fdiff_6.miz
begin
reserve y for
set,
x,a for
Real,
n for
Element of
NAT ,
Z for
open
Subset of
REAL ,
f,f1,f2 for
PartFunc of
REAL ,
REAL ;
Lm1: (1
- (
cos (2
* x)))
= (2
* ((
sin x)
^2 ))
proof
(1
- (
cos (2
* x)))
= (1
- (
cos (x
+ x)))
.= (1
- (((
cos x)
* (
cos x))
- ((
sin x)
* (
sin x)))) by
SIN_COS: 75
.= ((((
cos x)
^2 )
+ ((
sin x)
^2 ))
- (((
cos x)
^2 )
- ((
sin x)
^2 ))) by
SIN_COS: 29
.= (2
* ((
sin x)
^2 ));
hence thesis;
end;
Lm2: (1
+ (
cos (2
* x)))
= (2
* ((
cos x)
^2 ))
proof
(1
+ (
cos (2
* x)))
= (1
+ (
cos (x
+ x)))
.= (1
+ (((
cos x)
^2 )
- ((
sin x)
^2 ))) by
SIN_COS: 75
.= ((((
cos x)
^2 )
+ ((
sin x)
^2 ))
+ (((
cos x)
^2 )
- ((
sin x)
^2 ))) by
SIN_COS: 29
.= (2
* ((
cos x)
^2 ));
hence thesis;
end;
Lm3: (
sin
. x)
>
0 implies (
sin
. x)
= (((1
- (
cos
. x))
* (1
+ (
cos
. x)))
#R (1
/ 2))
proof
assume
A1: (
sin
. x)
>
0 ;
then (
sin
. x)
= ((
sin
. x)
#R (2
* (1
/ 2))) by
PREPOWER: 72
.= (((
sin
. x)
#R (1
+ 1))
#R (1
/ 2)) by
A1,
PREPOWER: 91
.= ((((
sin
. x)
#R 1)
* ((
sin
. x)
#R 1))
#R (1
/ 2)) by
A1,
PREPOWER: 75
.= (((
sin
. x)
* ((
sin
. x)
#R 1))
#R (1
/ 2)) by
A1,
PREPOWER: 72
.= (((((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
- ((
cos
. x)
^2 ))
#R (1
/ 2)) by
A1,
PREPOWER: 72
.= (((1
^2 )
- ((
cos
. x)
^2 ))
#R (1
/ 2)) by
SIN_COS: 28
.= (((1
- (
cos
. x))
* (1
+ (
cos
. x)))
#R (1
/ 2));
hence thesis;
end;
Lm4: (
sin
. x)
>
0 & (
cos
. x)
< 1 & (
cos
. x)
> (
- 1) implies ((
sin
. x)
/ ((1
- (
cos
. x))
#R (1
/ 2)))
= ((1
+ (
cos
. x))
#R (1
/ 2))
proof
assume that
A1: (
sin
. x)
>
0 and
A2: (
cos
. x)
< 1 and
A3: (
cos
. x)
> (
- 1);
A4: (1
- (
cos
. x))
> (1
- 1) by
A2,
XREAL_1: 15;
(1
+ (
cos
. x))
> (1
+ (
- 1)) by
A3,
XREAL_1: 8;
then
A5: ((1
- (
cos
. x))
* (1
+ (
cos
. x)))
>
0 by
A4,
XREAL_1: 129;
((
sin
. x)
/ ((1
- (
cos
. x))
#R (1
/ 2)))
= ((((1
- (
cos
. x))
* (1
+ (
cos
. x)))
#R (1
/ 2))
/ ((1
- (
cos
. x))
#R (1
/ 2))) by
A1,
Lm3
.= ((((1
- (
cos
. x))
* (1
+ (
cos
. x)))
/ (1
- (
cos
. x)))
#R (1
/ 2)) by
A4,
A5,
PREPOWER: 80
.= ((1
+ (
cos
. x))
#R (1
/ 2)) by
A4,
XCMPLX_1: 89;
hence thesis;
end;
theorem ::
FDIFF_6:1
Th1: a
>
0 implies (
exp_R
. (x
* (
log (
number_e ,a))))
= (a
#R x)
proof
assume
A1: a
>
0 ;
number_e
<> 1 by
TAYLOR_1: 11;
then (
exp_R
. (x
* (
log (
number_e ,a))))
= (
exp_R
. (
log (
number_e ,(a
to_power x)))) by
A1,
POWER: 55,
TAYLOR_1: 11
.= (
exp_R
. (
log (
number_e ,(a
#R x)))) by
A1,
POWER:def 2
.= (a
#R x) by
A1,
PREPOWER: 81,
TAYLOR_1: 15;
hence thesis;
end;
theorem ::
FDIFF_6:2
Th2: a
>
0 implies (
exp_R
. (
- (x
* (
log (
number_e ,a)))))
= (a
#R (
- x))
proof
A1:
number_e
<> 1 by
TAYLOR_1: 11;
assume
A2: a
>
0 ;
(
exp_R
. (
- (x
* (
log (
number_e ,a)))))
= (
exp_R
. ((
- x)
* (
log (
number_e ,a))))
.= (
exp_R
. (
log (
number_e ,(a
to_power (
- x))))) by
A2,
A1,
POWER: 55,
TAYLOR_1: 11
.= (
exp_R
. (
log (
number_e ,(a
#R (
- x))))) by
A2,
POWER:def 2
.= (a
#R (
- x)) by
A2,
PREPOWER: 81,
TAYLOR_1: 15;
hence thesis;
end;
Lm5: (
sin
. x)
>
0 & (
cos
. x)
< 1 & (
cos
. x)
> (
- 1) implies ((
sin
. x)
/ ((1
+ (
cos
. x))
#R (1
/ 2)))
= ((1
- (
cos
. x))
#R (1
/ 2))
proof
assume that
A1: (
sin
. x)
>
0 and
A2: (
cos
. x)
< 1 and
A3: (
cos
. x)
> (
- 1);
A4: (1
+ (
cos
. x))
> (1
+ (
- 1)) by
A3,
XREAL_1: 8;
(1
- (
cos
. x))
> (1
- 1) by
A2,
XREAL_1: 15;
then
A5: ((1
- (
cos
. x))
* (1
+ (
cos
. x)))
>
0 by
A4,
XREAL_1: 129;
((
sin
. x)
/ ((1
+ (
cos
. x))
#R (1
/ 2)))
= ((((1
- (
cos
. x))
* (1
+ (
cos
. x)))
#R (1
/ 2))
/ ((1
+ (
cos
. x))
#R (1
/ 2))) by
A1,
Lm3
.= ((((1
- (
cos
. x))
* (1
+ (
cos
. x)))
/ (1
+ (
cos
. x)))
#R (1
/ 2)) by
A4,
A5,
PREPOWER: 80
.= ((1
- (
cos
. x))
#R (1
/ 2)) by
A4,
XCMPLX_1: 89;
hence thesis;
end;
theorem ::
FDIFF_6:3
Th3: Z
c= (
dom (f1
- f2)) & (for x st x
in Z holds (f1
. x)
= (a
^2 )) & f2
= (
#Z 2) implies (f1
- f2)
is_differentiable_on Z & for x st x
in Z holds (((f1
- f2)
`| Z)
. x)
= (
- (2
* x))
proof
assume that
A1: Z
c= (
dom (f1
- f2)) and
A2: for x st x
in Z holds (f1
. x)
= (a
^2 ) and
A3: f2
= (
#Z 2);
A4: for x st x
in Z holds (f1
. x)
= ((a
^2 )
+ (
0
* x)) by
A2;
for x st x
in Z holds (((f1
- f2)
`| Z)
. x)
= (
- (2
* x))
proof
let x;
assume x
in Z;
hence (((f1
- f2)
`| Z)
. x)
= (
0
+ ((2
* (
- 1))
* x)) by
A1,
A3,
A4,
FDIFF_4: 12
.= (
- (2
* x));
end;
hence thesis by
A1,
A3,
A4,
FDIFF_4: 12;
end;
theorem ::
FDIFF_6:4
Th4: Z
c= (
dom ((f1
+ f2)
/ (f1
- f2))) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
^2 ) & ((f1
- f2)
. x)
<>
0 ) implies ((f1
+ f2)
/ (f1
- f2))
is_differentiable_on Z & for x st x
in Z holds ((((f1
+ f2)
/ (f1
- f2))
`| Z)
. x)
= (((4
* (a
^2 ))
* x)
/ (((a
^2 )
- (x
|^ 2))
^2 ))
proof
assume that
A1: Z
c= (
dom ((f1
+ f2)
/ (f1
- f2))) and
A2: f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= (a
^2 ) & ((f1
- f2)
. x)
<>
0 ;
A4: for x st x
in Z holds (f1
. x)
= (a
^2 ) by
A3;
A5: Z
c= ((
dom (f1
+ f2))
/\ ((
dom (f1
- f2))
\ ((f1
- f2)
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then
A6: Z
c= (
dom (f1
+ f2)) by
XBOOLE_1: 18;
then
A7: (f1
+ f2)
is_differentiable_on Z by
A2,
A4,
FDIFF_4: 17;
A8: Z
c= (
dom (f1
- f2)) by
A5,
XBOOLE_1: 1;
then
A9: (f1
- f2)
is_differentiable_on Z by
A2,
A4,
Th3;
A10: for x st x
in Z holds ((f1
- f2)
. x)
<>
0 by
A3;
then
A11: ((f1
+ f2)
/ (f1
- f2))
is_differentiable_on Z by
A7,
A9,
FDIFF_2: 21;
for x st x
in Z holds ((((f1
+ f2)
/ (f1
- f2))
`| Z)
. x)
= (((4
* (a
^2 ))
* x)
/ (((a
^2 )
- (x
|^ 2))
^2 ))
proof
let x;
A12: (f2
. x)
= (x
#Z 2) by
A2,
TAYLOR_1:def 1
.= (x
|^ 2) by
PREPOWER: 36;
assume
A13: x
in Z;
then
A14: ((f1
- f2)
. x)
<>
0 by
A3;
A15: ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
A8,
A13,
VALUED_1: 13
.= ((a
^2 )
- (x
|^ 2)) by
A3,
A13,
A12;
A16: ((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
A6,
A13,
VALUED_1:def 1
.= ((a
^2 )
+ (x
|^ 2)) by
A3,
A13,
A12;
(f1
+ f2)
is_differentiable_in x & (f1
- f2)
is_differentiable_in x by
A7,
A9,
A13,
FDIFF_1: 9;
then (
diff (((f1
+ f2)
/ (f1
- f2)),x))
= ((((
diff ((f1
+ f2),x))
* ((f1
- f2)
. x))
- ((
diff ((f1
- f2),x))
* ((f1
+ f2)
. x)))
/ (((f1
- f2)
. x)
^2 )) by
A14,
FDIFF_2: 14
.= ((((((f1
+ f2)
`| Z)
. x)
* ((f1
- f2)
. x))
- ((
diff ((f1
- f2),x))
* ((f1
+ f2)
. x)))
/ (((f1
- f2)
. x)
^2 )) by
A7,
A13,
FDIFF_1:def 7
.= ((((((f1
+ f2)
`| Z)
. x)
* ((f1
- f2)
. x))
- ((((f1
- f2)
`| Z)
. x)
* ((f1
+ f2)
. x)))
/ (((f1
- f2)
. x)
^2 )) by
A9,
A13,
FDIFF_1:def 7
.= ((((2
* x)
* ((f1
- f2)
. x))
- ((((f1
- f2)
`| Z)
. x)
* ((f1
+ f2)
. x)))
/ (((f1
- f2)
. x)
^2 )) by
A2,
A6,
A4,
A13,
FDIFF_4: 17
.= ((((2
* x)
* ((f1
- f2)
. x))
- ((
- (2
* x))
* ((f1
+ f2)
. x)))
/ (((f1
- f2)
. x)
^2 )) by
A2,
A8,
A4,
A13,
Th3
.= (((4
* (a
^2 ))
* x)
/ (((a
^2 )
- (x
|^ 2))
^2 )) by
A16,
A15;
hence thesis by
A11,
A13,
FDIFF_1:def 7;
end;
hence thesis by
A7,
A9,
A10,
FDIFF_2: 21;
end;
theorem ::
FDIFF_6:5
Th5: Z
c= (
dom f) & f
= (
ln
* ((f1
+ f2)
/ (f1
- f2))) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
^2 ) & ((f1
- f2)
. x)
>
0 & a
<>
0 ) implies f
is_differentiable_on Z & for x st x
in Z holds ((f
`| Z)
. x)
= (((4
* (a
^2 ))
* x)
/ ((a
|^ 4)
- (x
|^ 4)))
proof
assume that
A1: Z
c= (
dom f) and
A2: f
= (
ln
* ((f1
+ f2)
/ (f1
- f2))) and
A3: f2
= (
#Z 2) and
A4: for x st x
in Z holds (f1
. x)
= (a
^2 ) & ((f1
- f2)
. x)
>
0 & a
<>
0 ;
for y be
object st y
in Z holds y
in (
dom ((f1
+ f2)
/ (f1
- f2))) by
A1,
A2,
FUNCT_1: 11;
then
A5: Z
c= (
dom ((f1
+ f2)
/ (f1
- f2))) by
TARSKI:def 3;
then
A6: Z
c= ((
dom (f1
+ f2))
/\ ((
dom (f1
- f2))
\ ((f1
- f2)
"
{
0 }))) by
RFUNCT_1:def 1;
then
A7: Z
c= (
dom (f1
- f2)) by
XBOOLE_1: 1;
A8: for x st x
in Z holds (f1
. x)
= (a
^2 ) & ((f1
- f2)
. x)
<>
0 by
A4;
then
A9: ((f1
+ f2)
/ (f1
- f2))
is_differentiable_on Z by
A3,
A5,
Th4;
A10: Z
c= (
dom (f1
+ f2)) by
A6,
XBOOLE_1: 18;
A11: for x st x
in Z holds (((f1
+ f2)
/ (f1
- f2))
. x)
>
0
proof
let x;
A12: (f2
. x)
= (x
#Z 2) by
A3,
TAYLOR_1:def 1
.= (x
|^ 2) by
PREPOWER: 36;
assume
A13: x
in Z;
then
A14: ((f1
- f2)
. x)
>
0 by
A4;
a
<>
0 by
A4,
A13;
then
A15: (a
^2 )
>
0 by
SQUARE_1: 12;
(x
|^ 2)
= (x
^2 ) by
NEWTON: 81;
then
A16: ((a
^2 )
+ (x
|^ 2))
> (
0
+
0 ) by
A15,
XREAL_1: 8,
XREAL_1: 63;
A17: (((f1
+ f2)
/ (f1
- f2))
. x)
= (((f1
+ f2)
. x)
* (((f1
- f2)
. x)
" )) by
A5,
A13,
RFUNCT_1:def 1
.= (((f1
+ f2)
. x)
/ ((f1
- f2)
. x)) by
XCMPLX_0:def 9;
((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
A10,
A13,
VALUED_1:def 1
.= ((a
^2 )
+ (x
|^ 2)) by
A4,
A13,
A12;
hence thesis by
A14,
A16,
A17,
XREAL_1: 139;
end;
A18: for x st x
in Z holds (
ln
* ((f1
+ f2)
/ (f1
- f2)))
is_differentiable_in x
proof
let x;
assume x
in Z;
then ((f1
+ f2)
/ (f1
- f2))
is_differentiable_in x & (((f1
+ f2)
/ (f1
- f2))
. x)
>
0 by
A9,
A11,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A19: f
is_differentiable_on Z by
A1,
A2,
FDIFF_1: 9;
for x st x
in Z holds ((f
`| Z)
. x)
= (((4
* (a
^2 ))
* x)
/ ((a
|^ 4)
- (x
|^ 4)))
proof
let x;
A20: ((a
^2 )
^2 )
= ((a
|^ 2)
* (a
^2 )) by
NEWTON: 81
.= ((a
|^ 2)
* (a
|^ 2)) by
NEWTON: 81
.= ((a
|^ 2)
|^ 2) by
WSIERP_1: 1
.= (a
|^ (2
* 2)) by
NEWTON: 9
.= (a
|^ 4);
A21: ((x
|^ 2)
^2 )
= ((x
|^ 2)
|^ 2) by
WSIERP_1: 1
.= (x
|^ (2
* 2)) by
NEWTON: 9
.= (x
|^ 4);
A22: (f2
. x)
= (x
#Z 2) by
A3,
TAYLOR_1:def 1
.= (x
|^ 2) by
PREPOWER: 36;
assume
A23: x
in Z;
then
A24: ((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
A10,
VALUED_1:def 1
.= ((a
^2 )
+ (x
|^ 2)) by
A4,
A23,
A22;
A25: ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
A7,
A23,
VALUED_1: 13
.= ((a
^2 )
- (x
|^ 2)) by
A4,
A23,
A22;
then
A26: ((a
^2 )
- (x
|^ 2))
>
0 by
A4,
A23;
A27: (((f1
+ f2)
/ (f1
- f2))
. x)
= (((f1
+ f2)
. x)
* (((f1
- f2)
. x)
" )) by
A5,
A23,
RFUNCT_1:def 1
.= (((a
^2 )
+ (x
|^ 2))
/ ((a
^2 )
- (x
|^ 2))) by
A24,
A25,
XCMPLX_0:def 9;
((f1
+ f2)
/ (f1
- f2))
is_differentiable_in x & (((f1
+ f2)
/ (f1
- f2))
. x)
>
0 by
A9,
A11,
A23,
FDIFF_1: 9;
then (
diff ((
ln
* ((f1
+ f2)
/ (f1
- f2))),x))
= ((
diff (((f1
+ f2)
/ (f1
- f2)),x))
/ (((f1
+ f2)
/ (f1
- f2))
. x)) by
TAYLOR_1: 20
.= (((((f1
+ f2)
/ (f1
- f2))
`| Z)
. x)
/ (((f1
+ f2)
/ (f1
- f2))
. x)) by
A9,
A23,
FDIFF_1:def 7
.= ((((4
* (a
^2 ))
* x)
/ (((a
^2 )
- (x
|^ 2))
^2 ))
/ (((a
^2 )
+ (x
|^ 2))
/ ((a
^2 )
- (x
|^ 2)))) by
A3,
A5,
A8,
A23,
A27,
Th4
.= (((((4
* (a
^2 ))
* x)
/ ((a
^2 )
- (x
|^ 2)))
/ ((a
^2 )
- (x
|^ 2)))
/ (((a
^2 )
+ (x
|^ 2))
/ ((a
^2 )
- (x
|^ 2)))) by
XCMPLX_1: 78
.= (((((4
* (a
^2 ))
* x)
/ ((a
^2 )
- (x
|^ 2)))
/ (((a
^2 )
+ (x
|^ 2))
/ ((a
^2 )
- (x
|^ 2))))
/ ((a
^2 )
- (x
|^ 2))) by
XCMPLX_1: 48
.= ((((4
* (a
^2 ))
* x)
/ ((a
^2 )
+ (x
|^ 2)))
/ ((a
^2 )
- (x
|^ 2))) by
A26,
XCMPLX_1: 55
.= (((4
* (a
^2 ))
* x)
/ (((a
^2 )
+ (x
|^ 2))
* ((a
^2 )
- (x
|^ 2)))) by
XCMPLX_1: 78
.= (((4
* (a
^2 ))
* x)
/ ((a
|^ 4)
- (x
|^ 4))) by
A20,
A21;
hence thesis by
A2,
A19,
A23,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A2,
A18,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:6
Z
c= (
dom ((1
/ (4
* (a
^2 )))
(#) f)) & f
= (
ln
* ((f1
+ f2)
/ (f1
- f2))) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
^2 ) & ((f1
- f2)
. x)
>
0 & a
<>
0 ) implies ((1
/ (4
* (a
^2 )))
(#) f)
is_differentiable_on Z & for x st x
in Z holds ((((1
/ (4
* (a
^2 )))
(#) f)
`| Z)
. x)
= (x
/ ((a
|^ 4)
- (x
|^ 4)))
proof
assume that
A1: Z
c= (
dom ((1
/ (4
* (a
^2 )))
(#) f)) and
A2: f
= (
ln
* ((f1
+ f2)
/ (f1
- f2))) & f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= (a
^2 ) & ((f1
- f2)
. x)
>
0 & a
<>
0 ;
A4: Z
c= (
dom f) by
A1,
VALUED_1:def 5;
then
A5: f
is_differentiable_on Z by
A2,
A3,
Th5;
for x st x
in Z holds ((((1
/ (4
* (a
^2 )))
(#) f)
`| Z)
. x)
= (x
/ ((a
|^ 4)
- (x
|^ 4)))
proof
let x;
assume
A6: x
in Z;
then a
<>
0 by
A3;
then (a
^2 )
>
0 by
SQUARE_1: 12;
then
A7: (4
* (a
^2 ))
> (4
*
0 ) by
XREAL_1: 68;
((((1
/ (4
* (a
^2 )))
(#) f)
`| Z)
. x)
= ((1
/ (4
* (a
^2 )))
* (
diff (f,x))) by
A1,
A5,
A6,
FDIFF_1: 20
.= ((1
/ (4
* (a
^2 )))
* ((f
`| Z)
. x)) by
A5,
A6,
FDIFF_1:def 7
.= ((1
/ (4
* (a
^2 )))
* (((4
* (a
^2 ))
* x)
/ ((a
|^ 4)
- (x
|^ 4)))) by
A2,
A3,
A4,
A6,
Th5
.= ((1
/ (4
* (a
^2 )))
* ((4
* (a
^2 ))
* (x
/ ((a
|^ 4)
- (x
|^ 4))))) by
XCMPLX_1: 74
.= ((x
/ ((a
|^ 4)
- (x
|^ 4)))
* ((1
/ (4
* (a
^2 )))
* (4
* (a
^2 ))))
.= (x
/ ((a
|^ 4)
- (x
|^ 4))) by
A7,
XCMPLX_1: 108;
hence thesis;
end;
hence thesis by
A1,
A5,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:7
Th7: Z
c= (
dom (f1
/ (f2
+ f1))) & f1
= (
#Z 2) & (for x st x
in Z holds (f2
. x)
= 1 & x
<>
0 ) implies (f1
/ (f2
+ f1))
is_differentiable_on Z & for x st x
in Z holds (((f1
/ (f2
+ f1))
`| Z)
. x)
= ((2
* x)
/ ((1
+ (x
^2 ))
^2 ))
proof
assume that
A1: Z
c= (
dom (f1
/ (f2
+ f1))) and
A2: f1
= (
#Z 2) and
A3: for x st x
in Z holds (f2
. x)
= 1 & x
<>
0 ;
A4: Z
c= ((
dom f1)
/\ ((
dom (f2
+ f1))
\ ((f2
+ f1)
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then
A5: Z
c= (
dom (f2
+ f1)) by
XBOOLE_1: 1;
A6: for x st x
in Z holds f1
is_differentiable_in x by
A2,
TAYLOR_1: 2;
Z
c= (
dom f1) by
A4,
XBOOLE_1: 18;
then
A7: f1
is_differentiable_on Z by
A6,
FDIFF_1: 9;
A8: for x st x
in Z holds ((f1
`| Z)
. x)
= (2
* x)
proof
let x;
(2
* (x
#Z (2
- 1)))
= (2
* x) by
PREPOWER: 35;
then
A9: (
diff (f1,x))
= (2
* x) by
A2,
TAYLOR_1: 2;
assume x
in Z;
hence thesis by
A7,
A9,
FDIFF_1:def 7;
end;
A10: for x st x
in Z holds (f2
. x)
= (1
^2 ) by
A3;
then
A11: (f2
+ f1)
is_differentiable_on Z by
A2,
A5,
FDIFF_4: 17;
A12: for x st x
in Z holds ((f2
+ f1)
. x)
<>
0
proof
let x;
A13: (1
+ (x
^2 ))
> (
0
+
0 ) by
XREAL_1: 8,
XREAL_1: 63;
assume
A14: x
in Z;
then ((f2
+ f1)
. x)
= ((f2
. x)
+ (f1
. x)) by
A5,
VALUED_1:def 1
.= (1
+ (f1
. x)) by
A3,
A14
.= (1
+ (x
#Z 2)) by
A2,
TAYLOR_1:def 1
.= (1
+ (x
|^ 2)) by
PREPOWER: 36
.= (1
+ (x
^2 )) by
NEWTON: 81;
hence thesis by
A13;
end;
then
A15: (f1
/ (f2
+ f1))
is_differentiable_on Z by
A11,
A7,
FDIFF_2: 21;
for x st x
in Z holds (((f1
/ (f2
+ f1))
`| Z)
. x)
= ((2
* x)
/ ((1
+ (x
^2 ))
^2 ))
proof
let x;
A16: f1
is_differentiable_in x by
A2,
TAYLOR_1: 2;
A17: (f1
. x)
= (x
#Z 2) by
A2,
TAYLOR_1:def 1
.= (x
|^ 2) by
PREPOWER: 36
.= (x
^2 ) by
NEWTON: 81;
assume
A18: x
in Z;
then
A19: ((f2
+ f1)
. x)
= ((f2
. x)
+ (f1
. x)) by
A5,
VALUED_1:def 1
.= (1
+ (f1
. x)) by
A3,
A18
.= (1
+ (x
#Z 2)) by
A2,
TAYLOR_1:def 1
.= (1
+ (x
|^ 2)) by
PREPOWER: 36
.= (1
+ (x
^2 )) by
NEWTON: 81;
(f2
+ f1)
is_differentiable_in x & ((f2
+ f1)
. x)
<>
0 by
A11,
A12,
A18,
FDIFF_1: 9;
then (
diff ((f1
/ (f2
+ f1)),x))
= ((((
diff (f1,x))
* ((f2
+ f1)
. x))
- ((
diff ((f2
+ f1),x))
* (f1
. x)))
/ (((f2
+ f1)
. x)
^2 )) by
A16,
FDIFF_2: 14
.= (((((f1
`| Z)
. x)
* ((f2
+ f1)
. x))
- ((
diff ((f2
+ f1),x))
* (f1
. x)))
/ (((f2
+ f1)
. x)
^2 )) by
A7,
A18,
FDIFF_1:def 7
.= (((((f1
`| Z)
. x)
* ((f2
+ f1)
. x))
- ((((f2
+ f1)
`| Z)
. x)
* (f1
. x)))
/ (((f2
+ f1)
. x)
^2 )) by
A11,
A18,
FDIFF_1:def 7
.= ((((2
* x)
* ((f2
+ f1)
. x))
- ((((f2
+ f1)
`| Z)
. x)
* (f1
. x)))
/ (((f2
+ f1)
. x)
^2 )) by
A8,
A18
.= ((((2
* x)
* (1
+ (x
^2 )))
- ((2
* x)
* (x
^2 )))
/ ((1
+ (x
^2 ))
^2 )) by
A2,
A10,
A5,
A18,
A17,
A19,
FDIFF_4: 17
.= ((2
* x)
/ ((1
+ (x
^2 ))
^2 ));
hence thesis by
A15,
A18,
FDIFF_1:def 7;
end;
hence thesis by
A11,
A7,
A12,
FDIFF_2: 21;
end;
theorem ::
FDIFF_6:8
Z
c= (
dom ((1
/ 2)
(#) f)) & f
= (
ln
* (f1
/ (f2
+ f1))) & f1
= (
#Z 2) & (for x st x
in Z holds (f2
. x)
= 1 & x
<>
0 ) implies ((1
/ 2)
(#) f)
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) f)
`| Z)
. x)
= (1
/ (x
* (1
+ (x
^2 ))))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) f)) and
A2: f
= (
ln
* (f1
/ (f2
+ f1))) and
A3: f1
= (
#Z 2) and
A4: for x st x
in Z holds (f2
. x)
= 1 & x
<>
0 ;
A5: Z
c= (
dom f) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom (f1
/ (f2
+ f1))) by
A2,
FUNCT_1: 11;
then
A6: Z
c= (
dom (f1
/ (f2
+ f1))) by
TARSKI:def 3;
then
A7: (f1
/ (f2
+ f1))
is_differentiable_on Z by
A3,
A4,
Th7;
Z
c= ((
dom f1)
/\ ((
dom (f2
+ f1))
\ ((f2
+ f1)
"
{
0 }))) by
A6,
RFUNCT_1:def 1;
then
A8: Z
c= (
dom (f2
+ f1)) by
XBOOLE_1: 1;
A9: for x st x
in Z holds ((f1
/ (f1
+ f2))
. x)
>
0
proof
let x;
assume
A10: x
in Z;
then
A11: ((f1
/ (f2
+ f1))
. x)
= ((f1
. x)
* (((f2
+ f1)
. x)
" )) by
A6,
RFUNCT_1:def 1
.= ((f1
. x)
/ ((f2
+ f1)
. x)) by
XCMPLX_0:def 9;
A12: x
<>
0 by
A4,
A10;
then
A13: (1
+ (x
^2 ))
> (
0
+
0 ) by
SQUARE_1: 12,
XREAL_1: 8;
A14: (f1
. x)
= (x
#Z 2) by
A3,
TAYLOR_1:def 1
.= (x
|^ 2) by
PREPOWER: 36
.= (x
^2 ) by
NEWTON: 81;
then
A15: (f1
. x)
>
0 by
A12,
SQUARE_1: 12;
((f2
+ f1)
. x)
= ((f2
. x)
+ (f1
. x)) by
A8,
A10,
VALUED_1:def 1
.= (1
+ (x
^2 )) by
A4,
A10,
A14;
hence thesis by
A15,
A13,
A11,
XREAL_1: 139;
end;
for x st x
in Z holds (
ln
* (f1
/ (f2
+ f1)))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (f1
/ (f2
+ f1))
is_differentiable_in x & ((f1
/ (f1
+ f2))
. x)
>
0 by
A7,
A9,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A16: f
is_differentiable_on Z by
A2,
A5,
FDIFF_1: 9;
for x st x
in Z holds ((((1
/ 2)
(#) f)
`| Z)
. x)
= (1
/ (x
* (1
+ (x
^2 ))))
proof
let x;
A17: (f1
. x)
= (x
#Z 2) by
A3,
TAYLOR_1:def 1
.= (x
|^ 2) by
PREPOWER: 36
.= (x
^2 ) by
NEWTON: 81;
assume
A18: x
in Z;
then
A19: (f1
/ (f2
+ f1))
is_differentiable_in x & ((f1
/ (f1
+ f2))
. x)
>
0 by
A7,
A9,
FDIFF_1: 9;
x
<>
0 by
A4,
A18;
then
A20: (1
+ (x
^2 ))
> (
0
+
0 ) by
SQUARE_1: 12,
XREAL_1: 8;
A21: ((f2
+ f1)
. x)
= ((f2
. x)
+ (f1
. x)) by
A8,
A18,
VALUED_1:def 1
.= (1
+ (x
^2 )) by
A4,
A18,
A17;
A22: ((f1
/ (f2
+ f1))
. x)
= ((f1
. x)
* (((f2
+ f1)
. x)
" )) by
A6,
A18,
RFUNCT_1:def 1
.= ((x
^2 )
/ (1
+ (x
^2 ))) by
A17,
A21,
XCMPLX_0:def 9;
((((1
/ 2)
(#) f)
`| Z)
. x)
= ((1
/ 2)
* (
diff ((
ln
* (f1
/ (f2
+ f1))),x))) by
A1,
A2,
A16,
A18,
FDIFF_1: 20
.= ((1
/ 2)
* ((
diff ((f1
/ (f2
+ f1)),x))
/ ((f1
/ (f2
+ f1))
. x))) by
A19,
TAYLOR_1: 20
.= ((1
/ 2)
* ((((f1
/ (f2
+ f1))
`| Z)
. x)
/ ((f1
/ (f2
+ f1))
. x))) by
A7,
A18,
FDIFF_1:def 7
.= ((1
/ 2)
* (((2
* x)
/ ((1
+ (x
^2 ))
^2 ))
/ ((x
^2 )
/ (1
+ (x
^2 ))))) by
A3,
A4,
A6,
A18,
A22,
Th7
.= (((1
/ 2)
* ((2
* x)
/ ((1
+ (x
^2 ))
^2 )))
/ ((x
^2 )
/ (1
+ (x
^2 )))) by
XCMPLX_1: 74
.= ((((1
/ 2)
* (2
* x))
/ ((1
+ (x
^2 ))
^2 ))
/ ((x
^2 )
/ (1
+ (x
^2 )))) by
XCMPLX_1: 74
.= (((x
/ (1
+ (x
^2 )))
/ (1
+ (x
^2 )))
/ ((x
^2 )
/ (1
+ (x
^2 )))) by
XCMPLX_1: 78
.= (((x
/ (1
+ (x
^2 )))
/ ((x
^2 )
/ (1
+ (x
^2 ))))
/ (1
+ (x
^2 ))) by
XCMPLX_1: 48
.= ((x
/ (x
^2 ))
/ (1
+ (x
^2 ))) by
A20,
XCMPLX_1: 55
.= (((x
/ x)
/ x)
/ (1
+ (x
^2 ))) by
XCMPLX_1: 78
.= ((1
/ x)
/ (1
+ (x
^2 ))) by
A4,
A18,
XCMPLX_1: 60
.= (1
/ (x
* (1
+ (x
^2 )))) by
XCMPLX_1: 78;
hence thesis;
end;
hence thesis by
A1,
A16,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:9
Z
c= (
dom (
ln
* (
#Z n))) & (for x st x
in Z holds x
>
0 ) implies (
ln
* (
#Z n))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* (
#Z n))
`| Z)
. x)
= (n
/ x)
proof
assume that
A1: Z
c= (
dom (
ln
* (
#Z n))) and
A2: for x st x
in Z holds x
>
0 ;
A3: for x st x
in Z holds (
ln
* (
#Z n))
is_differentiable_in x
proof
let x;
A4: ((
#Z n)
. x)
= (x
#Z n) by
TAYLOR_1:def 1;
assume x
in Z;
then (
#Z n)
is_differentiable_in x & ((
#Z n)
. x)
>
0 by
A2,
A4,
PREPOWER: 39,
TAYLOR_1: 2;
hence thesis by
TAYLOR_1: 20;
end;
then
A5: (
ln
* (
#Z n))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* (
#Z n))
`| Z)
. x)
= (n
/ x)
proof
let x;
A6: (
#Z n)
is_differentiable_in x & (
diff ((
#Z n),x))
= (n
* (x
#Z (n
- 1))) by
TAYLOR_1: 2;
assume
A7: x
in Z;
then
A8: x
>
0 by
A2;
A9: (x
|^ n)
>
0 by
A2,
A7,
NEWTON: 83;
A10: ((
#Z n)
. x)
= (x
#Z n) by
TAYLOR_1:def 1;
then ((
#Z n)
. x)
>
0 by
A2,
A7,
PREPOWER: 39;
then (
diff ((
ln
* (
#Z n)),x))
= ((n
* (x
#Z (n
- 1)))
/ (x
#Z n)) by
A6,
A10,
TAYLOR_1: 20
.= ((n
* (x
#Z (n
- 1)))
/ (x
|^ n)) by
PREPOWER: 36
.= ((n
* ((x
|^ n)
/ (x
|^ 1)))
/ (x
|^ n)) by
A8,
PREPOWER: 43
.= (n
* (((x
|^ n)
/ (x
|^ 1))
/ (x
|^ n))) by
XCMPLX_1: 74
.= (n
* (((x
|^ n)
/ (x
|^ n))
/ (x
|^ 1))) by
XCMPLX_1: 48
.= (n
* (1
/ (x
|^ 1))) by
A9,
XCMPLX_1: 60
.= (n
* (1
/ x))
.= ((n
* 1)
/ x) by
XCMPLX_1: 74
.= (n
/ x);
hence thesis by
A5,
A7,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A3,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:10
Z
c= (
dom ((f2
^ )
+ (
ln
* (f1
/ f2)))) & (for x st x
in Z holds (f2
. x)
= x & (f2
. x)
>
0 & (f1
. x)
= (x
- 1) & (f1
. x)
>
0 ) implies ((f2
^ )
+ (
ln
* (f1
/ f2)))
is_differentiable_on Z & for x st x
in Z holds ((((f2
^ )
+ (
ln
* (f1
/ f2)))
`| Z)
. x)
= (1
/ ((x
^2 )
* (x
- 1)))
proof
assume that
A1: Z
c= (
dom ((f2
^ )
+ (
ln
* (f1
/ f2)))) and
A2: for x st x
in Z holds (f2
. x)
= x & (f2
. x)
>
0 & (f1
. x)
= (x
- 1) & (f1
. x)
>
0 ;
A3: Z
c= ((
dom (f2
^ ))
/\ (
dom (
ln
* (f1
/ f2)))) by
A1,
VALUED_1:def 1;
then
A4: Z
c= (
dom (
ln
* (f1
/ f2))) by
XBOOLE_1: 18;
A5: (
dom (f2
^ ))
c= (
dom f2) by
RFUNCT_1: 1;
Z
c= (
dom (f2
^ )) by
A3,
XBOOLE_1: 18;
then
A6: Z
c= (
dom f2) by
A5,
XBOOLE_1: 1;
A7: for x st x
in Z holds (f1
. x)
= (x
- 1) & (f1
. x)
>
0 & (f2
. x)
= (x
-
0 ) & (f2
. x)
>
0 by
A2;
then
A8: (
ln
* (f1
/ f2))
is_differentiable_on Z by
A4,
FDIFF_4: 24;
A9: for x st x
in Z holds (f2
. x)
= (
0
+ x) & (f2
. x)
<>
0 by
A2;
then
A10: (f2
^ )
is_differentiable_on Z by
A6,
FDIFF_4: 14;
for x st x
in Z holds ((((f2
^ )
+ (
ln
* (f1
/ f2)))
`| Z)
. x)
= (1
/ ((x
^2 )
* (x
- 1)))
proof
let x;
assume
A11: x
in Z;
then
A12: (f2
. x)
= x & (f2
. x)
>
0 by
A2;
A13: (f1
. x)
= (x
- 1) & (f1
. x)
>
0 by
A2,
A11;
((((f2
^ )
+ (
ln
* (f1
/ f2)))
`| Z)
. x)
= ((
diff ((f2
^ ),x))
+ (
diff ((
ln
* (f1
/ f2)),x))) by
A1,
A10,
A8,
A11,
FDIFF_1: 18
.= ((((f2
^ )
`| Z)
. x)
+ (
diff ((
ln
* (f1
/ f2)),x))) by
A10,
A11,
FDIFF_1:def 7
.= ((((f2
^ )
`| Z)
. x)
+ (((
ln
* (f1
/ f2))
`| Z)
. x)) by
A8,
A11,
FDIFF_1:def 7
.= ((
- (1
/ ((
0
+ x)
^2 )))
+ (((
ln
* (f1
/ f2))
`| Z)
. x)) by
A6,
A9,
A11,
FDIFF_4: 14
.= ((
- (1
/ ((
0
+ x)
^2 )))
+ ((1
-
0 )
/ ((x
- 1)
* (x
-
0 )))) by
A4,
A7,
A11,
FDIFF_4: 24
.= ((
- ((1
* (x
- 1))
/ ((x
^2 )
* (x
- 1))))
+ (1
/ ((x
- 1)
* x))) by
A13,
XCMPLX_1: 91
.= ((
- ((1
* (x
- 1))
/ ((x
^2 )
* (x
- 1))))
+ ((1
* x)
/ (((x
- 1)
* x)
* x))) by
A12,
XCMPLX_1: 91
.= (((
- (x
- 1))
/ ((x
^2 )
* (x
- 1)))
+ (x
/ ((x
^2 )
* (x
- 1)))) by
XCMPLX_1: 187
.= ((((
- x)
+ 1)
+ x)
/ ((x
^2 )
* (x
- 1))) by
XCMPLX_1: 62
.= (1
/ ((x
^2 )
* (x
- 1)));
hence thesis;
end;
hence thesis by
A1,
A10,
A8,
FDIFF_1: 18;
end;
theorem ::
FDIFF_6:11
Th11: Z
c= (
dom (
exp_R
* f)) & (for x st x
in Z holds (f
. x)
= (x
* (
log (
number_e ,a)))) & a
>
0 implies (
exp_R
* f)
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
* f)
`| Z)
. x)
= ((a
#R x)
* (
log (
number_e ,a)))
proof
assume that
A1: Z
c= (
dom (
exp_R
* f)) and
A2: for x st x
in Z holds (f
. x)
= (x
* (
log (
number_e ,a))) and
A3: a
>
0 ;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A4: Z
c= (
dom f) by
TARSKI:def 3;
A5: for x st x
in Z holds (f
. x)
= (((
log (
number_e ,a))
* x)
+
0 ) by
A2;
then
A6: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A7: for x st x
in Z holds (
exp_R
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x by
A6,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 19;
end;
then
A8: (
exp_R
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
* f)
`| Z)
. x)
= ((a
#R x)
* (
log (
number_e ,a)))
proof
let x;
assume
A9: x
in Z;
then f
is_differentiable_in x by
A6,
FDIFF_1: 9;
then (
diff ((
exp_R
* f),x))
= ((
exp_R
. (f
. x))
* (
diff (f,x))) by
TAYLOR_1: 19
.= ((
exp_R
. (f
. x))
* ((f
`| Z)
. x)) by
A6,
A9,
FDIFF_1:def 7
.= ((
exp_R
. (f
. x))
* (
log (
number_e ,a))) by
A4,
A5,
A9,
FDIFF_1: 23
.= ((
exp_R
. (x
* (
log (
number_e ,a))))
* (
log (
number_e ,a))) by
A2,
A9
.= ((a
#R x)
* (
log (
number_e ,a))) by
A3,
Th1;
hence thesis by
A8,
A9,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A7,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:12
Z
c= (
dom ((1
/ (
log (
number_e ,a)))
(#) ((
exp_R
* f1)
(#) f2))) & (for x st x
in Z holds (f1
. x)
= (x
* (
log (
number_e ,a))) & (f2
. x)
= (x
- (1
/ (
log (
number_e ,a))))) & a
>
0 & a
<> 1 implies ((1
/ (
log (
number_e ,a)))
(#) ((
exp_R
* f1)
(#) f2))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ (
log (
number_e ,a)))
(#) ((
exp_R
* f1)
(#) f2))
`| Z)
. x)
= (x
* (a
#R x))
proof
assume that
A1: Z
c= (
dom ((1
/ (
log (
number_e ,a)))
(#) ((
exp_R
* f1)
(#) f2))) and
A2: for x st x
in Z holds (f1
. x)
= (x
* (
log (
number_e ,a))) & (f2
. x)
= (x
- (1
/ (
log (
number_e ,a)))) and
A3: a
>
0 and
A4: a
<> 1;
A5: Z
c= (
dom ((
exp_R
* f1)
(#) f2)) by
A1,
VALUED_1:def 5;
then
A6: Z
c= ((
dom (
exp_R
* f1))
/\ (
dom f2)) by
VALUED_1:def 4;
then
A7: Z
c= (
dom (
exp_R
* f1)) by
XBOOLE_1: 18;
A8: for x st x
in Z holds (f2
. x)
= ((1
* x)
+ (
- (1
/ (
log (
number_e ,a)))))
proof
let x;
A9: ((1
* x)
+ (
- (1
/ (
log (
number_e ,a)))))
= ((1
* x)
- (1
/ (
log (
number_e ,a))));
assume x
in Z;
hence thesis by
A2,
A9;
end;
A10: for x st x
in Z holds (f1
. x)
= (x
* (
log (
number_e ,a))) by
A2;
then
A11: (
exp_R
* f1)
is_differentiable_on Z by
A3,
A7,
Th11;
A12: Z
c= (
dom f2) by
A6,
XBOOLE_1: 18;
then
A13: f2
is_differentiable_on Z by
A8,
FDIFF_1: 23;
then
A14: ((
exp_R
* f1)
(#) f2)
is_differentiable_on Z by
A5,
A11,
FDIFF_1: 21;
A15: (
log (
number_e ,a))
<>
0
proof
A16:
number_e
<> 1 by
TAYLOR_1: 11;
assume (
log (
number_e ,a))
=
0 ;
then (
log (
number_e ,a))
= (
log (
number_e ,1)) by
SIN_COS2: 13,
TAYLOR_1: 13;
then a
= (
number_e
to_power (
log (
number_e ,1))) by
A3,
A16,
POWER:def 3,
TAYLOR_1: 11
.= 1 by
A16,
POWER:def 3,
TAYLOR_1: 11;
hence contradiction by
A4;
end;
for x st x
in Z holds ((((1
/ (
log (
number_e ,a)))
(#) ((
exp_R
* f1)
(#) f2))
`| Z)
. x)
= (x
* (a
#R x))
proof
let x;
assume
A17: x
in Z;
then
A18: ((
exp_R
* f1)
. x)
= (
exp_R
. (f1
. x)) by
A7,
FUNCT_1: 12
.= (
exp_R
. (x
* (
log (
number_e ,a)))) by
A2,
A17
.= (a
#R x) by
A3,
Th1;
((((1
/ (
log (
number_e ,a)))
(#) ((
exp_R
* f1)
(#) f2))
`| Z)
. x)
= ((1
/ (
log (
number_e ,a)))
* (
diff (((
exp_R
* f1)
(#) f2),x))) by
A1,
A14,
A17,
FDIFF_1: 20
.= ((1
/ (
log (
number_e ,a)))
* ((((
exp_R
* f1)
(#) f2)
`| Z)
. x)) by
A14,
A17,
FDIFF_1:def 7
.= ((1
/ (
log (
number_e ,a)))
* (((f2
. x)
* (
diff ((
exp_R
* f1),x)))
+ (((
exp_R
* f1)
. x)
* (
diff (f2,x))))) by
A5,
A11,
A13,
A17,
FDIFF_1: 21
.= ((1
/ (
log (
number_e ,a)))
* (((f2
. x)
* (((
exp_R
* f1)
`| Z)
. x))
+ (((
exp_R
* f1)
. x)
* (
diff (f2,x))))) by
A11,
A17,
FDIFF_1:def 7
.= ((1
/ (
log (
number_e ,a)))
* (((f2
. x)
* (((
exp_R
* f1)
`| Z)
. x))
+ (((
exp_R
* f1)
. x)
* ((f2
`| Z)
. x)))) by
A13,
A17,
FDIFF_1:def 7
.= ((1
/ (
log (
number_e ,a)))
* (((f2
. x)
* ((a
#R x)
* (
log (
number_e ,a))))
+ (((
exp_R
* f1)
. x)
* ((f2
`| Z)
. x)))) by
A3,
A10,
A7,
A17,
Th11
.= ((1
/ (
log (
number_e ,a)))
* (((f2
. x)
* ((a
#R x)
* (
log (
number_e ,a))))
+ (((
exp_R
* f1)
. x)
* 1))) by
A12,
A8,
A17,
FDIFF_1: 23
.= ((1
/ (
log (
number_e ,a)))
* ((((f2
. x)
* (
log (
number_e ,a)))
+ 1)
* (a
#R x))) by
A18
.= ((1
/ (
log (
number_e ,a)))
* ((((x
- (1
/ (
log (
number_e ,a))))
* (
log (
number_e ,a)))
+ 1)
* (a
#R x))) by
A2,
A17
.= (((1
/ (
log (
number_e ,a)))
* (((x
* (
log (
number_e ,a)))
- ((1
/ (
log (
number_e ,a)))
* (
log (
number_e ,a))))
+ 1))
* (a
#R x))
.= (((1
/ (
log (
number_e ,a)))
* (((x
* (
log (
number_e ,a)))
- 1)
+ 1))
* (a
#R x)) by
A15,
XCMPLX_1: 106
.= ((((1
/ (
log (
number_e ,a)))
* (
log (
number_e ,a)))
* x)
* (a
#R x))
.= ((1
* x)
* (a
#R x)) by
A15,
XCMPLX_1: 106
.= (x
* (a
#R x));
hence thesis;
end;
hence thesis by
A1,
A14,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:13
Z
c= (
dom ((1
/ (1
+ (
log (
number_e ,a))))
(#) ((
exp_R
* f)
(#)
exp_R ))) & (for x st x
in Z holds (f
. x)
= (x
* (
log (
number_e ,a)))) & a
>
0 & a
<> (1
/
number_e ) implies ((1
/ (1
+ (
log (
number_e ,a))))
(#) ((
exp_R
* f)
(#)
exp_R ))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ (1
+ (
log (
number_e ,a))))
(#) ((
exp_R
* f)
(#)
exp_R ))
`| Z)
. x)
= ((a
#R x)
* (
exp_R
. x))
proof
assume that
A1: Z
c= (
dom ((1
/ (1
+ (
log (
number_e ,a))))
(#) ((
exp_R
* f)
(#)
exp_R ))) and
A2: for x st x
in Z holds (f
. x)
= (x
* (
log (
number_e ,a))) and
A3: a
>
0 and
A4: a
<> (1
/
number_e );
A5: Z
c= (
dom ((
exp_R
* f)
(#)
exp_R )) by
A1,
VALUED_1:def 5;
then Z
c= ((
dom (
exp_R
* f))
/\ (
dom
exp_R )) by
VALUED_1:def 4;
then
A6: Z
c= (
dom (
exp_R
* f)) by
XBOOLE_1: 18;
then
A7: (
exp_R
* f)
is_differentiable_on Z by
A2,
A3,
Th11;
A8:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A9: ((
exp_R
* f)
(#)
exp_R )
is_differentiable_on Z by
A5,
A7,
FDIFF_1: 21;
A10: (1
+ (
log (
number_e ,a)))
<>
0
proof
A11: (
number_e
* a)
> (
0
* a) by
A3,
TAYLOR_1: 11,
XREAL_1: 68;
assume
A12: (1
+ (
log (
number_e ,a)))
=
0 ;
A13:
number_e
<> 1 by
TAYLOR_1: 11;
(
log (
number_e ,1))
=
0 by
SIN_COS2: 13,
TAYLOR_1: 13
.= ((
log (
number_e ,
number_e ))
+ (
log (
number_e ,a))) by
A12,
A13,
POWER: 52,
TAYLOR_1: 11
.= (
log (
number_e ,(
number_e
* a))) by
A3,
A13,
POWER: 53,
TAYLOR_1: 11;
then (
number_e
* a)
= (
number_e
to_power (
log (
number_e ,1))) by
A13,
A11,
POWER:def 3,
TAYLOR_1: 11
.= 1 by
A13,
POWER:def 3,
TAYLOR_1: 11;
hence contradiction by
A4,
XCMPLX_1: 73;
end;
for x st x
in Z holds ((((1
/ (1
+ (
log (
number_e ,a))))
(#) ((
exp_R
* f)
(#)
exp_R ))
`| Z)
. x)
= ((a
#R x)
* (
exp_R
. x))
proof
let x;
assume
A14: x
in Z;
then
A15: ((
exp_R
* f)
. x)
= (
exp_R
. (f
. x)) by
A6,
FUNCT_1: 12
.= (
exp_R
. (x
* (
log (
number_e ,a)))) by
A2,
A14
.= (a
#R x) by
A3,
Th1;
((((1
/ (1
+ (
log (
number_e ,a))))
(#) ((
exp_R
* f)
(#)
exp_R ))
`| Z)
. x)
= ((1
/ (1
+ (
log (
number_e ,a))))
* (
diff (((
exp_R
* f)
(#)
exp_R ),x))) by
A1,
A9,
A14,
FDIFF_1: 20
.= ((1
/ (1
+ (
log (
number_e ,a))))
* ((((
exp_R
* f)
(#)
exp_R )
`| Z)
. x)) by
A9,
A14,
FDIFF_1:def 7
.= ((1
/ (1
+ (
log (
number_e ,a))))
* (((
exp_R
. x)
* (
diff ((
exp_R
* f),x)))
+ (((
exp_R
* f)
. x)
* (
diff (
exp_R ,x))))) by
A5,
A7,
A8,
A14,
FDIFF_1: 21
.= ((1
/ (1
+ (
log (
number_e ,a))))
* (((
exp_R
. x)
* (((
exp_R
* f)
`| Z)
. x))
+ (((
exp_R
* f)
. x)
* (
diff (
exp_R ,x))))) by
A7,
A14,
FDIFF_1:def 7
.= ((1
/ (1
+ (
log (
number_e ,a))))
* (((
exp_R
. x)
* (((
exp_R
* f)
`| Z)
. x))
+ (((
exp_R
* f)
. x)
* (
exp_R
. x)))) by
TAYLOR_1: 16
.= ((1
/ (1
+ (
log (
number_e ,a))))
* (((((
exp_R
* f)
`| Z)
. x)
+ ((
exp_R
* f)
. x))
* (
exp_R
. x)))
.= ((1
/ (1
+ (
log (
number_e ,a))))
* ((((a
#R x)
* (
log (
number_e ,a)))
+ ((
exp_R
* f)
. x))
* (
exp_R
. x))) by
A2,
A3,
A6,
A14,
Th11
.= ((((1
/ (1
+ (
log (
number_e ,a))))
* ((
log (
number_e ,a))
+ 1))
* (a
#R x))
* (
exp_R
. x)) by
A15
.= ((1
* (a
#R x))
* (
exp_R
. x)) by
A10,
XCMPLX_1: 106
.= ((a
#R x)
* (
exp_R
. x));
hence thesis;
end;
hence thesis by
A1,
A9,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:14
Th14: Z
c= (
dom (
exp_R
* f)) & (for x st x
in Z holds (f
. x)
= (
- x)) implies (
exp_R
* f)
is_differentiable_on Z & for x st x
in Z holds (((
exp_R
* f)
`| Z)
. x)
= (
- (
exp_R (
- x)))
proof
assume that
A1: Z
c= (
dom (
exp_R
* f)) and
A2: for x st x
in Z holds (f
. x)
= (
- x);
A3: for x st x
in Z holds (f
. x)
= (((
- 1)
* x)
+
0 )
proof
let x;
assume x
in Z;
then (f
. x)
= (
- x) by
A2
.= (((
- 1)
* x)
+
0 );
hence thesis;
end;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A4: Z
c= (
dom f) by
TARSKI:def 3;
then
A5: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A6: for x st x
in Z holds (
exp_R
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x by
A5,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 19;
end;
then
A7: (
exp_R
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
exp_R
* f)
`| Z)
. x)
= (
- (
exp_R (
- x)))
proof
let x;
assume
A8: x
in Z;
then f
is_differentiable_in x by
A5,
FDIFF_1: 9;
then (
diff ((
exp_R
* f),x))
= ((
exp_R
. (f
. x))
* (
diff (f,x))) by
TAYLOR_1: 19
.= ((
exp_R
. (f
. x))
* ((f
`| Z)
. x)) by
A5,
A8,
FDIFF_1:def 7
.= ((
exp_R
. (f
. x))
* (
- 1)) by
A4,
A3,
A8,
FDIFF_1: 23
.= ((
exp_R
. (
- x))
* (
- 1)) by
A2,
A8
.= (
- (
exp_R
. (
- x)))
.= (
- (
exp_R (
- x))) by
SIN_COS:def 23;
hence thesis by
A7,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A6,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:15
Z
c= (
dom (f1
(#) (
exp_R
* f2))) & (for x st x
in Z holds (f1
. x)
= ((
- x)
- 1) & (f2
. x)
= (
- x)) implies (f1
(#) (
exp_R
* f2))
is_differentiable_on Z & for x st x
in Z holds (((f1
(#) (
exp_R
* f2))
`| Z)
. x)
= (x
/ (
exp_R x))
proof
assume that
A1: Z
c= (
dom (f1
(#) (
exp_R
* f2))) and
A2: for x st x
in Z holds (f1
. x)
= ((
- x)
- 1) & (f2
. x)
= (
- x);
A3: Z
c= ((
dom f1)
/\ (
dom (
exp_R
* f2))) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom f1) by
XBOOLE_1: 18;
A5: Z
c= (
dom (
exp_R
* f2)) by
A3,
XBOOLE_1: 18;
A6: for x st x
in Z holds (f1
. x)
= (((
- 1)
* x)
+ (
- 1))
proof
let x;
assume x
in Z;
then (f1
. x)
= ((
- x)
- 1) by
A2
.= (((
- 1)
* x)
+ (
- 1));
hence thesis;
end;
then
A7: f1
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A8: for x st x
in Z holds (f2
. x)
= (
- x) by
A2;
then
A9: (
exp_R
* f2)
is_differentiable_on Z by
A5,
Th14;
for x st x
in Z holds (((f1
(#) (
exp_R
* f2))
`| Z)
. x)
= (x
/ (
exp_R x))
proof
let x;
assume
A10: x
in Z;
then
A11: ((
exp_R
* f2)
. x)
= (
exp_R
. (f2
. x)) by
A5,
FUNCT_1: 12
.= (
exp_R
. (
- x)) by
A2,
A10
.= (
exp_R (
- x)) by
SIN_COS:def 23;
(((f1
(#) (
exp_R
* f2))
`| Z)
. x)
= ((((
exp_R
* f2)
. x)
* (
diff (f1,x)))
+ ((f1
. x)
* (
diff ((
exp_R
* f2),x)))) by
A1,
A7,
A9,
A10,
FDIFF_1: 21
.= (((
exp_R (
- x))
* (
diff (f1,x)))
+ (((
- x)
- 1)
* (
diff ((
exp_R
* f2),x)))) by
A2,
A10,
A11
.= (((
exp_R (
- x))
* ((f1
`| Z)
. x))
+ (((
- x)
- 1)
* (
diff ((
exp_R
* f2),x)))) by
A7,
A10,
FDIFF_1:def 7
.= (((
exp_R (
- x))
* ((f1
`| Z)
. x))
+ (((
- x)
- 1)
* (((
exp_R
* f2)
`| Z)
. x))) by
A9,
A10,
FDIFF_1:def 7
.= (((
exp_R (
- x))
* (
- 1))
+ (((
- x)
- 1)
* (((
exp_R
* f2)
`| Z)
. x))) by
A4,
A6,
A10,
FDIFF_1: 23
.= (((
exp_R (
- x))
* (
- 1))
+ (((
- x)
- 1)
* (
- (
exp_R (
- x))))) by
A8,
A5,
A10,
Th14
.= (x
* (
exp_R (
- x)))
.= (x
* (1
/ (
exp_R x))) by
TAYLOR_1: 4
.= (x
/ (
exp_R x)) by
XCMPLX_1: 99;
hence thesis;
end;
hence thesis by
A1,
A7,
A9,
FDIFF_1: 21;
end;
theorem ::
FDIFF_6:16
Th16: Z
c= (
dom (
- (
exp_R
* f))) & (for x st x
in Z holds (f
. x)
= (
- (x
* (
log (
number_e ,a))))) & a
>
0 implies (
- (
exp_R
* f))
is_differentiable_on Z & for x st x
in Z holds (((
- (
exp_R
* f))
`| Z)
. x)
= ((a
#R (
- x))
* (
log (
number_e ,a)))
proof
assume that
A1: Z
c= (
dom (
- (
exp_R
* f))) and
A2: for x st x
in Z holds (f
. x)
= (
- (x
* (
log (
number_e ,a)))) and
A3: a
>
0 ;
A4: Z
c= (
dom (
exp_R
* f)) by
A1,
VALUED_1: 8;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A5: Z
c= (
dom f) by
TARSKI:def 3;
A6: for x st x
in Z holds (f
. x)
= (((
- (
log (
number_e ,a)))
* x)
+
0 )
proof
let x;
assume x
in Z;
then (f
. x)
= (
- ((
log (
number_e ,a))
* x)) by
A2
.= (((
- (
log (
number_e ,a)))
* x)
+
0 );
hence thesis;
end;
then
A7: f
is_differentiable_on Z by
A5,
FDIFF_1: 23;
for x st x
in Z holds (
exp_R
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x by
A7,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 19;
end;
then
A8: (
exp_R
* f)
is_differentiable_on Z by
A4,
FDIFF_1: 9;
A9: for x st x
in Z holds (((
- (
exp_R
* f))
`| Z)
. x)
= ((a
#R (
- x))
* (
log (
number_e ,a)))
proof
let x;
assume
A10: x
in Z;
then
A11: f
is_differentiable_in x by
A7,
FDIFF_1: 9;
(((
- (
exp_R
* f))
`| Z)
. x)
= ((
- 1)
* (
diff ((
exp_R
* f),x))) by
A1,
A8,
A10,
FDIFF_1: 20
.= ((
- 1)
* ((
exp_R
. (f
. x))
* (
diff (f,x)))) by
A11,
TAYLOR_1: 19
.= ((
- 1)
* ((
exp_R
. (f
. x))
* ((f
`| Z)
. x))) by
A7,
A10,
FDIFF_1:def 7
.= ((
- 1)
* ((
exp_R
. (f
. x))
* (
- (
log (
number_e ,a))))) by
A5,
A6,
A10,
FDIFF_1: 23
.= ((
- 1)
* ((
exp_R
. (
- (x
* (
log (
number_e ,a)))))
* (
- (
log (
number_e ,a))))) by
A2,
A10
.= ((
- 1)
* ((a
#R (
- x))
* (
- (
log (
number_e ,a))))) by
A3,
Th2
.= ((a
#R (
- x))
* (
log (
number_e ,a)));
hence thesis;
end;
Z
c= (
dom ((
- 1)
(#) (
exp_R
* f))) by
A1;
hence thesis by
A8,
A9,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:17
Z
c= (
dom ((1
/ (
log (
number_e ,a)))
(#) ((
- (
exp_R
* f1))
(#) f2))) & (for x st x
in Z holds (f1
. x)
= (
- (x
* (
log (
number_e ,a)))) & (f2
. x)
= (x
+ (1
/ (
log (
number_e ,a))))) & a
>
0 & a
<> 1 implies ((1
/ (
log (
number_e ,a)))
(#) ((
- (
exp_R
* f1))
(#) f2))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ (
log (
number_e ,a)))
(#) ((
- (
exp_R
* f1))
(#) f2))
`| Z)
. x)
= (x
/ (a
#R x))
proof
assume that
A1: Z
c= (
dom ((1
/ (
log (
number_e ,a)))
(#) ((
- (
exp_R
* f1))
(#) f2))) and
A2: for x st x
in Z holds (f1
. x)
= (
- (x
* (
log (
number_e ,a)))) & (f2
. x)
= (x
+ (1
/ (
log (
number_e ,a)))) and
A3: a
>
0 and
A4: a
<> 1;
A5: for x st x
in Z holds (f2
. x)
= ((1
* x)
+ (1
/ (
log (
number_e ,a)))) by
A2;
A6: Z
c= (
dom ((
- (
exp_R
* f1))
(#) f2)) by
A1,
VALUED_1:def 5;
then
A7: Z
c= ((
dom (
- (
exp_R
* f1)))
/\ (
dom f2)) by
VALUED_1:def 4;
then
A8: Z
c= (
dom (
- (
exp_R
* f1))) by
XBOOLE_1: 18;
A9: for x st x
in Z holds (f1
. x)
= (
- (x
* (
log (
number_e ,a)))) by
A2;
then
A10: (
- (
exp_R
* f1))
is_differentiable_on Z by
A3,
A8,
Th16;
A11: Z
c= (
dom f2) by
A7,
XBOOLE_1: 18;
then
A12: f2
is_differentiable_on Z by
A5,
FDIFF_1: 23;
then
A13: ((
- (
exp_R
* f1))
(#) f2)
is_differentiable_on Z by
A6,
A10,
FDIFF_1: 21;
A14: (
log (
number_e ,a))
<>
0
proof
A15:
number_e
<> 1 by
TAYLOR_1: 11;
assume (
log (
number_e ,a))
=
0 ;
then (
log (
number_e ,a))
= (
log (
number_e ,1)) by
SIN_COS2: 13,
TAYLOR_1: 13;
then a
= (
number_e
to_power (
log (
number_e ,1))) by
A3,
A15,
POWER:def 3,
TAYLOR_1: 11
.= 1 by
A15,
POWER:def 3,
TAYLOR_1: 11;
hence contradiction by
A4;
end;
for x st x
in Z holds ((((1
/ (
log (
number_e ,a)))
(#) ((
- (
exp_R
* f1))
(#) f2))
`| Z)
. x)
= (x
/ (a
#R x))
proof
let x;
assume
A16: x
in Z;
then x
in (
dom (
- (
exp_R
* f1))) by
A8;
then
A17: x
in (
dom (
exp_R
* f1)) by
VALUED_1: 8;
A18: ((
- (
exp_R
* f1))
. x)
= (
- ((
exp_R
* f1)
. x)) by
VALUED_1: 8
.= (
- (
exp_R
. (f1
. x))) by
A17,
FUNCT_1: 12
.= (
- (
exp_R
. (
- (x
* (
log (
number_e ,a)))))) by
A2,
A16
.= (
- (a
#R (
- x))) by
A3,
Th2;
((((1
/ (
log (
number_e ,a)))
(#) ((
- (
exp_R
* f1))
(#) f2))
`| Z)
. x)
= ((1
/ (
log (
number_e ,a)))
* (
diff (((
- (
exp_R
* f1))
(#) f2),x))) by
A1,
A13,
A16,
FDIFF_1: 20
.= ((1
/ (
log (
number_e ,a)))
* ((((
- (
exp_R
* f1))
(#) f2)
`| Z)
. x)) by
A13,
A16,
FDIFF_1:def 7
.= ((1
/ (
log (
number_e ,a)))
* (((f2
. x)
* (
diff ((
- (
exp_R
* f1)),x)))
+ (((
- (
exp_R
* f1))
. x)
* (
diff (f2,x))))) by
A6,
A10,
A12,
A16,
FDIFF_1: 21
.= ((1
/ (
log (
number_e ,a)))
* (((f2
. x)
* (((
- (
exp_R
* f1))
`| Z)
. x))
+ (((
- (
exp_R
* f1))
. x)
* (
diff (f2,x))))) by
A10,
A16,
FDIFF_1:def 7
.= ((1
/ (
log (
number_e ,a)))
* (((f2
. x)
* (((
- (
exp_R
* f1))
`| Z)
. x))
+ (((
- (
exp_R
* f1))
. x)
* ((f2
`| Z)
. x)))) by
A12,
A16,
FDIFF_1:def 7
.= ((1
/ (
log (
number_e ,a)))
* (((f2
. x)
* ((a
#R (
- x))
* (
log (
number_e ,a))))
+ (((
- (
exp_R
* f1))
. x)
* ((f2
`| Z)
. x)))) by
A3,
A9,
A8,
A16,
Th16
.= ((1
/ (
log (
number_e ,a)))
* (((f2
. x)
* ((a
#R (
- x))
* (
log (
number_e ,a))))
+ (((
- (
exp_R
* f1))
. x)
* 1))) by
A11,
A5,
A16,
FDIFF_1: 23
.= ((1
/ (
log (
number_e ,a)))
* ((((f2
. x)
* (
log (
number_e ,a)))
- 1)
* (a
#R (
- x)))) by
A18
.= ((1
/ (
log (
number_e ,a)))
* ((((x
+ (1
/ (
log (
number_e ,a))))
* (
log (
number_e ,a)))
- 1)
* (a
#R (
- x)))) by
A2,
A16
.= (((1
/ (
log (
number_e ,a)))
* (((x
* (
log (
number_e ,a)))
+ ((1
/ (
log (
number_e ,a)))
* (
log (
number_e ,a))))
- 1))
* (a
#R (
- x)))
.= (((1
/ (
log (
number_e ,a)))
* (((x
* (
log (
number_e ,a)))
+ 1)
- 1))
* (a
#R (
- x))) by
A14,
XCMPLX_1: 106
.= ((((1
/ (
log (
number_e ,a)))
* (
log (
number_e ,a)))
* x)
* (a
#R (
- x)))
.= ((1
* x)
* (a
#R (
- x))) by
A14,
XCMPLX_1: 106
.= (x
* (1
/ (a
#R x))) by
A3,
PREPOWER: 76
.= (x
/ (a
#R x)) by
XCMPLX_1: 99;
hence thesis;
end;
hence thesis by
A1,
A13,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:18
Z
c= (
dom ((1
/ ((
log (
number_e ,a))
- 1))
(#) ((
exp_R
* f)
/
exp_R ))) & (for x st x
in Z holds (f
. x)
= (x
* (
log (
number_e ,a)))) & a
>
0 & a
<>
number_e implies ((1
/ ((
log (
number_e ,a))
- 1))
(#) ((
exp_R
* f)
/
exp_R ))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ ((
log (
number_e ,a))
- 1))
(#) ((
exp_R
* f)
/
exp_R ))
`| Z)
. x)
= ((a
#R x)
/ (
exp_R
. x))
proof
assume that
A1: Z
c= (
dom ((1
/ ((
log (
number_e ,a))
- 1))
(#) ((
exp_R
* f)
/
exp_R ))) and
A2: for x st x
in Z holds (f
. x)
= (x
* (
log (
number_e ,a))) and
A3: a
>
0 and
A4: a
<>
number_e ;
Z
c= (
dom ((
exp_R
* f)
/
exp_R )) by
A1,
VALUED_1:def 5;
then Z
c= ((
dom (
exp_R
* f))
/\ ((
dom
exp_R )
\ (
exp_R
"
{
0 }))) by
RFUNCT_1:def 1;
then
A5: Z
c= (
dom (
exp_R
* f)) by
XBOOLE_1: 18;
then
A6: (
exp_R
* f)
is_differentiable_on Z by
A2,
A3,
Th11;
exp_R
is_differentiable_on Z & for x st x
in Z holds (
exp_R
. x)
<>
0 by
FDIFF_1: 26,
SIN_COS: 54,
TAYLOR_1: 16;
then
A7: ((
exp_R
* f)
/
exp_R )
is_differentiable_on Z by
A6,
FDIFF_2: 21;
A8: ((
log (
number_e ,a))
- 1)
<>
0
proof
A9:
number_e
<> 1 by
TAYLOR_1: 11;
assume ((
log (
number_e ,a))
- 1)
=
0 ;
then (
log (
number_e ,a))
= (
log (
number_e ,
number_e )) by
A9,
POWER: 52,
TAYLOR_1: 11;
then a
= (
number_e
to_power (
log (
number_e ,
number_e ))) by
A3,
A9,
POWER:def 3,
TAYLOR_1: 11
.=
number_e by
A9,
POWER:def 3,
TAYLOR_1: 11;
hence contradiction by
A4;
end;
for x st x
in Z holds ((((1
/ ((
log (
number_e ,a))
- 1))
(#) ((
exp_R
* f)
/
exp_R ))
`| Z)
. x)
= ((a
#R x)
/ (
exp_R
. x))
proof
let x;
A10: (
exp_R
. x)
<>
0 by
SIN_COS: 54;
assume
A11: x
in Z;
then
A12: ((
exp_R
* f)
. x)
= (
exp_R
. (f
. x)) by
A5,
FUNCT_1: 12
.= (
exp_R
. (x
* (
log (
number_e ,a)))) by
A2,
A11
.= (a
#R x) by
A3,
Th1;
A13:
exp_R
is_differentiable_in x & (
exp_R
* f)
is_differentiable_in x by
A6,
A11,
FDIFF_1: 9,
SIN_COS: 65;
((((1
/ ((
log (
number_e ,a))
- 1))
(#) ((
exp_R
* f)
/
exp_R ))
`| Z)
. x)
= ((1
/ ((
log (
number_e ,a))
- 1))
* (
diff (((
exp_R
* f)
/
exp_R ),x))) by
A1,
A7,
A11,
FDIFF_1: 20
.= ((1
/ ((
log (
number_e ,a))
- 1))
* ((((
diff ((
exp_R
* f),x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
exp_R
* f)
. x)))
/ ((
exp_R
. x)
^2 ))) by
A13,
A10,
FDIFF_2: 14
.= ((1
/ ((
log (
number_e ,a))
- 1))
* ((((
diff ((
exp_R
* f),x))
* (
exp_R
. x))
- ((
exp_R
. x)
* (a
#R x)))
/ ((
exp_R
. x)
^2 ))) by
A12,
SIN_COS: 65
.= ((1
/ ((
log (
number_e ,a))
- 1))
* ((((
diff ((
exp_R
* f),x))
- (a
#R x))
* (
exp_R
. x))
/ ((
exp_R
. x)
* (
exp_R
. x))))
.= ((1
/ ((
log (
number_e ,a))
- 1))
* (((
diff ((
exp_R
* f),x))
- (a
#R x))
/ (
exp_R
. x))) by
A10,
XCMPLX_1: 91
.= (((1
/ ((
log (
number_e ,a))
- 1))
* ((
diff ((
exp_R
* f),x))
- (a
#R x)))
/ (
exp_R
. x)) by
XCMPLX_1: 74
.= (((1
/ ((
log (
number_e ,a))
- 1))
* ((((
exp_R
* f)
`| Z)
. x)
- (a
#R x)))
/ (
exp_R
. x)) by
A6,
A11,
FDIFF_1:def 7
.= (((1
/ ((
log (
number_e ,a))
- 1))
* (((a
#R x)
* (
log (
number_e ,a)))
- (a
#R x)))
/ (
exp_R
. x)) by
A2,
A3,
A5,
A11,
Th11
.= ((((1
/ ((
log (
number_e ,a))
- 1))
* ((
log (
number_e ,a))
- 1))
* (a
#R x))
/ (
exp_R
. x))
.= ((1
* (a
#R x))
/ (
exp_R
. x)) by
A8,
XCMPLX_1: 106
.= ((a
#R x)
/ (
exp_R
. x));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:19
Z
c= (
dom ((1
/ (1
- (
log (
number_e ,a))))
(#) (
exp_R
/ (
exp_R
* f)))) & (for x st x
in Z holds (f
. x)
= (x
* (
log (
number_e ,a)))) & a
>
0 & a
<>
number_e implies ((1
/ (1
- (
log (
number_e ,a))))
(#) (
exp_R
/ (
exp_R
* f)))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ (1
- (
log (
number_e ,a))))
(#) (
exp_R
/ (
exp_R
* f)))
`| Z)
. x)
= ((
exp_R
. x)
/ (a
#R x))
proof
assume that
A1: Z
c= (
dom ((1
/ (1
- (
log (
number_e ,a))))
(#) (
exp_R
/ (
exp_R
* f)))) and
A2: for x st x
in Z holds (f
. x)
= (x
* (
log (
number_e ,a))) and
A3: a
>
0 and
A4: a
<>
number_e ;
Z
c= (
dom (
exp_R
/ (
exp_R
* f))) by
A1,
VALUED_1:def 5;
then Z
c= ((
dom
exp_R )
/\ ((
dom (
exp_R
* f))
\ ((
exp_R
* f)
"
{
0 }))) by
RFUNCT_1:def 1;
then
A5: Z
c= (
dom (
exp_R
* f)) by
XBOOLE_1: 1;
then
A6: (
exp_R
* f)
is_differentiable_on Z by
A2,
A3,
Th11;
A7: for x st x
in Z holds ((
exp_R
* f)
. x)
<>
0
proof
let x;
assume x
in Z;
then ((
exp_R
* f)
. x)
= (
exp_R
. (f
. x)) by
A5,
FUNCT_1: 12;
hence thesis by
SIN_COS: 54;
end;
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A8: (
exp_R
/ (
exp_R
* f))
is_differentiable_on Z by
A6,
A7,
FDIFF_2: 21;
A9: (1
- (
log (
number_e ,a)))
<>
0
proof
A10:
number_e
<> 1 by
TAYLOR_1: 11;
assume (1
- (
log (
number_e ,a)))
=
0 ;
then (
log (
number_e ,a))
= (
log (
number_e ,
number_e )) by
A10,
POWER: 52,
TAYLOR_1: 11;
then a
= (
number_e
to_power (
log (
number_e ,
number_e ))) by
A3,
A10,
POWER:def 3,
TAYLOR_1: 11
.=
number_e by
A10,
POWER:def 3,
TAYLOR_1: 11;
hence contradiction by
A4;
end;
for x st x
in Z holds ((((1
/ (1
- (
log (
number_e ,a))))
(#) (
exp_R
/ (
exp_R
* f)))
`| Z)
. x)
= ((
exp_R
. x)
/ (a
#R x))
proof
let x;
A11:
exp_R
is_differentiable_in x by
SIN_COS: 65;
A12: (a
#R x)
>
0 by
A3,
PREPOWER: 81;
assume
A13: x
in Z;
then
A14: ((
exp_R
* f)
. x)
= (
exp_R
. (f
. x)) by
A5,
FUNCT_1: 12
.= (
exp_R
. (x
* (
log (
number_e ,a)))) by
A2,
A13
.= (a
#R x) by
A3,
Th1;
A15: (
exp_R
* f)
is_differentiable_in x & ((
exp_R
* f)
. x)
<>
0 by
A6,
A7,
A13,
FDIFF_1: 9;
((((1
/ (1
- (
log (
number_e ,a))))
(#) (
exp_R
/ (
exp_R
* f)))
`| Z)
. x)
= ((1
/ (1
- (
log (
number_e ,a))))
* (
diff ((
exp_R
/ (
exp_R
* f)),x))) by
A1,
A8,
A13,
FDIFF_1: 20
.= ((1
/ (1
- (
log (
number_e ,a))))
* ((((
diff (
exp_R ,x))
* ((
exp_R
* f)
. x))
- ((
diff ((
exp_R
* f),x))
* (
exp_R
. x)))
/ (((
exp_R
* f)
. x)
^2 ))) by
A11,
A15,
FDIFF_2: 14
.= ((1
/ (1
- (
log (
number_e ,a))))
* ((((
exp_R
. x)
* (a
#R x))
- ((
diff ((
exp_R
* f),x))
* (
exp_R
. x)))
/ ((a
#R x)
^2 ))) by
A14,
SIN_COS: 65
.= ((1
/ (1
- (
log (
number_e ,a))))
* (((
exp_R
. x)
* ((a
#R x)
- (
diff ((
exp_R
* f),x))))
/ ((a
#R x)
^2 )))
.= ((1
/ (1
- (
log (
number_e ,a))))
* (((
exp_R
. x)
* ((a
#R x)
- (((
exp_R
* f)
`| Z)
. x)))
/ ((a
#R x)
^2 ))) by
A6,
A13,
FDIFF_1:def 7
.= ((1
/ (1
- (
log (
number_e ,a))))
* (((
exp_R
. x)
* ((a
#R x)
- ((a
#R x)
* (
log (
number_e ,a)))))
/ ((a
#R x)
^2 ))) by
A2,
A3,
A5,
A13,
Th11
.= (((1
/ (1
- (
log (
number_e ,a))))
* (((1
- (
log (
number_e ,a)))
* (
exp_R
. x))
* (a
#R x)))
/ ((a
#R x)
^2 )) by
XCMPLX_1: 74
.= (((((1
/ (1
- (
log (
number_e ,a))))
* (1
- (
log (
number_e ,a))))
* (
exp_R
. x))
* (a
#R x))
/ ((a
#R x)
^2 ))
.= (((1
* (
exp_R
. x))
* (a
#R x))
/ ((a
#R x)
^2 )) by
A9,
XCMPLX_1: 106
.= ((
exp_R
. x)
/ (a
#R x)) by
A12,
XCMPLX_1: 91;
hence thesis;
end;
hence thesis by
A1,
A8,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:20
Z
c= (
dom (
ln
* (
exp_R
+ f))) & (for x st x
in Z holds (f
. x)
= 1) implies (
ln
* (
exp_R
+ f))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* (
exp_R
+ f))
`| Z)
. x)
= ((
exp_R
. x)
/ ((
exp_R
. x)
+ 1))
proof
assume that
A1: Z
c= (
dom (
ln
* (
exp_R
+ f))) and
A2: for x st x
in Z holds (f
. x)
= 1;
A3: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
for y be
object st y
in Z holds y
in (
dom (
exp_R
+ f)) by
A1,
FUNCT_1: 11;
then
A4: Z
c= (
dom (
exp_R
+ f)) by
TARSKI:def 3;
then Z
c= ((
dom
exp_R )
/\ (
dom f)) by
VALUED_1:def 1;
then
A5: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A6: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A7:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A8: (
exp_R
+ f)
is_differentiable_on Z by
A4,
A6,
FDIFF_1: 18;
A9: for x st x
in Z holds (((
exp_R
+ f)
`| Z)
. x)
= (
exp_R
. x)
proof
let x;
assume
A10: x
in Z;
hence (((
exp_R
+ f)
`| Z)
. x)
= ((
diff (
exp_R ,x))
+ (
diff (f,x))) by
A4,
A6,
A7,
FDIFF_1: 18
.= ((
exp_R
. x)
+ (
diff (f,x))) by
SIN_COS: 65
.= ((
exp_R
. x)
+ ((f
`| Z)
. x)) by
A6,
A10,
FDIFF_1:def 7
.= ((
exp_R
. x)
+
0 ) by
A5,
A3,
A10,
FDIFF_1: 23
.= (
exp_R
. x);
end;
A11: for x st x
in Z holds ((
exp_R
+ f)
. x)
>
0
proof
let x;
assume
A12: x
in Z;
then ((
exp_R
+ f)
. x)
= ((
exp_R
. x)
+ (f
. x)) by
A4,
VALUED_1:def 1
.= ((
exp_R
. x)
+ 1) by
A2,
A12;
hence thesis by
SIN_COS: 54,
XREAL_1: 34;
end;
A13: for x st x
in Z holds (
ln
* (
exp_R
+ f))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
exp_R
+ f)
is_differentiable_in x & ((
exp_R
+ f)
. x)
>
0 by
A8,
A11,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A14: (
ln
* (
exp_R
+ f))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* (
exp_R
+ f))
`| Z)
. x)
= ((
exp_R
. x)
/ ((
exp_R
. x)
+ 1))
proof
let x;
assume
A15: x
in Z;
then
A16: ((
exp_R
+ f)
. x)
= ((
exp_R
. x)
+ (f
. x)) by
A4,
VALUED_1:def 1
.= ((
exp_R
. x)
+ 1) by
A2,
A15;
(
exp_R
+ f)
is_differentiable_in x & ((
exp_R
+ f)
. x)
>
0 by
A8,
A11,
A15,
FDIFF_1: 9;
then (
diff ((
ln
* (
exp_R
+ f)),x))
= ((
diff ((
exp_R
+ f),x))
/ ((
exp_R
+ f)
. x)) by
TAYLOR_1: 20
.= ((((
exp_R
+ f)
`| Z)
. x)
/ ((
exp_R
+ f)
. x)) by
A8,
A15,
FDIFF_1:def 7
.= ((
exp_R
. x)
/ ((
exp_R
. x)
+ 1)) by
A9,
A15,
A16;
hence thesis by
A14,
A15,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A13,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:21
Z
c= (
dom (
ln
* (
exp_R
- f))) & (for x st x
in Z holds (f
. x)
= 1 & ((
exp_R
- f)
. x)
>
0 ) implies (
ln
* (
exp_R
- f))
is_differentiable_on Z & for x st x
in Z holds (((
ln
* (
exp_R
- f))
`| Z)
. x)
= ((
exp_R
. x)
/ ((
exp_R
. x)
- 1))
proof
assume that
A1: Z
c= (
dom (
ln
* (
exp_R
- f))) and
A2: for x st x
in Z holds (f
. x)
= 1 & ((
exp_R
- f)
. x)
>
0 ;
A3: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
for y be
object st y
in Z holds y
in (
dom (
exp_R
- f)) by
A1,
FUNCT_1: 11;
then
A4: Z
c= (
dom (
exp_R
- f)) by
TARSKI:def 3;
then Z
c= ((
dom
exp_R )
/\ (
dom f)) by
VALUED_1: 12;
then
A5: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A6: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A7:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A8: (
exp_R
- f)
is_differentiable_on Z by
A4,
A6,
FDIFF_1: 19;
A9: for x st x
in Z holds (((
exp_R
- f)
`| Z)
. x)
= (
exp_R
. x)
proof
let x;
assume
A10: x
in Z;
hence (((
exp_R
- f)
`| Z)
. x)
= ((
diff (
exp_R ,x))
- (
diff (f,x))) by
A4,
A6,
A7,
FDIFF_1: 19
.= ((
exp_R
. x)
- (
diff (f,x))) by
SIN_COS: 65
.= ((
exp_R
. x)
- ((f
`| Z)
. x)) by
A6,
A10,
FDIFF_1:def 7
.= ((
exp_R
. x)
-
0 ) by
A5,
A3,
A10,
FDIFF_1: 23
.= (
exp_R
. x);
end;
A11: for x st x
in Z holds (
ln
* (
exp_R
- f))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
exp_R
- f)
is_differentiable_in x & ((
exp_R
- f)
. x)
>
0 by
A2,
A8,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A12: (
ln
* (
exp_R
- f))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* (
exp_R
- f))
`| Z)
. x)
= ((
exp_R
. x)
/ ((
exp_R
. x)
- 1))
proof
let x;
assume
A13: x
in Z;
then
A14: ((
exp_R
- f)
. x)
= ((
exp_R
. x)
- (f
. x)) by
A4,
VALUED_1: 13
.= ((
exp_R
. x)
- 1) by
A2,
A13;
(
exp_R
- f)
is_differentiable_in x & ((
exp_R
- f)
. x)
>
0 by
A2,
A8,
A13,
FDIFF_1: 9;
then (
diff ((
ln
* (
exp_R
- f)),x))
= ((
diff ((
exp_R
- f),x))
/ ((
exp_R
- f)
. x)) by
TAYLOR_1: 20
.= ((((
exp_R
- f)
`| Z)
. x)
/ ((
exp_R
- f)
. x)) by
A8,
A13,
FDIFF_1:def 7
.= ((
exp_R
. x)
/ ((
exp_R
. x)
- 1)) by
A9,
A13,
A14;
hence thesis by
A12,
A13,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A11,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:22
Z
c= (
dom (
- (
ln
* (f
-
exp_R )))) & (for x st x
in Z holds (f
. x)
= 1 & ((f
-
exp_R )
. x)
>
0 ) implies (
- (
ln
* (f
-
exp_R )))
is_differentiable_on Z & for x st x
in Z holds (((
- (
ln
* (f
-
exp_R )))
`| Z)
. x)
= ((
exp_R
. x)
/ (1
- (
exp_R
. x)))
proof
assume that
A1: Z
c= (
dom (
- (
ln
* (f
-
exp_R )))) and
A2: for x st x
in Z holds (f
. x)
= 1 & ((f
-
exp_R )
. x)
>
0 ;
A3: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
A4: Z
c= (
dom (
ln
* (f
-
exp_R ))) by
A1,
VALUED_1: 8;
then for y be
object st y
in Z holds y
in (
dom (f
-
exp_R )) by
FUNCT_1: 11;
then
A5: Z
c= (
dom (f
-
exp_R )) by
TARSKI:def 3;
then Z
c= ((
dom
exp_R )
/\ (
dom f)) by
VALUED_1: 12;
then
A6: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A7: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A8:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A9: (f
-
exp_R )
is_differentiable_on Z by
A5,
A7,
FDIFF_1: 19;
for x st x
in Z holds (
ln
* (f
-
exp_R ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (f
-
exp_R )
is_differentiable_in x & ((f
-
exp_R )
. x)
>
0 by
A2,
A9,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A10: (
ln
* (f
-
exp_R ))
is_differentiable_on Z by
A4,
FDIFF_1: 9;
A11: for x st x
in Z holds (((f
-
exp_R )
`| Z)
. x)
= (
- (
exp_R
. x))
proof
let x;
assume
A12: x
in Z;
hence (((f
-
exp_R )
`| Z)
. x)
= ((
diff (f,x))
- (
diff (
exp_R ,x))) by
A5,
A7,
A8,
FDIFF_1: 19
.= ((
diff (f,x))
- (
exp_R
. x)) by
SIN_COS: 65
.= (((f
`| Z)
. x)
- (
exp_R
. x)) by
A7,
A12,
FDIFF_1:def 7
.= (
0
- (
exp_R
. x)) by
A6,
A3,
A12,
FDIFF_1: 23
.= (
- (
exp_R
. x));
end;
A13: for x st x
in Z holds (((
- (
ln
* (f
-
exp_R )))
`| Z)
. x)
= ((
exp_R
. x)
/ (1
- (
exp_R
. x)))
proof
let x;
assume
A14: x
in Z;
then
A15: ((f
-
exp_R )
. x)
= ((f
. x)
- (
exp_R
. x)) by
A5,
VALUED_1: 13
.= (1
- (
exp_R
. x)) by
A2,
A14;
A16: (f
-
exp_R )
is_differentiable_in x & ((f
-
exp_R )
. x)
>
0 by
A2,
A9,
A14,
FDIFF_1: 9;
((((
- 1)
(#) (
ln
* (f
-
exp_R )))
`| Z)
. x)
= ((
- 1)
* (
diff ((
ln
* (f
-
exp_R )),x))) by
A1,
A10,
A14,
FDIFF_1: 20
.= ((
- 1)
* ((
diff ((f
-
exp_R ),x))
/ ((f
-
exp_R )
. x))) by
A16,
TAYLOR_1: 20
.= ((
- 1)
* ((((f
-
exp_R )
`| Z)
. x)
/ ((f
-
exp_R )
. x))) by
A9,
A14,
FDIFF_1:def 7
.= ((
- 1)
* ((
- (
exp_R
. x))
/ (1
- (
exp_R
. x)))) by
A11,
A14,
A15
.= (((
- 1)
* (
- (
exp_R
. x)))
/ (1
- (
exp_R
. x))) by
XCMPLX_1: 74
.= ((
exp_R
. x)
/ (1
- (
exp_R
. x)));
hence thesis;
end;
Z
c= (
dom ((
- 1)
(#) (
ln
* (f
-
exp_R )))) by
A1;
hence thesis by
A10,
A13,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:23
Th23: Z
c= (
dom (((
#Z 2)
*
exp_R )
+ f)) & (for x st x
in Z holds (f
. x)
= 1) implies (((
#Z 2)
*
exp_R )
+ f)
is_differentiable_on Z & for x st x
in Z holds (((((
#Z 2)
*
exp_R )
+ f)
`| Z)
. x)
= (2
* (
exp_R (2
* x)))
proof
assume that
A1: Z
c= (
dom (((
#Z 2)
*
exp_R )
+ f)) and
A2: for x st x
in Z holds (f
. x)
= 1;
A3: Z
c= ((
dom ((
#Z 2)
*
exp_R ))
/\ (
dom f)) by
A1,
VALUED_1:def 1;
then
A4: Z
c= (
dom f) by
XBOOLE_1: 18;
A5:
now
let x;
assume x
in Z;
exp_R
is_differentiable_in x by
SIN_COS: 65;
hence ((
#Z 2)
*
exp_R )
is_differentiable_in x by
TAYLOR_1: 3;
end;
A6: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
then
A7: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
Z
c= (
dom ((
#Z 2)
*
exp_R )) by
A3,
XBOOLE_1: 18;
then
A8: ((
#Z 2)
*
exp_R )
is_differentiable_on Z by
A5,
FDIFF_1: 9;
for x st x
in Z holds (((((
#Z 2)
*
exp_R )
+ f)
`| Z)
. x)
= (2
* (
exp_R (2
* x)))
proof
let x;
A9:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A10: x
in Z;
then (((((
#Z 2)
*
exp_R )
+ f)
`| Z)
. x)
= ((
diff (((
#Z 2)
*
exp_R ),x))
+ (
diff (f,x))) by
A1,
A7,
A8,
FDIFF_1: 18
.= (((2
* ((
exp_R
. x)
#Z (2
- 1)))
* (
diff (
exp_R ,x)))
+ (
diff (f,x))) by
A9,
TAYLOR_1: 3
.= (((2
* ((
exp_R
. x)
#Z (2
- 1)))
* (
exp_R
. x))
+ (
diff (f,x))) by
SIN_COS: 65
.= (((2
* (
exp_R
. x))
* (
exp_R
. x))
+ (
diff (f,x))) by
PREPOWER: 35
.= ((2
* ((
exp_R
. x)
* (
exp_R
. x)))
+ (
diff (f,x)))
.= ((2
* ((
exp_R x)
* (
exp_R
. x)))
+ (
diff (f,x))) by
SIN_COS:def 23
.= ((2
* ((
exp_R x)
* (
exp_R x)))
+ (
diff (f,x))) by
SIN_COS:def 23
.= ((2
* (
exp_R (x
+ x)))
+ (
diff (f,x))) by
SIN_COS: 50
.= ((2
* (
exp_R (2
* x)))
+ ((f
`| Z)
. x)) by
A7,
A10,
FDIFF_1:def 7
.= ((2
* (
exp_R (2
* x)))
+
0 ) by
A4,
A6,
A10,
FDIFF_1: 23
.= (2
* (
exp_R (2
* x)));
hence thesis;
end;
hence thesis by
A1,
A7,
A8,
FDIFF_1: 18;
end;
theorem ::
FDIFF_6:24
Z
c= (
dom ((1
/ 2)
(#) (
ln
* f))) & f
= (((
#Z 2)
*
exp_R )
+ f1) & (for x st x
in Z holds (f1
. x)
= 1) implies ((1
/ 2)
(#) (
ln
* f))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) (
ln
* f))
`| Z)
. x)
= ((
exp_R x)
/ ((
exp_R x)
+ (
exp_R (
- x))))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) (
ln
* f))) and
A2: f
= (((
#Z 2)
*
exp_R )
+ f1) and
A3: for x st x
in Z holds (f1
. x)
= 1;
A4: Z
c= (
dom (
ln
* f)) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A5: Z
c= (
dom (((
#Z 2)
*
exp_R )
+ f1)) by
A2,
TARSKI:def 3;
then
A6: (((
#Z 2)
*
exp_R )
+ f1)
is_differentiable_on Z by
A3,
Th23;
Z
c= ((
dom ((
#Z 2)
*
exp_R ))
/\ (
dom f1)) by
A5,
VALUED_1:def 1;
then
A7: Z
c= (
dom ((
#Z 2)
*
exp_R )) by
XBOOLE_1: 18;
A8: for x st x
in Z holds (f
. x)
>
0
proof
let x;
A9: ((
exp_R
. x)
#Z 2)
>
0 by
PREPOWER: 39,
SIN_COS: 54;
assume
A10: x
in Z;
then ((((
#Z 2)
*
exp_R )
+ f1)
. x)
= ((((
#Z 2)
*
exp_R )
. x)
+ (f1
. x)) by
A5,
VALUED_1:def 1
.= (((
#Z 2)
. (
exp_R
. x))
+ (f1
. x)) by
A7,
A10,
FUNCT_1: 12
.= (((
exp_R
. x)
#Z 2)
+ (f1
. x)) by
TAYLOR_1:def 1
.= (((
exp_R
. x)
#Z 2)
+ 1) by
A3,
A10;
hence thesis by
A2,
A9;
end;
for x st x
in Z holds (
ln
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
A8,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A11: (
ln
* f)
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds ((((1
/ 2)
(#) (
ln
* f))
`| Z)
. x)
= ((
exp_R x)
/ ((
exp_R x)
+ (
exp_R (
- x))))
proof
let x;
A12: (
exp_R x)
>
0 by
SIN_COS: 55;
assume
A13: x
in Z;
then
A14: f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A6,
A8,
FDIFF_1: 9;
A15: ((((
#Z 2)
*
exp_R )
+ f1)
. x)
= ((((
#Z 2)
*
exp_R )
. x)
+ (f1
. x)) by
A5,
A13,
VALUED_1:def 1
.= (((
#Z 2)
. (
exp_R
. x))
+ (f1
. x)) by
A7,
A13,
FUNCT_1: 12
.= (((
exp_R
. x)
#Z 2)
+ (f1
. x)) by
TAYLOR_1:def 1
.= (((
exp_R
. x)
#Z 2)
+ 1) by
A3,
A13
.= (((
exp_R x)
#Z (1
+ 1))
+ 1) by
SIN_COS:def 23
.= ((((
exp_R x)
#Z 1)
* ((
exp_R x)
#Z 1))
+ 1) by
A12,
PREPOWER: 44
.= (((
exp_R x)
* ((
exp_R x)
#Z 1))
+ 1) by
PREPOWER: 35
.= (((
exp_R x)
* (
exp_R x))
+ 1) by
PREPOWER: 35;
((((1
/ 2)
(#) (
ln
* f))
`| Z)
. x)
= ((1
/ 2)
* (
diff ((
ln
* f),x))) by
A1,
A11,
A13,
FDIFF_1: 20
.= ((1
/ 2)
* ((
diff (f,x))
/ (f
. x))) by
A14,
TAYLOR_1: 20
.= ((1
/ 2)
* ((((((
#Z 2)
*
exp_R )
+ f1)
`| Z)
. x)
/ ((((
#Z 2)
*
exp_R )
+ f1)
. x))) by
A2,
A6,
A13,
FDIFF_1:def 7
.= ((1
/ 2)
* ((2
* (
exp_R (2
* x)))
/ (((
exp_R x)
* (
exp_R x))
+ 1))) by
A3,
A5,
A13,
A15,
Th23
.= (((1
/ 2)
* (2
* (
exp_R (2
* x))))
/ (((
exp_R x)
* (
exp_R x))
+ 1)) by
XCMPLX_1: 74
.= (((
exp_R (x
+ x))
/ (
exp_R x))
/ ((((
exp_R x)
* (
exp_R x))
+ 1)
/ (
exp_R x))) by
A12,
XCMPLX_1: 55
.= ((((
exp_R x)
* (
exp_R x))
/ (
exp_R x))
/ ((((
exp_R x)
* (
exp_R x))
+ 1)
/ (
exp_R x))) by
SIN_COS: 50
.= ((((
exp_R x)
* (
exp_R x))
/ (
exp_R x))
/ ((((
exp_R x)
* (
exp_R x))
/ (
exp_R x))
+ (1
/ (
exp_R x)))) by
XCMPLX_1: 62
.= ((
exp_R x)
/ ((((
exp_R x)
* (
exp_R x))
/ (
exp_R x))
+ (1
/ (
exp_R x)))) by
A12,
XCMPLX_1: 89
.= ((
exp_R x)
/ ((
exp_R x)
+ (1
/ (
exp_R x)))) by
A12,
XCMPLX_1: 89
.= ((
exp_R x)
/ ((
exp_R x)
+ (
exp_R (
- x)))) by
TAYLOR_1: 4;
hence thesis;
end;
hence thesis by
A1,
A11,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:25
Th25: Z
c= (
dom (((
#Z 2)
*
exp_R )
- f)) & (for x st x
in Z holds (f
. x)
= 1) implies (((
#Z 2)
*
exp_R )
- f)
is_differentiable_on Z & for x st x
in Z holds (((((
#Z 2)
*
exp_R )
- f)
`| Z)
. x)
= (2
* (
exp_R (2
* x)))
proof
assume that
A1: Z
c= (
dom (((
#Z 2)
*
exp_R )
- f)) and
A2: for x st x
in Z holds (f
. x)
= 1;
A3: Z
c= ((
dom ((
#Z 2)
*
exp_R ))
/\ (
dom f)) by
A1,
VALUED_1: 12;
then
A4: Z
c= (
dom f) by
XBOOLE_1: 18;
A5:
now
let x;
assume x
in Z;
exp_R
is_differentiable_in x by
SIN_COS: 65;
hence ((
#Z 2)
*
exp_R )
is_differentiable_in x by
TAYLOR_1: 3;
end;
A6: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
then
A7: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
Z
c= (
dom ((
#Z 2)
*
exp_R )) by
A3,
XBOOLE_1: 18;
then
A8: ((
#Z 2)
*
exp_R )
is_differentiable_on Z by
A5,
FDIFF_1: 9;
for x st x
in Z holds (((((
#Z 2)
*
exp_R )
- f)
`| Z)
. x)
= (2
* (
exp_R (2
* x)))
proof
let x;
A9:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A10: x
in Z;
then (((((
#Z 2)
*
exp_R )
- f)
`| Z)
. x)
= ((
diff (((
#Z 2)
*
exp_R ),x))
- (
diff (f,x))) by
A1,
A7,
A8,
FDIFF_1: 19
.= (((2
* ((
exp_R
. x)
#Z (2
- 1)))
* (
diff (
exp_R ,x)))
- (
diff (f,x))) by
A9,
TAYLOR_1: 3
.= (((2
* ((
exp_R
. x)
#Z 1))
* (
exp_R
. x))
- (
diff (f,x))) by
SIN_COS: 65
.= (((2
* (
exp_R
. x))
* (
exp_R
. x))
- (
diff (f,x))) by
PREPOWER: 35
.= ((2
* ((
exp_R
. x)
* (
exp_R
. x)))
- (
diff (f,x)))
.= ((2
* ((
exp_R x)
* (
exp_R
. x)))
- (
diff (f,x))) by
SIN_COS:def 23
.= ((2
* ((
exp_R x)
* (
exp_R x)))
- (
diff (f,x))) by
SIN_COS:def 23
.= ((2
* (
exp_R (x
+ x)))
- (
diff (f,x))) by
SIN_COS: 50
.= ((2
* (
exp_R (2
* x)))
- ((f
`| Z)
. x)) by
A7,
A10,
FDIFF_1:def 7
.= ((2
* (
exp_R (2
* x)))
-
0 ) by
A4,
A6,
A10,
FDIFF_1: 23
.= (2
* (
exp_R (2
* x)));
hence thesis;
end;
hence thesis by
A1,
A7,
A8,
FDIFF_1: 19;
end;
theorem ::
FDIFF_6:26
Z
c= (
dom ((1
/ 2)
(#) (
ln
* f))) & f
= (((
#Z 2)
*
exp_R )
- f1) & (for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 ) implies ((1
/ 2)
(#) (
ln
* f))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) (
ln
* f))
`| Z)
. x)
= ((
exp_R x)
/ ((
exp_R x)
- (
exp_R (
- x))))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) (
ln
* f))) and
A2: f
= (((
#Z 2)
*
exp_R )
- f1) and
A3: for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 ;
A4: Z
c= (
dom (
ln
* f)) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A5: Z
c= (
dom (((
#Z 2)
*
exp_R )
- f1)) by
A2,
TARSKI:def 3;
A6: for x st x
in Z holds (f1
. x)
= 1 by
A3;
then
A7: (((
#Z 2)
*
exp_R )
- f1)
is_differentiable_on Z by
A5,
Th25;
for x st x
in Z holds (
ln
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A3,
A7,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A8: (
ln
* f)
is_differentiable_on Z by
A4,
FDIFF_1: 9;
Z
c= ((
dom ((
#Z 2)
*
exp_R ))
/\ (
dom f1)) by
A5,
VALUED_1: 12;
then
A9: Z
c= (
dom ((
#Z 2)
*
exp_R )) by
XBOOLE_1: 18;
for x st x
in Z holds ((((1
/ 2)
(#) (
ln
* f))
`| Z)
. x)
= ((
exp_R x)
/ ((
exp_R x)
- (
exp_R (
- x))))
proof
let x;
A10: (
exp_R x)
>
0 by
SIN_COS: 55;
assume
A11: x
in Z;
then
A12: f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A3,
A7,
FDIFF_1: 9;
A13: ((((
#Z 2)
*
exp_R )
- f1)
. x)
= ((((
#Z 2)
*
exp_R )
. x)
- (f1
. x)) by
A5,
A11,
VALUED_1: 13
.= (((
#Z 2)
. (
exp_R
. x))
- (f1
. x)) by
A9,
A11,
FUNCT_1: 12
.= (((
exp_R
. x)
#Z 2)
- (f1
. x)) by
TAYLOR_1:def 1
.= (((
exp_R
. x)
#Z 2)
- 1) by
A3,
A11
.= (((
exp_R x)
#Z (1
+ 1))
- 1) by
SIN_COS:def 23
.= ((((
exp_R x)
#Z 1)
* ((
exp_R x)
#Z 1))
- 1) by
A10,
PREPOWER: 44
.= (((
exp_R x)
* ((
exp_R x)
#Z 1))
- 1) by
PREPOWER: 35
.= (((
exp_R x)
* (
exp_R x))
- 1) by
PREPOWER: 35;
((((1
/ 2)
(#) (
ln
* f))
`| Z)
. x)
= ((1
/ 2)
* (
diff ((
ln
* f),x))) by
A1,
A8,
A11,
FDIFF_1: 20
.= ((1
/ 2)
* ((
diff (f,x))
/ (f
. x))) by
A12,
TAYLOR_1: 20
.= ((1
/ 2)
* ((((((
#Z 2)
*
exp_R )
- f1)
`| Z)
. x)
/ ((((
#Z 2)
*
exp_R )
- f1)
. x))) by
A2,
A7,
A11,
FDIFF_1:def 7
.= ((1
/ 2)
* ((2
* (
exp_R (2
* x)))
/ (((
exp_R x)
* (
exp_R x))
- 1))) by
A6,
A5,
A11,
A13,
Th25
.= (((1
/ 2)
* (2
* (
exp_R (2
* x))))
/ (((
exp_R x)
* (
exp_R x))
- 1)) by
XCMPLX_1: 74
.= (((
exp_R (x
+ x))
/ (
exp_R x))
/ ((((
exp_R x)
* (
exp_R x))
- 1)
/ (
exp_R x))) by
A10,
XCMPLX_1: 55
.= ((((
exp_R x)
* (
exp_R x))
/ (
exp_R x))
/ ((((
exp_R x)
* (
exp_R x))
- 1)
/ (
exp_R x))) by
SIN_COS: 50
.= ((((
exp_R x)
* (
exp_R x))
/ (
exp_R x))
/ ((((
exp_R x)
* (
exp_R x))
/ (
exp_R x))
- (1
/ (
exp_R x)))) by
XCMPLX_1: 120
.= ((
exp_R x)
/ ((((
exp_R x)
* (
exp_R x))
/ (
exp_R x))
- (1
/ (
exp_R x)))) by
A10,
XCMPLX_1: 89
.= ((
exp_R x)
/ ((
exp_R x)
- (1
/ (
exp_R x)))) by
A10,
XCMPLX_1: 89
.= ((
exp_R x)
/ ((
exp_R x)
- (
exp_R (
- x)))) by
TAYLOR_1: 4;
hence thesis;
end;
hence thesis by
A1,
A8,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:27
Th27: Z
c= (
dom ((
#Z 2)
* (
exp_R
- f))) & (for x st x
in Z holds (f
. x)
= 1) implies ((
#Z 2)
* (
exp_R
- f))
is_differentiable_on Z & for x st x
in Z holds ((((
#Z 2)
* (
exp_R
- f))
`| Z)
. x)
= ((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
proof
assume that
A1: Z
c= (
dom ((
#Z 2)
* (
exp_R
- f))) and
A2: for x st x
in Z holds (f
. x)
= 1;
for y be
object st y
in Z holds y
in (
dom (
exp_R
- f)) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom (
exp_R
- f)) by
TARSKI:def 3;
then Z
c= ((
dom
exp_R )
/\ (
dom f)) by
VALUED_1: 12;
then
A4: Z
c= (
dom f) by
XBOOLE_1: 18;
A5: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
then
A6: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A7: for x st x
in Z holds ((
#Z 2)
* (
exp_R
- f))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A8: f
is_differentiable_in x by
A6,
FDIFF_1: 9;
exp_R
is_differentiable_in x by
SIN_COS: 65;
then (
exp_R
- f)
is_differentiable_in x by
A8,
FDIFF_1: 14;
hence thesis by
TAYLOR_1: 3;
end;
then
A9: ((
#Z 2)
* (
exp_R
- f))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#Z 2)
* (
exp_R
- f))
`| Z)
. x)
= ((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
proof
let x;
A10:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A11: x
in Z;
then
A12: ((
exp_R
- f)
. x)
= ((
exp_R
. x)
- (f
. x)) by
A3,
VALUED_1: 13
.= ((
exp_R
. x)
- 1) by
A2,
A11;
A13: f
is_differentiable_in x by
A6,
A11,
FDIFF_1: 9;
then
A14: (
diff ((
exp_R
- f),x))
= ((
diff (
exp_R ,x))
- (
diff (f,x))) by
A10,
FDIFF_1: 14
.= ((
diff (
exp_R ,x))
- ((f
`| Z)
. x)) by
A6,
A11,
FDIFF_1:def 7
.= ((
exp_R
. x)
- ((f
`| Z)
. x)) by
SIN_COS: 65
.= ((
exp_R
. x)
-
0 ) by
A4,
A5,
A11,
FDIFF_1: 23
.= (
exp_R
. x);
A15: (
exp_R
- f)
is_differentiable_in x by
A13,
A10,
FDIFF_1: 14;
((((
#Z 2)
* (
exp_R
- f))
`| Z)
. x)
= (
diff (((
#Z 2)
* (
exp_R
- f)),x)) by
A9,
A11,
FDIFF_1:def 7
.= ((2
* (((
exp_R
- f)
. x)
#Z (2
- 1)))
* (
diff ((
exp_R
- f),x))) by
A15,
TAYLOR_1: 3
.= ((2
* ((
exp_R
. x)
- 1))
* (
exp_R
. x)) by
A14,
A12,
PREPOWER: 35
.= ((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:28
Z
c= (
dom f) & f
= (
ln
* (((
#Z 2)
* (
exp_R
- f1))
/
exp_R )) & (for x st x
in Z holds (f1
. x)
= 1 & ((
exp_R
- f1)
. x)
>
0 ) implies f
is_differentiable_on Z & for x st x
in Z holds ((f
`| Z)
. x)
= (((
exp_R
. x)
+ 1)
/ ((
exp_R
. x)
- 1))
proof
assume that
A1: Z
c= (
dom f) and
A2: f
= (
ln
* (((
#Z 2)
* (
exp_R
- f1))
/
exp_R )) and
A3: for x st x
in Z holds (f1
. x)
= 1 & ((
exp_R
- f1)
. x)
>
0 ;
for y be
object st y
in Z holds y
in (
dom (((
#Z 2)
* (
exp_R
- f1))
/
exp_R )) by
A1,
A2,
FUNCT_1: 11;
then
A4: Z
c= (
dom (((
#Z 2)
* (
exp_R
- f1))
/
exp_R )) by
TARSKI:def 3;
then Z
c= ((
dom ((
#Z 2)
* (
exp_R
- f1)))
/\ ((
dom
exp_R )
\ (
exp_R
"
{
0 }))) by
RFUNCT_1:def 1;
then
A5: Z
c= (
dom ((
#Z 2)
* (
exp_R
- f1))) by
XBOOLE_1: 18;
then for y be
object st y
in Z holds y
in (
dom (
exp_R
- f1)) by
FUNCT_1: 11;
then
A6: Z
c= (
dom (
exp_R
- f1)) by
TARSKI:def 3;
A7: for x st x
in Z holds ((((
#Z 2)
* (
exp_R
- f1))
/
exp_R )
. x)
>
0
proof
let x;
A8: (
exp_R
. x)
>
0 by
SIN_COS: 54;
assume
A9: x
in Z;
then
A10: (((
exp_R
- f1)
. x)
#Z 2)
>
0 by
A3,
PREPOWER: 39;
((((
#Z 2)
* (
exp_R
- f1))
/
exp_R )
. x)
= ((((
#Z 2)
* (
exp_R
- f1))
. x)
* ((
exp_R
. x)
" )) by
A4,
A9,
RFUNCT_1:def 1
.= ((((
#Z 2)
* (
exp_R
- f1))
. x)
* (1
/ (
exp_R
. x))) by
XCMPLX_1: 215
.= ((((
#Z 2)
* (
exp_R
- f1))
. x)
/ (
exp_R
. x)) by
XCMPLX_1: 99
.= (((
#Z 2)
. ((
exp_R
- f1)
. x))
/ (
exp_R
. x)) by
A5,
A9,
FUNCT_1: 12
.= ((((
exp_R
- f1)
. x)
#Z 2)
/ (
exp_R
. x)) by
TAYLOR_1:def 1;
hence thesis by
A10,
A8,
XREAL_1: 139;
end;
A11: for x st x
in Z holds (f1
. x)
= 1 by
A3;
then
A12: ((
#Z 2)
* (
exp_R
- f1))
is_differentiable_on Z by
A5,
Th27;
exp_R
is_differentiable_on Z & for x st x
in Z holds (
exp_R
. x)
<>
0 by
FDIFF_1: 26,
SIN_COS: 54,
TAYLOR_1: 16;
then
A13: (((
#Z 2)
* (
exp_R
- f1))
/
exp_R )
is_differentiable_on Z by
A12,
FDIFF_2: 21;
A14: for x st x
in Z holds (
ln
* (((
#Z 2)
* (
exp_R
- f1))
/
exp_R ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (((
#Z 2)
* (
exp_R
- f1))
/
exp_R )
is_differentiable_in x & ((((
#Z 2)
* (
exp_R
- f1))
/
exp_R )
. x)
>
0 by
A13,
A7,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A15: f
is_differentiable_on Z by
A1,
A2,
FDIFF_1: 9;
for x st x
in Z holds ((f
`| Z)
. x)
= (((
exp_R
. x)
+ 1)
/ ((
exp_R
. x)
- 1))
proof
let x;
A16: (
exp_R
. x)
>
0 by
SIN_COS: 54;
A17:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A18: x
in Z;
then
A19: ((
exp_R
- f1)
. x)
= ((
exp_R
. x)
- (f1
. x)) by
A6,
VALUED_1: 13
.= ((
exp_R
. x)
- 1) by
A3,
A18;
then
A20: ((
exp_R
. x)
- 1)
>
0 by
A3,
A18;
A21: ((((
#Z 2)
* (
exp_R
- f1))
/
exp_R )
. x)
= ((((
#Z 2)
* (
exp_R
- f1))
. x)
* ((
exp_R
. x)
" )) by
A4,
A18,
RFUNCT_1:def 1
.= ((((
#Z 2)
* (
exp_R
- f1))
. x)
* (1
/ (
exp_R
. x))) by
XCMPLX_1: 215
.= ((((
#Z 2)
* (
exp_R
- f1))
. x)
/ (
exp_R
. x)) by
XCMPLX_1: 99
.= (((
#Z 2)
. ((
exp_R
- f1)
. x))
/ (
exp_R
. x)) by
A5,
A18,
FUNCT_1: 12
.= ((((
exp_R
. x)
- 1)
#Z (1
+ 1))
/ (
exp_R
. x)) by
A19,
TAYLOR_1:def 1
.= (((((
exp_R
. x)
- 1)
#Z 1)
* (((
exp_R
. x)
- 1)
#Z 1))
/ (
exp_R
. x)) by
A20,
PREPOWER: 44
.= ((((
exp_R
. x)
- 1)
* (((
exp_R
. x)
- 1)
#Z 1))
/ (
exp_R
. x)) by
PREPOWER: 35
.= ((((
exp_R
. x)
- 1)
* ((
exp_R
. x)
- 1))
/ (
exp_R
. x)) by
PREPOWER: 35;
A22: (((
#Z 2)
* (
exp_R
- f1))
/
exp_R )
is_differentiable_in x & ((((
#Z 2)
* (
exp_R
- f1))
/
exp_R )
. x)
>
0 by
A13,
A7,
A18,
FDIFF_1: 9;
((
#Z 2)
* (
exp_R
- f1))
is_differentiable_in x by
A12,
A18,
FDIFF_1: 9;
then
A23: (
diff ((((
#Z 2)
* (
exp_R
- f1))
/
exp_R ),x))
= ((((
diff (((
#Z 2)
* (
exp_R
- f1)),x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* (((
#Z 2)
* (
exp_R
- f1))
. x)))
/ ((
exp_R
. x)
^2 )) by
A16,
A17,
FDIFF_2: 14
.= (((((((
#Z 2)
* (
exp_R
- f1))
`| Z)
. x)
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* (((
#Z 2)
* (
exp_R
- f1))
. x)))
/ ((
exp_R
. x)
^2 )) by
A12,
A18,
FDIFF_1:def 7
.= (((((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* (((
#Z 2)
* (
exp_R
- f1))
. x)))
/ ((
exp_R
. x)
^2 )) by
A11,
A5,
A18,
Th27
.= (((((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
* (
exp_R
. x))
- ((
exp_R
. x)
* (((
#Z 2)
* (
exp_R
- f1))
. x)))
/ ((
exp_R
. x)
^2 )) by
SIN_COS: 65
.= (((((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
- (((
#Z 2)
* (
exp_R
- f1))
. x))
* (
exp_R
. x))
/ ((
exp_R
. x)
* (
exp_R
. x)))
.= ((((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
- (((
#Z 2)
* (
exp_R
- f1))
. x))
/ (
exp_R
. x)) by
A16,
XCMPLX_1: 91
.= ((((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
- ((
#Z 2)
. ((
exp_R
- f1)
. x)))
/ (
exp_R
. x)) by
A5,
A18,
FUNCT_1: 12
.= ((((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
- (((
exp_R
- f1)
. x)
#Z 2))
/ (
exp_R
. x)) by
TAYLOR_1:def 1
.= ((((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
- (((
exp_R
. x)
- (f1
. x))
#Z 2))
/ (
exp_R
. x)) by
A6,
A18,
VALUED_1: 13
.= ((((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
- (((
exp_R
. x)
- 1)
#Z (1
+ 1)))
/ (
exp_R
. x)) by
A3,
A18
.= ((((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
- ((((
exp_R
. x)
- 1)
#Z 1)
* (((
exp_R
. x)
- 1)
#Z 1)))
/ (
exp_R
. x)) by
A20,
PREPOWER: 44
.= ((((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
- (((
exp_R
. x)
- 1)
* (((
exp_R
. x)
- 1)
#Z 1)))
/ (
exp_R
. x)) by
PREPOWER: 35
.= ((((2
* (
exp_R
. x))
* ((
exp_R
. x)
- 1))
- (((
exp_R
. x)
- 1)
* ((
exp_R
. x)
- 1)))
/ (
exp_R
. x)) by
PREPOWER: 35
.= ((((
exp_R
. x)
+ 1)
* ((
exp_R
. x)
- 1))
/ (
exp_R
. x));
((f
`| Z)
. x)
= (
diff ((
ln
* (((
#Z 2)
* (
exp_R
- f1))
/
exp_R )),x)) by
A2,
A15,
A18,
FDIFF_1:def 7
.= (((((
exp_R
. x)
+ 1)
* ((
exp_R
. x)
- 1))
/ (
exp_R
. x))
/ ((((
exp_R
. x)
- 1)
* ((
exp_R
. x)
- 1))
/ (
exp_R
. x))) by
A22,
A23,
A21,
TAYLOR_1: 20
.= ((((
exp_R
. x)
+ 1)
* ((
exp_R
. x)
- 1))
/ (((
exp_R
. x)
- 1)
* ((
exp_R
. x)
- 1))) by
A16,
XCMPLX_1: 55
.= (((
exp_R
. x)
+ 1)
/ ((
exp_R
. x)
- 1)) by
A20,
XCMPLX_1: 91;
hence thesis;
end;
hence thesis by
A1,
A2,
A14,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:29
Th29: Z
c= (
dom ((
#Z 2)
* (
exp_R
+ f))) & (for x st x
in Z holds (f
. x)
= 1) implies ((
#Z 2)
* (
exp_R
+ f))
is_differentiable_on Z & for x st x
in Z holds ((((
#Z 2)
* (
exp_R
+ f))
`| Z)
. x)
= ((2
* (
exp_R
. x))
* ((
exp_R
. x)
+ 1))
proof
assume that
A1: Z
c= (
dom ((
#Z 2)
* (
exp_R
+ f))) and
A2: for x st x
in Z holds (f
. x)
= 1;
for y be
object st y
in Z holds y
in (
dom (
exp_R
+ f)) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom (
exp_R
+ f)) by
TARSKI:def 3;
then Z
c= ((
dom
exp_R )
/\ (
dom f)) by
VALUED_1:def 1;
then
A4: Z
c= (
dom f) by
XBOOLE_1: 18;
A5: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
then
A6: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A7: for x st x
in Z holds ((
#Z 2)
* (
exp_R
+ f))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A8: f
is_differentiable_in x by
A6,
FDIFF_1: 9;
exp_R
is_differentiable_in x by
SIN_COS: 65;
then (
exp_R
+ f)
is_differentiable_in x by
A8,
FDIFF_1: 13;
hence thesis by
TAYLOR_1: 3;
end;
then
A9: ((
#Z 2)
* (
exp_R
+ f))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#Z 2)
* (
exp_R
+ f))
`| Z)
. x)
= ((2
* (
exp_R
. x))
* ((
exp_R
. x)
+ 1))
proof
let x;
A10:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A11: x
in Z;
then
A12: ((
exp_R
+ f)
. x)
= ((
exp_R
. x)
+ (f
. x)) by
A3,
VALUED_1:def 1
.= ((
exp_R
. x)
+ 1) by
A2,
A11;
A13: f
is_differentiable_in x by
A6,
A11,
FDIFF_1: 9;
then
A14: (
diff ((
exp_R
+ f),x))
= ((
diff (
exp_R ,x))
+ (
diff (f,x))) by
A10,
FDIFF_1: 13
.= ((
diff (
exp_R ,x))
+ ((f
`| Z)
. x)) by
A6,
A11,
FDIFF_1:def 7
.= ((
exp_R
. x)
+ ((f
`| Z)
. x)) by
SIN_COS: 65
.= ((
exp_R
. x)
+
0 ) by
A4,
A5,
A11,
FDIFF_1: 23
.= (
exp_R
. x);
A15: (
exp_R
+ f)
is_differentiable_in x by
A13,
A10,
FDIFF_1: 13;
((((
#Z 2)
* (
exp_R
+ f))
`| Z)
. x)
= (
diff (((
#Z 2)
* (
exp_R
+ f)),x)) by
A9,
A11,
FDIFF_1:def 7
.= ((2
* (((
exp_R
+ f)
. x)
#Z (2
- 1)))
* (
diff ((
exp_R
+ f),x))) by
A15,
TAYLOR_1: 3
.= ((2
* ((
exp_R
. x)
+ 1))
* (
exp_R
. x)) by
A14,
A12,
PREPOWER: 35
.= ((2
* (
exp_R
. x))
* ((
exp_R
. x)
+ 1));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:30
Z
c= (
dom f) & f
= (
ln
* (((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )) & (for x st x
in Z holds (f1
. x)
= 1) implies f
is_differentiable_on Z & for x st x
in Z holds ((f
`| Z)
. x)
= (((
exp_R
. x)
- 1)
/ ((
exp_R
. x)
+ 1))
proof
assume that
A1: Z
c= (
dom f) and
A2: f
= (
ln
* (((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )) and
A3: for x st x
in Z holds (f1
. x)
= 1;
for y be
object st y
in Z holds y
in (
dom (((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )) by
A1,
A2,
FUNCT_1: 11;
then
A4: Z
c= (
dom (((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )) by
TARSKI:def 3;
then Z
c= ((
dom ((
#Z 2)
* (
exp_R
+ f1)))
/\ ((
dom
exp_R )
\ (
exp_R
"
{
0 }))) by
RFUNCT_1:def 1;
then
A5: Z
c= (
dom ((
#Z 2)
* (
exp_R
+ f1))) by
XBOOLE_1: 18;
then
A6: ((
#Z 2)
* (
exp_R
+ f1))
is_differentiable_on Z by
A3,
Th29;
for y be
object st y
in Z holds y
in (
dom (
exp_R
+ f1)) by
A5,
FUNCT_1: 11;
then
A7: Z
c= (
dom (
exp_R
+ f1)) by
TARSKI:def 3;
A8: for x st x
in Z holds ((((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )
. x)
>
0
proof
let x;
A9: (
exp_R
. x)
>
0 by
SIN_COS: 54;
assume
A10: x
in Z;
then ((
exp_R
+ f1)
. x)
= ((
exp_R
. x)
+ (f1
. x)) by
A7,
VALUED_1:def 1
.= ((
exp_R
. x)
+ 1) by
A3,
A10;
then ((
exp_R
+ f1)
. x)
>
0 by
SIN_COS: 54,
XREAL_1: 34;
then
A11: (((
exp_R
+ f1)
. x)
#Z 2)
>
0 by
PREPOWER: 39;
((((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )
. x)
= ((((
#Z 2)
* (
exp_R
+ f1))
. x)
* ((
exp_R
. x)
" )) by
A4,
A10,
RFUNCT_1:def 1
.= ((((
#Z 2)
* (
exp_R
+ f1))
. x)
* (1
/ (
exp_R
. x))) by
XCMPLX_1: 215
.= ((((
#Z 2)
* (
exp_R
+ f1))
. x)
/ (
exp_R
. x)) by
XCMPLX_1: 99
.= (((
#Z 2)
. ((
exp_R
+ f1)
. x))
/ (
exp_R
. x)) by
A5,
A10,
FUNCT_1: 12
.= ((((
exp_R
+ f1)
. x)
#Z 2)
/ (
exp_R
. x)) by
TAYLOR_1:def 1;
hence thesis by
A11,
A9,
XREAL_1: 139;
end;
exp_R
is_differentiable_on Z & for x st x
in Z holds (
exp_R
. x)
<>
0 by
FDIFF_1: 26,
SIN_COS: 54,
TAYLOR_1: 16;
then
A12: (((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )
is_differentiable_on Z by
A6,
FDIFF_2: 21;
A13: for x st x
in Z holds (
ln
* (((
#Z 2)
* (
exp_R
+ f1))
/
exp_R ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )
is_differentiable_in x & ((((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )
. x)
>
0 by
A12,
A8,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A14: f
is_differentiable_on Z by
A1,
A2,
FDIFF_1: 9;
for x st x
in Z holds ((f
`| Z)
. x)
= (((
exp_R
. x)
- 1)
/ ((
exp_R
. x)
+ 1))
proof
let x;
A15: (
exp_R
. x)
>
0 by
SIN_COS: 54;
A16:
exp_R
is_differentiable_in x by
SIN_COS: 65;
A17: ((
exp_R
. x)
+ 1)
>
0 by
SIN_COS: 54,
XREAL_1: 34;
assume
A18: x
in Z;
then
A19: ((
exp_R
+ f1)
. x)
= ((
exp_R
. x)
+ (f1
. x)) by
A7,
VALUED_1:def 1
.= ((
exp_R
. x)
+ 1) by
A3,
A18;
A20: (((
#Z 2)
* (
exp_R
+ f1))
. x)
= ((
#Z 2)
. ((
exp_R
+ f1)
. x)) by
A5,
A18,
FUNCT_1: 12
.= (((
exp_R
. x)
+ 1)
#Z (1
+ 1)) by
A19,
TAYLOR_1:def 1
.= ((((
exp_R
. x)
+ 1)
#Z 1)
* (((
exp_R
. x)
+ 1)
#Z 1)) by
A17,
PREPOWER: 44
.= (((
exp_R
. x)
+ 1)
* (((
exp_R
. x)
+ 1)
#Z 1)) by
PREPOWER: 35
.= (((
exp_R
. x)
+ 1)
* ((
exp_R
. x)
+ 1)) by
PREPOWER: 35;
A21: (((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )
is_differentiable_in x & ((((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )
. x)
>
0 by
A12,
A8,
A18,
FDIFF_1: 9;
((
#Z 2)
* (
exp_R
+ f1))
is_differentiable_in x by
A6,
A18,
FDIFF_1: 9;
then
A22: (
diff ((((
#Z 2)
* (
exp_R
+ f1))
/
exp_R ),x))
= ((((
diff (((
#Z 2)
* (
exp_R
+ f1)),x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* (((
#Z 2)
* (
exp_R
+ f1))
. x)))
/ ((
exp_R
. x)
^2 )) by
A15,
A16,
FDIFF_2: 14
.= (((((((
#Z 2)
* (
exp_R
+ f1))
`| Z)
. x)
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* (((
#Z 2)
* (
exp_R
+ f1))
. x)))
/ ((
exp_R
. x)
^2 )) by
A6,
A18,
FDIFF_1:def 7
.= (((((2
* (
exp_R
. x))
* ((
exp_R
. x)
+ 1))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* (((
#Z 2)
* (
exp_R
+ f1))
. x)))
/ ((
exp_R
. x)
^2 )) by
A3,
A5,
A18,
Th29
.= (((((2
* (
exp_R
. x))
* ((
exp_R
. x)
+ 1))
* (
exp_R
. x))
- ((
exp_R
. x)
* (((
#Z 2)
* (
exp_R
+ f1))
. x)))
/ ((
exp_R
. x)
^2 )) by
SIN_COS: 65
.= (((((2
* (
exp_R
. x))
* ((
exp_R
. x)
+ 1))
- (((
#Z 2)
* (
exp_R
+ f1))
. x))
* (
exp_R
. x))
/ ((
exp_R
. x)
* (
exp_R
. x)))
.= ((((
exp_R
. x)
- 1)
* ((
exp_R
. x)
+ 1))
/ (
exp_R
. x)) by
A15,
A20,
XCMPLX_1: 91;
A23: ((((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )
. x)
= ((((
#Z 2)
* (
exp_R
+ f1))
. x)
* ((
exp_R
. x)
" )) by
A4,
A18,
RFUNCT_1:def 1
.= ((((
#Z 2)
* (
exp_R
+ f1))
. x)
* (1
/ (
exp_R
. x))) by
XCMPLX_1: 215
.= ((((
exp_R
. x)
+ 1)
* ((
exp_R
. x)
+ 1))
/ (
exp_R
. x)) by
A20,
XCMPLX_1: 99;
((f
`| Z)
. x)
= (
diff ((
ln
* (((
#Z 2)
* (
exp_R
+ f1))
/
exp_R )),x)) by
A2,
A14,
A18,
FDIFF_1:def 7
.= (((((
exp_R
. x)
+ 1)
* ((
exp_R
. x)
- 1))
/ (
exp_R
. x))
/ ((((
exp_R
. x)
+ 1)
* ((
exp_R
. x)
+ 1))
/ (
exp_R
. x))) by
A21,
A22,
A23,
TAYLOR_1: 20
.= ((((
exp_R
. x)
+ 1)
* ((
exp_R
. x)
- 1))
/ (((
exp_R
. x)
+ 1)
* ((
exp_R
. x)
+ 1))) by
A15,
XCMPLX_1: 55
.= (((
exp_R
. x)
- 1)
/ ((
exp_R
. x)
+ 1)) by
A17,
XCMPLX_1: 91;
hence thesis;
end;
hence thesis by
A1,
A2,
A13,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:31
Th31: Z
c= (
dom ((
#Z 2)
* (f
-
exp_R ))) & (for x st x
in Z holds (f
. x)
= 1) implies ((
#Z 2)
* (f
-
exp_R ))
is_differentiable_on Z & for x st x
in Z holds ((((
#Z 2)
* (f
-
exp_R ))
`| Z)
. x)
= (
- ((2
* (
exp_R
. x))
* (1
- (
exp_R
. x))))
proof
assume that
A1: Z
c= (
dom ((
#Z 2)
* (f
-
exp_R ))) and
A2: for x st x
in Z holds (f
. x)
= 1;
for y be
object st y
in Z holds y
in (
dom (f
-
exp_R )) by
A1,
FUNCT_1: 11;
then
A3: Z
c= (
dom (f
-
exp_R )) by
TARSKI:def 3;
then Z
c= ((
dom
exp_R )
/\ (
dom f)) by
VALUED_1: 12;
then
A4: Z
c= (
dom f) by
XBOOLE_1: 18;
A5: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
then
A6: f
is_differentiable_on Z by
A4,
FDIFF_1: 23;
A7: for x st x
in Z holds ((
#Z 2)
* (f
-
exp_R ))
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A8: f
is_differentiable_in x by
A6,
FDIFF_1: 9;
exp_R
is_differentiable_in x by
SIN_COS: 65;
then (f
-
exp_R )
is_differentiable_in x by
A8,
FDIFF_1: 14;
hence thesis by
TAYLOR_1: 3;
end;
then
A9: ((
#Z 2)
* (f
-
exp_R ))
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((((
#Z 2)
* (f
-
exp_R ))
`| Z)
. x)
= (
- ((2
* (
exp_R
. x))
* (1
- (
exp_R
. x))))
proof
let x;
A10:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A11: x
in Z;
then
A12: ((f
-
exp_R )
. x)
= ((f
. x)
- (
exp_R
. x)) by
A3,
VALUED_1: 13
.= (1
- (
exp_R
. x)) by
A2,
A11;
A13: f
is_differentiable_in x by
A6,
A11,
FDIFF_1: 9;
then
A14: (
diff ((f
-
exp_R ),x))
= ((
diff (f,x))
- (
diff (
exp_R ,x))) by
A10,
FDIFF_1: 14
.= (((f
`| Z)
. x)
- (
diff (
exp_R ,x))) by
A6,
A11,
FDIFF_1:def 7
.= (((f
`| Z)
. x)
- (
exp_R
. x)) by
SIN_COS: 65
.= (
0
- (
exp_R
. x)) by
A4,
A5,
A11,
FDIFF_1: 23
.= (
- (
exp_R
. x));
A15: (f
-
exp_R )
is_differentiable_in x by
A13,
A10,
FDIFF_1: 14;
((((
#Z 2)
* (f
-
exp_R ))
`| Z)
. x)
= (
diff (((
#Z 2)
* (f
-
exp_R )),x)) by
A9,
A11,
FDIFF_1:def 7
.= ((2
* (((f
-
exp_R )
. x)
#Z (2
- 1)))
* (
diff ((f
-
exp_R ),x))) by
A15,
TAYLOR_1: 3
.= ((2
* (1
- (
exp_R
. x)))
* (
- (
exp_R
. x))) by
A14,
A12,
PREPOWER: 35
.= (
- ((2
* (
exp_R
. x))
* (1
- (
exp_R
. x))));
hence thesis;
end;
hence thesis by
A1,
A7,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:32
Z
c= (
dom f) & f
= (
ln
* (
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))) & (for x st x
in Z holds (f1
. x)
= 1 & ((f1
-
exp_R )
. x)
>
0 ) implies f
is_differentiable_on Z & for x st x
in Z holds ((f
`| Z)
. x)
= ((1
+ (
exp_R
. x))
/ (1
- (
exp_R
. x)))
proof
assume that
A1: Z
c= (
dom f) and
A2: f
= (
ln
* (
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))) and
A3: for x st x
in Z holds (f1
. x)
= 1 & ((f1
-
exp_R )
. x)
>
0 ;
for y be
object st y
in Z holds y
in (
dom (
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))) by
A1,
A2,
FUNCT_1: 11;
then
A4: Z
c= (
dom (
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))) by
TARSKI:def 3;
then Z
c= ((
dom
exp_R )
/\ ((
dom ((
#Z 2)
* (f1
-
exp_R )))
\ (((
#Z 2)
* (f1
-
exp_R ))
"
{
0 }))) by
RFUNCT_1:def 1;
then
A5: Z
c= (
dom ((
#Z 2)
* (f1
-
exp_R ))) by
XBOOLE_1: 1;
then for y be
object st y
in Z holds y
in (
dom (f1
-
exp_R )) by
FUNCT_1: 11;
then
A6: Z
c= (
dom (f1
-
exp_R )) by
TARSKI:def 3;
A7: for x st x
in Z holds (((
#Z 2)
* (f1
-
exp_R ))
. x)
>
0
proof
let x;
assume
A8: x
in Z;
then (((
#Z 2)
* (f1
-
exp_R ))
. x)
= ((
#Z 2)
. ((f1
-
exp_R )
. x)) by
A5,
FUNCT_1: 12
.= (((f1
-
exp_R )
. x)
#Z 2) by
TAYLOR_1:def 1;
hence thesis by
A3,
A8,
PREPOWER: 39;
end;
A9: for x st x
in Z holds ((
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))
. x)
>
0
proof
let x;
A10: (
exp_R
. x)
>
0 by
SIN_COS: 54;
assume
A11: x
in Z;
then
A12: (((
#Z 2)
* (f1
-
exp_R ))
. x)
>
0 by
A7;
((
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))
. x)
= ((
exp_R
. x)
* ((((
#Z 2)
* (f1
-
exp_R ))
. x)
" )) by
A4,
A11,
RFUNCT_1:def 1
.= ((
exp_R
. x)
* (1
/ (((
#Z 2)
* (f1
-
exp_R ))
. x))) by
XCMPLX_1: 215
.= ((
exp_R
. x)
/ (((
#Z 2)
* (f1
-
exp_R ))
. x)) by
XCMPLX_1: 99;
hence thesis by
A12,
A10,
XREAL_1: 139;
end;
A13: for x st x
in Z holds (f1
. x)
= 1 by
A3;
then
A14: ((
#Z 2)
* (f1
-
exp_R ))
is_differentiable_on Z by
A5,
Th31;
exp_R
is_differentiable_on Z & for x st x
in Z holds (((
#Z 2)
* (f1
-
exp_R ))
. x)
<>
0 by
A7,
FDIFF_1: 26,
TAYLOR_1: 16;
then
A15: (
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))
is_differentiable_on Z by
A14,
FDIFF_2: 21;
A16: for x st x
in Z holds (
ln
* (
exp_R
/ ((
#Z 2)
* (f1
-
exp_R ))))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))
is_differentiable_in x & ((
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))
. x)
>
0 by
A15,
A9,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A17: f
is_differentiable_on Z by
A1,
A2,
FDIFF_1: 9;
for x st x
in Z holds ((f
`| Z)
. x)
= ((1
+ (
exp_R
. x))
/ (1
- (
exp_R
. x)))
proof
let x;
A18:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A19: x
in Z;
then
A20: (((
#Z 2)
* (f1
-
exp_R ))
. x)
= ((
#Z 2)
. ((f1
-
exp_R )
. x)) by
A5,
FUNCT_1: 12
.= (((f1
-
exp_R )
. x)
#Z 2) by
TAYLOR_1:def 1
.= (((f1
. x)
- (
exp_R
. x))
#Z 2) by
A6,
A19,
VALUED_1: 13
.= ((1
- (
exp_R
. x))
#Z 2) by
A3,
A19;
A21: ((
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))
. x)
= ((
exp_R
. x)
* ((((
#Z 2)
* (f1
-
exp_R ))
. x)
" )) by
A4,
A19,
RFUNCT_1:def 1
.= ((
exp_R
. x)
* (1
/ (((
#Z 2)
* (f1
-
exp_R ))
. x))) by
XCMPLX_1: 215
.= ((
exp_R
. x)
/ ((1
- (
exp_R
. x))
#Z 2)) by
A20,
XCMPLX_1: 99;
A22: (
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))
is_differentiable_in x & ((
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))
. x)
>
0 by
A15,
A9,
A19,
FDIFF_1: 9;
A23: ((f1
-
exp_R )
. x)
>
0 by
A3,
A19;
(((
#Z 2)
* (f1
-
exp_R ))
. x)
<>
0 & ((
#Z 2)
* (f1
-
exp_R ))
is_differentiable_in x by
A14,
A7,
A19,
FDIFF_1: 9;
then
A24: (
diff ((
exp_R
/ ((
#Z 2)
* (f1
-
exp_R ))),x))
= ((((
diff (
exp_R ,x))
* (((
#Z 2)
* (f1
-
exp_R ))
. x))
- ((
diff (((
#Z 2)
* (f1
-
exp_R )),x))
* (
exp_R
. x)))
/ ((((
#Z 2)
* (f1
-
exp_R ))
. x)
^2 )) by
A18,
FDIFF_2: 14
.= ((((
exp_R
. x)
* (((
#Z 2)
* (f1
-
exp_R ))
. x))
- ((
diff (((
#Z 2)
* (f1
-
exp_R )),x))
* (
exp_R
. x)))
/ ((((
#Z 2)
* (f1
-
exp_R ))
. x)
^2 )) by
SIN_COS: 65
.= ((((
exp_R
. x)
* (((
#Z 2)
* (f1
-
exp_R ))
. x))
- (((((
#Z 2)
* (f1
-
exp_R ))
`| Z)
. x)
* (
exp_R
. x)))
/ ((((
#Z 2)
* (f1
-
exp_R ))
. x)
^2 )) by
A14,
A19,
FDIFF_1:def 7
.= ((((
exp_R
. x)
* ((1
- (
exp_R
. x))
#Z 2))
- ((
- ((2
* (
exp_R
. x))
* (1
- (
exp_R
. x))))
* (
exp_R
. x)))
/ (((1
- (
exp_R
. x))
#Z 2)
^2 )) by
A13,
A5,
A19,
A20,
Th31
.= (((
exp_R
. x)
* (((1
- (
exp_R
. x))
#Z 2)
+ ((2
* (1
- (
exp_R
. x)))
* (
exp_R
. x))))
/ (((1
- (
exp_R
. x))
#Z 2)
* ((1
- (
exp_R
. x))
#Z 2)))
.= ((((
exp_R
. x)
/ ((1
- (
exp_R
. x))
#Z 2))
* (((1
- (
exp_R
. x))
#Z 2)
+ ((2
* (1
- (
exp_R
. x)))
* (
exp_R
. x))))
/ ((1
- (
exp_R
. x))
#Z 2)) by
XCMPLX_1: 83;
A25: (
exp_R
. x)
>
0 by
SIN_COS: 54;
A26: ((f1
-
exp_R )
. x)
= ((f1
. x)
- (
exp_R
. x)) by
A6,
A19,
VALUED_1: 13
.= (1
- (
exp_R
. x)) by
A3,
A19;
then ((1
- (
exp_R
. x))
#Z 2)
>
0 by
A3,
A19,
PREPOWER: 39;
then
A27: ((
exp_R
. x)
/ ((1
- (
exp_R
. x))
#Z 2))
<>
0 by
A25,
XREAL_1: 139;
A28: ((1
- (
exp_R
. x))
#Z 2)
= ((1
- (
exp_R
. x))
#Z (1
+ 1))
.= (((1
- (
exp_R
. x))
#Z 1)
* ((1
- (
exp_R
. x))
#Z 1)) by
A23,
A26,
PREPOWER: 44
.= ((1
- (
exp_R
. x))
* ((1
- (
exp_R
. x))
#Z 1)) by
PREPOWER: 35
.= ((1
- (
exp_R
. x))
* (1
- (
exp_R
. x))) by
PREPOWER: 35;
((f
`| Z)
. x)
= (
diff ((
ln
* (
exp_R
/ ((
#Z 2)
* (f1
-
exp_R )))),x)) by
A2,
A17,
A19,
FDIFF_1:def 7
.= (((((
exp_R
. x)
/ ((1
- (
exp_R
. x))
#Z 2))
* (((1
- (
exp_R
. x))
#Z 2)
+ ((2
* (1
- (
exp_R
. x)))
* (
exp_R
. x))))
/ ((1
- (
exp_R
. x))
#Z 2))
/ ((
exp_R
. x)
/ ((1
- (
exp_R
. x))
#Z 2))) by
A22,
A24,
A21,
TAYLOR_1: 20
.= ((((
exp_R
. x)
/ ((1
- (
exp_R
. x))
#Z 2))
* (((1
- (
exp_R
. x))
#Z 2)
+ ((2
* (1
- (
exp_R
. x)))
* (
exp_R
. x))))
/ (((
exp_R
. x)
/ ((1
- (
exp_R
. x))
#Z 2))
* ((1
- (
exp_R
. x))
#Z 2))) by
XCMPLX_1: 78
.= (((1
- (
exp_R
. x))
* (1
+ (
exp_R
. x)))
/ ((1
- (
exp_R
. x))
* (1
- (
exp_R
. x)))) by
A27,
A28,
XCMPLX_1: 91
.= ((1
+ (
exp_R
. x))
/ (1
- (
exp_R
. x))) by
A23,
A26,
XCMPLX_1: 91;
hence thesis;
end;
hence thesis by
A1,
A2,
A16,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:33
Z
c= (
dom f) & f
= (
ln
* (
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))) & (for x st x
in Z holds (f1
. x)
= 1) implies f
is_differentiable_on Z & for x st x
in Z holds ((f
`| Z)
. x)
= ((1
- (
exp_R
. x))
/ (1
+ (
exp_R
. x)))
proof
assume that
A1: Z
c= (
dom f) and
A2: f
= (
ln
* (
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))) and
A3: for x st x
in Z holds (f1
. x)
= 1;
for y be
object st y
in Z holds y
in (
dom (
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))) by
A1,
A2,
FUNCT_1: 11;
then
A4: Z
c= (
dom (
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))) by
TARSKI:def 3;
then Z
c= ((
dom
exp_R )
/\ ((
dom ((
#Z 2)
* (f1
+
exp_R )))
\ (((
#Z 2)
* (f1
+
exp_R ))
"
{
0 }))) by
RFUNCT_1:def 1;
then
A5: Z
c= (
dom ((
#Z 2)
* (f1
+
exp_R ))) by
XBOOLE_1: 1;
then
A6: ((
#Z 2)
* (f1
+
exp_R ))
is_differentiable_on Z by
A3,
Th29;
for y be
object st y
in Z holds y
in (
dom (f1
+
exp_R )) by
A5,
FUNCT_1: 11;
then
A7: Z
c= (
dom (f1
+
exp_R )) by
TARSKI:def 3;
A8: for x st x
in Z holds (((
#Z 2)
* (f1
+
exp_R ))
. x)
>
0
proof
let x;
assume
A9: x
in Z;
then ((f1
+
exp_R )
. x)
= ((f1
. x)
+ (
exp_R
. x)) by
A7,
VALUED_1:def 1
.= (1
+ (
exp_R
. x)) by
A3,
A9;
then
A10: ((f1
+
exp_R )
. x)
>
0 by
SIN_COS: 54,
XREAL_1: 34;
(((
#Z 2)
* (f1
+
exp_R ))
. x)
= ((
#Z 2)
. ((f1
+
exp_R )
. x)) by
A5,
A9,
FUNCT_1: 12
.= (((f1
+
exp_R )
. x)
#Z 2) by
TAYLOR_1:def 1;
hence thesis by
A10,
PREPOWER: 39;
end;
A11: for x st x
in Z holds ((
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))
. x)
>
0
proof
let x;
A12: (
exp_R
. x)
>
0 by
SIN_COS: 54;
assume
A13: x
in Z;
then
A14: (((
#Z 2)
* (f1
+
exp_R ))
. x)
>
0 by
A8;
((
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))
. x)
= ((
exp_R
. x)
* ((((
#Z 2)
* (f1
+
exp_R ))
. x)
" )) by
A4,
A13,
RFUNCT_1:def 1
.= ((
exp_R
. x)
* (1
/ (((
#Z 2)
* (f1
+
exp_R ))
. x))) by
XCMPLX_1: 215
.= ((
exp_R
. x)
/ (((
#Z 2)
* (f1
+
exp_R ))
. x)) by
XCMPLX_1: 99;
hence thesis by
A14,
A12,
XREAL_1: 139;
end;
exp_R
is_differentiable_on Z & for x st x
in Z holds (((
#Z 2)
* (f1
+
exp_R ))
. x)
<>
0 by
A8,
FDIFF_1: 26,
TAYLOR_1: 16;
then
A15: (
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))
is_differentiable_on Z by
A6,
FDIFF_2: 21;
A16: for x st x
in Z holds (
ln
* (
exp_R
/ ((
#Z 2)
* (f1
+
exp_R ))))
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))
is_differentiable_in x & ((
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))
. x)
>
0 by
A15,
A11,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A17: f
is_differentiable_on Z by
A1,
A2,
FDIFF_1: 9;
for x st x
in Z holds ((f
`| Z)
. x)
= ((1
- (
exp_R
. x))
/ (1
+ (
exp_R
. x)))
proof
let x;
A18:
exp_R
is_differentiable_in x by
SIN_COS: 65;
assume
A19: x
in Z;
then
A20: (((
#Z 2)
* (f1
+
exp_R ))
. x)
= ((
#Z 2)
. ((f1
+
exp_R )
. x)) by
A5,
FUNCT_1: 12
.= (((f1
+
exp_R )
. x)
#Z 2) by
TAYLOR_1:def 1
.= (((f1
. x)
+ (
exp_R
. x))
#Z 2) by
A7,
A19,
VALUED_1:def 1
.= ((1
+ (
exp_R
. x))
#Z 2) by
A3,
A19;
(((
#Z 2)
* (f1
+
exp_R ))
. x)
<>
0 & ((
#Z 2)
* (f1
+
exp_R ))
is_differentiable_in x by
A6,
A8,
A19,
FDIFF_1: 9;
then
A21: (
diff ((
exp_R
/ ((
#Z 2)
* (f1
+
exp_R ))),x))
= ((((
diff (
exp_R ,x))
* (((
#Z 2)
* (f1
+
exp_R ))
. x))
- ((
diff (((
#Z 2)
* (f1
+
exp_R )),x))
* (
exp_R
. x)))
/ ((((
#Z 2)
* (f1
+
exp_R ))
. x)
^2 )) by
A18,
FDIFF_2: 14
.= ((((
exp_R
. x)
* (((
#Z 2)
* (f1
+
exp_R ))
. x))
- ((
diff (((
#Z 2)
* (f1
+
exp_R )),x))
* (
exp_R
. x)))
/ ((((
#Z 2)
* (f1
+
exp_R ))
. x)
^2 )) by
SIN_COS: 65
.= ((((
exp_R
. x)
* (((
#Z 2)
* (f1
+
exp_R ))
. x))
- (((((
#Z 2)
* (f1
+
exp_R ))
`| Z)
. x)
* (
exp_R
. x)))
/ ((((
#Z 2)
* (f1
+
exp_R ))
. x)
^2 )) by
A6,
A19,
FDIFF_1:def 7
.= ((((
exp_R
. x)
* ((1
+ (
exp_R
. x))
#Z 2))
- (((2
* (
exp_R
. x))
* (1
+ (
exp_R
. x)))
* (
exp_R
. x)))
/ (((1
+ (
exp_R
. x))
#Z 2)
^2 )) by
A3,
A5,
A19,
A20,
Th29
.= (((
exp_R
. x)
* (((1
+ (
exp_R
. x))
#Z 2)
- ((2
* (1
+ (
exp_R
. x)))
* (
exp_R
. x))))
/ (((1
+ (
exp_R
. x))
#Z 2)
* ((1
+ (
exp_R
. x))
#Z 2)))
.= ((((
exp_R
. x)
/ ((1
+ (
exp_R
. x))
#Z 2))
* (((1
+ (
exp_R
. x))
#Z 2)
- ((2
* (1
+ (
exp_R
. x)))
* (
exp_R
. x))))
/ ((1
+ (
exp_R
. x))
#Z 2)) by
XCMPLX_1: 83;
A22: (1
+ (
exp_R
. x))
>
0 by
SIN_COS: 54,
XREAL_1: 34;
then (
exp_R
. x)
>
0 & ((1
+ (
exp_R
. x))
#Z 2)
>
0 by
PREPOWER: 39,
SIN_COS: 54;
then
A23: ((
exp_R
. x)
/ ((1
+ (
exp_R
. x))
#Z 2))
<>
0 by
XREAL_1: 139;
A24: ((
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))
. x)
= ((
exp_R
. x)
* ((((
#Z 2)
* (f1
+
exp_R ))
. x)
" )) by
A4,
A19,
RFUNCT_1:def 1
.= ((
exp_R
. x)
* (1
/ (((
#Z 2)
* (f1
+
exp_R ))
. x))) by
XCMPLX_1: 215
.= ((
exp_R
. x)
/ ((1
+ (
exp_R
. x))
#Z 2)) by
A20,
XCMPLX_1: 99;
A25: (
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))
is_differentiable_in x & ((
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))
. x)
>
0 by
A15,
A11,
A19,
FDIFF_1: 9;
A26: ((1
+ (
exp_R
. x))
#Z 2)
= ((1
+ (
exp_R
. x))
#Z (1
+ 1))
.= (((1
+ (
exp_R
. x))
#Z 1)
* ((1
+ (
exp_R
. x))
#Z 1)) by
A22,
PREPOWER: 44
.= ((1
+ (
exp_R
. x))
* ((1
+ (
exp_R
. x))
#Z 1)) by
PREPOWER: 35
.= ((1
+ (
exp_R
. x))
* (1
+ (
exp_R
. x))) by
PREPOWER: 35;
((f
`| Z)
. x)
= (
diff ((
ln
* (
exp_R
/ ((
#Z 2)
* (f1
+
exp_R )))),x)) by
A2,
A17,
A19,
FDIFF_1:def 7
.= (((((
exp_R
. x)
/ ((1
+ (
exp_R
. x))
#Z 2))
* (((1
+ (
exp_R
. x))
#Z 2)
- ((2
* (1
+ (
exp_R
. x)))
* (
exp_R
. x))))
/ ((1
+ (
exp_R
. x))
#Z 2))
/ ((
exp_R
. x)
/ ((1
+ (
exp_R
. x))
#Z 2))) by
A25,
A21,
A24,
TAYLOR_1: 20
.= ((((
exp_R
. x)
/ ((1
+ (
exp_R
. x))
#Z 2))
* (((1
+ (
exp_R
. x))
#Z 2)
- ((2
* (1
+ (
exp_R
. x)))
* (
exp_R
. x))))
/ (((
exp_R
. x)
/ ((1
+ (
exp_R
. x))
#Z 2))
* ((1
+ (
exp_R
. x))
#Z 2))) by
XCMPLX_1: 78
.= (((1
+ (
exp_R
. x))
* (1
- (
exp_R
. x)))
/ ((1
+ (
exp_R
. x))
* (1
+ (
exp_R
. x)))) by
A23,
A26,
XCMPLX_1: 91
.= ((1
- (
exp_R
. x))
/ (1
+ (
exp_R
. x))) by
A22,
XCMPLX_1: 91;
hence thesis;
end;
hence thesis by
A1,
A2,
A16,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:34
Z
c= (
dom (
ln
* f)) & f
= (
exp_R
+ (
exp_R
* f1)) & (for x st x
in Z holds (f1
. x)
= (
- x)) implies (
ln
* f)
is_differentiable_on Z & for x st x
in Z holds (((
ln
* f)
`| Z)
. x)
= (((
exp_R x)
- (
exp_R (
- x)))
/ ((
exp_R x)
+ (
exp_R (
- x))))
proof
assume that
A1: Z
c= (
dom (
ln
* f)) and
A2: f
= (
exp_R
+ (
exp_R
* f1)) and
A3: for x st x
in Z holds (f1
. x)
= (
- x);
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A4: Z
c= (
dom (
exp_R
+ (
exp_R
* f1))) by
A2,
TARSKI:def 3;
then Z
c= ((
dom
exp_R )
/\ (
dom (
exp_R
* f1))) by
VALUED_1:def 1;
then
A5: Z
c= (
dom (
exp_R
* f1)) by
XBOOLE_1: 18;
then
A6: (
exp_R
* f1)
is_differentiable_on Z by
A3,
Th14;
A7:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A8: f
is_differentiable_on Z by
A2,
A4,
A6,
FDIFF_1: 18;
A9: for x st x
in Z holds (((
exp_R
+ (
exp_R
* f1))
`| Z)
. x)
= ((
exp_R x)
- (
exp_R (
- x)))
proof
let x;
assume
A10: x
in Z;
hence (((
exp_R
+ (
exp_R
* f1))
`| Z)
. x)
= ((
diff (
exp_R ,x))
+ (
diff ((
exp_R
* f1),x))) by
A4,
A6,
A7,
FDIFF_1: 18
.= ((
exp_R
. x)
+ (
diff ((
exp_R
* f1),x))) by
SIN_COS: 65
.= ((
exp_R
. x)
+ (((
exp_R
* f1)
`| Z)
. x)) by
A6,
A10,
FDIFF_1:def 7
.= ((
exp_R
. x)
+ (
- (
exp_R (
- x)))) by
A3,
A5,
A10,
Th14
.= ((
exp_R x)
+ (
- (
exp_R (
- x)))) by
SIN_COS:def 23
.= ((
exp_R x)
- (
exp_R (
- x)));
end;
A11: for x st x
in Z holds ((
exp_R
+ (
exp_R
* f1))
. x)
>
0
proof
let x;
A12: (
exp_R x)
>
0 by
SIN_COS: 55;
assume
A13: x
in Z;
then ((
exp_R
+ (
exp_R
* f1))
. x)
= ((
exp_R
. x)
+ ((
exp_R
* f1)
. x)) by
A4,
VALUED_1:def 1
.= ((
exp_R
. x)
+ (
exp_R
. (f1
. x))) by
A5,
A13,
FUNCT_1: 12
.= ((
exp_R
. x)
+ (
exp_R
. (
- x))) by
A3,
A13
.= ((
exp_R x)
+ (
exp_R
. (
- x))) by
SIN_COS:def 23
.= ((
exp_R x)
+ (
exp_R (
- x))) by
SIN_COS:def 23;
hence thesis by
A12,
SIN_COS: 55,
XREAL_1: 34;
end;
A14: for x st x
in Z holds (
ln
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A8,
A11,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A15: (
ln
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* f)
`| Z)
. x)
= (((
exp_R x)
- (
exp_R (
- x)))
/ ((
exp_R x)
+ (
exp_R (
- x))))
proof
let x;
assume
A16: x
in Z;
then
A17: (f
. x)
= ((
exp_R
. x)
+ ((
exp_R
* f1)
. x)) by
A2,
A4,
VALUED_1:def 1
.= ((
exp_R
. x)
+ (
exp_R
. (f1
. x))) by
A5,
A16,
FUNCT_1: 12
.= ((
exp_R
. x)
+ (
exp_R
. (
- x))) by
A3,
A16
.= ((
exp_R x)
+ (
exp_R
. (
- x))) by
SIN_COS:def 23
.= ((
exp_R x)
+ (
exp_R (
- x))) by
SIN_COS:def 23;
f
is_differentiable_in x & (f
. x)
>
0 by
A2,
A8,
A11,
A16,
FDIFF_1: 9;
then (
diff ((
ln
* f),x))
= ((
diff (f,x))
/ (f
. x)) by
TAYLOR_1: 20
.= (((f
`| Z)
. x)
/ (f
. x)) by
A8,
A16,
FDIFF_1:def 7
.= (((
exp_R x)
- (
exp_R (
- x)))
/ ((
exp_R x)
+ (
exp_R (
- x)))) by
A2,
A9,
A16,
A17;
hence thesis by
A15,
A16,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A14,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:35
Z
c= (
dom (
ln
* f)) & f
= (
exp_R
- (
exp_R
* f1)) & (for x st x
in Z holds (f1
. x)
= (
- x) & (f
. x)
>
0 ) implies (
ln
* f)
is_differentiable_on Z & for x st x
in Z holds (((
ln
* f)
`| Z)
. x)
= (((
exp_R x)
+ (
exp_R (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x))))
proof
assume that
A1: Z
c= (
dom (
ln
* f)) and
A2: f
= (
exp_R
- (
exp_R
* f1)) and
A3: for x st x
in Z holds (f1
. x)
= (
- x) & (f
. x)
>
0 ;
for y be
object st y
in Z holds y
in (
dom f) by
A1,
FUNCT_1: 11;
then
A4: Z
c= (
dom (
exp_R
- (
exp_R
* f1))) by
A2,
TARSKI:def 3;
then Z
c= ((
dom
exp_R )
/\ (
dom (
exp_R
* f1))) by
VALUED_1: 12;
then
A5: Z
c= (
dom (
exp_R
* f1)) by
XBOOLE_1: 18;
A6: for x st x
in Z holds (f1
. x)
= (
- x) by
A3;
then
A7: (
exp_R
* f1)
is_differentiable_on Z by
A5,
Th14;
A8:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A9: f
is_differentiable_on Z by
A2,
A4,
A7,
FDIFF_1: 19;
A10: for x st x
in Z holds (((
exp_R
- (
exp_R
* f1))
`| Z)
. x)
= ((
exp_R x)
+ (
exp_R (
- x)))
proof
let x;
assume
A11: x
in Z;
hence (((
exp_R
- (
exp_R
* f1))
`| Z)
. x)
= ((
diff (
exp_R ,x))
- (
diff ((
exp_R
* f1),x))) by
A4,
A7,
A8,
FDIFF_1: 19
.= ((
exp_R
. x)
- (
diff ((
exp_R
* f1),x))) by
SIN_COS: 65
.= ((
exp_R
. x)
- (((
exp_R
* f1)
`| Z)
. x)) by
A7,
A11,
FDIFF_1:def 7
.= ((
exp_R
. x)
- (
- (
exp_R (
- x)))) by
A6,
A5,
A11,
Th14
.= ((
exp_R
. x)
+ (
exp_R (
- x)))
.= ((
exp_R x)
+ (
exp_R (
- x))) by
SIN_COS:def 23;
end;
A12: for x st x
in Z holds (
ln
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A3,
A9,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A13: (
ln
* f)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
ln
* f)
`| Z)
. x)
= (((
exp_R x)
+ (
exp_R (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x))))
proof
let x;
assume
A14: x
in Z;
then
A15: (f
. x)
= ((
exp_R
. x)
- ((
exp_R
* f1)
. x)) by
A2,
A4,
VALUED_1: 13
.= ((
exp_R
. x)
- (
exp_R
. (f1
. x))) by
A5,
A14,
FUNCT_1: 12
.= ((
exp_R
. x)
- (
exp_R
. (
- x))) by
A3,
A14
.= ((
exp_R x)
- (
exp_R
. (
- x))) by
SIN_COS:def 23
.= ((
exp_R x)
- (
exp_R (
- x))) by
SIN_COS:def 23;
f
is_differentiable_in x & (f
. x)
>
0 by
A3,
A9,
A14,
FDIFF_1: 9;
then (
diff ((
ln
* f),x))
= ((
diff (f,x))
/ (f
. x)) by
TAYLOR_1: 20
.= (((f
`| Z)
. x)
/ (f
. x)) by
A9,
A14,
FDIFF_1:def 7
.= (((
exp_R x)
+ (
exp_R (
- x)))
/ ((
exp_R x)
- (
exp_R (
- x)))) by
A2,
A10,
A14,
A15;
hence thesis by
A13,
A14,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A12,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:36
Z
c= (
dom ((2
/ 3)
(#) ((
#R (3
/ 2))
* (f
+
exp_R )))) & (for x st x
in Z holds (f
. x)
= 1) implies ((2
/ 3)
(#) ((
#R (3
/ 2))
* (f
+
exp_R )))
is_differentiable_on Z & for x st x
in Z holds ((((2
/ 3)
(#) ((
#R (3
/ 2))
* (f
+
exp_R )))
`| Z)
. x)
= ((
exp_R
. x)
* ((1
+ (
exp_R
. x))
#R (1
/ 2)))
proof
assume that
A1: Z
c= (
dom ((2
/ 3)
(#) ((
#R (3
/ 2))
* (f
+
exp_R )))) and
A2: for x st x
in Z holds (f
. x)
= 1;
A3: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
A4: Z
c= (
dom ((
#R (3
/ 2))
* (f
+
exp_R ))) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom (f
+
exp_R )) by
FUNCT_1: 11;
then
A5: Z
c= (
dom (f
+
exp_R )) by
TARSKI:def 3;
then Z
c= ((
dom
exp_R )
/\ (
dom f)) by
VALUED_1:def 1;
then
A6: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A7: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A8:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A9: (f
+
exp_R )
is_differentiable_on Z by
A5,
A7,
FDIFF_1: 18;
A10: for x st x
in Z holds ((f
+
exp_R )
. x)
>
0
proof
let x;
assume
A11: x
in Z;
then ((f
+
exp_R )
. x)
= ((f
. x)
+ (
exp_R
. x)) by
A5,
VALUED_1:def 1
.= (1
+ (
exp_R
. x)) by
A2,
A11;
hence thesis by
SIN_COS: 54,
XREAL_1: 34;
end;
now
let x;
assume x
in Z;
then (f
+
exp_R )
is_differentiable_in x & ((f
+
exp_R )
. x)
>
0 by
A9,
A10,
FDIFF_1: 9;
hence ((
#R (3
/ 2))
* (f
+
exp_R ))
is_differentiable_in x by
TAYLOR_1: 22;
end;
then
A12: ((
#R (3
/ 2))
* (f
+
exp_R ))
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds ((((2
/ 3)
(#) ((
#R (3
/ 2))
* (f
+
exp_R )))
`| Z)
. x)
= ((
exp_R
. x)
* ((1
+ (
exp_R
. x))
#R (1
/ 2)))
proof
let x;
assume
A13: x
in Z;
then
A14: (((f
+
exp_R )
`| Z)
. x)
= ((
diff (f,x))
+ (
diff (
exp_R ,x))) by
A5,
A7,
A8,
FDIFF_1: 18
.= ((
diff (f,x))
+ (
exp_R
. x)) by
SIN_COS: 65
.= (((f
`| Z)
. x)
+ (
exp_R
. x)) by
A7,
A13,
FDIFF_1:def 7
.= (
0
+ (
exp_R
. x)) by
A6,
A3,
A13,
FDIFF_1: 23
.= (
exp_R
. x);
A15: (f
+
exp_R )
is_differentiable_in x & ((f
+
exp_R )
. x)
>
0 by
A9,
A10,
A13,
FDIFF_1: 9;
A16: ((f
+
exp_R )
. x)
= ((f
. x)
+ (
exp_R
. x)) by
A5,
A13,
VALUED_1:def 1
.= (1
+ (
exp_R
. x)) by
A2,
A13;
((((2
/ 3)
(#) ((
#R (3
/ 2))
* (f
+
exp_R )))
`| Z)
. x)
= ((2
/ 3)
* (
diff (((
#R (3
/ 2))
* (f
+
exp_R )),x))) by
A1,
A12,
A13,
FDIFF_1: 20
.= ((2
/ 3)
* (((3
/ 2)
* (((f
+
exp_R )
. x)
#R ((3
/ 2)
- 1)))
* (
diff ((f
+
exp_R ),x)))) by
A15,
TAYLOR_1: 22
.= ((2
/ 3)
* (((3
/ 2)
* (((f
+
exp_R )
. x)
#R ((3
/ 2)
- 1)))
* (((f
+
exp_R )
`| Z)
. x))) by
A9,
A13,
FDIFF_1:def 7
.= ((
exp_R
. x)
* ((1
+ (
exp_R
. x))
#R (1
/ 2))) by
A16,
A14;
hence thesis;
end;
hence thesis by
A1,
A12,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:37
Z
c= (
dom ((2
/ (3
* (
log (
number_e ,a))))
(#) ((
#R (3
/ 2))
* (f
+ (
exp_R
* f1))))) & (for x st x
in Z holds (f
. x)
= 1 & (f1
. x)
= (x
* (
log (
number_e ,a)))) & a
>
0 & a
<> 1 implies ((2
/ (3
* (
log (
number_e ,a))))
(#) ((
#R (3
/ 2))
* (f
+ (
exp_R
* f1))))
is_differentiable_on Z & for x st x
in Z holds ((((2
/ (3
* (
log (
number_e ,a))))
(#) ((
#R (3
/ 2))
* (f
+ (
exp_R
* f1))))
`| Z)
. x)
= ((a
#R x)
* ((1
+ (a
#R x))
#R (1
/ 2)))
proof
assume that
A1: Z
c= (
dom ((2
/ (3
* (
log (
number_e ,a))))
(#) ((
#R (3
/ 2))
* (f
+ (
exp_R
* f1))))) and
A2: for x st x
in Z holds (f
. x)
= 1 & (f1
. x)
= (x
* (
log (
number_e ,a))) and
A3: a
>
0 and
A4: a
<> 1;
A5: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
A6: Z
c= (
dom ((
#R (3
/ 2))
* (f
+ (
exp_R
* f1)))) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom (f
+ (
exp_R
* f1))) by
FUNCT_1: 11;
then
A7: Z
c= (
dom (f
+ (
exp_R
* f1))) by
TARSKI:def 3;
then
A8: Z
c= ((
dom (
exp_R
* f1))
/\ (
dom f)) by
VALUED_1:def 1;
then
A9: Z
c= (
dom (
exp_R
* f1)) by
XBOOLE_1: 18;
A10: for x st x
in Z holds (f1
. x)
= (x
* (
log (
number_e ,a))) by
A2;
then
A11: (
exp_R
* f1)
is_differentiable_on Z by
A3,
A9,
Th11;
A12: Z
c= (
dom f) by
A8,
XBOOLE_1: 18;
then
A13: f
is_differentiable_on Z by
A5,
FDIFF_1: 23;
then
A14: (f
+ (
exp_R
* f1))
is_differentiable_on Z by
A7,
A11,
FDIFF_1: 18;
A15: for x st x
in Z holds ((f
+ (
exp_R
* f1))
. x)
>
0
proof
let x;
assume
A16: x
in Z;
then ((f
+ (
exp_R
* f1))
. x)
= ((f
. x)
+ ((
exp_R
* f1)
. x)) by
A7,
VALUED_1:def 1
.= ((f
. x)
+ (
exp_R
. (f1
. x))) by
A9,
A16,
FUNCT_1: 12
.= (1
+ (
exp_R
. (f1
. x))) by
A2,
A16
.= (1
+ (
exp_R
. (x
* (
log (
number_e ,a))))) by
A2,
A16;
hence thesis by
SIN_COS: 54,
XREAL_1: 34;
end;
now
let x;
assume x
in Z;
then (f
+ (
exp_R
* f1))
is_differentiable_in x & ((f
+ (
exp_R
* f1))
. x)
>
0 by
A14,
A15,
FDIFF_1: 9;
hence ((
#R (3
/ 2))
* (f
+ (
exp_R
* f1)))
is_differentiable_in x by
TAYLOR_1: 22;
end;
then
A17: ((
#R (3
/ 2))
* (f
+ (
exp_R
* f1)))
is_differentiable_on Z by
A6,
FDIFF_1: 9;
A18: (
log (
number_e ,a))
<>
0
proof
A19:
number_e
<> 1 by
TAYLOR_1: 11;
assume (
log (
number_e ,a))
=
0 ;
then (
log (
number_e ,a))
= (
log (
number_e ,1)) by
SIN_COS2: 13,
TAYLOR_1: 13;
then a
= (
number_e
to_power (
log (
number_e ,1))) by
A3,
A19,
POWER:def 3,
TAYLOR_1: 11
.= 1 by
A19,
POWER:def 3,
TAYLOR_1: 11;
hence contradiction by
A4;
end;
for x st x
in Z holds ((((2
/ (3
* (
log (
number_e ,a))))
(#) ((
#R (3
/ 2))
* (f
+ (
exp_R
* f1))))
`| Z)
. x)
= ((a
#R x)
* ((1
+ (a
#R x))
#R (1
/ 2)))
proof
let x;
A20: (3
* (
log (
number_e ,a)))
<>
0 by
A18;
assume
A21: x
in Z;
then
A22: (((f
+ (
exp_R
* f1))
`| Z)
. x)
= ((
diff (f,x))
+ (
diff ((
exp_R
* f1),x))) by
A7,
A13,
A11,
FDIFF_1: 18
.= ((
diff (f,x))
+ (((
exp_R
* f1)
`| Z)
. x)) by
A11,
A21,
FDIFF_1:def 7
.= (((f
`| Z)
. x)
+ (((
exp_R
* f1)
`| Z)
. x)) by
A13,
A21,
FDIFF_1:def 7
.= (
0
+ (((
exp_R
* f1)
`| Z)
. x)) by
A12,
A5,
A21,
FDIFF_1: 23
.= ((a
#R x)
* (
log (
number_e ,a))) by
A3,
A10,
A9,
A21,
Th11;
A23: ((f
+ (
exp_R
* f1))
. x)
= ((f
. x)
+ ((
exp_R
* f1)
. x)) by
A7,
A21,
VALUED_1:def 1
.= ((f
. x)
+ (
exp_R
. (f1
. x))) by
A9,
A21,
FUNCT_1: 12
.= (1
+ (
exp_R
. (f1
. x))) by
A2,
A21
.= (1
+ (
exp_R
. (x
* (
log (
number_e ,a))))) by
A2,
A21
.= (1
+ (a
#R x)) by
A3,
Th1;
(f
+ (
exp_R
* f1))
is_differentiable_in x & ((f
+ (
exp_R
* f1))
. x)
>
0 by
A14,
A15,
A21,
FDIFF_1: 9;
then (
diff (((
#R (3
/ 2))
* (f
+ (
exp_R
* f1))),x))
= (((3
/ 2)
* (((f
+ (
exp_R
* f1))
. x)
#R ((3
/ 2)
- 1)))
* (
diff ((f
+ (
exp_R
* f1)),x))) by
TAYLOR_1: 22
.= (((3
/ 2)
* ((1
+ (a
#R x))
#R (1
/ 2)))
* ((a
#R x)
* (
log (
number_e ,a)))) by
A14,
A21,
A23,
A22,
FDIFF_1:def 7
.= ((((3
* (
log (
number_e ,a)))
/ 2)
* (a
#R x))
* ((1
+ (a
#R x))
#R (1
/ 2)));
then ((((2
/ (3
* (
log (
number_e ,a))))
(#) ((
#R (3
/ 2))
* (f
+ (
exp_R
* f1))))
`| Z)
. x)
= ((2
/ (3
* (
log (
number_e ,a))))
* ((((3
* (
log (
number_e ,a)))
/ 2)
* (a
#R x))
* ((1
+ (a
#R x))
#R (1
/ 2)))) by
A1,
A17,
A21,
FDIFF_1: 20
.= ((((2
/ (3
* (
log (
number_e ,a))))
* ((3
* (
log (
number_e ,a)))
/ 2))
* (a
#R x))
* ((1
+ (a
#R x))
#R (1
/ 2)))
.= ((1
* (a
#R x))
* ((1
+ (a
#R x))
#R (1
/ 2))) by
A20,
XCMPLX_1: 112
.= ((a
#R x)
* ((1
+ (a
#R x))
#R (1
/ 2)));
hence thesis;
end;
hence thesis by
A1,
A17,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:38
Z
c= (
dom ((
- (1
/ 2))
(#) (
cos
* f))) & (for x st x
in Z holds (f
. x)
= (2
* x)) implies ((
- (1
/ 2))
(#) (
cos
* f))
is_differentiable_on Z & for x st x
in Z holds ((((
- (1
/ 2))
(#) (
cos
* f))
`| Z)
. x)
= (
sin (2
* x))
proof
assume that
A1: Z
c= (
dom ((
- (1
/ 2))
(#) (
cos
* f))) and
A2: for x st x
in Z holds (f
. x)
= (2
* x);
A3: Z
c= (
dom (
cos
* f)) & for x st x
in Z holds (f
. x)
= ((2
* x)
+
0 ) by
A1,
A2,
VALUED_1:def 5;
then
A4: (
cos
* f)
is_differentiable_on Z by
FDIFF_4: 38;
for x st x
in Z holds ((((
- (1
/ 2))
(#) (
cos
* f))
`| Z)
. x)
= (
sin (2
* x))
proof
let x;
assume
A5: x
in Z;
then ((((
- (1
/ 2))
(#) (
cos
* f))
`| Z)
. x)
= ((
- (1
/ 2))
* (
diff ((
cos
* f),x))) by
A1,
A4,
FDIFF_1: 20
.= ((
- (1
/ 2))
* (((
cos
* f)
`| Z)
. x)) by
A4,
A5,
FDIFF_1:def 7
.= ((
- (1
/ 2))
* (
- (2
* (
sin
. ((2
* x)
+
0 ))))) by
A3,
A5,
FDIFF_4: 38
.= (
sin (2
* x)) by
SIN_COS:def 17;
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:39
Z
c= (
dom (2
(#) ((
#R (1
/ 2))
* (f
-
cos )))) & (for x st x
in Z holds (f
. x)
= 1 & (
sin
. x)
>
0 & (
cos
. x)
< 1 & (
cos
. x)
> (
- 1)) implies (2
(#) ((
#R (1
/ 2))
* (f
-
cos )))
is_differentiable_on Z & for x st x
in Z holds (((2
(#) ((
#R (1
/ 2))
* (f
-
cos )))
`| Z)
. x)
= ((1
+ (
cos
. x))
#R (1
/ 2))
proof
assume that
A1: Z
c= (
dom (2
(#) ((
#R (1
/ 2))
* (f
-
cos )))) and
A2: for x st x
in Z holds (f
. x)
= 1 & (
sin
. x)
>
0 & (
cos
. x)
< 1 & (
cos
. x)
> (
- 1);
A3: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
A4: Z
c= (
dom ((
#R (1
/ 2))
* (f
-
cos ))) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom (f
-
cos )) by
FUNCT_1: 11;
then
A5: Z
c= (
dom (f
-
cos )) by
TARSKI:def 3;
then Z
c= ((
dom
cos )
/\ (
dom f)) by
VALUED_1: 12;
then
A6: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A7: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A8:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then
A9: (f
-
cos )
is_differentiable_on Z by
A5,
A7,
FDIFF_1: 19;
A10: for x st x
in Z holds ((f
-
cos )
. x)
>
0
proof
let x;
assume
A11: x
in Z;
then (
cos
. x)
< 1 by
A2;
then
A12: (1
- (
cos
. x))
> (1
- 1) by
XREAL_1: 15;
((f
-
cos )
. x)
= ((f
. x)
- (
cos
. x)) by
A5,
A11,
VALUED_1: 13
.= (1
- (
cos
. x)) by
A2,
A11;
hence thesis by
A12;
end;
now
let x;
assume x
in Z;
then (f
-
cos )
is_differentiable_in x & ((f
-
cos )
. x)
>
0 by
A9,
A10,
FDIFF_1: 9;
hence ((
#R (1
/ 2))
* (f
-
cos ))
is_differentiable_in x by
TAYLOR_1: 22;
end;
then
A13: ((
#R (1
/ 2))
* (f
-
cos ))
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds (((2
(#) ((
#R (1
/ 2))
* (f
-
cos )))
`| Z)
. x)
= ((1
+ (
cos
. x))
#R (1
/ 2))
proof
let x;
assume
A14: x
in Z;
then
A15: (
diff ((f
-
cos ),x))
= (((f
-
cos )
`| Z)
. x) by
A9,
FDIFF_1:def 7
.= ((
diff (f,x))
- (
diff (
cos ,x))) by
A5,
A7,
A8,
A14,
FDIFF_1: 19
.= (((f
`| Z)
. x)
- (
diff (
cos ,x))) by
A7,
A14,
FDIFF_1:def 7
.= (
0
- (
diff (
cos ,x))) by
A6,
A3,
A14,
FDIFF_1: 23
.= (
0
- (
- (
sin
. x))) by
SIN_COS: 63
.= (
sin
. x);
A16: (
cos
. x)
> (
- 1) by
A2,
A14;
A17: ((f
-
cos )
. x)
= ((f
. x)
- (
cos
. x)) by
A5,
A14,
VALUED_1: 13
.= (1
- (
cos
. x)) by
A2,
A14;
A18: (f
-
cos )
is_differentiable_in x & ((f
-
cos )
. x)
>
0 by
A9,
A10,
A14,
FDIFF_1: 9;
A19: (
sin
. x)
>
0 & (
cos
. x)
< 1 by
A2,
A14;
(((2
(#) ((
#R (1
/ 2))
* (f
-
cos )))
`| Z)
. x)
= (2
* (
diff (((
#R (1
/ 2))
* (f
-
cos )),x))) by
A1,
A13,
A14,
FDIFF_1: 20
.= (2
* (((1
/ 2)
* (((f
-
cos )
. x)
#R ((1
/ 2)
- 1)))
* (
diff ((f
-
cos ),x)))) by
A18,
TAYLOR_1: 22
.= ((
sin
. x)
* ((1
- (
cos
. x))
#R (
- (1
/ 2)))) by
A17,
A15
.= ((
sin
. x)
* (1
/ ((1
- (
cos
. x))
#R (1
/ 2)))) by
A10,
A14,
A17,
PREPOWER: 76
.= ((
sin
. x)
/ ((1
- (
cos
. x))
#R (1
/ 2))) by
XCMPLX_1: 99
.= ((1
+ (
cos
. x))
#R (1
/ 2)) by
A19,
A16,
Lm4;
hence thesis;
end;
hence thesis by
A1,
A13,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:40
Z
c= (
dom ((
- 2)
(#) ((
#R (1
/ 2))
* (f
+
cos )))) & (for x st x
in Z holds (f
. x)
= 1 & (
sin
. x)
>
0 & (
cos
. x)
< 1 & (
cos
. x)
> (
- 1)) implies ((
- 2)
(#) ((
#R (1
/ 2))
* (f
+
cos )))
is_differentiable_on Z & for x st x
in Z holds ((((
- 2)
(#) ((
#R (1
/ 2))
* (f
+
cos )))
`| Z)
. x)
= ((1
- (
cos
. x))
#R (1
/ 2))
proof
assume that
A1: Z
c= (
dom ((
- 2)
(#) ((
#R (1
/ 2))
* (f
+
cos )))) and
A2: for x st x
in Z holds (f
. x)
= 1 & (
sin
. x)
>
0 & (
cos
. x)
< 1 & (
cos
. x)
> (
- 1);
A3: for x st x
in Z holds (f
. x)
= ((
0
* x)
+ 1) by
A2;
A4: Z
c= (
dom ((
#R (1
/ 2))
* (f
+
cos ))) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom (f
+
cos )) by
FUNCT_1: 11;
then
A5: Z
c= (
dom (f
+
cos )) by
TARSKI:def 3;
then Z
c= ((
dom
cos )
/\ (
dom f)) by
VALUED_1:def 1;
then
A6: Z
c= (
dom f) by
XBOOLE_1: 18;
then
A7: f
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A8:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then
A9: (f
+
cos )
is_differentiable_on Z by
A5,
A7,
FDIFF_1: 18;
A10: for x st x
in Z holds ((f
+
cos )
. x)
>
0
proof
let x;
assume
A11: x
in Z;
then (
cos
. x)
> (
- 1) by
A2;
then
A12: (1
+ (
cos
. x))
> (1
+ (
- 1)) by
XREAL_1: 8;
((f
+
cos )
. x)
= ((f
. x)
+ (
cos
. x)) by
A5,
A11,
VALUED_1:def 1
.= (1
+ (
cos
. x)) by
A2,
A11;
hence thesis by
A12;
end;
now
let x;
assume x
in Z;
then (f
+
cos )
is_differentiable_in x & ((f
+
cos )
. x)
>
0 by
A9,
A10,
FDIFF_1: 9;
hence ((
#R (1
/ 2))
* (f
+
cos ))
is_differentiable_in x by
TAYLOR_1: 22;
end;
then
A13: ((
#R (1
/ 2))
* (f
+
cos ))
is_differentiable_on Z by
A4,
FDIFF_1: 9;
for x st x
in Z holds ((((
- 2)
(#) ((
#R (1
/ 2))
* (f
+
cos )))
`| Z)
. x)
= ((1
- (
cos
. x))
#R (1
/ 2))
proof
let x;
assume
A14: x
in Z;
then
A15: (
diff ((f
+
cos ),x))
= (((f
+
cos )
`| Z)
. x) by
A9,
FDIFF_1:def 7
.= ((
diff (f,x))
+ (
diff (
cos ,x))) by
A5,
A7,
A8,
A14,
FDIFF_1: 18
.= (((f
`| Z)
. x)
+ (
diff (
cos ,x))) by
A7,
A14,
FDIFF_1:def 7
.= (
0
+ (
diff (
cos ,x))) by
A6,
A3,
A14,
FDIFF_1: 23
.= (
- (
sin
. x)) by
SIN_COS: 63;
A16: (
cos
. x)
> (
- 1) by
A2,
A14;
A17: ((f
+
cos )
. x)
= ((f
. x)
+ (
cos
. x)) by
A5,
A14,
VALUED_1:def 1
.= (1
+ (
cos
. x)) by
A2,
A14;
A18: (f
+
cos )
is_differentiable_in x & ((f
+
cos )
. x)
>
0 by
A9,
A10,
A14,
FDIFF_1: 9;
A19: (
sin
. x)
>
0 & (
cos
. x)
< 1 by
A2,
A14;
((((
- 2)
(#) ((
#R (1
/ 2))
* (f
+
cos )))
`| Z)
. x)
= ((
- 2)
* (
diff (((
#R (1
/ 2))
* (f
+
cos )),x))) by
A1,
A13,
A14,
FDIFF_1: 20
.= ((
- 2)
* (((1
/ 2)
* (((f
+
cos )
. x)
#R ((1
/ 2)
- 1)))
* (
diff ((f
+
cos ),x)))) by
A18,
TAYLOR_1: 22
.= (
- (
- ((
sin
. x)
* ((1
+ (
cos
. x))
#R (
- (1
/ 2)))))) by
A17,
A15
.= ((
sin
. x)
* (1
/ ((1
+ (
cos
. x))
#R (1
/ 2)))) by
A10,
A14,
A17,
PREPOWER: 76
.= ((
sin
. x)
/ ((1
+ (
cos
. x))
#R (1
/ 2))) by
XCMPLX_1: 99
.= ((1
- (
cos
. x))
#R (1
/ 2)) by
A19,
A16,
Lm5;
hence thesis;
end;
hence thesis by
A1,
A13,
FDIFF_1: 20;
end;
Lm6: Z
c= (
dom (f1
+ (2
(#)
sin ))) & (for x st x
in Z holds (f1
. x)
= 1) implies (f1
+ (2
(#)
sin ))
is_differentiable_on Z & for x st x
in Z holds (((f1
+ (2
(#)
sin ))
`| Z)
. x)
= (2
* (
cos
. x))
proof
assume that
A1: Z
c= (
dom (f1
+ (2
(#)
sin ))) and
A2: for x st x
in Z holds (f1
. x)
= 1;
A3: Z
c= ((
dom f1)
/\ (
dom (2
(#)
sin ))) by
A1,
VALUED_1:def 1;
then
A4: Z
c= (
dom f1) by
XBOOLE_1: 18;
A5:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
A6: for x st x
in Z holds (f1
. x)
= ((
0
* x)
+ 1) by
A2;
then
A7: f1
is_differentiable_on Z by
A4,
FDIFF_1: 23;
Z
c= (
dom (2
(#)
sin )) by
A3,
XBOOLE_1: 18;
then
A8: (2
(#)
sin )
is_differentiable_on Z by
A5,
FDIFF_1: 20;
for x st x
in Z holds (((f1
+ (2
(#)
sin ))
`| Z)
. x)
= (2
* (
cos
. x))
proof
let x;
A9:
sin
is_differentiable_in x by
SIN_COS: 64;
assume
A10: x
in Z;
then (((f1
+ (2
(#)
sin ))
`| Z)
. x)
= ((
diff (f1,x))
+ (
diff ((2
(#)
sin ),x))) by
A1,
A7,
A8,
FDIFF_1: 18
.= (((f1
`| Z)
. x)
+ (
diff ((2
(#)
sin ),x))) by
A7,
A10,
FDIFF_1:def 7
.= (((f1
`| Z)
. x)
+ (2
* (
diff (
sin ,x)))) by
A9,
FDIFF_1: 15
.= (
0
+ (2
* (
diff (
sin ,x)))) by
A4,
A6,
A10,
FDIFF_1: 23
.= (2
* (
cos
. x)) by
SIN_COS: 64;
hence thesis;
end;
hence thesis by
A1,
A7,
A8,
FDIFF_1: 18;
end;
theorem ::
FDIFF_6:41
Z
c= (
dom ((1
/ 2)
(#) (
ln
* f))) & f
= (f1
+ (2
(#)
sin )) & (for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 ) implies ((1
/ 2)
(#) (
ln
* f))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) (
ln
* f))
`| Z)
. x)
= ((
cos
. x)
/ (1
+ (2
* (
sin
. x))))
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) (
ln
* f))) and
A2: f
= (f1
+ (2
(#)
sin )) and
A3: for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 ;
A4: Z
c= (
dom (
ln
* f)) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A5: Z
c= (
dom (f1
+ (2
(#)
sin ))) by
A2,
TARSKI:def 3;
A6: for x st x
in Z holds (f1
. x)
= 1 by
A3;
then
A7: f
is_differentiable_on Z by
A2,
A5,
Lm6;
for x st x
in Z holds (
ln
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A3,
A7,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A8: (
ln
* f)
is_differentiable_on Z by
A4,
FDIFF_1: 9;
Z
c= ((
dom f1)
/\ (
dom (2
(#)
sin ))) by
A5,
VALUED_1:def 1;
then
A9: Z
c= (
dom (2
(#)
sin )) by
XBOOLE_1: 18;
for x st x
in Z holds ((((1
/ 2)
(#) (
ln
* f))
`| Z)
. x)
= ((
cos
. x)
/ (1
+ (2
* (
sin
. x))))
proof
let x;
assume
A10: x
in Z;
then
A11: (f
. x)
= ((f1
. x)
+ ((2
(#)
sin )
. x)) by
A2,
A5,
VALUED_1:def 1
.= (1
+ ((2
(#)
sin )
. x)) by
A3,
A10
.= (1
+ (2
* (
sin
. x))) by
A9,
A10,
VALUED_1:def 5;
A12: f
is_differentiable_in x & (f
. x)
>
0 by
A3,
A7,
A10,
FDIFF_1: 9;
((((1
/ 2)
(#) (
ln
* f))
`| Z)
. x)
= ((1
/ 2)
* (
diff ((
ln
* f),x))) by
A1,
A8,
A10,
FDIFF_1: 20
.= ((1
/ 2)
* ((
diff (f,x))
/ (f
. x))) by
A12,
TAYLOR_1: 20
.= ((1
/ 2)
* (((f
`| Z)
. x)
/ (f
. x))) by
A7,
A10,
FDIFF_1:def 7
.= ((1
/ 2)
* ((2
* (
cos
. x))
/ (f
. x))) by
A2,
A6,
A5,
A10,
Lm6
.= (((1
/ 2)
* (2
* (
cos
. x)))
/ (f
. x)) by
XCMPLX_1: 74
.= ((
cos
. x)
/ (1
+ (2
* (
sin
. x)))) by
A11;
hence thesis;
end;
hence thesis by
A1,
A8,
FDIFF_1: 20;
end;
Lm7: Z
c= (
dom (f1
+ (2
(#)
cos ))) & (for x st x
in Z holds (f1
. x)
= 1) implies (f1
+ (2
(#)
cos ))
is_differentiable_on Z & for x st x
in Z holds (((f1
+ (2
(#)
cos ))
`| Z)
. x)
= (
- (2
* (
sin
. x)))
proof
assume that
A1: Z
c= (
dom (f1
+ (2
(#)
cos ))) and
A2: for x st x
in Z holds (f1
. x)
= 1;
A3: Z
c= ((
dom f1)
/\ (
dom (2
(#)
cos ))) by
A1,
VALUED_1:def 1;
then
A4: Z
c= (
dom f1) by
XBOOLE_1: 18;
A5:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
A6: for x st x
in Z holds (f1
. x)
= ((
0
* x)
+ 1) by
A2;
then
A7: f1
is_differentiable_on Z by
A4,
FDIFF_1: 23;
Z
c= (
dom (2
(#)
cos )) by
A3,
XBOOLE_1: 18;
then
A8: (2
(#)
cos )
is_differentiable_on Z by
A5,
FDIFF_1: 20;
for x st x
in Z holds (((f1
+ (2
(#)
cos ))
`| Z)
. x)
= (
- (2
* (
sin
. x)))
proof
let x;
A9:
cos
is_differentiable_in x by
SIN_COS: 63;
assume
A10: x
in Z;
then (((f1
+ (2
(#)
cos ))
`| Z)
. x)
= ((
diff (f1,x))
+ (
diff ((2
(#)
cos ),x))) by
A1,
A7,
A8,
FDIFF_1: 18
.= (((f1
`| Z)
. x)
+ (
diff ((2
(#)
cos ),x))) by
A7,
A10,
FDIFF_1:def 7
.= (((f1
`| Z)
. x)
+ (2
* (
diff (
cos ,x)))) by
A9,
FDIFF_1: 15
.= (
0
+ (2
* (
diff (
cos ,x)))) by
A4,
A6,
A10,
FDIFF_1: 23
.= (
0
+ (2
* (
- (
sin
. x)))) by
SIN_COS: 63
.= (
- (2
* (
sin
. x)));
hence thesis;
end;
hence thesis by
A1,
A7,
A8,
FDIFF_1: 18;
end;
theorem ::
FDIFF_6:42
Z
c= (
dom ((
- (1
/ 2))
(#) (
ln
* f))) & f
= (f1
+ (2
(#)
cos )) & (for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 ) implies ((
- (1
/ 2))
(#) (
ln
* f))
is_differentiable_on Z & for x st x
in Z holds ((((
- (1
/ 2))
(#) (
ln
* f))
`| Z)
. x)
= ((
sin
. x)
/ (1
+ (2
* (
cos
. x))))
proof
assume that
A1: Z
c= (
dom ((
- (1
/ 2))
(#) (
ln
* f))) and
A2: f
= (f1
+ (2
(#)
cos )) and
A3: for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 ;
A4: Z
c= (
dom (
ln
* f)) by
A1,
VALUED_1:def 5;
then for y be
object st y
in Z holds y
in (
dom f) by
FUNCT_1: 11;
then
A5: Z
c= (
dom (f1
+ (2
(#)
cos ))) by
A2,
TARSKI:def 3;
A6: for x st x
in Z holds (f1
. x)
= 1 by
A3;
then
A7: f
is_differentiable_on Z by
A2,
A5,
Lm7;
for x st x
in Z holds (
ln
* f)
is_differentiable_in x
proof
let x;
assume x
in Z;
then f
is_differentiable_in x & (f
. x)
>
0 by
A3,
A7,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 20;
end;
then
A8: (
ln
* f)
is_differentiable_on Z by
A4,
FDIFF_1: 9;
Z
c= ((
dom f1)
/\ (
dom (2
(#)
cos ))) by
A5,
VALUED_1:def 1;
then
A9: Z
c= (
dom (2
(#)
cos )) by
XBOOLE_1: 18;
for x st x
in Z holds ((((
- (1
/ 2))
(#) (
ln
* f))
`| Z)
. x)
= ((
sin
. x)
/ (1
+ (2
* (
cos
. x))))
proof
let x;
assume
A10: x
in Z;
then
A11: (f
. x)
= ((f1
. x)
+ ((2
(#)
cos )
. x)) by
A2,
A5,
VALUED_1:def 1
.= (1
+ ((2
(#)
cos )
. x)) by
A3,
A10
.= (1
+ (2
* (
cos
. x))) by
A9,
A10,
VALUED_1:def 5;
A12: f
is_differentiable_in x & (f
. x)
>
0 by
A3,
A7,
A10,
FDIFF_1: 9;
((((
- (1
/ 2))
(#) (
ln
* f))
`| Z)
. x)
= ((
- (1
/ 2))
* (
diff ((
ln
* f),x))) by
A1,
A8,
A10,
FDIFF_1: 20
.= ((
- (1
/ 2))
* ((
diff (f,x))
/ (f
. x))) by
A12,
TAYLOR_1: 20
.= ((
- (1
/ 2))
* (((f
`| Z)
. x)
/ (f
. x))) by
A7,
A10,
FDIFF_1:def 7
.= ((
- (1
/ 2))
* ((
- (2
* (
sin
. x)))
/ (f
. x))) by
A2,
A6,
A5,
A10,
Lm7
.= (((
- (1
/ 2))
* (
- (2
* (
sin
. x))))
/ (f
. x)) by
XCMPLX_1: 74
.= ((
sin
. x)
/ (1
+ (2
* (
cos
. x)))) by
A11;
hence thesis;
end;
hence thesis by
A1,
A8,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:43
Th43: Z
c= (
dom ((1
/ (4
* a))
(#) (
sin
* f))) & (for x st x
in Z holds (f
. x)
= ((2
* a)
* x)) & a
<>
0 implies ((1
/ (4
* a))
(#) (
sin
* f))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ (4
* a))
(#) (
sin
* f))
`| Z)
. x)
= ((1
/ 2)
* (
cos ((2
* a)
* x)))
proof
assume that
A1: Z
c= (
dom ((1
/ (4
* a))
(#) (
sin
* f))) and
A2: for x st x
in Z holds (f
. x)
= ((2
* a)
* x) and
A3: a
<>
0 ;
A4: Z
c= (
dom (
sin
* f)) & for x st x
in Z holds (f
. x)
= (((2
* a)
* x)
+
0 ) by
A1,
A2,
VALUED_1:def 5;
then
A5: (
sin
* f)
is_differentiable_on Z by
FDIFF_4: 37;
for x st x
in Z holds ((((1
/ (4
* a))
(#) (
sin
* f))
`| Z)
. x)
= ((1
/ 2)
* (
cos ((2
* a)
* x)))
proof
let x;
assume
A6: x
in Z;
then ((((1
/ (4
* a))
(#) (
sin
* f))
`| Z)
. x)
= ((1
/ (4
* a))
* (
diff ((
sin
* f),x))) by
A1,
A5,
FDIFF_1: 20
.= ((1
/ (4
* a))
* (((
sin
* f)
`| Z)
. x)) by
A5,
A6,
FDIFF_1:def 7
.= ((1
/ (4
* a))
* ((2
* a)
* (
cos
. (((2
* a)
* x)
+
0 )))) by
A4,
A6,
FDIFF_4: 37
.= (((1
/ (4
* a))
* (2
* a))
* (
cos
. (((2
* a)
* x)
+
0 )))
.= ((((1
/ 4)
* (1
/ a))
* (2
* a))
* (
cos
. ((2
* a)
* x))) by
XCMPLX_1: 102
.= ((((1
/ 4)
* 2)
* ((1
/ a)
* a))
* (
cos
. ((2
* a)
* x)))
.= (((1
/ 2)
* 1)
* (
cos
. ((2
* a)
* x))) by
A3,
XCMPLX_1: 106
.= ((1
/ 2)
* (
cos ((2
* a)
* x))) by
SIN_COS:def 19;
hence thesis;
end;
hence thesis by
A1,
A5,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:44
Z
c= (
dom (f1
- ((1
/ (4
* a))
(#) (
sin
* f)))) & (for x st x
in Z holds (f1
. x)
= (x
/ 2) & (f
. x)
= ((2
* a)
* x)) & a
<>
0 implies (f1
- ((1
/ (4
* a))
(#) (
sin
* f)))
is_differentiable_on Z & for x st x
in Z holds (((f1
- ((1
/ (4
* a))
(#) (
sin
* f)))
`| Z)
. x)
= ((
sin (a
* x))
^2 )
proof
assume that
A1: Z
c= (
dom (f1
- ((1
/ (4
* a))
(#) (
sin
* f)))) and
A2: for x st x
in Z holds (f1
. x)
= (x
/ 2) & (f
. x)
= ((2
* a)
* x) and
A3: a
<>
0 ;
A4: Z
c= ((
dom f1)
/\ (
dom ((1
/ (4
* a))
(#) (
sin
* f)))) by
A1,
VALUED_1: 12;
then
A5: Z
c= (
dom ((1
/ (4
* a))
(#) (
sin
* f))) by
XBOOLE_1: 18;
A6: for x st x
in Z holds (f1
. x)
= (((1
/ 2)
* x)
+
0 )
proof
let x;
assume x
in Z;
then (f1
. x)
= (x
/ 2) by
A2
.= (((1
/ 2)
* x)
+
0 );
hence thesis;
end;
A7: for x st x
in Z holds (f
. x)
= ((2
* a)
* x) by
A2;
then
A8: ((1
/ (4
* a))
(#) (
sin
* f))
is_differentiable_on Z by
A3,
A5,
Th43;
A9: Z
c= (
dom f1) by
A4,
XBOOLE_1: 18;
then
A10: f1
is_differentiable_on Z by
A6,
FDIFF_1: 23;
for x st x
in Z holds (((f1
- ((1
/ (4
* a))
(#) (
sin
* f)))
`| Z)
. x)
= ((
sin (a
* x))
^2 )
proof
let x;
assume
A11: x
in Z;
then (((f1
- ((1
/ (4
* a))
(#) (
sin
* f)))
`| Z)
. x)
= ((
diff (f1,x))
- (
diff (((1
/ (4
* a))
(#) (
sin
* f)),x))) by
A1,
A8,
A10,
FDIFF_1: 19
.= (((f1
`| Z)
. x)
- (
diff (((1
/ (4
* a))
(#) (
sin
* f)),x))) by
A10,
A11,
FDIFF_1:def 7
.= (((f1
`| Z)
. x)
- ((((1
/ (4
* a))
(#) (
sin
* f))
`| Z)
. x)) by
A8,
A11,
FDIFF_1:def 7
.= (((f1
`| Z)
. x)
- ((1
/ 2)
* (
cos ((2
* a)
* x)))) by
A3,
A7,
A5,
A11,
Th43
.= ((1
/ 2)
- ((1
/ 2)
* (
cos ((2
* a)
* x)))) by
A9,
A6,
A11,
FDIFF_1: 23
.= ((1
/ 2)
* (1
- (
cos (2
* (a
* x)))))
.= ((1
/ 2)
* (2
* ((
sin (a
* x))
^2 ))) by
Lm1
.= ((
sin (a
* x))
^2 );
hence thesis;
end;
hence thesis by
A1,
A8,
A10,
FDIFF_1: 19;
end;
theorem ::
FDIFF_6:45
Z
c= (
dom (f1
+ ((1
/ (4
* a))
(#) (
sin
* f)))) & (for x st x
in Z holds (f1
. x)
= (x
/ 2) & (f
. x)
= ((2
* a)
* x)) & a
<>
0 implies (f1
+ ((1
/ (4
* a))
(#) (
sin
* f)))
is_differentiable_on Z & for x st x
in Z holds (((f1
+ ((1
/ (4
* a))
(#) (
sin
* f)))
`| Z)
. x)
= ((
cos (a
* x))
^2 )
proof
assume that
A1: Z
c= (
dom (f1
+ ((1
/ (4
* a))
(#) (
sin
* f)))) and
A2: for x st x
in Z holds (f1
. x)
= (x
/ 2) & (f
. x)
= ((2
* a)
* x) and
A3: a
<>
0 ;
A4: Z
c= ((
dom f1)
/\ (
dom ((1
/ (4
* a))
(#) (
sin
* f)))) by
A1,
VALUED_1:def 1;
then
A5: Z
c= (
dom ((1
/ (4
* a))
(#) (
sin
* f))) by
XBOOLE_1: 18;
A6: for x st x
in Z holds (f1
. x)
= (((1
/ 2)
* x)
+
0 )
proof
let x;
assume x
in Z;
then (f1
. x)
= (x
/ 2) by
A2
.= (((1
/ 2)
* x)
+
0 );
hence thesis;
end;
A7: for x st x
in Z holds (f
. x)
= ((2
* a)
* x) by
A2;
then
A8: ((1
/ (4
* a))
(#) (
sin
* f))
is_differentiable_on Z by
A3,
A5,
Th43;
A9: Z
c= (
dom f1) by
A4,
XBOOLE_1: 18;
then
A10: f1
is_differentiable_on Z by
A6,
FDIFF_1: 23;
for x st x
in Z holds (((f1
+ ((1
/ (4
* a))
(#) (
sin
* f)))
`| Z)
. x)
= ((
cos (a
* x))
^2 )
proof
let x;
assume
A11: x
in Z;
then (((f1
+ ((1
/ (4
* a))
(#) (
sin
* f)))
`| Z)
. x)
= ((
diff (f1,x))
+ (
diff (((1
/ (4
* a))
(#) (
sin
* f)),x))) by
A1,
A8,
A10,
FDIFF_1: 18
.= (((f1
`| Z)
. x)
+ (
diff (((1
/ (4
* a))
(#) (
sin
* f)),x))) by
A10,
A11,
FDIFF_1:def 7
.= (((f1
`| Z)
. x)
+ ((((1
/ (4
* a))
(#) (
sin
* f))
`| Z)
. x)) by
A8,
A11,
FDIFF_1:def 7
.= (((f1
`| Z)
. x)
+ ((1
/ 2)
* (
cos ((2
* a)
* x)))) by
A3,
A7,
A5,
A11,
Th43
.= ((1
/ 2)
+ ((1
/ 2)
* (
cos ((2
* a)
* x)))) by
A9,
A6,
A11,
FDIFF_1: 23
.= ((1
/ 2)
* (1
+ (
cos (2
* (a
* x)))))
.= ((1
/ 2)
* (2
* ((
cos (a
* x))
^2 ))) by
Lm2
.= ((
cos (a
* x))
^2 );
hence thesis;
end;
hence thesis by
A1,
A8,
A10,
FDIFF_1: 18;
end;
theorem ::
FDIFF_6:46
Th46: Z
c= (
dom ((1
/ n)
(#) ((
#Z n)
*
cos ))) & n
>
0 implies ((1
/ n)
(#) ((
#Z n)
*
cos ))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ n)
(#) ((
#Z n)
*
cos ))
`| Z)
. x)
= (
- (((
cos
. x)
#Z (n
- 1))
* (
sin
. x)))
proof
assume that
A1: Z
c= (
dom ((1
/ n)
(#) ((
#Z n)
*
cos ))) and
A2: n
>
0 ;
A3:
now
let x;
assume x
in Z;
cos
is_differentiable_in x by
SIN_COS: 63;
hence ((
#Z n)
*
cos )
is_differentiable_in x by
TAYLOR_1: 3;
end;
Z
c= (
dom ((
#Z n)
*
cos )) by
A1,
VALUED_1:def 5;
then
A4: ((
#Z n)
*
cos )
is_differentiable_on Z by
A3,
FDIFF_1: 9;
for x st x
in Z holds ((((1
/ n)
(#) ((
#Z n)
*
cos ))
`| Z)
. x)
= (
- (((
cos
. x)
#Z (n
- 1))
* (
sin
. x)))
proof
let x;
A5:
cos
is_differentiable_in x by
SIN_COS: 63;
assume x
in Z;
then ((((1
/ n)
(#) ((
#Z n)
*
cos ))
`| Z)
. x)
= ((1
/ n)
* (
diff (((
#Z n)
*
cos ),x))) by
A1,
A4,
FDIFF_1: 20
.= ((1
/ n)
* ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
diff (
cos ,x)))) by
A5,
TAYLOR_1: 3
.= ((1
/ n)
* ((n
* ((
cos
. x)
#Z (n
- 1)))
* (
- (
sin
. x)))) by
SIN_COS: 63
.= ((((1
/ n)
* n)
* ((
cos
. x)
#Z (n
- 1)))
* (
- (
sin
. x)))
.= ((((n
" )
* n)
* ((
cos
. x)
#Z (n
- 1)))
* (
- (
sin
. x))) by
XCMPLX_1: 215
.= ((1
* ((
cos
. x)
#Z (n
- 1)))
* (
- (
sin
. x))) by
A2,
XCMPLX_0:def 7
.= (
- (((
cos
. x)
#Z (n
- 1))
* (
sin
. x)));
hence thesis;
end;
hence thesis by
A1,
A4,
FDIFF_1: 20;
end;
theorem ::
FDIFF_6:47
Z
c= (
dom (((1
/ 3)
(#) ((
#Z 3)
*
cos ))
-
cos )) implies (((1
/ 3)
(#) ((
#Z 3)
*
cos ))
-
cos )
is_differentiable_on Z & for x st x
in Z holds (((((1
/ 3)
(#) ((
#Z 3)
*
cos ))
-
cos )
`| Z)
. x)
= ((
sin
. x)
|^ 3)
proof
assume
A1: Z
c= (
dom (((1
/ 3)
(#) ((
#Z 3)
*
cos ))
-
cos ));
then Z
c= ((
dom ((1
/ 3)
(#) ((
#Z 3)
*
cos )))
/\ (
dom
cos )) by
VALUED_1: 12;
then
A2: Z
c= (
dom ((1
/ 3)
(#) ((
#Z 3)
*
cos ))) by
XBOOLE_1: 18;
then
A3: ((1
/ 3)
(#) ((
#Z 3)
*
cos ))
is_differentiable_on Z by
Th46;
A4:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
now
let x;
assume
A5: x
in Z;
then (((((1
/ 3)
(#) ((
#Z 3)
*
cos ))
-
cos )
`| Z)
. x)
= ((
diff (((1
/ 3)
(#) ((
#Z 3)
*
cos )),x))
- (
diff (
cos ,x))) by
A1,
A3,
A4,
FDIFF_1: 19
.= ((
diff (((1
/ 3)
(#) ((
#Z 3)
*
cos )),x))
- (
- (
sin
. x))) by
SIN_COS: 63
.= (((((1
/ 3)
(#) ((
#Z 3)
*
cos ))
`| Z)
. x)
- (
- (
sin
. x))) by
A3,
A5,
FDIFF_1:def 7
.= ((
- (((
cos
. x)
#Z (3
- 1))
* (
sin
. x)))
- (
- (
sin
. x))) by
A2,
A5,
Th46
.= ((
sin
. x)
* (1
- ((
cos
. x)
#Z 2)))
.= ((
sin
. x)
* (1
- ((
cos
. x)
|^
|.2.|))) by
PREPOWER:def 3
.= ((
sin
. x)
* (1
- ((
cos
. x)
|^ 2))) by
ABSVALUE:def 1
.= ((
sin
. x)
* (1
- ((
cos
. x)
* (
cos
. x)))) by
WSIERP_1: 1
.= ((
sin
. x)
* ((((
cos
. x)
* (
cos
. x))
+ ((
sin
. x)
* (
sin
. x)))
- ((
cos
. x)
* (
cos
. x)))) by
SIN_COS: 28
.= ((
sin
. x)
* ((
sin
. x)
|^ 2)) by
WSIERP_1: 1
.= ((
sin
. x)
|^ (2
+ 1)) by
NEWTON: 6
.= ((
sin
. x)
|^ 3);
hence (((((1
/ 3)
(#) ((
#Z 3)
*
cos ))
-
cos )
`| Z)
. x)
= ((
sin
. x)
|^ 3);
end;
hence thesis by
A1,
A3,
A4,
FDIFF_1: 19;
end;
theorem ::
FDIFF_6:48
Z
c= (
dom (
sin
- ((1
/ 3)
(#) ((
#Z 3)
*
sin )))) implies (
sin
- ((1
/ 3)
(#) ((
#Z 3)
*
sin )))
is_differentiable_on Z & for x st x
in Z holds (((
sin
- ((1
/ 3)
(#) ((
#Z 3)
*
sin )))
`| Z)
. x)
= ((
cos
. x)
|^ 3)
proof
assume
A1: Z
c= (
dom (
sin
- ((1
/ 3)
(#) ((
#Z 3)
*
sin ))));
then Z
c= ((
dom ((1
/ 3)
(#) ((
#Z 3)
*
sin )))
/\ (
dom
sin )) by
VALUED_1: 12;
then
A2: Z
c= (
dom ((1
/ 3)
(#) ((
#Z 3)
*
sin ))) by
XBOOLE_1: 18;
then
A3: ((1
/ 3)
(#) ((
#Z 3)
*
sin ))
is_differentiable_on Z by
FDIFF_4: 54;
A4:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
now
let x;
assume
A5: x
in Z;
then (((
sin
- ((1
/ 3)
(#) ((
#Z 3)
*
sin )))
`| Z)
. x)
= ((
diff (
sin ,x))
- (
diff (((1
/ 3)
(#) ((
#Z 3)
*
sin )),x))) by
A1,
A3,
A4,
FDIFF_1: 19
.= ((
cos
. x)
- (
diff (((1
/ 3)
(#) ((
#Z 3)
*
sin )),x))) by
SIN_COS: 64
.= ((
cos
. x)
- ((((1
/ 3)
(#) ((
#Z 3)
*
sin ))
`| Z)
. x)) by
A3,
A5,
FDIFF_1:def 7
.= ((
cos
. x)
- (((
sin
. x)
#Z (3
- 1))
* (
cos
. x))) by
A2,
A5,
FDIFF_4: 54
.= ((
cos
. x)
* (1
- ((
sin
. x)
#Z 2)))
.= ((
cos
. x)
* (1
- ((
sin
. x)
|^
|.2.|))) by
PREPOWER:def 3
.= ((
cos
. x)
* (1
- ((
sin
. x)
|^ 2))) by
ABSVALUE:def 1
.= ((
cos
. x)
* (1
- ((
sin
. x)
* (
sin
. x)))) by
WSIERP_1: 1
.= ((
cos
. x)
* ((((
cos
. x)
* (
cos
. x))
+ ((
sin
. x)
* (
sin
. x)))
- ((
sin
. x)
* (
sin
. x)))) by
SIN_COS: 28
.= ((
cos
. x)
* ((
cos
. x)
|^ 2)) by
WSIERP_1: 1
.= ((
cos
. x)
|^ (2
+ 1)) by
NEWTON: 6
.= ((
cos
. x)
|^ 3);
hence (((
sin
- ((1
/ 3)
(#) ((
#Z 3)
*
sin )))
`| Z)
. x)
= ((
cos
. x)
|^ 3);
end;
hence thesis by
A1,
A3,
A4,
FDIFF_1: 19;
end;
theorem ::
FDIFF_6:49
Z
c= (
dom (
sin
*
ln )) implies (
sin
*
ln )
is_differentiable_on Z & for x st x
in Z holds (((
sin
*
ln )
`| Z)
. x)
= ((
cos
. (
log (
number_e ,x)))
/ x)
proof
assume
A1: Z
c= (
dom (
sin
*
ln ));
then for y be
object st y
in Z holds y
in (
dom
ln ) by
FUNCT_1: 11;
then
A2: Z
c= (
dom
ln ) by
TARSKI:def 3;
then
A3:
ln
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 18;
A4: for x st x
in Z holds (
sin
*
ln )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A5:
ln
is_differentiable_in x by
A3,
FDIFF_1: 9;
sin
is_differentiable_in (
ln
. x) by
SIN_COS: 64;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
sin
*
ln )
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds (((
sin
*
ln )
`| Z)
. x)
= ((
cos
. (
log (
number_e ,x)))
/ x)
proof
let x;
A7:
sin
is_differentiable_in (
ln
. x) by
SIN_COS: 64;
assume
A8: x
in Z;
then
A9: x
in (
right_open_halfline
0 ) by
A1,
FUNCT_1: 11,
TAYLOR_1: 18;
ln
is_differentiable_in x by
A3,
A8,
FDIFF_1: 9;
then (
diff ((
sin
*
ln ),x))
= ((
diff (
sin ,(
ln
. x)))
* (
diff (
ln ,x))) by
A7,
FDIFF_2: 13
.= ((
cos
. (
ln
. x))
* (
diff (
ln ,x))) by
SIN_COS: 64
.= ((
cos
. (
log (
number_e ,x)))
* (
diff (
ln ,x))) by
A9,
TAYLOR_1:def 2
.= ((
cos
. (
log (
number_e ,x)))
* (1
/ x)) by
A2,
A8,
TAYLOR_1: 18
.= ((
cos
. (
log (
number_e ,x)))
/ x) by
XCMPLX_1: 99;
hence thesis by
A6,
A8,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A4,
FDIFF_1: 9;
end;
theorem ::
FDIFF_6:50
Z
c= (
dom (
- (
cos
*
ln ))) implies (
- (
cos
*
ln ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
cos
*
ln ))
`| Z)
. x)
= ((
sin
. (
log (
number_e ,x)))
/ x)
proof
assume
A1: Z
c= (
dom (
- (
cos
*
ln )));
then
A2: Z
c= (
dom (
cos
*
ln )) by
VALUED_1: 8;
then for y be
object st y
in Z holds y
in (
dom
ln ) by
FUNCT_1: 11;
then
A3: Z
c= (
dom
ln ) by
TARSKI:def 3;
then
A4:
ln
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 18;
for x st x
in Z holds (
cos
*
ln )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A5:
ln
is_differentiable_in x by
A4,
FDIFF_1: 9;
cos
is_differentiable_in (
ln
. x) by
SIN_COS: 63;
hence thesis by
A5,
FDIFF_2: 13;
end;
then
A6: (
cos
*
ln )
is_differentiable_on Z by
A2,
FDIFF_1: 9;
A7: for x st x
in Z holds (((
- (
cos
*
ln ))
`| Z)
. x)
= ((
sin
. (
log (
number_e ,x)))
/ x)
proof
let x;
A8:
cos
is_differentiable_in (
ln
. x) by
SIN_COS: 63;
assume
A9: x
in Z;
then
A10: x
in (
right_open_halfline
0 ) by
A2,
FUNCT_1: 11,
TAYLOR_1: 18;
A11:
ln
is_differentiable_in x by
A4,
A9,
FDIFF_1: 9;
(((
- (
cos
*
ln ))
`| Z)
. x)
= ((
- 1)
* (
diff ((
cos
*
ln ),x))) by
A1,
A6,
A9,
FDIFF_1: 20
.= ((
- 1)
* ((
diff (
cos ,(
ln
. x)))
* (
diff (
ln ,x)))) by
A11,
A8,
FDIFF_2: 13
.= ((
- 1)
* ((
- (
sin
. (
ln
. x)))
* (
diff (
ln ,x)))) by
SIN_COS: 63
.= (((
- 1)
* (
- (
sin
. (
ln
. x))))
* (
diff (
ln ,x)))
.= (((
- 1)
* (
- (
sin
. (
log (
number_e ,x)))))
* (
diff (
ln ,x))) by
A10,
TAYLOR_1:def 2
.= (((
- 1)
* (
- (
sin
. (
log (
number_e ,x)))))
* (1
/ x)) by
A3,
A9,
TAYLOR_1: 18
.= ((
sin
. (
log (
number_e ,x)))
/ x) by
XCMPLX_1: 99;
hence thesis;
end;
Z
c= (
dom ((
- 1)
(#) (
cos
*
ln ))) by
A1;
hence thesis by
A6,
A7,
FDIFF_1: 20;
end;