diophan2.miz
begin
reserve r1,r2,r3 for non
negative
Real;
reserve n,m1 for
Nat;
reserve s for
Real;
reserve cn,cd,i1,j1 for
Integer;
reserve r for
irrational
Real;
reserve q for
Rational;
theorem ::
DIOPHAN2:1
Th18: (r1
* r2)
<= r3 implies r1
<= (
sqrt r3) or r2
<= (
sqrt r3)
proof
assume that
A1: (r1
* r2)
<= r3 and
A2: not (r1
<= (
sqrt r3) or r2
<= (
sqrt r3));
(
sqrt r3)
>=
0 by
SQUARE_1:def 2;
then ((
sqrt r3)
^2 )
< (r1
* r2) by
A2,
XREAL_1: 96;
hence contradiction by
A1,
SQUARE_1:def 2;
end;
theorem ::
DIOPHAN2:2
Th19: (
sqrt (r1
* r2))
= ((r1
+ r2)
/ 2) iff r1
= r2
proof
hereby
assume
A1: (
sqrt (r1
* r2))
= ((r1
+ r2)
/ 2);
A2: (((
sqrt (r1
* r2))
* 2)
^2 )
= (((
sqrt (r1
* r2))
^2 )
* (2
^2 ))
.= ((r1
* r2)
* 4) by
SQUARE_1:def 2
.= ((4
* r1)
* r2);
0
= (((r1
+ r2)
^2 )
- (((
sqrt (r1
* r2))
* 2)
^2 )) by
A1
.= ((r1
- r2)
^2 ) by
A2;
then (r1
- r2)
=
0 ;
hence r1
= r2;
end;
assume
A3: r1
= r2;
then (
sqrt (r1
* r2))
= ((
sqrt r1)
^2 ) by
SQUARE_1: 29
.= ((r1
+ r2)
/ 2) by
A3,
SQUARE_1:def 2;
hence (
sqrt (r1
* r2))
= ((r1
+ r2)
/ 2);
end;
theorem ::
DIOPHAN2:3
Th20: (r1
* r2)
= (((r1
+ r2)
/ 2)
^2 ) iff r1
= r2
proof
hereby
assume (r1
* r2)
= (((r1
+ r2)
/ 2)
^2 );
then (
sqrt (r1
* r2))
= ((r1
+ r2)
/ 2) by
SQUARE_1: 22;
hence r1
= r2 by
Th19;
end;
thus thesis;
end;
theorem ::
DIOPHAN2:4
Th15: for i1, j1 st (i1,j1)
are_coprime holds ex s,t be
Integer st ((s
* i1)
+ (t
* j1))
= 1
proof
let i1, j1;
assume
A1: (i1,j1)
are_coprime ;
then
B1: (j1
gcd i1)
= 1 by
INT_2:def 3;
per cases ;
suppose i1
>=
0 & j1
>=
0 ;
then i1
in
NAT & j1
in
NAT by
INT_1: 3;
hence thesis by
A1,
EULER_1: 10;
end;
suppose
A3: i1
>=
0 & j1
<
0 ;
set j2 = (
- j1);
i1
in
NAT & j2
in
NAT by
A3,
INT_1: 3;
then
reconsider i1, j2 as
Nat;
(i1
gcd j2)
= (
|.i1.|
gcd
|.(
- j1).|)
.= (i1
gcd
|.j1.|) by
COMPLEX1: 52
.= 1 by
B1,
INT_6: 14;
then
consider s,t be
Integer such that
A5: ((s
* i1)
+ (t
* j2))
= 1 by
EULER_1: 10,
INT_2:def 3;
((s
* i1)
+ ((
- t)
* j1))
= 1 by
A5;
hence thesis;
end;
suppose
A6: i1
<
0 & j1
>=
0 ;
set i2 = (
- i1);
i2
in
NAT & j1
in
NAT by
A6,
INT_1: 3;
then
reconsider i2, j1 as
Nat;
(i2
gcd j1)
= (
|.(
- i1).|
gcd
|.j1.|)
.= (
|.i1.|
gcd j1) by
COMPLEX1: 52
.= 1 by
B1,
INT_6: 14;
then
consider s,t be
Integer such that
A8: ((s
* i2)
+ (t
* j1))
= 1 by
EULER_1: 10,
INT_2:def 3;
(((
- s)
* i1)
+ (t
* j1))
= 1 by
A8;
hence thesis;
end;
suppose
A9: i1
<
0 & j1
<
0 ;
set i2 = (
- i1), j2 = (
- j1);
i2
in
NAT & j2
in
NAT by
A9,
INT_1: 3;
then
reconsider i2, j2 as
Nat;
(i2
gcd j2)
= (
|.(
- i1).|
gcd
|.(
- j1).|)
.= (
|.i1.|
gcd
|.(
- j1).|) by
COMPLEX1: 52
.= (
|.i1.|
gcd
|.j1.|) by
COMPLEX1: 52
.= (
|.i1.|
gcd j1) by
INT_6: 14
.= 1 by
B1,
INT_6: 14;
then
consider s,t be
Integer such that
A11: ((s
* i2)
+ (t
* j2))
= 1 by
EULER_1: 10,
INT_2:def 3;
(((
- s)
* i1)
+ ((
- t)
* j1))
= 1 by
A11;
hence thesis;
end;
end;
(
sqrt 5)
> (
sqrt (2
^2 )) by
SQUARE_1: 27;
then
SQRT2: 2
< (
sqrt 5) by
SQUARE_1: 22;
then
SQRT3: (1
/ (
sqrt 5))
< (1
/ 2) by
XREAL_1: 76;
theorem ::
DIOPHAN2:5
Th1: 1
< s & (s
+ (1
/ s))
< (
sqrt 5) implies s
< (((
sqrt 5)
+ 1)
/ 2) & (1
/ s)
> (((
sqrt 5)
- 1)
/ 2)
proof
assume that
A1: 1
< s and
A2: (s
+ (1
/ s))
< (
sqrt 5);
A4: ((
- (1
* (
sqrt 5)))
^2 )
= (((
- 1)
^2 )
* ((
sqrt 5)
^2 ))
.= 5 by
SQUARE_1:def 2;
(s
* (s
+ (1
/ s)))
< (s
* (
sqrt 5)) by
A1,
A2,
XREAL_1: 68;
then ((s
* s)
+ ((s
* 1)
/ s))
< (s
* (
sqrt 5));
then ((s
* s)
+ 1)
< (s
* (
sqrt 5)) by
A1,
XCMPLX_0:def 7;
then
A5: (((s
* s)
+ 1)
- (s
* (
sqrt 5)))
< ((s
* (
sqrt 5))
- (s
* (
sqrt 5))) by
XREAL_1: 14;
set a = 1, b = (
- (
sqrt 5)), c = 1;
A7: (((a
* (s
^2 ))
+ (b
* s))
+ c)
<
0 by
A5;
A6: (
delta (1,(
- (
sqrt 5)),1))
= (((
- (
sqrt 5))
^2 )
- ((4
* 1)
* 1)) by
QUIN_1:def 1
.= 1 by
A4;
then (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a))
= (((
sqrt 5)
+ 1)
/ 2) by
SQUARE_1: 18;
then
A8: s
< (((
sqrt 5)
+ 1)
/ 2) by
A7,
A6,
QUIN_1: 26;
((
sqrt 5)
- 1)
<>
0 by
SQRT2;
then
A9: (((
sqrt 5)
- 1)
/ ((
sqrt 5)
- 1))
= 1 by
XCMPLX_1: 60;
(1
/ (((
sqrt 5)
+ 1)
/ 2))
= ((2
/ ((
sqrt 5)
+ 1))
* (((
sqrt 5)
- 1)
/ ((
sqrt 5)
- 1))) by
A9,
XCMPLX_1: 57
.= ((2
* ((
sqrt 5)
- 1))
/ (((
sqrt 5)
+ 1)
* ((
sqrt 5)
- 1))) by
XCMPLX_1: 76
.= ((2
* ((
sqrt 5)
- 1))
/ (((
sqrt 5)
^2 )
- 1))
.= ((2
* ((
sqrt 5)
- 1))
/ (5
- 1)) by
SQUARE_1:def 2
.= (((
sqrt 5)
- 1)
/ 2);
hence thesis by
A1,
A8,
XREAL_1: 88;
end;
theorem ::
DIOPHAN2:6
Th8: q
= (i1
/ m1) & m1
<>
0 & (i1,m1)
are_coprime implies i1
= (
numerator q) & m1
= (
denominator q)
proof
assume that
A1: q
= (i1
/ m1) and
A2: m1
<>
0 and
A3: (i1,m1)
are_coprime ;
A4: (i1
gcd m1)
= 1 by
A3,
INT_2:def 3;
ex m be
Nat st i1
= ((
numerator q)
* m) & m1
= ((
denominator q)
* m) by
A1,
A2,
RAT_1: 27;
then
consider m be
Nat such that
A5: i1
= (m
* (
numerator q)) and
A6: m1
= (m
* (
denominator q));
A7: m
divides i1 by
A5;
A8: m
divides m1 by
A6;
m
divides 1 by
A4,
A7,
A8,
INT_2:def 2;
then m
= 1 by
WSIERP_1: 15;
hence thesis by
A6,
A5;
end;
definition
let f be
Function;
::
DIOPHAN2:def1
func
ZeroPointSet f ->
set equals ((
dom f)
\ (
support f));
correctness ;
end
theorem ::
DIOPHAN2:7
Th13: for f be
Function, o1,o2 be
object holds o1
in (
ZeroPointSet f) iff o1
in (
dom f) & (f
. o1)
=
0
proof
let f be
Function, o1,o2 be
object;
hereby
assume
A1: o1
in (
ZeroPointSet f);
then not o1
in (
support f) by
XBOOLE_0:def 5;
hence o1
in (
dom f) & (f
. o1)
=
0 by
PRE_POLY:def 7,
A1;
end;
assume that
A1: o1
in (
dom f) and
A2: (f
. o1)
=
0 ;
not o1
in (
support f) by
A2,
PRE_POLY:def 7;
hence thesis by
A1,
XBOOLE_0:def 5;
end;
begin
registration
let r be
irrational
Real;
let n be
Nat;
cluster ((
c_d r)
. n) ->
positive
natural;
coherence
proof
((
c_d r)
. n)
>= 1 & ((
c_d r)
. n)
in
NAT by
DIOPHAN1: 7,
REAL_3: 50;
hence thesis;
end;
end
theorem ::
DIOPHAN2:8
Th3: for r, n st n
> 1 &
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
>= (1
/ ((
sqrt 5)
* (((
c_d r)
. n)
|^ 2))) &
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
>= (1
/ ((
sqrt 5)
* (((
c_d r)
. (n
+ 1))
|^ 2))) holds (
sqrt 5)
> ((((
c_d r)
. (n
+ 1))
/ ((
c_d r)
. n))
+ (1
/ (((
c_d r)
. (n
+ 1))
/ ((
c_d r)
. n))))
proof
let r, n;
set s5 = (
sqrt 5);
assume that
A2: n
> 1 and
A3:
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
>= (1
/ ((
sqrt 5)
* (((
c_d r)
. n)
|^ 2))) and
A4:
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
>= (1
/ ((
sqrt 5)
* (((
c_d r)
. (n
+ 1))
|^ 2)));
(
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
+
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|)
=
|.((((
c_n r)
. n)
/ ((
c_d r)
. n))
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).| by
A2,
DIOPHAN1: 17;
then
A6:
|.((((
c_n r)
. n)
/ ((
c_d r)
. n))
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
>= ((1
/ (s5
* (((
c_d r)
. n)
|^ 2)))
+ (1
/ (s5
* (((
c_d r)
. (n
+ 1))
|^ 2)))) by
A3,
A4,
XREAL_1: 7;
A7: for n holds ((
c_d r)
. n)
<>
0 ;
A8:
|.((((
c_n r)
. n)
/ ((
c_d r)
. n))
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
=
|.((((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).| by
COMPLEX1: 60;
(1
/
|.(((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n)).|)
= (1
* ((((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n))
" ));
then ((((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n))
" )
>= ((1
/ (s5
* (((
c_d r)
. n)
|^ 2)))
+ (1
/ (s5
* (((
c_d r)
. (n
+ 1))
|^ 2)))) by
A6,
A7,
A8,
REAL_3: 69;
then
A10: ((((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n))
* ((((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n))
" ))
>= ((((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n))
* ((1
/ (s5
* (((
c_d r)
. n)
|^ 2)))
+ (1
/ (s5
* (((
c_d r)
. (n
+ 1))
|^ 2))))) by
XREAL_1: 64;
(((
c_d r)
. n)
|^ 2)
= (((
c_d r)
. n)
* ((
c_d r)
. n)) by
WSIERP_1: 1;
then
A15: ((((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n))
/ (s5
* (((
c_d r)
. n)
|^ 2)))
= ((((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n))
* ((s5
" )
* ((((
c_d r)
. n)
* ((
c_d r)
. n))
" ))) by
XCMPLX_1: 204
.= ((((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n))
* ((s5
" )
* ((((
c_d r)
. n)
" )
* (((
c_d r)
. n)
" )))) by
XCMPLX_1: 204
.= ((((s5
" )
* ((
c_d r)
. (n
+ 1)))
* (((
c_d r)
. n)
* (((
c_d r)
. n)
" )))
* (((
c_d r)
. n)
" ))
.= ((((s5
" )
* ((
c_d r)
. (n
+ 1)))
* 1)
* (((
c_d r)
. n)
" )) by
XCMPLX_0:def 7
.= (((s5
" )
* ((
c_d r)
. (n
+ 1)))
* (((
c_d r)
. n)
" ));
(((
c_d r)
. (n
+ 1))
|^ 2)
= (((
c_d r)
. (n
+ 1))
* ((
c_d r)
. (n
+ 1))) by
WSIERP_1: 1;
then (((((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n))
* 1)
/ (s5
* (((
c_d r)
. (n
+ 1))
|^ 2)))
= ((((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n))
* ((s5
" )
* ((((
c_d r)
. (n
+ 1))
* ((
c_d r)
. (n
+ 1)))
" ))) by
XCMPLX_1: 204
.= ((((
c_d r)
. (n
+ 1))
* ((
c_d r)
. n))
* ((s5
" )
* ((((
c_d r)
. (n
+ 1))
" )
* (((
c_d r)
. (n
+ 1))
" )))) by
XCMPLX_1: 204
.= (((((
sqrt 5)
" )
* ((
c_d r)
. n))
* (((
c_d r)
. (n
+ 1))
* (((
c_d r)
. (n
+ 1))
" )))
* (((
c_d r)
. (n
+ 1))
" ))
.= (((((
sqrt 5)
" )
* ((
c_d r)
. n))
* 1)
* (((
c_d r)
. (n
+ 1))
" )) by
XCMPLX_0:def 7
.= ((((
sqrt 5)
" )
* ((
c_d r)
. n))
* (((
c_d r)
. (n
+ 1))
" ));
then
A17: 1
>= (((((
sqrt 5)
" )
* ((
c_d r)
. (n
+ 1)))
* (((
c_d r)
. n)
" ))
+ (((s5
" )
* ((
c_d r)
. n))
* (((
c_d r)
. (n
+ 1))
" ))) by
A15,
A10,
XCMPLX_0:def 7;
0
< (
sqrt 5) by
SQUARE_1: 20,
SQUARE_1: 27;
then
A18: (s5
* 1)
>= (s5
* ((((s5
" )
* ((
c_d r)
. (n
+ 1)))
* (((
c_d r)
. n)
" ))
+ (((s5
" )
* ((
c_d r)
. n))
* (((
c_d r)
. (n
+ 1))
" )))) by
A17,
XREAL_1: 64;
A20: (s5
* ((((s5
" )
* ((
c_d r)
. (n
+ 1)))
* (((
c_d r)
. n)
" ))
+ (((s5
" )
* ((
c_d r)
. n))
* (((
c_d r)
. (n
+ 1))
" ))))
= ((((s5
* (s5
" ))
* ((
c_d r)
. (n
+ 1)))
* (((
c_d r)
. n)
" ))
+ (((s5
* (s5
" ))
* ((
c_d r)
. n))
* (((
c_d r)
. (n
+ 1))
" )))
.= (((1
* ((
c_d r)
. (n
+ 1)))
* (((
c_d r)
. n)
" ))
+ (((s5
* (s5
" ))
* ((
c_d r)
. n))
* (((
c_d r)
. (n
+ 1))
" ))) by
SQRT2,
XCMPLX_0:def 7
.= ((((
c_d r)
. (n
+ 1))
* (((
c_d r)
. n)
" ))
+ ((1
* ((
c_d r)
. n))
* (((
c_d r)
. (n
+ 1))
" ))) by
SQRT2,
XCMPLX_0:def 7
.= ((((
c_d r)
. (n
+ 1))
/ ((
c_d r)
. n))
+ (((
c_d r)
. n)
/ ((
c_d r)
. (n
+ 1))));
s5
<> ((((
c_d r)
. (n
+ 1))
/ ((
c_d r)
. n))
+ (((
c_d r)
. n)
/ ((
c_d r)
. (n
+ 1)))) by
PEPIN: 59,
IRRAT_1: 1;
then s5
> ((((
c_d r)
. (n
+ 1))
/ ((
c_d r)
. n))
+ (((
c_d r)
. n)
/ ((
c_d r)
. (n
+ 1)))) by
A18,
A20,
XXREAL_0: 1;
hence thesis by
XCMPLX_1: 213;
end;
theorem ::
DIOPHAN2:9
Th4: cn
= ((
c_n r)
. n) & cd
= ((
c_d r)
. n) implies (cn,cd)
are_coprime
proof
set cd2 = ((
c_d r)
. (n
+ 1));
set cn2 = ((
c_n r)
. (n
+ 1));
assume that
A1: cn
= ((
c_n r)
. n) and
A2: cd
= ((
c_d r)
. n);
A6: ((cn2
* cd)
- (cn
* cd2))
= ((
- 1)
|^ n) by
A1,
A2,
REAL_3: 64;
assume
A5: not (cn,cd)
are_coprime ;
consider cn0,cd0 be
Integer such that
A7: cn
= ((cn
gcd cd)
* cn0) and
A8: cd
= ((cn
gcd cd)
* cd0) and (cn0,cd0)
are_coprime by
A2,
INT_2: 23;
(cn
gcd cd)
>= (
0
+ 1) by
A2,
INT_1: 7;
then
A9: (cn
gcd cd)
> 1 by
A5,
INT_2:def 3,
XXREAL_0: 1;
A10: ((
- 1)
|^ n)
= ((cn
gcd cd)
* ((cn2
* cd0)
- (cn0
* cd2))) by
A7,
A6,
A8;
A11: 1
=
|.((
- 1)
|^ n).| by
SERIES_2: 1
.= (
|.(cn
gcd cd).|
*
|.((cn2
* cd0)
- (cn0
* cd2)).|) by
COMPLEX1: 65,
A10
.= ((cn
gcd cd)
*
|.((cn2
* cd0)
- (cn0
* cd2)).|);
((cn
gcd cd)
" )
< 1 by
A9,
XREAL_1: 212;
then
|.((cn2
* cd0)
- (cn0
* cd2)).|
< 1 by
A11,
XCMPLX_1: 210;
then
|.((cn2
* cd0)
- (cn0
* cd2)).|
=
0 by
NAT_1: 14;
hence contradiction by
A11;
end;
theorem ::
DIOPHAN2:10
Th5: n
> 1 implies
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
< (1
/ ((
sqrt 5)
* (((
c_d r)
. n)
|^ 2))) or
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
< (1
/ ((
sqrt 5)
* (((
c_d r)
. (n
+ 1))
|^ 2))) or
|.(r
- (((
c_n r)
. (n
+ 2))
/ ((
c_d r)
. (n
+ 2)))).|
< (1
/ ((
sqrt 5)
* (((
c_d r)
. (n
+ 2))
|^ 2)))
proof
assume that
A2: n
> 1 and
A3: not (
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
< (1
/ ((
sqrt 5)
* (((
c_d r)
. n)
|^ 2))) or
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
< (1
/ ((
sqrt 5)
* (((
c_d r)
. (n
+ 1))
|^ 2))) or
|.(r
- (((
c_n r)
. (n
+ 2))
/ ((
c_d r)
. (n
+ 2)))).|
< (1
/ ((
sqrt 5)
* (((
c_d r)
. (n
+ 2))
|^ 2))));
A4: (
sqrt 5)
> ((((
c_d r)
. (n
+ 1))
/ ((
c_d r)
. n))
+ (1
/ (((
c_d r)
. (n
+ 1))
/ ((
c_d r)
. n)))) by
A2,
A3,
Th3;
set m = (n
+ 1);
m
> (1
+ 1) by
A2,
XREAL_1: 8;
then m
> 1 by
XXREAL_0: 2;
then
A7: (
sqrt 5)
> ((((
c_d r)
. (m
+ 1))
/ ((
c_d r)
. m))
+ (1
/ (((
c_d r)
. (m
+ 1))
/ ((
c_d r)
. m)))) by
A3,
Th3;
A10: (((
c_d r)
. (n
+ 2))
/ ((
c_d r)
. (n
+ 1)))
= (((((
scf r)
. (n
+ 2))
* ((
c_d r)
. (n
+ 1)))
+ ((
c_d r)
. n))
/ ((
c_d r)
. m)) by
REAL_3:def 6
.= ((((
scf r)
. (n
+ 2))
* (((
c_d r)
. (n
+ 1))
* (((
c_d r)
. m)
" )))
+ (((
c_d r)
. n)
/ ((
c_d r)
. (n
+ 1))))
.= ((((
scf r)
. (n
+ 2))
* 1)
+ (((
c_d r)
. n)
/ ((
c_d r)
. m))) by
XCMPLX_0:def 7
.= (((
scf r)
. (n
+ 2))
+ ((((
c_d r)
. m)
/ ((
c_d r)
. n))
" )) by
XCMPLX_1: 213;
(((
c_d r)
. (n
+ 2))
/ ((
c_d r)
. m))
> (((
c_d r)
. m)
/ ((
c_d r)
. m)) by
XREAL_1: 74,
DIOPHAN1: 8;
then
A11: (((
c_d r)
. (n
+ 2))
/ ((
c_d r)
. (n
+ 1)))
> 1 by
XCMPLX_1: 60;
set m1 = (n
- 1);
(((
c_d r)
. (m1
+ 2))
/ ((
c_d r)
. (m1
+ 1)))
> (((
c_d r)
. (m1
+ 1))
/ ((
c_d r)
. (m1
+ 1))) by
XREAL_1: 74,
A2,
DIOPHAN1: 8;
then (((
c_d r)
. ((n
- 1)
+ 2))
/ ((
c_d r)
. ((n
- 1)
+ 1)))
> 1 by
XCMPLX_1: 60;
then
A13: (1
/ (((
c_d r)
. (n
+ 1))
/ ((
c_d r)
. n)))
> (((
sqrt 5)
- 1)
/ 2) by
A4,
Th1;
((
scf r)
. ((n
+ 1)
+ 1))
>
0 by
DIOPHAN1: 5;
then ((
scf r)
. (n
+ 2))
>= (
0
+ 1) by
INT_1: 7;
then (((
scf r)
. (n
+ 2))
+ (1
/ (((
c_d r)
. (n
+ 1))
/ ((
c_d r)
. n))))
> (1
+ (((
sqrt 5)
- 1)
/ 2)) by
A13,
XREAL_1: 8;
hence contradiction by
A7,
A10,
A11,
Th1;
end;
definition
let r;
::
DIOPHAN2:def2
func
HWZSet (r) ->
Subset of
RAT equals { p where p be
Rational :
|.(r
- p).|
< (1
/ ((
sqrt 5)
* ((
denominator p)
|^ 2))) };
coherence
proof
defpred
P[
Rational] means
|.(r
- $1).|
< (1
/ ((
sqrt 5)
* ((
denominator $1)
|^ 2)));
{ p where p be
Rational :
P[p] }
c=
RAT
proof
let y be
object;
assume y
in { p where p be
Rational :
P[p] };
then ex r be
Rational st y
= r &
P[r];
hence thesis by
RAT_1:def 2;
end;
hence thesis;
end;
end
definition
let r;
::
DIOPHAN2:def3
func
HWZSet1 (r) ->
Subset of
NAT equals { x where x be
Nat : ex p be
Rational st p
in (
HWZSet r) & x
= (
denominator p) };
coherence
proof
defpred
P[
Nat] means ex p be
Rational st p
in (
HWZSet r) & $1
= (
denominator p);
{ x where x be
Nat :
P[x] }
c=
NAT
proof
let y be
object;
assume y
in { x where x be
Nat :
P[x] };
then ex x be
Nat st y
= x &
P[x];
hence thesis by
ORDINAL1:def 12;
end;
hence thesis;
end;
end
definition
::
DIOPHAN2:def4
func
TRANQN ->
Function of
RAT ,
NAT means
:
Def3A: for x be
Rational holds (it
. x)
= (
denominator x);
existence
proof
defpred
P[
Element of
RAT ,
Element of
NAT ] means $2
= (
denominator $1);
A1: for x be
Element of
RAT holds ex y be
Element of
NAT st
P[x, y]
proof
let x be
Element of
RAT ;
(
denominator x)
in
NAT by
ORDINAL1:def 12;
hence thesis;
end;
consider f be
Function of
RAT ,
NAT such that
A2: for x be
Element of
RAT holds
P[x, (f
. x)] from
FUNCT_2:sch 3(
A1);
take f;
let x be
Rational;
x
in
RAT by
RAT_1:def 2;
hence thesis by
A2;
end;
uniqueness
proof
let f,g be
Function of
RAT ,
NAT ;
assume that
A3: for x be
Rational holds (f
. x)
= (
denominator x) and
A4: for x be
Rational holds (g
. x)
= (
denominator x);
now
let x be
Element of
RAT ;
(f
. x)
= (
denominator x) by
A3;
hence (f
. x)
= (g
. x) by
A4;
end;
hence thesis;
end;
end
theorem ::
DIOPHAN2:11
Th6: (
TRANQN
.: (
HWZSet r))
= (
HWZSet1 r)
proof
thus (
TRANQN
.: (
HWZSet r))
c= (
HWZSet1 r)
proof
let y be
object;
assume
A2: y
in (
TRANQN
.: (
HWZSet r));
consider p be
object such that
A3: p
in (
dom
TRANQN ) and
A4: p
in (
HWZSet r) and
A5: y
= (
TRANQN
. p) by
A2,
FUNCT_1:def 6;
consider q be
Element of
RAT such that
A6: q
= p by
A3;
y
= (
denominator q) by
Def3A,
A5,
A6;
hence thesis by
A4,
A6;
end;
let y be
object;
assume y
in (
HWZSet1 r);
then
consider y1 be
Nat such that
A11: y1
= y and
A12: ex p be
Rational st p
in (
HWZSet r) & y1
= (
denominator p);
consider p be
Rational such that
A13: p
in (
HWZSet r) & y1
= (
denominator p) by
A12;
A14: (
dom
TRANQN )
=
RAT by
FUNCT_2:def 1;
y1
= (
TRANQN
. p) by
Def3A,
A13;
hence thesis by
A11,
A13,
A14,
FUNCT_1:def 6;
end;
theorem ::
DIOPHAN2:12
Th7: (
HWZSet r) is
finite implies (
HWZSet1 r) is
finite
proof
(
TRANQN
.: (
HWZSet r))
= (
HWZSet1 r) by
Th6;
hence thesis;
end;
registration
let r;
cluster (
HWZSet1 r) -> non
empty;
coherence
proof
set n = 2;
per cases by
Th5;
suppose
A3:
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
< (1
/ ((
sqrt 5)
* (((
c_d r)
. n)
|^ 2)));
set q1 = ((
c_n r)
. n);
reconsider q2 = ((
c_d r)
. n) as
Element of
INT by
NUMBERS: 17,
REAL_3: 50;
set q = (q1
/ q2);
A5: (q1,q2)
are_coprime by
Th4;
|.(r
- q).|
< (1
/ ((
sqrt 5)
* ((
denominator q)
|^ 2))) by
Th8,
A3,
A5;
then q
in (
HWZSet r);
then (
denominator q)
in (
HWZSet1 r);
hence thesis by
XBOOLE_0:def 1;
end;
suppose
A8:
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
< (1
/ ((
sqrt 5)
* (((
c_d r)
. (n
+ 1))
|^ 2)));
set q1 = ((
c_n r)
. (n
+ 1));
reconsider q2 = ((
c_d r)
. (n
+ 1)) as
Element of
INT by
NUMBERS: 17,
REAL_3: 50;
set q = (q1
/ q2);
(q1,q2)
are_coprime by
Th4;
then q1
= (
numerator q) & q2
= (
denominator q) by
Th8;
then q
in (
HWZSet r) by
A8;
then (
denominator q)
in (
HWZSet1 r);
hence thesis by
XBOOLE_0:def 1;
end;
suppose
A14:
|.(r
- (((
c_n r)
. (n
+ 2))
/ ((
c_d r)
. (n
+ 2)))).|
< (1
/ ((
sqrt 5)
* (((
c_d r)
. (n
+ 2))
|^ 2)));
set q1 = ((
c_n r)
. (n
+ 2));
reconsider q2 = ((
c_d r)
. (n
+ 2)) as
Element of
INT by
NUMBERS: 17,
REAL_3: 50;
set q = (q1
/ q2);
(q1,q2)
are_coprime by
Th4;
then
|.(r
- q).|
< (1
/ ((
sqrt 5)
* ((
denominator q)
|^ 2))) by
Th8,
A14;
then q
in (
HWZSet r);
then (
denominator q)
in (
HWZSet1 r);
hence thesis by
XBOOLE_0:def 1;
end;
end;
end
theorem ::
DIOPHAN2:13
Th10: for h be
Nat st h
in (
HWZSet1 r) holds h
>
0
proof
let h be
Nat;
assume h
in (
HWZSet1 r);
then ex h1 be
Nat st h1
= h & ex p be
Rational st p
in (
HWZSet r) & h1
= (
denominator p);
hence thesis;
end;
registration
let r;
cluster (
HWZSet1 r) ->
infinite;
coherence
proof
assume (
HWZSet1 r) is
finite;
then
reconsider HWS1 = (
HWZSet1 r) as
finite non
empty
Subset of
NAT ;
reconsider j = (
max HWS1) as
Element of
NAT by
ORDINAL1:def 12;
HWS1
c=
REAL by
NUMBERS: 19;
then
reconsider HWS1 as non
empty
Subset of
ExtREAL by
NUMBERS: 31,
XBOOLE_1: 1;
A4: for s be
Element of HWS1 holds j
>= s & j
>
0
proof
let s be
Element of HWS1;
A5: s
in HWS1 by
SUBSET_1:def 1;
then j
>= s by
XXREAL_2: 4;
hence thesis by
A5,
Th10;
end;
set n = (j
+ 1);
per cases by
Th5,
A4,
XREAL_1: 29;
suppose
A7:
|.(r
- (((
c_n r)
. n)
/ ((
c_d r)
. n))).|
< (1
/ ((
sqrt 5)
* (((
c_d r)
. n)
|^ 2)));
set q1 = ((
c_n r)
. n);
set q2 = ((
c_d r)
. n);
set q = (q1
/ q2);
A9: (q1,q2)
are_coprime by
Th4;
q1
= (
numerator q) & q2
= (
denominator q) by
Th8,
A9;
then q
in (
HWZSet r) by
A7;
then (
denominator q)
in (
HWZSet1 r);
then
A14: q2
in (
HWZSet1 r) by
Th8,
A9;
A15: q2
>= (j
+ 1) by
DIOPHAN1: 9;
(j
+ 1)
> j by
XREAL_1: 29;
then q2
> j by
A15,
XXREAL_0: 2;
hence contradiction by
A4,
A14;
end;
suppose
A17:
|.(r
- (((
c_n r)
. (n
+ 1))
/ ((
c_d r)
. (n
+ 1)))).|
< (1
/ ((
sqrt 5)
* (((
c_d r)
. (n
+ 1))
|^ 2)));
set q1 = ((
c_n r)
. (n
+ 1));
set q2 = ((
c_d r)
. (n
+ 1));
set q = (q1
/ q2);
A19: (q1,q2)
are_coprime by
Th4;
then
A20: q1
= (
numerator q) & q2
= (
denominator q) by
Th8;
|.(r
- q).|
< (1
/ ((
sqrt 5)
* ((
denominator q)
|^ 2))) by
A17,
Th8,
A19;
then q
in (
HWZSet r);
then q2
in (
HWZSet1 r) by
A20;
then
A23: q2
<= j by
A4;
A24: q2
>= (j
+ 2) by
DIOPHAN1: 9;
(j
+ 2)
> j by
XREAL_1: 29;
hence contradiction by
A23,
A24,
XXREAL_0: 2;
end;
suppose
A26:
|.(r
- (((
c_n r)
. (n
+ 2))
/ ((
c_d r)
. (n
+ 2)))).|
< (1
/ ((
sqrt 5)
* (((
c_d r)
. (n
+ 2))
|^ 2)));
set q1 = ((
c_n r)
. (n
+ 2));
set q2 = ((
c_d r)
. (n
+ 2));
set q = (q1
/ q2);
A28: (q1,q2)
are_coprime by
Th4;
then
A29: q1
= (
numerator q) & q2
= (
denominator q) by
Th8;
|.(r
- q).|
< (1
/ ((
sqrt 5)
* ((
denominator q)
|^ 2))) by
Th8,
A28,
A26;
then q
in (
HWZSet r);
then q2
in (
HWZSet1 r) by
A29;
then
A33: q2
<= j by
A4;
A34: q2
>= (j
+ 3) by
DIOPHAN1: 9;
(j
+ 3)
> j by
XREAL_1: 29;
hence contradiction by
A33,
A34,
XXREAL_0: 2;
end;
end;
end
::$Notion-Name
theorem ::
DIOPHAN2:14
for r holds { q :
|.(r
- q).|
< (1
/ ((
sqrt 5)
* ((
denominator q)
|^ 2))) } is
infinite
proof
let r;
(
HWZSet1 r) is
infinite;
hence thesis by
Th7;
end;
reserve c0,c1,c2,u,a0,b0 for
Real;
definition
let a0,b0,c0 be
Real;
::
DIOPHAN2:def5
func
LF (a0,b0,c0) ->
Function of
[:
INT ,
INT :],
REAL means
:
Def4: for x,y be
Integer holds (it
. (x,y))
= (((a0
* x)
+ (b0
* y))
+ c0);
existence
proof
defpred
P[
Integer,
Integer,
set] means $3
= (((a0
* $1)
+ (b0
* $2))
+ c0);
A1: for x,y be
Element of
INT holds ex z be
Element of
REAL st
P[x, y, z]
proof
let x,y be
Element of
INT ;
(((a0
* x)
+ (b0
* y))
+ c0)
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider f be
Function of
[:
INT ,
INT :],
REAL such that
A3: for x,y be
Element of
INT holds
P[x, y, (f
. (x,y))] from
BINOP_1:sch 3(
A1);
take f;
let x,y be
Integer;
x
in
INT & y
in
INT by
INT_1:def 2;
hence thesis by
A3;
end;
uniqueness
proof
let F1,F2 be
Function of
[:
INT ,
INT :],
REAL ;
assume that
A4: for x,y be
Integer holds (F1
. (x,y))
= (((a0
* x)
+ (b0
* y))
+ c0) and
A5: for x,y be
Integer holds (F2
. (x,y))
= (((a0
* x)
+ (b0
* y))
+ c0);
now
let x,y be
Element of
INT ;
thus (F1
. (x,y))
= (((a0
* x)
+ (b0
* y))
+ c0) by
A4
.= (F2
. (x,y)) by
A5;
end;
hence thesis by
BINOP_1: 2;
end;
end
begin
theorem ::
DIOPHAN2:15
Th16: for rh0 be
Element of
REAL , p,q be
Integer st (p,q)
are_coprime holds ex x,y be
Element of
INT st
|.(((p
* x)
- (q
* y))
+ rh0).|
<= (1
/ 2)
proof
let rh0 be
Element of
REAL ;
let p,q be
Integer;
assume
A1: (p,q)
are_coprime ;
consider b be
Element of
INT such that
A2:
|.(rh0
- b).|
<= (1
/ 2) by
GAUSSINT: 48;
consider s,t be
Integer such that
A3: ((s
* p)
+ (t
* q))
= 1 by
A1,
Th15;
A4: (b
* ((s
* p)
+ (t
* q)))
= b by
A3;
set x = (
- (b
* s)), y = (b
* t);
X: x
in
INT & y
in
INT by
INT_1:def 2;
(((p
* x)
- (q
* y))
+ rh0)
= (rh0
- b) by
A4;
hence thesis by
A2,
X;
end;
reserve a,b for
Real;
reserve n for
Integer;
theorem ::
DIOPHAN2:16
Th17: n
<= b & b
<= (n
+ 1) implies (
|.(n
- b).|
*
|.((n
+ 1)
- b).|)
<= (1
/ 4)
proof
assume that
A1: n
<= b and
A2: b
<= (n
+ 1);
set x = (b
- n), y = ((n
+ 1)
- b);
x
>=
0 by
A1,
XREAL_1: 48;
then
A4:
|.(n
- b).|
= (
- (
- x)) by
ABSVALUE: 30
.= x;
A5: (x
+ y)
= 1;
(
|.(n
- b).|
*
|.((n
+ 1)
- b).|)
= (x
* y) by
A4,
A2,
XREAL_1: 48,
ABSVALUE:def 1;
hence thesis by
A5,
SERIES_3: 18;
end;
theorem ::
DIOPHAN2:17
Th21: not a is
Integer & (n
=
[\a/] or n
= (
[\a/]
+ 1)) implies
|.(a
- n).|
< 1
proof
assume
A1: not a is
Integer & (n
=
[\a/] or n
= (
[\a/]
+ 1));
per cases by
A1;
suppose
A2: n
=
[\a/];
then
A3: (a
- n)
>
0 by
A1,
INT_1: 26,
XREAL_1: 50;
(a
-
[\a/])
< ((1
+
[\a/])
-
[\a/]) by
INT_1: 29,
XREAL_1: 14;
hence thesis by
A2,
A3,
ABSVALUE:def 1;
end;
suppose
A5: n
= (
[\a/]
+ 1);
then
A6: (a
- n)
<
0 by
INT_1: 29,
XREAL_1: 49;
[\a/]
<
[/a\] by
A1,
INT_1: 35;
then n
=
[/a\] by
A5,
INT_1: 41;
then n
< (a
+ 1) by
INT_1:def 7;
then
A8: (n
- a)
< 1 by
XREAL_1: 19;
|.(a
- n).|
= (
- (a
- n)) by
A6,
ABSVALUE:def 1;
hence thesis by
A8;
end;
end;
theorem ::
DIOPHAN2:18
Th22: (
|.(n
- a).|
*
|.((n
+ 1)
- a).|)
<= (1
/ 4) & (
|.(n
- b).|
*
|.((n
+ 1)
- b).|)
<= (1
/ 4) implies (
|.(n
- a).|
*
|.(n
- b).|)
<= (1
/ 4) or (
|.((n
+ 1)
- a).|
*
|.((n
+ 1)
- b).|)
<= (1
/ 4)
proof
assume
A1: (
|.(n
- a).|
*
|.((n
+ 1)
- a).|)
<= (1
/ 4) & (
|.(n
- b).|
*
|.((n
+ 1)
- b).|)
<= (1
/ 4);
set r1 =
|.(n
- a).|, r2 =
|.(n
- b).|, s1 =
|.((n
+ 1)
- a).|, s2 =
|.((n
+ 1)
- b).|;
A2: ((r1
* s1)
* (r2
* s2))
<= ((1
/ 4)
* (1
/ 4)) by
A1,
XREAL_1: 66;
set r3 = (r1
* r2), r4 = (s1
* s2), r5 = ((1
/ 4)
* (1
/ 4));
A3: (
sqrt r5)
= ((
sqrt (1
/ 4))
^2 ) by
SQUARE_1: 29
.= (1
/ 4) by
SQUARE_1:def 2;
(r3
* r4)
<= r5 by
A2;
hence thesis by
A3,
Th18;
end;
theorem ::
DIOPHAN2:19
Th23: (((
|.(a
- n).|
*
|.(b
- n).|)
*
|.((a
- n)
- 1).|)
*
|.((b
- n)
- 1).|)
<= ((
|.(a
- b).|
^2 )
/ 4) implies (
|.(a
- n).|
*
|.(b
- n).|)
<= (
|.(a
- b).|
/ 2) or (
|.((a
- n)
- 1).|
*
|.((b
- n)
- 1).|)
<= (
|.(a
- b).|
/ 2)
proof
assume
A1: (((
|.(a
- n).|
*
|.(b
- n).|)
*
|.((a
- n)
- 1).|)
*
|.((b
- n)
- 1).|)
<= ((
|.(a
- b).|
^2 )
/ 4);
set r1 =
|.(a
- n).|, r2 =
|.(b
- n).|, s1 =
|.((a
- n)
- 1).|, s2 =
|.((b
- n)
- 1).|;
set t = (a
- b);
set r0 = (
|.(a
- b).|
/ 2);
set r3 = (r1
* r2), r4 = (s1
* s2);
A3: (
sqrt ((
|.(a
- b).|
^2 )
/ 4))
= (
sqrt ((
|.(a
- b).|
/ 2)
* (
|.(a
- b).|
/ 2)))
.= ((
sqrt r0)
^2 ) by
SQUARE_1: 29
.= r0 by
SQUARE_1:def 2;
(r3
* r4)
<= ((
|.(a
- b).|
^2 )
/ 4) by
A1;
hence thesis by
A3,
Th18;
end;
theorem ::
DIOPHAN2:20
Th24: ((n
- b)
* ((n
+ 1)
- a))
>
0 & ((a
- n)
* ((n
+ 1)
- b))
>
0 implies (((n
- b)
* ((n
+ 1)
- a))
+ ((a
- n)
* ((n
+ 1)
- b)))
= (a
- b) & (((
|.(a
- n).|
*
|.(b
- n).|)
*
|.((a
- n)
- 1).|)
*
|.((b
- n)
- 1).|)
<= ((
|.(a
- b).|
^2 )
/ 4)
proof
assume that
A1: ((n
- b)
* ((n
+ 1)
- a))
>
0 and
A2: ((a
- n)
* ((n
+ 1)
- b))
>
0 ;
set s = ((n
- b)
* ((n
+ 1)
- a));
set t = ((a
- n)
* ((n
+ 1)
- b));
A3: (
sqrt (s
* t))
<= ((s
+ t)
/ 2) by
A1,
A2,
SERIES_3: 2;
A4: ((
sqrt (s
* t))
^2 )
= (s
* t) by
A1,
A2,
SQUARE_1:def 2;
A5: (
sqrt (s
* t))
>=
0 by
A1,
A2,
SQUARE_1:def 2;
A6: s
=
|.s.| by
A1,
COMPLEX1: 43
.= (
|.(n
- b).|
*
|.((n
+ 1)
- a).|) by
COMPLEX1: 65;
A7: t
=
|.t.| by
A2,
COMPLEX1: 43
.= (
|.(a
- n).|
*
|.((n
+ 1)
- b).|) by
COMPLEX1: 65;
A9:
|.(n
- b).|
=
|.(
- (n
- b)).| by
COMPLEX1: 52
.=
|.(b
- n).|;
A10:
|.((n
+ 1)
- a).|
=
|.(
- ((n
+ 1)
- a)).| by
COMPLEX1: 52
.=
|.((a
- n)
- 1).|;
A11:
|.((n
+ 1)
- b).|
=
|.(
- ((n
+ 1)
- b)).| by
COMPLEX1: 52
.=
|.((b
- n)
- 1).|;
A12: (s
* t)
= ((
|.(n
- b).|
*
|.((n
+ 1)
- a).|)
* (
|.(a
- n).|
*
|.((n
+ 1)
- b).|)) by
A7,
A6
.= (((
|.(a
- n).|
*
|.(b
- n).|)
*
|.((a
- n)
- 1).|)
*
|.((b
- n)
- 1).|) by
A11,
A10,
A9;
(((a
- b)
/ 2)
^2 )
= (((a
- b)
^2 )
/ (2
^2 )) by
XCMPLX_1: 76
.= ((
|.(a
- b).|
^2 )
/ 4) by
COMPLEX1: 75;
hence thesis by
A3,
A4,
A5,
A12,
SQUARE_1: 15;
end;
theorem ::
DIOPHAN2:21
Th25: b
< n & n
< a & a
< (n
+ 1) implies (((
|.(a
- n).|
*
|.(b
- n).|)
*
|.((a
- n)
- 1).|)
*
|.((b
- n)
- 1).|)
<= ((
|.(a
- b).|
^2 )
/ 4)
proof
assume that
A1: n
> b and
A2: n
< a & a
< (n
+ 1);
A3: (n
- b)
>
0 by
A1,
XREAL_1: 50;
A4: ((n
+ 1)
- a)
>
0 by
A2,
XREAL_1: 50;
A5: (a
- n)
>
0 by
A2,
XREAL_1: 50;
A6: ((n
- b)
+ 1)
>
0 by
A3;
A7: ((n
- b)
* ((n
+ 1)
- a))
>
0 by
A3,
A4;
((a
- n)
* ((n
+ 1)
- b))
>
0 by
A5,
A6;
hence thesis by
A7,
Th24;
end;
theorem ::
DIOPHAN2:22
Th26: ((n
- a)
* ((n
+ 1)
- b))
>
0 & ((b
- n)
* ((n
+ 1)
- a))
>
0 implies (((n
- a)
* ((n
+ 1)
- b))
+ ((b
- n)
* ((n
+ 1)
- a)))
= (b
- a) & (((
|.(a
- n).|
*
|.(b
- n).|)
*
|.((a
- n)
- 1).|)
*
|.((b
- n)
- 1).|)
<= ((
|.(a
- b).|
^2 )
/ 4)
proof
assume that
A1: ((n
- a)
* ((n
+ 1)
- b))
>
0 and
A2: ((b
- n)
* ((n
+ 1)
- a))
>
0 ;
set s = ((n
- a)
* ((n
+ 1)
- b));
set t = ((b
- n)
* ((n
+ 1)
- a));
A3: (
sqrt (s
* t))
<= ((s
+ t)
/ 2) by
A1,
A2,
SERIES_3: 2;
A4: ((
sqrt (s
* t))
^2 )
= (s
* t) by
A1,
A2,
SQUARE_1:def 2;
A5: (
sqrt (s
* t))
>=
0 by
A1,
A2,
SQUARE_1:def 2;
A6: s
=
|.s.| by
A1,
COMPLEX1: 43
.= (
|.(n
- a).|
*
|.((n
+ 1)
- b).|) by
COMPLEX1: 65;
A7: t
=
|.t.| by
A2,
COMPLEX1: 43
.= (
|.(b
- n).|
*
|.((n
+ 1)
- a).|) by
COMPLEX1: 65;
A8:
|.(n
- a).|
=
|.(
- (n
- a)).| by
COMPLEX1: 52
.=
|.(a
- n).|;
A9:
|.((n
+ 1)
- b).|
=
|.(
- ((n
+ 1)
- b)).| by
COMPLEX1: 52
.=
|.((b
- n)
- 1).|;
A10:
|.((n
+ 1)
- a).|
=
|.(
- ((n
+ 1)
- a)).| by
COMPLEX1: 52
.=
|.((a
- n)
- 1).|;
A11: (s
* t)
= ((
|.(n
- a).|
*
|.((n
+ 1)
- b).|)
* (
|.(b
- n).|
*
|.((n
+ 1)
- a).|)) by
A7,
A6
.= (((
|.(b
- n).|
*
|.(a
- n).|)
*
|.((b
- n)
- 1).|)
*
|.((a
- n)
- 1).|) by
A10,
A9,
A8;
((b
- a)
^2 )
= (
|.(b
- a).|
^2 ) by
COMPLEX1: 75
.= (
|.(a
- b).|
^2 ) by
COMPLEX1: 60;
then (((b
- a)
/ 2)
^2 )
= ((
|.(a
- b).|
^2 )
/ 4);
hence thesis by
A3,
A4,
A5,
A11,
SQUARE_1: 15;
end;
theorem ::
DIOPHAN2:23
Th27: (n
+ 1)
< b & n
< a & a
< (n
+ 1) implies (((
|.(a
- n).|
*
|.(b
- n).|)
*
|.((a
- n)
- 1).|)
*
|.((b
- n)
- 1).|)
<= ((
|.(a
- b).|
^2 )
/ 4)
proof
assume
A2: (n
+ 1)
< b & n
< a & a
< (n
+ 1);
then
A3: ((n
+ 1)
- b)
<
0 by
XREAL_1: 49;
A4: (n
- a)
<
0 by
A2,
XREAL_1: 49;
A5: ((1
+ n)
- n)
< (b
- n) by
A2,
XREAL_1: 14;
A6: ((n
+ 1)
- a)
>
0 by
A2,
XREAL_1: 50;
A7: ((n
- a)
* ((n
+ 1)
- b))
>
0 by
A3,
A4;
((b
- n)
* ((n
+ 1)
- a))
>
0 by
A5,
A6;
hence thesis by
A7,
Th26;
end;
theorem ::
DIOPHAN2:24
Th28: not a is
Integer &
[\a/]
<= b & b
<= (
[\a/]
+ 1) implies ex u be
Integer st
|.(a
- u).|
< 1 & (
|.(a
- u).|
*
|.(b
- u).|)
<= (1
/ 4)
proof
assume that
A1: not a is
Integer and
A2:
[\a/]
<= b & b
<= (
[\a/]
+ 1);
set n =
[\a/];
A3: n
< a by
A1,
INT_1: 26;
(a
- 1)
< n by
INT_1:def 6;
then a
< (n
+ 1) by
XREAL_1: 19;
then
A6: (
|.(n
- a).|
*
|.((n
+ 1)
- a).|)
<= (1
/ 4) by
Th17,
A3;
(
|.(n
- b).|
*
|.((n
+ 1)
- b).|)
<= (1
/ 4) by
Th17,
A2;
per cases by
Th22,
A6;
suppose
A8: (
|.(n
- a).|
*
|.(n
- b).|)
<= (1
/ 4);
set u = n;
A10:
|.(a
- u).|
< 1 by
A1,
Th21;
(
|.(u
- a).|
*
|.(u
- b).|)
= (
|.(a
- u).|
*
|.(u
- b).|) by
COMPLEX1: 60
.= (
|.(a
- u).|
*
|.(b
- u).|) by
COMPLEX1: 60;
hence thesis by
A10,
A8;
end;
suppose
A12: (
|.((n
+ 1)
- a).|
*
|.((n
+ 1)
- b).|)
<= (1
/ 4);
set u = (n
+ 1);
A14:
|.(a
- u).|
< 1 by
A1,
Th21;
(
|.(u
- a).|
*
|.(u
- b).|)
= (
|.(a
- u).|
*
|.(u
- b).|) by
COMPLEX1: 60
.= (
|.(a
- u).|
*
|.(b
- u).|) by
COMPLEX1: 60;
hence thesis by
A14,
A12;
end;
end;
theorem ::
DIOPHAN2:25
Th32: (
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
>= (
|.(a
- b).|
/ 2) & (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|)
>= (
|.(a
- b).|
/ 2) implies a is
Integer or
[\a/]
<= b
proof
set u =
[\a/];
set v = (
[\a/]
+ 1);
assume
A5: (
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
>= (
|.(a
- b).|
/ 2) & (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|)
>= (
|.(a
- b).|
/ 2);
assume that
A1: not a is
Integer and
A2:
[\a/]
> b;
A3: (a
-
[\a/])
>
0 by
A1,
INT_1: 26,
XREAL_1: 50;
A4: (a
- 1)
<
[\a/] by
INT_1:def 6;
S: (
[\a/]
+ 1)
> b by
A2,
XREAL_1: 40;
then
A6: ((
[\a/]
+ 1)
- b)
>
0 by
XREAL_1: 50;
A8: (
[\a/]
- b)
>
0 by
A2,
XREAL_1: 50;
A9: ((
[\a/]
+ 1)
- a)
>
0 by
A4,
XREAL_1: 19,
XREAL_1: 50;
S2: a
< (
[\a/]
+ 1) by
A4,
XREAL_1: 19;
then
a5: (((
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
*
|.((a
-
[\a/])
- 1).|)
*
|.((b
-
[\a/])
- 1).|)
<= ((
|.(a
- b).|
^2 )
/ 4) by
A1,
A2,
INT_1: 26,
Th25;
per cases by
A5,
XXREAL_0: 1;
suppose
A5: (
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
= (
|.(a
- b).|
/ 2) & (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|)
> (
|.(a
- b).|
/ 2);
A8: (b
-
[\a/])
<
0 by
A2,
XREAL_1: 49;
((
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
* (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|))
> ((
|.(a
- b).|
/ 2)
* (
|.(a
- b).|
/ 2)) by
A3,
A8,
XREAL_1: 98,
A5;
hence contradiction by
a5;
end;
suppose
A5: (
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
> (
|.(a
- b).|
/ 2) & (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|)
= (
|.(a
- b).|
/ 2);
A4: (((
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
*
|.((a
-
[\a/])
- 1).|)
*
|.((b
-
[\a/])
- 1).|)
<= ((
|.(a
- b).|
^2 )
/ 4) by
A1,
A2,
INT_1: 26,
Th25,
S2;
a6: (a
- (
[\a/]
+ 1))
<
0 by
XREAL_1: 49,
S2;
(b
- (
[\a/]
+ 1))
<
0 by
XREAL_1: 49,
S;
then ((
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
* (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|))
> ((
|.(a
- b).|
/ 2)
* (
|.(a
- b).|
/ 2)) by
A5,
a6,
XREAL_1: 98;
hence contradiction by
A4;
end;
suppose
A5: (
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
> (
|.(a
- b).|
/ 2) & (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|)
> (
|.(a
- b).|
/ 2);
(((
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
*
|.((a
-
[\a/])
- 1).|)
*
|.((b
-
[\a/])
- 1).|)
<= ((
|.(a
- b).|
^2 )
/ 4) by
A1,
A2,
S2,
INT_1: 26,
Th25;
hence thesis by
Th23,
A5;
end;
suppose
A5: (
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
= (
|.(a
- b).|
/ 2) & (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|)
= (
|.(a
- b).|
/ 2);
A10: (
|.(a
- u).|
*
|.(u
- b).|)
= (
|.(a
- u).|
*
|.(
- (u
- b)).|) by
COMPLEX1: 52
.= (
|.(a
- b).|
/ 2) by
A5;
A11: (
|.(a
- u).|
*
|.(u
- b).|)
= (
|.(a
- u).|
*
|.(
- (u
- b)).|) by
COMPLEX1: 52
.= (
|.(a
- v).|
*
|.(b
- v).|) by
A5;
A13: ((a
- u)
* ((u
+ 1)
- b))
=
|.((a
- u)
* ((u
+ 1)
- b)).| by
A6,
A3,
ABSVALUE:def 1
.= (
|.(a
- u).|
*
|.((u
+ 1)
- b).|) by
COMPLEX1: 65;
a14: ((u
- b)
* ((u
+ 1)
- a))
=
|.((u
- b)
* ((u
+ 1)
- a)).| by
A8,
A9,
ABSVALUE:def 1
.= (
|.(u
- b).|
*
|.((u
+ 1)
- a).|) by
COMPLEX1: 65;
then
A14: ((
|.(a
- u).|
*
|.((u
+ 1)
- b).|)
+ (
|.(u
- b).|
*
|.((u
+ 1)
- a).|))
=
|.(a
- b).| by
A13;
A15: (((
|.(a
- u).|
*
|.(u
- b).|)
*
|.((a
- u)
- 1).|)
*
|.((b
- u)
- 1).|)
= ((
|.(a
- u).|
*
|.(u
- b).|)
* (
|.((a
- u)
- 1).|
*
|.((b
- u)
- 1).|))
.= ((((
|.(a
- u).|
*
|.((u
+ 1)
- b).|)
+ (
|.(u
- b).|
*
|.((u
+ 1)
- a).|))
/ 2)
^2 ) by
A13,
a14,
A10,
A11;
set r1 = (
|.(a
- u).|
*
|.((u
+ 1)
- b).|);
set r2 = (
|.(u
- b).|
*
|.((u
+ 1)
- a).|);
A17:
|.((u
+ 1)
- a).|
=
|.(
- ((u
+ 1)
- a)).| by
COMPLEX1: 52
.=
|.((a
- u)
- 1).|;
A18:
|.((u
+ 1)
- b).|
=
|.(
- ((u
+ 1)
- b)).| by
COMPLEX1: 52
.=
|.((b
- u)
- 1).|;
(r1
* r2)
= (((r1
+ r2)
/ 2)
^2 ) by
A15,
A18,
A17;
then
A19: r1
= r2 by
Th20;
A23: (
|.((u
+ 1)
- b).|
-
|.(u
- b).|)
= (((
|.((u
+ 1)
- b).|
*
|.(a
- u).|)
- (
|.(u
- b).|
*
|.(a
- u).|))
/
|.(a
- u).|) by
A3,
XCMPLX_1: 129
.=
0 by
A10,
A14,
A19;
(
|.((u
+ 1)
- b).|
-
|.(u
- b).|)
= (((u
+ 1)
- b)
-
|.(u
- b).|) by
A6,
ABSVALUE:def 1
.= (((u
+ 1)
- b)
- (u
- b)) by
A8,
ABSVALUE:def 1
.= 1;
hence contradiction by
A23;
end;
end;
theorem ::
DIOPHAN2:26
Th33: not a is
Integer &
[\a/]
> b implies ex u be
Integer st
|.(a
- u).|
< 1 & (
|.(a
- u).|
*
|.(b
- u).|)
< (
|.(a
- b).|
/ 2)
proof
assume that
A1: not a is
Integer and
A2:
[\a/]
> b;
assume
A3: for u be
Integer st
|.(a
- u).|
< 1 holds (
|.(a
- u).|
*
|.(b
- u).|)
>= (
|.(a
- b).|
/ 2);
set u =
[\a/], v = (u
+ 1);
A4:
|.(a
- u).|
< 1 by
A1,
Th21;
|.(a
- v).|
< 1 by
A1,
Th21;
then (
|.(a
- u).|
*
|.(b
- u).|)
>= (
|.(a
- b).|
/ 2) & (
|.(a
- v).|
*
|.(b
- v).|)
>= (
|.(a
- b).|
/ 2) by
A3,
A4;
hence thesis by
A1,
A2,
Th32;
end;
theorem ::
DIOPHAN2:27
Th37: (
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
>= (
|.(a
- b).|
/ 2) & (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|)
>= (
|.(a
- b).|
/ 2) implies a is
Integer or (
[\a/]
+ 1)
>= b
proof
set u =
[\a/], v = (u
+ 1);
assume
AA: (
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
>= (
|.(a
- b).|
/ 2) & (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|)
>= (
|.(a
- b).|
/ 2);
assume
A2: not a is
Integer & (
[\a/]
+ 1)
< b;
then
A3: (a
-
[\a/])
>
0 by
INT_1: 26,
XREAL_1: 50;
A4: (a
- 1)
<
[\a/] by
INT_1:def 6;
then
a3: a
< (
[\a/]
+ 1) by
XREAL_1: 19;
then
A5: (((
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
*
|.((a
-
[\a/])
- 1).|)
*
|.((b
-
[\a/])
- 1).|)
<= ((
|.(a
- b).|
^2 )
/ 4) by
A2,
INT_1: 26,
Th27;
per cases by
XXREAL_0: 1,
AA;
suppose
A6: (
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
= (
|.(a
- b).|
/ 2) & (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|)
> (
|.(a
- b).|
/ 2);
((1
+
[\a/])
-
[\a/])
< (b
-
[\a/]) by
A2,
XREAL_1: 14;
then ((
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
* (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|))
> ((
|.(a
- b).|
/ 2)
* (
|.(a
- b).|
/ 2)) by
A6,
A3,
XREAL_1: 98;
hence thesis by
A5;
end;
suppose
A6: (
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
> (
|.(a
- b).|
/ 2) & (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|)
= (
|.(a
- b).|
/ 2);
a6: (a
- (
[\a/]
+ 1))
<
0 by
a3,
XREAL_1: 49;
(b
- (
[\a/]
+ 1))
>
0 by
A2,
XREAL_1: 50;
then ((
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
* (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|))
> ((
|.(a
- b).|
/ 2)
* (
|.(a
- b).|
/ 2)) by
a6,
XREAL_1: 98,
A6;
hence thesis by
A5;
end;
suppose (
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
> (
|.(a
- b).|
/ 2) & (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|)
> (
|.(a
- b).|
/ 2);
hence thesis by
Th23,
A5;
end;
suppose
SS: (
|.(a
- (
[\a/]
+ 1)).|
*
|.(b
- (
[\a/]
+ 1)).|)
= (
|.(a
- b).|
/ 2) & (
|.(a
-
[\a/]).|
*
|.(b
-
[\a/]).|)
= (
|.(a
- b).|
/ 2);
A6: ((
[\a/]
+ 1)
- b)
<
0 by
A2,
XREAL_1: 49;
A7: (
[\a/]
- a)
<
0 by
A2,
INT_1: 26,
XREAL_1: 49;
A8: ((1
+
[\a/])
-
[\a/])
< (b
-
[\a/]) by
A2,
XREAL_1: 14;
A9: ((
[\a/]
+ 1)
- a)
>
0 by
A4,
XREAL_1: 19,
XREAL_1: 50;
A11: ((u
- a)
* ((u
+ 1)
- b))
=
|.((u
- a)
* ((u
+ 1)
- b)).| by
A6,
A7,
ABSVALUE:def 1
.= (
|.(u
- a).|
*
|.((u
+ 1)
- b).|) by
COMPLEX1: 65
.= (
|.(
- (u
- a)).|
*
|.((u
+ 1)
- b).|) by
COMPLEX1: 52
.= (
|.(a
- u).|
*
|.((u
+ 1)
- b).|);
((b
- u)
* ((u
+ 1)
- a))
=
|.((b
- u)
* ((u
+ 1)
- a)).| by
A8,
A9,
ABSVALUE:def 1
.= (
|.(b
- u).|
*
|.((u
+ 1)
- a).|) by
COMPLEX1: 65;
then
A12: ((
|.(a
- u).|
*
|.((u
+ 1)
- b).|)
+ (
|.(b
- u).|
*
|.((u
+ 1)
- a).|))
=
|.(b
- a).| by
A11
.=
|.(
- (b
- a)).| by
COMPLEX1: 52
.=
|.(a
- b).|;
set r1 = (
|.(a
- u).|
*
|.((u
+ 1)
- b).|);
set r2 = (
|.(b
- u).|
*
|.((u
+ 1)
- a).|);
A16:
|.((u
+ 1)
- a).|
=
|.(
- ((u
+ 1)
- a)).| by
COMPLEX1: 52
.=
|.((a
- u)
- 1).|;
A17:
|.((u
+ 1)
- b).|
=
|.(
- ((u
+ 1)
- b)).| by
COMPLEX1: 52
.=
|.((b
- u)
- 1).|;
(((
|.(a
- u).|
*
|.(b
- u).|)
*
|.((a
- u)
- 1).|)
*
|.((b
- u)
- 1).|)
= ((
|.(a
- u).|
*
|.(b
- u).|)
* (
|.((a
- u)
- 1).|
*
|.((b
- u)
- 1).|))
.= (((r1
+ r2)
/ 2)
^2 ) by
A12,
SS;
then (r1
* r2)
= (((r1
+ r2)
/ 2)
^2 ) by
A17,
A16;
then
A18: r1
= r2 by
Th20;
A22: (
|.((u
+ 1)
- b).|
-
|.(b
- u).|)
= (((
|.((u
+ 1)
- b).|
*
|.(a
- u).|)
- (
|.(b
- u).|
*
|.(a
- u).|))
/
|.(a
- u).|) by
A3,
XCMPLX_1: 129
.=
0 by
A12,
A18,
SS;
(
|.((u
+ 1)
- b).|
-
|.(b
- u).|)
= ((
- ((u
+ 1)
- b))
-
|.(b
- u).|) by
A2,
XREAL_1: 49,
ABSVALUE:def 1
.= ((
- ((u
+ 1)
- b))
- (b
- u)) by
A8,
ABSVALUE:def 1
.= (
- 1);
hence contradiction by
A22;
end;
end;
theorem ::
DIOPHAN2:28
Th39: not a is
Integer & (
[\a/]
+ 1)
< b implies ex u be
Integer st
|.(a
- u).|
< 1 & (
|.(a
- u).|
*
|.(b
- u).|)
< (
|.(a
- b).|
/ 2)
proof
assume that
A1: not a is
Integer and
A2: (
[\a/]
+ 1)
< b;
assume
A3: not ex u be
Integer st
|.(a
- u).|
< 1 & (
|.(a
- u).|
*
|.(b
- u).|)
< (
|.(a
- b).|
/ 2);
set u =
[\a/], v = (u
+ 1);
A4:
|.(a
- u).|
< 1 by
A1,
Th21;
|.(a
- v).|
< 1 by
A1,
Th21;
then
b1: (
|.(a
- v).|
*
|.(b
- v).|)
>= (
|.(a
- b).|
/ 2) by
A3;
(
|.(a
- u).|
*
|.(b
- u).|)
>= (
|.(a
- b).|
/ 2) by
A3,
A4;
hence thesis by
A1,
A2,
Th37,
b1;
end;
theorem ::
DIOPHAN2:29
Th41: ex u be
Integer st
|.(a
- u).|
< 1 & ((
|.(a
- u).|
*
|.(b
- u).|)
<= (1
/ 4) or (
|.(a
- u).|
*
|.(b
- u).|)
< (
|.(a
- b).|
/ 2))
proof
per cases ;
suppose
A: a
in
INT ;
(
|.(a
- a).|
*
|.(b
- a).|)
=
0 ;
hence thesis by
A;
end;
suppose not a
in
INT ;
then
A5: not a is
integer;
per cases ;
suppose
[\a/]
<= b & b
<= (
[\a/]
+ 1);
then ex u be
Integer st
|.(a
- u).|
< 1 & (
|.(a
- u).|
*
|.(b
- u).|)
<= (1
/ 4) by
Th28,
A5;
hence thesis;
end;
suppose b
<
[\a/];
then ex u be
Integer st
|.(a
- u).|
< 1 & (
|.(a
- u).|
*
|.(b
- u).|)
< (
|.(a
- b).|
/ 2) by
Th33,
A5;
hence thesis;
end;
suppose (
[\a/]
+ 1)
< b;
then ex u be
Integer st
|.(a
- u).|
< 1 & (
|.(a
- u).|
*
|.(b
- u).|)
< (
|.(a
- b).|
/ 2) by
Th39,
A5;
hence thesis;
end;
end;
end;
reserve a1,a2,b1,b2,c1,c2 for
Element of
REAL ;
reserve eps for
positive
Real;
reserve r1 for non
negative
Real;
reserve q,q1 for
Element of
RAT ;
theorem ::
DIOPHAN2:30
Th42: ex q be
Element of
RAT st (
denominator q)
> (
[\r1/]
+ 1) & q
in (
HWZSet r)
proof
0
< (
[\r1/]
+ 1) by
INT_1: 29;
then
reconsider m = (
[\r1/]
+ 1) as
Nat;
ex n st n
in (
HWZSet1 r) & n
> m
proof
assume
A1: not ex n st n
in (
HWZSet1 r) & n
> m;
A2: for n st n
in (
HWZSet1 r) holds n
in (
Seg m)
proof
let n;
assume
A3: n
in (
HWZSet1 r);
then n
>
0 by
Th10;
then
A4: (n
+
0 )
>= 1 by
NAT_1: 19;
n
<= m by
A1,
A3;
hence thesis by
A4;
end;
(
Seg m)
c= (
Segm (m
+ 1)) by
AFINSQ_1: 3;
then (
HWZSet1 r)
c= (
Segm (m
+ 1)) by
A2;
hence thesis;
end;
then
consider n such that
A8: n
in (
HWZSet1 r) and
A9: n
> m;
ex n1 be
Nat st n1
= n & ex p be
Rational st p
in (
HWZSet r) & n1
= (
denominator p) by
A8;
hence thesis by
A9;
end;
theorem ::
DIOPHAN2:31
Th43:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 & q
<> q1 & ((a2
* (
denominator q))
+ (b2
* (
numerator q)))
=
0 implies ((a2
* (
denominator q1))
+ (b2
* (
numerator q1)))
<>
0
proof
assume that
A1:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 and
A2: q
<> q1 and
A3: ((a2
* (
denominator q))
+ (b2
* (
numerator q)))
=
0 ;
A5: ((
- a2)
* (
denominator q))
= ((
numerator q)
* b2) by
A3;
per cases by
A1;
suppose
A4: a2
<>
0 & b2
<>
0 ;
assume ((a2
* (
denominator q1))
+ (b2
* (
numerator q1)))
=
0 ;
then
A7: ((
- a2)
* (
denominator q1))
= (b2
* (
numerator q1));
q
= ((
numerator q)
/ (
denominator q)) by
RAT_1: 15
.= ((
- a2)
/ b2) by
A4,
A5,
XCMPLX_1: 94
.= ((
numerator q1)
/ (
denominator q1)) by
A4,
A7,
XCMPLX_1: 94
.= q1 by
RAT_1: 15;
hence contradiction by
A2;
end;
suppose a2
<>
0 & b2
=
0 ;
hence thesis;
end;
suppose
A10: a2
=
0 & b2
<>
0 ;
assume
A11: ((a2
* (
denominator q1))
+ (b2
* (
numerator q1)))
=
0 ;
q
=
0 by
A3,
A10
.= q1 by
A10,
A11;
hence contradiction by
A2;
end;
end;
theorem ::
DIOPHAN2:32
Th44: for a1, a2, b1, b2, r1 st
|.((a1
* b2)
- (a2
* b1)).|
<>
0 holds ex q be
Element of
RAT st (
denominator q)
> (
[\r1/]
+ 1) & q
in (
HWZSet r) & ((a2
* (
denominator q))
+ (b2
* (
numerator q)))
<>
0
proof
let a1, a2, b1, b2, r1;
assume
A1:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 ;
consider q be
Element of
RAT such that
A2: (
denominator q)
> (
[\r1/]
+ 1) and
A3: q
in (
HWZSet r) by
Th42;
per cases ;
suppose ((a2
* (
denominator q))
+ (b2
* (
numerator q)))
<>
0 ;
hence thesis by
A2,
A3;
end;
suppose
A5: ((a2
* (
denominator q))
+ (b2
* (
numerator q)))
=
0 ;
consider q1 be
Element of
RAT such that
A6: (
denominator q1)
> (
[\(
denominator q)/]
+ 1) and
A7: q1
in (
HWZSet r) by
Th42;
(
denominator q1)
> (
denominator q) by
A6,
INT_1: 29,
XXREAL_0: 2;
then
A8: (
denominator q1)
> (
[\r1/]
+ 1) by
A2,
XXREAL_0: 2;
q1
<> q by
A6,
INT_1: 29;
then ((a2
* (
denominator q1))
+ (b2
* (
numerator q1)))
<>
0 by
A1,
A5,
Th43;
hence thesis by
A7,
A8;
end;
end;
theorem ::
DIOPHAN2:33
Th45: for a1,b1 be
Real, n1,d1 be
Integer st d1
>
0 &
|.((a1
/ b1)
+ (n1
/ d1)).|
< (1
/ ((
sqrt 5)
* (d1
|^ 2))) holds ex d be
Real st (n1
/ d1)
= ((
- (a1
/ b1))
+ (d
/ (d1
|^ 2))) &
|.d.|
< (1
/ (
sqrt 5))
proof
let a1,b1 be
Real, n1,d1 be
Integer;
assume that
A1: d1
>
0 and
A2:
|.((a1
/ b1)
+ (n1
/ d1)).|
< (1
/ ((
sqrt 5)
* (d1
|^ 2)));
set d = (((a1
/ b1)
+ (n1
/ d1))
* (d1
|^ 2));
(d
/ (d1
|^ 2))
= ((a1
/ b1)
+ (n1
/ d1)) by
A1,
XCMPLX_1: 89;
then
A4: ((
- (a1
/ b1))
+ (d
/ (d1
|^ 2)))
= (n1
/ d1);
A5:
|.d.|
= (
|.((a1
/ b1)
+ (n1
/ d1)).|
*
|.(d1
|^ 2).|) by
COMPLEX1: 65
.= (
|.((a1
/ b1)
+ (n1
/ d1)).|
* (d1
|^ 2));
((1
/ ((
sqrt 5)
* (d1
|^ 2)))
* (d1
|^ 2))
= (((1
/ (
sqrt 5))
* (1
/ (d1
|^ 2)))
* (d1
|^ 2)) by
XCMPLX_1: 102
.= (1
/ (
sqrt 5)) by
A1,
XCMPLX_1: 109;
hence thesis by
A4,
A1,
A2,
XREAL_1: 68,
A5;
end;
theorem ::
DIOPHAN2:34
Th46:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 & (a1
/ b1) is
irrational implies ex x,y be
Element of
INT st (
|.((
LF (a1,b1,c1))
. (x,y)).|
*
|.((
LF (a2,b2,c2))
. (x,y)).|)
< (
|.((a1
* b2)
- (a2
* b1)).|
/ 4) &
|.((
LF (a1,b1,c1))
. (x,y)).|
< eps
proof
set Delta =
|.((a1
* b2)
- (a2
* b1)).|;
assume that
A1:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 and
A2: (a1
/ b1) is
irrational;
reconsider t = (
- (a1
/ b1)) as
Element of
IRRAT by
A2,
BORSUK_5: 17;
A4: ((a2
* b1)
- (a1
* b2))
<>
0 by
A1;
reconsider r1 = (
max ((
|.b1.|
/ ((
sqrt 5)
* eps)),(
|.(b1
* b2).|
/ Delta))) as non
negative
Real by
SQRT2,
XXREAL_0:def 10;
consider q1 be
Element of
RAT such that
A7: (
denominator q1)
> (
[\r1/]
+ 1) & q1
in (
HWZSet t) & ((a2
* (
denominator q1))
+ (b2
* (
numerator q1)))
<>
0 by
A1,
Th44;
set n1 = (
numerator q1);
set d1 = (
denominator q1);
A8: d1
> r1 by
A7,
INT_1: 29,
XXREAL_0: 2;
(
|.b1.|
/ ((
sqrt 5)
* eps))
<= r1 by
XXREAL_0: 25;
then (
|.b1.|
/ ((
sqrt 5)
* eps))
< (1
* d1) by
A8,
XXREAL_0: 2;
then (
|.b1.|
/ d1)
< (1
* ((
sqrt 5)
* eps)) by
SQRT2,
XREAL_1: 113;
then ((
|.b1.|
/ d1)
* 1)
< (eps
* (
sqrt 5));
then ((
|.b1.|
/ d1)
/ (
sqrt 5))
< (eps
/ 1) by
SQRT2,
XREAL_1: 106;
then
A11: (
|.b1.|
/ (d1
* (
sqrt 5)))
< eps by
XCMPLX_1: 78;
(
|.(b1
* b2).|
/ Delta)
<= r1 by
XXREAL_0: 25;
then (
|.(b1
* b2).|
/ Delta)
< (1
* d1) by
A8,
XXREAL_0: 2;
then
A13: (
|.(b1
* b2).|
/ d1)
< (1
* Delta) by
XREAL_1: 113,
A1;
(d1
+
0 )
>= 1 by
NAT_1: 19;
then (1
/ d1)
<= 1 by
XREAL_1: 183;
then
A16: ((
|.(b1
* b2).|
/ d1)
* (1
/ d1))
<= (
|.(b1
* b2).|
/ d1) by
XREAL_1: 153;
((
|.(b1
* b2).|
/ d1)
* (1
/ d1))
= ((
|.(b1
* b2).|
* 1)
/ (d1
* d1)) by
XCMPLX_1: 76
.= (
|.(b1
* b2).|
/ (d1
|^ 2)) by
WSIERP_1: 1;
then
A17: (
|.(b1
* b2).|
/ (d1
|^ 2))
< Delta by
A13,
A16,
XXREAL_0: 2;
reconsider rh0 = (((d1
* ((c1
* a2)
- (c2
* a1)))
+ (n1
* ((c1
* b2)
- (c2
* b1))))
/ ((a2
* b1)
- (a1
* b2))) as
Element of
REAL by
XREAL_0:def 1;
(d1,n1)
are_coprime by
WSIERP_1: 22;
then
consider s,r be
Element of
INT such that
A19:
|.(((d1
* s)
- (n1
* r))
+ rh0).|
<= (1
/ 2) by
Th16;
set h = n1, k = d1;
set a = ((((a1
* r)
+ (b1
* s))
+ c1)
/ ((a1
* k)
+ (b1
* h))), b = ((((a2
* r)
+ (b2
* s))
+ c2)
/ ((a2
* k)
+ (b2
* h)));
consider u be
Integer such that
A20:
|.(a
- u).|
< 1 & ((
|.(a
- u).|
*
|.(b
- u).|)
<= (1
/ 4) or (
|.(a
- u).|
*
|.(b
- u).|)
< (
|.(a
- b).|
/ 2)) by
Th41;
set x = (r
- (u
* k)), y = (s
- (u
* h));
t
in
IRRAT by
SUBSET_1:def 1;
then
A22: b1
<>
0 ;
A23: ((a1
* k)
+ (b1
* h))
<>
0
proof
assume ((a1
* k)
+ (b1
* h))
=
0 ;
then ((
- n1)
* b1)
= (a1
* d1);
then ((
- n1)
/ d1)
= (a1
/ b1) by
A22,
XCMPLX_1: 94;
hence contradiction by
A2;
end;
A26: (a
- u)
= ((((((a1
* x)
+ (b1
* y))
+ c1)
/ ((a1
* k)
+ (b1
* h)))
+ ((u
* ((a1
* k)
+ (b1
* h)))
/ ((a1
* k)
+ (b1
* h))))
- u)
.= ((((((a1
* x)
+ (b1
* y))
+ c1)
/ ((a1
* k)
+ (b1
* h)))
+ (u
* 1))
- u) by
A23,
XCMPLX_1: 89
.= ((((a1
* x)
+ (b1
* y))
+ c1)
/ ((a1
* k)
+ (b1
* h)));
then
A27: (
|.(((a1
* x)
+ (b1
* y))
+ c1).|
/
|.((a1
* k)
+ (b1
* h)).|)
< 1 by
A20,
COMPLEX1: 67;
((
|.(((a1
* x)
+ (b1
* y))
+ c1).|
/
|.((a1
* k)
+ (b1
* h)).|)
*
|.((a1
* k)
+ (b1
* h)).|)
= ((
|.(((a1
* x)
+ (b1
* y))
+ c1).|
* (1
/
|.((a1
* k)
+ (b1
* h)).|))
*
|.((a1
* k)
+ (b1
* h)).|)
.=
|.(((a1
* x)
+ (b1
* y))
+ c1).| by
A23,
XCMPLX_1: 109;
then
A30:
|.(((a1
* x)
+ (b1
* y))
+ c1).|
< (1
*
|.((a1
* k)
+ (b1
* h)).|) by
XREAL_1: 68,
A27,
A23;
consider q be
Rational such that
A32: q1
= q and
A33:
|.(t
- q).|
< (1
/ ((
sqrt 5)
* ((
denominator q)
|^ 2))) by
A7;
|.(t
- q).|
=
|.(
- ((a1
/ b1)
+ q1)).| by
A32
.=
|.((a1
/ b1)
+ q1).| by
COMPLEX1: 52
.=
|.((a1
/ b1)
+ (n1
/ d1)).| by
RAT_1: 15
.=
|.(((a1
* d1)
+ (n1
* b1))
/ (b1
* d1)).| by
A22,
XCMPLX_1: 116
.= (
|.((a1
* d1)
+ (n1
* b1)).|
/
|.(b1
* d1).|) by
COMPLEX1: 67;
then
A36: (
|.((a1
* d1)
+ (n1
* b1)).|
/ 1)
< ((1
/ ((
sqrt 5)
* (d1
|^ 2)))
*
|.(b1
* d1).|) by
A32,
A33,
A22,
XREAL_1: 113;
set S1 = (1
/ (
sqrt 5));
A37: (1
/ ((
sqrt 5)
* (d1
|^ 2)))
= (S1
* (1
/ (d1
|^ 2))) by
XCMPLX_1: 102
.= (S1
* (1
/ (d1
* d1))) by
WSIERP_1: 1
.= (S1
* ((1
/ d1)
* (1
/ d1))) by
XCMPLX_1: 102
.= ((S1
* (1
/ d1))
* (1
/ d1));
|.(b1
* d1).|
= (
|.d1.|
*
|.b1.|) by
COMPLEX1: 65
.= (d1
*
|.b1.|);
then
A39: ((1
/ ((
sqrt 5)
* (d1
|^ 2)))
*
|.(b1
* d1).|)
= (((S1
* (1
/ d1))
* ((1
/ d1)
* d1))
*
|.b1.|) by
A37
.= (((S1
* (1
/ d1))
* 1)
*
|.b1.|) by
XCMPLX_1: 106
.= ((1
/ ((
sqrt 5)
* d1))
*
|.b1.|) by
XCMPLX_1: 102
.= (
|.b1.|
/ (d1
* (
sqrt 5)));
then
A40:
|.((a1
* d1)
+ (b1
* n1)).|
< eps by
A36,
A11,
XXREAL_0: 2;
A41: (b
- u)
= ((((((a2
* x)
+ (b2
* y))
+ c2)
/ ((a2
* k)
+ (b2
* h)))
+ ((u
* ((a2
* k)
+ (b2
* h)))
/ ((a2
* k)
+ (b2
* h))))
- u)
.= ((((((a2
* x)
+ (b2
* y))
+ c2)
/ ((a2
* k)
+ (b2
* h)))
+ (u
* 1))
- u) by
A7,
XCMPLX_1: 89
.= ((((a2
* x)
+ (b2
* y))
+ c2)
/ ((a2
* k)
+ (b2
* h)));
set u1 = (((a1
* x)
+ (b1
* y))
+ c1), u2 = (((a2
* x)
+ (b2
* y))
+ c2), v1 = ((a1
* k)
+ (b1
* h)), v2 = ((a2
* k)
+ (b2
* h));
A42: (
|.(a
- u).|
*
|.(b
- u).|)
= ((
|.u1.|
/
|.v1.|)
*
|.(u2
/ v2).|) by
COMPLEX1: 67,
A41,
A26
.= ((
|.u1.|
/
|.v1.|)
* (
|.u2.|
/
|.v2.|)) by
COMPLEX1: 67
.= ((
|.u1.|
*
|.u2.|)
/ (
|.v1.|
*
|.v2.|)) by
XCMPLX_1: 76;
A43:
|.(t
- q).|
=
|.(
- ((a1
/ b1)
+ q1)).| by
A32
.=
|.((a1
/ b1)
+ q1).| by
COMPLEX1: 52
.=
|.((a1
/ b1)
+ (n1
/ d1)).| by
RAT_1: 15;
consider d be
Real such that
A44: (n1
/ d1)
= ((
- (a1
/ b1))
+ (d
/ (d1
|^ 2))) and
A45:
|.d.|
< S1 by
A33,
A32,
A43,
Th45;
(b1
/ b1)
= 1 by
A22,
XCMPLX_1: 60;
then
A51:
|.(a2
+ (b2
* (
- (a1
/ b1)))).|
=
|.((a2
* (b1
/ b1))
- ((b2
* a1)
* (1
/ b1))).|
.=
|.(
- (((a1
* b2)
- (a2
* b1))
/ b1)).|
.=
|.(((a1
* b2)
- (a2
* b1))
/ b1).| by
COMPLEX1: 52
.= (Delta
/
|.b1.|) by
COMPLEX1: 67;
A52: ((
|.b1.|
/ (d1
* (
sqrt 5)))
*
|.v2.|)
= ((
|.b1.|
* (1
/ (d1
* (
sqrt 5))))
*
|.((a2
* d1)
+ (b2
* n1)).|)
.= ((
|.b1.|
* ((1
/ d1)
* (1
/ (
sqrt 5))))
*
|.((a2
* d1)
+ (b2
* n1)).|) by
XCMPLX_1: 102
.= ((
|.b1.|
* S1)
* (
|.(1
/ d1).|
*
|.((a2
* d1)
+ (b2
* n1)).|))
.= ((
|.b1.|
* S1)
*
|.((1
/ d1)
* ((a2
* d1)
+ (b2
* n1))).|) by
COMPLEX1: 65
.= ((
|.b1.|
* S1)
*
|.(((a2
* d1)
* (1
/ d1))
+ ((b2
* n1)
* (1
/ d1))).|)
.= ((
|.b1.|
* S1)
*
|.(a2
+ (b2
* (n1
/ d1))).|) by
XCMPLX_1: 107
.= ((
|.b1.|
* S1)
*
|.((a2
+ (b2
* (
- (a1
/ b1))))
+ (b2
* (d
/ (d1
|^ 2)))).|) by
A44;
A54: (((
|.b1.|
* S1)
* Delta)
/
|.b1.|)
= (((
|.b1.|
* (1
/
|.b1.|))
* (1
/ (
sqrt 5)))
* Delta)
.= (Delta
/ (
sqrt 5)) by
A22,
XCMPLX_1: 106;
A55: ((
|.b1.|
* S1)
*
|.(b2
* (d
/ (d1
|^ 2))).|)
= (S1
* (
|.b1.|
*
|.(b2
* (d
/ (d1
|^ 2))).|))
.= (S1
*
|.(b1
* (b2
* (d
/ (d1
|^ 2)))).|) by
COMPLEX1: 65
.= (S1
*
|.(d
* ((b1
* b2)
/ (d1
|^ 2))).|)
.= (S1
* (
|.d.|
*
|.((b1
* b2)
/ (d1
|^ 2)).|)) by
COMPLEX1: 65
.= (S1
* (
|.d.|
* (
|.(b1
* b2).|
/
|.(d1
|^ 2).|))) by
COMPLEX1: 67
.= ((S1
*
|.d.|)
* (
|.(b1
* b2).|
/ (d1
|^ 2)));
A49: (
|.v1.|
*
|.v2.|)
<= ((
|.b1.|
/ (d1
* (
sqrt 5)))
*
|.v2.|) by
A36,
A39,
XREAL_1: 64;
A57: ((
|.b1.|
* S1)
*
|.(b2
* (d
/ (d1
|^ 2))).|)
<= (Delta
* ((1
/ (
sqrt 5))
*
|.d.|)) by
A55,
A17,
SQRT2,
XREAL_1: 64;
((
|.b1.|
* (1
/ (
sqrt 5)))
* ((Delta
/
|.b1.|)
+
|.(b2
* (d
/ (d1
|^ 2))).|))
= ((Delta
/ (
sqrt 5))
+ ((
|.b1.|
* (1
/ (
sqrt 5)))
*
|.(b2
* (d
/ (d1
|^ 2))).|)) by
A54;
then
A59: ((
|.b1.|
/ (d1
* (
sqrt 5)))
*
|.v2.|)
<= ((Delta
/ (
sqrt 5))
+ ((
|.b1.|
* (1
/ (
sqrt 5)))
*
|.(b2
* (d
/ (d1
|^ 2))).|)) by
A52,
SQRT2,
A51,
COMPLEX1: 56,
XREAL_1: 64;
A60: ((Delta
/ (
sqrt 5))
+ ((
|.b1.|
* (1
/ (
sqrt 5)))
*
|.(b2
* (d
/ (d1
|^ 2))).|))
<= ((Delta
/ (
sqrt 5))
+ (Delta
* ((1
/ (
sqrt 5))
*
|.d.|))) by
XREAL_1: 6,
A57;
A61: ((
|.b1.|
/ (d1
* (
sqrt 5)))
*
|.v2.|)
<= (Delta
* ((1
/ (
sqrt 5))
+ ((1
/ (
sqrt 5))
*
|.d.|))) by
A59,
A60,
XXREAL_0: 2;
((1
/ (
sqrt 5))
* (1
/ (
sqrt 5)))
= (1
/ ((
sqrt 5)
^2 )) by
XCMPLX_1: 102
.= (1
/ 5) by
SQUARE_1:def 2;
then (S1
*
|.d.|)
< (1
/ 5) by
A45,
XREAL_1: 68;
then (S1
+ (S1
*
|.d.|))
< ((1
/ 5)
+ (1
/ 2)) by
SQRT3,
XREAL_1: 8;
then (S1
+ (S1
*
|.d.|))
< 1 by
XXREAL_0: 2;
then ((S1
+ (S1
*
|.d.|))
* Delta)
< (1
* Delta) by
A1,
XREAL_1: 68;
then
A66: ((
|.b1.|
/ (d1
* (
sqrt 5)))
*
|.v2.|)
< Delta by
A61,
XXREAL_0: 2;
A71: (a
- b)
= ((((((a1
* r)
+ (b1
* s))
+ c1)
* ((a2
* k)
+ (b2
* h)))
- ((((a2
* r)
+ (b2
* s))
+ c2)
* ((a1
* k)
+ (b1
* h))))
/ (((a1
* k)
+ (b1
* h))
* ((a2
* k)
+ (b2
* h)))) by
XCMPLX_1: 130,
A7,
A23;
(((((a1
* r)
+ (b1
* s))
+ c1)
* ((a2
* k)
+ (b2
* h)))
- ((((a2
* r)
+ (b2
* s))
+ c2)
* ((a1
* k)
+ (b1
* h))))
= ((((a1
* b2)
- (a2
* b1))
* ((r
* h)
- (s
* k)))
+ (((k
* ((c1
* a2)
- (c2
* a1)))
+ (h
* ((c1
* b2)
- (c2
* b1))))
* 1))
.= ((((a1
* b2)
- (a2
* b1))
* ((r
* h)
- (s
* k)))
+ (((k
* ((c1
* a2)
- (c2
* a1)))
+ (h
* ((c1
* b2)
- (c2
* b1))))
* ((1
/ ((a2
* b1)
- (a1
* b2)))
* ((a2
* b1)
- (a1
* b2))))) by
A4,
XCMPLX_1: 106
.= (((a2
* b1)
- (a1
* b2))
* (((k
* s)
- (h
* r))
+ rh0));
then
|.(a
- b).|
= (
|.(
- (((a1
* b2)
- (a2
* b1))
* (((k
* s)
- (h
* r))
+ rh0))).|
/
|.(v1
* v2).|) by
COMPLEX1: 67,
A71
.= (
|.(((a1
* b2)
- (a2
* b1))
* (((k
* s)
- (h
* r))
+ rh0)).|
/
|.(v1
* v2).|) by
COMPLEX1: 52
.= ((
|.((a1
* b2)
- (a2
* b1)).|
*
|.(((k
* s)
- (h
* r))
+ rh0).|)
/
|.(v1
* v2).|) by
COMPLEX1: 65
.= ((Delta
*
|.(((k
* s)
- (h
* r))
+ rh0).|)
/ (
|.v1.|
*
|.v2.|)) by
COMPLEX1: 65;
then
A73: (((1
/ 2)
*
|.(a
- b).|)
* (
|.v1.|
*
|.v2.|))
= (((((1
/ 2)
* Delta)
*
|.(((k
* s)
- (h
* r))
+ rh0).|)
/ (
|.v1.|
*
|.v2.|))
* (
|.v1.|
*
|.v2.|))
.= (((1
/ 2)
* Delta)
*
|.(((k
* s)
- (h
* r))
+ rh0).|) by
XCMPLX_1: 87,
A23,
A7;
A75: (((1
/ 2)
* Delta)
*
|.(((k
* s)
- (h
* r))
+ rh0).|)
<= (((1
/ 2)
* Delta)
* (1
/ 2)) by
A19,
XREAL_1: 64;
A46: (
|.u1.|
*
|.u2.|)
< (Delta
/ 4)
proof
per cases by
A20;
suppose (
|.(a
- u).|
*
|.(b
- u).|)
<= (1
/ 4);
then (((
|.u1.|
*
|.u2.|)
* (1
/ (
|.v1.|
*
|.v2.|)))
* (
|.v1.|
*
|.v2.|))
<= ((1
/ 4)
* (
|.v1.|
*
|.v2.|)) by
A42,
XREAL_1: 64;
then
A48: (
|.u1.|
*
|.u2.|)
<= ((1
/ 4)
* (
|.v1.|
*
|.v2.|)) by
XCMPLX_1: 109,
A23,
A7;
((
|.v1.|
*
|.v2.|)
* (1
/ 4))
<= (((
|.b1.|
/ (d1
* (
sqrt 5)))
*
|.v2.|)
* (1
/ 4)) by
XREAL_1: 64,
A49;
then
A67: (
|.u1.|
*
|.u2.|)
<= (((
|.b1.|
/ (d1
* (
sqrt 5)))
*
|.v2.|)
* (1
/ 4)) by
A48,
XXREAL_0: 2;
(((
|.b1.|
/ (d1
* (
sqrt 5)))
*
|.v2.|)
* (1
/ 4))
< (Delta
* (1
/ 4)) by
XREAL_1: 68,
A66;
hence thesis by
A67,
XXREAL_0: 2;
end;
suppose (
|.(a
- u).|
*
|.(b
- u).|)
< (
|.(a
- b).|
/ 2);
then (((
|.u1.|
*
|.u2.|)
* (1
/ (
|.v1.|
*
|.v2.|)))
* (
|.v1.|
*
|.v2.|))
< ((
|.(a
- b).|
/ 2)
* (
|.v1.|
*
|.v2.|)) by
A23,
A7,
A42,
XREAL_1: 68;
then (
|.u1.|
*
|.u2.|)
< (((1
/ 2)
* Delta)
*
|.(((k
* s)
- (h
* r))
+ rh0).|) by
XCMPLX_1: 109,
A23,
A7,
A73;
hence thesis by
A75,
XXREAL_0: 2;
end;
end;
I: x
in
INT & y
in
INT by
INT_1:def 2;
A77: ((
LF (a1,b1,c1))
. (x,y))
= u1 & ((
LF (a2,b2,c2))
. (x,y))
= u2 by
Def4;
|.u1.|
< eps by
A30,
A40,
XXREAL_0: 2;
hence thesis by
I,
A77,
A46;
end;
theorem ::
DIOPHAN2:35
Th47:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 & (a2
/ b2) is
irrational implies ex x,y be
Element of
INT st (
|.((
LF (a2,b2,c2))
. (x,y)).|
*
|.((
LF (a1,b1,c1))
. (x,y)).|)
< (
|.((a1
* b2)
- (a2
* b1)).|
/ 4) &
|.((
LF (a2,b2,c2))
. (x,y)).|
< eps
proof
|.((a2
* b1)
- (a1
* b2)).|
=
|.(
- ((a1
* b2)
- (a2
* b1))).|
.=
|.((a1
* b2)
- (a2
* b1)).| by
COMPLEX1: 52;
hence thesis by
Th46;
end;
theorem ::
DIOPHAN2:36
Th48: (
ZeroPointSet (
LF (a1,b1,c1)))
<>
{} implies ex x,y be
Element of
INT st (
|.((
LF (a1,b1,c1))
. (x,y)).|
*
|.((
LF (a2,b2,c2))
. (x,y)).|)
<= (
|.((a1
* b2)
- (a2
* b1)).|
/ 4)
proof
assume (
ZeroPointSet (
LF (a1,b1,c1)))
<>
{} ;
then
consider p be
object such that
A2: p
in (
ZeroPointSet (
LF (a1,b1,c1))) by
XBOOLE_0:def 1;
((
LF (a1,b1,c1))
. p)
=
0 & p
in (
dom (
LF (a1,b1,c1))) by
A2,
Th13;
then
consider p1,p2 be
object such that
A4: p1
in
INT & p2
in
INT & p
=
[p1, p2] by
ZFMISC_1:def 2;
reconsider x = p1, y = p2 as
Element of
INT by
A4;
((
LF (a1,b1,c1))
. (x,y))
=
0 by
A2,
Th13,
A4;
then (
|.((
LF (a1,b1,c1))
. (x,y)).|
*
|.((
LF (a2,b2,c2))
. (x,y)).|)
<= (
|.((a1
* b2)
- (a2
* b1)).|
/ 4);
hence thesis;
end;
theorem ::
DIOPHAN2:37
Th49: (
ZeroPointSet (
LF (a2,b2,c2)))
<>
{} implies ex x,y be
Element of
INT st (
|.((
LF (a1,b1,c1))
. (x,y)).|
*
|.((
LF (a2,b2,c2))
. (x,y)).|)
<= (
|.((a1
* b2)
- (a2
* b1)).|
/ 4)
proof
assume (
ZeroPointSet (
LF (a2,b2,c2)))
<>
{} ;
then
consider p be
object such that
A2: p
in (
ZeroPointSet (
LF (a2,b2,c2))) by
XBOOLE_0:def 1;
((
LF (a2,b2,c2))
. p)
=
0 & p
in (
dom (
LF (a2,b2,c2))) by
A2,
Th13;
then
consider p1,p2 be
object such that
A4: p1
in
INT & p2
in
INT & p
=
[p1, p2] by
ZFMISC_1:def 2;
reconsider x = p1, y = p2 as
Element of
INT by
A4;
((
LF (a2,b2,c2))
. (x,y))
=
0 by
A2,
Th13,
A4;
then (
|.((
LF (a1,b1,c1))
. (x,y)).|
*
|.((
LF (a2,b2,c2))
. (x,y)).|)
<= (
|.((a1
* b2)
- (a2
* b1)).|
/ 4);
hence thesis;
end;
theorem ::
DIOPHAN2:38
Th50:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 & b1
<>
0 & (a1
/ b1) is
rational implies ex x,y be
Element of
INT st (
|.((
LF (a1,b1,c1))
. (x,y)).|
*
|.((
LF (a2,b2,c2))
. (x,y)).|)
<= (
|.((a1
* b2)
- (a2
* b1)).|
/ 4)
proof
set Delta =
|.((a1
* b2)
- (a2
* b1)).|;
assume that
A1:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 and
A2: b1
<>
0 and
A3: (a1
/ b1) is
rational;
reconsider r1 = (a1
/ b1) as
Rational by
A3;
set n1 = (
numerator r1);
set d1 = (
denominator r1);
reconsider t0 = (b1
/ d1) as non
zero
Real by
A2;
A5: b1
= (t0
* d1) by
XCMPLX_1: 87;
A6: a1
= ((a1
/ b1)
* b1) by
A2,
XCMPLX_1: 87
.= ((n1
/ d1)
* b1) by
RAT_1: 15
.= (((n1
/ d1)
* d1)
* t0) by
A5
.= (t0
* n1) by
XCMPLX_1: 87;
reconsider rh0 = (c1
/ t0) as
Element of
REAL by
XREAL_0:def 1;
A7: c1
= (rh0
* t0) by
XCMPLX_1: 87;
consider x0,y0 be
Element of
INT such that
A8:
|.(((n1
* x0)
- (d1
* y0))
+ rh0).|
<= (1
/ 2) by
Th16,
WSIERP_1: 22;
reconsider x = x0, y = (
- y0) as
Element of
INT by
INT_1:def 2;
(t0
* (((n1
* x)
- (d1
* y0))
+ rh0))
= (((a1
* x)
+ ((t0
* d1)
* (
- y0)))
+ (rh0
* t0)) by
A6
.= (((a1
* x)
+ (b1
* y))
+ (rh0
* t0)) by
XCMPLX_1: 87
.= ((
LF (a1,b1,c1))
. (x,y)) by
A7,
Def4;
then
A9:
|.((
LF (a1,b1,c1))
. (x,y)).|
= (
|.t0.|
*
|.(((n1
* x0)
- (d1
* y0))
+ rh0).|) by
COMPLEX1: 65;
reconsider r = (
- ((t0
* (((a2
* x)
+ (b2
* y))
+ c2))
/ ((a2
* b1)
- (b2
* a1)))) as
Element of
REAL by
XREAL_0:def 1;
consider s be
Element of
INT such that
A11:
|.(r
- s).|
<= (1
/ 2) by
GAUSSINT: 48;
A12:
|.((
- ((t0
* (((a2
* x)
+ (b2
* y))
+ c2))
/ ((a2
* b1)
- (b2
* a1))))
- s).|
=
|.(
- (((t0
* (((a2
* x)
+ (b2
* y))
+ c2))
/ ((a2
* b1)
- (b2
* a1)))
+ s)).|
.=
|.(((t0
* (((a2
* x)
+ (b2
* y))
+ c2))
/ ((a2
* b1)
- (b2
* a1)))
+ s).| by
COMPLEX1: 52;
reconsider x1 = (x
+ (d1
* s)), y1 = (y
- (n1
* s)) as
Element of
INT by
INT_1:def 2;
((
LF (a1,b1,c1))
. (x1,y1))
= (((a1
* x1)
+ (b1
* y1))
+ c1) by
Def4
.= ((((a1
* x)
+ (b1
* y))
+ c1)
+ (((a1
* d1)
- (b1
* n1))
* s))
.= ((
LF (a1,b1,c1))
. (x,y)) by
Def4,
A6,
A5;
then
A24:
|.((
LF (a1,b1,c1))
. (x1,y1)).|
<= (
|.t0.|
* (1
/ 2)) by
A9,
A8,
XREAL_1: 64;
A14: ((
LF (a2,b2,c2))
. (x1,y1))
= (((a2
* x1)
+ (b2
* y1))
+ c2) by
Def4
.= ((((a2
* x)
+ (b2
* y))
+ c2)
+ (((a2
* d1)
- (b2
* n1))
* s))
.= ((((a2
* x)
+ (b2
* y))
+ c2)
+ (((a2
* d1)
- (b2
* n1))
* ((s
* t0)
/ t0))) by
XCMPLX_1: 89
.= ((((a2
* x)
+ (b2
* y))
+ c2)
+ (((a2
* b1)
- (b2
* a1))
* (s
/ t0))) by
A6,
A5;
((a2
* b1)
- (b2
* a1))
<>
0 by
A1;
then
A16:
|.(((t0
* (((a2
* x)
+ (b2
* y))
+ c2))
+ (((a2
* b1)
- (b2
* a1))
* s))
/ ((a2
* b1)
- (b2
* a1))).|
<= (1
/ 2) by
A11,
A12,
XCMPLX_1: 113;
|.((a2
* b1)
- (b2
* a1)).|
=
|.(
- ((a1
* b2)
- (a2
* b1))).|
.= Delta by
COMPLEX1: 52;
then (
|.((t0
* (((a2
* x)
+ (b2
* y))
+ c2))
+ (((a2
* b1)
- (b2
* a1))
* s)).|
/ Delta)
<= (1
/ 2) by
COMPLEX1: 67,
A16;
then ((
|.((t0
* (((a2
* x)
+ (b2
* y))
+ c2))
+ (((a2
* b1)
- (b2
* a1))
* s)).|
/ Delta)
* Delta)
<= ((1
/ 2)
* Delta) by
XREAL_1: 64;
then
A18:
|.((t0
* (((a2
* x)
+ (b2
* y))
+ c2))
+ (((a2
* b1)
- (b2
* a1))
* s)).|
<= ((1
/ 2)
* Delta) by
A1,
XCMPLX_1: 87;
|.((t0
* (((a2
* x)
+ (b2
* y))
+ c2))
+ (((a2
* b1)
- (b2
* a1))
* ((s
* t0)
/ t0))).|
<= ((1
/ 2)
* Delta) by
A18,
XCMPLX_1: 89;
then
|.(t0
* ((((a2
* x)
+ (b2
* y))
+ c2)
+ (((a2
* b1)
- (b2
* a1))
* (s
/ t0)))).|
<= ((1
/ 2)
* Delta);
then
A20: (
|.t0.|
*
|.((((a2
* x)
+ (b2
* y))
+ c2)
+ (((a2
* b1)
- (b2
* a1))
* (s
/ t0))).|)
<= ((1
/ 2)
* Delta) by
COMPLEX1: 65;
((
|.t0.|
*
|.((((a2
* x)
+ (b2
* y))
+ c2)
+ (((a2
* b1)
- (b2
* a1))
* (s
/ t0))).|)
/
|.t0.|)
= (((1
/
|.t0.|)
*
|.t0.|)
*
|.((((a2
* x)
+ (b2
* y))
+ c2)
+ (((a2
* b1)
- (b2
* a1))
* (s
/ t0))).|)
.= (1
*
|.((((a2
* x)
+ (b2
* y))
+ c2)
+ (((a2
* b1)
- (b2
* a1))
* (s
/ t0))).|) by
XCMPLX_1: 106;
then
A23:
|.((
LF (a2,b2,c2))
. (x1,y1)).|
<= (((1
/ 2)
* Delta)
/
|.t0.|) by
A14,
A20,
XREAL_1: 72;
((
|.t0.|
* (1
/ 2))
* (((1
/ 2)
* Delta)
/
|.t0.|))
= (
|.t0.|
* (((1
/ 4)
* Delta)
/
|.t0.|))
.= (Delta
/ 4) by
XCMPLX_1: 87;
then (
|.((
LF (a1,b1,c1))
. (x1,y1)).|
*
|.((
LF (a2,b2,c2))
. (x1,y1)).|)
<= (Delta
/ 4) by
A23,
A24,
XREAL_1: 66;
hence thesis;
end;
theorem ::
DIOPHAN2:39
Th51:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 & b2
<>
0 & (a2
/ b2) is
rational implies ex x,y be
Element of
INT st (
|.((
LF (a1,b1,c1))
. (x,y)).|
*
|.((
LF (a2,b2,c2))
. (x,y)).|)
<= (
|.((a1
* b2)
- (a2
* b1)).|
/ 4)
proof
assume
A1:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 & b2
<>
0 & (a2
/ b2) is
rational;
A4:
|.((a2
* b1)
- (a1
* b2)).|
=
|.(
- ((a1
* b2)
- (a2
* b1))).|
.=
|.((a1
* b2)
- (a2
* b1)).| by
COMPLEX1: 52;
then ex x,y be
Element of
INT st (
|.((
LF (a2,b2,c2))
. (x,y)).|
*
|.((
LF (a1,b1,c1))
. (x,y)).|)
<= (
|.((a2
* b1)
- (a1
* b2)).|
/ 4) by
A1,
Th50;
hence thesis by
A4;
end;
theorem ::
DIOPHAN2:40
Th52:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 & b1
=
0 implies ex x,y be
Element of
INT st (
|.((
LF (a1,b1,c1))
. (x,y)).|
*
|.((
LF (a2,b2,c2))
. (x,y)).|)
<= (
|.((a1
* b2)
- (a2
* b1)).|
/ 4)
proof
set Delta =
|.((a1
* b2)
- (a2
* b1)).|;
assume that
A1:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 and
A2: b1
=
0 ;
A4: b2
<>
0 by
A1,
A2;
per cases ;
suppose
A5: (a2
/ b2) is
irrational & (
ZeroPointSet (
LF (a2,b2,c2)))
=
{} ;
for eps holds ex x,y be
Element of
INT st (
|.((
LF (a1,b1,c1))
. (x,y)).|
*
|.((
LF (a2,b2,c2))
. (x,y)).|)
<= (
|.((a1
* b2)
- (a2
* b1)).|
/ 4)
proof
let eps;
ex x,y be
Element of
INT st (
|.((
LF (a2,b2,c2))
. (x,y)).|
*
|.((
LF (a1,b1,c1))
. (x,y)).|)
< (
|.((a1
* b2)
- (a2
* b1)).|
/ 4) &
|.((
LF (a2,b2,c2))
. (x,y)).|
< eps by
A1,
A5,
Th47;
hence thesis;
end;
hence thesis;
end;
suppose (
ZeroPointSet (
LF (a2,b2,c2)))
<>
{} ;
hence thesis by
Th49;
end;
suppose (a2
/ b2) is
rational & (
ZeroPointSet (
LF (a2,b2,c2)))
=
{} ;
hence thesis by
A1,
A4,
Th51;
end;
end;
theorem ::
DIOPHAN2:41
|.((a1
* b2)
- (a2
* b1)).|
<>
0 implies ex x,y be
Element of
INT st (
|.((
LF (a1,b1,c1))
. (x,y)).|
*
|.((
LF (a2,b2,c2))
. (x,y)).|)
<= (
|.((a1
* b2)
- (a2
* b1)).|
/ 4)
proof
assume
A1:
|.((a1
* b2)
- (a2
* b1)).|
<>
0 ;
per cases ;
suppose
A2: (a1
/ b1) is
irrational & (
ZeroPointSet (
LF (a1,b1,c1)))
=
{} ;
for eps holds ex x,y be
Element of
INT st (
|.((
LF (a1,b1,c1))
. (x,y)).|
*
|.((
LF (a2,b2,c2))
. (x,y)).|)
<= (
|.((a1
* b2)
- (a2
* b1)).|
/ 4)
proof
let eps;
ex x,y be
Element of
INT st (
|.((
LF (a1,b1,c1))
. (x,y)).|
*
|.((
LF (a2,b2,c2))
. (x,y)).|)
< (
|.((a1
* b2)
- (a2
* b1)).|
/ 4) &
|.((
LF (a1,b1,c1))
. (x,y)).|
< eps by
A1,
A2,
Th46;
hence thesis;
end;
hence thesis;
end;
suppose (
ZeroPointSet (
LF (a1,b1,c1)))
<>
{} ;
hence thesis by
Th48;
end;
suppose (a1
/ b1) is
rational & (
ZeroPointSet (
LF (a1,b1,c1)))
=
{} ;
hence thesis by
A1,
Th52,
Th50;
end;
end;