csspace2.miz
begin
Lm1: for seq be
Complex_Sequence holds (
Partial_Sums (seq
*' ))
= ((
Partial_Sums seq)
*' )
proof
let seq be
Complex_Sequence;
defpred
P[
Nat] means ((
Partial_Sums (seq
*' ))
. $1)
= (((
Partial_Sums seq)
*' )
. $1);
A1:
now
let n be
Nat;
A2: n
in
NAT by
ORDINAL1:def 12;
assume
A3:
P[n];
((
Partial_Sums (seq
*' ))
. (n
+ 1))
= (((
Partial_Sums (seq
*' ))
. n)
+ ((seq
*' )
. (n
+ 1))) by
SERIES_1:def 1
.= ((((
Partial_Sums seq)
*' )
. n)
+ ((seq
. (n
+ 1))
*' )) by
A3,
COMSEQ_2:def 2
.= ((((
Partial_Sums seq)
. n)
*' )
+ ((seq
. (n
+ 1))
*' )) by
COMSEQ_2:def 2,
A2
.= ((((
Partial_Sums seq)
. n)
+ (seq
. (n
+ 1)))
*' ) by
COMPLEX1: 32
.= (((
Partial_Sums seq)
. (n
+ 1))
*' ) by
SERIES_1:def 1;
hence
P[(n
+ 1)] by
COMSEQ_2:def 2;
end;
((
Partial_Sums (seq
*' ))
.
0 )
= ((seq
*' )
.
0 ) by
SERIES_1:def 1
.= ((seq
.
0 )
*' ) by
COMSEQ_2:def 2
.= (((
Partial_Sums seq)
.
0 )
*' ) by
SERIES_1:def 1;
then
A4:
P[
0 ] by
COMSEQ_2:def 2;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A1);
then for n be
Element of
NAT holds
P[n];
hence thesis by
FUNCT_2: 63;
end;
Lm2: for a,b be
Real holds
0
<= ((a
^2 )
+ (b
^2 ))
proof
let a,b be
Real;
0
<= (a
^2 ) &
0
<= (b
^2 ) by
XREAL_1: 63;
then (
0
+
0 )
<= ((a
^2 )
+ (b
^2 ));
hence thesis;
end;
Lm3: for z1,z2 be
Complex st ((
Re z1)
* (
Im z2))
= ((
Re z2)
* (
Im z1)) & (((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
>=
0 holds
|.(z1
+ z2).|
= (
|.z1.|
+
|.z2.|)
proof
let z1,z2 be
Complex;
assume that
A1: ((
Re z1)
* (
Im z2))
= ((
Re z2)
* (
Im z1)) and
A2: (((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
>=
0 ;
set r1 = (
Re z1), r2 = (
Re z2), i1 = (
Im z1), i2 = (
Im z2);
A3: ((
Re (z1
+ z2))
^2 )
= ((r1
+ r2)
^2 ) by
COMPLEX1: 8
.= (((r1
^2 )
+ ((2
* r1)
* r2))
+ (r2
^2 ));
((r1
* r2)
+ (i1
* i2))
=
|.((r1
* r2)
+ (i1
* i2)).| by
A2,
ABSVALUE:def 1;
then
A4: ((r1
* r2)
+ (i1
* i2))
= (
sqrt (((r1
* r2)
+ (i1
* i2))
^2 )) by
COMPLEX1: 72;
A5: ((
Im (z1
+ z2))
^2 )
= ((i1
+ i2)
^2 ) by
COMPLEX1: 8
.= (((i1
^2 )
+ ((2
* i1)
* i2))
+ (i2
^2 ));
A6:
0
<= ((r2
^2 )
+ (i2
^2 )) by
Lm2;
then
A7: ((
sqrt ((r2
^2 )
+ (i2
^2 )))
^2 )
= ((r2
^2 )
+ (i2
^2 )) by
SQUARE_1:def 2;
A8:
0
<= (
sqrt ((r2
^2 )
+ (i2
^2 ))) by
A6,
SQUARE_1:def 2;
A9:
0
<= ((r1
^2 )
+ (i1
^2 )) by
Lm2;
then
0
<= (
sqrt ((r1
^2 )
+ (i1
^2 ))) by
SQUARE_1:def 2;
then
A10: (
0
+
0 )
<= ((
sqrt ((r1
^2 )
+ (i1
^2 )))
+ (
sqrt ((r2
^2 )
+ (i2
^2 )))) by
A8;
((((r1
^2 )
+ (i1
^2 ))
* ((r2
^2 )
+ (i2
^2 )))
- (((r1
* r2)
+ (i1
* i2))
^2 ))
= (((r1
* i2)
- (i1
* r2))
^2 );
then (
sqrt (((r1
* r2)
+ (i1
* i2))
^2 ))
= (
sqrt (((r1
^2 )
+ (i1
^2 ))
* ((r2
^2 )
+ (i2
^2 )))) by
A1,
XCMPLX_1: 15;
then
A11: (
sqrt (((r1
* r2)
+ (i1
* i2))
^2 ))
= ((
sqrt ((r1
^2 )
+ (i1
^2 )))
* (
sqrt ((r2
^2 )
+ (i2
^2 )))) by
A9,
A6,
SQUARE_1: 29;
((
sqrt ((r1
^2 )
+ (i1
^2 )))
^2 )
= ((r1
^2 )
+ (i1
^2 )) by
A9,
SQUARE_1:def 2;
then (
sqrt (((
Re (z1
+ z2))
^2 )
+ ((
Im (z1
+ z2))
^2 )))
= (
sqrt (((
sqrt ((r1
^2 )
+ (i1
^2 )))
+ (
sqrt ((r2
^2 )
+ (i2
^2 ))))
^2 )) by
A7,
A3,
A5,
A4,
A11;
then (
sqrt (((
Re (z1
+ z2))
^2 )
+ ((
Im (z1
+ z2))
^2 )))
= ((
sqrt ((r1
^2 )
+ (i1
^2 )))
+ (
sqrt ((r2
^2 )
+ (i2
^2 )))) by
A10,
SQUARE_1: 22;
then (
sqrt (((
Re (z1
+ z2))
^2 )
+ ((
Im (z1
+ z2))
^2 )))
= ((
sqrt ((r1
^2 )
+ (i1
^2 )))
+
|.z2.|) by
COMPLEX1:def 12;
then (
sqrt (((
Re (z1
+ z2))
^2 )
+ ((
Im (z1
+ z2))
^2 )))
= (
|.z1.|
+
|.z2.|) by
COMPLEX1:def 12;
hence thesis by
COMPLEX1:def 12;
end;
Lm4: for seq be
Complex_Sequence, n be
Nat st (for i be
Nat holds ((
Re seq)
. i)
>=
0 & ((
Im seq)
. i)
=
0 ) holds (
|.(
Partial_Sums seq).|
. n)
= ((
Partial_Sums
|.seq.|)
. n)
proof
let seq be
Complex_Sequence;
let n be
Nat;
defpred
P[
Nat] means (
|.(
Partial_Sums seq).|
. $1)
= ((
Partial_Sums
|.seq.|)
. $1);
assume
A1: for i be
Nat holds ((
Re seq)
. i)
>=
0 & ((
Im seq)
. i)
=
0 ;
A2:
now
let m be
Nat;
assume
A3:
P[m];
thus
P[(m
+ 1)]
proof
for i be
Nat holds ((
Partial_Sums (
Re seq))
. i)
>=
0
proof
defpred
Q1[
Nat] means ((
Partial_Sums (
Re seq))
. $1)
>=
0 ;
let i be
Nat;
A4:
now
let k be
Nat;
assume
A5:
Q1[k];
((
Partial_Sums (
Re seq))
. (k
+ 1))
= (((
Partial_Sums (
Re seq))
. k)
+ ((
Re seq)
. (k
+ 1))) & ((
Re seq)
. (k
+ 1))
>=
0 by
A1,
SERIES_1:def 1;
then ((
Partial_Sums (
Re seq))
. (k
+ 1))
>= (
0
+
0 ) by
A5;
hence
Q1[(k
+ 1)];
end;
((
Partial_Sums (
Re seq))
.
0 )
= ((
Re seq)
.
0 ) by
SERIES_1:def 1;
then
A6:
Q1[
0 ] by
A1;
for i be
Nat holds
Q1[i] from
NAT_1:sch 2(
A6,
A4);
hence thesis;
end;
then ((
Partial_Sums (
Re seq))
. m)
>=
0 ;
then ((
Re (
Partial_Sums seq))
. m)
>=
0 by
COMSEQ_3: 26;
then
A7: (
Re ((
Partial_Sums seq)
. m))
>=
0 by
COMSEQ_3:def 5;
set z2 = (seq
. (m
+ 1));
set z1 = ((
Partial_Sums seq)
. m);
A8: (
|.(
Partial_Sums seq).|
. (m
+ 1))
=
|.((
Partial_Sums seq)
. (m
+ 1)).| by
VALUED_1: 18
.=
|.(((
Partial_Sums seq)
. m)
+ (seq
. (m
+ 1))).| by
SERIES_1:def 1;
for i be
Nat holds ((
Partial_Sums (
Im seq))
. i)
=
0
proof
defpred
Q2[
Nat] means ((
Partial_Sums (
Im seq))
. $1)
=
0 ;
let i be
Nat;
A9:
now
let k be
Nat;
A10: ((
Partial_Sums (
Im seq))
. (k
+ 1))
= (((
Partial_Sums (
Im seq))
. k)
+ ((
Im seq)
. (k
+ 1))) by
SERIES_1:def 1;
assume
Q2[k];
hence
Q2[(k
+ 1)] by
A1,
A10;
end;
((
Partial_Sums (
Im seq))
.
0 )
= ((
Im seq)
.
0 ) by
SERIES_1:def 1;
then
A11:
Q2[
0 ] by
A1;
for i be
Nat holds
Q2[i] from
NAT_1:sch 2(
A11,
A9);
hence thesis;
end;
then ((
Partial_Sums (
Im seq))
. m)
=
0 ;
then ((
Im (
Partial_Sums seq))
. m)
=
0 by
COMSEQ_3: 26;
then
A12: (
Im ((
Partial_Sums seq)
. m))
=
0 by
COMSEQ_3:def 6;
((
Im seq)
. (m
+ 1))
=
0 by
A1;
then (
Im (seq
. (m
+ 1)))
=
0 by
COMSEQ_3:def 6;
then
A13: ((
Re z1)
* (
Im z2))
= ((
Re z2)
* (
Im z1)) by
A12;
((
Re seq)
. (m
+ 1))
>=
0 by
A1;
then (
Re (seq
. (m
+ 1)))
>=
0 by
COMSEQ_3:def 5;
then (((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
>=
0 by
A7,
A12;
then (
|.(
Partial_Sums seq).|
. (m
+ 1))
= (
|.((
Partial_Sums seq)
. m).|
+
|.(seq
. (m
+ 1)).|) by
A8,
A13,
Lm3
.= ((
|.(
Partial_Sums seq).|
. m)
+
|.(seq
. (m
+ 1)).|) by
VALUED_1: 18
.= (((
Partial_Sums
|.seq.|)
. m)
+ (
|.seq.|
. (m
+ 1))) by
A3,
VALUED_1: 18;
hence thesis by
SERIES_1:def 1;
end;
end;
(
|.(
Partial_Sums seq).|
.
0 )
=
|.((
Partial_Sums seq)
.
0 ).| by
VALUED_1: 18
.=
|.(seq
.
0 ).| by
SERIES_1:def 1
.= (
|.seq.|
.
0 ) by
VALUED_1: 18;
then
A14:
P[
0 ] by
SERIES_1:def 1;
for m be
Nat holds
P[m] from
NAT_1:sch 2(
A14,
A2);
hence thesis;
end;
Lm5: for seq be
Complex_Sequence st seq is
summable holds (
Sum (seq
*' ))
= ((
Sum seq)
*' )
proof
let seq be
Complex_Sequence;
assume
A1: seq is
summable;
(
Sum (seq
*' ))
= (
lim (
Partial_Sums (seq
*' ))) by
COMSEQ_3:def 7
.= (
lim ((
Partial_Sums seq)
*' )) by
Lm1
.= ((
lim (
Partial_Sums seq))
*' ) by
A1,
COMSEQ_2: 12;
hence thesis by
COMSEQ_3:def 7;
end;
Lm6: for seq be
Complex_Sequence st seq is
absolutely_summable holds
|.(
Sum seq).|
<= (
Sum
|.seq.|)
proof
let seq be
Complex_Sequence;
A1: for k be
Nat holds (
|.(
Partial_Sums seq).|
. k)
<= ((
Partial_Sums
|.seq.|)
. k)
proof
let k be
Nat;
|.((
Partial_Sums seq)
. k).|
<= ((
Partial_Sums
|.seq.|)
. k) by
COMSEQ_3: 30;
hence thesis by
VALUED_1: 18;
end;
assume
A2: seq is
absolutely_summable;
then
reconsider Pseq = (
Partial_Sums seq) as
convergent
Complex_Sequence;
A3:
|.(
Sum seq).|
=
|.(
lim (
Partial_Sums seq)).| by
COMSEQ_3:def 7
.= (
lim
|.(
Partial_Sums seq).|) by
A2,
SEQ_2: 27;
|.Pseq.| is
convergent & (
Partial_Sums
|.seq.|) is
convergent by
A2,
SERIES_1:def 2;
then (
lim
|.(
Partial_Sums seq).|)
<= (
lim (
Partial_Sums
|.seq.|)) by
A1,
SEQ_2: 18;
hence thesis by
A3,
SERIES_1:def 3;
end;
Lm7: for seq be
Complex_Sequence st seq is
summable & (for n be
Nat holds ((
Re seq)
. n)
>=
0 & ((
Im seq)
. n)
=
0 ) holds
|.(
Sum seq).|
= (
Sum
|.seq.|)
proof
let seq be
Complex_Sequence;
assume that
A1: seq is
summable and
A2: for n be
Nat holds ((
Re seq)
. n)
>=
0 & ((
Im seq)
. n)
=
0 ;
for x be
object st x
in
NAT holds (
|.(
Partial_Sums seq).|
. x)
= ((
Partial_Sums
|.seq.|)
. x) by
A2,
Lm4;
then
|.(
Partial_Sums seq).|
= (
Partial_Sums
|.seq.|) by
FUNCT_2: 12;
then (
lim
|.(
Partial_Sums seq).|)
= (
Sum
|.seq.|) by
SERIES_1:def 3;
then
|.(
lim (
Partial_Sums seq)).|
= (
Sum
|.seq.|) by
A1,
SEQ_2: 27;
hence thesis by
COMSEQ_3:def 7;
end;
Lm8: for seq be
Complex_Sequence, n be
Nat holds ((
Re (seq
(#) (seq
*' )))
. n)
>=
0 & ((
Im (seq
(#) (seq
*' )))
. n)
=
0
proof
let seq be
Complex_Sequence;
let n be
Nat;
A1: n
in
NAT by
ORDINAL1:def 12;
then
reconsider nn = n as
Element of
NAT ;
reconsider z1 = (seq
. nn) as
Element of
COMPLEX ;
A2:
0
<= ((
Re z1)
^2 ) &
0
<= ((
Im z1)
^2 ) by
XREAL_1: 63;
((
Re (seq
(#) (seq
*' )))
. n)
= (
Re ((seq
(#) (seq
*' ))
. n)) by
COMSEQ_3:def 5
.= (
Re ((seq
. n)
* ((seq
*' )
. n))) by
VALUED_1: 5
.= (
Re ((seq
. n)
* ((seq
. n)
*' ))) by
COMSEQ_2:def 2,
A1
.= (((
Re z1)
^2 )
+ ((
Im z1)
^2 )) by
COMPLEX1: 40;
then ((
Re (seq
(#) (seq
*' )))
. n)
>= (
0
+
0 ) by
A2;
hence ((
Re (seq
(#) (seq
*' )))
. n)
>=
0 ;
((
Im (seq
(#) (seq
*' )))
. n)
= (
Im ((seq
(#) (seq
*' ))
. n)) by
COMSEQ_3:def 6
.= (
Im ((seq
. n)
* ((seq
*' )
. n))) by
VALUED_1: 5
.= (
Im ((seq
. n)
* ((seq
. n)
*' ))) by
COMSEQ_2:def 2,
A1;
hence thesis by
COMPLEX1: 40;
end;
Lm9: for x be
set holds x is
Element of
Complex_l2_Space iff x is
Complex_Sequence & (
|.(
seq_id x).|
(#)
|.(
seq_id x).|) is
summable
proof
for x be
set holds x is
Element of
Complex_l2_Space iff x is
Complex_Sequence & (
|.(
seq_id x).|
(#)
|.(
seq_id x).|) is
summable
proof
let x be
set;
x
in
the_set_of_ComplexSequences iff x is
Complex_Sequence by
FUNCT_2: 8,
FUNCT_2: 66;
hence thesis by
CSSPACE:def 11;
end;
hence thesis;
end;
Lm10: (
0.
Complex_l2_Space )
=
CZeroseq
proof
thus (
0.
Complex_l2_Space )
= (
0.
Linear_Space_of_ComplexSequences ) by
CSSPACE:def 10
.=
CZeroseq ;
end;
Lm12: for u,v be
VECTOR of
Complex_l2_Space holds (u
+ v)
= ((
seq_id u)
+ (
seq_id v))
proof
set W =
the_set_of_l2ComplexSequences ;
set L1 =
Linear_Space_of_ComplexSequences ;
let u,v be
VECTOR of
Complex_l2_Space ;
reconsider u1 = u, v1 = v as
VECTOR of
Linear_Space_of_ComplexSequences by
CLVECT_1: 29,
CSSPACE: 13;
(
dom the
addF of L1)
=
[:the
carrier of L1, the
carrier of L1:] by
FUNCT_2:def 1;
then
A1: (
dom (the
addF of
Linear_Space_of_ComplexSequences
|| W))
=
[:W, W:] by
RELAT_1: 62,
ZFMISC_1: 96;
(u
+ v)
= ((the
addF of
Linear_Space_of_ComplexSequences
|| W)
.
[u, v]) by
CSSPACE:def 8
.= (u1
+ v1) by
A1,
FUNCT_1: 47;
hence thesis by
CSSPACE: 15;
end;
Lm13: for r be
Complex holds for u be
VECTOR of
Complex_l2_Space holds (r
* u)
= (r
(#) (
seq_id u))
proof
set W =
the_set_of_l2ComplexSequences ;
set L1 =
Linear_Space_of_ComplexSequences ;
let r be
Complex;
let u be
VECTOR of
Complex_l2_Space ;
reconsider u1 = u as
VECTOR of
Linear_Space_of_ComplexSequences by
CLVECT_1: 29,
CSSPACE: 13;
(
dom the
Mult of L1)
=
[:
COMPLEX , the
carrier of L1:] by
FUNCT_2:def 1;
then
A1: (
dom (the
Mult of
Linear_Space_of_ComplexSequences
|
[:
COMPLEX , W:]))
=
[:
COMPLEX , W:] by
RELAT_1: 62,
ZFMISC_1: 96;
reconsider r as
Element of
COMPLEX by
XCMPLX_0:def 2;
(r
* u)
= (the
Mult of
Complex_l2_Space
.
[r, u]) by
CLVECT_1:def 1
.= ((the
Mult of
Linear_Space_of_ComplexSequences
|
[:
COMPLEX , W:])
.
[r, u]) by
CSSPACE:def 9
.= (the
Mult of
Linear_Space_of_ComplexSequences
.
[r, u]) by
A1,
FUNCT_1: 47
.= (r
* u1) by
CLVECT_1:def 1;
hence thesis by
CSSPACE: 15;
end;
Lm14: for u be
VECTOR of
Complex_l2_Space holds (
- u)
= (
- (
seq_id u)) & (
seq_id (
- u))
= (
- (
seq_id u))
proof
let u be
VECTOR of
Complex_l2_Space ;
(
- u)
= ((
-
1r )
* u) by
CLVECT_1: 3
.= ((
-
1r )
(#) (
seq_id u)) by
Lm13
.= (
- (
seq_id u)) by
COMSEQ_1: 11;
hence thesis;
end;
Lm15: for u,v be
VECTOR of
Complex_l2_Space holds (u
- v)
= ((
seq_id u)
- (
seq_id v))
proof
let u,v be
VECTOR of
Complex_l2_Space ;
thus (u
- v)
= ((
seq_id u)
+ (
seq_id (
- v))) by
Lm12
.= ((
seq_id u)
- (
seq_id v)) by
Lm14;
end;
Lm16: for v,w be
VECTOR of
Complex_l2_Space holds (
|.(
seq_id v).|
(#)
|.(
seq_id w).|) is
summable
proof
set q0 = (1
/ 2);
let u,v be
VECTOR of
Complex_l2_Space ;
set p = (
|.(
seq_id v).|
(#)
|.(
seq_id v).|);
set q = (
|.(
seq_id u).|
(#)
|.(
seq_id u).|);
set r =
|.(
|.(
seq_id u).|
(#)
|.(
seq_id v).|).|;
A1: for n be
Nat holds
0
<= ((2
(#) r)
. n)
proof
set rr = (
|.(
seq_id u).|
(#)
|.(
seq_id v).|);
let n be
Nat;
set tt =
|.(rr
. n).|;
A2:
0
<= tt by
COMPLEX1: 46;
((2
(#) r)
. n)
= (2
* (r
. n)) by
SEQ_1: 9
.= (2
*
|.(rr
. n).|) by
SEQ_1: 12;
hence thesis by
A2;
end;
A3: for n be
Nat holds ((2
(#) r)
. n)
<= ((p
+ q)
. n)
proof
set s = (
seq_id v), t = (
seq_id u);
let n be
Nat;
set sn =
|.(s
. n).|, tn =
|.(t
. n).|;
set ss =
|.sn.|, tt =
|.tn.|;
A4: ((p
+ q)
. n)
= ((p
. n)
+ (q
. n)) by
SEQ_1: 7
.= (((
|.s.|
. n)
* (
|.s.|
. n))
+ (q
. n)) by
SEQ_1: 8
.= (((
|.s.|
. n)
* (
|.s.|
. n))
+ ((
|.t.|
. n)
* (
|.t.|
. n))) by
SEQ_1: 8
.= ((
|.(s
. n).|
* (
|.s.|
. n))
+ ((
|.t.|
. n)
* (
|.t.|
. n))) by
VALUED_1: 18
.= ((sn
^2 )
+ ((
|.t.|
. n)
* (
|.t.|
. n))) by
VALUED_1: 18
.= ((sn
^2 )
+ (
|.(t
. n).|
* (
|.t.|
. n))) by
VALUED_1: 18
.= ((
|.sn.|
^2 )
+ (
|.tn.|
^2 )) by
VALUED_1: 18;
A5:
0
<= ((
|.sn.|
-
|.tn.|)
^2 ) by
XREAL_1: 63;
((2
(#) r)
. n)
= (2
* (r
. n)) by
SEQ_1: 9
.= (2
*
|.((
|.(
seq_id u).|
(#)
|.(
seq_id v).|)
. n).|) by
SEQ_1: 12
.= (2
*
|.((
|.(
seq_id u).|
. n)
* (
|.(
seq_id v).|
. n)).|) by
SEQ_1: 8
.= (2
* (
|.(
|.(
seq_id u).|
. n).|
*
|.(
|.(
seq_id v).|
. n).|)) by
COMPLEX1: 65
.= (2
* (
|.
|.((
seq_id u)
. n).|.|
*
|.(
|.(
seq_id v).|
. n).|)) by
VALUED_1: 18
.= (2
* (ss
* tt)) by
VALUED_1: 18
.= ((2
*
|.sn.|)
*
|.tn.|);
then (
0
+ ((2
(#) r)
. n))
<= ((((p
+ q)
. n)
- ((2
(#) r)
. n))
+ ((2
(#) r)
. n)) by
A4,
A5,
XREAL_1: 7;
hence thesis;
end;
A6: (q0
(#) (2
(#) r))
= ((q0
* 2)
(#) r) by
SEQ_1: 23
.= r by
SEQ_1: 27;
(
|.(
seq_id v).|
(#)
|.(
seq_id v).|) is
summable & (
|.(
seq_id u).|
(#)
|.(
seq_id u).|) is
summable by
CSSPACE:def 11;
then (p
+ q) is
summable by
SERIES_1: 7;
then (2
(#) r) is
summable by
A1,
A3,
SERIES_1: 20;
then r is
summable by
A6,
SERIES_1: 10;
then (
|.(
seq_id u).|
(#)
|.(
seq_id v).|) is
absolutely_summable by
SERIES_1:def 4;
hence thesis;
end;
Lm18: for seq be
Complex_Sequence holds
|.seq.|
=
|.(seq
*' ).|
proof
let seq be
Complex_Sequence;
reconsider rseq1 =
|.seq.| as
Real_Sequence;
reconsider rseq2 =
|.(seq
*' ).| as
Real_Sequence;
for n be
Nat holds (
|.seq.|
. n)
= (
|.(seq
*' ).|
. n)
proof
let n be
Nat;
A1: n
in
NAT by
ORDINAL1:def 12;
(
|.(seq
*' ).|
. n)
=
|.((seq
*' )
. n).| by
VALUED_1: 18
.=
|.((seq
. n)
*' ).| by
COMSEQ_2:def 2,
A1
.=
|.(seq
. n).| by
COMPLEX1: 53;
hence thesis by
VALUED_1: 18;
end;
then for n be
object st n
in
NAT holds (rseq1
. n)
= (rseq2
. n);
hence thesis by
FUNCT_2: 12;
end;
Lm19: for x be
set holds x is
Element of
Complex_l2_Space iff x is
Complex_Sequence & ((
seq_id x)
(#) ((
seq_id x)
*' )) is
absolutely_summable
proof
A1: for x be
set holds x is
Element of
Complex_l2_Space implies x is
Complex_Sequence & ((
seq_id x)
(#) ((
seq_id x)
*' )) is
absolutely_summable
proof
let x be
set;
A2:
|.(
seq_id x).|
=
|.((
seq_id x)
*' ).| by
Lm18;
assume
A3: x is
Element of
Complex_l2_Space ;
then x
in
the_set_of_ComplexSequences by
CSSPACE:def 11;
hence x is
Complex_Sequence by
FUNCT_2: 66;
(
|.(
seq_id x).|
(#)
|.(
seq_id x).|) is
summable by
A3,
Lm16;
then
|.((
seq_id x)
(#) ((
seq_id x)
*' )).| is
summable by
A2,
COMSEQ_1: 46;
hence thesis by
COMSEQ_3:def 9;
end;
for x be
set holds x is
Complex_Sequence & ((
seq_id x)
(#) ((
seq_id x)
*' )) is
absolutely_summable implies x is
Element of
Complex_l2_Space
proof
let x be
set;
assume that
A4: x is
Complex_Sequence and
A5: ((
seq_id x)
(#) ((
seq_id x)
*' )) is
absolutely_summable;
|.((
seq_id x)
(#) ((
seq_id x)
*' )).| is
summable by
A5;
then (
|.(
seq_id x).|
(#)
|.((
seq_id x)
*' ).|) is
summable by
COMSEQ_1: 46;
then
A6: (
|.(
seq_id x).|
(#)
|.(
seq_id x).|) is
summable by
Lm18;
x
in
the_set_of_ComplexSequences by
A4,
FUNCT_2: 8;
hence thesis by
A6,
CSSPACE:def 11;
end;
hence thesis by
A1;
end;
theorem ::
CSSPACE2:1
the
carrier of
Complex_l2_Space
=
the_set_of_l2ComplexSequences & (for x be
set holds x is
Element of
Complex_l2_Space iff x is
Complex_Sequence & (
|.(
seq_id x).|
(#)
|.(
seq_id x).|) is
summable) & (for x be
set holds x is
Element of
Complex_l2_Space iff x is
Complex_Sequence & ((
seq_id x)
(#) ((
seq_id x)
*' )) is
absolutely_summable) & (
0.
Complex_l2_Space )
=
CZeroseq & (for u be
VECTOR of
Complex_l2_Space holds u
= (
seq_id u)) & (for u,v be
VECTOR of
Complex_l2_Space holds (u
+ v)
= ((
seq_id u)
+ (
seq_id v))) & (for r be
Complex holds for u be
VECTOR of
Complex_l2_Space holds (r
* u)
= (r
(#) (
seq_id u))) & (for u be
VECTOR of
Complex_l2_Space holds (
- u)
= (
- (
seq_id u)) & (
seq_id (
- u))
= (
- (
seq_id u))) & (for u,v be
VECTOR of
Complex_l2_Space holds (u
- v)
= ((
seq_id u)
- (
seq_id v))) & for v,w be
VECTOR of
Complex_l2_Space holds (
|.(
seq_id v).|
(#)
|.(
seq_id w).|) is
summable & for v,w be
VECTOR of
Complex_l2_Space holds (v
.|. w)
= (
Sum ((
seq_id v)
(#) ((
seq_id w)
*' ))) by
Lm9,
Lm10,
Lm12,
Lm13,
Lm14,
Lm15,
Lm16,
Lm19,
CSSPACE:def 17;
theorem ::
CSSPACE2:2
Th2: for x,y,z be
Point of
Complex_l2_Space holds for a be
Complex holds ((x
.|. x)
=
0 iff x
= (
0.
Complex_l2_Space )) & (
Re (x
.|. x))
>=
0 & (
Im (x
.|. x))
=
0 & (x
.|. y)
= ((y
.|. x)
*' ) & ((x
+ y)
.|. z)
= ((x
.|. z)
+ (y
.|. z)) & ((a
* x)
.|. y)
= (a
* (x
.|. y))
proof
let x,y,z be
Point of
Complex_l2_Space ;
let a be
Complex;
set seqx = (
seq_id x);
A1: (x
.|. x)
= (
Sum (seqx
(#) (seqx
*' ))) by
CSSPACE:def 17;
A2: (seqx
(#) (seqx
*' )) is
absolutely_summable by
Lm19;
then (
Sum (seqx
(#) (seqx
*' )))
= ((
Sum (
Re (seqx
(#) (seqx
*' ))))
+ ((
Sum (
Im (seqx
(#) (seqx
*' ))))
*
<i> )) by
COMSEQ_3: 53;
then
A3: (
Re (x
.|. x))
= (
Sum (
Re (seqx
(#) (seqx
*' )))) & (
Im (x
.|. x))
= (
Sum (
Im (seqx
(#) (seqx
*' )))) by
A1,
COMPLEX1: 12;
A4:
now
set seq = (
seq_id x);
A5: (x
.|. x)
= (
Sum ((
seq_id x)
(#) ((
seq_id x)
*' ))) by
CSSPACE:def 17;
set rseq = (
Re (seq
(#) (seq
*' )));
A6: for n be
Nat holds (rseq
. n)
= (((
Re (seq
. n))
^2 )
+ ((
Im (seq
. n))
^2 ))
proof
let n be
Nat;
A7: n
in
NAT by
ORDINAL1:def 12;
(rseq
. n)
= ((((
Re seq)
(#) (
Re (seq
*' )))
- ((
Im seq)
(#) (
Im (seq
*' ))))
. n) by
COMSEQ_3: 21
.= ((((
Re seq)
(#) (
Re (seq
*' )))
. n)
+ ((
- ((
Im seq)
(#) (
Im (seq
*' ))))
. n)) by
SEQ_1: 7
.= ((((
Re seq)
(#) (
Re (seq
*' )))
. n)
+ (
- (((
Im seq)
(#) (
Im (seq
*' )))
. n))) by
SEQ_1: 10
.= ((((
Re seq)
(#) (
Re (seq
*' )))
. n)
- (((
Im seq)
(#) (
Im (seq
*' )))
. n))
.= ((((
Re seq)
. n)
* ((
Re (seq
*' ))
. n))
- (((
Im seq)
(#) (
Im (seq
*' )))
. n)) by
SEQ_1: 8
.= ((((
Re seq)
. n)
* ((
Re (seq
*' ))
. n))
- (((
Im seq)
. n)
* ((
Im (seq
*' ))
. n))) by
SEQ_1: 8
.= (((
Re (seq
. n))
* ((
Re (seq
*' ))
. n))
- (((
Im seq)
. n)
* ((
Im (seq
*' ))
. n))) by
COMSEQ_3:def 5
.= (((
Re (seq
. n))
* (
Re ((seq
*' )
. n)))
- (((
Im seq)
. n)
* ((
Im (seq
*' ))
. n))) by
COMSEQ_3:def 5
.= (((
Re (seq
. n))
* (
Re ((seq
*' )
. n)))
- ((
Im (seq
. n))
* ((
Im (seq
*' ))
. n))) by
COMSEQ_3:def 6
.= (((
Re (seq
. n))
* (
Re ((seq
*' )
. n)))
- ((
Im (seq
. n))
* (
Im ((seq
*' )
. n)))) by
COMSEQ_3:def 6
.= (((
Re (seq
. n))
* (
Re ((seq
. n)
*' )))
- ((
Im (seq
. n))
* (
Im ((seq
*' )
. n)))) by
COMSEQ_2:def 2,
A7
.= (((
Re (seq
. n))
* (
Re ((seq
. n)
*' )))
- ((
Im (seq
. n))
* (
Im ((seq
. n)
*' )))) by
COMSEQ_2:def 2,
A7
.= (((
Re (seq
. n))
* (
Re (seq
. n)))
- ((
Im (seq
. n))
* (
Im ((seq
. n)
*' )))) by
COMPLEX1: 27
.= (((
Re (seq
. n))
* (
Re (seq
. n)))
- ((
Im (seq
. n))
* (
- (
Im (seq
. n))))) by
COMPLEX1: 27
.= (((
Re (seq
. n))
^2 )
+ ((
Im (seq
. n))
* (
Im (seq
. n))));
hence thesis;
end;
A8: for n be
Nat holds
0
<= (rseq
. n)
proof
let n be
Nat;
A9: ((
Im (seq
. n))
^2 )
>=
0 by
XREAL_1: 63;
(rseq
. n)
= (((
Re (seq
. n))
^2 )
+ ((
Im (seq
. n))
^2 )) & ((
Re (seq
. n))
^2 )
>=
0 by
A6,
XREAL_1: 63;
then (rseq
. n)
>= (
0
+
0 ) by
A9;
hence thesis;
end;
A10: ((
seq_id x)
(#) ((
seq_id x)
*' )) is
absolutely_summable by
Lm19;
assume (x
.|. x)
=
0 ;
then ((
Sum (
Re ((
seq_id x)
(#) ((
seq_id x)
*' ))))
+ ((
Sum (
Im ((
seq_id x)
(#) ((
seq_id x)
*' ))))
*
<i> ))
=
0 by
A5,
A10,
COMSEQ_3: 53;
then
A11: (
Sum (
Re ((
seq_id x)
(#) ((
seq_id x)
*' ))))
=
0 by
COMPLEX1: 4,
COMPLEX1: 12;
A12: for n be
Nat holds ((
seq_id x)
. n)
=
0
proof
let n be
Nat;
(rseq
. n)
= (((
Re (seq
. n))
^2 )
+ ((
Im (seq
. n))
^2 )) by
A6;
then (((
Re (seq
. n))
^2 )
+ ((
Im (seq
. n))
^2 ))
=
0 by
A10,
A11,
A8,
RSSPACE: 17;
hence thesis by
COMPLEX1: 5;
end;
x is
Element of
the_set_of_ComplexSequences by
CSSPACE:def 11;
hence x
= (
0.
Complex_l2_Space ) by
A12,
Lm10,
CSSPACE: 5;
end;
A13:
now
assume
A14: x
= (
0.
Complex_l2_Space );
A15: for n be
Nat holds (((
seq_id x)
(#) ((
seq_id x)
*' ))
. n)
=
0
proof
let n be
Nat;
thus (((
seq_id x)
(#) ((
seq_id x)
*' ))
. n)
= (((
seq_id x)
. n)
* (((
seq_id x)
*' )
. n)) by
VALUED_1: 5
.= (
0c
* (((
seq_id x)
*' )
. n)) by
A14,
Lm10,
CSSPACE: 4
.=
0 ;
end;
thus (x
.|. x)
= (
Sum ((
seq_id x)
(#) ((
seq_id x)
*' ))) by
CSSPACE:def 17
.=
0 by
A15,
CSSPACE: 80;
end;
set seqy = (
seq_id y);
A16: for n be
Nat holds
0
<= ((
Re (seqx
(#) (seqx
*' )))
. n)
proof
let n be
Nat;
A17: n
in
NAT by
ORDINAL1:def 12;
A18: ((
Re (seqx
. n))
^2 )
>=
0 & ((
Im (seqx
. n))
^2 )
>=
0 by
XREAL_1: 63;
((
Re (seqx
(#) (seqx
*' )))
. n)
= (
Re ((seqx
(#) (seqx
*' ))
. n)) by
COMSEQ_3:def 5
.= (
Re ((seqx
. n)
* ((seqx
*' )
. n))) by
VALUED_1: 5
.= (
Re ((seqx
. n)
* ((seqx
. n)
*' ))) by
COMSEQ_2:def 2,
A17
.= (((
Re (seqx
. n))
^2 )
+ ((
Im (seqx
. n))
^2 )) by
COMPLEX1: 40;
then ((
Re (seqx
(#) (seqx
*' )))
. n)
>= (
0
+
0 ) by
A18;
hence thesis;
end;
(
|.seqx.|
(#)
|.seqy.|) is
summable by
Lm16;
then (
|.(seqx
*' ).|
(#)
|.seqy.|) is
summable by
Lm18;
then
|.((seqx
*' )
(#) seqy).| is
summable by
COMSEQ_1: 46;
then
A19: ((seqx
*' )
(#) seqy) is
absolutely_summable by
COMSEQ_3:def 9;
set seqz = (
seq_id z);
A20: for n be
Nat holds ((
Im (seqx
(#) (seqx
*' )))
. n)
=
0
proof
let n be
Nat;
A21: n
in
NAT by
ORDINAL1:def 12;
((
Im (seqx
(#) (seqx
*' )))
. n)
= (
Im ((seqx
(#) (seqx
*' ))
. n)) by
COMSEQ_3:def 6
.= (
Im ((seqx
. n)
* ((seqx
*' )
. n))) by
VALUED_1: 5
.= (
Im ((seqx
. n)
* ((seqx
. n)
*' ))) by
COMSEQ_2:def 2,
A21;
hence thesis by
COMPLEX1: 40;
end;
(
|.seqx.|
(#)
|.seqz.|) is
summable by
Lm16;
then (
|.seqx.|
(#)
|.(seqz
*' ).|) is
summable by
Lm18;
then
|.(seqx
(#) (seqz
*' )).| is
summable by
COMSEQ_1: 46;
then
A22: (seqx
(#) (seqz
*' )) is
absolutely_summable by
COMSEQ_3:def 9;
(
|.seqy.|
(#)
|.seqz.|) is
summable by
Lm16;
then (
|.seqy.|
(#)
|.(seqz
*' ).|) is
summable by
Lm18;
then
|.(seqy
(#) (seqz
*' )).| is
summable by
COMSEQ_1: 46;
then
A23: (seqy
(#) (seqz
*' )) is
absolutely_summable by
COMSEQ_3:def 9;
A24: ((x
+ y)
.|. z)
= (
Sum ((
seq_id (x
+ y))
(#) (seqz
*' ))) by
CSSPACE:def 17
.= (
Sum ((
seq_id (seqx
+ seqy))
(#) (seqz
*' ))) by
Lm12
.= (
Sum ((seqx
(#) (seqz
*' ))
+ (seqy
(#) (seqz
*' )))) by
COMSEQ_1: 10
.= ((
Sum (seqx
(#) (seqz
*' )))
+ (
Sum (seqy
(#) (seqz
*' )))) by
A22,
A23,
COMSEQ_3: 54
.= ((the
scalar of
Complex_l2_Space
. (x,z))
+ (
Sum (seqy
(#) (seqz
*' )))) by
CSSPACE:def 17
.= ((x
.|. z)
+ (y
.|. z)) by
CSSPACE:def 17;
(
|.seqx.|
(#)
|.seqy.|) is
summable by
Lm16;
then (
|.seqx.|
(#)
|.(seqy
*' ).|) is
summable by
Lm18;
then
|.(seqx
(#) (seqy
*' )).| is
summable by
COMSEQ_1: 46;
then
A25: (seqx
(#) (seqy
*' )) is
absolutely_summable by
COMSEQ_3:def 9;
A26: ((a
* x)
.|. y)
= (
Sum ((
seq_id (a
* x))
(#) (seqy
*' ))) by
CSSPACE:def 17
.= (
Sum ((
seq_id (a
(#) seqx))
(#) (seqy
*' ))) by
Lm13
.= (
Sum (a
(#) (seqx
(#) (seqy
*' )))) by
COMSEQ_1: 12
.= (a
* (
Sum (seqx
(#) (seqy
*' )))) by
A25,
COMSEQ_3: 56
.= (a
* (x
.|. y)) by
CSSPACE:def 17;
(x
.|. y)
= (
Sum (((seqx
*' )
*' )
(#) (seqy
*' ))) by
CSSPACE:def 17
.= (
Sum (((seqx
*' )
(#) seqy)
*' )) by
COMSEQ_2: 5
.= ((
Sum ((seqx
*' )
(#) seqy))
*' ) by
A19,
Lm5
.= ((y
.|. x)
*' ) by
CSSPACE:def 17;
hence thesis by
A4,
A13,
A2,
A3,
A16,
A20,
A24,
A26,
RSSPACE: 16,
SERIES_1: 18;
end;
registration
cluster
Complex_l2_Space ->
ComplexUnitarySpace-like;
coherence by
Th2,
CSSPACE:def 13;
end
Lm20: for x,y be
Complex holds (2
*
|.(x
* y).|)
<= ((
|.x.|
^2 )
+ (
|.y.|
^2 ))
proof
let x,y be
Complex;
set a =
|.x.|;
set b =
|.y.|;
((a
- b)
^2 )
= (((a
* a)
- ((a
* b)
+ (a
* b)))
+ (b
* b));
then (a
* b)
=
|.(x
* y).| & (((a
* a)
+ (b
* b))
- ((a
* b)
+ (a
* b)))
>=
0 by
COMPLEX1: 65,
XREAL_1: 63;
hence thesis by
XREAL_1: 49;
end;
Lm21: for x,y be
Complex holds (
|.(x
+ y).|
*
|.(x
+ y).|)
<= (((2
*
|.x.|)
*
|.x.|)
+ ((2
*
|.y.|)
*
|.y.|)) & (
|.x.|
*
|.x.|)
<= (((2
*
|.(x
- y).|)
*
|.(x
- y).|)
+ ((2
*
|.y.|)
*
|.y.|))
proof
A1:
now
let x,y be
Complex;
A2:
|.(x
* x).|
= (
|.x.|
*
|.x.|) &
|.(y
* y).|
= (
|.y.|
*
|.y.|) by
COMPLEX1: 65;
|.((((x
* x)
+ (x
* y))
+ (x
* y))
+ (y
* y)).|
<= (
|.(((x
* x)
+ (x
* y))
+ (x
* y)).|
+
|.(y
* y).|) by
COMPLEX1: 56;
then
A3: (
|.((((x
* x)
+ (x
* y))
+ (x
* y))
+ (y
* y)).|
-
|.(y
* y).|)
<=
|.(((x
* x)
+ (x
* y))
+ (x
* y)).| by
XREAL_1: 20;
|.(((x
* x)
+ (x
* y))
+ (x
* y)).|
<= (
|.((x
* x)
+ (x
* y)).|
+
|.(x
* y).|) by
COMPLEX1: 56;
then
|.((x
* x)
+ (x
* y)).|
<= (
|.(x
* x).|
+
|.(x
* y).|) & (
|.(((x
* x)
+ (x
* y))
+ (x
* y)).|
-
|.(x
* y).|)
<=
|.((x
* x)
+ (x
* y)).| by
COMPLEX1: 56,
XREAL_1: 20;
then (
|.(((x
* x)
+ (x
* y))
+ (x
* y)).|
-
|.(x
* y).|)
<= (
|.(x
* x).|
+
|.(x
* y).|) by
XXREAL_0: 2;
then
A4:
|.(((x
* x)
+ (x
* y))
+ (x
* y)).|
<= ((
|.(x
* x).|
+
|.(x
* y).|)
+
|.(x
* y).|) by
XREAL_1: 20;
(
|.(x
+ y).|
*
|.(x
+ y).|)
=
|.((x
+ y)
* (x
+ y)).| by
COMPLEX1: 65
.=
|.((((x
* x)
+ (x
* y))
+ (x
* y))
+ (y
* y)).|;
then ((
|.(x
+ y).|
*
|.(x
+ y).|)
-
|.(y
* y).|)
<= (
|.(x
* x).|
+ (2
*
|.(x
* y).|)) by
A3,
A4,
XXREAL_0: 2;
then
A5: (((
|.(x
+ y).|
*
|.(x
+ y).|)
-
|.(y
* y).|)
-
|.(x
* x).|)
<= (2
*
|.(x
* y).|) by
XREAL_1: 20;
(2
*
|.(x
* y).|)
<= ((
|.x.|
^2 )
+ (
|.y.|
^2 )) by
Lm20;
then (((
|.(x
+ y).|
*
|.(x
+ y).|)
-
|.(y
* y).|)
-
|.(x
* x).|)
<= ((
|.x.|
^2 )
+ (
|.y.|
^2 )) by
A5,
XXREAL_0: 2;
then ((
|.(x
+ y).|
*
|.(x
+ y).|)
- (
|.y.|
*
|.y.|))
<= (((
|.x.|
*
|.x.|)
+ (
|.y.|
*
|.y.|))
+ (
|.x.|
*
|.x.|)) by
A2,
XREAL_1: 20;
then (
|.(x
+ y).|
*
|.(x
+ y).|)
<= (((2
* (
|.x.|
*
|.x.|))
+ (
|.y.|
*
|.y.|))
+ (
|.y.|
*
|.y.|)) by
XREAL_1: 20;
hence (
|.(x
+ y).|
*
|.(x
+ y).|)
<= (((2
*
|.x.|)
*
|.x.|)
+ ((2
*
|.y.|)
*
|.y.|));
end;
now
let x,y be
Complex;
|.((x
- y)
+ y).|
=
|.x.|;
hence (
|.x.|
*
|.x.|)
<= (((2
*
|.(x
- y).|)
*
|.(x
- y).|)
+ ((2
*
|.y.|)
*
|.y.|)) by
A1;
end;
hence thesis by
A1;
end;
Lm22: for c be
Complex, seq be
Complex_Sequence st seq is
convergent holds for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= (
|.((seq
. m)
- c).|
*
|.((seq
. m)
- c).|)) holds rseq is
convergent & (
lim rseq)
= (
|.((
lim seq)
- c).|
*
|.((
lim seq)
- c).|)
proof
let c be
Complex;
reconsider c1 = c as
Element of
COMPLEX by
XCMPLX_0:def 2;
reconsider cseq = (
NAT
--> c1) as
Complex_Sequence;
A1: for n be
Nat holds (cseq
. n)
= c by
ORDINAL1:def 12,
FUNCOP_1: 7;
then
A2: cseq is
convergent by
COMSEQ_2: 9;
let seq be
Complex_Sequence such that
A3: seq is
convergent;
reconsider seq1 = (seq
- cseq) as
convergent
Complex_Sequence by
A3,
A2;
|.seq1.| is
convergent;
then
A4: (
lim (
|.(seq
- cseq).|
(#)
|.(seq
- cseq).|))
= ((
lim
|.(seq
- cseq).|)
* (
lim
|.(seq
- cseq).|)) by
SEQ_2: 15
.= (
|.((
lim seq)
- (
lim cseq)).|
* (
lim
|.(seq
- cseq).|)) by
A3,
A2,
SEQ_2: 31
.= (
|.((
lim seq)
- (
lim cseq)).|
*
|.((
lim seq)
- (
lim cseq)).|) by
A3,
A2,
SEQ_2: 31
.= (
|.((
lim seq)
- c).|
*
|.((
lim seq)
- (
lim cseq)).|) by
A1,
COMSEQ_2: 10
.= (
|.((
lim seq)
- c).|
*
|.((
lim seq)
- c).|) by
A1,
COMSEQ_2: 10;
let rseq be
Real_Sequence such that
A5: for i be
Nat holds (rseq
. i)
= (
|.((seq
. i)
- c).|
*
|.((seq
. i)
- c).|);
now
let i be
Nat;
A6: i
in
NAT by
ORDINAL1:def 12;
thus (rseq
. i)
= (
|.((seq
. i)
- c).|
*
|.((seq
. i)
- c).|) by
A5
.= (
|.((seq
. i)
- (cseq
. i)).|
*
|.((seq
. i)
- c).|) by
FUNCOP_1: 7,
A6
.= (
|.((seq
. i)
- (cseq
. i)).|
*
|.((seq
. i)
- (cseq
. i)).|) by
FUNCOP_1: 7,
A6
.= (
|.((seq
. i)
+ ((
- cseq)
. i)).|
*
|.((seq
. i)
+ (
- (cseq
. i))).|) by
VALUED_1: 8
.= (
|.((seq
. i)
+ ((
- cseq)
. i)).|
*
|.((seq
. i)
+ ((
- cseq)
. i)).|) by
VALUED_1: 8
.= (
|.((seq
+ (
- cseq))
. i).|
*
|.((seq
. i)
+ ((
- cseq)
. i)).|) by
VALUED_1: 1,
A6
.= (
|.((seq
- cseq)
. i).|
*
|.((seq
+ (
- cseq))
. i).|) by
VALUED_1: 1,
A6
.= ((
|.(seq
- cseq).|
. i)
*
|.((seq
- cseq)
. i).|) by
VALUED_1: 18
.= ((
|.(seq
- cseq).|
. i)
* (
|.(seq
- cseq).|
. i)) by
VALUED_1: 18
.= ((
|.(seq
- cseq).|
(#)
|.(seq
- cseq).|)
. i) by
SEQ_1: 8;
end;
then
A7: for x be
object st x
in
NAT holds (rseq
. x)
= ((
|.(seq
- cseq).|
(#)
|.(seq
- cseq).|)
. x);
(
|.seq1.|
(#)
|.seq1.|) is
convergent;
hence thesis by
A7,
A4,
FUNCT_2: 12;
end;
Lm23: for c be
Complex, seq1 be
Real_Sequence, seq be
Complex_Sequence st seq is
convergent & seq1 is
convergent holds for rseq be
Real_Sequence st (for i be
Nat holds (rseq
. i)
= ((
|.((seq
. i)
- c).|
*
|.((seq
. i)
- c).|)
+ (seq1
. i))) holds rseq is
convergent & (
lim rseq)
= ((
|.((
lim seq)
- c).|
*
|.((
lim seq)
- c).|)
+ (
lim seq1))
proof
let c be
Complex;
let seq1 be
Real_Sequence;
let seq be
Complex_Sequence;
assume that
A1: seq is
convergent and
A2: seq1 is
convergent;
reconsider c1 = c as
Element of
COMPLEX by
XCMPLX_0:def 2;
reconsider cseq = (
NAT
--> c1) as
Complex_Sequence;
A3: for n be
Nat holds (cseq
. n)
= c by
ORDINAL1:def 12,
FUNCOP_1: 7;
then
A4: cseq is
convergent by
COMSEQ_2: 9;
then
reconsider s = (seq
- cseq) as
convergent
Complex_Sequence by
A1;
A5:
|.s.| is
convergent;
then
A6: (
|.(seq
- cseq).|
(#)
|.(seq
- cseq).|) is
convergent;
let rseq be
Real_Sequence such that
A7: for i be
Nat holds (rseq
. i)
= ((
|.((seq
. i)
- c).|
*
|.((seq
. i)
- c).|)
+ (seq1
. i));
now
let i be
Element of
NAT ;
thus (rseq
. i)
= ((
|.((seq
. i)
- c).|
*
|.((seq
. i)
- c).|)
+ (seq1
. i)) by
A7
.= ((
|.((seq
. i)
- (cseq
. i)).|
*
|.((seq
. i)
- c).|)
+ (seq1
. i)) by
FUNCOP_1: 7
.= ((
|.((seq
. i)
- (cseq
. i)).|
*
|.((seq
. i)
- (cseq
. i)).|)
+ (seq1
. i)) by
FUNCOP_1: 7
.= ((
|.((seq
. i)
+ ((
- cseq)
. i)).|
*
|.((seq
. i)
+ (
- (cseq
. i))).|)
+ (seq1
. i)) by
VALUED_1: 8
.= ((
|.((seq
. i)
+ ((
- cseq)
. i)).|
*
|.((seq
. i)
+ ((
- cseq)
. i)).|)
+ (seq1
. i)) by
VALUED_1: 8
.= ((
|.((seq
+ (
- cseq))
. i).|
*
|.((seq
. i)
+ ((
- cseq)
. i)).|)
+ (seq1
. i)) by
VALUED_1: 1
.= ((
|.((seq
- cseq)
. i).|
*
|.((seq
+ (
- cseq))
. i).|)
+ (seq1
. i)) by
VALUED_1: 1
.= (((
|.(seq
- cseq).|
. i)
*
|.((seq
- cseq)
. i).|)
+ (seq1
. i)) by
VALUED_1: 18
.= (((
|.(seq
- cseq).|
. i)
* (
|.(seq
- cseq).|
. i))
+ (seq1
. i)) by
VALUED_1: 18
.= (((
|.(seq
- cseq).|
(#)
|.(seq
- cseq).|)
. i)
+ (seq1
. i)) by
SEQ_1: 8
.= (((
|.(seq
- cseq).|
(#)
|.(seq
- cseq).|)
+ seq1)
. i) by
SEQ_1: 7;
end;
then
A8: rseq
= ((
|.(seq
- cseq).|
(#)
|.(seq
- cseq).|)
+ seq1) by
FUNCT_2: 63;
(
lim (
|.(seq
- cseq).|
(#)
|.(seq
- cseq).|))
= ((
lim
|.(seq
- cseq).|)
* (
lim
|.(seq
- cseq).|)) by
A5,
SEQ_2: 15
.= (
|.((
lim seq)
- (
lim cseq)).|
* (
lim
|.(seq
- cseq).|)) by
A1,
A4,
SEQ_2: 31
.= (
|.((
lim seq)
- (
lim cseq)).|
*
|.((
lim seq)
- (
lim cseq)).|) by
A1,
A4,
SEQ_2: 31
.= (
|.((
lim seq)
- c).|
*
|.((
lim seq)
- (
lim cseq)).|) by
A3,
COMSEQ_2: 10
.= (
|.((
lim seq)
- c).|
*
|.((
lim seq)
- c).|) by
A3,
COMSEQ_2: 10;
hence thesis by
A2,
A8,
A6,
SEQ_2: 6;
end;
registration
cluster
Complex_l2_Space ->
complete;
coherence
proof
let vseq be
sequence of
Complex_l2_Space such that
A1: vseq is
Cauchy;
defpred
P[
object,
object] means ex i be
Nat st $1
= i & ex seqi be
Complex_Sequence st (for n be
Nat holds (seqi
. n)
= ((
seq_id (vseq
. n))
. i)) & seqi is
convergent & $2
= (
lim seqi);
A2: for x be
object st x
in
NAT holds ex y be
object st y
in
COMPLEX &
P[x, y]
proof
let x be
object;
assume x
in
NAT ;
then
reconsider i = x as
Nat;
deffunc
F(
set) = ((
seq_id (vseq
. $1))
. i);
consider seqi be
Complex_Sequence such that
A3: for n be
Nat holds (seqi
. n)
=
F(n) from
COMSEQ_1:sch 1;
take (
lim seqi);
thus (
lim seqi)
in
COMPLEX by
XCMPLX_0:def 2;
now
let e be
Real such that
A4: e
>
0 ;
thus ex k be
Nat st for m be
Nat st k
<= m holds
|.((seqi
. m)
- (seqi
. k)).|
< e
proof
set e1 = e;
consider k be
Nat such that
A5: for n,m be
Nat st n
>= k & m
>= k holds
||.((vseq
. n)
- (vseq
. m)).||
< e1 by
A1,
A4,
CLVECT_2: 58;
A6: i
in
NAT by
ORDINAL1:def 12;
now
set vk = (vseq
. k);
let m be
Nat such that
A7: k
<= m;
set vm = (vseq
. m);
||.(vm
- vk).||
< e by
A5,
A7;
then
A8: (
sqrt
|.((vm
- vk)
.|. (vm
- vk)).|)
< e;
set seqmk = (
seq_id (vm
- vk));
A9: (
sqrt (
|.((seqi
. m)
- (seqi
. k)).|
*
|.((seqi
. m)
- (seqi
. k)).|))
= (
sqrt (
|.((seqi
. m)
- (seqi
. k)).|
^2 ))
.=
|.((seqi
. m)
- (seqi
. k)).| by
COMPLEX1: 46,
SQUARE_1: 22;
(
seq_id ((vseq
. m)
- (vseq
. k)))
= (
seq_id ((
seq_id (vseq
. m))
- (
seq_id (vseq
. k)))) by
Lm15
.= ((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. k))));
then (seqmk
. i)
= (((
seq_id (vseq
. m))
. i)
+ ((
- (
seq_id (vseq
. k)))
. i)) by
VALUED_1: 1,
A6
.= (((
seq_id (vseq
. m))
. i)
+ (
- ((
seq_id (vseq
. k))
. i))) by
VALUED_1: 8
.= (((
seq_id (vseq
. m))
. i)
- ((
seq_id (vseq
. k))
. i))
.= ((seqi
. m)
- ((
seq_id (vseq
. k))
. i)) by
A3
.= ((seqi
. m)
- (seqi
. k)) by
A3;
then (
|.((seqi
. m)
- (seqi
. k)).|
*
|.((seqi
. m)
- (seqi
. k)).|)
= ((
|.seqmk.|
. i)
*
|.(seqmk
. i).|) by
VALUED_1: 18
.= ((
|.seqmk.|
. i)
* (
|.seqmk.|
. i)) by
VALUED_1: 18;
then ((
|.seqmk.|
. i)
* (
|.(seqmk
*' ).|
. i))
= (
|.((seqi
. m)
- (seqi
. k)).|
*
|.((seqi
. m)
- (seqi
. k)).|) by
Lm18;
then
A10: (
|.((seqi
. m)
- (seqi
. k)).|
*
|.((seqi
. m)
- (seqi
. k)).|)
= ((
|.seqmk.|
(#)
|.(seqmk
*' ).|)
. i) by
SEQ_1: 8;
0
<=
|.((seqi
. m)
- (seqi
. k)).| by
COMPLEX1: 46;
then
A11:
0
<= (
|.((seqi
. m)
- (seqi
. k)).|
*
|.((seqi
. m)
- (seqi
. k)).|);
(seqmk
(#) (seqmk
*' )) is
absolutely_summable & for j be
Nat holds ((
Re (seqmk
(#) (seqmk
*' )))
. j)
>=
0 & ((
Im (seqmk
(#) (seqmk
*' )))
. j)
=
0 by
Lm8,
Lm19;
then
|.(
Sum (seqmk
(#) (seqmk
*' ))).|
= (
Sum
|.(seqmk
(#) (seqmk
*' )).|) by
Lm7
.= (
Sum (
|.seqmk.|
(#)
|.(seqmk
*' ).|)) by
COMSEQ_1: 46;
then
A12: (
sqrt (
Sum (
|.seqmk.|
(#)
|.(seqmk
*' ).|)))
< e by
A8,
CSSPACE:def 17;
A13: for i be
Nat holds
0
<= ((
|.seqmk.|
(#)
|.(seqmk
*' ).|)
. i)
proof
let i be
Nat;
((
|.seqmk.|
(#)
|.(seqmk
*' ).|)
. i)
= ((
|.seqmk.|
. i)
* (
|.(seqmk
*' ).|
. i)) by
SEQ_1: 8
.= ((
|.seqmk.|
. i)
* (
|.seqmk.|
. i)) by
Lm18;
hence thesis by
XREAL_1: 63;
end;
(
|.seqmk.|
(#)
|.seqmk.|) is
summable by
CSSPACE:def 11;
then
A14: (
|.seqmk.|
(#)
|.(seqmk
*' ).|) is
summable by
Lm18;
then
A15:
0
<= (
Sum (
|.seqmk.|
(#)
|.(seqmk
*' ).|)) by
A13,
SERIES_1: 18;
then
0
<= (
sqrt (
Sum (
|.seqmk.|
(#)
|.(seqmk
*' ).|))) by
SQUARE_1:def 2;
then ((
sqrt (
Sum (
|.seqmk.|
(#)
|.(seqmk
*' ).|)))
^2 )
< (e1
^2 ) by
A12,
SQUARE_1: 16;
then
A16: (
Sum (
|.seqmk.|
(#)
|.(seqmk
*' ).|))
< (e
* e) by
A15,
SQUARE_1:def 2;
((
|.seqmk.|
(#)
|.(seqmk
*' ).|)
. i)
<= (
Sum (
|.seqmk.|
(#)
|.(seqmk
*' ).|)) by
A14,
A13,
RSSPACE2: 3;
then
A17: (
|.((seqi
. m)
- (seqi
. k)).|
*
|.((seqi
. m)
- (seqi
. k)).|)
< (e
* e) by
A16,
A10,
XXREAL_0: 2;
(
sqrt (e
* e))
= (
sqrt (e1
^2 ))
.= e by
A4,
SQUARE_1: 22;
hence
|.((seqi
. m)
- (seqi
. k)).|
< e by
A11,
A17,
A9,
SQUARE_1: 27;
end;
hence thesis;
end;
end;
then seqi is
convergent by
COMSEQ_3: 46;
hence thesis by
A3;
end;
consider f be
sequence of
COMPLEX such that
A18: for x be
object st x
in
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 1(
A2);
reconsider tseq = f as
Complex_Sequence;
set seqt = (
seq_id tseq);
A19:
now
let i be
Nat;
reconsider x = i as
set;
i
in
NAT by
ORDINAL1:def 12;
then ex i0 be
Nat st x
= i0 & ex seqi be
Complex_Sequence st (for n be
Nat holds (seqi
. n)
= ((
seq_id (vseq
. n))
. i0)) & seqi is
convergent & (f
. x)
= (
lim seqi) by
A18;
hence ex seqi be
Complex_Sequence st (for n be
Nat holds (seqi
. n)
= ((
seq_id (vseq
. n))
. i)) & seqi is
convergent & (tseq
. i)
= (
lim seqi);
end;
A20: for e be
Real st e
>
0 holds ex k be
Nat st for n be
Nat st n
>= k holds (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|) is
summable &
|.(
Sum ((seqt
- (
seq_id (vseq
. n)))
(#) ((seqt
- (
seq_id (vseq
. n)))
*' ))).|
< (e
* e)
proof
let e1 be
Real such that
A21: e1
>
0 ;
set e = (e1
/ 2);
A22: e
>
0 by
A21;
then
consider k be
Nat such that
A23: for n,m be
Nat st n
>= k & m
>= k holds
||.((vseq
. n)
- (vseq
. m)).||
< e by
A1,
CLVECT_2: 58;
e
< e1 by
A21,
XREAL_1: 216;
then
A24: (e
* e)
< (e1
* e1) by
A22,
XREAL_1: 97;
A25: for m,n be
Nat st n
>= k & m
>= k holds (
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|
(#)
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|) is
summable & (
Sum (
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|
(#)
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|))
< (e
* e) & for i be
Nat holds
0
<= ((
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|
(#)
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|)
. i)
proof
let m,n be
Nat;
assume n
>= k & m
>= k;
then
||.((vseq
. n)
- (vseq
. m)).||
< e by
A23;
then
A26: (
sqrt
|.(((vseq
. n)
- (vseq
. m))
.|. ((vseq
. n)
- (vseq
. m))).|)
< e;
((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) ((
seq_id ((vseq
. n)
- (vseq
. m)))
*' )) is
absolutely_summable & for j be
Nat holds ((
Re ((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) ((
seq_id ((vseq
. n)
- (vseq
. m)))
*' )))
. j)
>=
0 & ((
Im ((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) ((
seq_id ((vseq
. n)
- (vseq
. m)))
*' )))
. j)
=
0 by
Lm8,
Lm19;
then
|.(
Sum ((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) ((
seq_id ((vseq
. n)
- (vseq
. m)))
*' ))).|
= (
Sum
|.((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) ((
seq_id ((vseq
. n)
- (vseq
. m)))
*' )).|) by
Lm7
.= (
Sum (
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|
(#)
|.((
seq_id ((vseq
. n)
- (vseq
. m)))
*' ).|)) by
COMSEQ_1: 46
.= (
Sum (
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|
(#)
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|)) by
Lm18
.= (
Sum
|.((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m)))).|) by
COMSEQ_1: 46;
then
A27: (
sqrt (
Sum
|.((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m)))).|))
< e by
A26,
CSSPACE:def 17;
A28: for i be
Nat holds
0
<= ((
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|
(#)
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|)
. i)
proof
let i be
Nat;
((
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|
(#)
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|)
. i)
= (
|.((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m)))).|
. i) by
COMSEQ_1: 46
.=
|.(((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m))))
. i).| by
VALUED_1: 18;
hence thesis by
COMPLEX1: 46;
end;
(
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|
(#)
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|) is
summable by
CSSPACE:def 11;
then
0
<= (
Sum (
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|
(#)
|.(
seq_id ((vseq
. n)
- (vseq
. m))).|)) by
A28,
SERIES_1: 18;
then
A29:
0
<= (
Sum
|.((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m)))).|) by
COMSEQ_1: 46;
then
0
<= (
sqrt (
Sum
|.((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m)))).|)) by
SQUARE_1:def 2;
then ((
sqrt (
Sum
|.((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m)))).|))
^2 )
< (e
^2 ) by
A27,
SQUARE_1: 16;
then (
Sum
|.((
seq_id ((vseq
. n)
- (vseq
. m)))
(#) (
seq_id ((vseq
. n)
- (vseq
. m)))).|)
< (e
* e) by
A29,
SQUARE_1:def 2;
hence thesis by
A28,
COMSEQ_1: 46,
CSSPACE:def 11;
end;
A30: for n,i be
Nat holds for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
. i)) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
. i)
proof
let n be
Nat;
defpred
P[
Nat] means for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
. $1)) holds (rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
. $1));
A31: for m,k be
Nat holds (
seq_id ((vseq
. m)
- (vseq
. k)))
= ((
seq_id (vseq
. m))
- (
seq_id (vseq
. k))) by
Lm15;
now
let i be
Nat such that
A32: for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
. i)) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
. i);
thus for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
. (i
+ 1))) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
. (i
+ 1))
proof
deffunc
F(
Nat) = ((
Partial_Sums (
|.(
seq_id ((vseq
. $1)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. $1)
- (vseq
. n))).|))
. i);
consider rseqb be
Real_Sequence such that
A33: for m be
Nat holds (rseqb
. m)
=
F(m) from
SEQ_1:sch 1;
consider seq0 be
Complex_Sequence such that
A34: for m be
Nat holds (seq0
. m)
= ((
seq_id (vseq
. m))
. (i
+ 1)) and
A35: seq0 is
convergent and
A36: (tseq
. (i
+ 1))
= (
lim seq0) by
A19;
let rseq be
Real_Sequence such that
A37: for m be
Nat holds (rseq
. m)
= ((
Partial_Sums (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
. (i
+ 1));
A38:
now
let m be
Nat;
thus (rseq
. m)
= ((
Partial_Sums (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
. (i
+ 1)) by
A37
.= (((
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|)
. (i
+ 1))
+ ((
Partial_Sums (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
. i)) by
SERIES_1:def 1
.= (((
|.((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|)
. (i
+ 1))
+ ((
Partial_Sums (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
. i)) by
A31
.= (((
|.((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|)
. (i
+ 1))
+ (rseqb
. m)) by
A33
.= (((
|.((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))).|
(#)
|.((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))).|)
. (i
+ 1))
+ (rseqb
. m)) by
A31
.= (((
|.((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n)))).|
. (i
+ 1))
* (
|.((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))).|
. (i
+ 1)))
+ (rseqb
. m)) by
SEQ_1: 8
.= ((
|.(((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)).|
* (
|.((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n)))).|
. (i
+ 1)))
+ (rseqb
. m)) by
VALUED_1: 18
.= ((
|.(((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)).|
*
|.(((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)).|)
+ (rseqb
. m)) by
VALUED_1: 18
.= ((
|.(((
seq_id (vseq
. m))
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))).|
*
|.(((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)).|)
+ (rseqb
. m)) by
VALUED_1: 1
.= ((
|.(((
seq_id (vseq
. m))
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))).|
*
|.(((
seq_id (vseq
. m))
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))).|)
+ (rseqb
. m)) by
VALUED_1: 1
.= ((
|.(((
seq_id (vseq
. m))
. (i
+ 1))
+ (
- ((
seq_id (vseq
. n))
. (i
+ 1)))).|
*
|.(((
seq_id (vseq
. m))
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))).|)
+ (rseqb
. m)) by
VALUED_1: 8
.= ((
|.(((
seq_id (vseq
. m))
. (i
+ 1))
- ((
seq_id (vseq
. n))
. (i
+ 1))).|
*
|.(((
seq_id (vseq
. m))
. (i
+ 1))
+ (
- ((
seq_id (vseq
. n))
. (i
+ 1)))).|)
+ (rseqb
. m)) by
VALUED_1: 8
.= ((
|.((seq0
. m)
- ((
seq_id (vseq
. n))
. (i
+ 1))).|
*
|.(((
seq_id (vseq
. m))
. (i
+ 1))
- ((
seq_id (vseq
. n))
. (i
+ 1))).|)
+ (rseqb
. m)) by
A34
.= ((
|.((seq0
. m)
- ((
seq_id (vseq
. n))
. (i
+ 1))).|
*
|.((seq0
. m)
- ((
seq_id (vseq
. n))
. (i
+ 1))).|)
+ (rseqb
. m)) by
A34;
end;
A39: rseqb is
convergent by
A32,
A33;
then (
lim rseq)
= ((
|.((
lim seq0)
- ((
seq_id (vseq
. n))
. (i
+ 1))).|
*
|.((
lim seq0)
- ((
seq_id (vseq
. n))
. (i
+ 1))).|)
+ (
lim rseqb)) by
A35,
A38,
Lm23
.= ((
|.((tseq
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))).|
*
|.((tseq
. (i
+ 1))
+ (
- ((
seq_id (vseq
. n))
. (i
+ 1)))).|)
+ (
lim rseqb)) by
A36,
VALUED_1: 8
.= ((
|.((tseq
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))).|
*
|.((tseq
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))).|)
+ (
lim rseqb)) by
VALUED_1: 8
.= ((
|.((tseq
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)).|
*
|.((tseq
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))).|)
+ (
lim rseqb)) by
VALUED_1: 1
.= ((
|.((tseq
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)).|
*
|.((tseq
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)).|)
+ (
lim rseqb)) by
VALUED_1: 1
.= (((
|.(tseq
+ (
- (
seq_id (vseq
. n)))).|
. (i
+ 1))
*
|.((tseq
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)).|)
+ (
lim rseqb)) by
VALUED_1: 18
.= (((
|.(tseq
- (
seq_id (vseq
. n))).|
. (i
+ 1))
* (
|.(tseq
+ (
- (
seq_id (vseq
. n)))).|
. (i
+ 1)))
+ (
lim rseqb)) by
VALUED_1: 18
.= (((
|.(tseq
- (
seq_id (vseq
. n))).|
(#)
|.(tseq
- (
seq_id (vseq
. n))).|)
. (i
+ 1))
+ (
lim rseqb)) by
SEQ_1: 8
.= (((
|.(tseq
- (
seq_id (vseq
. n))).|
(#)
|.(tseq
- (
seq_id (vseq
. n))).|)
. (i
+ 1))
+ ((
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
. i)) by
A32,
A33
.= ((
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
. (i
+ 1)) by
SERIES_1:def 1;
hence thesis by
A39,
A35,
A38,
Lm23;
end;
end;
then
A40: for i be
Nat st
P[i] holds
P[(i
+ 1)];
now
let rseq be
Real_Sequence such that
A41: for m be
Nat holds (rseq
. m)
= ((
Partial_Sums (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
.
0 );
thus rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
.
0 )
proof
consider rseq0 be
Complex_Sequence such that
A42: for m be
Nat holds (rseq0
. m)
= ((
seq_id (vseq
. m))
.
0 ) and
A43: rseq0 is
convergent and
A44: (tseq
.
0 )
= (
lim rseq0) by
A19;
A45:
now
let m be
Nat;
thus (rseq
. m)
= ((
Partial_Sums (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
.
0 ) by
A41
.= ((
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|)
.
0 ) by
SERIES_1:def 1
.= ((
|.((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|)
.
0 ) by
A31
.= ((
|.((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))).|
(#)
|.((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))).|)
.
0 ) by
A31
.= ((
|.((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n)))).|
.
0 )
* (
|.((
seq_id (vseq
. m))
- (
seq_id (vseq
. n))).|
.
0 )) by
SEQ_1: 8
.= (
|.(((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
.
0 ).|
* (
|.((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n)))).|
.
0 )) by
VALUED_1: 18
.= (
|.(((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
.
0 ).|
*
|.(((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
.
0 ).|) by
VALUED_1: 18
.= (
|.(((
seq_id (vseq
. m))
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 )).|
*
|.(((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
.
0 ).|) by
VALUED_1: 1
.= (
|.(((
seq_id (vseq
. m))
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 )).|
*
|.(((
seq_id (vseq
. m))
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 )).|) by
VALUED_1: 1
.= (
|.(((
seq_id (vseq
. m))
.
0 )
+ (
- ((
seq_id (vseq
. n))
.
0 ))).|
*
|.(((
seq_id (vseq
. m))
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 )).|) by
VALUED_1: 8
.= (
|.(((
seq_id (vseq
. m))
.
0 )
+ (
- ((
seq_id (vseq
. n))
.
0 ))).|
*
|.(((
seq_id (vseq
. m))
.
0 )
+ (
- ((
seq_id (vseq
. n))
.
0 ))).|) by
VALUED_1: 8
.= (
|.((rseq0
. m)
- ((
seq_id (vseq
. n))
.
0 )).|
*
|.(((
seq_id (vseq
. m))
.
0 )
- ((
seq_id (vseq
. n))
.
0 )).|) by
A42
.= (
|.((rseq0
. m)
- ((
seq_id (vseq
. n))
.
0 )).|
*
|.((rseq0
. m)
- ((
seq_id (vseq
. n))
.
0 )).|) by
A42;
end;
then (
lim rseq)
= (
|.((tseq
.
0 )
- ((
seq_id (vseq
. n))
.
0 )).|
*
|.((tseq
.
0 )
- ((
seq_id (vseq
. n))
.
0 )).|) by
A43,
A44,
Lm22
.= (
|.((tseq
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 )).|
*
|.((tseq
.
0 )
+ (
- ((
seq_id (vseq
. n))
.
0 ))).|) by
VALUED_1: 8
.= (
|.((tseq
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 )).|
*
|.((tseq
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 )).|) by
VALUED_1: 8
.= (
|.((tseq
+ (
- (
seq_id (vseq
. n))))
.
0 ).|
*
|.((tseq
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 )).|) by
VALUED_1: 1
.= (
|.((tseq
- (
seq_id (vseq
. n)))
.
0 ).|
*
|.((tseq
+ (
- (
seq_id (vseq
. n))))
.
0 ).|) by
VALUED_1: 1
.= ((
|.(tseq
- (
seq_id (vseq
. n))).|
.
0 )
*
|.((tseq
- (
seq_id (vseq
. n)))
.
0 ).|) by
VALUED_1: 18
.= ((
|.(tseq
- (
seq_id (vseq
. n))).|
.
0 )
* (
|.(tseq
- (
seq_id (vseq
. n))).|
.
0 )) by
VALUED_1: 18
.= ((
|.(tseq
- (
seq_id (vseq
. n))).|
(#)
|.(tseq
- (
seq_id (vseq
. n))).|)
.
0 ) by
SEQ_1: 8
.= ((
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
.
0 ) by
SERIES_1:def 1;
hence thesis by
A43,
A45,
Lm22;
end;
end;
then
A46:
P[
0 ];
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A46,
A40);
hence thesis;
end;
for n be
Nat st n
>= k holds (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|) is
summable &
|.(
Sum ((seqt
- (
seq_id (vseq
. n)))
(#) ((seqt
- (
seq_id (vseq
. n)))
*' ))).|
< (e1
* e1)
proof
let n be
Nat such that
A47: n
>= k;
A48: for i be
Nat st
0
<= i holds ((
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
. i)
<= (e
* e)
proof
let i be
Nat such that
0
<= i;
deffunc
F(
Nat) = ((
Partial_Sums (
|.(
seq_id ((vseq
. $1)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. $1)
- (vseq
. n))).|))
. i);
consider rseq be
Real_Sequence such that
A49: for m be
Nat holds (rseq
. m)
=
F(m) from
SEQ_1:sch 1;
A50: for m be
Nat st m
>= k holds (rseq
. m)
<= (e
* e)
proof
let m be
Nat such that
A51: m
>= k;
(
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|) is
summable & for i be
Nat holds
0
<= ((
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|)
. i) by
A25,
A47,
A51;
then
A52: ((
Partial_Sums (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
. i)
<= (
Sum (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|)) by
RSSPACE2: 3;
A53: (rseq
. m)
= ((
Partial_Sums (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
. i) by
A49;
(
Sum (
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|
(#)
|.(
seq_id ((vseq
. m)
- (vseq
. n))).|))
< (e
* e) by
A25,
A47,
A51;
hence thesis by
A53,
A52,
XXREAL_0: 2;
end;
rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
. i) by
A30,
A49;
hence thesis by
A50,
RSSPACE2: 5;
end;
now
let i be
Nat;
((
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
. i)
<= (e
* e) by
A48;
hence ((
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
. i)
< (e1
* e1) by
A24,
XXREAL_0: 2;
end;
then
A54: (
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|)) is
bounded_above by
SEQ_2:def 3;
A55: for i be
Nat holds
0
<= ((
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|)
. i)
proof
let i be
Nat;
((
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|)
. i)
= ((
|.(seqt
- (
seq_id (vseq
. n))).|
. i)
* (
|.(seqt
- (
seq_id (vseq
. n))).|
. i)) by
SEQ_1: 8;
hence thesis by
XREAL_1: 63;
end;
then
A56: (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|) is
summable by
A54,
SERIES_1: 17;
then (
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|)) is
convergent by
SERIES_1:def 2;
then (
Sum (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
= (
lim (
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))) & (
lim (
Partial_Sums (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|)))
<= (e
* e) by
A48,
RSSPACE2: 5,
SERIES_1:def 3;
then
A57: (
Sum (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|))
< (e1
* e1) by
A24,
XXREAL_0: 2;
(
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.((seqt
- (
seq_id (vseq
. n)))
*' ).|) is
summable by
A56,
Lm18;
then
|.((seqt
- (
seq_id (vseq
. n)))
(#) ((seqt
- (
seq_id (vseq
. n)))
*' )).| is
summable by
COMSEQ_1: 46;
then ((seqt
- (
seq_id (vseq
. n)))
(#) ((seqt
- (
seq_id (vseq
. n)))
*' )) is
absolutely_summable by
COMSEQ_3:def 9;
then
A58:
|.(
Sum ((seqt
- (
seq_id (vseq
. n)))
(#) ((seqt
- (
seq_id (vseq
. n)))
*' ))).|
<= (
Sum
|.((seqt
- (
seq_id (vseq
. n)))
(#) ((seqt
- (
seq_id (vseq
. n)))
*' )).|) by
Lm6;
|.(seqt
- (
seq_id (vseq
. n))).|
=
|.((seqt
- (
seq_id (vseq
. n)))
*' ).| by
Lm18;
then (
Sum
|.((seqt
- (
seq_id (vseq
. n)))
(#) ((seqt
- (
seq_id (vseq
. n)))
*' )).|)
< (e1
* e1) by
A57,
COMSEQ_1: 46;
hence thesis by
A55,
A54,
A58,
SERIES_1: 17,
XXREAL_0: 2;
end;
hence thesis;
end;
A59: (
|.(
seq_id tseq).|
(#)
|.(
seq_id tseq).|) is
summable
proof
set d = (
|.seqt.|
(#)
|.seqt.|);
A60: for i be
Nat holds
0
<= ((
|.(
seq_id tseq).|
(#)
|.(
seq_id tseq).|)
. i)
proof
let i be
Nat;
((
|.(
seq_id tseq).|
(#)
|.(
seq_id tseq).|)
. i)
= ((
|.(
seq_id tseq).|
. i)
* (
|.(
seq_id tseq).|
. i)) by
SEQ_1: 8;
hence thesis by
XREAL_1: 63;
end;
consider m be
Nat such that
A61: for n be
Nat st n
>= m holds (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|) is
summable &
|.(
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
(#) (((
seq_id tseq)
- (
seq_id (vseq
. n)))
*' ))).|
< (1
* 1) by
A20;
set b = (
|.(
seq_id (vseq
. m)).|
(#)
|.(
seq_id (vseq
. m)).|);
set a = (
|.(seqt
- (
seq_id (vseq
. m))).|
(#)
|.(seqt
- (
seq_id (vseq
. m))).|);
(
|.(
seq_id (vseq
. m)).|
(#)
|.(
seq_id (vseq
. m)).|) is
summable by
CSSPACE:def 11;
then
A62: (2
(#) b) is
summable by
SERIES_1: 10;
A63: for i be
Nat holds (d
. i)
<= (((2
(#) a)
+ (2
(#) b))
. i)
proof
let i be
Nat;
A64: i
in
NAT by
ORDINAL1:def 12;
A65: (((2
(#) a)
+ (2
(#) b))
. i)
= (((2
(#) a)
. i)
+ ((2
(#) b)
. i)) by
SEQ_1: 7
.= ((2
* (a
. i))
+ ((2
(#) b)
. i)) by
SEQ_1: 9
.= ((2
* (a
. i))
+ (2
* (b
. i))) by
SEQ_1: 9;
set y = ((
seq_id (vseq
. m))
. i);
set x = (seqt
. i);
A66: (2
* (b
. i))
= (2
* ((
|.(
seq_id (vseq
. m)).|
. i)
* (
|.(
seq_id (vseq
. m)).|
. i))) by
SEQ_1: 8
.= (2
* (
|.y.|
* (
|.(
seq_id (vseq
. m)).|
. i))) by
VALUED_1: 18
.= (2
* (
|.y.|
*
|.y.|)) by
VALUED_1: 18
.= ((2
*
|.y.|)
*
|.y.|);
(
|.(seqt
- (
seq_id (vseq
. m))).|
. i)
=
|.((seqt
+ (
- (
seq_id (vseq
. m))))
. i).| by
VALUED_1: 18
.=
|.((seqt
. i)
+ ((
- (
seq_id (vseq
. m)))
. i)).| by
VALUED_1: 1,
A64
.=
|.((seqt
. i)
+ (
- ((
seq_id (vseq
. m))
. i))).| by
VALUED_1: 8
.=
|.((seqt
. i)
- ((
seq_id (vseq
. m))
. i)).|;
then (a
. i)
= (
|.((seqt
. i)
- ((
seq_id (vseq
. m))
. i)).|
*
|.(((
seq_id tseq)
. i)
- ((
seq_id (vseq
. m))
. i)).|) by
SEQ_1: 8;
then
A67: (2
* (a
. i))
= ((2
*
|.(x
- y).|)
*
|.(x
- y).|);
(d
. i)
= ((
|.seqt.|
. i)
* (
|.seqt.|
. i)) by
SEQ_1: 8
.= (
|.(seqt
. i).|
* (
|.seqt.|
. i)) by
VALUED_1: 18
.= (
|.(seqt
. i).|
*
|.(seqt
. i).|) by
VALUED_1: 18;
hence thesis by
A65,
A67,
A66,
Lm21;
end;
(
|.(seqt
- (
seq_id (vseq
. m))).|
(#)
|.(seqt
- (
seq_id (vseq
. m))).|) is
summable by
A61;
then (2
(#) a) is
summable by
SERIES_1: 10;
then ((2
(#) a)
+ (2
(#) b)) is
summable by
A62,
SERIES_1: 7;
hence thesis by
A60,
A63,
SERIES_1: 20;
end;
tseq
in
the_set_of_ComplexSequences by
FUNCT_2: 8;
then
reconsider tv = tseq as
Point of
Complex_l2_Space by
A59,
CSSPACE:def 11;
for e be
Real st e
>
0 holds ex m be
Nat st for n be
Nat st n
>= m holds
||.((vseq
. n)
- tv).||
< e
proof
let e be
Real such that
A68: e
>
0 ;
consider m be
Nat such that
A69: for n be
Nat st n
>= m holds (
|.(seqt
- (
seq_id (vseq
. n))).|
(#)
|.(seqt
- (
seq_id (vseq
. n))).|) is
summable &
|.(
Sum ((seqt
- (
seq_id (vseq
. n)))
(#) ((seqt
- (
seq_id (vseq
. n)))
*' ))).|
< (e
* e) by
A20,
A68;
now
tseq
in
the_set_of_ComplexSequences by
FUNCT_2: 8;
then
reconsider u = tseq as
VECTOR of
Complex_l2_Space by
A59,
CSSPACE:def 11;
let n be
Nat such that
A70: n
>= m;
reconsider v = (vseq
. n) as
VECTOR of
Complex_l2_Space ;
set seqvn = (
seq_id (vseq
. n));
0
<= (
Re ((u
- v)
.|. (u
- v))) by
CSSPACE:def 13;
then
A71:
0
<=
|.((u
- v)
.|. (u
- v)).| by
CSSPACE: 34;
A72: (
seq_id (u
- v))
= (seqt
- seqvn) by
Lm15;
|.(
Sum ((seqt
- seqvn)
(#) ((seqt
- seqvn)
*' ))).|
< (e
* e) by
A69,
A70;
then
|.((u
- v)
.|. (u
- v)).|
< (e
* e) by
A72,
CSSPACE:def 17;
then
A73: (
sqrt
|.((u
- v)
.|. (u
- v)).|)
< (
sqrt (e
^2 )) by
A71,
SQUARE_1: 27;
||.((vseq
. n)
- tv).||
=
||.(
- (tv
- (vseq
. n))).|| by
RLVECT_1: 33
.=
||.(tv
- (vseq
. n)).|| by
CSSPACE: 47
.= (
sqrt
|.((u
- v)
.|. (u
- v)).|);
hence
||.((vseq
. n)
- tv).||
< e by
A68,
A73,
SQUARE_1: 22;
end;
hence thesis;
end;
hence thesis by
CLVECT_2: 9;
end;
end
registration
cluster
complete for
ComplexUnitarySpace;
existence
proof
take
Complex_l2_Space ;
thus thesis;
end;
end
definition
mode
ComplexHilbertSpace is
complete
ComplexUnitarySpace;
end
begin
theorem ::
CSSPACE2:3
for z1,z2 be
Complex st ((
Re z1)
* (
Im z2))
= ((
Re z2)
* (
Im z1)) & (((
Re z1)
* (
Re z2))
+ ((
Im z1)
* (
Im z2)))
>=
0 holds
|.(z1
+ z2).|
= (
|.z1.|
+
|.z2.|) by
Lm3;
theorem ::
CSSPACE2:4
for x,y be
Complex holds (2
*
|.(x
* y).|)
<= ((
|.x.|
^2 )
+ (
|.y.|
^2 )) by
Lm20;
theorem ::
CSSPACE2:5
for x,y be
Complex holds (
|.(x
+ y).|
*
|.(x
+ y).|)
<= (((2
*
|.x.|)
*
|.x.|)
+ ((2
*
|.y.|)
*
|.y.|)) & (
|.x.|
*
|.x.|)
<= (((2
*
|.(x
- y).|)
*
|.(x
- y).|)
+ ((2
*
|.y.|)
*
|.y.|)) by
Lm21;
::$Canceled
theorem ::
CSSPACE2:7
for seq be
Complex_Sequence holds (
Partial_Sums (seq
*' ))
= ((
Partial_Sums seq)
*' ) by
Lm1;
theorem ::
CSSPACE2:8
for seq be
Complex_Sequence, n be
Nat st (for i be
Nat holds ((
Re seq)
. i)
>=
0 & ((
Im seq)
. i)
=
0 ) holds (
|.(
Partial_Sums seq).|
. n)
= ((
Partial_Sums
|.seq.|)
. n) by
Lm4;
theorem ::
CSSPACE2:9
for seq be
Complex_Sequence st seq is
summable holds (
Sum (seq
*' ))
= ((
Sum seq)
*' ) by
Lm5;
theorem ::
CSSPACE2:10
for seq be
Complex_Sequence st seq is
absolutely_summable holds
|.(
Sum seq).|
<= (
Sum
|.seq.|) by
Lm6;
theorem ::
CSSPACE2:11
for seq be
Complex_Sequence st seq is
summable & (for n be
Nat holds ((
Re seq)
. n)
>=
0 & ((
Im seq)
. n)
=
0 ) holds
|.(
Sum seq).|
= (
Sum
|.seq.|) by
Lm7;
theorem ::
CSSPACE2:12
for seq be
Complex_Sequence, n be
Nat holds ((
Re (seq
(#) (seq
*' )))
. n)
>=
0 & ((
Im (seq
(#) (seq
*' )))
. n)
=
0 by
Lm8;
theorem ::
CSSPACE2:13
for seq be
Complex_Sequence st seq is
absolutely_summable & (
Sum
|.seq.|)
=
0 holds for n be
Nat holds (seq
. n)
=
0c
proof
let seq be
Complex_Sequence such that
A1: seq is
absolutely_summable and
A2: (
Sum
|.seq.|)
=
0 ;
A3: for n be
Nat holds ((
Partial_Sums
|.seq.|)
. n)
<= (
Sum
|.seq.|)
proof
let n be
Nat;
((
Partial_Sums
|.seq.|)
. n)
<= (
lim (
Partial_Sums
|.seq.|)) by
A1,
SEQ_4: 37;
hence thesis by
SERIES_1:def 3;
end;
A4:
now
assume ex n be
Nat st (
|.seq.|
. n)
<>
0 ;
then
consider n1 be
Nat such that
A5: (
|.seq.|
. n1)
<>
0 ;
A6: for n be
Nat holds
0
<= ((
Partial_Sums
|.seq.|)
. n)
proof
let n be
Nat;
(
|.seq.|
.
0 )
=
|.(seq
.
0 ).| by
VALUED_1: 18;
then
A7:
0
<= (
|.seq.|
.
0 ) by
COMPLEX1: 46;
n
= (n
+
0 ) & ((
Partial_Sums
|.seq.|)
.
0 )
= (
|.seq.|
.
0 ) by
SERIES_1:def 1;
hence thesis by
A7,
SEQM_3: 5;
end;
((
Partial_Sums
|.seq.|)
. n1)
>
0
proof
now
per cases ;
case n1
=
0 ;
then ((
Partial_Sums
|.seq.|)
. n1)
<>
0 by
A5,
SERIES_1:def 1;
hence thesis by
A6;
end;
case
A8: n1
<>
0 ;
set nn = (n1
- 1);
(
|.seq.|
. n1)
=
|.(seq
. n1).| by
VALUED_1: 18;
then
A9: (nn
+ 1)
= n1 &
0
<= (
|.seq.|
. n1) by
COMPLEX1: 46;
(
0
+ 1)
<= n1 by
A8,
INT_1: 7;
then
A10: nn
in
NAT by
INT_1: 5;
then
0
<= ((
Partial_Sums
|.seq.|)
. nn) by
A6;
then ((
|.seq.|
. n1)
+
0 )
<= ((
|.seq.|
. n1)
+ ((
Partial_Sums
|.seq.|)
. nn)) by
XREAL_1: 7;
hence thesis by
A5,
A10,
A9,
SERIES_1:def 1;
end;
end;
hence thesis;
end;
hence contradiction by
A2,
A3;
end;
for n be
Nat holds (seq
. n)
=
0c
proof
let n be
Nat;
0
= (
|.seq.|
. n) by
A4
.=
|.(seq
. n).| by
VALUED_1: 18;
hence thesis by
COMPLEX1: 45;
end;
hence thesis;
end;
theorem ::
CSSPACE2:14
for seq be
Complex_Sequence holds
|.seq.|
=
|.(seq
*' ).| by
Lm18;
theorem ::
CSSPACE2:15
for c be
Complex, seq be
Complex_Sequence st seq is
convergent holds for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= (
|.((seq
. m)
- c).|
*
|.((seq
. m)
- c).|)) holds rseq is
convergent & (
lim rseq)
= (
|.((
lim seq)
- c).|
*
|.((
lim seq)
- c).|) by
Lm22;
theorem ::
CSSPACE2:16
for c be
Complex, seq1 be
Real_Sequence, seq be
Complex_Sequence st seq is
convergent & seq1 is
convergent holds for rseq be
Real_Sequence st (for i be
Nat holds (rseq
. i)
= ((
|.((seq
. i)
- c).|
*
|.((seq
. i)
- c).|)
+ (seq1
. i))) holds rseq is
convergent & (
lim rseq)
= ((
|.((
lim seq)
- c).|
*
|.((
lim seq)
- c).|)
+ (
lim seq1)) by
Lm23;