u0
=
<*x0, y0, z0*> & ex N be
Neighbourhood of x0 st N
c= (
dom (
SVF1 (1,f1,u0))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f1,u0))
. x)
- ((
SVF1 (1,f1,u0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A1,
Th13;
consider N1 be
Neighbourhood of x0 such that
A4: N1
c= (
dom (
SVF1 (1,f1,u0))) & ex L, R st for x st x
in N1 holds (((
SVF1 (1,f1,u0))
. x)
- ((
SVF1 (1,f1,u0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A3;
consider L1, R1 such that
A5: for x st x
in N1 holds (((
SVF1 (1,f1,u0))
. x)
- ((
SVF1 (1,f1,u0))
. x0))
= ((L1
. (x
- x0))
+ (R1
. (x
- x0))) by
A4;
consider x1,y1,z1 be
Real such that
A6: u0
=
<*x1, y1, z1*> & ex N be
Neighbourhood of x1 st N
c= (
dom (
SVF1 (1,f2,u0))) & ex L, R st for x st x
in N holds (((
SVF1 (1,f2,u0))
. x)
- ((
SVF1 (1,f2,u0))
. x1))
= ((L
. (x
- x1))
+ (R
. (x
- x1))) by
A2,
Th13;
x0
= x1 & y0
= y1 & z0
= z1 by
A3,
A6,
FINSEQ_1: 78;
then
consider N2 be
Neighbourhood of x0 such that
A7: N2
c= (
dom (
SVF1 (1,f2,u0))) & ex L, R st for x st x
in N2 holds (((
SVF1 (1,f2,u0))
. x)
- ((
SVF1 (1,f2,u0))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A6;
consider L2, R2 such that
A8: for x st x
in N2 holds (((
SVF1 (1,f2,u0))
. x)
- ((
SVF1 (1,f2,u0))
. x0))
= ((L2
. (x
- x0))
+ (R2
. (x
- x0))) by
A7;
consider N be
Neighbourhood of x0 such that
A9: N
c= N1 & N
c= N2 by
RCOMP_1: 17;
reconsider L11 = (((
SVF1 (1,f2,u0))
. x0)
(#) L1), L12 = (((
SVF1 (1,f1,u0))
. x0)
(#) L2) as
LinearFunc by
FDIFF_1: 3;
A10: L11 is
total & L12 is
total & L1 is
total & L2 is
total by
FDIFF_1:def 3;
reconsider L = (L11
+ L12) as
LinearFunc by
FDIFF_1: 2;
reconsider R11 = (((
SVF1 (1,f2,u0))
. x0)
(#) R1) as
RestFunc by
FDIFF_1: 5;
reconsider R12 = (((
SVF1 (1,f1,u0))
. x0)
(#) R2) as
RestFunc by
FDIFF_1: 5;
reconsider R13 = (R11
+ R12) as
RestFunc by
FDIFF_1: 4;
reconsider R14 = (L1
(#) L2) as
RestFunc by
FDIFF_1: 6;
reconsider R15 = (R13
+ R14) as
RestFunc by
FDIFF_1: 4;
reconsider R16 = (R1
(#) L2), R18 = (R2
(#) L1) as
RestFunc by
FDIFF_1: 7;
reconsider R17 = (R1
(#) R2) as
RestFunc by
FDIFF_1: 4;
reconsider R19 = (R16
+ R17) as
RestFunc by
FDIFF_1: 4;
reconsider R20 = (R19
+ R18) as
RestFunc by
FDIFF_1: 4;
reconsider R = (R15
+ R20) as
RestFunc by
FDIFF_1: 4;
A11: R1 is
total & R2 is
total & R11 is
total & R12 is
total & R13 is
total & R14 is
total & R15 is
total & R16 is
total & R17 is
total & R18 is
total & R19 is
total & R20 is
total by
FDIFF_1:def 2;
A12: N
c= (
dom (
SVF1 (1,f1,u0))) by
A4,
A9;
A13: N
c= (
dom (
SVF1 (1,f2,u0))) by
A7,
A9;
A14: for y st y
in N holds y
in (
dom (
SVF1 (1,(f1
(#) f2),u0)))
proof
let y;
assume
A15: y
in N;
then
A16: y
in (
dom (
reproj (1,u0))) & ((
reproj (1,u0))
. y)
in (
dom f1) by
A12,
FUNCT_1: 11;
y
in (
dom (
reproj (1,u0))) & ((
reproj (1,u0))
. y)
in (
dom f2) by
A13,
A15,
FUNCT_1: 11;
then y
in (
dom (
reproj (1,u0))) & ((
reproj (1,u0))
. y)
in ((
dom f1)
/\ (
dom f2)) by
A16,
XBOOLE_0:def 4;
then y
in (
dom (
reproj (1,u0))) & ((
reproj (1,u0))
. y)
in (
dom (f1
(#) f2)) by
VALUED_1:def 4;
hence thesis by
FUNCT_1: 11;
end;
then for y be
object st y
in N holds y
in (
dom (
SVF1 (1,(f1
(#) f2),u0)));
then
A17: N
c= (
dom (
SVF1 (1,(f1
(#) f2),u0)));
now
let x;
reconsider xx = x, xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
assume
A18: x
in N;
then
A19: ((((
SVF1 (1,f1,u0))
. x)
- ((
SVF1 (1,f1,u0))
. x0))
+ ((
SVF1 (1,f1,u0))
. x0))
= (((L1
. (x
- x0))
+ (R1
. (x
- x0)))
+ ((
SVF1 (1,f1,u0))
. x0)) by
A5,
A9;
x
in (
dom ((f1
(#) f2)
* (
reproj (1,u0)))) by
A14,
A18;
then
A20: x
in (
dom (
reproj (1,u0))) & ((
reproj (1,u0))
. x)
in (
dom (f1
(#) f2)) by
FUNCT_1: 11;
then ((
reproj (1,u0))
. x)
in ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then ((
reproj (1,u0))
. x)
in (
dom f1) & ((
reproj (1,u0))
. x)
in (
dom f2) by
XBOOLE_0:def 4;
then
A21: x
in (
dom (f1
* (
reproj (1,u0)))) & x
in (
dom (f2
* (
reproj (1,u0)))) by
A20,
FUNCT_1: 11;
A22: x0
in N by
RCOMP_1: 16;
x0
in (
dom ((f1
(#) f2)
* (
reproj (1,u0)))) by
A14,
RCOMP_1: 16;
then
A23: x0
in (
dom (
reproj (1,u0))) & ((
reproj (1,u0))
. x0)
in (
dom (f1
(#) f2)) by
FUNCT_1: 11;
then ((
reproj (1,u0))
. x0)
in ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then ((
reproj (1,u0))
. x0)
in (
dom f1) & ((
reproj (1,u0))
. x0)
in (
dom f2) by
XBOOLE_0:def 4;
then
A24: x0
in (
dom (f1
* (
reproj (1,u0)))) & x0
in (
dom (f2
* (
reproj (1,u0)))) by
A23,
FUNCT_1: 11;
thus (((
SVF1 (1,(f1
(#) f2),u0))
. x)
- ((
SVF1 (1,(f1
(#) f2),u0))
. x0))
= (((f1
(#) f2)
. ((
reproj (1,u0))
. x))
- ((
SVF1 (1,(f1
(#) f2),u0))
. x0)) by
A17,
A18,
FUNCT_1: 12
.= (((f1
. ((
reproj (1,u0))
. x))
* (f2
. ((
reproj (1,u0))
. x)))
- ((
SVF1 (1,(f1
(#) f2),u0))
. x0)) by
VALUED_1: 5
.= ((((
SVF1 (1,f1,u0))
. x)
* (f2
. ((
reproj (1,u0))
. x)))
- ((
SVF1 (1,(f1
(#) f2),u0))
. x0)) by
A21,
FUNCT_1: 12
.= ((((
SVF1 (1,f1,u0))
. x)
* ((
SVF1 (1,f2,u0))
. x))
- (((f1
(#) f2)
* (
reproj (1,u0)))
. x0)) by
A21,
FUNCT_1: 12
.= ((((
SVF1 (1,f1,u0))
. x)
* ((
SVF1 (1,f2,u0))
. x))
- ((f1
(#) f2)
. ((
reproj (1,u0))
. x0))) by
A17,
A22,
FUNCT_1: 12
.= ((((
SVF1 (1,f1,u0))
. x)
* ((
SVF1 (1,f2,u0))
. x))
- ((f1
. ((
reproj (1,u0))
. x0))
* (f2
. ((
reproj (1,u0))
. x0)))) by
VALUED_1: 5
.= ((((
SVF1 (1,f1,u0))
. x)
* ((
SVF1 (1,f2,u0))
. x))
- (((
SVF1 (1,f1,u0))
. x0)
* (f2
. ((
reproj (1,u0))
. x0)))) by
A24,
FUNCT_1: 12
.= ((((((
SVF1 (1,f1,u0))
. x)
* ((
SVF1 (1,f2,u0))
. x))
+ (
- (((
SVF1 (1,f1,u0))
. x)
* ((
SVF1 (1,f2,u0))
. x0))))
+ (((
SVF1 (1,f1,u0))
. x)
* ((
SVF1 (1,f2,u0))
. x0)))
- (((
SVF1 (1,f1,u0))
. x0)
* ((
SVF1 (1,f2,u0))
. x0))) by
A24,
FUNCT_1: 12
.= ((((
SVF1 (1,f1,u0))
. x)
* (((
SVF1 (1,f2,u0))
. x)
- ((
SVF1 (1,f2,u0))
. x0)))
+ ((((
SVF1 (1,f1,u0))
. x)
- ((
SVF1 (1,f1,u0))
. x0))
* ((
SVF1 (1,f2,u0))
. x0)))
.= ((((
SVF1 (1,f1,u0))
. x)
* (((
SVF1 (1,f2,u0))
. x)
- ((
SVF1 (1,f2,u0))
. x0)))
+ (((L1
. (x
- x0))
+ (R1
. (x
- x0)))
* ((
SVF1 (1,f2,u0))
. x0))) by
A5,
A9,
A18
.= ((((
SVF1 (1,f1,u0))
. x)
* (((
SVF1 (1,f2,u0))
. x)
- ((
SVF1 (1,f2,u0))
. x0)))
+ ((((
SVF1 (1,f2,u0))
. x0)
* (L1
. (x
- x0)))
+ (((
SVF1 (1,f2,u0))
. x0)
* (R1
. (x
- x0)))))
.= ((((
SVF1 (1,f1,u0))
. x)
* (((
SVF1 (1,f2,u0))
. x)
- ((
SVF1 (1,f2,u0))
. x0)))
+ ((L11
. (xx
- x0))
+ (((
SVF1 (1,f2,u0))
. x0)
* (R1
. (xx
- xx0))))) by
A10,
RFUNCT_1: 57
.= (((((L1
. (x
- x0))
+ (R1
. (xx
- x0)))
+ ((
SVF1 (1,f1,u0))
. x0))
* (((
SVF1 (1,f2,u0))
. xx)
- ((
SVF1 (1,f2,u0))
. x0)))
+ ((L11
. (x
- x0))
+ (R11
. (xx
- x0)))) by
A11,
A19,
RFUNCT_1: 57
.= (((((L1
. (x
- x0))
+ (R1
. (x
- x0)))
+ ((
SVF1 (1,f1,u0))
. x0))
* ((L2
. (x
- x0))
+ (R2
. (x
- x0))))
+ ((L11
. (x
- x0))
+ (R11
. (x
- x0)))) by
A8,
A9,
A18
.= (((((L1
. (x
- x0))
+ (R1
. (x
- x0)))
* ((L2
. (x
- x0))
+ (R2
. (x
- x0))))
+ ((((
SVF1 (1,f1,u0))
. x0)
* (L2
. (x
- x0)))
+ (((
SVF1 (1,f1,u0))
. x0)
* (R2
. (x
- x0)))))
+ ((L11
. (x
- x0))
+ (R11
. (x
- x0))))
.= (((((L1
. (xx
- x0))
+ (R1
. (xx
- x0)))
* ((L2
. (xx
- x0))
+ (R2
. (xx
- xx0))))
+ ((L12
. (x
- x0))
+ (((
SVF1 (1,f1,u0))
. x0)
* (R2
. (x
- x0)))))
+ ((L11
. (x
- x0))
+ (R11
. (x
- x0)))) by
A10,
RFUNCT_1: 57
.= (((((L1
. (x
- x0))
+ (R1
. (xx
- xx0)))
* ((L2
. (xx
- x0))
+ (R2
. (x
- x0))))
+ ((L12
. (xx
- x0))
+ (R12
. (x
- x0))))
+ ((L11
. (xx
- x0))
+ (R11
. (x
- x0)))) by
A11,
RFUNCT_1: 57
.= ((((L1
. (xx
- x0))
+ (R1
. (x
- x0)))
* ((L2
. (xx
- x0))
+ (R2
. (x
- x0))))
+ ((L12
. (xx
- x0))
+ ((L11
. (x
- x0))
+ ((R11
. (xx
- x0))
+ (R12
. (x
- x0))))))
.= ((((L1
. (xx
- x0))
+ (R1
. (x
- x0)))
* ((L2
. (xx
- xx0))
+ (R2
. (xx
- x0))))
+ ((L12
. (xx
- x0))
+ ((L11
. (xx
- x0))
+ (R13
. (xx
- x0))))) by
A11,
RFUNCT_1: 56
.= ((((L1
. (x
- x0))
+ (R1
. (x
- x0)))
* ((L2
. (x
- x0))
+ (R2
. (x
- x0))))
+ (((L11
. (x
- x0))
+ (L12
. (x
- x0)))
+ (R13
. (x
- x0))))
.= (((((L1
. (xx
- x0))
* (L2
. (xx
- x0)))
+ ((L1
. (xx
- x0))
* (R2
. (xx
- x0))))
+ ((R1
. (xx
- xx0))
* ((L2
. (xx
- x0))
+ (R2
. (xx
- x0)))))
+ ((L
. (xx
- x0))
+ (R13
. (xx
- x0)))) by
A10,
RFUNCT_1: 56
.= ((((R14
. (xx
- x0))
+ ((R2
. (xx
- x0))
* (L1
. (xx
- x0))))
+ ((R1
. (xx
- x0))
* ((L2
. (xx
- x0))
+ (R2
. (xx
- x0)))))
+ ((L
. (xx
- x0))
+ (R13
. (xx
- xx0)))) by
A10,
RFUNCT_1: 56
.= ((((R14
. (xx
- x0))
+ (R18
. (xx
- x0)))
+ (((R1
. (xx
- x0))
* (L2
. (x
- x0)))
+ ((R1
. (x
- x0))
* (R2
. (x
- x0)))))
+ ((L
. (x
- x0))
+ (R13
. (x
- xx0)))) by
A10,
A11,
RFUNCT_1: 56
.= ((((R14
. (x
- x0))
+ (R18
. (x
- x0)))
+ ((R16
. (x
- x0))
+ ((R1
. (x
- x0))
* (R2
. (x
- x0)))))
+ ((L
. (x
- x0))
+ (R13
. (xx
- xx0)))) by
A10,
A11,
RFUNCT_1: 56
.= ((((R14
. (xx
- x0))
+ (R18
. (x
- x0)))
+ ((R16
. (x
- x0))
+ (R17
. (x
- x0))))
+ ((L
. (x
- x0))
+ (R13
. (x
- x0)))) by
A11,
RFUNCT_1: 56
.= ((((R14
. (xx
- xx0))
+ (R18
. (x
- x0)))
+ (R19
. (x
- x0)))
+ ((L
. (x
- x0))
+ (R13
. (x
- x0)))) by
A11,
RFUNCT_1: 56
.= (((R14
. (xx
- x0))
+ ((R19
. (x
- x0))
+ (R18
. (x
- x0))))
+ ((L
. (x
- x0))
+ (R13
. (x
- x0))))
.= (((L
. (xx
- xx0))
+ (R13
. (x
- x0)))
+ ((R14
. (x
- x0))
+ (R20
. (x
- x0)))) by
A11,
RFUNCT_1: 56
.= ((L
. (xx
- x0))
+ (((R13
. (x
- x0))
+ (R14
. (x
- x0)))
+ (R20
. (x
- x0))))
.= ((L
. (xx
- xx0))
+ ((R15
. (x
- x0))
+ (R20
. (x
- x0)))) by
A11,
RFUNCT_1: 56
.= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A11,
RFUNCT_1: 56;
end;
hence thesis by
A3,
A17,
Th13;
end;
theorem ::
PDIFF_4:29
f1
is_partial_differentiable_in (u0,2) & f2
is_partial_differentiable_in (u0,2) implies (f1
(#) f2)
is_partial_differentiable_in (u0,2)
proof
assume that
A1: f1
is_partial_differentiable_in (u0,2) and
A2: f2
is_partial_differentiable_in (u0,2);
consider x0,y0,z0 be
Real such that
A3: u0
=
<*x0, y0, z0*> & ex N be
Neighbourhood of y0 st N
c= (
dom (
SVF1 (2,f1,u0))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f1,u0))
. y)
- ((
SVF1 (2,f1,u0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A1,
Th14;
consider N1 be
Neighbourhood of y0 such that
A4: N1
c= (
dom (
SVF1 (2,f1,u0))) & ex L, R st for y st y
in N1 holds (((
SVF1 (2,f1,u0))
. y)
- ((
SVF1 (2,f1,u0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A3;
consider L1, R1 such that
A5: for y st y
in N1 holds (((
SVF1 (2,f1,u0))
. y)
- ((
SVF1 (2,f1,u0))
. y0))
= ((L1
. (y
- y0))
+ (R1
. (y
- y0))) by
A4;
consider x1,y1,z1 be
Real such that
A6: u0
=
<*x1, y1, z1*> & ex N be
Neighbourhood of y1 st N
c= (
dom (
SVF1 (2,f2,u0))) & ex L, R st for y st y
in N holds (((
SVF1 (2,f2,u0))
. y)
- ((
SVF1 (2,f2,u0))
. y1))
= ((L
. (y
- y1))
+ (R
. (y
- y1))) by
A2,
Th14;
x0
= x1 & y0
= y1 & z0
= z1 by
A3,
A6,
FINSEQ_1: 78;
then
consider N2 be
Neighbourhood of y0 such that
A7: N2
c= (
dom (
SVF1 (2,f2,u0))) & ex L, R st for y st y
in N2 holds (((
SVF1 (2,f2,u0))
. y)
- ((
SVF1 (2,f2,u0))
. y0))
= ((L
. (y
- y0))
+ (R
. (y
- y0))) by
A6;
consider L2, R2 such that
A8: for y st y
in N2 holds (((
SVF1 (2,f2,u0))
. y)
- ((
SVF1 (2,f2,u0))
. y0))
= ((L2
. (y
- y0))
+ (R2
. (y
- y0))) by
A7;
consider N be
Neighbourhood of y0 such that
A9: N
c= N1 & N
c= N2 by
RCOMP_1: 17;
reconsider L11 = (((
SVF1 (2,f2,u0))
. y0)
(#) L1) as
LinearFunc by
FDIFF_1: 3;
reconsider L12 = (((
SVF1 (2,f1,u0))
. y0)
(#) L2) as
LinearFunc by
FDIFF_1: 3;
A10: L11 is
total & L12 is
total & L1 is
total & L2 is
total by
FDIFF_1:def 3;
reconsider L = (L11
+ L12) as
LinearFunc by
FDIFF_1: 2;
reconsider R11 = (((
SVF1 (2,f2,u0))
. y0)
(#) R1), R12 = (((
SVF1 (2,f1,u0))
. y0)
(#) R2) as
RestFunc by
FDIFF_1: 5;
reconsider R13 = (R11
+ R12) as
RestFunc by
FDIFF_1: 4;
reconsider R14 = (L1
(#) L2) as
RestFunc by
FDIFF_1: 6;
reconsider R15 = (R13
+ R14), R17 = (R1
(#) R2) as
RestFunc by
FDIFF_1: 4;
reconsider R16 = (R1
(#) L2), R18 = (R2
(#) L1) as
RestFunc by
FDIFF_1: 7;
reconsider R19 = (R16
+ R17) as
RestFunc by
FDIFF_1: 4;
reconsider R20 = (R19
+ R18) as
RestFunc by
FDIFF_1: 4;
reconsider R = (R15
+ R20) as
RestFunc by
FDIFF_1: 4;
A11: R1 is
total & R2 is
total & R11 is
total & R12 is
total & R13 is
total & R14 is
total & R15 is
total & R16 is
total & R17 is
total & R18 is
total & R19 is
total & R20 is
total by
FDIFF_1:def 2;
A12: N
c= (
dom (
SVF1 (2,f1,u0))) by
A4,
A9;
A13: N
c= (
dom (
SVF1 (2,f2,u0))) by
A7,
A9;
A14: for y st y
in N holds y
in (
dom (
SVF1 (2,(f1
(#) f2),u0)))
proof
let y;
assume
A15: y
in N;
then
A16: y
in (
dom (
reproj (2,u0))) & ((
reproj (2,u0))
. y)
in (
dom f1) by
A12,
FUNCT_1: 11;
y
in (
dom (
reproj (2,u0))) & ((
reproj (2,u0))
. y)
in (
dom f2) by
A13,
A15,
FUNCT_1: 11;
then y
in (
dom (
reproj (2,u0))) & ((
reproj (2,u0))
. y)
in ((
dom f1)
/\ (
dom f2)) by
A16,
XBOOLE_0:def 4;
then y
in (
dom (
reproj (2,u0))) & ((
reproj (2,u0))
. y)
in (
dom (f1
(#) f2)) by
VALUED_1:def 4;
hence thesis by
FUNCT_1: 11;
end;
then for y be
object st y
in N holds y
in (
dom (
SVF1 (2,(f1
(#) f2),u0)));
then
A17: N
c= (
dom (
SVF1 (2,(f1
(#) f2),u0)));
now
let yy be
Real;
assume
A18: yy
in N;
reconsider y = yy, yy0 = y0 as
Element of
REAL by
XREAL_0:def 1;
A19: ((((
SVF1 (2,f1,u0))
. y)
- ((
SVF1 (2,f1,u0))
. y0))
+ ((
SVF1 (2,f1,u0))
. y0))
= (((L1
. (y
- y0))
+ (R1
. (y
- y0)))
+ ((
SVF1 (2,f1,u0))
. y0)) by
A5,
A9,
A18;
y
in (
dom ((f1
(#) f2)
* (
reproj (2,u0)))) by
A14,
A18;
then
A20: y
in (
dom (
reproj (2,u0))) & ((
reproj (2,u0))
. y)
in (
dom (f1
(#) f2)) by
FUNCT_1: 11;
then ((
reproj (2,u0))
. y)
in ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then ((
reproj (2,u0))
. y)
in (
dom f1) & ((
reproj (2,u0))
. y)
in (
dom f2) by
XBOOLE_0:def 4;
then
A21: y
in (
dom (f1
* (
reproj (2,u0)))) & y
in (
dom (f2
* (
reproj (2,u0)))) by
A20,
FUNCT_1: 11;
A22: y0
in N by
RCOMP_1: 16;
y0
in (
dom ((f1
(#) f2)
* (
reproj (2,u0)))) by
A14,
RCOMP_1: 16;
then
A23: y0
in (
dom (
reproj (2,u0))) & ((
reproj (2,u0))
. y0)
in (
dom (f1
(#) f2)) by
FUNCT_1: 11;
then ((
reproj (2,u0))
. y0)
in ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then ((
reproj (2,u0))
. y0)
in (
dom f1) & ((
reproj (2,u0))
. y0)
in (
dom f2) by
XBOOLE_0:def 4;
then
A24: y0
in (
dom (f1
* (
reproj (2,u0)))) & y0
in (
dom (f2
* (
reproj (2,u0)))) by
A23,
FUNCT_1: 11;
thus (((
SVF1 (2,(f1
(#) f2),u0))
. yy)
- ((
SVF1 (2,(f1
(#) f2),u0))
. y0))
= (((f1
(#) f2)
. ((
reproj (2,u0))
. y))
- ((
SVF1 (2,(f1
(#) f2),u0))
. y0)) by
A17,
A18,
FUNCT_1: 12
.= (((f1
. ((
reproj (2,u0))
. y))
* (f2
. ((
reproj (2,u0))
. y)))
- ((
SVF1 (2,(f1
(#) f2),u0))
. y0)) by
VALUED_1: 5
.= ((((
SVF1 (2,f1,u0))
. y)
* (f2
. ((
reproj (2,u0))
. y)))
- ((
SVF1 (2,(f1
(#) f2),u0))
. y0)) by
A21,
FUNCT_1: 12
.= ((((
SVF1 (2,f1,u0))
. y)
* ((
SVF1 (2,f2,u0))
. y))
- (((f1
(#) f2)
* (
reproj (2,u0)))
. y0)) by
A21,
FUNCT_1: 12
.= ((((
SVF1 (2,f1,u0))
. y)
* ((
SVF1 (2,f2,u0))
. y))
- ((f1
(#) f2)
. ((
reproj (2,u0))
. y0))) by
A17,
A22,
FUNCT_1: 12
.= ((((
SVF1 (2,f1,u0))
. y)
* ((
SVF1 (2,f2,u0))
. y))
- ((f1
. ((
reproj (2,u0))
. y0))
* (f2
. ((
reproj (2,u0))
. y0)))) by
VALUED_1: 5
.= ((((
SVF1 (2,f1,u0))
. y)
* ((
SVF1 (2,f2,u0))
. y))
- (((
SVF1 (2,f1,u0))
. y0)
* (f2
. ((
reproj (2,u0))
. y0)))) by
A24,
FUNCT_1: 12
.= ((((((
SVF1 (2,f1,u0))
. y)
* ((
SVF1 (2,f2,u0))
. y))
+ (
- (((
SVF1 (2,f1,u0))
. y)
* ((
SVF1 (2,f2,u0))
. y0))))
+ (((
SVF1 (2,f1,u0))
. y)
* ((
SVF1 (2,f2,u0))
. y0)))
- (((
SVF1 (2,f1,u0))
. y0)
* ((
SVF1 (2,f2,u0))
. y0))) by
A24,
FUNCT_1: 12
.= ((((
SVF1 (2,f1,u0))
. y)
* (((
SVF1 (2,f2,u0))
. y)
- ((
SVF1 (2,f2,u0))
. y0)))
+ ((((
SVF1 (2,f1,u0))
. y)
- ((
SVF1 (2,f1,u0))
. y0))
* ((
SVF1 (2,f2,u0))
. y0)))
.= ((((
SVF1 (2,f1,u0))
. y)
* (((
SVF1 (2,f2,u0))
. y)
- ((
SVF1 (2,f2,u0))
. y0)))
+ (((L1
. (y
- y0))
+ (R1
. (y
- y0)))
* ((
SVF1 (2,f2,u0))
. y0))) by
A5,
A9,
A18
.= ((((
SVF1 (2,f1,u0))
. y)
* (((
SVF1 (2,f2,u0))
. y)
- ((
SVF1 (2,f2,u0))
. y0)))
+ ((((
SVF1 (2,f2,u0))
. y0)
* (L1
. (y
- y0)))
+ (((
SVF1 (2,f2,u0))
. y0)
* (R1
. (y
- y0)))))
.= ((((
SVF1 (2,f1,u0))
. y)
* (((
SVF1 (2,f2,u0))
. y)
- ((
SVF1 (2,f2,u0))
. y0)))
+ ((L11
. (y
- yy0))
+ (((
SVF1 (2,f2,u0))
. y0)
* (R1
. (y
- yy0))))) by
A10,
RFUNCT_1: 57
.= (((((L1
. (y
- yy0))
+ (R1
. (y
- yy0)))
+ ((
SVF1 (2,f1,u0))
. y0))
* (((
SVF1 (2,f2,u0))
. y)
- ((
SVF1 (2,f2,u0))
. y0)))
+ ((L11
. (y
- y0))
+ (R11
. (y
- y0)))) by
A11,
A19,
RFUNCT_1: 57
.= (((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
+ ((
SVF1 (2,f1,u0))
. y0))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ ((L11
. (y
- y0))
+ (R11
. (y
- y0)))) by
A8,
A9,
A18
.= (((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ ((((
SVF1 (2,f1,u0))
. y0)
* (L2
. (y
- y0)))
+ (((
SVF1 (2,f1,u0))
. y0)
* (R2
. (y
- y0)))))
+ ((L11
. (y
- y0))
+ (R11
. (y
- y0))))
.= (((((L1
. (y
- yy0))
+ (R1
. (y
- y0)))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ ((L12
. (y
- y0))
+ (((
SVF1 (2,f1,u0))
. y0)
* (R2
. (y
- y0)))))
+ ((L11
. (y
- y0))
+ (R11
. (y
- y0)))) by
A10,
RFUNCT_1: 57
.= (((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ ((L12
. (y
- y0))
+ (R12
. (y
- y0))))
+ ((L11
. (y
- y0))
+ (R11
. (y
- y0)))) by
A11,
RFUNCT_1: 57
.= ((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ ((L12
. (y
- y0))
+ ((L11
. (y
- y0))
+ ((R11
. (y
- y0))
+ (R12
. (y
- y0))))))
.= ((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ ((L12
. (y
- yy0))
+ ((L11
. (y
- y0))
+ (R13
. (y
- y0))))) by
A11,
RFUNCT_1: 56
.= ((((L1
. (y
- y0))
+ (R1
. (y
- y0)))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0))))
+ (((L11
. (y
- y0))
+ (L12
. (y
- y0)))
+ (R13
. (y
- y0))))
.= (((((L1
. (y
- y0))
* (L2
. (y
- y0)))
+ ((L1
. (y
- y0))
* (R2
. (y
- y0))))
+ ((R1
. (y
- yy0))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0)))))
+ ((L
. (y
- y0))
+ (R13
. (y
- y0)))) by
A10,
RFUNCT_1: 56
.= ((((R14
. (y
- y0))
+ ((R2
. (y
- y0))
* (L1
. (y
- y0))))
+ ((R1
. (y
- y0))
* ((L2
. (y
- y0))
+ (R2
. (y
- y0)))))
+ ((L
. (y
- yy0))
+ (R13
. (y
- y0)))) by
A10,
RFUNCT_1: 56
.= ((((R14
. (y
- y0))
+ (R18
. (y
- y0)))
+ (((R1
. (y
- y0))
* (L2
. (y
- y0)))
+ ((R1
. (y
- y0))
* (R2
. (y
- y0)))))
+ ((L
. (y
- yy0))
+ (R13
. (y
- y0)))) by
A10,
A11,
RFUNCT_1: 56
.= ((((R14
. (y
- y0))
+ (R18
. (y
- y0)))
+ ((R16
. (y
- y0))
+ ((R1
. (y
- y0))
* (R2
. (y
- y0)))))
+ ((L
. (y
- yy0))
+ (R13
. (y
- y0)))) by
A10,
A11,
RFUNCT_1: 56
.= ((((R14
. (y
- y0))
+ (R18
. (y
- y0)))
+ ((R16
. (y
- y0))
+ (R17
. (y
- y0))))
+ ((L
. (y
- y0))
+ (R13
. (y
- y0)))) by
A11,
RFUNCT_1: 56
.= ((((R14
. (y
- yy0))
+ (R18
. (y
- y0)))
+ (R19
. (y
- y0)))
+ ((L
. (y
- y0))
+ (R13
. (y
- y0)))) by
A11,
RFUNCT_1: 56
.= (((R14
. (y
- y0))
+ ((R19
. (y
- y0))
+ (R18
. (y
- y0))))
+ ((L
. (y
- y0))
+ (R13
. (y
- y0))))
.= (((L
. (y
- yy0))
+ (R13
. (y
- y0)))
+ ((R14
. (y
- y0))
+ (R20
. (y
- y0)))) by
A11,
RFUNCT_1: 56
.= ((L
. (y
- y0))
+ (((R13
. (y
- y0))
+ (R14
. (y
- y0)))
+ (R20
. (y
- y0))))
.= ((L
. (y
- yy0))
+ ((R15
. (y
- y0))
+ (R20
. (y
- y0)))) by
A11,
RFUNCT_1: 56
.= ((L
. (yy
- y0))
+ (R
. (yy
- y0))) by
A11,
RFUNCT_1: 56;
end;
hence thesis by
A3,
A17,
Th14;
end;
theorem ::
PDIFF_4:30
f1
is_partial_differentiable_in (u0,3) & f2
is_partial_differentiable_in (u0,3) implies (f1
(#) f2)
is_partial_differentiable_in (u0,3)
proof
assume that
A1: f1
is_partial_differentiable_in (u0,3) and
A2: f2
is_partial_differentiable_in (u0,3);
consider x0,y0,z0 be
Real such that
A3: u0
=
<*x0, y0, z0*> & ex N be
Neighbourhood of z0 st N
c= (
dom (
SVF1 (3,f1,u0))) & ex L, R st for z st z
in N holds (((
SVF1 (3,f1,u0))
. z)
- ((
SVF1 (3,f1,u0))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A1,
Th15;
consider N1 be
Neighbourhood of z0 such that
A4: N1
c= (
dom (
SVF1 (3,f1,u0))) & ex L, R st for z st z
in N1 holds (((
SVF1 (3,f1,u0))
. z)
- ((
SVF1 (3,f1,u0))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A3;
consider L1, R1 such that
A5: for z st z
in N1 holds (((
SVF1 (3,f1,u0))
. z)
- ((
SVF1 (3,f1,u0))
. z0))
= ((L1
. (z
- z0))
+ (R1
. (z
- z0))) by
A4;
consider x1,y1,z1 be
Real such that
A6: u0
=
<*x1, y1, z1*> & ex N be
Neighbourhood of z1 st N
c= (
dom (
SVF1 (3,f2,u0))) & ex L, R st for z st z
in N holds (((
SVF1 (3,f2,u0))
. z)
- ((
SVF1 (3,f2,u0))
. z1))
= ((L
. (z
- z1))
+ (R
. (z
- z1))) by
A2,
Th15;
x0
= x1 & y0
= y1 & z0
= z1 by
A3,
A6,
FINSEQ_1: 78;
then
consider N2 be
Neighbourhood of z0 such that
A7: N2
c= (
dom (
SVF1 (3,f2,u0))) & ex L, R st for z st z
in N2 holds (((
SVF1 (3,f2,u0))
. z)
- ((
SVF1 (3,f2,u0))
. z0))
= ((L
. (z
- z0))
+ (R
. (z
- z0))) by
A6;
consider L2, R2 such that
A8: for z st z
in N2 holds (((
SVF1 (3,f2,u0))
. z)
- ((
SVF1 (3,f2,u0))
. z0))
= ((L2
. (z
- z0))
+ (R2
. (z
- z0))) by
A7;
consider N be
Neighbourhood of z0 such that
A9: N
c= N1 & N
c= N2 by
RCOMP_1: 17;
reconsider L11 = (((
SVF1 (3,f2,u0))
. z0)
(#) L1) as
LinearFunc by
FDIFF_1: 3;
reconsider L12 = (((
SVF1 (3,f1,u0))
. z0)
(#) L2) as
LinearFunc by
FDIFF_1: 3;
A10: L11 is
total & L12 is
total & L1 is
total & L2 is
total by
FDIFF_1:def 3;
reconsider L = (L11
+ L12) as
LinearFunc by
FDIFF_1: 2;
reconsider R11 = (((
SVF1 (3,f2,u0))
. z0)
(#) R1), R12 = (((
SVF1 (3,f1,u0))
. z0)
(#) R2) as
RestFunc by
FDIFF_1: 5;
reconsider R13 = (R11
+ R12) as
RestFunc by
FDIFF_1: 4;
reconsider R14 = (L1
(#) L2) as
RestFunc by
FDIFF_1: 6;
reconsider R15 = (R13
+ R14), R17 = (R1
(#) R2) as
RestFunc by
FDIFF_1: 4;
reconsider R16 = (R1
(#) L2), R18 = (R2
(#) L1) as
RestFunc by
FDIFF_1: 7;
reconsider R19 = (R16
+ R17) as
RestFunc by
FDIFF_1: 4;
reconsider R20 = (R19
+ R18) as
RestFunc by
FDIFF_1: 4;
reconsider R = (R15
+ R20) as
RestFunc by
FDIFF_1: 4;
A11: R1 is
total & R2 is
total & R11 is
total & R12 is
total & R13 is
total & R14 is
total & R15 is
total & R16 is
total & R17 is
total & R18 is
total & R19 is
total & R20 is
total by
FDIFF_1:def 2;
A12: N
c= (
dom (
SVF1 (3,f1,u0))) by
A4,
A9;
A13: N
c= (
dom (
SVF1 (3,f2,u0))) by
A7,
A9;
A14: for z st z
in N holds z
in (
dom (
SVF1 (3,(f1
(#) f2),u0)))
proof
let z;
assume
A15: z
in N;
then
A16: z
in (
dom (
reproj (3,u0))) & ((
reproj (3,u0))
. z)
in (
dom f1) by
A12,
FUNCT_1: 11;
z
in (
dom (
reproj (3,u0))) & ((
reproj (3,u0))
. z)
in (
dom f2) by
A13,
A15,
FUNCT_1: 11;
then z
in (
dom (
reproj (3,u0))) & ((
reproj (3,u0))
. z)
in ((
dom f1)
/\ (
dom f2)) by
A16,
XBOOLE_0:def 4;
then z
in (
dom (
reproj (3,u0))) & ((
reproj (3,u0))
. z)
in (
dom (f1
(#) f2)) by
VALUED_1:def 4;
hence thesis by
FUNCT_1: 11;
end;
then for z be
object st z
in N holds z
in (
dom (
SVF1 (3,(f1
(#) f2),u0)));
then
A17: N
c= (
dom (
SVF1 (3,(f1
(#) f2),u0)));
now
let zz be
Real;
assume
A18: zz
in N;
reconsider z = zz, zz0 = z0 as
Element of
REAL by
XREAL_0:def 1;
A19: ((((
SVF1 (3,f1,u0))
. z)
- ((
SVF1 (3,f1,u0))
. z0))
+ ((
SVF1 (3,f1,u0))
. z0))
= (((L1
. (z
- z0))
+ (R1
. (z
- z0)))
+ ((
SVF1 (3,f1,u0))
. z0)) by
A5,
A9,
A18;
z
in (
dom ((f1
(#) f2)
* (
reproj (3,u0)))) by
A14,
A18;
then
A20: z
in (
dom (
reproj (3,u0))) & ((
reproj (3,u0))
. z)
in (
dom (f1
(#) f2)) by
FUNCT_1: 11;
then ((
reproj (3,u0))
. z)
in ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then ((
reproj (3,u0))
. z)
in (
dom f1) & ((
reproj (3,u0))
. z)
in (
dom f2) by
XBOOLE_0:def 4;
then
A21: z
in (
dom (f1
* (
reproj (3,u0)))) & z
in (
dom (f2
* (
reproj (3,u0)))) by
A20,
FUNCT_1: 11;
A22: z0
in N by
RCOMP_1: 16;
z0
in (
dom ((f1
(#) f2)
* (
reproj (3,u0)))) by
A14,
RCOMP_1: 16;
then
A23: z0
in (
dom (
reproj (3,u0))) & ((
reproj (3,u0))
. z0)
in (
dom (f1
(#) f2)) by
FUNCT_1: 11;
then ((
reproj (3,u0))
. z0)
in ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then ((
reproj (3,u0))
. z0)
in (
dom f1) & ((
reproj (3,u0))
. z0)
in (
dom f2) by
XBOOLE_0:def 4;
then
A24: z0
in (
dom (f1
* (
reproj (3,u0)))) & z0
in (
dom (f2
* (
reproj (3,u0)))) by
A23,
FUNCT_1: 11;
thus (((
SVF1 (3,(f1
(#) f2),u0))
. zz)
- ((
SVF1 (3,(f1
(#) f2),u0))
. z0))
= (((f1
(#) f2)
. ((
reproj (3,u0))
. z))
- ((
SVF1 (3,(f1
(#) f2),u0))
. z0)) by
A17,
A18,
FUNCT_1: 12
.= (((f1
. ((
reproj (3,u0))
. z))
* (f2
. ((
reproj (3,u0))
. z)))
- ((
SVF1 (3,(f1
(#) f2),u0))
. z0)) by
VALUED_1: 5
.= ((((
SVF1 (3,f1,u0))
. z)
* (f2
. ((
reproj (3,u0))
. z)))
- ((
SVF1 (3,(f1
(#) f2),u0))
. z0)) by
A21,
FUNCT_1: 12
.= ((((
SVF1 (3,f1,u0))
. z)
* ((
SVF1 (3,f2,u0))
. z))
- (((f1
(#) f2)
* (
reproj (3,u0)))
. z0)) by
A21,
FUNCT_1: 12
.= ((((
SVF1 (3,f1,u0))
. z)
* ((
SVF1 (3,f2,u0))
. z))
- ((f1
(#) f2)
. ((
reproj (3,u0))
. z0))) by
A17,
A22,
FUNCT_1: 12
.= ((((
SVF1 (3,f1,u0))
. z)
* ((
SVF1 (3,f2,u0))
. z))
- ((f1
. ((
reproj (3,u0))
. z0))
* (f2
. ((
reproj (3,u0))
. z0)))) by
VALUED_1: 5
.= ((((
SVF1 (3,f1,u0))
. z)
* ((
SVF1 (3,f2,u0))
. z))
- (((
SVF1 (3,f1,u0))
. z0)
* (f2
. ((
reproj (3,u0))
. z0)))) by
A24,
FUNCT_1: 12
.= ((((((
SVF1 (3,f1,u0))
. z)
* ((
SVF1 (3,f2,u0))
. z))
+ (
- (((
SVF1 (3,f1,u0))
. z)
* ((
SVF1 (3,f2,u0))
. z0))))
+ (((
SVF1 (3,f1,u0))
. z)
* ((
SVF1 (3,f2,u0))
. z0)))
- (((
SVF1 (3,f1,u0))
. z0)
* ((
SVF1 (3,f2,u0))
. z0))) by
A24,
FUNCT_1: 12
.= ((((
SVF1 (3,f1,u0))
. z)
* (((
SVF1 (3,f2,u0))
. z)
- ((
SVF1 (3,f2,u0))
. z0)))
+ ((((
SVF1 (3,f1,u0))
. z)
- ((
SVF1 (3,f1,u0))
. z0))
* ((
SVF1 (3,f2,u0))
. z0)))
.= ((((
SVF1 (3,f1,u0))
. z)
* (((
SVF1 (3,f2,u0))
. z)
- ((
SVF1 (3,f2,u0))
. z0)))
+ (((L1
. (z
- z0))
+ (R1
. (z
- z0)))
* ((
SVF1 (3,f2,u0))
. z0))) by
A5,
A9,
A18
.= ((((
SVF1 (3,f1,u0))
. z)
* (((
SVF1 (3,f2,u0))
. z)
- ((
SVF1 (3,f2,u0))
. z0)))
+ ((((
SVF1 (3,f2,u0))
. z0)
* (L1
. (z
- z0)))
+ (((
SVF1 (3,f2,u0))
. z0)
* (R1
. (z
- z0)))))
.= ((((
SVF1 (3,f1,u0))
. z)
* (((
SVF1 (3,f2,u0))
. z)
- ((
SVF1 (3,f2,u0))
. z0)))
+ ((L11
. (z
- z0))
+ (((
SVF1 (3,f2,u0))
. z0)
* (R1
. (z
- zz0))))) by
A10,
RFUNCT_1: 57
.= (((((L1
. (z
- z0))
+ (R1
. (z
- z0)))
+ ((
SVF1 (3,f1,u0))
. z0))
* (((
SVF1 (3,f2,u0))
. z)
- ((
SVF1 (3,f2,u0))
. z0)))
+ ((L11
. (z
- z0))
+ (R11
. (z
- zz0)))) by
A11,
A19,
RFUNCT_1: 57
.= (((((L1
. (z
- z0))
+ (R1
. (z
- z0)))
+ ((
SVF1 (3,f1,u0))
. z0))
* ((L2
. (z
- z0))
+ (R2
. (z
- z0))))
+ ((L11
. (z
- z0))
+ (R11
. (z
- z0)))) by
A8,
A9,
A18
.= (((((L1
. (z
- z0))
+ (R1
. (z
- z0)))
* ((L2
. (z
- z0))
+ (R2
. (z
- z0))))
+ ((((
SVF1 (3,f1,u0))
. z0)
* (L2
. (z
- z0)))
+ (((
SVF1 (3,f1,u0))
. z0)
* (R2
. (z
- z0)))))
+ ((L11
. (z
- z0))
+ (R11
. (z
- z0))))
.= (((((L1
. (z
- z0))
+ (R1
. (z
- z0)))
* ((L2
. (z
- z0))
+ (R2
. (z
- zz0))))
+ ((L12
. (z
- z0))
+ (((
SVF1 (3,f1,u0))
. z0)
* (R2
. (z
- z0)))))
+ ((L11
. (z
- z0))
+ (R11
. (z
- z0)))) by
A10,
RFUNCT_1: 57
.= (((((L1
. (z
- z0))
+ (R1
. (z
- z0)))
* ((L2
. (z
- z0))
+ (R2
. (z
- zz0))))
+ ((L12
. (z
- z0))
+ (R12
. (z
- z0))))
+ ((L11
. (z
- z0))
+ (R11
. (z
- z0)))) by
A11,
RFUNCT_1: 57
.= ((((L1
. (z
- z0))
+ (R1
. (z
- z0)))
* ((L2
. (z
- z0))
+ (R2
. (z
- z0))))
+ ((L12
. (z
- z0))
+ ((L11
. (z
- z0))
+ ((R11
. (z
- z0))
+ (R12
. (z
- z0))))))
.= ((((L1
. (z
- z0))
+ (R1
. (z
- z0)))
* ((L2
. (z
- z0))
+ (R2
. (z
- zz0))))
+ ((L12
. (z
- z0))
+ ((L11
. (z
- z0))
+ (R13
. (z
- z0))))) by
A11,
RFUNCT_1: 56
.= ((((L1
. (z
- z0))
+ (R1
. (z
- z0)))
* ((L2
. (z
- z0))
+ (R2
. (z
- z0))))
+ (((L11
. (z
- z0))
+ (L12
. (z
- z0)))
+ (R13
. (z
- z0))))
.= (((((L1
. (z
- z0))
* (L2
. (z
- z0)))
+ ((L1
. (z
- z0))
* (R2
. (z
- z0))))
+ ((R1
. (z
- zz0))
* ((L2
. (z
- z0))
+ (R2
. (z
- z0)))))
+ ((L
. (z
- z0))
+ (R13
. (z
- z0)))) by
A10,
RFUNCT_1: 56
.= ((((R14
. (z
- z0))
+ ((R2
. (z
- z0))
* (L1
. (z
- z0))))
+ ((R1
. (z
- z0))
* ((L2
. (z
- z0))
+ (R2
. (z
- z0)))))
+ ((L
. (z
- z0))
+ (R13
. (z
- zz0)))) by
A10,
RFUNCT_1: 56
.= ((((R14
. (z
- z0))
+ (R18
. (z
- z0)))
+ (((R1
. (z
- z0))
* (L2
. (z
- z0)))
+ ((R1
. (z
- z0))
* (R2
. (z
- z0)))))
+ ((L
. (z
- z0))
+ (R13
. (z
- zz0)))) by
A10,
A11,
RFUNCT_1: 56
.= ((((R14
. (z
- z0))
+ (R18
. (z
- z0)))
+ ((R16
. (z
- z0))
+ ((R1
. (z
- z0))
* (R2
. (z
- z0)))))
+ ((L
. (z
- z0))
+ (R13
. (z
- zz0)))) by
A10,
A11,
RFUNCT_1: 56
.= ((((R14
. (z
- z0))
+ (R18
. (z
- z0)))
+ ((R16
. (z
- z0))
+ (R17
. (z
- z0))))
+ ((L
. (z
- z0))
+ (R13
. (z
- z0)))) by
A11,
RFUNCT_1: 56
.= ((((R14
. (z
- zz0))
+ (R18
. (z
- z0)))
+ (R19
. (z
- z0)))
+ ((L
. (z
- z0))
+ (R13
. (z
- z0)))) by
A11,
RFUNCT_1: 56
.= (((R14
. (z
- z0))
+ ((R19
. (z
- z0))
+ (R18
. (z
- z0))))
+ ((L
. (z
- z0))
+ (R13
. (z
- z0))))
.= (((L
. (z
- zz0))
+ (R13
. (z
- z0)))
+ ((R14
. (z
- z0))
+ (R20
. (z
- z0)))) by
A11,
RFUNCT_1: 56
.= ((L
. (z
- z0))
+ (((R13
. (z
- z0))
+ (R14
. (z
- z0)))
+ (R20
. (z
- z0))))
.= ((L
. (z
- zz0))
+ ((R15
. (z
- z0))
+ (R20
. (z
- zz0)))) by
A11,
RFUNCT_1: 56
.= ((L
. (zz
- z0))
+ (R
. (zz
- z0))) by
A11,
RFUNCT_1: 56;
end;
hence thesis by
A3,
A17,
Th15;
end;
theorem ::
PDIFF_4:31
for u0 be
Element of (
REAL 3) holds f
is_partial_differentiable_in (u0,1) implies (
SVF1 (1,f,u0))
is_continuous_in ((
proj (1,3))
. u0) by
FDIFF_1: 24;
theorem ::
PDIFF_4:32
for u0 be
Element of (
REAL 3) holds f
is_partial_differentiable_in (u0,2) implies (
SVF1 (2,f,u0))
is_continuous_in ((
proj (2,3))
. u0) by
FDIFF_1: 24;
theorem ::
PDIFF_4:33
for u0 be
Element of (
REAL 3) holds f
is_partial_differentiable_in (u0,3) implies (
SVF1 (3,f,u0))
is_continuous_in ((
proj (3,3))
. u0) by
FDIFF_1: 24;
begin
Lm4: (
|[x1, y1, z1]|
+
|[x2, y2, z2]|)
=
|[(x1
+ x2), (y1
+ y2), (z1
+ z2)]|
proof
A1: (
|[x2, y2, z2]|
. 1)
= x2 by
FINSEQ_1: 45;
A2: (
|[x2, y2, z2]|
. 2)
= y2 by
FINSEQ_1: 45;
A3: (
|[x2, y2, z2]|
. 3)
= z2 by
FINSEQ_1: 45;
A4: ((
|[x1, y1, z1]|
. 1)
+ (
|[x2, y2, z2]|
. 1))
= (x1
+ x2) by
A1,
FINSEQ_1: 45;
A5: ((
|[x1, y1, z1]|
. 2)
+ (
|[x2, y2, z2]|
. 2))
= (y1
+ y2) by
A2,
FINSEQ_1: 45;
((
|[x1, y1, z1]|
. 3)
+ (
|[x2, y2, z2]|
. 3))
= (z1
+ z2) by
A3,
FINSEQ_1: 45;
hence thesis by
A4,
A5,
EUCLID_8: 55;
end;
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let p be
Element of (
REAL 3);
::
PDIFF_4:def7
func
grad (f,p) ->
Element of (
REAL 3) equals ((((
partdiff (f,p,1))
*
<e1> )
+ ((
partdiff (f,p,2))
*
<e2> ))
+ ((
partdiff (f,p,3))
*
<e3> ));
coherence ;
end
reconsider jj = 1 as
Real;
theorem ::
PDIFF_4:34
Th34: (
grad (f,p))
=
|[(
partdiff (f,p,1)), (
partdiff (f,p,2)), (
partdiff (f,p,3))]|
proof
(
grad (f,p))
= ((
|[((
partdiff (f,p,1))
* 1), ((
partdiff (f,p,1))
*
0 ), ((
partdiff (f,p,1))
*
0 )]|
+ ((
partdiff (f,p,2))
*
|[
0 , jj,
0 ]|))
+ ((
partdiff (f,p,3))
*
|[
0 ,
0 , jj]|)) by
EUCLID_8: 59
.= ((
|[(
partdiff (f,p,1)),
0 ,
0 ]|
+
|[((
partdiff (f,p,2))
*
0 ), ((
partdiff (f,p,2))
* 1), ((
partdiff (f,p,2))
*
0 )]|)
+ ((
partdiff (f,p,3))
*
|[
0 ,
0 , jj]|)) by
EUCLID_8: 59
.= ((
|[(
partdiff (f,p,1)),
0 ,
0 ]|
+
|[
0 , (
partdiff (f,p,2)),
0 ]|)
+
|[((
partdiff (f,p,3))
*
0 ), ((
partdiff (f,p,3))
*
0 ), ((
partdiff (f,p,3))
* 1)]|) by
EUCLID_8: 59
.= (
|[((
partdiff (f,p,1))
+
0 ), (
0
+ (
partdiff (f,p,2))), (
0
+
0 )]|
+
|[
0 ,
0 , (
partdiff (f,p,3))]|) by
Lm4
.=
|[((
partdiff (f,p,1))
+
0 ), ((
partdiff (f,p,2))
+
0 ), (
0
+ (
partdiff (f,p,3)))]| by
Lm4
.=
|[(
partdiff (f,p,1)), (
partdiff (f,p,2)), (
partdiff (f,p,3))]|;
hence thesis;
end;
theorem ::
PDIFF_4:35
Th35: (f
is_partial_differentiable_in (p,1) & f
is_partial_differentiable_in (p,2) & f
is_partial_differentiable_in (p,3) & g
is_partial_differentiable_in (p,1) & g
is_partial_differentiable_in (p,2) & g
is_partial_differentiable_in (p,3)) implies (
grad ((f
+ g),p))
= ((
grad (f,p))
+ (
grad (g,p)))
proof
assume that
A1: f
is_partial_differentiable_in (p,1) & f
is_partial_differentiable_in (p,2) & f
is_partial_differentiable_in (p,3) and
A2: g
is_partial_differentiable_in (p,1) & g
is_partial_differentiable_in (p,2) & g
is_partial_differentiable_in (p,3);
(
grad ((f
+ g),p))
=
|[(
partdiff ((f
+ g),p,1)), (
partdiff ((f
+ g),p,2)), (
partdiff ((f
+ g),p,3))]| by
Th34
.=
|[((
partdiff (f,p,1))
+ (
partdiff (g,p,1))), (
partdiff ((f
+ g),p,2)), (
partdiff ((f
+ g),p,3))]| by
A1,
A2,
PDIFF_1: 29
.=
|[((
partdiff (f,p,1))
+ (
partdiff (g,p,1))), ((
partdiff (f,p,2))
+ (
partdiff (g,p,2))), (
partdiff ((f
+ g),p,3))]| by
A1,
A2,
PDIFF_1: 29
.=
|[((
partdiff (f,p,1))
+ (
partdiff (g,p,1))), ((
partdiff (f,p,2))
+ (
partdiff (g,p,2))), ((
partdiff (f,p,3))
+ (
partdiff (g,p,3)))]| by
A1,
A2,
PDIFF_1: 29
.= (
|[(
partdiff (f,p,1)), (
partdiff (f,p,2)), (
partdiff (f,p,3))]|
+
|[(
partdiff (g,p,1)), (
partdiff (g,p,2)), (
partdiff (g,p,3))]|) by
Lm4
.= ((
grad (f,p))
+
|[(
partdiff (g,p,1)), (
partdiff (g,p,2)), (
partdiff (g,p,3))]|) by
Th34
.= ((
grad (f,p))
+ (
grad (g,p))) by
Th34;
hence thesis;
end;
theorem ::
PDIFF_4:36
Th36: (f
is_partial_differentiable_in (p,1) & f
is_partial_differentiable_in (p,2) & f
is_partial_differentiable_in (p,3) & g
is_partial_differentiable_in (p,1) & g
is_partial_differentiable_in (p,2) & g
is_partial_differentiable_in (p,3)) implies (
grad ((f
- g),p))
= ((
grad (f,p))
- (
grad (g,p)))
proof
assume that
A1: f
is_partial_differentiable_in (p,1) & f
is_partial_differentiable_in (p,2) & f
is_partial_differentiable_in (p,3) and
A2: g
is_partial_differentiable_in (p,1) & g
is_partial_differentiable_in (p,2) & g
is_partial_differentiable_in (p,3);
(
grad ((f
- g),p))
=
|[(
partdiff ((f
- g),p,1)), (
partdiff ((f
- g),p,2)), (
partdiff ((f
- g),p,3))]| by
Th34
.=
|[((
partdiff (f,p,1))
- (
partdiff (g,p,1))), (
partdiff ((f
- g),p,2)), (
partdiff ((f
- g),p,3))]| by
A1,
A2,
PDIFF_1: 31
.=
|[((
partdiff (f,p,1))
- (
partdiff (g,p,1))), ((
partdiff (f,p,2))
- (
partdiff (g,p,2))), (
partdiff ((f
- g),p,3))]| by
A1,
A2,
PDIFF_1: 31
.=
|[((
partdiff (f,p,1))
- (
partdiff (g,p,1))), ((
partdiff (f,p,2))
- (
partdiff (g,p,2))), ((
partdiff (f,p,3))
- (
partdiff (g,p,3)))]| by
A1,
A2,
PDIFF_1: 31
.=
|[((
partdiff (f,p,1))
+ (
- (
partdiff (g,p,1)))), ((
partdiff (f,p,2))
+ (
- (
partdiff (g,p,2)))), ((
partdiff (f,p,3))
+ (
- (
partdiff (g,p,3))))]|
.= (
|[(
partdiff (f,p,1)), (
partdiff (f,p,2)), (
partdiff (f,p,3))]|
+
|[(
- (
partdiff (g,p,1))), (
- (
partdiff (g,p,2))), (
- (
partdiff (g,p,3)))]|) by
Lm4
.= ((
grad (f,p))
+
|[((
- 1)
* (
partdiff (g,p,1))), ((
- 1)
* (
partdiff (g,p,2))), ((
- 1)
* (
partdiff (g,p,3)))]|) by
Th34
.= ((
grad (f,p))
+ ((
- 1)
*
|[(
partdiff (g,p,1)), (
partdiff (g,p,2)), (
partdiff (g,p,3))]|)) by
EUCLID_8: 59
.= ((
grad (f,p))
- (
grad (g,p))) by
Th34;
hence thesis;
end;
theorem ::
PDIFF_4:37
Th37: (f
is_partial_differentiable_in (p,1) & f
is_partial_differentiable_in (p,2) & f
is_partial_differentiable_in (p,3)) implies (
grad ((r
(#) f),p))
= (r
* (
grad (f,p)))
proof
assume
A1: f
is_partial_differentiable_in (p,1) & f
is_partial_differentiable_in (p,2) & f
is_partial_differentiable_in (p,3);
reconsider r as
Real;
(
grad ((r
(#) f),p))
=
|[(
partdiff ((r
(#) f),p,1)), (
partdiff ((r
(#) f),p,2)), (
partdiff ((r
(#) f),p,3))]| by
Th34
.=
|[(r
* (
partdiff (f,p,1))), (
partdiff ((r
(#) f),p,2)), (
partdiff ((r
(#) f),p,3))]| by
A1,
PDIFF_1: 33
.=
|[(r
* (
partdiff (f,p,1))), (r
* (
partdiff (f,p,2))), (
partdiff ((r
(#) f),p,3))]| by
A1,
PDIFF_1: 33
.=
|[(r
* (
partdiff (f,p,1))), (r
* (
partdiff (f,p,2))), (r
* (
partdiff (f,p,3)))]| by
A1,
PDIFF_1: 33
.= (r
*
|[(
partdiff (f,p,1)), (
partdiff (f,p,2)), (
partdiff (f,p,3))]|) by
EUCLID_8: 59
.= (r
* (
grad (f,p))) by
Th34;
hence thesis;
end;
theorem ::
PDIFF_4:38
(f
is_partial_differentiable_in (p,1) & f
is_partial_differentiable_in (p,2) & f
is_partial_differentiable_in (p,3)) & (g
is_partial_differentiable_in (p,1) & g
is_partial_differentiable_in (p,2) & g
is_partial_differentiable_in (p,3)) implies (
grad (((s
(#) f)
+ (t
(#) g)),p))
= ((s
* (
grad (f,p)))
+ (t
* (
grad (g,p))))
proof
assume that
A1: f
is_partial_differentiable_in (p,1) & f
is_partial_differentiable_in (p,2) & f
is_partial_differentiable_in (p,3) and
A2: g
is_partial_differentiable_in (p,1) & g
is_partial_differentiable_in (p,2) & g
is_partial_differentiable_in (p,3);
reconsider s, t as
Real;
A3: (s
(#) f)
is_partial_differentiable_in (p,1) & (s
(#) f)
is_partial_differentiable_in (p,2) & (s
(#) f)
is_partial_differentiable_in (p,3) by
A1,
PDIFF_1: 33;
(t
(#) g)
is_partial_differentiable_in (p,1) & (t
(#) g)
is_partial_differentiable_in (p,2) & (t
(#) g)
is_partial_differentiable_in (p,3) by
A2,
PDIFF_1: 33;
then (
grad (((s
(#) f)
+ (t
(#) g)),p))
= ((
grad ((s
(#) f),p))
+ (
grad ((t
(#) g),p))) by
A3,
Th35
.= ((s
* (
grad (f,p)))
+ (
grad ((t
(#) g),p))) by
A1,
Th37
.= ((s
* (
grad (f,p)))
+ (t
* (
grad (g,p)))) by
A2,
Th37;
hence thesis;
end;
theorem ::
PDIFF_4:39
(f
is_partial_differentiable_in (p,1) & f
is_partial_differentiable_in (p,2) & f
is_partial_differentiable_in (p,3)) & (g
is_partial_differentiable_in (p,1) & g
is_partial_differentiable_in (p,2) & g
is_partial_differentiable_in (p,3)) implies (
grad (((s
(#) f)
- (t
(#) g)),p))
= ((s
* (
grad (f,p)))
- (t
* (
grad (g,p))))
proof
assume that
A1: f
is_partial_differentiable_in (p,1) & f
is_partial_differentiable_in (p,2) & f
is_partial_differentiable_in (p,3) and
A2: g
is_partial_differentiable_in (p,1) & g
is_partial_differentiable_in (p,2) & g
is_partial_differentiable_in (p,3);
reconsider s, t as
Real;
A3: (s
(#) f)
is_partial_differentiable_in (p,1) & (s
(#) f)
is_partial_differentiable_in (p,2) & (s
(#) f)
is_partial_differentiable_in (p,3) by
A1,
PDIFF_1: 33;
(t
(#) g)
is_partial_differentiable_in (p,1) & (t
(#) g)
is_partial_differentiable_in (p,2) & (t
(#) g)
is_partial_differentiable_in (p,3) by
A2,
PDIFF_1: 33;
then (
grad (((s
(#) f)
- (t
(#) g)),p))
= ((
grad ((s
(#) f),p))
- (
grad ((t
(#) g),p))) by
A3,
Th36
.= ((s
* (
grad (f,p)))
- (
grad ((t
(#) g),p))) by
A1,
Th37
.= ((s
* (
grad (f,p)))
- (t
* (
grad (g,p)))) by
A2,
Th37;
hence thesis;
end;
theorem ::
PDIFF_4:40
f is
total & f is
constant implies (
grad (f,p))
= (
0.REAL 3)
proof
assume
A1: f is
total & f is
constant;
then
A2: (
dom f)
= (
REAL 3) by
FUNCT_2:def 1;
REAL
= (
[#]
REAL );
then
reconsider W =
REAL as
open
Subset of
REAL ;
consider a be
Element of
REAL such that
A3: for p st p
in (
REAL 3) holds (f
. p)
= a by
A1,
A2,
PARTFUN2:def 1;
now
let x be
Element of
REAL ;
assume x
in (
dom (f
* (
reproj (1,p))));
then ((f
* (
reproj (1,p)))
. x)
= (f
. ((
reproj (1,p))
. x)) by
FUNCT_1: 12;
hence ((f
* (
reproj (1,p)))
. x)
= a by
A3;
end;
then
A4: (f
* (
reproj (1,p))) is
constant by
PARTFUN2:def 1;
set g1 = (f
* (
reproj (1,p)));
A5: (
dom g1)
= W by
A1,
FUNCT_2:def 1;
A6: (g1
| W) is
constant by
A4;
then
A7: g1
is_differentiable_on
REAL by
A5,
FDIFF_1: 22;
for x st x
in
REAL holds (
diff (g1,x))
=
0
proof
let x;
assume x
in
REAL ;
reconsider x as
Element of
REAL by
XREAL_0:def 1;
(
diff (g1,x))
= ((g1
`| W)
. x) by
A7,
FDIFF_1:def 7
.=
0 by
A5,
A6,
FDIFF_1: 22;
hence thesis;
end;
then
A8: (
partdiff (f,p,1))
=
0 ;
now
let y be
Element of
REAL ;
assume y
in (
dom (f
* (
reproj (2,p))));
then ((f
* (
reproj (2,p)))
. y)
= (f
. ((
reproj (2,p))
. y)) by
FUNCT_1: 12;
hence ((f
* (
reproj (2,p)))
. y)
= a by
A3;
end;
then
A9: (f
* (
reproj (2,p))) is
constant by
PARTFUN2:def 1;
set g2 = (f
* (
reproj (2,p)));
A10: (
dom g2)
= W by
A1,
FUNCT_2:def 1;
A11: (g2
| W) is
constant by
A9;
then
A12: g2
is_differentiable_on
REAL & for y be
Real st y
in
REAL holds ((g2
`| W)
. y)
=
0 by
A10,
FDIFF_1: 22;
for y st y
in
REAL holds (
diff (g2,y))
=
0
proof
let y;
assume y
in
REAL ;
reconsider y as
Element of
REAL by
XREAL_0:def 1;
(
diff (g2,y))
= ((g2
`| W)
. y) by
A12,
FDIFF_1:def 7
.=
0 by
A10,
A11,
FDIFF_1: 22;
hence thesis;
end;
then
A13: (
partdiff (f,p,2))
=
0 ;
now
let z be
Element of
REAL ;
assume z
in (
dom (f
* (
reproj (3,p))));
then ((f
* (
reproj (3,p)))
. z)
= (f
. ((
reproj (3,p))
. z)) by
FUNCT_1: 12;
hence ((f
* (
reproj (3,p)))
. z)
= a by
A3;
end;
then
A14: (f
* (
reproj (3,p))) is
constant by
PARTFUN2:def 1;
set g3 = (f
* (
reproj (3,p)));
A15: (
dom g3)
= W by
A1,
FUNCT_2:def 1;
A16: (g3
| W) is
constant by
A14;
then
A17: g3
is_differentiable_on
REAL & for z be
Real st z
in
REAL holds ((g3
`| W)
. z)
=
0 by
A15,
FDIFF_1: 22;
for z st z
in
REAL holds (
diff (g3,z))
=
0
proof
let z;
assume z
in
REAL ;
reconsider z as
Element of
REAL by
XREAL_0:def 1;
(
diff (g3,z))
= ((g3
`| W)
. z) by
A17,
FDIFF_1:def 7
.=
0 by
A15,
A16,
FDIFF_1: 22;
hence thesis;
end;
then (
partdiff (f,p,3))
=
0 ;
then (
grad (f,p))
=
|[
0 ,
0 ,
0 ]| by
A8,
A13,
Th34
.= (
0.REAL 3) by
FINSEQ_2: 62;
hence thesis;
end;
definition
let a be
Element of (
REAL 3);
::
PDIFF_4:def8
func
unitvector (a) ->
Element of (
REAL 3) equals
|[((a
. 1)
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 )))), ((a
. 2)
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 )))), ((a
. 3)
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 ))))]|;
coherence ;
end
definition
let f be
PartFunc of (
REAL 3),
REAL ;
let p,a be
Element of (
REAL 3);
::
PDIFF_4:def9
func
Directiondiff (f,p,a) ->
Real equals ((((
partdiff (f,p,1))
* ((
unitvector a)
. 1))
+ ((
partdiff (f,p,2))
* ((
unitvector a)
. 2)))
+ ((
partdiff (f,p,3))
* ((
unitvector a)
. 3)));
coherence ;
end
theorem ::
PDIFF_4:41
a
=
<*x0, y0, z0*> implies (
Directiondiff (f,p,a))
= (((((
partdiff (f,p,1))
* x0)
/ (
sqrt (((x0
^2 )
+ (y0
^2 ))
+ (z0
^2 ))))
+ (((
partdiff (f,p,2))
* y0)
/ (
sqrt (((x0
^2 )
+ (y0
^2 ))
+ (z0
^2 )))))
+ (((
partdiff (f,p,3))
* z0)
/ (
sqrt (((x0
^2 )
+ (y0
^2 ))
+ (z0
^2 )))))
proof
assume
A1: a
=
<*x0, y0, z0*>;
then
A2: (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 )))
= (
sqrt (((x0
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 ))) by
FINSEQ_1: 45
.= (
sqrt (((x0
^2 )
+ (y0
^2 ))
+ ((a
. 3)
^2 ))) by
A1,
FINSEQ_1: 45
.= (
sqrt (((x0
^2 )
+ (y0
^2 ))
+ (z0
^2 ))) by
A1,
FINSEQ_1: 45;
(
Directiondiff (f,p,a))
= ((((
partdiff (f,p,1))
* ((a
. 1)
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 )))))
+ ((
partdiff (f,p,2))
* ((
unitvector a)
. 2)))
+ ((
partdiff (f,p,3))
* ((
unitvector a)
. 3))) by
FINSEQ_1: 45
.= (((((
partdiff (f,p,1))
* (a
. 1))
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 ))))
+ ((
partdiff (f,p,2))
* ((
unitvector a)
. 2)))
+ ((
partdiff (f,p,3))
* ((
unitvector a)
. 3))) by
XCMPLX_1: 74
.= (((((
partdiff (f,p,1))
* (a
. 1))
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 ))))
+ ((
partdiff (f,p,2))
* ((a
. 2)
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 ))))))
+ ((
partdiff (f,p,3))
* ((
unitvector a)
. 3))) by
FINSEQ_1: 45
.= (((((
partdiff (f,p,1))
* (a
. 1))
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 ))))
+ (((
partdiff (f,p,2))
* (a
. 2))
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 )))))
+ ((
partdiff (f,p,3))
* ((
unitvector a)
. 3))) by
XCMPLX_1: 74
.= (((((
partdiff (f,p,1))
* (a
. 1))
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 ))))
+ (((
partdiff (f,p,2))
* (a
. 2))
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 )))))
+ ((
partdiff (f,p,3))
* ((a
. 3)
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 )))))) by
FINSEQ_1: 45
.= (((((
partdiff (f,p,1))
* (a
. 1))
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 ))))
+ (((
partdiff (f,p,2))
* (a
. 2))
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 )))))
+ (((
partdiff (f,p,3))
* (a
. 3))
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 ))))) by
XCMPLX_1: 74
.= (((((
partdiff (f,p,1))
* x0)
/ (
sqrt (((x0
^2 )
+ (y0
^2 ))
+ (z0
^2 ))))
+ (((
partdiff (f,p,2))
* (a
. 2))
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 )))))
+ (((
partdiff (f,p,3))
* (a
. 3))
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 ))))) by
A1,
A2,
FINSEQ_1: 45
.= (((((
partdiff (f,p,1))
* x0)
/ (
sqrt (((x0
^2 )
+ (y0
^2 ))
+ (z0
^2 ))))
+ (((
partdiff (f,p,2))
* y0)
/ (
sqrt (((x0
^2 )
+ (y0
^2 ))
+ (z0
^2 )))))
+ (((
partdiff (f,p,3))
* (a
. 3))
/ (
sqrt ((((a
. 1)
^2 )
+ ((a
. 2)
^2 ))
+ ((a
. 3)
^2 ))))) by
A1,
A2,
FINSEQ_1: 45
.= (((((
partdiff (f,p,1))
* x0)
/ (
sqrt (((x0
^2 )
+ (y0
^2 ))
+ (z0
^2 ))))
+ (((
partdiff (f,p,2))
* y0)
/ (
sqrt (((x0
^2 )
+ (y0
^2 ))
+ (z0
^2 )))))
+ (((
partdiff (f,p,3))
* z0)
/ (
sqrt (((x0
^2 )
+ (y0
^2 ))
+ (z0
^2 ))))) by
A1,
A2,
FINSEQ_1: 45;
hence thesis;
end;
theorem ::
PDIFF_4:42
(
Directiondiff (f,p,a))
=
|((
grad (f,p)), (
unitvector a))|
proof
set p0 = (
grad (f,p));
reconsider g1 = p0, g2 = (
unitvector a) as
FinSequence of
REAL ;
A1: (
len g1)
= (
len
<*(p0
. 1), (p0
. 2), (p0
. 3)*>) by
EUCLID_8: 1
.= 3 by
FINSEQ_1: 45;
A2: (
len g2)
= 3 by
FINSEQ_1: 45;
A3: p0
=
|[(
partdiff (f,p,1)), (
partdiff (f,p,2)), (
partdiff (f,p,3))]| by
Th34;
|((
grad (f,p)), (
unitvector a))|
= (
Sum
<*((g1
. 1)
* (g2
. 1)), ((g1
. 2)
* (g2
. 2)), ((g1
. 3)
* (g2
. 3))*>) by
A1,
A2,
EUCLID_5: 28
.= ((((p0
. 1)
* (g2
. 1))
+ ((p0
. 2)
* (g2
. 2)))
+ ((p0
. 3)
* (g2
. 3))) by
RVSUM_1: 78
.= ((((
partdiff (f,p,1))
* (g2
. 1))
+ ((p0
. 2)
* (g2
. 2)))
+ ((p0
. 3)
* (g2
. 3))) by
A3,
FINSEQ_1: 45
.= ((((
partdiff (f,p,1))
* (g2
. 1))
+ ((
partdiff (f,p,2))
* (g2
. 2)))
+ ((p0
. 3)
* (g2
. 3))) by
A3,
FINSEQ_1: 45
.= (
Directiondiff (f,p,a)) by
A3,
FINSEQ_1: 45;
hence thesis;
end;
definition
let f1,f2,f3 be
PartFunc of (
REAL 3),
REAL ;
let p be
Element of (
REAL 3);
::
PDIFF_4:def10
func
curl (f1,f2,f3,p) ->
Element of (
REAL 3) equals (((((
partdiff (f3,p,2))
- (
partdiff (f2,p,3)))
*
<e1> )
+ (((
partdiff (f1,p,3))
- (
partdiff (f3,p,1)))
*
<e2> ))
+ (((
partdiff (f2,p,1))
- (
partdiff (f1,p,2)))
*
<e3> ));
coherence ;
end
theorem ::
PDIFF_4:43
(
curl (f1,f2,f3,p))
=
|[((
partdiff (f3,p,2))
- (
partdiff (f2,p,3))), ((
partdiff (f1,p,3))
- (
partdiff (f3,p,1))), ((
partdiff (f2,p,1))
- (
partdiff (f1,p,2)))]|
proof
(
curl (f1,f2,f3,p))
= ((
|[(((
partdiff (f3,p,2))
- (
partdiff (f2,p,3)))
* 1), (((
partdiff (f3,p,2))
- (
partdiff (f2,p,3)))
*
0 ), (((
partdiff (f3,p,2))
- (
partdiff (f2,p,3)))
*
0 )]|
+ (((
partdiff (f1,p,3))
- (
partdiff (f3,p,1)))
*
|[
0 , jj,
0 ]|))
+ (((
partdiff (f2,p,1))
- (
partdiff (f1,p,2)))
*
|[
0 ,
0 , jj]|)) by
EUCLID_8: 59
.= ((
|[((
partdiff (f3,p,2))
- (
partdiff (f2,p,3))),
0 ,
0 ]|
+
|[(((
partdiff (f1,p,3))
- (
partdiff (f3,p,1)))
*
0 ), (((
partdiff (f1,p,3))
- (
partdiff (f3,p,1)))
* 1), (((
partdiff (f1,p,3))
- (
partdiff (f3,p,1)))
*
0 )]|)
+ (((
partdiff (f2,p,1))
- (
partdiff (f1,p,2)))
*
|[
0 ,
0 , jj]|)) by
EUCLID_8: 59
.= ((
|[((
partdiff (f3,p,2))
- (
partdiff (f2,p,3))),
0 ,
0 ]|
+
|[
0 , ((
partdiff (f1,p,3))
- (
partdiff (f3,p,1))),
0 ]|)
+
|[(((
partdiff (f2,p,1))
- (
partdiff (f1,p,2)))
*
0 ), (((
partdiff (f2,p,1))
- (
partdiff (f1,p,2)))
*
0 ), (((
partdiff (f2,p,1))
- (
partdiff (f1,p,2)))
* 1)]|) by
EUCLID_8: 59
.= (
|[(((
partdiff (f3,p,2))
- (
partdiff (f2,p,3)))
+
0 ), (
0
+ ((
partdiff (f1,p,3))
- (
partdiff (f3,p,1)))), (
0
+
0 )]|
+
|[
0 ,
0 , ((
partdiff (f2,p,1))
- (
partdiff (f1,p,2)))]|) by
Lm4
.=
|[(((
partdiff (f3,p,2))
- (
partdiff (f2,p,3)))
+
0 ), (((
partdiff (f1,p,3))
- (
partdiff (f3,p,1)))
+
0 ), (
0
+ ((
partdiff (f2,p,1))
- (
partdiff (f1,p,2))))]| by
Lm4
.=
|[((
partdiff (f3,p,2))
- (
partdiff (f2,p,3))), ((
partdiff (f1,p,3))
- (
partdiff (f3,p,1))), ((
partdiff (f2,p,1))
- (
partdiff (f1,p,2)))]|;
hence thesis;
end;