finance6.miz
begin
reserve Omega for non
empty
set;
reserve F for
SigmaField of Omega;
theorem ::
FINANCE6:1
A1:
].
0 ,
+infty .[ is
Element of
Borel_Sets
proof
set Bor1 =
].
0 ,
+infty .[;
reconsider Bor3 =
{
0 } as
Event of
Borel_Sets by
FINANCE2: 5;
reconsider Bor2 =
[.
0 ,
+infty .[ as
Event of
Borel_Sets by
FINANCE1: 3;
Bor1
= (Bor2
\ Bor3)
proof
for x be
object holds x
in Bor1 iff (x
in (Bor2
\ Bor3))
proof
let x be
object;
thus x
in Bor1 implies x
in (Bor2
\ Bor3)
proof
assume
ASS0: x
in Bor1;
then
reconsider x as
Real;
d1:
0
< x & x
<
+infty by
ASS0,
XXREAL_1: 4;
then
D2: x
in
[.
0 ,
+infty .[ by
XXREAL_1: 3;
not x
in
{
0 } by
d1,
TARSKI:def 1;
hence thesis by
XBOOLE_0:def 5,
D2;
end;
assume
ASS0: x
in (Bor2
\ Bor3);
then
reconsider x as
Real;
x
in Bor2 & not x
in Bor3 by
ASS0,
XBOOLE_0:def 5;
then
0
<= x & x
<
+infty & x
<>
0 by
TARSKI:def 1,
XXREAL_1: 3;
hence thesis by
XXREAL_1: 4;
end;
hence thesis by
TARSKI: 2;
end;
hence thesis;
end;
theorem ::
FINANCE6:2
for RV be
random_variable of F,
Borel_Sets , K be
Element of
REAL , g2 be
Function of Omega,
REAL st g2
= (
chi (((RV
- (Omega
--> K))
"
[.
0 ,
+infty .[),Omega)) holds (
Call-Option (RV,K))
= (g2
(#) (RV
- (Omega
--> K)))
proof
let RV be
random_variable of F,
Borel_Sets ;
let K be
Element of
REAL ;
let g2 be
Function of Omega,
REAL ;
assume
A2: g2
= (
chi (((RV
- (Omega
--> K))
"
[.
0 ,
+infty .[),Omega));
set RVO = (RV
- (Omega
--> K));
set CO = (
Call-Option (RV,K));
QQ: (
dom g2)
= Omega & (
dom RVO)
= Omega & (
dom CO)
= Omega by
FUNCT_2:def 1;
q1: for c be
object st c
in (
dom CO) holds (CO
. c)
= ((g2
. c)
* (RVO
. c))
proof
let c be
object;
assume c
in (
dom CO);
then
reconsider c as
Element of Omega;
per cases ;
suppose
ASSJJ0: c
in (RVO
"
[.
0 ,
+infty .[);
then
ZW0: (g2
. c)
= 1 by
A2,
FUNCT_3:def 3;
(RVO
. c)
in
[.
0 ,
+infty .[ by
ASSJJ0,
FUNCT_1:def 7;
then
0
<= (RVO
. c) & (RVO
. c)
<
+infty by
XXREAL_1: 3;
hence thesis by
ZW0,
FINANCE3:def 5;
end;
suppose
ASSJJ00: not c
in (RVO
"
[.
0 ,
+infty .[);
ASSJJ0: c
in (RVO
"
].
-infty ,
0 .[)
proof
not (c
in (
dom RVO) & (RVO
. c)
in
[.
0 ,
+infty .[) by
FUNCT_1:def 7,
ASSJJ00;
then not c
in Omega or not (RVO
. c)
in
[.
0 ,
+infty .[ by
FUNCT_2:def 1;
then
T: (RV
. c)
in
].
-infty ,
+infty .[ &
-infty
< (RVO
. c) & (RVO
. c)
<
0 by
XXREAL_1: 224,
XXREAL_0: 12,
XXREAL_0: 9,
XXREAL_1: 3;
(RVO
. c)
in
].
-infty ,
0 .[ by
XXREAL_1: 4,
T;
hence thesis by
FUNCT_1:def 7,
QQ;
end;
ZW0: (g2
. c)
=
0 by
A2,
ASSJJ00,
FUNCT_3:def 3;
c
in (
dom RVO) & (RVO
. c)
in
].
-infty ,
0 .[ by
ASSJJ0,
FUNCT_1:def 7;
then
-infty
< (RVO
. c) & (RVO
. c)
<
0 by
XXREAL_1: 4;
hence thesis by
ZW0,
FINANCE3:def 5;
end;
end;
for x be
object st x
in (
dom CO) holds (CO
. x)
= ((g2
(#) RVO)
. x)
proof
let x be
object;
assume x
in (
dom CO);
then (CO
. x)
= ((g2
. x)
* (RVO
. x)) by
q1;
hence thesis by
VALUED_1: 5;
end;
hence thesis by
QQ;
end;
theorem ::
FINANCE6:3
TH1: for RV be
random_variable of F,
Borel_Sets , K be
Real holds ((Omega
--> K)
- RV) is
random_variable of F,
Borel_Sets
proof
let RV be
random_variable of F,
Borel_Sets , K be
Real;
reconsider K as
Element of
REAL by
XREAL_0:def 1;
(Omega
--> K) is
random_variable of F,
Borel_Sets by
FINANCE3: 10;
hence thesis by
FINANCE2: 24;
end;
theorem ::
FINANCE6:4
ZZZ: for A be
Element of F holds (
chi (A,Omega)) is
random_variable of F,
Borel_Sets
proof
let A be
Element of F;
set chij = (
chi (A,Omega));
chij is
Function & (
rng chij)
c=
REAL & (
dom chij)
= Omega by
FUNCT_3:def 3,
VALUED_0:def 3;
then
reconsider chij2 = chij as
Function of Omega,
REAL by
FUNCT_2: 2;
reconsider MyOmega = Omega as
Element of F by
PROB_1: 5;
chij2 is (
[#] F)
-measurable by
MESFUNC2: 29;
then chij2 is
Real-Valued-Random-Variable of F by
RANDOM_1:def 2;
hence thesis by
RANDOM_3: 7;
end;
registration
let Omega;
let F;
cluster F,
Borel_Sets
-random_variable-like for
Function of Omega,
REAL ;
existence
proof
set A = the
Element of F;
reconsider c = (
chi (A,Omega)) as
Function of Omega,
REAL by
ZZZ;
take c;
thus thesis by
ZZZ;
end;
end
theorem ::
FINANCE6:5
ChiRandom: (
chi (Omega,Omega)) is F,
Borel_Sets
-random_variable-like
Function of Omega,
REAL
proof
set g2 = (
chi (Omega,Omega));
reconsider O = Omega as
Element of F by
PROB_1: 5;
(
chi (O,Omega)) is
random_variable of F,
Borel_Sets by
ZZZ;
hence thesis;
end;
theorem ::
FINANCE6:6
Lemma00: for f,RV be
random_variable of F,
Borel_Sets , K be
Real holds ((f
- RV)
"
[.
0 ,
+infty .[) is
Element of F
proof
let f,RV be
random_variable of F,
Borel_Sets , K be
Real;
A1:
[.
0 ,
+infty .[ is
Element of
Borel_Sets by
FINANCE1: 3;
(f
- RV) is F,
Borel_Sets
-random_variable-like by
FINANCE2: 24;
hence thesis by
A1;
end;
LemmaRandom: for RV be
random_variable of F,
Borel_Sets , K be
Real holds (
chi (((RV
- (Omega
--> K))
"
[.
0 ,
+infty .[),Omega)) is
random_variable of F,
Borel_Sets
proof
let RV be
random_variable of F,
Borel_Sets , K be
Real;
reconsider K as
Element of
REAL by
XREAL_0:def 1;
(Omega
--> K) is
random_variable of F,
Borel_Sets by
FINANCE3: 10;
then ((RV
- (Omega
--> K))
"
[.
0 ,
+infty .[) is
Element of F by
Lemma00;
hence thesis by
ZZZ;
end;
definition
let Omega, F;
let RV be
random_variable of F,
Borel_Sets ;
let K be
Real;
:: original:
Call-Option
redefine
func
Call-Option (RV,K) ->
random_variable of F,
Borel_Sets ;
correctness
proof
set RVO = (RV
- (Omega
--> K));
set g2 = (
chi ((RVO
"
[.
0 ,
+infty .[),Omega));
reconsider g2 as
random_variable of F,
Borel_Sets by
LemmaRandom;
set RVO = (RV
- (Omega
--> K));
reconsider RVO as
random_variable of F,
Borel_Sets by
FINANCE3: 11;
set CO = (
Call-Option (RV,K));
CO
= (g2
(#) RVO)
proof
q1: for c be
object st c
in (
dom CO) holds (CO
. c)
= ((g2
. c)
* (RVO
. c))
proof
let c be
object;
assume c
in (
dom CO);
then
reconsider c as
Element of Omega;
(CO
. c)
= ((g2
. c)
* (RVO
. c))
proof
per cases ;
suppose
ASSJJ0: c
in (RVO
"
[.
0 ,
+infty .[);
then
ZW0: (g2
. c)
= 1 by
FUNCT_3:def 3;
c
in (
dom RVO) & (RVO
. c)
in
[.
0 ,
+infty .[ by
ASSJJ0,
FUNCT_1:def 7;
then
0
<= (RVO
. c) & (RVO
. c)
<
+infty by
XXREAL_1: 3;
hence thesis by
ZW0,
FINANCE3:def 5;
end;
suppose
ASSJJ00: not c
in (RVO
"
[.
0 ,
+infty .[);
K1: c
in Omega & not c
in (RVO
"
[.
0 ,
+infty .[) by
ASSJJ00;
ASSJJ0: c
in (RVO
"
].
-infty ,
0 .[)
proof
not (c
in (
dom RVO) & (RVO
. c)
in
[.
0 ,
+infty .[) by
ASSJJ00,
FUNCT_1:def 7;
then not c
in Omega or not (RVO
. c)
in
[.
0 ,
+infty .[ by
FUNCT_2:def 1;
then (RV
. c)
in
].
-infty ,
+infty .[ &
-infty
< (RVO
. c) & (RVO
. c)
<
0 by
XXREAL_1: 224,
XXREAL_0: 12,
XXREAL_0: 9,
XXREAL_1: 3;
then c
in (
dom RVO) & (RVO
. c)
in
].
-infty ,
0 .[ by
K1,
FUNCT_2:def 1,
XXREAL_1: 4;
hence thesis by
FUNCT_1:def 7;
end;
ZW0: (g2
. c)
=
0 by
ASSJJ00,
FUNCT_3:def 3;
c
in (
dom RVO) & (RVO
. c)
in
].
-infty ,
0 .[ by
ASSJJ0,
FUNCT_1:def 7;
then
-infty
< (RVO
. c) & (RVO
. c)
<
0 by
XXREAL_1: 4;
hence thesis by
ZW0,
FINANCE3:def 5;
end;
end;
hence thesis;
end;
W1: (
dom CO)
= Omega & (
dom g2)
= Omega & (
dom RVO)
= Omega by
FUNCT_2:def 1;
for x be
object st x
in (
dom CO) holds (CO
. x)
= ((g2
(#) RVO)
. x)
proof
let x be
object;
assume x
in (
dom CO);
then (CO
. x)
= ((g2
. x)
* (RVO
. x)) by
q1;
hence thesis by
VALUED_1: 5;
end;
hence thesis by
W1;
end;
hence thesis by
FINANCE2: 25;
end;
end
definition
let Omega, F;
let RV be
random_variable of F,
Borel_Sets ;
let K be
Real;
::
FINANCE6:def1
func
Put-Option (RV,K) ->
Function of Omega,
REAL means
:
Def30: for w be
Element of Omega holds ((((Omega
--> K)
- RV)
. w)
>=
0 implies (it
. w)
= (((Omega
--> K)
- RV)
. w)) & ((((Omega
--> K)
- RV)
. w)
<
0 implies (it
. w)
=
0 );
existence
proof
reconsider MyFunc = ((Omega
--> K)
- RV) as
Function of Omega,
REAL ;
deffunc
U(
Element of Omega) = (
SetForCall-Option (MyFunc,$1));
consider f be
Function of Omega,
REAL such that
A1: for d be
Element of Omega holds (f
. d)
=
U(d) from
FUNCT_2:sch 4;
for w be
Element of Omega holds ((MyFunc
. w)
>=
0 implies (f
. w)
= (((Omega
--> K)
- RV)
. w)) & ((MyFunc
. w)
<
0 implies (f
. w)
=
0 )
proof
let w be
Element of Omega;
(f
. w)
= (
SetForCall-Option (MyFunc,w)) by
A1;
hence thesis by
FINANCE3:def 4;
end;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of Omega,
REAL ;
assume that
A2: for w be
Element of Omega holds ((((Omega
--> K)
- RV)
. w)
>=
0 implies (f1
. w)
= (((Omega
--> K)
- RV)
. w)) & ((((Omega
--> K)
- RV)
. w)
<
0 implies (f1
. w)
=
0 ) and
A3: for w be
Element of Omega holds ((((Omega
--> K)
- RV)
. w)
>=
0 implies (f2
. w)
= (((Omega
--> K)
- RV)
. w)) & ((((Omega
--> K)
- RV)
. w)
<
0 implies (f2
. w)
=
0 );
let w be
Element of Omega;
per cases ;
suppose
A0: (((Omega
--> K)
- RV)
. w)
>=
0 ;
then (f1
. w)
= (((Omega
--> K)
- RV)
. w) by
A2;
hence thesis by
A0,
A3;
end;
suppose
A0: (((Omega
--> K)
- RV)
. w)
<
0 ;
then (f1
. w)
=
0 by
A2;
hence thesis by
A0,
A3;
end;
end;
end
theorem ::
FINANCE6:7
JA3: for RV be
random_variable of F,
Borel_Sets , K be
Real, g2 be
Function of Omega,
REAL st g2
= (
chi ((((Omega
--> K)
- RV)
"
[.
0 ,
+infty .[),Omega)) holds (
Put-Option (RV,K))
= (g2
(#) ((Omega
--> K)
- RV))
proof
let RV be
random_variable of F,
Borel_Sets ;
let K be
Real;
let g2 be
Function of Omega,
REAL ;
assume
K1: g2
= (
chi ((((Omega
--> K)
- RV)
"
[.
0 ,
+infty .[),Omega));
set PO = (
Put-Option (RV,K));
set RVO = ((Omega
--> K)
- RV);
h1: (
dom g2)
= Omega & (
dom RVO)
= Omega & (
dom PO)
= Omega by
FUNCT_2:def 1;
q1: (
dom PO)
= ((
dom g2)
/\ (
dom RVO)) & for c be
object st c
in (
dom PO) holds (PO
. c)
= ((g2
. c)
* (RVO
. c))
proof
for c be
object st c
in (
dom PO) holds (PO
. c)
= ((g2
. c)
* (RVO
. c))
proof
let c be
object;
assume c
in (
dom PO);
then
reconsider c as
Element of Omega;
(PO
. c)
= ((g2
. c)
* (RVO
. c))
proof
per cases ;
suppose
ASSJJ0: c
in (RVO
"
[.
0 ,
+infty .[);
ZW0: (g2
. c)
= 1 by
K1,
ASSJJ0,
FUNCT_3:def 3;
c
in (
dom RVO) & (RVO
. c)
in
[.
0 ,
+infty .[ by
ASSJJ0,
FUNCT_1:def 7;
then
0
<= (RVO
. c) & (RVO
. c)
<
+infty by
XXREAL_1: 3;
hence thesis by
ZW0,
Def30;
end;
suppose
ASSJJ00: not c
in (RVO
"
[.
0 ,
+infty .[);
then
k1: c
in Omega & not c
in (RVO
"
[.
0 ,
+infty .[);
ASSJJ0: c
in (RVO
"
].
-infty ,
0 .[)
proof
not (c
in (
dom RVO) & (RVO
. c)
in
[.
0 ,
+infty .[) by
ASSJJ00,
FUNCT_1:def 7;
then not c
in Omega or not (RVO
. c)
in
[.
0 ,
+infty .[ by
FUNCT_2:def 1;
then (RV
. c)
in
].
-infty ,
+infty .[ &
-infty
< (RVO
. c) & (RVO
. c)
<
0 by
XXREAL_1: 224,
XXREAL_0: 12,
XXREAL_0: 9,
XXREAL_1: 3;
then c
in (
dom RVO) & (RVO
. c)
in
].
-infty ,
0 .[ by
k1,
FUNCT_2:def 1,
XXREAL_1: 4;
hence thesis by
FUNCT_1:def 7;
end;
ZW0: (g2
. c)
=
0 by
K1,
ASSJJ00,
FUNCT_3:def 3;
c
in (
dom RVO) & (RVO
. c)
in
].
-infty ,
0 .[ by
ASSJJ0,
FUNCT_1:def 7;
then
-infty
< (RVO
. c) & (RVO
. c)
<
0 by
XXREAL_1: 4;
hence thesis by
ZW0,
Def30;
end;
end;
hence thesis;
end;
hence thesis by
h1;
end;
for x be
object st x
in (
dom PO) holds (PO
. x)
= ((g2
(#) RVO)
. x)
proof
let x be
object;
assume x
in (
dom PO);
then (PO
. x)
= ((g2
. x)
* (RVO
. x)) by
q1;
hence thesis by
VALUED_1: 5;
end;
hence thesis by
h1;
end;
definition
let Omega, F;
let RV be
random_variable of F,
Borel_Sets ;
let K be
Real;
:: original:
Put-Option
redefine
func
Put-Option (RV,K) ->
random_variable of F,
Borel_Sets ;
correctness
proof
set RVO = ((Omega
--> K)
- RV);
set g2 = (
chi ((RVO
"
[.
0 ,
+infty .[),Omega));
set PO = (
Put-Option (RV,K));
reconsider K as
Element of
REAL by
XREAL_0:def 1;
(Omega
--> K) is
random_variable of F,
Borel_Sets by
FINANCE3: 10;
then (((Omega
--> K)
- RV)
"
[.
0 ,
+infty .[) is
Element of F by
Lemma00;
then
reconsider g2 as
random_variable of F,
Borel_Sets by
ZZZ;
reconsider RVO as
random_variable of F,
Borel_Sets by
TH1;
PO
= (g2
(#) RVO) by
JA3;
hence thesis by
FINANCE2: 25;
end;
end
begin
definition
let Omega, F;
let RV be
random_variable of F,
Borel_Sets ;
let K be
Real;
::
FINANCE6:def2
func
Straddle (RV,K) ->
random_variable of F,
Borel_Sets equals ((
Put-Option (RV,K))
+ (
Call-Option (RV,K)));
coherence by
FINANCE2: 23;
end
theorem ::
FINANCE6:8
for RV be
random_variable of F,
Borel_Sets , K be
Real holds for w be
Element of Omega holds ((
Straddle (RV,K))
. w)
=
|.((RV
- (Omega
--> K))
. w).|
proof
let RV be
random_variable of F,
Borel_Sets ;
let K be
Real;
let w be
Element of Omega;
set f1 = RV;
set f2 = ((
- 1)
(#) (Omega
--> K));
SS: (
dom RV)
= Omega & (
dom f2)
= Omega by
FUNCT_2:def 1;
then w
in ((
dom f1)
/\ (
dom f2));
then
C1: w
in (
dom (f1
+ f2)) by
VALUED_1:def 1;
(
dom (
Put-Option (RV,K)))
= Omega & (
dom (
Call-Option (RV,K)))
= Omega by
FUNCT_2:def 1;
then w
in ((
dom (
Put-Option (RV,K)))
/\ (
dom (
Call-Option (RV,K))));
then
B100: w
in (
dom ((
Put-Option (RV,K))
+ (
Call-Option (RV,K)))) by
VALUED_1:def 1;
c2: (
dom (Omega
--> K))
= Omega & (
dom f2)
= (
dom (Omega
--> K)) by
VALUED_1:def 5;
c4: w
in (
dom RV) by
SS;
then
C6: w
in (
dom ((
- 1)
(#) RV)) by
VALUED_1:def 5;
per cases ;
suppose
S1: ((RV
- (Omega
--> K))
. w)
>
0 ;
then
B0:
|.((RV
- (Omega
--> K))
. w).|
= ((RV
- (Omega
--> K))
. w) by
COMPLEX1: 43;
(
dom (
- RV))
= Omega by
FUNCT_2:def 1;
then w
in ((
dom (Omega
--> K))
/\ (
dom (
- RV)));
then
C7: w
in (
dom ((Omega
--> K)
+ (
- RV))) by
VALUED_1:def 1;
(((Omega
--> K)
- RV)
. w)
<
0
proof
((RV
- (Omega
--> K))
. w)
= ((f1
. w)
+ (f2
. w)) by
C1,
VALUED_1:def 1
.= ((RV
. w)
+ ((
- 1)
* ((Omega
--> K)
. w))) by
c2,
VALUED_1:def 5;
then (
- ((RV
. w)
- K))
<
0 by
S1;
then (K
- (RV
. w))
<
0 ;
then (((Omega
--> K)
. w)
+ ((
- 1)
* (RV
. w)))
<
0 ;
then (((Omega
--> K)
. w)
+ (((
- 1)
(#) RV)
. w))
<
0 by
C6,
VALUED_1:def 5;
hence thesis by
C7,
VALUED_1:def 1;
end;
then
B2: ((
Put-Option (RV,K))
. w)
=
0 by
Def30;
(((
Put-Option (RV,K))
+ (
Call-Option (RV,K)))
. w)
= (((
Put-Option (RV,K))
. w)
+ ((
Call-Option (RV,K))
. w)) by
B100,
VALUED_1:def 1;
hence thesis by
B0,
B2,
FINANCE3:def 5,
S1;
end;
suppose
S1: ((RV
- (Omega
--> K))
. w)
<
0 ;
(
dom (
Put-Option (RV,K)))
= Omega & (
dom (
Call-Option (RV,K)))
= Omega by
FUNCT_2:def 1;
then w
in ((
dom (
Put-Option (RV,K)))
/\ (
dom (
Call-Option (RV,K))));
then
B100: w
in (
dom ((
Put-Option (RV,K))
+ (
Call-Option (RV,K)))) by
VALUED_1:def 1;
c2: (
dom (Omega
--> K))
= Omega & (
dom f2)
= (
dom (Omega
--> K)) by
VALUED_1:def 5;
C6: w
in (
dom ((
- 1)
(#) RV)) by
VALUED_1:def 5,
c4;
(
dom (Omega
--> K))
= Omega & (
dom (
- RV))
= Omega by
FUNCT_2:def 1;
then w
in ((
dom (Omega
--> K))
/\ (
dom (
- RV)));
then
C7: w
in (
dom ((Omega
--> K)
+ (
- RV))) by
VALUED_1:def 1;
(((Omega
--> K)
- RV)
. w)
>
0
proof
((RV
- (Omega
--> K))
. w)
= ((f1
. w)
+ (f2
. w)) by
C1,
VALUED_1:def 1
.= ((RV
. w)
+ ((
- 1)
* ((Omega
--> K)
. w))) by
c2,
VALUED_1:def 5;
then (
- ((RV
. w)
- K))
>
0 by
S1;
then (K
- (RV
. w))
>
0 ;
then (((Omega
--> K)
. w)
+ ((
- 1)
* (RV
. w)))
>
0 ;
then (((Omega
--> K)
. w)
+ (((
- 1)
(#) RV)
. w))
>
0 by
C6,
VALUED_1:def 5;
hence thesis by
C7,
VALUED_1:def 1;
end;
then
B2: ((
Put-Option (RV,K))
. w)
= (((Omega
--> K)
- RV)
. w) by
Def30;
((
Call-Option (RV,K))
. w)
=
0 by
FINANCE3:def 5,
S1;
then
B40: ((
Straddle (RV,K))
. w)
= (
0
+ (((Omega
--> K)
- RV)
. w)) by
B2,
B100,
VALUED_1:def 1;
(
dom (Omega
--> K))
= Omega & (
dom ((
- 1)
(#) RV))
= Omega by
FUNCT_2:def 1;
then w
in ((
dom (Omega
--> K))
/\ (
dom ((
- 1)
(#) RV)));
then w
in (
dom ((Omega
--> K)
+ ((
- 1)
(#) RV))) by
VALUED_1:def 1;
then
U2: (((Omega
--> K)
- RV)
. w)
= (((Omega
--> K)
. w)
+ (((
- 1)
(#) RV)
. w)) by
VALUED_1:def 1;
(
dom ((
- 1)
(#) RV))
= Omega by
FUNCT_2:def 1;
then
u3: (((Omega
--> K)
- RV)
. w)
= (((Omega
--> K)
. w)
+ ((
- 1)
* (RV
. w))) by
U2,
VALUED_1:def 5;
L1: ((RV
. w)
+ (
- ((Omega
--> K)
. w)))
= ((RV
. w)
+ ((
- 1)
* ((Omega
--> K)
. w)));
(
dom ((
- 1)
(#) (Omega
--> K)))
= Omega by
FUNCT_2:def 1;
then
L2: ((RV
. w)
+ (
- ((Omega
--> K)
. w)))
= ((RV
. w)
+ (((
- 1)
(#) (Omega
--> K))
. w)) by
L1,
VALUED_1:def 5;
w
in ((
dom RV)
/\ (
dom (
- (Omega
--> K)))) by
SS;
then w
in (
dom (RV
+ (
- (Omega
--> K)))) by
VALUED_1:def 1;
then ((RV
. w)
+ (
- ((Omega
--> K)
. w)))
= ((RV
+ (
- (Omega
--> K)))
. w) by
L2,
VALUED_1:def 1;
then (
- ((RV
- (Omega
--> K))
. w))
= (((Omega
--> K)
- RV)
. w) by
u3;
hence thesis by
B40,
S1,
COMPLEX1: 70;
end;
suppose
S1: ((RV
- (Omega
--> K))
. w)
=
0 ;
0
= ((
Straddle (RV,K))
. w)
proof
H2: ((RV
. w)
+ (((
- 1)
(#) (Omega
--> K))
. w))
=
0 by
VALUED_1: 1,
S1;
(
dom (Omega
--> K))
= Omega & (
dom ((
- 1)
(#) (Omega
--> K)))
= Omega by
FUNCT_2:def 1;
then
h1: ((RV
. w)
+ ((
- 1)
* ((Omega
--> K)
. w)))
=
0 by
H2,
VALUED_1:def 5;
(
dom ((
- 1)
(#) RV))
= Omega by
FUNCT_2:def 1;
then
G2: (((Omega
--> K)
. w)
+ (((
- 1)
(#) RV)
. w))
=
0 by
h1,
VALUED_1:def 5;
(
dom (Omega
--> K))
= Omega & (
dom (
- RV))
= Omega by
FUNCT_2:def 1;
then w
in ((
dom (Omega
--> K))
/\ (
dom (
- RV)));
then w
in (
dom ((Omega
--> K)
+ (
- RV))) by
VALUED_1:def 1;
then (((Omega
--> K)
- RV)
. w)
=
0 by
G2,
VALUED_1:def 1;
then ((
Put-Option (RV,K))
. w)
= (
- ((RV
- (Omega
--> K))
. w)) by
S1,
Def30;
then
F3: (((
Call-Option (RV,K))
. w)
+ ((
Put-Option (RV,K))
. w))
=
0 by
S1,
FINANCE3:def 5;
(
dom (
Call-Option (RV,K)))
= Omega & (
dom (
Put-Option (RV,K)))
= Omega by
FUNCT_2:def 1;
then w
in ((
dom (
Call-Option (RV,K)))
/\ (
dom (
Put-Option (RV,K))));
then w
in (
dom ((
Call-Option (RV,K))
+ (
Put-Option (RV,K)))) by
VALUED_1:def 1;
hence thesis by
F3,
VALUED_1:def 1;
end;
hence thesis by
COMPLEX1: 43,
S1;
end;
end;
definition
let Omega, F;
::
FINANCE6:def3
func
set_of_constant_RV (F) ->
set equals { f where f be
Function of Omega,
REAL : f is
random_variable of F,
Borel_Sets & f is
constant };
coherence ;
::
FINANCE6:def4
func
set_of_chi_RV (F) ->
set equals { (
chi (A,Omega)) where A be
Element of F : (
chi (A,Omega)) is
random_variable of F,
Borel_Sets };
coherence ;
end
definition
let Omega, F;
let X be
set;
::
FINANCE6:def5
attr X is F
-random-membered means
:
RanDef: for x be
object st x
in X holds x is
random_variable of F,
Borel_Sets ;
end
registration
let Omega, F;
cluster (
set_of_constant_RV F) -> non
empty;
coherence
proof
set myRV = (Omega
-->
0 );
A2:
0
in
REAL by
NUMBERS: 19;
reconsider myRV as
Function of Omega,
REAL by
FUNCOP_1: 45,
NUMBERS: 19;
myRV is F,
Borel_Sets
-random_variable-like by
FINANCE3: 10,
A2;
then myRV
in (
set_of_constant_RV F);
hence thesis;
end;
cluster (
set_of_chi_RV F) -> non
empty;
coherence
proof
reconsider MyOmega = Omega as
Element of F by
PROB_1: 5;
set g2 = (
chi (Omega,Omega));
(
chi (Omega,Omega)) is
random_variable of F,
Borel_Sets by
ChiRandom;
then (
chi (MyOmega,MyOmega))
in (
set_of_chi_RV F);
hence thesis;
end;
end
registration
let Omega, F;
cluster (
set_of_constant_RV F) -> F
-random-membered;
coherence
proof
for x be
object st x
in (
set_of_constant_RV F) holds x is
random_variable of F,
Borel_Sets
proof
let x be
object;
assume x
in (
set_of_constant_RV F);
then
consider f be
Function of Omega,
REAL such that
A1: x
= f & f is
random_variable of F,
Borel_Sets & f is
constant;
thus thesis by
A1;
end;
hence thesis;
end;
cluster (
set_of_chi_RV F) -> F
-random-membered;
coherence
proof
for x be
object st x
in (
set_of_chi_RV F) holds x is
random_variable of F,
Borel_Sets
proof
let x be
object;
assume x
in (
set_of_chi_RV F);
then
consider A be
Element of F such that
A1: x
= (
chi (A,Omega)) & (
chi (A,Omega)) is
random_variable of F,
Borel_Sets ;
thus thesis by
A1;
end;
hence thesis;
end;
end
registration
let Omega, F;
cluster F
-random-membered non
empty for
set;
existence
proof
take (
set_of_constant_RV F);
thus thesis;
end;
end
definition
let Omega, F;
let D be F
-random-membered non
empty
set;
let ChiFuncs be
sequence of D;
let n be
Nat;
::
FINANCE6:def6
func
Conv_RV (ChiFuncs,n) ->
random_variable of F,
Borel_Sets equals (ChiFuncs
. n);
coherence by
RanDef;
end
definition
let Omega, F;
let D be F
-random-membered non
empty
set;
let ConstFuncs be
sequence of D;
let w be
Element of Omega;
::
FINANCE6:def7
func
Conv2_RV (ConstFuncs,w) ->
Function of
NAT ,
REAL means
:
Def770: for n be
Nat holds (it
. n)
= ((
Conv_RV (ConstFuncs,n))
. w);
existence
proof
deffunc
U(
Element of
NAT ) = ((
Conv_RV (ConstFuncs,$1))
. w);
consider f be
Function of
NAT ,
REAL such that
A1: for d be
Element of
NAT holds (f
. d)
=
U(d) from
FUNCT_2:sch 4;
take f;
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A1;
end;
uniqueness
proof
let f1,f2 be
Function of
NAT ,
REAL ;
assume that
A1: for d be
Nat holds (f1
. d)
= ((
Conv_RV (ConstFuncs,d))
. w) and
A2: for d be
Nat holds (f2
. d)
= ((
Conv_RV (ConstFuncs,d))
. w);
let d be
Element of
NAT ;
(f2
. d)
= ((
Conv_RV (ConstFuncs,d))
. w) by
A2;
hence thesis by
A1;
end;
end
definition
let Omega, F;
let D1,D2 be F
-random-membered non
empty
set;
let ChiFuncs be
sequence of D1;
let ConstFuncs be
sequence of D2;
let n be
Nat;
::
FINANCE6:def8
func
simple_RV_help (ChiFuncs,ConstFuncs,n) ->
Function of Omega,
REAL means
:
Def777: for w be
Element of Omega holds (it
. w)
= ((
Partial_Sums ((
Conv2_RV (ConstFuncs,w))
(#) (
Conv2_RV (ChiFuncs,w))))
. n);
existence
proof
deffunc
U(
Element of Omega) = (
In (((
Partial_Sums ((
Conv2_RV (ConstFuncs,$1))
(#) (
Conv2_RV (ChiFuncs,$1))))
. n),
REAL ));
consider f be
Function of Omega,
REAL such that
A1: for d be
Element of Omega holds (f
. d)
=
U(d) from
FUNCT_2:sch 4;
take f;
let w be
Element of Omega;
(
In (((
Partial_Sums ((
Conv2_RV (ConstFuncs,w))
(#) (
Conv2_RV (ChiFuncs,w))))
. n),
REAL ))
= ((
Partial_Sums ((
Conv2_RV (ConstFuncs,w))
(#) (
Conv2_RV (ChiFuncs,w))))
. n);
hence thesis by
A1;
end;
uniqueness
proof
let f1,f2 be
Function of Omega,
REAL ;
assume that
A1: for w be
Element of Omega holds (f1
. w)
= ((
Partial_Sums ((
Conv2_RV (ConstFuncs,w))
(#) (
Conv2_RV (ChiFuncs,w))))
. n) and
A2: for w be
Element of Omega holds (f2
. w)
= ((
Partial_Sums ((
Conv2_RV (ConstFuncs,w))
(#) (
Conv2_RV (ChiFuncs,w))))
. n);
let w be
Element of Omega;
(f2
. w)
= ((
Partial_Sums ((
Conv2_RV (ConstFuncs,w))
(#) (
Conv2_RV (ChiFuncs,w))))
. n) by
A2;
hence thesis by
A1;
end;
end
definition
let Omega, F;
let D1,D2 be F
-random-membered non
empty
set;
let ChiFuncs be
sequence of D1;
let ConstFuncs be
sequence of D2;
let n be
Nat;
:: original:
simple_RV_help
redefine
func
simple_RV_help (ChiFuncs,ConstFuncs,n) ->
random_variable of F,
Borel_Sets ;
correctness
proof
consider f be
Function of Omega,
REAL such that
B10: f
= (
simple_RV_help (ChiFuncs,ConstFuncs,n));
f is
random_variable of F,
Borel_Sets
proof
defpred
J[
Nat] means (
simple_RV_help (ChiFuncs,ConstFuncs,$1)) is
random_variable of F,
Borel_Sets ;
set RVs0 = (
simple_RV_help (ChiFuncs,ConstFuncs,
0 ));
J0:
J[
0 ]
proof
for w be
Element of Omega holds (RVs0
. w)
= (((
Conv_RV (ConstFuncs,
0 ))
(#) (
Conv_RV (ChiFuncs,
0 )))
. w)
proof
let w be
Element of Omega;
(RVs0
. w)
= ((
Partial_Sums ((
Conv2_RV (ConstFuncs,w))
(#) (
Conv2_RV (ChiFuncs,w))))
.
0 ) by
Def777;
then (RVs0
. w)
= (((
Conv2_RV (ConstFuncs,w))
(#) (
Conv2_RV (ChiFuncs,w)))
.
0 ) by
SERIES_1:def 1;
then
C2: (RVs0
. w)
= (((
Conv2_RV (ConstFuncs,w))
.
0 )
* ((
Conv2_RV (ChiFuncs,w))
.
0 )) by
VALUED_1: 5;
C3: ((
Conv2_RV (ConstFuncs,w))
.
0 )
= ((
Conv_RV (ConstFuncs,
0 ))
. w) by
Def770;
((
Conv2_RV (ChiFuncs,w))
.
0 )
= ((
Conv_RV (ChiFuncs,
0 ))
. w) by
Def770;
hence thesis by
VALUED_1: 5,
C2,
C3;
end;
then RVs0
= ((
Conv_RV (ConstFuncs,
0 ))
(#) (
Conv_RV (ChiFuncs,
0 )));
hence thesis by
FINANCE2: 25;
end;
J1: for n be
Nat st
J[n] holds
J[(n
+ 1)]
proof
let n be
Nat;
assume
ASS0:
J[n];
set RVsn = (
simple_RV_help (ChiFuncs,ConstFuncs,n));
set RVsn1 = (
simple_RV_help (ChiFuncs,ConstFuncs,(n
+ 1)));
set RVa = ((
Conv_RV (ConstFuncs,(n
+ 1)))
(#) (
Conv_RV (ChiFuncs,(n
+ 1))));
for w be
Element of Omega holds (RVsn1
. w)
= ((RVsn
+ RVa)
. w)
proof
let w be
Element of Omega;
(RVsn1
. w)
= ((
Partial_Sums ((
Conv2_RV (ConstFuncs,w))
(#) (
Conv2_RV (ChiFuncs,w))))
. (n
+ 1)) by
Def777;
then (RVsn1
. w)
= ((
In (((
Partial_Sums ((
Conv2_RV (ConstFuncs,w))
(#) (
Conv2_RV (ChiFuncs,w))))
. n),
REAL ))
+ (((
Conv2_RV (ConstFuncs,w))
(#) (
Conv2_RV (ChiFuncs,w)))
. (n
+ 1))) by
SERIES_1:def 1;
then (RVsn1
. w)
= ((RVsn
. w)
+ (((
Conv2_RV (ConstFuncs,w))
(#) (
Conv2_RV (ChiFuncs,w)))
. (n
+ 1))) by
Def777;
then
D1: (RVsn1
. w)
= ((RVsn
. w)
+ (((
Conv2_RV (ConstFuncs,w))
. (n
+ 1))
* ((
Conv2_RV (ChiFuncs,w))
. (n
+ 1)))) by
VALUED_1: 5;
D2: ((
Conv2_RV (ConstFuncs,w))
. (n
+ 1))
= ((
Conv_RV (ConstFuncs,(n
+ 1)))
. w) by
Def770;
((
Conv2_RV (ChiFuncs,w))
. (n
+ 1))
= ((
Conv_RV (ChiFuncs,(n
+ 1)))
. w) by
Def770;
then (RVsn1
. w)
= ((RVsn
. w)
+ (((
Conv_RV (ConstFuncs,(n
+ 1)))
(#) (
Conv_RV (ChiFuncs,(n
+ 1))))
. w)) by
VALUED_1: 5,
D1,
D2;
hence thesis by
VALUED_1: 1;
end;
then
M1: RVsn1
= (RVsn
+ RVa);
RVsn is
random_variable of F,
Borel_Sets & RVa is
random_variable of F,
Borel_Sets by
ASS0,
FINANCE2: 25;
hence thesis by
M1,
FINANCE2: 23;
end;
for k be
Nat holds
J[k] from
NAT_1:sch 2(
J0,
J1);
hence thesis by
B10;
end;
hence thesis by
B10;
end;
end
begin
reserve phi for
Real_Sequence;
reserve jpi for
pricefunction;
Lemacik: for x be
object holds x
in (
set_of_random_variables_on (F,
Borel_Sets )) iff x is
random_variable of F,
Borel_Sets
proof
let x be
object;
thus x
in (
set_of_random_variables_on (F,
Borel_Sets )) implies x is
random_variable of F,
Borel_Sets
proof
assume x
in (
set_of_random_variables_on (F,
Borel_Sets ));
then
consider M be
Function of Omega,
REAL such that
AA: x
= M & M is F,
Borel_Sets
-random_variable-like;
thus x is
random_variable of F,
Borel_Sets by
AA;
end;
thus thesis;
end;
definition
let Omega, F;
let q be
Nat;
let G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets ));
::
FINANCE6:def9
func
Change_Element_to_Func (G,q) ->
Real-Valued-Random-Variable of F equals (G
. q);
coherence
proof
(G
. q) is
random_variable of F,
Borel_Sets by
Lemacik;
hence thesis by
RANDOM_3: 7;
end;
end
definition
let phi, Omega, F;
let G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets ));
let n be
Nat;
::
FINANCE6:def10
func
ArbitrageElSigma1 (phi,Omega,F,G,n) ->
Element of F equals ((
RVPortfolioValueFutExt (phi,F,G,n))
"
[.
0 ,
+infty .[);
correctness
proof
set RV = (
RVPortfolioValueFutExt (phi,F,G,n));
A1:
[.
0 ,
+infty .[ is
Element of
Borel_Sets by
FINANCE1: 3;
RV is F,
Borel_Sets
-random_variable-like by
FINANCE3: 6;
hence thesis by
A1;
end;
::
FINANCE6:def11
func
ArbitrageElSigma2 (phi,Omega,F,G,n) ->
Element of F equals ((
RVPortfolioValueFutExt (phi,F,G,n))
"
].
0 ,
+infty .[);
correctness
proof
(
RVPortfolioValueFutExt (phi,F,G,n)) is F,
Borel_Sets
-random_variable-like by
FINANCE3: 6;
hence thesis by
A1;
end;
end
definition
let Omega, F;
let Prob be
Probability of F;
let G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets ));
let jpi be
pricefunction;
let n be
Nat;
::
FINANCE6:def12
pred
Arbitrage_Opportunity_exists_wrt Prob,G,jpi,n means ex phi be
Real_Sequence st ((
BuyPortfolioExt (phi,jpi,n))
<=
0 & ((Prob
. (
ArbitrageElSigma1 (phi,Omega,F,G,n)))
= 1 & (Prob
. (
ArbitrageElSigma2 (phi,Omega,F,G,n)))
>
0 ));
end
definition
let r be
Real;
::
FINANCE6:def13
func
RVfirst (r) ->
Element of (
set_of_random_variables_on (
Special_SigmaField1 ,
Borel_Sets )) equals (
{1, 2, 3, 4}
--> r);
correctness
proof
set g = (
{1, 2, 3, 4}
--> (
In (r,
REAL )));
g is
random_variable of
Special_SigmaField1 ,
Borel_Sets by
FINANCE3: 10;
hence thesis by
Lemacik;
end;
end
definition
let jpi be
pricefunction;
let r be
Real;
let d be
Nat;
::
FINANCE6:def14
func
RVfourth (jpi,r,d) ->
Element of (
set_of_random_variables_on (
Special_SigmaField2 ,
Borel_Sets )) equals (
RVfirst ((jpi
. d)
* (1
+ r)));
correctness
proof
set g = (
{1, 2, 3, 4}
--> (
In (((jpi
. d)
* (1
+ r)),
REAL )));
g is
random_variable of
Special_SigmaField2 ,
Borel_Sets by
FINANCE3: 10;
then g
in { f where f be
Function of
{1, 2, 3, 4},
REAL : f is
Special_SigmaField2 ,
Borel_Sets
-random_variable-like };
hence thesis;
end;
end
theorem ::
FINANCE6:9
ex G be
sequence of (
set_of_random_variables_on (
Special_SigmaField1 ,
Borel_Sets )) st ((G
.
0 )
= (
{1, 2, 3, 4}
--> 1) & (G
. 1)
= (
{1, 2, 3, 4}
--> 5) & for k be
Nat st k
> 1 holds (G
. k)
= (
{1, 2, 3, 4}
-->
0 ))
proof
deffunc
U(
Nat) = (
IFEQ ($1,
0 ,(
RVfirst 1),(
IFEQ ($1,1,(
RVfirst 5),(
RVfirst
0 )))));
consider f be
sequence of (
set_of_random_variables_on (
Special_SigmaField1 ,
Borel_Sets )) such that
A1: for d be
Element of
NAT holds (f
. d)
=
U(d) from
FUNCT_2:sch 4;
take f;
b1: (f
.
0 )
= (
IFEQ (
0 ,
0 ,(
RVfirst 1),(
IFEQ (
0 ,1,(
RVfirst 5),(
RVfirst
0 ))))) by
A1;
(f
. 1)
= (
IFEQ (1,
0 ,(
RVfirst 1),(
IFEQ (1,1,(
RVfirst 5),(
RVfirst
0 ))))) by
A1;
then
b2: (f
. 1)
= (
IFEQ (1,1,(
RVfirst 5),(
RVfirst
0 ))) by
FUNCOP_1:def 8;
for k be
Nat st k
> 1 holds (f
. k)
= (
{1, 2, 3, 4}
-->
0 )
proof
let k be
Nat;
assume
C1: k
> 1;
k
in
NAT by
ORDINAL1:def 12;
then (f
. k)
= (
IFEQ (k,
0 ,(
RVfirst 1),(
IFEQ (k,1,(
RVfirst 5),(
RVfirst
0 ))))) by
A1;
then (f
. k)
= (
IFEQ (k,1,(
RVfirst 5),(
RVfirst
0 ))) by
C1,
FUNCOP_1:def 8;
hence thesis by
C1,
FUNCOP_1:def 8;
end;
hence thesis by
b1,
b2,
FUNCOP_1:def 8;
end;
theorem ::
FINANCE6:10
for Prob be
Probability of
Special_SigmaField1 holds for G be
sequence of (
set_of_random_variables_on (
Special_SigmaField1 ,
Borel_Sets )) st ((G
.
0 )
= (
{1, 2, 3, 4}
--> 1) & (G
. 1)
= (
{1, 2, 3, 4}
--> 5) & for k be
Nat st k
> 1 holds (G
. k)
= (
{1, 2, 3, 4}
-->
0 )) holds ex jpi be
pricefunction st
Arbitrage_Opportunity_exists_wrt (Prob,G,jpi,1)
proof
let Prob be
Probability of
Special_SigmaField1 ;
set Omega =
{1, 2, 3, 4};
set F =
Special_SigmaField1 ;
let G be
sequence of (
set_of_random_variables_on (
Special_SigmaField1 ,
Borel_Sets ));
assume
A3: (G
.
0 )
= (Omega
--> 1) & (G
. 1)
= (Omega
--> 5) & for k be
Nat st k
> 1 holds (G
. k)
= (Omega
-->
0 );
ZW: (Prob
. Omega)
= 1 & (Prob
.
{} )
=
0
proof
(Prob
. Omega)
= (Prob
. (
[#] F));
then
B2: (Prob
. Omega)
= 1 by
PROB_1: 30;
reconsider A =
{} as
Event of F by
PROB_1: 4;
(Prob
. ((
[#] F)
\ A))
= (Prob
. (
[#] F));
then ((Prob
. (
[#] F))
+ (Prob
. A))
= 1 by
PROB_1: 31;
hence thesis by
B2;
end;
deffunc
U(
Element of
NAT ) = (
In ((
IFEQ ($1,
0 ,1,(
IFEQ ($1,1,1,
0 )))),
REAL ));
consider f be
Function of
NAT ,
REAL such that
C1: for d be
Element of
NAT holds (f
. d)
=
U(d) from
FUNCT_2:sch 4;
f is
pricefunction
proof
d0: (f
.
0 )
=
U(0) by
C1;
for n be
Element of
NAT holds (f
. n)
>=
0
proof
let n be
Element of
NAT ;
(f
. n)
=
U(n) by
C1;
hence thesis;
end;
hence thesis by
d0,
FINANCE1:def 2,
FUNCOP_1:def 8;
end;
then
reconsider jpi = f as
pricefunction;
deffunc
U(
Element of
NAT ) = (
In ((
IFEQ ($1,
0 ,(
- 1),(
IFEQ ($1,1,1,
0 )))),
REAL ));
a0:
U(0)
= (
In ((
- 1),
REAL )) by
FUNCOP_1:def 8
.= (
- 1);
a1:
U()
= (
In ((
IFEQ (1,1,1,
0 )),
REAL )) by
FUNCOP_1:def 8
.= 1 by
FUNCOP_1:def 8;
consider phi be
Real_Sequence such that
A4: for k be
Element of
NAT holds (phi
. k)
=
U(k) from
FUNCT_2:sch 4;
FinJ: ((Prob
. (
ArbitrageElSigma1 (phi,Omega,F,G,1)))
= 1 & (Prob
. (
ArbitrageElSigma2 (phi,Omega,F,G,1)))
>
0 ) & (
BuyPortfolioExt (phi,jpi,1))
<=
0
proof
G1: (
BuyPortfolioExt (phi,jpi,1))
<=
0
proof
((
Partial_Sums (phi
(#) jpi))
. 1)
= (((
Partial_Sums (phi
(#) jpi))
.
0 )
+ ((phi
(#) jpi)
. (
0
+ 1))) by
SERIES_1:def 1;
then
H1: ((
Partial_Sums (phi
(#) jpi))
. 1)
= (((phi
(#) jpi)
.
0 )
+ ((phi
(#) jpi)
. 1)) by
SERIES_1:def 1;
H2: ((phi
(#) jpi)
.
0 )
= (
- 1)
proof
aa: (
IFEQ (
0 ,
0 ,(
- 1),(
IFEQ (
0 ,1,1,
0 ))))
= (
- 1) by
FUNCOP_1:def 8;
((phi
(#) jpi)
.
0 )
= ((phi
.
0 )
* (jpi
.
0 )) by
VALUED_1: 5;
then ((phi
(#) jpi)
.
0 )
= (
U(0)
* (f
.
0 )) by
A4;
then ((phi
(#) jpi)
.
0 )
= ((
- 1)
* (
In ((
IFEQ (
0 ,
0 ,1,(
IFEQ (
0 ,1,1,
0 )))),
REAL ))) by
C1,
aa;
then ((phi
(#) jpi)
.
0 )
= ((
- 1)
* 1) by
FUNCOP_1:def 8;
hence thesis;
end;
((phi
(#) jpi)
. 1)
= 1
proof
aa: (
IFEQ (1,
0 ,(
- 1),(
IFEQ (1,1,1,
0 ))))
= (
IFEQ (1,1,1,
0 )) by
FUNCOP_1:def 8;
((phi
(#) jpi)
. 1)
= ((phi
. 1)
* (jpi
. 1)) by
VALUED_1: 5;
then ((phi
(#) jpi)
. 1)
= (
U()
* (f
. 1)) by
A4
.= (1
* (f
. 1)) by
aa,
FUNCOP_1:def 8
.= (1
* (
In ((
IFEQ (1,
0 ,1,(
IFEQ (1,1,1,
0 )))),
REAL ))) by
C1
.= (1
* (
IFEQ (1,1,1,
0 ))) by
FUNCOP_1:def 8;
hence thesis by
FUNCOP_1:def 8;
end;
hence thesis by
H2,
H1;
end;
set RV = (
RVPortfolioValueFutExt (phi,F,G,1));
(Prob
. (
ArbitrageElSigma1 (phi,Omega,F,G,1)))
= 1 & (Prob
. (
ArbitrageElSigma2 (phi,Omega,F,G,1)))
>
0
proof
fin1: Omega
= (RV
"
[.
0 ,
+infty .[)
proof
for x be
object holds x
in Omega iff x
in (RV
"
[.
0 ,
+infty .[)
proof
let x be
object;
x
in Omega implies x
in (RV
"
[.
0 ,
+infty .[)
proof
assume x
in Omega;
then
reconsider x as
Element of Omega;
q1: (
dom RV)
= Omega by
FUNCT_2:def 1;
x
in (
dom RV) & (RV
. x)
in
[.
0 ,
+infty .[
proof
set RVh1 = (
RVElementsOfPortfolioValue_fut (phi,F,G,
0 ));
(RV
. x)
= ((
RVPortfolioValueFutExt (phi,F,G,(
0
+ 1)))
. x);
then (RV
. x)
= (((
RVPortfolioValueFut (phi,F,G,
0 ))
+ (
RVElementsOfPortfolioValue_fut (phi,F,G,
0 )))
. x) by
FINANCE3: 9;
then
S0: (RV
. x)
= (((
RVPortfolioValueFut (phi,F,G,
0 ))
. x)
+ (RVh1
. x)) by
VALUED_1: 1;
0
<= (RV
. x) & (RV
. x)
<
+infty
proof
S1: (RVh1
. x)
= (
- 1)
proof
(RVh1
. x)
= (((
ElementsOfPortfolioValueProb_fut (F,(G
.
0 )))
. x)
* (phi
.
0 )) by
FINANCE2:def 5;
then
K1: (RVh1
. x)
= (((
Change_Element_to_Func (F,
Borel_Sets ,(G
.
0 )))
. x)
* (phi
.
0 )) by
FINANCE1:def 8;
set G0 = (G
.
0 );
K2: G0
= (
Change_Element_to_Func (F,
Borel_Sets ,(G
.
0 ))) by
FINANCE1:def 7;
reconsider G0 as
Function of Omega,
REAL by
K1,
FINANCE1:def 7;
(RVh1
. x)
= (1
* (phi
.
0 )) by
A3,
K1,
K2;
then (RVh1
. x)
= (1
*
U(0)) by
A4
.= (
In ((
- 1),
REAL )) by
FUNCOP_1:def 8;
hence thesis;
end;
set RV0 = (
RVPortfolioValueFut (phi,F,G,
0 ));
(RV0
. x)
= 5
proof
(RV0
. x)
= (
PortfolioValueFut ((
0
+ 1),phi,F,G,x)) by
FINANCE3:def 3;
then (RV0
. x)
= (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
.
0 ) by
SERIES_1:def 1;
then (RV0
. x)
= ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
. (
0
+ 1)) by
NAT_1:def 3;
then (RV0
. x)
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. 1)))
. x)
* (phi
. 1)) by
FINANCE1:def 10;
then (RV0
. x)
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. 1)))
. x)
*
U()) by
A4;
then
R1: (RV0
. x)
= (((
Change_Element_to_Func (F,
Borel_Sets ,(G
. 1)))
. x)
* 1) by
a1,
FINANCE1:def 8;
(G
. 1)
= (
Change_Element_to_Func (F,
Borel_Sets ,(G
. 1))) by
FINANCE1:def 7;
then
reconsider G1 = (G
. 1) as
Function of Omega,
REAL ;
(RV0
. x)
= ((G1
. x)
* 1) by
R1,
FINANCE1:def 7;
hence thesis by
A3;
end;
hence thesis by
XXREAL_0: 9,
S0,
S1;
end;
hence thesis by
q1,
XXREAL_1: 3;
end;
hence thesis by
FUNCT_1:def 7;
end;
hence thesis;
end;
hence thesis by
TARSKI: 2;
end;
Omega
= (RV
"
].
0 ,
+infty .[)
proof
for x be
object holds x
in Omega iff x
in (RV
"
].
0 ,
+infty .[)
proof
let x be
object;
thus x
in Omega implies x
in (RV
"
].
0 ,
+infty .[)
proof
assume x
in Omega;
then
reconsider x as
Element of Omega;
q1: (
dom RV)
= Omega by
FUNCT_2:def 1;
x
in (
dom RV) & (RV
. x)
in
].
0 ,
+infty .[
proof
set RVh1 = (
RVElementsOfPortfolioValue_fut (phi,F,G,
0 ));
(RV
. x)
= ((
RVPortfolioValueFutExt (phi,F,G,(
0
+ 1)))
. x);
then (RV
. x)
= (((
RVPortfolioValueFut (phi,F,G,
0 ))
+ (
RVElementsOfPortfolioValue_fut (phi,F,G,
0 )))
. x) by
FINANCE3: 9;
then
S0: (RV
. x)
= (((
RVPortfolioValueFut (phi,F,G,
0 ))
. x)
+ (RVh1
. x)) by
VALUED_1: 1;
0
< (RV
. x) & (RV
. x)
<
+infty
proof
(RVh1
. x)
= (((
ElementsOfPortfolioValueProb_fut (F,(G
.
0 )))
. x)
* (phi
.
0 )) by
FINANCE2:def 5;
then
K1: (RVh1
. x)
= (((
Change_Element_to_Func (F,
Borel_Sets ,(G
.
0 )))
. x)
* (phi
.
0 )) by
FINANCE1:def 8;
set G0 = (G
.
0 );
K2: G0
= (
Change_Element_to_Func (F,
Borel_Sets ,(G
.
0 ))) by
FINANCE1:def 7;
reconsider G0 as
Function of Omega,
REAL by
K1,
FINANCE1:def 7;
(RVh1
. x)
= (1
* (phi
.
0 )) by
A3,
K1,
K2;
then
S1: (RVh1
. x)
= (
- 1) by
a0,
A4;
set RV0 = (
RVPortfolioValueFut (phi,F,G,
0 ));
(RV0
. x)
= (
PortfolioValueFut ((
0
+ 1),phi,F,G,x)) by
FINANCE3:def 3;
then (RV0
. x)
= (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
.
0 ) by
SERIES_1:def 1;
then (RV0
. x)
= ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
. (
0
+ 1)) by
NAT_1:def 3;
then (RV0
. x)
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. 1)))
. x)
* (phi
. 1)) by
FINANCE1:def 10;
then (RV0
. x)
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. 1)))
. x)
*
U()) by
A4;
then
R1: (RV0
. x)
= (((
Change_Element_to_Func (F,
Borel_Sets ,(G
. 1)))
. x)
* 1) by
a1,
FINANCE1:def 8;
(G
. 1)
= (
Change_Element_to_Func (F,
Borel_Sets ,(G
. 1))) by
FINANCE1:def 7;
then
reconsider G1 = (G
. 1) as
Function of Omega,
REAL ;
(RV0
. x)
= ((G1
. x)
* 1) by
R1,
FINANCE1:def 7;
then (RV0
. x)
= 5 by
A3;
hence thesis by
XXREAL_0: 9,
S0,
S1;
end;
hence thesis by
q1,
XXREAL_1: 4;
end;
hence thesis by
FUNCT_1:def 7;
end;
thus thesis;
end;
hence thesis by
TARSKI: 2;
end;
hence thesis by
fin1,
ZW;
end;
hence thesis by
G1;
end;
take jpi;
thus thesis by
FinJ;
end;
theorem ::
FINANCE6:11
JB1: for n be
Nat holds for r be
Real holds for G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets )) holds { w where w be
Element of Omega : (
PortfolioValueFutExt (n,phi,F,G,w))
>=
0 }
= ((
RVPortfolioValueFutExt (phi,F,G,n))
"
[.
0 ,
+infty .[)
proof
let d be
Nat;
let r be
Real;
let G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets ));
set Set1 = { w where w be
Element of Omega : (
PortfolioValueFutExt (d,phi,F,G,w))
>=
0 };
set Set2 = ((
RVPortfolioValueFutExt (phi,F,G,d))
"
[.
0 ,
+infty .[);
for x be
object holds x
in Set1 iff x
in Set2
proof
let x be
object;
thus x
in Set1 implies x
in Set2
proof
assume x
in Set1;
then
consider w be
Element of Omega such that
A1: w
= x & (
PortfolioValueFutExt (d,phi,F,G,w))
>=
0 ;
(
PortfolioValueFutExt (d,phi,F,G,w))
= ((
RVPortfolioValueFutExt (phi,F,G,d))
. w) by
FINANCE3:def 1;
then
A2: ((
RVPortfolioValueFutExt (phi,F,G,d))
. w)
in
[.
0 ,
+infty .[ by
XXREAL_1: 3,
A1,
XXREAL_0: 9;
(
dom (
RVPortfolioValueFutExt (phi,F,G,d)))
= Omega by
FUNCT_2:def 1;
hence thesis by
A1,
A2,
FUNCT_1:def 7;
end;
assume
a1: x
in Set2;
then
A1: x
in (
dom (
RVPortfolioValueFutExt (phi,F,G,d))) & ((
RVPortfolioValueFutExt (phi,F,G,d))
. x)
in
[.
0 ,
+infty .[ by
FUNCT_1:def 7;
reconsider x as
Element of Omega by
a1;
0
<= ((
RVPortfolioValueFutExt (phi,F,G,d))
. x) & ((
RVPortfolioValueFutExt (phi,F,G,d))
. x)
<
+infty by
A1,
XXREAL_1: 3;
then
0
<= (
PortfolioValueFutExt (d,phi,F,G,x)) by
FINANCE3:def 1;
hence thesis;
end;
hence thesis by
TARSKI: 2;
end;
theorem ::
FINANCE6:12
JB2: for d,d2 be
Nat st d2
= (d
- 1) holds for r be
Real holds for G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets )) holds { w where w be
Element of Omega : (
PortfolioValueFut (d,phi,F,G,w))
>= ((1
+ r)
* (
BuyPortfolio (phi,jpi,d))) }
= (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
"
[.
0 ,
+infty .[)
proof
let d,d2 be
Nat;
assume
a10: d2
= (d
- 1);
let r be
Real;
let G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets ));
set Set1 = { w where w be
Element of Omega : (
PortfolioValueFut (d,phi,F,G,w))
>= ((1
+ r)
* (
BuyPortfolio (phi,jpi,d))) };
set Set2 = (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
"
[.
0 ,
+infty .[);
for x be
object holds x
in Set1 iff x
in Set2
proof
let x be
object;
thus x
in Set1 implies x
in Set2
proof
assume x
in Set1;
then
consider w be
Element of Omega such that
A1: w
= x & (
PortfolioValueFut (d,phi,F,G,w))
>= ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)));
reconsider x as
Element of Omega by
A1;
set myel = ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)));
a2: (
PortfolioValueFut ((d2
+ 1),phi,F,G,w))
= ((
RVPortfolioValueFut (phi,F,G,d2))
. w) by
FINANCE3:def 3;
(((
RVPortfolioValueFut (phi,F,G,d2))
. x)
- ((Omega
--> myel)
. x))
>=
0 by
XREAL_1: 48,
A1,
a2,
a10;
then
Q1: (((
RVPortfolioValueFut (phi,F,G,d2))
. x)
+ ((
- 1)
* ((Omega
--> myel)
. x)))
>=
0 ;
x
in (
dom (Omega
--> myel));
then x
in (
dom ((
- 1)
(#) (Omega
--> myel))) by
VALUED_1:def 5;
then (((
RVPortfolioValueFut (phi,F,G,d2))
. x)
+ (((
- 1)
(#) (Omega
--> myel))
. x))
>=
0 by
Q1,
VALUED_1:def 5;
then (((
RVPortfolioValueFut (phi,F,G,d2))
+ (
- (Omega
--> myel)))
. x)
>=
0 by
VALUED_1: 1;
then
T1: (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> myel))
. x)
in
[.
0 ,
+infty .[ by
XXREAL_1: 3,
XXREAL_0: 9;
(
dom ((
RVPortfolioValueFut (phi,F,G,d2))
+ (
- (Omega
--> myel))))
= (Omega
/\ Omega) by
FUNCT_2:def 1;
hence thesis by
T1,
FUNCT_1:def 7;
end;
assume
a1: x
in Set2;
then
A1: x
in (
dom ((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))) & (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
. x)
in
[.
0 ,
+infty .[ by
FUNCT_1:def 7;
set my1 = ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)));
set my2 = ((
RVPortfolioValueFut (phi,F,G,d2))
. x);
reconsider x as
Element of Omega by
a1;
set RVmyx = (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
. x);
RVmyx
= (((
RVPortfolioValueFut (phi,F,G,d2))
. x)
+ (((
- 1)
(#) (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
. x)) by
VALUED_1: 1;
then RVmyx
= (((
RVPortfolioValueFut (phi,F,G,d2))
. x)
+ ((
- 1)
* ((Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d))))
. x))) by
VALUED_1: 6;
then
0
<= (((
RVPortfolioValueFut (phi,F,G,d2))
. x)
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d))))
. x)) by
A1,
XXREAL_1: 3;
then
0
<= (my2
- my1);
then (
0
+ my1)
<= my2 by
XREAL_1: 19;
then ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))
<= (
PortfolioValueFut ((d2
+ 1),phi,F,G,x)) by
FINANCE3:def 3;
hence thesis by
a10;
end;
hence thesis by
TARSKI: 2;
end;
theorem ::
FINANCE6:13
JB3: for d,d2 be
Nat holds for r be
Real holds for G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets )) holds (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
"
[.
0 ,
+infty .[) is
Event of F
proof
let d,d2 be
Nat;
let r be
Real;
let G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets ));
set RV = (
RVPortfolioValueFut (phi,F,G,d2));
reconsider RV as
random_variable of F,
Borel_Sets by
FINANCE3: 7;
set myr = ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)));
reconsider myr as
Element of
REAL by
XREAL_0:def 1;
reconsider constRV = (Omega
--> myr) as
random_variable of F,
Borel_Sets by
FINANCE3: 10;
B5:
[.
0 ,
+infty .[ is
Element of
Borel_Sets by
FINANCE1: 3;
(RV
- constRV) is F,
Borel_Sets
-random_variable-like by
FINANCE2: 24;
hence thesis by
B5;
end;
theorem ::
FINANCE6:14
JC1: for d be
Nat holds for r be
Real holds for G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets )) holds { w where w be
Element of Omega : (
PortfolioValueFutExt (d,phi,F,G,w))
>
0 }
= ((
RVPortfolioValueFutExt (phi,F,G,d))
"
].
0 ,
+infty .[)
proof
let d be
Nat;
let r be
Real;
let G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets ));
set Set1 = { w where w be
Element of Omega : (
PortfolioValueFutExt (d,phi,F,G,w))
>
0 };
set Set2 = ((
RVPortfolioValueFutExt (phi,F,G,d))
"
].
0 ,
+infty .[);
for x be
object holds x
in Set1 iff x
in Set2
proof
let x be
object;
thus x
in Set1 implies x
in Set2
proof
assume x
in Set1;
then
consider w be
Element of Omega such that
A1: w
= x & (
PortfolioValueFutExt (d,phi,F,G,w))
>
0 ;
reconsider x as
Element of Omega by
A1;
0
< ((
RVPortfolioValueFutExt (phi,F,G,d))
. w) & ((
RVPortfolioValueFutExt (phi,F,G,d))
. w)
<
+infty by
A1,
XXREAL_0: 9,
FINANCE3:def 1;
then
A2: ((
RVPortfolioValueFutExt (phi,F,G,d))
. w)
in
].
0 ,
+infty .[ by
XXREAL_1: 4;
(
dom (
RVPortfolioValueFutExt (phi,F,G,d)))
= Omega by
FUNCT_2:def 1;
hence thesis by
A1,
A2,
FUNCT_1:def 7;
end;
assume
a1: x
in Set2;
then
A1: x
in (
dom (
RVPortfolioValueFutExt (phi,F,G,d))) & ((
RVPortfolioValueFutExt (phi,F,G,d))
. x)
in
].
0 ,
+infty .[ by
FUNCT_1:def 7;
reconsider x as
Element of Omega by
a1;
0
< ((
RVPortfolioValueFutExt (phi,F,G,d))
. x) & ((
RVPortfolioValueFutExt (phi,F,G,d))
. x)
<
+infty by
A1,
XXREAL_1: 4;
then
0
< (
PortfolioValueFutExt (d,phi,F,G,x)) by
FINANCE3:def 1;
hence thesis;
end;
hence thesis by
TARSKI: 2;
end;
theorem ::
FINANCE6:15
JC2: for d,d2 be
Nat st d2
= (d
- 1) holds for r be
Real holds for G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets )) holds { w where w be
Element of Omega : (
PortfolioValueFut (d,phi,F,G,w))
> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d))) }
= (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
"
].
0 ,
+infty .[)
proof
let d,d2 be
Nat;
assume
a10: d2
= (d
- 1);
let r be
Real;
let G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets ));
set Set1 = { w where w be
Element of Omega : (
PortfolioValueFut (d,phi,F,G,w))
> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d))) };
set Set2 = (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
"
].
0 ,
+infty .[);
for x be
object holds x
in Set1 iff x
in Set2
proof
let x be
object;
thus x
in Set1 implies x
in Set2
proof
assume x
in Set1;
then
consider w be
Element of Omega such that
A1: w
= x & (
PortfolioValueFut (d,phi,F,G,w))
> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)));
reconsider x as
Element of Omega by
A1;
set myel = ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)));
a2: (
PortfolioValueFut ((d2
+ 1),phi,F,G,w))
= ((
RVPortfolioValueFut (phi,F,G,d2))
. w) by
FINANCE3:def 3;
(((
RVPortfolioValueFut (phi,F,G,d2))
. x)
- ((Omega
--> myel)
. x))
>
0 by
XREAL_1: 50,
A1,
a2,
a10;
then
Q1: (((
RVPortfolioValueFut (phi,F,G,d2))
. x)
+ ((
- 1)
* ((Omega
--> myel)
. x)))
>
0 ;
x
in (
dom (Omega
--> myel));
then x
in (
dom ((
- 1)
(#) (Omega
--> myel))) by
VALUED_1:def 5;
then (((
RVPortfolioValueFut (phi,F,G,d2))
. x)
+ (((
- 1)
(#) (Omega
--> myel))
. x))
>
0 by
Q1,
VALUED_1:def 5;
then
0
< (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> myel))
. x) & (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> myel))
. x)
<
+infty by
XXREAL_0: 9,
VALUED_1: 1;
then
T1: (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> myel))
. x)
in
].
0 ,
+infty .[ by
XXREAL_1: 4;
(
dom ((
RVPortfolioValueFut (phi,F,G,d2))
+ (
- (Omega
--> myel))))
= (Omega
/\ Omega) by
FUNCT_2:def 1;
hence thesis by
T1,
FUNCT_1:def 7;
end;
assume
a1: x
in Set2;
then
A1: x
in (
dom ((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))) & (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
. x)
in
].
0 ,
+infty .[ by
FUNCT_1:def 7;
set my1 = ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)));
set my2 = ((
RVPortfolioValueFut (phi,F,G,d2))
. x);
reconsider x as
Element of Omega by
a1;
set RVmyx = (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
. x);
RVmyx
= (((
RVPortfolioValueFut (phi,F,G,d2))
. x)
+ (((
- 1)
(#) (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
. x)) by
VALUED_1: 1;
then RVmyx
= (((
RVPortfolioValueFut (phi,F,G,d2))
. x)
+ ((
- 1)
* ((Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d))))
. x))) by
VALUED_1: 6;
then
0
< (((
RVPortfolioValueFut (phi,F,G,d2))
. x)
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d))))
. x)) by
A1,
XXREAL_1: 4;
then
0
< (my2
- my1);
then (
0
+ my1)
< ((my2
- my1)
+ my1) by
XREAL_1: 6;
then ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))
< (
PortfolioValueFut ((d2
+ 1),phi,F,G,x)) by
FINANCE3:def 3;
hence thesis by
a10;
end;
hence thesis by
TARSKI: 2;
end;
ZZ: (
[.
0 ,
+infty .[
\
{
0 })
=
].
0 ,
+infty .[ by
XXREAL_1: 136;
theorem ::
FINANCE6:16
JC3: for d,d2 be
Nat holds for r be
Real holds for G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets )) holds (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
"
].
0 ,
+infty .[) is
Event of F
proof
let d,d2 be
Nat;
let r be
Real;
let G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets ));
{
0 } is
Element of
Borel_Sets &
[.
0 ,
+infty .[ is
Element of
Borel_Sets by
FINANCE1: 3,
FINANCE2: 5;
then
B1:
].
0 ,
+infty .[ is
Element of
Borel_Sets by
PROB_1: 6,
ZZ;
set RV = (
RVPortfolioValueFut (phi,F,G,d2));
reconsider RV as
random_variable of F,
Borel_Sets by
FINANCE3: 7;
set myr = ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)));
reconsider myr as
Element of
REAL by
XREAL_0:def 1;
set constRV = (Omega
--> myr);
reconsider constRV as
random_variable of F,
Borel_Sets by
FINANCE3: 10;
(RV
- constRV) is F,
Borel_Sets
-random_variable-like by
FINANCE2: 24;
hence thesis by
B1;
end;
theorem ::
FINANCE6:17
for jpi be
pricefunction holds for d,d2 be
Nat st d
>
0 & d2
= (d
- 1) holds for Prob be
Probability of F holds for r be
Real st r
> (
- 1) holds for G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets )) st (
Element_Of (F,
Borel_Sets ,G,
0 ))
= (Omega
--> (1
+ r)) holds (
Arbitrage_Opportunity_exists_wrt (Prob,G,jpi,d) iff (ex myphi be
Real_Sequence st ((Prob
. (((
RVPortfolioValueFut (myphi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))
"
[.
0 ,
+infty .[))
= 1) & (Prob
. (((
RVPortfolioValueFut (myphi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))
"
].
0 ,
+infty .[))
>
0 ))
proof
let jpi be
pricefunction;
let d,d2 be
Nat;
assume
A1: d
>
0 & d2
= (d
- 1);
let Prob be
Probability of F;
let r be
Real;
assume
A2: r
> (
- 1);
let G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets ));
assume
A3: (
Element_Of (F,
Borel_Sets ,G,
0 ))
= (Omega
--> (1
+ r));
thus (
Arbitrage_Opportunity_exists_wrt (Prob,G,jpi,d)) implies (ex myphi be
Real_Sequence st (((Prob
. (((
RVPortfolioValueFut (myphi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))
"
[.
0 ,
+infty .[))
= 1) & (Prob
. (((
RVPortfolioValueFut (myphi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))
"
].
0 ,
+infty .[))
>
0 ))
proof
assume
Arbitrage_Opportunity_exists_wrt (Prob,G,jpi,d);
then
consider phi be
Real_Sequence such that
C1: (
BuyPortfolioExt (phi,jpi,d))
<=
0 & (Prob
. (
ArbitrageElSigma1 (phi,Omega,F,G,d)))
= 1 & (Prob
. (
ArbitrageElSigma2 (phi,Omega,F,G,d)))
>
0 ;
(
ArbitrageElSigma1 (phi,Omega,F,G,d))
= { w where w be
Element of Omega : (
PortfolioValueFutExt (d,phi,F,G,w))
>=
0 } by
JB1;
then (
ArbitrageElSigma1 (phi,Omega,F,G,d))
c= { w where w be
Element of Omega : (
PortfolioValueFut (d,phi,F,G,w))
>= ((1
+ r)
* (
BuyPortfolio (phi,jpi,d))) } by
C1,
A1,
A2,
A3,
FINANCE1: 14;
then
C3: (
ArbitrageElSigma1 (phi,Omega,F,G,d))
c= (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
"
[.
0 ,
+infty .[) by
A1,
JB2;
set RVspec = (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
"
[.
0 ,
+infty .[);
reconsider RVspec as
Event of F by
JB3;
1
<= (Prob
. RVspec) & (Prob
. RVspec)
<= 1 by
PROB_1: 35,
C1,
C3,
PROB_1: 34;
then
Fin1: 1
= (Prob
. RVspec) by
XXREAL_0: 1;
(
ArbitrageElSigma2 (phi,Omega,F,G,d))
= { w where w be
Element of Omega : (
PortfolioValueFutExt (d,phi,F,G,w))
>
0 } by
JC1;
then (
ArbitrageElSigma2 (phi,Omega,F,G,d))
c= { w where w be
Element of Omega : (
PortfolioValueFut (d,phi,F,G,w))
> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d))) } by
C1,
A1,
A2,
A3,
FINANCE1: 14;
then
C3: (
ArbitrageElSigma2 (phi,Omega,F,G,d))
c= (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
"
].
0 ,
+infty .[) by
A1,
JC2;
set RVspec2 = (((
RVPortfolioValueFut (phi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (phi,jpi,d)))))
"
].
0 ,
+infty .[);
reconsider RVspec2 as
Event of F by
JC3;
(Prob
. (
ArbitrageElSigma2 (phi,Omega,F,G,d)))
<= (Prob
. RVspec2) by
C3,
PROB_1: 34;
hence thesis by
Fin1,
C1;
end;
given myphi be
Real_Sequence such that
ASS0: ((Prob
. (((
RVPortfolioValueFut (myphi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))
"
[.
0 ,
+infty .[))
= 1) & (Prob
. (((
RVPortfolioValueFut (myphi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))
"
].
0 ,
+infty .[))
>
0 ;
deffunc
U(
Nat) = (
In ((
IFEQ ($1,
0 ,(
- (
BuyPortfolio (myphi,jpi,d))),(myphi
. $1))),
REAL ));
consider phi be
Real_Sequence such that
AA1: for n be
Element of
NAT holds (phi
. n)
=
U(n) from
FUNCT_2:sch 4;
AA10: for n be
Nat holds (n
=
0 implies (phi
. n)
= (
- (
BuyPortfolio (myphi,jpi,d)))) & (n
>
0 implies (phi
. n)
= (myphi
. n))
proof
let n be
Nat;
SS: n
in
NAT by
ORDINAL1:def 12;
SU: (myphi
. n)
in
REAL ;
SW: (
IFEQ (n,
0 ,(
- (
BuyPortfolio (myphi,jpi,d))),(myphi
. n)))
in
REAL
proof
per cases ;
suppose n
=
0 ;
then (
IFEQ (n,
0 ,(
- (
BuyPortfolio (myphi,jpi,d))),(myphi
. n)))
= (
- (
BuyPortfolio (myphi,jpi,d))) by
FUNCOP_1:def 8;
hence thesis by
XREAL_0:def 1;
end;
suppose n
<>
0 ;
hence thesis by
FUNCOP_1:def 8,
SU;
end;
end;
hereby
assume
SQ: n
=
0 ;
then (phi
. n)
=
U(n) by
AA1
.= (
IFEQ (n,
0 ,(
- (
BuyPortfolio (myphi,jpi,d))),(myphi
. n))) by
SUBSET_1:def 8,
SW;
hence (phi
. n)
= (
- (
BuyPortfolio (myphi,jpi,d))) by
FUNCOP_1:def 8,
SQ;
end;
assume
SQ: n
>
0 ;
(phi
. n)
= (
In ((
IFEQ (n,
0 ,(
- (
BuyPortfolio (myphi,jpi,d))),(myphi
. n))),
REAL )) by
AA1,
SS
.= (
IFEQ (n,
0 ,(
- (
BuyPortfolio (myphi,jpi,d))),(myphi
. n))) by
SUBSET_1:def 8,
SW;
hence thesis by
FUNCOP_1:def 8,
SQ;
end;
set B0 = (
- (
BuyPortfolio (myphi,jpi,d)));
Z1: (
BuyPortfolioExt (phi,jpi,d))
=
0
proof
(
BuyPortfolioExt (phi,jpi,d))
= (B0
+ (
BuyPortfolio (myphi,jpi,d)))
proof
zw: (
BuyPortfolioExt (phi,jpi,d))
= ((phi
.
0 )
+ (
BuyPortfolio (phi,jpi,d))) by
A1,
FINANCE1: 11;
((
- (
BuyPortfolio (phi,jpi,d)))
+ (
BuyPortfolio (myphi,jpi,d)))
=
0
proof
((
Partial_Sums ((
ElementsOfBuyPortfolio (phi,jpi))
^\ 1))
. (d
- 1))
= ((
Partial_Sums ((
ElementsOfBuyPortfolio (myphi,jpi))
^\ 1))
. (d
- 1))
proof
set P1 = (
Partial_Sums ((
ElementsOfBuyPortfolio (phi,jpi))
^\ 1));
set P2 = (
Partial_Sums ((
ElementsOfBuyPortfolio (myphi,jpi))
^\ 1));
defpred
Pr[
Nat] means (P1
. $1)
= (P2
. $1);
J0:
Pr[
0 ]
proof
(P1
.
0 )
= (((
ElementsOfBuyPortfolio (phi,jpi))
^\ 1)
.
0 ) by
SERIES_1:def 1;
then (P1
.
0 )
= ((
ElementsOfBuyPortfolio (phi,jpi))
. (
0
+ 1)) by
NAT_1:def 3;
then
Erg1: (P1
.
0 )
= ((phi
. 1)
* (jpi
. 1)) by
VALUED_1: 5;
(P2
.
0 )
= (((
ElementsOfBuyPortfolio (myphi,jpi))
^\ 1)
.
0 ) by
SERIES_1:def 1;
then (P2
.
0 )
= ((
ElementsOfBuyPortfolio (myphi,jpi))
. (
0
+ 1)) by
NAT_1:def 3;
then (P2
.
0 )
= ((myphi
. 1)
* (jpi
. 1)) by
VALUED_1: 5;
hence thesis by
Erg1,
AA10;
end;
J1: for n be
Nat st
Pr[n] holds
Pr[(n
+ 1)]
proof
let n be
Nat;
assume
f1:
Pr[n];
(P1
. (n
+ 1))
= ((P1
. n)
+ (((
ElementsOfBuyPortfolio (phi,jpi))
^\ 1)
. (n
+ 1))) by
SERIES_1:def 1;
then (P1
. (n
+ 1))
= ((P1
. n)
+ ((
ElementsOfBuyPortfolio (phi,jpi))
. ((n
+ 1)
+ 1))) by
NAT_1:def 3;
then
Erg1: (P1
. (n
+ 1))
= ((P1
. n)
+ ((phi
. (n
+ 2))
* (jpi
. (n
+ 2)))) by
VALUED_1: 5;
set n2 = (n
+ 2);
(P2
. (n
+ 1))
= ((P2
. n)
+ (((
ElementsOfBuyPortfolio (myphi,jpi))
^\ 1)
. (n
+ 1))) by
SERIES_1:def 1;
then (P2
. (n
+ 1))
= ((P2
. n)
+ ((
ElementsOfBuyPortfolio (myphi,jpi))
. ((n
+ 1)
+ 1))) by
NAT_1:def 3;
then (P2
. (n
+ 1))
= ((P2
. n)
+ ((myphi
. n2)
* (jpi
. n2))) by
VALUED_1: 5;
hence thesis by
Erg1,
f1,
AA10;
end;
for n be
Nat holds
Pr[n] from
NAT_1:sch 2(
J0,
J1);
hence thesis by
A1;
end;
hence thesis;
end;
hence thesis by
zw,
AA10;
end;
hence thesis;
end;
Z2: (Prob
. (
ArbitrageElSigma1 (phi,Omega,F,G,d)))
= 1
proof
set Set1 = (
RVPortfolioValueFutExt (phi,F,G,d));
set Set2 = ((
RVPortfolioValueFut (myphi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))));
(Set1
"
[.
0 ,
+infty .[)
= (Set2
"
[.
0 ,
+infty .[)
proof
for x be
object holds x
in (Set1
"
[.
0 ,
+infty .[) iff x
in (Set2
"
[.
0 ,
+infty .[)
proof
let x be
object;
thus x
in (Set1
"
[.
0 ,
+infty .[) implies x
in (Set2
"
[.
0 ,
+infty .[)
proof
assume
sc: x
in (Set1
"
[.
0 ,
+infty .[);
then
reconsider x as
Element of Omega;
(Set1
. x)
in
[.
0 ,
+infty .[ by
sc,
FUNCT_1:def 7;
then (
PortfolioValueFutExt (d,phi,F,G,x))
in
[.
0 ,
+infty .[ by
FINANCE3:def 1;
then
e: (((1
+ r)
* (phi
.
0 ))
+ (
PortfolioValueFut ((d2
+ 1),phi,F,G,x)))
in
[.
0 ,
+infty .[ by
A1,
A3,
FINANCE1: 12;
x
in (
dom Set2) & (Set2
. x)
in
[.
0 ,
+infty .[
proof
(
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))
. x))
= ((1
+ r)
* (
- (
BuyPortfolio (myphi,jpi,d))));
then
uuu0: ((1
+ r)
* (phi
.
0 ))
= (
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))
. x)) by
AA10;
((
RVPortfolioValueFut (myphi,F,G,d2))
. x)
= ((
RVPortfolioValueFut (phi,F,G,d2))
. x)
proof
iii: ((
RVPortfolioValueFut (myphi,F,G,d2))
. x)
= (
PortfolioValueFut ((d2
+ 1),myphi,F,G,x)) by
FINANCE3:def 3;
defpred
J[
Nat] means ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
. $1)
= ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
. $1);
K1:
J[
0 ]
proof
((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
.
0 ) by
SERIES_1:def 1;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
.
0 )
= ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
. (
0
+ 1)) by
NAT_1:def 3;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. 1)))
. x)
* (myphi
. 1)) by
FINANCE1:def 10;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. 1)))
. x)
* (phi
. 1)) by
AA10;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
.
0 )
= ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
. (
0
+ 1)) by
FINANCE1:def 10;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
.
0 ) by
NAT_1:def 3;
hence thesis by
SERIES_1:def 1;
end;
K2: for n be
Nat st
J[n] holds
J[(n
+ 1)]
proof
let n be
Nat;
assume
AK2:
J[n];
set n1 = (n
+ 1);
set n2 = (n1
+ 1);
R: ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
. n1)
= (((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
. n)
+ (((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. (n
+ 1))) by
AK2,
SERIES_1:def 1;
(((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. (n
+ 1))
= ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
. ((n
+ 1)
+ 1)) by
NAT_1:def 3;
then
R1: (((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. (n
+ 1))
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. n2)))
. x)
* (myphi
. n2)) by
FINANCE1:def 10;
(((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. (n
+ 1))
= (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
. (n
+ 1))
proof
(((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. n1)
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. n2)))
. x)
* (phi
. n2)) by
R1,
AA10;
then (((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. n1)
= ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
. (n1
+ 1)) by
FINANCE1:def 10;
hence thesis by
NAT_1:def 3;
end;
hence thesis by
SERIES_1:def 1,
R;
end;
for n be
Nat holds
J[n] from
NAT_1:sch 2(
K1,
K2);
then ((
RVPortfolioValueFut (myphi,F,G,d2))
. x)
= (
PortfolioValueFut ((d2
+ 1),phi,F,G,x)) by
iii;
hence thesis by
FINANCE3:def 3;
end;
then
UUU: (((
RVPortfolioValueFut (myphi,F,G,d2))
. x)
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))
. x))
in
[.
0 ,
+infty .[ by
uuu0,
e,
FINANCE3:def 3;
x
in (
dom ((
RVPortfolioValueFut (myphi,F,G,d2))
+ (
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))))
proof
(
dom (
RVPortfolioValueFut (myphi,F,G,d2)))
= Omega & (
dom (
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))))
= Omega by
FUNCT_2:def 1;
then ((
dom (
RVPortfolioValueFut (myphi,F,G,d2)))
/\ (
dom (
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))))
= Omega;
then (
dom ((
RVPortfolioValueFut (myphi,F,G,d2))
+ (
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))))
= Omega by
VALUED_1:def 1;
hence thesis;
end;
hence thesis by
UUU,
VALUED_1: 13;
end;
hence thesis by
FUNCT_1:def 7;
end;
assume
ab: x
in (Set2
"
[.
0 ,
+infty .[);
then
ABC1: x
in (
dom Set2) & (Set2
. x)
in
[.
0 ,
+infty .[ by
FUNCT_1:def 7;
reconsider x as
Element of Omega by
ab;
ABC3: (((
RVPortfolioValueFut (myphi,F,G,d2))
. x)
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))
. x))
in
[.
0 ,
+infty .[ by
ABC1,
VALUED_1: 13;
(
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))
. x))
= ((1
+ r)
* (phi
.
0 ))
proof
(
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))
. x))
= ((1
+ r)
* (
- (
BuyPortfolio (myphi,jpi,d))));
hence thesis by
AA10;
end;
then
ABC4: ((
PortfolioValueFut ((d2
+ 1),myphi,F,G,x))
+ ((1
+ r)
* (phi
.
0 )))
in
[.
0 ,
+infty .[ by
FINANCE3:def 3,
ABC3;
ABC2: (Set1
. x)
in
[.
0 ,
+infty .[
proof
(
PortfolioValueFut ((d2
+ 1),phi,F,G,x))
= (
PortfolioValueFut ((d2
+ 1),myphi,F,G,x))
proof
((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
. d2)
= ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
. d2)
proof
defpred
J[
Nat] means ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
. $1)
= ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
. $1);
K1:
J[
0 ]
proof
((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
.
0 ) by
SERIES_1:def 1;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
.
0 )
= ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
. (
0
+ 1)) by
NAT_1:def 3;
then
R: ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. 1)))
. x)
* (phi
. 1)) by
FINANCE1:def 10;
((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. 1)))
. x)
* (myphi
. 1)) by
R,
AA10;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
.
0 )
= ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
. (
0
+ 1)) by
FINANCE1:def 10;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
.
0 ) by
NAT_1:def 3;
hence thesis by
SERIES_1:def 1;
end;
K2: for n be
Nat st
J[n] holds
J[(n
+ 1)]
proof
let n be
Nat;
set n1 = (n
+ 1);
set n2 = (n1
+ 1);
assume
J[n];
then
R: ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
. n1)
= (((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
. n)
+ (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
. (n
+ 1))) by
SERIES_1:def 1;
(((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
. n1)
= (((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. n1)
proof
(((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
. n1)
= ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
. (n1
+ 1)) by
NAT_1:def 3;
then
QA: (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
. n1)
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. n2)))
. x)
* (phi
. n2)) by
FINANCE1:def 10;
(phi
. n2)
= (myphi
. n2) by
AA10;
then (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
. n1)
= ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
. n2) by
FINANCE1:def 10,
QA;
hence thesis by
NAT_1:def 3;
end;
hence thesis by
SERIES_1:def 1,
R;
end;
for n be
Nat holds
J[n] from
NAT_1:sch 2(
K1,
K2);
hence thesis;
end;
hence thesis;
end;
then (
PortfolioValueFutExt ((d2
+ 1),phi,F,G,x))
in
[.
0 ,
+infty .[ by
A3,
FINANCE1: 12,
ABC4;
hence thesis by
A1,
FINANCE3:def 1;
end;
(
dom Set1)
= Omega by
FUNCT_2:def 1;
hence thesis by
FUNCT_1:def 7,
ABC2;
end;
hence thesis by
TARSKI: 2;
end;
hence thesis by
ASS0;
end;
(Prob
. (
ArbitrageElSigma2 (phi,Omega,F,G,d)))
>
0
proof
((
RVPortfolioValueFutExt (phi,F,G,d))
"
].
0 ,
+infty .[)
= (((
RVPortfolioValueFut (myphi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))
"
].
0 ,
+infty .[)
proof
set Set1 = (
RVPortfolioValueFutExt (phi,F,G,d));
set Set2 = ((
RVPortfolioValueFut (myphi,F,G,d2))
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))));
for x be
object holds x
in (Set1
"
].
0 ,
+infty .[) iff x
in (Set2
"
].
0 ,
+infty .[)
proof
let x be
object;
thus x
in (Set1
"
].
0 ,
+infty .[) implies x
in (Set2
"
].
0 ,
+infty .[)
proof
assume
ss: x
in (Set1
"
].
0 ,
+infty .[);
then
s: x
in (
dom (
RVPortfolioValueFutExt (phi,F,G,d))) & ((
RVPortfolioValueFutExt (phi,F,G,d))
. x)
in
].
0 ,
+infty .[ by
FUNCT_1:def 7;
reconsider x as
Element of Omega by
ss;
(
PortfolioValueFutExt (d,phi,F,G,x))
in
].
0 ,
+infty .[ by
FINANCE3:def 1,
s;
then
e: (((1
+ r)
* (phi
.
0 ))
+ (
PortfolioValueFut ((d2
+ 1),phi,F,G,x)))
in
].
0 ,
+infty .[ by
A1,
A3,
FINANCE1: 12;
(
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))
. x))
= ((1
+ r)
* (
- (
BuyPortfolio (myphi,jpi,d))));
then
uuu0: ((1
+ r)
* (phi
.
0 ))
= (
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))
. x)) by
AA10;
iii: ((
RVPortfolioValueFut (myphi,F,G,d2))
. x)
= (
PortfolioValueFut ((d2
+ 1),myphi,F,G,x)) by
FINANCE3:def 3;
x
in (
dom Set2) & (Set2
. x)
in
].
0 ,
+infty .[
proof
((
RVPortfolioValueFut (myphi,F,G,d2))
. x)
= ((
RVPortfolioValueFut (phi,F,G,d2))
. x)
proof
defpred
J[
Nat] means ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
. $1)
= ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
. $1);
K1:
J[
0 ]
proof
((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
.
0 ) by
SERIES_1:def 1;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
.
0 )
= ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
. (
0
+ 1)) by
NAT_1:def 3;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. 1)))
. x)
* (myphi
. 1)) by
FINANCE1:def 10;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. 1)))
. x)
* (phi
. 1)) by
AA10;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
.
0 )
= ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
. (
0
+ 1)) by
FINANCE1:def 10;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
.
0 ) by
NAT_1:def 3;
hence thesis by
SERIES_1:def 1;
end;
K2: for n be
Nat st
J[n] holds
J[(n
+ 1)]
proof
let n be
Nat;
assume
AK2:
J[n];
set n1 = (n
+ 1);
set n2 = (n1
+ 1);
R: ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
. n1)
= (((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
. n)
+ (((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. (n
+ 1))) by
AK2,
SERIES_1:def 1;
(((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. (n
+ 1))
= (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
. (n
+ 1))
proof
(((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. (n
+ 1))
= ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
. ((n
+ 1)
+ 1)) by
NAT_1:def 3;
then
R1: (((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. (n
+ 1))
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. n2)))
. x)
* (myphi
. n2)) by
FINANCE1:def 10;
(((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. n1)
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. n2)))
. x)
* (phi
. n2)) by
R1,
AA10;
then (((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. n1)
= ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
. (n1
+ 1)) by
FINANCE1:def 10;
hence thesis by
NAT_1:def 3;
end;
hence thesis by
SERIES_1:def 1,
R;
end;
for n be
Nat holds
J[n] from
NAT_1:sch 2(
K1,
K2);
then ((
RVPortfolioValueFut (myphi,F,G,d2))
. x)
= (
PortfolioValueFut ((d2
+ 1),phi,F,G,x)) by
iii;
hence thesis by
FINANCE3:def 3;
end;
then
UUU: (((
RVPortfolioValueFut (myphi,F,G,d2))
. x)
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))
. x))
in
].
0 ,
+infty .[ by
uuu0,
e,
FINANCE3:def 3;
x
in (
dom ((
RVPortfolioValueFut (myphi,F,G,d2))
+ (
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))))
proof
(
dom (
RVPortfolioValueFut (myphi,F,G,d2)))
= Omega & (
dom (
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))))
= Omega by
FUNCT_2:def 1;
then ((
dom (
RVPortfolioValueFut (myphi,F,G,d2)))
/\ (
dom (
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))))
= Omega;
then (
dom ((
RVPortfolioValueFut (myphi,F,G,d2))
+ (
- (Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d)))))))
= Omega by
VALUED_1:def 1;
hence thesis;
end;
hence thesis by
UUU,
VALUED_1: 13;
end;
hence thesis by
FUNCT_1:def 7;
end;
assume
ab: x
in (Set2
"
].
0 ,
+infty .[);
then
ABC1: x
in (
dom Set2) & (Set2
. x)
in
].
0 ,
+infty .[ by
FUNCT_1:def 7;
reconsider x as
Element of Omega by
ab;
ABC3: (((
RVPortfolioValueFut (myphi,F,G,d2))
. x)
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))
. x))
in
].
0 ,
+infty .[ by
ABC1,
VALUED_1: 13;
(
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))
. x))
= ((1
+ r)
* (
- (
BuyPortfolio (myphi,jpi,d))));
then (
- ((Omega
--> ((1
+ r)
* (
BuyPortfolio (myphi,jpi,d))))
. x))
= ((1
+ r)
* (phi
.
0 )) by
AA10;
then
ABC4: ((
PortfolioValueFut ((d2
+ 1),myphi,F,G,x))
+ ((1
+ r)
* (phi
.
0 )))
in
].
0 ,
+infty .[ by
FINANCE3:def 3,
ABC3;
ABC2: (Set1
. x)
in
].
0 ,
+infty .[
proof
(
PortfolioValueFut ((d2
+ 1),phi,F,G,x))
= (
PortfolioValueFut ((d2
+ 1),myphi,F,G,x))
proof
((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
. d2)
= ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
. d2)
proof
defpred
J[
Nat] means ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
. $1)
= ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
. $1);
((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
.
0 ) by
SERIES_1:def 1;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
.
0 )
= ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
. (
0
+ 1)) by
NAT_1:def 3;
then
R: ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. 1)))
. x)
* (phi
. 1)) by
FINANCE1:def 10;
K1:
J[
0 ]
proof
((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. 1)))
. x)
* (myphi
. 1)) by
R,
AA10;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
.
0 )
= ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
. (
0
+ 1)) by
FINANCE1:def 10;
then ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
.
0 )
= (((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
.
0 ) by
NAT_1:def 3;
hence thesis by
SERIES_1:def 1;
end;
K2: for n be
Nat st
J[n] holds
J[(n
+ 1)]
proof
let n be
Nat;
set n1 = (n
+ 1);
set n2 = (n1
+ 1);
assume
J[n];
then
R: ((
Partial_Sums ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1))
. n1)
= (((
Partial_Sums ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1))
. n)
+ (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
. (n
+ 1))) by
SERIES_1:def 1;
(((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
. n1)
= (((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
^\ 1)
. n1)
proof
(((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
. n1)
= ((
ElementsOfPortfolioValue_fut (phi,F,x,G))
. (n1
+ 1)) by
NAT_1:def 3;
then
QA: (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
. n1)
= (((
ElementsOfPortfolioValueProb_fut (F,(G
. n2)))
. x)
* (phi
. n2)) by
FINANCE1:def 10;
(phi
. n2)
= (myphi
. n2) by
AA10;
then (((
ElementsOfPortfolioValue_fut (phi,F,x,G))
^\ 1)
. n1)
= ((
ElementsOfPortfolioValue_fut (myphi,F,x,G))
. (n1
+ 1)) by
FINANCE1:def 10,
QA;
hence thesis by
NAT_1:def 3;
end;
hence thesis by
SERIES_1:def 1,
R;
end;
for n be
Nat holds
J[n] from
NAT_1:sch 2(
K1,
K2);
hence thesis;
end;
hence thesis;
end;
then (
PortfolioValueFutExt ((d2
+ 1),phi,F,G,x))
in
].
0 ,
+infty .[ by
A3,
FINANCE1: 12,
ABC4;
hence thesis by
A1,
FINANCE3:def 1;
end;
(
dom Set1)
= Omega by
FUNCT_2:def 1;
hence thesis by
FUNCT_1:def 7,
ABC2;
end;
hence thesis by
TARSKI: 2;
end;
hence thesis by
ASS0;
end;
hence thesis by
Z1,
Z2;
end;
begin
definition
let Omega, F;
let RV be
Real-Valued-Random-Variable of F;
let r be
Real;
::
FINANCE6:def15
func
Real_RV (r,RV) ->
Real-Valued-Random-Variable of F equals (RV
(#) (1
/ (1
+ r)));
correctness
proof
((1
/ (1
+ r))
(#) RV) is
random_variable of F,
Borel_Sets by
RANDOM_3: 7;
hence thesis;
end;
end
definition
let Omega, F;
let jpi be
pricefunction;
let G be
sequence of (
set_of_random_variables_on (F,
Borel_Sets ));
let r be
Real;
::
FINANCE6:def16
pred
Risk_neutral_measure_exists_wrt G,jpi,r means ex Prob be
Probability of F st for d be
Nat holds (jpi
. d)
= (
expect ((
Real_RV (r,(
Change_Element_to_Func (G,d)))),Prob));
end
reserve Prob for
Probability of
Special_SigmaField2 ;
theorem ::
FINANCE6:18
ThArbPrel: for r be
Real st r
>
0 holds for jpi be
pricefunction holds for d be
Nat holds ex f be
Real-Valued-Random-Variable of
Special_SigmaField2 st f
= (
{1, 2, 3, 4}
--> ((jpi
. d)
* (1
+ r))) & f
is_integrable_on (
P2M Prob) & f
is_simple_func_in
Special_SigmaField2
proof
set F2 =
Special_SigmaField2 ;
set Omega2 =
{1, 2, 3, 4};
let r be
Real;
assume
ASSJ: r
>
0 ;
let jpi be
pricefunction;
let d be
Nat;
deffunc
U(
Element of Omega2) = (
In (((jpi
. d)
* (1
+ r)),
REAL ));
consider f be
Function of Omega2,
REAL such that
A1: for d be
Element of Omega2 holds (f
. d)
=
U(d) from
FUNCT_2:sch 4;
set g = (Omega2
--> (
In (((jpi
. d)
* (1
+ r)),
REAL )));
b1: (
dom f)
= Omega2 & (
dom g)
= Omega2 by
FUNCT_2:def 1;
AA: d
in
NAT by
ORDINAL1:def 12;
for x be
object st x
in (
dom f) holds (f
. x)
= (g
. x)
proof
let x be
object;
assume x
in (
dom f);
then
reconsider x as
Element of Omega2;
(f
. x)
= (
In (((jpi
. d)
* (1
+ r)),
REAL )) by
A1;
hence thesis;
end;
then
ff: f
= g by
b1;
then
reconsider f as
Real-Valued-Random-Variable of F2 by
FINANCE3: 10,
RANDOM_3: 7;
zz: Omega2
in F2 & (
dom (
R_EAL f))
= Omega2 by
PROB_1: 5,
FUNCT_2:def 1;
for x be
object st x
in (
dom f) holds ((
R_EAL f)
. x)
= (
In (((jpi
. d)
* (1
+ r)),
REAL )) by
ff,
FUNCOP_1: 7;
then
Fin3: f
is_simple_func_in F2 by
MESFUNC6: 2,
zz,
MESFUNC6: 49;
reconsider g = f as
random_variable of F2,
Borel_Sets by
ff,
FINANCE3: 10;
reconsider fREAL = (
R_EAL f) as
random_variable of F2,
Borel_Sets by
ff,
FINANCE3: 10;
reconsider FOmega =
{1, 2, 3, 4} as
Element of F2 by
PROB_1: 5;
Q1: FOmega
= (
dom (
R_EAL f)) by
FUNCT_2:def 1;
f
is_integrable_on (
P2M Prob)
proof
(
R_EAL f)
is_integrable_on (
P2M Prob)
proof
(
R_EAL f) is FOmega
-measurable & (
integral+ ((
P2M Prob),(
max+ (
R_EAL f))))
<
+infty & (
integral+ ((
P2M Prob),(
max- (
R_EAL f))))
<
+infty
proof
Q2: (
R_EAL f) is FOmega
-measurable
proof
for r be
Real holds (FOmega
/\ (
less_dom ((
R_EAL f),r)))
in F2
proof
let r be
Real;
set WX = { w where w be
Element of Omega2 : (fREAL
. w)
< r };
W1: (FOmega
/\ (
less_dom (fREAL,r)))
= WX
proof
for x be
object holds x
in (FOmega
/\ (
less_dom (fREAL,r))) iff x
in WX
proof
let x be
object;
thus x
in (FOmega
/\ (
less_dom (fREAL,r))) implies x
in WX
proof
assume x
in (FOmega
/\ (
less_dom (fREAL,r)));
then x
in FOmega & x
in (
less_dom (fREAL,r)) by
XBOOLE_0:def 4;
then x
in FOmega & (x
in (
dom fREAL) & (fREAL
. x)
< r) by
MESFUNC1:def 11;
hence thesis;
end;
assume x
in WX;
then x
in (
less_dom (fREAL,r)) by
FINANCE1: 9;
then x
in (
dom fREAL) & (fREAL
. x)
< r by
MESFUNC1:def 11;
then x
in FOmega & x
in (
less_dom (fREAL,r)) by
MESFUNC1:def 11;
hence thesis by
XBOOLE_0:def 4;
end;
hence thesis by
TARSKI: 2;
end;
WX
= (g
"
].
-infty , r.[)
in F2
proof
qq1: for x be
object holds x
in WX iff x
in (g
"
].
-infty , r.[)
proof
let x be
object;
thus x
in WX implies x
in (g
"
].
-infty , r.[)
proof
assume x
in WX;
then
consider w be
Element of Omega2 such that
YA1: w
= x & (fREAL
. w)
< r;
reconsider x as
Element of Omega2 by
YA1;
-infty
< (fREAL
. x) & (fREAL
. x)
< r by
XXREAL_0: 12,
YA1;
then (g
. x)
in
].
-infty , r.[ & (
dom g)
= Omega2 by
FUNCT_2:def 1,
XXREAL_1: 4;
hence thesis by
FUNCT_1:def 7;
end;
assume
c0: x
in (g
"
].
-infty , r.[);
then
C0: x
in (
dom g) & (g
. x)
in
].
-infty , r.[ by
FUNCT_1:def 7;
reconsider x as
Element of Omega2 by
c0;
-infty
< (g
. x) & (g
. x)
< r & (g
. x)
= (fREAL
. x) by
C0,
XXREAL_1: 4;
hence thesis;
end;
ZZ:
].
-infty , r.[ is
Element of
Borel_Sets & g is
random_variable of F2,
Borel_Sets by
FINANCE1: 3;
g is F2,
Borel_Sets
-random_variable-like;
hence thesis by
qq1,
TARSKI: 2,
ZZ;
end;
hence thesis by
W1;
end;
hence thesis by
MESFUNC1:def 16;
end;
set fREAL = (
R_EAL f);
set maxfREAL = (
max+ fREAL);
U0: (
dom maxfREAL)
= (
dom fREAL) & (
dom fREAL)
= Omega2 by
MESFUNC2:def 2,
FUNCT_2:def 1;
Fin30: maxfREAL is
nonnegative
proof
for x be
ExtReal holds x
in (
rng maxfREAL) implies
0.
<= x
proof
let x be
ExtReal;
assume
CASS0: x
in (
rng maxfREAL);
consider w be
object such that
W1: w
in (
dom maxfREAL) & (maxfREAL
. w)
= x by
CASS0,
FUNCT_1:def 3;
thus thesis by
W1,
MESFUNC2: 12;
end;
hence thesis by
SUPINF_2:def 12,
SUPINF_2:def 9;
end;
(
integral+ ((
P2M Prob),(
max+ (
R_EAL f))))
<
+infty & (
integral+ ((
P2M Prob),(
max- (
R_EAL f))))
<
+infty
proof
maxfREAL
is_simple_func_in F2
proof
for x be
object st x
in (
dom maxfREAL) holds (maxfREAL
. x)
= (
In (((jpi
. d)
* (1
+ r)),
REAL ))
proof
let x be
object;
assume x
in (
dom maxfREAL);
then
reconsider x as
Element of Omega2;
per cases ;
suppose
0
<= (fREAL
. x);
then
S2: (
max ((fREAL
. x),
0 ))
= (fREAL
. x) by
XXREAL_0:def 10;
(fREAL
. x)
= (
In (((jpi
. d)
* (1
+ r)),
REAL )) by
ff;
hence thesis by
U0,
MESFUNC2:def 2,
S2;
end;
suppose
S1:
0
> (fREAL
. x);
0
< (1
+ r) &
0
<= (jpi
. d) by
AA,
FINANCE1:def 2,
ASSJ;
hence thesis by
S1,
ff;
end;
end;
hence thesis by
MESFUNC6: 2,
U0,
PROB_1: 5;
end;
then
Schritt1: (
integral+ ((
P2M Prob),(
max+ fREAL)))
= (
integral' ((
P2M Prob),(
max+ fREAL))) by
MESFUNC5: 77,
Fin30;
reconsider myr = ((jpi
. d)
* (1
+ r)) as
Element of
REAL by
XREAL_0:def 1;
(
dom (
max+ fREAL))
= (
dom fREAL) by
MESFUNC2:def 2;
then
y1: (
dom (
max+ fREAL))
= (
[#]
Special_SigmaField2 ) by
FUNCT_2:def 1;
y2:
0
< (1
+ r) &
0
<= (jpi
. d) by
AA,
FINANCE1:def 2,
ASSJ;
zz1: for x be
object st x
in (
dom (
max+ fREAL)) holds ((
max+ fREAL)
. x)
= myr
proof
let x be
object;
assume
S: x
in (
dom (
max+ fREAL));
then
reconsider x as
Element of Omega2;
YY1: ((
max+ fREAL)
. x)
= (
max ((fREAL
. x),
0 )) by
MESFUNC2:def 2,
S;
per cases ;
suppose (fREAL
. x)
>=
0 ;
then ((
max+ fREAL)
. x)
= (fREAL
. x) by
YY1,
XXREAL_0:def 10;
hence thesis by
A1;
end;
suppose (fREAL
. x)
<
0 ;
hence thesis by
A1,
y2;
end;
end;
((
P2M Prob)
. (
dom (
max+ fREAL)))
= 1
proof
(
dom (
max+ fREAL))
= (
dom fREAL) by
MESFUNC2:def 2;
then (
dom (
max+ fREAL))
= (
[#]
Special_SigmaField2 ) by
FUNCT_2:def 1;
hence thesis by
PROB_1: 30;
end;
then
fin1: (
integral+ ((
P2M Prob),(
max+ fREAL)))
= (myr
* 1) by
zz1,
Schritt1,
MESFUNC5: 104,
y2,
y1;
set maxmfREAL = (
max- fREAL);
YY: (
dom maxmfREAL)
= (
dom fREAL) & (
dom fREAL)
= Omega2 by
MESFUNC2:def 3,
FUNCT_2:def 1;
JFin1: maxmfREAL is
nonnegative
proof
for x be
ExtReal holds x
in (
rng maxmfREAL) implies
0.
<= x
proof
let x be
ExtReal;
assume x
in (
rng maxmfREAL);
then ex w be
object st w
in (
dom maxmfREAL) & (maxmfREAL
. w)
= x by
FUNCT_1:def 3;
hence thesis by
MESFUNC2: 13;
end;
hence thesis by
SUPINF_2:def 12,
SUPINF_2:def 9;
end;
U1: (
dom maxmfREAL)
in F2 by
PROB_1: 5,
YY;
(
integral+ ((
P2M Prob),(
max- fREAL)))
<
+infty
proof
FFF: for x be
object st x
in (
dom maxmfREAL) holds (maxmfREAL
. x)
=
0
proof
let x be
object;
assume x
in (
dom maxmfREAL);
then
reconsider x as
Element of Omega2;
QQQ1: (
- (fREAL
. x))
= (
- ((jpi
. d)
* (1
+ r))) by
A1;
set mfREAL = (
- (fREAL
. x));
0
< (1
+ r) &
0
<= (jpi
. d) by
AA,
FINANCE1:def 2,
ASSJ;
then
QQQ3: (
max ((
- (fREAL
. x)),
0 ))
=
0 by
XXREAL_0:def 10,
QQQ1;
(
dom (
max- fREAL))
= (
dom fREAL) & (
dom fREAL)
= Omega2 by
MESFUNC2:def 3,
FUNCT_2:def 1;
hence thesis by
QQQ3,
MESFUNC2:def 3;
end;
then
Schritt1: (
integral+ ((
P2M Prob),(
max- fREAL)))
= (
integral' ((
P2M Prob),(
max- fREAL))) by
MESFUNC5: 77,
JFin1,
MESFUNC6: 2,
U1;
aq2: (
dom maxmfREAL)
= (
dom fREAL) & (
dom fREAL)
= Omega2 by
MESFUNC2:def 3,
FUNCT_2:def 1;
(
integral+ ((
P2M Prob),(
max- fREAL)))
= (
0
* ((
P2M Prob)
. (
dom (
max- fREAL)))) by
Schritt1,
MESFUNC5: 104,
aq2,
FFF,
PROB_1: 5;
hence thesis;
end;
hence thesis by
fin1,
XXREAL_0: 9;
end;
hence thesis by
Q2;
end;
hence thesis by
Q1;
end;
hence thesis;
end;
hence thesis by
ff,
Fin3;
end;
theorem ::
FINANCE6:19
ThArb: for n be
Nat holds for r be
Real st r
>
0 holds for jpi be
pricefunction holds for d be
Nat holds for RV be
Real-Valued-Random-Variable of
Special_SigmaField2 st RV
= (
{1, 2, 3, 4}
--> ((jpi
. d)
* (1
+ r))) & RV
is_integrable_on (
P2M Prob) & RV
is_simple_func_in
Special_SigmaField2 holds (jpi
. d)
= (
expect ((
Real_RV (r,RV)),Prob))
proof
let n be
Nat;
set Omega2 =
{1, 2, 3, 4};
set F2 =
Special_SigmaField2 ;
let r be
Real;
assume
A00: r
>
0 ;
let jpi be
pricefunction;
let d be
Nat;
let RV be
Real-Valued-Random-Variable of F2;
assume
ASS0: RV
= (Omega2
--> ((jpi
. d)
* (1
+ r))) & RV
is_integrable_on (
P2M Prob) & RV
is_simple_func_in F2;
set myconst = (1
/ (1
+ r));
Z1: (
expect ((
Real_RV (r,RV)),Prob))
= (myconst
* (
expect (RV,Prob))) by
ASS0,
RANDOM_1:def 3,
RANDOM_1: 27;
B1: (
expect (RV,Prob))
= (
Integral ((
P2M Prob),RV)) by
ASS0,
RANDOM_1:def 3,
RANDOM_1:def 4;
reconsider FOmega = Omega2 as
Element of F2 by
PROB_1: 5;
D1: FOmega
= (
dom RV) by
FUNCT_2:def 1;
SS: (
R_EAL RV)
= RV & RV is
nonnegative
proof
for x be
ExtReal holds x
in (
rng RV) implies
0.
<= x
proof
let x be
ExtReal;
assume
CASS0: x
in (
rng RV);
consider w be
object such that
W1: w
in (
dom RV) & (RV
. w)
= x by
CASS0,
FUNCT_1:def 3;
reconsider w as
Element of Omega2 by
W1;
0
<= (RV
. w)
proof
d
in
NAT by
ORDINAL1:def 12;
then
0
<= (jpi
. d) by
FINANCE1:def 2;
hence thesis by
ASS0,
A00;
end;
hence thesis by
W1;
end;
hence thesis by
SUPINF_2:def 12,
SUPINF_2:def 9;
end;
then (
expect (RV,Prob))
= (
integral+ ((
P2M Prob),(
R_EAL RV))) by
D1,
ASS0,
MESFUNC6: 50,
B1,
MESFUNC6: 82;
then
Q3: (
expect (RV,Prob))
= (
integral' ((
P2M Prob),(
R_EAL RV))) by
MESFUNC5: 77,
MESFUNC6: 49,
ASS0,
SS;
set myr = ((jpi
. d)
* (1
+ r));
d
in
NAT by
ORDINAL1:def 12;
then
TT:
0
<= (jpi
. d) by
FINANCE1:def 2;
(for x be
object st x
in (
dom (
R_EAL RV)) holds ((
R_EAL RV)
. x)
= myr) & (
dom (
R_EAL RV))
in F2 &
0
<= myr by
ASS0,
FUNCOP_1: 7,
TT,
A00,
PROB_1: 5;
then
Q4: (
expect (RV,Prob))
= (myr
* ((
P2M Prob)
. (
dom (
R_EAL RV)))) by
Q3,
MESFUNC5: 104;
(
dom (
R_EAL RV))
= Omega2 & Omega2
= (
[#] F2) by
FUNCT_2:def 1;
then (
expect (RV,Prob))
= (myr
* 1) by
Q4,
PROB_1: 30;
then
Spec: (
expect ((
Real_RV (r,RV)),Prob))
= ((jpi
. d)
* ((1
/ (1
+ r))
* (1
+ r))) by
Z1;
1
= ((1
* (1
+ r))
* ((1
+ r)
" )) by
XCMPLX_1: 203,
A00;
hence thesis by
Spec;
end;
theorem ::
FINANCE6:20
for r be
Real st r
>
0 holds for jpi be
pricefunction holds ex G be
sequence of (
set_of_random_variables_on (
Special_SigmaField2 ,
Borel_Sets )) st (for d be
Nat holds (G
. d)
= (
{1, 2, 3, 4}
--> ((jpi
. d)
* (1
+ r))) & (
Change_Element_to_Func (G,d))
is_integrable_on (
P2M Prob) & (
Change_Element_to_Func (G,d))
is_simple_func_in
Special_SigmaField2 )
proof
let r be
Real;
assume
A1: r
>
0 ;
let jpi be
pricefunction;
deffunc
U(
Nat) = (
RVfourth (jpi,r,$1));
consider g be
sequence of (
set_of_random_variables_on (
Special_SigmaField2 ,
Borel_Sets )) such that
A2: for d be
Element of
NAT holds (g
. d)
=
U(d) from
FUNCT_2:sch 4;
take g;
let d be
Nat;
d
in
NAT by
ORDINAL1:def 12;
then
b1: (
Change_Element_to_Func (g,d))
= (
RVfourth (jpi,r,d)) by
A2;
ex RV be
Real-Valued-Random-Variable of
Special_SigmaField2 st RV
= (
{1, 2, 3, 4}
--> (
In (((jpi
. d)
* (1
+ r)),
REAL ))) & RV
is_integrable_on (
P2M Prob) & RV
is_simple_func_in
Special_SigmaField2 by
A1,
ThArbPrel;
hence thesis by
b1;
end;
theorem ::
FINANCE6:21
for r be
Real st r
>
0 holds for jpi be
pricefunction holds for G be
sequence of (
set_of_random_variables_on (
Special_SigmaField2 ,
Borel_Sets )) st for d be
Nat holds (G
. d)
= (
{1, 2, 3, 4}
--> ((jpi
. d)
* (1
+ r))) & (
Change_Element_to_Func (G,d))
is_integrable_on (
P2M Prob) & (
Change_Element_to_Func (G,d))
is_simple_func_in
Special_SigmaField2 holds (
Risk_neutral_measure_exists_wrt (G,jpi,r) & for s be
Nat holds (jpi
. s)
= (
expect ((
Real_RV (r,(
Change_Element_to_Func (G,s)))),Prob)))
proof
let r be
Real;
assume
A0: r
>
0 ;
let jpi be
pricefunction;
let G be
sequence of (
set_of_random_variables_on (
Special_SigmaField2 ,
Borel_Sets ));
assume
A01: for d be
Nat holds (G
. d)
= (
{1, 2, 3, 4}
--> ((jpi
. d)
* (1
+ r))) & (
Change_Element_to_Func (G,d))
is_integrable_on (
P2M Prob) & (
Change_Element_to_Func (G,d))
is_simple_func_in
Special_SigmaField2 ;
for s be
Nat holds (jpi
. s)
= (
expect ((
Real_RV (r,(
Change_Element_to_Func (G,s)))),Prob))
proof
let s be
Nat;
set RV = (
Change_Element_to_Func (G,s));
RV
= (
{1, 2, 3, 4}
--> (
In (((jpi
. s)
* (1
+ r)),
REAL ))) & RV
is_integrable_on (
P2M Prob) & RV
is_simple_func_in
Special_SigmaField2 by
A01;
hence thesis by
A0,
ThArb;
end;
hence thesis;
end;