convex4.miz
begin
definition
let V be non
empty
1-sorted;
::
CONVEX4:def1
mode
C_Linear_Combination of V ->
Element of (
Funcs (the
carrier of V,
COMPLEX )) means
:
Def1: ex T be
finite
Subset of V st for v be
Element of V st not v
in T holds (it
. v)
=
0 ;
existence
proof
reconsider f = (the
carrier of V
-->
0c ) as
Element of (
Funcs (the
carrier of V,
COMPLEX )) by
FUNCT_2: 8;
take f, (
{} V);
thus thesis by
FUNCOP_1: 7;
end;
end
notation
let V be non
empty
addLoopStr, L be
Element of (
Funcs (the
carrier of V,
COMPLEX ));
synonym
Carrier L for
support L;
end
Lm1:
now
let V be non
empty
addLoopStr, L be
Element of (
Funcs (the
carrier of V,
COMPLEX ));
A1: (
support L)
c= (
dom L) by
PRE_POLY: 37;
thus (
Carrier L)
c= the
carrier of V
proof
let x be
object;
assume x
in (
support L);
then x
in (
dom L) by
A1;
hence thesis;
end;
end;
definition
let V be non
empty
addLoopStr, L be
Element of (
Funcs (the
carrier of V,
COMPLEX ));
:: original:
Carrier
redefine
::
CONVEX4:def2
func
Carrier L ->
Subset of V equals { v where v be
Element of V : (L
. v)
<>
0c };
coherence by
Lm1;
compatibility
proof
let X be
Subset of V;
set A = (
Carrier L);
set B = { v where v be
Element of V : (L
. v)
<>
0 };
thus X
= A implies X
= B
proof
assume
A1: X
= A;
thus X
c= B
proof
let x be
object;
assume
A2: x
in X;
then (L
. x)
<>
0 by
A1,
PRE_POLY:def 7;
hence thesis by
A2;
end;
let x be
object;
assume x
in B;
then ex v be
Element of V st x
= v & (L
. v)
<>
0 ;
hence thesis by
A1,
PRE_POLY:def 7;
end;
assume
A3: X
= B;
thus X
c= A
proof
let x be
object;
assume x
in X;
then ex v be
Element of V st x
= v & (L
. v)
<>
0 by
A3;
hence thesis by
PRE_POLY:def 7;
end;
let x be
object;
assume
A4: x
in A;
then
A5: (L
. x)
<>
0 by
PRE_POLY:def 7;
(
Carrier L)
c= the
carrier of V by
Lm1;
hence thesis by
A3,
A4,
A5;
end;
end
registration
let V be non
empty
addLoopStr, L be
C_Linear_Combination of V;
cluster (
Carrier L) ->
finite;
coherence
proof
set A = (
Carrier L);
consider T be
finite
Subset of V such that
A1: for v be
Element of V st not v
in T holds (L
. v)
=
0c by
Def1;
now
let x be
object;
assume x
in A;
then ex v be
Element of V st x
= v & (L
. v)
<>
0c ;
hence x
in T by
A1;
end;
then A
c= T;
hence thesis;
end;
end
theorem ::
CONVEX4:1
Th1: for V be non
empty
addLoopStr, L be
C_Linear_Combination of V, v be
Element of V holds (L
. v)
=
0c iff not v
in (
Carrier L)
proof
let V be non
empty
addLoopStr, L be
C_Linear_Combination of V, v be
Element of V;
thus (L
. v)
=
0c implies not v
in (
Carrier L)
proof
assume
A1: (L
. v)
=
0c ;
assume not thesis;
then ex u be
Element of V st v
= u & (L
. u)
<>
0c ;
hence thesis by
A1;
end;
thus thesis;
end;
definition
let V be non
empty
addLoopStr;
::
CONVEX4:def3
func
ZeroCLC V ->
C_Linear_Combination of V means
:
Def3: (
Carrier it )
=
{} ;
existence
proof
reconsider f = (the
carrier of V
-->
0c ) as
Element of (
Funcs (the
carrier of V,
COMPLEX )) by
FUNCT_2: 8;
f is
C_Linear_Combination of V
proof
take (
{} V);
thus thesis by
FUNCOP_1: 7;
end;
then
reconsider f as
C_Linear_Combination of V;
take f;
set C = { v where v be
Element of V : (f
. v)
<>
0c };
now
set x = the
Element of C;
assume C
<>
{} ;
then x
in C;
then ex v be
Element of V st x
= v & (f
. v)
<>
0c ;
hence contradiction by
FUNCOP_1: 7;
end;
hence thesis;
end;
uniqueness
proof
let L,L9 be
C_Linear_Combination of V;
assume
A1: (
Carrier L)
=
{} & (
Carrier L9)
=
{} ;
now
let x be
object;
assume x
in the
carrier of V;
then
reconsider v = x as
Element of V;
A2: (L9
. v)
<>
0c implies v
in { u where u be
Element of V : (L9
. u)
<>
0c };
(L
. v)
<>
0c implies v
in { u where u be
Element of V : (L
. u)
<>
0c };
hence (L
. x)
= (L9
. x) by
A1,
A2;
end;
hence L
= L9 by
FUNCT_2: 12;
end;
end
registration
let V be non
empty
addLoopStr;
cluster (
Carrier (
ZeroCLC V)) ->
empty;
coherence by
Def3;
end
theorem ::
CONVEX4:2
Th2: for V be non
empty
addLoopStr, v be
Element of V holds ((
ZeroCLC V)
. v)
=
0c
proof
let V be non
empty
addLoopStr, v be
Element of V;
(
Carrier (
ZeroCLC V))
=
{} & not v
in
{} ;
hence thesis;
end;
definition
let V be non
empty
addLoopStr;
let A be
Subset of V;
::
CONVEX4:def4
mode
C_Linear_Combination of A ->
C_Linear_Combination of V means
:
Def4: (
Carrier it )
c= A;
existence
proof
take L = (
ZeroCLC V);
thus thesis;
end;
end
theorem ::
CONVEX4:3
for V be non
empty
addLoopStr, A,B be
Subset of V, l be
C_Linear_Combination of A st A
c= B holds l is
C_Linear_Combination of B
proof
let V be non
empty
addLoopStr;
let A,B be
Subset of V;
let l be
C_Linear_Combination of A;
assume
A1: A
c= B;
(
Carrier l)
c= A by
Def4;
then (
Carrier l)
c= B by
A1;
hence thesis by
Def4;
end;
theorem ::
CONVEX4:4
Th4: for V be non
empty
addLoopStr, A be
Subset of V holds (
ZeroCLC V) is
C_Linear_Combination of A
proof
let V be non
empty
addLoopStr;
let A be
Subset of V;
(
Carrier (
ZeroCLC V))
=
{} &
{}
c= A;
hence thesis by
Def4;
end;
theorem ::
CONVEX4:5
Th5: for V be non
empty
addLoopStr, l be
C_Linear_Combination of (
{} the
carrier of V) holds l
= (
ZeroCLC V)
proof
let V be non
empty
addLoopStr;
let l be
C_Linear_Combination of (
{} the
carrier of V);
(
Carrier l)
c=
{} by
Def4;
then (
Carrier l)
=
{} ;
hence thesis by
Def3;
end;
reserve x,y for
set,
i for
Nat;
definition
let V be non
empty
CLSStruct;
let F be
FinSequence of the
carrier of V;
let f be
Function of the
carrier of V,
COMPLEX ;
::
CONVEX4:def5
func f
(#) F ->
FinSequence of the
carrier of V means
:
Def5: (
len it )
= (
len F) & for i st i
in (
dom it ) holds (it
. i)
= ((f
. (F
/. i))
* (F
/. i));
existence
proof
deffunc
Q(
set) = ((f
. (F
/. $1))
* (F
/. $1));
consider G be
FinSequence such that
A1: (
len G)
= (
len F) and
A2: for n be
Nat st n
in (
dom G) holds (G
. n)
=
Q(n) from
FINSEQ_1:sch 2;
(
rng G)
c= the
carrier of V
proof
let x be
object;
assume x
in (
rng G);
then
consider y be
object such that
A3: y
in (
dom G) and
A4: (G
. y)
= x by
FUNCT_1:def 3;
reconsider y as
Element of
NAT by
A3;
(G
. y)
= ((f
. (F
/. y))
* (F
/. y)) by
A2,
A3;
hence thesis by
A4;
end;
then
reconsider G as
FinSequence of the
carrier of V by
FINSEQ_1:def 4;
take G;
thus thesis by
A1,
A2;
end;
uniqueness
proof
let H1,H2 be
FinSequence of the
carrier of V;
assume that
A5: (
len H1)
= (
len F) and
A6: for i st i
in (
dom H1) holds (H1
. i)
= ((f
. (F
/. i))
* (F
/. i)) and
A7: (
len H2)
= (
len F) and
A8: for i st i
in (
dom H2) holds (H2
. i)
= ((f
. (F
/. i))
* (F
/. i));
now
let k be
Nat;
assume 1
<= k & k
<= (
len H1);
then
A9: k
in (
Seg (
len H1));
then k
in (
dom H1) by
FINSEQ_1:def 3;
then
A10: (H1
. k)
= ((f
. (F
/. k))
* (F
/. k)) by
A6;
k
in (
dom H2) by
A5,
A7,
A9,
FINSEQ_1:def 3;
hence (H1
. k)
= (H2
. k) by
A8,
A10;
end;
hence thesis by
A5,
A7,
FINSEQ_1: 14;
end;
end
reserve V for non
empty
CLSStruct,
u,v,v1,v2,v3 for
VECTOR of V,
A for
Subset of V,
l,l1,l2 for
C_Linear_Combination of A,
x,y,y1,y2 for
set,
a,b for
Complex,
F for
FinSequence of the
carrier of V,
f for
Function of the
carrier of V,
COMPLEX ;
theorem ::
CONVEX4:6
Th6: x
in (
dom F) & v
= (F
. x) implies ((f
(#) F)
. x)
= ((f
. v)
* v)
proof
assume that
A1: x
in (
dom F) and
A2: v
= (F
. x);
A3: (F
/. x)
= (F
. x) by
A1,
PARTFUN1:def 6;
(
len (f
(#) F))
= (
len F) by
Def5;
then x
in (
dom (f
(#) F)) by
A1,
FINSEQ_3: 29;
hence thesis by
A2,
A3,
Def5;
end;
theorem ::
CONVEX4:7
(f
(#) (
<*> the
carrier of V))
= (
<*> the
carrier of V)
proof
(
len (f
(#) (
<*> the
carrier of V)))
= (
len (
<*> the
carrier of V)) by
Def5
.=
0 ;
hence thesis;
end;
theorem ::
CONVEX4:8
Th8: (f
(#)
<*v*>)
=
<*((f
. v)
* v)*>
proof
A1: 1
in
{1} by
FINSEQ_1: 2;
A2: (
len (f
(#)
<*v*>))
= (
len
<*v*>) by
Def5
.= 1 by
FINSEQ_1: 40;
then (
dom (f
(#)
<*v*>))
=
{1} by
FINSEQ_1: 2,
FINSEQ_1:def 3;
then ((f
(#)
<*v*>)
. 1)
= ((f
. (
<*v*>
/. 1))
* (
<*v*>
/. 1)) by
A1,
Def5
.= ((f
. (
<*v*>
/. 1))
* v) by
FINSEQ_4: 16
.= ((f
. v)
* v) by
FINSEQ_4: 16;
hence thesis by
A2,
FINSEQ_1: 40;
end;
theorem ::
CONVEX4:9
Th9: (f
(#)
<*v1, v2*>)
=
<*((f
. v1)
* v1), ((f
. v2)
* v2)*>
proof
A1: (
len (f
(#)
<*v1, v2*>))
= (
len
<*v1, v2*>) by
Def5
.= 2 by
FINSEQ_1: 44;
then
A2: (
dom (f
(#)
<*v1, v2*>))
=
{1, 2} by
FINSEQ_1: 2,
FINSEQ_1:def 3;
2
in
{1, 2} by
FINSEQ_1: 2;
then
A3: ((f
(#)
<*v1, v2*>)
. 2)
= ((f
. (
<*v1, v2*>
/. 2))
* (
<*v1, v2*>
/. 2)) by
A2,
Def5
.= ((f
. (
<*v1, v2*>
/. 2))
* v2) by
FINSEQ_4: 17
.= ((f
. v2)
* v2) by
FINSEQ_4: 17;
1
in
{1, 2} by
FINSEQ_1: 2;
then ((f
(#)
<*v1, v2*>)
. 1)
= ((f
. (
<*v1, v2*>
/. 1))
* (
<*v1, v2*>
/. 1)) by
A2,
Def5
.= ((f
. (
<*v1, v2*>
/. 1))
* v1) by
FINSEQ_4: 17
.= ((f
. v1)
* v1) by
FINSEQ_4: 17;
hence thesis by
A1,
A3,
FINSEQ_1: 44;
end;
theorem ::
CONVEX4:10
Th10: (f
(#)
<*v1, v2, v3*>)
=
<*((f
. v1)
* v1), ((f
. v2)
* v2), ((f
. v3)
* v3)*>
proof
A1: (
len (f
(#)
<*v1, v2, v3*>))
= (
len
<*v1, v2, v3*>) by
Def5
.= 3 by
FINSEQ_1: 45;
then
A2: (
dom (f
(#)
<*v1, v2, v3*>))
=
{1, 2, 3} by
FINSEQ_1:def 3,
FINSEQ_3: 1;
3
in
{1, 2, 3} by
FINSEQ_3: 1;
then
A3: ((f
(#)
<*v1, v2, v3*>)
. 3)
= ((f
. (
<*v1, v2, v3*>
/. 3))
* (
<*v1, v2, v3*>
/. 3)) by
A2,
Def5
.= ((f
. (
<*v1, v2, v3*>
/. 3))
* v3) by
FINSEQ_4: 18
.= ((f
. v3)
* v3) by
FINSEQ_4: 18;
2
in
{1, 2, 3} by
FINSEQ_3: 1;
then
A4: ((f
(#)
<*v1, v2, v3*>)
. 2)
= ((f
. (
<*v1, v2, v3*>
/. 2))
* (
<*v1, v2, v3*>
/. 2)) by
A2,
Def5
.= ((f
. (
<*v1, v2, v3*>
/. 2))
* v2) by
FINSEQ_4: 18
.= ((f
. v2)
* v2) by
FINSEQ_4: 18;
1
in
{1, 2, 3} by
FINSEQ_3: 1;
then ((f
(#)
<*v1, v2, v3*>)
. 1)
= ((f
. (
<*v1, v2, v3*>
/. 1))
* (
<*v1, v2, v3*>
/. 1)) by
A2,
Def5
.= ((f
. (
<*v1, v2, v3*>
/. 1))
* v1) by
FINSEQ_4: 18
.= ((f
. v1)
* v1) by
FINSEQ_4: 18;
hence thesis by
A1,
A4,
A3,
FINSEQ_1: 45;
end;
reserve K,L,L1,L2,L3 for
C_Linear_Combination of V;
definition
let V be
Abelian
add-associative
right_zeroed
right_complementable non
empty
CLSStruct;
let L be
C_Linear_Combination of V;
::
CONVEX4:def6
func
Sum L ->
Element of V means
:
Def6: ex F be
FinSequence of the
carrier of V st F is
one-to-one & (
rng F)
= (
Carrier L) & it
= (
Sum (L
(#) F));
existence
proof
consider F be
FinSequence such that
A1: (
rng F)
= (
Carrier L) and
A2: F is
one-to-one by
FINSEQ_4: 58;
reconsider F as
FinSequence of the
carrier of V by
A1,
FINSEQ_1:def 4;
take (
Sum (L
(#) F));
take F;
thus thesis by
A1,
A2;
end;
uniqueness
proof
let v1,v2 be
Element of V;
given F1 be
FinSequence of the
carrier of V such that
A3: F1 is
one-to-one and
A4: (
rng F1)
= (
Carrier L) and
A5: v1
= (
Sum (L
(#) F1));
given F2 be
FinSequence of the
carrier of V such that
A6: F2 is
one-to-one and
A7: (
rng F2)
= (
Carrier L) and
A8: v2
= (
Sum (L
(#) F2));
defpred
P[
object,
object] means
{$2}
= (F1
"
{(F2
. $1)});
A9: (
len F1)
= (
len F2) by
A3,
A4,
A6,
A7,
FINSEQ_1: 48;
A10: (
dom F1)
= (
Seg (
len F1)) by
FINSEQ_1:def 3;
A11: (
dom F2)
= (
Seg (
len F2)) by
FINSEQ_1:def 3;
A12: for x be
object st x
in (
dom F1) holds ex y be
object st y
in (
dom F1) &
P[x, y]
proof
let x be
object;
assume x
in (
dom F1);
then (F2
. x)
in (
rng F1) by
A4,
A7,
A9,
A10,
A11,
FUNCT_1:def 3;
then
consider y be
object such that
A13: (F1
"
{(F2
. x)})
=
{y} by
A3,
FUNCT_1: 74;
take y;
y
in (F1
"
{(F2
. x)}) by
A13,
TARSKI:def 1;
hence thesis by
A13,
FUNCT_1:def 7;
end;
consider f be
Function of (
dom F1), (
dom F1) such that
A14: for x be
object st x
in (
dom F1) holds
P[x, (f
. x)] from
FUNCT_2:sch 1(
A12);
A15: (
rng f)
= (
dom F1)
proof
thus (
rng f)
c= (
dom F1) by
RELAT_1:def 19;
let y be
object;
assume
A16: y
in (
dom F1);
then (F1
. y)
in (
rng F2) by
A4,
A7,
FUNCT_1:def 3;
then
consider x be
object such that
A17: x
in (
dom F2) and
A18: (F2
. x)
= (F1
. y) by
FUNCT_1:def 3;
(F1
"
{(F2
. x)})
= (F1
" (
Im (F1,y))) by
A16,
A18,
FUNCT_1: 59;
then (F1
"
{(F2
. x)})
c=
{y} by
A3,
FUNCT_1: 82;
then
{(f
. x)}
c=
{y} by
A9,
A10,
A11,
A14,
A17;
then
A19: (f
. x)
= y by
ZFMISC_1: 18;
x
in (
dom f) by
A9,
A10,
A11,
A17,
FUNCT_2:def 1;
hence thesis by
A19,
FUNCT_1:def 3;
end;
set G1 = (L
(#) F1);
A20: (
len G1)
= (
len F1) by
Def5;
A21: f is
one-to-one
proof
let y1,y2 be
object;
assume that
A22: y1
in (
dom f) and
A23: y2
in (
dom f) and
A24: (f
. y1)
= (f
. y2);
(F2
. y1)
in (
rng F1) by
A4,
A7,
A9,
A10,
A11,
A22,
FUNCT_1:def 3;
then
A25:
{(F2
. y1)}
c= (
rng F1) by
ZFMISC_1: 31;
(F2
. y2)
in (
rng F1) by
A4,
A7,
A9,
A10,
A11,
A23,
FUNCT_1:def 3;
then
A26:
{(F2
. y2)}
c= (
rng F1) by
ZFMISC_1: 31;
(F1
"
{(F2
. y1)})
=
{(f
. y1)} & (F1
"
{(F2
. y2)})
=
{(f
. y2)} by
A14,
A22,
A23;
then
{(F2
. y1)}
=
{(F2
. y2)} by
A24,
A25,
A26,
FUNCT_1: 91;
then (F2
. y1)
= (F2
. y2) by
ZFMISC_1: 3;
hence thesis by
A6,
A9,
A10,
A11,
A22,
A23,
FUNCT_1:def 4;
end;
set G2 = (L
(#) F2);
A27: (
dom G2)
= (
Seg (
len G2)) by
FINSEQ_1:def 3;
reconsider f as
Permutation of (
dom F1) by
A15,
A21,
FUNCT_2: 57;
(
dom F1)
= (
Seg (
len F1)) & (
dom G1)
= (
Seg (
len G1)) by
FINSEQ_1:def 3;
then
reconsider f as
Permutation of (
dom G1) by
A20;
A28: (
len G2)
= (
len F2) by
Def5;
A29: (
dom G1)
= (
Seg (
len G1)) by
FINSEQ_1:def 3;
now
let i be
Nat;
assume
A30: i
in (
dom G2);
then
A31: (G2
. i)
= ((L
. (F2
/. i))
* (F2
/. i)) & (F2
. i)
= (F2
/. i) by
A28,
A11,
A27,
Def5,
PARTFUN1:def 6;
i
in (
dom f) by
A9,
A28,
A10,
A27,
A30,
FUNCT_2:def 1;
then
A32: (f
. i)
in (
dom F1) by
A15,
FUNCT_1:def 3;
then
reconsider m = (f
. i) as
Element of
NAT ;
{(F1
. (f
. i))}
= (
Im (F1,(f
. i))) by
A32,
FUNCT_1: 59
.= (F1
.: (F1
"
{(F2
. i)})) by
A9,
A28,
A10,
A27,
A14,
A30;
then
A33: (F2
. i)
= (F1
. m) by
FUNCT_1: 75,
ZFMISC_1: 18;
(F1
. m)
= (F1
/. m) by
A32,
PARTFUN1:def 6;
hence (G2
. i)
= (G1
. (f
. i)) by
A20,
A10,
A29,
A32,
A33,
A31,
Def5;
end;
hence thesis by
A3,
A4,
A5,
A6,
A7,
A8,
A20,
A28,
FINSEQ_1: 48,
RLVECT_2: 6;
end;
end
theorem ::
CONVEX4:11
Th11: for V be
Abelian
add-associative
right_zeroed
right_complementable non
empty
CLSStruct holds (
Sum (
ZeroCLC V))
= (
0. V)
proof
let V be
Abelian
add-associative
right_zeroed
right_complementable non
empty
CLSStruct;
consider F be
FinSequence of the
carrier of V such that F is
one-to-one and
A1: (
rng F)
= (
Carrier (
ZeroCLC V)) and
A2: (
Sum (
ZeroCLC V))
= (
Sum ((
ZeroCLC V)
(#) F)) by
Def6;
F
=
{} by
A1,
RELAT_1: 41;
then (
len ((
ZeroCLC V)
(#) F))
=
0 by
Def5,
CARD_1: 27;
hence thesis by
A2,
RLVECT_1: 75;
end;
theorem ::
CONVEX4:12
for V be
ComplexLinearSpace, A be
Subset of V holds A
<>
{} implies (A is
linearly-closed iff for l be
C_Linear_Combination of A holds (
Sum l)
in A)
proof
let V be
ComplexLinearSpace;
let A be
Subset of V;
assume
A1: A
<>
{} ;
thus A is
linearly-closed implies for l be
C_Linear_Combination of A holds (
Sum l)
in A
proof
defpred
P[
Nat] means for l be
C_Linear_Combination of A st (
card (
Carrier l))
= $1 holds (
Sum l)
in A;
assume
A2: A is
linearly-closed;
A3: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A4:
P[k];
hereby
let l be
C_Linear_Combination of A;
deffunc
F(
Element of V) = (l
. $1);
consider F be
FinSequence of the
carrier of V such that
A5: F is
one-to-one and
A6: (
rng F)
= (
Carrier l) and
A7: (
Sum l)
= (
Sum (l
(#) F)) by
Def6;
reconsider G = (F
| (
Seg k)) as
FinSequence of the
carrier of V by
FINSEQ_1: 18;
assume
A8: (
card (
Carrier l))
= (k
+ 1);
then
A9: (
len F)
= (k
+ 1) by
A5,
A6,
FINSEQ_4: 62;
then
A10: (
len (l
(#) F))
= (k
+ 1) by
Def5;
(k
+ 1)
in (
Seg (k
+ 1)) by
FINSEQ_1: 4;
then
A11: (k
+ 1)
in (
dom F) by
A9,
FINSEQ_1:def 3;
then
reconsider v = (F
. (k
+ 1)) as
VECTOR of V by
FUNCT_1: 102;
consider f be
Function of the
carrier of V,
COMPLEX such that
A12: (f
. v)
=
0c & for u be
Element of V st u
<> v holds (f
. u)
=
F(u) from
FUNCT_2:sch 6;
reconsider f as
Element of (
Funcs (the
carrier of V,
COMPLEX )) by
FUNCT_2: 8;
now
let u be
VECTOR of V;
assume not u
in (
Carrier l);
then (l
. u)
=
0c ;
hence (f
. u)
=
0c by
A12;
end;
then
reconsider f as
C_Linear_Combination of V by
Def1;
A13: (
Carrier f)
= ((
Carrier l)
\
{v})
proof
now
let x be
object;
assume x
in (
Carrier f);
then
A14: ex u be
VECTOR of V st u
= x & (f
. u)
<>
0c ;
then (f
. x)
= (l
. x) by
A12;
then
A15: x
in (
Carrier l) by
A14;
not x
in
{v} by
A12,
A14,
TARSKI:def 1;
hence x
in ((
Carrier l)
\
{v}) by
A15,
XBOOLE_0:def 5;
end;
hence (
Carrier f)
c= ((
Carrier l)
\
{v});
let x be
object;
assume
A16: x
in ((
Carrier l)
\
{v});
then not x
in
{v} by
XBOOLE_0:def 5;
then x
<> v by
TARSKI:def 1;
then
A17: (l
. x)
= (f
. x) by
A12,
A16;
x
in (
Carrier l) by
A16,
XBOOLE_0:def 5;
then ex u be
VECTOR of V st x
= u & (l
. u)
<>
0c ;
hence thesis by
A17;
end;
A18: (
Carrier l)
c= A by
Def4;
then (
Carrier f)
c= (A
\
{v}) by
A13,
XBOOLE_1: 33;
then (
Carrier f)
c= A by
XBOOLE_1: 106;
then
reconsider f as
C_Linear_Combination of A by
Def4;
A19: (
len G)
= k by
A9,
FINSEQ_3: 53;
then
A20: (
len (f
(#) G))
= k by
Def5;
A21: (
rng G)
= (
Carrier f)
proof
thus (
rng G)
c= (
Carrier f)
proof
let x be
object;
assume x
in (
rng G);
then
consider y be
object such that
A22: y
in (
dom G) and
A23: (G
. y)
= x by
FUNCT_1:def 3;
reconsider y as
Element of
NAT by
A22;
A24: (
dom G)
c= (
dom F) & (G
. y)
= (F
. y) by
A22,
FUNCT_1: 47,
RELAT_1: 60;
then x
= v implies (k
+ 1)
= y & y
<= k & k
< (k
+ 1) by
A5,
A19,
A11,
A22,
A23,
FINSEQ_3: 25,
FUNCT_1:def 4,
XREAL_1: 29;
then
A25: not x
in
{v} by
TARSKI:def 1;
x
in (
rng F) by
A22,
A23,
A24,
FUNCT_1:def 3;
hence thesis by
A6,
A13,
A25,
XBOOLE_0:def 5;
end;
let x be
object;
assume
A26: x
in (
Carrier f);
then x
in (
rng F) by
A6,
A13,
XBOOLE_0:def 5;
then
consider y be
object such that
A27: y
in (
dom F) and
A28: (F
. y)
= x by
FUNCT_1:def 3;
now
assume not y
in (
Seg k);
then y
in ((
dom F)
\ (
Seg k)) by
A27,
XBOOLE_0:def 5;
then y
in ((
Seg (k
+ 1))
\ (
Seg k)) by
A9,
FINSEQ_1:def 3;
then y
in
{(k
+ 1)} by
FINSEQ_3: 15;
then y
= (k
+ 1) by
TARSKI:def 1;
then not v
in
{v} by
A13,
A26,
A28,
XBOOLE_0:def 5;
hence contradiction by
TARSKI:def 1;
end;
then y
in ((
dom F)
/\ (
Seg k)) by
A27,
XBOOLE_0:def 4;
then
A29: y
in (
dom G) by
RELAT_1: 61;
then (G
. y)
= (F
. y) by
FUNCT_1: 47;
hence thesis by
A28,
A29,
FUNCT_1:def 3;
end;
((
Seg (k
+ 1))
/\ (
Seg k))
= (
Seg k) by
FINSEQ_1: 7,
NAT_1: 12
.= (
dom (f
(#) G)) by
A20,
FINSEQ_1:def 3;
then
A30: (
dom (f
(#) G))
= ((
dom (l
(#) F))
/\ (
Seg k)) by
A10,
FINSEQ_1:def 3;
now
let x be
object;
assume
A31: x
in (
dom (f
(#) G));
then
A32: x
in (
dom G) by
A19,
A20,
FINSEQ_3: 29;
then
A33: (G
. x)
in (
rng G) by
FUNCT_1:def 3;
then
reconsider u = (G
. x) as
VECTOR of V;
A34: (F
. x)
= u by
A32,
FUNCT_1: 47;
not u
in
{v} by
A13,
A21,
A33,
XBOOLE_0:def 5;
then
A35: u
<> v by
TARSKI:def 1;
x
in (
dom (l
(#) F)) by
A30,
A31,
XBOOLE_0:def 4;
then
A36: x
in (
dom F) by
A9,
A10,
FINSEQ_3: 29;
((f
(#) G)
. x)
= ((f
. u)
* u) by
A32,
Th6
.= ((l
. u)
* u) by
A12,
A35;
hence ((f
(#) G)
. x)
= ((l
(#) F)
. x) by
A36,
A34,
Th6;
end;
then
A37: (f
(#) G)
= ((l
(#) F)
| (
Seg k)) by
A30,
FUNCT_1: 46;
v
in (
rng F) by
A11,
FUNCT_1:def 3;
then
{v}
c= (
Carrier l) by
A6,
ZFMISC_1: 31;
then (
card (
Carrier f))
= ((k
+ 1)
- (
card
{v})) by
A8,
A13,
CARD_2: 44;
then (
card (
Carrier f))
= ((k
+ 1)
- 1) by
CARD_1: 30;
then
A38: (
Sum f)
in A by
A4;
v
in (
Carrier l) by
A6,
A11,
FUNCT_1:def 3;
then
A39: ((l
. v)
* v)
in A by
A2,
A18;
G is
one-to-one by
A5,
FUNCT_1: 52;
then
A40: (
Sum (f
(#) G))
= (
Sum f) by
A21,
Def6;
(
dom (f
(#) G))
= (
Seg (
len (f
(#) G))) & ((l
(#) F)
. (
len F))
= ((l
. v)
* v) by
A9,
A11,
Th6,
FINSEQ_1:def 3;
then (
Sum (l
(#) F))
= ((
Sum (f
(#) G))
+ ((l
. v)
* v)) by
A9,
A10,
A20,
A37,
RLVECT_1: 38;
hence (
Sum l)
in A by
A2,
A7,
A39,
A40,
A38;
end;
end;
let l be
C_Linear_Combination of A;
A41: (
card (
Carrier l))
= (
card (
Carrier l));
now
let l be
C_Linear_Combination of A;
assume (
card (
Carrier l))
=
0 ;
then (
Carrier l)
=
{} ;
then l
= (
ZeroCLC V) by
Def3;
then (
Sum l)
= (
0. V) by
Th11;
hence (
Sum l)
in A by
A1,
A2,
CLVECT_1: 20;
end;
then
A42:
P[
0 ];
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A42,
A3);
hence thesis by
A41;
end;
assume
A43: for l be
C_Linear_Combination of A holds (
Sum l)
in A;
(
ZeroCLC V) is
C_Linear_Combination of A & (
Sum (
ZeroCLC V))
= (
0. V) by
Th4,
Th11;
then
A44: (
0. V)
in A by
A43;
A45: for a be
Complex, v be
VECTOR of V st v
in A holds (a
* v)
in A
proof
let a be
Complex, v be
VECTOR of V;
assume
A46: v
in A;
now
reconsider a1 = a as
Element of
COMPLEX by
XCMPLX_0:def 2;
deffunc
F(
Element of V) =
0c ;
consider f be
Function of the
carrier of V,
COMPLEX such that
A47: (f
. v)
= a1 & for u be
Element of V st u
<> v holds (f
. u)
=
F(u) from
FUNCT_2:sch 6;
reconsider f as
Element of (
Funcs (the
carrier of V,
COMPLEX )) by
FUNCT_2: 8;
now
let u be
VECTOR of V;
assume not u
in
{v};
then u
<> v by
TARSKI:def 1;
hence (f
. u)
=
0 by
A47;
end;
then
reconsider f as
C_Linear_Combination of V by
Def1;
assume
A48: a
<>
0 ;
A49: (
Carrier f)
=
{v}
proof
now
let x be
object;
assume x
in (
Carrier f);
then ex u be
VECTOR of V st x
= u & (f
. u)
<>
0 ;
then x
= v by
A47;
hence x
in
{v} by
TARSKI:def 1;
end;
hence (
Carrier f)
c=
{v};
let x be
object;
assume x
in
{v};
then x
= v by
TARSKI:def 1;
hence thesis by
A48,
A47;
end;
{v}
c= A by
A46,
ZFMISC_1: 31;
then
reconsider f as
C_Linear_Combination of A by
A49,
Def4;
consider F be
FinSequence of the
carrier of V such that
A50: F is
one-to-one & (
rng F)
= (
Carrier f) and
A51: (
Sum (f
(#) F))
= (
Sum f) by
Def6;
F
=
<*v*> by
A49,
A50,
FINSEQ_3: 97;
then (f
(#) F)
=
<*((f
. v)
* v)*> by
Th8;
then (
Sum f)
= (a
* v) by
A47,
A51,
RLVECT_1: 44;
hence thesis by
A43;
end;
hence thesis by
A44,
CLVECT_1: 1;
end;
for v,u be
VECTOR of V st v
in A & u
in A holds (v
+ u)
in A
proof
let v,u be
VECTOR of V;
assume that
A52: v
in A and
A53: u
in A;
A54: (
1r
* v)
= v by
CLVECT_1:def 5;
A55: (
1r
* u)
= u by
CLVECT_1:def 5;
A56:
now
deffunc
F(
Element of V) =
0c ;
assume
A57: v
<> u;
consider f be
Function of the
carrier of V,
COMPLEX such that
A58: (f
. v)
=
1r & (f
. u)
=
1r and
A59: for w be
Element of V st w
<> v & w
<> u holds (f
. w)
=
F(w) from
FUNCT_2:sch 7(
A57);
reconsider f as
Element of (
Funcs (the
carrier of V,
COMPLEX )) by
FUNCT_2: 8;
now
let w be
VECTOR of V;
assume not w
in
{v, u};
then w
<> v & w
<> u by
TARSKI:def 2;
hence (f
. w)
=
0 by
A59;
end;
then
reconsider f as
C_Linear_Combination of V by
Def1;
A60: (
Carrier f)
=
{v, u}
proof
thus (
Carrier f)
c=
{v, u}
proof
let x be
object;
assume x
in (
Carrier f);
then ex w be
VECTOR of V st x
= w & (f
. w)
<>
0c ;
then x
= v or x
= u by
A59;
hence thesis by
TARSKI:def 2;
end;
let x be
object;
assume x
in
{v, u};
then x
= v or x
= u by
TARSKI:def 2;
hence thesis by
A58;
end;
then (
Carrier f)
c= A by
A52,
A53,
ZFMISC_1: 32;
then
reconsider f as
C_Linear_Combination of A by
Def4;
consider F be
FinSequence of the
carrier of V such that
A61: F is
one-to-one & (
rng F)
= (
Carrier f) and
A62: (
Sum (f
(#) F))
= (
Sum f) by
Def6;
F
=
<*v, u*> or F
=
<*u, v*> by
A57,
A60,
A61,
FINSEQ_3: 99;
then (f
(#) F)
=
<*(
1r
* v), (
1r
* u)*> or (f
(#) F)
=
<*(
1r
* u), (
1r
* v)*> by
A58,
Th9;
then (
Sum f)
= (v
+ u) by
A55,
A54,
A62,
RLVECT_1: 45;
hence thesis by
A43;
end;
(v
+ v)
= ((
1r
+
1r )
* v) by
A54,
CLVECT_1:def 3;
hence thesis by
A45,
A52,
A56;
end;
hence thesis by
A45;
end;
theorem ::
CONVEX4:13
for V be
Abelian
add-associative
right_zeroed
right_complementable non
empty
CLSStruct, l be
C_Linear_Combination of (
{} the
carrier of V) holds (
Sum l)
= (
0. V)
proof
let V be
Abelian
add-associative
right_zeroed
right_complementable non
empty
CLSStruct;
let l be
C_Linear_Combination of (
{} the
carrier of V);
l
= (
ZeroCLC V) by
Th5;
hence thesis by
Th11;
end;
theorem ::
CONVEX4:14
Th14: for V be
ComplexLinearSpace, v be
VECTOR of V, l be
C_Linear_Combination of
{v} holds (
Sum l)
= ((l
. v)
* v)
proof
let V be
ComplexLinearSpace;
let v be
VECTOR of V;
let l be
C_Linear_Combination of
{v};
A1: (
Carrier l)
c=
{v} by
Def4;
per cases by
A1,
ZFMISC_1: 33;
suppose (
Carrier l)
=
{} ;
then
A2: l
= (
ZeroCLC V) by
Def3;
hence (
Sum l)
= (
0. V) by
Th11
.= (
0c
* v) by
CLVECT_1: 1
.= ((l
. v)
* v) by
A2,
Th2;
end;
suppose (
Carrier l)
=
{v};
then
consider F be
FinSequence of the
carrier of V such that
A3: F is
one-to-one & (
rng F)
=
{v} and
A4: (
Sum l)
= (
Sum (l
(#) F)) by
Def6;
F
=
<*v*> by
A3,
FINSEQ_3: 97;
then (l
(#) F)
=
<*((l
. v)
* v)*> by
Th8;
hence thesis by
A4,
RLVECT_1: 44;
end;
end;
theorem ::
CONVEX4:15
Th15: for V be
ComplexLinearSpace, v1,v2 be
VECTOR of V holds v1
<> v2 implies for l be
C_Linear_Combination of
{v1, v2} holds (
Sum l)
= (((l
. v1)
* v1)
+ ((l
. v2)
* v2))
proof
let V be
ComplexLinearSpace;
let v1,v2 be
VECTOR of V;
assume
A1: v1
<> v2;
let l be
C_Linear_Combination of
{v1, v2};
A2: (
0. V)
= (
0c
* v1) by
CLVECT_1: 1;
A3: (
Carrier l)
c=
{v1, v2} by
Def4;
A4: (
0. V)
= (
0c
* v2) by
CLVECT_1: 1;
per cases by
A3,
ZFMISC_1: 36;
suppose (
Carrier l)
=
{} ;
then
A5: l
= (
ZeroCLC V) by
Def3;
hence (
Sum l)
= (
0. V) by
Th11
.= ((
0. V)
+ (
0. V))
.= (((l
. v1)
* v1)
+ (
0c
* v2)) by
A4,
A5,
Th2,
CLVECT_1: 1
.= (((l
. v1)
* v1)
+ ((l
. v2)
* v2)) by
A5,
Th2;
end;
suppose
A6: (
Carrier l)
=
{v1};
then
reconsider L = l as
C_Linear_Combination of
{v1} by
Def4;
(
Sum L)
= ((l
. v1)
* v1) by
Th14;
then
A7: (
Sum l)
= (((l
. v1)
* v1)
+ (
0. V));
not v2
in (
Carrier l) by
A1,
A6,
TARSKI:def 1;
hence thesis by
A4,
A7;
end;
suppose
A8: (
Carrier l)
=
{v2};
then
reconsider L = l as
C_Linear_Combination of
{v2} by
Def4;
(
Sum L)
= ((l
. v2)
* v2) by
Th14;
then
A9: (
Sum l)
= ((
0. V)
+ ((l
. v2)
* v2));
not v1
in (
Carrier l) by
A1,
A8,
TARSKI:def 1;
hence thesis by
A2,
A9;
end;
suppose (
Carrier l)
=
{v1, v2};
then
consider F be
FinSequence of the
carrier of V such that
A10: F is
one-to-one & (
rng F)
=
{v1, v2} and
A11: (
Sum l)
= (
Sum (l
(#) F)) by
Def6;
F
=
<*v1, v2*> or F
=
<*v2, v1*> by
A1,
A10,
FINSEQ_3: 99;
then (l
(#) F)
=
<*((l
. v1)
* v1), ((l
. v2)
* v2)*> or (l
(#) F)
=
<*((l
. v2)
* v2), ((l
. v1)
* v1)*> by
Th9;
hence thesis by
A11,
RLVECT_1: 45;
end;
end;
theorem ::
CONVEX4:16
for V be
Abelian
add-associative
right_zeroed
right_complementable non
empty
CLSStruct, L be
C_Linear_Combination of V holds (
Carrier L)
=
{} implies (
Sum L)
= (
0. V)
proof
let V be
Abelian
add-associative
right_zeroed
right_complementable non
empty
CLSStruct;
let L be
C_Linear_Combination of V;
assume (
Carrier L)
=
{} ;
then L
= (
ZeroCLC V) by
Def3;
hence thesis by
Th11;
end;
theorem ::
CONVEX4:17
for V be
ComplexLinearSpace, L be
C_Linear_Combination of V, v be
VECTOR of V holds (
Carrier L)
=
{v} implies (
Sum L)
= ((L
. v)
* v)
proof
let V be
ComplexLinearSpace;
let L be
C_Linear_Combination of V;
let v be
VECTOR of V;
assume (
Carrier L)
=
{v};
then L is
C_Linear_Combination of
{v} by
Def4;
hence thesis by
Th14;
end;
theorem ::
CONVEX4:18
Th18: for V be
ComplexLinearSpace, L be
C_Linear_Combination of V, v1,v2 be
VECTOR of V holds (
Carrier L)
=
{v1, v2} & v1
<> v2 implies (
Sum L)
= (((L
. v1)
* v1)
+ ((L
. v2)
* v2))
proof
let V be
ComplexLinearSpace;
let L be
C_Linear_Combination of V;
let v1,v2 be
VECTOR of V;
assume that
A1: (
Carrier L)
=
{v1, v2} and
A2: v1
<> v2;
L is
C_Linear_Combination of
{v1, v2} by
A1,
Def4;
hence thesis by
A2,
Th15;
end;
definition
let V be non
empty
addLoopStr;
let L1,L2 be
C_Linear_Combination of V;
:: original:
=
redefine
::
CONVEX4:def7
pred L1
= L2 means for v be
Element of V holds (L1
. v)
= (L2
. v);
compatibility by
FUNCT_2: 63;
end
definition
let V be non
empty
addLoopStr;
let L1,L2 be
C_Linear_Combination of V;
:: original:
+
redefine
::
CONVEX4:def8
func L1
+ L2 ->
C_Linear_Combination of V means
:
Def8: for v be
Element of V holds (it
. v)
= ((L1
. v)
+ (L2
. v));
coherence
proof
reconsider f = (L1
+ L2) as
Element of (
Funcs (the
carrier of V,
COMPLEX )) by
FUNCT_2: 8;
now
let v be
Element of V;
assume
A1: not v
in ((
Carrier L1)
\/ (
Carrier L2));
then not v
in (
Carrier L2) by
XBOOLE_0:def 3;
then
A2: (L2
. v)
=
0 ;
not v
in (
Carrier L1) by
A1,
XBOOLE_0:def 3;
then (L1
. v)
=
0 ;
hence (f
. v)
= (
0
+
0 ) by
A2,
VALUED_1: 1
.=
0 ;
end;
hence thesis by
Def1;
end;
compatibility
proof
let f be
C_Linear_Combination of V;
thus f
= (L1
+ L2) implies for v be
Element of V holds (f
. v)
= ((L1
. v)
+ (L2
. v)) by
VALUED_1: 1;
assume for v be
Element of V holds (f
. v)
= ((L1
. v)
+ (L2
. v));
then
A3: for c be
object st c
in (
dom f) holds (f
. c)
= ((L1
. c)
+ (L2
. c));
(
dom L1)
= the
carrier of V & (
dom L2)
= the
carrier of V by
FUNCT_2: 92;
then (
dom f)
= ((
dom L1)
/\ (
dom L2)) by
FUNCT_2: 92;
hence f
= (L1
+ L2) by
A3,
VALUED_1:def 1;
end;
end
theorem ::
CONVEX4:19
Th19: (
Carrier (L1
+ L2))
c= ((
Carrier L1)
\/ (
Carrier L2))
proof
let x be
object;
assume x
in (
Carrier (L1
+ L2));
then
consider u such that
A1: x
= u and
A2: ((L1
+ L2)
. u)
<>
0c ;
((L1
+ L2)
. u)
= ((L1
. u)
+ (L2
. u)) by
Def8;
then (L1
. u)
<>
0c or (L2
. u)
<>
0c by
A2;
then x
in (
Carrier L1) or x
in (
Carrier L2) by
A1;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
CONVEX4:20
Th20: L1 is
C_Linear_Combination of A & L2 is
C_Linear_Combination of A implies (L1
+ L2) is
C_Linear_Combination of A
proof
assume L1 is
C_Linear_Combination of A & L2 is
C_Linear_Combination of A;
then (
Carrier L1)
c= A & (
Carrier L2)
c= A by
Def4;
then
A1: ((
Carrier L1)
\/ (
Carrier L2))
c= A by
XBOOLE_1: 8;
(
Carrier (L1
+ L2))
c= ((
Carrier L1)
\/ (
Carrier L2)) by
Th19;
hence (
Carrier (L1
+ L2))
c= A by
A1;
end;
definition
let V, A;
let L1,L2 be
C_Linear_Combination of A;
:: original:
+
redefine
func L1
+ L2 ->
C_Linear_Combination of A ;
coherence by
Th20;
end
theorem ::
CONVEX4:21
for V be non
empty
addLoopStr, L1,L2 be
C_Linear_Combination of V holds (L1
+ L2)
= (L2
+ L1);
theorem ::
CONVEX4:22
Th22: (L1
+ (L2
+ L3))
= ((L1
+ L2)
+ L3)
proof
let v;
thus ((L1
+ (L2
+ L3))
. v)
= ((L1
. v)
+ ((L2
+ L3)
. v)) by
Def8
.= ((L1
. v)
+ ((L2
. v)
+ (L3
. v))) by
Def8
.= (((L1
. v)
+ (L2
. v))
+ (L3
. v))
.= (((L1
+ L2)
. v)
+ (L3
. v)) by
Def8
.= (((L1
+ L2)
+ L3)
. v) by
Def8;
end;
theorem ::
CONVEX4:23
Th23: (L
+ (
ZeroCLC V))
= L
proof
let v;
thus ((L
+ (
ZeroCLC V))
. v)
= ((L
. v)
+ ((
ZeroCLC V)
. v)) by
Def8
.= ((L
. v)
+
0c ) by
Th2
.= (L
. v);
end;
definition
let V;
let a be
Complex;
let L;
::
CONVEX4:def9
func a
* L ->
C_Linear_Combination of V means
:
Def9: for v holds (it
. v)
= (a
* (L
. v));
existence
proof
reconsider a as
Element of
COMPLEX by
XCMPLX_0:def 2;
deffunc
F(
Element of V) = (
In ((a
* (L
. $1)),
COMPLEX ));
consider f be
Function of the
carrier of V,
COMPLEX such that
A1: for v be
Element of V holds (f
. v)
=
F(v) from
FUNCT_2:sch 4;
reconsider f as
Element of (
Funcs (the
carrier of V,
COMPLEX )) by
FUNCT_2: 8;
now
let v;
assume not v
in (
Carrier L);
then
A2: (L
. v)
=
0c ;
thus (f
. v)
=
F(v) by
A1
.=
0c by
A2;
end;
then
reconsider f as
C_Linear_Combination of V by
Def1;
take f;
let v;
(f
. v)
=
F(v) by
A1;
hence thesis;
end;
uniqueness
proof
let L1, L2;
assume
A3: for v holds (L1
. v)
= (a
* (L
. v));
assume
A4: for v holds (L2
. v)
= (a
* (L
. v));
let v;
thus (L1
. v)
= (a
* (L
. v)) by
A3
.= (L2
. v) by
A4;
end;
end
theorem ::
CONVEX4:24
Th24: a
<>
0c implies (
Carrier (a
* L))
= (
Carrier L)
proof
set T = { u : ((a
* L)
. u)
<>
0c };
set S = { v : (L
. v)
<>
0c };
assume
A1: a
<>
0c ;
T
= S
proof
thus T
c= S
proof
let x be
object;
assume x
in T;
then
consider u such that
A2: x
= u and
A3: ((a
* L)
. u)
<>
0c ;
((a
* L)
. u)
= (a
* (L
. u)) by
Def9;
then (L
. u)
<>
0c by
A3;
hence thesis by
A2;
end;
let x be
object;
assume x
in S;
then
consider v such that
A4: x
= v & (L
. v)
<>
0c ;
((a
* L)
. v)
= (a
* (L
. v)) by
Def9;
hence thesis by
A1,
A4;
end;
hence thesis;
end;
theorem ::
CONVEX4:25
Th25: (
0c
* L)
= (
ZeroCLC V)
proof
let v;
thus ((
0c
* L)
. v)
= (
0c
* (L
. v)) by
Def9
.= ((
ZeroCLC V)
. v) by
Th2;
end;
theorem ::
CONVEX4:26
Th26: L is
C_Linear_Combination of A implies (a
* L) is
C_Linear_Combination of A
proof
assume
A1: L is
C_Linear_Combination of A;
A2:
now
assume a
<>
0c ;
then (
Carrier (a
* L))
= (
Carrier L) by
Th24;
hence thesis by
A1,
Def4;
end;
a
=
0c implies (a
* L)
= (
ZeroCLC V) by
Th25;
hence thesis by
A2,
Th4;
end;
theorem ::
CONVEX4:27
Th27: ((a
+ b)
* L)
= ((a
* L)
+ (b
* L))
proof
let v;
thus (((a
+ b)
* L)
. v)
= ((a
+ b)
* (L
. v)) by
Def9
.= ((a
* (L
. v))
+ (b
* (L
. v)))
.= (((a
* L)
. v)
+ (b
* (L
. v))) by
Def9
.= (((a
* L)
. v)
+ ((b
* L)
. v)) by
Def9
.= (((a
* L)
+ (b
* L))
. v) by
Def8;
end;
theorem ::
CONVEX4:28
Th28: (a
* (L1
+ L2))
= ((a
* L1)
+ (a
* L2))
proof
let v;
thus ((a
* (L1
+ L2))
. v)
= (a
* ((L1
+ L2)
. v)) by
Def9
.= (a
* ((L1
. v)
+ (L2
. v))) by
Def8
.= ((a
* (L1
. v))
+ (a
* (L2
. v)))
.= (((a
* L1)
. v)
+ (a
* (L2
. v))) by
Def9
.= (((a
* L1)
. v)
+ ((a
* L2)
. v)) by
Def9
.= (((a
* L1)
+ (a
* L2))
. v) by
Def8;
end;
theorem ::
CONVEX4:29
Th29: (a
* (b
* L))
= ((a
* b)
* L)
proof
let v;
thus ((a
* (b
* L))
. v)
= (a
* ((b
* L)
. v)) by
Def9
.= (a
* (b
* (L
. v))) by
Def9
.= ((a
* b)
* (L
. v))
.= (((a
* b)
* L)
. v) by
Def9;
end;
theorem ::
CONVEX4:30
Th30: (
1r
* L)
= L
proof
let v;
thus ((
1r
* L)
. v)
= (
1r
* (L
. v)) by
Def9
.= (L
. v);
end;
definition
let V, L;
::
CONVEX4:def10
func
- L ->
C_Linear_Combination of V equals ((
-
1r )
* L);
correctness ;
end
theorem ::
CONVEX4:31
Th31: ((
- L)
. v)
= (
- (L
. v))
proof
thus ((
- L)
. v)
= ((
-
1r )
* (L
. v)) by
Def9
.= (
- (L
. v));
end;
theorem ::
CONVEX4:32
(L1
+ L2)
= (
ZeroCLC V) implies L2
= (
- L1)
proof
assume
A1: (L1
+ L2)
= (
ZeroCLC V);
let v;
((L1
. v)
+ (L2
. v))
= ((
ZeroCLC V)
. v) by
A1,
Def8
.=
0c by
Th2;
hence (L2
. v)
= (
- (L1
. v))
.= ((
- L1)
. v) by
Th31;
end;
theorem ::
CONVEX4:33
(
- (
- L))
= L
proof
let v;
thus ((
- (
- L))
. v)
= ((((
-
1r )
* (
-
1r ))
* L)
. v) by
Th29
.= (
1r
* (L
. v)) by
Def9
.= (L
. v);
end;
definition
let V;
let L1, L2;
::
CONVEX4:def11
func L1
- L2 ->
C_Linear_Combination of V equals (L1
+ (
- L2));
correctness ;
end
theorem ::
CONVEX4:34
Th34: ((L1
- L2)
. v)
= ((L1
. v)
- (L2
. v))
proof
thus ((L1
- L2)
. v)
= ((L1
. v)
+ ((
- L2)
. v)) by
Def8
.= ((L1
. v)
- (L2
. v)) by
Th31;
end;
theorem ::
CONVEX4:35
(
Carrier (L1
- L2))
c= ((
Carrier L1)
\/ (
Carrier L2))
proof
(
Carrier (L1
- L2))
c= ((
Carrier L1)
\/ (
Carrier (
- L2))) by
Th19;
hence thesis by
Th24;
end;
theorem ::
CONVEX4:36
L1 is
C_Linear_Combination of A & L2 is
C_Linear_Combination of A implies (L1
- L2) is
C_Linear_Combination of A
proof
assume that
A1: L1 is
C_Linear_Combination of A and
A2: L2 is
C_Linear_Combination of A;
(
- L2) is
C_Linear_Combination of A by
A2,
Th26;
hence thesis by
A1,
Th20;
end;
theorem ::
CONVEX4:37
Th37: (L
- L)
= (
ZeroCLC V)
proof
let v;
thus ((L
- L)
. v)
= ((L
. v)
- (L
. v)) by
Th34
.= ((
ZeroCLC V)
. v) by
Th2;
end;
definition
let V;
::
CONVEX4:def12
func
C_LinComb V ->
set means
:
Def12: x
in it iff x is
C_Linear_Combination of V;
existence
proof
defpred
P[
object] means $1 is
C_Linear_Combination of V;
consider A be
set such that
A1: for x be
object holds x
in A iff x
in (
Funcs (the
carrier of V,
COMPLEX )) &
P[x] from
XBOOLE_0:sch 1;
take A;
let x;
thus x
in A implies x is
C_Linear_Combination of V by
A1;
assume x is
C_Linear_Combination of V;
hence thesis by
A1;
end;
uniqueness
proof
let D1,D2 be
set;
assume
A2: for x holds x
in D1 iff x is
C_Linear_Combination of V;
assume
A3: for x holds x
in D2 iff x is
C_Linear_Combination of V;
thus D1
c= D2
proof
let x be
object;
assume x
in D1;
then x is
C_Linear_Combination of V by
A2;
hence thesis by
A3;
end;
let x be
object;
assume x
in D2;
then x is
C_Linear_Combination of V by
A3;
hence thesis by
A2;
end;
end
registration
let V;
cluster (
C_LinComb V) -> non
empty;
coherence
proof
set x = the
C_Linear_Combination of V;
x
in (
C_LinComb V) by
Def12;
hence thesis;
end;
end
reserve e,e1,e2 for
Element of (
C_LinComb V);
definition
let V;
let e;
::
CONVEX4:def13
func
@ e ->
C_Linear_Combination of V equals e;
coherence by
Def12;
end
definition
let V;
let L;
::
CONVEX4:def14
func
@ L ->
Element of (
C_LinComb V) equals L;
coherence by
Def12;
end
definition
let V;
::
CONVEX4:def15
func
C_LCAdd V ->
BinOp of (
C_LinComb V) means
:
Def15: for e1, e2 holds (it
. (e1,e2))
= ((
@ e1)
+ (
@ e2));
existence
proof
deffunc
F(
Element of (
C_LinComb V),
Element of (
C_LinComb V)) = (
@ ((
@ $1)
+ (
@ $2)));
consider o be
BinOp of (
C_LinComb V) such that
A1: for e1, e2 holds (o
. (e1,e2))
=
F(e1,e2) from
BINOP_1:sch 4;
take o;
let e1, e2;
thus (o
. (e1,e2))
= (
@ ((
@ e1)
+ (
@ e2))) by
A1
.= ((
@ e1)
+ (
@ e2));
end;
uniqueness
proof
let o1,o2 be
BinOp of (
C_LinComb V);
assume
A2: for e1, e2 holds (o1
. (e1,e2))
= ((
@ e1)
+ (
@ e2));
assume
A3: for e1, e2 holds (o2
. (e1,e2))
= ((
@ e1)
+ (
@ e2));
now
let e1, e2;
thus (o1
. (e1,e2))
= ((
@ e1)
+ (
@ e2)) by
A2
.= (o2
. (e1,e2)) by
A3;
end;
hence thesis;
end;
end
definition
let V;
::
CONVEX4:def16
func
C_LCMult V ->
Function of
[:
COMPLEX , (
C_LinComb V):], (
C_LinComb V) means
:
Def16: for a, e holds (it
.
[a, e])
= (a
* (
@ e));
existence
proof
defpred
P[
Element of
COMPLEX ,
Element of (
C_LinComb V),
set] means ex a st a
= $1 & $3
= (a
* (
@ $2));
A1: for x be
Element of
COMPLEX , e1 holds ex e2 st
P[x, e1, e2]
proof
let x be
Element of
COMPLEX , e1;
take (
@ (x
* (
@ e1)));
take x;
thus thesis;
end;
consider g be
Function of
[:
COMPLEX , (
C_LinComb V):], (
C_LinComb V) such that
A2: for x be
Element of
COMPLEX , e holds
P[x, e, (g
. (x,e))] from
BINOP_1:sch 3(
A1);
take g;
let a, e;
a
in
COMPLEX by
XCMPLX_0:def 2;
then ex b st b
= a & (g
. (a,e))
= (b
* (
@ e)) by
A2;
hence thesis;
end;
uniqueness
proof
let g1,g2 be
Function of
[:
COMPLEX , (
C_LinComb V):], (
C_LinComb V);
assume
A3: for a, e holds (g1
.
[a, e])
= (a
* (
@ e));
assume
A4: for a, e holds (g2
.
[a, e])
= (a
* (
@ e));
now
let x be
Element of
COMPLEX , e;
thus (g1
. (x,e))
= (x
* (
@ e)) by
A3
.= (g2
. (x,e)) by
A4;
end;
hence thesis;
end;
end
definition
let V;
::
CONVEX4:def17
func
LC_CLSpace V ->
ComplexLinearSpace equals
CLSStruct (# (
C_LinComb V), (
@ (
ZeroCLC V)), (
C_LCAdd V), (
C_LCMult V) #);
coherence
proof
set S =
CLSStruct (# (
C_LinComb V), (
@ (
ZeroCLC V)), (
C_LCAdd V), (
C_LCMult V) #);
A1:
now
let a,b be
Complex, v,u,w be
VECTOR of S;
reconsider a1 = a, b1 = b as
Element of
COMPLEX by
XCMPLX_0:def 2;
reconsider x = v, y = u, z = w, yx = (u
+ v), xz = (v
+ w), ax = (a1
* v), az = (a1
* w), bx = (b1
* v) as
Element of (
C_LinComb V);
A2: (
@ z)
= w & (
@ yx)
= (u
+ v);
A3: (
@ xz)
= (v
+ w) & (
@ ax)
= (a
* v);
A4: (
@ az)
= (a
* w) & (
@ bx)
= (b
* v);
(
@ x)
= v & (
@ y)
= u;
then
reconsider K = v, L = u, M = w, LK = (u
+ v), KM = (v
+ w), aK = (a
* v), aM = (a
* w), bK = (b
* v) as
C_Linear_Combination of V by
A2,
A3,
A4;
A5:
now
let v,u be
VECTOR of S, K, L;
A6: (
@ (
@ K))
= K & (
@ (
@ L))
= L;
assume v
= K & u
= L;
hence (v
+ u)
= (K
+ L) by
A6,
Def15;
end;
hence (v
+ w)
= (K
+ M)
.= (w
+ v) by
A5;
thus ((u
+ v)
+ w)
= (LK
+ M) by
A5
.= ((L
+ K)
+ M) by
A5
.= (L
+ (K
+ M)) by
Th22
.= (L
+ KM) by
A5
.= (u
+ (v
+ w)) by
A5;
thus (v
+ (
0. S))
= (K
+ (
ZeroCLC V)) by
A5
.= v by
Th23;
(
- K)
in the
carrier of S by
Def12;
then (
- K)
in S;
then (
- K)
= (
vector (S,(
- K))) by
RLVECT_2:def 1;
then (v
+ (
vector (S,(
- K))))
= (K
- K) by
A5
.= (
0. S) by
Th37;
hence ex w be
VECTOR of S st (v
+ w)
= (
0. S);
A7:
now
let v be
VECTOR of S, L;
let a be
Complex;
assume v
= L;
then ((
C_LCMult V)
.
[a, v])
= (a
* (
@ (
@ L))) by
Def16;
hence (a
* v)
= (a
* L);
end;
hence (a
* (v
+ w))
= (a1
* KM)
.= (a1
* (K
+ M)) by
A5
.= ((a1
* K)
+ (a1
* M)) by
Th28
.= (aK
+ (a1
* M)) by
A7
.= (aK
+ aM) by
A7
.= ((a
* v)
+ (a
* w)) by
A5;
thus ((a
+ b)
* v)
= ((a1
+ b1)
* K) by
A7
.= ((a1
* K)
+ (b1
* K)) by
Th27
.= (aK
+ (b
* K)) by
A7
.= (aK
+ bK) by
A7
.= ((a
* v)
+ (b
* v)) by
A5;
thus ((a
* b)
* v)
= ((a
* b)
* K) by
A7
.= (a1
* (b1
* K)) by
Th29
.= (a
* bK) by
A7
.= (a
* (b
* v)) by
A7;
thus (
1r
* v)
= (
1r
* K) by
A7
.= v by
Th30;
end;
A8: for v be
Element of S holds v is
right_complementable by
A1;
for u,v,w be
VECTOR of S holds ((u
+ v)
+ w)
= (u
+ (v
+ w)) by
A1;
hence thesis by
A1,
A8,
ALGSTR_0:def 16,
CLVECT_1:def 2,
CLVECT_1:def 3,
CLVECT_1:def 4,
CLVECT_1:def 5,
RLVECT_1:def 2,
RLVECT_1:def 3,
RLVECT_1:def 4;
end;
end
registration
let V;
cluster (
LC_CLSpace V) ->
strict non
empty;
coherence ;
end
theorem ::
CONVEX4:38
Th38: ((
vector ((
LC_CLSpace V),L1))
+ (
vector ((
LC_CLSpace V),L2)))
= (L1
+ L2)
proof
set v2 = (
vector ((
LC_CLSpace V),L2));
A1: L1
= (
@ (
@ L1)) & L2
= (
@ (
@ L2));
L2
in the
carrier of (
LC_CLSpace V) by
Def12;
then
A2: L2
in (
LC_CLSpace V);
L1
in the
carrier of (
LC_CLSpace V) by
Def12;
then L1
in (
LC_CLSpace V);
hence ((
vector ((
LC_CLSpace V),L1))
+ (
vector ((
LC_CLSpace V),L2)))
= ((
C_LCAdd V)
.
[L1, v2]) by
RLVECT_2:def 1
.= ((
C_LCAdd V)
. ((
@ L1),(
@ L2))) by
A2,
RLVECT_2:def 1
.= (L1
+ L2) by
A1,
Def15;
end;
theorem ::
CONVEX4:39
Th39: (a
* (
vector ((
LC_CLSpace V),L)))
= (a
* L)
proof
L
in the
carrier of (
LC_CLSpace V) by
Def12;
then L
in (
LC_CLSpace V);
then
A1: ((
C_LCMult V)
.
[a, (
vector ((
LC_CLSpace V),L))])
= ((
C_LCMult V)
.
[a, (
@ L)]) by
RLVECT_2:def 1;
(
@ (
@ L))
= L;
hence thesis by
A1,
Def16;
end;
theorem ::
CONVEX4:40
Th40: (
- (
vector ((
LC_CLSpace V),L)))
= (
- L)
proof
thus (
- (
vector ((
LC_CLSpace V),L)))
= ((
-
1r )
* (
vector ((
LC_CLSpace V),L))) by
CLVECT_1: 3
.= (
- L) by
Th39;
end;
theorem ::
CONVEX4:41
((
vector ((
LC_CLSpace V),L1))
- (
vector ((
LC_CLSpace V),L2)))
= (L1
- L2)
proof
(
- L2)
in (
C_LinComb V) by
Def12;
then
A1: (
- L2)
in (
LC_CLSpace V);
(
- (
vector ((
LC_CLSpace V),L2)))
= (
- L2) by
Th40
.= (
vector ((
LC_CLSpace V),(
- L2))) by
A1,
RLVECT_2:def 1;
hence thesis by
Th38;
end;
definition
let V;
let A;
::
CONVEX4:def18
func
LC_CLSpace A ->
strict
Subspace of (
LC_CLSpace V) means the
carrier of it
= the set of all l;
existence
proof
set X = the set of all l;
X
c= the
carrier of (
LC_CLSpace V)
proof
let x be
object;
assume x
in X;
then ex l st x
= l;
hence thesis by
Def12;
end;
then
reconsider X as
Subset of (
LC_CLSpace V);
A1: for v,u be
VECTOR of (
LC_CLSpace V) st v
in X & u
in X holds (v
+ u)
in X
proof
let v,u be
VECTOR of (
LC_CLSpace V);
assume that
A2: v
in X and
A3: u
in X;
consider l1 such that
A4: v
= l1 by
A2;
consider l2 such that
A5: u
= l2 by
A3;
A6: u
= (
vector ((
LC_CLSpace V),l2)) by
A5,
RLVECT_2: 1;
v
= (
vector ((
LC_CLSpace V),l1)) by
A4,
RLVECT_2: 1;
then (v
+ u)
= (l1
+ l2) by
A6,
Th38;
hence thesis;
end;
(
ZeroCLC V) is
C_Linear_Combination of A by
Th4;
then
A7: (
ZeroCLC V)
in X;
for a be
Complex, v be
VECTOR of (
LC_CLSpace V) st v
in X holds (a
* v)
in X
proof
let a be
Complex;
let v be
VECTOR of (
LC_CLSpace V);
assume v
in X;
then
consider l such that
A8: v
= l;
(a
* v)
= (a
* (
vector ((
LC_CLSpace V),l))) by
A8,
RLVECT_2: 1
.= (a
* l) by
Th39;
then (a
* v) is
C_Linear_Combination of A by
Th26;
hence thesis;
end;
then X is
linearly-closed by
A1;
hence thesis by
A7,
CLVECT_1: 54;
end;
uniqueness by
CLVECT_1: 49;
end
begin
definition
let V be
ComplexLinearSpace, W be
Subspace of V;
::
CONVEX4:def19
func
Up W ->
Subset of V equals the
carrier of W;
coherence by
CLVECT_1:def 8;
end
registration
let V be
ComplexLinearSpace, W be
Subspace of V;
cluster (
Up W) -> non
empty;
coherence ;
end
definition
let V be non
empty
CLSStruct, S be
Subset of V;
::
CONVEX4:def20
attr S is
Affine means for x,y be
VECTOR of V, z be
Complex st z is
Real & x
in S & y
in S holds (((
1r
- z)
* x)
+ (z
* y))
in S;
end
definition
let V be
ComplexLinearSpace;
::
CONVEX4:def21
func
(Omega). V ->
strict
Subspace of V equals the CLSStruct of V;
coherence
proof
set W = the CLSStruct of V;
A1: for v,w be
VECTOR of W holds (v
+ w)
= (w
+ v)
proof
let v,w be
VECTOR of W;
reconsider v9 = v, w9 = w as
VECTOR of V;
(v
+ w)
= (v9
+ w9);
hence (v
+ w)
= (w9
+ v9)
.= (w
+ v);
end;
A2: for u,v,w be
VECTOR of W holds ((u
+ v)
+ w)
= (u
+ (v
+ w))
proof
let u,v,w be
VECTOR of W;
reconsider u9 = u, v9 = v, w9 = w as
VECTOR of V;
((u9
+ v9)
+ w9)
= (u9
+ (v9
+ w9)) by
RLVECT_1:def 3;
hence thesis;
end;
A3: for v be
VECTOR of W holds v is
right_complementable
proof
let v be
VECTOR of W;
reconsider v9 = v as
VECTOR of V;
v9 is
right_complementable by
ALGSTR_0:def 16;
then
consider w9 be
VECTOR of V such that
A4: (v9
+ w9)
= (
0. V);
reconsider w = w9 as
VECTOR of W;
take w;
thus thesis by
A4;
end;
A5: for v be
VECTOR of W holds (v
+ (
0. W))
= v
proof
let v be
VECTOR of W;
reconsider v9 = v as
VECTOR of V;
thus (v
+ (
0. W))
= (v9
+ (
0. V))
.= v;
end;
A6: for a, b holds for v be
VECTOR of W holds ((a
* b)
* v)
= (a
* (b
* v))
proof
let a, b;
let v be
VECTOR of W;
reconsider v9 = v as
VECTOR of V;
((a
* b)
* v9)
= (a
* (b
* v9)) by
CLVECT_1:def 4;
hence thesis;
end;
A7: for a, b holds for v be
VECTOR of W holds ((a
+ b)
* v)
= ((a
* v)
+ (b
* v))
proof
let a, b;
let v be
VECTOR of W;
reconsider v9 = v as
VECTOR of V;
((a
+ b)
* v9)
= ((a
* v9)
+ (b
* v9)) by
CLVECT_1:def 3;
hence thesis;
end;
A8: for a holds for v,w be
VECTOR of W holds (a
* (v
+ w))
= ((a
* v)
+ (a
* w))
proof
let a;
let v,w be
VECTOR of W;
reconsider v9 = v, w9 = w as
VECTOR of V;
(a
* (v9
+ w9))
= ((a
* v9)
+ (a
* w9)) by
CLVECT_1:def 2;
hence thesis;
end;
for v be
VECTOR of W holds (
1r
* v)
= v
proof
let v be
VECTOR of W;
reconsider v9 = v as
VECTOR of V;
thus (
1r
* v)
= (
1r
* v9)
.= v by
CLVECT_1:def 5;
end;
then
reconsider W as
ComplexLinearSpace by
A1,
A2,
A5,
A3,
A8,
A7,
A6,
ALGSTR_0:def 16,
CLVECT_1:def 2,
CLVECT_1:def 3,
CLVECT_1:def 4,
CLVECT_1:def 5,
RLVECT_1:def 2,
RLVECT_1:def 3,
RLVECT_1:def 4;
A9: the
Mult of W
= (the
Mult of V
|
[:
COMPLEX , the
carrier of W:]) by
RELSET_1: 19;
(
0. W)
= (
0. V) & the
addF of W
= (the
addF of V
|| the
carrier of W) by
RELSET_1: 19;
hence thesis by
A9,
CLVECT_1:def 8;
end;
end
registration
let V be non
empty
CLSStruct;
cluster (
[#] V) ->
Affine;
coherence ;
cluster
empty ->
Affine for
Subset of V;
coherence ;
end
registration
let V be non
empty
CLSStruct;
cluster non
empty
Affine for
Subset of V;
existence
proof
take (
[#] V);
thus thesis;
end;
cluster
empty
Affine for
Subset of V;
existence
proof
take (
{} V);
thus thesis;
end;
end
theorem ::
CONVEX4:42
Th42: for a be
Real, z be
Complex holds (
Re (a
* z))
= (a
* (
Re z))
proof
let a be
Real;
let z be
Complex;
(
Re (a
* z))
= (((
Re a)
* (
Re z))
- ((
Im a)
* (
Im z))) by
COMPLEX1: 9
.= (((
Re a)
* (
Re z))
- (
0
* (
Im z))) by
COMPLEX1:def 2
.= (a
* (
Re z)) by
COMPLEX1:def 1;
hence thesis;
end;
theorem ::
CONVEX4:43
Th43: for a be
Real, z be
Complex holds (
Im (a
* z))
= (a
* (
Im z))
proof
let a be
Real;
let z be
Complex;
(
Im (a
* z))
= (((
Re a)
* (
Im z))
+ ((
Re z)
* (
Im a))) by
COMPLEX1: 9
.= (((
Re a)
* (
Im z))
+ ((
Re z)
*
0 )) by
COMPLEX1:def 2
.= (a
* (
Im z)) by
COMPLEX1:def 1;
hence thesis;
end;
theorem ::
CONVEX4:44
Th44: for a be
Real, z be
Complex st
0
<= a & a
<= 1 holds
|.(a
* z).|
= (a
*
|.z.|) &
|.((
1r
- a)
* z).|
= ((
1r
- a)
*
|.z.|)
proof
let a be
Real;
let z be
Complex;
assume that
A1:
0
<= a and
A2: a
<= 1;
A3:
|.((
1r
- a)
* z).|
= (
|.(
1r
- a).|
*
|.z.|) by
COMPLEX1: 65
.= ((
1r
- a)
*
|.z.|) by
A2,
COMPLEX1: 43,
XREAL_1: 48;
|.(a
* z).|
= (
|.a.|
*
|.z.|) by
COMPLEX1: 65
.= (a
*
|.z.|) by
A1,
COMPLEX1: 43;
hence thesis by
A3;
end;
begin
definition
let V be non
empty
CLSStruct;
let M be
Subset of V;
let r be
Complex;
::
CONVEX4:def22
func r
* M ->
Subset of V equals { (r
* v) where v be
Element of V : v
in M };
coherence
proof
deffunc
F(
Element of V) = (r
* $1);
defpred
P[
set] means $1
in M;
{
F(v) where v be
Element of V :
P[v] } is
Subset of V from
DOMAIN_1:sch 8;
hence thesis;
end;
end
definition
let V be non
empty
CLSStruct;
let M be
Subset of V;
::
CONVEX4:def23
attr M is
convex means for u,v be
VECTOR of V, z be
Complex st (ex r be
Real st z
= r &
0
< r & r
< 1) & u
in M & v
in M holds ((z
* u)
+ ((
1r
- z)
* v))
in M;
end
theorem ::
CONVEX4:45
for V be
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct, M be
Subset of V, z be
Complex st M is
convex holds (z
* M) is
convex
proof
let V be
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct;
let M be
Subset of V;
let z be
Complex;
assume
A1: M is
convex;
for u,v be
VECTOR of V, s be
Complex st (ex p be
Real st s
= p &
0
< p & p
< 1) & u
in (z
* M) & v
in (z
* M) holds ((s
* u)
+ ((
1r
- s)
* v))
in (z
* M)
proof
let u,v be
VECTOR of V;
let s be
Complex;
assume that
A2: ex p be
Real st s
= p &
0
< p & p
< 1 and
A3: u
in (z
* M) and
A4: v
in (z
* M);
consider v9 be
Element of V such that
A5: v
= (z
* v9) and
A6: v9
in M by
A4;
consider u9 be
Element of V such that
A7: u
= (z
* u9) and
A8: u9
in M by
A3;
A9: ((s
* u)
+ ((
1r
- s)
* v))
= (((s
* z)
* u9)
+ ((
1r
- s)
* (z
* v9))) by
A7,
A5,
CLVECT_1:def 4
.= (((z
* s)
* u9)
+ ((z
* (
1r
- s))
* v9)) by
CLVECT_1:def 4
.= ((z
* (s
* u9))
+ ((z
* (
1r
- s))
* v9)) by
CLVECT_1:def 4
.= ((z
* (s
* u9))
+ (z
* ((
1r
- s)
* v9))) by
CLVECT_1:def 4
.= (z
* ((s
* u9)
+ ((
1r
- s)
* v9))) by
CLVECT_1:def 2;
((s
* u9)
+ ((
1r
- s)
* v9))
in M by
A1,
A2,
A8,
A6;
hence thesis by
A9;
end;
hence thesis;
end;
theorem ::
CONVEX4:46
for V be
Abelian
add-associative
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct, M,N be
Subset of V st M is
convex & N is
convex holds (M
+ N) is
convex
proof
let V be
Abelian
add-associative
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct;
let M,N be
Subset of V;
assume
A1: M is
convex & N is
convex;
for u,v be
VECTOR of V, z be
Complex st (ex r be
Real st z
= r &
0
< r & r
< 1) & u
in (M
+ N) & v
in (M
+ N) holds ((z
* u)
+ ((
1r
- z)
* v))
in (M
+ N)
proof
let u,v be
VECTOR of V;
let z be
Complex;
assume that
A2: ex r be
Real st z
= r &
0
< r & r
< 1 and
A3: u
in (M
+ N) and
A4: v
in (M
+ N);
consider x2,y2 be
Element of V such that
A5: v
= (x2
+ y2) and
A6: x2
in M & y2
in N by
A4;
consider x1,y1 be
Element of V such that
A7: u
= (x1
+ y1) and
A8: x1
in M & y1
in N by
A3;
A9: ((z
* u)
+ ((
1r
- z)
* v))
= (((z
* x1)
+ (z
* y1))
+ ((
1r
- z)
* (x2
+ y2))) by
A7,
A5,
CLVECT_1:def 2
.= (((z
* x1)
+ (z
* y1))
+ (((
1r
- z)
* x2)
+ ((
1r
- z)
* y2))) by
CLVECT_1:def 2
.= ((((z
* x1)
+ (z
* y1))
+ ((
1r
- z)
* x2))
+ ((
1r
- z)
* y2)) by
RLVECT_1:def 3
.= ((((z
* x1)
+ ((
1r
- z)
* x2))
+ (z
* y1))
+ ((
1r
- z)
* y2)) by
RLVECT_1:def 3
.= (((z
* x1)
+ ((
1r
- z)
* x2))
+ ((z
* y1)
+ ((
1r
- z)
* y2))) by
RLVECT_1:def 3;
((z
* x1)
+ ((
1r
- z)
* x2))
in M & ((z
* y1)
+ ((
1r
- z)
* y2))
in N by
A1,
A2,
A8,
A6;
hence thesis by
A9;
end;
hence thesis;
end;
theorem ::
CONVEX4:47
for V be
ComplexLinearSpace, M,N be
Subset of V st M is
convex & N is
convex holds (M
- N) is
convex
proof
let V be
ComplexLinearSpace;
let M,N be
Subset of V;
assume
A1: M is
convex & N is
convex;
for u,v be
VECTOR of V, z be
Complex st (ex r be
Real st z
= r &
0
< r & r
< 1) & u
in (M
- N) & v
in (M
- N) holds ((z
* u)
+ ((
1r
- z)
* v))
in (M
- N)
proof
let u,v be
VECTOR of V;
let z be
Complex;
assume that
A2: ex r be
Real st z
= r &
0
< r & r
< 1 and
A3: u
in (M
- N) and
A4: v
in (M
- N);
consider x2,y2 be
Element of V such that
A5: v
= (x2
- y2) and
A6: x2
in M & y2
in N by
A4;
consider x1,y1 be
Element of V such that
A7: u
= (x1
- y1) and
A8: x1
in M & y1
in N by
A3;
A9: ((z
* u)
+ ((
1r
- z)
* v))
= (((z
* x1)
- (z
* y1))
+ ((
1r
- z)
* (x2
- y2))) by
A7,
A5,
CLVECT_1: 9
.= (((z
* x1)
- (z
* y1))
+ (((
1r
- z)
* x2)
- ((
1r
- z)
* y2))) by
CLVECT_1: 9
.= ((((z
* x1)
- (z
* y1))
+ ((
1r
- z)
* x2))
- ((
1r
- z)
* y2)) by
RLVECT_1:def 3
.= (((z
* x1)
- ((z
* y1)
- ((
1r
- z)
* x2)))
- ((
1r
- z)
* y2)) by
RLVECT_1: 29
.= (((z
* x1)
+ (((
1r
- z)
* x2)
+ (
- (z
* y1))))
- ((
1r
- z)
* y2)) by
RLVECT_1: 33
.= ((((z
* x1)
+ ((
1r
- z)
* x2))
+ (
- (z
* y1)))
- ((
1r
- z)
* y2)) by
RLVECT_1:def 3
.= (((z
* x1)
+ ((
1r
- z)
* x2))
+ ((
- (z
* y1))
- ((
1r
- z)
* y2))) by
RLVECT_1:def 3
.= (((z
* x1)
+ ((
1r
- z)
* x2))
- ((z
* y1)
+ ((
1r
- z)
* y2))) by
RLVECT_1: 30;
((z
* x1)
+ ((
1r
- z)
* x2))
in M & ((z
* y1)
+ ((
1r
- z)
* y2))
in N by
A1,
A2,
A8,
A6;
hence thesis by
A9;
end;
hence thesis;
end;
theorem ::
CONVEX4:48
Th48: for V be non
empty
CLSStruct, M be
Subset of V holds M is
convex iff for z be
Complex st (ex r be
Real st z
= r &
0
< r & r
< 1) holds ((z
* M)
+ ((
1r
- z)
* M))
c= M
proof
let V be non
empty
CLSStruct;
let M be
Subset of V;
A1: M is
convex implies for z be
Complex st (ex r be
Real st z
= r &
0
< r & r
< 1) holds ((z
* M)
+ ((
1r
- z)
* M))
c= M
proof
assume
A2: M is
convex;
let z be
Complex;
assume
A3: ex r be
Real st z
= r &
0
< r & r
< 1;
for x be
Element of V st x
in ((z
* M)
+ ((
1r
- z)
* M)) holds x
in M
proof
let x be
Element of V;
assume x
in ((z
* M)
+ ((
1r
- z)
* M));
then
consider u,v be
Element of V such that
A4: x
= (u
+ v) and
A5: u
in (z
* M) & v
in ((
1r
- z)
* M);
(ex w1 be
Element of V st u
= (z
* w1) & w1
in M) & ex w2 be
Element of V st v
= ((
1r
- z)
* w2) & w2
in M by
A5;
hence thesis by
A2,
A3,
A4;
end;
hence thesis;
end;
(for z be
Complex st (ex r be
Real st z
= r &
0
< r & r
< 1) holds ((z
* M)
+ ((
1r
- z)
* M))
c= M) implies M is
convex
proof
assume
A6: for z be
Complex st (ex r be
Real st z
= r &
0
< r & r
< 1) holds ((z
* M)
+ ((
1r
- z)
* M))
c= M;
let u,v be
VECTOR of V;
let z be
Complex;
assume ex r be
Real st z
= r &
0
< r & r
< 1;
then
A7: ((z
* M)
+ ((
1r
- z)
* M))
c= M by
A6;
assume u
in M & v
in M;
then (z
* u)
in (z
* M) & ((
1r
- z)
* v)
in ((
1r
- z)
* M);
then ((z
* u)
+ ((
1r
- z)
* v))
in ((z
* M)
+ ((
1r
- z)
* M));
hence thesis by
A7;
end;
hence thesis by
A1;
end;
theorem ::
CONVEX4:49
for V be
Abelian non
empty
CLSStruct, M be
Subset of V st M is
convex holds for z be
Complex st (ex r be
Real st z
= r &
0
< r & r
< 1) holds (((
1r
- z)
* M)
+ (z
* M))
c= M
proof
let V be
Abelian non
empty
CLSStruct;
let M be
Subset of V;
assume
A1: M is
convex;
let z be
Complex;
assume
A2: ex r be
Real st z
= r &
0
< r & r
< 1;
for x be
Element of V st x
in (((
1r
- z)
* M)
+ (z
* M)) holds x
in M
proof
let x be
Element of V;
assume x
in (((
1r
- z)
* M)
+ (z
* M));
then
consider u,v be
Element of V such that
A3: x
= (u
+ v) and
A4: u
in ((
1r
- z)
* M) & v
in (z
* M);
(ex w1 be
Element of V st u
= ((
1r
- z)
* w1) & w1
in M) & ex w2 be
Element of V st v
= (z
* w2) & w2
in M by
A4;
hence thesis by
A1,
A2,
A3;
end;
hence thesis;
end;
theorem ::
CONVEX4:50
for V be
Abelian
add-associative
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct, M,N be
Subset of V st M is
convex & N is
convex holds for z be
Complex holds ((z
* M)
+ ((
1r
- z)
* N)) is
convex
proof
let V be
Abelian
add-associative
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct;
let M,N be
Subset of V;
assume that
A1: M is
convex and
A2: N is
convex;
let z be
Complex;
let u,v be
VECTOR of V;
let s be
Complex;
assume that
A3: ex p be
Real st s
= p &
0
< p & p
< 1 and
A4: u
in ((z
* M)
+ ((
1r
- z)
* N)) and
A5: v
in ((z
* M)
+ ((
1r
- z)
* N));
consider x2,y2 be
VECTOR of V such that
A6: v
= (x2
+ y2) and
A7: x2
in (z
* M) and
A8: y2
in ((
1r
- z)
* N) by
A5;
consider x1,y1 be
VECTOR of V such that
A9: u
= (x1
+ y1) and
A10: x1
in (z
* M) and
A11: y1
in ((
1r
- z)
* N) by
A4;
consider mx2 be
VECTOR of V such that
A12: x2
= (z
* mx2) and
A13: mx2
in M by
A7;
consider mx1 be
VECTOR of V such that
A14: x1
= (z
* mx1) and
A15: mx1
in M by
A10;
A16: ((s
* x1)
+ ((
1r
- s)
* x2))
= (((s
* z)
* mx1)
+ ((
1r
- s)
* (z
* mx2))) by
A14,
A12,
CLVECT_1:def 4
.= (((s
* z)
* mx1)
+ (((
1r
- s)
* z)
* mx2)) by
CLVECT_1:def 4
.= ((z
* (s
* mx1))
+ (((
1r
- s)
* z)
* mx2)) by
CLVECT_1:def 4
.= ((z
* (s
* mx1))
+ (z
* ((
1r
- s)
* mx2))) by
CLVECT_1:def 4
.= (z
* ((s
* mx1)
+ ((
1r
- s)
* mx2))) by
CLVECT_1:def 2;
consider ny2 be
VECTOR of V such that
A17: y2
= ((
1r
- z)
* ny2) and
A18: ny2
in N by
A8;
consider ny1 be
VECTOR of V such that
A19: y1
= ((
1r
- z)
* ny1) and
A20: ny1
in N by
A11;
A21: ((s
* y1)
+ ((
1r
- s)
* y2))
= (((s
* (
1r
- z))
* ny1)
+ ((
1r
- s)
* ((
1r
- z)
* ny2))) by
A19,
A17,
CLVECT_1:def 4
.= (((s
* (
1r
- z))
* ny1)
+ (((
1r
- s)
* (
1r
- z))
* ny2)) by
CLVECT_1:def 4
.= (((
1r
- z)
* (s
* ny1))
+ (((
1r
- s)
* (
1r
- z))
* ny2)) by
CLVECT_1:def 4
.= (((
1r
- z)
* (s
* ny1))
+ ((
1r
- z)
* ((
1r
- s)
* ny2))) by
CLVECT_1:def 4
.= ((
1r
- z)
* ((s
* ny1)
+ ((
1r
- s)
* ny2))) by
CLVECT_1:def 2;
((s
* ny1)
+ ((
1r
- s)
* ny2))
in N by
A2,
A3,
A20,
A18;
then
A22: ((s
* y1)
+ ((
1r
- s)
* y2))
in ((
1r
- z)
* N) by
A21;
((s
* mx1)
+ ((
1r
- s)
* mx2))
in M by
A1,
A3,
A15,
A13;
then
A23: ((s
* x1)
+ ((
1r
- s)
* x2))
in (z
* M) by
A16;
((s
* u)
+ ((
1r
- s)
* v))
= (((s
* x1)
+ (s
* y1))
+ ((
1r
- s)
* (x2
+ y2))) by
A9,
A6,
CLVECT_1:def 2
.= (((s
* x1)
+ (s
* y1))
+ (((
1r
- s)
* x2)
+ ((
1r
- s)
* y2))) by
CLVECT_1:def 2
.= ((((s
* x1)
+ (s
* y1))
+ ((
1r
- s)
* x2))
+ ((
1r
- s)
* y2)) by
RLVECT_1:def 3
.= ((((s
* x1)
+ ((
1r
- s)
* x2))
+ (s
* y1))
+ ((
1r
- s)
* y2)) by
RLVECT_1:def 3
.= (((s
* x1)
+ ((
1r
- s)
* x2))
+ ((s
* y1)
+ ((
1r
- s)
* y2))) by
RLVECT_1:def 3;
hence thesis by
A23,
A22;
end;
theorem ::
CONVEX4:51
Th51: for V be
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct, M be
Subset of V holds (
1r
* M)
= M
proof
let V be
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct;
let M be
Subset of V;
for v be
Element of V st v
in M holds v
in (
1r
* M)
proof
let v be
Element of V;
A1: v
= (
1r
* v) by
CLVECT_1:def 5;
assume v
in M;
hence thesis by
A1;
end;
then
A2: M
c= (
1r
* M);
for v be
Element of V st v
in (
1r
* M) holds v
in M
proof
let v be
Element of V;
assume v
in (
1r
* M);
then ex x be
Element of V st v
= (
1r
* x) & x
in M;
hence thesis by
CLVECT_1:def 5;
end;
then (
1r
* M)
c= M;
hence thesis by
A2,
XBOOLE_0:def 10;
end;
theorem ::
CONVEX4:52
Th52: for V be
ComplexLinearSpace, M be non
empty
Subset of V holds (
0c
* M)
=
{(
0. V)}
proof
let V be
ComplexLinearSpace;
let M be non
empty
Subset of V;
for v be
Element of V st v
in
{(
0. V)} holds v
in (
0c
* M)
proof
let v be
Element of V;
consider x be
object such that
A1: x
in M by
XBOOLE_0:def 1;
reconsider x as
Element of V by
A1;
assume v
in
{(
0. V)};
then v
= (
0. V) by
TARSKI:def 1;
then v
= (
0c
* x) by
CLVECT_1: 1;
hence thesis by
A1;
end;
then
A2:
{(
0. V)}
c= (
0c
* M);
for v be
Element of V st v
in (
0c
* M) holds v
in
{(
0. V)}
proof
let v be
Element of V;
assume v
in (
0c
* M);
then ex x be
Element of V st v
= (
0c
* x) & x
in M;
then v
= (
0. V) by
CLVECT_1: 1;
hence thesis by
TARSKI:def 1;
end;
then (
0c
* M)
c=
{(
0. V)};
hence thesis by
A2,
XBOOLE_0:def 10;
end;
::$Canceled
theorem ::
CONVEX4:54
Th53: for V be
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct, M be
Subset of V, z1,z2 be
Complex holds (z1
* (z2
* M))
= ((z1
* z2)
* M)
proof
let V be
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct;
let M be
Subset of V;
let z1,z2 be
Complex;
for x be
VECTOR of V st x
in (z1
* (z2
* M)) holds x
in ((z1
* z2)
* M)
proof
let x be
VECTOR of V;
assume x
in (z1
* (z2
* M));
then
consider w1 be
VECTOR of V such that
A1: x
= (z1
* w1) and
A2: w1
in (z2
* M);
consider w2 be
VECTOR of V such that
A3: w1
= (z2
* w2) and
A4: w2
in M by
A2;
x
= ((z1
* z2)
* w2) by
A1,
A3,
CLVECT_1:def 4;
hence thesis by
A4;
end;
then
A5: (z1
* (z2
* M))
c= ((z1
* z2)
* M);
for x be
VECTOR of V st x
in ((z1
* z2)
* M) holds x
in (z1
* (z2
* M))
proof
let x be
VECTOR of V;
assume x
in ((z1
* z2)
* M);
then
consider w1 be
VECTOR of V such that
A6: x
= ((z1
* z2)
* w1) & w1
in M;
x
= (z1
* (z2
* w1)) & (z2
* w1)
in (z2
* M) by
A6,
CLVECT_1:def 4;
hence thesis;
end;
then ((z1
* z2)
* M)
c= (z1
* (z2
* M));
hence thesis by
A5,
XBOOLE_0:def 10;
end;
theorem ::
CONVEX4:55
Th54: for V be
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct, M1,M2 be
Subset of V, z be
Complex holds (z
* (M1
+ M2))
= ((z
* M1)
+ (z
* M2))
proof
let V be
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct;
let M1,M2 be
Subset of V;
let z be
Complex;
for x be
VECTOR of V st x
in ((z
* M1)
+ (z
* M2)) holds x
in (z
* (M1
+ M2))
proof
let x be
VECTOR of V;
assume x
in ((z
* M1)
+ (z
* M2));
then
consider w1,w2 be
VECTOR of V such that
A1: x
= (w1
+ w2) and
A2: w1
in (z
* M1) and
A3: w2
in (z
* M2);
consider v2 be
VECTOR of V such that
A4: w2
= (z
* v2) and
A5: v2
in M2 by
A3;
consider v1 be
VECTOR of V such that
A6: w1
= (z
* v1) and
A7: v1
in M1 by
A2;
A8: (v1
+ v2)
in (M1
+ M2) by
A7,
A5;
x
= (z
* (v1
+ v2)) by
A1,
A6,
A4,
CLVECT_1:def 2;
hence thesis by
A8;
end;
then
A9: ((z
* M1)
+ (z
* M2))
c= (z
* (M1
+ M2));
for x be
VECTOR of V st x
in (z
* (M1
+ M2)) holds x
in ((z
* M1)
+ (z
* M2))
proof
let x be
VECTOR of V;
assume x
in (z
* (M1
+ M2));
then
consider w9 be
VECTOR of V such that
A10: x
= (z
* w9) and
A11: w9
in (M1
+ M2);
consider w1,w2 be
VECTOR of V such that
A12: w9
= (w1
+ w2) and
A13: w1
in M1 & w2
in M2 by
A11;
A14: (z
* w1)
in (z
* M1) & (z
* w2)
in (z
* M2) by
A13;
x
= ((z
* w1)
+ (z
* w2)) by
A10,
A12,
CLVECT_1:def 2;
hence thesis by
A14;
end;
then (z
* (M1
+ M2))
c= ((z
* M1)
+ (z
* M2));
hence thesis by
A9,
XBOOLE_0:def 10;
end;
theorem ::
CONVEX4:56
for V be
ComplexLinearSpace, M be
Subset of V, v be
VECTOR of V holds M is
convex iff (v
+ M) is
convex
proof
let V be
ComplexLinearSpace;
let M be
Subset of V;
let v be
VECTOR of V;
A1: (v
+ M) is
convex implies M is
convex
proof
assume
A2: (v
+ M) is
convex;
let w1,w2 be
VECTOR of V;
let z be
Complex;
assume that
A3: ex r be
Real st z
= r &
0
< r & r
< 1 and
A4: w1
in M & w2
in M;
set x1 = (v
+ w1), x2 = (v
+ w2);
x1
in (v
+ M) & x2
in { (v
+ w) where w be
VECTOR of V : w
in M } by
A4;
then
A5: ((z
* x1)
+ ((
1r
- z)
* x2))
in (v
+ M) by
A2,
A3;
((z
* x1)
+ ((
1r
- z)
* x2))
= (((z
* v)
+ (z
* w1))
+ ((
1r
- z)
* (v
+ w2))) by
CLVECT_1:def 2
.= (((z
* v)
+ (z
* w1))
+ (((
1r
- z)
* v)
+ ((
1r
- z)
* w2))) by
CLVECT_1:def 2
.= ((((z
* v)
+ (z
* w1))
+ ((
1r
- z)
* v))
+ ((
1r
- z)
* w2)) by
RLVECT_1:def 3
.= ((((z
* v)
+ ((
1r
- z)
* v))
+ (z
* w1))
+ ((
1r
- z)
* w2)) by
RLVECT_1:def 3
.= ((((z
+ (
1r
- z))
* v)
+ (z
* w1))
+ ((
1r
- z)
* w2)) by
CLVECT_1:def 3
.= ((v
+ (z
* w1))
+ ((
1r
- z)
* w2)) by
CLVECT_1:def 5
.= (v
+ ((z
* w1)
+ ((
1r
- z)
* w2))) by
RLVECT_1:def 3;
then ex w be
VECTOR of V st (v
+ ((z
* w1)
+ ((
1r
- z)
* w2)))
= (v
+ w) & w
in M by
A5;
hence thesis by
RLVECT_1: 8;
end;
M is
convex implies (v
+ M) is
convex
proof
assume
A6: M is
convex;
let w1,w2 be
VECTOR of V;
let z be
Complex;
assume that
A7: ex r be
Real st z
= r &
0
< r & r
< 1 and
A8: w1
in (v
+ M) and
A9: w2
in (v
+ M);
consider x2 be
VECTOR of V such that
A10: w2
= (v
+ x2) and
A11: x2
in M by
A9;
consider x1 be
VECTOR of V such that
A12: w1
= (v
+ x1) and
A13: x1
in M by
A8;
A14: ((z
* w1)
+ ((
1r
- z)
* w2))
= (((z
* v)
+ (z
* x1))
+ ((
1r
- z)
* (v
+ x2))) by
A12,
A10,
CLVECT_1:def 2
.= (((z
* v)
+ (z
* x1))
+ (((
1r
- z)
* v)
+ ((
1r
- z)
* x2))) by
CLVECT_1:def 2
.= ((((z
* v)
+ (z
* x1))
+ ((
1r
- z)
* v))
+ ((
1r
- z)
* x2)) by
RLVECT_1:def 3
.= ((((z
* v)
+ ((
1r
- z)
* v))
+ (z
* x1))
+ ((
1r
- z)
* x2)) by
RLVECT_1:def 3
.= ((((z
+ (
1r
- z))
* v)
+ (z
* x1))
+ ((
1r
- z)
* x2)) by
CLVECT_1:def 3
.= ((v
+ (z
* x1))
+ ((
1r
- z)
* x2)) by
CLVECT_1:def 5
.= (v
+ ((z
* x1)
+ ((
1r
- z)
* x2))) by
RLVECT_1:def 3;
((z
* x1)
+ ((
1r
- z)
* x2))
in M by
A6,
A7,
A13,
A11;
hence thesis by
A14;
end;
hence thesis by
A1;
end;
theorem ::
CONVEX4:57
for V be
ComplexLinearSpace holds (
Up (
(0). V)) is
convex
proof
let V be
ComplexLinearSpace;
let u,v be
VECTOR of V;
let z be
Complex;
assume that ex r be
Real st z
= r &
0
< r & r
< 1 and
A1: u
in (
Up (
(0). V)) and
A2: v
in (
Up (
(0). V));
v
in
{(
0. V)} by
A2,
CLVECT_1:def 9;
then
A3: v
= (
0. V) by
TARSKI:def 1;
u
in
{(
0. V)} by
A1,
CLVECT_1:def 9;
then u
= (
0. V) by
TARSKI:def 1;
then ((z
* u)
+ ((
1r
- z)
* v))
= ((
0. V)
+ ((
1r
- z)
* (
0. V))) by
A3,
CLVECT_1: 1
.= ((
0. V)
+ (
0. V)) by
CLVECT_1: 1
.= (
0. V);
then ((z
* u)
+ ((
1r
- z)
* v))
in
{(
0. V)} by
TARSKI:def 1;
hence thesis by
CLVECT_1:def 9;
end;
theorem ::
CONVEX4:58
for V be
ComplexLinearSpace holds (
Up (
(Omega). V)) is
convex;
theorem ::
CONVEX4:59
for V be non
empty
CLSStruct, M be
Subset of V st M
=
{} holds M is
convex;
theorem ::
CONVEX4:60
Th59: for V be
Abelian
add-associative
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct, M1,M2 be
Subset of V, z1,z2 be
Complex st M1 is
convex & M2 is
convex holds ((z1
* M1)
+ (z2
* M2)) is
convex
proof
let V be
Abelian
add-associative
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct;
let M1,M2 be
Subset of V;
let z1,z2 be
Complex;
assume that
A1: M1 is
convex and
A2: M2 is
convex;
let u,v be
VECTOR of V;
let s be
Complex;
assume that
A3: ex p be
Real st s
= p &
0
< p & p
< 1 and
A4: u
in ((z1
* M1)
+ (z2
* M2)) and
A5: v
in ((z1
* M1)
+ (z2
* M2));
consider v1,v2 be
VECTOR of V such that
A6: v
= (v1
+ v2) and
A7: v1
in (z1
* M1) and
A8: v2
in (z2
* M2) by
A5;
consider u1,u2 be
VECTOR of V such that
A9: u
= (u1
+ u2) and
A10: u1
in (z1
* M1) and
A11: u2
in (z2
* M2) by
A4;
consider y1 be
VECTOR of V such that
A12: v1
= (z1
* y1) and
A13: y1
in M1 by
A7;
consider x1 be
VECTOR of V such that
A14: u1
= (z1
* x1) and
A15: x1
in M1 by
A10;
A16: ((s
* u1)
+ ((
1r
- s)
* v1))
= (((z1
* s)
* x1)
+ ((
1r
- s)
* (z1
* y1))) by
A14,
A12,
CLVECT_1:def 4
.= (((z1
* s)
* x1)
+ ((z1
* (
1r
- s))
* y1)) by
CLVECT_1:def 4
.= ((z1
* (s
* x1))
+ ((z1
* (
1r
- s))
* y1)) by
CLVECT_1:def 4
.= ((z1
* (s
* x1))
+ (z1
* ((
1r
- s)
* y1))) by
CLVECT_1:def 4
.= (z1
* ((s
* x1)
+ ((
1r
- s)
* y1))) by
CLVECT_1:def 2;
consider y2 be
VECTOR of V such that
A17: v2
= (z2
* y2) and
A18: y2
in M2 by
A8;
consider x2 be
VECTOR of V such that
A19: u2
= (z2
* x2) and
A20: x2
in M2 by
A11;
A21: ((s
* u2)
+ ((
1r
- s)
* v2))
= (((z2
* s)
* x2)
+ ((
1r
- s)
* (z2
* y2))) by
A19,
A17,
CLVECT_1:def 4
.= (((z2
* s)
* x2)
+ ((z2
* (
1r
- s))
* y2)) by
CLVECT_1:def 4
.= ((z2
* (s
* x2))
+ ((z2
* (
1r
- s))
* y2)) by
CLVECT_1:def 4
.= ((z2
* (s
* x2))
+ (z2
* ((
1r
- s)
* y2))) by
CLVECT_1:def 4
.= (z2
* ((s
* x2)
+ ((
1r
- s)
* y2))) by
CLVECT_1:def 2;
((s
* x2)
+ ((
1r
- s)
* y2))
in M2 by
A2,
A3,
A20,
A18;
then
A22: ((s
* u2)
+ ((
1r
- s)
* v2))
in (z2
* M2) by
A21;
((s
* x1)
+ ((
1r
- s)
* y1))
in M1 by
A1,
A3,
A15,
A13;
then
A23: ((s
* u1)
+ ((
1r
- s)
* v1))
in (z1
* M1) by
A16;
((s
* (u1
+ u2))
+ ((
1r
- s)
* (v1
+ v2)))
= (((s
* u1)
+ (s
* u2))
+ ((
1r
- s)
* (v1
+ v2))) by
CLVECT_1:def 2
.= (((s
* u1)
+ (s
* u2))
+ (((
1r
- s)
* v1)
+ ((
1r
- s)
* v2))) by
CLVECT_1:def 2
.= ((((s
* u1)
+ (s
* u2))
+ ((
1r
- s)
* v1))
+ ((
1r
- s)
* v2)) by
RLVECT_1:def 3
.= ((((s
* u1)
+ ((
1r
- s)
* v1))
+ (s
* u2))
+ ((
1r
- s)
* v2)) by
RLVECT_1:def 3
.= (((s
* u1)
+ ((
1r
- s)
* v1))
+ ((s
* u2)
+ ((
1r
- s)
* v2))) by
RLVECT_1:def 3;
hence thesis by
A9,
A6,
A23,
A22;
end;
theorem ::
CONVEX4:61
Th60: for V be
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct, M be
Subset of V, z1,z2 be
Complex holds ((z1
+ z2)
* M)
c= ((z1
* M)
+ (z2
* M))
proof
let V be
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct;
let M be
Subset of V;
let z1,z2 be
Complex;
for x be
VECTOR of V st x
in ((z1
+ z2)
* M) holds x
in ((z1
* M)
+ (z2
* M))
proof
let x be
VECTOR of V;
assume x
in ((z1
+ z2)
* M);
then
consider w be
VECTOR of V such that
A1: x
= ((z1
+ z2)
* w) and
A2: w
in M;
A3: (z2
* w)
in (z2
* M) by
A2;
x
= ((z1
* w)
+ (z2
* w)) & (z1
* w)
in (z1
* M) by
A1,
A2,
CLVECT_1:def 3;
hence thesis by
A3;
end;
hence thesis;
end;
theorem ::
CONVEX4:62
Th61: for V be non
empty
CLSStruct, M,N be
Subset of V, z be
Complex st M
c= N holds (z
* M)
c= (z
* N)
proof
let V be non
empty
CLSStruct;
let M,N be
Subset of V;
let z be
Complex;
assume
A1: M
c= N;
now
let x be
VECTOR of V;
assume x
in (z
* M);
then ex w be
VECTOR of V st x
= (z
* w) & w
in M;
hence x
in (z
* N) by
A1;
end;
hence thesis;
end;
theorem ::
CONVEX4:63
Th62: for V be non
empty
CLSStruct, M be
empty
Subset of V, z be
Complex holds (z
* M)
=
{}
proof
let V be non
empty
CLSStruct;
let M be
empty
Subset of V;
let z be
Complex;
now
let x be
VECTOR of V;
assume x
in (z
* M);
then ex v be
VECTOR of V st x
= (z
* v) & v
in
{} ;
hence x
in
{} ;
end;
then (z
* M)
c=
{} ;
hence thesis;
end;
Lm2: for V be
ComplexLinearSpace, M be
Subset of V, z1,z2 be
Complex st (ex r1,r2 be
Real st z1
= r1 & z2
= r2 & r1
>=
0 & r2
>=
0 ) & M is
convex holds ((z1
* M)
+ (z2
* M))
c= ((z1
+ z2)
* M)
proof
let V be
ComplexLinearSpace;
let M be
Subset of V;
let z1,z2 be
Complex;
assume that
A1: ex r1,r2 be
Real st z1
= r1 & z2
= r2 & r1
>=
0 & r2
>=
0 and
A2: M is
convex;
consider r1,r2 be
Real such that
A3: z1
= r1 and
A4: z2
= r2 and
A5: r1
>=
0 and
A6: r2
>=
0 by
A1;
per cases ;
suppose M is
empty;
then (z1
* M)
=
{} & ((z1
+ z2)
* M)
=
{} by
Th62;
hence thesis by
CONVEX1: 40;
end;
suppose
A7: M is non
empty;
per cases ;
suppose
A8: z1
=
0 ;
then (z1
* M)
=
{(
0. V)} by
A7,
Th52;
hence thesis by
A8,
CONVEX1: 35;
end;
suppose
A9: z2
=
0 ;
then (z2
* M)
=
{(
0. V)} by
A7,
Th52;
hence thesis by
A9,
CONVEX1: 35;
end;
suppose
A10: z1
<>
0 & z2
<>
0 ;
then (r1
+ r2)
> r1 by
A4,
A6,
XREAL_1: 29;
then (r1
/ (r1
+ r2))
< 1 by
A5,
XREAL_1: 189;
then (((z1
/ (z1
+ z2))
* M)
+ ((
1r
- (z1
/ (z1
+ z2)))
* M))
c= M by
A2,
A3,
A4,
A5,
A6,
A10,
Th48;
then
A11: ((z1
+ z2)
* (((z1
/ (z1
+ z2))
* M)
+ ((
1r
- (z1
/ (z1
+ z2)))
* M)))
c= ((z1
+ z2)
* M) by
Th61;
(1
- (r1
/ (r1
+ r2)))
= (((r1
+ r2)
/ (r1
+ r2))
- (r1
/ (r1
+ r2))) by
A3,
A5,
A6,
A10,
XCMPLX_1: 60;
then (1
- (r1
/ (r1
+ r2)))
= (((r1
+ r2)
- r1)
/ (r1
+ r2));
then
A12: ((z1
+ z2)
* ((
1r
- (z1
/ (z1
+ z2)))
* M))
= (((z2
/ (z1
+ z2))
* (z1
+ z2))
* M) by
A3,
A4,
Th53
.= (z2
* M) by
A3,
A4,
A5,
A6,
A10,
XCMPLX_1: 87;
((z1
+ z2)
* ((z1
/ (z1
+ z2))
* M))
= (((z1
/ (z1
+ z2))
* (z1
+ z2))
* M) by
Th53
.= (z1
* M) by
A3,
A4,
A5,
A6,
A10,
XCMPLX_1: 87;
hence thesis by
A11,
A12,
Th54;
end;
end;
end;
::$Canceled
theorem ::
CONVEX4:66
for V be
ComplexLinearSpace, M be
Subset of V, z1,z2 be
Complex st (ex r1,r2 be
Real st z1
= r1 & z2
= r2 & r1
>=
0 & r2
>=
0 ) & M is
convex holds ((z1
* M)
+ (z2
* M))
= ((z1
+ z2)
* M)
proof
let V be
ComplexLinearSpace, M be
Subset of V, z1,z2 be
Complex;
assume (ex r1,r2 be
Real st z1
= r1 & z2
= r2 & r1
>=
0 & r2
>=
0 ) & M is
convex;
hence ((z1
* M)
+ (z2
* M))
c= ((z1
+ z2)
* M) by
Lm2;
thus thesis by
Th60;
end;
theorem ::
CONVEX4:67
for V be
Abelian
add-associative
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct, M1,M2,M3 be
Subset of V, z1,z2,z3 be
Complex st M1 is
convex & M2 is
convex & M3 is
convex holds (((z1
* M1)
+ (z2
* M2))
+ (z3
* M3)) is
convex
proof
let V be
Abelian
add-associative
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
CLSStruct;
let M1,M2,M3 be
Subset of V;
let z1,z2,z3 be
Complex;
assume that
A1: M1 is
convex & M2 is
convex and
A2: M3 is
convex;
((z1
* M1)
+ (z2
* M2)) is
convex by
A1,
Th59;
then ((
1r
* ((z1
* M1)
+ (z2
* M2)))
+ (z3
* M3)) is
convex by
A2,
Th59;
hence thesis by
Th51;
end;
theorem ::
CONVEX4:68
Th65: for V be non
empty
CLSStruct, F be
Subset-Family of V st (for M be
Subset of V st M
in F holds M is
convex) holds (
meet F) is
convex
proof
let V be non
empty
CLSStruct;
let F be
Subset-Family of V;
assume
A1: for M be
Subset of V st M
in F holds M is
convex;
per cases ;
suppose F
=
{} ;
then (
meet F)
=
{} by
SETFAM_1:def 1;
hence thesis;
end;
suppose
A2: F
<>
{} ;
thus (
meet F) is
convex
proof
let u,v be
VECTOR of V;
let z be
Complex;
assume that
A3: ex r be
Real st z
= r &
0
< r & r
< 1 and
A4: u
in (
meet F) and
A5: v
in (
meet F);
for M be
set st M
in F holds ((z
* u)
+ ((
1r
- z)
* v))
in M
proof
let M be
set;
assume
A6: M
in F;
then
reconsider M as
Subset of V;
A7: v
in M by
A5,
A6,
SETFAM_1:def 1;
M is
convex & u
in M by
A1,
A4,
A6,
SETFAM_1:def 1;
hence thesis by
A3,
A7;
end;
hence thesis by
A2,
SETFAM_1:def 1;
end;
end;
end;
theorem ::
CONVEX4:69
Th66: for V be non
empty
CLSStruct, M be
Subset of V st M is
Affine holds M is
convex
proof
let V be non
empty
CLSStruct;
let M be
Subset of V;
assume
A1: M is
Affine;
let u,v be
VECTOR of V;
let z be
Complex;
assume that
A2: ex r be
Real st z
= r &
0
< r & r
< 1 and
A3: u
in M & v
in M;
set s = (
1r
- z);
consider r be
Real such that
A4: z
= r and
0
< r and r
< 1 by
A2;
s
= (1
- r) by
A4;
then (((
1r
- s)
* u)
+ (s
* v))
in M by
A1,
A3;
hence thesis;
end;
registration
let V be non
empty
CLSStruct;
cluster non
empty
convex for
Subset of V;
existence
proof
set M = the non
empty
Affine
Subset of V;
M is
convex by
Th66;
hence thesis;
end;
end
registration
let V be non
empty
CLSStruct;
cluster
empty
convex for
Subset of V;
existence
proof
(
{} V) is
convex;
hence thesis;
end;
end
theorem ::
CONVEX4:70
for V be
ComplexUnitarySpace-like non
empty
CUNITSTR, M be
Subset of V, v be
VECTOR of V, r be
Real st M
= { u where u be
VECTOR of V : (
Re (u
.|. v))
>= r } holds M is
convex
proof
let V be
ComplexUnitarySpace-like non
empty
CUNITSTR;
let M be
Subset of V;
let v be
VECTOR of V;
let r be
Real;
assume
A1: M
= { u where u be
VECTOR of V : (
Re (u
.|. v))
>= r };
let x,y be
VECTOR of V;
let s be
Complex;
assume that
A2: ex p be
Real st s
= p &
0
< p & p
< 1 and
A3: x
in M and
A4: y
in M;
A5: ex u2 be
VECTOR of V st y
= u2 & (
Re (u2
.|. v))
>= r by
A1,
A4;
consider p be
Real such that
A6: s
= p and
A7:
0
< p and
A8: p
< 1 by
A2;
(1
- p)
>
0 by
A8,
XREAL_1: 50;
then
A9: ((1
- p)
* (
Re (y
.|. v)))
>= ((1
- p)
* r) by
A5,
XREAL_1: 64;
ex u1 be
VECTOR of V st x
= u1 & (
Re (u1
.|. v))
>= r by
A1,
A3;
then (p
* (
Re (x
.|. v)))
>= (p
* r) by
A7,
XREAL_1: 64;
then
A10: ((p
* (
Re (x
.|. v)))
+ ((1
- p)
* (
Re (y
.|. v))))
>= ((p
* r)
+ ((1
- p)
* r)) by
A9,
XREAL_1: 7;
(
Re (((s
* x)
+ ((
1r
- s)
* y))
.|. v))
= (
Re (((s
* x)
.|. v)
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Re ((s
* (x
.|. v))
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Re ((s
* (x
.|. v))
+ ((
1r
- s)
* (y
.|. v)))) by
CSSPACE:def 13
.= ((
Re (s
* (x
.|. v)))
+ (
Re ((
1r
- s)
* (y
.|. v)))) by
COMPLEX1: 8
.= ((p
* (
Re (x
.|. v)))
+ (
Re ((
1r
- s)
* (y
.|. v)))) by
A6,
Th42
.= ((p
* (
Re (x
.|. v)))
+ ((1
- p)
* (
Re (y
.|. v)))) by
A6,
Th42;
hence thesis by
A1,
A10;
end;
theorem ::
CONVEX4:71
for V be
ComplexUnitarySpace-like non
empty
CUNITSTR, M be
Subset of V, v be
VECTOR of V, r be
Real st M
= { u where u be
VECTOR of V : (
Re (u
.|. v))
> r } holds M is
convex
proof
let V be
ComplexUnitarySpace-like non
empty
CUNITSTR;
let M be
Subset of V;
let v be
VECTOR of V;
let r be
Real;
assume
A1: M
= { u where u be
VECTOR of V : (
Re (u
.|. v))
> r };
let x,y be
VECTOR of V;
let s be
Complex;
assume that
A2: ex p be
Real st s
= p &
0
< p & p
< 1 and
A3: x
in M and
A4: y
in M;
A5: ex u2 be
VECTOR of V st y
= u2 & (
Re (u2
.|. v))
> r by
A1,
A4;
consider p be
Real such that
A6: s
= p and
A7:
0
< p and
A8: p
< 1 by
A2;
(1
- p)
>
0 by
A8,
XREAL_1: 50;
then
A9: ((1
- p)
* (
Re (y
.|. v)))
> ((1
- p)
* r) by
A5,
XREAL_1: 68;
ex u1 be
VECTOR of V st x
= u1 & (
Re (u1
.|. v))
> r by
A1,
A3;
then (p
* (
Re (x
.|. v)))
> (p
* r) by
A7,
XREAL_1: 68;
then
A10: ((p
* (
Re (x
.|. v)))
+ ((1
- p)
* (
Re (y
.|. v))))
> ((p
* r)
+ ((1
- p)
* r)) by
A9,
XREAL_1: 8;
(
Re (((s
* x)
+ ((
1r
- s)
* y))
.|. v))
= (
Re (((s
* x)
.|. v)
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Re ((s
* (x
.|. v))
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Re ((s
* (x
.|. v))
+ ((
1r
- s)
* (y
.|. v)))) by
CSSPACE:def 13
.= ((
Re (s
* (x
.|. v)))
+ (
Re ((
1r
- s)
* (y
.|. v)))) by
COMPLEX1: 8
.= ((p
* (
Re (x
.|. v)))
+ (
Re ((
1r
- s)
* (y
.|. v)))) by
A6,
Th42
.= ((p
* (
Re (x
.|. v)))
+ ((1
- p)
* (
Re (y
.|. v)))) by
A6,
Th42;
hence thesis by
A1,
A10;
end;
theorem ::
CONVEX4:72
for V be
ComplexUnitarySpace-like non
empty
CUNITSTR, M be
Subset of V, v be
VECTOR of V, r be
Real st M
= { u where u be
VECTOR of V : (
Re (u
.|. v))
<= r } holds M is
convex
proof
let V be
ComplexUnitarySpace-like non
empty
CUNITSTR;
let M be
Subset of V;
let v be
VECTOR of V;
let r be
Real;
assume
A1: M
= { u where u be
VECTOR of V : (
Re (u
.|. v))
<= r };
let x,y be
VECTOR of V;
let s be
Complex;
assume that
A2: ex p be
Real st s
= p &
0
< p & p
< 1 and
A3: x
in M and
A4: y
in M;
A5: ex u2 be
VECTOR of V st y
= u2 & (
Re (u2
.|. v))
<= r by
A1,
A4;
consider p be
Real such that
A6: s
= p and
A7:
0
< p and
A8: p
< 1 by
A2;
(1
- p)
>
0 by
A8,
XREAL_1: 50;
then
A9: ((1
- p)
* (
Re (y
.|. v)))
<= ((1
- p)
* r) by
A5,
XREAL_1: 64;
ex u1 be
VECTOR of V st x
= u1 & (
Re (u1
.|. v))
<= r by
A1,
A3;
then (p
* (
Re (x
.|. v)))
<= (p
* r) by
A7,
XREAL_1: 64;
then
A10: ((p
* (
Re (x
.|. v)))
+ ((1
- p)
* (
Re (y
.|. v))))
<= ((p
* r)
+ ((1
- p)
* r)) by
A9,
XREAL_1: 7;
(
Re (((s
* x)
+ ((
1r
- s)
* y))
.|. v))
= (
Re (((s
* x)
.|. v)
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Re ((s
* (x
.|. v))
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Re ((s
* (x
.|. v))
+ ((
1r
- s)
* (y
.|. v)))) by
CSSPACE:def 13
.= ((
Re (s
* (x
.|. v)))
+ (
Re ((
1r
- s)
* (y
.|. v)))) by
COMPLEX1: 8
.= ((p
* (
Re (x
.|. v)))
+ (
Re ((
1r
- s)
* (y
.|. v)))) by
A6,
Th42
.= ((p
* (
Re (x
.|. v)))
+ ((1
- p)
* (
Re (y
.|. v)))) by
A6,
Th42;
hence thesis by
A1,
A10;
end;
theorem ::
CONVEX4:73
for V be
ComplexUnitarySpace-like non
empty
CUNITSTR, M be
Subset of V, v be
VECTOR of V, r be
Real st M
= { u where u be
VECTOR of V : (
Re (u
.|. v))
< r } holds M is
convex
proof
let V be
ComplexUnitarySpace-like non
empty
CUNITSTR;
let M be
Subset of V;
let v be
VECTOR of V;
let r be
Real;
assume
A1: M
= { u where u be
VECTOR of V : (
Re (u
.|. v))
< r };
let x,y be
VECTOR of V;
let s be
Complex;
assume that
A2: ex p be
Real st s
= p &
0
< p & p
< 1 and
A3: x
in M and
A4: y
in M;
A5: ex u2 be
VECTOR of V st y
= u2 & (
Re (u2
.|. v))
< r by
A1,
A4;
consider p be
Real such that
A6: s
= p and
A7:
0
< p and
A8: p
< 1 by
A2;
(1
- p)
>
0 by
A8,
XREAL_1: 50;
then
A9: ((1
- p)
* (
Re (y
.|. v)))
< ((1
- p)
* r) by
A5,
XREAL_1: 68;
ex u1 be
VECTOR of V st x
= u1 & (
Re (u1
.|. v))
< r by
A1,
A3;
then (p
* (
Re (x
.|. v)))
< (p
* r) by
A7,
XREAL_1: 68;
then
A10: ((p
* (
Re (x
.|. v)))
+ ((1
- p)
* (
Re (y
.|. v))))
< ((p
* r)
+ ((1
- p)
* r)) by
A9,
XREAL_1: 8;
(
Re (((s
* x)
+ ((
1r
- s)
* y))
.|. v))
= (
Re (((s
* x)
.|. v)
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Re ((s
* (x
.|. v))
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Re ((s
* (x
.|. v))
+ ((
1r
- s)
* (y
.|. v)))) by
CSSPACE:def 13
.= ((
Re (s
* (x
.|. v)))
+ (
Re ((
1r
- s)
* (y
.|. v)))) by
COMPLEX1: 8
.= ((p
* (
Re (x
.|. v)))
+ (
Re ((
1r
- s)
* (y
.|. v)))) by
A6,
Th42
.= ((p
* (
Re (x
.|. v)))
+ ((1
- p)
* (
Re (y
.|. v)))) by
A6,
Th42;
hence thesis by
A1,
A10;
end;
theorem ::
CONVEX4:74
for V be
ComplexUnitarySpace-like non
empty
CUNITSTR, M be
Subset of V, v be
VECTOR of V, r be
Real st M
= { u where u be
VECTOR of V : (
Im (u
.|. v))
>= r } holds M is
convex
proof
let V be
ComplexUnitarySpace-like non
empty
CUNITSTR;
let M be
Subset of V;
let v be
VECTOR of V;
let r be
Real;
assume
A1: M
= { u where u be
VECTOR of V : (
Im (u
.|. v))
>= r };
let x,y be
VECTOR of V;
let s be
Complex;
assume that
A2: ex p be
Real st s
= p &
0
< p & p
< 1 and
A3: x
in M and
A4: y
in M;
A5: ex u2 be
VECTOR of V st y
= u2 & (
Im (u2
.|. v))
>= r by
A1,
A4;
consider p be
Real such that
A6: s
= p and
A7:
0
< p and
A8: p
< 1 by
A2;
(1
- p)
>
0 by
A8,
XREAL_1: 50;
then
A9: ((1
- p)
* (
Im (y
.|. v)))
>= ((1
- p)
* r) by
A5,
XREAL_1: 64;
ex u1 be
VECTOR of V st x
= u1 & (
Im (u1
.|. v))
>= r by
A1,
A3;
then (p
* (
Im (x
.|. v)))
>= (p
* r) by
A7,
XREAL_1: 64;
then
A10: ((p
* (
Im (x
.|. v)))
+ ((1
- p)
* (
Im (y
.|. v))))
>= ((p
* r)
+ ((1
- p)
* r)) by
A9,
XREAL_1: 7;
(
Im (((s
* x)
+ ((
1r
- s)
* y))
.|. v))
= (
Im (((s
* x)
.|. v)
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Im ((s
* (x
.|. v))
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Im ((s
* (x
.|. v))
+ ((
1r
- s)
* (y
.|. v)))) by
CSSPACE:def 13
.= ((
Im (s
* (x
.|. v)))
+ (
Im ((
1r
- s)
* (y
.|. v)))) by
COMPLEX1: 8
.= ((p
* (
Im (x
.|. v)))
+ (
Im ((
1r
- s)
* (y
.|. v)))) by
A6,
Th43
.= ((p
* (
Im (x
.|. v)))
+ ((1
- p)
* (
Im (y
.|. v)))) by
A6,
Th43;
hence thesis by
A1,
A10;
end;
theorem ::
CONVEX4:75
for V be
ComplexUnitarySpace-like non
empty
CUNITSTR, M be
Subset of V, v be
VECTOR of V, r be
Real st M
= { u where u be
VECTOR of V : (
Im (u
.|. v))
> r } holds M is
convex
proof
let V be
ComplexUnitarySpace-like non
empty
CUNITSTR;
let M be
Subset of V;
let v be
VECTOR of V;
let r be
Real;
assume
A1: M
= { u where u be
VECTOR of V : (
Im (u
.|. v))
> r };
let x,y be
VECTOR of V;
let s be
Complex;
assume that
A2: ex p be
Real st s
= p &
0
< p & p
< 1 and
A3: x
in M and
A4: y
in M;
A5: ex u2 be
VECTOR of V st y
= u2 & (
Im (u2
.|. v))
> r by
A1,
A4;
consider p be
Real such that
A6: s
= p and
A7:
0
< p and
A8: p
< 1 by
A2;
(1
- p)
>
0 by
A8,
XREAL_1: 50;
then
A9: ((1
- p)
* (
Im (y
.|. v)))
> ((1
- p)
* r) by
A5,
XREAL_1: 68;
ex u1 be
VECTOR of V st x
= u1 & (
Im (u1
.|. v))
> r by
A1,
A3;
then (p
* (
Im (x
.|. v)))
> (p
* r) by
A7,
XREAL_1: 68;
then
A10: ((p
* (
Im (x
.|. v)))
+ ((1
- p)
* (
Im (y
.|. v))))
> ((p
* r)
+ ((1
- p)
* r)) by
A9,
XREAL_1: 8;
(
Im (((s
* x)
+ ((
1r
- s)
* y))
.|. v))
= (
Im (((s
* x)
.|. v)
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Im ((s
* (x
.|. v))
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Im ((s
* (x
.|. v))
+ ((
1r
- s)
* (y
.|. v)))) by
CSSPACE:def 13
.= ((
Im (s
* (x
.|. v)))
+ (
Im ((
1r
- s)
* (y
.|. v)))) by
COMPLEX1: 8
.= ((p
* (
Im (x
.|. v)))
+ (
Im ((
1r
- s)
* (y
.|. v)))) by
A6,
Th43
.= ((p
* (
Im (x
.|. v)))
+ ((1
- p)
* (
Im (y
.|. v)))) by
A6,
Th43;
hence thesis by
A1,
A10;
end;
theorem ::
CONVEX4:76
for V be
ComplexUnitarySpace-like non
empty
CUNITSTR, M be
Subset of V, v be
VECTOR of V, r be
Real st M
= { u where u be
VECTOR of V : (
Im (u
.|. v))
<= r } holds M is
convex
proof
let V be
ComplexUnitarySpace-like non
empty
CUNITSTR;
let M be
Subset of V;
let v be
VECTOR of V;
let r be
Real;
assume
A1: M
= { u where u be
VECTOR of V : (
Im (u
.|. v))
<= r };
let x,y be
VECTOR of V;
let s be
Complex;
assume that
A2: ex p be
Real st s
= p &
0
< p & p
< 1 and
A3: x
in M and
A4: y
in M;
A5: ex u2 be
VECTOR of V st y
= u2 & (
Im (u2
.|. v))
<= r by
A1,
A4;
consider p be
Real such that
A6: s
= p and
A7:
0
< p and
A8: p
< 1 by
A2;
(1
- p)
>
0 by
A8,
XREAL_1: 50;
then
A9: ((1
- p)
* (
Im (y
.|. v)))
<= ((1
- p)
* r) by
A5,
XREAL_1: 64;
ex u1 be
VECTOR of V st x
= u1 & (
Im (u1
.|. v))
<= r by
A1,
A3;
then (p
* (
Im (x
.|. v)))
<= (p
* r) by
A7,
XREAL_1: 64;
then
A10: ((p
* (
Im (x
.|. v)))
+ ((1
- p)
* (
Im (y
.|. v))))
<= ((p
* r)
+ ((1
- p)
* r)) by
A9,
XREAL_1: 7;
(
Im (((s
* x)
+ ((
1r
- s)
* y))
.|. v))
= (
Im (((s
* x)
.|. v)
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Im ((s
* (x
.|. v))
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Im ((s
* (x
.|. v))
+ ((
1r
- s)
* (y
.|. v)))) by
CSSPACE:def 13
.= ((
Im (s
* (x
.|. v)))
+ (
Im ((
1r
- s)
* (y
.|. v)))) by
COMPLEX1: 8
.= ((p
* (
Im (x
.|. v)))
+ (
Im ((
1r
- s)
* (y
.|. v)))) by
A6,
Th43
.= ((p
* (
Im (x
.|. v)))
+ ((1
- p)
* (
Im (y
.|. v)))) by
A6,
Th43;
hence thesis by
A1,
A10;
end;
theorem ::
CONVEX4:77
for V be
ComplexUnitarySpace-like non
empty
CUNITSTR, M be
Subset of V, v be
VECTOR of V, r be
Real st M
= { u where u be
VECTOR of V : (
Im (u
.|. v))
< r } holds M is
convex
proof
let V be
ComplexUnitarySpace-like non
empty
CUNITSTR;
let M be
Subset of V;
let v be
VECTOR of V;
let r be
Real;
assume
A1: M
= { u where u be
VECTOR of V : (
Im (u
.|. v))
< r };
let x,y be
VECTOR of V;
let s be
Complex;
assume that
A2: ex p be
Real st s
= p &
0
< p & p
< 1 and
A3: x
in M and
A4: y
in M;
A5: ex u2 be
VECTOR of V st y
= u2 & (
Im (u2
.|. v))
< r by
A1,
A4;
consider p be
Real such that
A6: s
= p and
A7:
0
< p and
A8: p
< 1 by
A2;
(1
- p)
>
0 by
A8,
XREAL_1: 50;
then
A9: ((1
- p)
* (
Im (y
.|. v)))
< ((1
- p)
* r) by
A5,
XREAL_1: 68;
ex u1 be
VECTOR of V st x
= u1 & (
Im (u1
.|. v))
< r by
A1,
A3;
then (p
* (
Im (x
.|. v)))
< (p
* r) by
A7,
XREAL_1: 68;
then
A10: ((p
* (
Im (x
.|. v)))
+ ((1
- p)
* (
Im (y
.|. v))))
< ((p
* r)
+ ((1
- p)
* r)) by
A9,
XREAL_1: 8;
(
Im (((s
* x)
+ ((
1r
- s)
* y))
.|. v))
= (
Im (((s
* x)
.|. v)
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Im ((s
* (x
.|. v))
+ (((
1r
- s)
* y)
.|. v))) by
CSSPACE:def 13
.= (
Im ((s
* (x
.|. v))
+ ((
1r
- s)
* (y
.|. v)))) by
CSSPACE:def 13
.= ((
Im (s
* (x
.|. v)))
+ (
Im ((
1r
- s)
* (y
.|. v)))) by
COMPLEX1: 8
.= ((p
* (
Im (x
.|. v)))
+ (
Im ((
1r
- s)
* (y
.|. v)))) by
A6,
Th43
.= ((p
* (
Im (x
.|. v)))
+ ((1
- p)
* (
Im (y
.|. v)))) by
A6,
Th43;
hence thesis by
A1,
A10;
end;
theorem ::
CONVEX4:78
for V be
ComplexUnitarySpace-like non
empty
CUNITSTR, M be
Subset of V, v be
VECTOR of V, r be
Real st M
= { u where u be
VECTOR of V :
|.(u
.|. v).|
<= r } holds M is
convex
proof
let V be
ComplexUnitarySpace-like non
empty
CUNITSTR;
let M be
Subset of V;
let v be
VECTOR of V;
let r be
Real;
assume
A1: M
= { u where u be
VECTOR of V :
|.(u
.|. v).|
<= r };
let x,y be
VECTOR of V;
let s be
Complex;
assume that
A2: ex p be
Real st s
= p &
0
< p & p
< 1 and
A3: x
in M and
A4: y
in M;
consider p be
Real such that
A5: s
= p and
A6:
0
< p and
A7: p
< 1 by
A2;
A8: (1
- p)
>
0 by
A7,
XREAL_1: 50;
ex u2 be
VECTOR of V st y
= u2 &
|.(u2
.|. v).|
<= r by
A1,
A4;
then
A9: ((1
- p)
*
|.(y
.|. v).|)
<= ((1
- p)
* r) by
A8,
XREAL_1: 64;
ex u1 be
VECTOR of V st x
= u1 &
|.(u1
.|. v).|
<= r by
A1,
A3;
then (p
*
|.(x
.|. v).|)
<= (p
* r) by
A6,
XREAL_1: 64;
then
A10: ((p
*
|.(x
.|. v).|)
+ ((1
- p)
*
|.(y
.|. v).|))
<= ((p
* r)
+ ((1
- p)
* r)) by
A9,
XREAL_1: 7;
|.(s
* (x
.|. v)).|
= (p
*
|.(x
.|. v).|) &
|.((
1r
- s)
* (y
.|. v)).|
= ((1
- p)
*
|.(y
.|. v).|) by
A5,
A6,
A7,
Th44;
then
A11:
|.((s
* (x
.|. v))
+ ((
1r
- s)
* (y
.|. v))).|
<= ((p
*
|.(x
.|. v).|)
+ ((1
- p)
*
|.(y
.|. v).|)) by
COMPLEX1: 56;
|.(((s
* x)
+ ((
1r
- s)
* y))
.|. v).|
=
|.(((s
* x)
.|. v)
+ (((
1r
- s)
* y)
.|. v)).| by
CSSPACE:def 13
.=
|.((s
* (x
.|. v))
+ (((
1r
- s)
* y)
.|. v)).| by
CSSPACE:def 13
.=
|.((s
* (x
.|. v))
+ ((
1r
- s)
* (y
.|. v))).| by
CSSPACE:def 13;
then
|.(((s
* x)
+ ((
1r
- s)
* y))
.|. v).|
<= r by
A11,
A10,
XXREAL_0: 2;
hence thesis by
A1;
end;
theorem ::
CONVEX4:79
for V be
ComplexUnitarySpace-like non
empty
CUNITSTR, M be
Subset of V, v be
VECTOR of V, r be
Real st M
= { u where u be
VECTOR of V :
|.(u
.|. v).|
< r } holds M is
convex
proof
let V be
ComplexUnitarySpace-like non
empty
CUNITSTR;
let M be
Subset of V;
let v be
VECTOR of V;
let r be
Real;
assume
A1: M
= { u where u be
VECTOR of V :
|.(u
.|. v).|
< r };
let x,y be
VECTOR of V;
let s be
Complex;
assume that
A2: ex p be
Real st s
= p &
0
< p & p
< 1 and
A3: x
in M and
A4: y
in M;
consider p be
Real such that
A5: s
= p and
A6:
0
< p and
A7: p
< 1 by
A2;
A8: (1
- p)
>
0 by
A7,
XREAL_1: 50;
ex u2 be
VECTOR of V st y
= u2 &
|.(u2
.|. v).|
< r by
A1,
A4;
then
A9: ((1
- p)
*
|.(y
.|. v).|)
< ((1
- p)
* r) by
A8,
XREAL_1: 68;
ex u1 be
VECTOR of V st x
= u1 &
|.(u1
.|. v).|
< r by
A1,
A3;
then (p
*
|.(x
.|. v).|)
< (p
* r) by
A6,
XREAL_1: 68;
then
A10: ((p
*
|.(x
.|. v).|)
+ ((1
- p)
*
|.(y
.|. v).|))
< ((p
* r)
+ ((1
- p)
* r)) by
A9,
XREAL_1: 8;
|.(s
* (x
.|. v)).|
= (p
*
|.(x
.|. v).|) &
|.((
1r
- s)
* (y
.|. v)).|
= ((1
- p)
*
|.(y
.|. v).|) by
A5,
A6,
A7,
Th44;
then
A11:
|.((s
* (x
.|. v))
+ ((
1r
- s)
* (y
.|. v))).|
<= ((p
*
|.(x
.|. v).|)
+ ((1
- p)
*
|.(y
.|. v).|)) by
COMPLEX1: 56;
|.(((s
* x)
+ ((
1r
- s)
* y))
.|. v).|
=
|.(((s
* x)
.|. v)
+ (((
1r
- s)
* y)
.|. v)).| by
CSSPACE:def 13
.=
|.((s
* (x
.|. v))
+ (((
1r
- s)
* y)
.|. v)).| by
CSSPACE:def 13
.=
|.((s
* (x
.|. v))
+ ((
1r
- s)
* (y
.|. v))).| by
CSSPACE:def 13;
then
|.(((s
* x)
+ ((
1r
- s)
* y))
.|. v).|
< r by
A11,
A10,
XXREAL_0: 2;
hence thesis by
A1;
end;
begin
definition
let V be
ComplexLinearSpace, L be
C_Linear_Combination of V;
::
CONVEX4:def24
attr L is
convex means ex F be
FinSequence of the
carrier of V st F is
one-to-one & (
rng F)
= (
Carrier L) & ex f be
FinSequence of
REAL st (
len f)
= (
len F) & (
Sum f)
= 1 & for n be
Nat st n
in (
dom f) holds (f
. n)
= (L
. (F
. n)) & (f
. n)
>=
0 ;
end
theorem ::
CONVEX4:80
Th77: for V be
ComplexLinearSpace, L be
C_Linear_Combination of V st L is
convex holds (
Carrier L)
<>
{}
proof
let V be
ComplexLinearSpace;
let L be
C_Linear_Combination of V;
assume L is
convex;
then
consider F be
FinSequence of the
carrier of V such that
A1: F is
one-to-one & (
rng F)
= (
Carrier L) and
A2: ex f be
FinSequence of
REAL st (
len f)
= (
len F) & (
Sum f)
= 1 & for n be
Nat st n
in (
dom f) holds (f
. n)
= (L
. (F
. n)) & (f
. n)
>=
0 ;
consider f be
FinSequence of
REAL such that
A3: (
len f)
= (
len F) & (
Sum f)
= 1 & for n be
Nat st n
in (
dom f) holds (f
. n)
= (L
. (F
. n)) & (f
. n)
>=
0 by
A2;
assume (
Carrier L)
=
{} ;
then (
len F)
=
0 by
A1,
CARD_1: 27,
FINSEQ_4: 62;
then f
= (
<*> the
carrier of V) by
A3;
hence contradiction by
A3,
RVSUM_1: 72;
end;
theorem ::
CONVEX4:81
for V be
ComplexLinearSpace, L be
C_Linear_Combination of V, v be
VECTOR of V st L is
convex & (ex r be
Real st r
= (L
. v) & r
<=
0 ) holds not v
in (
Carrier L)
proof
let V be
ComplexLinearSpace;
let L be
C_Linear_Combination of V;
let v be
VECTOR of V;
assume that
A1: L is
convex and
A2: ex r be
Real st r
= (L
. v) & r
<=
0 ;
consider r be
Real such that
A3: r
= (L
. v) and
A4: r
<=
0 by
A2;
per cases by
A4;
suppose r
=
0 ;
hence thesis by
A3,
Th1;
end;
suppose
A5: r
<
0 ;
now
consider F be
FinSequence of the
carrier of V such that F is
one-to-one and
A6: (
rng F)
= (
Carrier L) and
A7: ex f be
FinSequence of
REAL st (
len f)
= (
len F) & (
Sum f)
= 1 & for n be
Nat st n
in (
dom f) holds (f
. n)
= (L
. (F
. n)) & (f
. n)
>=
0 by
A1;
assume v
in (
Carrier L);
then
consider n be
object such that
A8: n
in (
dom F) and
A9: (F
. n)
= v by
A6,
FUNCT_1:def 3;
reconsider n as
Element of
NAT by
A8;
consider f be
FinSequence of
REAL such that
A10: (
len f)
= (
len F) and (
Sum f)
= 1 and
A11: for n be
Nat st n
in (
dom f) holds (f
. n)
= (L
. (F
. n)) & (f
. n)
>=
0 by
A7;
n
in (
Seg (
len F)) by
A8,
FINSEQ_1:def 3;
then
A12: n
in (
dom f) by
A10,
FINSEQ_1:def 3;
then (L
. v)
= (f
. n) by
A11,
A9;
hence contradiction by
A3,
A5,
A11,
A12;
end;
hence thesis;
end;
end;
theorem ::
CONVEX4:82
for V be
ComplexLinearSpace, L be
C_Linear_Combination of V st L is
convex holds L
<> (
ZeroCLC V)
proof
let V be
ComplexLinearSpace;
let L be
C_Linear_Combination of V;
assume L is
convex;
then
A1: (
Carrier L)
<>
{} by
Th77;
assume L
= (
ZeroCLC V);
hence contradiction by
A1;
end;
theorem ::
CONVEX4:83
Th80: for V be
ComplexLinearSpace, v be
VECTOR of V, L be
C_Linear_Combination of V st L is
convex & (
Carrier L)
=
{v} holds (ex r be
Real st r
= (L
. v) & r
= 1) & (
Sum L)
= ((L
. v)
* v)
proof
let V be
ComplexLinearSpace;
let v be
VECTOR of V;
let L be
C_Linear_Combination of V;
assume that
A1: L is
convex and
A2: (
Carrier L)
=
{v};
reconsider L as
C_Linear_Combination of
{v} by
A2,
Def4;
consider F be
FinSequence of the
carrier of V such that
A3: F is
one-to-one & (
rng F)
= (
Carrier L) and
A4: ex f be
FinSequence of
REAL st (
len f)
= (
len F) & (
Sum f)
= 1 & for n be
Nat st n
in (
dom f) holds (f
. n)
= (L
. (F
. n)) & (f
. n)
>=
0 by
A1;
A5: F
=
<*v*> by
A2,
A3,
FINSEQ_3: 97;
consider f be
FinSequence of
REAL such that
A6: (
len f)
= (
len F) and
A7: (
Sum f)
= 1 and
A8: for n be
Nat st n
in (
dom f) holds (f
. n)
= (L
. (F
. n)) & (f
. n)
>=
0 by
A4;
reconsider r = (f
/. 1) as
Element of
REAL ;
(
card (
Carrier L))
= 1 by
A2,
CARD_1: 30;
then (
len F)
= 1 by
A3,
FINSEQ_4: 62;
then
A9: (
dom f)
= (
Seg 1) by
A6,
FINSEQ_1:def 3;
then
A10: 1
in (
dom f);
then
A11: (f
. 1)
= (f
/. 1) by
PARTFUN1:def 6;
then
A12: f
=
<*r*> by
A9,
FINSEQ_1:def 8;
(f
. 1)
= (L
. (F
. 1)) by
A8,
A10;
then r
= (L
. v) by
A11,
A5,
FINSEQ_1:def 8;
hence thesis by
A7,
A12,
Th14,
FINSOP_1: 11;
end;
theorem ::
CONVEX4:84
Th81: for V be
ComplexLinearSpace, v1,v2 be
VECTOR of V, L be
C_Linear_Combination of V st L is
convex & (
Carrier L)
=
{v1, v2} & v1
<> v2 holds (ex r1,r2 be
Real st r1
= (L
. v1) & r2
= (L
. v2) & (r1
+ r2)
= 1 & r1
>=
0 & r2
>=
0 ) & (
Sum L)
= (((L
. v1)
* v1)
+ ((L
. v2)
* v2))
proof
let V be
ComplexLinearSpace;
let v1,v2 be
VECTOR of V;
let L be
C_Linear_Combination of V;
assume that
A1: L is
convex and
A2: (
Carrier L)
=
{v1, v2} and
A3: v1
<> v2;
reconsider L as
C_Linear_Combination of
{v1, v2} by
A2,
Def4;
consider F be
FinSequence of the
carrier of V such that
A4: F is
one-to-one & (
rng F)
= (
Carrier L) and
A5: ex f be
FinSequence of
REAL st (
len f)
= (
len F) & (
Sum f)
= 1 & for n be
Nat st n
in (
dom f) holds (f
. n)
= (L
. (F
. n)) & (f
. n)
>=
0 by
A1;
consider f be
FinSequence of
REAL such that
A6: (
len f)
= (
len F) and
A7: (
Sum f)
= 1 and
A8: for n be
Nat st n
in (
dom f) holds (f
. n)
= (L
. (F
. n)) & (f
. n)
>=
0 by
A5;
(
len F)
= (
card
{v1, v2}) by
A2,
A4,
FINSEQ_4: 62;
then
A9: (
len f)
= 2 by
A3,
A6,
CARD_2: 57;
then
A10: (
dom f)
=
{1, 2} by
FINSEQ_1: 2,
FINSEQ_1:def 3;
then
A11: 2
in (
dom f) by
TARSKI:def 2;
then
A12: (f
. 2)
= (L
. (F
. 2)) by
A8;
then (f
/. 2)
= (L
. (F
. 2)) by
A11,
PARTFUN1:def 6;
then
reconsider r2 = (L
. (F
. 2)) as
Real;
A13: (f
. 2)
>=
0 by
A8,
A11;
A14: 1
in (
dom f) by
A10,
TARSKI:def 2;
then
A15: (f
. 1)
= (L
. (F
. 1)) by
A8;
then (f
/. 1)
= (L
. (F
. 1)) by
A14,
PARTFUN1:def 6;
then
reconsider r1 = (L
. (F
. 1)) as
Real;
A16: f
=
<*r1, r2*> by
A9,
A15,
A12,
FINSEQ_1: 44;
ex c1,c2 be
Real st c1
= (L
. v1) & c2
= (L
. v2) & (c1
+ c2)
= 1 & c1
>=
0 & c2
>=
0
proof
per cases by
A2,
A3,
A4,
FINSEQ_3: 99;
suppose F
=
<*v1, v2*>;
then
A17: r1
= (L
. v1) & r2
= (L
. v2) by
FINSEQ_1: 44;
(r1
+ r2)
= 1 & r1
>=
0 by
A7,
A8,
A14,
A15,
A16,
RVSUM_1: 77;
hence thesis by
A12,
A13,
A17;
end;
suppose F
=
<*v2, v1*>;
then
A18: r1
= (L
. v2) & r2
= (L
. v1) by
FINSEQ_1: 44;
(r1
+ r2)
= 1 & r1
>=
0 by
A7,
A8,
A14,
A15,
A16,
RVSUM_1: 77;
hence thesis by
A12,
A13,
A18;
end;
end;
hence thesis by
A3,
Th15;
end;
Lm3: for V be
ComplexLinearSpace, v1,v2,v3 be
VECTOR of V, L be
C_Linear_Combination of
{v1, v2, v3} st v1
<> v2 & v2
<> v3 & v3
<> v1 holds (
Sum L)
= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ ((L
. v3)
* v3))
proof
let V be
ComplexLinearSpace;
let v1,v2,v3 be
VECTOR of V;
let L be
C_Linear_Combination of
{v1, v2, v3};
assume that
A1: v1
<> v2 and
A2: v2
<> v3 and
A3: v3
<> v1;
A4: (
Carrier L)
c=
{v1, v2, v3} by
Def4;
per cases by
A4,
ZFMISC_1: 118;
suppose (
Carrier L)
=
{} ;
then
A5: L
= (
ZeroCLC V) by
Def3;
then (
Sum L)
= (
0. V) by
Th11
.= ((
0. V)
+ (
0. V))
.= (((
0. V)
+ (
0. V))
+ (
0. V))
.= (((
0c
* v1)
+ (
0. V))
+ (
0. V)) by
CLVECT_1: 1
.= (((
0c
* v1)
+ (
0c
* v2))
+ (
0. V)) by
CLVECT_1: 1
.= (((
0c
* v1)
+ (
0c
* v2))
+ (
0c
* v3)) by
CLVECT_1: 1
.= ((((L
. v1)
* v1)
+ (
0c
* v2))
+ (
0c
* v3)) by
A5,
Th2
.= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ (
0c
* v3)) by
A5,
Th2
.= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ ((L
. v3)
* v3)) by
A5,
Th2;
hence thesis;
end;
suppose
A6: (
Carrier L)
=
{v1};
then
reconsider L as
C_Linear_Combination of
{v1} by
Def4;
A7: not v2
in (
Carrier L) by
A1,
A6,
TARSKI:def 1;
A8: not v3
in (
Carrier L) by
A3,
A6,
TARSKI:def 1;
(
Sum L)
= ((L
. v1)
* v1) by
Th14
.= (((L
. v1)
* v1)
+ (
0. V))
.= ((((L
. v1)
* v1)
+ (
0. V))
+ (
0. V))
.= ((((L
. v1)
* v1)
+ (
0c
* v2))
+ (
0. V)) by
CLVECT_1: 1
.= ((((L
. v1)
* v1)
+ (
0c
* v2))
+ (
0c
* v3)) by
CLVECT_1: 1
.= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ (
0c
* v3)) by
A7
.= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ ((L
. v3)
* v3)) by
A8;
hence thesis;
end;
suppose
A9: (
Carrier L)
=
{v2};
then
reconsider L as
C_Linear_Combination of
{v2} by
Def4;
A10: not v1
in (
Carrier L) by
A1,
A9,
TARSKI:def 1;
A11: not v3
in (
Carrier L) by
A2,
A9,
TARSKI:def 1;
(
Sum L)
= ((L
. v2)
* v2) by
Th14
.= ((
0. V)
+ ((L
. v2)
* v2))
.= (((
0. V)
+ ((L
. v2)
* v2))
+ (
0. V))
.= (((
0c
* v1)
+ ((L
. v2)
* v2))
+ (
0. V)) by
CLVECT_1: 1
.= (((
0c
* v1)
+ ((L
. v2)
* v2))
+ (
0c
* v3)) by
CLVECT_1: 1
.= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ (
0c
* v3)) by
A10
.= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ ((L
. v3)
* v3)) by
A11;
hence thesis;
end;
suppose
A12: (
Carrier L)
=
{v3};
then
reconsider L as
C_Linear_Combination of
{v3} by
Def4;
A13: not v1
in (
Carrier L) by
A3,
A12,
TARSKI:def 1;
A14: not v2
in (
Carrier L) by
A2,
A12,
TARSKI:def 1;
(
Sum L)
= ((L
. v3)
* v3) by
Th14
.= ((
0. V)
+ ((L
. v3)
* v3))
.= (((
0. V)
+ (
0. V))
+ ((L
. v3)
* v3))
.= (((
0c
* v1)
+ (
0. V))
+ ((L
. v3)
* v3)) by
CLVECT_1: 1
.= (((
0c
* v1)
+ (
0c
* v2))
+ ((L
. v3)
* v3)) by
CLVECT_1: 1
.= ((((L
. v1)
* v1)
+ (
0c
* v2))
+ ((L
. v3)
* v3)) by
A13
.= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ ((L
. v3)
* v3)) by
A14;
hence thesis;
end;
suppose
A15: (
Carrier L)
=
{v1, v2};
then
A16: (
Sum L)
= (((L
. v1)
* v1)
+ ((L
. v2)
* v2)) by
A1,
Th18
.= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ (
0. V))
.= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ (
0c
* v3)) by
CLVECT_1: 1;
not v3
in (
Carrier L) by
A2,
A3,
A15,
TARSKI:def 2;
hence thesis by
A16;
end;
suppose
A17: (
Carrier L)
=
{v1, v3};
then
A18: (
Sum L)
= (((L
. v1)
* v1)
+ ((L
. v3)
* v3)) by
A3,
Th18
.= ((((L
. v1)
* v1)
+ (
0. V))
+ ((L
. v3)
* v3))
.= ((((L
. v1)
* v1)
+ (
0c
* v2))
+ ((L
. v3)
* v3)) by
CLVECT_1: 1;
not v2
in (
Carrier L) by
A1,
A2,
A17,
TARSKI:def 2;
hence thesis by
A18;
end;
suppose
A19: (
Carrier L)
=
{v2, v3};
then
A20: (
Sum L)
= (((L
. v2)
* v2)
+ ((L
. v3)
* v3)) by
A2,
Th18
.= (((
0. V)
+ ((L
. v2)
* v2))
+ ((L
. v3)
* v3))
.= (((
0c
* v1)
+ ((L
. v2)
* v2))
+ ((L
. v3)
* v3)) by
CLVECT_1: 1;
not v1
in (
Carrier L) by
A1,
A3,
A19,
TARSKI:def 2;
hence thesis by
A20;
end;
suppose (
Carrier L)
=
{v1, v2, v3};
then
consider F be
FinSequence of the
carrier of V such that
A21: F is
one-to-one & (
rng F)
=
{v1, v2, v3} and
A22: (
Sum L)
= (
Sum (L
(#) F)) by
Def6;
F
=
<*v1, v2, v3*> or F
=
<*v1, v3, v2*> or F
=
<*v2, v1, v3*> or F
=
<*v2, v3, v1*> or F
=
<*v3, v1, v2*> or F
=
<*v3, v2, v1*> by
A1,
A2,
A3,
A21,
CONVEX1: 31;
then (L
(#) F)
=
<*((L
. v1)
* v1), ((L
. v2)
* v2), ((L
. v3)
* v3)*> or (L
(#) F)
=
<*((L
. v1)
* v1), ((L
. v3)
* v3), ((L
. v2)
* v2)*> or (L
(#) F)
=
<*((L
. v2)
* v2), ((L
. v1)
* v1), ((L
. v3)
* v3)*> or (L
(#) F)
=
<*((L
. v2)
* v2), ((L
. v3)
* v3), ((L
. v1)
* v1)*> or (L
(#) F)
=
<*((L
. v3)
* v3), ((L
. v1)
* v1), ((L
. v2)
* v2)*> or (L
(#) F)
=
<*((L
. v3)
* v3), ((L
. v2)
* v2), ((L
. v1)
* v1)*> by
Th10;
then (
Sum L)
= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ ((L
. v3)
* v3)) or (
Sum L)
= (((L
. v1)
* v1)
+ (((L
. v2)
* v2)
+ ((L
. v3)
* v3))) or (
Sum L)
= (((L
. v2)
* v2)
+ (((L
. v1)
* v1)
+ ((L
. v3)
* v3))) by
A22,
RLVECT_1: 46;
hence thesis by
RLVECT_1:def 3;
end;
end;
theorem ::
CONVEX4:85
Th82: for V be
ComplexLinearSpace, v1,v2,v3 be
VECTOR of V, L be
C_Linear_Combination of V st L is
convex & (
Carrier L)
=
{v1, v2, v3} & v1
<> v2 & v2
<> v3 & v3
<> v1 holds (ex r1,r2,r3 be
Real st r1
= (L
. v1) & r2
= (L
. v2) & r3
= (L
. v3) & ((r1
+ r2)
+ r3)
= 1 & r1
>=
0 & r2
>=
0 & r3
>=
0 ) & (
Sum L)
= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ ((L
. v3)
* v3))
proof
let V be
ComplexLinearSpace;
let v1,v2,v3 be
VECTOR of V;
let L be
C_Linear_Combination of V;
assume that
A1: L is
convex and
A2: (
Carrier L)
=
{v1, v2, v3} and
A3: v1
<> v2 & v2
<> v3 & v3
<> v1;
reconsider L as
C_Linear_Combination of
{v1, v2, v3} by
A2,
Def4;
consider F be
FinSequence of the
carrier of V such that
A4: F is
one-to-one & (
rng F)
= (
Carrier L) and
A5: ex f be
FinSequence of
REAL st (
len f)
= (
len F) & (
Sum f)
= 1 & for n be
Nat st n
in (
dom f) holds (f
. n)
= (L
. (F
. n)) & (f
. n)
>=
0 by
A1;
consider f be
FinSequence of
REAL such that
A6: (
len f)
= (
len F) and
A7: (
Sum f)
= 1 and
A8: for n be
Nat st n
in (
dom f) holds (f
. n)
= (L
. (F
. n)) & (f
. n)
>=
0 by
A5;
(
len F)
= (
card
{v1, v2, v3}) by
A2,
A4,
FINSEQ_4: 62;
then
A9: (
len f)
= 3 by
A3,
A6,
CARD_2: 58;
then
A10: (
dom f)
=
{1, 2, 3} by
FINSEQ_1:def 3,
FINSEQ_3: 1;
then
A11: 2
in (
dom f) by
ENUMSET1:def 1;
then
A12: (f
. 2)
= (L
. (F
. 2)) by
A8;
then (f
/. 2)
= (L
. (F
. 2)) by
A11,
PARTFUN1:def 6;
then
reconsider r2 = (L
. (F
. 2)) as
Element of
REAL ;
A13: (f
. 2)
>=
0 by
A8,
A11;
A14: 3
in (
dom f) by
A10,
ENUMSET1:def 1;
then
A15: (f
. 3)
= (L
. (F
. 3)) by
A8;
then (f
/. 3)
= (L
. (F
. 3)) by
A14,
PARTFUN1:def 6;
then
reconsider r3 = (L
. (F
. 3)) as
Element of
REAL ;
A16: (f
. 3)
>=
0 by
A8,
A14;
A17: 1
in (
dom f) by
A10,
ENUMSET1:def 1;
then
A18: (f
. 1)
= (L
. (F
. 1)) by
A8;
then (f
/. 1)
= (L
. (F
. 1)) by
A17,
PARTFUN1:def 6;
then
reconsider r1 = (L
. (F
. 1)) as
Element of
REAL ;
A19: f
=
<*r1, r2, r3*> by
A9,
A18,
A12,
A15,
FINSEQ_1: 45;
then
A20: ((r1
+ r2)
+ r3)
= 1 by
A7,
RVSUM_1: 78;
A21: (f
. 1)
>=
0 by
A8,
A17;
ex a,b,c be
Real st a
= (L
. v1) & b
= (L
. v2) & c
= (L
. v3) & ((a
+ b)
+ c)
= 1 & a
>=
0 & b
>=
0 & c
>=
0
proof
per cases by
A2,
A3,
A4,
CONVEX1: 31;
suppose
A22: F
=
<*v1, v2, v3*>;
then
A23: r1
= (L
. v1) & r2
= (L
. v2) by
FINSEQ_1: 45;
A24: r2
>=
0 by
A8,
A11,
A12;
A25: r3
= (L
. v3) by
A22,
FINSEQ_1: 45;
((r1
+ r2)
+ r3)
= 1 & r1
>=
0 by
A7,
A8,
A17,
A18,
A19,
RVSUM_1: 78;
hence thesis by
A15,
A16,
A23,
A25,
A24;
end;
suppose
A26: F
=
<*v1, v3, v2*>;
then
A27: r1
= (L
. v1) & r3
= (L
. v2) by
FINSEQ_1: 45;
A28: r3
>=
0 by
A8,
A14,
A15;
A29: r2
= (L
. v3) by
A26,
FINSEQ_1: 45;
((r1
+ r3)
+ r2)
= 1 & r1
>=
0 by
A8,
A17,
A18,
A20;
hence thesis by
A12,
A13,
A27,
A29,
A28;
end;
suppose
A30: F
=
<*v2, v1, v3*>;
then
A31: r2
= (L
. v1) & r1
= (L
. v2) by
FINSEQ_1: 45;
A32: r1
>=
0 by
A8,
A17,
A18;
A33: r3
= (L
. v3) by
A30,
FINSEQ_1: 45;
((r2
+ r1)
+ r3)
= 1 & r2
>=
0 by
A7,
A8,
A11,
A12,
A19,
RVSUM_1: 78;
hence thesis by
A15,
A16,
A31,
A33,
A32;
end;
suppose
A34: F
=
<*v2, v3, v1*>;
then
A35: r3
= (L
. v1) & r1
= (L
. v2) by
FINSEQ_1: 45;
A36: r1
>=
0 by
A8,
A17,
A18;
A37: r2
= (L
. v3) by
A34,
FINSEQ_1: 45;
((r3
+ r1)
+ r2)
= 1 & r3
>=
0 by
A8,
A14,
A15,
A20;
hence thesis by
A12,
A13,
A35,
A37,
A36;
end;
suppose
A38: F
=
<*v3, v1, v2*>;
then
A39: r2
= (L
. v1) & r3
= (L
. v2) by
FINSEQ_1: 45;
A40: r3
>=
0 by
A8,
A14,
A15;
A41: r1
= (L
. v3) by
A38,
FINSEQ_1: 45;
((r2
+ r3)
+ r1)
= 1 & r2
>=
0 by
A8,
A11,
A12,
A20;
hence thesis by
A18,
A21,
A39,
A41,
A40;
end;
suppose
A42: F
=
<*v3, v2, v1*>;
then
A43: r3
= (L
. v1) & r2
= (L
. v2) by
FINSEQ_1: 45;
A44: r2
>=
0 by
A8,
A11,
A12;
A45: r1
= (L
. v3) by
A42,
FINSEQ_1: 45;
((r3
+ r2)
+ r1)
= 1 & r3
>=
0 by
A8,
A14,
A15,
A20;
hence thesis by
A18,
A21,
A43,
A45,
A44;
end;
end;
hence thesis by
A3,
Lm3;
end;
theorem ::
CONVEX4:86
for V be
ComplexLinearSpace, v be
VECTOR of V, L be
C_Linear_Combination of
{v} st L is
convex holds (ex r be
Real st r
= (L
. v) & r
= 1) & (
Sum L)
= ((L
. v)
* v)
proof
let V be
ComplexLinearSpace;
let v be
VECTOR of V;
let L be
C_Linear_Combination of
{v};
(
Carrier L)
c=
{v} by
Def4;
then
A1: (
Carrier L)
=
{} or (
Carrier L)
=
{v} by
ZFMISC_1: 33;
assume L is
convex;
hence thesis by
A1,
Th77,
Th80;
end;
theorem ::
CONVEX4:87
for V be
ComplexLinearSpace, v1,v2 be
VECTOR of V, L be
C_Linear_Combination of
{v1, v2} st v1
<> v2 & L is
convex holds (ex r1,r2 be
Real st r1
= (L
. v1) & r2
= (L
. v2) & r1
>=
0 & r2
>=
0 ) & (
Sum L)
= (((L
. v1)
* v1)
+ ((L
. v2)
* v2))
proof
let V be
ComplexLinearSpace;
let v1,v2 be
VECTOR of V;
let L be
C_Linear_Combination of
{v1, v2};
assume that
A1: v1
<> v2 and
A2: L is
convex;
A3: (
Carrier L)
c=
{v1, v2} by
Def4;
A4: (
Carrier L)
<>
{} by
A2,
Th77;
ex r1,r2 be
Real st r1
= (L
. v1) & r2
= (L
. v2) & r1
>=
0 & r2
>=
0
proof
per cases by
A3,
A4,
ZFMISC_1: 36;
suppose
A5: (
Carrier L)
=
{v1};
then not v2
in (
Carrier L) by
A1,
TARSKI:def 1;
then
A6:
0
= (L
. v2);
ex r be
Real st r
= (L
. v1) & r
= 1 by
A2,
A5,
Th80;
hence thesis by
A6;
end;
suppose
A7: (
Carrier L)
=
{v2};
then not v1
in (
Carrier L) by
A1,
TARSKI:def 1;
then
A8:
0
= (L
. v1);
ex r be
Real st r
= (L
. v2) & r
= 1 by
A2,
A7,
Th80;
hence thesis by
A8;
end;
suppose (
Carrier L)
=
{v1, v2};
then ex r1,r2 be
Real st r1
= (L
. v1) & r2
= (L
. v2) & (r1
+ r2)
= 1 & r1
>=
0 & r2
>=
0 by
A1,
A2,
Th81;
hence thesis;
end;
end;
hence thesis by
A1,
Th15;
end;
theorem ::
CONVEX4:88
for V be
ComplexLinearSpace, v1,v2,v3 be
VECTOR of V, L be
C_Linear_Combination of
{v1, v2, v3} st v1
<> v2 & v2
<> v3 & v3
<> v1 & L is
convex holds (ex r1,r2,r3 be
Real st r1
= (L
. v1) & r2
= (L
. v2) & r3
= (L
. v3) & ((r1
+ r2)
+ r3)
= 1 & r1
>=
0 & r2
>=
0 & r3
>=
0 ) & (
Sum L)
= ((((L
. v1)
* v1)
+ ((L
. v2)
* v2))
+ ((L
. v3)
* v3))
proof
let V be
ComplexLinearSpace;
let v1,v2,v3 be
VECTOR of V;
let L be
C_Linear_Combination of
{v1, v2, v3};
assume that
A1: v1
<> v2 and
A2: v2
<> v3 and
A3: v3
<> v1 and
A4: L is
convex;
A5: (
Carrier L)
c=
{v1, v2, v3} by
Def4;
A6: (
Carrier L)
<>
{} by
A4,
Th77;
ex r1,r2,r3 be
Real st r1
= (L
. v1) & r2
= (L
. v2) & r3
= (L
. v3) & ((r1
+ r2)
+ r3)
= 1 & r1
>=
0 & r2
>=
0 & r3
>=
0
proof
per cases by
A5,
A6,
ZFMISC_1: 118;
suppose
A7: (
Carrier L)
=
{v1};
then not v2
in (
Carrier L) by
A1,
TARSKI:def 1;
then
A8:
0
= (L
. v2);
A9: ((1
+
0 )
+
0 )
= 1;
not v3
in (
Carrier L) by
A3,
A7,
TARSKI:def 1;
then
A10:
0
= (L
. v3);
ex r be
Real st r
= (L
. v1) & r
= 1 by
A4,
A7,
Th80;
hence thesis by
A8,
A10,
A9;
end;
suppose
A11: (
Carrier L)
=
{v2};
then not v1
in (
Carrier L) by
A1,
TARSKI:def 1;
then
A12:
0
= (L
. v1);
A13: ((
0
+ 1)
+
0 )
= 1;
not v3
in (
Carrier L) by
A2,
A11,
TARSKI:def 1;
then
A14:
0
= (L
. v3);
ex r be
Real st r
= (L
. v2) & r
= 1 by
A4,
A11,
Th80;
hence thesis by
A12,
A14,
A13;
end;
suppose
A15: (
Carrier L)
=
{v3};
then not v1
in (
Carrier L) by
A3,
TARSKI:def 1;
then
A16:
0
= (L
. v1);
A17: ((
0
+
0 )
+ 1)
= 1;
not v2
in (
Carrier L) by
A2,
A15,
TARSKI:def 1;
then
A18:
0
= (L
. v2);
ex r be
Real st r
= (L
. v3) & r
= 1 by
A4,
A15,
Th80;
hence thesis by
A16,
A18,
A17;
end;
suppose
A19: (
Carrier L)
=
{v1, v2};
set r3 =
0 ;
not v3
in { v where v be
Element of V : (L
. v)
<>
0 } by
A2,
A3,
A19,
TARSKI:def 2;
then
A20: r3
= (L
. v3);
consider r1,r2 be
Real such that
A21: r1
= (L
. v1) & r2
= (L
. v2) and
A22: (r1
+ r2)
= 1 and
A23: r1
>=
0 & r2
>=
0 by
A1,
A4,
A19,
Th81;
((r1
+ r2)
+ r3)
= 1 by
A22;
hence thesis by
A21,
A23,
A20;
end;
suppose
A24: (
Carrier L)
=
{v2, v3};
set r1 =
0 ;
not v1
in (
Carrier L) by
A1,
A3,
A24,
TARSKI:def 2;
then
A25: r1
= (L
. v1);
consider r2,r3 be
Real such that
A26: r2
= (L
. v2) & r3
= (L
. v3) and
A27: (r2
+ r3)
= 1 and
A28: r2
>=
0 & r3
>=
0 by
A2,
A4,
A24,
Th81;
((r1
+ r2)
+ r3)
= 1 by
A27;
hence thesis by
A26,
A28,
A25;
end;
suppose
A29: (
Carrier L)
=
{v1, v3};
set r2 =
0 ;
not v2
in (
Carrier L) by
A1,
A2,
A29,
TARSKI:def 2;
then
A30: r2
= (L
. v2);
consider r1,r3 be
Real such that
A31: r1
= (L
. v1) & r3
= (L
. v3) and
A32: (r1
+ r3)
= 1 and
A33: r1
>=
0 & r3
>=
0 by
A3,
A4,
A29,
Th81;
((r1
+ r2)
+ r3)
= 1 by
A32;
hence thesis by
A31,
A33,
A30;
end;
suppose (
Carrier L)
=
{v1, v2, v3};
hence thesis by
A1,
A2,
A3,
A4,
Th82;
end;
end;
hence thesis by
A1,
A2,
A3,
Lm3;
end;
begin
definition
let V be non
empty
CLSStruct, M be
Subset of V;
::
CONVEX4:def25
func
Convex-Family M ->
Subset-Family of V means
:
Def25: for N be
Subset of V holds N
in it iff N is
convex & M
c= N;
existence
proof
defpred
P[
Subset of V] means $1 is
convex & M
c= $1;
thus ex F be
Subset-Family of V st for N be
Subset of V holds N
in F iff
P[N] from
SUBSET_1:sch 3;
end;
uniqueness
proof
let SF,SG be
Subset-Family of V;
assume that
A1: for N be
Subset of V holds N
in SF iff N is
convex & M
c= N and
A2: for N be
Subset of V holds N
in SG iff N is
convex & M
c= N;
for Y be
Subset of V holds Y
in SF iff Y
in SG
proof
let Y be
Subset of V;
hereby
assume Y
in SF;
then Y is
convex & M
c= Y by
A1;
hence Y
in SG by
A2;
end;
assume Y
in SG;
then Y is
convex & M
c= Y by
A2;
hence thesis by
A1;
end;
hence thesis by
SETFAM_1: 31;
end;
end
definition
let V be non
empty
CLSStruct, M be
Subset of V;
::
CONVEX4:def26
func
conv M ->
convex
Subset of V equals (
meet (
Convex-Family M));
coherence
proof
for N be
Subset of V st N
in (
Convex-Family M) holds N is
convex by
Def25;
hence thesis by
Th65;
end;
end
theorem ::
CONVEX4:89
for V be non
empty
CLSStruct, M be
Subset of V, N be
convex
Subset of V st M
c= N holds (
conv M)
c= N
proof
let V be non
empty
CLSStruct;
let M be
Subset of V;
let N be
convex
Subset of V;
assume M
c= N;
then N
in (
Convex-Family M) by
Def25;
hence thesis by
SETFAM_1: 3;
end;