sin_cos9.miz
begin
reserve x,x0,r,s,h for
Real,
n for
Element of
NAT ,
rr,y for
set,
Z for
open
Subset of
REAL ,
f,f1,f2 for
PartFunc of
REAL ,
REAL ;
theorem ::
SIN_COS9:1
Th1:
].(
- (
PI
/ 2)), (
PI
/ 2).[
c= (
dom
tan )
proof
(
].(
- (
PI
/ 2)), (
PI
/ 2).[
/\ (
cos
"
{
0 }))
=
{}
proof
assume (
].(
- (
PI
/ 2)), (
PI
/ 2).[
/\ (
cos
"
{
0 }))
<>
{} ;
then
consider rr be
object such that
A1: rr
in (
].(
- (
PI
/ 2)), (
PI
/ 2).[
/\ (
cos
"
{
0 })) by
XBOOLE_0: 7;
rr
in (
cos
"
{
0 }) by
A1,
XBOOLE_0:def 4;
then
A2: (
cos
. rr)
in
{
0 } by
FUNCT_1:def 7;
rr
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
A1,
XBOOLE_0:def 4;
then (
cos
. rr)
<>
0 by
COMPTRIG: 11;
hence contradiction by
A2,
TARSKI:def 1;
end;
then
A3:
].(
- (
PI
/ 2)), (
PI
/ 2).[
misses (
cos
"
{
0 }) by
XBOOLE_0:def 7;
(
].(
- (
PI
/ 2)), (
PI
/ 2).[
\ (
cos
"
{
0 }))
c= ((
dom
cos )
\ (
cos
"
{
0 })) by
SIN_COS: 24,
XBOOLE_1: 33;
then
].(
- (
PI
/ 2)), (
PI
/ 2).[
c= ((
dom
cos )
\ (
cos
"
{
0 })) by
A3,
XBOOLE_1: 83;
then
].(
- (
PI
/ 2)), (
PI
/ 2).[
c= ((
dom
sin )
/\ ((
dom
cos )
\ (
cos
"
{
0 }))) by
SIN_COS: 24,
XBOOLE_1: 19;
hence thesis by
RFUNCT_1:def 1;
end;
theorem ::
SIN_COS9:2
Th2:
].
0 ,
PI .[
c= (
dom
cot )
proof
(
].
0 ,
PI .[
/\ (
sin
"
{
0 }))
=
{}
proof
assume (
].
0 ,
PI .[
/\ (
sin
"
{
0 }))
<>
{} ;
then
consider rr be
object such that
A1: rr
in (
].
0 ,
PI .[
/\ (
sin
"
{
0 })) by
XBOOLE_0: 7;
rr
in (
sin
"
{
0 }) by
A1,
XBOOLE_0:def 4;
then
A2: (
sin
. rr)
in
{
0 } by
FUNCT_1:def 7;
rr
in
].
0 ,
PI .[ by
A1,
XBOOLE_0:def 4;
then (
sin
. rr)
<>
0 by
COMPTRIG: 7;
hence contradiction by
A2,
TARSKI:def 1;
end;
then
A3:
].
0 ,
PI .[
misses (
sin
"
{
0 }) by
XBOOLE_0:def 7;
(
].
0 ,
PI .[
\ (
sin
"
{
0 }))
c= ((
dom
sin )
\ (
sin
"
{
0 })) by
SIN_COS: 24,
XBOOLE_1: 33;
then
].
0 ,
PI .[
c= ((
dom
sin )
\ (
sin
"
{
0 })) by
A3,
XBOOLE_1: 83;
then
].
0 ,
PI .[
c= ((
dom
cos )
/\ ((
dom
sin )
\ (
sin
"
{
0 }))) by
SIN_COS: 24,
XBOOLE_1: 19;
hence thesis by
RFUNCT_1:def 1;
end;
Lm1:
tan
is_differentiable_on
].(
- (
PI
/ 2)), (
PI
/ 2).[
proof
for x st x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ holds
tan
is_differentiable_in x
proof
let x;
assume x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
then (
cos
. x)
<>
0 by
COMPTRIG: 11;
hence thesis by
FDIFF_7: 46;
end;
hence thesis by
Th1,
FDIFF_1: 9;
end;
Lm2:
cot
is_differentiable_on
].
0 ,
PI .[
proof
for x st x
in
].
0 ,
PI .[ holds
cot
is_differentiable_in x
proof
let x;
assume x
in
].
0 ,
PI .[;
then (
sin
. x)
<>
0 by
COMPTRIG: 7;
hence thesis by
FDIFF_7: 47;
end;
hence thesis by
Th2,
FDIFF_1: 9;
end;
Lm3: for x st x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ holds (
diff (
tan ,x))
= (1
/ ((
cos
. x)
^2 ))
proof
let x;
assume x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
then (
cos
. x)
<>
0 by
COMPTRIG: 11;
hence thesis by
FDIFF_7: 46;
end;
Lm4: for x st x
in
].
0 ,
PI .[ holds (
diff (
cot ,x))
= (
- (1
/ ((
sin
. x)
^2 )))
proof
let x;
assume x
in
].
0 ,
PI .[;
then (
sin
. x)
<>
0 by
COMPTRIG: 7;
hence thesis by
FDIFF_7: 47;
end;
theorem ::
SIN_COS9:3
tan
is_differentiable_on
].(
- (
PI
/ 2)), (
PI
/ 2).[ & for x st x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ holds (
diff (
tan ,x))
= (1
/ ((
cos
. x)
^2 )) by
Lm1,
Lm3;
theorem ::
SIN_COS9:4
cot
is_differentiable_on
].
0 ,
PI .[ & for x st x
in
].
0 ,
PI .[ holds (
diff (
cot ,x))
= (
- (1
/ ((
sin
. x)
^2 ))) by
Lm2,
Lm4;
theorem ::
SIN_COS9:5
(
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[) is
continuous by
Lm1,
FDIFF_1: 25;
theorem ::
SIN_COS9:6
(
cot
|
].
0 ,
PI .[) is
continuous by
Lm2,
FDIFF_1: 25;
theorem ::
SIN_COS9:7
Th7: (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[) is
increasing
proof
A1: for x st x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ holds (
diff (
tan ,x))
>
0
proof
let x;
assume
A2: x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
then
0
< (
cos
. x) by
COMPTRIG: 11;
then ((
cos
. x)
^2 )
>
0 ;
then (1
/ ((
cos
. x)
^2 ))
> (
0
/ ((
cos
. x)
^2 ));
hence thesis by
A2,
Lm3;
end;
].(
- (
PI
/ 2)), (
PI
/ 2).[
c= (
dom
tan ) by
Lm1,
FDIFF_1:def 6;
hence thesis by
A1,
Lm1,
ROLLE: 9;
end;
theorem ::
SIN_COS9:8
Th8: (
cot
|
].
0 ,
PI .[) is
decreasing
proof
A1: for x st x
in
].
0 ,
PI .[ holds (
diff (
cot ,x))
<
0
proof
let x;
assume
A2: x
in
].
0 ,
PI .[;
then
0
< (
sin
. x) by
COMPTRIG: 7;
then ((
sin
. x)
^2 )
>
0 ;
then (1
/ ((
sin
. x)
^2 ))
> (
0
/ ((
sin
. x)
^2 ));
then (
- (1
/ ((
sin
. x)
^2 )))
< (
-
0 );
hence thesis by
A2,
Lm4;
end;
].
0 ,
PI .[
c= (
dom
cot ) by
Lm2,
FDIFF_1:def 6;
hence thesis by
A1,
Lm2,
ROLLE: 10;
end;
theorem ::
SIN_COS9:9
(
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[) is
one-to-one by
Th7,
FCONT_3: 8;
theorem ::
SIN_COS9:10
(
cot
|
].
0 ,
PI .[) is
one-to-one by
Th8,
FCONT_3: 8;
registration
cluster (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[) ->
one-to-one;
coherence by
Th7,
FCONT_3: 8;
cluster (
cot
|
].
0 ,
PI .[) ->
one-to-one;
coherence by
Th8,
FCONT_3: 8;
end
definition
::
SIN_COS9:def1
func
arctan ->
PartFunc of
REAL ,
REAL equals ((
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
" );
coherence ;
::
SIN_COS9:def2
func
arccot ->
PartFunc of
REAL ,
REAL equals ((
cot
|
].
0 ,
PI .[)
" );
coherence ;
end
definition
let r be
Real;
::
SIN_COS9:def3
func
arctan r ->
number equals (
arctan
. r);
coherence ;
::
SIN_COS9:def4
func
arccot r ->
number equals (
arccot
. r);
coherence ;
end
registration
let r be
Real;
cluster (
arctan r) ->
real;
coherence ;
cluster (
arccot r) ->
real;
coherence ;
end
Lm5: (
arctan qua
Function
" )
= (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[) by
FUNCT_1: 43;
Lm6: (
arccot qua
Function
" )
= (
cot
|
].
0 ,
PI .[) by
FUNCT_1: 43;
theorem ::
SIN_COS9:11
Th11: (
rng
arctan )
=
].(
- (
PI
/ 2)), (
PI
/ 2).[
proof
(
dom (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[))
=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Th1,
RELAT_1: 62;
hence thesis by
FUNCT_1: 33;
end;
theorem ::
SIN_COS9:12
Th12: (
rng
arccot )
=
].
0 ,
PI .[
proof
(
dom (
cot
|
].
0 ,
PI .[))
=
].
0 ,
PI .[ by
Th2,
RELAT_1: 62;
hence thesis by
FUNCT_1: 33;
end;
registration
cluster
arctan ->
one-to-one;
coherence ;
cluster
arccot ->
one-to-one;
coherence ;
end
Lm7: (
- (
PI
/ 4))
in
].(
- (
PI
/ 2)), (
PI
/ 2).[
proof
(
PI
/ (
- 4))
> (
PI
/ (
- 2)) by
XREAL_1: 99;
then (
- (
PI
/ 4))
in { s where s be
Real : (
- (
PI
/ 2))
< s & s
< (
PI
/ 2) };
hence thesis by
RCOMP_1:def 2;
end;
Lm8: (
PI
/ 4)
in
].(
- (
PI
/ 2)), (
PI
/ 2).[
proof
(
PI
/ 4)
< (
PI
/ 2) by
XREAL_1: 76;
then (
PI
/ 4)
in { s where s be
Real : (
- (
PI
/ 2))
< s & s
< (
PI
/ 2) };
hence thesis by
RCOMP_1:def 2;
end;
Lm9: (
PI
/ 4)
in
].
0 ,
PI .[
proof
A1: (
PI
/ 4)
< (
PI
/ 1) by
XREAL_1: 76;
thus thesis by
A1,
XXREAL_1: 4;
end;
Lm10: ((3
/ 4)
*
PI )
in
].
0 ,
PI .[
proof
A1: ((3
/ 4)
*
PI )
<
PI by
XREAL_1: 157;
thus thesis by
A1,
XXREAL_1: 4;
end;
Lm11: (
dom (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]))
=
[.(
- (
PI
/ 4)), (
PI
/ 4).]
proof
[.(
- (
PI
/ 4)), (
PI
/ 4).]
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm7,
Lm8,
XXREAL_2:def 12;
hence thesis by
Th1,
RELAT_1: 62,
XBOOLE_1: 1;
end;
Lm12: (
dom (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]))
=
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
proof
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
c=
].
0 ,
PI .[ by
Lm9,
Lm10,
XXREAL_2:def 12;
hence thesis by
Th2,
RELAT_1: 62,
XBOOLE_1: 1;
end;
theorem ::
SIN_COS9:13
Th13: for x be
Real st x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ holds (
tan
. x)
= (
tan x)
proof
let x be
Real;
assume x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
then (
tan
. x)
= ((
sin x)
/ (
cos x)) by
Th1,
RFUNCT_1:def 1
.= (
tan x) by
SIN_COS4:def 1;
hence thesis;
end;
theorem ::
SIN_COS9:14
Th14: for x be
Real st x
in
].
0 ,
PI .[ holds (
cot
. x)
= (
cot x)
proof
let x be
Real;
assume x
in
].
0 ,
PI .[;
then (
cot
. x)
= ((
cos x)
/ (
sin x)) by
Th2,
RFUNCT_1:def 1
.= (
cot x) by
SIN_COS4:def 2;
hence thesis;
end;
theorem ::
SIN_COS9:15
for x be
Real st (
cos
. x)
<>
0 holds (
tan
. x)
= (
tan x)
proof
let x be
Real;
assume
A1: (
cos
. x)
<>
0 ;
A2: x
in
REAL by
XREAL_0:def 1;
not x
in (
cos
"
{
0 })
proof
assume x
in (
cos
"
{
0 });
then (
cos
. x)
in
{
0 } by
FUNCT_1:def 7;
hence contradiction by
A1,
TARSKI:def 1;
end;
then x
in ((
dom
cos )
\ (
cos
"
{
0 })) by
SIN_COS: 24,
XBOOLE_0:def 5,
A2;
then x
in ((
dom
sin )
/\ ((
dom
cos )
\ (
cos
"
{
0 }))) by
SIN_COS: 24,
XBOOLE_0:def 4,
A2;
then x
in (
dom (
sin
/
cos )) by
RFUNCT_1:def 1;
then (
tan
. x)
= ((
sin x)
/ (
cos x)) by
RFUNCT_1:def 1
.= (
tan x) by
SIN_COS4:def 1;
hence thesis;
end;
theorem ::
SIN_COS9:16
for x be
Real st (
sin
. x)
<>
0 holds (
cot
. x)
= (
cot x)
proof
let x be
Real;
assume
A1: (
sin
. x)
<>
0 ;
A2: x
in
REAL by
XREAL_0:def 1;
not x
in (
sin
"
{
0 })
proof
assume x
in (
sin
"
{
0 });
then (
sin
. x)
in
{
0 } by
FUNCT_1:def 7;
hence contradiction by
A1,
TARSKI:def 1;
end;
then x
in ((
dom
sin )
\ (
sin
"
{
0 })) by
SIN_COS: 24,
XBOOLE_0:def 5,
A2;
then x
in ((
dom
cos )
/\ ((
dom
sin )
\ (
sin
"
{
0 }))) by
SIN_COS: 24,
XBOOLE_0:def 4,
A2;
then x
in (
dom (
cos
/
sin )) by
RFUNCT_1:def 1;
then (
cot
. x)
= ((
cos x)
/ (
sin x)) by
RFUNCT_1:def 1
.= (
cot x) by
SIN_COS4:def 2;
hence thesis;
end;
theorem ::
SIN_COS9:17
Th17: (
tan
. (
- (
PI
/ 4)))
= (
- 1) & (
tan (
- (
PI
/ 4)))
= (
- 1)
proof
(
cos
. (
PI
/ 4))
<>
0 by
Lm8,
COMPTRIG: 11;
then
A1: ((
sin
. (
PI
/ 4))
/ (
cos
. (
PI
/ 4)))
= 1 by
SIN_COS: 73,
XCMPLX_1: 60;
(
tan
. (
- (
PI
/ 4)))
= ((
sin
. (
- (
PI
/ 4)))
/ (
cos
. (
- (
PI
/ 4)))) by
Lm7,
Th1,
RFUNCT_1:def 1
.= ((
- (
sin
. (
PI
/ 4)))
/ (
cos
. (
- (
PI
/ 4)))) by
SIN_COS: 30
.= ((
- (
sin
. (
PI
/ 4)))
/ (
cos
. (
PI
/ 4))) by
SIN_COS: 30
.= (
- 1) by
A1;
hence thesis by
Lm7,
Th13;
end;
theorem ::
SIN_COS9:18
Th18: (
cot
. (
PI
/ 4))
= 1 & (
cot (
PI
/ 4))
= 1 & (
cot
. ((3
/ 4)
*
PI ))
= (
- 1) & (
cot ((3
/ 4)
*
PI ))
= (
- 1)
proof
A1: (
sin
. (
PI
/ 4))
<>
0 by
Lm9,
COMPTRIG: 7;
A2: (
cot
. ((3
/ 4)
*
PI ))
= ((
cos
. ((3
/ 4)
*
PI ))
* ((
sin
. ((3
/ 4)
*
PI ))
" )) by
Lm10,
Th2,
RFUNCT_1:def 1
.= ((
- (
sin
. (
PI
/ 4)))
/ (
sin
. ((
PI
/ 2)
+ (
PI
/ 4)))) by
SIN_COS: 78
.= ((
- (
sin
. (
PI
/ 4)))
/ (
cos
. (
PI
/ 4))) by
SIN_COS: 78
.= (
- ((
sin
. (
PI
/ 4))
/ (
cos
. (
PI
/ 4))))
.= (
- 1) by
A1,
SIN_COS: 73,
XCMPLX_1: 60;
(
cot
. (
PI
/ 4))
= ((
cos
. (
PI
/ 4))
/ (
sin
. (
PI
/ 4))) by
Lm9,
Th2,
RFUNCT_1:def 1
.= 1 by
A1,
SIN_COS: 73,
XCMPLX_1: 60;
hence thesis by
A2,
Lm9,
Lm10,
Th14;
end;
theorem ::
SIN_COS9:19
Th19: for x be
set st x
in
[.(
- (
PI
/ 4)), (
PI
/ 4).] holds (
tan
. x)
in
[.(
- 1), 1.]
proof
let x be
set;
assume x
in
[.(
- (
PI
/ 4)), (
PI
/ 4).];
then x
in (
].(
- (
PI
/ 4)), (
PI
/ 4).[
\/
{(
- (
PI
/ 4)), (
PI
/ 4)}) by
XXREAL_1: 128;
then
A1: x
in
].(
- (
PI
/ 4)), (
PI
/ 4).[ or x
in
{(
- (
PI
/ 4)), (
PI
/ 4)} by
XBOOLE_0:def 3;
per cases by
A1,
TARSKI:def 2;
suppose
A2: x
in
].(
- (
PI
/ 4)), (
PI
/ 4).[;
then x
in { s where s be
Real : (
- (
PI
/ 4))
< s & s
< (
PI
/ 4) } by
RCOMP_1:def 2;
then
A3: ex s be
Real st s
= x & (
- (
PI
/ 4))
< s & s
< (
PI
/ 4);
A4:
].(
- (
PI
/ 4)), (
PI
/ 4).[
c=
[.(
- (
PI
/ 4)), (
PI
/ 4).] by
XXREAL_1: 25;
(
- (
PI
/ 4))
in { s where s be
Real : (
- (
PI
/ 4))
<= s & s
<= (
PI
/ 4) };
then
A5: (
- (
PI
/ 4))
in
[.(
- (
PI
/ 4)), (
PI
/ 4).] by
RCOMP_1:def 1;
A6:
[.(
- (
PI
/ 4)), (
PI
/ 4).]
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm7,
Lm8,
XXREAL_2:def 12;
then
A7: (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]) is
increasing by
Th7,
RFUNCT_2: 28;
A8: (
[.(
- (
PI
/ 4)), (
PI
/ 4).]
/\ (
dom
tan ))
=
[.(
- (
PI
/ 4)), (
PI
/ 4).] by
A6,
Th1,
XBOOLE_1: 1,
XBOOLE_1: 28;
(
PI
/ 4)
in { s where s be
Real : (
- (
PI
/ 4))
<= s & s
<= (
PI
/ 4) };
then (
PI
/ 4)
in (
[.(
- (
PI
/ 4)), (
PI
/ 4).]
/\ (
dom
tan )) by
A8,
RCOMP_1:def 1;
then (
tan
. x)
< (
tan
. (
PI
/ 4)) by
A2,
A7,
A8,
A4,
A3,
RFUNCT_2: 20;
then
A9: (
tan
. x)
< 1 by
SIN_COS:def 28;
x
in { s where s be
Real : (
- (
PI
/ 4))
< s & s
< (
PI
/ 4) } by
A2,
RCOMP_1:def 2;
then ex s be
Real st s
= x & (
- (
PI
/ 4))
< s & s
< (
PI
/ 4);
then (
- 1)
< (
tan
. x) by
A2,
A7,
A5,
A8,
A4,
Th17,
RFUNCT_2: 20;
then (
tan
. x)
in { s where s be
Real : (
- 1)
< s & s
< 1 } by
A9;
then
A10: (
tan
. x)
in
].(
- 1), 1.[ by
RCOMP_1:def 2;
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
hence thesis by
A10;
end;
suppose x
= (
- (
PI
/ 4));
then (
tan
. x)
in { s where s be
Real : (
- 1)
<= s & s
<= 1 } by
Th17;
hence thesis by
RCOMP_1:def 1;
end;
suppose x
= (
PI
/ 4);
then (
tan
. x)
= 1 by
SIN_COS:def 28;
then (
tan
. x)
in { s where s be
Real : (
- 1)
<= s & s
<= 1 };
hence thesis by
RCOMP_1:def 1;
end;
end;
theorem ::
SIN_COS9:20
Th20: for x be
set st x
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] holds (
cot
. x)
in
[.(
- 1), 1.]
proof
let x be
set;
A1: ((
PI
/ 4)
* 3)
> (
PI
/ 4) by
XREAL_1: 155;
assume x
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).];
then x
in (
].(
PI
/ 4), ((3
/ 4)
*
PI ).[
\/
{(
PI
/ 4), ((3
/ 4)
*
PI )}) by
A1,
XXREAL_1: 128;
then
A2: x
in
].(
PI
/ 4), ((3
/ 4)
*
PI ).[ or x
in
{(
PI
/ 4), ((3
/ 4)
*
PI )} by
XBOOLE_0:def 3;
per cases by
A2,
TARSKI:def 2;
suppose
A3: x
in
].(
PI
/ 4), ((3
/ 4)
*
PI ).[;
then x
in { s where s be
Real : (
PI
/ 4)
< s & s
< ((3
/ 4)
*
PI ) } by
RCOMP_1:def 2;
then
A4: ex s be
Real st s
= x & (
PI
/ 4)
< s & s
< ((3
/ 4)
*
PI );
A5:
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
c=
].
0 ,
PI .[ by
Lm9,
Lm10,
XXREAL_2:def 12;
then
A6: (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) is
decreasing by
Th8,
RFUNCT_2: 29;
x
in { s where s be
Real : (
PI
/ 4)
< s & s
< ((3
/ 4)
*
PI ) } by
A3,
RCOMP_1:def 2;
then
A7: ex s be
Real st s
= x & (
PI
/ 4)
< s & s
< ((3
/ 4)
*
PI );
A8:
].(
PI
/ 4), ((3
/ 4)
*
PI ).[
c=
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] by
XXREAL_1: 25;
A9: (
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
/\ (
dom
cot ))
=
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] by
A5,
Th2,
XBOOLE_1: 1,
XBOOLE_1: 28;
((3
/ 4)
*
PI )
in { s where s be
Real : (
PI
/ 4)
<= s & s
<= ((3
/ 4)
*
PI ) } by
A1;
then ((3
/ 4)
*
PI )
in (
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
/\ (
dom
cot )) by
A9,
RCOMP_1:def 1;
then
A10: (
- 1)
< (
cot
. x) by
A3,
A6,
A9,
A8,
A7,
Th18,
RFUNCT_2: 21;
(
PI
/ 4)
in { s where s be
Real : (
PI
/ 4)
<= s & s
<= ((3
/ 4)
*
PI ) } by
A1;
then (
PI
/ 4)
in (
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
/\ (
dom
cot )) by
A9,
RCOMP_1:def 1;
then (
cot
. x)
< 1 by
A3,
A6,
A9,
A8,
A4,
Th18,
RFUNCT_2: 21;
then (
cot
. x)
in { s where s be
Real : (
- 1)
< s & s
< 1 } by
A10;
then
A11: (
cot
. x)
in
].(
- 1), 1.[ by
RCOMP_1:def 2;
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
hence thesis by
A11;
end;
suppose x
= (
PI
/ 4);
then (
cot
. x)
in { s where s be
Real : (
- 1)
<= s & s
<= 1 } by
Th18;
hence thesis by
RCOMP_1:def 1;
end;
suppose x
= ((3
/ 4)
*
PI );
then (
cot
. x)
in { s where s be
Real : (
- 1)
<= s & s
<= 1 } by
Th18;
hence thesis by
RCOMP_1:def 1;
end;
end;
theorem ::
SIN_COS9:21
Th21: (
rng (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]))
=
[.(
- 1), 1.]
proof
now
let y be
object;
thus y
in
[.(
- 1), 1.] implies ex x be
object st x
in (
dom (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])) & y
= ((
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])
. x)
proof
assume
A1: y
in
[.(
- 1), 1.];
then
reconsider y1 = y as
Real;
y1
in
[.(
tan
. (
- (
PI
/ 4))), (
tan
. (
PI
/ 4)).] by
A1,
Th17,
SIN_COS:def 28;
then
A2: y1
in (
[.(
tan
. (
- (
PI
/ 4))), (
tan
. (
PI
/ 4)).]
\/
[.(
tan
. (
PI
/ 4)), (
tan
. (
- (
PI
/ 4))).]) by
XBOOLE_0:def 3;
A3:
[.(
- (
PI
/ 4)), (
PI
/ 4).]
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm7,
Lm8,
XXREAL_2:def 12;
(
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[) is
continuous by
Lm1,
FDIFF_1: 25;
then (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]) is
continuous by
A3,
FCONT_1: 16;
then
consider x be
Real such that
A4: x
in
[.(
- (
PI
/ 4)), (
PI
/ 4).] and
A5: y1
= (
tan
. x) by
A3,
A2,
Th1,
FCONT_2: 15,
XBOOLE_1: 1;
take x;
thus thesis by
A4,
A5,
Lm11,
FUNCT_1: 49;
end;
thus (ex x be
object st x
in (
dom (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])) & y
= ((
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])
. x)) implies y
in
[.(
- 1), 1.]
proof
given x be
object such that
A6: x
in (
dom (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])) and
A7: y
= ((
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])
. x);
reconsider x1 = x as
Real by
A6;
y
= (
tan
. x1) by
A6,
A7,
Lm11,
FUNCT_1: 49;
hence thesis by
A6,
Lm11,
Th19;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
SIN_COS9:22
Th22: (
rng (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]))
=
[.(
- 1), 1.]
proof
now
let y be
object;
thus y
in
[.(
- 1), 1.] implies ex x be
object st x
in (
dom (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])) & y
= ((
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])
. x)
proof
A1: ((
PI
/ 4)
* 3)
> (
PI
/ 4) by
XREAL_1: 155;
assume
A2: y
in
[.(
- 1), 1.];
then
reconsider y1 = y as
Real;
A3: y1
in (
[.(
cot
. ((3
/ 4)
*
PI )), (
cot
. (
PI
/ 4)).]
\/
[.(
cot
. (
PI
/ 4)), (
cot
. ((3
/ 4)
*
PI )).]) by
A2,
Th18,
XBOOLE_0:def 3;
A4:
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
c=
].
0 ,
PI .[ by
Lm9,
Lm10,
XXREAL_2:def 12;
(
cot
|
].
0 ,
PI .[) is
continuous by
Lm2,
FDIFF_1: 25;
then (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) is
continuous by
A4,
FCONT_1: 16;
then
consider x be
Real such that
A5: x
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] and
A6: y1
= (
cot
. x) by
A1,
A4,
A3,
Th2,
FCONT_2: 15,
XBOOLE_1: 1;
take x;
thus thesis by
A5,
A6,
Lm12,
FUNCT_1: 49;
end;
thus (ex x be
object st x
in (
dom (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])) & y
= ((
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])
. x)) implies y
in
[.(
- 1), 1.]
proof
given x be
object such that
A7: x
in (
dom (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])) and
A8: y
= ((
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])
. x);
reconsider x1 = x as
Real by
A7;
y
= (
cot
. x1) by
A7,
A8,
Lm12,
FUNCT_1: 49;
hence thesis by
A7,
Lm12,
Th20;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
SIN_COS9:23
Th23:
[.(
- 1), 1.]
c= (
dom
arctan )
proof
A1:
[.(
- (
PI
/ 4)), (
PI
/ 4).]
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm7,
Lm8,
XXREAL_2:def 12;
(
rng (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]))
c= (
rng (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[))
proof
let y be
object;
assume y
in (
rng (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]));
then y
in (
tan
.:
[.(
- (
PI
/ 4)), (
PI
/ 4).]) by
RELAT_1: 115;
then ex x be
object st x
in (
dom
tan ) & x
in
[.(
- (
PI
/ 4)), (
PI
/ 4).] & y
= (
tan
. x) by
FUNCT_1:def 6;
then y
in (
tan
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[) by
A1,
FUNCT_1:def 6;
hence thesis by
RELAT_1: 115;
end;
hence thesis by
Th21,
FUNCT_1: 33;
end;
theorem ::
SIN_COS9:24
Th24:
[.(
- 1), 1.]
c= (
dom
arccot )
proof
A1:
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
c=
].
0 ,
PI .[ by
Lm9,
Lm10,
XXREAL_2:def 12;
(
rng (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]))
c= (
rng (
cot
|
].
0 ,
PI .[))
proof
let y be
object;
assume y
in (
rng (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]));
then y
in (
cot
.:
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) by
RELAT_1: 115;
then ex x be
object st x
in (
dom
cot ) & x
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] & y
= (
cot
. x) by
FUNCT_1:def 6;
then y
in (
cot
.:
].
0 ,
PI .[) by
A1,
FUNCT_1:def 6;
hence thesis by
RELAT_1: 115;
end;
hence thesis by
Th22,
FUNCT_1: 33;
end;
Lm13: ((
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]) is
increasing
proof
[.(
- (
PI
/ 4)), (
PI
/ 4).]
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm7,
Lm8,
XXREAL_2:def 12;
then (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]) is
increasing by
Th7,
RFUNCT_2: 28;
hence thesis;
end;
Lm14: ((
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) is
decreasing
proof
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
c=
].
0 ,
PI .[ by
Lm9,
Lm10,
XXREAL_2:def 12;
then (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) is
decreasing by
Th8,
RFUNCT_2: 29;
hence thesis;
end;
Lm15: (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]) is
one-to-one
proof
[.(
- (
PI
/ 4)), (
PI
/ 4).]
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm7,
Lm8,
XXREAL_2:def 12;
then ((
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])
= (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]) by
RELAT_1: 74;
hence thesis;
end;
Lm16: (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) is
one-to-one
proof
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
c=
].
0 ,
PI .[ by
Lm9,
Lm10,
XXREAL_2:def 12;
then ((
cot
|
].
0 ,
PI .[)
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])
= (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) by
RELAT_1: 74;
hence thesis;
end;
registration
cluster (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]) ->
one-to-one;
coherence by
Lm15;
cluster (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) ->
one-to-one;
coherence by
Lm16;
end
theorem ::
SIN_COS9:25
Th25: (
arctan
|
[.(
- 1), 1.])
= ((
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])
" )
proof
set h = (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[);
A1:
[.(
- (
PI
/ 4)), (
PI
/ 4).]
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm7,
Lm8,
XXREAL_2:def 12;
then ((
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])
" )
= ((h
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])
" ) by
RELAT_1: 74
.= ((h
" )
| (h
.:
[.(
- (
PI
/ 4)), (
PI
/ 4).])) by
RFUNCT_2: 17
.= ((h
" )
| (
rng (h
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]))) by
RELAT_1: 115
.= ((h
" )
|
[.(
- 1), 1.]) by
A1,
Th21,
RELAT_1: 74;
hence thesis;
end;
theorem ::
SIN_COS9:26
Th26: (
arccot
|
[.(
- 1), 1.])
= ((
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])
" )
proof
set h = (
cot
|
].
0 ,
PI .[);
A1:
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
c=
].
0 ,
PI .[ by
Lm9,
Lm10,
XXREAL_2:def 12;
then ((
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])
" )
= ((h
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])
" ) by
RELAT_1: 74
.= ((h
" )
| (h
.:
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])) by
RFUNCT_2: 17
.= ((h
" )
| (
rng (h
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]))) by
RELAT_1: 115
.= ((h
" )
|
[.(
- 1), 1.]) by
A1,
Th22,
RELAT_1: 74;
hence thesis;
end;
theorem ::
SIN_COS9:27
((
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]) qua
Function
* (
arctan
|
[.(
- 1), 1.]))
= (
id
[.(
- 1), 1.]) by
Th21,
Th25,
FUNCT_1: 39;
theorem ::
SIN_COS9:28
((
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) qua
Function
* (
arccot
|
[.(
- 1), 1.]))
= (
id
[.(
- 1), 1.]) by
Th22,
Th26,
FUNCT_1: 39;
theorem ::
SIN_COS9:29
((
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])
* (
arctan
|
[.(
- 1), 1.]))
= (
id
[.(
- 1), 1.]) by
Th21,
Th25,
FUNCT_1: 39;
theorem ::
SIN_COS9:30
((
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])
* (
arccot
|
[.(
- 1), 1.]))
= (
id
[.(
- 1), 1.]) by
Th22,
Th26,
FUNCT_1: 39;
theorem ::
SIN_COS9:31
Th31: (
arctan qua
Function
* (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[))
= (
id
].(
- (
PI
/ 2)), (
PI
/ 2).[) by
Lm5,
Th11,
FUNCT_1: 39;
theorem ::
SIN_COS9:32
Th32: (
arccot
* (
cot
|
].
0 ,
PI .[))
= (
id
].
0 ,
PI .[) by
Lm6,
Th12,
FUNCT_1: 39;
theorem ::
SIN_COS9:33
(
arctan qua
Function
* (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[))
= (
id
].(
- (
PI
/ 2)), (
PI
/ 2).[) by
Lm5,
Th11,
FUNCT_1: 39;
theorem ::
SIN_COS9:34
(
arccot qua
Function
* (
cot
|
].
0 ,
PI .[))
= (
id
].
0 ,
PI .[) by
Lm6,
Th12,
FUNCT_1: 39;
theorem ::
SIN_COS9:35
Th35: (
- (
PI
/ 2))
< r & r
< (
PI
/ 2) implies (
arctan (
tan
. r))
= r & (
arctan (
tan r))
= r
proof
assume that
A1: (
- (
PI
/ 2))
< r and
A2: r
< (
PI
/ 2);
A3: (
dom (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[))
=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Th1,
RELAT_1: 62;
A4: r
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
A1,
A2,
XXREAL_1: 4;
then (
arctan (
tan
. r))
= (
arctan
. ((
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. r)) by
FUNCT_1: 49
.= ((
id
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. r) by
A4,
A3,
Th31,
FUNCT_1: 13
.= r by
A4,
FUNCT_1: 18;
hence thesis by
A4,
Th13;
end;
theorem ::
SIN_COS9:36
Th36:
0
< r & r
<
PI implies (
arccot (
cot
. r))
= r & (
arccot (
cot r))
= r
proof
assume that
A1:
0
< r and
A2: r
<
PI ;
A3: (
dom (
cot
|
].
0 ,
PI .[))
=
].
0 ,
PI .[ by
Th2,
RELAT_1: 62;
A4: r
in
].
0 ,
PI .[ by
A1,
A2,
XXREAL_1: 4;
then (
arccot (
cot
. r))
= (
arccot
. ((
cot
|
].
0 ,
PI .[)
. r)) by
FUNCT_1: 49
.= ((
id
].
0 ,
PI .[)
. r) by
A4,
A3,
Th32,
FUNCT_1: 13
.= r by
A4,
FUNCT_1: 18;
hence thesis by
A4,
Th14;
end;
theorem ::
SIN_COS9:37
Th37: (
arctan (
- 1))
= (
- (
PI
/ 4)) & (
arctan
. (
- 1))
= (
- (
PI
/ 4))
proof
(
- (
PI
/ 2))
< (
- (
PI
/ 4)) by
Lm7,
XXREAL_1: 4;
then (
arctan (
- 1))
= (
- (
PI
/ 4)) by
Th17,
Th35;
hence thesis;
end;
theorem ::
SIN_COS9:38
Th38: (
arccot (
- 1))
= ((3
/ 4)
*
PI ) & (
arccot
. (
- 1))
= ((3
/ 4)
*
PI )
proof
A1: ((3
/ 4)
*
PI )
<
PI by
Lm10,
XXREAL_1: 4;
(
arccot (
- 1))
= ((3
/ 4)
*
PI ) by
A1,
Th18,
Th36;
hence thesis;
end;
theorem ::
SIN_COS9:39
Th39: (
arctan 1)
= (
PI
/ 4) & (
arctan
. 1)
= (
PI
/ 4)
proof
A1: (
arctan 1)
= (
arctan (
tan
. (
PI
/ 4))) by
SIN_COS:def 28;
(
PI
/ 4)
< (
PI
/ 2) by
Lm8,
XXREAL_1: 4;
hence thesis by
A1,
Th35;
end;
theorem ::
SIN_COS9:40
Th40: (
arccot 1)
= (
PI
/ 4) & (
arccot
. 1)
= (
PI
/ 4)
proof
A1: (
PI
/ 4)
<
PI by
Lm9,
XXREAL_1: 4;
(
arccot 1)
= (
PI
/ 4) by
A1,
Th18,
Th36;
hence thesis;
end;
theorem ::
SIN_COS9:41
Th41: (
tan
.
0 )
=
0 & (
tan
0 )
=
0
proof
A1:
0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
XXREAL_1: 4;
then (
tan
.
0 )
= (
0
/ (
cos
.
0 )) by
Th1,
RFUNCT_1:def 1,
SIN_COS: 30
.=
0 ;
hence thesis by
A1,
Th13;
end;
theorem ::
SIN_COS9:42
Th42: (
cot
. (
PI
/ 2))
=
0 & (
cot (
PI
/ 2))
=
0
proof
A1: (
PI
/ 2)
< (
PI
/ 1) by
XREAL_1: 76;
A2: (
PI
/ 2)
in
].
0 ,
PI .[ by
A1,
XXREAL_1: 4;
then (
cot
. (
PI
/ 2))
= (
0
/ (
sin
. (
PI
/ 2))) by
Th2,
RFUNCT_1:def 1,
SIN_COS: 76
.=
0 ;
hence thesis by
A2,
Th14;
end;
theorem ::
SIN_COS9:43
(
arctan
0 )
=
0 & (
arctan
.
0 )
=
0
proof
(
arctan
0 )
=
0 by
Th35,
Th41;
hence thesis;
end;
theorem ::
SIN_COS9:44
(
arccot
0 )
= (
PI
/ 2) & (
arccot
.
0 )
= (
PI
/ 2)
proof
A1: (
PI
/ 2)
< (
PI
/ 1) by
XREAL_1: 76;
(
arccot
0 )
= (
PI
/ 2) by
A1,
Th36,
Th42;
hence thesis;
end;
theorem ::
SIN_COS9:45
Th45: (
arctan
| (
tan
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[)) is
increasing
proof
set f = (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[);
A1: (f
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[)
= (
rng (f
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)) by
RELAT_1: 115
.= (
rng (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)) by
RELAT_1: 73
.= (
tan
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[) by
RELAT_1: 115;
(f
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
= f by
RELAT_1: 73;
hence thesis by
A1,
Th7,
FCONT_3: 9;
end;
theorem ::
SIN_COS9:46
Th46: (
arccot
| (
cot
.:
].
0 ,
PI .[)) is
decreasing
proof
set f = (
cot
|
].
0 ,
PI .[);
A1: (f
.:
].
0 ,
PI .[)
= (
rng (f
|
].
0 ,
PI .[)) by
RELAT_1: 115
.= (
rng (
cot
|
].
0 ,
PI .[)) by
RELAT_1: 73
.= (
cot
.:
].
0 ,
PI .[) by
RELAT_1: 115;
(f
|
].
0 ,
PI .[)
= f by
RELAT_1: 73;
hence thesis by
A1,
Th8,
FCONT_3: 10;
end;
theorem ::
SIN_COS9:47
Th47: (
arctan
|
[.(
- 1), 1.]) is
increasing
proof
A1:
[.(
- 1), 1.]
= (
tan
.:
[.(
- (
PI
/ 4)), (
PI
/ 4).]) by
Th21,
RELAT_1: 115;
[.(
- (
PI
/ 4)), (
PI
/ 4).]
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm7,
Lm8,
XXREAL_2:def 12;
hence thesis by
A1,
Th45,
RELAT_1: 123,
RFUNCT_2: 28;
end;
theorem ::
SIN_COS9:48
Th48: (
arccot
|
[.(
- 1), 1.]) is
decreasing
proof
A1:
[.(
- 1), 1.]
= (
cot
.:
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) by
Th22,
RELAT_1: 115;
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
c=
].
0 ,
PI .[ by
Lm9,
Lm10,
XXREAL_2:def 12;
hence thesis by
A1,
Th46,
RELAT_1: 123,
RFUNCT_2: 29;
end;
theorem ::
SIN_COS9:49
Th49: for x be
set st x
in
[.(
- 1), 1.] holds (
arctan
. x)
in
[.(
- (
PI
/ 4)), (
PI
/ 4).]
proof
let x be
set;
assume x
in
[.(
- 1), 1.];
then x
in (
].(
- 1), 1.[
\/
{(
- 1), 1}) by
XXREAL_1: 128;
then
A1: x
in
].(
- 1), 1.[ or x
in
{(
- 1), 1} by
XBOOLE_0:def 3;
per cases by
A1,
TARSKI:def 2;
suppose
A2: x
in
].(
- 1), 1.[;
then x
in { s where s be
Real : (
- 1)
< s & s
< 1 } by
RCOMP_1:def 2;
then
A3: ex s be
Real st s
= x & (
- 1)
< s & s
< 1;
A4:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
A5: (
[.(
- 1), 1.]
/\ (
dom
arctan ))
=
[.(
- 1), 1.] by
Th23,
XBOOLE_1: 28;
then 1
in (
[.(
- 1), 1.]
/\ (
dom
arctan )) by
XXREAL_1: 1;
then
A6: (
arctan
. x)
< (
PI
/ 4) by
A2,
A5,
A4,
A3,
Th39,
Th47,
RFUNCT_2: 20;
(
- 1)
in
[.(
- 1), 1.] by
XXREAL_1: 1;
then (
- (
PI
/ 4))
< (
arctan
. x) by
A2,
A5,
A4,
A3,
Th37,
Th47,
RFUNCT_2: 20;
hence thesis by
A6,
XXREAL_1: 1;
end;
suppose x
= (
- 1);
hence thesis by
Th37,
XXREAL_1: 1;
end;
suppose x
= 1;
hence thesis by
Th39,
XXREAL_1: 1;
end;
end;
theorem ::
SIN_COS9:50
Th50: for x be
set st x
in
[.(
- 1), 1.] holds (
arccot
. x)
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
proof
let x be
set;
assume x
in
[.(
- 1), 1.];
then x
in (
].(
- 1), 1.[
\/
{(
- 1), 1}) by
XXREAL_1: 128;
then
A1: x
in
].(
- 1), 1.[ or x
in
{(
- 1), 1} by
XBOOLE_0:def 3;
per cases by
A1,
TARSKI:def 2;
suppose
A2: x
in
].(
- 1), 1.[;
then x
in { s where s be
Real : (
- 1)
< s & s
< 1 } by
RCOMP_1:def 2;
then
A3: ex s be
Real st s
= x & (
- 1)
< s & s
< 1;
A4:
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
A5: (
[.(
- 1), 1.]
/\ (
dom
arccot ))
=
[.(
- 1), 1.] by
Th24,
XBOOLE_1: 28;
then 1
in (
[.(
- 1), 1.]
/\ (
dom
arccot )) by
XXREAL_1: 1;
then
A6: (
arccot
. x)
> (
PI
/ 4) by
A2,
A5,
A4,
A3,
Th40,
Th48,
RFUNCT_2: 21;
(
- 1)
in
[.(
- 1), 1.] by
XXREAL_1: 1;
then ((3
/ 4)
*
PI )
> (
arccot
. x) by
A2,
A5,
A4,
A3,
Th38,
Th48,
RFUNCT_2: 21;
hence thesis by
A6,
XXREAL_1: 1;
end;
suppose
A7: x
= (
- 1);
(
PI
/ 4)
< ((
PI
/ 4)
* 3) by
XREAL_1: 155;
hence thesis by
A7,
Th38,
XXREAL_1: 1;
end;
suppose
A8: x
= 1;
(
PI
/ 4)
< ((
PI
/ 4)
* 3) by
XREAL_1: 155;
hence thesis by
A8,
Th40,
XXREAL_1: 1;
end;
end;
theorem ::
SIN_COS9:51
Th51: (
- 1)
<= r & r
<= 1 implies (
tan (
arctan r))
= r
proof
A1:
[.(
- (
PI
/ 4)), (
PI
/ 4).]
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm7,
Lm8,
XXREAL_2:def 12;
assume that
A2: (
- 1)
<= r and
A3: r
<= 1;
A4: r
in
[.(
- 1), 1.] by
A2,
A3,
XXREAL_1: 1;
then
A5: r
in (
dom (
arctan
|
[.(
- 1), 1.])) by
Th23,
RELAT_1: 62;
(
arctan
. r)
in
[.(
- (
PI
/ 4)), (
PI
/ 4).] by
A4,
Th49;
hence (
tan (
arctan r))
= (
tan
. (
arctan
. r)) by
A1,
Th13
.= ((
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]) qua
Function
. (
arctan
. r)) by
A4,
Th49,
FUNCT_1: 49
.= ((
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]) qua
Function
. ((
arctan
|
[.(
- 1), 1.])
. r)) by
A4,
FUNCT_1: 49
.= (((
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]) qua
Function
* (
arctan
|
[.(
- 1), 1.]))
. r) by
A5,
FUNCT_1: 13
.= ((
id
[.(
- 1), 1.])
. r) by
Th21,
Th25,
FUNCT_1: 39
.= r by
A4,
FUNCT_1: 18;
end;
theorem ::
SIN_COS9:52
Th52: (
- 1)
<= r & r
<= 1 implies (
cot (
arccot r))
= r
proof
A1:
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
c=
].
0 ,
PI .[ by
Lm9,
Lm10,
XXREAL_2:def 12;
assume that
A2: (
- 1)
<= r and
A3: r
<= 1;
A4: r
in
[.(
- 1), 1.] by
A2,
A3,
XXREAL_1: 1;
then
A5: r
in (
dom (
arccot
|
[.(
- 1), 1.])) by
Th24,
RELAT_1: 62;
(
arccot
. r)
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] by
A4,
Th50;
hence (
cot (
arccot r))
= (
cot
. (
arccot
. r)) by
A1,
Th14
.= ((
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) qua
Function
. (
arccot
. r)) by
A4,
Th50,
FUNCT_1: 49
.= ((
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) qua
Function
. ((
arccot
|
[.(
- 1), 1.])
. r)) by
A4,
FUNCT_1: 49
.= (((
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]) qua
Function
* (
arccot
|
[.(
- 1), 1.]))
. r) by
A5,
FUNCT_1: 13
.= ((
id
[.(
- 1), 1.])
. r) by
Th22,
Th26,
FUNCT_1: 39
.= r by
A4,
FUNCT_1: 18;
end;
theorem ::
SIN_COS9:53
Th53: (
arctan
|
[.(
- 1), 1.]) is
continuous
proof
set f = (
tan
|
[.(
- (
PI
/ 4)), (
PI
/ 4).]);
A1: (f
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])
= f by
RELAT_1: 72;
(((f
|
[.(
- (
PI
/ 4)), (
PI
/ 4).])
" )
| (f
.:
[.(
- (
PI
/ 4)), (
PI
/ 4).])) is
continuous by
Lm11,
Lm13,
FCONT_1: 47;
then ((
arctan
|
[.(
- 1), 1.])
|
[.(
- 1), 1.]) is
continuous by
A1,
Th21,
Th25,
RELAT_1: 115;
hence thesis by
FCONT_1: 15;
end;
theorem ::
SIN_COS9:54
Th54: (
arccot
|
[.(
- 1), 1.]) is
continuous
proof
set f = (
cot
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]);
(
PI
/ 4)
< ((
PI
/ 4)
* 3) by
XREAL_1: 155;
then
A1: (((f
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])
" )
| (f
.:
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])) is
continuous by
Lm12,
Lm14,
FCONT_1: 47;
(f
|
[.(
PI
/ 4), ((3
/ 4)
*
PI ).])
= f by
RELAT_1: 72;
then ((
arccot
|
[.(
- 1), 1.])
|
[.(
- 1), 1.]) is
continuous by
A1,
Th22,
Th26,
RELAT_1: 115;
hence thesis by
FCONT_1: 15;
end;
theorem ::
SIN_COS9:55
Th55: (
rng (
arctan
|
[.(
- 1), 1.]))
=
[.(
- (
PI
/ 4)), (
PI
/ 4).]
proof
now
let y be
object;
thus y
in
[.(
- (
PI
/ 4)), (
PI
/ 4).] implies ex x be
object st x
in (
dom (
arctan
|
[.(
- 1), 1.])) & y
= ((
arctan
|
[.(
- 1), 1.])
. x)
proof
assume
A1: y
in
[.(
- (
PI
/ 4)), (
PI
/ 4).];
then
reconsider y1 = y as
Real;
y1
in (
[.(
arctan
. (
- 1)), (
arctan
. 1).]
\/
[.(
arctan
. 1), (
arctan
. (
- 1)).]) by
A1,
Th37,
Th39,
XBOOLE_0:def 3;
then
consider x be
Real such that
A2: x
in
[.(
- 1), 1.] and
A3: y1
= (
arctan
. x) by
Th23,
Th53,
FCONT_2: 15;
take x;
thus thesis by
A2,
A3,
Th23,
FUNCT_1: 49,
RELAT_1: 62;
end;
thus (ex x be
object st x
in (
dom (
arctan
|
[.(
- 1), 1.])) & y
= ((
arctan
|
[.(
- 1), 1.])
. x)) implies y
in
[.(
- (
PI
/ 4)), (
PI
/ 4).]
proof
given x be
object such that
A4: x
in (
dom (
arctan
|
[.(
- 1), 1.])) and
A5: y
= ((
arctan
|
[.(
- 1), 1.])
. x);
A6: (
dom (
arctan
|
[.(
- 1), 1.]))
=
[.(
- 1), 1.] by
Th23,
RELAT_1: 62;
then y
= (
arctan
. x) by
A4,
A5,
FUNCT_1: 49;
hence thesis by
A4,
A6,
Th49;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
SIN_COS9:56
Th56: (
rng (
arccot
|
[.(
- 1), 1.]))
=
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
proof
now
let y be
object;
thus y
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] implies ex x be
object st x
in (
dom (
arccot
|
[.(
- 1), 1.])) & y
= ((
arccot
|
[.(
- 1), 1.])
. x)
proof
assume
A1: y
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).];
then
reconsider y1 = y as
Real;
y1
in (
[.(
arccot
. 1), (
arccot
. (
- 1)).]
\/
[.(
arccot
. (
- 1)), (
arccot
. 1).]) by
A1,
Th38,
Th40,
XBOOLE_0:def 3;
then
consider x be
Real such that
A2: x
in
[.(
- 1), 1.] and
A3: y1
= (
arccot
. x) by
Th24,
Th54,
FCONT_2: 15;
take x;
thus thesis by
A2,
A3,
Th24,
FUNCT_1: 49,
RELAT_1: 62;
end;
thus (ex x be
object st x
in (
dom (
arccot
|
[.(
- 1), 1.])) & y
= ((
arccot
|
[.(
- 1), 1.])
. x)) implies y
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
proof
given x be
object such that
A4: x
in (
dom (
arccot
|
[.(
- 1), 1.])) and
A5: y
= ((
arccot
|
[.(
- 1), 1.])
. x);
A6: (
dom (
arccot
|
[.(
- 1), 1.]))
=
[.(
- 1), 1.] by
Th24,
RELAT_1: 62;
then y
= (
arccot
. x) by
A4,
A5,
FUNCT_1: 49;
hence thesis by
A4,
A6,
Th50;
end;
end;
hence thesis by
FUNCT_1:def 3;
end;
theorem ::
SIN_COS9:57
(
- 1)
<= r & r
<= 1 & (
arctan r)
= (
- (
PI
/ 4)) implies r
= (
- 1) by
Th17,
Th51;
theorem ::
SIN_COS9:58
(
- 1)
<= r & r
<= 1 & (
arccot r)
= ((3
/ 4)
*
PI ) implies r
= (
- 1) by
Th18,
Th52;
theorem ::
SIN_COS9:59
(
- 1)
<= r & r
<= 1 & (
arctan r)
=
0 implies r
=
0 by
Th41,
Th51;
theorem ::
SIN_COS9:60
(
- 1)
<= r & r
<= 1 & (
arccot r)
= (
PI
/ 2) implies r
=
0 by
Th42,
Th52;
theorem ::
SIN_COS9:61
(
- 1)
<= r & r
<= 1 & (
arctan r)
= (
PI
/ 4) implies r
= 1
proof
assume that
A1: (
- 1)
<= r and
A2: r
<= 1 and
A3: (
arctan r)
= (
PI
/ 4);
thus r
= (
tan (
PI
/ 4)) by
A1,
A2,
A3,
Th51
.= (
tan
. (
PI
/ 4)) by
Lm8,
Th13
.= 1 by
SIN_COS:def 28;
end;
theorem ::
SIN_COS9:62
(
- 1)
<= r & r
<= 1 & (
arccot r)
= (
PI
/ 4) implies r
= 1 by
Th18,
Th52;
theorem ::
SIN_COS9:63
Th63: (
- 1)
<= r & r
<= 1 implies (
- (
PI
/ 4))
<= (
arctan r) & (
arctan r)
<= (
PI
/ 4)
proof
assume that
A1: (
- 1)
<= r and
A2: r
<= 1;
A3: r
in
[.(
- 1), 1.] by
A1,
A2,
XXREAL_1: 1;
then r
in (
dom (
arctan
|
[.(
- 1), 1.])) by
Th23,
RELAT_1: 62;
then ((
arctan
|
[.(
- 1), 1.])
. r)
in (
rng (
arctan
|
[.(
- 1), 1.])) by
FUNCT_1:def 3;
then (
arctan r)
in (
rng (
arctan
|
[.(
- 1), 1.])) by
A3,
FUNCT_1: 49;
hence thesis by
Th55,
XXREAL_1: 1;
end;
theorem ::
SIN_COS9:64
Th64: (
- 1)
<= r & r
<= 1 implies (
PI
/ 4)
<= (
arccot r) & (
arccot r)
<= ((3
/ 4)
*
PI )
proof
assume that
A1: (
- 1)
<= r and
A2: r
<= 1;
A3: r
in
[.(
- 1), 1.] by
A1,
A2,
XXREAL_1: 1;
then r
in (
dom (
arccot
|
[.(
- 1), 1.])) by
Th24,
RELAT_1: 62;
then ((
arccot
|
[.(
- 1), 1.])
. r)
in (
rng (
arccot
|
[.(
- 1), 1.])) by
FUNCT_1:def 3;
then (
arccot r)
in (
rng (
arccot
|
[.(
- 1), 1.])) by
A3,
FUNCT_1: 49;
hence thesis by
Th56,
XXREAL_1: 1;
end;
theorem ::
SIN_COS9:65
(
- 1)
< r & r
< 1 implies (
- (
PI
/ 4))
< (
arctan r) & (
arctan r)
< (
PI
/ 4)
proof
A1: (
tan (
PI
/ 4))
= (
tan
. (
PI
/ 4)) by
Lm8,
Th13
.= 1 by
SIN_COS:def 28;
assume that
A2: (
- 1)
< r and
A3: r
< 1;
A4: (
arctan r)
<= (
PI
/ 4) by
A2,
A3,
Th63;
(
- (
PI
/ 4))
<= (
arctan r) by
A2,
A3,
Th63;
then (
- (
PI
/ 4))
< (
arctan r) & (
arctan r)
< (
PI
/ 4) or (
- (
PI
/ 4))
= (
arctan r) or (
arctan r)
= (
PI
/ 4) by
A4,
XXREAL_0: 1;
hence thesis by
A2,
A3,
A1,
Th17,
Th51;
end;
theorem ::
SIN_COS9:66
(
- 1)
< r & r
< 1 implies (
PI
/ 4)
< (
arccot r) & (
arccot r)
< ((3
/ 4)
*
PI )
proof
assume that
A1: (
- 1)
< r and
A2: r
< 1;
A3: (
arccot r)
<= ((3
/ 4)
*
PI ) by
A1,
A2,
Th64;
(
PI
/ 4)
<= (
arccot r) by
A1,
A2,
Th64;
then (
PI
/ 4)
< (
arccot r) & (
arccot r)
< ((3
/ 4)
*
PI ) or (
PI
/ 4)
= (
arccot r) or (
arccot r)
= ((3
/ 4)
*
PI ) by
A3,
XXREAL_0: 1;
hence thesis by
A1,
A2,
Th18,
Th52;
end;
theorem ::
SIN_COS9:67
(
- 1)
<= r & r
<= 1 implies (
arctan r)
= (
- (
arctan (
- r)))
proof
A1:
[.(
- (
PI
/ 4)), (
PI
/ 4).]
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm7,
Lm8,
XXREAL_2:def 12;
assume that
A2: (
- 1)
<= r and
A3: r
<= 1;
A4: (
- r)
>= (
- 1) by
A3,
XREAL_1: 24;
A5: (
- (
- 1))
>= (
- r) by
A2,
XREAL_1: 24;
then
A6: (
arctan (
- r))
<= (
PI
/ 4) by
A4,
Th63;
(
- (
PI
/ 4))
<= (
arctan (
- r)) by
A5,
A4,
Th63;
then
A7: (
- (
arctan (
- r)))
<= (
- (
- (
PI
/ 4))) by
XREAL_1: 24;
(
arctan (
- r))
<= (
PI
/ 4) by
A5,
A4,
Th63;
then (
- (
PI
/ 4))
<= (
- (
arctan (
- r))) by
XREAL_1: 24;
then
A8: (
- (
arctan (
- r)))
in
[.(
- (
PI
/ 4)), (
PI
/ 4).] by
A7,
XXREAL_1: 1;
(
- (
PI
/ 4))
<= (
arctan (
- r)) by
A5,
A4,
Th63;
then (
arctan (
- r))
in
[.(
- (
PI
/ 4)), (
PI
/ 4).] by
A6,
XXREAL_1: 1;
then
A9: (
cos (
arctan (
- r)))
<>
0 by
A1,
COMPTRIG: 11;
(
tan (
arctan (
- r)))
= (
- r) by
A5,
A4,
Th51;
then
A10: r
= (((
tan
0 )
- (
tan (
arctan (
- r))))
/ (1
+ ((
tan
0 )
* (
tan (
arctan (
- r)))))) by
Th41
.= (
tan (
0
- (
arctan (
- r)))) by
A9,
SIN_COS: 31,
SIN_COS4: 8;
A11:
[.(
- (
PI
/ 4)), (
PI
/ 4).]
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm7,
Lm8,
XXREAL_2:def 12;
then
A12: (
- (
arctan (
- r)))
< (
PI
/ 2) by
A8,
XXREAL_1: 4;
(
- (
PI
/ 2))
< (
- (
arctan (
- r))) by
A8,
A11,
XXREAL_1: 4;
hence thesis by
A10,
A12,
Th35;
end;
theorem ::
SIN_COS9:68
(
- 1)
<= r & r
<= 1 implies (
arccot r)
= (
PI
- (
arccot (
- r)))
proof
set x = (
arccot (
- r));
assume that
A1: (
- 1)
<= r and
A2: r
<= 1;
A3: (
- r)
>= (
- 1) by
A2,
XREAL_1: 24;
A4: (
- (
- 1))
>= (
- r) by
A1,
XREAL_1: 24;
then (
- r)
= (
cot x) by
A3,
Th52;
then
A5: r
= (
- (
cot x))
.= (
- ((
cos x)
/ (
sin x))) by
SIN_COS4:def 2
.= ((
cos x)
/ (
- (
sin x))) by
XCMPLX_1: 188
.= ((
cos x)
/ (
sin (
- x))) by
SIN_COS: 31
.= ((
cos (
- x))
/ (
sin (
- x))) by
SIN_COS: 31
.= (
cot (
- x)) by
SIN_COS4:def 2;
(
- r)
in
[.(
- 1), 1.] by
A4,
A3,
XXREAL_1: 1;
then
A6: x
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] by
Th50;
then x
<= ((3
/ 4)
*
PI ) by
XXREAL_1: 1;
then (
- x)
>= (
- ((3
/ 4)
*
PI )) by
XREAL_1: 24;
then
A7: (
PI
+ (
- x))
>= (
PI
+ (
- ((3
/ 4)
*
PI ))) by
XREAL_1: 6;
(
PI
/ 4)
<= x by
A6,
XXREAL_1: 1;
then (
- (
PI
/ 4))
>= (
- x) by
XREAL_1: 24;
then (
PI
+ (
- (
PI
/ 4)))
>= (
PI
+ (
- x)) by
XREAL_1: 6;
then
A8: (
PI
+ (
- x))
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] by
A7,
XXREAL_1: 1;
A9:
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
c=
].
0 ,
PI .[ by
Lm9,
Lm10,
XXREAL_2:def 12;
then
A10: (
PI
+ (
- x))
<
PI by
A8,
XXREAL_1: 4;
A11: (
cot (
PI
+ (
- x)))
= ((
cos (
PI
+ (
- x)))
/ (
sin (
PI
+ (
- x)))) by
SIN_COS4:def 2
.= ((
- (
cos (
- x)))
/ (
sin (
PI
+ (
- x)))) by
SIN_COS: 79
.= ((
- (
cos (
- x)))
/ (
- (
sin (
- x)))) by
SIN_COS: 79
.= ((
cos (
- x))
/ (
sin (
- x))) by
XCMPLX_1: 191
.= (
cot (
- x)) by
SIN_COS4:def 2;
0
< (
PI
+ (
- x)) by
A8,
A9,
XXREAL_1: 4;
hence thesis by
A5,
A10,
A11,
Th36;
end;
theorem ::
SIN_COS9:69
(
- 1)
<= r & r
<= 1 implies (
cot (
arctan r))
= (1
/ r)
proof
set x = (
arctan r);
assume that
A1: (
- 1)
<= r and
A2: r
<= 1;
A3: ((
sin x)
/ (
cos x))
= (
tan x) by
SIN_COS4:def 1
.= r by
A1,
A2,
Th51;
(
cot x)
= ((
cos x)
/ (
sin x)) by
SIN_COS4:def 2
.= (1
/ r) by
A3,
XCMPLX_1: 57;
hence thesis;
end;
theorem ::
SIN_COS9:70
(
- 1)
<= r & r
<= 1 implies (
tan (
arccot r))
= (1
/ r)
proof
set x = (
arccot r);
assume that
A1: (
- 1)
<= r and
A2: r
<= 1;
A3: ((
cos x)
/ (
sin x))
= (
cot x) by
SIN_COS4:def 2
.= r by
A1,
A2,
Th52;
(
tan x)
= ((
sin x)
/ (
cos x)) by
SIN_COS4:def 1
.= (1
/ r) by
A3,
XCMPLX_1: 57;
hence thesis;
end;
theorem ::
SIN_COS9:71
Th71:
arctan
is_differentiable_on (
tan
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[)
proof
set f = (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[);
A1: (
dom (f
" ))
= (
rng (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)) by
FUNCT_1: 33
.= (
tan
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[) by
RELAT_1: 115;
(
dom f)
= ((
dom
tan )
/\
].(
- (
PI
/ 2)), (
PI
/ 2).[) by
RELAT_1: 61;
then
A2:
].(
- (
PI
/ 2)), (
PI
/ 2).[
c= (
dom f) by
Th1,
XBOOLE_1: 19;
A3: f
is_differentiable_on
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm1,
FDIFF_2: 16;
A4:
now
A5: for x0 st x0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ holds (1
/ ((
cos
. x0)
^2 ))
>
0
proof
let x0;
assume x0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
then
0
< (
cos
. x0) by
COMPTRIG: 11;
then ((
cos
. x0)
^2 )
>
0 ;
then (1
/ ((
cos
. x0)
^2 ))
> (
0
/ ((
cos
. x0)
^2 ));
hence thesis;
end;
let x0 such that
A6: x0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
(
diff (f,x0))
= ((f
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x0) by
A3,
A6,
FDIFF_1:def 7
.= ((
tan
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x0) by
Lm1,
FDIFF_2: 16
.= (
diff (
tan ,x0)) by
A6,
Lm1,
FDIFF_1:def 7
.= (1
/ ((
cos
. x0)
^2 )) by
A6,
Lm3;
hence
0
< (
diff (f,x0)) by
A6,
A5;
end;
(f
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
= f by
RELAT_1: 72;
hence thesis by
A1,
A3,
A2,
A4,
FDIFF_2: 48;
end;
theorem ::
SIN_COS9:72
Th72:
arccot
is_differentiable_on (
cot
.:
].
0 ,
PI .[)
proof
set f = (
cot
|
].
0 ,
PI .[);
A1: (
dom (f
" ))
= (
rng (
cot
|
].
0 ,
PI .[)) by
FUNCT_1: 33
.= (
cot
.:
].
0 ,
PI .[) by
RELAT_1: 115;
(
dom f)
= ((
dom
cot )
/\
].
0 ,
PI .[) by
RELAT_1: 61;
then
A2:
].
0 ,
PI .[
c= (
dom f) by
Th2,
XBOOLE_1: 19;
A3: f
is_differentiable_on
].
0 ,
PI .[ by
Lm2,
FDIFF_2: 16;
A4:
now
A5: for x0 st x0
in
].
0 ,
PI .[ holds (
- (1
/ ((
sin
. x0)
^2 )))
<
0
proof
let x0;
assume x0
in
].
0 ,
PI .[;
then
0
< (
sin
. x0) by
COMPTRIG: 7;
then ((
sin
. x0)
^2 )
>
0 ;
then (1
/ ((
sin
. x0)
^2 ))
> (
0
/ ((
sin
. x0)
^2 ));
then (
- (1
/ ((
sin
. x0)
^2 )))
< (
-
0 );
hence thesis;
end;
let x0 such that
A6: x0
in
].
0 ,
PI .[;
(
diff (f,x0))
= ((f
`|
].
0 ,
PI .[)
. x0) by
A3,
A6,
FDIFF_1:def 7
.= ((
cot
`|
].
0 ,
PI .[)
. x0) by
Lm2,
FDIFF_2: 16
.= (
diff (
cot ,x0)) by
A6,
Lm2,
FDIFF_1:def 7
.= (
- (1
/ ((
sin
. x0)
^2 ))) by
A6,
Lm4;
hence (
diff (f,x0))
<
0 by
A6,
A5;
end;
(f
|
].
0 ,
PI .[)
= f by
RELAT_1: 72;
hence thesis by
A1,
A2,
A3,
A4,
FDIFF_2: 48;
end;
theorem ::
SIN_COS9:73
Th73:
arctan
is_differentiable_on
].(
- 1), 1.[
proof
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
A1:
].(
- 1), 1.[
c= (
dom
arctan ) by
Th23;
for x st x
in
].(
- 1), 1.[ holds
arctan
is_differentiable_in x
proof
let x;
A2: (
dom
arctan )
= (
rng (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)) by
FUNCT_1: 33
.= (
tan
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[) by
RELAT_1: 115;
assume x
in
].(
- 1), 1.[;
then (
arctan
| (
dom
arctan ))
is_differentiable_in x by
A1,
A2,
Th71,
FDIFF_1:def 6;
hence thesis by
RELAT_1: 69;
end;
hence thesis by
A1,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:74
Th74:
arccot
is_differentiable_on
].(
- 1), 1.[
proof
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
A1:
].(
- 1), 1.[
c= (
dom
arccot ) by
Th24;
for x st x
in
].(
- 1), 1.[ holds
arccot
is_differentiable_in x
proof
let x;
A2: (
dom
arccot )
= (
rng (
cot
|
].
0 ,
PI .[)) by
FUNCT_1: 33
.= (
cot
.:
].
0 ,
PI .[) by
RELAT_1: 115;
assume x
in
].(
- 1), 1.[;
then (
arccot
| (
dom
arccot ))
is_differentiable_in x by
A1,
A2,
Th72,
FDIFF_1:def 6;
hence thesis by
RELAT_1: 69;
end;
hence thesis by
A1,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:75
Th75: (
- 1)
<= r & r
<= 1 implies (
diff (
arctan ,r))
= (1
/ (1
+ (r
^2 )))
proof
set g =
arctan ;
set f = (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[);
set x = (
arctan
. r);
assume that
A1: (
- 1)
<= r and
A2: r
<= 1;
A3: (((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
= 1 by
SIN_COS: 28;
A4: f
is_differentiable_on
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm1,
FDIFF_2: 16;
A5:
now
A6: for x0 st x0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ holds (1
/ ((
cos
. x0)
^2 ))
>
0
proof
let x0;
assume x0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
then
0
< (
cos
. x0) by
COMPTRIG: 11;
then ((
cos
. x0)
^2 )
>
0 ;
then (1
/ ((
cos
. x0)
^2 ))
> (
0
/ ((
cos
. x0)
^2 ));
hence thesis;
end;
let x0 such that
A7: x0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
(
diff (f,x0))
= ((f
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x0) by
A4,
A7,
FDIFF_1:def 7
.= ((
tan
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x0) by
Lm1,
FDIFF_2: 16
.= (
diff (
tan ,x0)) by
A7,
Lm1,
FDIFF_1:def 7
.= (1
/ ((
cos
. x0)
^2 )) by
A7,
Lm3;
hence
0
< (
diff (f,x0)) by
A7,
A6;
end;
A8: r
in
[.(
- 1), 1.] by
A1,
A2,
XXREAL_1: 1;
then
A9: x
in
[.(
- (
PI
/ 4)), (
PI
/ 4).] by
Th49;
x
= (
arctan r);
then
A10: r
= (
tan x) by
A1,
A2,
Th51
.= ((
sin x)
/ (
cos x)) by
SIN_COS4:def 1;
(
dom f)
= ((
dom
tan )
/\
].(
- (
PI
/ 2)), (
PI
/ 2).[) by
RELAT_1: 61;
then
A11:
].(
- (
PI
/ 2)), (
PI
/ 2).[
c= (
dom f) by
Th1,
XBOOLE_1: 19;
A12: (f
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
= f by
RELAT_1: 72;
A13:
[.(
- (
PI
/ 4)), (
PI
/ 4).]
c=
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm7,
Lm8,
XXREAL_2:def 12;
then (
cos x)
<>
0 by
A9,
COMPTRIG: 11;
then (r
* (
cos x))
= (
sin x) by
A10,
XCMPLX_1: 87;
then
A14: 1
= (((
cos x)
^2 )
* ((r
^2 )
+ 1)) by
A3;
f
is_differentiable_on
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm1,
FDIFF_2: 16;
then (
diff (f,x))
= ((f
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x) by
A9,
A13,
FDIFF_1:def 7
.= ((
tan
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x) by
Lm1,
FDIFF_2: 16
.= (
diff (
tan ,x)) by
A9,
A13,
Lm1,
FDIFF_1:def 7
.= (1
/ ((
cos x)
^2 )) by
A9,
A13,
Lm3;
then (
diff (g,r))
= (1
/ (1
/ ((
cos x)
^2 ))) by
A8,
A4,
A5,
A12,
A11,
Th23,
FDIFF_2: 48
.= (1
/ ((r
^2 )
+ 1)) by
A14,
XCMPLX_1: 73;
hence thesis;
end;
theorem ::
SIN_COS9:76
Th76: (
- 1)
<= r & r
<= 1 implies (
diff (
arccot ,r))
= (
- (1
/ (1
+ (r
^2 ))))
proof
set g =
arccot ;
set f = (
cot
|
].
0 ,
PI .[);
set x = (
arccot
. r);
assume that
A1: (
- 1)
<= r and
A2: r
<= 1;
A3: (((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
= 1 by
SIN_COS: 28;
A4: f
is_differentiable_on
].
0 ,
PI .[ by
Lm2,
FDIFF_2: 16;
A5:
now
A6: for x0 st x0
in
].
0 ,
PI .[ holds (
- (1
/ ((
sin
. x0)
^2 )))
<
0
proof
let x0;
assume x0
in
].
0 ,
PI .[;
then
0
< (
sin
. x0) by
COMPTRIG: 7;
then ((
sin
. x0)
^2 )
>
0 ;
then (1
/ ((
sin
. x0)
^2 ))
> (
0
/ ((
sin
. x0)
^2 ));
then (
- (1
/ ((
sin
. x0)
^2 )))
< (
-
0 );
hence thesis;
end;
let x0 such that
A7: x0
in
].
0 ,
PI .[;
(
diff (f,x0))
= ((f
`|
].
0 ,
PI .[)
. x0) by
A4,
A7,
FDIFF_1:def 7
.= ((
cot
`|
].
0 ,
PI .[)
. x0) by
Lm2,
FDIFF_2: 16
.= (
diff (
cot ,x0)) by
A7,
Lm2,
FDIFF_1:def 7
.= (
- (1
/ ((
sin
. x0)
^2 ))) by
A7,
Lm4;
hence (
diff (f,x0))
<
0 by
A7,
A6;
end;
A8: r
in
[.(
- 1), 1.] by
A1,
A2,
XXREAL_1: 1;
then
A9: x
in
[.(
PI
/ 4), ((3
/ 4)
*
PI ).] by
Th50;
x
= (
arccot r);
then
A10: r
= (
cot x) by
A1,
A2,
Th52
.= ((
cos x)
/ (
sin x)) by
SIN_COS4:def 2;
(
dom f)
= ((
dom
cot )
/\
].
0 ,
PI .[) by
RELAT_1: 61;
then
A11:
].
0 ,
PI .[
c= (
dom f) by
Th2,
XBOOLE_1: 19;
A12: (f
|
].
0 ,
PI .[)
= f by
RELAT_1: 72;
A13:
[.(
PI
/ 4), ((3
/ 4)
*
PI ).]
c=
].
0 ,
PI .[ by
Lm9,
Lm10,
XXREAL_2:def 12;
then (
sin x)
<>
0 by
A9,
COMPTRIG: 7;
then (r
* (
sin x))
= (
cos x) by
A10,
XCMPLX_1: 87;
then
A14: 1
= (((
sin x)
^2 )
* ((r
^2 )
+ 1)) by
A3;
f
is_differentiable_on
].
0 ,
PI .[ by
Lm2,
FDIFF_2: 16;
then (
diff (f,x))
= ((f
`|
].
0 ,
PI .[)
. x) by
A9,
A13,
FDIFF_1:def 7
.= ((
cot
`|
].
0 ,
PI .[)
. x) by
Lm2,
FDIFF_2: 16
.= (
diff (
cot ,x)) by
A9,
A13,
Lm2,
FDIFF_1:def 7
.= (
- (1
/ ((
sin x)
^2 ))) by
A9,
A13,
Lm4;
then (
diff (g,r))
= (1
/ (
- (1
/ ((
sin x)
^2 )))) by
A8,
A4,
A5,
A12,
A11,
Th24,
FDIFF_2: 48
.= (
- (1
/ (1
/ ((
sin x)
^2 )))) by
XCMPLX_1: 188
.= (
- (1
/ ((r
^2 )
+ 1))) by
A14,
XCMPLX_1: 73;
hence thesis;
end;
theorem ::
SIN_COS9:77
(
arctan
| (
tan
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[)) is
continuous by
Th71,
FDIFF_1: 25;
theorem ::
SIN_COS9:78
(
arccot
| (
cot
.:
].
0 ,
PI .[)) is
continuous by
Th72,
FDIFF_1: 25;
theorem ::
SIN_COS9:79
(
dom
arctan ) is
open
proof
for x0 st x0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ holds
0
< (
diff (
tan ,x0))
proof
let x0;
assume
A1: x0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
then
0
< (
cos
. x0) by
COMPTRIG: 11;
then ((
cos
. x0)
^2 )
>
0 ;
then (1
/ ((
cos
. x0)
^2 ))
> (
0
/ ((
cos
. x0)
^2 ));
hence thesis by
A1,
Lm3;
end;
then (
rng (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)) is
open by
Lm1,
Th1,
FDIFF_2: 41;
hence thesis by
FUNCT_1: 33;
end;
theorem ::
SIN_COS9:80
(
dom
arccot ) is
open
proof
for x0 st x0
in
].
0 ,
PI .[ holds (
diff (
cot ,x0))
<
0
proof
let x0;
assume
A1: x0
in
].
0 ,
PI .[;
then
0
< (
sin
. x0) by
COMPTRIG: 7;
then ((
sin
. x0)
^2 )
>
0 ;
then (1
/ ((
sin
. x0)
^2 ))
> (
0
/ ((
sin
. x0)
^2 ));
then (
- (1
/ ((
sin
. x0)
^2 )))
< (
-
0 );
hence thesis by
A1,
Lm4;
end;
then (
rng (
cot
|
].
0 ,
PI .[)) is
open by
Lm2,
Th2,
FDIFF_2: 41;
hence thesis by
FUNCT_1: 33;
end;
begin
theorem ::
SIN_COS9:81
Th81: Z
c=
].(
- 1), 1.[ implies
arctan
is_differentiable_on Z & for x st x
in Z holds ((
arctan
`| Z)
. x)
= (1
/ (1
+ (x
^2 )))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
then
A2:
arctan
is_differentiable_on Z by
Th73,
FDIFF_1: 26;
for x st x
in Z holds ((
arctan
`| Z)
. x)
= (1
/ (1
+ (x
^2 )))
proof
let x;
assume
A3: x
in Z;
then
A4: (
- 1)
<= x by
A1,
XXREAL_1: 4;
A5: x
<= 1 by
A1,
A3,
XXREAL_1: 4;
thus ((
arctan
`| Z)
. x)
= (
diff (
arctan ,x)) by
A2,
A3,
FDIFF_1:def 7
.= (1
/ (1
+ (x
^2 ))) by
A4,
A5,
Th75;
end;
hence thesis by
A1,
Th73,
FDIFF_1: 26;
end;
theorem ::
SIN_COS9:82
Th82: Z
c=
].(
- 1), 1.[ implies
arccot
is_differentiable_on Z & for x st x
in Z holds ((
arccot
`| Z)
. x)
= (
- (1
/ (1
+ (x
^2 ))))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
then
A2:
arccot
is_differentiable_on Z by
Th74,
FDIFF_1: 26;
for x st x
in Z holds ((
arccot
`| Z)
. x)
= (
- (1
/ (1
+ (x
^2 ))))
proof
let x;
assume
A3: x
in Z;
then
A4: (
- 1)
<= x by
A1,
XXREAL_1: 4;
A5: x
<= 1 by
A1,
A3,
XXREAL_1: 4;
thus ((
arccot
`| Z)
. x)
= (
diff (
arccot ,x)) by
A2,
A3,
FDIFF_1:def 7
.= (
- (1
/ (1
+ (x
^2 )))) by
A4,
A5,
Th76;
end;
hence thesis by
A1,
Th74,
FDIFF_1: 26;
end;
theorem ::
SIN_COS9:83
Z
c=
].(
- 1), 1.[ implies (r
(#)
arctan )
is_differentiable_on Z & for x st x
in Z holds (((r
(#)
arctan )
`| Z)
. x)
= (r
/ (1
+ (x
^2 )))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arctan ) by
Th23;
then Z
c= (
dom
arctan ) by
A1;
then
A2: Z
c= (
dom (r
(#)
arctan )) by
VALUED_1:def 5;
A3:
arctan
is_differentiable_on Z by
A1,
Th81;
for x st x
in Z holds (((r
(#)
arctan )
`| Z)
. x)
= (r
/ (1
+ (x
^2 )))
proof
let x;
assume
A4: x
in Z;
then
A5: (
- 1)
< x by
A1,
XXREAL_1: 4;
A6: x
< 1 by
A1,
A4,
XXREAL_1: 4;
(((r
(#)
arctan )
`| Z)
. x)
= (r
* (
diff (
arctan ,x))) by
A2,
A3,
A4,
FDIFF_1: 20
.= (r
* (1
/ (1
+ (x
^2 )))) by
A5,
A6,
Th75
.= (r
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A2,
A3,
FDIFF_1: 20;
end;
theorem ::
SIN_COS9:84
Z
c=
].(
- 1), 1.[ implies (r
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds (((r
(#)
arccot )
`| Z)
. x)
= (
- (r
/ (1
+ (x
^2 ))))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
Th24;
then Z
c= (
dom
arccot ) by
A1;
then
A2: Z
c= (
dom (r
(#)
arccot )) by
VALUED_1:def 5;
A3:
arccot
is_differentiable_on Z by
A1,
Th82;
for x st x
in Z holds (((r
(#)
arccot )
`| Z)
. x)
= (
- (r
/ (1
+ (x
^2 ))))
proof
let x;
assume
A4: x
in Z;
then
A5: (
- 1)
< x by
A1,
XXREAL_1: 4;
A6: x
< 1 by
A1,
A4,
XXREAL_1: 4;
(((r
(#)
arccot )
`| Z)
. x)
= (r
* (
diff (
arccot ,x))) by
A2,
A3,
A4,
FDIFF_1: 20
.= (r
* (
- (1
/ (1
+ (x
^2 ))))) by
A5,
A6,
Th76
.= (
- (r
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A2,
A3,
FDIFF_1: 20;
end;
theorem ::
SIN_COS9:85
Th85: f
is_differentiable_in x & (f
. x)
> (
- 1) & (f
. x)
< 1 implies (
arctan
* f)
is_differentiable_in x & (
diff ((
arctan
* f),x))
= ((
diff (f,x))
/ (1
+ ((f
. x)
^2 )))
proof
assume that
A1: f
is_differentiable_in x and
A2: (f
. x)
> (
- 1) and
A3: (f
. x)
< 1;
(f
. x)
in
].(
- 1), 1.[ by
A2,
A3,
XXREAL_1: 4;
then
A4:
arctan
is_differentiable_in (f
. x) by
Th73,
FDIFF_1: 9;
then (
diff ((
arctan
* f),x))
= ((
diff (
arctan ,(f
. x)))
* (
diff (f,x))) by
A1,
FDIFF_2: 13
.= ((
diff (f,x))
* (1
/ (1
+ ((f
. x)
^2 )))) by
A2,
A3,
Th75
.= ((
diff (f,x))
/ (1
+ ((f
. x)
^2 )));
hence thesis by
A1,
A4,
FDIFF_2: 13;
end;
theorem ::
SIN_COS9:86
Th86: f
is_differentiable_in x & (f
. x)
> (
- 1) & (f
. x)
< 1 implies (
arccot
* f)
is_differentiable_in x & (
diff ((
arccot
* f),x))
= (
- ((
diff (f,x))
/ (1
+ ((f
. x)
^2 ))))
proof
assume that
A1: f
is_differentiable_in x and
A2: (f
. x)
> (
- 1) and
A3: (f
. x)
< 1;
(f
. x)
in
].(
- 1), 1.[ by
A2,
A3,
XXREAL_1: 4;
then
A4:
arccot
is_differentiable_in (f
. x) by
Th74,
FDIFF_1: 9;
then (
diff ((
arccot
* f),x))
= ((
diff (
arccot ,(f
. x)))
* (
diff (f,x))) by
A1,
FDIFF_2: 13
.= ((
diff (f,x))
* (
- (1
/ (1
+ ((f
. x)
^2 ))))) by
A2,
A3,
Th76
.= (
- ((
diff (f,x))
/ (1
+ ((f
. x)
^2 ))));
hence thesis by
A1,
A4,
FDIFF_2: 13;
end;
theorem ::
SIN_COS9:87
Th87: Z
c= (
dom (
arctan
* f)) & (for x st x
in Z holds (f
. x)
= ((r
* x)
+ s) & (f
. x)
> (
- 1) & (f
. x)
< 1) implies (
arctan
* f)
is_differentiable_on Z & for x st x
in Z holds (((
arctan
* f)
`| Z)
. x)
= (r
/ (1
+ (((r
* x)
+ s)
^2 )))
proof
assume that
A1: Z
c= (
dom (
arctan
* f)) and
A2: for x st x
in Z holds (f
. x)
= ((r
* x)
+ s) & (f
. x)
> (
- 1) & (f
. x)
< 1;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom f);
A4: for x st x
in Z holds (f
. x)
= ((r
* x)
+ s) by
A2;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6: for x st x
in Z holds (
arctan
* f)
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then
A8: (f
. x)
> (
- 1) by
A2;
A9: (f
. x)
< 1 by
A2,
A7;
f
is_differentiable_in x by
A5,
A7,
FDIFF_1: 9;
hence thesis by
A8,
A9,
Th85;
end;
then
A10: (
arctan
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arctan
* f)
`| Z)
. x)
= (r
/ (1
+ (((r
* x)
+ s)
^2 )))
proof
let x;
assume
A11: x
in Z;
then
A12: (f
. x)
> (
- 1) by
A2;
A13: (f
. x)
< 1 by
A2,
A11;
f
is_differentiable_in x by
A5,
A11,
FDIFF_1: 9;
then (
diff ((
arctan
* f),x))
= ((
diff (f,x))
/ (1
+ ((f
. x)
^2 ))) by
A12,
A13,
Th85
.= (((f
`| Z)
. x)
/ (1
+ ((f
. x)
^2 ))) by
A5,
A11,
FDIFF_1:def 7
.= (r
/ (1
+ ((f
. x)
^2 ))) by
A4,
A3,
A11,
FDIFF_1: 23
.= (r
/ (1
+ (((r
* x)
+ s)
^2 ))) by
A2,
A11;
hence thesis by
A10,
A11,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:88
Th88: Z
c= (
dom (
arccot
* f)) & (for x st x
in Z holds (f
. x)
= ((r
* x)
+ s) & (f
. x)
> (
- 1) & (f
. x)
< 1) implies (
arccot
* f)
is_differentiable_on Z & for x st x
in Z holds (((
arccot
* f)
`| Z)
. x)
= (
- (r
/ (1
+ (((r
* x)
+ s)
^2 ))))
proof
assume that
A1: Z
c= (
dom (
arccot
* f)) and
A2: for x st x
in Z holds (f
. x)
= ((r
* x)
+ s) & (f
. x)
> (
- 1) & (f
. x)
< 1;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom f);
A4: for x st x
in Z holds (f
. x)
= ((r
* x)
+ s) by
A2;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6: for x st x
in Z holds (
arccot
* f)
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then
A8: (f
. x)
> (
- 1) by
A2;
A9: (f
. x)
< 1 by
A2,
A7;
f
is_differentiable_in x by
A5,
A7,
FDIFF_1: 9;
hence thesis by
A8,
A9,
Th86;
end;
then
A10: (
arccot
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arccot
* f)
`| Z)
. x)
= (
- (r
/ (1
+ (((r
* x)
+ s)
^2 ))))
proof
let x;
assume
A11: x
in Z;
then
A12: (f
. x)
> (
- 1) by
A2;
A13: (f
. x)
< 1 by
A2,
A11;
f
is_differentiable_in x by
A5,
A11,
FDIFF_1: 9;
then (
diff ((
arccot
* f),x))
= (
- ((
diff (f,x))
/ (1
+ ((f
. x)
^2 )))) by
A12,
A13,
Th86
.= (
- (((f
`| Z)
. x)
/ (1
+ ((f
. x)
^2 )))) by
A5,
A11,
FDIFF_1:def 7
.= (
- (r
/ (1
+ ((f
. x)
^2 )))) by
A4,
A3,
A11,
FDIFF_1: 23
.= (
- (r
/ (1
+ (((r
* x)
+ s)
^2 )))) by
A2,
A11;
hence thesis by
A10,
A11,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:89
Z
c= (
dom (
ln
*
arctan )) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arctan
. x)
>
0 ) implies (
ln
*
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
ln
*
arctan )
`| Z)
. x)
= (1
/ ((1
+ (x
^2 ))
* (
arctan
. x)))
proof
assume that
A1: Z
c= (
dom (
ln
*
arctan )) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (
arctan
. x)
>
0 ;
A4: for x st x
in Z holds (
ln
*
arctan )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
arctan
is_differentiable_on Z by
A2,
Th81;
then
A6:
arctan
is_differentiable_in x by
A5,
FDIFF_1: 9;
(
arctan
. x)
>
0 by
A3,
A5;
hence thesis by
A6,
TAYLOR_1: 20;
end;
then
A7: (
ln
*
arctan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
*
arctan )
`| Z)
. x)
= (1
/ ((1
+ (x
^2 ))
* (
arctan
. x)))
proof
let x;
assume
A8: x
in Z;
then
A9: (
- 1)
< x by
A2,
XXREAL_1: 4;
arctan
is_differentiable_on Z by
A2,
Th81;
then
A10:
arctan
is_differentiable_in x by
A8,
FDIFF_1: 9;
A11: x
< 1 by
A2,
A8,
XXREAL_1: 4;
(
arctan
. x)
>
0 by
A3,
A8;
then (
diff ((
ln
*
arctan ),x))
= ((
diff (
arctan ,x))
/ (
arctan
. x)) by
A10,
TAYLOR_1: 20
.= ((1
/ (1
+ (x
^2 )))
/ (
arctan
. x)) by
A9,
A11,
Th75
.= (1
/ ((1
+ (x
^2 ))
* (
arctan
. x))) by
XCMPLX_1: 78;
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:90
Z
c= (
dom (
ln
*
arccot )) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arccot
. x)
>
0 ) implies (
ln
*
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
ln
*
arccot )
`| Z)
. x)
= (
- (1
/ ((1
+ (x
^2 ))
* (
arccot
. x))))
proof
assume that
A1: Z
c= (
dom (
ln
*
arccot )) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (
arccot
. x)
>
0 ;
A4: for x st x
in Z holds (
ln
*
arccot )
is_differentiable_in x
proof
let x;
assume
A5: x
in Z;
arccot
is_differentiable_on Z by
A2,
Th82;
then
A6:
arccot
is_differentiable_in x by
A5,
FDIFF_1: 9;
(
arccot
. x)
>
0 by
A3,
A5;
hence thesis by
A6,
TAYLOR_1: 20;
end;
then
A7: (
ln
*
arccot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
*
arccot )
`| Z)
. x)
= (
- (1
/ ((1
+ (x
^2 ))
* (
arccot
. x))))
proof
let x;
assume
A8: x
in Z;
then
A9: (
- 1)
< x by
A2,
XXREAL_1: 4;
arccot
is_differentiable_on Z by
A2,
Th82;
then
A10:
arccot
is_differentiable_in x by
A8,
FDIFF_1: 9;
A11: x
< 1 by
A2,
A8,
XXREAL_1: 4;
(
arccot
. x)
>
0 by
A3,
A8;
then (
diff ((
ln
*
arccot ),x))
= ((
diff (
arccot ,x))
/ (
arccot
. x)) by
A10,
TAYLOR_1: 20
.= ((
- (1
/ (1
+ (x
^2 ))))
/ (
arccot
. x)) by
A9,
A11,
Th76
.= (
- ((1
/ (1
+ (x
^2 )))
/ (
arccot
. x)))
.= (
- (1
/ ((1
+ (x
^2 ))
* (
arccot
. x)))) by
XCMPLX_1: 78;
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:91
Th91: Z
c= (
dom ((
#Z n)
*
arctan )) & Z
c=
].(
- 1), 1.[ implies ((
#Z n)
*
arctan )
is_differentiable_on Z & for x st x
in Z holds ((((
#Z n)
*
arctan )
`| Z)
. x)
= ((n
* ((
arctan
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 )))
proof
assume that
A1: Z
c= (
dom ((
#Z n)
*
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds ((
#Z n)
*
arctan )
is_differentiable_in x
proof
let x;
assume
A4: x
in Z;
arctan
is_differentiable_on Z by
A2,
Th81;
then
arctan
is_differentiable_in x by
A4,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 3;
end;
then
A5: ((
#Z n)
*
arctan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#Z n)
*
arctan )
`| Z)
. x)
= ((n
* ((
arctan
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 )))
proof
let x;
assume
A6: x
in Z;
then
A7: (
- 1)
< x by
A2,
XXREAL_1: 4;
arctan
is_differentiable_on Z by
A2,
Th81;
then
A8:
arctan
is_differentiable_in x by
A6,
FDIFF_1: 9;
A9: x
< 1 by
A2,
A6,
XXREAL_1: 4;
((((
#Z n)
*
arctan )
`| Z)
. x)
= (
diff (((
#Z n)
*
arctan ),x)) by
A5,
A6,
FDIFF_1:def 7
.= ((n
* ((
arctan
. x)
#Z (n
- 1)))
* (
diff (
arctan ,x))) by
A8,
TAYLOR_1: 3
.= ((n
* ((
arctan
. x)
#Z (n
- 1)))
* (1
/ (1
+ (x
^2 )))) by
A7,
A9,
Th75
.= ((n
* ((
arctan
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:92
Th92: Z
c= (
dom ((
#Z n)
*
arccot )) & Z
c=
].(
- 1), 1.[ implies ((
#Z n)
*
arccot )
is_differentiable_on Z & for x st x
in Z holds ((((
#Z n)
*
arccot )
`| Z)
. x)
= (
- ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom ((
#Z n)
*
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds ((
#Z n)
*
arccot )
is_differentiable_in x
proof
let x;
assume
A4: x
in Z;
arccot
is_differentiable_on Z by
A2,
Th82;
then
arccot
is_differentiable_in x by
A4,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 3;
end;
then
A5: ((
#Z n)
*
arccot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#Z n)
*
arccot )
`| Z)
. x)
= (
- ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A6: x
in Z;
then
A7: (
- 1)
< x by
A2,
XXREAL_1: 4;
arccot
is_differentiable_on Z by
A2,
Th82;
then
A8:
arccot
is_differentiable_in x by
A6,
FDIFF_1: 9;
A9: x
< 1 by
A2,
A6,
XXREAL_1: 4;
((((
#Z n)
*
arccot )
`| Z)
. x)
= (
diff (((
#Z n)
*
arccot ),x)) by
A5,
A6,
FDIFF_1:def 7
.= ((n
* ((
arccot
. x)
#Z (n
- 1)))
* (
diff (
arccot ,x))) by
A8,
TAYLOR_1: 3
.= ((n
* ((
arccot
. x)
#Z (n
- 1)))
* (
- (1
/ (1
+ (x
^2 ))))) by
A7,
A9,
Th76
.= (
- ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:93
Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arctan ))) & Z
c=
].(
- 1), 1.[ implies ((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
`| Z)
. x)
= ((
arctan
. x)
/ (1
+ (x
^2 )))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arctan ))) and
A2: Z
c=
].(
- 1), 1.[;
A3: Z
c= (
dom ((
#Z 2)
*
arctan )) by
A1,
VALUED_1:def 5;
then
A4: ((
#Z 2)
*
arctan )
is_differentiable_on Z by
A2,
Th91;
for x st x
in Z holds ((((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
`| Z)
. x)
= ((
arctan
. x)
/ (1
+ (x
^2 )))
proof
let x;
assume
A5: x
in Z;
then ((((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
`| Z)
. x)
= ((1
/ 2)
* (
diff (((
#Z 2)
*
arctan ),x))) by
A1,
A4,
FDIFF_1: 20
.= ((1
/ 2)
* ((((
#Z 2)
*
arctan )
`| Z)
. x)) by
A4,
A5,
FDIFF_1:def 7
.= ((1
/ 2)
* ((2
* ((
arctan
. x)
#Z (2
- 1)))
/ (1
+ (x
^2 )))) by
A2,
A3,
A5,
Th91
.= ((1
/ 2)
* ((2
* (
arctan
. x))
/ (1
+ (x
^2 )))) by
PREPOWER: 35
.= ((
arctan
. x)
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 20;
end;
theorem ::
SIN_COS9:94
Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arccot ))) & Z
c=
].(
- 1), 1.[ implies ((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
`| Z)
. x)
= (
- ((
arccot
. x)
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arccot ))) and
A2: Z
c=
].(
- 1), 1.[;
A3: Z
c= (
dom ((
#Z 2)
*
arccot )) by
A1,
VALUED_1:def 5;
then
A4: ((
#Z 2)
*
arccot )
is_differentiable_on Z by
A2,
Th92;
for x st x
in Z holds ((((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
`| Z)
. x)
= (
- ((
arccot
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A5: x
in Z;
then ((((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
`| Z)
. x)
= ((1
/ 2)
* (
diff (((
#Z 2)
*
arccot ),x))) by
A1,
A4,
FDIFF_1: 20
.= ((1
/ 2)
* ((((
#Z 2)
*
arccot )
`| Z)
. x)) by
A4,
A5,
FDIFF_1:def 7
.= ((1
/ 2)
* (
- ((2
* ((
arccot
. x)
#Z (2
- 1)))
/ (1
+ (x
^2 ))))) by
A2,
A3,
A5,
Th92
.= (
- ((1
/ 2)
* ((2
* ((
arccot
. x)
#Z 1))
/ (1
+ (x
^2 )))))
.= (
- ((1
/ 2)
* ((2
* (
arccot
. x))
/ (1
+ (x
^2 ))))) by
PREPOWER: 35
.= (
- ((
arccot
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 20;
end;
theorem ::
SIN_COS9:95
Th95: Z
c=
].(
- 1), 1.[ implies ((
id Z)
(#)
arctan )
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#)
arctan )
`| Z)
. x)
= ((
arctan
. x)
+ (x
/ (1
+ (x
^2 ))))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
A2: Z
c= (
dom (
id Z)) by
FUNCT_1: 17;
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arctan ) by
Th23;
then Z
c= (
dom
arctan ) by
A1;
then Z
c= ((
dom (
id Z))
/\ (
dom
arctan )) by
A2,
XBOOLE_1: 19;
then
A3: Z
c= (
dom ((
id Z)
(#)
arctan )) by
VALUED_1:def 4;
A4: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A5: (
id Z)
is_differentiable_on Z by
A2,
FDIFF_1: 23;
A6:
arctan
is_differentiable_on Z by
A1,
Th81;
for x st x
in Z holds ((((
id Z)
(#)
arctan )
`| Z)
. x)
= ((
arctan
. x)
+ (x
/ (1
+ (x
^2 ))))
proof
let x;
assume
A7: x
in Z;
then
A8: (
- 1)
< x by
A1,
XXREAL_1: 4;
A9: x
< 1 by
A1,
A7,
XXREAL_1: 4;
((((
id Z)
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff (
arctan ,x)))) by
A3,
A5,
A6,
A7,
FDIFF_1: 21
.= (((
arctan
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff (
arctan ,x)))) by
A5,
A7,
FDIFF_1:def 7
.= (((
arctan
. x)
* 1)
+ (((
id Z)
. x)
* (
diff (
arctan ,x)))) by
A2,
A4,
A7,
FDIFF_1: 23
.= ((
arctan
. x)
+ (x
* (
diff (
arctan ,x)))) by
A7,
FUNCT_1: 18
.= ((
arctan
. x)
+ (x
* (1
/ (1
+ (x
^2 ))))) by
A8,
A9,
Th75
.= ((
arctan
. x)
+ (x
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A3,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
SIN_COS9:96
Th96: Z
c=
].(
- 1), 1.[ implies ((
id Z)
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#)
arccot )
`| Z)
. x)
= ((
arccot
. x)
- (x
/ (1
+ (x
^2 ))))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
A2: Z
c= (
dom (
id Z)) by
FUNCT_1: 17;
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
Th24;
then Z
c= (
dom
arccot ) by
A1;
then Z
c= ((
dom (
id Z))
/\ (
dom
arccot )) by
A2,
XBOOLE_1: 19;
then
A3: Z
c= (
dom ((
id Z)
(#)
arccot )) by
VALUED_1:def 4;
A4: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A5: (
id Z)
is_differentiable_on Z by
A2,
FDIFF_1: 23;
A6:
arccot
is_differentiable_on Z by
A1,
Th82;
for x st x
in Z holds ((((
id Z)
(#)
arccot )
`| Z)
. x)
= ((
arccot
. x)
- (x
/ (1
+ (x
^2 ))))
proof
let x;
assume
A7: x
in Z;
then
A8: (
- 1)
< x by
A1,
XXREAL_1: 4;
A9: x
< 1 by
A1,
A7,
XXREAL_1: 4;
((((
id Z)
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff (
arccot ,x)))) by
A3,
A5,
A6,
A7,
FDIFF_1: 21
.= (((
arccot
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff (
arccot ,x)))) by
A5,
A7,
FDIFF_1:def 7
.= (((
arccot
. x)
* 1)
+ (((
id Z)
. x)
* (
diff (
arccot ,x)))) by
A2,
A4,
A7,
FDIFF_1: 23
.= ((
arccot
. x)
+ (x
* (
diff (
arccot ,x)))) by
A7,
FUNCT_1: 18
.= ((
arccot
. x)
+ (x
* (
- (1
/ (1
+ (x
^2 )))))) by
A8,
A9,
Th76
.= ((
arccot
. x)
- (x
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A3,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
SIN_COS9:97
Z
c= (
dom (f
(#)
arctan )) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f
. x)
= ((r
* x)
+ s)) implies (f
(#)
arctan )
is_differentiable_on Z & for x st x
in Z holds (((f
(#)
arctan )
`| Z)
. x)
= ((r
* (
arctan
. x))
+ (((r
* x)
+ s)
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (f
(#)
arctan )) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (f
. x)
= ((r
* x)
+ s);
Z
c= ((
dom f)
/\ (
dom
arctan )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6:
arctan
is_differentiable_on Z by
A2,
Th81;
for x st x
in Z holds (((f
(#)
arctan )
`| Z)
. x)
= ((r
* (
arctan
. x))
+ (((r
* x)
+ s)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A7: x
in Z;
then
A8: (
- 1)
< x by
A2,
XXREAL_1: 4;
A9: x
< 1 by
A2,
A7,
XXREAL_1: 4;
(((f
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
* (
diff (f,x)))
+ ((f
. x)
* (
diff (
arctan ,x)))) by
A1,
A5,
A6,
A7,
FDIFF_1: 21
.= (((
arctan
. x)
* ((f
`| Z)
. x))
+ ((f
. x)
* (
diff (
arctan ,x)))) by
A5,
A7,
FDIFF_1:def 7
.= (((
arctan
. x)
* r)
+ ((f
. x)
* (
diff (
arctan ,x)))) by
A3,
A4,
A7,
FDIFF_1: 23
.= (((
arctan
. x)
* r)
+ ((f
. x)
* (1
/ (1
+ (x
^2 ))))) by
A8,
A9,
Th75
.= ((r
* (
arctan
. x))
+ (((r
* x)
+ s)
/ (1
+ (x
^2 )))) by
A3,
A7;
hence thesis;
end;
hence thesis by
A1,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
SIN_COS9:98
Z
c= (
dom (f
(#)
arccot )) & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f
. x)
= ((r
* x)
+ s)) implies (f
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds (((f
(#)
arccot )
`| Z)
. x)
= ((r
* (
arccot
. x))
- (((r
* x)
+ s)
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (f
(#)
arccot )) and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (f
. x)
= ((r
* x)
+ s);
Z
c= ((
dom f)
/\ (
dom
arccot )) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6:
arccot
is_differentiable_on Z by
A2,
Th82;
for x st x
in Z holds (((f
(#)
arccot )
`| Z)
. x)
= ((r
* (
arccot
. x))
- (((r
* x)
+ s)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A7: x
in Z;
then
A8: (
- 1)
< x by
A2,
XXREAL_1: 4;
A9: x
< 1 by
A2,
A7,
XXREAL_1: 4;
(((f
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
* (
diff (f,x)))
+ ((f
. x)
* (
diff (
arccot ,x)))) by
A1,
A5,
A6,
A7,
FDIFF_1: 21
.= (((
arccot
. x)
* ((f
`| Z)
. x))
+ ((f
. x)
* (
diff (
arccot ,x)))) by
A5,
A7,
FDIFF_1:def 7
.= (((
arccot
. x)
* r)
+ ((f
. x)
* (
diff (
arccot ,x)))) by
A3,
A4,
A7,
FDIFF_1: 23
.= (((
arccot
. x)
* r)
+ ((f
. x)
* (
- (1
/ (1
+ (x
^2 )))))) by
A8,
A9,
Th76
.= (((
arccot
. x)
* r)
- ((f
. x)
* (1
/ (1
+ (x
^2 )))))
.= ((r
* (
arccot
. x))
- (((r
* x)
+ s)
/ (1
+ (x
^2 )))) by
A3,
A7;
hence thesis;
end;
hence thesis by
A1,
A5,
A6,
FDIFF_1: 21;
end;
theorem ::
SIN_COS9:99
Z
c= (
dom ((1
/ 2)
(#) (
arctan
* f))) & (for x st x
in Z holds (f
. x)
= (2
* x) & (f
. x)
> (
- 1) & (f
. x)
< 1) implies ((1
/ 2)
(#) (
arctan
* f))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) (
arctan
* f))
`| Z)
. x)
= (1
/ (1
+ ((2
* x)
^2 )))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) (
arctan
* f))) and
A2: for x st x
in Z holds (f
. x)
= (2
* x) & (f
. x)
> (
- 1) & (f
. x)
< 1;
A3: for x st x
in Z holds (f
. x)
= ((2
* x)
+
0 ) & (f
. x)
> (
- 1) & (f
. x)
< 1 by
A2;
A4: Z
c= (
dom (
arctan
* f)) by
A1,
VALUED_1:def 5;
then
A5: (
arctan
* f)
is_differentiable_on Z by
A3,
Th87;
for x st x
in Z holds ((((1
/ 2)
(#) (
arctan
* f))
`| Z)
. x)
= (1
/ (1
+ ((2
* x)
^2 )))
proof
let x;
assume
A6: x
in Z;
then ((((1
/ 2)
(#) (
arctan
* f))
`| Z)
. x)
= ((1
/ 2)
* (
diff ((
arctan
* f),x))) by
A1,
A5,
FDIFF_1: 20
.= ((1
/ 2)
* (((
arctan
* f)
`| Z)
. x)) by
A5,
A6,
FDIFF_1:def 7
.= ((1
/ 2)
* (2
/ (1
+ (((2
* x)
+
0 )
^2 )))) by
A4,
A3,
A6,
Th87
.= (1
/ (1
+ ((2
* x)
^2 )));
hence thesis;
end;
hence thesis by
A1,
A5,
FDIFF_1: 20;
end;
theorem ::
SIN_COS9:100
Z
c= (
dom ((1
/ 2)
(#) (
arccot
* f))) & (for x st x
in Z holds (f
. x)
= (2
* x) & (f
. x)
> (
- 1) & (f
. x)
< 1) implies ((1
/ 2)
(#) (
arccot
* f))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) (
arccot
* f))
`| Z)
. x)
= (
- (1
/ (1
+ ((2
* x)
^2 ))))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) (
arccot
* f))) and
A2: for x st x
in Z holds (f
. x)
= (2
* x) & (f
. x)
> (
- 1) & (f
. x)
< 1;
A3: for x st x
in Z holds (f
. x)
= ((2
* x)
+
0 ) & (f
. x)
> (
- 1) & (f
. x)
< 1 by
A2;
A4: Z
c= (
dom (
arccot
* f)) by
A1,
VALUED_1:def 5;
then
A5: (
arccot
* f)
is_differentiable_on Z by
A3,
Th88;
for x st x
in Z holds ((((1
/ 2)
(#) (
arccot
* f))
`| Z)
. x)
= (
- (1
/ (1
+ ((2
* x)
^2 ))))
proof
let x;
assume
A6: x
in Z;
then ((((1
/ 2)
(#) (
arccot
* f))
`| Z)
. x)
= ((1
/ 2)
* (
diff ((
arccot
* f),x))) by
A1,
A5,
FDIFF_1: 20
.= ((1
/ 2)
* (((
arccot
* f)
`| Z)
. x)) by
A5,
A6,
FDIFF_1:def 7
.= ((1
/ 2)
* (
- (2
/ (1
+ (((2
* x)
+
0 )
^2 ))))) by
A4,
A3,
A6,
Th88
.= (
- (1
/ (1
+ ((2
* x)
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A5,
FDIFF_1: 20;
end;
theorem ::
SIN_COS9:101
Th101: Z
c= (
dom (f1
+ f2)) & (for x st x
in Z holds (f1
. x)
= 1) & f2
= (
#Z 2) implies (f1
+ f2)
is_differentiable_on Z & for x st x
in Z holds (((f1
+ f2)
`| Z)
. x)
= (2
* x)
proof
assume that
A1: Z
c= (
dom (f1
+ f2)) and
A2: for x st x
in Z holds (f1
. x)
= 1 and
A3: f2
= (
#Z 2);
A4: for x st x
in Z holds f2
is_differentiable_in x by
A3,
TAYLOR_1: 2;
A5: Z
c= ((
dom f1)
/\ (
dom f2)) by
A1,
VALUED_1:def 1;
then
A6: Z
c= (
dom f1) by
XBOOLE_1: 18;
A7: for x st x
in Z holds (f1
. x)
= ((
0
* x)
+ 1) by
A2;
then
A8: f1
is_differentiable_on Z by
A6,
FDIFF_1: 23;
Z
c= (
dom f2) by
A5,
XBOOLE_1: 18;
then
A9: f2
is_differentiable_on Z by
A4,
FDIFF_1: 9;
A10: for x st x
in Z holds ((f2
`| Z)
. x)
= (2
* x)
proof
let x;
(2
* (x
#Z (2
- 1)))
= (2
* x) by
PREPOWER: 35;
then
A11: (
diff (f2,x))
= (2
* x) by
A3,
TAYLOR_1: 2;
assume x
in Z;
hence thesis by
A9,
A11,
FDIFF_1:def 7;
end;
for x st x
in Z holds (((f1
+ f2)
`| Z)
. x)
= (2
* x)
proof
let x;
assume
A12: x
in Z;
then (((f1
+ f2)
`| Z)
. x)
= ((
diff (f1,x))
+ (
diff (f2,x))) by
A1,
A8,
A9,
FDIFF_1: 18
.= (((f1
`| Z)
. x)
+ (
diff (f2,x))) by
A8,
A12,
FDIFF_1:def 7
.= (((f1
`| Z)
. x)
+ ((f2
`| Z)
. x)) by
A9,
A12,
FDIFF_1:def 7
.= (
0
+ ((f2
`| Z)
. x)) by
A6,
A7,
A12,
FDIFF_1: 23
.= (2
* x) by
A10,
A12;
hence thesis;
end;
hence thesis by
A1,
A8,
A9,
FDIFF_1: 18;
end;
theorem ::
SIN_COS9:102
Th102: Z
c= (
dom ((1
/ 2)
(#) (
ln
* (f1
+ f2)))) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= 1) implies ((1
/ 2)
(#) (
ln
* (f1
+ f2)))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)
= (x
/ (1
+ (x
^2 )))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) (
ln
* (f1
+ f2)))) and
A2: f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= 1;
A4: Z
c= (
dom (
ln
* (f1
+ f2))) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom (f1
+ f2)) by
FUNCT_1: 11;
then
A5: Z
c= (
dom (f1
+ f2));
then
A6: (f1
+ f2)
is_differentiable_on Z by
A2,
A3,
Th101;
for x st x
in Z holds (
ln
* (f1
+ f2))
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then ((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
A5,
VALUED_1:def 1
.= (1
+ (f2
. x)) by
A3,
A7
.= (1
+ (x
#Z (1
+ 1))) by
A2,
TAYLOR_1:def 1
.= (1
+ ((x
#Z 1)
* (x
#Z 1))) by
TAYLOR_1: 1
.= (1
+ (x
* (x
#Z 1))) by
PREPOWER: 35
.= (1
+ (x
* x)) by
PREPOWER: 35;
then
A8: ((f1
+ f2)
. x)
>
0 by
XREAL_1: 34,
XREAL_1: 63;
(f1
+ f2)
is_differentiable_in x by
A6,
A7,
FDIFF_1: 9;
hence thesis by
A8,
TAYLOR_1: 20;
end;
then
A9: (
ln
* (f1
+ f2))
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds ((((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)
= (x
/ (1
+ (x
^2 )))
proof
let x;
assume
A10: x
in Z;
then
A11: (f1
+ f2)
is_differentiable_in x by
A6,
FDIFF_1: 9;
A12: ((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
A5,
A10,
VALUED_1:def 1
.= (1
+ (f2
. x)) by
A3,
A10
.= (1
+ (x
#Z (1
+ 1))) by
A2,
TAYLOR_1:def 1
.= (1
+ ((x
#Z 1)
* (x
#Z 1))) by
TAYLOR_1: 1
.= (1
+ (x
* (x
#Z 1))) by
PREPOWER: 35
.= (1
+ (x
* x)) by
PREPOWER: 35;
then ((f1
+ f2)
. x)
>
0 by
XREAL_1: 34,
XREAL_1: 63;
then (
diff ((
ln
* (f1
+ f2)),x))
= ((
diff ((f1
+ f2),x))
/ ((f1
+ f2)
. x)) by
A11,
TAYLOR_1: 20
.= ((((f1
+ f2)
`| Z)
. x)
/ ((f1
+ f2)
. x)) by
A6,
A10,
FDIFF_1:def 7
.= ((2
* x)
/ (1
+ (x
^2 ))) by
A2,
A3,
A5,
A10,
A12,
Th101;
hence ((((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)
= ((1
/ 2)
* ((2
* x)
/ (1
+ (x
^2 )))) by
A1,
A9,
A10,
FDIFF_1: 20
.= (x
/ (1
+ (x
^2 )));
end;
hence thesis by
A1,
A9,
FDIFF_1: 20;
end;
theorem ::
SIN_COS9:103
Z
c= (
dom (((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))) & Z
c=
].(
- 1), 1.[ & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= 1) implies (((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (
arctan
. x)
proof
assume that
A1: Z
c= (
dom (((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))) and
A2: Z
c=
].(
- 1), 1.[ and
A3: f2
= (
#Z 2) and
A4: for x st x
in Z holds (f1
. x)
= 1;
Z
c= ((
dom ((
id Z)
(#)
arctan ))
/\ (
dom ((1
/ 2)
(#) (
ln
* (f1
+ f2))))) by
A1,
VALUED_1: 12;
then
A5: Z
c= (
dom ((1
/ 2)
(#) (
ln
* (f1
+ f2)))) by
XBOOLE_1: 18;
then
A6: ((1
/ 2)
(#) (
ln
* (f1
+ f2)))
is_differentiable_on Z by
A3,
A4,
Th102;
A7: ((
id Z)
(#)
arctan )
is_differentiable_on Z by
A2,
Th95;
for x st x
in Z holds (((((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (
arctan
. x)
proof
let x;
assume
A8: x
in Z;
hence (((((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= ((
diff (((
id Z)
(#)
arctan ),x))
- (
diff (((1
/ 2)
(#) (
ln
* (f1
+ f2))),x))) by
A1,
A7,
A6,
FDIFF_1: 19
.= (((((
id Z)
(#)
arctan )
`| Z)
. x)
- (
diff (((1
/ 2)
(#) (
ln
* (f1
+ f2))),x))) by
A7,
A8,
FDIFF_1:def 7
.= (((((
id Z)
(#)
arctan )
`| Z)
. x)
- ((((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)) by
A6,
A8,
FDIFF_1:def 7
.= (((
arctan
. x)
+ (x
/ (1
+ (x
^2 ))))
- ((((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)) by
A2,
A8,
Th95
.= (((
arctan
. x)
+ (x
/ (1
+ (x
^2 ))))
- (x
/ (1
+ (x
^2 )))) by
A3,
A4,
A5,
A8,
Th102
.= (
arctan
. x);
end;
hence thesis by
A1,
A7,
A6,
FDIFF_1: 19;
end;
theorem ::
SIN_COS9:104
Z
c= (
dom (((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))) & Z
c=
].(
- 1), 1.[ & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= 1) implies (((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (
arccot
. x)
proof
assume that
A1: Z
c= (
dom (((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))) and
A2: Z
c=
].(
- 1), 1.[ and
A3: f2
= (
#Z 2) and
A4: for x st x
in Z holds (f1
. x)
= 1;
Z
c= ((
dom ((
id Z)
(#)
arccot ))
/\ (
dom ((1
/ 2)
(#) (
ln
* (f1
+ f2))))) by
A1,
VALUED_1:def 1;
then
A5: Z
c= (
dom ((1
/ 2)
(#) (
ln
* (f1
+ f2)))) by
XBOOLE_1: 18;
then
A6: ((1
/ 2)
(#) (
ln
* (f1
+ f2)))
is_differentiable_on Z by
A3,
A4,
Th102;
A7: ((
id Z)
(#)
arccot )
is_differentiable_on Z by
A2,
Th96;
for x st x
in Z holds (((((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (
arccot
. x)
proof
let x;
assume
A8: x
in Z;
hence (((((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= ((
diff (((
id Z)
(#)
arccot ),x))
+ (
diff (((1
/ 2)
(#) (
ln
* (f1
+ f2))),x))) by
A1,
A7,
A6,
FDIFF_1: 18
.= (((((
id Z)
(#)
arccot )
`| Z)
. x)
+ (
diff (((1
/ 2)
(#) (
ln
* (f1
+ f2))),x))) by
A7,
A8,
FDIFF_1:def 7
.= (((((
id Z)
(#)
arccot )
`| Z)
. x)
+ ((((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)) by
A6,
A8,
FDIFF_1:def 7
.= (((
arccot
. x)
- (x
/ (1
+ (x
^2 ))))
+ ((((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)) by
A2,
A8,
Th96
.= (((
arccot
. x)
- (x
/ (1
+ (x
^2 ))))
+ (x
/ (1
+ (x
^2 )))) by
A3,
A4,
A5,
A8,
Th102
.= (
arccot
. x);
end;
hence thesis by
A1,
A7,
A6,
FDIFF_1: 18;
end;
theorem ::
SIN_COS9:105
Th105: Z
c= (
dom ((
id Z)
(#) (
arctan
* f))) & (for x st x
in Z holds (f
. x)
= (x
/ r) & (f
. x)
> (
- 1) & (f
. x)
< 1) implies ((
id Z)
(#) (
arctan
* f))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#) (
arctan
* f))
`| Z)
. x)
= ((
arctan
. (x
/ r))
+ (x
/ (r
* (1
+ ((x
/ r)
^2 )))))
proof
assume that
A1: Z
c= (
dom ((
id Z)
(#) (
arctan
* f))) and
A2: for x st x
in Z holds (f
. x)
= (x
/ r) & (f
. x)
> (
- 1) & (f
. x)
< 1;
A3: Z
c= ((
dom (
id Z))
/\ (
dom (
arctan
* f))) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom (
id Z)) by
XBOOLE_1: 18;
A5: Z
c= (
dom (
arctan
* f)) by
A3,
XBOOLE_1: 18;
for x st x
in Z holds (f
. x)
= (((1
/ r)
* x)
+
0 )
proof
let x;
assume x
in Z;
then (f
. x)
= (x
/ r) by
A2;
hence thesis;
end;
then
A6: for x st x
in Z holds (f
. x)
= (((1
/ r)
* x)
+
0 ) & (f
. x)
> (
- 1) & (f
. x)
< 1 by
A2;
then
A7: (
arctan
* f)
is_differentiable_on Z by
A5,
Th87;
A8: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A9: (
id Z)
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A10: for x st x
in Z holds (((
arctan
* f)
`| Z)
. x)
= (1
/ (r
* (1
+ ((x
/ r)
^2 ))))
proof
let x;
assume x
in Z;
then (((
arctan
* f)
`| Z)
. x)
= ((1
/ r)
/ (1
+ ((((1
/ r)
* x)
+
0 )
^2 ))) by
A6,
A5,
Th87
.= (1
/ (r
* (1
+ ((x
/ r)
^2 )))) by
XCMPLX_1: 78;
hence thesis;
end;
for x st x
in Z holds ((((
id Z)
(#) (
arctan
* f))
`| Z)
. x)
= ((
arctan
. (x
/ r))
+ (x
/ (r
* (1
+ ((x
/ r)
^2 )))))
proof
let x;
assume
A11: x
in Z;
then
A12: ((
arctan
* f)
. x)
= (
arctan
. (f
. x)) by
A5,
FUNCT_1: 12
.= (
arctan
. (x
/ r)) by
A2,
A11;
((((
id Z)
(#) (
arctan
* f))
`| Z)
. x)
= ((((
arctan
* f)
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff ((
arctan
* f),x)))) by
A1,
A9,
A7,
A11,
FDIFF_1: 21
.= ((((
arctan
* f)
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff ((
arctan
* f),x)))) by
A9,
A11,
FDIFF_1:def 7
.= ((((
arctan
* f)
. x)
* 1)
+ (((
id Z)
. x)
* (
diff ((
arctan
* f),x)))) by
A4,
A8,
A11,
FDIFF_1: 23
.= ((((
arctan
* f)
. x)
* 1)
+ (((
id Z)
. x)
* (((
arctan
* f)
`| Z)
. x))) by
A7,
A11,
FDIFF_1:def 7
.= (((
arctan
* f)
. x)
+ (x
* (((
arctan
* f)
`| Z)
. x))) by
A11,
FUNCT_1: 18
.= ((
arctan
. (x
/ r))
+ (x
* (1
/ (r
* (1
+ ((x
/ r)
^2 )))))) by
A10,
A11,
A12
.= ((
arctan
. (x
/ r))
+ (x
/ (r
* (1
+ ((x
/ r)
^2 )))));
hence thesis;
end;
hence thesis by
A1,
A9,
A7,
FDIFF_1: 21;
end;
theorem ::
SIN_COS9:106
Th106: Z
c= (
dom ((
id Z)
(#) (
arccot
* f))) & (for x st x
in Z holds (f
. x)
= (x
/ r) & (f
. x)
> (
- 1) & (f
. x)
< 1) implies ((
id Z)
(#) (
arccot
* f))
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#) (
arccot
* f))
`| Z)
. x)
= ((
arccot
. (x
/ r))
- (x
/ (r
* (1
+ ((x
/ r)
^2 )))))
proof
assume that
A1: Z
c= (
dom ((
id Z)
(#) (
arccot
* f))) and
A2: for x st x
in Z holds (f
. x)
= (x
/ r) & (f
. x)
> (
- 1) & (f
. x)
< 1;
A3: Z
c= ((
dom (
id Z))
/\ (
dom (
arccot
* f))) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom (
id Z)) by
XBOOLE_1: 18;
A5: Z
c= (
dom (
arccot
* f)) by
A3,
XBOOLE_1: 18;
for x st x
in Z holds (f
. x)
= (((1
/ r)
* x)
+
0 )
proof
let x;
assume x
in Z;
then (f
. x)
= (x
/ r) by
A2;
hence thesis;
end;
then
A6: for x st x
in Z holds (f
. x)
= (((1
/ r)
* x)
+
0 ) & (f
. x)
> (
- 1) & (f
. x)
< 1 by
A2;
then
A7: (
arccot
* f)
is_differentiable_on Z by
A5,
Th88;
A8: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A9: (
id Z)
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A10: for x st x
in Z holds (((
arccot
* f)
`| Z)
. x)
= (
- (1
/ (r
* (1
+ ((x
/ r)
^2 )))))
proof
let x;
assume x
in Z;
then (((
arccot
* f)
`| Z)
. x)
= (
- ((1
/ r)
/ (1
+ ((((1
/ r)
* x)
+
0 )
^2 )))) by
A6,
A5,
Th88
.= (
- (1
/ (r
* (1
+ ((x
/ r)
^2 ))))) by
XCMPLX_1: 78;
hence thesis;
end;
for x st x
in Z holds ((((
id Z)
(#) (
arccot
* f))
`| Z)
. x)
= ((
arccot
. (x
/ r))
- (x
/ (r
* (1
+ ((x
/ r)
^2 )))))
proof
let x;
assume
A11: x
in Z;
then
A12: ((
arccot
* f)
. x)
= (
arccot
. (f
. x)) by
A5,
FUNCT_1: 12
.= (
arccot
. (x
/ r)) by
A2,
A11;
((((
id Z)
(#) (
arccot
* f))
`| Z)
. x)
= ((((
arccot
* f)
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff ((
arccot
* f),x)))) by
A1,
A9,
A7,
A11,
FDIFF_1: 21
.= ((((
arccot
* f)
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff ((
arccot
* f),x)))) by
A9,
A11,
FDIFF_1:def 7
.= ((((
arccot
* f)
. x)
* 1)
+ (((
id Z)
. x)
* (
diff ((
arccot
* f),x)))) by
A4,
A8,
A11,
FDIFF_1: 23
.= ((((
arccot
* f)
. x)
* 1)
+ (((
id Z)
. x)
* (((
arccot
* f)
`| Z)
. x))) by
A7,
A11,
FDIFF_1:def 7
.= (((
arccot
* f)
. x)
+ (x
* (((
arccot
* f)
`| Z)
. x))) by
A11,
FUNCT_1: 18
.= ((
arccot
. (x
/ r))
+ (x
* (
- (1
/ (r
* (1
+ ((x
/ r)
^2 ))))))) by
A10,
A11,
A12
.= ((
arccot
. (x
/ r))
- (x
/ (r
* (1
+ ((x
/ r)
^2 )))));
hence thesis;
end;
hence thesis by
A1,
A9,
A7,
FDIFF_1: 21;
end;
theorem ::
SIN_COS9:107
Th107: Z
c= (
dom (f1
+ f2)) & (for x st x
in Z holds (f1
. x)
= 1) & f2
= ((
#Z 2)
* f) & (for x st x
in Z holds (f
. x)
= (x
/ r)) implies (f1
+ f2)
is_differentiable_on Z & for x st x
in Z holds (((f1
+ f2)
`| Z)
. x)
= ((2
* x)
/ (r
^2 ))
proof
assume that
A1: Z
c= (
dom (f1
+ f2)) and
A2: for x st x
in Z holds (f1
. x)
= 1 and
A3: f2
= ((
#Z 2)
* f) and
A4: for x st x
in Z holds (f
. x)
= (x
/ r);
A5: for x st x
in Z holds (f1
. x)
= ((
0
* x)
+ 1) by
A2;
A6: Z
c= ((
dom f1)
/\ (
dom f2)) by
A1,
VALUED_1:def 1;
then
A7: Z
c= (
dom f1) by
XBOOLE_1: 18;
then
A8: f1
is_differentiable_on Z by
A5,
FDIFF_1: 23;
A9: for x st x
in Z holds (f
. x)
= (((1
/ r)
* x)
+
0 )
proof
let x;
assume x
in Z;
hence (f
. x)
= (x
/ r) by
A4
.= (((1
/ r)
* x)
+
0 );
end;
A10: for x st x
in Z holds f2
is_differentiable_in x
proof
let x;
Z
c= (
dom ((
#Z 2)
* f)) by
A3,
A6,
XBOOLE_1: 18;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then Z
c= (
dom f);
then
A11: f
is_differentiable_on Z by
A9,
FDIFF_1: 23;
assume x
in Z;
then f
is_differentiable_in x by
A11,
FDIFF_1: 9;
hence thesis by
A3,
TAYLOR_1: 3;
end;
Z
c= (
dom f2) by
A6,
XBOOLE_1: 18;
then
A12: f2
is_differentiable_on Z by
A10,
FDIFF_1: 9;
A13: for x st x
in Z holds ((f2
`| Z)
. x)
= ((2
* x)
/ (r
^2 ))
proof
let x;
assume
A14: x
in Z;
Z
c= (
dom ((
#Z 2)
* f)) by
A3,
A6,
XBOOLE_1: 18;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A15: Z
c= (
dom f);
then
A16: f
is_differentiable_on Z by
A9,
FDIFF_1: 23;
then
A17: f
is_differentiable_in x by
A14,
FDIFF_1: 9;
((f2
`| Z)
. x)
= (
diff (((
#Z 2)
* f),x)) by
A3,
A12,
A14,
FDIFF_1:def 7
.= ((2
* ((f
. x)
#Z (2
- 1)))
* (
diff (f,x))) by
A17,
TAYLOR_1: 3
.= ((2
* (f
. x))
* (
diff (f,x))) by
PREPOWER: 35
.= ((2
* (x
/ r))
* (
diff (f,x))) by
A4,
A14
.= ((2
* (x
/ r))
* ((f
`| Z)
. x)) by
A14,
A16,
FDIFF_1:def 7
.= ((2
* (x
/ r))
* (1
/ r)) by
A9,
A14,
A15,
FDIFF_1: 23
.= (2
* ((x
/ r)
* (1
/ r)))
.= (2
* ((x
* 1)
/ (r
* r))) by
XCMPLX_1: 76
.= ((2
* x)
/ (r
^2 ));
hence thesis;
end;
for x st x
in Z holds (((f1
+ f2)
`| Z)
. x)
= ((2
* x)
/ (r
^2 ))
proof
let x;
assume
A18: x
in Z;
then (((f1
+ f2)
`| Z)
. x)
= ((
diff (f1,x))
+ (
diff (f2,x))) by
A1,
A8,
A12,
FDIFF_1: 18
.= (((f1
`| Z)
. x)
+ (
diff (f2,x))) by
A8,
A18,
FDIFF_1:def 7
.= (((f1
`| Z)
. x)
+ ((f2
`| Z)
. x)) by
A12,
A18,
FDIFF_1:def 7
.= (
0
+ ((f2
`| Z)
. x)) by
A7,
A5,
A18,
FDIFF_1: 23
.= ((2
* x)
/ (r
^2 )) by
A13,
A18;
hence thesis;
end;
hence thesis by
A1,
A8,
A12,
FDIFF_1: 18;
end;
theorem ::
SIN_COS9:108
Th108: Z
c= (
dom ((r
/ 2)
(#) (
ln
* (f1
+ f2)))) & (for x st x
in Z holds (f1
. x)
= 1) & r
<>
0 & f2
= ((
#Z 2)
* f) & (for x st x
in Z holds (f
. x)
= (x
/ r)) implies ((r
/ 2)
(#) (
ln
* (f1
+ f2)))
is_differentiable_on Z & for x st x
in Z holds ((((r
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)
= (x
/ (r
* (1
+ ((x
/ r)
^2 ))))
proof
assume that
A1: Z
c= (
dom ((r
/ 2)
(#) (
ln
* (f1
+ f2)))) and
A2: for x st x
in Z holds (f1
. x)
= 1 and
A3: r
<>
0 and
A4: f2
= ((
#Z 2)
* f) and
A5: for x st x
in Z holds (f
. x)
= (x
/ r);
A6: Z
c= (
dom (
ln
* (f1
+ f2))) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom (f1
+ f2)) by
FUNCT_1: 11;
then
A7: Z
c= (
dom (f1
+ f2));
then
A8: (f1
+ f2)
is_differentiable_on Z by
A2,
A4,
A5,
Th107;
(
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 1;
then
A9: Z
c= (
dom f2) by
A7,
XBOOLE_1: 18;
for x st x
in Z holds (
ln
* (f1
+ f2))
is_differentiable_in x
proof
let x;
set g = (
#Z 2);
assume
A10: x
in Z;
then ((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
A7,
VALUED_1:def 1
.= (1
+ ((g
* f)
. x)) by
A2,
A4,
A10
.= (1
+ (g
. (f
. x))) by
A4,
A9,
A10,
FUNCT_1: 12
.= (1
+ (g
. (x
/ r))) by
A5,
A10
.= (1
+ ((x
/ r)
#Z (1
+ 1))) by
TAYLOR_1:def 1
.= (1
+ (((x
/ r)
#Z 1)
* ((x
/ r)
#Z 1))) by
TAYLOR_1: 1
.= (1
+ ((x
/ r)
* ((x
/ r)
#Z 1))) by
PREPOWER: 35
.= (1
+ ((x
/ r)
* (x
/ r))) by
PREPOWER: 35;
then
A11: ((f1
+ f2)
. x)
>
0 by
XREAL_1: 34,
XREAL_1: 63;
(f1
+ f2)
is_differentiable_in x by
A8,
A10,
FDIFF_1: 9;
hence thesis by
A11,
TAYLOR_1: 20;
end;
then
A12: (
ln
* (f1
+ f2))
is_differentiable_on Z by
A6,
FDIFF_1: 9;
for x st x
in Z holds ((((r
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)
= (x
/ (r
* (1
+ ((x
/ r)
^2 ))))
proof
let x;
set g = (
#Z 2);
assume
A13: x
in Z;
then
A14: (f1
+ f2)
is_differentiable_in x by
A8,
FDIFF_1: 9;
A15: ((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
A7,
A13,
VALUED_1:def 1
.= (1
+ ((g
* f)
. x)) by
A2,
A4,
A13
.= (1
+ (g
. (f
. x))) by
A4,
A9,
A13,
FUNCT_1: 12
.= (1
+ (g
. (x
/ r))) by
A5,
A13
.= (1
+ ((x
/ r)
#Z (1
+ 1))) by
TAYLOR_1:def 1
.= (1
+ (((x
/ r)
#Z 1)
* ((x
/ r)
#Z 1))) by
TAYLOR_1: 1
.= (1
+ ((x
/ r)
* ((x
/ r)
#Z 1))) by
PREPOWER: 35
.= (1
+ ((x
/ r)
* (x
/ r))) by
PREPOWER: 35;
then ((f1
+ f2)
. x)
>
0 by
XREAL_1: 34,
XREAL_1: 63;
then
A16: (
diff ((
ln
* (f1
+ f2)),x))
= ((
diff ((f1
+ f2),x))
/ ((f1
+ f2)
. x)) by
A14,
TAYLOR_1: 20
.= ((((f1
+ f2)
`| Z)
. x)
/ ((f1
+ f2)
. x)) by
A8,
A13,
FDIFF_1:def 7
.= (((2
* x)
/ (r
^2 ))
/ (1
+ ((x
/ r)
^2 ))) by
A2,
A4,
A5,
A7,
A13,
A15,
Th107;
thus ((((r
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)
= ((r
/ 2)
* (
diff ((
ln
* (f1
+ f2)),x))) by
A1,
A12,
A13,
FDIFF_1: 20
.= (((r
* x)
/ (r
^2 ))
/ (1
+ ((x
/ r)
^2 ))) by
A16
.= (((r
/ r)
* (x
/ r))
/ (1
+ ((x
/ r)
^2 ))) by
XCMPLX_1: 76
.= ((1
* (x
/ r))
/ (1
+ ((x
/ r)
^2 ))) by
A3,
XCMPLX_1: 60
.= (x
/ (r
* (1
+ ((x
/ r)
^2 )))) by
XCMPLX_1: 78;
end;
hence thesis by
A1,
A12,
FDIFF_1: 20;
end;
theorem ::
SIN_COS9:109
Z
c= (
dom (((
id Z)
(#) (
arctan
* f))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))) & r
<>
0 & (for x st x
in Z holds (f
. x)
= (x
/ r) & (f
. x)
> (
- 1) & (f
. x)
< 1) & (for x st x
in Z holds (f1
. x)
= 1) & f2
= ((
#Z 2)
* f) & (for x st x
in Z holds (f
. x)
= (x
/ r)) implies (((
id Z)
(#) (
arctan
* f))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
(#) (
arctan
* f))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (
arctan
. (x
/ r))
proof
assume that
A1: Z
c= (
dom (((
id Z)
(#) (
arctan
* f))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))) and
A2: r
<>
0 and
A3: for x st x
in Z holds (f
. x)
= (x
/ r) & (f
. x)
> (
- 1) & (f
. x)
< 1 and
A4: for x st x
in Z holds (f1
. x)
= 1 and
A5: f2
= ((
#Z 2)
* f) and
A6: for x st x
in Z holds (f
. x)
= (x
/ r);
A7: Z
c= ((
dom ((
id Z)
(#) (
arctan
* f)))
/\ (
dom ((r
/ 2)
(#) (
ln
* (f1
+ f2))))) by
A1,
VALUED_1: 12;
then
A8: Z
c= (
dom ((r
/ 2)
(#) (
ln
* (f1
+ f2)))) by
XBOOLE_1: 18;
then
A9: ((r
/ 2)
(#) (
ln
* (f1
+ f2)))
is_differentiable_on Z by
A2,
A4,
A5,
A6,
Th108;
A10: Z
c= (
dom ((
id Z)
(#) (
arctan
* f))) by
A7,
XBOOLE_1: 18;
then
A11: ((
id Z)
(#) (
arctan
* f))
is_differentiable_on Z by
A3,
Th105;
for x st x
in Z holds (((((
id Z)
(#) (
arctan
* f))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (
arctan
. (x
/ r))
proof
let x;
assume
A12: x
in Z;
hence (((((
id Z)
(#) (
arctan
* f))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= ((
diff (((
id Z)
(#) (
arctan
* f)),x))
- (
diff (((r
/ 2)
(#) (
ln
* (f1
+ f2))),x))) by
A1,
A11,
A9,
FDIFF_1: 19
.= (((((
id Z)
(#) (
arctan
* f))
`| Z)
. x)
- (
diff (((r
/ 2)
(#) (
ln
* (f1
+ f2))),x))) by
A11,
A12,
FDIFF_1:def 7
.= (((((
id Z)
(#) (
arctan
* f))
`| Z)
. x)
- ((((r
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)) by
A9,
A12,
FDIFF_1:def 7
.= (((
arctan
. (x
/ r))
+ (x
/ (r
* (1
+ ((x
/ r)
^2 )))))
- ((((r
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)) by
A3,
A10,
A12,
Th105
.= (((
arctan
. (x
/ r))
+ (x
/ (r
* (1
+ ((x
/ r)
^2 )))))
- (x
/ (r
* (1
+ ((x
/ r)
^2 ))))) by
A2,
A4,
A5,
A6,
A8,
A12,
Th108
.= (
arctan
. (x
/ r));
end;
hence thesis by
A1,
A11,
A9,
FDIFF_1: 19;
end;
theorem ::
SIN_COS9:110
Z
c= (
dom (((
id Z)
(#) (
arccot
* f))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))) & r
<>
0 & (for x st x
in Z holds (f
. x)
= (x
/ r) & (f
. x)
> (
- 1) & (f
. x)
< 1) & (for x st x
in Z holds (f1
. x)
= 1) & f2
= ((
#Z 2)
* f) & (for x st x
in Z holds (f
. x)
= (x
/ r)) implies (((
id Z)
(#) (
arccot
* f))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
(#) (
arccot
* f))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (
arccot
. (x
/ r))
proof
assume that
A1: Z
c= (
dom (((
id Z)
(#) (
arccot
* f))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))) and
A2: r
<>
0 and
A3: for x st x
in Z holds (f
. x)
= (x
/ r) & (f
. x)
> (
- 1) & (f
. x)
< 1 and
A4: for x st x
in Z holds (f1
. x)
= 1 and
A5: f2
= ((
#Z 2)
* f) and
A6: for x st x
in Z holds (f
. x)
= (x
/ r);
A7: Z
c= ((
dom ((
id Z)
(#) (
arccot
* f)))
/\ (
dom ((r
/ 2)
(#) (
ln
* (f1
+ f2))))) by
A1,
VALUED_1:def 1;
then
A8: Z
c= (
dom ((r
/ 2)
(#) (
ln
* (f1
+ f2)))) by
XBOOLE_1: 18;
then
A9: ((r
/ 2)
(#) (
ln
* (f1
+ f2)))
is_differentiable_on Z by
A2,
A4,
A5,
A6,
Th108;
A10: Z
c= (
dom ((
id Z)
(#) (
arccot
* f))) by
A7,
XBOOLE_1: 18;
then
A11: ((
id Z)
(#) (
arccot
* f))
is_differentiable_on Z by
A3,
Th106;
for x st x
in Z holds (((((
id Z)
(#) (
arccot
* f))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (
arccot
. (x
/ r))
proof
let x;
assume
A12: x
in Z;
hence (((((
id Z)
(#) (
arccot
* f))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= ((
diff (((
id Z)
(#) (
arccot
* f)),x))
+ (
diff (((r
/ 2)
(#) (
ln
* (f1
+ f2))),x))) by
A1,
A11,
A9,
FDIFF_1: 18
.= (((((
id Z)
(#) (
arccot
* f))
`| Z)
. x)
+ (
diff (((r
/ 2)
(#) (
ln
* (f1
+ f2))),x))) by
A11,
A12,
FDIFF_1:def 7
.= (((((
id Z)
(#) (
arccot
* f))
`| Z)
. x)
+ ((((r
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)) by
A9,
A12,
FDIFF_1:def 7
.= (((
arccot
. (x
/ r))
- (x
/ (r
* (1
+ ((x
/ r)
^2 )))))
+ ((((r
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)) by
A3,
A10,
A12,
Th106
.= (((
arccot
. (x
/ r))
- (x
/ (r
* (1
+ ((x
/ r)
^2 )))))
+ (x
/ (r
* (1
+ ((x
/ r)
^2 ))))) by
A2,
A4,
A5,
A6,
A8,
A12,
Th108
.= (
arccot
. (x
/ r));
end;
hence thesis by
A1,
A11,
A9,
FDIFF_1: 18;
end;
theorem ::
SIN_COS9:111
not
0
in Z & Z
c= (
dom (
arctan
* ((
id Z)
^ ))) & (for x st x
in Z holds (((
id Z)
^ )
. x)
> (
- 1) & (((
id Z)
^ )
. x)
< 1) implies (
arctan
* ((
id Z)
^ ))
is_differentiable_on Z & for x st x
in Z holds (((
arctan
* ((
id Z)
^ ))
`| Z)
. x)
= (
- (1
/ (1
+ (x
^2 ))))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom (
arctan
* ((
id Z)
^ ))) and
A3: for x st x
in Z holds (((
id Z)
^ )
. x)
> (
- 1) & (((
id Z)
^ )
. x)
< 1;
(
dom (
arctan
* (f
^ )))
c= (
dom (f
^ )) by
RELAT_1: 25;
then
A4: Z
c= (
dom (f
^ )) by
A2;
A5: (f
^ )
is_differentiable_on Z by
A1,
FDIFF_5: 4;
A6: for x st x
in Z holds (
arctan
* (f
^ ))
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then
A8: ((f
^ )
. x)
> (
- 1) by
A3;
A9: ((f
^ )
. x)
< 1 by
A3,
A7;
(f
^ )
is_differentiable_in x by
A5,
A7,
FDIFF_1: 9;
hence thesis by
A8,
A9,
Th85;
end;
then
A10: (
arctan
* (f
^ ))
is_differentiable_on Z by
A2,
FDIFF_1: 9;
for x st x
in Z holds (((
arctan
* (f
^ ))
`| Z)
. x)
= (
- (1
/ (1
+ (x
^2 ))))
proof
let x;
assume
A11: x
in Z;
then
A12: (f
^ )
is_differentiable_in x by
A5,
FDIFF_1: 9;
A13: ((f
^ )
. x)
< 1 by
A3,
A11;
A14: ((f
^ )
. x)
> (
- 1) by
A3,
A11;
(f
. x)
= x by
A11,
FUNCT_1: 18;
then x
<>
0 by
A4,
A11,
RFUNCT_1: 3;
then
A15: (x
^2 )
<>
0 ;
(((
arctan
* (f
^ ))
`| Z)
. x)
= (
diff ((
arctan
* (f
^ )),x)) by
A10,
A11,
FDIFF_1:def 7
.= ((
diff ((f
^ ),x))
/ (1
+ (((f
^ )
. x)
^2 ))) by
A12,
A14,
A13,
Th85
.= ((((f
^ )
`| Z)
. x)
/ (1
+ (((f
^ )
. x)
^2 ))) by
A5,
A11,
FDIFF_1:def 7
.= ((
- (1
/ (x
^2 )))
/ (1
+ (((f
^ )
. x)
^2 ))) by
A1,
A11,
FDIFF_5: 4
.= ((
- (1
/ (x
^2 )))
/ (1
+ (((f
. x)
" )
^2 ))) by
A4,
A11,
RFUNCT_1:def 2
.= ((
- (1
/ (x
^2 )))
/ (1
+ ((1
/ x)
^2 ))) by
A11,
FUNCT_1: 18
.= (
- ((1
/ (x
^2 ))
/ (1
+ ((1
/ x)
^2 ))))
.= (
- (1
/ ((x
^2 )
* (1
+ ((1
/ x)
^2 ))))) by
XCMPLX_1: 78
.= (
- (1
/ (((x
^2 )
* 1)
+ ((x
^2 )
* ((1
/ x)
^2 )))))
.= (
- (1
/ ((x
^2 )
+ ((x
^2 )
* (1
/ (x
* x)))))) by
XCMPLX_1: 102
.= (
- (1
/ ((x
^2 )
+ (((x
^2 )
* 1)
/ (x
^2 )))))
.= (
- (1
/ (1
+ (x
^2 )))) by
A15,
XCMPLX_1: 60;
hence thesis;
end;
hence thesis by
A2,
A6,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:112
not
0
in Z & Z
c= (
dom (
arccot
* ((
id Z)
^ ))) & (for x st x
in Z holds (((
id Z)
^ )
. x)
> (
- 1) & (((
id Z)
^ )
. x)
< 1) implies (
arccot
* ((
id Z)
^ ))
is_differentiable_on Z & for x st x
in Z holds (((
arccot
* ((
id Z)
^ ))
`| Z)
. x)
= (1
/ (1
+ (x
^2 )))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom (
arccot
* (f
^ ))) and
A3: for x st x
in Z holds ((f
^ )
. x)
> (
- 1) & ((f
^ )
. x)
< 1;
(
dom (
arccot
* (f
^ )))
c= (
dom (f
^ )) by
RELAT_1: 25;
then
A4: Z
c= (
dom (f
^ )) by
A2;
A5: (f
^ )
is_differentiable_on Z by
A1,
FDIFF_5: 4;
A6: for x st x
in Z holds (
arccot
* (f
^ ))
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then
A8: ((f
^ )
. x)
> (
- 1) by
A3;
A9: ((f
^ )
. x)
< 1 by
A3,
A7;
(f
^ )
is_differentiable_in x by
A5,
A7,
FDIFF_1: 9;
hence thesis by
A8,
A9,
Th86;
end;
then
A10: (
arccot
* (f
^ ))
is_differentiable_on Z by
A2,
FDIFF_1: 9;
for x st x
in Z holds (((
arccot
* (f
^ ))
`| Z)
. x)
= (1
/ (1
+ (x
^2 )))
proof
let x;
assume
A11: x
in Z;
then
A12: (f
^ )
is_differentiable_in x by
A5,
FDIFF_1: 9;
A13: ((f
^ )
. x)
< 1 by
A3,
A11;
A14: ((f
^ )
. x)
> (
- 1) by
A3,
A11;
(f
. x)
= x by
A11,
FUNCT_1: 18;
then x
<>
0 by
A4,
A11,
RFUNCT_1: 3;
then
A15: (x
^2 )
<>
0 ;
(((
arccot
* (f
^ ))
`| Z)
. x)
= (
diff ((
arccot
* (f
^ )),x)) by
A10,
A11,
FDIFF_1:def 7
.= (
- ((
diff ((f
^ ),x))
/ (1
+ (((f
^ )
. x)
^2 )))) by
A12,
A14,
A13,
Th86
.= (
- ((((f
^ )
`| Z)
. x)
/ (1
+ (((f
^ )
. x)
^2 )))) by
A5,
A11,
FDIFF_1:def 7
.= (
- ((
- (1
/ (x
^2 )))
/ (1
+ (((f
^ )
. x)
^2 )))) by
A1,
A11,
FDIFF_5: 4
.= (
- ((
- (1
/ (x
^2 )))
/ (1
+ (((f
. x)
" )
^2 )))) by
A4,
A11,
RFUNCT_1:def 2
.= (
- ((
- (1
/ (x
^2 )))
/ (1
+ ((1
/ x)
^2 )))) by
A11,
FUNCT_1: 18
.= ((1
/ (x
^2 ))
/ (1
+ ((1
/ x)
^2 )))
.= (1
/ ((x
^2 )
* (1
+ ((1
/ x)
^2 )))) by
XCMPLX_1: 78
.= (1
/ (((x
^2 )
* 1)
+ ((x
^2 )
* ((1
/ x)
^2 ))))
.= (1
/ ((x
^2 )
+ ((x
^2 )
* (1
/ (x
* x))))) by
XCMPLX_1: 102
.= (1
/ ((x
^2 )
+ (((x
^2 )
* 1)
/ (x
^2 ))))
.= (1
/ (1
+ (x
^2 ))) by
A15,
XCMPLX_1: 60;
hence thesis;
end;
hence thesis by
A2,
A6,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:113
Z
c= (
dom (
arctan
* f)) & f
= (f1
+ (h
(#) f2)) & (for x st x
in Z holds (f
. x)
> (
- 1) & (f
. x)
< 1) & (for x st x
in Z holds (f1
. x)
= (r
+ (s
* x))) & f2
= (
#Z 2) implies (
arctan
* (f1
+ (h
(#) f2)))
is_differentiable_on Z & for x st x
in Z holds (((
arctan
* (f1
+ (h
(#) f2)))
`| Z)
. x)
= ((s
+ ((2
* h)
* x))
/ (1
+ (((r
+ (s
* x))
+ (h
* (x
^2 )))
^2 )))
proof
assume that
A1: Z
c= (
dom (
arctan
* f)) and
A2: f
= (f1
+ (h
(#) f2)) and
A3: for x st x
in Z holds (f
. x)
> (
- 1) & (f
. x)
< 1 and
A4: for x st x
in Z holds (f1
. x)
= (r
+ (s
* x)) and
A5: f2
= (
#Z 2);
(
dom (
arctan
* f))
c= (
dom f) by
RELAT_1: 25;
then
A6: Z
c= (
dom (f1
+ (h
(#) f2))) by
A1,
A2;
then Z
c= ((
dom f1)
/\ (
dom (h
(#) f2))) by
VALUED_1:def 1;
then
A7: Z
c= (
dom (h
(#) f2)) by
XBOOLE_1: 18;
A8: (f1
+ (h
(#) f2))
is_differentiable_on Z by
A4,
A5,
A6,
FDIFF_4: 12;
A9: for x st x
in Z holds (
arctan
* (f1
+ (h
(#) f2)))
is_differentiable_in x
proof
let x;
assume
A10: x
in Z;
then
A11: (f
. x)
> (
- 1) by
A3;
A12: (f
. x)
< 1 by
A3,
A10;
f
is_differentiable_in x by
A2,
A8,
A10,
FDIFF_1: 9;
hence thesis by
A2,
A11,
A12,
Th85;
end;
then
A13: (
arctan
* (f1
+ (h
(#) f2)))
is_differentiable_on Z by
A1,
A2,
FDIFF_1: 9;
for x st x
in Z holds (((
arctan
* (f1
+ (h
(#) f2)))
`| Z)
. x)
= ((s
+ ((2
* h)
* x))
/ (1
+ (((r
+ (s
* x))
+ (h
* (x
^2 )))
^2 )))
proof
let x;
assume
A14: x
in Z;
then
A15: ((f1
+ (h
(#) f2))
. x)
= ((f1
. x)
+ ((h
(#) f2)
. x)) by
A6,
VALUED_1:def 1
.= ((f1
. x)
+ (h
* (f2
. x))) by
A7,
A14,
VALUED_1:def 5
.= ((r
+ (s
* x))
+ (h
* (f2
. x))) by
A4,
A14
.= ((r
+ (s
* x))
+ (h
* (x
#Z (1
+ 1)))) by
A5,
TAYLOR_1:def 1
.= ((r
+ (s
* x))
+ (h
* ((x
#Z 1)
* (x
#Z 1)))) by
TAYLOR_1: 1
.= ((r
+ (s
* x))
+ (h
* (x
* (x
#Z 1)))) by
PREPOWER: 35
.= ((r
+ (s
* x))
+ (h
* (x
^2 ))) by
PREPOWER: 35;
A16: f
is_differentiable_in x by
A2,
A8,
A14,
FDIFF_1: 9;
A17: (f
. x)
> (
- 1) by
A3,
A14;
A18: (f
. x)
< 1 by
A3,
A14;
(((
arctan
* (f1
+ (h
(#) f2)))
`| Z)
. x)
= (
diff ((
arctan
* f),x)) by
A2,
A13,
A14,
FDIFF_1:def 7
.= ((
diff (f,x))
/ (1
+ ((f
. x)
^2 ))) by
A16,
A17,
A18,
Th85
.= ((((f1
+ (h
(#) f2))
`| Z)
. x)
/ (1
+ ((f
. x)
^2 ))) by
A2,
A8,
A14,
FDIFF_1:def 7
.= ((s
+ ((2
* h)
* x))
/ (1
+ (((r
+ (s
* x))
+ (h
* (x
^2 )))
^2 ))) by
A2,
A4,
A5,
A6,
A14,
A15,
FDIFF_4: 12;
hence thesis;
end;
hence thesis by
A1,
A2,
A9,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:114
Z
c= (
dom (
arccot
* f)) & f
= (f1
+ (h
(#) f2)) & (for x st x
in Z holds (f
. x)
> (
- 1) & (f
. x)
< 1) & (for x st x
in Z holds (f1
. x)
= (r
+ (s
* x))) & f2
= (
#Z 2) implies (
arccot
* (f1
+ (h
(#) f2)))
is_differentiable_on Z & for x st x
in Z holds (((
arccot
* (f1
+ (h
(#) f2)))
`| Z)
. x)
= (
- ((s
+ ((2
* h)
* x))
/ (1
+ (((r
+ (s
* x))
+ (h
* (x
^2 )))
^2 ))))
proof
assume that
A1: Z
c= (
dom (
arccot
* f)) and
A2: f
= (f1
+ (h
(#) f2)) and
A3: for x st x
in Z holds (f
. x)
> (
- 1) & (f
. x)
< 1 and
A4: for x st x
in Z holds (f1
. x)
= (r
+ (s
* x)) and
A5: f2
= (
#Z 2);
(
dom (
arccot
* f))
c= (
dom f) by
RELAT_1: 25;
then
A6: Z
c= (
dom (f1
+ (h
(#) f2))) by
A1,
A2;
then Z
c= ((
dom f1)
/\ (
dom (h
(#) f2))) by
VALUED_1:def 1;
then
A7: Z
c= (
dom (h
(#) f2)) by
XBOOLE_1: 18;
A8: (f1
+ (h
(#) f2))
is_differentiable_on Z by
A4,
A5,
A6,
FDIFF_4: 12;
A9: for x st x
in Z holds (
arccot
* (f1
+ (h
(#) f2)))
is_differentiable_in x
proof
let x;
assume
A10: x
in Z;
then
A11: (f
. x)
> (
- 1) by
A3;
A12: (f
. x)
< 1 by
A3,
A10;
f
is_differentiable_in x by
A2,
A8,
A10,
FDIFF_1: 9;
hence thesis by
A2,
A11,
A12,
Th86;
end;
then
A13: (
arccot
* (f1
+ (h
(#) f2)))
is_differentiable_on Z by
A1,
A2,
FDIFF_1: 9;
for x st x
in Z holds (((
arccot
* (f1
+ (h
(#) f2)))
`| Z)
. x)
= (
- ((s
+ ((2
* h)
* x))
/ (1
+ (((r
+ (s
* x))
+ (h
* (x
^2 )))
^2 ))))
proof
let x;
assume
A14: x
in Z;
then
A15: ((f1
+ (h
(#) f2))
. x)
= ((f1
. x)
+ ((h
(#) f2)
. x)) by
A6,
VALUED_1:def 1
.= ((f1
. x)
+ (h
* (f2
. x))) by
A7,
A14,
VALUED_1:def 5
.= ((r
+ (s
* x))
+ (h
* (f2
. x))) by
A4,
A14
.= ((r
+ (s
* x))
+ (h
* (x
#Z (1
+ 1)))) by
A5,
TAYLOR_1:def 1
.= ((r
+ (s
* x))
+ (h
* ((x
#Z 1)
* (x
#Z 1)))) by
TAYLOR_1: 1
.= ((r
+ (s
* x))
+ (h
* (x
* (x
#Z 1)))) by
PREPOWER: 35
.= ((r
+ (s
* x))
+ (h
* (x
^2 ))) by
PREPOWER: 35;
A16: f
is_differentiable_in x by
A2,
A8,
A14,
FDIFF_1: 9;
A17: (f
. x)
> (
- 1) by
A3,
A14;
A18: (f
. x)
< 1 by
A3,
A14;
(((
arccot
* (f1
+ (h
(#) f2)))
`| Z)
. x)
= (
diff ((
arccot
* f),x)) by
A2,
A13,
A14,
FDIFF_1:def 7
.= (
- ((
diff (f,x))
/ (1
+ ((f
. x)
^2 )))) by
A16,
A17,
A18,
Th86
.= (
- ((((f1
+ (h
(#) f2))
`| Z)
. x)
/ (1
+ ((f
. x)
^2 )))) by
A2,
A8,
A14,
FDIFF_1:def 7
.= (
- ((s
+ ((2
* h)
* x))
/ (1
+ (((r
+ (s
* x))
+ (h
* (x
^2 )))
^2 )))) by
A2,
A4,
A5,
A6,
A14,
A15,
FDIFF_4: 12;
hence thesis;
end;
hence thesis by
A1,
A2,
A9,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:115
Z
c= (
dom (
arctan
*
exp_R )) & (for x st x
in Z holds (
exp_R
. x)
< 1) implies (
arctan
*
exp_R )
is_differentiable_on Z & for x st x
in Z holds (((
arctan
*
exp_R )
`| Z)
. x)
= ((
exp_R
. x)
/ (1
+ ((
exp_R
. x)
^2 )))
proof
assume that
A1: Z
c= (
dom (
arctan
*
exp_R )) and
A2: for x st x
in Z holds (
exp_R
. x)
< 1;
A3: for x st x
in Z holds (
arctan
*
exp_R )
is_differentiable_in x
proof
let x;
A4:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume x
in Z;
then
A5: (
exp_R
. x)
< 1 by
A2;
((
exp_R
. x)
+
0 )
> (
0
+ (
- 1)) by
SIN_COS: 54;
hence thesis by
A5,
A4,
Th85;
end;
then
A6: (
arctan
*
exp_R )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arctan
*
exp_R )
`| Z)
. x)
= ((
exp_R
. x)
/ (1
+ ((
exp_R
. x)
^2 )))
proof
let x;
A7: ((
exp_R
. x)
+
0 )
> (
0
+ (
- 1)) by
SIN_COS: 54;
A8:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A9: x
in Z;
then
A10: (
exp_R
. x)
< 1 by
A2;
(((
arctan
*
exp_R )
`| Z)
. x)
= (
diff ((
arctan
*
exp_R ),x)) by
A6,
A9,
FDIFF_1:def 7
.= ((
diff (
exp_R ,x))
/ (1
+ ((
exp_R
. x)
^2 ))) by
A7,
A10,
A8,
Th85
.= ((
exp_R
. x)
/ (1
+ ((
exp_R
. x)
^2 ))) by
SIN_COS: 65;
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:116
Z
c= (
dom (
arccot
*
exp_R )) & (for x st x
in Z holds (
exp_R
. x)
< 1) implies (
arccot
*
exp_R )
is_differentiable_on Z & for x st x
in Z holds (((
arccot
*
exp_R )
`| Z)
. x)
= (
- ((
exp_R
. x)
/ (1
+ ((
exp_R
. x)
^2 ))))
proof
assume that
A1: Z
c= (
dom (
arccot
*
exp_R )) and
A2: for x st x
in Z holds (
exp_R
. x)
< 1;
A3: for x st x
in Z holds (
arccot
*
exp_R )
is_differentiable_in x
proof
let x;
A4:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume x
in Z;
then
A5: (
exp_R
. x)
< 1 by
A2;
((
exp_R
. x)
+
0 )
> (
0
+ (
- 1)) by
SIN_COS: 54;
hence thesis by
A5,
A4,
Th86;
end;
then
A6: (
arccot
*
exp_R )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
arccot
*
exp_R )
`| Z)
. x)
= (
- ((
exp_R
. x)
/ (1
+ ((
exp_R
. x)
^2 ))))
proof
let x;
A7: ((
exp_R
. x)
+
0 )
> (
0
+ (
- 1)) by
SIN_COS: 54;
A8:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A9: x
in Z;
then
A10: (
exp_R
. x)
< 1 by
A2;
(((
arccot
*
exp_R )
`| Z)
. x)
= (
diff ((
arccot
*
exp_R ),x)) by
A6,
A9,
FDIFF_1:def 7
.= (
- ((
diff (
exp_R ,x))
/ (1
+ ((
exp_R
. x)
^2 )))) by
A7,
A10,
A8,
Th86
.= (
- ((
exp_R
. x)
/ (1
+ ((
exp_R
. x)
^2 )))) by
SIN_COS: 65;
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:117
Z
c= (
dom (
arctan
*
ln )) & (for x st x
in Z holds (
ln
. x)
> (
- 1) & (
ln
. x)
< 1) implies (
arctan
*
ln )
is_differentiable_on Z & for x st x
in Z holds (((
arctan
*
ln )
`| Z)
. x)
= (1
/ (x
* (1
+ ((
ln
. x)
^2 ))))
proof
A1: (
right_open_halfline
0 )
= { g where g be
Real :
0
< g } by
XXREAL_1: 230;
assume that
A2: Z
c= (
dom (
arctan
*
ln )) and
A3: for x st x
in Z holds (
ln
. x)
> (
- 1) & (
ln
. x)
< 1;
(
dom (
arctan
*
ln ))
c= (
dom
ln ) by
RELAT_1: 25;
then
A4: Z
c= (
dom
ln ) by
A2;
A5: for x st x
in Z holds x
>
0
proof
let x;
assume x
in Z;
then x
in (
right_open_halfline
0 ) by
A4,
TAYLOR_1: 18;
then ex g be
Real st x
= g &
0
< g by
A1;
hence thesis;
end;
A6: for x st x
in Z holds (
arctan
*
ln )
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then
A8: (
ln
. x)
> (
- 1) by
A3;
A9: (
ln
. x)
< 1 by
A3,
A7;
ln
is_differentiable_in x by
A5,
A7,
TAYLOR_1: 18;
hence thesis by
A8,
A9,
Th85;
end;
then
A10: (
arctan
*
ln )
is_differentiable_on Z by
A2,
FDIFF_1: 9;
for x st x
in Z holds (((
arctan
*
ln )
`| Z)
. x)
= (1
/ (x
* (1
+ ((
ln
. x)
^2 ))))
proof
let x;
assume
A11: x
in Z;
then
A12:
ln
is_differentiable_in x by
A5,
TAYLOR_1: 18;
A13: (
ln
. x)
< 1 by
A3,
A11;
A14: (
ln
. x)
> (
- 1) by
A3,
A11;
x
>
0 by
A5,
A11;
then
A15: x
in (
right_open_halfline
0 ) by
A1;
(((
arctan
*
ln )
`| Z)
. x)
= (
diff ((
arctan
*
ln ),x)) by
A10,
A11,
FDIFF_1:def 7
.= ((
diff (
ln ,x))
/ (1
+ ((
ln
. x)
^2 ))) by
A12,
A14,
A13,
Th85
.= ((1
/ x)
/ (1
+ ((
ln
. x)
^2 ))) by
A15,
TAYLOR_1: 18
.= (1
/ (x
* (1
+ ((
ln
. x)
^2 )))) by
XCMPLX_1: 78;
hence thesis;
end;
hence thesis by
A2,
A6,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:118
Z
c= (
dom (
arccot
*
ln )) & (for x st x
in Z holds (
ln
. x)
> (
- 1) & (
ln
. x)
< 1) implies (
arccot
*
ln )
is_differentiable_on Z & for x st x
in Z holds (((
arccot
*
ln )
`| Z)
. x)
= (
- (1
/ (x
* (1
+ ((
ln
. x)
^2 )))))
proof
A1: (
right_open_halfline
0 )
= { g where g be
Real :
0
< g } by
XXREAL_1: 230;
assume that
A2: Z
c= (
dom (
arccot
*
ln )) and
A3: for x st x
in Z holds (
ln
. x)
> (
- 1) & (
ln
. x)
< 1;
(
dom (
arccot
*
ln ))
c= (
dom
ln ) by
RELAT_1: 25;
then
A4: Z
c= (
dom
ln ) by
A2;
A5: for x st x
in Z holds x
>
0
proof
let x;
assume x
in Z;
then x
in (
right_open_halfline
0 ) by
A4,
TAYLOR_1: 18;
then ex g be
Real st x
= g &
0
< g by
A1;
hence thesis;
end;
A6: for x st x
in Z holds (
arccot
*
ln )
is_differentiable_in x
proof
let x;
assume
A7: x
in Z;
then
A8: (
ln
. x)
> (
- 1) by
A3;
A9: (
ln
. x)
< 1 by
A3,
A7;
ln
is_differentiable_in x by
A5,
A7,
TAYLOR_1: 18;
hence thesis by
A8,
A9,
Th86;
end;
then
A10: (
arccot
*
ln )
is_differentiable_on Z by
A2,
FDIFF_1: 9;
for x st x
in Z holds (((
arccot
*
ln )
`| Z)
. x)
= (
- (1
/ (x
* (1
+ ((
ln
. x)
^2 )))))
proof
let x;
assume
A11: x
in Z;
then
A12:
ln
is_differentiable_in x by
A5,
TAYLOR_1: 18;
A13: (
ln
. x)
< 1 by
A3,
A11;
A14: (
ln
. x)
> (
- 1) by
A3,
A11;
x
>
0 by
A5,
A11;
then
A15: x
in (
right_open_halfline
0 ) by
A1;
(((
arccot
*
ln )
`| Z)
. x)
= (
diff ((
arccot
*
ln ),x)) by
A10,
A11,
FDIFF_1:def 7
.= (
- ((
diff (
ln ,x))
/ (1
+ ((
ln
. x)
^2 )))) by
A12,
A14,
A13,
Th86
.= (
- ((1
/ x)
/ (1
+ ((
ln
. x)
^2 )))) by
A15,
TAYLOR_1: 18
.= (
- (1
/ (x
* (1
+ ((
ln
. x)
^2 ))))) by
XCMPLX_1: 78;
hence thesis;
end;
hence thesis by
A2,
A6,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:119
Z
c= (
dom (
exp_R
*
arctan )) & Z
c=
].(
- 1), 1.[ implies (
exp_R
*
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
*
arctan )
`| Z)
. x)
= ((
exp_R
. (
arctan
. x))
/ (1
+ (x
^2 )))
proof
assume that
A1: Z
c= (
dom (
exp_R
*
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
exp_R
*
arctan )
is_differentiable_in x
proof
let x;
assume
A4: x
in Z;
arctan
is_differentiable_on Z by
A2,
Th81;
then
A5:
arctan
is_differentiable_in x by
A4,
FDIFF_1: 9;
exp_R
is_differentiable_in (
arctan
. x) by
SIN_COS: 65;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
exp_R
*
arctan )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
*
arctan )
`| Z)
. x)
= ((
exp_R
. (
arctan
. x))
/ (1
+ (x
^2 )))
proof
let x;
assume
A7: x
in Z;
A8:
exp_R
is_differentiable_in (
arctan
. x) by
SIN_COS: 65;
A9:
arctan
is_differentiable_on Z by
A2,
Th81;
then
arctan
is_differentiable_in x by
A7,
FDIFF_1: 9;
then (
diff ((
exp_R
*
arctan ),x))
= ((
diff (
exp_R ,(
arctan
. x)))
* (
diff (
arctan ,x))) by
A8,
FDIFF_2: 13
.= ((
diff (
exp_R ,(
arctan
. x)))
* ((
arctan
`| Z)
. x)) by
A7,
A9,
FDIFF_1:def 7
.= ((
diff (
exp_R ,(
arctan
. x)))
* (1
/ (1
+ (x
^2 )))) by
A2,
A7,
Th81
.= ((
exp_R
. (
arctan
. x))
/ (1
+ (x
^2 ))) by
SIN_COS: 65;
hence thesis by
A6,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:120
Z
c= (
dom (
exp_R
*
arccot )) & Z
c=
].(
- 1), 1.[ implies (
exp_R
*
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
*
arccot )
`| Z)
. x)
= (
- ((
exp_R
. (
arccot
. x))
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
exp_R
*
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds (
exp_R
*
arccot )
is_differentiable_in x
proof
let x;
assume
A4: x
in Z;
arccot
is_differentiable_on Z by
A2,
Th82;
then
A5:
arccot
is_differentiable_in x by
A4,
FDIFF_1: 9;
exp_R
is_differentiable_in (
arccot
. x) by
SIN_COS: 65;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
exp_R
*
arccot )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
*
arccot )
`| Z)
. x)
= (
- ((
exp_R
. (
arccot
. x))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A7: x
in Z;
A8:
exp_R
is_differentiable_in (
arccot
. x) by
SIN_COS: 65;
A9:
arccot
is_differentiable_on Z by
A2,
Th82;
then
arccot
is_differentiable_in x by
A7,
FDIFF_1: 9;
then (
diff ((
exp_R
*
arccot ),x))
= ((
diff (
exp_R ,(
arccot
. x)))
* (
diff (
arccot ,x))) by
A8,
FDIFF_2: 13
.= ((
diff (
exp_R ,(
arccot
. x)))
* ((
arccot
`| Z)
. x)) by
A7,
A9,
FDIFF_1:def 7
.= ((
diff (
exp_R ,(
arccot
. x)))
* (
- (1
/ (1
+ (x
^2 ))))) by
A2,
A7,
Th82
.= (
- ((
diff (
exp_R ,(
arccot
. x)))
* (1
/ (1
+ (x
^2 )))))
.= (
- ((
exp_R
. (
arccot
. x))
/ (1
+ (x
^2 )))) by
SIN_COS: 65;
hence thesis by
A6,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
SIN_COS9:121
Z
c= (
dom (
arctan
- (
id Z))) & Z
c=
].(
- 1), 1.[ implies (
arctan
- (
id Z))
is_differentiable_on Z & for x st x
in Z holds (((
arctan
- (
id Z))
`| Z)
. x)
= (
- ((x
^2 )
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom (
arctan
- (
id Z))) and
A2: Z
c=
].(
- 1), 1.[;
A3: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
Z
c= ((
dom
arctan )
/\ (
dom (
id Z))) by
A1,
VALUED_1: 12;
then
A4: Z
c= (
dom (
id Z)) by
XBOOLE_1: 18;
then
A5: (
id Z)
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6:
arctan
is_differentiable_on Z by
A2,
Th81;
for x st x
in Z holds (((
arctan
- (
id Z))
`| Z)
. x)
= (
- ((x
^2 )
/ (1
+ (x
^2 ))))
proof
let x;
A7: (1
+ (x
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
assume
A8: x
in Z;
then (((
arctan
- (
id Z))
`| Z)
. x)
= ((
diff (
arctan ,x))
- (
diff ((
id Z),x))) by
A1,
A5,
A6,
FDIFF_1: 19
.= (((
arctan
`| Z)
. x)
- (
diff ((
id Z),x))) by
A6,
A8,
FDIFF_1:def 7
.= ((1
/ (1
+ (x
^2 )))
- (
diff ((
id Z),x))) by
A2,
A8,
Th81
.= ((1
/ (1
+ (x
^2 )))
- (((
id Z)
`| Z)
. x)) by
A5,
A8,
FDIFF_1:def 7
.= ((1
/ (1
+ (x
^2 )))
- 1) by
A4,
A3,
A8,
FDIFF_1: 23
.= ((1
/ (1
+ (x
^2 )))
- ((1
+ (x
^2 ))
/ (1
+ (x
^2 )))) by
A7,
XCMPLX_1: 60
.= (
- ((x
^2 )
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A5,
A6,
FDIFF_1: 19;
end;
theorem ::
SIN_COS9:122
Z
c= (
dom ((
-
arccot )
- (
id Z))) & Z
c=
].(
- 1), 1.[ implies ((
-
arccot )
- (
id Z))
is_differentiable_on Z & for x st x
in Z holds ((((
-
arccot )
- (
id Z))
`| Z)
. x)
= (
- ((x
^2 )
/ (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom ((
-
arccot )
- (
id Z))) and
A2: Z
c=
].(
- 1), 1.[;
A3:
arccot
is_differentiable_on Z by
A2,
Th82;
A4: Z
c= ((
dom (
-
arccot ))
/\ (
dom (
id Z))) by
A1,
VALUED_1: 12;
then
A5: Z
c= (
dom (
id Z)) by
XBOOLE_1: 18;
A6: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A7: (
id Z)
is_differentiable_on Z by
A5,
FDIFF_1: 23;
A8: Z
c= (
dom ((
- 1)
(#)
arccot )) by
A4,
XBOOLE_1: 18;
then
A9: (
-
arccot )
is_differentiable_on Z by
A3,
FDIFF_1: 20;
for x st x
in Z holds ((((
-
arccot )
- (
id Z))
`| Z)
. x)
= (
- ((x
^2 )
/ (1
+ (x
^2 ))))
proof
let x;
A10: (1
+ (x
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
assume
A11: x
in Z;
then ((((
-
arccot )
- (
id Z))
`| Z)
. x)
= ((
diff ((
-
arccot ),x))
- (
diff ((
id Z),x))) by
A1,
A7,
A9,
FDIFF_1: 19
.= ((((
-
arccot )
`| Z)
. x)
- (
diff ((
id Z),x))) by
A9,
A11,
FDIFF_1:def 7
.= (((
- 1)
* (
diff (
arccot ,x)))
- (
diff ((
id Z),x))) by
A8,
A3,
A11,
FDIFF_1: 20
.= (((
- 1)
* ((
arccot
`| Z)
. x))
- (
diff ((
id Z),x))) by
A3,
A11,
FDIFF_1:def 7
.= (((
- 1)
* (
- (1
/ (1
+ (x
^2 )))))
- (
diff ((
id Z),x))) by
A2,
A11,
Th82
.= ((1
/ (1
+ (x
^2 )))
- (((
id Z)
`| Z)
. x)) by
A7,
A11,
FDIFF_1:def 7
.= ((1
/ (1
+ (x
^2 )))
- 1) by
A5,
A6,
A11,
FDIFF_1: 23
.= ((1
/ (1
+ (x
^2 )))
- ((1
+ (x
^2 ))
/ (1
+ (x
^2 )))) by
A10,
XCMPLX_1: 60
.= (
- ((x
^2 )
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A7,
A9,
FDIFF_1: 19;
end;
theorem ::
SIN_COS9:123
Z
c=
].(
- 1), 1.[ implies (
exp_R
(#)
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#)
arctan )
`| Z)
. x)
= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
. x)
/ (1
+ (x
^2 ))))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
then
A2:
arctan
is_differentiable_on Z by
Th81;
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arctan ) by
Th23;
then Z
c= (
dom
arctan ) by
A1;
then Z
c= ((
dom
exp_R )
/\ (
dom
arctan )) by
SIN_COS: 47,
XBOOLE_1: 19;
then
A3: Z
c= (
dom (
exp_R
(#)
arctan )) by
VALUED_1:def 4;
for x st x
in Z holds
exp_R
is_differentiable_in x by
SIN_COS: 65;
then
A4:
exp_R
is_differentiable_on Z by
FDIFF_1: 9,
SIN_COS: 47;
for x st x
in Z holds (((
exp_R
(#)
arctan )
`| Z)
. x)
= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A5: x
in Z;
then (((
exp_R
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff (
arctan ,x)))) by
A3,
A4,
A2,
FDIFF_1: 21
.= (((
arctan
. x)
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
diff (
arctan ,x)))) by
SIN_COS: 65
.= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
. x)
* ((
arctan
`| Z)
. x))) by
A2,
A5,
FDIFF_1:def 7
.= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
. x)
* (1
/ (1
+ (x
^2 ))))) by
A1,
A5,
Th81
.= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A3,
A4,
A2,
FDIFF_1: 21;
end;
theorem ::
SIN_COS9:124
Z
c=
].(
- 1), 1.[ implies (
exp_R
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
(#)
arccot )
`| Z)
. x)
= (((
exp_R
. x)
* (
arccot
. x))
- ((
exp_R
. x)
/ (1
+ (x
^2 ))))
proof
assume
A1: Z
c=
].(
- 1), 1.[;
then
A2:
arccot
is_differentiable_on Z by
Th82;
].(
- 1), 1.[
c=
[.(
- 1), 1.] by
XXREAL_1: 25;
then
].(
- 1), 1.[
c= (
dom
arccot ) by
Th24;
then Z
c= (
dom
arccot ) by
A1;
then Z
c= ((
dom
exp_R )
/\ (
dom
arccot )) by
SIN_COS: 47,
XBOOLE_1: 19;
then
A3: Z
c= (
dom (
exp_R
(#)
arccot )) by
VALUED_1:def 4;
for x st x
in Z holds
exp_R
is_differentiable_in x by
SIN_COS: 65;
then
A4:
exp_R
is_differentiable_on Z by
FDIFF_1: 9,
SIN_COS: 47;
for x st x
in Z holds (((
exp_R
(#)
arccot )
`| Z)
. x)
= (((
exp_R
. x)
* (
arccot
. x))
- ((
exp_R
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A5: x
in Z;
then (((
exp_R
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
* (
diff (
exp_R ,x)))
+ ((
exp_R
. x)
* (
diff (
arccot ,x)))) by
A3,
A4,
A2,
FDIFF_1: 21
.= (((
arccot
. x)
* (
exp_R
. x))
+ ((
exp_R
. x)
* (
diff (
arccot ,x)))) by
SIN_COS: 65
.= (((
exp_R
. x)
* (
arccot
. x))
+ ((
exp_R
. x)
* ((
arccot
`| Z)
. x))) by
A2,
A5,
FDIFF_1:def 7
.= (((
exp_R
. x)
* (
arccot
. x))
+ ((
exp_R
. x)
* (
- (1
/ (1
+ (x
^2 )))))) by
A1,
A5,
Th82
.= (((
exp_R
. x)
* (
arccot
. x))
- ((
exp_R
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A3,
A4,
A2,
FDIFF_1: 21;
end;
theorem ::
SIN_COS9:125
Z
c= (
dom (((1
/ r)
(#) (
arctan
* f))
- (
id Z))) & (for x st x
in Z holds (f
. x)
= (r
* x) & r
<>
0 & (f
. x)
> (
- 1) & (f
. x)
< 1) implies (((1
/ r)
(#) (
arctan
* f))
- (
id Z))
is_differentiable_on Z & for x st x
in Z holds (((((1
/ r)
(#) (
arctan
* f))
- (
id Z))
`| Z)
. x)
= (
- (((r
* x)
^2 )
/ (1
+ ((r
* x)
^2 ))))
proof
assume that
A1: Z
c= (
dom (((1
/ r)
(#) (
arctan
* f))
- (
id Z))) and
A2: for x st x
in Z holds (f
. x)
= (r
* x) & r
<>
0 & (f
. x)
> (
- 1) & (f
. x)
< 1;
A3: for x st x
in Z holds (f
. x)
= ((r
* x)
+
0 ) & (f
. x)
> (
- 1) & (f
. x)
< 1 by
A2;
set g = ((1
/ r)
(#) (
arctan
* f));
A4: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A5: Z
c= ((
dom ((1
/ r)
(#) (
arctan
* f)))
/\ (
dom (
id Z))) by
A1,
VALUED_1: 12;
then
A6: Z
c= (
dom ((1
/ r)
(#) (
arctan
* f))) by
XBOOLE_1: 18;
A7: Z
c= (
dom (
id Z)) by
A5,
XBOOLE_1: 18;
then
A8: (
id Z)
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A9: Z
c= (
dom (
arctan
* f)) by
A6,
VALUED_1:def 5;
then
A10: (
arctan
* f)
is_differentiable_on Z by
A3,
Th87;
then
A11: ((1
/ r)
(#) (
arctan
* f))
is_differentiable_on Z by
A6,
FDIFF_1: 20;
for x st x
in Z holds (((((1
/ r)
(#) (
arctan
* f))
- (
id Z))
`| Z)
. x)
= (
- (((r
* x)
^2 )
/ (1
+ ((r
* x)
^2 ))))
proof
let x;
A12: (1
+ ((r
* x)
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
assume
A13: x
in Z;
then
A14: r
<>
0 by
A2;
(((g
- (
id Z))
`| Z)
. x)
= ((
diff (g,x))
- (
diff ((
id Z),x))) by
A1,
A11,
A8,
A13,
FDIFF_1: 19
.= (((g
`| Z)
. x)
- (
diff ((
id Z),x))) by
A11,
A13,
FDIFF_1:def 7
.= (((1
/ r)
* (
diff ((
arctan
* f),x)))
- (
diff ((
id Z),x))) by
A6,
A10,
A13,
FDIFF_1: 20
.= (((1
/ r)
* (((
arctan
* f)
`| Z)
. x))
- (
diff ((
id Z),x))) by
A10,
A13,
FDIFF_1:def 7
.= (((1
/ r)
* (((
arctan
* f)
`| Z)
. x))
- (((
id Z)
`| Z)
. x)) by
A8,
A13,
FDIFF_1:def 7
.= (((1
/ r)
* (r
/ (1
+ (((r
* x)
+
0 )
^2 ))))
- (((
id Z)
`| Z)
. x)) by
A3,
A9,
A13,
Th87
.= (((1
/ r)
* (r
/ (1
+ ((r
* x)
^2 ))))
- 1) by
A7,
A4,
A13,
FDIFF_1: 23
.= (((1
* r)
/ (r
* (1
+ ((r
* x)
^2 ))))
- 1) by
XCMPLX_1: 76
.= ((1
/ (1
+ ((r
* x)
^2 )))
- 1) by
A14,
XCMPLX_1: 91
.= ((1
/ (1
+ ((r
* x)
^2 )))
- ((1
+ ((r
* x)
^2 ))
/ (1
+ ((r
* x)
^2 )))) by
A12,
XCMPLX_1: 60
.= (
- (((r
* x)
^2 )
/ (1
+ ((r
* x)
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A11,
A8,
FDIFF_1: 19;
end;
theorem ::
SIN_COS9:126
Z
c= (
dom (((
- (1
/ r))
(#) (
arccot
* f))
- (
id Z))) & (for x st x
in Z holds (f
. x)
= (r
* x) & r
<>
0 & (f
. x)
> (
- 1) & (f
. x)
< 1) implies (((
- (1
/ r))
(#) (
arccot
* f))
- (
id Z))
is_differentiable_on Z & for x st x
in Z holds (((((
- (1
/ r))
(#) (
arccot
* f))
- (
id Z))
`| Z)
. x)
= (
- (((r
* x)
^2 )
/ (1
+ ((r
* x)
^2 ))))
proof
assume that
A1: Z
c= (
dom (((
- (1
/ r))
(#) (
arccot
* f))
- (
id Z))) and
A2: for x st x
in Z holds (f
. x)
= (r
* x) & r
<>
0 & (f
. x)
> (
- 1) & (f
. x)
< 1;
A3: for x st x
in Z holds (f
. x)
= ((r
* x)
+
0 ) & (f
. x)
> (
- 1) & (f
. x)
< 1 by
A2;
set g = ((
- (1
/ r))
(#) (
arccot
* f));
A4: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A5: Z
c= ((
dom ((
- (1
/ r))
(#) (
arccot
* f)))
/\ (
dom (
id Z))) by
A1,
VALUED_1: 12;
then
A6: Z
c= (
dom ((
- (1
/ r))
(#) (
arccot
* f))) by
XBOOLE_1: 18;
A7: Z
c= (
dom (
id Z)) by
A5,
XBOOLE_1: 18;
then
A8: (
id Z)
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A9: Z
c= (
dom (
arccot
* f)) by
A6,
VALUED_1:def 5;
then
A10: (
arccot
* f)
is_differentiable_on Z by
A3,
Th88;
then
A11: ((
- (1
/ r))
(#) (
arccot
* f))
is_differentiable_on Z by
A6,
FDIFF_1: 20;
for x st x
in Z holds (((((
- (1
/ r))
(#) (
arccot
* f))
- (
id Z))
`| Z)
. x)
= (
- (((r
* x)
^2 )
/ (1
+ ((r
* x)
^2 ))))
proof
let x;
A12: (1
+ ((r
* x)
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
assume
A13: x
in Z;
then
A14: r
<>
0 by
A2;
(((g
- (
id Z))
`| Z)
. x)
= ((
diff (g,x))
- (
diff ((
id Z),x))) by
A1,
A11,
A8,
A13,
FDIFF_1: 19
.= (((g
`| Z)
. x)
- (
diff ((
id Z),x))) by
A11,
A13,
FDIFF_1:def 7
.= (((
- (1
/ r))
* (
diff ((
arccot
* f),x)))
- (
diff ((
id Z),x))) by
A6,
A10,
A13,
FDIFF_1: 20
.= (((
- (1
/ r))
* (((
arccot
* f)
`| Z)
. x))
- (
diff ((
id Z),x))) by
A10,
A13,
FDIFF_1:def 7
.= (((
- (1
/ r))
* (((
arccot
* f)
`| Z)
. x))
- (((
id Z)
`| Z)
. x)) by
A8,
A13,
FDIFF_1:def 7
.= (((
- (1
/ r))
* (
- (r
/ (1
+ (((r
* x)
+
0 )
^2 )))))
- (((
id Z)
`| Z)
. x)) by
A3,
A9,
A13,
Th88
.= ((((
- 1)
/ r)
* ((
- r)
/ (1
+ ((r
* x)
^2 ))))
- 1) by
A7,
A4,
A13,
FDIFF_1: 23
.= ((((
- 1)
* (
- r))
/ (r
* (1
+ ((r
* x)
^2 ))))
- 1) by
XCMPLX_1: 76
.= (((1
* r)
/ (r
* (1
+ ((r
* x)
^2 ))))
- 1)
.= ((1
/ (1
+ ((r
* x)
^2 )))
- 1) by
A14,
XCMPLX_1: 91
.= ((1
/ (1
+ ((r
* x)
^2 )))
- ((1
+ ((r
* x)
^2 ))
/ (1
+ ((r
* x)
^2 )))) by
A12,
XCMPLX_1: 60
.= (
- (((r
* x)
^2 )
/ (1
+ ((r
* x)
^2 ))));
hence thesis;
end;
hence thesis by
A1,
A11,
A8,
FDIFF_1: 19;
end;
theorem ::
SIN_COS9:127
Z
c= (
dom (
ln
(#)
arctan )) & Z
c=
].(
- 1), 1.[ implies (
ln
(#)
arctan )
is_differentiable_on Z & for x st x
in Z holds (((
ln
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
/ x)
+ ((
ln
. x)
/ (1
+ (x
^2 ))))
proof
A1: (
right_open_halfline
0 )
= { g where g be
Real :
0
< g } by
XXREAL_1: 230;
assume that
A2: Z
c= (
dom (
ln
(#)
arctan )) and
A3: Z
c=
].(
- 1), 1.[;
A4:
arctan
is_differentiable_on Z by
A3,
Th81;
Z
c= ((
dom
ln )
/\ (
dom
arctan )) by
A2,
VALUED_1:def 4;
then
A5: Z
c= (
dom
ln ) by
XBOOLE_1: 18;
A6: for x st x
in Z holds x
>
0
proof
let x;
assume x
in Z;
then x
in (
right_open_halfline
0 ) by
A5,
TAYLOR_1: 18;
then ex g be
Real st x
= g &
0
< g by
A1;
hence thesis;
end;
then for x st x
in Z holds
ln
is_differentiable_in x by
TAYLOR_1: 18;
then
A7:
ln
is_differentiable_on Z by
A5,
FDIFF_1: 9;
A8: for x st x
in Z holds (
diff (
ln ,x))
= (1
/ x)
proof
let x;
assume x
in Z;
then x
>
0 by
A6;
then x
in (
right_open_halfline
0 ) by
A1;
hence thesis by
TAYLOR_1: 18;
end;
for x st x
in Z holds (((
ln
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
/ x)
+ ((
ln
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A9: x
in Z;
then (((
ln
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
* (
diff (
ln ,x)))
+ ((
ln
. x)
* (
diff (
arctan ,x)))) by
A2,
A7,
A4,
FDIFF_1: 21
.= (((
arctan
. x)
* (1
/ x))
+ ((
ln
. x)
* (
diff (
arctan ,x)))) by
A8,
A9
.= (((
arctan
. x)
* (1
/ x))
+ ((
ln
. x)
* ((
arctan
`| Z)
. x))) by
A4,
A9,
FDIFF_1:def 7
.= ((((
arctan
. x)
* 1)
/ x)
+ ((
ln
. x)
* (1
/ (1
+ (x
^2 ))))) by
A3,
A9,
Th81
.= (((
arctan
. x)
/ x)
+ ((
ln
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A2,
A7,
A4,
FDIFF_1: 21;
end;
theorem ::
SIN_COS9:128
Z
c= (
dom (
ln
(#)
arccot )) & Z
c=
].(
- 1), 1.[ implies (
ln
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds (((
ln
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
/ x)
- ((
ln
. x)
/ (1
+ (x
^2 ))))
proof
A1: (
right_open_halfline
0 )
= { g where g be
Real :
0
< g } by
XXREAL_1: 230;
assume that
A2: Z
c= (
dom (
ln
(#)
arccot )) and
A3: Z
c=
].(
- 1), 1.[;
A4:
arccot
is_differentiable_on Z by
A3,
Th82;
Z
c= ((
dom
ln )
/\ (
dom
arccot )) by
A2,
VALUED_1:def 4;
then
A5: Z
c= (
dom
ln ) by
XBOOLE_1: 18;
A6: for x st x
in Z holds x
>
0
proof
let x;
assume x
in Z;
then x
in (
right_open_halfline
0 ) by
A5,
TAYLOR_1: 18;
then ex g be
Real st x
= g &
0
< g by
A1;
hence thesis;
end;
then for x st x
in Z holds
ln
is_differentiable_in x by
TAYLOR_1: 18;
then
A7:
ln
is_differentiable_on Z by
A5,
FDIFF_1: 9;
A8: for x st x
in Z holds (
diff (
ln ,x))
= (1
/ x)
proof
let x;
assume x
in Z;
then x
>
0 by
A6;
then x
in (
right_open_halfline
0 ) by
A1;
hence thesis by
TAYLOR_1: 18;
end;
for x st x
in Z holds (((
ln
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
/ x)
- ((
ln
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A9: x
in Z;
then (((
ln
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
* (
diff (
ln ,x)))
+ ((
ln
. x)
* (
diff (
arccot ,x)))) by
A2,
A7,
A4,
FDIFF_1: 21
.= (((
arccot
. x)
* (1
/ x))
+ ((
ln
. x)
* (
diff (
arccot ,x)))) by
A8,
A9
.= (((
arccot
. x)
* (1
/ x))
+ ((
ln
. x)
* ((
arccot
`| Z)
. x))) by
A4,
A9,
FDIFF_1:def 7
.= (((
arccot
. x)
* (1
/ x))
+ ((
ln
. x)
* (
- (1
/ (1
+ (x
^2 )))))) by
A3,
A9,
Th82
.= (((
arccot
. x)
/ x)
- ((
ln
. x)
/ (1
+ (x
^2 ))));
hence thesis;
end;
hence thesis by
A2,
A7,
A4,
FDIFF_1: 21;
end;
theorem ::
SIN_COS9:129
not
0
in Z & Z
c= (
dom (((
id Z)
^ )
(#)
arctan )) & Z
c=
].(
- 1), 1.[ implies (((
id Z)
^ )
(#)
arctan )
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
^ )
(#)
arctan )
`| Z)
. x)
= ((
- ((
arctan
. x)
/ (x
^2 )))
+ (1
/ (x
* (1
+ (x
^2 )))))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom ((f
^ )
(#)
arctan )) and
A3: Z
c=
].(
- 1), 1.[;
A4: (f
^ )
is_differentiable_on Z by
A1,
FDIFF_5: 4;
A5:
arctan
is_differentiable_on Z by
A3,
Th81;
Z
c= ((
dom (f
^ ))
/\ (
dom
arctan )) by
A2,
VALUED_1:def 4;
then
A6: Z
c= (
dom (f
^ )) by
XBOOLE_1: 18;
for x st x
in Z holds ((((f
^ )
(#)
arctan )
`| Z)
. x)
= ((
- ((
arctan
. x)
/ (x
^2 )))
+ (1
/ (x
* (1
+ (x
^2 )))))
proof
let x;
assume
A7: x
in Z;
then ((((f
^ )
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
* (
diff ((f
^ ),x)))
+ (((f
^ )
. x)
* (
diff (
arctan ,x)))) by
A2,
A4,
A5,
FDIFF_1: 21
.= (((
arctan
. x)
* (((f
^ )
`| Z)
. x))
+ (((f
^ )
. x)
* (
diff (
arctan ,x)))) by
A4,
A7,
FDIFF_1:def 7
.= (((
arctan
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
diff (
arctan ,x)))) by
A1,
A7,
FDIFF_5: 4
.= ((
- ((
arctan
. x)
* (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* ((
arctan
`| Z)
. x))) by
A5,
A7,
FDIFF_1:def 7
.= ((
- (((
arctan
. x)
* 1)
/ (x
^2 )))
+ (((f
^ )
. x)
* (1
/ (1
+ (x
^2 ))))) by
A3,
A7,
Th81
.= ((
- ((
arctan
. x)
/ (x
^2 )))
+ (((f
. x)
" )
* (1
/ (1
+ (x
^2 ))))) by
A6,
A7,
RFUNCT_1:def 2
.= ((
- ((
arctan
. x)
/ (x
^2 )))
+ ((1
/ x)
* (1
/ (1
+ (x
^2 ))))) by
A7,
FUNCT_1: 18
.= ((
- ((
arctan
. x)
/ (x
^2 )))
+ ((1
* 1)
/ (x
* (1
+ (x
^2 ))))) by
XCMPLX_1: 76
.= ((
- ((
arctan
. x)
/ (x
^2 )))
+ (1
/ (x
* (1
+ (x
^2 )))));
hence thesis;
end;
hence thesis by
A2,
A4,
A5,
FDIFF_1: 21;
end;
theorem ::
SIN_COS9:130
not
0
in Z & Z
c= (
dom (((
id Z)
^ )
(#)
arccot )) & Z
c=
].(
- 1), 1.[ implies (((
id Z)
^ )
(#)
arccot )
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
^ )
(#)
arccot )
`| Z)
. x)
= ((
- ((
arccot
. x)
/ (x
^2 )))
- (1
/ (x
* (1
+ (x
^2 )))))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: Z
c= (
dom ((f
^ )
(#)
arccot )) and
A3: Z
c=
].(
- 1), 1.[;
A4: (f
^ )
is_differentiable_on Z by
A1,
FDIFF_5: 4;
A5:
arccot
is_differentiable_on Z by
A3,
Th82;
Z
c= ((
dom (f
^ ))
/\ (
dom
arccot )) by
A2,
VALUED_1:def 4;
then
A6: Z
c= (
dom (f
^ )) by
XBOOLE_1: 18;
for x st x
in Z holds ((((f
^ )
(#)
arccot )
`| Z)
. x)
= ((
- ((
arccot
. x)
/ (x
^2 )))
- (1
/ (x
* (1
+ (x
^2 )))))
proof
let x;
assume
A7: x
in Z;
then ((((f
^ )
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
* (
diff ((f
^ ),x)))
+ (((f
^ )
. x)
* (
diff (
arccot ,x)))) by
A2,
A4,
A5,
FDIFF_1: 21
.= (((
arccot
. x)
* (((f
^ )
`| Z)
. x))
+ (((f
^ )
. x)
* (
diff (
arccot ,x)))) by
A4,
A7,
FDIFF_1:def 7
.= (((
arccot
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
diff (
arccot ,x)))) by
A1,
A7,
FDIFF_5: 4
.= ((
- ((
arccot
. x)
* (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* ((
arccot
`| Z)
. x))) by
A5,
A7,
FDIFF_1:def 7
.= ((
- ((
arccot
. x)
* (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
- (1
/ (1
+ (x
^2 )))))) by
A3,
A7,
Th82
.= ((
- (((
arccot
. x)
* 1)
/ (x
^2 )))
- (((f
^ )
. x)
* (1
/ (1
+ (x
^2 )))))
.= ((
- ((
arccot
. x)
/ (x
^2 )))
- (((f
. x)
" )
* (1
/ (1
+ (x
^2 ))))) by
A6,
A7,
RFUNCT_1:def 2
.= ((
- ((
arccot
. x)
/ (x
^2 )))
- ((1
/ x)
* (1
/ (1
+ (x
^2 ))))) by
A7,
FUNCT_1: 18
.= ((
- ((
arccot
. x)
/ (x
^2 )))
- ((1
* 1)
/ (x
* (1
+ (x
^2 ))))) by
XCMPLX_1: 76
.= ((
- ((
arccot
. x)
/ (x
^2 )))
- (1
/ (x
* (1
+ (x
^2 )))));
hence thesis;
end;
hence thesis by
A2,
A4,
A5,
FDIFF_1: 21;
end;