dualsp04.miz
    
    begin
    
    definition
    
      let X be
    RealUnitarySpace;
    
      :: 
    
    DUALSP04:def1
    
      func
    
    normRU X -> 
    Function of the 
    carrier of X, 
    REAL means 
    
      :
    
    Def1: for x be 
    Point of X holds (it 
    . x) 
    =  
    ||.x.||;
    
      existence
    
      proof
    
        deffunc
    
    F(
    Element of the 
    carrier of X) = 
    ||.$1.||;
    
        
    
        
    
    X0: for x be 
    Element of the 
    carrier of X holds 
    F(x)
    in  
    REAL by 
    XREAL_0:def 1;
    
        consider f be
    Function of the 
    carrier of X, 
    REAL such that 
    
        
    
    X1: for x be 
    Element of the 
    carrier of X holds (f 
    . x) 
    =  
    F(x) from
    FUNCT_2:sch 8(
    X0);
    
        take f;
    
        thus thesis by
    X1;
    
      end;
    
      uniqueness
    
      proof
    
        let f1,f2 be
    Function of the 
    carrier of X, 
    REAL such that 
    
        
    
    A1: for x be 
    Point of X holds (f1 
    . x) 
    =  
    ||.x.|| and
    
        
    
    A2: for x be 
    Point of X holds (f2 
    . x) 
    =  
    ||.x.||;
    
        now
    
          let x be
    Element of the 
    carrier of X; 
    
          
    
          thus (f1
    . x) 
    =  
    ||.x.|| by
    A1
    
          .= (f2
    . x) by 
    A2;
    
        end;
    
        hence f1
    = f2; 
    
      end;
    
    end
    
    
    
    
    
    Lm01: for X be 
    RealUnitarySpace holds 
    NORMSTR (# the 
    carrier of X, the 
    ZeroF of X, the 
    addF of X, the 
    Mult of X, ( 
    normRU X) #) is non 
    empty  
    RealNormSpace
    
    proof
    
      let X be
    RealUnitarySpace;
    
      set T =
    NORMSTR (# the 
    carrier of X, the 
    ZeroF of X, the 
    addF of X, the 
    Mult of X, ( 
    normRU X) #); 
    
      reconsider T as non
    empty  
    NORMSTR;
    
      now
    
        let v,w be
    Element of T; 
    
        reconsider v1 = v, w1 = w as
    Element of X; 
    
        
    
        thus (v
    + w) 
    = (v1 
    + w1) 
    
        .= (w1
    + v1) 
    
        .= (w
    + v); 
    
      end;
    
      then
    
      
    
    A1: T is 
    Abelian;
    
      now
    
        let u,v,w be
    Element of T; 
    
        reconsider u1 = u, v1 = v, w1 = w as
    Element of X; 
    
        
    
        thus ((u
    + v) 
    + w) 
    = ((u1 
    + v1) 
    + w1) 
    
        .= (u1
    + (v1 
    + w1)) by 
    RLVECT_1:def 3
    
        .= (u
    + (v 
    + w)); 
    
      end;
    
      then
    
      
    
    A2: T is 
    add-associative;
    
      now
    
        let v be
    Element of T; 
    
        reconsider v1 = v as
    Element of X; 
    
        
    
        thus (v
    + ( 
    0. T)) 
    = (v1 
    + ( 
    0. X)) 
    
        .= v;
    
      end;
    
      then
    
      
    
    A3: T is 
    right_zeroed;
    
      
    
      
    
    A4: T is 
    right_complementable
    
      proof
    
        let v be
    Element of T; 
    
        reconsider v1 = v as
    Element of X; 
    
        reconsider w1 = (
    - v1) as 
    Element of X; 
    
        reconsider w = w1 as
    Element of T; 
    
        take w;
    
        
    
        thus (v
    + w) 
    = (v1 
    + w1) 
    
        .= (
    0. X) by 
    RLVECT_1:def 10
    
        .= (
    0. T); 
    
      end;
    
      now
    
        let a,b be
    Real, v be 
    Element of T; 
    
        reconsider v1 = v as
    Element of X; 
    
        
    
        thus ((a
    + b) 
    * v) 
    = ((a 
    + b) 
    * v1) 
    
        .= ((a
    * v1) 
    + (b 
    * v1)) by 
    RLVECT_1:def 6
    
        .= ((a
    * v) 
    + (b 
    * v)); 
    
      end;
    
      then
    
      
    
    A5: T is 
    scalar-distributive;
    
      now
    
        let a be
    Real, v,w be 
    Element of T; 
    
        reconsider v1 = v, w1 = w as
    Element of X; 
    
        
    
        thus (a
    * (v 
    + w)) 
    = (a 
    * (v1 
    + w1)) 
    
        .= ((a
    * v1) 
    + (a 
    * w1)) by 
    RLVECT_1:def 5
    
        .= ((a
    * v) 
    + (a 
    * w)); 
    
      end;
    
      then
    
      
    
    A6: T is 
    vector-distributive;
    
      now
    
        let a,b be
    Real, v be 
    Element of T; 
    
        reconsider v1 = v as
    Element of X; 
    
        
    
        thus ((a
    * b) 
    * v) 
    = ((a 
    * b) 
    * v1) 
    
        .= (a
    * (b 
    * v1)) by 
    RLVECT_1:def 7
    
        .= (a
    * (b 
    * v)); 
    
      end;
    
      then
    
      
    
    A7: T is 
    scalar-associative;
    
      now
    
        let v be
    Element of T; 
    
        reconsider v1 = v as
    Element of X; 
    
        
    
        thus (1
    * v) 
    = (1 
    * v1) 
    
        .= v by
    RLVECT_1:def 8;
    
      end;
    
      then
    
      
    
    A8: T is 
    scalar-unital;
    
      
    ||.(
    0. X).|| 
    =  
    0 by 
    SQUARE_1: 17,
    BHSP_1: 1;
    
      then
    
      
    
    A9: T is 
    reflexive by 
    Def1;
    
      now
    
        let v be
    Element of T; 
    
        assume
    
        
    
    AS: 
    ||.v.||
    =  
    0 ; 
    
        reconsider v1 = v as
    Element of X; 
    
        
    ||.v1.||
    =  
    0 by 
    AS,
    Def1;
    
        then v1
    = ( 
    0. X) by 
    BHSP_1: 26;
    
        hence v
    = ( 
    0. T); 
    
      end;
    
      then
    
      
    
    A10: T is 
    discerning;
    
      now
    
        let a be
    Real, v,w be 
    Element of T; 
    
        reconsider v1 = v, w1 = w as
    Element of X; 
    
        
    
        thus
    ||.(a
    * v).|| 
    =  
    ||.(a
    * v1).|| by 
    Def1
    
        .= (
    |.a.|
    *  
    ||.v1.||) by
    BHSP_1: 27
    
        .= (
    |.a.|
    *  
    ||.v.||) by
    Def1;
    
        
    
        
    
    C3: 
    ||.(v
    + w).|| 
    =  
    ||.(v1
    + w1).|| by 
    Def1;
    
        (
    ||.v.||
    +  
    ||.w.||)
    = ( 
    ||.v1.||
    + (( 
    normRU X) 
    . w)) by 
    Def1
    
        .= (
    ||.v1.||
    +  
    ||.w1.||) by
    Def1;
    
        hence
    ||.(v
    + w).|| 
    <= ( 
    ||.v.||
    +  
    ||.w.||) by
    C3,
    BHSP_1: 30;
    
      end;
    
      then T is
    RealNormSpace-like;
    
      hence thesis by
    A1,
    A2,
    A3,
    A4,
    A5,
    A6,
    A7,
    A8,
    A9,
    A10;
    
    end;
    
    definition
    
      let X be
    RealUnitarySpace;
    
      :: 
    
    DUALSP04:def2
    
      func
    
    RUSp2RNSp X -> 
    RealNormSpace equals 
    NORMSTR (# the 
    carrier of X, the 
    ZeroF of X, the 
    addF of X, the 
    Mult of X, ( 
    normRU X) #); 
    
      correctness by
    Lm01;
    
    end
    
    theorem :: 
    
    DUALSP04:1
    
    
    
    
    
    RHS3: for X be 
    RealUnitarySpace, x be 
    Point of X, x1 be 
    Point of ( 
    RUSp2RNSp X) st x 
    = x1 holds ( 
    - x) 
    = ( 
    - x1) 
    
    proof
    
      let X be
    RealUnitarySpace, x be 
    Point of X, x1 be 
    Point of ( 
    RUSp2RNSp X); 
    
      assume
    
      
    
    AS: x 
    = x1; 
    
      
    
      thus (
    - x) 
    = (( 
    - 1) 
    * x) by 
    RLVECT_1: 16
    
      .= ((
    - 1) 
    * x1) by 
    AS
    
      .= (
    - x1) by 
    RLVECT_1: 16;
    
    end;
    
    theorem :: 
    
    DUALSP04:2
    
    
    
    
    
    RHS4: for X be 
    RealUnitarySpace, x,y be 
    Point of X, x1,y1 be 
    Point of ( 
    RUSp2RNSp X) st x 
    = x1 & y 
    = y1 holds (x 
    - y) 
    = (x1 
    - y1) by 
    RHS3;
    
    theorem :: 
    
    DUALSP04:3
    
    
    
    
    
    RHS6: for X be 
    RealUnitarySpace, x be 
    Point of X, x1 be 
    Point of ( 
    RUSp2RNSp X) st x 
    = x1 holds 
    ||.x.||
    =  
    ||.x1.|| by
    Def1;
    
    theorem :: 
    
    DUALSP04:4
    
    
    
    
    
    RHS8: for X be 
    RealUnitarySpace, s1 be 
    sequence of X, s2 be 
    sequence of ( 
    RUSp2RNSp X) st s1 
    = s2 holds s1 is 
    convergent iff s2 is 
    convergent
    
    proof
    
      let X be
    RealUnitarySpace, s1 be 
    sequence of X, s2 be 
    sequence of ( 
    RUSp2RNSp X); 
    
      assume
    
      
    
    AS: s1 
    = s2; 
    
      hereby
    
        assume
    
        
    
    P1: s1 is 
    convergent;
    
        reconsider g1 = (
    lim s1) as 
    Point of ( 
    RUSp2RNSp X); 
    
        now
    
          let p be
    Real;
    
          assume
    0  
    < p; 
    
          then
    
          consider m be
    Nat such that 
    
          
    
    P2: for n be 
    Nat st m 
    <= n holds 
    ||.((s1
    . n) 
    - ( 
    lim s1)).|| 
    < p by 
    P1,
    BHSP_2: 19;
    
          take m;
    
          thus for n be
    Nat st m 
    <= n holds 
    ||.((s2
    . n) 
    - g1).|| 
    < p 
    
          proof
    
            let n be
    Nat;
    
            assume m
    <= n; 
    
            then
    
            
    
    P3: 
    ||.((s1
    . n) 
    - ( 
    lim s1)).|| 
    < p by 
    P2;
    
            ((s1
    . n) 
    - ( 
    lim s1)) 
    = ((s2 
    . n) 
    - g1) by 
    AS,
    RHS3;
    
            hence
    ||.((s2
    . n) 
    - g1).|| 
    < p by 
    P3,
    Def1;
    
          end;
    
        end;
    
        hence s2 is
    convergent;
    
      end;
    
      assume
    
      
    
    P4: s2 is 
    convergent;
    
      reconsider g2 = (
    lim s2) as 
    Point of X; 
    
      now
    
        let p be
    Real;
    
        assume
    0  
    < p; 
    
        then
    
        consider m be
    Nat such that 
    
        
    
    P2: for n be 
    Nat st m 
    <= n holds 
    ||.((s2
    . n) 
    - ( 
    lim s2)).|| 
    < p by 
    P4,
    NORMSP_1:def 7;
    
        take m;
    
        thus for n be
    Nat st m 
    <= n holds 
    ||.((s1
    . n) 
    - g2).|| 
    < p 
    
        proof
    
          let n be
    Nat;
    
          assume m
    <= n; 
    
          then
    
          
    
    P3: 
    ||.((s2
    . n) 
    - ( 
    lim s2)).|| 
    < p by 
    P2;
    
          ((s2
    . n) 
    - ( 
    lim s2)) 
    = ((s1 
    . n) 
    - g2) by 
    AS,
    RHS3;
    
          hence
    ||.((s1
    . n) 
    - g2).|| 
    < p by 
    P3,
    Def1;
    
        end;
    
      end;
    
      hence s1 is
    convergent by 
    BHSP_2: 9;
    
    end;
    
    theorem :: 
    
    DUALSP04:5
    
    
    
    
    
    RHS9: for X be 
    RealUnitarySpace, s1 be 
    sequence of X, s2 be 
    sequence of ( 
    RUSp2RNSp X) st s1 
    = s2 & s1 is 
    convergent holds ( 
    lim s1) 
    = ( 
    lim s2) 
    
    proof
    
      let X be
    RealUnitarySpace, s1 be 
    sequence of X, s2 be 
    sequence of ( 
    RUSp2RNSp X); 
    
      assume
    
      
    
    AS: s1 
    = s2; 
    
      assume
    
      
    
    P1: s1 is 
    convergent;
    
      then
    
      
    
    P5: s2 is 
    convergent by 
    AS,
    RHS8;
    
      reconsider g1 = (
    lim s1) as 
    Point of ( 
    RUSp2RNSp X); 
    
      now
    
        let p be
    Real;
    
        assume
    0  
    < p; 
    
        then
    
        consider m be
    Nat such that 
    
        
    
    P2: for n be 
    Nat st m 
    <= n holds 
    ||.((s1
    . n) 
    - ( 
    lim s1)).|| 
    < p by 
    P1,
    BHSP_2: 19;
    
        take m;
    
        thus for n be
    Nat st m 
    <= n holds 
    ||.((s2
    . n) 
    - g1).|| 
    < p 
    
        proof
    
          let n be
    Nat;
    
          assume m
    <= n; 
    
          then
    
          
    
    P3: 
    ||.((s1
    . n) 
    - ( 
    lim s1)).|| 
    < p by 
    P2;
    
          ((s1
    . n) 
    - ( 
    lim s1)) 
    = ((s2 
    . n) 
    - g1) by 
    AS,
    RHS3;
    
          hence
    ||.((s2
    . n) 
    - g1).|| 
    < p by 
    P3,
    Def1;
    
        end;
    
      end;
    
      hence (
    lim s2) 
    = ( 
    lim s1) by 
    P5,
    NORMSP_1:def 7;
    
    end;
    
    theorem :: 
    
    DUALSP04:6
    
    
    
    
    
    RHS11a: for X be 
    RealUnitarySpace, s1 be 
    sequence of X, s2 be 
    sequence of ( 
    RUSp2RNSp X) st s1 
    = s2 holds s2 is 
    Cauchy_sequence_by_Norm iff s1 is 
    Cauchy
    
    proof
    
      let X be
    RealUnitarySpace, s1 be 
    sequence of X, s2 be 
    sequence of ( 
    RUSp2RNSp X); 
    
      assume
    
      
    
    A0: s1 
    = s2; 
    
      hereby
    
        assume
    
        
    
    AS: s2 is 
    Cauchy_sequence_by_Norm;
    
        for r be
    Real st 
    0  
    < r holds ex k be 
    Nat st for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((s1
    . n) 
    - (s1 
    . m)).|| 
    < r 
    
        proof
    
          let r be
    Real;
    
          assume
    0  
    < r; 
    
          then
    
          consider k be
    Nat such that 
    
          
    
    P1: for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((s2
    . n) 
    - (s2 
    . m)).|| 
    < r by 
    AS,
    RSSPACE3: 8;
    
          take k;
    
          thus for n,m be
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((s1
    . n) 
    - (s1 
    . m)).|| 
    < r 
    
          proof
    
            let n,m be
    Nat;
    
            assume n
    >= k & m 
    >= k; 
    
            then
    
            
    
    P2: 
    ||.((s2
    . n) 
    - (s2 
    . m)).|| 
    < r by 
    P1;
    
            ((s2
    . n) 
    - (s2 
    . m)) 
    = ((s1 
    . n) 
    - (s1 
    . m)) by 
    A0,
    RHS3;
    
            hence
    ||.((s1
    . n) 
    - (s1 
    . m)).|| 
    < r by 
    Def1,
    P2;
    
          end;
    
        end;
    
        hence s1 is
    Cauchy by 
    BHSP_3: 2;
    
      end;
    
      assume
    
      
    
    A1: s1 is 
    Cauchy;
    
      for r be
    Real st r 
    >  
    0 holds ex k be 
    Nat st for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((s2
    . n) 
    - (s2 
    . m)).|| 
    < r 
    
      proof
    
        let r be
    Real;
    
        assume r
    >  
    0 ; 
    
        then
    
        consider k be
    Nat such that 
    
        
    
    A2: for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((s1
    . n) 
    - (s1 
    . m)).|| 
    < r by 
    A1,
    BHSP_3: 2;
    
        take k;
    
        thus for n,m be
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((s2
    . n) 
    - (s2 
    . m)).|| 
    < r 
    
        proof
    
          let n,m be
    Nat;
    
          assume n
    >= k & m 
    >= k; 
    
          then
    
          
    
    A3: 
    ||.((s1
    . n) 
    - (s1 
    . m)).|| 
    < r by 
    A2;
    
          ((s1
    . n) 
    - (s1 
    . m)) 
    = ((s2 
    . n) 
    - (s2 
    . m)) by 
    A0,
    RHS3;
    
          hence
    ||.((s2
    . n) 
    - (s2 
    . m)).|| 
    < r by 
    Def1,
    A3;
    
        end;
    
      end;
    
      hence s2 is
    Cauchy_sequence_by_Norm by 
    RSSPACE3: 8;
    
    end;
    
    theorem :: 
    
    DUALSP04:7
    
    
    
    
    
    RHS11b: for X be 
    RealUnitarySpace holds X is 
    complete iff ( 
    RUSp2RNSp X) is 
    complete
    
    proof
    
      let X be
    RealUnitarySpace;
    
      set Y = (
    RUSp2RNSp X); 
    
      hereby
    
        assume
    
        
    
    AS1: X is 
    complete;
    
        for s2 be
    sequence of Y holds s2 is 
    Cauchy_sequence_by_Norm implies s2 is 
    convergent
    
        proof
    
          let s2 be
    sequence of Y; 
    
          reconsider s1 = s2 as
    sequence of X; 
    
          assume s2 is
    Cauchy_sequence_by_Norm;
    
          then s1 is
    Cauchy by 
    RHS11a;
    
          then s1 is
    convergent by 
    AS1,
    BHSP_3:def 4;
    
          hence s2 is
    convergent by 
    RHS8;
    
        end;
    
        hence Y is
    complete by 
    LOPBAN_1:def 15;
    
      end;
    
      assume
    
      
    
    AS2: Y is 
    complete;
    
      for s1 be
    sequence of X holds s1 is 
    Cauchy implies s1 is 
    convergent
    
      proof
    
        let s1 be
    sequence of X; 
    
        reconsider s2 = s1 as
    sequence of Y; 
    
        assume s1 is
    Cauchy;
    
        then s2 is
    Cauchy_sequence_by_Norm by 
    RHS11a;
    
        then s2 is
    convergent by 
    AS2,
    LOPBAN_1:def 15;
    
        hence s1 is
    convergent by 
    RHS8;
    
      end;
    
      hence X is
    complete by 
    BHSP_3:def 4;
    
    end;
    
    registration
    
      let X be
    RealHilbertSpace;
    
      cluster ( 
    RUSp2RNSp X) -> 
    complete;
    
      correctness by
    RHS11b;
    
    end
    
    definition
    
      let X be
    RealUnitarySpace, Y be 
    Subset of X; 
    
      :: 
    
    DUALSP04:def3
    
      attr Y is
    
    open means ex Z be 
    Subset of ( 
    RUSp2RNSp X) st Z 
    = Y & Z is 
    open;
    
    end
    
    definition
    
      let X be
    RealUnitarySpace, Y be 
    Subset of X; 
    
      :: 
    
    DUALSP04:def4
    
      attr Y is
    
    closed means ex Z be 
    Subset of ( 
    RUSp2RNSp X) st Z 
    = Y & Z is 
    closed;
    
    end
    
    theorem :: 
    
    DUALSP04:8
    
    
    
    
    
    LM1: for X be 
    RealUnitarySpace, Y be 
    Subset of X holds Y is 
    closed iff for s be 
    sequence of X st ( 
    rng s) 
    c= Y & s is 
    convergent holds ( 
    lim s) 
    in Y 
    
    proof
    
      let X be
    RealUnitarySpace, Y be 
    Subset of X; 
    
      hereby
    
        assume Y is
    closed;
    
        then
    
        consider Z be
    Subset of ( 
    RUSp2RNSp X) such that 
    
        
    
    A1: Z 
    = Y & Z is 
    closed;
    
        thus for s be
    sequence of X st ( 
    rng s) 
    c= Y & s is 
    convergent holds ( 
    lim s) 
    in Y 
    
        proof
    
          let s be
    sequence of X; 
    
          assume
    
          
    
    A3: ( 
    rng s) 
    c= Y & s is 
    convergent;
    
          reconsider s1 = s as
    sequence of ( 
    RUSp2RNSp X); 
    
          (
    rng s1) 
    c= Z & s1 is 
    convergent by 
    A3,
    A1,
    RHS8;
    
          then (
    lim s1) 
    in Z by 
    A1;
    
          hence (
    lim s) 
    in Y by 
    A1,
    A3,
    RHS9;
    
        end;
    
      end;
    
      assume
    
      
    
    A4: for s be 
    sequence of X st ( 
    rng s) 
    c= Y & s is 
    convergent holds ( 
    lim s) 
    in Y; 
    
      reconsider Z = Y as
    Subset of ( 
    RUSp2RNSp X); 
    
      for s1 be
    sequence of ( 
    RUSp2RNSp X) st ( 
    rng s1) 
    c= Z & s1 is 
    convergent holds ( 
    lim s1) 
    in Z 
    
      proof
    
        let s1 be
    sequence of ( 
    RUSp2RNSp X); 
    
        assume
    
        
    
    A5: ( 
    rng s1) 
    c= Z & s1 is 
    convergent;
    
        reconsider s = s1 as
    sequence of X; 
    
        
    
        
    
    A6: ( 
    rng s) 
    c= Y & s is 
    convergent by 
    A5,
    RHS8;
    
        then (
    lim s) 
    in Y by 
    A4;
    
        hence (
    lim s1) 
    in Z by 
    A6,
    RHS9;
    
      end;
    
      then Z is
    closed;
    
      hence Y is
    closed;
    
    end;
    
    theorem :: 
    
    DUALSP04:9
    
    for X be
    RealUnitarySpace, Y be 
    Subset of X holds Y is 
    open iff (Y 
    ` ) is 
    closed
    
    proof
    
      let X be
    RealUnitarySpace, Y be 
    Subset of X; 
    
      thus Y is
    open implies (Y 
    ` ) is 
    closed;
    
      assume (Y
    ` ) is 
    closed;
    
      then
    
      consider Z be
    Subset of ( 
    RUSp2RNSp X) such that 
    
      
    
    A2: Z 
    = (Y 
    ` ) & Z is 
    closed;
    
      (Z
    ` ) is 
    open by 
    A2;
    
      hence Y is
    open by 
    A2;
    
    end;
    
    definition
    
      let X be
    RealUnitarySpace;
    
      let f be
    PartFunc of the 
    carrier of X, 
    REAL ; 
    
      let x0 be
    Point of X; 
    
      :: 
    
    DUALSP04:def5
    
      pred f
    
    is_continuous_in x0 means x0 
    in ( 
    dom f) & for s1 be 
    sequence of X st ( 
    rng s1) 
    c= ( 
    dom f) & s1 is 
    convergent & ( 
    lim s1) 
    = x0 holds (f 
    /* s1) is 
    convergent & (f 
    /. x0) 
    = ( 
    lim (f 
    /* s1)); 
    
    end
    
    definition
    
      let X be
    RealUnitarySpace;
    
      let f be
    PartFunc of the 
    carrier of X, 
    REAL ; 
    
      let Y be
    set;
    
      :: 
    
    DUALSP04:def6
    
      pred f
    
    is_continuous_on Y means Y 
    c= ( 
    dom f) & for x0 be 
    Point of X st x0 
    in Y holds (f 
    | Y) 
    is_continuous_in x0; 
    
    end
    
    theorem :: 
    
    DUALSP04:10
    
    
    
    
    
    LM3B: for X be 
    RealUnitarySpace, f be 
    Function of X, 
    REAL , g be 
    Function of ( 
    RUSp2RNSp X), 
    REAL , x0 be 
    Point of X, y0 be 
    Point of ( 
    RUSp2RNSp X) st f 
    = g & x0 
    = y0 holds f 
    is_continuous_in x0 iff g 
    is_continuous_in y0 
    
    proof
    
      let X be
    RealUnitarySpace, f be 
    Function of X, 
    REAL , g be 
    Function of ( 
    RUSp2RNSp X), 
    REAL , x0 be 
    Point of X, y0 be 
    Point of ( 
    RUSp2RNSp X); 
    
      assume
    
      
    
    AS: f 
    = g & x0 
    = y0; 
    
      set Y = (
    RUSp2RNSp X); 
    
      hereby
    
        assume
    
        
    
    A11: f 
    is_continuous_in x0; 
    
        for s2 be
    sequence of Y st ( 
    rng s2) 
    c= ( 
    dom g) & s2 is 
    convergent & ( 
    lim s2) 
    = y0 holds (g 
    /* s2) is 
    convergent & (g 
    /. y0) 
    = ( 
    lim (g 
    /* s2)) 
    
        proof
    
          let s2 be
    sequence of Y; 
    
          assume
    
          
    
    AS1: ( 
    rng s2) 
    c= ( 
    dom g) & s2 is 
    convergent & ( 
    lim s2) 
    = y0; 
    
          reconsider s1 = s2 as
    sequence of X; 
    
          
    
          
    
    B2: s1 is 
    convergent by 
    AS1,
    RHS8;
    
          then (
    lim s1) 
    = x0 by 
    AS1,
    AS,
    RHS9;
    
          hence (g
    /* s2) is 
    convergent & (g 
    /. y0) 
    = ( 
    lim (g 
    /* s2)) by 
    AS,
    A11,
    AS1,
    B2;
    
        end;
    
        hence g
    is_continuous_in y0 by 
    A11,
    AS;
    
      end;
    
      assume
    
      
    
    A31: g 
    is_continuous_in y0; 
    
      for s1 be
    sequence of X st ( 
    rng s1) 
    c= ( 
    dom f) & s1 is 
    convergent & ( 
    lim s1) 
    = x0 holds (f 
    /* s1) is 
    convergent & (f 
    /. x0) 
    = ( 
    lim (f 
    /* s1)) 
    
      proof
    
        let s1 be
    sequence of X; 
    
        assume
    
        
    
    AS2: ( 
    rng s1) 
    c= ( 
    dom f) & s1 is 
    convergent & ( 
    lim s1) 
    = x0; 
    
        reconsider s2 = s1 as
    sequence of Y; 
    
        
    
        
    
    B2: s2 is 
    convergent by 
    AS2,
    RHS8;
    
        (
    lim s2) 
    = y0 by 
    AS,
    AS2,
    RHS9;
    
        hence (f
    /* s1) is 
    convergent & (f 
    /. x0) 
    = ( 
    lim (f 
    /* s1)) by 
    AS,
    A31,
    AS2,
    B2;
    
      end;
    
      hence f
    is_continuous_in x0 by 
    A31,
    AS;
    
    end;
    
    theorem :: 
    
    DUALSP04:11
    
    
    
    
    
    LM3C: for X be 
    RealUnitarySpace, f be 
    Function of X, 
    REAL , g be 
    Function of ( 
    RUSp2RNSp X), 
    REAL st f 
    = g holds f 
    is_continuous_on the 
    carrier of X iff g 
    is_continuous_on the 
    carrier of ( 
    RUSp2RNSp X) 
    
    proof
    
      let X be
    RealUnitarySpace, f be 
    Function of X, 
    REAL , g be 
    Function of ( 
    RUSp2RNSp X), 
    REAL ; 
    
      assume
    
      
    
    AS: f 
    = g; 
    
      set Y = (
    RUSp2RNSp X); 
    
      hereby
    
        assume
    
        
    
    A11: f 
    is_continuous_on the 
    carrier of X; 
    
        for y0 be
    Point of Y st y0 
    in the 
    carrier of Y holds (g 
    | the 
    carrier of Y) 
    is_continuous_in y0 
    
        proof
    
          let y0 be
    Point of Y; 
    
          assume y0
    in the 
    carrier of Y; 
    
          reconsider x0 = y0 as
    Point of X; 
    
          (f
    | the 
    carrier of X) 
    is_continuous_in x0 by 
    A11;
    
          hence thesis by
    LM3B,
    AS;
    
        end;
    
        hence g
    is_continuous_on the 
    carrier of Y by 
    A11,
    AS;
    
      end;
    
      assume
    
      
    
    A31: g 
    is_continuous_on the 
    carrier of Y; 
    
      for x0 be
    Point of X st x0 
    in the 
    carrier of X holds (f 
    | the 
    carrier of X) 
    is_continuous_in x0 
    
      proof
    
        let x0 be
    Point of X; 
    
        assume x0
    in the 
    carrier of X; 
    
        reconsider y0 = x0 as
    Point of Y; 
    
        (g
    | the 
    carrier of Y) 
    is_continuous_in y0 by 
    A31;
    
        hence thesis by
    LM3B,
    AS;
    
      end;
    
      hence thesis by
    A31,
    AS;
    
    end;
    
    theorem :: 
    
    DUALSP04:12
    
    for X be
    RealUnitarySpace, w be 
    Point of X, f be 
    Function of X, 
    REAL st for v be 
    Point of X holds (f 
    . v) 
    = (w 
    .|. v) holds f 
    is_continuous_on the 
    carrier of X 
    
    proof
    
      let X be
    RealUnitarySpace, w be 
    Point of X, f be 
    Function of X, 
    REAL ; 
    
      assume
    
      
    
    AS: for v be 
    Point of X holds (f 
    . v) 
    = (w 
    .|. v); 
    
      set Y = (
    RUSp2RNSp X); 
    
      reconsider g = f as
    Function of Y, 
    REAL ; 
    
      
    
      
    
    A3: ( 
    dom g) 
    = the 
    carrier of Y by 
    FUNCT_2:def 1;
    
      for y0 be
    Point of Y st y0 
    in the 
    carrier of Y holds (g 
    | the 
    carrier of Y) 
    is_continuous_in y0 
    
      proof
    
        let y0 be
    Point of Y; 
    
        assume y0
    in the 
    carrier of Y; 
    
        for r be
    Real st 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for y1 be 
    Point of Y st y1 
    in ( 
    dom g) & 
    ||.(y1
    - y0).|| 
    < s holds 
    |.((g
    /. y1) 
    - (g 
    /. y0)).| 
    < r 
    
        proof
    
          let r be
    Real;
    
          assume
    
          
    
    AS1: 
    0  
    < r; 
    
          thus ex s be
    Real st 
    0  
    < s & for y1 be 
    Point of Y st y1 
    in ( 
    dom g) & 
    ||.(y1
    - y0).|| 
    < s holds 
    |.((g
    /. y1) 
    - (g 
    /. y0)).| 
    < r 
    
          proof
    
            
    
            
    
    C1: 
    0  
    <=  
    ||.w.|| by
    BHSP_1: 28;
    
            reconsider s = (r
    / ( 
    ||.w.||
    + 1)) as 
    Real;
    
            
    
            
    
    C41: ( 
    ||.w.||
    +  
    0 ) 
    < ( 
    ||.w.||
    + 1) by 
    XREAL_1: 8;
    
            (s
    * ( 
    ||.w.||
    + 1)) 
    = r by 
    C1,
    XCMPLX_1: 87;
    
            then
    
            
    
    C5: 
    0  
    < s & (s 
    *  
    ||.w.||)
    < r by 
    C1,
    AS1,
    C41,
    XREAL_1: 68;
    
            
    
            
    
    C6: for y1 be 
    Point of Y st y1 
    in ( 
    dom g) & 
    ||.(y1
    - y0).|| 
    < s holds 
    |.((g
    /. y1) 
    - (g 
    /. y0)).| 
    < r 
    
            proof
    
              let y1 be
    Point of Y; 
    
              assume
    
              
    
    AS2: y1 
    in ( 
    dom g) & 
    ||.(y1
    - y0).|| 
    < s; 
    
              reconsider x1 = y1 as
    Point of X; 
    
              reconsider x0 = y0 as
    Point of X; 
    
              
    
              
    
    X0: 
    ||.(y1
    - y0).|| 
    =  
    ||.(x1
    - x0).|| by 
    RHS4,
    RHS6;
    
              
    
              
    
    D1: 
    |.((g
    /. y1) 
    - (g 
    /. y0)).| 
    =  
    |.((w
    .|. x1) 
    - (g 
    . y0)).| by 
    AS
    
              .=
    |.((w
    .|. x1) 
    - (w 
    .|. x0)).| by 
    AS
    
              .=
    |.(w
    .|. (x1 
    - x0)).| by 
    BHSP_1: 12;
    
              
    
              
    
    D2: 
    |.(w
    .|. (x1 
    - x0)).| 
    <= ( 
    ||.w.||
    *  
    ||.(x1
    - x0).||) by 
    BHSP_1: 29;
    
              (
    ||.w.||
    *  
    ||.(x1
    - x0).||) 
    <= ( 
    ||.w.||
    * s) by 
    X0,
    C1,
    AS2,
    XREAL_1: 64;
    
              then
    |.((g
    /. y1) 
    - (g 
    /. y0)).| 
    <= ( 
    ||.w.||
    * s) by 
    D1,
    D2,
    XXREAL_0: 2;
    
              hence
    |.((g
    /. y1) 
    - (g 
    /. y0)).| 
    < r by 
    C5,
    XXREAL_0: 2;
    
            end;
    
            take s;
    
            thus thesis by
    C1,
    AS1,
    C6;
    
          end;
    
        end;
    
        hence (g
    | the 
    carrier of Y) 
    is_continuous_in y0 by 
    A3,
    NFCONT_1: 8;
    
      end;
    
      then g
    is_continuous_on the 
    carrier of Y by 
    FUNCT_2:def 1;
    
      hence thesis by
    LM3C;
    
    end;
    
    definition
    
      let X be
    RealUnitarySpace;
    
      let Y be
    set;
    
      let f be
    PartFunc of the 
    carrier of X, 
    REAL ; 
    
      :: 
    
    DUALSP04:def7
    
      pred f
    
    is_Lipschitzian_on Y means Y 
    c= ( 
    dom f) & ex r be 
    Real st 
    0  
    < r & for x1,x2 be 
    Point of X st x1 
    in Y & x2 
    in Y holds 
    |.((f
    /. x1) 
    - (f 
    /. x2)).| 
    <= (r 
    *  
    ||.(x1
    - x2).||); 
    
    end
    
    theorem :: 
    
    DUALSP04:13
    
    
    
    
    
    LM4: for X be 
    RealUnitarySpace, f be 
    Function of X, 
    REAL , g be 
    Function of ( 
    RUSp2RNSp X), 
    REAL st f 
    = g holds f 
    is_Lipschitzian_on the 
    carrier of X iff g 
    is_Lipschitzian_on the 
    carrier of ( 
    RUSp2RNSp X) 
    
    proof
    
      let X be
    RealUnitarySpace, f be 
    Function of X, 
    REAL , g be 
    Function of ( 
    RUSp2RNSp X), 
    REAL ; 
    
      assume
    
      
    
    AS: f 
    = g; 
    
      set Y = (
    RUSp2RNSp X); 
    
      thus f
    is_Lipschitzian_on the 
    carrier of X implies g 
    is_Lipschitzian_on the 
    carrier of ( 
    RUSp2RNSp X) 
    
      proof
    
        assume
    
        
    
    A11: f 
    is_Lipschitzian_on the 
    carrier of X; 
    
        then
    
        consider r be
    Real such that 
    
        
    
    A2: 
    0  
    < r & for x1,x2 be 
    Point of X st x1 
    in the 
    carrier of X & x2 
    in the 
    carrier of X holds 
    |.((f
    /. x1) 
    - (f 
    /. x2)).| 
    <= (r 
    *  
    ||.(x1
    - x2).||); 
    
        for y1,y2 be
    Point of Y st y1 
    in the 
    carrier of Y & y2 
    in the 
    carrier of Y holds 
    |.((g
    /. y1) 
    - (g 
    /. y2)).| 
    <= (r 
    *  
    ||.(y1
    - y2).||) 
    
        proof
    
          let y1,y2 be
    Point of Y; 
    
          assume y1
    in the 
    carrier of Y & y2 
    in the 
    carrier of Y; 
    
          reconsider x1 = y1, x2 = y2 as
    Point of X; 
    
          
    ||.(y1
    - y2).|| 
    =  
    ||.(x1
    - x2).|| by 
    RHS4,
    RHS6;
    
          hence
    |.((g
    /. y1) 
    - (g 
    /. y2)).| 
    <= (r 
    *  
    ||.(y1
    - y2).||) by 
    A2,
    AS;
    
        end;
    
        hence g
    is_Lipschitzian_on the 
    carrier of Y by 
    A2,
    A11,
    AS;
    
      end;
    
      assume
    
      
    
    A11: g 
    is_Lipschitzian_on the 
    carrier of Y; 
    
      then
    
      consider r be
    Real such that 
    
      
    
    A2: 
    0  
    < r & for y1,y2 be 
    Point of Y st y1 
    in the 
    carrier of Y & y2 
    in the 
    carrier of Y holds 
    |.((g
    /. y1) 
    - (g 
    /. y2)).| 
    <= (r 
    *  
    ||.(y1
    - y2).||); 
    
      for x1,x2 be
    Point of X st x1 
    in the 
    carrier of X & x2 
    in the 
    carrier of X holds 
    |.((f
    /. x1) 
    - (f 
    /. x2)).| 
    <= (r 
    *  
    ||.(x1
    - x2).||) 
    
      proof
    
        let x1,x2 be
    Point of X; 
    
        assume x1
    in the 
    carrier of X & x2 
    in the 
    carrier of X; 
    
        reconsider y1 = x1, y2 = x2 as
    Point of Y; 
    
        
    ||.(x1
    - x2).|| 
    =  
    ||.(y1
    - y2).|| by 
    RHS4,
    RHS6;
    
        hence
    |.((f
    /. x1) 
    - (f 
    /. x2)).| 
    <= (r 
    *  
    ||.(x1
    - x2).||) by 
    A2,
    AS;
    
      end;
    
      hence thesis by
    A2,
    A11,
    AS;
    
    end;
    
    theorem :: 
    
    DUALSP04:14
    
    
    
    
    
    LM5: for X be 
    RealUnitarySpace, f be 
    Function of X, 
    REAL st f 
    is_Lipschitzian_on the 
    carrier of X holds f 
    is_continuous_on the 
    carrier of X 
    
    proof
    
      let X be
    RealUnitarySpace, f be 
    Function of X, 
    REAL ; 
    
      assume
    
      
    
    AS: f 
    is_Lipschitzian_on the 
    carrier of X; 
    
      reconsider g = f as
    Function of ( 
    RUSp2RNSp X), 
    REAL ; 
    
      set Y = (
    RUSp2RNSp X); 
    
      g
    is_Lipschitzian_on the 
    carrier of Y by 
    AS,
    LM4;
    
      then g
    is_continuous_on the 
    carrier of Y by 
    NFCONT_1: 46;
    
      hence thesis by
    LM3C;
    
    end;
    
    
    
    
    
    Th16: for X be 
    RealUnitarySpace, f be 
    linear-Functional of X st (for x be 
    VECTOR of X holds (f 
    . x) 
    =  
    0 ) holds f is 
    Lipschitzian
    
    proof
    
      let X be
    RealUnitarySpace;
    
      let f be
    linear-Functional of X; 
    
      assume
    
      
    
    A1: for x be 
    VECTOR of X holds (f 
    . x) 
    =  
    0 ; 
    
      for x be
    VECTOR of X holds 
    |.(f
    . x).| 
    <= (1 
    *  
    ||.x.||)
    
      proof
    
        let x be
    VECTOR of X; 
    
        
    0  
    <=  
    ||.x.|| by
    BHSP_1: 28;
    
        hence thesis by
    A1,
    COMPLEX1: 44;
    
      end;
    
      hence thesis by
    BHSP_6:def 4;
    
    end;
    
    theorem :: 
    
    DUALSP04:15
    
    
    
    
    
    Th21X: for X be 
    RealUnitarySpace, F be 
    linear-Functional of X st F 
    = (the 
    carrier of X 
    -->  
    0 ) holds F is 
    Lipschitzian
    
    proof
    
      let X be
    RealUnitarySpace, F be 
    linear-Functional of X; 
    
      assume F
    = (the 
    carrier of X 
    -->  
    0 ); 
    
      then for x be
    VECTOR of X holds (F 
    . x) 
    =  
    0 ; 
    
      hence thesis by
    Th16;
    
    end;
    
    registration
    
      let X be
    RealUnitarySpace;
    
      cluster 
    Lipschitzian for 
    linear-Functional of X; 
    
      correctness
    
      proof
    
        set f = (the
    carrier of X 
    -->  
    0 ); 
    
        reconsider f as
    linear-Functional of X by 
    DUALSP01: 9;
    
        f is
    Lipschitzian by 
    Th21X;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let X be
    RealUnitarySpace;
    
      :: 
    
    DUALSP04:def8
    
      func
    
    BoundedLinearFunctionals X -> 
    Subset of (X 
    *' ) means 
    
      :
    
    Def10: for x be 
    set holds x 
    in it iff x is 
    Lipschitzian  
    linear-Functional of X; 
    
      existence
    
      proof
    
        defpred
    
    P[
    object] means $1 is
    Lipschitzian  
    linear-Functional of X; 
    
        consider IT be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in IT iff x 
    in ( 
    LinearFunctionals X) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take IT;
    
        for x be
    object st x 
    in IT holds x 
    in ( 
    LinearFunctionals X) by 
    A1;
    
        hence IT is
    Subset of (X 
    *' ) by 
    TARSKI:def 3;
    
        let x be
    set;
    
        thus x
    in IT implies x is 
    Lipschitzian  
    linear-Functional of X by 
    A1;
    
        assume
    
        
    
    A2: x is 
    Lipschitzian  
    linear-Functional of X; 
    
        then x
    in ( 
    LinearFunctionals X) by 
    DUALSP01:def 6;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let X1,X2 be
    Subset of (X 
    *' ); 
    
        assume that
    
        
    
    A3: for x be 
    set holds x 
    in X1 iff x is 
    Lipschitzian  
    linear-Functional of X and 
    
        
    
    A4: for x be 
    set holds x 
    in X2 iff x is 
    Lipschitzian  
    linear-Functional of X; 
    
        now
    
          let x be
    object;
    
          assume x
    in X2; 
    
          then x is
    Lipschitzian  
    linear-Functional of X by 
    A4;
    
          hence x
    in X1 by 
    A3;
    
        end;
    
        then
    
        
    
    A5: X2 
    c= X1; 
    
        now
    
          let x be
    object;
    
          assume x
    in X1; 
    
          then x is
    Lipschitzian  
    linear-Functional of X by 
    A3;
    
          hence x
    in X2 by 
    A4;
    
        end;
    
        then X1
    c= X2; 
    
        hence thesis by
    A5;
    
      end;
    
    end
    
    
    
    
    
    Th17: for X be 
    RealUnitarySpace holds ( 
    BoundedLinearFunctionals X) is 
    linearly-closed
    
    proof
    
      let X be
    RealUnitarySpace;
    
      set W = (
    BoundedLinearFunctionals X); 
    
      
    
      
    
    A1: for v,u be 
    VECTOR of (X 
    *' ) st v 
    in W & u 
    in W holds (v 
    + u) 
    in W 
    
      proof
    
        let v,u be
    VECTOR of (X 
    *' ) such that 
    
        
    
    A2: v 
    in W & u 
    in W; 
    
        reconsider f = (v
    + u) as 
    linear-Functional of X by 
    DUALSP01:def 6;
    
        f is
    Lipschitzian
    
        proof
    
          reconsider v1 = v, u1 = u as
    Lipschitzian  
    linear-Functional of X by 
    A2,
    Def10;
    
          consider K2 be
    Real such that 
    
          
    
    A4: 
    0  
    < K2 and 
    
          
    
    A5: for x be 
    Point of X holds 
    |.(v1
    . x).| 
    <= (K2 
    *  
    ||.x.||) by
    BHSP_6:def 4;
    
          consider K1 be
    Real such that 
    
          
    
    A6: 
    0  
    < K1 and 
    
          
    
    A7: for x be 
    Point of X holds 
    |.(u1
    . x).| 
    <= (K1 
    *  
    ||.x.||) by
    BHSP_6:def 4;
    
          reconsider K3 = (K1
    + K2) as 
    Real;
    
          now
    
            let x be
    VECTOR of X; 
    
            
    
            
    
    A8: 
    |.((u1
    . x) 
    + (v1 
    . x)).| 
    <= ( 
    |.(u1
    . x).| 
    +  
    |.(v1
    . x).|) by 
    COMPLEX1: 56;
    
            
    
            
    
    A9: 
    |.(v1
    . x).| 
    <= (K2 
    *  
    ||.x.||) by
    A5;
    
            
    |.(u1
    . x).| 
    <= (K1 
    *  
    ||.x.||) by
    A7;
    
            then
    
            
    
    A10: ( 
    |.(u1
    . x).| 
    +  
    |.(v1
    . x).|) 
    <= ((K1 
    *  
    ||.x.||)
    + (K2 
    *  
    ||.x.||)) by
    A9,
    XREAL_1: 7;
    
            
    |.(f
    . x).| 
    =  
    |.((u1
    . x) 
    + (v1 
    . x)).| by 
    DUALSP01: 12;
    
            hence
    |.(f
    . x).| 
    <= (K3 
    *  
    ||.x.||) by
    A8,
    A10,
    XXREAL_0: 2;
    
          end;
    
          hence thesis by
    A4,
    A6,
    BHSP_6:def 4;
    
        end;
    
        hence thesis by
    Def10;
    
      end;
    
      for a be
    Real, v be 
    VECTOR of (X 
    *' ) st v 
    in W holds (a 
    * v) 
    in W 
    
      proof
    
        let a be
    Real;
    
        let v be
    VECTOR of (X 
    *' ) such that 
    
        
    
    A11: v 
    in W; 
    
        reconsider f = (a
    * v) as 
    linear-Functional of X by 
    DUALSP01:def 6;
    
        f is
    Lipschitzian
    
        proof
    
          reconsider v1 = v as
    Lipschitzian  
    linear-Functional of X by 
    A11,
    Def10;
    
          consider K be
    Real such that 
    
          
    
    A12: 
    0  
    < K and 
    
          
    
    A13: for x be 
    Point of X holds 
    |.(v1
    . x).| 
    <= (K 
    *  
    ||.x.||) by
    BHSP_6:def 4;
    
          
    
          
    
    B12: 
    0  
    <=  
    |.a.| by
    COMPLEX1: 46;
    
          (
    |.a.|
    +  
    0 ) 
    < ( 
    |.a.|
    + 1) by 
    XREAL_1: 8;
    
          then
    
          
    
    B2: ( 
    |.a.|
    * K) 
    <= (( 
    |.a.|
    + 1) 
    * K) by 
    A12,
    XREAL_1: 64;
    
          now
    
            let x be
    VECTOR of X; 
    
            
    0  
    <=  
    |.a.| by
    COMPLEX1: 46;
    
            then
    
            
    
    A15: ( 
    |.a.|
    *  
    |.(v1
    . x).|) 
    <= ( 
    |.a.|
    * (K 
    *  
    ||.x.||)) by
    A13,
    XREAL_1: 64;
    
            
    |.(a
    * (v1 
    . x)).| 
    = ( 
    |.a.|
    *  
    |.(v1
    . x).|) by 
    COMPLEX1: 65;
    
            then
    
            
    
    A16: 
    |.(f
    . x).| 
    <= ( 
    |.a.|
    * (K 
    *  
    ||.x.||)) by
    A15,
    DUALSP01: 13;
    
            
    0  
    <=  
    ||.x.|| by
    BHSP_1: 28;
    
            then ((
    |.a.|
    * K) 
    *  
    ||.x.||)
    <= ((( 
    |.a.|
    + 1) 
    * K) 
    *  
    ||.x.||) by
    B2,
    XREAL_1: 64;
    
            hence
    |.(f
    . x).| 
    <= ((( 
    |.a.|
    + 1) 
    * K) 
    *  
    ||.x.||) by
    A16,
    XXREAL_0: 2;
    
          end;
    
          hence thesis by
    B12,
    A12,
    BHSP_6:def 4;
    
        end;
    
        hence thesis by
    Def10;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    registration
    
      let X be
    RealUnitarySpace;
    
      cluster ( 
    BoundedLinearFunctionals X) -> non 
    empty
    linearly-closed;
    
      coherence
    
      proof
    
        set f = the
    Lipschitzian  
    linear-Functional of X; 
    
        f
    in ( 
    BoundedLinearFunctionals X) by 
    Def10;
    
        hence thesis by
    Th17;
    
      end;
    
    end
    
    definition
    
      let X be
    RealUnitarySpace;
    
      let f be
    object;
    
      :: 
    
    DUALSP04:def9
    
      func
    
    Bound2Lipschitz (f,X) -> 
    Lipschitzian  
    linear-Functional of X equals ( 
    In (f,( 
    BoundedLinearFunctionals X))); 
    
      coherence by
    Def10;
    
    end
    
    definition
    
      let X be
    RealUnitarySpace;
    
      let u be
    linear-Functional of X; 
    
      :: 
    
    DUALSP04:def10
    
      func
    
    PreNorms u -> non 
    empty  
    Subset of 
    REAL equals { 
    |.(u
    . t).| where t be 
    VECTOR of X : 
    ||.t.||
    <= 1 }; 
    
      coherence
    
      proof
    
        
    
    A1: 
    
        now
    
          let x be
    object;
    
          now
    
            assume x
    in { 
    |.(u
    . t).| where t be 
    VECTOR of X : 
    ||.t.||
    <= 1 }; 
    
            then ex t be
    VECTOR of X st x 
    =  
    |.(u
    . t).| & 
    ||.t.||
    <= 1; 
    
            hence x
    in  
    REAL by 
    XREAL_0:def 1;
    
          end;
    
          hence x
    in { 
    |.(u
    . t).| where t be 
    VECTOR of X : 
    ||.t.||
    <= 1 } implies x 
    in  
    REAL ; 
    
        end;
    
        
    ||.(
    0. X).|| 
    =  
    0 by 
    SQUARE_1: 17,
    BHSP_1: 1;
    
        then
    |.(u
    . ( 
    0. X)).| 
    in { 
    |.(u
    . t).| where t be 
    VECTOR of X : 
    ||.t.||
    <= 1 }; 
    
        hence thesis by
    A1,
    TARSKI:def 3;
    
      end;
    
    end
    
    
    
    
    
    Th27X: for X be 
    RealUnitarySpace, g be 
    Lipschitzian  
    linear-Functional of X holds ( 
    PreNorms g) is 
    bounded_above
    
    proof
    
      let X be
    RealUnitarySpace;
    
      let g be
    Lipschitzian  
    linear-Functional of X; 
    
      consider K be
    Real such that 
    
      
    
    A1: 
    0  
    < K & for x be 
    VECTOR of X holds 
    |.(g
    . x).| 
    <= (K 
    *  
    ||.x.||) by
    BHSP_6:def 4;
    
      take K;
    
      let r be
    ExtReal;
    
      assume r
    in ( 
    PreNorms g); 
    
      then
    
      consider t be
    VECTOR of X such that 
    
      
    
    A3: r 
    =  
    |.(g
    . t).| & 
    ||.t.||
    <= 1; 
    
      
    
      
    
    A5: 
    |.(g
    . t).| 
    <= (K 
    *  
    ||.t.||) by
    A1;
    
      (K
    *  
    ||.t.||)
    <= (K 
    * 1) by 
    A1,
    A3,
    XREAL_1: 64;
    
      hence r
    <= K by 
    A3,
    A5,
    XXREAL_0: 2;
    
    end;
    
    registration
    
      let X be
    RealUnitarySpace, g be 
    Lipschitzian  
    linear-Functional of X; 
    
      cluster ( 
    PreNorms g) -> 
    bounded_above;
    
      coherence by
    Th27X;
    
    end
    
    definition
    
      let X be
    RealUnitarySpace;
    
      :: 
    
    DUALSP04:def11
    
      func
    
    BoundedLinearFunctionalsNorm X -> 
    Function of ( 
    BoundedLinearFunctionals X), 
    REAL means 
    
      :
    
    Def14: for x be 
    object st x 
    in ( 
    BoundedLinearFunctionals X) holds (it 
    . x) 
    = ( 
    upper_bound ( 
    PreNorms ( 
    Bound2Lipschitz (x,X)))); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    object) = (
    upper_bound ( 
    PreNorms ( 
    Bound2Lipschitz ($1,X)))); 
    
        
    
        
    
    A1: for z be 
    object st z 
    in ( 
    BoundedLinearFunctionals X) holds 
    F(z)
    in  
    REAL by 
    XREAL_0:def 1;
    
        thus ex f be
    Function of ( 
    BoundedLinearFunctionals X), 
    REAL st for x be 
    object st x 
    in ( 
    BoundedLinearFunctionals X) holds (f 
    . x) 
    =  
    F(x) from
    FUNCT_2:sch 2(
    A1);
    
      end;
    
      uniqueness
    
      proof
    
        let NORM1,NORM2 be
    Function of ( 
    BoundedLinearFunctionals X), 
    REAL such that 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    BoundedLinearFunctionals X) holds (NORM1 
    . x) 
    = ( 
    upper_bound ( 
    PreNorms ( 
    Bound2Lipschitz (x,X)))) and 
    
        
    
    A3: for x be 
    object st x 
    in ( 
    BoundedLinearFunctionals X) holds (NORM2 
    . x) 
    = ( 
    upper_bound ( 
    PreNorms ( 
    Bound2Lipschitz (x,X)))); 
    
        for z be
    object st z 
    in ( 
    BoundedLinearFunctionals X) holds (NORM1 
    . z) 
    = (NORM2 
    . z) 
    
        proof
    
          let z be
    object such that 
    
          
    
    A5: z 
    in ( 
    BoundedLinearFunctionals X); 
    
          (NORM1
    . z) 
    = ( 
    upper_bound ( 
    PreNorms ( 
    Bound2Lipschitz (z,X)))) by 
    A2,
    A5;
    
          hence thesis by
    A3,
    A5;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    
    
    
    
    Th23: for X be 
    RealUnitarySpace, f be 
    Lipschitzian  
    linear-Functional of X holds ( 
    Bound2Lipschitz (f,X)) 
    = f 
    
    proof
    
      let X be
    RealUnitarySpace;
    
      let f be
    Lipschitzian  
    linear-Functional of X; 
    
      f
    in ( 
    BoundedLinearFunctionals X) by 
    Def10;
    
      hence thesis by
    SUBSET_1:def 8;
    
    end;
    
    registration
    
      let X be
    RealUnitarySpace;
    
      let f be
    Lipschitzian  
    linear-Functional of X; 
    
      reduce (
    Bound2Lipschitz (f,X)) to f; 
    
      reducibility by
    Th23;
    
    end
    
    theorem :: 
    
    DUALSP04:16
    
    
    
    
    
    Th24: for X be 
    RealUnitarySpace, f be 
    Lipschitzian  
    linear-Functional of X holds (( 
    BoundedLinearFunctionalsNorm X) 
    . f) 
    = ( 
    upper_bound ( 
    PreNorms f)) 
    
    proof
    
      let X be
    RealUnitarySpace;
    
      let f be
    Lipschitzian  
    linear-Functional of X; 
    
      reconsider f9 = f as
    set;
    
      
    
      thus ((
    BoundedLinearFunctionalsNorm X) 
    . f) 
    = ( 
    upper_bound ( 
    PreNorms ( 
    Bound2Lipschitz (f9,X)))) by 
    Def14
    
      .= (
    upper_bound ( 
    PreNorms f)); 
    
    end;
    
    definition
    
      let X be
    RealUnitarySpace;
    
      :: 
    
    DUALSP04:def12
    
      func
    
    DualSp X -> non 
    empty  
    NORMSTR equals 
    NORMSTR (# ( 
    BoundedLinearFunctionals X), ( 
    Zero_ (( 
    BoundedLinearFunctionals X),(X 
    *' ))), ( 
    Add_ (( 
    BoundedLinearFunctionals X),(X 
    *' ))), ( 
    Mult_ (( 
    BoundedLinearFunctionals X),(X 
    *' ))), ( 
    BoundedLinearFunctionalsNorm X) #); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    DUALSP04:17
    
    
    
    
    
    Th26: for X be 
    RealUnitarySpace, f be 
    Point of ( 
    DualSp X), g be 
    Lipschitzian  
    linear-Functional of X st g 
    = f holds for t be 
    VECTOR of X holds 
    |.(g
    . t).| 
    <= ( 
    ||.f.||
    *  
    ||.t.||)
    
    proof
    
      let X be
    RealUnitarySpace;
    
      let f be
    Point of ( 
    DualSp X); 
    
      let g be
    Lipschitzian  
    linear-Functional of X such that 
    
      
    
    A1: g 
    = f; 
    
      let t be
    VECTOR of X; 
    
      per cases ;
    
        suppose
    
        
    
    A3: t 
    = ( 
    0. X); 
    
        then
    
        
    
    A4: 
    ||.t.||
    =  
    0 by 
    BHSP_1: 26;
    
        (g
    . t) 
    = (g 
    . ( 
    0  
    * ( 
    0. X))) by 
    A3
    
        .= (
    0  
    * (g 
    . ( 
    0. X))) by 
    HAHNBAN:def 3
    
        .=
    0 ; 
    
        hence
    |.(g
    . t).| 
    <= ( 
    ||.f.||
    *  
    ||.t.||) by
    A4,
    COMPLEX1: 44;
    
      end;
    
        suppose
    
        
    
    A5: t 
    <> ( 
    0. X); 
    
        reconsider t1 = ((
    ||.t.||
    " ) 
    * t) as 
    VECTOR of X; 
    
        
    
        
    
    A6: 
    ||.t.||
    <>  
    0 by 
    A5,
    BHSP_1: 26;
    
        then
    
        
    
    B61: 
    0  
    <  
    ||.t.|| by
    BHSP_1: 28;
    
        
    
        
    
    A7: 
    |.(
    ||.t.||
    " ).| 
    =  
    |.(1
    * ( 
    ||.t.||
    " )).| 
    
        .=
    |.(1
    /  
    ||.t.||).| by
    XCMPLX_0:def 9
    
        .= (1
    /  
    ||.t.||) by
    B61,
    ABSVALUE:def 1
    
        .= (1
    * ( 
    ||.t.||
    " )) by 
    XCMPLX_0:def 9
    
        .= (
    ||.t.||
    " ); 
    
        
    
        
    
    A8: ( 
    |.(g
    . t).| 
    /  
    ||.t.||)
    = ( 
    |.(g
    . t).| 
    * ( 
    ||.t.||
    " )) by 
    XCMPLX_0:def 9
    
        .=
    |.((
    ||.t.||
    " ) 
    * (g 
    . t)).| by 
    A7,
    COMPLEX1: 65
    
        .=
    |.(g
    . t1).| by 
    HAHNBAN:def 3;
    
        
    ||.t1.||
    = ( 
    |.(
    ||.t.||
    " ).| 
    *  
    ||.t.||) by
    BHSP_1: 27
    
        .= 1 by
    A6,
    A7,
    XCMPLX_0:def 7;
    
        then (
    |.(g
    . t).| 
    /  
    ||.t.||)
    in { 
    |.(g
    . s).| where s be 
    VECTOR of X : 
    ||.s.||
    <= 1 } by 
    A8;
    
        then (
    |.(g
    . t).| 
    /  
    ||.t.||)
    <= ( 
    upper_bound ( 
    PreNorms g)) by 
    SEQ_4:def 1;
    
        then
    
        
    
    A9: ( 
    |.(g
    . t).| 
    /  
    ||.t.||)
    <=  
    ||.f.|| by
    A1,
    Th24;
    
        
    
        
    
    A10: (( 
    |.(g
    . t).| 
    /  
    ||.t.||)
    *  
    ||.t.||)
    = (( 
    |.(g
    . t).| 
    * ( 
    ||.t.||
    " )) 
    *  
    ||.t.||) by
    XCMPLX_0:def 9
    
        .= (
    |.(g
    . t).| 
    * (( 
    ||.t.||
    " ) 
    *  
    ||.t.||))
    
        .= (
    |.(g
    . t).| 
    * 1) by 
    A6,
    XCMPLX_0:def 7
    
        .=
    |.(g
    . t).|; 
    
        
    0  
    <=  
    ||.t.|| by
    BHSP_1: 28;
    
        hence
    |.(g
    . t).| 
    <= ( 
    ||.f.||
    *  
    ||.t.||) by
    A9,
    A10,
    XREAL_1: 64;
    
      end;
    
    end;
    
    theorem :: 
    
    DUALSP04:18
    
    
    
    
    
    Th27: for X be 
    RealUnitarySpace, f be 
    Point of ( 
    DualSp X) holds 
    0  
    <=  
    ||.f.||
    
    proof
    
      let X be
    RealUnitarySpace;
    
      let f be
    Point of ( 
    DualSp X); 
    
      reconsider g = f as
    Lipschitzian  
    linear-Functional of X by 
    Def10;
    
      consider r0 be
    object such that 
    
      
    
    A1: r0 
    in ( 
    PreNorms g) by 
    XBOOLE_0:def 1;
    
      reconsider r0 as
    Real by 
    A1;
    
      
    
      
    
    A3: (( 
    BoundedLinearFunctionalsNorm X) 
    . f) 
    = ( 
    upper_bound ( 
    PreNorms g)) by 
    Th24;
    
      now
    
        let r be
    Real;
    
        assume r
    in ( 
    PreNorms g); 
    
        then ex t be
    VECTOR of X st r 
    =  
    |.(g
    . t).| & 
    ||.t.||
    <= 1; 
    
        hence
    0  
    <= r by 
    COMPLEX1: 46;
    
      end;
    
      then
    0  
    <= r0 by 
    A1;
    
      hence thesis by
    A1,
    SEQ_4:def 1,
    A3;
    
    end;
    
    theorem :: 
    
    DUALSP04:19
    
    
    
    
    
    LM6A: for X be 
    RealUnitarySpace, f be 
    Function of X, 
    REAL , g be 
    Function of ( 
    RUSp2RNSp X), 
    REAL st f 
    = g holds f is 
    additive
    homogeneous iff g is 
    additive
    homogeneous
    
    proof
    
      let X be
    RealUnitarySpace, f be 
    Function of X, 
    REAL , g be 
    Function of ( 
    RUSp2RNSp X), 
    REAL ; 
    
      assume
    
      
    
    AS: f 
    = g; 
    
      set Y = (
    RUSp2RNSp X); 
    
      hereby
    
        assume
    
        
    
    AS1: f is 
    additive
    homogeneous;
    
        
    
        
    
    A1: g is 
    additive
    
        proof
    
          let x,y be
    Point of Y; 
    
          reconsider x1 = x, y1 = y as
    Point of X; 
    
          
    
          thus (g
    . (x 
    + y)) 
    = (f 
    . (x1 
    + y1)) by 
    AS
    
          .= ((g
    . x) 
    + (g 
    . y)) by 
    AS,
    AS1,
    HAHNBAN:def 2;
    
        end;
    
        g is
    homogeneous
    
        proof
    
          let x be
    Point of Y, r be 
    Real;
    
          reconsider x1 = x as
    Point of X; 
    
          
    
          thus (g
    . (r 
    * x)) 
    = (f 
    . (r 
    * x1)) by 
    AS
    
          .= (r
    * (g 
    . x)) by 
    AS,
    AS1,
    HAHNBAN:def 3;
    
        end;
    
        hence g is
    additive
    homogeneous by 
    A1;
    
      end;
    
      assume
    
      
    
    AS2: g is 
    additive
    homogeneous;
    
      
    
      
    
    A2: f is 
    additive
    
      proof
    
        let x,y be
    Point of X; 
    
        reconsider x1 = x, y1 = y as
    Point of Y; 
    
        
    
        thus (f
    . (x 
    + y)) 
    = (g 
    . (x1 
    + y1)) by 
    AS
    
        .= ((f
    . x) 
    + (f 
    . y)) by 
    AS,
    AS2,
    HAHNBAN:def 2;
    
      end;
    
      f is
    homogeneous
    
      proof
    
        let x be
    Point of X, r be 
    Real;
    
        reconsider x1 = x as
    Point of Y; 
    
        
    
        thus (f
    . (r 
    * x)) 
    = (g 
    . (r 
    * x1)) by 
    AS
    
        .= (r
    * (f 
    . x)) by 
    AS,
    AS2,
    HAHNBAN:def 3;
    
      end;
    
      hence f is
    additive
    homogeneous by 
    A2;
    
    end;
    
    theorem :: 
    
    DUALSP04:20
    
    
    
    
    
    LM6B: for X be 
    RealUnitarySpace, f be 
    linear-Functional of X, g be 
    linear-Functional of ( 
    RUSp2RNSp X) st f 
    = g holds f is 
    Lipschitzian iff g is 
    Lipschitzian
    
    proof
    
      let X be
    RealUnitarySpace, f be 
    linear-Functional of X, g be 
    linear-Functional of ( 
    RUSp2RNSp X); 
    
      assume
    
      
    
    AS: f 
    = g; 
    
      set Y = (
    RUSp2RNSp X); 
    
      hereby
    
        assume f is
    Lipschitzian;
    
        then
    
        consider K be
    Real such that 
    
        
    
    A1: 
    0  
    < K & for x be 
    Point of X holds 
    |.(f
    . x).| 
    <= (K 
    *  
    ||.x.||) by
    BHSP_6:def 4;
    
        for y be
    Point of Y holds 
    |.(g
    . y).| 
    <= (K 
    *  
    ||.y.||)
    
        proof
    
          let y be
    Point of Y; 
    
          reconsider x = y as
    Point of X; 
    
          
    ||.y.||
    =  
    ||.x.|| by
    Def1;
    
          hence
    |.(g
    . y).| 
    <= (K 
    *  
    ||.y.||) by
    A1,
    AS;
    
        end;
    
        hence g is
    Lipschitzian by 
    A1;
    
      end;
    
      assume g is
    Lipschitzian;
    
      then
    
      consider K be
    Real such that 
    
      
    
    A2: 
    0  
    <= K & for y be 
    Point of Y holds 
    |.(g
    . y).| 
    <= (K 
    *  
    ||.y.||);
    
      
    
      
    
    A4: (K 
    +  
    0 ) 
    < (K 
    + 1) by 
    XREAL_1: 8;
    
      for x be
    Point of X holds 
    |.(f
    . x).| 
    <= ((K 
    + 1) 
    *  
    ||.x.||)
    
      proof
    
        let x be
    Point of X; 
    
        reconsider y = x as
    Point of Y; 
    
        
    ||.x.||
    =  
    ||.y.|| by
    Def1;
    
        then
    
        
    
    B3: 
    |.(f
    . x).| 
    <= (K 
    *  
    ||.x.||) by
    A2,
    AS;
    
        
    0  
    <=  
    ||.x.|| by
    BHSP_1: 28;
    
        then (K
    *  
    ||.x.||)
    <= ((K 
    + 1) 
    *  
    ||.x.||) by
    A4,
    XREAL_1: 64;
    
        hence
    |.(f
    . x).| 
    <= ((K 
    + 1) 
    *  
    ||.x.||) by
    B3,
    XXREAL_0: 2;
    
      end;
    
      hence f is
    Lipschitzian by 
    A2,
    BHSP_6:def 4;
    
    end;
    
    theorem :: 
    
    DUALSP04:21
    
    
    
    
    
    LM6: for X be 
    RealUnitarySpace holds ( 
    BoundedLinearFunctionals X) 
    = ( 
    BoundedLinearFunctionals ( 
    RUSp2RNSp X)) 
    
    proof
    
      let X be
    RealUnitarySpace;
    
      set Y = (
    RUSp2RNSp X); 
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    BoundedLinearFunctionals X); 
    
        then
    
        
    
    A1: x is 
    Lipschitzian  
    linear-Functional of X by 
    Def10;
    
        then x is
    linear-Functional of Y by 
    LM6A;
    
        then x is
    Lipschitzian  
    linear-Functional of Y by 
    A1,
    LM6B;
    
        hence x
    in ( 
    BoundedLinearFunctionals Y) by 
    DUALSP01:def 10;
    
      end;
    
      then
    
      
    
    A2: ( 
    BoundedLinearFunctionals X) 
    c= ( 
    BoundedLinearFunctionals Y); 
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    BoundedLinearFunctionals Y); 
    
        then x is
    Lipschitzian  
    linear-Functional of Y by 
    DUALSP01:def 10;
    
        then x is
    Lipschitzian  
    linear-Functional of X by 
    LM6B,
    LM6A;
    
        hence x
    in ( 
    BoundedLinearFunctionals X) by 
    Def10;
    
      end;
    
      then (
    BoundedLinearFunctionals Y) 
    c= ( 
    BoundedLinearFunctionals X); 
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    DUALSP04:22
    
    
    
    
    
    LM8: for X be 
    RealUnitarySpace, u be 
    linear-Functional of X, v be 
    linear-Functional of ( 
    RUSp2RNSp X) st u 
    = v holds ( 
    PreNorms u) 
    = ( 
    PreNorms v) 
    
    proof
    
      let X be
    RealUnitarySpace, u be 
    linear-Functional of X, v be 
    linear-Functional of ( 
    RUSp2RNSp X); 
    
      assume
    
      
    
    AS: u 
    = v; 
    
      set Y = (
    RUSp2RNSp X); 
    
      
    
    A11: 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    AS1: x 
    in ( 
    PreNorms u); 
    
        then
    
        reconsider y = x as
    Real;
    
        consider t be
    VECTOR of X such that 
    
        
    
    B1: y 
    =  
    |.(u
    . t).| & 
    ||.t.||
    <= 1 by 
    AS1;
    
        reconsider t1 = t as
    VECTOR of Y; 
    
        
    ||.t1.||
    <= 1 by 
    B1,
    Def1;
    
        hence x
    in ( 
    PreNorms v) by 
    AS,
    B1;
    
      end;
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    AS2: x 
    in ( 
    PreNorms v); 
    
        then
    
        reconsider y = x as
    Real;
    
        consider t be
    VECTOR of Y such that 
    
        
    
    B1: y 
    =  
    |.(v
    . t).| & 
    ||.t.||
    <= 1 by 
    AS2;
    
        reconsider t1 = t as
    VECTOR of X; 
    
        
    ||.t1.||
    <= 1 by 
    B1,
    Def1;
    
        hence x
    in ( 
    PreNorms u) by 
    AS,
    B1;
    
      end;
    
      hence (
    PreNorms u) 
    = ( 
    PreNorms v) by 
    A11;
    
    end;
    
    theorem :: 
    
    DUALSP04:23
    
    
    
    
    
    LM9: for X be 
    RealUnitarySpace holds ( 
    BoundedLinearFunctionalsNorm X) 
    = ( 
    BoundedLinearFunctionalsNorm ( 
    RUSp2RNSp X)) 
    
    proof
    
      let X be
    RealUnitarySpace;
    
      set Y = (
    RUSp2RNSp X); 
    
      set f = (
    BoundedLinearFunctionalsNorm X); 
    
      set g = (
    BoundedLinearFunctionalsNorm Y); 
    
      
    
      
    
    A1: ( 
    dom f) 
    = ( 
    BoundedLinearFunctionals X) by 
    FUNCT_2:def 1
    
      .= (
    BoundedLinearFunctionals Y) by 
    LM6
    
      .= (
    dom g) by 
    FUNCT_2:def 1;
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    B11: x 
    in ( 
    dom f); 
    
        then
    
        
    
    B1: x 
    in ( 
    BoundedLinearFunctionals X); 
    
        
    
        
    
    B2: (f 
    . x) 
    = ( 
    upper_bound ( 
    PreNorms ( 
    Bound2Lipschitz (x,X)))) by 
    B11,
    Def14;
    
        
    
        
    
    B31: x 
    in ( 
    BoundedLinearFunctionals Y) by 
    B1,
    LM6;
    
        (
    Bound2Lipschitz (x,X)) 
    = ( 
    Bound2Lipschitz (x,( 
    RUSp2RNSp X))) by 
    LM6;
    
        then (
    upper_bound ( 
    PreNorms ( 
    Bound2Lipschitz (x,X)))) 
    = ( 
    upper_bound ( 
    PreNorms ( 
    Bound2Lipschitz (x,Y)))) by 
    LM8;
    
        hence (f
    . x) 
    = (g 
    . x) by 
    B2,
    B31,
    DUALSP01:def 14;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    DUALSP04:24
    
    
    
    
    
    LM10A: for X be 
    RealUnitarySpace holds ( 
    LinearFunctionals X) 
    = ( 
    LinearFunctionals ( 
    RUSp2RNSp X)) 
    
    proof
    
      let X be
    RealUnitarySpace;
    
      set Y = (
    RUSp2RNSp X); 
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    LinearFunctionals X); 
    
        then x is
    linear-Functional of X by 
    DUALSP01:def 6;
    
        then x is
    linear-Functional of Y by 
    LM6A;
    
        hence x
    in ( 
    LinearFunctionals Y) by 
    DUALSP01:def 6;
    
      end;
    
      then
    
      
    
    A1: ( 
    LinearFunctionals X) 
    c= ( 
    LinearFunctionals Y); 
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    LinearFunctionals Y); 
    
        then x is
    linear-Functional of Y by 
    DUALSP01:def 6;
    
        then x is
    linear-Functional of X by 
    LM6A;
    
        hence x
    in ( 
    LinearFunctionals X) by 
    DUALSP01:def 6;
    
      end;
    
      then (
    LinearFunctionals Y) 
    c= ( 
    LinearFunctionals X); 
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    DUALSP04:25
    
    
    
    
    
    LM10B: for X be 
    RealUnitarySpace holds (X 
    *' ) 
    = (( 
    RUSp2RNSp X) 
    *' ) 
    
    proof
    
      let X be
    RealUnitarySpace;
    
      set Y = (
    RUSp2RNSp X); 
    
      the
    carrier of (X 
    *' ) 
    = the 
    carrier of (Y 
    *' ) by 
    LM10A;
    
      hence (X
    *' ) 
    = (( 
    RUSp2RNSp X) 
    *' ); 
    
    end;
    
    theorem :: 
    
    DUALSP04:26
    
    for X be
    RealUnitarySpace holds ( 
    DualSp X) 
    = ( 
    DualSp ( 
    RUSp2RNSp X)) 
    
    proof
    
      let X be
    RealUnitarySpace;
    
      set Y = (
    RUSp2RNSp X); 
    
      set X1 = (
    BoundedLinearFunctionals X); 
    
      set Y1 = (
    BoundedLinearFunctionals Y); 
    
      
    
      
    
    A0: the 
    carrier of (X 
    *' ) 
    = the 
    carrier of (Y 
    *' ) by 
    LM10B;
    
      
    
      
    
    A2: the 
    ZeroF of ( 
    DualSp X) 
    = ( 
    0. (X 
    *' )) by 
    RSSPACE:def 10
    
      .= (
    0. (Y 
    *' )) by 
    LM10B
    
      .= the
    ZeroF of ( 
    DualSp Y) by 
    DUALSP01: 17,
    RSSPACE:def 10;
    
      
    
      
    
    A3: the 
    addF of ( 
    DualSp X) 
    = (the 
    addF of (X 
    *' ) 
    || X1) by 
    RSSPACE:def 8
    
      .= (the
    addF of (Y 
    *' ) 
    || Y1) by 
    LM6,
    A0
    
      .= the
    addF of ( 
    DualSp Y) by 
    DUALSP01: 17,
    RSSPACE:def 8;
    
      
    
      
    
    A4: the 
    Mult of ( 
    DualSp X) 
    = (the 
    Mult of (X 
    *' ) 
    |  
    [:
    REAL , X1:]) by 
    RSSPACE:def 9
    
      .= (the
    Mult of (Y 
    *' ) 
    |  
    [:
    REAL , Y1:]) by 
    LM6,
    A0
    
      .= the
    Mult of ( 
    DualSp Y) by 
    DUALSP01: 17,
    RSSPACE:def 9;
    
      the
    normF of ( 
    DualSp X) 
    = the 
    normF of ( 
    DualSp Y) by 
    LM9;
    
      hence (
    DualSp X) 
    = ( 
    DualSp ( 
    RUSp2RNSp X)) by 
    A2,
    A3,
    A4;
    
    end;
    
    begin
    
    theorem :: 
    
    DUALSP04:27
    
    for X be
    RealUnitarySpace, M,N be 
    Subspace of X st the 
    carrier of M 
    c= the 
    carrier of N holds the 
    carrier of ( 
    Ort_Comp N) 
    c= the 
    carrier of ( 
    Ort_Comp M) 
    
    proof
    
      let X be
    RealUnitarySpace;
    
      let M,N be
    Subspace of X; 
    
      assume
    
      
    
    A1: the 
    carrier of M 
    c= the 
    carrier of N; 
    
      let x be
    object;
    
      assume x
    in the 
    carrier of ( 
    Ort_Comp N); 
    
      then x
    in { v where v be 
    VECTOR of X : for w be 
    VECTOR of X st w 
    in N holds (w,v) 
    are_orthogonal } by 
    RUSUB_5:def 3;
    
      then
    
      
    
    A2: ex v1 be 
    VECTOR of X st x 
    = v1 & for w be 
    VECTOR of X st w 
    in N holds (w,v1) 
    are_orthogonal ; 
    
      then
    
      reconsider x as
    VECTOR of X; 
    
      for y be
    VECTOR of X st y 
    in M holds (y,x) 
    are_orthogonal  
    
      proof
    
        let y be
    VECTOR of X; 
    
        assume y
    in M; 
    
        then y
    in N by 
    A1;
    
        hence (y,x)
    are_orthogonal by 
    A2;
    
      end;
    
      then x
    in { v where v be 
    VECTOR of X : for w be 
    VECTOR of X st w 
    in M holds (w,v) 
    are_orthogonal }; 
    
      hence thesis by
    RUSUB_5:def 3;
    
    end;
    
    theorem :: 
    
    DUALSP04:28
    
    for X be
    RealUnitarySpace, M be 
    Subspace of X holds the 
    carrier of M 
    c= the 
    carrier of ( 
    Ort_Comp ( 
    Ort_Comp M)) 
    
    proof
    
      let X be
    RealUnitarySpace;
    
      let M be
    Subspace of X; 
    
      let x be
    object;
    
      assume
    
      
    
    AS: x 
    in the 
    carrier of M; 
    
      then
    
      
    
    A1: x 
    in M; 
    
      the
    carrier of M 
    c= the 
    carrier of X by 
    RUSUB_1:def 1;
    
      then
    
      reconsider x as
    VECTOR of X by 
    AS;
    
      for y be
    VECTOR of X st y 
    in ( 
    Ort_Comp M) holds (x,y) 
    are_orthogonal  
    
      proof
    
        let y be
    VECTOR of X; 
    
        assume y
    in ( 
    Ort_Comp M); 
    
        then y
    in { v where v be 
    VECTOR of X : for w be 
    VECTOR of X st w 
    in M holds (w,v) 
    are_orthogonal } by 
    RUSUB_5:def 3;
    
        then ex v be
    VECTOR of X st y 
    = v & for w be 
    VECTOR of X st w 
    in M holds (w,v) 
    are_orthogonal ; 
    
        hence thesis by
    A1;
    
      end;
    
      then x
    in { v where v be 
    VECTOR of X : for w be 
    VECTOR of X st w 
    in ( 
    Ort_Comp M) holds (w,v) 
    are_orthogonal }; 
    
      hence thesis by
    RUSUB_5:def 3;
    
    end;
    
    theorem :: 
    
    DUALSP04:29
    
    
    
    
    
    Lm814: for X be 
    RealUnitarySpace, M be 
    Subspace of X, x be 
    Point of X st x 
    in (the 
    carrier of M 
    /\ the 
    carrier of ( 
    Ort_Comp M)) holds x 
    = ( 
    0. X) 
    
    proof
    
      let X be
    RealUnitarySpace, M be 
    Subspace of X, x be 
    Point of X; 
    
      assume x
    in (the 
    carrier of M 
    /\ the 
    carrier of ( 
    Ort_Comp M)); 
    
      then
    
      
    
    A1: x 
    in M & x 
    in ( 
    Ort_Comp M) by 
    XBOOLE_0:def 4;
    
      then x
    in { v where v be 
    VECTOR of X : for w be 
    VECTOR of X st w 
    in M holds (w,v) 
    are_orthogonal } by 
    RUSUB_5:def 3;
    
      then
    
      consider v be
    VECTOR of X such that 
    
      
    
    A2: x 
    = v & for w be 
    VECTOR of X st w 
    in M holds (w,v) 
    are_orthogonal ; 
    
      (x,x)
    are_orthogonal by 
    A1,
    A2;
    
      hence thesis by
    BHSP_1:def 2;
    
    end;
    
    theorem :: 
    
    DUALSP04:30
    
    for X be
    RealUnitarySpace, M be 
    Subspace of X, N be non 
    empty  
    Subset of X st N 
    = the 
    carrier of ( 
    Ort_Comp M) holds N is 
    linearly-closed & N is 
    closed
    
    proof
    
      let X be
    RealUnitarySpace, M be 
    Subspace of X, N be non 
    empty  
    Subset of X; 
    
      assume
    
      
    
    AS1: N 
    = the 
    carrier of ( 
    Ort_Comp M); 
    
      hence N is
    linearly-closed by 
    RUSUB_1: 28;
    
      for s be
    sequence of X st ( 
    rng s) 
    c= N & s is 
    convergent holds ( 
    lim s) 
    in N 
    
      proof
    
        let s be
    sequence of X; 
    
        assume
    
        
    
    AS2: ( 
    rng s) 
    c= N & s is 
    convergent;
    
        
    
    A1: 
    
        now
    
          let i be
    Nat;
    
          (s
    . i) 
    in ( 
    rng s) by 
    FUNCT_2: 4,
    ORDINAL1:def 12;
    
          then (s
    . i) 
    in N by 
    AS2;
    
          then (s
    . i) 
    in { v where v be 
    VECTOR of X : for w be 
    VECTOR of X st w 
    in M holds (w,v) 
    are_orthogonal } by 
    AS1,
    RUSUB_5:def 3;
    
          then
    
          consider v be
    VECTOR of X such that 
    
          
    
    B1: v 
    = (s 
    . i) & for w be 
    VECTOR of X st w 
    in M holds (w,v) 
    are_orthogonal ; 
    
          thus for w be
    VECTOR of X st w 
    in M holds (w 
    .|. (s 
    . i)) 
    =  
    0 by 
    B1,
    BHSP_1:def 3;
    
        end;
    
        for w be
    VECTOR of X st w 
    in M holds (w 
    .|. ( 
    lim s)) 
    =  
    0  
    
        proof
    
          let w be
    VECTOR of X; 
    
          assume
    
          
    
    AS3: w 
    in M; 
    
          reconsider g = (w
    .|. ( 
    lim s)) as 
    Real;
    
          for p be
    Real st 
    0  
    < p holds ex m be 
    Nat st for n be 
    Nat st m 
    <= n holds 
    |.(((
    seq_const  
    0 ) 
    . n) 
    - (w 
    .|. ( 
    lim s))).| 
    < p 
    
          proof
    
            let p be
    Real;
    
            assume
    
            
    
    B0: 
    0  
    < p; 
    
            
    
            
    
    B1: 
    0  
    <=  
    ||.w.|| by
    BHSP_1: 28;
    
            reconsider r = (p
    / ( 
    ||.w.||
    + 1)) as 
    Real;
    
            
    
            
    
    B41: ( 
    ||.w.||
    +  
    0 ) 
    < ( 
    ||.w.||
    + 1) by 
    XREAL_1: 8;
    
            (r
    * ( 
    ||.w.||
    + 1)) 
    = p by 
    B1,
    XCMPLX_1: 87;
    
            then
    
            
    
    B5: 
    0  
    < r & (r 
    *  
    ||.w.||)
    < p by 
    B0,
    B1,
    B41,
    XREAL_1: 68;
    
            consider m be
    Nat such that 
    
            
    
    B6: for n be 
    Nat st m 
    <= n holds 
    ||.((s
    . n) 
    - ( 
    lim s)).|| 
    < r by 
    B1,
    B0,
    AS2,
    BHSP_2: 19;
    
            
    
            
    
    B7: for n be 
    Nat st m 
    <= n holds 
    |.(((
    seq_const  
    0 ) 
    . n) 
    - (w 
    .|. ( 
    lim s))).| 
    < p 
    
            proof
    
              let n be
    Nat;
    
              assume m
    <= n; 
    
              then
    
              
    
    C1: 
    ||.((s
    . n) 
    - ( 
    lim s)).|| 
    < r by 
    B6;
    
              
    
              
    
    C2: 
    |.((w
    .|. (s 
    . n)) 
    - (w 
    .|. ( 
    lim s))).| 
    =  
    |.(w
    .|. ((s 
    . n) 
    - ( 
    lim s))).| by 
    BHSP_1: 12;
    
              
    
              
    
    C3: 
    |.(w
    .|. ((s 
    . n) 
    - ( 
    lim s))).| 
    <= ( 
    ||.w.||
    *  
    ||.((s
    . n) 
    - ( 
    lim s)).||) by 
    BHSP_1: 29;
    
              (
    ||.w.||
    *  
    ||.((s
    . n) 
    - ( 
    lim s)).||) 
    <= ( 
    ||.w.||
    * r) by 
    B1,
    C1,
    XREAL_1: 64;
    
              then
    
              
    
    C41: 
    |.((w
    .|. (s 
    . n)) 
    - (w 
    .|. ( 
    lim s))).| 
    <= ( 
    ||.w.||
    * r) by 
    C2,
    C3,
    XXREAL_0: 2;
    
              (w
    .|. (s 
    . n)) 
    =  
    0 by 
    A1,
    AS3
    
              .= ((
    seq_const  
    0 ) 
    . n) by 
    SEQ_1: 57;
    
              hence thesis by
    C41,
    B5,
    XXREAL_0: 2;
    
            end;
    
            take m;
    
            thus thesis by
    B7;
    
          end;
    
          then (
    lim ( 
    seq_const  
    0 )) 
    = (w 
    .|. ( 
    lim s)) by 
    SEQ_2:def 7;
    
          then ((
    seq_const  
    0 ) 
    .  
    0 ) 
    = (w 
    .|. ( 
    lim s)) by 
    SEQ_4: 26;
    
          hence (w
    .|. ( 
    lim s)) 
    =  
    0 ; 
    
        end;
    
        then
    
        
    
    A3: for w be 
    VECTOR of X st w 
    in M holds (w,( 
    lim s)) 
    are_orthogonal ; 
    
        reconsider v = (
    lim s) as 
    VECTOR of X; 
    
        (
    lim s) 
    in { v where v be 
    VECTOR of X : for w be 
    VECTOR of X st w 
    in M holds (w,v) 
    are_orthogonal } by 
    A3;
    
        hence (
    lim s) 
    in N by 
    AS1,
    RUSUB_5:def 3;
    
      end;
    
      hence N is
    closed by 
    LM1;
    
    end;
    
    
    
    
    
    Lm88A: for X be 
    RealUnitarySpace, x,y be 
    Point of X holds (( 
    ||.(x
    + y).|| 
    *  
    ||.(x
    + y).||) 
    + ( 
    ||.(x
    - y).|| 
    *  
    ||.(x
    - y).||)) 
    = ((2 
    * ( 
    ||.x.||
    *  
    ||.x.||))
    + (2 
    * ( 
    ||.y.||
    *  
    ||.y.||)))
    
    proof
    
      let X be
    RealUnitarySpace, x,y be 
    Point of X; 
    
      (
    ||.(x
    + y).|| 
    ^2 ) 
    = ( 
    ||.(x
    + y).|| 
    *  
    ||.(x
    + y).||) & ( 
    ||.(x
    - y).|| 
    ^2 ) 
    = ( 
    ||.(x
    - y).|| 
    *  
    ||.(x
    - y).||) & ( 
    ||.x.||
    ^2 ) 
    = ( 
    ||.x.||
    *  
    ||.x.||) & (
    ||.y.||
    ^2 ) 
    = ( 
    ||.y.||
    *  
    ||.y.||) by
    SQUARE_1:def 1;
    
      hence thesis by
    RUSUB_5: 31;
    
    end;
    
    theorem :: 
    
    DUALSP04:31
    
    
    
    
    
    Lm88: for X be 
    RealHilbertSpace, M be 
    Subspace of X, N be 
    Subset of X, x be 
    Point of X, d be 
    Real st N 
    = the 
    carrier of M & N is 
    closed & (ex Y be non 
    empty  
    Subset of 
    REAL st Y 
    = { 
    ||.(x
    - y).|| where y be 
    Point of X : y 
    in M } & d 
    = ( 
    lower_bound Y) 
    >=  
    0 ) holds ex x0 be 
    Point of X st d 
    =  
    ||.(x
    - x0).|| & x0 
    in M 
    
    proof
    
      let X be
    RealHilbertSpace, M be 
    Subspace of X, N be 
    Subset of X, x be 
    Point of X, d be 
    Real;
    
      assume that
    
      
    
    A1: N 
    = the 
    carrier of M & N is 
    closed and 
    
      
    
    A2: ex Y be non 
    empty  
    Subset of 
    REAL st Y 
    = { 
    ||.(x
    - y).|| where y be 
    Point of X : y 
    in M } & d 
    = ( 
    lower_bound Y) 
    >=  
    0 ; 
    
      consider Y be non
    empty  
    Subset of 
    REAL such that 
    
      
    
    A3: Y 
    = { 
    ||.(x
    - y).|| where y be 
    Point of X : y 
    in M } & d 
    = ( 
    lower_bound Y) 
    >=  
    0 by 
    A2;
    
      reconsider r0 =
    0 as 
    Real;
    
      for r be
    ExtReal st r 
    in Y holds r0 
    <= r 
    
      proof
    
        let r be
    ExtReal;
    
        assume r
    in Y; 
    
        then ex y be
    Point of X st r 
    =  
    ||.(x
    - y).|| & y 
    in M by 
    A3;
    
        hence r0
    <= r by 
    BHSP_1: 28;
    
      end;
    
      then r0 is
    LowerBound of Y by 
    XXREAL_2:def 2;
    
      then
    
      
    
    A4: Y is 
    bounded_below;
    
      defpred
    
    P[
    Nat, 
    Real] means $2
    in Y & $2 
    < (d 
    + (1 
    / ($1 
    + 1))); 
    
      
    
      
    
    F1: for n be 
    Element of 
    NAT holds ex r be 
    Element of 
    REAL st 
    P[n, r]
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        reconsider n1 = n as
    Nat;
    
        consider r1 be
    Real such that 
    
        
    
    F11: r1 
    in Y & r1 
    < (d 
    + (1 
    / (n1 
    + 1))) by 
    A4,
    A3,
    SEQ_4:def 2;
    
        reconsider r = r1 as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        take r;
    
        thus thesis by
    F11;
    
      end;
    
      consider S be
    Function of 
    NAT , 
    REAL such that 
    
      
    
    B3: for n be 
    Element of 
    NAT holds 
    P[n, (S
    . n)] from 
    FUNCT_2:sch 3(
    F1);
    
      
    
      
    
    B4: for n be 
    Nat holds 
    |.((S
    . n) 
    - d).| 
    <= (1 
    / (n 
    + 1)) 
    
      proof
    
        let n be
    Nat;
    
        
    
        
    
    C11: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then (S
    . n) 
    in Y & (S 
    . n) 
    < (d 
    + (1 
    / (n 
    + 1))) by 
    B3;
    
        then
    
        
    
    C21: d 
    <= (S 
    . n) by 
    A4,
    A3,
    SEQ_4:def 2;
    
        ((S
    . n) 
    - d) 
    < ((d 
    + (1 
    / (n 
    + 1))) 
    - d) by 
    C11,
    B3,
    XREAL_1: 9;
    
        hence
    |.((S
    . n) 
    - d).| 
    <= (1 
    / (n 
    + 1)) by 
    C21,
    ABSVALUE:def 1,
    XREAL_1: 48;
    
      end;
    
      
    
      
    
    B5: for p be 
    Real st 
    0  
    < p holds ex n be 
    Nat st for m be 
    Nat st n 
    <= m holds 
    |.((S
    . m) 
    - d).| 
    < p 
    
      proof
    
        let p be
    Real;
    
        assume
    
        
    
    D0: 
    0  
    < p; 
    
        reconsider r = (1
    / p) as 
    Real;
    
        consider n be
    Nat such that 
    
        
    
    E1: r 
    < n by 
    SEQ_4: 3;
    
        (r
    * p) 
    = 1 by 
    D0,
    XCMPLX_1: 106;
    
        then
    
        
    
    E3: 1 
    < (n 
    * p) by 
    D0,
    E1,
    XREAL_1: 68;
    
        (n
    * p) 
    < ((n 
    + 1) 
    * p) by 
    D0,
    XREAL_1: 68,
    NAT_1: 16;
    
        then
    
        
    
    E4: 1 
    < ((n 
    + 1) 
    * p) by 
    E3,
    XXREAL_0: 2;
    
        
    
        
    
    D1: (1 
    / (n 
    + 1)) 
    < p by 
    E4,
    XREAL_1: 83;
    
        take n;
    
        let m be
    Nat;
    
        assume n
    <= m; 
    
        then
    
        
    
    D21: (n 
    + 1) 
    <= (m 
    + 1) by 
    XREAL_1: 6;
    
        ((m
    + 1) 
    " ) 
    = (1 
    / (m 
    + 1)) & ((n 
    + 1) 
    " ) 
    = (1 
    / (n 
    + 1)) by 
    XCMPLX_1: 215;
    
        then (1
    / (m 
    + 1)) 
    <= (1 
    / (n 
    + 1)) by 
    D21,
    XREAL_1: 85;
    
        then
    
        
    
    D3: (1 
    / (m 
    + 1)) 
    < p by 
    XXREAL_0: 2,
    D1;
    
        
    |.((S
    . m) 
    - d).| 
    <= (1 
    / (m 
    + 1)) by 
    B4;
    
        hence
    |.((S
    . m) 
    - d).| 
    < p by 
    D3,
    XXREAL_0: 2;
    
      end;
    
      then
    
      
    
    A5: S is 
    convergent;
    
      then
    
      
    
    A6: ( 
    lim S) 
    = d by 
    SEQ_2:def 7,
    B5;
    
      defpred
    
    P1[
    Nat, 
    Point of X] means $2 
    in M & (S 
    . $1) 
    =  
    ||.(x
    - $2).||; 
    
      
    
      
    
    F2: for n be 
    Element of 
    NAT holds ex v be 
    Point of X st 
    P1[n, v]
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        (S
    . n) 
    in Y & (S 
    . n) 
    < (d 
    + (1 
    / (n 
    + 1))) by 
    B3;
    
        then
    
        consider y be
    Point of X such that 
    
        
    
    F21: (S 
    . n) 
    =  
    ||.(x
    - y).|| & y 
    in M by 
    A3;
    
        take y;
    
        thus thesis by
    F21;
    
      end;
    
      consider z be
    Function of 
    NAT , the 
    carrier of X such that 
    
      
    
    A7: for n be 
    Element of 
    NAT holds 
    P1[n, (z
    . n)] from 
    FUNCT_2:sch 3(
    F2);
    
      for n be
    Nat holds (z 
    . n) 
    in M & (S 
    . n) 
    =  
    ||.(x
    - (z 
    . n)).|| 
    
      proof
    
        let n be
    Nat;
    
        reconsider n1 = n as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        (z
    . n1) 
    in M & (S 
    . n1) 
    =  
    ||.(x
    - (z 
    . n1)).|| by 
    A7;
    
        hence thesis;
    
      end;
    
      then
    
      consider z be
    sequence of X such that 
    
      
    
    A8: for n be 
    Nat holds (z 
    . n) 
    in M & (S 
    . n) 
    =  
    ||.(x
    - (z 
    . n)).||; 
    
      reconsider S1 = (S
    (#) S), S2 = (S 
    (#) S) as 
    Real_Sequence;
    
      reconsider SA = (2
    (#) S1), SB = (2 
    (#) S2) as 
    Real_Sequence;
    
      
    
      
    
    C3: ( 
    lim S1) 
    = (d 
    * d) by 
    A6,
    A5,
    SEQ_2: 15;
    
      
    
      
    
    C4: ( 
    lim S2) 
    = (d 
    * d) by 
    A6,
    A5,
    SEQ_2: 15;
    
      
    
      
    
    C5: ( 
    lim SA) 
    = (2 
    * (d 
    * d)) by 
    C3,
    A5,
    SEQ_2: 8;
    
      
    
      
    
    C6: ( 
    lim SB) 
    = (2 
    * (d 
    * d)) by 
    C4,
    A5,
    SEQ_2: 8;
    
      
    
      
    
    A12: for e be 
    Real st 
    0  
    < e holds ex k be 
    Nat st for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    |.(((SA
    . m) 
    + (SB 
    . n)) 
    - (4 
    * (d 
    * d))).| 
    < e 
    
      proof
    
        let e be
    Real;
    
        assume
    
        
    
    B01: 
    0  
    < e; 
    
        then
    
        consider k1 be
    Nat such that 
    
        
    
    B1: for n be 
    Nat st n 
    >= k1 holds 
    |.((SA
    . n) 
    - (2 
    * (d 
    * d))).| 
    < (e 
    / 2) by 
    A5,
    C5,
    SEQ_2:def 7;
    
        consider k2 be
    Nat such that 
    
        
    
    B2: for m be 
    Nat st m 
    >= k2 holds 
    |.((SB
    . m) 
    - (2 
    * (d 
    * d))).| 
    < (e 
    / 2) by 
    B01,
    A5,
    C6,
    SEQ_2:def 7;
    
        (
    max (k1,k2)) is 
    natural;
    
        then
    
        reconsider k = (
    max (k1,k2)) as 
    Nat;
    
        
    
        
    
    B3: for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    |.(((SA
    . m) 
    + (SB 
    . n)) 
    - (4 
    * (d 
    * d))).| 
    < e 
    
        proof
    
          let n,m be
    Nat;
    
          assume
    
          
    
    AS: n 
    >= k & m 
    >= k; 
    
          k
    >= k1 & k 
    >= k2 by 
    XXREAL_0: 25;
    
          then
    
          
    
    C0: n 
    >= k1 & m 
    >= k2 by 
    AS,
    XXREAL_0: 2;
    
          then
    
          
    
    C1: 
    |.((SA
    . n) 
    - (2 
    * (d 
    * d))).| 
    < (e 
    / 2) by 
    B1;
    
          
    
          
    
    C2: 
    |.((SB
    . m) 
    - (2 
    * (d 
    * d))).| 
    < (e 
    / 2) by 
    C0,
    B2;
    
          
    
          
    
    C4: 
    |.(((SA
    . n) 
    - (2 
    * (d 
    * d))) 
    + ((SB 
    . m) 
    - (2 
    * (d 
    * d)))).| 
    <= ( 
    |.((SA
    . n) 
    - (2 
    * (d 
    * d))).| 
    +  
    |.((SB
    . m) 
    - (2 
    * (d 
    * d))).|) by 
    COMPLEX1: 56;
    
          (
    |.((SA
    . n) 
    - (2 
    * (d 
    * d))).| 
    +  
    |.((SB
    . m) 
    - (2 
    * (d 
    * d))).|) 
    < ((e 
    / 2) 
    + (e 
    / 2)) by 
    C1,
    C2,
    XREAL_1: 8;
    
          hence thesis by
    C4,
    XXREAL_0: 2;
    
        end;
    
        take k;
    
        thus thesis by
    B3;
    
      end;
    
      for p be
    Real st p 
    >  
    0 holds ex k be 
    Nat st for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((z
    . n) 
    - (z 
    . m)).|| 
    < p 
    
      proof
    
        let p be
    Real;
    
        assume
    
        
    
    AS1: p 
    >  
    0 ; 
    
        then
    
        consider k be
    Nat such that 
    
        
    
    D1: for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    |.(((SA
    . m) 
    + (SB 
    . n)) 
    - (4 
    * (d 
    * d))).| 
    < (p 
    * p) by 
    A12;
    
        
    
        
    
    D2: for n,m be 
    Nat st n 
    >= k & m 
    >= k holds 
    ||.((z
    . n) 
    - (z 
    . m)).|| 
    < p 
    
        proof
    
          let n,m be
    Nat;
    
          assume n
    >= k & m 
    >= k; 
    
          then
    
          
    
    B0: 
    |.(((SA
    . m) 
    + (SB 
    . n)) 
    - (4 
    * (d 
    * d))).| 
    < (p 
    * p) by 
    D1;
    
          set C =
    ||.(x
    - (z 
    . n)).||; 
    
          set D =
    ||.(x
    - (z 
    . m)).||; 
    
          
    
          
    
    B2: ((x 
    - (z 
    . n)) 
    + (x 
    - (z 
    . m))) 
    = (((( 
    - (z 
    . n)) 
    + x) 
    + x) 
    + ( 
    - (z 
    . m))) by 
    RLVECT_1:def 3
    
          .= (((x
    + x) 
    + ( 
    - (z 
    . n))) 
    + ( 
    - (z 
    . m))) by 
    RLVECT_1:def 3
    
          .= ((x
    + x) 
    + (( 
    - (z 
    . n)) 
    + ( 
    - (z 
    . m)))) by 
    RLVECT_1:def 3
    
          .= ((x
    + x) 
    + ( 
    - ((z 
    . n) 
    + (z 
    . m)))) by 
    RLVECT_1: 31
    
          .= (((1
    * x) 
    + x) 
    + ( 
    - ((z 
    . n) 
    + (z 
    . m)))) by 
    RLVECT_1:def 8
    
          .= (((1
    * x) 
    + (1 
    * x)) 
    + ( 
    - ((z 
    . n) 
    + (z 
    . m)))) by 
    RLVECT_1:def 8
    
          .= (((1
    + 1) 
    * x) 
    + ( 
    - ((z 
    . n) 
    + (z 
    . m)))) by 
    RLVECT_1:def 6
    
          .= ((2
    * x) 
    - ((z 
    . n) 
    + (z 
    . m))); 
    
          
    
          
    
    B3: ((x 
    - (z 
    . n)) 
    - (x 
    - (z 
    . m))) 
    = ((x 
    + ( 
    - (z 
    . n))) 
    + ((z 
    . m) 
    + ( 
    - x))) by 
    RLVECT_1: 33
    
          .= ((
    - x) 
    + ((x 
    + ( 
    - (z 
    . n))) 
    + (z 
    . m))) by 
    RLVECT_1:def 3
    
          .= ((
    - x) 
    + (x 
    + (( 
    - (z 
    . n)) 
    + (z 
    . m)))) by 
    RLVECT_1:def 3
    
          .= (((
    - x) 
    + x) 
    + (( 
    - (z 
    . n)) 
    + (z 
    . m))) by 
    RLVECT_1:def 3
    
          .= ((
    0. X) 
    + (( 
    - (z 
    . n)) 
    + (z 
    . m))) by 
    RLVECT_1: 5
    
          .= ((z
    . m) 
    - (z 
    . n)); 
    
          set E =
    ||.((2
    * x) 
    - ((z 
    . n) 
    + (z 
    . m))).||; 
    
          set F =
    ||.((z
    . m) 
    - (z 
    . n)).||; 
    
          
    
          
    
    B6: (F 
    * F) 
    = (((E 
    * E) 
    + (F 
    * F)) 
    + ( 
    - (E 
    * E))) 
    
          .= (((2
    * (C 
    * C)) 
    + (2 
    * (D 
    * D))) 
    + ( 
    - (E 
    * E))) by 
    Lm88A,
    B2,
    B3;
    
          ((2
    * x) 
    - ((z 
    . n) 
    + (z 
    . m))) 
    = ((2 
    * x) 
    + (( 
    - 1) 
    * ((z 
    . n) 
    + (z 
    . m)))) by 
    RLVECT_1: 16
    
          .= ((2
    * x) 
    + ((2 
    * (1 
    / 2)) 
    * ( 
    - ((z 
    . n) 
    + (z 
    . m))))) by 
    RLVECT_1: 24
    
          .= ((2
    * x) 
    + (2 
    * ((1 
    / 2) 
    * ( 
    - ((z 
    . n) 
    + (z 
    . m)))))) by 
    RLVECT_1:def 7
    
          .= (2
    * (x 
    + ((1 
    / 2) 
    * ( 
    - ((z 
    . n) 
    + (z 
    . m)))))) by 
    RLVECT_1:def 5
    
          .= (2
    * (x 
    - ((1 
    / 2) 
    * ((z 
    . n) 
    + (z 
    . m))))) by 
    RLVECT_1: 25;
    
          
    
          then
    
          
    
    B7: 
    ||.((2
    * x) 
    - ((z 
    . n) 
    + (z 
    . m))).|| 
    = ( 
    |.2.|
    *  
    ||.(x
    - ((1 
    / 2) 
    * ((z 
    . n) 
    + (z 
    . m)))).||) by 
    BHSP_1: 27
    
          .= (2
    *  
    ||.(x
    - ((1 
    / 2) 
    * ((z 
    . n) 
    + (z 
    . m)))).||) by 
    ABSVALUE:def 1;
    
          reconsider znm = ((z
    . n) 
    + (z 
    . m)) as 
    Point of X; 
    
          reconsider p0 =
    ||.(x
    - ((1 
    / 2) 
    * ((z 
    . n) 
    + (z 
    . m)))).|| as 
    Real;
    
          (z
    . n) 
    in M & (z 
    . m) 
    in M by 
    A8;
    
          then znm
    in M by 
    RUSUB_1: 14;
    
          then ((1
    / 2) 
    * znm) 
    in M by 
    RUSUB_1: 15;
    
          then p0
    in Y by 
    A3;
    
          then d
    <= p0 by 
    A3,
    A4,
    SEQ_4:def 2;
    
          then (2
    * d) 
    <=  
    ||.((2
    * x) 
    - ((z 
    . n) 
    + (z 
    . m))).|| by 
    B7,
    XREAL_1: 64;
    
          then ((2
    * d) 
    * (2 
    * d)) 
    <= ( 
    ||.((2
    * x) 
    - ((z 
    . n) 
    + (z 
    . m))).|| 
    *  
    ||.((2
    * x) 
    - ((z 
    . n) 
    + (z 
    . m))).||) by 
    A3,
    XREAL_1: 66;
    
          then (
    - (E 
    * E)) 
    <= ( 
    - (4 
    * (d 
    * d))) by 
    XREAL_1: 24;
    
          then
    
          
    
    B81: (F 
    * F) 
    <= (((2 
    * (C 
    * C)) 
    + (2 
    * (D 
    * D))) 
    + ( 
    - (4 
    * (d 
    * d)))) by 
    B6,
    XREAL_1: 6;
    
          
    
          
    
    E2: (SA 
    . n) 
    = (2 
    * (S1 
    . n)) by 
    SEQ_1: 9
    
          .= (2
    * ((S 
    . n) 
    * (S 
    . n))) by 
    SEQ_1: 8;
    
          
    
          
    
    E3: (SB 
    . m) 
    = (2 
    * (S2 
    . m)) by 
    SEQ_1: 9
    
          .= (2
    * ((S 
    . m) 
    * (S 
    . m))) by 
    SEQ_1: 8;
    
          
    
          
    
    B91: C 
    = (S 
    . n) & D 
    = (S 
    . m) by 
    A8;
    
          (((SA
    . n) 
    + (SB 
    . m)) 
    - (4 
    * (d 
    * d))) 
    <=  
    |.(((SA
    . n) 
    + (SB 
    . m)) 
    - (4 
    * (d 
    * d))).| by 
    ABSVALUE: 4;
    
          then (F
    * F) 
    <=  
    |.(((SA
    . n) 
    + (SB 
    . m)) 
    - (4 
    * (d 
    * d))).| by 
    B91,
    B81,
    E2,
    E3,
    XXREAL_0: 2;
    
          then (F
    * F) 
    < (p 
    * p) by 
    B0,
    XXREAL_0: 2;
    
          then (F
    ^2 ) 
    < (p 
    * p) by 
    SQUARE_1:def 1;
    
          then
    
          
    
    B10: (F 
    ^2 ) 
    < (p 
    ^2 ) by 
    SQUARE_1:def 1;
    
          
    0  
    <= (F 
    * F) by 
    XREAL_1: 63;
    
          then
    0  
    <= (F 
    ^2 ) by 
    SQUARE_1:def 1;
    
          then
    
          
    
    B11: ( 
    sqrt (F 
    ^2 )) 
    < ( 
    sqrt (p 
    ^2 )) by 
    B10,
    SQUARE_1: 27;
    
          
    
          
    
    B12: F 
    < ( 
    sqrt (p 
    ^2 )) by 
    B11,
    SQUARE_1: 22,
    BHSP_1: 28;
    
          
    ||.((z
    . n) 
    - (z 
    . m)).|| 
    =  
    ||.(
    - ((z 
    . m) 
    - (z 
    . n))).|| by 
    RLVECT_1: 33
    
          .= F by
    BHSP_1: 31;
    
          hence thesis by
    B12,
    SQUARE_1: 22,
    AS1;
    
        end;
    
        take k;
    
        thus thesis by
    D2;
    
      end;
    
      then
    
      
    
    A13: z is 
    convergent by 
    BHSP_3:def 4,
    BHSP_3: 2;
    
      then
    
      consider x0 be
    Point of X such that 
    
      
    
    A14: for r be 
    Real st r 
    >  
    0 holds ex m be 
    Nat st for n be 
    Nat st n 
    >= m holds 
    ||.((z
    . n) 
    - x0).|| 
    < r by 
    BHSP_2: 9;
    
      (
    lim z) 
    = x0 by 
    A13,
    A14,
    BHSP_2: 19;
    
      
    
      then
    
      
    
    A16: ( 
    lim  
    ||.(z
    - x).||) 
    =  
    ||.(x0
    - x).|| by 
    A13,
    BHSP_2: 34
    
      .=
    ||.(
    - (x0 
    - x)).|| by 
    BHSP_1: 31
    
      .=
    ||.(x
    - x0).|| by 
    RLVECT_1: 33;
    
      for y be
    object st y 
    in ( 
    rng z) holds y 
    in N 
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    rng z); 
    
        then ex n be
    object st n 
    in  
    NAT & (z 
    . n) 
    = y by 
    FUNCT_2: 11;
    
        then y
    in M by 
    A8;
    
        hence thesis by
    A1;
    
      end;
    
      then (
    rng z) 
    c= N; 
    
      then
    
      
    
    BX: ( 
    lim z) 
    in N by 
    A1,
    A13,
    LM1;
    
      ex k0 be
    Nat st for n be 
    Nat st k0 
    <= n holds (S 
    . n) 
    = ( 
    ||.(z
    - x).|| 
    . n) 
    
      proof
    
        set k0 = the
    Nat;
    
        
    
        
    
    B1: for n be 
    Nat st k0 
    <= n holds (S 
    . n) 
    = ( 
    ||.(z
    - x).|| 
    . n) 
    
        proof
    
          let n be
    Nat;
    
          assume k0
    <= n; 
    
          
    
          thus (S
    . n) 
    =  
    ||.(x
    - (z 
    . n)).|| by 
    A8
    
          .=
    ||.(
    - ((z 
    . n) 
    - x)).|| by 
    RLVECT_1: 33
    
          .=
    ||.((z
    . n) 
    + ( 
    - x)).|| by 
    BHSP_1: 31
    
          .=
    ||.((z
    + ( 
    - x)) 
    . n).|| by 
    BHSP_1:def 6
    
          .=
    ||.((z
    - x) 
    . n).|| by 
    BHSP_1: 56
    
          .= (
    ||.(z
    - x).|| 
    . n) by 
    BHSP_2:def 3;
    
        end;
    
        take k0;
    
        thus thesis by
    B1;
    
      end;
    
      then
    
      
    
    BY: ( 
    lim S) 
    = ( 
    lim  
    ||.(z
    - x).||) by 
    A5,
    SEQ_4: 19;
    
      take x0;
    
      thus thesis by
    BX,
    A1,
    A13,
    A14,
    BHSP_2: 19,
    BY,
    SEQ_2:def 7,
    B5,
    A16,
    A5;
    
    end;
    
    theorem :: 
    
    DUALSP04:32
    
    
    
    
    
    Lm87A: for X be 
    RealHilbertSpace, M be 
    Subspace of X, x,x0 be 
    Point of X, d be 
    Real st x0 
    in M & (ex Y be non 
    empty  
    Subset of 
    REAL st Y 
    = { 
    ||.(x
    - y).|| where y be 
    Point of X : y 
    in M } & d 
    = ( 
    lower_bound Y) 
    >=  
    0 ) holds d 
    =  
    ||.(x
    - x0).|| iff for w be 
    Point of X st w 
    in M holds (w,(x 
    - x0)) 
    are_orthogonal  
    
    proof
    
      let X be
    RealHilbertSpace, M be 
    Subspace of X, x,x0 be 
    Point of X, d be 
    Real;
    
      assume that
    
      
    
    A2: x0 
    in M and 
    
      
    
    A3: ex Y be non 
    empty  
    Subset of 
    REAL st Y 
    = { 
    ||.(x
    - y).|| where y be 
    Point of X : y 
    in M } & d 
    = ( 
    lower_bound Y) 
    >=  
    0 ; 
    
      consider Y be non
    empty  
    Subset of 
    REAL such that 
    
      
    
    A4: Y 
    = { 
    ||.(x
    - y).|| where y be 
    Point of X : y 
    in M } & d 
    = ( 
    lower_bound Y) 
    >=  
    0 by 
    A3;
    
      reconsider r0 =
    0 as 
    Real;
    
      for r be
    ExtReal st r 
    in Y holds r0 
    <= r 
    
      proof
    
        let r be
    ExtReal;
    
        assume r
    in Y; 
    
        then ex y be
    Point of X st r 
    =  
    ||.(x
    - y).|| & y 
    in M by 
    A4;
    
        hence r0
    <= r by 
    BHSP_1: 28;
    
      end;
    
      then r0 is
    LowerBound of Y by 
    XXREAL_2:def 2;
    
      then
    
      
    
    A51: Y is 
    bounded_below;
    
      
    
      
    
    A6: for y0 be 
    Point of X st y0 
    in M holds d 
    <=  
    ||.(x
    - y0).|| 
    
      proof
    
        let y0 be
    Point of X; 
    
        assume y0
    in M; 
    
        then
    ||.(x
    - y0).|| 
    in Y by 
    A4;
    
        hence thesis by
    A51,
    A4,
    SEQ_4:def 2;
    
      end;
    
      hereby
    
        assume
    
        
    
    AS1: d 
    =  
    ||.(x
    - x0).||; 
    
        assume not (for w be
    Point of X st w 
    in M holds (w,(x 
    - x0)) 
    are_orthogonal ); 
    
        then
    
        consider w be
    Point of X such that 
    
        
    
    B1: w 
    in M & (w 
    .|. (x 
    - x0)) 
    <>  
    0 ; 
    
        set e = (w
    .|. (x 
    - x0)); 
    
        set r = (e
    / ( 
    ||.w.||
    ^2 )); 
    
        set s = (
    ||.w.||
    ^2 ); 
    
        reconsider w0 = (x0
    + (r 
    * w)) as 
    Point of X; 
    
        
    
        
    
    B21: (r 
    * w) 
    in M by 
    B1,
    RUSUB_1: 15;
    
        per cases ;
    
          suppose
    
          
    
    C11: s 
    =  
    0 ; 
    
          
    ||.w.||
    =  
    0 by 
    C11,
    SQUARE_1: 17,
    SQUARE_1: 22,
    BHSP_1: 28;
    
          then w
    = ( 
    0. X) by 
    BHSP_1: 26;
    
          hence contradiction by
    B1,
    BHSP_1: 14;
    
        end;
    
          suppose
    
          
    
    CS2: s 
    <>  
    0 ; 
    
          
    
          
    
    C2: ( 
    ||.(x
    - w0).|| 
    ^2 ) 
    = ( 
    ||.((x
    - x0) 
    - (r 
    * w)).|| 
    ^2 ) by 
    RLVECT_1: 27
    
          .= (((
    ||.(x
    - x0).|| 
    ^2 ) 
    - (2 
    * ((x 
    - x0) 
    .|. (r 
    * w)))) 
    + ( 
    ||.(r
    * w).|| 
    ^2 )) by 
    RUSUB_5: 29;
    
          
    
          
    
    C3: ((x 
    - x0) 
    .|. (r 
    * w)) 
    = ((e 
    / s) 
    * e) by 
    BHSP_1: 3
    
          .= ((e
    * e) 
    / s) by 
    XCMPLX_1: 74
    
          .= ((e
    ^2 ) 
    / s) by 
    SQUARE_1:def 1;
    
          
    
          
    
    C4: ( 
    ||.(r
    * w).|| 
    ^2 ) 
    = (( 
    |.r.|
    *  
    ||.w.||)
    ^2 ) by 
    BHSP_1: 27
    
          .= ((
    |.r.|
    ^2 ) 
    * s) by 
    SQUARE_1: 9
    
          .= (((e
    / s) 
    ^2 ) 
    * s) by 
    COMPLEX1: 75
    
          .= (((e
    * (1 
    / s)) 
    ^2 ) 
    * s) by 
    XCMPLX_1: 99
    
          .= (((e
    ^2 ) 
    * ((1 
    / s) 
    ^2 )) 
    * s) by 
    SQUARE_1: 9
    
          .= ((e
    ^2 ) 
    * (((1 
    / s) 
    ^2 ) 
    * s)) 
    
          .= ((e
    ^2 ) 
    * (((1 
    / s) 
    * (1 
    / s)) 
    * s)) by 
    SQUARE_1:def 1
    
          .= ((e
    ^2 ) 
    * ((1 
    / s) 
    * ((1 
    / s) 
    * s))) 
    
          .= ((e
    ^2 ) 
    * ((1 
    / s) 
    * 1)) by 
    CS2,
    XCMPLX_1: 106
    
          .= ((e
    ^2 ) 
    / s) by 
    XCMPLX_1: 99;
    
          
    
          
    
    C5: ( 
    ||.(x
    - w0).|| 
    ^2 ) 
    = (( 
    ||.(x
    - x0).|| 
    ^2 ) 
    - ((e 
    ^2 ) 
    / s)) by 
    C3,
    C4,
    C2;
    
          
    
          
    
    C6: 
    0  
    < (e 
    ^2 ) by 
    B1,
    SQUARE_1: 12;
    
          
    0  
    <=  
    ||.w.|| by
    BHSP_1: 28;
    
          then
    0  
    <= ( 
    ||.w.||
    *  
    ||.w.||);
    
          then
    0  
    < s by 
    CS2,
    SQUARE_1:def 1;
    
          then
    
          
    
    C7: ( 
    ||.(x
    - w0).|| 
    ^2 ) 
    < ( 
    ||.(x
    - x0).|| 
    ^2 ) by 
    C5,
    XREAL_1: 44,
    C6;
    
          
    0  
    <= ( 
    ||.(x
    - w0).|| 
    *  
    ||.(x
    - w0).||) by 
    XREAL_1: 63;
    
          then
    0  
    <= ( 
    ||.(x
    - w0).|| 
    ^2 ) by 
    SQUARE_1:def 1;
    
          then (
    sqrt ( 
    ||.(x
    - w0).|| 
    ^2 )) 
    < ( 
    sqrt ( 
    ||.(x
    - x0).|| 
    ^2 )) by 
    C7,
    SQUARE_1: 27;
    
          then
    
          
    
    C91: 
    ||.(x
    - w0).|| 
    < ( 
    sqrt ( 
    ||.(x
    - x0).|| 
    ^2 )) by 
    BHSP_1: 28,
    SQUARE_1: 22;
    
          d
    <=  
    ||.(x
    - w0).|| by 
    A6,
    B21,
    A2,
    RUSUB_1: 14;
    
          hence contradiction by
    C91,
    AS1,
    BHSP_1: 28,
    SQUARE_1: 22;
    
        end;
    
      end;
    
      assume
    
      
    
    AS2: for w be 
    Point of X st w 
    in M holds (w,(x 
    - x0)) 
    are_orthogonal ; 
    
      
    
      
    
    B1: for y be 
    Point of X st y 
    in M holds 
    ||.(x
    - x0).|| 
    <=  
    ||.(x
    - y).|| 
    
      proof
    
        let y be
    Point of X; 
    
        assume y
    in M; 
    
        then
    
        
    
    C1: ((x0 
    - y),(x 
    - x0)) 
    are_orthogonal by 
    AS2,
    A2,
    RUSUB_1: 17;
    
        (x
    - y) 
    = ((x 
    - y) 
    + ( 
    0. X)) 
    
        .= ((x
    + ( 
    - y)) 
    + (( 
    - x0) 
    + x0)) by 
    RLVECT_1: 5
    
        .= (((x
    + ( 
    - y)) 
    + ( 
    - x0)) 
    + x0) by 
    RLVECT_1:def 3
    
        .= (((x
    + ( 
    - x0)) 
    + ( 
    - y)) 
    + x0) by 
    RLVECT_1:def 3
    
        .= ((x
    - x0) 
    + (x0 
    - y)) by 
    RLVECT_1:def 3;
    
        then (
    ||.(x
    - y).|| 
    ^2 ) 
    = (( 
    ||.(x
    - x0).|| 
    ^2 ) 
    + ( 
    ||.(x0
    - y).|| 
    ^2 )) by 
    C1,
    RUSUB_5: 30;
    
        then
    
        
    
    C2: (( 
    ||.(x
    - y).|| 
    ^2 ) 
    - ( 
    ||.(x0
    - y).|| 
    ^2 )) 
    = ( 
    ||.(x
    - x0).|| 
    ^2 ); 
    
        
    0  
    <= ( 
    ||.(x0
    - y).|| 
    *  
    ||.(x0
    - y).||) by 
    XREAL_1: 63;
    
        then
    
        
    
    C31: 
    0  
    <= ( 
    ||.(x0
    - y).|| 
    ^2 ) by 
    SQUARE_1:def 1;
    
        
    0  
    <= ( 
    ||.(x
    - x0).|| 
    *  
    ||.(x
    - x0).||) by 
    XREAL_1: 63;
    
        then
    0  
    <= ( 
    ||.(x
    - x0).|| 
    ^2 ) by 
    SQUARE_1:def 1;
    
        then (
    sqrt ( 
    ||.(x
    - x0).|| 
    ^2 )) 
    <= ( 
    sqrt ( 
    ||.(x
    - y).|| 
    ^2 )) by 
    C31,
    C2,
    XREAL_1: 43,
    SQUARE_1: 26;
    
        then
    ||.(x
    - x0).|| 
    <= ( 
    sqrt ( 
    ||.(x
    - y).|| 
    ^2 )) by 
    BHSP_1: 28,
    SQUARE_1: 22;
    
        hence
    ||.(x
    - x0).|| 
    <=  
    ||.(x
    - y).|| by 
    BHSP_1: 28,
    SQUARE_1: 22;
    
      end;
    
      for s be
    Real st s 
    in Y holds 
    ||.(x
    - x0).|| 
    <= s 
    
      proof
    
        let s be
    Real;
    
        assume s
    in Y; 
    
        then
    
        consider y0 be
    Point of X such that 
    
        
    
    C1: s 
    =  
    ||.(x
    - y0).|| & y0 
    in M by 
    A4;
    
        thus
    ||.(x
    - x0).|| 
    <= s by 
    B1,
    C1;
    
      end;
    
      then
    
      
    
    B2: 
    ||.(x
    - x0).|| 
    <= d by 
    A4,
    SEQ_4: 43;
    
      d
    <=  
    ||.(x
    - x0).|| by 
    A2,
    A6;
    
      hence d
    =  
    ||.(x
    - x0).|| by 
    B2,
    XXREAL_0: 1;
    
    end;
    
    theorem :: 
    
    DUALSP04:33
    
    
    
    
    
    Th87A: for X be 
    RealHilbertSpace, M be 
    Subspace of X, N be 
    Subset of X, x be 
    Point of X st N 
    = the 
    carrier of M & N is 
    closed holds ex y,z be 
    Point of X st y 
    in M & z 
    in ( 
    Ort_Comp M) & x 
    = (y 
    + z) 
    
    proof
    
      let X be
    RealHilbertSpace, M be 
    Subspace of X, N be 
    Subset of X, x be 
    Point of X; 
    
      assume
    
      
    
    AS: N 
    = the 
    carrier of M & N is 
    closed;
    
      set Y = {
    ||.(x
    - y).|| where y be 
    Point of X : y 
    in M }; 
    
      Y
    c=  
    REAL  
    
      proof
    
        let z be
    object;
    
        assume z
    in Y; 
    
        then
    
        consider y be
    Point of X such that 
    
        
    
    B1: z 
    =  
    ||.(x
    - y).|| & y 
    in M; 
    
        thus z
    in  
    REAL by 
    B1,
    XREAL_0:def 1;
    
      end;
    
      then
    
      reconsider Y as
    Subset of 
    REAL ; 
    
      (
    0. X) 
    in M by 
    RUSUB_1: 11;
    
      then
    ||.(x
    - ( 
    0. X)).|| 
    in Y; 
    
      then
    
      reconsider Y as non
    empty  
    Subset of 
    REAL ; 
    
      set d = (
    lower_bound Y); 
    
      
    
      
    
    A11: for r be 
    Real st r 
    in Y holds 
    0  
    <= r 
    
      proof
    
        let r be
    Real;
    
        assume r
    in Y; 
    
        then
    
        consider y be
    Point of X such that 
    
        
    
    B2: r 
    =  
    ||.(x
    - y).|| & y 
    in M; 
    
        thus
    0  
    <= r by 
    B2,
    BHSP_1: 28;
    
      end;
    
      then
    
      
    
    A1: 
    0  
    <= d by 
    SEQ_4: 43;
    
      consider x0 be
    Point of X such that 
    
      
    
    A2: d 
    =  
    ||.(x
    - x0).|| & x0 
    in M by 
    AS,
    Lm88,
    A11,
    SEQ_4: 43;
    
      reconsider y = x0 as
    Point of X; 
    
      reconsider z = (x
    - x0) as 
    Point of X; 
    
      for w be
    Point of X st w 
    in M holds (w,(x 
    - x0)) 
    are_orthogonal by 
    A1,
    A2,
    Lm87A;
    
      then
    
      
    
    B21: (x 
    - x0) 
    in { v where v be 
    VECTOR of X : for w be 
    Point of X st w 
    in M holds (w,v) 
    are_orthogonal }; 
    
      
    
      
    
    B3: (y 
    + z) 
    = ((x0 
    + ( 
    - x0)) 
    + x) by 
    RLVECT_1:def 3
    
      .= (x
    + ( 
    0. X)) by 
    RLVECT_1: 5
    
      .= x;
    
      take y, z;
    
      thus thesis by
    A2,
    B21,
    RUSUB_5:def 3,
    B3;
    
    end;
    
    theorem :: 
    
    DUALSP04:34
    
    for X be
    RealUnitarySpace, M be 
    Subspace of X, x be 
    Point of X, y1,y2,z1,z2 be 
    Point of X st y1 
    in M & y2 
    in M & z1 
    in ( 
    Ort_Comp M) & z2 
    in ( 
    Ort_Comp M) & x 
    = (y1 
    + z1) & x 
    = (y2 
    + z2) holds y1 
    = y2 & z1 
    = z2 
    
    proof
    
      let X be
    RealUnitarySpace, M be 
    Subspace of X, x be 
    Point of X; 
    
      let y1,y2,z1,z2 be
    Point of X; 
    
      assume that
    
      
    
    A1: y1 
    in M & y2 
    in M & z1 
    in ( 
    Ort_Comp M) & z2 
    in ( 
    Ort_Comp M) and 
    
      
    
    A2: x 
    = (y1 
    + z1) & x 
    = (y2 
    + z2); 
    
      (y1
    + (z1 
    + ( 
    - y2))) 
    = ((y2 
    + z2) 
    + ( 
    - y2)) by 
    RLVECT_1:def 3,
    A2;
    
      then (y1
    + (( 
    - y2) 
    + z1)) 
    = (y2 
    + (( 
    - y2) 
    + z2)) by 
    RLVECT_1:def 3;
    
      then ((y1
    + ( 
    - y2)) 
    + z1) 
    = (y2 
    + (( 
    - y2) 
    + z2)) by 
    RLVECT_1:def 3;
    
      then ((y1
    - y2) 
    + z1) 
    = ((y2 
    + ( 
    - y2)) 
    + z2) by 
    RLVECT_1:def 3;
    
      then ((y1
    - y2) 
    + z1) 
    = (z2 
    + ( 
    0. X)) by 
    RLVECT_1:def 10;
    
      then ((y1
    - y2) 
    + (z1 
    + ( 
    - z1))) 
    = (z2 
    + ( 
    - z1)) by 
    RLVECT_1:def 3;
    
      then
    
      
    
    A31: ((y1 
    - y2) 
    + ( 
    0. X)) 
    = (z2 
    + ( 
    - z1)) by 
    RLVECT_1:def 10;
    
      
    
      
    
    A4: (y1 
    - y2) 
    in M & (z2 
    - z1) 
    in ( 
    Ort_Comp M) by 
    A1,
    RUSUB_1: 17;
    
      then (y1
    - y2) 
    in (the 
    carrier of M 
    /\ the 
    carrier of ( 
    Ort_Comp M)) by 
    XBOOLE_0:def 4,
    A31;
    
      then (y1
    - y2) 
    = ( 
    0. X) by 
    Lm814;
    
      hence y1
    = y2 by 
    RLVECT_1: 21;
    
      (z2
    - z1) 
    in (the 
    carrier of M 
    /\ the 
    carrier of ( 
    Ort_Comp M)) by 
    A4,
    A31,
    XBOOLE_0:def 4;
    
      then (z2
    - z1) 
    = ( 
    0. X) by 
    Lm814;
    
      hence z1
    = z2 by 
    RLVECT_1: 21;
    
    end;
    
    begin
    
    theorem :: 
    
    DUALSP04:35
    
    for X be
    RealUnitarySpace, f be 
    linear-Functional of X, y be 
    Point of X st for x be 
    Point of X holds (f 
    . x) 
    = (x 
    .|. y) holds f is 
    Lipschitzian
    
    proof
    
      let X be
    RealUnitarySpace, f be 
    linear-Functional of X, y be 
    Point of X; 
    
      assume
    
      
    
    AS: for x be 
    Point of X holds (f 
    . x) 
    = (x 
    .|. y); 
    
      reconsider K = (
    ||.y.||
    + 1) as 
    Real;
    
      
    
      
    
    A11: 
    0  
    <=  
    ||.y.|| by
    BHSP_1: 28;
    
      for x be
    Point of X holds 
    |.(f
    . x).| 
    <= (K 
    *  
    ||.x.||)
    
      proof
    
        let x be
    Point of X; 
    
        
    
        
    
    B1: 
    |.(x
    .|. y).| 
    <= ( 
    ||.x.||
    *  
    ||.y.||) by
    BHSP_1: 29;
    
        
    
        
    
    B2: 
    ||.y.||
    < ( 
    ||.y.||
    + 1) by 
    XREAL_1: 145;
    
        
    0  
    <=  
    ||.x.|| by
    BHSP_1: 28;
    
        then (
    ||.y.||
    *  
    ||.x.||)
    <= (( 
    ||.y.||
    + 1) 
    *  
    ||.x.||) by
    B2,
    XREAL_1: 64;
    
        then
    |.(x
    .|. y).| 
    <= (( 
    ||.y.||
    + 1) 
    *  
    ||.x.||) by
    B1,
    XXREAL_0: 2;
    
        hence thesis by
    AS;
    
      end;
    
      hence thesis by
    A11,
    BHSP_6:def 4;
    
    end;
    
    
    
    
    
    KERX1: for X be 
    RealUnitarySpace, f be 
    Function of X, 
    REAL st f is 
    homogeneous holds (f 
    "  
    {
    0 }) is non 
    empty
    
    proof
    
      let X be
    RealUnitarySpace, f be 
    Function of X, 
    REAL ; 
    
      assume
    
      
    
    A1: f is 
    homogeneous;
    
      (f
    . ( 
    0. X)) 
    = (f 
    . ( 
    0  
    * ( 
    0. X))) 
    
      .= (
    0  
    * (f 
    . ( 
    0. X))) by 
    A1,
    HAHNBAN:def 3
    
      .=
    0 ; 
    
      then (f
    . ( 
    0. X)) 
    in  
    {
    0 } by 
    TARSKI:def 1;
    
      hence thesis by
    FUNCT_2: 38;
    
    end;
    
    registration
    
      let X be
    RealUnitarySpace, f be 
    linear-Functional of X; 
    
      cluster (f 
    "  
    {
    0 }) -> non 
    empty;
    
      correctness by
    KERX1;
    
    end
    
    theorem :: 
    
    DUALSP04:36
    
    
    
    
    
    KLXY1: for X be 
    RealUnitarySpace, f be 
    Function of X, 
    REAL st f is 
    additive
    homogeneous holds (f 
    "  
    {
    0 }) is 
    linearly-closed
    
    proof
    
      let X be
    RealUnitarySpace, f be 
    Function of X, 
    REAL ; 
    
      assume
    
      
    
    A1: f is 
    additive
    homogeneous;
    
      set X1 = (f
    "  
    {
    0 }); 
    
      
    
      
    
    A2: for v,u be 
    Point of X st v 
    in X1 & u 
    in X1 holds (v 
    + u) 
    in X1 
    
      proof
    
        let v,u be
    Point of X; 
    
        assume
    
        
    
    AS1: v 
    in X1 & u 
    in X1; 
    
        then v
    in the 
    carrier of X & (f 
    . v) 
    in  
    {
    0 } by 
    FUNCT_2: 38;
    
        then
    
        
    
    A3: (f 
    . v) 
    =  
    0 by 
    TARSKI:def 1;
    
        
    
        
    
    A4: u 
    in the 
    carrier of X & (f 
    . u) 
    in  
    {
    0 } by 
    AS1,
    FUNCT_2: 38;
    
        (f
    . (v 
    + u)) 
    = ((f 
    . v) 
    + (f 
    . u)) by 
    A1,
    HAHNBAN:def 2
    
        .= (
    0  
    +  
    0 ) by 
    A3,
    A4,
    TARSKI:def 1;
    
        then (f
    . (v 
    + u)) 
    in  
    {
    0 } by 
    TARSKI:def 1;
    
        hence thesis by
    FUNCT_2: 38;
    
      end;
    
      for r be
    Real, v be 
    Point of X st v 
    in X1 holds (r 
    * v) 
    in X1 
    
      proof
    
        let r be
    Real, v be 
    Point of X; 
    
        assume v
    in X1; 
    
        then
    
        
    
    A5: v 
    in the 
    carrier of X & (f 
    . v) 
    in  
    {
    0 } by 
    FUNCT_2: 38;
    
        (f
    . (r 
    * v)) 
    = (r 
    * (f 
    . v)) by 
    A1,
    HAHNBAN:def 3
    
        .= (r
    *  
    0 ) by 
    A5,
    TARSKI:def 1;
    
        then (f
    . (r 
    * v)) 
    in  
    {
    0 } by 
    TARSKI:def 1;
    
        hence thesis by
    FUNCT_2: 38;
    
      end;
    
      hence thesis by
    A2;
    
    end;
    
    definition
    
      let X be
    RealUnitarySpace, f be 
    linear-Functional of X; 
    
      :: 
    
    DUALSP04:def13
    
      func
    
    UKer (f) -> 
    strict  
    Subspace of X means 
    
      :
    
    defuker: the 
    carrier of it 
    = (f 
    "  
    {
    0 }); 
    
      existence by
    KLXY1,
    RUSUB_1: 29;
    
      uniqueness by
    RUSUB_1: 24;
    
    end
    
    theorem :: 
    
    DUALSP04:37
    
    
    
    
    
    Lm89A: for X be 
    RealUnitarySpace, f be 
    linear-Functional of X st f is 
    Lipschitzian holds (f 
    "  
    {
    0 }) is 
    closed
    
    proof
    
      let X be
    RealUnitarySpace, f be 
    linear-Functional of X; 
    
      assume
    
      
    
    AS: f is 
    Lipschitzian;
    
      set Y = (f
    "  
    {
    0 }); 
    
      for s be
    sequence of X st ( 
    rng s) 
    c= Y & s is 
    convergent holds ( 
    lim s) 
    in Y 
    
      proof
    
        let s be
    sequence of X; 
    
        assume
    
        
    
    B0: ( 
    rng s) 
    c= Y & s is 
    convergent;
    
        reconsider x0 = (
    lim s) as 
    Point of X; 
    
        
    
        
    
    B1: ( 
    dom f) 
    = the 
    carrier of X by 
    FUNCT_2:def 1;
    
        consider K be
    Real such that 
    
        
    
    B3: 
    0  
    < K & for x be 
    Point of X holds 
    |.(f
    . x).| 
    <= (K 
    *  
    ||.x.||) by
    AS,
    BHSP_6:def 4;
    
        for x1,x2 be
    Point of X st x1 
    in the 
    carrier of X & x2 
    in the 
    carrier of X holds 
    |.((f
    /. x1) 
    - (f 
    /. x2)).| 
    <= (K 
    *  
    ||.(x1
    - x2).||) 
    
        proof
    
          let x1,x2 be
    Point of X; 
    
          assume x1
    in the 
    carrier of X & x2 
    in the 
    carrier of X; 
    
          
    
          
    
    C1: 
    |.((f
    /. x1) 
    - (f 
    /. x2)).| 
    =  
    |.(f
    . (x1 
    - x2)).| by 
    HAHNBAN: 19;
    
          thus thesis by
    C1,
    B3;
    
        end;
    
        then f
    is_Lipschitzian_on the 
    carrier of X by 
    FUNCT_2:def 1,
    B3;
    
        then
    
        
    
    B41: f 
    is_continuous_on the 
    carrier of X by 
    LM5;
    
        
    
        
    
    B5: ( 
    rng s) 
    c= the 
    carrier of X; 
    
        
    
        
    
    B71: f 
    is_continuous_in x0 by 
    B41;
    
        
    
        
    
    B91: (f 
    /* s) 
    = (f 
    * s) by 
    B1,
    B5,
    FUNCT_2:def 11;
    
        ex k be
    Nat st for n be 
    Nat st k 
    <= n holds ((f 
    * s) 
    . n) 
    = (( 
    seq_const  
    0 ) 
    . n) 
    
        proof
    
          set k = the
    Nat;
    
          
    
          
    
    C0: for n be 
    Nat st k 
    <= n holds ((f 
    * s) 
    . n) 
    = (( 
    seq_const  
    0 ) 
    . n) 
    
          proof
    
            let n be
    Nat;
    
            assume k
    <= n; 
    
            (s
    . n) 
    in ( 
    rng s) by 
    FUNCT_2: 4,
    ORDINAL1:def 12;
    
            then
    
            
    
    D2: (s 
    . n) 
    in X & (f 
    . (s 
    . n)) 
    in  
    {
    0 } by 
    FUNCT_2: 38,
    B0;
    
            (
    dom s) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
            then ((f
    * s) 
    . n) 
    in  
    {
    0 } by 
    ORDINAL1:def 12,
    D2,
    FUNCT_1: 13;
    
            then ((f
    * s) 
    . n) 
    =  
    0 by 
    TARSKI:def 1;
    
            hence ((f
    * s) 
    . n) 
    = (( 
    seq_const  
    0 ) 
    . n) by 
    SEQ_1: 57;
    
          end;
    
          take k;
    
          thus thesis by
    C0;
    
        end;
    
        
    
        then (
    lim (f 
    * s)) 
    = ( 
    lim ( 
    seq_const  
    0 )) by 
    SEQ_4: 19
    
        .= ((
    seq_const  
    0 ) 
    .  
    0 ) by 
    SEQ_4: 26
    
        .=
    0 ; 
    
        then (f
    . x0) 
    =  
    0 by 
    B71,
    B0,
    B1,
    B91;
    
        then x0
    in X & (f 
    . x0) 
    in  
    {
    0 } by 
    TARSKI:def 1;
    
        hence (
    lim s) 
    in Y by 
    FUNCT_2: 38;
    
      end;
    
      hence (f
    "  
    {
    0 }) is 
    closed by 
    LM1;
    
    end;
    
    theorem :: 
    
    DUALSP04:38
    
    
    
    
    
    Lm89B: for V be 
    RealUnitarySpace, W be 
    Subspace of V, v be 
    VECTOR of V st v 
    <> ( 
    0. V) holds v 
    in ( 
    Ort_Comp W) implies not v 
    in W 
    
    proof
    
      let V be
    RealUnitarySpace;
    
      let W be
    Subspace of V; 
    
      let v be
    VECTOR of V; 
    
      assume
    
      
    
    A1: v 
    <> ( 
    0. V); 
    
      v
    in ( 
    Ort_Comp W) implies not v 
    in W 
    
      proof
    
        assume
    
        
    
    A2: v 
    in ( 
    Ort_Comp W); 
    
        assume
    
        
    
    A3: v 
    in W; 
    
        v
    in { v1 where v1 be 
    VECTOR of V : for w be 
    VECTOR of V st w 
    in W holds (w,v1) 
    are_orthogonal } by 
    A2,
    RUSUB_5:def 3;
    
        then ex v1 be
    VECTOR of V st v 
    = v1 & for w be 
    VECTOR of V st w 
    in W holds (w,v1) 
    are_orthogonal ; 
    
        then (v,v)
    are_orthogonal by 
    A3;
    
        hence contradiction by
    A1,
    BHSP_1:def 2;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    DUALSP04:39
    
    
    
    
    
    Th89A: for X be 
    RealHilbertSpace, f be 
    linear-Functional of X st f is 
    Lipschitzian holds ex y be 
    Point of X st for x be 
    Point of X holds (f 
    . x) 
    = (x 
    .|. y) 
    
    proof
    
      let X be
    RealHilbertSpace, f be 
    linear-Functional of X; 
    
      assume
    
      
    
    AS: f is 
    Lipschitzian;
    
      set M = (
    UKer f); 
    
      
    
      
    
    A1: the 
    carrier of M 
    = (f 
    "  
    {
    0 }) by 
    defuker;
    
      per cases ;
    
        suppose
    
        
    
    AS1: the 
    carrier of X 
    = the 
    carrier of M; 
    
        reconsider y = (
    0. X) as 
    Point of X; 
    
        
    
        
    
    B1: for x be 
    Point of X holds (f 
    . x) 
    = (x 
    .|. y) 
    
        proof
    
          let x be
    Point of X; 
    
          
    
          
    
    C11: x 
    in X & (f 
    . x) 
    in  
    {
    0 } by 
    FUNCT_2: 38,
    AS1,
    A1;
    
          (x
    .|. y) 
    =  
    0 by 
    BHSP_1: 15;
    
          hence thesis by
    C11,
    TARSKI:def 1;
    
        end;
    
        take y;
    
        thus thesis by
    B1;
    
      end;
    
        suppose the
    carrier of X 
    <> the 
    carrier of M; 
    
        then not the
    carrier of X 
    c= the 
    carrier of M by 
    RUSUB_1:def 1;
    
        then
    
        consider z be
    object such that 
    
        
    
    B1: z 
    in the 
    carrier of X & not z 
    in the 
    carrier of M; 
    
        reconsider y = z as
    Point of X by 
    B1;
    
        reconsider N = the
    carrier of M as non 
    empty  
    Subset of X by 
    A1;
    
        consider y1,z1 be
    Point of X such that 
    
        
    
    C0: y1 
    in M & z1 
    in ( 
    Ort_Comp M) & y 
    = (y1 
    + z1) by 
    Th87A,
    A1,
    AS,
    Lm89A;
    
        
    
        
    
    C1: z1 
    <> ( 
    0. X) by 
    C0,
    B1;
    
        then
    ||.z1.||
    <>  
    0 by 
    BHSP_1: 26;
    
        then
    
        
    
    C2: ( 
    ||.z1.||
    ^2 ) 
    >  
    0 by 
    SQUARE_1: 12;
    
         not z1
    in M by 
    C0,
    C1,
    Lm89B;
    
        then not z1
    in (f 
    "  
    {
    0 }) by 
    defuker;
    
        then not (f
    . z1) 
    in  
    {
    0 } by 
    FUNCT_2: 38;
    
        then
    
        
    
    C3: (f 
    . z1) 
    <>  
    0 by 
    TARSKI:def 1;
    
        set r = ((f
    . z1) 
    / ( 
    ||.z1.||
    ^2 )); 
    
        reconsider y = (r
    * z1) as 
    Point of X; 
    
        
    
        
    
    C4: y 
    in ( 
    Ort_Comp M) by 
    C0,
    RUSUB_1: 15;
    
        
    
        
    
    C5: for x be 
    Point of X holds (f 
    . x) 
    = (x 
    .|. y) 
    
        proof
    
          let x be
    Point of X; 
    
          set s = ((f
    . x) 
    / (f 
    . z1)); 
    
          reconsider y0 = (x
    - (s 
    * z1)) as 
    Point of X; 
    
          
    
          
    
    D1: ( 
    - (s 
    * z1)) 
    = (( 
    - 1) 
    * (s 
    * z1)) by 
    RLVECT_1: 16
    
          .= (((
    - 1) 
    * s) 
    * z1) by 
    RLVECT_1:def 7;
    
          (f
    . y0) 
    = ((f 
    . x) 
    + (f 
    . ((( 
    - 1) 
    * s) 
    * z1))) by 
    D1,
    HAHNBAN:def 2
    
          .= ((f
    . x) 
    + ((( 
    - 1) 
    * s) 
    * (f 
    . z1))) by 
    HAHNBAN:def 3
    
          .= ((f
    . x) 
    - (((f 
    . x) 
    / (f 
    . z1)) 
    * (f 
    . z1))) 
    
          .= ((f
    . x) 
    - (f 
    . x)) by 
    C3,
    XCMPLX_1: 87
    
          .=
    0 ; 
    
          then y0
    in X & (f 
    . y0) 
    in  
    {
    0 } by 
    TARSKI:def 1;
    
          then y0
    in (f 
    "  
    {
    0 }) by 
    FUNCT_2: 38;
    
          then
    
          
    
    D2: y0 
    in M by 
    defuker;
    
          y
    in { v where v be 
    VECTOR of X : for w be 
    VECTOR of X st w 
    in M holds (w,v) 
    are_orthogonal } by 
    RUSUB_5:def 3,
    C4;
    
          then
    
          consider v be
    VECTOR of X such that 
    
          
    
    D3: y 
    = v & for w be 
    VECTOR of X st w 
    in M holds (w,v) 
    are_orthogonal ; 
    
          
    
          
    
    D41: (y0,y) 
    are_orthogonal by 
    D2,
    D3;
    
          
    
          
    
    D6: ((x 
    - (s 
    * z1)) 
    .|. (r 
    * z1)) 
    = ((x 
    .|. (r 
    * z1)) 
    - ((s 
    * z1) 
    .|. (r 
    * z1))) by 
    BHSP_1: 11
    
          .= ((r
    * (x 
    .|. z1)) 
    - ((s 
    * z1) 
    .|. (r 
    * z1))) by 
    BHSP_1: 3
    
          .= ((r
    * (x 
    .|. z1)) 
    - (s 
    * (z1 
    .|. (r 
    * z1)))) by 
    BHSP_1:def 2;
    
          
    
          
    
    D7: (s 
    * r) 
    = ((f 
    . x) 
    / ( 
    ||.z1.||
    ^2 )) by 
    C3,
    XCMPLX_1: 98;
    
          
    
          
    
    D8: 
    0  
    <= (z1 
    .|. z1) by 
    BHSP_1:def 2;
    
          (z1
    .|. (r 
    * z1)) 
    = (r 
    * (z1 
    .|. z1)) by 
    BHSP_1: 3
    
          .= (r
    * ( 
    ||.z1.||
    ^2 )) by 
    D8,
    SQUARE_1:def 2;
    
          
    
          then (s
    * (z1 
    .|. (r 
    * z1))) 
    = (((f 
    . x) 
    / ( 
    ||.z1.||
    ^2 )) 
    * ( 
    ||.z1.||
    ^2 )) by 
    D7
    
          .= (f
    . x) by 
    C2,
    XCMPLX_1: 87;
    
          hence (f
    . x) 
    = (x 
    .|. y) by 
    BHSP_1: 3,
    D6,
    D41;
    
        end;
    
        take y;
    
        thus thesis by
    C5;
    
      end;
    
    end;
    
    theorem :: 
    
    DUALSP04:40
    
    for X be
    RealUnitarySpace, f be 
    linear-Functional of X holds for y1,y2 be 
    Point of X st for x be 
    Point of X holds (f 
    . x) 
    = (x 
    .|. y1) & (f 
    . x) 
    = (x 
    .|. y2) holds y1 
    = y2 
    
    proof
    
      let X be
    RealUnitarySpace, f be 
    linear-Functional of X; 
    
      let y1,y2 be
    Point of X; 
    
      assume
    
      
    
    AS: for x be 
    Point of X holds (f 
    . x) 
    = (x 
    .|. y1) & (f 
    . x) 
    = (x 
    .|. y2); 
    
      now
    
        let x be
    Point of X; 
    
        (f
    . x) 
    = (x 
    .|. y1) & (f 
    . x) 
    = (x 
    .|. y2) by 
    AS;
    
        then ((x
    .|. y1) 
    - (x 
    .|. y2)) 
    =  
    0 ; 
    
        hence (x
    .|. (y1 
    - y2)) 
    =  
    0 by 
    BHSP_1: 12;
    
      end;
    
      then ((y1
    - y2) 
    .|. (y1 
    - y2)) 
    =  
    0 ; 
    
      then (y1
    - y2) 
    = ( 
    0. X) by 
    BHSP_1:def 2;
    
      hence y1
    = y2 by 
    RLVECT_1: 21;
    
    end;
    
    theorem :: 
    
    DUALSP04:41
    
    for X be
    RealHilbertSpace, f be 
    Point of ( 
    DualSp X), g be 
    Lipschitzian  
    linear-Functional of X st g 
    = f holds ex y be 
    Point of X st (for x be 
    Point of X holds (g 
    . x) 
    = (x 
    .|. y)) & 
    ||.f.||
    =  
    ||.y.||
    
    proof
    
      let X be
    RealHilbertSpace, f be 
    Point of ( 
    DualSp X), g be 
    Lipschitzian  
    linear-Functional of X; 
    
      assume
    
      
    
    AS: g 
    = f; 
    
      consider y be
    Point of X such that 
    
      
    
    A1: for x be 
    Point of X holds (g 
    . x) 
    = (x 
    .|. y) by 
    Th89A;
    
      now
    
        let s be
    Real;
    
        assume s
    in ( 
    PreNorms g); 
    
        then
    
        consider t be
    VECTOR of X such that 
    
        
    
    B1: s 
    =  
    |.(g
    . t).| & 
    ||.t.||
    <= 1; 
    
        
    
        
    
    B3: 
    |.(t
    .|. y).| 
    <= ( 
    ||.t.||
    *  
    ||.y.||) by
    BHSP_1: 29;
    
        
    0  
    <=  
    ||.y.|| by
    BHSP_1: 28;
    
        then (
    ||.t.||
    *  
    ||.y.||)
    <= (1 
    *  
    ||.y.||) by
    B1,
    XREAL_1: 64;
    
        then
    |.(t
    .|. y).| 
    <=  
    ||.y.|| by
    B3,
    XXREAL_0: 2;
    
        hence s
    <=  
    ||.y.|| by
    B1,
    A1;
    
      end;
    
      then (
    upper_bound ( 
    PreNorms g)) 
    <=  
    ||.y.|| by
    SEQ_4: 45;
    
      then
    
      
    
    A2: 
    ||.f.||
    <=  
    ||.y.|| by
    AS,
    Th24;
    
      
    
      
    
    A31: 
    ||.y.||
    <=  
    ||.f.||
    
      proof
    
        per cases ;
    
          suppose
    ||.y.||
    =  
    0 ; 
    
          hence
    ||.y.||
    <=  
    ||.f.|| by
    Th27;
    
        end;
    
          suppose
    
          
    
    AS2: 
    ||.y.||
    <>  
    0 ; 
    
          
    
          
    
    B1: 
    0  
    <= (y 
    .|. y) by 
    BHSP_1:def 2;
    
          
    
          
    
    B2: (g 
    . y) 
    = (y 
    .|. y) by 
    A1
    
          .= (
    ||.y.||
    ^2 ) by 
    B1,
    SQUARE_1:def 2
    
          .= (
    ||.y.||
    *  
    ||.y.||) by
    SQUARE_1:def 1;
    
          
    
          
    
    B3: (g 
    . y) 
    <=  
    |.(g
    . y).| by 
    ABSVALUE: 4;
    
          
    |.(g
    . y).| 
    <= ( 
    ||.f.||
    *  
    ||.y.||) by
    AS,
    Th26;
    
          then
    
          
    
    B4: ( 
    ||.y.||
    *  
    ||.y.||)
    <= ( 
    ||.f.||
    *  
    ||.y.||) by
    B2,
    B3,
    XXREAL_0: 2;
    
          
    
          
    
    B51: 
    0  
    <=  
    ||.y.|| by
    BHSP_1: 28;
    
          ((
    ||.y.||
    *  
    ||.y.||)
    /  
    ||.y.||)
    =  
    ||.y.|| & ((
    ||.f.||
    *  
    ||.y.||)
    /  
    ||.y.||)
    =  
    ||.f.|| by
    AS2,
    XCMPLX_1: 89;
    
          hence
    ||.y.||
    <=  
    ||.f.|| by
    B51,
    B4,
    XREAL_1: 72;
    
        end;
    
      end;
    
      take y;
    
      thus thesis by
    A1,
    A2,
    XXREAL_0: 1,
    A31;
    
    end;