fdiff_11.miz
begin
reserve x for
Real,
n for
Element of
NAT ,
y for
set,
Z for
open
Subset of
REAL ,
g for
PartFunc of
REAL ,
REAL ;
theorem ::
FDIFF_11:1
Z
c= (
dom (
arctan
*
sin )) & (for x st x
in Z holds (
sin
. x)
> (
- 1) & (
sin
. x)
< 1) implies (
arctan
*
sin )
is_differentiable_on Z & for x st x
in Z holds (((
arctan
*
sin )
`| Z)
. x)
= ((
cos
. x)
/ (1
+ ((
sin
. x)
^2 )))
proof
assume that
A1: Z
c= (
dom (
arctan
*
sin )) and
A2: for x st x
in Z holds (
sin
. x)
> (
- 1) & (
sin
. x)
< 1;
A3: for x st x
in Z holds (
arctan
*
sin )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A4: (
sin
. x)
> (
- 1) & (
sin
. x)
< 1 by
A2;
sin
is_differentiable_in x by
SIN_COS: 64;
hence thesis by
A4,
SIN_COS9: 85;
end;
then
A5: (
arctan
*
sin )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arctan
*
sin )
`| Z)
. x)
= ((
cos
. x)
/ (1
+ ((
sin
. x)
^2 )))
proof
let x;
A6:
sin
is_differentiable_in x by
SIN_COS: 64;
assume
A7: x
in Z;
then
A8: (
sin
. x)
> (
- 1) & (
sin
. x)
< 1 by
A2;
(((
arctan
*
sin )
`| Z)
. x)
= (
diff ((
arctan
*
sin ),x)) by
A5,
A7,
FDIFF_1:def 7
.= ((
diff (
sin ,x))
/ (1
+ ((
sin
. x)
^2 ))) by
A6,
A8,
SIN_COS9: 85
.= ((
cos
. x)
/ (1
+ ((
sin
. x)
^2 ))) by
SIN_COS: 64;
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:2
Z
c= (
dom (
arccot
*
sin )) & (for x st x
in Z holds (
sin
. x)
> (
- 1) & (
sin
. x)
< 1) implies (
arccot
*
sin )
is_differentiable_on Z & for x st x
in Z holds (((
arccot
*
sin )
`| Z)
. x)
= (
- ((
cos
. x)
/ (1
+ ((
sin
. x)
^2 ))))
proof
assume that
A1: Z
c= (
dom (
arccot
*
sin )) and
A2: for x st x
in Z holds (
sin
. x)
> (
- 1) & (
sin
. x)
< 1;
A3: for x st x
in Z holds (
arccot
*
sin )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A4: (
sin
. x)
> (
- 1) & (
sin
. x)
< 1 by
A2;
sin
is_differentiable_in x by
SIN_COS: 64;
hence thesis by
A4,
SIN_COS9: 86;
end;
then
A5: (
arccot
*
sin )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arccot
*
sin )
`| Z)
. x)
= (
- ((
cos
. x)
/ (1
+ ((
sin
. x)
^2 ))))
proof
let x;
A6:
sin
is_differentiable_in x by
SIN_COS: 64;
assume
A7: x
in Z;
then
A8: (
sin
. x)
> (
- 1) & (
sin
. x)
< 1 by
A2;
(((
arccot
*
sin )
`| Z)
. x)
= (
diff ((
arccot
*
sin ),x)) by
A5,
A7,
FDIFF_1:def 7
.= (
- ((
diff (
sin ,x))
/ (1
+ ((
sin
. x)
^2 )))) by
A6,
A8,
SIN_COS9: 86
.= (
- ((
cos
. x)
/ (1
+ ((
sin
. x)
^2 )))) by
SIN_COS: 64;
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:3
Z
c= (
dom (
arctan
*
cos )) & (for x st x
in Z holds (
cos
. x)
> (
- 1) & (
cos
. x)
< 1) implies (
arctan
*
cos )
is_differentiable_on Z & for x st x
in Z holds (((
arctan
*
cos )
`| Z)
. x)
= (
- ((
sin
. x)
/ (1
+ ((
cos
. x)
^2 ))))
proof
assume that
A1: Z
c= (
dom (
arctan
*
cos )) and
A2: for x st x
in Z holds (
cos
. x)
> (
- 1) & (
cos
. x)
< 1;
A3: for x st x
in Z holds (
arctan
*
cos )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A4: (
cos
. x)
> (
- 1) & (
cos
. x)
< 1 by
A2;
cos
is_differentiable_in x by
SIN_COS: 63;
hence thesis by
A4,
SIN_COS9: 85;
end;
then
A5: (
arctan
*
cos )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arctan
*
cos )
`| Z)
. x)
= (
- ((
sin
. x)
/ (1
+ ((
cos
. x)
^2 ))))
proof
let x;
A6:
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A7: x
in Z;
then
A8: (
cos
. x)
> (
- 1) & (
cos
. x)
< 1 by
A2;
(((
arctan
*
cos )
`| Z)
. x)
= (
diff ((
arctan
*
cos ),x)) by
A5,
A7,
FDIFF_1:def 7
.= ((
diff (
cos ,x))
/ (1
+ ((
cos
. x)
^2 ))) by
A6,
A8,
SIN_COS9: 85
.= ((
- (
sin
. x))
/ (1
+ ((
cos
. x)
^2 ))) by
SIN_COS: 63
.= (
- ((
sin
. x)
/ (1
+ ((
cos
. x)
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:4
Z
c= (
dom (
arccot
*
cos )) & (for x st x
in Z holds (
cos
. x)
> (
- 1) & (
cos
. x)
< 1) implies (
arccot
*
cos )
is_differentiable_on Z & for x st x
in Z holds (((
arccot
*
cos )
`| Z)
. x)
= ((
sin
. x)
/ (1
+ ((
cos
. x)
^2 )))
proof
assume that
A1: Z
c= (
dom (
arccot
*
cos )) and
A2: for x st x
in Z holds (
cos
. x)
> (
- 1) & (
cos
. x)
< 1;
A3: for x st x
in Z holds (
arccot
*
cos )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A4: (
cos
. x)
> (
- 1) & (
cos
. x)
< 1 by
A2;
cos
is_differentiable_in x by
SIN_COS: 63;
hence thesis by
A4,
SIN_COS9: 86;
end;
then
A5: (
arccot
*
cos )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arccot
*
cos )
`| Z)
. x)
= ((
sin
. x)
/ (1
+ ((
cos
. x)
^2 )))
proof
let x;
A6:
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A7: x
in Z;
then
A8: (
cos
. x)
> (
- 1) & (
cos
. x)
< 1 by
A2;
(((
arccot
*
cos )
`| Z)
. x)
= (
diff ((
arccot
*
cos ),x)) by
A5,
A7,
FDIFF_1:def 7
.= (
- ((
diff (
cos ,x))
/ (1
+ ((
cos
. x)
^2 )))) by
A6,
A8,
SIN_COS9: 86
.= (
- ((
- (
sin
. x))
/ (1
+ ((
cos
. x)
^2 )))) by
SIN_COS: 63
.= ((
sin
. x)
/ (1
+ ((
cos
. x)
^2 )));
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:5
Z
c= (
dom (
arctan
*
tan )) & (for x st x
in Z holds (
tan
. x)
> (
- 1) & (
tan
. x)
< 1) implies (
arctan
*
tan )
is_differentiable_on Z & for x st x
in Z holds (((
arctan
*
tan )
`| Z)
. x)
= 1
proof
assume that
A1: Z
c= (
dom (
arctan
*
tan )) and
A2: for x st x
in Z holds (
tan
. x)
> (
- 1) & (
tan
. x)
< 1;
(
dom (
arctan
*
tan ))
c= (
dom
tan ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
tan ) by
A1,
XBOOLE_1: 1;
A4: for x st x
in Z holds (
arctan
*
tan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
then
A6:
tan
is_differentiable_in x by
FDIFF_7: 46;
(
tan
. x)
> (
- 1) & (
tan
. x)
< 1 by
A2,
A5;
hence thesis by
A6,
SIN_COS9: 85;
end;
then
A7: (
arctan
*
tan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arctan
*
tan )
`| Z)
. x)
= 1
proof
let x;
assume
A8: x
in Z;
then
A9: (
tan
. x)
> (
- 1) & (
tan
. x)
< 1 by
A2;
A10: (
tan
. x)
= ((
sin
. x)
/ (
cos
. x)) by
A3,
A8,
RFUNCT_1:def 1;
A11: (
cos
. x)
<>
0 by
A3,
A8,
FDIFF_8: 1;
then
A12:
tan
is_differentiable_in x by
FDIFF_7: 46;
A13: ((
cos
. x)
^2 )
<>
0 by
A11,
SQUARE_1: 12;
(((
arctan
*
tan )
`| Z)
. x)
= (
diff ((
arctan
*
tan ),x)) by
A7,
A8,
FDIFF_1:def 7
.= ((
diff (
tan ,x))
/ (1
+ ((
tan
. x)
^2 ))) by
A12,
A9,
SIN_COS9: 85
.= ((1
/ ((
cos
. x)
^2 ))
/ (1
+ ((
tan
. x)
^2 ))) by
A11,
FDIFF_7: 46
.= (1
/ (((
cos
. x)
^2 )
* (1
+ (((
sin
. x)
/ (
cos
. x))
* ((
sin
. x)
/ (
cos
. x)))))) by
A10,
XCMPLX_1: 78
.= (1
/ (((
cos
. x)
^2 )
* (1
+ (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 ))))) by
XCMPLX_1: 76
.= (1
/ (((
cos
. x)
^2 )
+ ((((
cos
. x)
^2 )
* ((
sin
. x)
^2 ))
/ ((
cos
. x)
^2 ))))
.= (1
/ (((
cos
. x)
^2 )
+ ((
sin
. x)
^2 ))) by
A13,
XCMPLX_1: 89
.= (1
/ 1) by
SIN_COS: 28
.= 1;
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:6
Z
c= (
dom (
arccot
*
tan )) & (for x st x
in Z holds (
tan
. x)
> (
- 1) & (
tan
. x)
< 1) implies (
arccot
*
tan )
is_differentiable_on Z & for x st x
in Z holds (((
arccot
*
tan )
`| Z)
. x)
= (
- 1)
proof
assume that
A1: Z
c= (
dom (
arccot
*
tan )) and
A2: for x st x
in Z holds (
tan
. x)
> (
- 1) & (
tan
. x)
< 1;
(
dom (
arccot
*
tan ))
c= (
dom
tan ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
tan ) by
A1,
XBOOLE_1: 1;
A4: for x st x
in Z holds (
arccot
*
tan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
then
A6:
tan
is_differentiable_in x by
FDIFF_7: 46;
(
tan
. x)
> (
- 1) & (
tan
. x)
< 1 by
A2,
A5;
hence thesis by
A6,
SIN_COS9: 86;
end;
then
A7: (
arccot
*
tan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arccot
*
tan )
`| Z)
. x)
= (
- 1)
proof
let x;
assume
A8: x
in Z;
then
A9: (
tan
. x)
> (
- 1) & (
tan
. x)
< 1 by
A2;
A10: (
tan
. x)
= ((
sin
. x)
/ (
cos
. x)) by
A3,
A8,
RFUNCT_1:def 1;
A11: (
cos
. x)
<>
0 by
A3,
A8,
FDIFF_8: 1;
then
A12:
tan
is_differentiable_in x by
FDIFF_7: 46;
A13: ((
cos
. x)
^2 )
<>
0 by
A11,
SQUARE_1: 12;
(((
arccot
*
tan )
`| Z)
. x)
= (
diff ((
arccot
*
tan ),x)) by
A7,
A8,
FDIFF_1:def 7
.= (
- ((
diff (
tan ,x))
/ (1
+ ((
tan
. x)
^2 )))) by
A12,
A9,
SIN_COS9: 86
.= (
- ((1
/ ((
cos
. x)
^2 ))
/ (1
+ ((
tan
. x)
^2 )))) by
A11,
FDIFF_7: 46
.= (
- (1
/ (((
cos
. x)
^2 )
* (1
+ (((
sin
. x)
/ (
cos
. x))
* ((
sin
. x)
/ (
cos
. x))))))) by
A10,
XCMPLX_1: 78
.= (
- (1
/ (((
cos
. x)
^2 )
* (1
+ (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))))) by
XCMPLX_1: 76
.= (
- (1
/ (((
cos
. x)
^2 )
+ ((((
cos
. x)
^2 )
* ((
sin
. x)
^2 ))
/ ((
cos
. x)
^2 )))))
.= (
- (1
/ (((
cos
. x)
^2 )
+ ((
sin
. x)
^2 )))) by
A13,
XCMPLX_1: 89
.= (
- (1
/ 1)) by
SIN_COS: 28
.= (
- 1);
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:7
Z
c= (
dom (
arctan
*
cot )) & (for x st x
in Z holds (
cot
. x)
> (
- 1) & (
cot
. x)
< 1) implies (
arctan
*
cot )
is_differentiable_on Z & for x st x
in Z holds (((
arctan
*
cot )
`| Z)
. x)
= (
- 1)
proof
assume that
A1: Z
c= (
dom (
arctan
*
cot )) and
A2: for x st x
in Z holds (
cot
. x)
> (
- 1) & (
cot
. x)
< 1;
(
dom (
arctan
*
cot ))
c= (
dom
cot ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
cot ) by
A1,
XBOOLE_1: 1;
A4: for x st x
in Z holds (
arctan
*
cot )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
sin
. x)
<>
0 by
A3,
FDIFF_8: 2;
then
A6:
cot
is_differentiable_in x by
FDIFF_7: 47;
(
cot
. x)
> (
- 1) & (
cot
. x)
< 1 by
A2,
A5;
hence thesis by
A6,
SIN_COS9: 85;
end;
then
A7: (
arctan
*
cot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arctan
*
cot )
`| Z)
. x)
= (
- 1)
proof
let x;
assume
A8: x
in Z;
then
A9: (
cot
. x)
> (
- 1) & (
cot
. x)
< 1 by
A2;
A10: (
cot
. x)
= ((
cos
. x)
/ (
sin
. x)) by
A3,
A8,
RFUNCT_1:def 1;
A11: (
sin
. x)
<>
0 by
A3,
A8,
FDIFF_8: 2;
then
A12:
cot
is_differentiable_in x by
FDIFF_7: 47;
A13: ((
sin
. x)
^2 )
<>
0 by
A11,
SQUARE_1: 12;
(((
arctan
*
cot )
`| Z)
. x)
= (
diff ((
arctan
*
cot ),x)) by
A7,
A8,
FDIFF_1:def 7
.= ((
diff (
cot ,x))
/ (1
+ ((
cot
. x)
^2 ))) by
A12,
A9,
SIN_COS9: 85
.= ((
- (1
/ ((
sin
. x)
^2 )))
/ (1
+ ((
cot
. x)
^2 ))) by
A11,
FDIFF_7: 47
.= (
- ((1
/ ((
sin
. x)
^2 ))
/ (1
+ ((
cot
. x)
^2 ))))
.= (
- (1
/ (((
sin
. x)
^2 )
* (1
+ (((
cos
. x)
/ (
sin
. x))
* ((
cos
. x)
/ (
sin
. x))))))) by
A10,
XCMPLX_1: 78
.= (
- (1
/ (((
sin
. x)
^2 )
* (1
+ (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 )))))) by
XCMPLX_1: 76
.= (
- (1
/ (((
sin
. x)
^2 )
+ ((((
sin
. x)
^2 )
* ((
cos
. x)
^2 ))
/ ((
sin
. x)
^2 )))))
.= (
- (1
/ (((
sin
. x)
^2 )
+ ((
cos
. x)
^2 )))) by
A13,
XCMPLX_1: 89
.= (
- (1
/ 1)) by
SIN_COS: 28
.= (
- 1);
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:8
Z
c= (
dom (
arccot
*
cot )) & (for x st x
in Z holds (
cot
. x)
> (
- 1) & (
cot
. x)
< 1) implies (
arccot
*
cot )
is_differentiable_on Z & for x st x
in Z holds (((
arccot
*
cot )
`| Z)
. x)
= 1
proof
assume that
A1: Z
c= (
dom (
arccot
*
cot )) and
A2: for x st x
in Z holds (
cot
. x)
> (
- 1) & (
cot
. x)
< 1;
(
dom (
arccot
*
cot ))
c= (
dom
cot ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
cot ) by
A1,
XBOOLE_1: 1;
A4: for x st x
in Z holds (
arccot
*
cot )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
sin
. x)
<>
0 by
A3,
FDIFF_8: 2;
then
A6:
cot
is_differentiable_in x by
FDIFF_7: 47;
(
cot
. x)
> (
- 1) & (
cot
. x)
< 1 by
A2,
A5;
hence thesis by
A6,
SIN_COS9: 86;
end;
then
A7: (
arccot
*
cot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arccot
*
cot )
`| Z)
. x)
= 1
proof
let x;
assume
A8: x
in Z;
then
A9: (
cot
. x)
> (
- 1) & (
cot
. x)
< 1 by
A2;
A10: (
cot
. x)
= ((
cos
. x)
/ (
sin
. x)) by
A3,
A8,
RFUNCT_1:def 1;
A11: (
sin
. x)
<>
0 by
A3,
A8,
FDIFF_8: 2;
then
A12:
cot
is_differentiable_in x by
FDIFF_7: 47;
A13: ((
sin
. x)
^2 )
<>
0 by
A11,
SQUARE_1: 12;
(((
arccot
*
cot )
`| Z)
. x)
= (
diff ((
arccot
*
cot ),x)) by
A7,
A8,
FDIFF_1:def 7
.= (
- ((
diff (
cot ,x))
/ (1
+ ((
cot
. x)
^2 )))) by
A12,
A9,
SIN_COS9: 86
.= (
- ((
- (1
/ ((
sin
. x)
^2 )))
/ (1
+ ((
cot
. x)
^2 )))) by
A11,
FDIFF_7: 47
.= ((1
/ ((
sin
. x)
^2 ))
/ (1
+ ((
cot
. x)
^2 )))
.= (1
/ (((
sin
. x)
^2 )
* (1
+ (((
cos
. x)
/ (
sin
. x))
* ((
cos
. x)
/ (
sin
. x)))))) by
A10,
XCMPLX_1: 78
.= (1
/ (((
sin
. x)
^2 )
* (1
+ (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 ))))) by
XCMPLX_1: 76
.= (1
/ (((
sin
. x)
^2 )
+ ((((
sin
. x)
^2 )
* ((
cos
. x)
^2 ))
/ ((
sin
. x)
^2 ))))
.= (1
/ (((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))) by
A13,
XCMPLX_1: 89
.= (1
/ 1) by
SIN_COS: 28
.= 1;
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:9
Z
c= (
dom (
arctan
*
arctan )) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arctan
. x)
> (
- 1) & (
arctan
. x)
< 1) implies (
arctan
*
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
arctan
*
arctan )
`| Z)
. x)
= (1
/ ((1
+ (x
^2 ))
* (1
+ ((
arctan
. x)
^2 ))))
proof
assume that
A1: Z
c= (
dom (
arctan
*
arctan )) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (
arctan
. x)
> (
- 1) & (
arctan
. x)
< 1;
A4: for x st x
in Z holds (
arctan
*
arctan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then
A6: (
arctan
. x)
> (
- 1) & (
arctan
. x)
< 1 by
A3;
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
arctan
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence thesis by
A6,
SIN_COS9: 85;
end;
then
A7: (
arctan
*
arctan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arctan
*
arctan )
`| Z)
. x)
= (1
/ ((1
+ (x
^2 ))
* (1
+ ((
arctan
. x)
^2 ))))
proof
let x;
assume
A8: x
in Z;
then
A9: (
arctan
. x)
> (
- 1) & (
arctan
. x)
< 1 by
A3;
A10:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
A11:
arctan
is_differentiable_in x by
A8,
FDIFF_1: 9;
(((
arctan
*
arctan )
`| Z)
. x)
= (
diff ((
arctan
*
arctan ),x)) by
A7,
A8,
FDIFF_1:def 7
.= ((
diff (
arctan ,x))
/ (1
+ ((
arctan
. x)
^2 ))) by
A11,
A9,
SIN_COS9: 85
.= (((
arctan
`| Z)
. x)
/ (1
+ ((
arctan
. x)
^2 ))) by
A8,
A10,
FDIFF_1:def 7
.= ((1
/ (1
+ (x
^2 )))
/ (1
+ ((
arctan
. x)
^2 ))) by
A2,
A8,
SIN_COS9: 81
.= (1
/ ((1
+ (x
^2 ))
* (1
+ ((
arctan
. x)
^2 )))) by
XCMPLX_1: 78;
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:10
Z
c= (
dom (
arccot
*
arctan )) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arctan
. x)
> (
- 1) & (
arctan
. x)
< 1) implies (
arccot
*
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
arccot
*
arctan )
`| Z)
. x)
= (
- (1
/ ((1
+ (x
^2 ))
* (1
+ ((
arctan
. x)
^2 )))))
proof
assume that
A1: Z
c= (
dom (
arccot
*
arctan )) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (
arctan
. x)
> (
- 1) & (
arctan
. x)
< 1;
A4: for x st x
in Z holds (
arccot
*
arctan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then
A6: (
arctan
. x)
> (
- 1) & (
arctan
. x)
< 1 by
A3;
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
arctan
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence thesis by
A6,
SIN_COS9: 86;
end;
then
A7: (
arccot
*
arctan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arccot
*
arctan )
`| Z)
. x)
= (
- (1
/ ((1
+ (x
^2 ))
* (1
+ ((
arctan
. x)
^2 )))))
proof
let x;
assume
A8: x
in Z;
then
A9: (
arctan
. x)
> (
- 1) & (
arctan
. x)
< 1 by
A3;
A10:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
A11:
arctan
is_differentiable_in x by
A8,
FDIFF_1: 9;
(((
arccot
*
arctan )
`| Z)
. x)
= (
diff ((
arccot
*
arctan ),x)) by
A7,
A8,
FDIFF_1:def 7
.= (
- ((
diff (
arctan ,x))
/ (1
+ ((
arctan
. x)
^2 )))) by
A11,
A9,
SIN_COS9: 86
.= (
- (((
arctan
`| Z)
. x)
/ (1
+ ((
arctan
. x)
^2 )))) by
A8,
A10,
FDIFF_1:def 7
.= (
- ((1
/ (1
+ (x
^2 )))
/ (1
+ ((
arctan
. x)
^2 )))) by
A2,
A8,
SIN_COS9: 81
.= (
- (1
/ ((1
+ (x
^2 ))
* (1
+ ((
arctan
. x)
^2 ))))) by
XCMPLX_1: 78;
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:11
Z
c= (
dom (
arctan
*
arccot )) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arccot
. x)
> (
- 1) & (
arccot
. x)
< 1) implies (
arctan
*
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
arctan
*
arccot )
`| Z)
. x)
= (
- (1
/ ((1
+ (x
^2 ))
* (1
+ ((
arccot
. x)
^2 )))))
proof
assume that
A1: Z
c= (
dom (
arctan
*
arccot )) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (
arccot
. x)
> (
- 1) & (
arccot
. x)
< 1;
A4: for x st x
in Z holds (
arctan
*
arccot )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then
A6: (
arccot
. x)
> (
- 1) & (
arccot
. x)
< 1 by
A3;
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
arccot
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence thesis by
A6,
SIN_COS9: 85;
end;
then
A7: (
arctan
*
arccot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arctan
*
arccot )
`| Z)
. x)
= (
- (1
/ ((1
+ (x
^2 ))
* (1
+ ((
arccot
. x)
^2 )))))
proof
let x;
assume
A8: x
in Z;
then
A9: (
arccot
. x)
> (
- 1) & (
arccot
. x)
< 1 by
A3;
A10:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
A11:
arccot
is_differentiable_in x by
A8,
FDIFF_1: 9;
(((
arctan
*
arccot )
`| Z)
. x)
= (
diff ((
arctan
*
arccot ),x)) by
A7,
A8,
FDIFF_1:def 7
.= ((
diff (
arccot ,x))
/ (1
+ ((
arccot
. x)
^2 ))) by
A11,
A9,
SIN_COS9: 85
.= (((
arccot
`| Z)
. x)
/ (1
+ ((
arccot
. x)
^2 ))) by
A8,
A10,
FDIFF_1:def 7
.= ((
- (1
/ (1
+ (x
^2 ))))
/ (1
+ ((
arccot
. x)
^2 ))) by
A2,
A8,
SIN_COS9: 82
.= (
- ((1
/ (1
+ (x
^2 )))
/ (1
+ ((
arccot
. x)
^2 ))))
.= (
- (1
/ ((1
+ (x
^2 ))
* (1
+ ((
arccot
. x)
^2 ))))) by
XCMPLX_1: 78;
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:12
Z
c= (
dom (
arccot
*
arccot )) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arccot
. x)
> (
- 1) & (
arccot
. x)
< 1) implies (
arccot
*
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
arccot
*
arccot )
`| Z)
. x)
= (1
/ ((1
+ (x
^2 ))
* (1
+ ((
arccot
. x)
^2 ))))
proof
assume that
A1: Z
c= (
dom (
arccot
*
arccot )) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (
arccot
. x)
> (
- 1) & (
arccot
. x)
< 1;
A4: for x st x
in Z holds (
arccot
*
arccot )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then
A6: (
arccot
. x)
> (
- 1) & (
arccot
. x)
< 1 by
A3;
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
arccot
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence thesis by
A6,
SIN_COS9: 86;
end;
then
A7: (
arccot
*
arccot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arccot
*
arccot )
`| Z)
. x)
= (1
/ ((1
+ (x
^2 ))
* (1
+ ((
arccot
. x)
^2 ))))
proof
let x;
assume
A8: x
in Z;
then
A9: (
arccot
. x)
> (
- 1) & (
arccot
. x)
< 1 by
A3;
A10:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
A11:
arccot
is_differentiable_in x by
A8,
FDIFF_1: 9;
(((
arccot
*
arccot )
`| Z)
. x)
= (
diff ((
arccot
*
arccot ),x)) by
A7,
A8,
FDIFF_1:def 7
.= (
- ((
diff (
arccot ,x))
/ (1
+ ((
arccot
. x)
^2 )))) by
A11,
A9,
SIN_COS9: 86
.= (
- (((
arccot
`| Z)
. x)
/ (1
+ ((
arccot
. x)
^2 )))) by
A8,
A10,
FDIFF_1:def 7
.= (
- ((
- (1
/ (1
+ (x
^2 ))))
/ (1
+ ((
arccot
. x)
^2 )))) by
A2,
A8,
SIN_COS9: 82
.= ((1
/ (1
+ (x
^2 )))
/ (1
+ ((
arccot
. x)
^2 )))
.= (1
/ ((1
+ (x
^2 ))
* (1
+ ((
arccot
. x)
^2 )))) by
XCMPLX_1: 78;
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:13
Z
c= (
dom (
sin
*
arctan )) & Z
c=
].(
- 1), 1.[ implies (
sin
*
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
sin
*
arctan )
`| Z)
. x)
= ((
cos
. (
arctan
. x))
/ (1
+ (x
^2 )))
proof
assume that
A1: Z
c= (
dom (
sin
*
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
sin
*
arctan )
is_differentiable_in x
proof
let x;
assume
A4: x
in Z;
A5:
sin
is_differentiable_in (
arctan
. x) by
SIN_COS: 64;
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
arctan
is_differentiable_in x by
A4,
FDIFF_1: 9;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
sin
*
arctan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
*
arctan )
`| Z)
. x)
= ((
cos
. (
arctan
. x))
/ (1
+ (x
^2 )))
proof
let x;
assume
A7: x
in Z;
A8:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
A9:
arctan
is_differentiable_in x by
A7,
FDIFF_1: 9;
A10:
sin
is_differentiable_in (
arctan
. x) by
SIN_COS: 64;
(((
sin
*
arctan )
`| Z)
. x)
= (
diff ((
sin
*
arctan ),x)) by
A6,
A7,
FDIFF_1:def 7
.= ((
diff (
sin ,(
arctan
. x)))
* (
diff (
arctan ,x))) by
A9,
A10,
FDIFF_2: 13
.= ((
cos
. (
arctan
. x))
* (
diff (
arctan ,x))) by
SIN_COS: 64
.= ((
cos
. (
arctan
. x))
* ((
arctan
`| Z)
. x)) by
A7,
A8,
FDIFF_1:def 7
.= ((
cos
. (
arctan
. x))
* (1
/ (1
+ (x
^2 )))) by
A2,
A7,
SIN_COS9: 81
.= ((
cos
. (
arctan
. x))
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:14
Z
c= (
dom (
sin
*
arccot )) & Z
c=
].(
- 1), 1.[ implies (
sin
*
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
sin
*
arccot )
`| Z)
. x)
= (
- ((
cos
. (
arccot
. x))
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
sin
*
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
sin
*
arccot )
is_differentiable_in x
proof
let x;
assume
A4: x
in Z;
A5:
sin
is_differentiable_in (
arccot
. x) by
SIN_COS: 64;
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
arccot
is_differentiable_in x by
A4,
FDIFF_1: 9;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
sin
*
arccot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
*
arccot )
`| Z)
. x)
= (
- ((
cos
. (
arccot
. x))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A7: x
in Z;
A8:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
A9:
arccot
is_differentiable_in x by
A7,
FDIFF_1: 9;
A10:
sin
is_differentiable_in (
arccot
. x) by
SIN_COS: 64;
(((
sin
*
arccot )
`| Z)
. x)
= (
diff ((
sin
*
arccot ),x)) by
A6,
A7,
FDIFF_1:def 7
.= ((
diff (
sin ,(
arccot
. x)))
* (
diff (
arccot ,x))) by
A9,
A10,
FDIFF_2: 13
.= ((
cos
. (
arccot
. x))
* (
diff (
arccot ,x))) by
SIN_COS: 64
.= ((
cos
. (
arccot
. x))
* ((
arccot
`| Z)
. x)) by
A7,
A8,
FDIFF_1:def 7
.= ((
cos
. (
arccot
. x))
* (
- (1
/ (1
+ (x
^2 ))))) by
A2,
A7,
SIN_COS9: 82
.= (
- ((
cos
. (
arccot
. x))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:15
Z
c= (
dom (
cos
*
arctan )) & Z
c=
].(
- 1), 1.[ implies (
cos
*
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
cos
*
arctan )
`| Z)
. x)
= (
- ((
sin
. (
arctan
. x))
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
cos
*
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
cos
*
arctan )
is_differentiable_in x
proof
let x;
assume
A4: x
in Z;
A5:
cos
is_differentiable_in (
arctan
. x) by
SIN_COS: 63;
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
arctan
is_differentiable_in x by
A4,
FDIFF_1: 9;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
cos
*
arctan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
*
arctan )
`| Z)
. x)
= (
- ((
sin
. (
arctan
. x))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A7: x
in Z;
A8:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
A9:
arctan
is_differentiable_in x by
A7,
FDIFF_1: 9;
A10:
cos
is_differentiable_in (
arctan
. x) by
SIN_COS: 63;
(((
cos
*
arctan )
`| Z)
. x)
= (
diff ((
cos
*
arctan ),x)) by
A6,
A7,
FDIFF_1:def 7
.= ((
diff (
cos ,(
arctan
. x)))
* (
diff (
arctan ,x))) by
A9,
A10,
FDIFF_2: 13
.= ((
- (
sin
. (
arctan
. x)))
* (
diff (
arctan ,x))) by
SIN_COS: 63
.= (
- ((
sin
. (
arctan
. x))
* (
diff (
arctan ,x))))
.= (
- ((
sin
. (
arctan
. x))
* ((
arctan
`| Z)
. x))) by
A7,
A8,
FDIFF_1:def 7
.= (
- ((
sin
. (
arctan
. x))
* (1
/ (1
+ (x
^2 ))))) by
A2,
A7,
SIN_COS9: 81
.= (
- ((
sin
. (
arctan
. x))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:16
Z
c= (
dom (
cos
*
arccot )) & Z
c=
].(
- 1), 1.[ implies (
cos
*
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
cos
*
arccot )
`| Z)
. x)
= ((
sin
. (
arccot
. x))
/ (1
+ (x
^2 )))
proof
assume that
A1: Z
c= (
dom (
cos
*
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
cos
*
arccot )
is_differentiable_in x
proof
let x;
assume
A4: x
in Z;
A5:
cos
is_differentiable_in (
arccot
. x) by
SIN_COS: 63;
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
arccot
is_differentiable_in x by
A4,
FDIFF_1: 9;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
cos
*
arccot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
*
arccot )
`| Z)
. x)
= ((
sin
. (
arccot
. x))
/ (1
+ (x
^2 )))
proof
let x;
assume
A7: x
in Z;
A8:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
A9:
arccot
is_differentiable_in x by
A7,
FDIFF_1: 9;
A10:
cos
is_differentiable_in (
arccot
. x) by
SIN_COS: 63;
(((
cos
*
arccot )
`| Z)
. x)
= (
diff ((
cos
*
arccot ),x)) by
A6,
A7,
FDIFF_1:def 7
.= ((
diff (
cos ,(
arccot
. x)))
* (
diff (
arccot ,x))) by
A9,
A10,
FDIFF_2: 13
.= ((
- (
sin
. (
arccot
. x)))
* (
diff (
arccot ,x))) by
SIN_COS: 63
.= (
- ((
sin
. (
arccot
. x))
* (
diff (
arccot ,x))))
.= (
- ((
sin
. (
arccot
. x))
* ((
arccot
`| Z)
. x))) by
A7,
A8,
FDIFF_1:def 7
.= (
- ((
sin
. (
arccot
. x))
* (
- (1
/ (1
+ (x
^2 )))))) by
A2,
A7,
SIN_COS9: 82
.= ((
sin
. (
arccot
. x))
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:17
Z
c= (
dom (
tan
*
arctan )) & Z
c=
].(
- 1), 1.[ implies (
tan
*
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
tan
*
arctan )
`| Z)
. x)
= (1
/ (((
cos
. (
arctan
. x))
^2 )
* (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
tan
*
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
tan
*
arctan )
is_differentiable_in x
proof
let x;
assume
A4: x
in Z;
then (
arctan
. x)
in (
dom
tan ) by
A1,
FUNCT_1: 11;
then (
cos
. (
arctan
. x))
<>
0 by
FDIFF_8: 1;
then
A5:
tan
is_differentiable_in (
arctan
. x) by
FDIFF_7: 46;
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
arctan
is_differentiable_in x by
A4,
FDIFF_1: 9;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
tan
*
arctan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
*
arctan )
`| Z)
. x)
= (1
/ (((
cos
. (
arctan
. x))
^2 )
* (1
+ (x
^2 ))))
proof
let x;
assume
A7: x
in Z;
then (
arctan
. x)
in (
dom
tan ) by
A1,
FUNCT_1: 11;
then
A8: (
cos
. (
arctan
. x))
<>
0 by
FDIFF_8: 1;
then
A9:
tan
is_differentiable_in (
arctan
. x) by
FDIFF_7: 46;
A10:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
A11:
arctan
is_differentiable_in x by
A7,
FDIFF_1: 9;
(((
tan
*
arctan )
`| Z)
. x)
= (
diff ((
tan
*
arctan ),x)) by
A6,
A7,
FDIFF_1:def 7
.= ((
diff (
tan ,(
arctan
. x)))
* (
diff (
arctan ,x))) by
A11,
A9,
FDIFF_2: 13
.= ((1
/ ((
cos
. (
arctan
. x))
^2 ))
* (
diff (
arctan ,x))) by
A8,
FDIFF_7: 46
.= ((1
/ ((
cos
. (
arctan
. x))
^2 ))
* ((
arctan
`| Z)
. x)) by
A7,
A10,
FDIFF_1:def 7
.= ((1
/ ((
cos
. (
arctan
. x))
^2 ))
* (1
/ (1
+ (x
^2 )))) by
A2,
A7,
SIN_COS9: 81
.= (1
/ (((
cos
. (
arctan
. x))
^2 )
* (1
+ (x
^2 )))) by
XCMPLX_1: 102;
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:18
Z
c= (
dom (
tan
*
arccot )) & Z
c=
].(
- 1), 1.[ implies (
tan
*
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
tan
*
arccot )
`| Z)
. x)
= (
- (1
/ (((
cos
. (
arccot
. x))
^2 )
* (1
+ (x
^2 )))))
proof
assume that
A1: Z
c= (
dom (
tan
*
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
tan
*
arccot )
is_differentiable_in x
proof
let x;
assume
A4: x
in Z;
then (
arccot
. x)
in (
dom
tan ) by
A1,
FUNCT_1: 11;
then (
cos
. (
arccot
. x))
<>
0 by
FDIFF_8: 1;
then
A5:
tan
is_differentiable_in (
arccot
. x) by
FDIFF_7: 46;
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
arccot
is_differentiable_in x by
A4,
FDIFF_1: 9;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
tan
*
arccot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
*
arccot )
`| Z)
. x)
= (
- (1
/ (((
cos
. (
arccot
. x))
^2 )
* (1
+ (x
^2 )))))
proof
let x;
assume
A7: x
in Z;
then (
arccot
. x)
in (
dom
tan ) by
A1,
FUNCT_1: 11;
then
A8: (
cos
. (
arccot
. x))
<>
0 by
FDIFF_8: 1;
then
A9:
tan
is_differentiable_in (
arccot
. x) by
FDIFF_7: 46;
A10:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
A11:
arccot
is_differentiable_in x by
A7,
FDIFF_1: 9;
(((
tan
*
arccot )
`| Z)
. x)
= (
diff ((
tan
*
arccot ),x)) by
A6,
A7,
FDIFF_1:def 7
.= ((
diff (
tan ,(
arccot
. x)))
* (
diff (
arccot ,x))) by
A11,
A9,
FDIFF_2: 13
.= ((1
/ ((
cos
. (
arccot
. x))
^2 ))
* (
diff (
arccot ,x))) by
A8,
FDIFF_7: 46
.= ((1
/ ((
cos
. (
arccot
. x))
^2 ))
* ((
arccot
`| Z)
. x)) by
A7,
A10,
FDIFF_1:def 7
.= ((1
/ ((
cos
. (
arccot
. x))
^2 ))
* (
- (1
/ (1
+ (x
^2 ))))) by
A2,
A7,
SIN_COS9: 82
.= (
- ((1
/ ((
cos
. (
arccot
. x))
^2 ))
* (1
/ (1
+ (x
^2 )))))
.= (
- (1
/ (((
cos
. (
arccot
. x))
^2 )
* (1
+ (x
^2 ))))) by
XCMPLX_1: 102;
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:19
Z
c= (
dom (
cot
*
arctan )) & Z
c=
].(
- 1), 1.[ implies (
cot
*
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
cot
*
arctan )
`| Z)
. x)
= (
- (1
/ (((
sin
. (
arctan
. x))
^2 )
* (1
+ (x
^2 )))))
proof
assume that
A1: Z
c= (
dom (
cot
*
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
cot
*
arctan )
is_differentiable_in x
proof
let x;
assume
A4: x
in Z;
then (
arctan
. x)
in (
dom
cot ) by
A1,
FUNCT_1: 11;
then (
sin
. (
arctan
. x))
<>
0 by
FDIFF_8: 2;
then
A5:
cot
is_differentiable_in (
arctan
. x) by
FDIFF_7: 47;
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
arctan
is_differentiable_in x by
A4,
FDIFF_1: 9;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
cot
*
arctan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cot
*
arctan )
`| Z)
. x)
= (
- (1
/ (((
sin
. (
arctan
. x))
^2 )
* (1
+ (x
^2 )))))
proof
let x;
assume
A7: x
in Z;
then (
arctan
. x)
in (
dom
cot ) by
A1,
FUNCT_1: 11;
then
A8: (
sin
. (
arctan
. x))
<>
0 by
FDIFF_8: 2;
then
A9:
cot
is_differentiable_in (
arctan
. x) by
FDIFF_7: 47;
A10:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
A11:
arctan
is_differentiable_in x by
A7,
FDIFF_1: 9;
(((
cot
*
arctan )
`| Z)
. x)
= (
diff ((
cot
*
arctan ),x)) by
A6,
A7,
FDIFF_1:def 7
.= ((
diff (
cot ,(
arctan
. x)))
* (
diff (
arctan ,x))) by
A11,
A9,
FDIFF_2: 13
.= ((
- (1
/ ((
sin
. (
arctan
. x))
^2 )))
* (
diff (
arctan ,x))) by
A8,
FDIFF_7: 47
.= (
- ((1
/ ((
sin
. (
arctan
. x))
^2 ))
* (
diff (
arctan ,x))))
.= (
- ((1
/ ((
sin
. (
arctan
. x))
^2 ))
* ((
arctan
`| Z)
. x))) by
A7,
A10,
FDIFF_1:def 7
.= (
- ((1
/ ((
sin
. (
arctan
. x))
^2 ))
* (1
/ (1
+ (x
^2 ))))) by
A2,
A7,
SIN_COS9: 81
.= (
- (1
/ (((
sin
. (
arctan
. x))
^2 )
* (1
+ (x
^2 ))))) by
XCMPLX_1: 102;
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:20
Z
c= (
dom (
cot
*
arccot )) & Z
c=
].(
- 1), 1.[ implies (
cot
*
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
cot
*
arccot )
`| Z)
. x)
= (1
/ (((
sin
. (
arccot
. x))
^2 )
* (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
cot
*
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
cot
*
arccot )
is_differentiable_in x
proof
let x;
assume
A4: x
in Z;
then (
arccot
. x)
in (
dom
cot ) by
A1,
FUNCT_1: 11;
then (
sin
. (
arccot
. x))
<>
0 by
FDIFF_8: 2;
then
A5:
cot
is_differentiable_in (
arccot
. x) by
FDIFF_7: 47;
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
arccot
is_differentiable_in x by
A4,
FDIFF_1: 9;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
cot
*
arccot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cot
*
arccot )
`| Z)
. x)
= (1
/ (((
sin
. (
arccot
. x))
^2 )
* (1
+ (x
^2 ))))
proof
let x;
assume
A7: x
in Z;
then (
arccot
. x)
in (
dom
cot ) by
A1,
FUNCT_1: 11;
then
A8: (
sin
. (
arccot
. x))
<>
0 by
FDIFF_8: 2;
then
A9:
cot
is_differentiable_in (
arccot
. x) by
FDIFF_7: 47;
A10:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
A11:
arccot
is_differentiable_in x by
A7,
FDIFF_1: 9;
(((
cot
*
arccot )
`| Z)
. x)
= (
diff ((
cot
*
arccot ),x)) by
A6,
A7,
FDIFF_1:def 7
.= ((
diff (
cot ,(
arccot
. x)))
* (
diff (
arccot ,x))) by
A11,
A9,
FDIFF_2: 13
.= ((
- (1
/ ((
sin
. (
arccot
. x))
^2 )))
* (
diff (
arccot ,x))) by
A8,
FDIFF_7: 47
.= (
- ((1
/ ((
sin
. (
arccot
. x))
^2 ))
* (
diff (
arccot ,x))))
.= (
- ((1
/ ((
sin
. (
arccot
. x))
^2 ))
* ((
arccot
`| Z)
. x))) by
A7,
A10,
FDIFF_1:def 7
.= (
- ((1
/ ((
sin
. (
arccot
. x))
^2 ))
* (
- (1
/ (1
+ (x
^2 )))))) by
A2,
A7,
SIN_COS9: 82
.= ((1
/ ((
sin
. (
arccot
. x))
^2 ))
* (1
/ (1
+ (x
^2 ))))
.= (1
/ (((
sin
. (
arccot
. x))
^2 )
* (1
+ (x
^2 )))) by
XCMPLX_1: 102;
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:21
Z
c= (
dom (
sec
*
arctan )) & Z
c=
].(
- 1), 1.[ implies (
sec
*
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
sec
*
arctan )
`| Z)
. x)
= ((
sin
. (
arctan
. x))
/ (((
cos
. (
arctan
. x))
^2 )
* (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
sec
*
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
cos
. (
arctan
. x))
<>
0
proof
let x;
assume x
in Z;
then (
arctan
. x)
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A4: for x st x
in Z holds (
sec
*
arctan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
cos
. (
arctan
. x))
<>
0 by
A3;
then
A6:
sec
is_differentiable_in (
arctan
. x) by
FDIFF_9: 1;
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
arctan
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
sec
*
arctan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
*
arctan )
`| Z)
. x)
= ((
sin
. (
arctan
. x))
/ (((
cos
. (
arctan
. x))
^2 )
* (1
+ (x
^2 ))))
proof
let x;
assume
A8: x
in Z;
then
A9: (
cos
. (
arctan
. x))
<>
0 by
A3;
(
cos
. (
arctan
. x))
<>
0 by
A3,
A8;
then
A10:
sec
is_differentiable_in (
arctan
. x) by
FDIFF_9: 1;
A11:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
A12:
arctan
is_differentiable_in x by
A8,
FDIFF_1: 9;
(((
sec
*
arctan )
`| Z)
. x)
= (
diff ((
sec
*
arctan ),x)) by
A7,
A8,
FDIFF_1:def 7
.= ((
diff (
sec ,(
arctan
. x)))
* (
diff (
arctan ,x))) by
A12,
A10,
FDIFF_2: 13
.= (((
sin
. (
arctan
. x))
/ ((
cos
. (
arctan
. x))
^2 ))
* (
diff (
arctan ,x))) by
A9,
FDIFF_9: 1
.= (((
sin
. (
arctan
. x))
/ ((
cos
. (
arctan
. x))
^2 ))
* ((
arctan
`| Z)
. x)) by
A8,
A11,
FDIFF_1:def 7
.= (((
sin
. (
arctan
. x))
/ ((
cos
. (
arctan
. x))
^2 ))
* (1
/ (1
+ (x
^2 )))) by
A2,
A8,
SIN_COS9: 81
.= (((
sin
. (
arctan
. x))
* 1)
/ (((
cos
. (
arctan
. x))
^2 )
* (1
+ (x
^2 )))) by
XCMPLX_1: 76
.= ((
sin
. (
arctan
. x))
/ (((
cos
. (
arctan
. x))
^2 )
* (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:22
Z
c= (
dom (
sec
*
arccot )) & Z
c=
].(
- 1), 1.[ implies (
sec
*
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
sec
*
arccot )
`| Z)
. x)
= (
- ((
sin
. (
arccot
. x))
/ (((
cos
. (
arccot
. x))
^2 )
* (1
+ (x
^2 )))))
proof
assume that
A1: Z
c= (
dom (
sec
*
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
cos
. (
arccot
. x))
<>
0
proof
let x;
assume x
in Z;
then (
arccot
. x)
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A4: for x st x
in Z holds (
sec
*
arccot )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
cos
. (
arccot
. x))
<>
0 by
A3;
then
A6:
sec
is_differentiable_in (
arccot
. x) by
FDIFF_9: 1;
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
arccot
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
sec
*
arccot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
*
arccot )
`| Z)
. x)
= (
- ((
sin
. (
arccot
. x))
/ (((
cos
. (
arccot
. x))
^2 )
* (1
+ (x
^2 )))))
proof
let x;
assume
A8: x
in Z;
then
A9: (
cos
. (
arccot
. x))
<>
0 by
A3;
(
cos
. (
arccot
. x))
<>
0 by
A3,
A8;
then
A10:
sec
is_differentiable_in (
arccot
. x) by
FDIFF_9: 1;
A11:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
A12:
arccot
is_differentiable_in x by
A8,
FDIFF_1: 9;
(((
sec
*
arccot )
`| Z)
. x)
= (
diff ((
sec
*
arccot ),x)) by
A7,
A8,
FDIFF_1:def 7
.= ((
diff (
sec ,(
arccot
. x)))
* (
diff (
arccot ,x))) by
A12,
A10,
FDIFF_2: 13
.= (((
sin
. (
arccot
. x))
/ ((
cos
. (
arccot
. x))
^2 ))
* (
diff (
arccot ,x))) by
A9,
FDIFF_9: 1
.= (((
sin
. (
arccot
. x))
/ ((
cos
. (
arccot
. x))
^2 ))
* ((
arccot
`| Z)
. x)) by
A8,
A11,
FDIFF_1:def 7
.= (((
sin
. (
arccot
. x))
/ ((
cos
. (
arccot
. x))
^2 ))
* (
- (1
/ (1
+ (x
^2 ))))) by
A2,
A8,
SIN_COS9: 82
.= (
- (((
sin
. (
arccot
. x))
/ ((
cos
. (
arccot
. x))
^2 ))
* (1
/ (1
+ (x
^2 )))))
.= (
- (((
sin
. (
arccot
. x))
* 1)
/ (((
cos
. (
arccot
. x))
^2 )
* (1
+ (x
^2 ))))) by
XCMPLX_1: 76
.= (
- ((
sin
. (
arccot
. x))
/ (((
cos
. (
arccot
. x))
^2 )
* (1
+ (x
^2 )))));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:23
Z
c= (
dom (
cosec
*
arctan )) & Z
c=
].(
- 1), 1.[ implies (
cosec
*
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
cosec
*
arctan )
`| Z)
. x)
= (
- ((
cos
. (
arctan
. x))
/ (((
sin
. (
arctan
. x))
^2 )
* (1
+ (x
^2 )))))
proof
assume that
A1: Z
c= (
dom (
cosec
*
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
sin
. (
arctan
. x))
<>
0
proof
let x;
assume x
in Z;
then (
arctan
. x)
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A4: for x st x
in Z holds (
cosec
*
arctan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
sin
. (
arctan
. x))
<>
0 by
A3;
then
A6:
cosec
is_differentiable_in (
arctan
. x) by
FDIFF_9: 2;
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
arctan
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
cosec
*
arctan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
*
arctan )
`| Z)
. x)
= (
- ((
cos
. (
arctan
. x))
/ (((
sin
. (
arctan
. x))
^2 )
* (1
+ (x
^2 )))))
proof
let x;
assume
A8: x
in Z;
then
A9: (
sin
. (
arctan
. x))
<>
0 by
A3;
(
sin
. (
arctan
. x))
<>
0 by
A3,
A8;
then
A10:
cosec
is_differentiable_in (
arctan
. x) by
FDIFF_9: 2;
A11:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
A12:
arctan
is_differentiable_in x by
A8,
FDIFF_1: 9;
(((
cosec
*
arctan )
`| Z)
. x)
= (
diff ((
cosec
*
arctan ),x)) by
A7,
A8,
FDIFF_1:def 7
.= ((
diff (
cosec ,(
arctan
. x)))
* (
diff (
arctan ,x))) by
A12,
A10,
FDIFF_2: 13
.= ((
- ((
cos
. (
arctan
. x))
/ ((
sin
. (
arctan
. x))
^2 )))
* (
diff (
arctan ,x))) by
A9,
FDIFF_9: 2
.= (
- (((
cos
. (
arctan
. x))
/ ((
sin
. (
arctan
. x))
^2 ))
* (
diff (
arctan ,x))))
.= (
- (((
cos
. (
arctan
. x))
/ ((
sin
. (
arctan
. x))
^2 ))
* ((
arctan
`| Z)
. x))) by
A8,
A11,
FDIFF_1:def 7
.= (
- (((
cos
. (
arctan
. x))
/ ((
sin
. (
arctan
. x))
^2 ))
* (1
/ (1
+ (x
^2 ))))) by
A2,
A8,
SIN_COS9: 81
.= (
- (((
cos
. (
arctan
. x))
* 1)
/ (((
sin
. (
arctan
. x))
^2 )
* (1
+ (x
^2 ))))) by
XCMPLX_1: 76
.= (
- ((
cos
. (
arctan
. x))
/ (((
sin
. (
arctan
. x))
^2 )
* (1
+ (x
^2 )))));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:24
Z
c= (
dom (
cosec
*
arccot )) & Z
c=
].(
- 1), 1.[ implies (
cosec
*
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
cosec
*
arccot )
`| Z)
. x)
= ((
cos
. (
arccot
. x))
/ (((
sin
. (
arccot
. x))
^2 )
* (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
cosec
*
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
sin
. (
arccot
. x))
<>
0
proof
let x;
assume x
in Z;
then (
arccot
. x)
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A4: for x st x
in Z holds (
cosec
*
arccot )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then (
sin
. (
arccot
. x))
<>
0 by
A3;
then
A6:
cosec
is_differentiable_in (
arccot
. x) by
FDIFF_9: 2;
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
arccot
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence thesis by
A6,
FDIFF_2: 13;
end;
then
A7: (
cosec
*
arccot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
*
arccot )
`| Z)
. x)
= ((
cos
. (
arccot
. x))
/ (((
sin
. (
arccot
. x))
^2 )
* (1
+ (x
^2 ))))
proof
let x;
assume
A8: x
in Z;
then
A9: (
sin
. (
arccot
. x))
<>
0 by
A3;
(
sin
. (
arccot
. x))
<>
0 by
A3,
A8;
then
A10:
cosec
is_differentiable_in (
arccot
. x) by
FDIFF_9: 2;
A11:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
A12:
arccot
is_differentiable_in x by
A8,
FDIFF_1: 9;
(((
cosec
*
arccot )
`| Z)
. x)
= (
diff ((
cosec
*
arccot ),x)) by
A7,
A8,
FDIFF_1:def 7
.= ((
diff (
cosec ,(
arccot
. x)))
* (
diff (
arccot ,x))) by
A12,
A10,
FDIFF_2: 13
.= ((
- ((
cos
. (
arccot
. x))
/ ((
sin
. (
arccot
. x))
^2 )))
* (
diff (
arccot ,x))) by
A9,
FDIFF_9: 2
.= (
- (((
cos
. (
arccot
. x))
/ ((
sin
. (
arccot
. x))
^2 ))
* (
diff (
arccot ,x))))
.= (
- (((
cos
. (
arccot
. x))
/ ((
sin
. (
arccot
. x))
^2 ))
* ((
arccot
`| Z)
. x))) by
A8,
A11,
FDIFF_1:def 7
.= (
- (((
cos
. (
arccot
. x))
/ ((
sin
. (
arccot
. x))
^2 ))
* (
- (1
/ (1
+ (x
^2 )))))) by
A2,
A8,
SIN_COS9: 82
.= (((
cos
. (
arccot
. x))
/ ((
sin
. (
arccot
. x))
^2 ))
* (1
/ (1
+ (x
^2 ))))
.= (((
cos
. (
arccot
. x))
* 1)
/ (((
sin
. (
arccot
. x))
^2 )
* (1
+ (x
^2 )))) by
XCMPLX_1: 76
.= ((
cos
. (
arccot
. x))
/ (((
sin
. (
arccot
. x))
^2 )
* (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:25
Z
c= (
dom (
sin
(#)
arctan )) & Z
c=
].(
- 1), 1.[ implies (
sin
(#)
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
sin
(#)
arctan )
`| Z)
. x)
= (((
cos
. x)
* (
arctan
. x))
+ ((
sin
. x)
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
sin
(#)
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
A4: for x st x
in Z holds
sin
is_differentiable_in x by
SIN_COS: 64;
Z
c= ((
dom
sin )
/\ (
dom
arctan )) by
A1,
VALUED_1:def 4;
then Z
c= (
dom
sin ) by
XBOOLE_1: 18;
then
A5:
sin
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
(#)
arctan )
`| Z)
. x)
= (((
cos
. x)
* (
arctan
. x))
+ ((
sin
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A6: x
in Z;
then (((
sin
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff (
arctan ,x)))) by
A1,
A5,
A3,
FDIFF_1: 21
.= (((
arctan
. x)
* (
cos
. x))
+ ((
sin
. x)
* (
diff (
arctan ,x)))) by
SIN_COS: 64
.= (((
cos
. x)
* (
arctan
. x))
+ ((
sin
. x)
* ((
arctan
`| Z)
. x))) by
A3,
A6,
FDIFF_1:def 7
.= (((
cos
. x)
* (
arctan
. x))
+ ((
sin
. x)
* (1
/ (1
+ (x
^2 ))))) by
A2,
A6,
SIN_COS9: 81
.= (((
cos
. x)
* (
arctan
. x))
+ ((
sin
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A5,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:26
Z
c= (
dom (
sin
(#)
arccot )) & Z
c=
].(
- 1), 1.[ implies (
sin
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
sin
(#)
arccot )
`| Z)
. x)
= (((
cos
. x)
* (
arccot
. x))
- ((
sin
. x)
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
sin
(#)
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
A4: for x st x
in Z holds
sin
is_differentiable_in x by
SIN_COS: 64;
Z
c= ((
dom
sin )
/\ (
dom
arccot )) by
A1,
VALUED_1:def 4;
then Z
c= (
dom
sin ) by
XBOOLE_1: 18;
then
A5:
sin
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
(#)
arccot )
`| Z)
. x)
= (((
cos
. x)
* (
arccot
. x))
- ((
sin
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A6: x
in Z;
then (((
sin
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff (
arccot ,x)))) by
A1,
A5,
A3,
FDIFF_1: 21
.= (((
arccot
. x)
* (
cos
. x))
+ ((
sin
. x)
* (
diff (
arccot ,x)))) by
SIN_COS: 64
.= (((
cos
. x)
* (
arccot
. x))
+ ((
sin
. x)
* ((
arccot
`| Z)
. x))) by
A3,
A6,
FDIFF_1:def 7
.= (((
cos
. x)
* (
arccot
. x))
+ ((
sin
. x)
* (
- (1
/ (1
+ (x
^2 )))))) by
A2,
A6,
SIN_COS9: 82
.= (((
cos
. x)
* (
arccot
. x))
- ((
sin
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A5,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:27
Z
c= (
dom (
cos
(#)
arctan )) & Z
c=
].(
- 1), 1.[ implies (
cos
(#)
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
cos
(#)
arctan )
`| Z)
. x)
= ((
- ((
sin
. x)
* (
arctan
. x)))
+ ((
cos
. x)
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
cos
(#)
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
A4: for x st x
in Z holds
cos
is_differentiable_in x by
SIN_COS: 63;
Z
c= ((
dom
cos )
/\ (
dom
arctan )) by
A1,
VALUED_1:def 4;
then Z
c= (
dom
cos ) by
XBOOLE_1: 18;
then
A5:
cos
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
(#)
arctan )
`| Z)
. x)
= ((
- ((
sin
. x)
* (
arctan
. x)))
+ ((
cos
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A6: x
in Z;
then (((
cos
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff (
arctan ,x)))) by
A1,
A5,
A3,
FDIFF_1: 21
.= (((
arctan
. x)
* (
- (
sin
. x)))
+ ((
cos
. x)
* (
diff (
arctan ,x)))) by
SIN_COS: 63
.= ((
- ((
sin
. x)
* (
arctan
. x)))
+ ((
cos
. x)
* ((
arctan
`| Z)
. x))) by
A3,
A6,
FDIFF_1:def 7
.= ((
- ((
sin
. x)
* (
arctan
. x)))
+ ((
cos
. x)
* (1
/ (1
+ (x
^2 ))))) by
A2,
A6,
SIN_COS9: 81
.= ((
- ((
sin
. x)
* (
arctan
. x)))
+ ((
cos
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A5,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:28
Z
c= (
dom (
cos
(#)
arccot )) & Z
c=
].(
- 1), 1.[ implies (
cos
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
cos
(#)
arccot )
`| Z)
. x)
= ((
- ((
sin
. x)
* (
arccot
. x)))
- ((
cos
. x)
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
cos
(#)
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
A4: for x st x
in Z holds
cos
is_differentiable_in x by
SIN_COS: 63;
Z
c= ((
dom
cos )
/\ (
dom
arccot )) by
A1,
VALUED_1:def 4;
then Z
c= (
dom
cos ) by
XBOOLE_1: 18;
then
A5:
cos
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
(#)
arccot )
`| Z)
. x)
= ((
- ((
sin
. x)
* (
arccot
. x)))
- ((
cos
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A6: x
in Z;
then (((
cos
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff (
arccot ,x)))) by
A1,
A5,
A3,
FDIFF_1: 21
.= (((
arccot
. x)
* (
- (
sin
. x)))
+ ((
cos
. x)
* (
diff (
arccot ,x)))) by
SIN_COS: 63
.= ((
- ((
sin
. x)
* (
arccot
. x)))
+ ((
cos
. x)
* ((
arccot
`| Z)
. x))) by
A3,
A6,
FDIFF_1:def 7
.= ((
- ((
sin
. x)
* (
arccot
. x)))
+ ((
cos
. x)
* (
- (1
/ (1
+ (x
^2 )))))) by
A2,
A6,
SIN_COS9: 82
.= ((
- ((
sin
. x)
* (
arccot
. x)))
- ((
cos
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A5,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:29
Z
c= (
dom (
tan
(#)
arctan )) & Z
c=
].(
- 1), 1.[ implies (
tan
(#)
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
tan
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
/ ((
cos
. x)
^2 ))
+ ((
tan
. x)
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
tan
(#)
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
Z
c= ((
dom
tan )
/\ (
dom
arctan )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom
tan ) by
XBOOLE_1: 18;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A5:
tan
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
/ ((
cos
. x)
^2 ))
+ ((
tan
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A6: x
in Z;
then
A7: (
cos
. x)
<>
0 by
A4,
FDIFF_8: 1;
(((
tan
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
* (
diff (
tan ,x)))
+ ((
tan
. x)
* (
diff (
arctan ,x)))) by
A1,
A5,
A3,
A6,
FDIFF_1: 21
.= (((
arctan
. x)
* (1
/ ((
cos
. x)
^2 )))
+ ((
tan
. x)
* (
diff (
arctan ,x)))) by
A7,
FDIFF_7: 46
.= (((
arctan
. x)
/ ((
cos
. x)
^2 ))
+ ((
tan
. x)
* ((
arctan
`| Z)
. x))) by
A3,
A6,
FDIFF_1:def 7
.= (((
arctan
. x)
/ ((
cos
. x)
^2 ))
+ ((
tan
. x)
* (1
/ (1
+ (x
^2 ))))) by
A2,
A6,
SIN_COS9: 81
.= (((
arctan
. x)
/ ((
cos
. x)
^2 ))
+ ((
tan
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A5,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:30
Z
c= (
dom (
tan
(#)
arccot )) & Z
c=
].(
- 1), 1.[ implies (
tan
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
tan
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
/ ((
cos
. x)
^2 ))
- ((
tan
. x)
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
tan
(#)
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
Z
c= ((
dom
tan )
/\ (
dom
arccot )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom
tan ) by
XBOOLE_1: 18;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A5:
tan
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
/ ((
cos
. x)
^2 ))
- ((
tan
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A6: x
in Z;
then
A7: (
cos
. x)
<>
0 by
A4,
FDIFF_8: 1;
(((
tan
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
* (
diff (
tan ,x)))
+ ((
tan
. x)
* (
diff (
arccot ,x)))) by
A1,
A5,
A3,
A6,
FDIFF_1: 21
.= (((
arccot
. x)
* (1
/ ((
cos
. x)
^2 )))
+ ((
tan
. x)
* (
diff (
arccot ,x)))) by
A7,
FDIFF_7: 46
.= (((
arccot
. x)
/ ((
cos
. x)
^2 ))
+ ((
tan
. x)
* ((
arccot
`| Z)
. x))) by
A3,
A6,
FDIFF_1:def 7
.= (((
arccot
. x)
/ ((
cos
. x)
^2 ))
+ ((
tan
. x)
* (
- (1
/ (1
+ (x
^2 )))))) by
A2,
A6,
SIN_COS9: 82
.= (((
arccot
. x)
/ ((
cos
. x)
^2 ))
- ((
tan
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A5,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:31
Z
c= (
dom (
cot
(#)
arctan )) & Z
c=
].(
- 1), 1.[ implies (
cot
(#)
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
cot
(#)
arctan )
`| Z)
. x)
= ((
- ((
arctan
. x)
/ ((
sin
. x)
^2 )))
+ ((
cot
. x)
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
cot
(#)
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
Z
c= ((
dom
cot )
/\ (
dom
arctan )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom
cot ) by
XBOOLE_1: 18;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A5:
cot
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
cot
(#)
arctan )
`| Z)
. x)
= ((
- ((
arctan
. x)
/ ((
sin
. x)
^2 )))
+ ((
cot
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A6: x
in Z;
then
A7: (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
(((
cot
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
* (
diff (
cot ,x)))
+ ((
cot
. x)
* (
diff (
arctan ,x)))) by
A1,
A5,
A3,
A6,
FDIFF_1: 21
.= (((
arctan
. x)
* (
- (1
/ ((
sin
. x)
^2 ))))
+ ((
cot
. x)
* (
diff (
arctan ,x)))) by
A7,
FDIFF_7: 47
.= ((
- ((
arctan
. x)
/ ((
sin
. x)
^2 )))
+ ((
cot
. x)
* ((
arctan
`| Z)
. x))) by
A3,
A6,
FDIFF_1:def 7
.= ((
- ((
arctan
. x)
/ ((
sin
. x)
^2 )))
+ ((
cot
. x)
* (1
/ (1
+ (x
^2 ))))) by
A2,
A6,
SIN_COS9: 81
.= ((
- ((
arctan
. x)
/ ((
sin
. x)
^2 )))
+ ((
cot
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A5,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:32
Z
c= (
dom (
cot
(#)
arccot )) & Z
c=
].(
- 1), 1.[ implies (
cot
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
cot
(#)
arccot )
`| Z)
. x)
= ((
- ((
arccot
. x)
/ ((
sin
. x)
^2 )))
- ((
cot
. x)
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
cot
(#)
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
Z
c= ((
dom
cot )
/\ (
dom
arccot )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom
cot ) by
XBOOLE_1: 18;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A5:
cot
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
cot
(#)
arccot )
`| Z)
. x)
= ((
- ((
arccot
. x)
/ ((
sin
. x)
^2 )))
- ((
cot
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A6: x
in Z;
then
A7: (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
(((
cot
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
* (
diff (
cot ,x)))
+ ((
cot
. x)
* (
diff (
arccot ,x)))) by
A1,
A5,
A3,
A6,
FDIFF_1: 21
.= (((
arccot
. x)
* (
- (1
/ ((
sin
. x)
^2 ))))
+ ((
cot
. x)
* (
diff (
arccot ,x)))) by
A7,
FDIFF_7: 47
.= ((
- ((
arccot
. x)
/ ((
sin
. x)
^2 )))
+ ((
cot
. x)
* ((
arccot
`| Z)
. x))) by
A3,
A6,
FDIFF_1:def 7
.= ((
- ((
arccot
. x)
/ ((
sin
. x)
^2 )))
+ ((
cot
. x)
* (
- (1
/ (1
+ (x
^2 )))))) by
A2,
A6,
SIN_COS9: 82
.= ((
- ((
arccot
. x)
/ ((
sin
. x)
^2 )))
- ((
cot
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A5,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:33
Z
c= (
dom (
sec
(#)
arctan )) & Z
c=
].(
- 1), 1.[ implies (
sec
(#)
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
sec
(#)
arctan )
`| Z)
. x)
= ((((
sin
. x)
* (
arctan
. x))
/ ((
cos
. x)
^2 ))
+ (1
/ ((
cos
. x)
* (1
+ (x
^2 )))))
proof
assume that
A1: Z
c= (
dom (
sec
(#)
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
Z
c= ((
dom
sec )
/\ (
dom
arctan )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom
sec ) by
XBOOLE_1: 18;
for x st x
in Z holds
sec
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
RFUNCT_1: 3;
hence thesis by
FDIFF_9: 1;
end;
then
A5:
sec
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
(#)
arctan )
`| Z)
. x)
= ((((
sin
. x)
* (
arctan
. x))
/ ((
cos
. x)
^2 ))
+ (1
/ ((
cos
. x)
* (1
+ (x
^2 )))))
proof
let x;
assume
A6: x
in Z;
then
A7: (
cos
. x)
<>
0 by
A4,
RFUNCT_1: 3;
(((
sec
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
* (
diff (
sec ,x)))
+ ((
sec
. x)
* (
diff (
arctan ,x)))) by
A1,
A5,
A3,
A6,
FDIFF_1: 21
.= (((
arctan
. x)
* ((
sin
. x)
/ ((
cos
. x)
^2 )))
+ ((
sec
. x)
* (
diff (
arctan ,x)))) by
A7,
FDIFF_9: 1
.= ((((
sin
. x)
* (
arctan
. x))
/ ((
cos
. x)
^2 ))
+ ((
sec
. x)
* ((
arctan
`| Z)
. x))) by
A3,
A6,
FDIFF_1:def 7
.= ((((
sin
. x)
* (
arctan
. x))
/ ((
cos
. x)
^2 ))
+ ((
sec
. x)
* (1
/ (1
+ (x
^2 ))))) by
A2,
A6,
SIN_COS9: 81
.= ((((
sin
. x)
* (
arctan
. x))
/ ((
cos
. x)
^2 ))
+ ((1
/ (
cos
. x))
* (1
/ (1
+ (x
^2 ))))) by
A4,
A6,
RFUNCT_1:def 2
.= ((((
sin
. x)
* (
arctan
. x))
/ ((
cos
. x)
^2 ))
+ (1
/ ((
cos
. x)
* (1
+ (x
^2 ))))) by
XCMPLX_1: 102;
hence thesis;
end;
hence thesis by
A1,
A5,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:34
Z
c= (
dom (
sec
(#)
arccot )) & Z
c=
].(
- 1), 1.[ implies (
sec
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
sec
(#)
arccot )
`| Z)
. x)
= ((((
sin
. x)
* (
arccot
. x))
/ ((
cos
. x)
^2 ))
- (1
/ ((
cos
. x)
* (1
+ (x
^2 )))))
proof
assume that
A1: Z
c= (
dom (
sec
(#)
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
Z
c= ((
dom
sec )
/\ (
dom
arccot )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom
sec ) by
XBOOLE_1: 18;
for x st x
in Z holds
sec
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
RFUNCT_1: 3;
hence thesis by
FDIFF_9: 1;
end;
then
A5:
sec
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
sec
(#)
arccot )
`| Z)
. x)
= ((((
sin
. x)
* (
arccot
. x))
/ ((
cos
. x)
^2 ))
- (1
/ ((
cos
. x)
* (1
+ (x
^2 )))))
proof
let x;
assume
A6: x
in Z;
then
A7: (
cos
. x)
<>
0 by
A4,
RFUNCT_1: 3;
(((
sec
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
* (
diff (
sec ,x)))
+ ((
sec
. x)
* (
diff (
arccot ,x)))) by
A1,
A5,
A3,
A6,
FDIFF_1: 21
.= (((
arccot
. x)
* ((
sin
. x)
/ ((
cos
. x)
^2 )))
+ ((
sec
. x)
* (
diff (
arccot ,x)))) by
A7,
FDIFF_9: 1
.= ((((
sin
. x)
* (
arccot
. x))
/ ((
cos
. x)
^2 ))
+ ((
sec
. x)
* ((
arccot
`| Z)
. x))) by
A3,
A6,
FDIFF_1:def 7
.= ((((
sin
. x)
* (
arccot
. x))
/ ((
cos
. x)
^2 ))
+ ((
sec
. x)
* (
- (1
/ (1
+ (x
^2 )))))) by
A2,
A6,
SIN_COS9: 82
.= ((((
sin
. x)
* (
arccot
. x))
/ ((
cos
. x)
^2 ))
- ((
sec
. x)
* (1
/ (1
+ (x
^2 )))))
.= ((((
sin
. x)
* (
arccot
. x))
/ ((
cos
. x)
^2 ))
- ((1
/ (
cos
. x))
* (1
/ (1
+ (x
^2 ))))) by
A4,
A6,
RFUNCT_1:def 2
.= ((((
sin
. x)
* (
arccot
. x))
/ ((
cos
. x)
^2 ))
- (1
/ ((
cos
. x)
* (1
+ (x
^2 ))))) by
XCMPLX_1: 102;
hence thesis;
end;
hence thesis by
A1,
A5,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:35
Z
c= (
dom (
cosec
(#)
arctan )) & Z
c=
].(
- 1), 1.[ implies (
cosec
(#)
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
cosec
(#)
arctan )
`| Z)
. x)
= ((
- (((
cos
. x)
* (
arctan
. x))
/ ((
sin
. x)
^2 )))
+ (1
/ ((
sin
. x)
* (1
+ (x
^2 )))))
proof
assume that
A1: Z
c= (
dom (
cosec
(#)
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
Z
c= ((
dom
cosec )
/\ (
dom
arctan )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom
cosec ) by
XBOOLE_1: 18;
for x st x
in Z holds
cosec
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
RFUNCT_1: 3;
hence thesis by
FDIFF_9: 2;
end;
then
A5:
cosec
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
(#)
arctan )
`| Z)
. x)
= ((
- (((
cos
. x)
* (
arctan
. x))
/ ((
sin
. x)
^2 )))
+ (1
/ ((
sin
. x)
* (1
+ (x
^2 )))))
proof
let x;
assume
A6: x
in Z;
then
A7: (
sin
. x)
<>
0 by
A4,
RFUNCT_1: 3;
(((
cosec
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
* (
diff (
cosec ,x)))
+ ((
cosec
. x)
* (
diff (
arctan ,x)))) by
A1,
A5,
A3,
A6,
FDIFF_1: 21
.= (((
arctan
. x)
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))
+ ((
cosec
. x)
* (
diff (
arctan ,x)))) by
A7,
FDIFF_9: 2
.= ((
- (((
cos
. x)
* (
arctan
. x))
/ ((
sin
. x)
^2 )))
+ ((
cosec
. x)
* ((
arctan
`| Z)
. x))) by
A3,
A6,
FDIFF_1:def 7
.= ((
- (((
cos
. x)
* (
arctan
. x))
/ ((
sin
. x)
^2 )))
+ ((
cosec
. x)
* (1
/ (1
+ (x
^2 ))))) by
A2,
A6,
SIN_COS9: 81
.= ((
- (((
cos
. x)
* (
arctan
. x))
/ ((
sin
. x)
^2 )))
+ ((1
/ (
sin
. x))
* (1
/ (1
+ (x
^2 ))))) by
A4,
A6,
RFUNCT_1:def 2
.= ((
- (((
cos
. x)
* (
arctan
. x))
/ ((
sin
. x)
^2 )))
+ (1
/ ((
sin
. x)
* (1
+ (x
^2 ))))) by
XCMPLX_1: 102;
hence thesis;
end;
hence thesis by
A1,
A5,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:36
Z
c= (
dom (
cosec
(#)
arccot )) & Z
c=
].(
- 1), 1.[ implies (
cosec
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
cosec
(#)
arccot )
`| Z)
. x)
= ((
- (((
cos
. x)
* (
arccot
. x))
/ ((
sin
. x)
^2 )))
- (1
/ ((
sin
. x)
* (1
+ (x
^2 )))))
proof
assume that
A1: Z
c= (
dom (
cosec
(#)
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
Z
c= ((
dom
cosec )
/\ (
dom
arccot )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom
cosec ) by
XBOOLE_1: 18;
for x st x
in Z holds
cosec
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
RFUNCT_1: 3;
hence thesis by
FDIFF_9: 2;
end;
then
A5:
cosec
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((
cosec
(#)
arccot )
`| Z)
. x)
= ((
- (((
cos
. x)
* (
arccot
. x))
/ ((
sin
. x)
^2 )))
- (1
/ ((
sin
. x)
* (1
+ (x
^2 )))))
proof
let x;
assume
A6: x
in Z;
then
A7: (
sin
. x)
<>
0 by
A4,
RFUNCT_1: 3;
(((
cosec
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
* (
diff (
cosec ,x)))
+ ((
cosec
. x)
* (
diff (
arccot ,x)))) by
A1,
A5,
A3,
A6,
FDIFF_1: 21
.= (((
arccot
. x)
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))
+ ((
cosec
. x)
* (
diff (
arccot ,x)))) by
A7,
FDIFF_9: 2
.= ((
- (((
cos
. x)
* (
arccot
. x))
/ ((
sin
. x)
^2 )))
+ ((
cosec
. x)
* ((
arccot
`| Z)
. x))) by
A3,
A6,
FDIFF_1:def 7
.= ((
- (((
cos
. x)
* (
arccot
. x))
/ ((
sin
. x)
^2 )))
+ ((
cosec
. x)
* (
- (1
/ (1
+ (x
^2 )))))) by
A2,
A6,
SIN_COS9: 82
.= ((
- (((
cos
. x)
* (
arccot
. x))
/ ((
sin
. x)
^2 )))
- ((
cosec
. x)
* (1
/ (1
+ (x
^2 )))))
.= ((
- (((
cos
. x)
* (
arccot
. x))
/ ((
sin
. x)
^2 )))
- ((1
/ (
sin
. x))
* (1
/ (1
+ (x
^2 ))))) by
A4,
A6,
RFUNCT_1:def 2
.= ((
- (((
cos
. x)
* (
arccot
. x))
/ ((
sin
. x)
^2 )))
- (1
/ ((
sin
. x)
* (1
+ (x
^2 ))))) by
XCMPLX_1: 102;
hence thesis;
end;
hence thesis by
A1,
A5,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:37
Th37: Z
c=
].(
- 1), 1.[ implies (
arctan
+
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
arctan
+
arccot )
`| Z)
. x)
=
0
proof
assume
A1: Z
c=
].(
- 1), 1.[;
then
A2:
arctan
is_differentiable_on Z by
SIN_COS9: 81;
A3:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A4: Z
c= (
dom
arccot ) by
A1,
XBOOLE_1: 1;
A5:
arccot
is_differentiable_on Z by
A1,
SIN_COS9: 82;
].(
- 1), 1.[
c= (
dom
arctan ) by
A3,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A1,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A4,
XBOOLE_1: 19;
then
A6: Z
c= (
dom (
arctan
+
arccot )) by
VALUED_1:def 1;
for x st x
in Z holds (((
arctan
+
arccot )
`| Z)
. x)
=
0
proof
let x;
assume
A7: x
in Z;
then (((
arctan
+
arccot )
`| Z)
. x)
= ((
diff (
arctan ,x))
+ (
diff (
arccot ,x))) by
A6,
A2,
A5,
FDIFF_1: 18
.= (((
arctan
`| Z)
. x)
+ (
diff (
arccot ,x))) by
A2,
A7,
FDIFF_1:def 7
.= ((1
/ (1
+ (x
^2 )))
+ (
diff (
arccot ,x))) by
A1,
A7,
SIN_COS9: 81
.= ((1
/ (1
+ (x
^2 )))
+ ((
arccot
`| Z)
. x)) by
A5,
A7,
FDIFF_1:def 7
.= ((1
/ (1
+ (x
^2 )))
+ (
- (1
/ (1
+ (x
^2 ))))) by
A1,
A7,
SIN_COS9: 82
.=
0 ;
hence thesis;
end;
hence thesis by
A6,
A2,
A5,
FDIFF_1: 18;
end;
theorem ::
FDIFF_11:38
Th38: Z
c=
].(
- 1), 1.[ implies (
arctan
-
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
arctan
-
arccot )
`| Z)
. x)
= (2
/ (1
+ (x
^2 )))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
then
A2:
arctan
is_differentiable_on Z by
SIN_COS9: 81;
A3:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A4: Z
c= (
dom
arccot ) by
A1,
XBOOLE_1: 1;
A5:
arccot
is_differentiable_on Z by
A1,
SIN_COS9: 82;
].(
- 1), 1.[
c= (
dom
arctan ) by
A3,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A1,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A4,
XBOOLE_1: 19;
then
A6: Z
c= (
dom (
arctan
-
arccot )) by
VALUED_1: 12;
for x st x
in Z holds (((
arctan
-
arccot )
`| Z)
. x)
= (2
/ (1
+ (x
^2 )))
proof
let x;
assume
A7: x
in Z;
then (((
arctan
-
arccot )
`| Z)
. x)
= ((
diff (
arctan ,x))
- (
diff (
arccot ,x))) by
A6,
A2,
A5,
FDIFF_1: 19
.= (((
arctan
`| Z)
. x)
- (
diff (
arccot ,x))) by
A2,
A7,
FDIFF_1:def 7
.= ((1
/ (1
+ (x
^2 )))
- (
diff (
arccot ,x))) by
A1,
A7,
SIN_COS9: 81
.= ((1
/ (1
+ (x
^2 )))
- ((
arccot
`| Z)
. x)) by
A5,
A7,
FDIFF_1:def 7
.= ((1
/ (1
+ (x
^2 )))
- (
- (1
/ (1
+ (x
^2 ))))) by
A1,
A7,
SIN_COS9: 82
.= (2
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A6,
A2,
A5,
FDIFF_1: 19;
end;
theorem ::
FDIFF_11:39
Z
c=
].(
- 1), 1.[ implies (
sin
(#) (
arctan
+
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
sin
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((
cos
. x)
* ((
arctan
. x)
+ (
arccot
. x)))
proof
for x st x
in Z holds
sin
is_differentiable_in x by
SIN_COS: 64;
then
A1:
sin
is_differentiable_on Z by
FDIFF_1: 9,
SIN_COS: 24;
assume
A2: Z
c=
].(
- 1), 1.[;
then
A3: (
arctan
+
arccot )
is_differentiable_on Z by
Th37;
A4:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A5: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A4,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A5,
XBOOLE_1: 19;
then
A6: Z
c= (
dom (
arctan
+
arccot )) by
VALUED_1:def 1;
then Z
c= ((
dom
sin )
/\ (
dom (
arctan
+
arccot ))) by
SIN_COS: 24,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (
sin
(#) (
arctan
+
arccot ))) by
VALUED_1:def 4;
for x st x
in Z holds (((
sin
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((
cos
. x)
* ((
arctan
. x)
+ (
arccot
. x)))
proof
let x;
assume
A8: x
in Z;
then (((
sin
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((((
arctan
+
arccot )
. x)
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A7,
A1,
A3,
FDIFF_1: 21
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A6,
A8,
VALUED_1:def 1
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
cos
. x))
+ ((
sin
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
SIN_COS: 64
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
cos
. x))
+ ((
sin
. x)
* (((
arctan
+
arccot )
`| Z)
. x))) by
A3,
A8,
FDIFF_1:def 7
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
cos
. x))
+ ((
sin
. x)
*
0 )) by
A2,
A8,
Th37
.= ((
cos
. x)
* ((
arctan
. x)
+ (
arccot
. x)));
hence thesis;
end;
hence thesis by
A7,
A1,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:40
Z
c=
].(
- 1), 1.[ implies (
sin
(#) (
arctan
-
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
sin
(#) (
arctan
-
arccot ))
`| Z)
. x)
= (((
cos
. x)
* ((
arctan
. x)
- (
arccot
. x)))
+ ((2
* (
sin
. x))
/ (1
+ (x
^2 ))))
proof
for x st x
in Z holds
sin
is_differentiable_in x by
SIN_COS: 64;
then
A1:
sin
is_differentiable_on Z by
FDIFF_1: 9,
SIN_COS: 24;
assume
A2: Z
c=
].(
- 1), 1.[;
then
A3: (
arctan
-
arccot )
is_differentiable_on Z by
Th38;
A4:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A5: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A4,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A5,
XBOOLE_1: 19;
then
A6: Z
c= (
dom (
arctan
-
arccot )) by
VALUED_1: 12;
then Z
c= ((
dom
sin )
/\ (
dom (
arctan
-
arccot ))) by
SIN_COS: 24,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (
sin
(#) (
arctan
-
arccot ))) by
VALUED_1:def 4;
for x st x
in Z holds (((
sin
(#) (
arctan
-
arccot ))
`| Z)
. x)
= (((
cos
. x)
* ((
arctan
. x)
- (
arccot
. x)))
+ ((2
* (
sin
. x))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A8: x
in Z;
then (((
sin
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((((
arctan
-
arccot )
. x)
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A7,
A1,
A3,
FDIFF_1: 21
.= ((((
arctan
. x)
- (
arccot
. x))
* (
diff (
sin ,x)))
+ ((
sin
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A6,
A8,
VALUED_1: 13
.= ((((
arctan
. x)
- (
arccot
. x))
* (
cos
. x))
+ ((
sin
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
SIN_COS: 64
.= ((((
arctan
. x)
- (
arccot
. x))
* (
cos
. x))
+ ((
sin
. x)
* (((
arctan
-
arccot )
`| Z)
. x))) by
A3,
A8,
FDIFF_1:def 7
.= ((((
arctan
. x)
- (
arccot
. x))
* (
cos
. x))
+ ((
sin
. x)
* (2
/ (1
+ (x
^2 ))))) by
A2,
A8,
Th38
.= (((
cos
. x)
* ((
arctan
. x)
- (
arccot
. x)))
+ ((2
* (
sin
. x))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A7,
A1,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:41
Z
c=
].(
- 1), 1.[ implies (
cos
(#) (
arctan
+
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
cos
(#) (
arctan
+
arccot ))
`| Z)
. x)
= (
- ((
sin
. x)
* ((
arctan
. x)
+ (
arccot
. x))))
proof
for x st x
in Z holds
cos
is_differentiable_in x by
SIN_COS: 63;
then
A1:
cos
is_differentiable_on Z by
FDIFF_1: 9,
SIN_COS: 24;
assume
A2: Z
c=
].(
- 1), 1.[;
then
A3: (
arctan
+
arccot )
is_differentiable_on Z by
Th37;
A4:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A5: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A4,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A5,
XBOOLE_1: 19;
then
A6: Z
c= (
dom (
arctan
+
arccot )) by
VALUED_1:def 1;
then Z
c= ((
dom
cos )
/\ (
dom (
arctan
+
arccot ))) by
SIN_COS: 24,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (
cos
(#) (
arctan
+
arccot ))) by
VALUED_1:def 4;
for x st x
in Z holds (((
cos
(#) (
arctan
+
arccot ))
`| Z)
. x)
= (
- ((
sin
. x)
* ((
arctan
. x)
+ (
arccot
. x))))
proof
let x;
assume
A8: x
in Z;
then (((
cos
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((((
arctan
+
arccot )
. x)
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A7,
A1,
A3,
FDIFF_1: 21
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A6,
A8,
VALUED_1:def 1
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
SIN_COS: 63
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* (((
arctan
+
arccot )
`| Z)
. x))) by
A3,
A8,
FDIFF_1:def 7
.= ((
- (((
arctan
. x)
+ (
arccot
. x))
* (
sin
. x)))
+ ((
cos
. x)
*
0 )) by
A2,
A8,
Th37
.= (
- ((
sin
. x)
* ((
arctan
. x)
+ (
arccot
. x))));
hence thesis;
end;
hence thesis by
A7,
A1,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:42
Z
c=
].(
- 1), 1.[ implies (
cos
(#) (
arctan
-
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
cos
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((
- ((
sin
. x)
* ((
arctan
. x)
- (
arccot
. x))))
+ ((2
* (
cos
. x))
/ (1
+ (x
^2 ))))
proof
for x st x
in Z holds
cos
is_differentiable_in x by
SIN_COS: 63;
then
A1:
cos
is_differentiable_on Z by
FDIFF_1: 9,
SIN_COS: 24;
assume
A2: Z
c=
].(
- 1), 1.[;
then
A3: (
arctan
-
arccot )
is_differentiable_on Z by
Th38;
A4:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A5: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A4,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A5,
XBOOLE_1: 19;
then
A6: Z
c= (
dom (
arctan
-
arccot )) by
VALUED_1: 12;
then Z
c= ((
dom
cos )
/\ (
dom (
arctan
-
arccot ))) by
SIN_COS: 24,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (
cos
(#) (
arctan
-
arccot ))) by
VALUED_1:def 4;
for x st x
in Z holds (((
cos
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((
- ((
sin
. x)
* ((
arctan
. x)
- (
arccot
. x))))
+ ((2
* (
cos
. x))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A8: x
in Z;
then (((
cos
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((((
arctan
-
arccot )
. x)
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A7,
A1,
A3,
FDIFF_1: 21
.= ((((
arctan
. x)
- (
arccot
. x))
* (
diff (
cos ,x)))
+ ((
cos
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A6,
A8,
VALUED_1: 13
.= ((((
arctan
. x)
- (
arccot
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
SIN_COS: 63
.= ((((
arctan
. x)
- (
arccot
. x))
* (
- (
sin
. x)))
+ ((
cos
. x)
* (((
arctan
-
arccot )
`| Z)
. x))) by
A3,
A8,
FDIFF_1:def 7
.= ((
- (((
arctan
. x)
- (
arccot
. x))
* (
sin
. x)))
+ ((
cos
. x)
* (2
/ (1
+ (x
^2 ))))) by
A2,
A8,
Th38
.= ((
- ((
sin
. x)
* ((
arctan
. x)
- (
arccot
. x))))
+ ((2
* (
cos
. x))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A7,
A1,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:43
Z
c= (
dom
tan ) & Z
c=
].(
- 1), 1.[ implies (
tan
(#) (
arctan
+
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
tan
(#) (
arctan
+
arccot ))
`| Z)
. x)
= (((
arctan
. x)
+ (
arccot
. x))
/ ((
cos
. x)
^2 ))
proof
assume that
A1: Z
c= (
dom
tan ) and
A2: Z
c=
].(
- 1), 1.[;
A3: (
arctan
+
arccot )
is_differentiable_on Z by
A2,
Th37;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A1,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A4:
tan
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A5:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A6: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A5,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A6,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (
arctan
+
arccot )) by
VALUED_1:def 1;
then Z
c= ((
dom
tan )
/\ (
dom (
arctan
+
arccot ))) by
A1,
XBOOLE_1: 19;
then
A8: Z
c= (
dom (
tan
(#) (
arctan
+
arccot ))) by
VALUED_1:def 4;
for x st x
in Z holds (((
tan
(#) (
arctan
+
arccot ))
`| Z)
. x)
= (((
arctan
. x)
+ (
arccot
. x))
/ ((
cos
. x)
^2 ))
proof
let x;
assume
A9: x
in Z;
then
A10: (
cos
. x)
<>
0 by
A1,
FDIFF_8: 1;
(((
tan
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((((
arctan
+
arccot )
. x)
* (
diff (
tan ,x)))
+ ((
tan
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A8,
A4,
A3,
A9,
FDIFF_1: 21
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
diff (
tan ,x)))
+ ((
tan
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A7,
A9,
VALUED_1:def 1
.= ((((
arctan
. x)
+ (
arccot
. x))
* (1
/ ((
cos
. x)
^2 )))
+ ((
tan
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A10,
FDIFF_7: 46
.= ((((
arctan
. x)
+ (
arccot
. x))
/ ((
cos
. x)
^2 ))
+ ((
tan
. x)
* (((
arctan
+
arccot )
`| Z)
. x))) by
A3,
A9,
FDIFF_1:def 7
.= ((((
arctan
. x)
+ (
arccot
. x))
/ ((
cos
. x)
^2 ))
+ ((
tan
. x)
*
0 )) by
A2,
A9,
Th37
.= (((
arctan
. x)
+ (
arccot
. x))
/ ((
cos
. x)
^2 ));
hence thesis;
end;
hence thesis by
A8,
A4,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:44
Z
c= (
dom
tan ) & Z
c=
].(
- 1), 1.[ implies (
tan
(#) (
arctan
-
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
tan
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((((
arctan
. x)
- (
arccot
. x))
/ ((
cos
. x)
^2 ))
+ ((2
* (
tan
. x))
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom
tan ) and
A2: Z
c=
].(
- 1), 1.[;
A3: (
arctan
-
arccot )
is_differentiable_on Z by
A2,
Th38;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A1,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A4:
tan
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A5:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A6: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A5,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A6,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (
arctan
-
arccot )) by
VALUED_1: 12;
then Z
c= ((
dom
tan )
/\ (
dom (
arctan
-
arccot ))) by
A1,
XBOOLE_1: 19;
then
A8: Z
c= (
dom (
tan
(#) (
arctan
-
arccot ))) by
VALUED_1:def 4;
for x st x
in Z holds (((
tan
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((((
arctan
. x)
- (
arccot
. x))
/ ((
cos
. x)
^2 ))
+ ((2
* (
tan
. x))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A9: x
in Z;
then
A10: (
cos
. x)
<>
0 by
A1,
FDIFF_8: 1;
(((
tan
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((((
arctan
-
arccot )
. x)
* (
diff (
tan ,x)))
+ ((
tan
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A8,
A4,
A3,
A9,
FDIFF_1: 21
.= ((((
arctan
. x)
- (
arccot
. x))
* (
diff (
tan ,x)))
+ ((
tan
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A7,
A9,
VALUED_1: 13
.= ((((
arctan
. x)
- (
arccot
. x))
* (1
/ ((
cos
. x)
^2 )))
+ ((
tan
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A10,
FDIFF_7: 46
.= ((((
arctan
. x)
- (
arccot
. x))
/ ((
cos
. x)
^2 ))
+ ((
tan
. x)
* (((
arctan
-
arccot )
`| Z)
. x))) by
A3,
A9,
FDIFF_1:def 7
.= ((((
arctan
. x)
- (
arccot
. x))
/ ((
cos
. x)
^2 ))
+ ((
tan
. x)
* (2
/ (1
+ (x
^2 ))))) by
A2,
A9,
Th38
.= ((((
arctan
. x)
- (
arccot
. x))
/ ((
cos
. x)
^2 ))
+ ((2
* (
tan
. x))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A8,
A4,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:45
Z
c= (
dom
cot ) & Z
c=
].(
- 1), 1.[ implies (
cot
(#) (
arctan
+
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
cot
(#) (
arctan
+
arccot ))
`| Z)
. x)
= (
- (((
arctan
. x)
+ (
arccot
. x))
/ ((
sin
. x)
^2 )))
proof
assume that
A1: Z
c= (
dom
cot ) and
A2: Z
c=
].(
- 1), 1.[;
A3: (
arctan
+
arccot )
is_differentiable_on Z by
A2,
Th37;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A1,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A4:
cot
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A5:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A6: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A5,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A6,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (
arctan
+
arccot )) by
VALUED_1:def 1;
then Z
c= ((
dom
cot )
/\ (
dom (
arctan
+
arccot ))) by
A1,
XBOOLE_1: 19;
then
A8: Z
c= (
dom (
cot
(#) (
arctan
+
arccot ))) by
VALUED_1:def 4;
for x st x
in Z holds (((
cot
(#) (
arctan
+
arccot ))
`| Z)
. x)
= (
- (((
arctan
. x)
+ (
arccot
. x))
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A9: x
in Z;
then
A10: (
sin
. x)
<>
0 by
A1,
FDIFF_8: 2;
(((
cot
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((((
arctan
+
arccot )
. x)
* (
diff (
cot ,x)))
+ ((
cot
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A8,
A4,
A3,
A9,
FDIFF_1: 21
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
diff (
cot ,x)))
+ ((
cot
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A7,
A9,
VALUED_1:def 1
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
- (1
/ ((
sin
. x)
^2 ))))
+ ((
cot
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A10,
FDIFF_7: 47
.= ((
- (((
arctan
. x)
+ (
arccot
. x))
/ ((
sin
. x)
^2 )))
+ ((
cot
. x)
* (((
arctan
+
arccot )
`| Z)
. x))) by
A3,
A9,
FDIFF_1:def 7
.= ((
- (((
arctan
. x)
+ (
arccot
. x))
/ ((
sin
. x)
^2 )))
+ ((
cot
. x)
*
0 )) by
A2,
A9,
Th37
.= (
- (((
arctan
. x)
+ (
arccot
. x))
/ ((
sin
. x)
^2 )));
hence thesis;
end;
hence thesis by
A8,
A4,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:46
Z
c= (
dom
cot ) & Z
c=
].(
- 1), 1.[ implies (
cot
(#) (
arctan
-
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
cot
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((
- (((
arctan
. x)
- (
arccot
. x))
/ ((
sin
. x)
^2 )))
+ ((2
* (
cot
. x))
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom
cot ) and
A2: Z
c=
].(
- 1), 1.[;
A3: (
arctan
-
arccot )
is_differentiable_on Z by
A2,
Th38;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A1,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A4:
cot
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A5:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A6: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A5,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A6,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (
arctan
-
arccot )) by
VALUED_1: 12;
then Z
c= ((
dom
cot )
/\ (
dom (
arctan
-
arccot ))) by
A1,
XBOOLE_1: 19;
then
A8: Z
c= (
dom (
cot
(#) (
arctan
-
arccot ))) by
VALUED_1:def 4;
for x st x
in Z holds (((
cot
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((
- (((
arctan
. x)
- (
arccot
. x))
/ ((
sin
. x)
^2 )))
+ ((2
* (
cot
. x))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A9: x
in Z;
then
A10: (
sin
. x)
<>
0 by
A1,
FDIFF_8: 2;
(((
cot
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((((
arctan
-
arccot )
. x)
* (
diff (
cot ,x)))
+ ((
cot
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A8,
A4,
A3,
A9,
FDIFF_1: 21
.= ((((
arctan
. x)
- (
arccot
. x))
* (
diff (
cot ,x)))
+ ((
cot
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A7,
A9,
VALUED_1: 13
.= ((((
arctan
. x)
- (
arccot
. x))
* (
- (1
/ ((
sin
. x)
^2 ))))
+ ((
cot
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A10,
FDIFF_7: 47
.= ((
- (((
arctan
. x)
- (
arccot
. x))
/ ((
sin
. x)
^2 )))
+ ((
cot
. x)
* (((
arctan
-
arccot )
`| Z)
. x))) by
A3,
A9,
FDIFF_1:def 7
.= ((
- (((
arctan
. x)
- (
arccot
. x))
/ ((
sin
. x)
^2 )))
+ ((
cot
. x)
* (2
/ (1
+ (x
^2 ))))) by
A2,
A9,
Th38
.= ((
- (((
arctan
. x)
- (
arccot
. x))
/ ((
sin
. x)
^2 )))
+ ((2
* (
cot
. x))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A8,
A4,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:47
Z
c= (
dom
sec ) & Z
c=
].(
- 1), 1.[ implies (
sec
(#) (
arctan
+
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
sec
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((((
arctan
. x)
+ (
arccot
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
proof
assume that
A1: Z
c= (
dom
sec ) and
A2: Z
c=
].(
- 1), 1.[;
A3: (
arctan
+
arccot )
is_differentiable_on Z by
A2,
Th37;
for x st x
in Z holds
sec
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A1,
RFUNCT_1: 3;
hence thesis by
FDIFF_9: 1;
end;
then
A4:
sec
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A5:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A6: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A5,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A6,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (
arctan
+
arccot )) by
VALUED_1:def 1;
then Z
c= ((
dom
sec )
/\ (
dom (
arctan
+
arccot ))) by
A1,
XBOOLE_1: 19;
then
A8: Z
c= (
dom (
sec
(#) (
arctan
+
arccot ))) by
VALUED_1:def 4;
for x st x
in Z holds (((
sec
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((((
arctan
. x)
+ (
arccot
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
proof
let x;
assume
A9: x
in Z;
then
A10: (
cos
. x)
<>
0 by
A1,
RFUNCT_1: 3;
(((
sec
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((((
arctan
+
arccot )
. x)
* (
diff (
sec ,x)))
+ ((
sec
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A8,
A4,
A3,
A9,
FDIFF_1: 21
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
diff (
sec ,x)))
+ ((
sec
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A7,
A9,
VALUED_1:def 1
.= ((((
arctan
. x)
+ (
arccot
. x))
* ((
sin
. x)
/ ((
cos
. x)
^2 )))
+ ((
sec
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A10,
FDIFF_9: 1
.= (((((
arctan
. x)
+ (
arccot
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
+ ((
sec
. x)
* (((
arctan
+
arccot )
`| Z)
. x))) by
A3,
A9,
FDIFF_1:def 7
.= (((((
arctan
. x)
+ (
arccot
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
+ ((
sec
. x)
*
0 )) by
A2,
A9,
Th37
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ));
hence thesis;
end;
hence thesis by
A8,
A4,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:48
Z
c= (
dom
sec ) & Z
c=
].(
- 1), 1.[ implies (
sec
(#) (
arctan
-
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
sec
(#) (
arctan
-
arccot ))
`| Z)
. x)
= (((((
arctan
. x)
- (
arccot
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
+ ((2
* (
sec
. x))
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom
sec ) and
A2: Z
c=
].(
- 1), 1.[;
A3: (
arctan
-
arccot )
is_differentiable_on Z by
A2,
Th38;
for x st x
in Z holds
sec
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A1,
RFUNCT_1: 3;
hence thesis by
FDIFF_9: 1;
end;
then
A4:
sec
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A5:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A6: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A5,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A6,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (
arctan
-
arccot )) by
VALUED_1: 12;
then Z
c= ((
dom
sec )
/\ (
dom (
arctan
-
arccot ))) by
A1,
XBOOLE_1: 19;
then
A8: Z
c= (
dom (
sec
(#) (
arctan
-
arccot ))) by
VALUED_1:def 4;
for x st x
in Z holds (((
sec
(#) (
arctan
-
arccot ))
`| Z)
. x)
= (((((
arctan
. x)
- (
arccot
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
+ ((2
* (
sec
. x))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A9: x
in Z;
then
A10: (
cos
. x)
<>
0 by
A1,
RFUNCT_1: 3;
(((
sec
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((((
arctan
-
arccot )
. x)
* (
diff (
sec ,x)))
+ ((
sec
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A8,
A4,
A3,
A9,
FDIFF_1: 21
.= ((((
arctan
. x)
- (
arccot
. x))
* (
diff (
sec ,x)))
+ ((
sec
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A7,
A9,
VALUED_1: 13
.= ((((
arctan
. x)
- (
arccot
. x))
* ((
sin
. x)
/ ((
cos
. x)
^2 )))
+ ((
sec
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A10,
FDIFF_9: 1
.= (((((
arctan
. x)
- (
arccot
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
+ ((
sec
. x)
* (((
arctan
-
arccot )
`| Z)
. x))) by
A3,
A9,
FDIFF_1:def 7
.= (((((
arctan
. x)
- (
arccot
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
+ ((
sec
. x)
* (2
/ (1
+ (x
^2 ))))) by
A2,
A9,
Th38
.= (((((
arctan
. x)
- (
arccot
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
+ ((2
* (
sec
. x))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A8,
A4,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:49
Z
c= (
dom
cosec ) & Z
c=
].(
- 1), 1.[ implies (
cosec
(#) (
arctan
+
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
cosec
(#) (
arctan
+
arccot ))
`| Z)
. x)
= (
- ((((
arctan
. x)
+ (
arccot
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
assume that
A1: Z
c= (
dom
cosec ) and
A2: Z
c=
].(
- 1), 1.[;
A3: (
arctan
+
arccot )
is_differentiable_on Z by
A2,
Th37;
for x st x
in Z holds
cosec
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A1,
RFUNCT_1: 3;
hence thesis by
FDIFF_9: 2;
end;
then
A4:
cosec
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A5:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A6: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A5,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A6,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (
arctan
+
arccot )) by
VALUED_1:def 1;
then Z
c= ((
dom
cosec )
/\ (
dom (
arctan
+
arccot ))) by
A1,
XBOOLE_1: 19;
then
A8: Z
c= (
dom (
cosec
(#) (
arctan
+
arccot ))) by
VALUED_1:def 4;
for x st x
in Z holds (((
cosec
(#) (
arctan
+
arccot ))
`| Z)
. x)
= (
- ((((
arctan
. x)
+ (
arccot
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A9: x
in Z;
then
A10: (
sin
. x)
<>
0 by
A1,
RFUNCT_1: 3;
(((
cosec
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((((
arctan
+
arccot )
. x)
* (
diff (
cosec ,x)))
+ ((
cosec
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A8,
A4,
A3,
A9,
FDIFF_1: 21
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
diff (
cosec ,x)))
+ ((
cosec
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A7,
A9,
VALUED_1:def 1
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))
+ ((
cosec
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A10,
FDIFF_9: 2
.= ((
- ((((
arctan
. x)
+ (
arccot
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
+ ((
cosec
. x)
* (((
arctan
+
arccot )
`| Z)
. x))) by
A3,
A9,
FDIFF_1:def 7
.= ((
- ((((
arctan
. x)
+ (
arccot
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
+ ((
cosec
. x)
*
0 )) by
A2,
A9,
Th37
.= (
- ((((
arctan
. x)
+ (
arccot
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )));
hence thesis;
end;
hence thesis by
A8,
A4,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:50
Z
c= (
dom
cosec ) & Z
c=
].(
- 1), 1.[ implies (
cosec
(#) (
arctan
-
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
cosec
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((
- ((((
arctan
. x)
- (
arccot
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
+ ((2
* (
cosec
. x))
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom
cosec ) and
A2: Z
c=
].(
- 1), 1.[;
A3: (
arctan
-
arccot )
is_differentiable_on Z by
A2,
Th38;
for x st x
in Z holds
cosec
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A1,
RFUNCT_1: 3;
hence thesis by
FDIFF_9: 2;
end;
then
A4:
cosec
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A5:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A6: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A5,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A6,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (
arctan
-
arccot )) by
VALUED_1: 12;
then Z
c= ((
dom
cosec )
/\ (
dom (
arctan
-
arccot ))) by
A1,
XBOOLE_1: 19;
then
A8: Z
c= (
dom (
cosec
(#) (
arctan
-
arccot ))) by
VALUED_1:def 4;
for x st x
in Z holds (((
cosec
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((
- ((((
arctan
. x)
- (
arccot
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
+ ((2
* (
cosec
. x))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A9: x
in Z;
then
A10: (
sin
. x)
<>
0 by
A1,
RFUNCT_1: 3;
(((
cosec
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((((
arctan
-
arccot )
. x)
* (
diff (
cosec ,x)))
+ ((
cosec
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A8,
A4,
A3,
A9,
FDIFF_1: 21
.= ((((
arctan
. x)
- (
arccot
. x))
* (
diff (
cosec ,x)))
+ ((
cosec
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A7,
A9,
VALUED_1: 13
.= ((((
arctan
. x)
- (
arccot
. x))
* (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))))
+ ((
cosec
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A10,
FDIFF_9: 2
.= ((
- ((((
arctan
. x)
- (
arccot
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
+ ((
cosec
. x)
* (((
arctan
-
arccot )
`| Z)
. x))) by
A3,
A9,
FDIFF_1:def 7
.= ((
- ((((
arctan
. x)
- (
arccot
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
+ ((
cosec
. x)
* (2
/ (1
+ (x
^2 ))))) by
A2,
A9,
Th38
.= ((
- ((((
arctan
. x)
- (
arccot
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))
+ ((2
* (
cosec
. x))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A8,
A4,
A3,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:51
Z
c=
].(
- 1), 1.[ implies (
exp_R
(#) (
arctan
+
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((
exp_R
. x)
* ((
arctan
. x)
+ (
arccot
. x)))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
then
A2: (
arctan
+
arccot )
is_differentiable_on Z by
Th37;
A3:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A4: Z
c= (
dom
arccot ) by
A1,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A3,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A1,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A4,
XBOOLE_1: 19;
then
A5: Z
c= (
dom (
arctan
+
arccot )) by
VALUED_1:def 1;
then Z
c= ((
dom
exp_R )
/\ (
dom (
arctan
+
arccot ))) by
TAYLOR_1: 16,
XBOOLE_1: 19;
then
A6: Z
c= (
dom (
exp_R
(#) (
arctan
+
arccot ))) by
VALUED_1:def 4;
A7:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
for x st x
in Z holds (((
exp_R
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((
exp_R
. x)
* ((
arctan
. x)
+ (
arccot
. x)))
proof
let x;
assume
A8: x
in Z;
then (((
exp_R
(#) (
arctan
+
arccot ))
`| Z)
. x)
= ((((
arctan
+
arccot )
. x)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A6,
A7,
A2,
FDIFF_1: 21
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
A5,
A8,
VALUED_1:def 1
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
diff ((
arctan
+
arccot ),x)))) by
TAYLOR_1: 16
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
exp_R
. x))
+ ((
exp_R
. x)
* (((
arctan
+
arccot )
`| Z)
. x))) by
A2,
A8,
FDIFF_1:def 7
.= ((((
arctan
. x)
+ (
arccot
. x))
* (
exp_R
. x))
+ ((
exp_R
. x)
*
0 )) by
A1,
A8,
Th37
.= ((
exp_R
. x)
* ((
arctan
. x)
+ (
arccot
. x)));
hence thesis;
end;
hence thesis by
A6,
A7,
A2,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:52
Z
c=
].(
- 1), 1.[ implies (
exp_R
(#) (
arctan
-
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#) (
arctan
-
arccot ))
`| Z)
. x)
= (((
exp_R
. x)
* ((
arctan
. x)
- (
arccot
. x)))
+ ((2
* (
exp_R
. x))
/ (1
+ (x
^2 ))))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
then
A2: (
arctan
-
arccot )
is_differentiable_on Z by
Th38;
A3:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A4: Z
c= (
dom
arccot ) by
A1,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A3,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A1,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A4,
XBOOLE_1: 19;
then
A5: Z
c= (
dom (
arctan
-
arccot )) by
VALUED_1: 12;
then Z
c= ((
dom
exp_R )
/\ (
dom (
arctan
-
arccot ))) by
TAYLOR_1: 16,
XBOOLE_1: 19;
then
A6: Z
c= (
dom (
exp_R
(#) (
arctan
-
arccot ))) by
VALUED_1:def 4;
A7:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
for x st x
in Z holds (((
exp_R
(#) (
arctan
-
arccot ))
`| Z)
. x)
= (((
exp_R
. x)
* ((
arctan
. x)
- (
arccot
. x)))
+ ((2
* (
exp_R
. x))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A8: x
in Z;
then (((
exp_R
(#) (
arctan
-
arccot ))
`| Z)
. x)
= ((((
arctan
-
arccot )
. x)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A6,
A7,
A2,
FDIFF_1: 21
.= ((((
arctan
. x)
- (
arccot
. x))
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
A5,
A8,
VALUED_1: 13
.= ((((
arctan
. x)
- (
arccot
. x))
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
diff ((
arctan
-
arccot ),x)))) by
TAYLOR_1: 16
.= ((((
arctan
. x)
- (
arccot
. x))
* (
exp_R
. x))
+ ((
exp_R
. x)
* (((
arctan
-
arccot )
`| Z)
. x))) by
A2,
A8,
FDIFF_1:def 7
.= ((((
arctan
. x)
- (
arccot
. x))
* (
exp_R
. x))
+ ((
exp_R
. x)
* (2
/ (1
+ (x
^2 ))))) by
A1,
A8,
Th38
.= (((
exp_R
. x)
* ((
arctan
. x)
- (
arccot
. x)))
+ ((2
* (
exp_R
. x))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A6,
A7,
A2,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:53
Z
c=
].(
- 1), 1.[ implies ((
arctan
+
arccot )
/
exp_R )
is_differentiable_on Z & for x st x
in Z holds ((((
arctan
+
arccot )
/
exp_R )
`| Z)
. x)
= (
- (((
arctan
. x)
+ (
arccot
. x))
/ (
exp_R
. x)))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
then
A2: (
arctan
+
arccot )
is_differentiable_on Z by
Th37;
A3:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A4: Z
c= (
dom
arccot ) by
A1,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A3,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A1,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A4,
XBOOLE_1: 19;
then
A5: Z
c= (
dom (
arctan
+
arccot )) by
VALUED_1:def 1;
A6:
exp_R
is_differentiable_on Z & for x st x
in Z holds (
exp_R
. x)
<>
0 by
FDIFF_1: 26,
SIN_COS: 54,
TAYLOR_1: 16;
then
A7: ((
arctan
+
arccot )
/
exp_R )
is_differentiable_on Z by
A2,
FDIFF_2: 21;
for x st x
in Z holds ((((
arctan
+
arccot )
/
exp_R )
`| Z)
. x)
= (
- (((
arctan
. x)
+ (
arccot
. x))
/ (
exp_R
. x)))
proof
let x;
A8:
exp_R
is_differentiable_in x by
SIN_COS: 65;
A9: (
exp_R
. x)
<>
0 by
SIN_COS: 54;
assume
A10: x
in Z;
then
A11: (
arctan
+
arccot )
is_differentiable_in x by
A2,
FDIFF_1: 9;
((((
arctan
+
arccot )
/
exp_R )
`| Z)
. x)
= (
diff (((
arctan
+
arccot )
/
exp_R ),x)) by
A7,
A10,
FDIFF_1:def 7
.= ((((
diff ((
arctan
+
arccot ),x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
arctan
+
arccot )
. x)))
/ ((
exp_R
. x)
^2 )) by
A11,
A8,
A9,
FDIFF_2: 14
.= ((((((
arctan
+
arccot )
`| Z)
. x)
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
arctan
+
arccot )
. x)))
/ ((
exp_R
. x)
^2 )) by
A2,
A10,
FDIFF_1:def 7
.= (((
0
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
arctan
+
arccot )
. x)))
/ ((
exp_R
. x)
^2 )) by
A1,
A10,
Th37
.= (
- (((
diff (
exp_R ,x))
* ((
arctan
+
arccot )
. x))
/ ((
exp_R
. x)
^2 )))
.= (
- (((
exp_R
. x)
* ((
arctan
+
arccot )
. x))
/ ((
exp_R
. x)
^2 ))) by
SIN_COS: 65
.= (
- ((((
arctan
. x)
+ (
arccot
. x))
* (
exp_R
. x))
/ ((
exp_R
. x)
* (
exp_R
. x)))) by
A5,
A10,
VALUED_1:def 1
.= (
- (((
arctan
. x)
+ (
arccot
. x))
* ((
exp_R
. x)
/ ((
exp_R
. x)
* (
exp_R
. x)))))
.= (
- (((
arctan
. x)
+ (
arccot
. x))
* (((
exp_R
. x)
/ (
exp_R
. x))
/ (
exp_R
. x)))) by
XCMPLX_1: 78
.= (
- (((
arctan
. x)
+ (
arccot
. x))
* (1
/ (
exp_R
. x)))) by
A9,
XCMPLX_1: 60
.= (
- (((
arctan
. x)
+ (
arccot
. x))
/ (
exp_R
. x)));
hence thesis;
end;
hence thesis by
A2,
A6,
FDIFF_2: 21;
end;
theorem ::
FDIFF_11:54
Z
c=
].(
- 1), 1.[ implies ((
arctan
-
arccot )
/
exp_R )
is_differentiable_on Z & for x st x
in Z holds ((((
arctan
-
arccot )
/
exp_R )
`| Z)
. x)
= ((((2
/ (1
+ (x
^2 )))
- (
arctan
. x))
+ (
arccot
. x))
/ (
exp_R
. x))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
then
A2: (
arctan
-
arccot )
is_differentiable_on Z by
Th38;
A3:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A4: Z
c= (
dom
arccot ) by
A1,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A3,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A1,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A4,
XBOOLE_1: 19;
then
A5: Z
c= (
dom (
arctan
-
arccot )) by
VALUED_1: 12;
A6:
exp_R
is_differentiable_on Z & for x st x
in Z holds (
exp_R
. x)
<>
0 by
FDIFF_1: 26,
SIN_COS: 54,
TAYLOR_1: 16;
then
A7: ((
arctan
-
arccot )
/
exp_R )
is_differentiable_on Z by
A2,
FDIFF_2: 21;
for x st x
in Z holds ((((
arctan
-
arccot )
/
exp_R )
`| Z)
. x)
= ((((2
/ (1
+ (x
^2 )))
- (
arctan
. x))
+ (
arccot
. x))
/ (
exp_R
. x))
proof
let x;
A8:
exp_R
is_differentiable_in x by
SIN_COS: 65;
A9: (
exp_R
. x)
<>
0 by
SIN_COS: 54;
assume
A10: x
in Z;
then
A11: (
arctan
-
arccot )
is_differentiable_in x by
A2,
FDIFF_1: 9;
((((
arctan
-
arccot )
/
exp_R )
`| Z)
. x)
= (
diff (((
arctan
-
arccot )
/
exp_R ),x)) by
A7,
A10,
FDIFF_1:def 7
.= ((((
diff ((
arctan
-
arccot ),x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
arctan
-
arccot )
. x)))
/ ((
exp_R
. x)
^2 )) by
A11,
A8,
A9,
FDIFF_2: 14
.= ((((((
arctan
-
arccot )
`| Z)
. x)
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
arctan
-
arccot )
. x)))
/ ((
exp_R
. x)
^2 )) by
A2,
A10,
FDIFF_1:def 7
.= ((((2
/ (1
+ (x
^2 )))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
arctan
-
arccot )
. x)))
/ ((
exp_R
. x)
^2 )) by
A1,
A10,
Th38
.= ((((2
/ (1
+ (x
^2 )))
* (
exp_R
. x))
- ((
exp_R
. x)
* ((
arctan
-
arccot )
. x)))
/ ((
exp_R
. x)
^2 )) by
SIN_COS: 65
.= ((((2
/ (1
+ (x
^2 )))
* (
exp_R
. x))
- ((
exp_R
. x)
* ((
arctan
. x)
- (
arccot
. x))))
/ ((
exp_R
. x)
^2 )) by
A5,
A10,
VALUED_1: 13
.= (((2
/ (1
+ (x
^2 )))
- ((
arctan
. x)
- (
arccot
. x)))
* ((
exp_R
. x)
/ ((
exp_R
. x)
* (
exp_R
. x))))
.= (((2
/ (1
+ (x
^2 )))
- ((
arctan
. x)
- (
arccot
. x)))
* (((
exp_R
. x)
/ (
exp_R
. x))
/ (
exp_R
. x))) by
XCMPLX_1: 78
.= (((2
/ (1
+ (x
^2 )))
- ((
arctan
. x)
- (
arccot
. x)))
* (1
/ (
exp_R
. x))) by
A9,
XCMPLX_1: 60
.= ((((2
/ (1
+ (x
^2 )))
- (
arctan
. x))
+ (
arccot
. x))
/ (
exp_R
. x));
hence thesis;
end;
hence thesis by
A2,
A6,
FDIFF_2: 21;
end;
theorem ::
FDIFF_11:55
Z
c= (
dom (
exp_R
* (
arctan
+
arccot ))) & Z
c=
].(
- 1), 1.[ implies (
exp_R
* (
arctan
+
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
* (
arctan
+
arccot ))
`| Z)
. x)
=
0
proof
assume that
A1: Z
c= (
dom (
exp_R
* (
arctan
+
arccot ))) and
A2: Z
c=
].(
- 1), 1.[;
A3: (
arctan
+
arccot )
is_differentiable_on Z by
A2,
Th37;
A4: for x st x
in Z holds (
exp_R
* (
arctan
+
arccot ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A5: (
arctan
+
arccot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
exp_R
is_differentiable_in ((
arctan
+
arccot )
. x) by
SIN_COS: 65;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
exp_R
* (
arctan
+
arccot ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
* (
arctan
+
arccot ))
`| Z)
. x)
=
0
proof
let x;
A7:
exp_R
is_differentiable_in ((
arctan
+
arccot )
. x) by
SIN_COS: 65;
assume
A8: x
in Z;
then
A9: (
arctan
+
arccot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
(((
exp_R
* (
arctan
+
arccot ))
`| Z)
. x)
= (
diff ((
exp_R
* (
arctan
+
arccot )),x)) by
A6,
A8,
FDIFF_1:def 7
.= ((
diff (
exp_R ,((
arctan
+
arccot )
. x)))
* (
diff ((
arctan
+
arccot ),x))) by
A9,
A7,
FDIFF_2: 13
.= ((
exp_R
. ((
arctan
+
arccot )
. x))
* (
diff ((
arctan
+
arccot ),x))) by
SIN_COS: 65
.= ((
exp_R
. ((
arctan
+
arccot )
. x))
* (((
arctan
+
arccot )
`| Z)
. x)) by
A3,
A8,
FDIFF_1:def 7
.= ((
exp_R
. ((
arctan
+
arccot )
. x))
*
0 ) by
A2,
A8,
Th37
.=
0 ;
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:56
Z
c= (
dom (
exp_R
* (
arctan
-
arccot ))) & Z
c=
].(
- 1), 1.[ implies (
exp_R
* (
arctan
-
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
* (
arctan
-
arccot ))
`| Z)
. x)
= ((2
* (
exp_R
. ((
arctan
. x)
- (
arccot
. x))))
/ (1
+ (x
^2 )))
proof
assume that
A1: Z
c= (
dom (
exp_R
* (
arctan
-
arccot ))) and
A2: Z
c=
].(
- 1), 1.[;
A3:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A4: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A3,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A4,
XBOOLE_1: 19;
then
A5: Z
c= (
dom (
arctan
-
arccot )) by
VALUED_1: 12;
A6: (
arctan
-
arccot )
is_differentiable_on Z by
A2,
Th38;
A7: for x st x
in Z holds (
exp_R
* (
arctan
-
arccot ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A8: (
arctan
-
arccot )
is_differentiable_in x by
A6,
FDIFF_1: 9;
exp_R
is_differentiable_in ((
arctan
-
arccot )
. x) by
SIN_COS: 65;
hence thesis by
A8,
FDIFF_2: 13;
end;
then
A9: (
exp_R
* (
arctan
-
arccot ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
* (
arctan
-
arccot ))
`| Z)
. x)
= ((2
* (
exp_R
. ((
arctan
. x)
- (
arccot
. x))))
/ (1
+ (x
^2 )))
proof
let x;
A10:
exp_R
is_differentiable_in ((
arctan
-
arccot )
. x) by
SIN_COS: 65;
assume
A11: x
in Z;
then
A12: (
arctan
-
arccot )
is_differentiable_in x by
A6,
FDIFF_1: 9;
(((
exp_R
* (
arctan
-
arccot ))
`| Z)
. x)
= (
diff ((
exp_R
* (
arctan
-
arccot )),x)) by
A9,
A11,
FDIFF_1:def 7
.= ((
diff (
exp_R ,((
arctan
-
arccot )
. x)))
* (
diff ((
arctan
-
arccot ),x))) by
A12,
A10,
FDIFF_2: 13
.= ((
exp_R
. ((
arctan
-
arccot )
. x))
* (
diff ((
arctan
-
arccot ),x))) by
SIN_COS: 65
.= ((
exp_R
. ((
arctan
-
arccot )
. x))
* (((
arctan
-
arccot )
`| Z)
. x)) by
A6,
A11,
FDIFF_1:def 7
.= ((
exp_R
. ((
arctan
-
arccot )
. x))
* (2
/ (1
+ (x
^2 )))) by
A2,
A11,
Th38
.= ((
exp_R
. ((
arctan
. x)
- (
arccot
. x)))
* (2
/ (1
+ (x
^2 )))) by
A5,
A11,
VALUED_1: 13
.= ((2
* (
exp_R
. ((
arctan
. x)
- (
arccot
. x))))
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:57
Z
c= (
dom (
sin
* (
arctan
+
arccot ))) & Z
c=
].(
- 1), 1.[ implies (
sin
* (
arctan
+
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
sin
* (
arctan
+
arccot ))
`| Z)
. x)
=
0
proof
assume that
A1: Z
c= (
dom (
sin
* (
arctan
+
arccot ))) and
A2: Z
c=
].(
- 1), 1.[;
A3: (
arctan
+
arccot )
is_differentiable_on Z by
A2,
Th37;
A4: for x st x
in Z holds (
sin
* (
arctan
+
arccot ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A5: (
arctan
+
arccot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
sin
is_differentiable_in ((
arctan
+
arccot )
. x) by
SIN_COS: 64;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
sin
* (
arctan
+
arccot ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
* (
arctan
+
arccot ))
`| Z)
. x)
=
0
proof
let x;
A7:
sin
is_differentiable_in ((
arctan
+
arccot )
. x) by
SIN_COS: 64;
assume
A8: x
in Z;
then
A9: (
arctan
+
arccot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
(((
sin
* (
arctan
+
arccot ))
`| Z)
. x)
= (
diff ((
sin
* (
arctan
+
arccot )),x)) by
A6,
A8,
FDIFF_1:def 7
.= ((
diff (
sin ,((
arctan
+
arccot )
. x)))
* (
diff ((
arctan
+
arccot ),x))) by
A9,
A7,
FDIFF_2: 13
.= ((
cos
. ((
arctan
+
arccot )
. x))
* (
diff ((
arctan
+
arccot ),x))) by
SIN_COS: 64
.= ((
cos
. ((
arctan
+
arccot )
. x))
* (((
arctan
+
arccot )
`| Z)
. x)) by
A3,
A8,
FDIFF_1:def 7
.= ((
cos
. ((
arctan
+
arccot )
. x))
*
0 ) by
A2,
A8,
Th37
.=
0 ;
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:58
Z
c= (
dom (
sin
* (
arctan
-
arccot ))) & Z
c=
].(
- 1), 1.[ implies (
sin
* (
arctan
-
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
sin
* (
arctan
-
arccot ))
`| Z)
. x)
= ((2
* (
cos
. ((
arctan
. x)
- (
arccot
. x))))
/ (1
+ (x
^2 )))
proof
assume that
A1: Z
c= (
dom (
sin
* (
arctan
-
arccot ))) and
A2: Z
c=
].(
- 1), 1.[;
A3:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A4: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A3,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A4,
XBOOLE_1: 19;
then
A5: Z
c= (
dom (
arctan
-
arccot )) by
VALUED_1: 12;
A6: (
arctan
-
arccot )
is_differentiable_on Z by
A2,
Th38;
A7: for x st x
in Z holds (
sin
* (
arctan
-
arccot ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A8: (
arctan
-
arccot )
is_differentiable_in x by
A6,
FDIFF_1: 9;
sin
is_differentiable_in ((
arctan
-
arccot )
. x) by
SIN_COS: 64;
hence thesis by
A8,
FDIFF_2: 13;
end;
then
A9: (
sin
* (
arctan
-
arccot ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
* (
arctan
-
arccot ))
`| Z)
. x)
= ((2
* (
cos
. ((
arctan
. x)
- (
arccot
. x))))
/ (1
+ (x
^2 )))
proof
let x;
A10:
sin
is_differentiable_in ((
arctan
-
arccot )
. x) by
SIN_COS: 64;
assume
A11: x
in Z;
then
A12: (
arctan
-
arccot )
is_differentiable_in x by
A6,
FDIFF_1: 9;
(((
sin
* (
arctan
-
arccot ))
`| Z)
. x)
= (
diff ((
sin
* (
arctan
-
arccot )),x)) by
A9,
A11,
FDIFF_1:def 7
.= ((
diff (
sin ,((
arctan
-
arccot )
. x)))
* (
diff ((
arctan
-
arccot ),x))) by
A12,
A10,
FDIFF_2: 13
.= ((
cos
. ((
arctan
-
arccot )
. x))
* (
diff ((
arctan
-
arccot ),x))) by
SIN_COS: 64
.= ((
cos
. ((
arctan
-
arccot )
. x))
* (((
arctan
-
arccot )
`| Z)
. x)) by
A6,
A11,
FDIFF_1:def 7
.= ((
cos
. ((
arctan
-
arccot )
. x))
* (2
/ (1
+ (x
^2 )))) by
A2,
A11,
Th38
.= ((
cos
. ((
arctan
. x)
- (
arccot
. x)))
* (2
/ (1
+ (x
^2 )))) by
A5,
A11,
VALUED_1: 13
.= ((2
* (
cos
. ((
arctan
. x)
- (
arccot
. x))))
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:59
Z
c= (
dom (
cos
* (
arctan
+
arccot ))) & Z
c=
].(
- 1), 1.[ implies (
cos
* (
arctan
+
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
cos
* (
arctan
+
arccot ))
`| Z)
. x)
=
0
proof
assume that
A1: Z
c= (
dom (
cos
* (
arctan
+
arccot ))) and
A2: Z
c=
].(
- 1), 1.[;
A3: (
arctan
+
arccot )
is_differentiable_on Z by
A2,
Th37;
A4: for x st x
in Z holds (
cos
* (
arctan
+
arccot ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A5: (
arctan
+
arccot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
cos
is_differentiable_in ((
arctan
+
arccot )
. x) by
SIN_COS: 63;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
cos
* (
arctan
+
arccot ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
* (
arctan
+
arccot ))
`| Z)
. x)
=
0
proof
let x;
A7:
cos
is_differentiable_in ((
arctan
+
arccot )
. x) by
SIN_COS: 63;
assume
A8: x
in Z;
then
A9: (
arctan
+
arccot )
is_differentiable_in x by
A3,
FDIFF_1: 9;
(((
cos
* (
arctan
+
arccot ))
`| Z)
. x)
= (
diff ((
cos
* (
arctan
+
arccot )),x)) by
A6,
A8,
FDIFF_1:def 7
.= ((
diff (
cos ,((
arctan
+
arccot )
. x)))
* (
diff ((
arctan
+
arccot ),x))) by
A9,
A7,
FDIFF_2: 13
.= ((
- (
sin
. ((
arctan
+
arccot )
. x)))
* (
diff ((
arctan
+
arccot ),x))) by
SIN_COS: 63
.= ((
- (
sin
. ((
arctan
+
arccot )
. x)))
* (((
arctan
+
arccot )
`| Z)
. x)) by
A3,
A8,
FDIFF_1:def 7
.= ((
- (
sin
. ((
arctan
+
arccot )
. x)))
*
0 ) by
A2,
A8,
Th37
.=
0 ;
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:60
Z
c= (
dom (
cos
* (
arctan
-
arccot ))) & Z
c=
].(
- 1), 1.[ implies (
cos
* (
arctan
-
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
cos
* (
arctan
-
arccot ))
`| Z)
. x)
= (
- ((2
* (
sin
. ((
arctan
. x)
- (
arccot
. x))))
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
cos
* (
arctan
-
arccot ))) and
A2: Z
c=
].(
- 1), 1.[;
A3:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A4: Z
c= (
dom
arccot ) by
A2,
XBOOLE_1: 1;
].(
- 1), 1.[
c= (
dom
arctan ) by
A3,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A2,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A4,
XBOOLE_1: 19;
then
A5: Z
c= (
dom (
arctan
-
arccot )) by
VALUED_1: 12;
A6: (
arctan
-
arccot )
is_differentiable_on Z by
A2,
Th38;
A7: for x st x
in Z holds (
cos
* (
arctan
-
arccot ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A8: (
arctan
-
arccot )
is_differentiable_in x by
A6,
FDIFF_1: 9;
cos
is_differentiable_in ((
arctan
-
arccot )
. x) by
SIN_COS: 63;
hence thesis by
A8,
FDIFF_2: 13;
end;
then
A9: (
cos
* (
arctan
-
arccot ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
cos
* (
arctan
-
arccot ))
`| Z)
. x)
= (
- ((2
* (
sin
. ((
arctan
. x)
- (
arccot
. x))))
/ (1
+ (x
^2 ))))
proof
let x;
A10:
cos
is_differentiable_in ((
arctan
-
arccot )
. x) by
SIN_COS: 63;
assume
A11: x
in Z;
then
A12: (
arctan
-
arccot )
is_differentiable_in x by
A6,
FDIFF_1: 9;
(((
cos
* (
arctan
-
arccot ))
`| Z)
. x)
= (
diff ((
cos
* (
arctan
-
arccot )),x)) by
A9,
A11,
FDIFF_1:def 7
.= ((
diff (
cos ,((
arctan
-
arccot )
. x)))
* (
diff ((
arctan
-
arccot ),x))) by
A12,
A10,
FDIFF_2: 13
.= ((
- (
sin
. ((
arctan
-
arccot )
. x)))
* (
diff ((
arctan
-
arccot ),x))) by
SIN_COS: 63
.= ((
- (
sin
. ((
arctan
-
arccot )
. x)))
* (((
arctan
-
arccot )
`| Z)
. x)) by
A6,
A11,
FDIFF_1:def 7
.= ((
- (
sin
. ((
arctan
-
arccot )
. x)))
* (2
/ (1
+ (x
^2 )))) by
A2,
A11,
Th38
.= ((
- (
sin
. ((
arctan
. x)
- (
arccot
. x))))
* (2
/ (1
+ (x
^2 )))) by
A5,
A11,
VALUED_1: 13
.= (
- ((2
* (
sin
. ((
arctan
. x)
- (
arccot
. x))))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 9;
end;
theorem ::
FDIFF_11:61
Z
c=
].(
- 1), 1.[ implies (
arctan
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
arctan
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
- (
arctan
. x))
/ (1
+ (x
^2 )))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
then
A2:
arctan
is_differentiable_on Z by
SIN_COS9: 81;
A3:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
SIN_COS9: 24,
XBOOLE_1: 1;
then
A4: Z
c= (
dom
arccot ) by
A1,
XBOOLE_1: 1;
A5:
arccot
is_differentiable_on Z by
A1,
SIN_COS9: 82;
].(
- 1), 1.[
c= (
dom
arctan ) by
A3,
SIN_COS9: 23,
XBOOLE_1: 1;
then Z
c= (
dom
arctan ) by
A1,
XBOOLE_1: 1;
then Z
c= ((
dom
arctan )
/\ (
dom
arccot )) by
A4,
XBOOLE_1: 19;
then
A6: Z
c= (
dom (
arctan
(#)
arccot )) by
VALUED_1:def 4;
for x st x
in Z holds (((
arctan
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
- (
arctan
. x))
/ (1
+ (x
^2 )))
proof
let x;
assume
A7: x
in Z;
then (((
arctan
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
* (
diff (
arctan ,x)))
+ ((
arctan
. x)
* (
diff (
arccot ,x)))) by
A6,
A2,
A5,
FDIFF_1: 21
.= (((
arccot
. x)
* ((
arctan
`| Z)
. x))
+ ((
arctan
. x)
* (
diff (
arccot ,x)))) by
A2,
A7,
FDIFF_1:def 7
.= (((
arccot
. x)
* (1
/ (1
+ (x
^2 ))))
+ ((
arctan
. x)
* (
diff (
arccot ,x)))) by
A1,
A7,
SIN_COS9: 81
.= (((
arccot
. x)
* (1
/ (1
+ (x
^2 ))))
+ ((
arctan
. x)
* ((
arccot
`| Z)
. x))) by
A5,
A7,
FDIFF_1:def 7
.= (((
arccot
. x)
* (1
/ (1
+ (x
^2 ))))
+ ((
arctan
. x)
* (
- (1
/ (1
+ (x
^2 )))))) by
A1,
A7,
SIN_COS9: 82
.= (((
arccot
. x)
- (
arctan
. x))
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A6,
A2,
A5,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:62
not
0
in Z & Z
c= (
dom ((
arctan
* ((
id Z)
^ ))
(#) (
arccot
* ((
id Z)
^ )))) & (for x st x
in Z holds (((
id Z)
^ )
. x)
> (
- 1) & (((
id Z)
^ )
. x)
< 1) implies ((
arctan
* ((
id Z)
^ ))
(#) (
arccot
* ((
id Z)
^ )))
is_differentiable_on Z & for x st x
in Z holds ((((
arctan
* ((
id Z)
^ ))
(#) (
arccot
* ((
id Z)
^ )))
`| Z)
. x)
= (((
arctan
. (1
/ x))
- (
arccot
. (1
/ x)))
/ (1
+ (x
^2 )))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom ((
arctan
* (f
^ ))
(#) (
arccot
* (f
^ )))) and
A3: for x st x
in Z holds ((f
^ )
. x)
> (
- 1) & ((f
^ )
. x)
< 1;
A4: Z
c= ((
dom (
arctan
* (f
^ )))
/\ (
dom (
arccot
* (f
^ )))) by
A2,
VALUED_1:def 4;
then
A5: Z
c= (
dom (
arctan
* (f
^ ))) by
XBOOLE_1: 18;
then
A6: (
arctan
* (f
^ ))
is_differentiable_on Z by
A1,
A3,
SIN_COS9: 111;
A7: Z
c= (
dom (
arccot
* (f
^ ))) by
A4,
XBOOLE_1: 18;
then
A8: (
arccot
* (f
^ ))
is_differentiable_on Z by
A1,
A3,
SIN_COS9: 112;
for y be
object st y
in Z holds y
in (
dom (f
^ )) by
A5,
FUNCT_1: 11;
then
A9: Z
c= (
dom (f
^ )) by
TARSKI:def 3;
for x st x
in Z holds ((((
arctan
* (f
^ ))
(#) (
arccot
* (f
^ )))
`| Z)
. x)
= (((
arctan
. (1
/ x))
- (
arccot
. (1
/ x)))
/ (1
+ (x
^2 )))
proof
let x;
assume
A10: x
in Z;
then ((((
arctan
* (f
^ ))
(#) (
arccot
* (f
^ )))
`| Z)
. x)
= ((((
arccot
* (f
^ ))
. x)
* (
diff ((
arctan
* (f
^ )),x)))
+ (((
arctan
* (f
^ ))
. x)
* (
diff ((
arccot
* (f
^ )),x)))) by
A2,
A6,
A8,
FDIFF_1: 21
.= ((((
arccot
* (f
^ ))
. x)
* (((
arctan
* (f
^ ))
`| Z)
. x))
+ (((
arctan
* (f
^ ))
. x)
* (
diff ((
arccot
* (f
^ )),x)))) by
A6,
A10,
FDIFF_1:def 7
.= ((((
arccot
* (f
^ ))
. x)
* (
- (1
/ (1
+ (x
^2 )))))
+ (((
arctan
* (f
^ ))
. x)
* (
diff ((
arccot
* (f
^ )),x)))) by
A1,
A3,
A5,
A10,
SIN_COS9: 111
.= ((((
arccot
* (f
^ ))
. x)
* (
- (1
/ (1
+ (x
^2 )))))
+ (((
arctan
* (f
^ ))
. x)
* (((
arccot
* (f
^ ))
`| Z)
. x))) by
A8,
A10,
FDIFF_1:def 7
.= ((((
arccot
* (f
^ ))
. x)
* (
- (1
/ (1
+ (x
^2 )))))
+ (((
arctan
* (f
^ ))
. x)
* (1
/ (1
+ (x
^2 ))))) by
A1,
A3,
A7,
A10,
SIN_COS9: 112
.= (((
arccot
. ((f
^ )
. x))
* (
- (1
/ (1
+ (x
^2 )))))
+ (((
arctan
* (f
^ ))
. x)
* (1
/ (1
+ (x
^2 ))))) by
A7,
A10,
FUNCT_1: 12
.= (((
arccot
. ((f
. x)
" ))
* (
- (1
/ (1
+ (x
^2 )))))
+ (((
arctan
* (f
^ ))
. x)
* (1
/ (1
+ (x
^2 ))))) by
A9,
A10,
RFUNCT_1:def 2
.= (((
arccot
. (1
/ x))
* (
- (1
/ (1
+ (x
^2 )))))
+ (((
arctan
* (f
^ ))
. x)
* (1
/ (1
+ (x
^2 ))))) by
A10,
FUNCT_1: 18
.= (((
arccot
. (1
/ x))
* (
- (1
/ (1
+ (x
^2 )))))
+ ((
arctan
. ((f
^ )
. x))
* (1
/ (1
+ (x
^2 ))))) by
A5,
A10,
FUNCT_1: 12
.= (((
arccot
. (1
/ x))
* (
- (1
/ (1
+ (x
^2 )))))
+ ((
arctan
. ((f
. x)
" ))
* (1
/ (1
+ (x
^2 ))))) by
A9,
A10,
RFUNCT_1:def 2
.= ((
- ((
arccot
. (1
/ x))
* (1
/ (1
+ (x
^2 )))))
+ ((
arctan
. (1
/ x))
* (1
/ (1
+ (x
^2 ))))) by
A10,
FUNCT_1: 18
.= (((
arctan
. (1
/ x))
- (
arccot
. (1
/ x)))
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A2,
A6,
A8,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:63
not
0
in Z & Z
c= (
dom ((
id Z)
(#) (
arctan
* ((
id Z)
^ )))) & (for x st x
in Z holds (((
id Z)
^ )
. x)
> (
- 1) & (((
id Z)
^ )
. x)
< 1) implies ((
id Z)
(#) (
arctan
* ((
id Z)
^ )))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#) (
arctan
* ((
id Z)
^ )))
`| Z)
. x)
= ((
arctan
. (1
/ x))
- (x
/ (1
+ (x
^2 ))))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom ((
id Z)
(#) (
arctan
* (f
^ )))) and
A3: for x st x
in Z holds ((f
^ )
. x)
> (
- 1) & ((f
^ )
. x)
< 1;
A4: Z
c= ((
dom (
id Z))
/\ (
dom (
arctan
* (f
^ )))) by
A2,
VALUED_1:def 4;
then
A5: Z
c= (
dom (
arctan
* (f
^ ))) by
XBOOLE_1: 18;
then
A6: (
arctan
* (f
^ ))
is_differentiable_on Z by
A1,
A3,
SIN_COS9: 111;
A7: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A8: Z
c= (
dom (
id Z)) by
A4,
XBOOLE_1: 18;
then
A9: (
id Z)
is_differentiable_on Z by
A7,
FDIFF_1: 23;
for y be
object st y
in Z holds y
in (
dom (f
^ )) by
A5,
FUNCT_1: 11;
then
A10: Z
c= (
dom (f
^ )) by
TARSKI:def 3;
for x st x
in Z holds ((((
id Z)
(#) (
arctan
* (f
^ )))
`| Z)
. x)
= ((
arctan
. (1
/ x))
- (x
/ (1
+ (x
^2 ))))
proof
let x;
assume
A11: x
in Z;
then ((((
id Z)
(#) (
arctan
* (f
^ )))
`| Z)
. x)
= ((((
arctan
* (f
^ ))
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff ((
arctan
* (f
^ )),x)))) by
A2,
A6,
A9,
FDIFF_1: 21
.= ((((
arctan
* (f
^ ))
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff ((
arctan
* (f
^ )),x)))) by
A9,
A11,
FDIFF_1:def 7
.= ((((
arctan
* (f
^ ))
. x)
* 1)
+ (((
id Z)
. x)
* (
diff ((
arctan
* (f
^ )),x)))) by
A8,
A7,
A11,
FDIFF_1: 23
.= ((((
arctan
* (f
^ ))
. x)
* 1)
+ (x
* (
diff ((
arctan
* (f
^ )),x)))) by
A11,
FUNCT_1: 18
.= (((
arctan
* (f
^ ))
. x)
+ (x
* (((
arctan
* (f
^ ))
`| Z)
. x))) by
A6,
A11,
FDIFF_1:def 7
.= (((
arctan
* (f
^ ))
. x)
+ (x
* (
- (1
/ (1
+ (x
^2 )))))) by
A1,
A3,
A5,
A11,
SIN_COS9: 111
.= ((
arctan
. ((f
^ )
. x))
- (x
/ (1
+ (x
^2 )))) by
A5,
A11,
FUNCT_1: 12
.= ((
arctan
. ((f
. x)
" ))
- (x
/ (1
+ (x
^2 )))) by
A10,
A11,
RFUNCT_1:def 2
.= ((
arctan
. (1
/ x))
- (x
/ (1
+ (x
^2 )))) by
A11,
FUNCT_1: 18;
hence thesis;
end;
hence thesis by
A2,
A6,
A9,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:64
not
0
in Z & Z
c= (
dom ((
id Z)
(#) (
arccot
* ((
id Z)
^ )))) & (for x st x
in Z holds (((
id Z)
^ )
. x)
> (
- 1) & (((
id Z)
^ )
. x)
< 1) implies ((
id Z)
(#) (
arccot
* ((
id Z)
^ )))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#) (
arccot
* ((
id Z)
^ )))
`| Z)
. x)
= ((
arccot
. (1
/ x))
+ (x
/ (1
+ (x
^2 ))))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom ((
id Z)
(#) (
arccot
* (f
^ )))) and
A3: for x st x
in Z holds ((f
^ )
. x)
> (
- 1) & ((f
^ )
. x)
< 1;
A4: Z
c= ((
dom (
id Z))
/\ (
dom (
arccot
* (f
^ )))) by
A2,
VALUED_1:def 4;
then
A5: Z
c= (
dom (
arccot
* (f
^ ))) by
XBOOLE_1: 18;
then
A6: (
arccot
* (f
^ ))
is_differentiable_on Z by
A1,
A3,
SIN_COS9: 112;
A7: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A8: Z
c= (
dom (
id Z)) by
A4,
XBOOLE_1: 18;
then
A9: (
id Z)
is_differentiable_on Z by
A7,
FDIFF_1: 23;
for y be
object st y
in Z holds y
in (
dom (f
^ )) by
A5,
FUNCT_1: 11;
then
A10: Z
c= (
dom (f
^ )) by
TARSKI:def 3;
for x st x
in Z holds ((((
id Z)
(#) (
arccot
* (f
^ )))
`| Z)
. x)
= ((
arccot
. (1
/ x))
+ (x
/ (1
+ (x
^2 ))))
proof
let x;
assume
A11: x
in Z;
then ((((
id Z)
(#) (
arccot
* (f
^ )))
`| Z)
. x)
= ((((
arccot
* (f
^ ))
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff ((
arccot
* (f
^ )),x)))) by
A2,
A6,
A9,
FDIFF_1: 21
.= ((((
arccot
* (f
^ ))
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff ((
arccot
* (f
^ )),x)))) by
A9,
A11,
FDIFF_1:def 7
.= ((((
arccot
* (f
^ ))
. x)
* 1)
+ (((
id Z)
. x)
* (
diff ((
arccot
* (f
^ )),x)))) by
A8,
A7,
A11,
FDIFF_1: 23
.= ((((
arccot
* (f
^ ))
. x)
* 1)
+ (x
* (
diff ((
arccot
* (f
^ )),x)))) by
A11,
FUNCT_1: 18
.= (((
arccot
* (f
^ ))
. x)
+ (x
* (((
arccot
* (f
^ ))
`| Z)
. x))) by
A6,
A11,
FDIFF_1:def 7
.= (((
arccot
* (f
^ ))
. x)
+ (x
* (1
/ (1
+ (x
^2 ))))) by
A1,
A3,
A5,
A11,
SIN_COS9: 112
.= ((
arccot
. ((f
^ )
. x))
+ (x
/ (1
+ (x
^2 )))) by
A5,
A11,
FUNCT_1: 12
.= ((
arccot
. ((f
. x)
" ))
+ (x
/ (1
+ (x
^2 )))) by
A10,
A11,
RFUNCT_1:def 2
.= ((
arccot
. (1
/ x))
+ (x
/ (1
+ (x
^2 )))) by
A11,
FUNCT_1: 18;
hence thesis;
end;
hence thesis by
A2,
A6,
A9,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:65
not
0
in Z & Z
c= (
dom (g
(#) (
arctan
* ((
id Z)
^ )))) & g
= (
#Z 2) & (for x st x
in Z holds (((
id Z)
^ )
. x)
> (
- 1) & (((
id Z)
^ )
. x)
< 1) implies (g
(#) (
arctan
* ((
id Z)
^ )))
is_differentiable_on Z & for x st x
in Z holds (((g
(#) (
arctan
* ((
id Z)
^ )))
`| Z)
. x)
= (((2
* x)
* (
arctan
. (1
/ x)))
- ((x
^2 )
/ (1
+ (x
^2 ))))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom (g
(#) (
arctan
* (f
^ )))) and
A3: g
= (
#Z 2) and
A4: for x st x
in Z holds ((f
^ )
. x)
> (
- 1) & ((f
^ )
. x)
< 1;
A5: for x st x
in Z holds g
is_differentiable_in x by
A3,
TAYLOR_1: 2;
A6: Z
c= ((
dom g)
/\ (
dom (
arctan
* (f
^ )))) by
A2,
VALUED_1:def 4;
then
A7: Z
c= (
dom (
arctan
* (f
^ ))) by
XBOOLE_1: 18;
then
A8: (
arctan
* (f
^ ))
is_differentiable_on Z by
A1,
A4,
SIN_COS9: 111;
Z
c= (
dom g) by
A6,
XBOOLE_1: 18;
then
A9: g
is_differentiable_on Z by
A5,
FDIFF_1: 9;
A10: for x st x
in Z holds ((g
`| Z)
. x)
= (2
* x)
proof
let x;
assume x
in Z;
then ((g
`| Z)
. x)
= (
diff (g,x)) by
A9,
FDIFF_1:def 7
.= (2
* (x
#Z (2
- 1))) by
A3,
TAYLOR_1: 2
.= (2
* x) by
PREPOWER: 35;
hence thesis;
end;
for y be
object st y
in Z holds y
in (
dom (f
^ )) by
A7,
FUNCT_1: 11;
then
A11: Z
c= (
dom (f
^ )) by
TARSKI:def 3;
for x st x
in Z holds (((g
(#) (
arctan
* (f
^ )))
`| Z)
. x)
= (((2
* x)
* (
arctan
. (1
/ x)))
- ((x
^2 )
/ (1
+ (x
^2 ))))
proof
let x;
assume
A12: x
in Z;
then (((g
(#) (
arctan
* (f
^ )))
`| Z)
. x)
= ((((
arctan
* (f
^ ))
. x)
* (
diff (g,x)))
+ ((g
. x)
* (
diff ((
arctan
* (f
^ )),x)))) by
A2,
A8,
A9,
FDIFF_1: 21
.= ((((
arctan
* (f
^ ))
. x)
* ((g
`| Z)
. x))
+ ((g
. x)
* (
diff ((
arctan
* (f
^ )),x)))) by
A9,
A12,
FDIFF_1:def 7
.= ((((
arctan
* (f
^ ))
. x)
* (2
* x))
+ ((g
. x)
* (
diff ((
arctan
* (f
^ )),x)))) by
A10,
A12
.= ((((
arctan
* (f
^ ))
. x)
* (2
* x))
+ ((x
#Z 2)
* (
diff ((
arctan
* (f
^ )),x)))) by
A3,
TAYLOR_1:def 1
.= ((((
arctan
* (f
^ ))
. x)
* (2
* x))
+ ((x
#Z 2)
* (((
arctan
* (f
^ ))
`| Z)
. x))) by
A8,
A12,
FDIFF_1:def 7
.= ((((
arctan
* (f
^ ))
. x)
* (2
* x))
+ ((x
#Z (1
+ 1))
* (
- (1
/ (1
+ (x
^2 )))))) by
A1,
A4,
A7,
A12,
SIN_COS9: 111
.= ((((
arctan
* (f
^ ))
. x)
* (2
* x))
+ (((x
#Z 1)
* (x
#Z 1))
* (
- (1
/ (1
+ (x
^2 )))))) by
TAYLOR_1: 1
.= ((((
arctan
* (f
^ ))
. x)
* (2
* x))
+ ((x
* (x
#Z 1))
* (
- (1
/ (1
+ (x
^2 )))))) by
PREPOWER: 35
.= ((((
arctan
* (f
^ ))
. x)
* (2
* x))
+ ((x
^2 )
* (
- (1
/ (1
+ (x
^2 )))))) by
PREPOWER: 35
.= (((
arctan
. ((f
^ )
. x))
* (2
* x))
- ((x
^2 )
/ (1
+ (x
^2 )))) by
A7,
A12,
FUNCT_1: 12
.= (((
arctan
. ((f
. x)
" ))
* (2
* x))
- ((x
^2 )
/ (1
+ (x
^2 )))) by
A11,
A12,
RFUNCT_1:def 2
.= (((2
* x)
* (
arctan
. (1
/ x)))
- ((x
^2 )
/ (1
+ (x
^2 )))) by
A12,
FUNCT_1: 18;
hence thesis;
end;
hence thesis by
A2,
A8,
A9,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:66
not
0
in Z & Z
c= (
dom (g
(#) (
arccot
* ((
id Z)
^ )))) & g
= (
#Z 2) & (for x st x
in Z holds (((
id Z)
^ )
. x)
> (
- 1) & (((
id Z)
^ )
. x)
< 1) implies (g
(#) (
arccot
* ((
id Z)
^ )))
is_differentiable_on Z & for x st x
in Z holds (((g
(#) (
arccot
* ((
id Z)
^ )))
`| Z)
. x)
= (((2
* x)
* (
arccot
. (1
/ x)))
+ ((x
^2 )
/ (1
+ (x
^2 ))))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom (g
(#) (
arccot
* (f
^ )))) and
A3: g
= (
#Z 2) and
A4: for x st x
in Z holds ((f
^ )
. x)
> (
- 1) & ((f
^ )
. x)
< 1;
A5: for x st x
in Z holds g
is_differentiable_in x by
A3,
TAYLOR_1: 2;
A6: Z
c= ((
dom g)
/\ (
dom (
arccot
* (f
^ )))) by
A2,
VALUED_1:def 4;
then
A7: Z
c= (
dom (
arccot
* (f
^ ))) by
XBOOLE_1: 18;
then
A8: (
arccot
* (f
^ ))
is_differentiable_on Z by
A1,
A4,
SIN_COS9: 112;
Z
c= (
dom g) by
A6,
XBOOLE_1: 18;
then
A9: g
is_differentiable_on Z by
A5,
FDIFF_1: 9;
A10: for x st x
in Z holds ((g
`| Z)
. x)
= (2
* x)
proof
let x;
assume x
in Z;
then ((g
`| Z)
. x)
= (
diff (g,x)) by
A9,
FDIFF_1:def 7
.= (2
* (x
#Z (2
- 1))) by
A3,
TAYLOR_1: 2
.= (2
* x) by
PREPOWER: 35;
hence thesis;
end;
for y be
object st y
in Z holds y
in (
dom (f
^ )) by
A7,
FUNCT_1: 11;
then
A11: Z
c= (
dom (f
^ )) by
TARSKI:def 3;
for x st x
in Z holds (((g
(#) (
arccot
* (f
^ )))
`| Z)
. x)
= (((2
* x)
* (
arccot
. (1
/ x)))
+ ((x
^2 )
/ (1
+ (x
^2 ))))
proof
let x;
assume
A12: x
in Z;
then (((g
(#) (
arccot
* (f
^ )))
`| Z)
. x)
= ((((
arccot
* (f
^ ))
. x)
* (
diff (g,x)))
+ ((g
. x)
* (
diff ((
arccot
* (f
^ )),x)))) by
A2,
A8,
A9,
FDIFF_1: 21
.= ((((
arccot
* (f
^ ))
. x)
* ((g
`| Z)
. x))
+ ((g
. x)
* (
diff ((
arccot
* (f
^ )),x)))) by
A9,
A12,
FDIFF_1:def 7
.= ((((
arccot
* (f
^ ))
. x)
* (2
* x))
+ ((g
. x)
* (
diff ((
arccot
* (f
^ )),x)))) by
A10,
A12
.= ((((
arccot
* (f
^ ))
. x)
* (2
* x))
+ ((x
#Z 2)
* (
diff ((
arccot
* (f
^ )),x)))) by
A3,
TAYLOR_1:def 1
.= ((((
arccot
* (f
^ ))
. x)
* (2
* x))
+ ((x
#Z 2)
* (((
arccot
* (f
^ ))
`| Z)
. x))) by
A8,
A12,
FDIFF_1:def 7
.= ((((
arccot
* (f
^ ))
. x)
* (2
* x))
+ ((x
#Z (1
+ 1))
* (1
/ (1
+ (x
^2 ))))) by
A1,
A4,
A7,
A12,
SIN_COS9: 112
.= ((((
arccot
* (f
^ ))
. x)
* (2
* x))
+ (((x
#Z 1)
* (x
#Z 1))
* (1
/ (1
+ (x
^2 ))))) by
TAYLOR_1: 1
.= ((((
arccot
* (f
^ ))
. x)
* (2
* x))
+ ((x
* (x
#Z 1))
* (1
/ (1
+ (x
^2 ))))) by
PREPOWER: 35
.= ((((
arccot
* (f
^ ))
. x)
* (2
* x))
+ ((x
^2 )
/ (1
+ (x
^2 )))) by
PREPOWER: 35
.= (((
arccot
. ((f
^ )
. x))
* (2
* x))
+ ((x
^2 )
/ (1
+ (x
^2 )))) by
A7,
A12,
FUNCT_1: 12
.= (((
arccot
. ((f
. x)
" ))
* (2
* x))
+ ((x
^2 )
/ (1
+ (x
^2 )))) by
A11,
A12,
RFUNCT_1:def 2
.= (((2
* x)
* (
arccot
. (1
/ x)))
+ ((x
^2 )
/ (1
+ (x
^2 )))) by
A12,
FUNCT_1: 18;
hence thesis;
end;
hence thesis by
A2,
A8,
A9,
FDIFF_1: 21;
end;
theorem ::
FDIFF_11:67
Th67: Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arctan
. x)
<>
0 ) implies (
arctan
^ )
is_differentiable_on Z & for x st x
in Z holds (((
arctan
^ )
`| Z)
. x)
= (
- (1
/ (((
arctan
. x)
^2 )
* (1
+ (x
^2 )))))
proof
assume that
A1: Z
c=
].(
- 1), 1.[ and
A2: for x st x
in Z holds (
arctan
. x)
<>
0 ;
A3:
arctan
is_differentiable_on Z by
A1,
SIN_COS9: 81;
then
A4: (
arctan
^ )
is_differentiable_on Z by
A2,
FDIFF_2: 22;
for x st x
in Z holds (((
arctan
^ )
`| Z)
. x)
= (
- (1
/ (((
arctan
. x)
^2 )
* (1
+ (x
^2 )))))
proof
let x;
assume
A5: x
in Z;
then
A6: (
arctan
. x)
<>
0 &
arctan
is_differentiable_in x by
A2,
A3,
FDIFF_1: 9;
(((
arctan
^ )
`| Z)
. x)
= (
diff ((
arctan
^ ),x)) by
A4,
A5,
FDIFF_1:def 7
.= (
- ((
diff (
arctan ,x))
/ ((
arctan
. x)
^2 ))) by
A6,
FDIFF_2: 15
.= (
- (((
arctan
`| Z)
. x)
/ ((
arctan
. x)
^2 ))) by
A3,
A5,
FDIFF_1:def 7
.= (
- ((1
/ (1
+ (x
^2 )))
/ ((
arctan
. x)
^2 ))) by
A1,
A5,
SIN_COS9: 81
.= (
- (1
/ (((
arctan
. x)
^2 )
* (1
+ (x
^2 ))))) by
XCMPLX_1: 78;
hence thesis;
end;
hence thesis by
A2,
A3,
FDIFF_2: 22;
end;
theorem ::
FDIFF_11:68
Th68: Z
c=
].(
- 1), 1.[ implies (
arccot
^ )
is_differentiable_on Z & for x st x
in Z holds (((
arccot
^ )
`| Z)
. x)
= (1
/ (((
arccot
. x)
^2 )
* (1
+ (x
^2 ))))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
then
A2:
arccot
is_differentiable_on Z by
SIN_COS9: 82;
A3: for x st x
in Z holds (
arccot
. x)
<>
0
proof
PI
in
].
0 , 4.[ by
SIN_COS:def 28;
then
PI
>
0 by
XXREAL_1: 4;
then
A4: (
PI
/ 4)
> (
0
/ 4) by
XREAL_1: 74;
let x;
assume
A5: x
in Z;
assume
A6: (
arccot
. x)
=
0 ;
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then Z
c=
[.(
- 1), 1.] by
A1,
XBOOLE_1: 1;
then x
in
[.(
- 1), 1.] by
A5;
then
0
in (
arccot
.:
[.(
- 1), 1.]) by
A6,
FUNCT_1:def 6,
SIN_COS9: 24;
then
0
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] by
RELAT_1: 115,
SIN_COS9: 56;
hence contradiction by
A4,
XXREAL_1: 1;
end;
then
A7: (
arccot
^ )
is_differentiable_on Z by
A2,
FDIFF_2: 22;
for x st x
in Z holds (((
arccot
^ )
`| Z)
. x)
= (1
/ (((
arccot
. x)
^2 )
* (1
+ (x
^2 ))))
proof
let x;
assume
A8: x
in Z;
then
A9: (
arccot
. x)
<>
0 &
arccot
is_differentiable_in x by
A3,
A2,
FDIFF_1: 9;
(((
arccot
^ )
`| Z)
. x)
= (
diff ((
arccot
^ ),x)) by
A7,
A8,
FDIFF_1:def 7
.= (
- ((
diff (
arccot ,x))
/ ((
arccot
. x)
^2 ))) by
A9,
FDIFF_2: 15
.= (
- (((
arccot
`| Z)
. x)
/ ((
arccot
. x)
^2 ))) by
A2,
A8,
FDIFF_1:def 7
.= (
- ((
- (1
/ (1
+ (x
^2 ))))
/ ((
arccot
. x)
^2 ))) by
A1,
A8,
SIN_COS9: 82
.= ((1
/ (1
+ (x
^2 )))
/ ((
arccot
. x)
^2 ))
.= (1
/ (((
arccot
. x)
^2 )
* (1
+ (x
^2 )))) by
XCMPLX_1: 78;
hence thesis;
end;
hence thesis by
A3,
A2,
FDIFF_2: 22;
end;
theorem ::
FDIFF_11:69
Z
c= (
dom ((1
/ n)
(#) ((
#Z n)
* (
arctan
^ )))) & Z
c=
].(
- 1), 1.[ & n
>
0 & (for x st x
in Z holds (
arctan
. x)
<>
0 ) implies ((1
/ n)
(#) ((
#Z n)
* (
arctan
^ )))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ n)
(#) ((
#Z n)
* (
arctan
^ )))
`| Z)
. x)
= (
- (1
/ (((
arctan
. x)
#Z (n
+ 1))
* (1
+ (x
^2 )))))
proof
assume that
A1: Z
c= (
dom ((1
/ n)
(#) ((
#Z n)
* (
arctan
^ )))) and
A2: Z
c=
].(
- 1), 1.[ and
A3: n
>
0 and
A4: for x st x
in Z holds (
arctan
. x)
<>
0 ;
A5: Z
c= (
dom ((
#Z n)
* (
arctan
^ ))) by
A1,
VALUED_1:def 5;
A6: (
arctan
^ )
is_differentiable_on Z by
A2,
A4,
Th67;
for x st x
in Z holds ((
#Z n)
* (
arctan
^ ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
arctan
^ )
is_differentiable_in x by
A6,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 3;
end;
then
A7: ((
#Z n)
* (
arctan
^ ))
is_differentiable_on Z by
A5,
FDIFF_1: 9;
for y be
object st y
in Z holds y
in (
dom (
arctan
^ )) by
A5,
FUNCT_1: 11;
then
A8: Z
c= (
dom (
arctan
^ )) by
TARSKI:def 3;
for x st x
in Z holds ((((1
/ n)
(#) ((
#Z n)
* (
arctan
^ )))
`| Z)
. x)
= (
- (1
/ (((
arctan
. x)
#Z (n
+ 1))
* (1
+ (x
^2 )))))
proof
let x;
assume
A9: x
in Z;
then
A10: (
arctan
^ )
is_differentiable_in x by
A6,
FDIFF_1: 9;
A11: ((
arctan
^ )
. x)
= (1
/ (
arctan
. x)) by
A8,
A9,
RFUNCT_1:def 2;
((((1
/ n)
(#) ((
#Z n)
* (
arctan
^ )))
`| Z)
. x)
= ((1
/ n)
* (
diff (((
#Z n)
* (
arctan
^ )),x))) by
A1,
A7,
A9,
FDIFF_1: 20
.= ((1
/ n)
* ((n
* (((
arctan
^ )
. x)
#Z (n
- 1)))
* (
diff ((
arctan
^ ),x)))) by
A10,
TAYLOR_1: 3
.= ((1
/ n)
* ((n
* (((
arctan
^ )
. x)
#Z (n
- 1)))
* (((
arctan
^ )
`| Z)
. x))) by
A6,
A9,
FDIFF_1:def 7
.= ((1
/ n)
* ((n
* (((
arctan
^ )
. x)
#Z (n
- 1)))
* (
- (1
/ (((
arctan
. x)
^2 )
* (1
+ (x
^2 ))))))) by
A2,
A4,
A9,
Th67
.= (
- ((((1
/ n)
* n)
* (((
arctan
^ )
. x)
#Z (n
- 1)))
* (1
/ (((
arctan
. x)
^2 )
* (1
+ (x
^2 ))))))
.= (
- ((1
* (((
arctan
^ )
. x)
#Z (n
- 1)))
* (1
/ (((
arctan
. x)
^2 )
* (1
+ (x
^2 )))))) by
A3,
XCMPLX_1: 106
.= (
- (((1
/ (
arctan
. x))
#Z (n
- 1))
* (1
/ (((
arctan
. x)
#Z 2)
* (1
+ (x
^2 )))))) by
A11,
FDIFF_7: 1
.= (
- ((1
/ ((
arctan
. x)
#Z (n
- 1)))
/ (((
arctan
. x)
#Z 2)
* (1
+ (x
^2 ))))) by
PREPOWER: 42
.= (
- (1
/ (((
arctan
. x)
#Z (n
- 1))
* (((
arctan
. x)
#Z 2)
* (1
+ (x
^2 )))))) by
XCMPLX_1: 78
.= (
- (1
/ ((((
arctan
. x)
#Z (n
- 1))
* ((
arctan
. x)
#Z 2))
* (1
+ (x
^2 )))))
.= (
- (1
/ (((
arctan
. x)
#Z ((n
- 1)
+ 2))
* (1
+ (x
^2 ))))) by
A4,
A9,
PREPOWER: 44
.= (
- (1
/ (((
arctan
. x)
#Z (n
+ 1))
* (1
+ (x
^2 )))));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 20;
end;
theorem ::
FDIFF_11:70
Z
c= (
dom ((1
/ n)
(#) ((
#Z n)
* (
arccot
^ )))) & Z
c=
].(
- 1), 1.[ & n
>
0 implies ((1
/ n)
(#) ((
#Z n)
* (
arccot
^ )))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ n)
(#) ((
#Z n)
* (
arccot
^ )))
`| Z)
. x)
= (1
/ (((
arccot
. x)
#Z (n
+ 1))
* (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom ((1
/ n)
(#) ((
#Z n)
* (
arccot
^ )))) and
A2: Z
c=
].(
- 1), 1.[ and
A3: n
>
0 ;
A4: Z
c= (
dom ((
#Z n)
* (
arccot
^ ))) by
A1,
VALUED_1:def 5;
A5: for x st x
in Z holds (
arccot
. x)
<>
0
proof
PI
in
].
0 , 4.[ by
SIN_COS:def 28;
then
PI
>
0 by
XXREAL_1: 4;
then
A6: (
PI
/ 4)
> (
0
/ 4) by
XREAL_1: 74;
let x;
assume
A7: x
in Z;
assume
A8: (
arccot
. x)
=
0 ;
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then Z
c=
[.(
- 1), 1.] by
A2,
XBOOLE_1: 1;
then x
in
[.(
- 1), 1.] by
A7;
then
0
in (
arccot
.:
[.(
- 1), 1.]) by
A8,
FUNCT_1:def 6,
SIN_COS9: 24;
then
0
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] by
RELAT_1: 115,
SIN_COS9: 56;
hence contradiction by
A6,
XXREAL_1: 1;
end;
A9: (
arccot
^ )
is_differentiable_on Z by
A2,
Th68;
for x st x
in Z holds ((
#Z n)
* (
arccot
^ ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
arccot
^ )
is_differentiable_in x by
A9,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 3;
end;
then
A10: ((
#Z n)
* (
arccot
^ ))
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for y be
object st y
in Z holds y
in (
dom (
arccot
^ )) by
A4,
FUNCT_1: 11;
then
A11: Z
c= (
dom (
arccot
^ )) by
TARSKI:def 3;
for x st x
in Z holds ((((1
/ n)
(#) ((
#Z n)
* (
arccot
^ )))
`| Z)
. x)
= (1
/ (((
arccot
. x)
#Z (n
+ 1))
* (1
+ (x
^2 ))))
proof
let x;
assume
A12: x
in Z;
then
A13: (
arccot
^ )
is_differentiable_in x by
A9,
FDIFF_1: 9;
A14: ((
arccot
^ )
. x)
= (1
/ (
arccot
. x)) by
A11,
A12,
RFUNCT_1:def 2;
((((1
/ n)
(#) ((
#Z n)
* (
arccot
^ )))
`| Z)
. x)
= ((1
/ n)
* (
diff (((
#Z n)
* (
arccot
^ )),x))) by
A1,
A10,
A12,
FDIFF_1: 20
.= ((1
/ n)
* ((n
* (((
arccot
^ )
. x)
#Z (n
- 1)))
* (
diff ((
arccot
^ ),x)))) by
A13,
TAYLOR_1: 3
.= ((1
/ n)
* ((n
* (((
arccot
^ )
. x)
#Z (n
- 1)))
* (((
arccot
^ )
`| Z)
. x))) by
A9,
A12,
FDIFF_1:def 7
.= ((1
/ n)
* ((n
* (((
arccot
^ )
. x)
#Z (n
- 1)))
* (1
/ (((
arccot
. x)
^2 )
* (1
+ (x
^2 )))))) by
A2,
A12,
Th68
.= ((((1
/ n)
* n)
* (((
arccot
^ )
. x)
#Z (n
- 1)))
* (1
/ (((
arccot
. x)
^2 )
* (1
+ (x
^2 )))))
.= ((1
* (((
arccot
^ )
. x)
#Z (n
- 1)))
* (1
/ (((
arccot
. x)
^2 )
* (1
+ (x
^2 ))))) by
A3,
XCMPLX_1: 106
.= (((1
/ (
arccot
. x))
#Z (n
- 1))
* (1
/ (((
arccot
. x)
#Z 2)
* (1
+ (x
^2 ))))) by
A14,
FDIFF_7: 1
.= ((1
/ ((
arccot
. x)
#Z (n
- 1)))
/ (((
arccot
. x)
#Z 2)
* (1
+ (x
^2 )))) by
PREPOWER: 42
.= (1
/ (((
arccot
. x)
#Z (n
- 1))
* (((
arccot
. x)
#Z 2)
* (1
+ (x
^2 ))))) by
XCMPLX_1: 78
.= (1
/ ((((
arccot
. x)
#Z (n
- 1))
* ((
arccot
. x)
#Z 2))
* (1
+ (x
^2 ))))
.= (1
/ (((
arccot
. x)
#Z ((n
- 1)
+ 2))
* (1
+ (x
^2 )))) by
A5,
A12,
PREPOWER: 44
.= (1
/ (((
arccot
. x)
#Z (n
+ 1))
* (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A10,
FDIFF_1: 20;
end;
theorem ::
FDIFF_11:71
Z
c= (
dom (2
(#) ((
#R (1
/ 2))
*
arctan ))) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arctan
. x)
>
0 ) implies (2
(#) ((
#R (1
/ 2))
*
arctan ))
is_differentiable_on Z & for x st x
in Z holds (((2
(#) ((
#R (1
/ 2))
*
arctan ))
`| Z)
. x)
= (((
arctan
. x)
#R (
- (1
/ 2)))
/ (1
+ (x
^2 )))
proof
assume that
A1: Z
c= (
dom (2
(#) ((
#R (1
/ 2))
*
arctan ))) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (
arctan
. x)
>
0 ;
A4: for x st x
in Z holds ((
#R (1
/ 2))
*
arctan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then
A6: (
arctan
. x)
>
0 by
A3;
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
arctan
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence thesis by
A6,
TAYLOR_1: 22;
end;
Z
c= (
dom ((
#R (1
/ 2))
*
arctan )) by
A1,
VALUED_1:def 5;
then
A7: ((
#R (1
/ 2))
*
arctan )
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((2
(#) ((
#R (1
/ 2))
*
arctan ))
`| Z)
. x)
= (((
arctan
. x)
#R (
- (1
/ 2)))
/ (1
+ (x
^2 )))
proof
let x;
assume
A8: x
in Z;
then
A9: (
arctan
. x)
>
0 by
A3;
A10:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
A11:
arctan
is_differentiable_in x by
A8,
FDIFF_1: 9;
(((2
(#) ((
#R (1
/ 2))
*
arctan ))
`| Z)
. x)
= (2
* (
diff (((
#R (1
/ 2))
*
arctan ),x))) by
A1,
A7,
A8,
FDIFF_1: 20
.= (2
* (((1
/ 2)
* ((
arctan
. x)
#R ((1
/ 2)
- 1)))
* (
diff (
arctan ,x)))) by
A11,
A9,
TAYLOR_1: 22
.= (2
* (((1
/ 2)
* ((
arctan
. x)
#R ((1
/ 2)
- 1)))
* ((
arctan
`| Z)
. x))) by
A8,
A10,
FDIFF_1:def 7
.= (2
* (((1
/ 2)
* ((
arctan
. x)
#R ((1
/ 2)
- 1)))
* (1
/ (1
+ (x
^2 ))))) by
A2,
A8,
SIN_COS9: 81
.= (((
arctan
. x)
#R (
- (1
/ 2)))
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 20;
end;
theorem ::
FDIFF_11:72
Z
c= (
dom (2
(#) ((
#R (1
/ 2))
*
arccot ))) & Z
c=
].(
- 1), 1.[ implies (2
(#) ((
#R (1
/ 2))
*
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((2
(#) ((
#R (1
/ 2))
*
arccot ))
`| Z)
. x)
= (
- (((
arccot
. x)
#R (
- (1
/ 2)))
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (2
(#) ((
#R (1
/ 2))
*
arccot ))) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
arccot
. x)
>
0
proof
let x;
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
A4: Z
c=
[.(
- 1), 1.] by
A2,
XBOOLE_1: 1;
assume x
in Z;
then x
in
[.(
- 1), 1.] by
A4;
then (
arccot
. x)
in (
arccot
.:
[.(
- 1), 1.]) by
FUNCT_1:def 6,
SIN_COS9: 24;
then (
arccot
. x)
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] by
RELAT_1: 115,
SIN_COS9: 56;
then (
arccot
. x)
>= (
PI
/ 4) by
XXREAL_1: 1;
then
A5: ((
arccot
. x)
+
0 )
> ((
PI
/ 4)
+ (
- (
PI
/ 4))) by
XREAL_1: 8;
assume (
arccot
. x)
<=
0 ;
hence contradiction by
A5;
end;
A6: for x st x
in Z holds ((
#R (1
/ 2))
*
arccot )
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then
A8: (
arccot
. x)
>
0 by
A3;
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
arccot
is_differentiable_in x by
A7,
FDIFF_1: 9;
hence thesis by
A8,
TAYLOR_1: 22;
end;
Z
c= (
dom ((
#R (1
/ 2))
*
arccot )) by
A1,
VALUED_1:def 5;
then
A9: ((
#R (1
/ 2))
*
arccot )
is_differentiable_on Z by
A6,
FDIFF_1: 9;
for x st x
in Z holds (((2
(#) ((
#R (1
/ 2))
*
arccot ))
`| Z)
. x)
= (
- (((
arccot
. x)
#R (
- (1
/ 2)))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A10: x
in Z;
then
A11: (
arccot
. x)
>
0 by
A3;
A12:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
A13:
arccot
is_differentiable_in x by
A10,
FDIFF_1: 9;
(((2
(#) ((
#R (1
/ 2))
*
arccot ))
`| Z)
. x)
= (2
* (
diff (((
#R (1
/ 2))
*
arccot ),x))) by
A1,
A9,
A10,
FDIFF_1: 20
.= (2
* (((1
/ 2)
* ((
arccot
. x)
#R ((1
/ 2)
- 1)))
* (
diff (
arccot ,x)))) by
A13,
A11,
TAYLOR_1: 22
.= (2
* (((1
/ 2)
* ((
arccot
. x)
#R ((1
/ 2)
- 1)))
* ((
arccot
`| Z)
. x))) by
A10,
A12,
FDIFF_1:def 7
.= (2
* (((1
/ 2)
* ((
arccot
. x)
#R ((1
/ 2)
- 1)))
* (
- (1
/ (1
+ (x
^2 )))))) by
A2,
A10,
SIN_COS9: 82
.= (
- (((
arccot
. x)
#R (
- (1
/ 2)))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A9,
FDIFF_1: 20;
end;
theorem ::
FDIFF_11:73
Z
c= (
dom ((2
/ 3)
(#) ((
#R (3
/ 2))
*
arctan ))) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arctan
. x)
>
0 ) implies ((2
/ 3)
(#) ((
#R (3
/ 2))
*
arctan ))
is_differentiable_on Z & for x st x
in Z holds ((((2
/ 3)
(#) ((
#R (3
/ 2))
*
arctan ))
`| Z)
. x)
= (((
arctan
. x)
#R (1
/ 2))
/ (1
+ (x
^2 )))
proof
assume that
A1: Z
c= (
dom ((2
/ 3)
(#) ((
#R (3
/ 2))
*
arctan ))) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (
arctan
. x)
>
0 ;
A4: for x st x
in Z holds ((
#R (3
/ 2))
*
arctan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
then
A6: (
arctan
. x)
>
0 by
A3;
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
arctan
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence thesis by
A6,
TAYLOR_1: 22;
end;
Z
c= (
dom ((
#R (3
/ 2))
*
arctan )) by
A1,
VALUED_1:def 5;
then
A7: ((
#R (3
/ 2))
*
arctan )
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds ((((2
/ 3)
(#) ((
#R (3
/ 2))
*
arctan ))
`| Z)
. x)
= (((
arctan
. x)
#R (1
/ 2))
/ (1
+ (x
^2 )))
proof
let x;
assume
A8: x
in Z;
then
A9: (
arctan
. x)
>
0 by
A3;
A10:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
then
A11:
arctan
is_differentiable_in x by
A8,
FDIFF_1: 9;
((((2
/ 3)
(#) ((
#R (3
/ 2))
*
arctan ))
`| Z)
. x)
= ((2
/ 3)
* (
diff (((
#R (3
/ 2))
*
arctan ),x))) by
A1,
A7,
A8,
FDIFF_1: 20
.= ((2
/ 3)
* (((3
/ 2)
* ((
arctan
. x)
#R ((3
/ 2)
- 1)))
* (
diff (
arctan ,x)))) by
A11,
A9,
TAYLOR_1: 22
.= ((2
/ 3)
* (((3
/ 2)
* ((
arctan
. x)
#R ((3
/ 2)
- 1)))
* ((
arctan
`| Z)
. x))) by
A8,
A10,
FDIFF_1:def 7
.= ((2
/ 3)
* (((3
/ 2)
* ((
arctan
. x)
#R ((3
/ 2)
- 1)))
* (1
/ (1
+ (x
^2 ))))) by
A2,
A8,
SIN_COS9: 81
.= (((
arctan
. x)
#R (1
/ 2))
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 20;
end;
theorem ::
FDIFF_11:74
Z
c= (
dom ((2
/ 3)
(#) ((
#R (3
/ 2))
*
arccot ))) & Z
c=
].(
- 1), 1.[ implies ((2
/ 3)
(#) ((
#R (3
/ 2))
*
arccot ))
is_differentiable_on Z & for x st x
in Z holds ((((2
/ 3)
(#) ((
#R (3
/ 2))
*
arccot ))
`| Z)
. x)
= (
- (((
arccot
. x)
#R (1
/ 2))
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom ((2
/ 3)
(#) ((
#R (3
/ 2))
*
arccot ))) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
arccot
. x)
>
0
proof
let x;
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
A4: Z
c=
[.(
- 1), 1.] by
A2,
XBOOLE_1: 1;
assume x
in Z;
then x
in
[.(
- 1), 1.] by
A4;
then (
arccot
. x)
in (
arccot
.:
[.(
- 1), 1.]) by
FUNCT_1:def 6,
SIN_COS9: 24;
then (
arccot
. x)
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] by
RELAT_1: 115,
SIN_COS9: 56;
then (
arccot
. x)
>= (
PI
/ 4) by
XXREAL_1: 1;
then
A5: ((
arccot
. x)
+
0 )
> ((
PI
/ 4)
+ (
- (
PI
/ 4))) by
XREAL_1: 8;
assume (
arccot
. x)
<=
0 ;
hence contradiction by
A5;
end;
A6: for x st x
in Z holds ((
#R (3
/ 2))
*
arccot )
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then
A8: (
arccot
. x)
>
0 by
A3;
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
arccot
is_differentiable_in x by
A7,
FDIFF_1: 9;
hence thesis by
A8,
TAYLOR_1: 22;
end;
Z
c= (
dom ((
#R (3
/ 2))
*
arccot )) by
A1,
VALUED_1:def 5;
then
A9: ((
#R (3
/ 2))
*
arccot )
is_differentiable_on Z by
A6,
FDIFF_1: 9;
for x st x
in Z holds ((((2
/ 3)
(#) ((
#R (3
/ 2))
*
arccot ))
`| Z)
. x)
= (
- (((
arccot
. x)
#R (1
/ 2))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A10: x
in Z;
then
A11: (
arccot
. x)
>
0 by
A3;
A12:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
then
A13:
arccot
is_differentiable_in x by
A10,
FDIFF_1: 9;
((((2
/ 3)
(#) ((
#R (3
/ 2))
*
arccot ))
`| Z)
. x)
= ((2
/ 3)
* (
diff (((
#R (3
/ 2))
*
arccot ),x))) by
A1,
A9,
A10,
FDIFF_1: 20
.= ((2
/ 3)
* (((3
/ 2)
* ((
arccot
. x)
#R ((3
/ 2)
- 1)))
* (
diff (
arccot ,x)))) by
A13,
A11,
TAYLOR_1: 22
.= ((2
/ 3)
* (((3
/ 2)
* ((
arccot
. x)
#R ((3
/ 2)
- 1)))
* ((
arccot
`| Z)
. x))) by
A10,
A12,
FDIFF_1:def 7
.= ((2
/ 3)
* (((3
/ 2)
* ((
arccot
. x)
#R ((3
/ 2)
- 1)))
* (
- (1
/ (1
+ (x
^2 )))))) by
A2,
A10,
SIN_COS9: 82
.= (
- (((
arccot
. x)
#R (1
/ 2))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A9,
FDIFF_1: 20;
end;