integr10.miz
begin
reserve a,b,r,g for
Real;
theorem ::
INTEGR10:1
Th1: for a,b,g1,M be
Real st a
< b &
0
< g1 &
0
< M holds ex r st a
< r & r
< b & ((b
- r)
* M)
< g1
proof
let a,b,g1,M be
Real such that
A1: a
< b and
A2:
0
< g1 and
A3:
0
< M;
set r3 = (
max (a,(b
- (g1
/ M))));
(b
- (g1
/ M))
< b by
A2,
A3,
XREAL_1: 44,
XREAL_1: 139;
then r3
< b by
A1,
XXREAL_0: 16;
then
consider q be
Real such that
A4: r3
< q and
A5: q
< b by
XREAL_1: 5;
reconsider r = q as
Real;
take r;
(b
- (g1
/ M))
<= r3 by
XXREAL_0: 25;
then (b
- (g1
/ M))
< r by
A4,
XXREAL_0: 2;
then ((b
- (g1
/ M))
- (r
- (g1
/ M)))
< (r
- (r
- (g1
/ M))) by
XREAL_1: 14;
then ((b
- r)
* 1)
< (g1
/ M);
then a
<= r3 & ((b
- r)
* M)
< (g1
/ 1) by
A3,
XREAL_1: 111,
XXREAL_0: 25;
hence thesis by
A4,
A5,
XXREAL_0: 2;
end;
theorem ::
INTEGR10:2
Th2: for a,b,g1,M be
Real st a
< b &
0
< g1 &
0
< M holds ex r st a
< r & r
< b & ((r
- a)
* M)
< g1
proof
let a,b,g1,M be
Real such that
A1: a
< b and
A2:
0
< g1 &
0
< M;
(
- b)
< (
- a) by
A1,
XREAL_1: 24;
then
consider r1 be
Real such that
A3: (
- b)
< r1 & r1
< (
- a) and
A4: (((
- a)
- r1)
* M)
< g1 by
A2,
Th1;
reconsider r = (
- r1) as
Real;
take r;
(
- (
- b))
> (
- r1) & (
- r1)
> (
- (
- a)) by
A3,
XREAL_1: 24;
hence thesis by
A4;
end;
theorem ::
INTEGR10:3
((
exp_R
. b)
- (
exp_R
. a))
= (
integral (
exp_R ,a,b))
proof
A1: (
min (a,b))
<= a by
XXREAL_0: 17;
A2:
[.(
min (a,b)), (
max (a,b)).]
c=
REAL ;
(
exp_R
|
REAL ) is
continuous & a
<= (
max (a,b)) by
XXREAL_0: 25;
then
A3: (
exp_R
. (
max (a,b)))
= ((
integral (
exp_R ,(
min (a,b)),(
max (a,b))))
+ (
exp_R
. (
min (a,b)))) by
A1,
A2,
INTEGRA7: 20,
INTEGRA7: 27,
SIN_COS: 47,
XXREAL_0: 2;
A4: (
min (a,b))
= a implies ((
exp_R
. b)
- (
exp_R
. a))
= (
integral (
exp_R ,a,b))
proof
assume
A5: (
min (a,b))
= a;
then (
max (a,b))
= b by
XXREAL_0: 36;
hence thesis by
A3,
A5;
end;
(
min (a,b))
= b implies ((
exp_R
. b)
- (
exp_R
. a))
= (
integral (
exp_R ,a,b))
proof
assume
A6: (
min (a,b))
= b;
then
A7: (
max (a,b))
= a by
XXREAL_0: 36;
b
< a implies ((
exp_R
. b)
- (
exp_R
. a))
= (
integral (
exp_R ,a,b))
proof
assume b
< a;
then (
integral (
exp_R ,a,b))
= (
- (
integral (
exp_R ,
['b, a']))) by
INTEGRA5:def 4;
then (
exp_R
. a)
= ((
- (
integral (
exp_R ,a,b)))
+ (
exp_R
. b)) by
A1,
A3,
A6,
A7,
INTEGRA5:def 4;
hence thesis;
end;
hence thesis by
A1,
A4,
A6,
XXREAL_0: 1;
end;
hence thesis by
A4,
XXREAL_0: 15;
end;
begin
definition
let f be
PartFunc of
REAL ,
REAL ;
let a,b be
Real;
::
INTEGR10:def1
pred f
is_right_ext_Riemann_integrable_on a,b means (for d be
Real st a
<= d & d
< b holds f
is_integrable_on
['a, d'] & (f
|
['a, d']) is
bounded) & ex Intf be
PartFunc of
REAL ,
REAL st (
dom Intf)
=
[.a, b.[ & (for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,a,x))) & Intf
is_left_convergent_in b;
end
definition
let f be
PartFunc of
REAL ,
REAL ;
let a,b be
Real;
::
INTEGR10:def2
pred f
is_left_ext_Riemann_integrable_on a,b means (for d be
Real st a
< d & d
<= b holds f
is_integrable_on
['d, b'] & (f
|
['d, b']) is
bounded) & ex Intf be
PartFunc of
REAL ,
REAL st (
dom Intf)
=
].a, b.] & (for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,x,b))) & Intf
is_right_convergent_in a;
end
definition
let f be
PartFunc of
REAL ,
REAL ;
let a,b be
Real;
assume
A1: f
is_right_ext_Riemann_integrable_on (a,b);
::
INTEGR10:def3
func
ext_right_integral (f,a,b) ->
Real means
:
Def3: ex Intf be
PartFunc of
REAL ,
REAL st (
dom Intf)
=
[.a, b.[ & (for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,a,x))) & Intf
is_left_convergent_in b & it
= (
lim_left (Intf,b));
existence
proof
consider Intf be
PartFunc of
REAL ,
REAL such that
A2: ((
dom Intf)
=
[.a, b.[ & for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,a,x))) & Intf
is_left_convergent_in b by
A1;
take (
lim_left (Intf,b));
thus thesis by
A2;
end;
uniqueness
proof
let y1,y2 be
Real;
assume ex Intf1 be
PartFunc of
REAL ,
REAL st (
dom Intf1)
=
[.a, b.[ & (for x be
Real st x
in (
dom Intf1) holds (Intf1
. x)
= (
integral (f,a,x))) & Intf1
is_left_convergent_in b & y1
= (
lim_left (Intf1,b));
then
consider Intf1 be
PartFunc of
REAL ,
REAL such that
A3: (
dom Intf1)
=
[.a, b.[ and
A4: for x be
Real st x
in (
dom Intf1) holds (Intf1
. x)
= (
integral (f,a,x)) and Intf1
is_left_convergent_in b and
A5: y1
= (
lim_left (Intf1,b));
assume ex Intf2 be
PartFunc of
REAL ,
REAL st (
dom Intf2)
=
[.a, b.[ & (for x be
Real st x
in (
dom Intf2) holds (Intf2
. x)
= (
integral (f,a,x))) & Intf2
is_left_convergent_in b & y2
= (
lim_left (Intf2,b));
then
consider Intf2 be
PartFunc of
REAL ,
REAL such that
A6: (
dom Intf2)
=
[.a, b.[ and
A7: for x be
Real st x
in (
dom Intf2) holds (Intf2
. x)
= (
integral (f,a,x)) and Intf2
is_left_convergent_in b and
A8: y2
= (
lim_left (Intf2,b));
now
let x be
Element of
REAL ;
assume
A9: x
in (
dom Intf1);
hence (Intf1
. x)
= (
integral (f,a,x)) by
A4
.= (Intf2
. x) by
A3,
A6,
A7,
A9;
end;
hence thesis by
A3,
A5,
A6,
A8,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of
REAL ,
REAL ;
let a,b be
Real;
assume
A1: f
is_left_ext_Riemann_integrable_on (a,b);
::
INTEGR10:def4
func
ext_left_integral (f,a,b) ->
Real means
:
Def4: ex Intf be
PartFunc of
REAL ,
REAL st (
dom Intf)
=
].a, b.] & (for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,x,b))) & Intf
is_right_convergent_in a & it
= (
lim_right (Intf,a));
existence
proof
consider Intf be
PartFunc of
REAL ,
REAL such that
A2: ((
dom Intf)
=
].a, b.] & for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,x,b))) & Intf
is_right_convergent_in a by
A1;
take (
lim_right (Intf,a));
thus thesis by
A2;
end;
uniqueness
proof
let y1,y2 be
Real;
assume ex Intf1 be
PartFunc of
REAL ,
REAL st (
dom Intf1)
=
].a, b.] & (for x be
Real st x
in (
dom Intf1) holds (Intf1
. x)
= (
integral (f,x,b))) & Intf1
is_right_convergent_in a & y1
= (
lim_right (Intf1,a));
then
consider Intf1 be
PartFunc of
REAL ,
REAL such that
A3: (
dom Intf1)
=
].a, b.] and
A4: for x be
Real st x
in (
dom Intf1) holds (Intf1
. x)
= (
integral (f,x,b)) and Intf1
is_right_convergent_in a and
A5: y1
= (
lim_right (Intf1,a));
assume ex Intf2 be
PartFunc of
REAL ,
REAL st (
dom Intf2)
=
].a, b.] & (for x be
Real st x
in (
dom Intf2) holds (Intf2
. x)
= (
integral (f,x,b))) & Intf2
is_right_convergent_in a & y2
= (
lim_right (Intf2,a));
then
consider Intf2 be
PartFunc of
REAL ,
REAL such that
A6: (
dom Intf2)
=
].a, b.] and
A7: for x be
Real st x
in (
dom Intf2) holds (Intf2
. x)
= (
integral (f,x,b)) and Intf2
is_right_convergent_in a and
A8: y2
= (
lim_right (Intf2,a));
now
let x be
Element of
REAL ;
assume
A9: x
in (
dom Intf1);
hence (Intf1
. x)
= (
integral (f,x,b)) by
A4
.= (Intf2
. x) by
A3,
A6,
A7,
A9;
end;
hence thesis by
A3,
A5,
A6,
A8,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of
REAL ,
REAL ;
let a be
Real;
::
INTEGR10:def5
pred f
is_+infty_ext_Riemann_integrable_on a means (for b be
Real st a
<= b holds f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded) & ex Intf be
PartFunc of
REAL ,
REAL st (
dom Intf)
= (
right_closed_halfline a) & (for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,a,x))) & Intf is
convergent_in+infty;
end
definition
let f be
PartFunc of
REAL ,
REAL ;
let b be
Real;
::
INTEGR10:def6
pred f
is_-infty_ext_Riemann_integrable_on b means (for a be
Real st a
<= b holds f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded) & ex Intf be
PartFunc of
REAL ,
REAL st (
dom Intf)
= (
left_closed_halfline b) & (for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,x,b))) & Intf is
convergent_in-infty;
end
definition
let f be
PartFunc of
REAL ,
REAL ;
let a be
Real;
assume
A1: f
is_+infty_ext_Riemann_integrable_on a;
::
INTEGR10:def7
func
infty_ext_right_integral (f,a) ->
Real means
:
Def7: ex Intf be
PartFunc of
REAL ,
REAL st (
dom Intf)
= (
right_closed_halfline a) & (for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,a,x))) & Intf is
convergent_in+infty & it
= (
lim_in+infty Intf);
existence
proof
consider Intf be
PartFunc of
REAL ,
REAL such that
A2: ((
dom Intf)
= (
right_closed_halfline a) & for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,a,x))) & Intf is
convergent_in+infty by
A1;
take (
lim_in+infty Intf);
thus thesis by
A2;
end;
uniqueness
proof
let L1,L2 be
Real;
assume ex Intf1 be
PartFunc of
REAL ,
REAL st (
dom Intf1)
= (
right_closed_halfline a) & (for x be
Real st x
in (
dom Intf1) holds (Intf1
. x)
= (
integral (f,a,x))) & Intf1 is
convergent_in+infty & L1
= (
lim_in+infty Intf1);
then
consider Intf1 be
PartFunc of
REAL ,
REAL such that
A3: (
dom Intf1)
= (
right_closed_halfline a) and
A4: for x be
Real st x
in (
dom Intf1) holds (Intf1
. x)
= (
integral (f,a,x)) and Intf1 is
convergent_in+infty and
A5: L1
= (
lim_in+infty Intf1);
assume ex Intf2 be
PartFunc of
REAL ,
REAL st (
dom Intf2)
= (
right_closed_halfline a) & (for x be
Real st x
in (
dom Intf2) holds (Intf2
. x)
= (
integral (f,a,x))) & Intf2 is
convergent_in+infty & L2
= (
lim_in+infty Intf2);
then
consider Intf2 be
PartFunc of
REAL ,
REAL such that
A6: (
dom Intf2)
= (
right_closed_halfline a) and
A7: for x be
Real st x
in (
dom Intf2) holds (Intf2
. x)
= (
integral (f,a,x)) and Intf2 is
convergent_in+infty and
A8: L2
= (
lim_in+infty Intf2);
now
let x be
Element of
REAL ;
assume
A9: x
in (
dom Intf1);
hence (Intf1
. x)
= (
integral (f,a,x)) by
A4
.= (Intf2
. x) by
A3,
A6,
A7,
A9;
end;
hence thesis by
A3,
A5,
A6,
A8,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of
REAL ,
REAL ;
let b be
Real;
assume
A1: f
is_-infty_ext_Riemann_integrable_on b;
::
INTEGR10:def8
func
infty_ext_left_integral (f,b) ->
Real means
:
Def8: ex Intf be
PartFunc of
REAL ,
REAL st (
dom Intf)
= (
left_closed_halfline b) & (for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,x,b))) & Intf is
convergent_in-infty & it
= (
lim_in-infty Intf);
existence
proof
consider Intf be
PartFunc of
REAL ,
REAL such that
A2: ((
dom Intf)
= (
left_closed_halfline b) & for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,x,b))) & Intf is
convergent_in-infty by
A1;
take (
lim_in-infty Intf);
thus thesis by
A2;
end;
uniqueness
proof
let L1,L2 be
Real;
assume ex Intf1 be
PartFunc of
REAL ,
REAL st (
dom Intf1)
= (
left_closed_halfline b) & (for x be
Real st x
in (
dom Intf1) holds (Intf1
. x)
= (
integral (f,x,b))) & Intf1 is
convergent_in-infty & L1
= (
lim_in-infty Intf1);
then
consider Intf1 be
PartFunc of
REAL ,
REAL such that
A3: (
dom Intf1)
= (
left_closed_halfline b) and
A4: for x be
Real st x
in (
dom Intf1) holds (Intf1
. x)
= (
integral (f,x,b)) and Intf1 is
convergent_in-infty and
A5: L1
= (
lim_in-infty Intf1);
assume ex Intf2 be
PartFunc of
REAL ,
REAL st (
dom Intf2)
= (
left_closed_halfline b) & (for x be
Real st x
in (
dom Intf2) holds (Intf2
. x)
= (
integral (f,x,b))) & Intf2 is
convergent_in-infty & L2
= (
lim_in-infty Intf2);
then
consider Intf2 be
PartFunc of
REAL ,
REAL such that
A6: (
dom Intf2)
= (
left_closed_halfline b) and
A7: for x be
Real st x
in (
dom Intf2) holds (Intf2
. x)
= (
integral (f,x,b)) and Intf2 is
convergent_in-infty and
A8: L2
= (
lim_in-infty Intf2);
now
let x be
Element of
REAL ;
assume
A9: x
in (
dom Intf1);
hence (Intf1
. x)
= (
integral (f,x,b)) by
A4
.= (Intf2
. x) by
A3,
A6,
A7,
A9;
end;
hence thesis by
A3,
A5,
A6,
A8,
PARTFUN1: 5;
end;
end
definition
let f be
PartFunc of
REAL ,
REAL ;
::
INTEGR10:def9
attr f is
infty_ext_Riemann_integrable means f
is_+infty_ext_Riemann_integrable_on
0 & f
is_-infty_ext_Riemann_integrable_on
0 ;
end
definition
let f be
PartFunc of
REAL ,
REAL ;
::
INTEGR10:def10
func
infty_ext_integral (f) ->
Real equals ((
infty_ext_right_integral (f,
0 ))
+ (
infty_ext_left_integral (f,
0 )));
coherence ;
end
begin
theorem ::
INTEGR10:4
for f,g be
PartFunc of
REAL ,
REAL , a,b be
Real st a
< b &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & f
is_right_ext_Riemann_integrable_on (a,b) & g
is_right_ext_Riemann_integrable_on (a,b) holds (f
+ g)
is_right_ext_Riemann_integrable_on (a,b) & (
ext_right_integral ((f
+ g),a,b))
= ((
ext_right_integral (f,a,b))
+ (
ext_right_integral (g,a,b)))
proof
let f,g be
PartFunc of
REAL ,
REAL , a,b be
Real such that
A1: a
< b and
A2:
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) and
A3: f
is_right_ext_Riemann_integrable_on (a,b) and
A4: g
is_right_ext_Riemann_integrable_on (a,b);
consider Intg be
PartFunc of
REAL ,
REAL such that
A5: (
dom Intg)
=
[.a, b.[ and
A6: for x be
Real st x
in (
dom Intg) holds (Intg
. x)
= (
integral (g,a,x)) and
A7: Intg
is_left_convergent_in b and
A8: (
ext_right_integral (g,a,b))
= (
lim_left (Intg,b)) by
A4,
Def3;
consider Intf be
PartFunc of
REAL ,
REAL such that
A9: (
dom Intf)
=
[.a, b.[ and
A10: for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,a,x)) and
A11: Intf
is_left_convergent_in b and
A12: (
ext_right_integral (f,a,b))
= (
lim_left (Intf,b)) by
A3,
Def3;
set Intfg = (Intf
+ Intg);
A13: (
dom Intfg)
=
[.a, b.[ & for x be
Real st x
in (
dom Intfg) holds (Intfg
. x)
= (
integral ((f
+ g),a,x))
proof
A14:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
thus
A15: (
dom Intfg)
= ((
dom Intf)
/\ (
dom Intg)) by
VALUED_1:def 1
.=
[.a, b.[ by
A9,
A5;
let x be
Real;
assume
A16: x
in (
dom Intfg);
then
A17: x
< b by
A15,
XXREAL_1: 3;
then
A18:
[.a, x.]
c=
[.a, b.] by
XXREAL_1: 34;
A19: a
<= x by
A15,
A16,
XXREAL_1: 3;
then
A20: f
is_integrable_on
['a, x'] & (f
|
['a, x']) is
bounded by
A3,
A17;
['a, x']
=
[.a, x.] by
A19,
INTEGRA5:def 3;
then
A21:
['a, x']
c= (
dom f) &
['a, x']
c= (
dom g) by
A2,
A14,
A18;
A22: g
is_integrable_on
['a, x'] & (g
|
['a, x']) is
bounded by
A4,
A19,
A17;
thus (Intfg
. x)
= ((Intf
. x)
+ (Intg
. x)) by
A16,
VALUED_1:def 1
.= ((
integral (f,a,x))
+ (Intg
. x)) by
A9,
A10,
A15,
A16
.= ((
integral (f,a,x))
+ (
integral (g,a,x))) by
A5,
A6,
A15,
A16
.= (
integral ((f
+ g),a,x)) by
A19,
A21,
A20,
A22,
INTEGRA6: 12;
end;
A23: for r st r
< b holds ex g st r
< g & g
< b & g
in (
dom (Intf
+ Intg))
proof
let r be
Real such that
A24: r
< b;
per cases ;
suppose
A25: r
< a;
reconsider g = a as
Real;
take g;
thus thesis by
A1,
A13,
A25,
XXREAL_1: 3;
end;
suppose not r
< a;
then
A26: (a
- a)
<= (r
- a) by
XREAL_1: 9;
reconsider g = (r
+ ((b
- r)
/ 2)) as
Real;
take g;
A27:
0
< (b
- r) by
A24,
XREAL_1: 50;
then ((b
- r)
/ 2)
< (b
- r) by
XREAL_1: 216;
then
A28: (((b
- r)
/ 2)
+ r)
< ((b
- r)
+ r) by
XREAL_1: 8;
r
< g by
A27,
XREAL_1: 29,
XREAL_1: 215;
then
A29: (r
- (r
- a))
< (g
-
0 ) by
A26,
XREAL_1: 14;
0
< ((b
- r)
/ 2) by
A27,
XREAL_1: 215;
hence thesis by
A13,
A29,
A28,
XREAL_1: 8,
XXREAL_1: 3;
end;
end;
then
A30: Intfg
is_left_convergent_in b by
A11,
A7,
LIMFUNC2: 45;
for d be
Real st a
<= d & d
< b holds (f
+ g)
is_integrable_on
['a, d'] & ((f
+ g)
|
['a, d']) is
bounded
proof
let d be
Real;
assume
A31: a
<= d & d
< b;
then
A32:
['a, d']
=
[.a, d.] &
[.a, d.]
c=
[.a, b.] by
INTEGRA5:def 3,
XXREAL_1: 34;
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A33:
['a, d']
c= (
dom f) &
['a, d']
c= (
dom g) by
A2,
A32;
A34: f
is_integrable_on
['a, d'] & g
is_integrable_on
['a, d'] by
A3,
A4,
A31;
A35: (f
|
['a, d']) is
bounded & (g
|
['a, d']) is
bounded by
A3,
A4,
A31;
then ((f
+ g)
| (
['a, d']
/\
['a, d'])) is
bounded by
RFUNCT_1: 83;
hence thesis by
A33,
A34,
A35,
INTEGRA6: 11;
end;
hence
A36: (f
+ g)
is_right_ext_Riemann_integrable_on (a,b) by
A13,
A30;
(
lim_left (Intfg,b))
= ((
ext_right_integral (f,a,b))
+ (
ext_right_integral (g,a,b))) by
A11,
A12,
A7,
A8,
A23,
LIMFUNC2: 45;
hence thesis by
A13,
A30,
A36,
Def3;
end;
theorem ::
INTEGR10:5
for f be
PartFunc of
REAL ,
REAL , a,b be
Real st a
< b &
['a, b']
c= (
dom f) & f
is_right_ext_Riemann_integrable_on (a,b) holds for r be
Real holds (r
(#) f)
is_right_ext_Riemann_integrable_on (a,b) & (
ext_right_integral ((r
(#) f),a,b))
= (r
* (
ext_right_integral (f,a,b)))
proof
let f be
PartFunc of
REAL ,
REAL , a,b be
Real such that
A1: a
< b and
A2:
['a, b']
c= (
dom f) and
A3: f
is_right_ext_Riemann_integrable_on (a,b);
for r be
Real holds (r
(#) f)
is_right_ext_Riemann_integrable_on (a,b) & (
ext_right_integral ((r
(#) f),a,b))
= (r
* (
ext_right_integral (f,a,b)))
proof
let r be
Real;
consider Intf be
PartFunc of
REAL ,
REAL such that
A4: (
dom Intf)
=
[.a, b.[ and
A5: for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,a,x)) and
A6: Intf
is_left_convergent_in b and
A7: (
ext_right_integral (f,a,b))
= (
lim_left (Intf,b)) by
A3,
Def3;
set Intfg = (r
(#) Intf);
A8: Intfg
is_left_convergent_in b by
A6,
LIMFUNC2: 43;
A9: (
dom Intfg)
=
[.a, b.[ & for x be
Real st x
in (
dom Intfg) holds (Intfg
. x)
= (
integral ((r
(#) f),a,x))
proof
A10:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
thus
A11: (
dom Intfg)
=
[.a, b.[ by
A4,
VALUED_1:def 5;
let x be
Real;
assume
A12: x
in (
dom Intfg);
then
A13: a
<= x by
A11,
XXREAL_1: 3;
then
A14:
['a, x']
=
[.a, x.] by
INTEGRA5:def 3;
A15: x
< b by
A11,
A12,
XXREAL_1: 3;
then
A16:
[.a, x.]
c=
[.a, b.] by
XXREAL_1: 34;
A17: f
is_integrable_on
['a, x'] & (f
|
['a, x']) is
bounded by
A3,
A13,
A15;
thus (Intfg
. x)
= (r
* (Intf
. x)) by
A12,
VALUED_1:def 5
.= (r
* (
integral (f,a,x))) by
A4,
A5,
A11,
A12
.= (
integral ((r
(#) f),a,x)) by
A2,
A13,
A14,
A10,
A16,
A17,
INTEGRA6: 10,
XBOOLE_1: 1;
end;
for d be
Real st a
<= d & d
< b holds (r
(#) f)
is_integrable_on
['a, d'] & ((r
(#) f)
|
['a, d']) is
bounded
proof
let d be
Real;
assume
A18: a
<= d & d
< b;
then
A19:
['a, d']
=
[.a, d.] &
[.a, d.]
c=
[.a, b.] by
INTEGRA5:def 3,
XXREAL_1: 34;
A20: f
is_integrable_on
['a, d'] & (f
|
['a, d']) is
bounded by
A3,
A18;
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
['a, d']
c= (
dom f) by
A2,
A19;
hence thesis by
A20,
INTEGRA6: 9,
RFUNCT_1: 80;
end;
hence
A21: (r
(#) f)
is_right_ext_Riemann_integrable_on (a,b) by
A9,
A8;
(
lim_left (Intfg,b))
= (r
* (
ext_right_integral (f,a,b))) by
A6,
A7,
LIMFUNC2: 43;
hence thesis by
A9,
A8,
A21,
Def3;
end;
hence thesis;
end;
theorem ::
INTEGR10:6
for f,g be
PartFunc of
REAL ,
REAL , a,b be
Real st a
< b &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & f
is_left_ext_Riemann_integrable_on (a,b) & g
is_left_ext_Riemann_integrable_on (a,b) holds (f
+ g)
is_left_ext_Riemann_integrable_on (a,b) & (
ext_left_integral ((f
+ g),a,b))
= ((
ext_left_integral (f,a,b))
+ (
ext_left_integral (g,a,b)))
proof
let f,g be
PartFunc of
REAL ,
REAL , a,b be
Real such that
A1: a
< b and
A2:
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) and
A3: f
is_left_ext_Riemann_integrable_on (a,b) and
A4: g
is_left_ext_Riemann_integrable_on (a,b);
consider Intg be
PartFunc of
REAL ,
REAL such that
A5: (
dom Intg)
=
].a, b.] and
A6: for x be
Real st x
in (
dom Intg) holds (Intg
. x)
= (
integral (g,x,b)) and
A7: Intg
is_right_convergent_in a and
A8: (
ext_left_integral (g,a,b))
= (
lim_right (Intg,a)) by
A4,
Def4;
consider Intf be
PartFunc of
REAL ,
REAL such that
A9: (
dom Intf)
=
].a, b.] and
A10: for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,x,b)) and
A11: Intf
is_right_convergent_in a and
A12: (
ext_left_integral (f,a,b))
= (
lim_right (Intf,a)) by
A3,
Def4;
set Intfg = (Intf
+ Intg);
A13: (
dom Intfg)
=
].a, b.] & for x be
Real st x
in (
dom Intfg) holds (Intfg
. x)
= (
integral ((f
+ g),x,b))
proof
A14:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
thus
A15: (
dom Intfg)
= ((
dom Intf)
/\ (
dom Intg)) by
VALUED_1:def 1
.=
].a, b.] by
A9,
A5;
let x be
Real;
assume
A16: x
in (
dom Intfg);
then
A17: a
< x by
A15,
XXREAL_1: 2;
then
A18:
[.x, b.]
c=
[.a, b.] by
XXREAL_1: 34;
A19: x
<= b by
A15,
A16,
XXREAL_1: 2;
then
A20: f
is_integrable_on
['x, b'] & (f
|
['x, b']) is
bounded by
A3,
A17;
['x, b']
=
[.x, b.] by
A19,
INTEGRA5:def 3;
then
A21:
['x, b']
c= (
dom f) &
['x, b']
c= (
dom g) by
A2,
A14,
A18;
A22: g
is_integrable_on
['x, b'] & (g
|
['x, b']) is
bounded by
A4,
A17,
A19;
thus (Intfg
. x)
= ((Intf
. x)
+ (Intg
. x)) by
A16,
VALUED_1:def 1
.= ((
integral (f,x,b))
+ (Intg
. x)) by
A9,
A10,
A15,
A16
.= ((
integral (f,x,b))
+ (
integral (g,x,b))) by
A5,
A6,
A15,
A16
.= (
integral ((f
+ g),x,b)) by
A19,
A21,
A20,
A22,
INTEGRA6: 12;
end;
A23: for r st a
< r holds ex g st g
< r & a
< g & g
in (
dom (Intf
+ Intg))
proof
let r be
Real such that
A24: a
< r;
per cases ;
suppose
A25: b
< r;
reconsider g = b as
Real;
take g;
thus thesis by
A1,
A13,
A25,
XXREAL_1: 2;
end;
suppose
A26: not b
< r;
reconsider g = (r
- ((r
- a)
/ 2)) as
Real;
take g;
A27:
0
< (r
- a) by
A24,
XREAL_1: 50;
then ((r
- a)
/ 2)
< (r
- a) by
XREAL_1: 216;
then
A28: (((r
- a)
/ 2)
+ (a
- ((r
- a)
/ 2)))
< ((r
- a)
+ (a
- ((r
- a)
/ 2))) by
XREAL_1: 8;
A29:
0
< ((r
- a)
/ 2) by
A27,
XREAL_1: 215;
then (r
- ((r
- a)
/ 2))
< (b
-
0 ) by
A26,
XREAL_1: 15;
hence thesis by
A13,
A29,
A28,
XREAL_1: 44,
XXREAL_1: 2;
end;
end;
then
A30: Intfg
is_right_convergent_in a by
A11,
A7,
LIMFUNC2: 54;
for d be
Real st a
< d & d
<= b holds (f
+ g)
is_integrable_on
['d, b'] & ((f
+ g)
|
['d, b']) is
bounded
proof
let d be
Real;
assume
A31: a
< d & d
<= b;
then
A32:
['d, b']
=
[.d, b.] &
[.d, b.]
c=
[.a, b.] by
INTEGRA5:def 3,
XXREAL_1: 34;
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A33:
['d, b']
c= (
dom f) &
['d, b']
c= (
dom g) by
A2,
A32;
A34: f
is_integrable_on
['d, b'] & g
is_integrable_on
['d, b'] by
A3,
A4,
A31;
A35: (f
|
['d, b']) is
bounded & (g
|
['d, b']) is
bounded by
A3,
A4,
A31;
then ((f
+ g)
| (
['d, b']
/\
['d, b'])) is
bounded by
RFUNCT_1: 83;
hence thesis by
A33,
A34,
A35,
INTEGRA6: 11;
end;
hence
A36: (f
+ g)
is_left_ext_Riemann_integrable_on (a,b) by
A13,
A30;
(
lim_right (Intfg,a))
= ((
ext_left_integral (f,a,b))
+ (
ext_left_integral (g,a,b))) by
A11,
A12,
A7,
A8,
A23,
LIMFUNC2: 54;
hence thesis by
A13,
A30,
A36,
Def4;
end;
theorem ::
INTEGR10:7
for f be
PartFunc of
REAL ,
REAL , a,b be
Real st a
< b &
['a, b']
c= (
dom f) & f
is_left_ext_Riemann_integrable_on (a,b) holds for r be
Real holds (r
(#) f)
is_left_ext_Riemann_integrable_on (a,b) & (
ext_left_integral ((r
(#) f),a,b))
= (r
* (
ext_left_integral (f,a,b)))
proof
let f be
PartFunc of
REAL ,
REAL , a,b be
Real such that
A1: a
< b and
A2:
['a, b']
c= (
dom f) and
A3: f
is_left_ext_Riemann_integrable_on (a,b);
for r be
Real holds (r
(#) f)
is_left_ext_Riemann_integrable_on (a,b) & (
ext_left_integral ((r
(#) f),a,b))
= (r
* (
ext_left_integral (f,a,b)))
proof
let r be
Real;
consider Intf be
PartFunc of
REAL ,
REAL such that
A4: (
dom Intf)
=
].a, b.] and
A5: for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,x,b)) and
A6: Intf
is_right_convergent_in a and
A7: (
ext_left_integral (f,a,b))
= (
lim_right (Intf,a)) by
A3,
Def4;
set Intfg = (r
(#) Intf);
A8: Intfg
is_right_convergent_in a by
A6,
LIMFUNC2: 52;
A9: (
dom Intfg)
=
].a, b.] & for x be
Real st x
in (
dom Intfg) holds (Intfg
. x)
= (
integral ((r
(#) f),x,b))
proof
A10:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
thus
A11: (
dom Intfg)
=
].a, b.] by
A4,
VALUED_1:def 5;
let x be
Real;
assume
A12: x
in (
dom Intfg);
then
A13: a
< x by
A11,
XXREAL_1: 2;
then
A14:
[.x, b.]
c=
[.a, b.] by
XXREAL_1: 34;
A15: x
<= b by
A11,
A12,
XXREAL_1: 2;
then
A16:
['x, b']
=
[.x, b.] by
INTEGRA5:def 3;
A17: f
is_integrable_on
['x, b'] & (f
|
['x, b']) is
bounded by
A3,
A13,
A15;
thus (Intfg
. x)
= (r
* (Intf
. x)) by
A12,
VALUED_1:def 5
.= (r
* (
integral (f,x,b))) by
A4,
A5,
A11,
A12
.= (
integral ((r
(#) f),x,b)) by
A2,
A15,
A16,
A10,
A14,
A17,
INTEGRA6: 10,
XBOOLE_1: 1;
end;
for d be
Real st a
< d & d
<= b holds (r
(#) f)
is_integrable_on
['d, b'] & ((r
(#) f)
|
['d, b']) is
bounded
proof
let d be
Real;
assume
A18: a
< d & d
<= b;
then
A19:
['d, b']
=
[.d, b.] &
[.d, b.]
c=
[.a, b.] by
INTEGRA5:def 3,
XXREAL_1: 34;
A20: f
is_integrable_on
['d, b'] & (f
|
['d, b']) is
bounded by
A3,
A18;
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
['d, b']
c= (
dom f) by
A2,
A19;
hence thesis by
A20,
INTEGRA6: 9,
RFUNCT_1: 80;
end;
hence
A21: (r
(#) f)
is_left_ext_Riemann_integrable_on (a,b) by
A9,
A8;
(
lim_right (Intfg,a))
= (r
* (
ext_left_integral (f,a,b))) by
A6,
A7,
LIMFUNC2: 52;
hence thesis by
A9,
A8,
A21,
Def4;
end;
hence thesis;
end;
theorem ::
INTEGR10:8
Th8: for f,g be
PartFunc of
REAL ,
REAL , a be
Real st (
right_closed_halfline a)
c= (
dom f) & (
right_closed_halfline a)
c= (
dom g) & f
is_+infty_ext_Riemann_integrable_on a & g
is_+infty_ext_Riemann_integrable_on a holds (f
+ g)
is_+infty_ext_Riemann_integrable_on a & (
infty_ext_right_integral ((f
+ g),a))
= ((
infty_ext_right_integral (f,a))
+ (
infty_ext_right_integral (g,a)))
proof
let f,g be
PartFunc of
REAL ,
REAL , a be
Real;
assume that
A1: (
right_closed_halfline a)
c= (
dom f) & (
right_closed_halfline a)
c= (
dom g) and
A2: f
is_+infty_ext_Riemann_integrable_on a and
A3: g
is_+infty_ext_Riemann_integrable_on a;
consider Intg be
PartFunc of
REAL ,
REAL such that
A4: (
dom Intg)
= (
right_closed_halfline a) and
A5: for x be
Real st x
in (
dom Intg) holds (Intg
. x)
= (
integral (g,a,x)) and
A6: Intg is
convergent_in+infty and
A7: (
infty_ext_right_integral (g,a))
= (
lim_in+infty Intg) by
A3,
Def7;
consider Intf be
PartFunc of
REAL ,
REAL such that
A8: (
dom Intf)
= (
right_closed_halfline a) and
A9: for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,a,x)) and
A10: Intf is
convergent_in+infty and
A11: (
infty_ext_right_integral (f,a))
= (
lim_in+infty Intf) by
A2,
Def7;
set Intfg = (Intf
+ Intg);
A12: (
dom Intfg)
= (
right_closed_halfline a) & for x be
Real st x
in (
dom Intfg) holds (Intfg
. x)
= (
integral ((f
+ g),a,x))
proof
thus
A13: (
dom Intfg)
= ((
dom Intf)
/\ (
dom Intg)) by
VALUED_1:def 1
.= (
right_closed_halfline a) by
A8,
A4;
let x be
Real;
assume
A14: x
in (
dom Intfg);
then
A15: a
<= x by
A13,
XXREAL_1: 236;
then
A16: f
is_integrable_on
['a, x'] & (f
|
['a, x']) is
bounded by
A2;
A17:
[.a, x.]
c= (
right_closed_halfline a) by
XXREAL_1: 251;
['a, x']
=
[.a, x.] by
A15,
INTEGRA5:def 3;
then
A18:
['a, x']
c= (
dom f) &
['a, x']
c= (
dom g) by
A1,
A17;
A19: g
is_integrable_on
['a, x'] & (g
|
['a, x']) is
bounded by
A3,
A15;
thus (Intfg
. x)
= ((Intf
. x)
+ (Intg
. x)) by
A14,
VALUED_1:def 1
.= ((
integral (f,a,x))
+ (Intg
. x)) by
A8,
A9,
A13,
A14
.= ((
integral (f,a,x))
+ (
integral (g,a,x))) by
A4,
A5,
A13,
A14
.= (
integral ((f
+ g),a,x)) by
A15,
A18,
A16,
A19,
INTEGRA6: 12;
end;
A20: for r holds ex g st r
< g & g
in (
dom (Intf
+ Intg))
proof
let r be
Real;
per cases ;
suppose
A21: r
< a;
reconsider g = a as
Real;
take g;
thus thesis by
A12,
A21,
XXREAL_1: 236;
end;
suppose
A22: not r
< a;
reconsider g = (r
+ 1) as
Real;
take g;
A23: (r
+
0 )
< (r
+ 1) by
XREAL_1: 8;
then a
<= g by
A22,
XXREAL_0: 2;
hence thesis by
A12,
A23,
XXREAL_1: 236;
end;
end;
then
A24: Intfg is
convergent_in+infty by
A10,
A6,
LIMFUNC1: 82;
for b be
Real st a
<= b holds (f
+ g)
is_integrable_on
['a, b'] & ((f
+ g)
|
['a, b']) is
bounded
proof
let b be
Real;
A25:
[.a, b.]
c= (
right_closed_halfline a) by
XXREAL_1: 251;
assume
A26: a
<= b;
then
A27: f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] by
A2,
A3;
['a, b']
=
[.a, b.] by
A26,
INTEGRA5:def 3;
then
A28:
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) by
A1,
A25;
A29: (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded by
A2,
A3,
A26;
then ((f
+ g)
| (
['a, b']
/\
['a, b'])) is
bounded by
RFUNCT_1: 83;
hence thesis by
A28,
A27,
A29,
INTEGRA6: 11;
end;
hence
A30: (f
+ g)
is_+infty_ext_Riemann_integrable_on a by
A12,
A24;
(
lim_in+infty Intfg)
= ((
infty_ext_right_integral (f,a))
+ (
infty_ext_right_integral (g,a))) by
A10,
A11,
A6,
A7,
A20,
LIMFUNC1: 82;
hence thesis by
A12,
A24,
A30,
Def7;
end;
theorem ::
INTEGR10:9
Th9: for f be
PartFunc of
REAL ,
REAL , a be
Real st (
right_closed_halfline a)
c= (
dom f) & f
is_+infty_ext_Riemann_integrable_on a holds for r be
Real holds (r
(#) f)
is_+infty_ext_Riemann_integrable_on a & (
infty_ext_right_integral ((r
(#) f),a))
= (r
* (
infty_ext_right_integral (f,a)))
proof
let f be
PartFunc of
REAL ,
REAL , a be
Real;
assume that
A1: (
right_closed_halfline a)
c= (
dom f) and
A2: f
is_+infty_ext_Riemann_integrable_on a;
for r be
Real holds (r
(#) f)
is_+infty_ext_Riemann_integrable_on a & (
infty_ext_right_integral ((r
(#) f),a))
= (r
* (
infty_ext_right_integral (f,a)))
proof
let r be
Real;
consider Intf be
PartFunc of
REAL ,
REAL such that
A3: (
dom Intf)
= (
right_closed_halfline a) and
A4: for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,a,x)) and
A5: Intf is
convergent_in+infty and
A6: (
infty_ext_right_integral (f,a))
= (
lim_in+infty Intf) by
A2,
Def7;
set Intfg = (r
(#) Intf);
A7: Intfg is
convergent_in+infty by
A5,
LIMFUNC1: 80;
A8: (
dom Intfg)
= (
right_closed_halfline a) & for x be
Real st x
in (
dom Intfg) holds (Intfg
. x)
= (
integral ((r
(#) f),a,x))
proof
thus
A9: (
dom Intfg)
= (
right_closed_halfline a) by
A3,
VALUED_1:def 5;
let x be
Real;
assume
A10: x
in (
dom Intfg);
then
A11: a
<= x by
A9,
XXREAL_1: 236;
then
A12:
['a, x']
=
[.a, x.] & f
is_integrable_on
['a, x'] by
A2,
INTEGRA5:def 3;
A13:
[.a, x.]
c= (
right_closed_halfline a) & (f
|
['a, x']) is
bounded by
A2,
A11,
XXREAL_1: 251;
thus (Intfg
. x)
= (r
* (Intf
. x)) by
A10,
VALUED_1:def 5
.= (r
* (
integral (f,a,x))) by
A3,
A4,
A9,
A10
.= (
integral ((r
(#) f),a,x)) by
A1,
A11,
A12,
A13,
INTEGRA6: 10,
XBOOLE_1: 1;
end;
for b be
Real st a
<= b holds (r
(#) f)
is_integrable_on
['a, b'] & ((r
(#) f)
|
['a, b']) is
bounded
proof
let b be
Real;
A14:
[.a, b.]
c= (
right_closed_halfline a) by
XXREAL_1: 251;
assume
A15: a
<= b;
then
A16: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded by
A2;
['a, b']
=
[.a, b.] by
A15,
INTEGRA5:def 3;
then
['a, b']
c= (
dom f) by
A1,
A14;
hence thesis by
A16,
INTEGRA6: 9,
RFUNCT_1: 80;
end;
hence
A17: (r
(#) f)
is_+infty_ext_Riemann_integrable_on a by
A8,
A7;
(
lim_in+infty Intfg)
= (r
* (
infty_ext_right_integral (f,a))) by
A5,
A6,
LIMFUNC1: 80;
hence thesis by
A8,
A7,
A17,
Def7;
end;
hence thesis;
end;
theorem ::
INTEGR10:10
for f,g be
PartFunc of
REAL ,
REAL , b be
Real st (
left_closed_halfline b)
c= (
dom f) & (
left_closed_halfline b)
c= (
dom g) & f
is_-infty_ext_Riemann_integrable_on b & g
is_-infty_ext_Riemann_integrable_on b holds (f
+ g)
is_-infty_ext_Riemann_integrable_on b & (
infty_ext_left_integral ((f
+ g),b))
= ((
infty_ext_left_integral (f,b))
+ (
infty_ext_left_integral (g,b)))
proof
let f,g be
PartFunc of
REAL ,
REAL , b be
Real;
assume that
A1: (
left_closed_halfline b)
c= (
dom f) & (
left_closed_halfline b)
c= (
dom g) and
A2: f
is_-infty_ext_Riemann_integrable_on b and
A3: g
is_-infty_ext_Riemann_integrable_on b;
consider Intg be
PartFunc of
REAL ,
REAL such that
A4: (
dom Intg)
= (
left_closed_halfline b) and
A5: for x be
Real st x
in (
dom Intg) holds (Intg
. x)
= (
integral (g,x,b)) and
A6: Intg is
convergent_in-infty and
A7: (
infty_ext_left_integral (g,b))
= (
lim_in-infty Intg) by
A3,
Def8;
consider Intf be
PartFunc of
REAL ,
REAL such that
A8: (
dom Intf)
= (
left_closed_halfline b) and
A9: for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,x,b)) and
A10: Intf is
convergent_in-infty and
A11: (
infty_ext_left_integral (f,b))
= (
lim_in-infty Intf) by
A2,
Def8;
set Intfg = (Intf
+ Intg);
A12: (
dom Intfg)
= (
left_closed_halfline b) & for x be
Real st x
in (
dom Intfg) holds (Intfg
. x)
= (
integral ((f
+ g),x,b))
proof
thus
A13: (
dom Intfg)
= ((
dom Intf)
/\ (
dom Intg)) by
VALUED_1:def 1
.= (
left_closed_halfline b) by
A8,
A4;
let x be
Real;
assume
A14: x
in (
dom Intfg);
then
A15: x
<= b by
A13,
XXREAL_1: 234;
then
A16: f
is_integrable_on
['x, b'] & (f
|
['x, b']) is
bounded by
A2;
A17:
[.x, b.]
c= (
left_closed_halfline b) by
XXREAL_1: 265;
['x, b']
=
[.x, b.] by
A15,
INTEGRA5:def 3;
then
A18:
['x, b']
c= (
dom f) &
['x, b']
c= (
dom g) by
A1,
A17;
A19: g
is_integrable_on
['x, b'] & (g
|
['x, b']) is
bounded by
A3,
A15;
thus (Intfg
. x)
= ((Intf
. x)
+ (Intg
. x)) by
A14,
VALUED_1:def 1
.= ((
integral (f,x,b))
+ (Intg
. x)) by
A8,
A9,
A13,
A14
.= ((
integral (f,x,b))
+ (
integral (g,x,b))) by
A4,
A5,
A13,
A14
.= (
integral ((f
+ g),x,b)) by
A15,
A18,
A16,
A19,
INTEGRA6: 12;
end;
A20: for r holds ex g st g
< r & g
in (
dom (Intf
+ Intg))
proof
let r be
Real;
per cases ;
suppose
A21: b
< r;
reconsider g = b as
Real;
take g;
thus thesis by
A12,
A21,
XXREAL_1: 234;
end;
suppose
A22: not b
< r;
reconsider g = (r
- 1) as
Real;
take g;
A23: (r
- 1)
< (r
-
0 ) by
XREAL_1: 15;
then g
<= b by
A22,
XXREAL_0: 2;
hence thesis by
A12,
A23,
XXREAL_1: 234;
end;
end;
then
A24: Intfg is
convergent_in-infty by
A10,
A6,
LIMFUNC1: 91;
for a be
Real st a
<= b holds (f
+ g)
is_integrable_on
['a, b'] & ((f
+ g)
|
['a, b']) is
bounded
proof
let a be
Real;
A25:
[.a, b.]
c= (
left_closed_halfline b) by
XXREAL_1: 265;
assume
A26: a
<= b;
then
A27: f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] by
A2,
A3;
['a, b']
=
[.a, b.] by
A26,
INTEGRA5:def 3;
then
A28:
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) by
A1,
A25;
A29: (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded by
A2,
A3,
A26;
then ((f
+ g)
| (
['a, b']
/\
['a, b'])) is
bounded by
RFUNCT_1: 83;
hence thesis by
A28,
A27,
A29,
INTEGRA6: 11;
end;
hence
A30: (f
+ g)
is_-infty_ext_Riemann_integrable_on b by
A12,
A24;
(
lim_in-infty Intfg)
= ((
infty_ext_left_integral (f,b))
+ (
infty_ext_left_integral (g,b))) by
A10,
A11,
A6,
A7,
A20,
LIMFUNC1: 91;
hence thesis by
A12,
A24,
A30,
Def8;
end;
theorem ::
INTEGR10:11
for f be
PartFunc of
REAL ,
REAL , b be
Real st (
left_closed_halfline b)
c= (
dom f) & f
is_-infty_ext_Riemann_integrable_on b holds for r be
Real holds (r
(#) f)
is_-infty_ext_Riemann_integrable_on b & (
infty_ext_left_integral ((r
(#) f),b))
= (r
* (
infty_ext_left_integral (f,b)))
proof
let f be
PartFunc of
REAL ,
REAL , b be
Real;
assume that
A1: (
left_closed_halfline b)
c= (
dom f) and
A2: f
is_-infty_ext_Riemann_integrable_on b;
for r be
Real holds (r
(#) f)
is_-infty_ext_Riemann_integrable_on b & (
infty_ext_left_integral ((r
(#) f),b))
= (r
* (
infty_ext_left_integral (f,b)))
proof
let r be
Real;
consider Intf be
PartFunc of
REAL ,
REAL such that
A3: (
dom Intf)
= (
left_closed_halfline b) and
A4: for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,x,b)) and
A5: Intf is
convergent_in-infty and
A6: (
infty_ext_left_integral (f,b))
= (
lim_in-infty Intf) by
A2,
Def8;
set Intfg = (r
(#) Intf);
A7: Intfg is
convergent_in-infty by
A5,
LIMFUNC1: 89;
A8: (
dom Intfg)
= (
left_closed_halfline b) & for x be
Real st x
in (
dom Intfg) holds (Intfg
. x)
= (
integral ((r
(#) f),x,b))
proof
thus
A9: (
dom Intfg)
= (
left_closed_halfline b) by
A3,
VALUED_1:def 5;
let x be
Real;
assume
A10: x
in (
dom Intfg);
then
A11: x
<= b by
A9,
XXREAL_1: 234;
then
A12:
['x, b']
=
[.x, b.] & f
is_integrable_on
['x, b'] by
A2,
INTEGRA5:def 3;
A13:
[.x, b.]
c= (
left_closed_halfline b) & (f
|
['x, b']) is
bounded by
A2,
A11,
XXREAL_1: 265;
thus (Intfg
. x)
= (r
* (Intf
. x)) by
A10,
VALUED_1:def 5
.= (r
* (
integral (f,x,b))) by
A3,
A4,
A9,
A10
.= (
integral ((r
(#) f),x,b)) by
A1,
A11,
A12,
A13,
INTEGRA6: 10,
XBOOLE_1: 1;
end;
for a be
Real st a
<= b holds (r
(#) f)
is_integrable_on
['a, b'] & ((r
(#) f)
|
['a, b']) is
bounded
proof
let a be
Real;
A14:
[.a, b.]
c= (
left_closed_halfline b) by
XXREAL_1: 265;
assume
A15: a
<= b;
then
A16: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded by
A2;
['a, b']
=
[.a, b.] by
A15,
INTEGRA5:def 3;
then
['a, b']
c= (
dom f) by
A1,
A14;
hence thesis by
A16,
INTEGRA6: 9,
RFUNCT_1: 80;
end;
hence
A17: (r
(#) f)
is_-infty_ext_Riemann_integrable_on b by
A8,
A7;
(
lim_in-infty Intfg)
= (r
* (
infty_ext_left_integral (f,b))) by
A5,
A6,
LIMFUNC1: 89;
hence thesis by
A8,
A7,
A17,
Def8;
end;
hence thesis;
end;
theorem ::
INTEGR10:12
for f be
PartFunc of
REAL ,
REAL , a,b be
Real st a
< b &
['a, b']
c= (
dom f) & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded holds (
ext_right_integral (f,a,b))
= (
integral (f,a,b))
proof
let f be
PartFunc of
REAL ,
REAL , a,b be
Real such that
A1: a
< b and
A2:
['a, b']
c= (
dom f) and
A3: f
is_integrable_on
['a, b'] and
A4: (f
|
['a, b']) is
bounded;
reconsider AB =
[.a, b.[ as non
empty
Subset of
REAL by
A1,
XXREAL_1: 3;
deffunc
F(
Element of AB) = (
In ((
integral (f,a,$1)),
REAL ));
consider Intf be
Function of AB,
REAL such that
A5: for x be
Element of AB holds (Intf
. x)
=
F(x) from
FUNCT_2:sch 4;
A6: (
dom Intf)
= AB by
FUNCT_2:def 1;
then
reconsider Intf as
PartFunc of
REAL ,
REAL by
RELSET_1: 5;
consider M0 be
Real such that
A7: for x be
object st x
in (
['a, b']
/\ (
dom f)) holds
|.(f
. x).|
<= M0 by
A4,
RFUNCT_1: 73;
reconsider M = (M0
+ 1) as
Real;
A8: for x be
Real st x
in
['a, b'] holds
|.(f
. x).|
< M
proof
A9: (
['a, b']
/\ (
dom f))
=
['a, b'] by
A2,
XBOOLE_1: 28;
let x be
Real;
assume x
in
['a, b'];
hence thesis by
A7,
A9,
XREAL_1: 39;
end;
a
in { r where r be
Real : a
<= r & r
<= b } by
A1;
then a
in
[.a, b.] by
RCOMP_1:def 1;
then a
in
['a, b'] by
A1,
INTEGRA5:def 3;
then
|.(f
. a).|
< M by
A8;
then
A10:
0
< M by
COMPLEX1: 46;
A11: for g1 be
Real st
0
< g1 holds ex r be
Real st r
< b & for r1 be
Real st r
< r1 & r1
< b & r1
in (
dom Intf) holds
|.((Intf
. r1)
- (
integral (f,a,b))).|
< g1
proof
let g1 be
Real;
assume
0
< g1;
then
consider r be
Real such that
A12: a
< r and
A13: r
< b and
A14: ((b
- r)
* M)
< g1 by
A1,
A10,
Th1;
reconsider r as
Real;
take r;
thus r
< b by
A13;
now
let r1 be
Real;
assume that
A15: r
< r1 and
A16: r1
< b and r1
in (
dom Intf);
A17: a
<= r1 by
A12,
A15,
XXREAL_0: 2;
then
reconsider rr = r1 as
Element of AB by
A16,
XXREAL_1: 3;
A18: (Intf
. r1)
=
F(rr) by
A5;
r1
in
[.a, b.] by
A16,
XXREAL_1: 1,
A17;
then
A19: r1
in
['a, b'] by
A1,
INTEGRA5:def 3;
(b
- r1)
< (b
- r) by
A15,
XREAL_1: 15;
then
A20: (M
* (b
- r1))
< (M
* (b
- r)) by
A10,
XREAL_1: 68;
A21:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
[.r1, b.]
=
['r1, b'] by
A16,
INTEGRA5:def 3;
then
['r1, b']
c=
['a, b'] by
A21,
A17,
XXREAL_1: 34;
then
A22: for x be
Real st x
in
['r1, b'] holds
|.(f
. x).|
<= M by
A8;
b
in
['a, b'] by
A1,
A21,
XXREAL_1: 1;
then
|.(
integral (f,r1,b)).|
<= (M
* (b
- r1)) by
A1,
A2,
A3,
A4,
A16,
A19,
A22,
INTEGRA6: 23;
then
A23:
|.(
integral (f,r1,b)).|
< (M
* (b
- r)) by
A20,
XXREAL_0: 2;
|.((Intf
. r1)
- (
integral (f,a,b))).|
=
|.((
integral (f,a,b))
- (Intf
. r1)).| by
COMPLEX1: 60
.=
|.(((
integral (f,a,r1))
+ (
integral (f,r1,b)))
- (
integral (f,a,r1))).| by
A1,
A2,
A3,
A4,
A18,
A19,
INTEGRA6: 17
.=
|.(
integral (f,r1,b)).|;
hence
|.((Intf
. r1)
- (
integral (f,a,b))).|
< g1 by
A14,
A23,
XXREAL_0: 2;
end;
hence thesis;
end;
A24: for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,a,x))
proof
let x be
Real such that
A25: x
in (
dom Intf);
(
dom Intf)
= AB by
FUNCT_2:def 1;
then
reconsider x as
Element of AB by
A25;
(Intf
. x)
=
F(x) by
A5;
hence thesis;
end;
for r st r
< b holds ex g be
Real st r
< g & g
< b & g
in (
dom Intf)
proof
let r such that
A26: r
< b;
per cases ;
suppose
A27: r
< a;
reconsider g = a as
Real;
take g;
thus thesis by
A1,
A6,
A27,
XXREAL_1: 3;
end;
suppose not r
< a;
then
A28: (a
- a)
<= (r
- a) by
XREAL_1: 9;
reconsider g = (r
+ ((b
- r)
/ 2)) as
Real;
take g;
A29:
0
< (b
- r) by
A26,
XREAL_1: 50;
then ((b
- r)
/ 2)
< (b
- r) by
XREAL_1: 216;
then
A30: (((b
- r)
/ 2)
+ r)
< ((b
- r)
+ r) by
XREAL_1: 8;
r
< g by
A29,
XREAL_1: 29,
XREAL_1: 215;
then
A31: (r
- (r
- a))
< (g
-
0 ) by
A28,
XREAL_1: 14;
0
< ((b
- r)
/ 2) by
A29,
XREAL_1: 215;
hence thesis by
A6,
A31,
A30,
XREAL_1: 8,
XXREAL_1: 3;
end;
end;
then
A32: Intf
is_left_convergent_in b by
A11,
LIMFUNC2: 7;
then
A33: (
integral (f,a,b))
= (
lim_left (Intf,b)) by
A11,
LIMFUNC2: 41;
for d be
Real st a
<= d & d
< b holds f
is_integrable_on
['a, d'] & (f
|
['a, d']) is
bounded by
A2,
A3,
A4,
INTEGRA6: 18;
then f
is_right_ext_Riemann_integrable_on (a,b) by
A6,
A24,
A32;
hence thesis by
A6,
A24,
A32,
A33,
Def3;
end;
theorem ::
INTEGR10:13
for f be
PartFunc of
REAL ,
REAL , a,b be
Real st a
< b &
['a, b']
c= (
dom f) & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded holds (
ext_left_integral (f,a,b))
= (
integral (f,a,b))
proof
let f be
PartFunc of
REAL ,
REAL , a,b be
Real such that
A1: a
< b and
A2:
['a, b']
c= (
dom f) and
A3: f
is_integrable_on
['a, b'] and
A4: (f
|
['a, b']) is
bounded;
reconsider AB =
].a, b.] as non
empty
Subset of
REAL by
A1,
XXREAL_1: 2;
deffunc
F(
Element of AB) = (
In ((
integral (f,$1,b)),
REAL ));
consider Intf be
Function of AB,
REAL such that
A5: for x be
Element of AB holds (Intf
. x)
=
F(x) from
FUNCT_2:sch 4;
A6: (
dom Intf)
= AB by
FUNCT_2:def 1;
then
reconsider Intf as
PartFunc of
REAL ,
REAL by
RELSET_1: 5;
consider M0 be
Real such that
A7: for x be
object st x
in (
['a, b']
/\ (
dom f)) holds
|.(f
. x).|
<= M0 by
A4,
RFUNCT_1: 73;
reconsider M = (M0
+ 1) as
Real;
A8: for x be
Real st x
in
['a, b'] holds
|.(f
. x).|
< M
proof
A9: (
['a, b']
/\ (
dom f))
=
['a, b'] by
A2,
XBOOLE_1: 28;
let x be
Real;
assume x
in
['a, b'];
hence thesis by
A7,
A9,
XREAL_1: 39;
end;
a
in { r where r be
Real : a
<= r & r
<= b } by
A1;
then a
in
[.a, b.] by
RCOMP_1:def 1;
then a
in
['a, b'] by
A1,
INTEGRA5:def 3;
then
|.(f
. a).|
< M by
A8;
then
A10:
0
< M by
COMPLEX1: 46;
A11: for g1 be
Real st
0
< g1 holds ex r be
Real st a
< r & for r1 be
Real st r1
< r & a
< r1 & r1
in (
dom Intf) holds
|.((Intf
. r1)
- (
integral (f,a,b))).|
< g1
proof
let g1 be
Real;
assume
0
< g1;
then
consider r be
Real such that
A12: a
< r and
A13: r
< b and
A14: ((r
- a)
* M)
< g1 by
A1,
A10,
Th2;
take r;
thus a
< r by
A12;
now
let r1 be
Real;
assume that
A15: a
< r1 and
A16: r1
< r and r1
in (
dom Intf);
r1
< b by
A16,
A13,
XXREAL_0: 2;
then
reconsider rr = r1 as
Element of AB by
A15,
XXREAL_1: 2;
A17: (Intf
. r1)
=
F(rr) by
A5;
(r1
- a)
< (r
- a) by
A16,
XREAL_1: 14;
then
A18: (M
* (r1
- a))
< (M
* (r
- a)) by
A10,
XREAL_1: 68;
A19:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
A20: r1
<= b by
A13,
A16,
XXREAL_0: 2;
then
A21: r1
in
['a, b'] by
A15,
A19,
XXREAL_1: 1;
[.a, r1.]
=
['a, r1'] by
A15,
INTEGRA5:def 3;
then
['a, r1']
c=
['a, b'] by
A19,
A20,
XXREAL_1: 34;
then
A22: for x be
Real st x
in
['a, r1'] holds
|.(f
. x).|
<= M by
A8;
a
in
['a, b'] by
A1,
A19,
XXREAL_1: 1;
then
|.(
integral (f,a,r1)).|
<= (M
* (r1
- a)) by
A1,
A2,
A3,
A4,
A15,
A21,
A22,
INTEGRA6: 23;
then
A23:
|.(
integral (f,a,r1)).|
< (M
* (r
- a)) by
A18,
XXREAL_0: 2;
|.((Intf
. r1)
- (
integral (f,a,b))).|
=
|.((
integral (f,a,b))
- (Intf
. r1)).| by
COMPLEX1: 60
.=
|.(((
integral (f,a,r1))
+ (
integral (f,r1,b)))
- (
integral (f,r1,b))).| by
A1,
A2,
A3,
A4,
A17,
A21,
INTEGRA6: 17
.=
|.(
integral (f,a,r1)).|;
hence
|.((Intf
. r1)
- (
integral (f,a,b))).|
< g1 by
A14,
A23,
XXREAL_0: 2;
end;
hence thesis;
end;
A24: for x be
Real st x
in (
dom Intf) holds (Intf
. x)
= (
integral (f,x,b))
proof
let x be
Real such that
A25: x
in (
dom Intf);
(
dom Intf)
= AB by
FUNCT_2:def 1;
then
reconsider x as
Element of AB by
A25;
(Intf
. x)
=
F(x) by
A5;
hence thesis;
end;
for r st a
< r holds ex g be
Real st g
< r & a
< g & g
in (
dom Intf)
proof
let r such that
A26: a
< r;
per cases ;
suppose
A27: b
< r;
reconsider g = b as
Real;
take g;
g
in
].a, b.] by
A1,
XXREAL_1: 2;
hence thesis by
A1,
A27,
FUNCT_2:def 1;
end;
suppose
A28: not b
< r;
reconsider g = (a
+ ((r
- a)
/ 2)) as
Real;
take g;
A29:
0
< (r
- a) by
A26,
XREAL_1: 50;
then
A30: a
< g by
XREAL_1: 29,
XREAL_1: 215;
((r
- a)
/ 2)
< (r
- a) by
A29,
XREAL_1: 216;
then
A31: (((r
- a)
/ 2)
+ a)
< ((r
- a)
+ a) by
XREAL_1: 8;
then g
< b by
A28,
XXREAL_0: 2;
hence thesis by
A6,
A30,
A31,
XXREAL_1: 2;
end;
end;
then
A32: Intf
is_right_convergent_in a by
A11,
LIMFUNC2: 10;
then
A33: (
integral (f,a,b))
= (
lim_right (Intf,a)) by
A11,
LIMFUNC2: 42;
for d be
Real st a
< d & d
<= b holds f
is_integrable_on
['d, b'] & (f
|
['d, b']) is
bounded by
A2,
A3,
A4,
INTEGRA6: 18;
then f
is_left_ext_Riemann_integrable_on (a,b) by
A6,
A24,
A32;
hence thesis by
A6,
A24,
A32,
A33,
Def4;
end;
begin
definition
let s be
Real;
::
INTEGR10:def11
func
exp*- s ->
Function of
REAL ,
REAL means for t be
Real holds (it
. t)
= (
exp_R
. (
- (s
* t)));
existence
proof
deffunc
F(
Real) = (
In ((
exp_R
. (
- (s
* $1))),
REAL ));
consider g be
Function of
REAL ,
REAL such that
A1: for x be
Element of
REAL holds (g
. x)
=
F(x) from
FUNCT_2:sch 4;
take g;
let x be
Real;
x
in
REAL by
XREAL_0:def 1;
then (g
. x)
=
F(x) by
A1;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of
REAL ,
REAL ;
assume that
A2: for d be
Real holds (f1
. d)
= (
exp_R
. (
- (s
* d))) and
A3: for d be
Real holds (f2
. d)
= (
exp_R
. (
- (s
* d)));
for d be
Element of
REAL holds (f1
. d)
= (f2
. d)
proof
let d be
Element of
REAL ;
thus (f1
. d)
= (
exp_R
. (
- (s
* d))) by
A2
.= (f2
. d) by
A3;
end;
hence f1
= f2 by
FUNCT_2: 63;
end;
end
definition
let f be
PartFunc of
REAL ,
REAL ;
::
INTEGR10:def12
func
One-sided_Laplace_transform (f) ->
PartFunc of
REAL ,
REAL means
:
Def12: (
dom it )
= (
right_open_halfline
0 ) & for s be
Real st s
in (
dom it ) holds (it
. s)
= (
infty_ext_right_integral ((f
(#) (
exp*- s)),
0 ));
existence
proof
defpred
P[
Real,
Real] means $1
in (
right_open_halfline
0 ) & $2
= (
infty_ext_right_integral ((f
(#) (
exp*- $1)),
0 ));
consider g be
PartFunc of
REAL ,
REAL such that
A1: (for d be
Element of
REAL holds d
in (
dom g) iff (ex c be
Element of
REAL st
P[d, c])) & for d be
Element of
REAL st d
in (
dom g) holds
P[d, (g
/. d)] from
PARTFUN2:sch 1;
A2: for d be
Real holds d
in (
dom g) iff ex c be
Real st
P[d, c]
proof
let d be
Real;
reconsider dd = d as
Element of
REAL by
XREAL_0:def 1;
thus d
in (
dom g) implies ex c be
Real st
P[d, c] by
A1;
given c be
Real such that
A3:
P[d, c];
reconsider c as
Element of
REAL by
XREAL_0:def 1;
P[dd, c] by
A3;
then dd
in (
dom g) by
A1;
hence thesis;
end;
A4: for d be
Real st d
in (
dom g) holds
P[d, (g
/. d)] by
A1;
A5: (
dom g)
= (
right_open_halfline
0 )
proof
let s1 be
Real;
reconsider s = s1 as
Real;
s
in (
right_open_halfline
0 ) implies s
in (
dom g)
proof
assume s
in (
right_open_halfline
0 );
then ex y be
Real st s
in (
right_open_halfline
0 ) & y
= (
infty_ext_right_integral ((f
(#) (
exp*- s)),
0 ));
hence thesis by
A2;
end;
hence thesis by
A4;
end;
take g;
for s be
Real st s
in (
dom g) holds (g
. s)
= (
infty_ext_right_integral ((f
(#) (
exp*- s)),
0 ))
proof
let s be
Real;
assume
A6: s
in (
dom g);
then (g
/. s)
= (
infty_ext_right_integral ((f
(#) (
exp*- s)),
0 )) by
A4;
hence thesis by
A6,
PARTFUN1:def 6;
end;
hence thesis by
A5;
end;
uniqueness
proof
let f1,f2 be
PartFunc of
REAL ,
REAL ;
assume that
A7: (
dom f1)
= (
right_open_halfline
0 ) and
A8: for s be
Real st s
in (
dom f1) holds (f1
. s)
= (
infty_ext_right_integral ((f
(#) (
exp*- s)),
0 ));
assume that
A9: (
dom f2)
= (
right_open_halfline
0 ) and
A10: for s be
Real st s
in (
dom f2) holds (f2
. s)
= (
infty_ext_right_integral ((f
(#) (
exp*- s)),
0 ));
for s be
Element of
REAL st s
in (
dom f1) holds (f1
. s)
= (f2
. s)
proof
let s be
Element of
REAL such that
A11: s
in (
dom f1);
(f1
. s)
= (
infty_ext_right_integral ((f
(#) (
exp*- s)),
0 )) by
A8,
A11;
hence thesis by
A7,
A9,
A10,
A11;
end;
hence f1
= f2 by
A7,
A9,
PARTFUN1: 5;
end;
end
begin
theorem ::
INTEGR10:14
for f,g be
PartFunc of
REAL ,
REAL st (
dom f)
= (
right_closed_halfline
0 ) & (
dom g)
= (
right_closed_halfline
0 ) & (for s be
Real st s
in (
right_open_halfline
0 ) holds (f
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 ) & (for s be
Real st s
in (
right_open_halfline
0 ) holds (g
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 ) holds (for s be
Real st s
in (
right_open_halfline
0 ) holds ((f
+ g)
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 ) & (
One-sided_Laplace_transform (f
+ g))
= ((
One-sided_Laplace_transform f)
+ (
One-sided_Laplace_transform g))
proof
let f,g be
PartFunc of
REAL ,
REAL such that
A1: (
dom f)
= (
right_closed_halfline
0 ) and
A2: (
dom g)
= (
right_closed_halfline
0 ) and
A3: (for s be
Real st s
in (
right_open_halfline
0 ) holds (f
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 ) & for s be
Real st s
in (
right_open_halfline
0 ) holds (g
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 ;
set Intg = (
One-sided_Laplace_transform g);
set Intf = (
One-sided_Laplace_transform f);
set F = ((
One-sided_Laplace_transform f)
+ (
One-sided_Laplace_transform g));
A4: (
dom F)
= ((
dom Intf)
/\ (
dom Intg)) by
VALUED_1:def 1
.= ((
right_open_halfline
0 )
/\ (
dom Intg)) by
Def12
.= ((
right_open_halfline
0 )
/\ (
right_open_halfline
0 )) by
Def12
.= (
right_open_halfline
0 );
A5: for s be
Real st s
in (
right_open_halfline
0 ) holds ((f
+ g)
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 & (
infty_ext_right_integral (((f
+ g)
(#) (
exp*- s)),
0 ))
= ((
infty_ext_right_integral ((f
(#) (
exp*- s)),
0 ))
+ (
infty_ext_right_integral ((g
(#) (
exp*- s)),
0 )))
proof
let s be
Real;
A6: ((f
+ g)
(#) (
exp*- s))
= ((f
(#) (
exp*- s))
+ (g
(#) (
exp*- s))) by
RFUNCT_1: 10;
A7: (
dom (g
(#) (
exp*- s)))
= ((
dom g)
/\ (
dom (
exp*- s))) by
VALUED_1:def 4
.= ((
right_closed_halfline
0 )
/\
REAL ) by
A2,
FUNCT_2:def 1
.= (
right_closed_halfline
0 ) by
XBOOLE_1: 28;
assume s
in (
right_open_halfline
0 );
then
A8: (f
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 & (g
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 by
A3;
(
dom (f
(#) (
exp*- s)))
= ((
dom f)
/\ (
dom (
exp*- s))) by
VALUED_1:def 4
.= ((
right_closed_halfline
0 )
/\
REAL ) by
A1,
FUNCT_2:def 1
.= (
right_closed_halfline
0 ) by
XBOOLE_1: 28;
hence thesis by
A8,
A6,
A7,
Th8;
end;
for s be
Real st s
in (
dom F) holds (F
. s)
= (
infty_ext_right_integral (((f
+ g)
(#) (
exp*- s)),
0 ))
proof
let s be
Real;
assume
A9: s
in (
dom F);
then
A10: s
in (
dom Intf) by
A4,
Def12;
A11: s
in (
dom Intg) by
A4,
A9,
Def12;
thus (
infty_ext_right_integral (((f
+ g)
(#) (
exp*- s)),
0 ))
= ((
infty_ext_right_integral ((f
(#) (
exp*- s)),
0 ))
+ (
infty_ext_right_integral ((g
(#) (
exp*- s)),
0 ))) by
A5,
A4,
A9
.= ((Intf
. s)
+ (
infty_ext_right_integral ((g
(#) (
exp*- s)),
0 ))) by
A10,
Def12
.= ((Intf
. s)
+ (Intg
. s)) by
A11,
Def12
.= (F
. s) by
A9,
VALUED_1:def 1;
end;
hence thesis by
A5,
A4,
Def12;
end;
theorem ::
INTEGR10:15
for f be
PartFunc of
REAL ,
REAL , a be
Real st (
dom f)
= (
right_closed_halfline
0 ) & (for s be
Real st s
in (
right_open_halfline
0 ) holds (f
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 ) holds (for s be
Real st s
in (
right_open_halfline
0 ) holds ((a
(#) f)
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 ) & (
One-sided_Laplace_transform (a
(#) f))
= (a
(#) (
One-sided_Laplace_transform f))
proof
let f be
PartFunc of
REAL ,
REAL , a be
Real such that
A1: (
dom f)
= (
right_closed_halfline
0 ) and
A2: for s be
Real st s
in (
right_open_halfline
0 ) holds (f
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 ;
set Intf = (
One-sided_Laplace_transform f);
set F = (a
(#) (
One-sided_Laplace_transform f));
A3: (
dom F)
= (
dom Intf) by
VALUED_1:def 5
.= (
right_open_halfline
0 ) by
Def12;
A4: for s be
Real st s
in (
right_open_halfline
0 ) holds ((a
(#) f)
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 & (
infty_ext_right_integral (((a
(#) f)
(#) (
exp*- s)),
0 ))
= (a
* (
infty_ext_right_integral ((f
(#) (
exp*- s)),
0 )))
proof
let s be
Real;
A5: ((a
(#) f)
(#) (
exp*- s))
= (a
(#) (f
(#) (
exp*- s))) by
RFUNCT_1: 12;
assume s
in (
right_open_halfline
0 );
then
A6: (f
(#) (
exp*- s))
is_+infty_ext_Riemann_integrable_on
0 by
A2;
(
dom (f
(#) (
exp*- s)))
= ((
dom f)
/\ (
dom (
exp*- s))) by
VALUED_1:def 4
.= ((
right_closed_halfline
0 )
/\
REAL ) by
A1,
FUNCT_2:def 1
.= (
right_closed_halfline
0 ) by
XBOOLE_1: 28;
hence thesis by
A6,
A5,
Th9;
end;
for s be
Real st s
in (
dom F) holds (F
. s)
= (
infty_ext_right_integral (((a
(#) f)
(#) (
exp*- s)),
0 ))
proof
let s be
Real;
assume
A7: s
in (
dom F);
then
A8: s
in (
dom Intf) by
A3,
Def12;
thus (
infty_ext_right_integral (((a
(#) f)
(#) (
exp*- s)),
0 ))
= (a
* (
infty_ext_right_integral ((f
(#) (
exp*- s)),
0 ))) by
A4,
A3,
A7
.= (a
* (Intf
. s)) by
A8,
Def12
.= (F
. s) by
VALUED_1: 6;
end;
hence thesis by
A4,
A3,
Def12;
end;