integra6.miz
begin
reserve a,b,c,d,e,x,r for
Real,
A for non
empty
closed_interval
Subset of
REAL ,
f,g for
PartFunc of
REAL ,
REAL ;
theorem ::
INTEGRA6:1
Th1: a
<= b & c
<= d & (a
+ c)
= (b
+ d) implies a
= b & c
= d
proof
assume that
A1: a
<= b & c
<= d and
A2: (a
+ c)
= (b
+ d);
assume not (a
= b & c
= d);
then a
< b or c
< d by
A1,
XXREAL_0: 1;
hence contradiction by
A1,
A2,
XREAL_1: 8;
end;
theorem ::
INTEGRA6:2
Th2: a
<= b implies
].(x
- a), (x
+ a).[
c=
].(x
- b), (x
+ b).[
proof
assume a
<= b;
then (x
- b)
<= (x
- a) & (x
+ a)
<= (x
+ b) by
XREAL_1: 7,
XREAL_1: 10;
hence thesis by
XXREAL_1: 46;
end;
theorem ::
INTEGRA6:3
Th3: for R be
Relation, A,B,C be
set st A
c= B & A
c= C holds ((R
| B)
| A)
= ((R
| C)
| A)
proof
let R be
Relation, A,B,C be
set;
assume that
A1: A
c= B and
A2: A
c= C;
((R
| C)
| A)
= (R
| A) by
A2,
RELAT_1: 74;
hence thesis by
A1,
RELAT_1: 74;
end;
theorem ::
INTEGRA6:4
Th4: for A,B,C be
set st A
c= B & A
c= C holds ((
chi (B,B))
| A)
= ((
chi (C,C))
| A)
proof
let A,B,C be
set;
assume that
A1: A
c= B and
A2: A
c= C;
A3:
now
A4: (
dom ((
chi (C,C))
| A))
= ((
dom (
chi (C,C)))
/\ A) by
RELAT_1: 61;
assume
A5: A is non
empty;
then C is non
empty by
A2,
XBOOLE_1: 58,
XBOOLE_1: 61;
then (
dom ((
chi (C,C))
| A))
= (C
/\ A) by
A4,
RFUNCT_1: 61;
then
A6: (
dom ((
chi (C,C))
| A))
= A by
A2,
XBOOLE_1: 28;
A7: (
dom ((
chi (B,B))
| A))
= ((
dom (
chi (B,B)))
/\ A) by
RELAT_1: 61;
B is non
empty by
A1,
A5,
XBOOLE_1: 58,
XBOOLE_1: 61;
then (
dom ((
chi (B,B))
| A))
= (B
/\ A) by
A7,
RFUNCT_1: 61;
then
A8: (
dom ((
chi (B,B))
| A))
= A by
A1,
XBOOLE_1: 28;
now
let x be
object;
assume
A9: x
in A;
then (((
chi (B,B))
| A)
. x)
= ((
chi (B,B))
. x) by
A8,
FUNCT_1: 47;
then (((
chi (B,B))
| A)
. x)
= 1 by
A1,
A9,
RFUNCT_1: 61;
then (((
chi (B,B))
| A)
. x)
= ((
chi (C,C))
. x) by
A2,
A9,
RFUNCT_1: 61;
hence (((
chi (B,B))
| A)
. x)
= (((
chi (C,C))
| A)
. x) by
A6,
A9,
FUNCT_1: 47;
end;
hence thesis by
A8,
A6,
FUNCT_1: 2;
end;
now
assume
A10: A is
empty;
then ((
chi (B,B))
| A)
=
{} ;
hence thesis by
A10;
end;
hence thesis by
A3;
end;
theorem ::
INTEGRA6:5
Th5: a
<= b implies (
vol
['a, b'])
= (b
- a)
proof
assume a
<= b;
then
A1:
['a, b']
=
[.a, b.] by
INTEGRA5:def 3;
then
A2:
[.a, b.]
=
[.(
lower_bound
[.a, b.]), (
upper_bound
[.a, b.]).] by
INTEGRA1: 4;
then a
= (
lower_bound
[.a, b.]) by
A1,
INTEGRA1: 5;
hence thesis by
A1,
A2,
INTEGRA1: 5;
end;
theorem ::
INTEGRA6:6
Th6: (
vol
['(
min (a,b)), (
max (a,b))'])
=
|.(b
- a).|
proof
per cases ;
suppose
A1: a
<= b;
then (
min (a,b))
= a & (
max (a,b))
= b by
XXREAL_0:def 9,
XXREAL_0:def 10;
then
A2: (
vol
['(
min (a,b)), (
max (a,b))'])
= (b
- a) by
Th5,
XXREAL_0: 25;
0
<= (b
- a) by
A1,
XREAL_1: 48;
hence thesis by
A2,
ABSVALUE:def 1;
end;
suppose
A3: not a
<= b;
then
0
<= (a
- b) by
XREAL_1: 48;
then
A4: (a
- b)
=
|.(a
- b).| by
ABSVALUE:def 1
.=
|.(b
- a).| by
COMPLEX1: 60;
(
min (a,b))
= b & (
max (a,b))
= a by
A3,
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
A4,
Th5,
XXREAL_0: 17;
end;
end;
begin
Lm1: A
c= (
dom f) implies (f
|| A) is
Function of A,
REAL
proof
(
rng f)
c=
REAL ;
then
A1: f is
Function of (
dom f),
REAL by
FUNCT_2: 2;
assume A
c= (
dom f);
hence thesis by
A1,
FUNCT_2: 32;
end;
theorem ::
INTEGRA6:7
Th7: A
c= (
dom f) & f
is_integrable_on A & (f
| A) is
bounded implies (
abs f)
is_integrable_on A &
|.(
integral (f,A)).|
<= (
integral ((
abs f),A))
proof
A1:
|.(f
|| A).|
= ((
abs f)
|| A) by
RFUNCT_1: 46;
assume A
c= (
dom f);
then
A2: (f
|| A) is
Function of A,
REAL by
Lm1;
assume f
is_integrable_on A & (f
| A) is
bounded;
then
A3: (f
|| A) is
integrable & ((f
|| A)
| A) is
bounded;
thus thesis by
A3,
A2,
A1,
INTEGRA4: 23;
end;
theorem ::
INTEGRA6:8
Th8: a
<= b &
['a, b']
c= (
dom f) & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded implies
|.(
integral (f,a,b)).|
<= (
integral ((
abs f),a,b))
proof
assume a
<= b;
then (
integral (f,a,b))
= (
integral (f,
['a, b'])) & (
integral ((
abs f),a,b))
= (
integral ((
abs f),
['a, b'])) by
INTEGRA5:def 4;
hence thesis by
Th7;
end;
theorem ::
INTEGRA6:9
Th9: A
c= (
dom f) & f
is_integrable_on A & (f
| A) is
bounded implies (r
(#) f)
is_integrable_on A & (
integral ((r
(#) f),A))
= (r
* (
integral (f,A)))
proof
assume that
A1: A
c= (
dom f) and
A2: f
is_integrable_on A & (f
| A) is
bounded;
A3: (f
|| A) is
integrable & ((f
|| A)
| A) is
bounded by
A2;
(
rng f)
c=
REAL ;
then f is
Function of (
dom f),
REAL by
FUNCT_2: 2;
then
A4: (f
| A) is
Function of A,
REAL by
A1,
FUNCT_2: 32;
(r
(#) (f
|| A))
= ((r
(#) f)
| A) by
RFUNCT_1: 49;
then ((r
(#) f)
|| A) is
integrable by
A3,
A4,
INTEGRA2: 31;
hence (r
(#) f)
is_integrable_on A;
(
integral ((r
(#) f),A))
= (
integral (r
(#) (f
|| A))) by
RFUNCT_1: 49;
hence thesis by
A3,
A4,
INTEGRA2: 31;
end;
theorem ::
INTEGRA6:10
Th10: a
<= b &
['a, b']
c= (
dom f) & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded implies (
integral ((c
(#) f),a,b))
= (c
* (
integral (f,a,b)))
proof
assume that
A1: a
<= b and
A2:
['a, b']
c= (
dom f) & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded;
(
integral (f,a,b))
= (
integral (f,
['a, b'])) & (
integral ((c
(#) f),a,b))
= (
integral ((c
(#) f),
['a, b'])) by
A1,
INTEGRA5:def 4;
hence thesis by
A2,
Th9;
end;
theorem ::
INTEGRA6:11
Th11: A
c= (
dom f) & A
c= (
dom g) & f
is_integrable_on A & (f
| A) is
bounded & g
is_integrable_on A & (g
| A) is
bounded implies (f
+ g)
is_integrable_on A & (f
- g)
is_integrable_on A & (
integral ((f
+ g),A))
= ((
integral (f,A))
+ (
integral (g,A))) & (
integral ((f
- g),A))
= ((
integral (f,A))
- (
integral (g,A)))
proof
assume that
A1: A
c= (
dom f) & A
c= (
dom g) and
A2: f
is_integrable_on A and
A3: (f
| A) is
bounded and
A4: g
is_integrable_on A and
A5: (g
| A) is
bounded;
A6: ((f
|| A)
| A) is
bounded & ((g
|| A)
| A) is
bounded by
A3,
A5;
A7: (f
|| A) is
Function of A,
REAL & (g
|| A) is
Function of A,
REAL by
A1,
Lm1;
A8: ((f
|| A)
+ (g
|| A))
= ((f
+ g)
|| A) & ((f
|| A)
- (g
|| A))
= ((f
- g)
|| A) by
RFUNCT_1: 44,
RFUNCT_1: 47;
A9: (f
|| A) is
integrable & (g
|| A) is
integrable by
A2,
A4;
then ((f
|| A)
+ (g
|| A)) is
integrable & ((f
|| A)
- (g
|| A)) is
integrable by
A6,
A7,
INTEGRA1: 57,
INTEGRA2: 33;
hence (f
+ g)
is_integrable_on A & (f
- g)
is_integrable_on A by
A8;
thus thesis by
A9,
A6,
A7,
A8,
INTEGRA1: 57,
INTEGRA2: 33;
end;
theorem ::
INTEGRA6:12
Th12: a
<= b &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded implies (
integral ((f
+ g),a,b))
= ((
integral (f,a,b))
+ (
integral (g,a,b))) & (
integral ((f
- g),a,b))
= ((
integral (f,a,b))
- (
integral (g,a,b)))
proof
assume that
A1: a
<= b and
A2:
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded;
A3: (
integral ((f
+ g),a,b))
= (
integral ((f
+ g),
['a, b'])) & (
integral ((f
- g),a,b))
= (
integral ((f
- g),
['a, b'])) by
A1,
INTEGRA5:def 4;
(
integral (f,a,b))
= (
integral (f,
['a, b'])) & (
integral (g,a,b))
= (
integral (g,
['a, b'])) by
A1,
INTEGRA5:def 4;
hence thesis by
A2,
A3,
Th11;
end;
theorem ::
INTEGRA6:13
(f
| A) is
bounded & (g
| A) is
bounded implies ((f
(#) g)
| A) is
bounded
proof
assume (f
| A) is
bounded & (g
| A) is
bounded;
then ((f
(#) g)
| (A
/\ A)) is
bounded by
RFUNCT_1: 84;
hence thesis;
end;
theorem ::
INTEGRA6:14
A
c= (
dom f) & A
c= (
dom g) & f
is_integrable_on A & (f
| A) is
bounded & g
is_integrable_on A & (g
| A) is
bounded implies (f
(#) g)
is_integrable_on A
proof
assume that
A1: A
c= (
dom f) & A
c= (
dom g) and
A2: f
is_integrable_on A & (f
| A) is
bounded and
A3: g
is_integrable_on A & (g
| A) is
bounded;
A4: (f
|| A) is
integrable & ((f
|| A)
| A) is
bounded by
A2;
A5: (g
|| A) is
integrable & ((g
|| A)
| A) is
bounded by
A3;
A6: ((f
|| A)
(#) (g
|| A))
= ((f
(#) g)
|| A) by
INTEGRA5: 4;
(f
|| A) is
Function of A,
REAL & (g
|| A) is
Function of A,
REAL by
A1,
Lm1;
then ((f
(#) g)
|| A) is
integrable by
A4,
A5,
A6,
INTEGRA4: 29;
hence thesis;
end;
theorem ::
INTEGRA6:15
Th15: for n be
Nat st n
>
0 & (
vol A)
>
0 holds ex D be
Division of A st (
len D)
= n & for i be
Nat st i
in (
dom D) holds (D
. i)
= ((
lower_bound A)
+ (((
vol A)
/ n)
* i))
proof
let n be
Nat;
assume that
A1: n
>
0 and
A2: (
vol A)
>
0 ;
deffunc
F(
Nat) = (
In (((
lower_bound A)
+ (((
vol A)
/ n)
* $1)),
REAL ));
consider D be
FinSequence of
REAL such that
A3: (
len D)
= n & for i be
Nat st i
in (
dom D) holds (D
. i)
=
F(i) from
FINSEQ_2:sch 1;
A4: for i,j be
Nat st i
in (
dom D) & j
in (
dom D) & i
< j holds (D
. i)
< (D
. j)
proof
let i,j be
Nat;
assume that
A5: i
in (
dom D) and
A6: j
in (
dom D) and
A7: i
< j;
((
vol A)
/ n)
>
0 by
A1,
A2,
XREAL_1: 139;
then (((
vol A)
/ n)
* i)
< (((
vol A)
/ n)
* j) by
A7,
XREAL_1: 68;
then
F(i)
<
F(j) by
XREAL_1: 6;
then (D
. i)
<
F(j) by
A3,
A5;
hence thesis by
A3,
A6;
end;
A8: (
dom D)
= (
Seg n) by
A3,
FINSEQ_1:def 3;
reconsider D as non
empty
increasing
FinSequence of
REAL by
A1,
A3,
A4,
SEQM_3:def 1;
(D
. (
len D))
=
F(n) by
A3,
A8,
FINSEQ_1: 3;
then
A9: (D
. (
len D))
= ((
lower_bound A)
+ (
vol A)) by
A1,
XCMPLX_1: 87;
for x1 be
object st x1
in (
rng D) holds x1
in A
proof
let x1 be
object;
assume x1
in (
rng D);
then
consider i be
Element of
NAT such that
A10: i
in (
dom D) and
A11: (D
. i)
= x1 by
PARTFUN1: 3;
A12: 1
<= i by
A10,
FINSEQ_3: 25;
i
<= (
len D) by
A10,
FINSEQ_3: 25;
then (((
vol A)
/ n)
* i)
<= (((
vol A)
/ n)
* n) by
A2,
A3,
XREAL_1: 64;
then (((
vol A)
/ n)
* i)
<= (
vol A) by
A1,
XCMPLX_1: 87;
then
A13: ((
lower_bound A)
+ (((
vol A)
/ n)
* i))
<= ((
lower_bound A)
+ (
vol A)) by
XREAL_1: 6;
((
vol A)
/ n)
>
0 by
A1,
A2,
XREAL_1: 139;
then
A14: (
lower_bound A)
<= ((
lower_bound A)
+ (((
vol A)
/ n)
* i)) by
A12,
XREAL_1: 29,
XREAL_1: 129;
x1
=
F(i) by
A3,
A10,
A11;
hence thesis by
A14,
A13,
INTEGRA2: 1;
end;
then (
rng D)
c= A;
then
reconsider D as
Division of A by
A9,
INTEGRA1:def 2;
take D;
thus (
len D)
= n by
A3;
let i be
Nat;
assume i
in (
dom D);
then (D
. i)
=
F(i) by
A3;
hence thesis;
end;
begin
theorem ::
INTEGRA6:16
Th16: (
vol A)
>
0 implies ex T be
DivSequence of A st (
delta T) is
convergent & (
lim (
delta T))
=
0 & for n be
Element of
NAT holds ex Tn be
Division of A st Tn
divide_into_equal (n
+ 1) & (T
. n)
= Tn
proof
defpred
P[
set,
set] means ex n be
Element of
NAT , e be
Division of A st n
= $1 & e
= $2 & e
divide_into_equal (n
+ 1);
assume
A1: (
vol A)
>
0 ;
A2: for n be
Element of
NAT holds ex D be
Element of (
divs A) st
P[n, D]
proof
let n be
Element of
NAT ;
consider D be
Division of A such that
A3: (
len D)
= (n
+ 1) & for i be
Nat st i
in (
dom D) holds (D
. i)
= ((
lower_bound A)
+ (((
vol A)
/ (n
+ 1))
* i)) by
A1,
Th15;
reconsider D1 = D as
Element of (
divs A) by
INTEGRA1:def 3;
take D1;
D
divide_into_equal (n
+ 1) by
A3,
INTEGRA4:def 1;
hence thesis;
end;
consider T be
sequence of (
divs A) such that
A4: for n be
Element of
NAT holds
P[n, (T
. n)] from
FUNCT_2:sch 3(
A2);
reconsider T as
DivSequence of A;
A5: for n be
Element of
NAT holds ex Tn be
Division of A st Tn
divide_into_equal (n
+ 1) & (T
. n)
= Tn
proof
let n be
Element of
NAT ;
ex n1 be
Element of
NAT , Tn be
Division of A st n1
= n & Tn
= (T
. n) & Tn
divide_into_equal (n1
+ 1) by
A4;
hence thesis;
end;
A6: for i be
Element of
NAT holds ((
delta T)
. i)
= ((
vol A)
/ (i
+ 1))
proof
let i be
Element of
NAT ;
for x1 be
object st x1
in (
rng (
upper_volume ((
chi (A,A)),(T
. i)))) holds x1
in
{((
vol A)
/ (i
+ 1))}
proof
reconsider D = (T
. i) as
Division of A;
let x1 be
object;
assume x1
in (
rng (
upper_volume ((
chi (A,A)),(T
. i))));
then
consider k be
Element of
NAT such that
A7: k
in (
dom (
upper_volume ((
chi (A,A)),(T
. i)))) and
A8: ((
upper_volume ((
chi (A,A)),(T
. i)))
. k)
= x1 by
PARTFUN1: 3;
k
in (
Seg (
len (
upper_volume ((
chi (A,A)),(T
. i))))) by
A7,
FINSEQ_1:def 3;
then k
in (
Seg (
len D)) by
INTEGRA1:def 6;
then
A9: k
in (
dom D) by
FINSEQ_1:def 3;
A10: ex n be
Element of
NAT , e be
Division of A st n
= i & e
= D & e
divide_into_equal (n
+ 1) by
A4;
A11: ((
upper_bound (
divset (D,k)))
- (
lower_bound (
divset (D,k))))
= ((
vol A)
/ (i
+ 1))
proof
A12:
now
A13: (
len D)
= (i
+ 1) by
A10,
INTEGRA4:def 1;
assume
A14: k
= 1;
then (
upper_bound (
divset (D,k)))
= (D
. 1) by
A9,
INTEGRA1:def 4;
then (
upper_bound (
divset (D,k)))
= ((
lower_bound A)
+ (((
vol A)
/ (i
+ 1))
* 1)) by
A10,
A9,
A14,
A13,
INTEGRA4:def 1;
then ((
upper_bound (
divset (D,k)))
- (
lower_bound (
divset (D,k))))
= (((
lower_bound A)
+ ((
vol A)
/ (i
+ 1)))
- (
lower_bound A)) by
A9,
A14,
INTEGRA1:def 4;
hence thesis;
end;
now
assume
A15: k
<> 1;
then (k
- 1)
in (
dom D) by
A9,
INTEGRA1: 7;
then
A16: (D
. (k
- 1))
= ((
lower_bound A)
+ (((
vol A)
/ (
len D))
* (k
- 1))) by
A10,
INTEGRA4:def 1;
A17: (D
. k)
= ((
lower_bound A)
+ (((
vol A)
/ (
len D))
* k)) by
A10,
A9,
INTEGRA4:def 1;
(
lower_bound (
divset (D,k)))
= (D
. (k
- 1)) & (
upper_bound (
divset (D,k)))
= (D
. k) by
A9,
A15,
INTEGRA1:def 4;
hence thesis by
A10,
A16,
A17,
INTEGRA4:def 1;
end;
hence thesis by
A12;
end;
x1
= (
vol (
divset (D,k))) by
A8,
A9,
INTEGRA1: 20;
hence thesis by
A11,
TARSKI:def 1;
end;
then
A18: (
rng (
upper_volume ((
chi (A,A)),(T
. i))))
c=
{((
vol A)
/ (i
+ 1))};
for x1 be
object st x1
in
{((
vol A)
/ (i
+ 1))} holds x1
in (
rng (
upper_volume ((
chi (A,A)),(T
. i))))
proof
reconsider D = (T
. i) as
Division of A;
let x1 be
object;
assume x1
in
{((
vol A)
/ (i
+ 1))};
then
A19: x1
= ((
vol A)
/ (i
+ 1)) by
TARSKI:def 1;
A20: ex n be
Element of
NAT , e be
Division of A st n
= i & e
= D & e
divide_into_equal (n
+ 1) by
A4;
(
rng D)
<>
{} ;
then
A21: 1
in (
dom D) by
FINSEQ_3: 32;
then (
upper_bound (
divset (D,1)))
= (D
. 1) by
INTEGRA1:def 4;
then (
upper_bound (
divset (D,1)))
= ((
lower_bound A)
+ (((
vol A)
/ (
len D))
* 1)) by
A21,
A20,
INTEGRA4:def 1;
then
A22: (
vol (
divset (D,1)))
= (((
lower_bound A)
+ ((
vol A)
/ (
len D)))
- (
lower_bound A)) by
A21,
INTEGRA1:def 4;
1
in (
Seg (
len D)) by
A21,
FINSEQ_1:def 3;
then 1
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
INTEGRA1:def 6;
then 1
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
then
A23: ((
upper_volume ((
chi (A,A)),D))
. 1)
in (
rng (
upper_volume ((
chi (A,A)),D))) by
FUNCT_1:def 3;
((
upper_volume ((
chi (A,A)),D))
. 1)
= (
vol (
divset (D,1))) by
A21,
INTEGRA1: 20;
hence thesis by
A19,
A23,
A20,
A22,
INTEGRA4:def 1;
end;
then
{((
vol A)
/ (i
+ 1))}
c= (
rng (
upper_volume ((
chi (A,A)),(T
. i))));
then ((
delta T)
. i)
= (
delta (T
. i)) & (
rng (
upper_volume ((
chi (A,A)),(T
. i))))
=
{((
vol A)
/ (i
+ 1))} by
A18,
INTEGRA3:def 2,
XBOOLE_0:def 10;
then ((
delta T)
. i)
in
{((
vol A)
/ (i
+ 1))} by
XXREAL_2:def 8;
hence thesis by
TARSKI:def 1;
end;
A24: for a be
Real st
0
< a holds ex i be
Element of
NAT st
|.(((
delta T)
. i)
-
0 ).|
< a
proof
let a be
Real;
A25: (
vol A)
>=
0 by
INTEGRA1: 9;
reconsider i1 = (
[\((
vol A)
/ a)/]
+ 1) as
Integer;
assume
A26:
0
< a;
then (
[\((
vol A)
/ a)/]
+ 1)
>
0 by
A25,
INT_1: 29;
then
reconsider i1 as
Element of
NAT by
INT_1: 3;
i1
< (i1
+ 1) by
NAT_1: 13;
then ((
vol A)
/ a)
< (1
* (i1
+ 1)) by
INT_1: 29,
XXREAL_0: 2;
then
A27: ((
vol A)
/ (i1
+ 1))
< (1
* a) by
A26,
XREAL_1: 113;
A28: ((
delta T)
. i1)
= ((
vol A)
/ (i1
+ 1)) by
A6;
(((
vol A)
/ (i1
+ 1))
-
0 )
=
|.(((
vol A)
/ (i1
+ 1))
-
0 ).| by
A25,
ABSVALUE:def 1;
hence thesis by
A27,
A28;
end;
A29: for i,j be
Element of
NAT st i
<= j holds ((
delta T)
. i)
>= ((
delta T)
. j)
proof
let i,j be
Element of
NAT ;
assume i
<= j;
then
A30: (i
+ 1)
<= (j
+ 1) by
XREAL_1: 6;
(
vol A)
>=
0 by
INTEGRA1: 9;
then ((
vol A)
/ (i
+ 1))
>= ((
vol A)
/ (j
+ 1)) by
A30,
XREAL_1: 118;
then ((
delta T)
. i)
>= ((
vol A)
/ (j
+ 1)) by
A6;
hence thesis by
A6;
end;
A31: for a be
Real st
0
< a holds ex i be
Nat st for j be
Nat st i
<= j holds
|.(((
delta T)
. j)
-
0 ).|
< a
proof
let a be
Real;
assume
A32:
0
< a;
consider i be
Element of
NAT such that
A33:
|.(((
delta T)
. i)
-
0 ).|
< a by
A24,
A32;
((
delta T)
. i)
= (
delta (T
. i)) by
INTEGRA3:def 2;
then ((
delta T)
. i)
>=
0 by
INTEGRA3: 9;
then
A34: ((
delta T)
. i)
< a by
A33,
ABSVALUE:def 1;
take i;
let j be
Nat;
reconsider jj = j as
Element of
NAT by
ORDINAL1:def 12;
assume i
<= j;
then ((
delta T)
. jj)
<= ((
delta T)
. i) by
A29;
then
A35: ((
delta T)
. j)
< a by
A34,
XXREAL_0: 2;
((
delta T)
. j)
= (
delta (T
. jj)) by
INTEGRA3:def 2;
then ((
delta T)
. j)
>=
0 by
INTEGRA3: 9;
hence
|.(((
delta T)
. j)
-
0 ).|
< a by
A35,
ABSVALUE:def 1;
end;
then
A36: (
delta T) is
convergent by
SEQ_2:def 6;
then (
lim (
delta T))
=
0 by
A31,
SEQ_2:def 7;
hence thesis by
A5,
A36;
end;
Lm2: a
<= b &
['a, b']
c= (
dom f) & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & c
in
['a, b'] & b
<> c implies (
integral (f,a,b))
= ((
integral (f,a,c))
+ (
integral (f,c,b))) & f
is_integrable_on
['a, c'] & f
is_integrable_on
['c, b']
proof
assume that
A1: a
<= b and
A2:
['a, b']
c= (
dom f) and
A3: f
is_integrable_on
['a, b'] and
A4: (f
|
['a, b']) is
bounded and
A5: c
in
['a, b'] and
A6: b
<> c;
A7:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A8: c
<= b by
A5,
XXREAL_1: 1;
then
A9:
['c, b']
=
[.c, b.] by
INTEGRA5:def 3;
then
A10:
[.c, b.]
=
[.(
lower_bound
[.c, b.]), (
upper_bound
[.c, b.]).] by
INTEGRA1: 4;
then
A11: (
upper_bound
['c, b'])
= b by
A9,
INTEGRA1: 5;
set FAB = (f
||
['a, b']), FAC = (f
||
['a, c']), FCB = (f
||
['c, b']);
A12: FAB is
Function of
['a, b'],
REAL by
A2,
Lm1;
A13: a
<= c by
A5,
A7,
XXREAL_1: 1;
then
A14:
['a, c']
=
[.a, c.] by
INTEGRA5:def 3;
then
A15:
[.a, c.]
=
[.(
lower_bound
[.a, c.]), (
upper_bound
[.a, c.]).] by
INTEGRA1: 4;
then
A16: (
lower_bound
['a, c'])
= a by
A14,
INTEGRA1: 5;
A17:
['c, b']
c=
['a, b'] by
A7,
A13,
A9,
XXREAL_1: 34;
then (f
|
['c, b']) is
bounded by
A4,
RFUNCT_1: 74;
then
A18: (FCB
|
['c, b']) is
bounded;
A19: (
lower_bound
['c, b'])
= c by
A9,
A10,
INTEGRA1: 5;
ex PS2 be
DivSequence of
['c, b'] st (
delta PS2) is
convergent & (
lim (
delta PS2))
=
0 & ex K be
Element of
NAT st for i be
Element of
NAT st K
<= i holds ex S2i be
Division of
['c, b'] st S2i
= (PS2
. i) & 2
<= (
len S2i)
proof
c
< b by
A6,
A8,
XXREAL_0: 1;
then (
vol
['c, b'])
>
0 by
A19,
A11,
XREAL_1: 50;
then
consider T be
DivSequence of
['c, b'] such that
A20: (
delta T) is
convergent & (
lim (
delta T))
=
0 and
A21: for n be
Element of
NAT holds ex Tn be
Division of
['c, b'] st Tn
divide_into_equal (n
+ 1) & (T
. n)
= Tn by
Th16;
take T;
now
let i be
Element of
NAT ;
assume
A22: 2
<= i;
consider Tn be
Division of
['c, b'] such that
A23: Tn
divide_into_equal (i
+ 1) and
A24: (T
. i)
= Tn by
A21;
reconsider Tn as
Division of
['c, b'];
take Tn;
thus Tn
= (T
. i) by
A24;
(
len Tn)
= (i
+ 1) by
A23,
INTEGRA4:def 1;
then i
<= (
len Tn) by
NAT_1: 11;
hence 2
<= (
len Tn) by
A22,
XXREAL_0: 2;
end;
hence thesis by
A20;
end;
then
consider PS2 be
DivSequence of
['c, b'] such that
A25: (
delta PS2) is
convergent & (
lim (
delta PS2))
=
0 and
A26: ex K be
Element of
NAT st for i be
Element of
NAT st K
<= i holds ex S2i be
Division of
['c, b'] st S2i
= (PS2
. i) & 2
<= (
len S2i);
consider K be
Element of
NAT such that
A27: for i be
Element of
NAT st K
<= i holds ex S2i be
Division of
['c, b'] st S2i
= (PS2
. i) & 2
<= (
len S2i) by
A26;
defpred
Q[
set,
set] means ex n be
Element of
NAT , e be
Division of
['c, b'] st n
= $1 & e
= $2 & e
= (PS2
. (n
+ K));
A28: for n be
Element of
NAT holds ex D be
Element of (
divs
['c, b']) st
Q[n, D]
proof
let n be
Element of
NAT ;
reconsider D = (PS2
. (n
+ K)) as
Element of (
divs
['c, b']) by
INTEGRA1:def 3;
take D;
thus thesis;
end;
consider S2 be
sequence of (
divs
['c, b']) such that
A29: for n be
Element of
NAT holds
Q[n, (S2
. n)] from
FUNCT_2:sch 3(
A28);
reconsider S2 as
DivSequence of
['c, b'];
defpred
P1[
Element of
NAT ,
set] means ex S be
Division of
['c, b'] st S
= (S2
. $1) & $2
= (S
/^ 1);
A30:
now
let i be
Element of
NAT ;
ex n be
Element of
NAT , e be
Division of
['c, b'] st n
= i & e
= (S2
. i) & e
= (PS2
. (n
+ K)) by
A29;
hence ex S2i be
Division of
['c, b'] st S2i
= (S2
. i) & 2
<= (
len S2i) by
A27,
NAT_1: 11;
end;
A31: for i be
Element of
NAT holds ex T be
Element of (
divs
['c, b']) st
P1[i, T]
proof
let i be
Element of
NAT ;
consider S be
Division of
['c, b'] such that
A32: S
= (S2
. i) and
A33: 2
<= (
len S) by
A30;
set T = (S
/^ 1);
A34: 1
<= (
len S) by
A33,
XXREAL_0: 2;
(2
- 1)
<= ((
len S)
- 1) by
A33,
XREAL_1: 13;
then
A35: 1
<= (
len T) by
A34,
RFINSEQ:def 1;
then (
len T)
in (
Seg (
len T));
then (
len T)
in (
dom T) by
FINSEQ_1:def 3;
then (T
. (
len T))
= (S
. ((
len T)
+ 1)) by
A34,
RFINSEQ:def 1;
then (T
. (
len T))
= (S
. (((
len S)
- 1)
+ 1)) by
A34,
RFINSEQ:def 1;
then
A36: (T
. (
len T))
= (
upper_bound
['c, b']) by
INTEGRA1:def 2;
(
rng S)
c=
['c, b'] & (
rng T)
c= (
rng S) by
FINSEQ_5: 33,
INTEGRA1:def 2;
then
A37: (
rng T)
c=
['c, b'];
T is non
empty
increasing by
A33,
A35,
INTEGRA1: 34,
XXREAL_0: 2;
then T is
Division of
['c, b'] by
A37,
A36,
INTEGRA1:def 2;
then T is
Element of (
divs
['c, b']) by
INTEGRA1:def 3;
hence thesis by
A32;
end;
consider T2 be
DivSequence of
['c, b'] such that
A38: for i be
Element of
NAT holds
P1[i, (T2
. i)] from
FUNCT_2:sch 3(
A31);
A39: for n be
Element of
NAT holds ex D be
Division of
['c, b'] st D
= (T2
. n) & for i be
Element of
NAT st i
in (
dom D) holds c
< (D
. i)
proof
let n be
Element of
NAT ;
reconsider D = (T2
. n) as
Division of
['c, b'];
take D;
consider E be
Division of
['c, b'] such that
A40: E
= (S2
. n) and
A41: (T2
. n)
= (E
/^ 1) by
A38;
A42: ex E1 be
Division of
['c, b'] st E1
= (S2
. n) & 2
<= (
len E1) by
A30;
then
A43: (2
- 1)
<= ((
len E)
- 1) by
A40,
XREAL_1: 13;
A44: 1
<= (
len E) by
A40,
A42,
XXREAL_0: 2;
then 1
in (
Seg (
len E));
then
A45: 1
in (
dom E) by
FINSEQ_1:def 3;
then (
rng E)
c=
['c, b'] & (E
. 1)
in (
rng E) by
FUNCT_1:def 3,
INTEGRA1:def 2;
then
A46: c
<= (E
. 1) by
A9,
XXREAL_1: 1;
2
in (
Seg (
len E)) by
A40,
A42;
then 2
in (
dom E) by
FINSEQ_1:def 3;
then
A47: (E
. 1)
< (E
. 2) by
A45,
SEQM_3:def 1;
(
len D)
= ((
len E)
- 1) by
A41,
A44,
RFINSEQ:def 1;
then 1
in (
Seg (
len D)) by
A43;
then
A48: 1
in (
dom D) by
FINSEQ_1:def 3;
then
A49: (D
. 1)
= (E
. (1
+ 1)) by
A41,
A44,
RFINSEQ:def 1;
then
A50: c
< (D
. 1) by
A46,
A47,
XXREAL_0: 2;
now
let i be
Element of
NAT ;
assume
A51: i
in (
dom D);
then
A52: 1
<= i by
FINSEQ_3: 25;
now
assume i
<> 1;
then 1
< i by
A52,
XXREAL_0: 1;
then (D
. 1)
< (D
. i) by
A48,
A51,
SEQM_3:def 1;
hence c
< (D
. i) by
A50,
XXREAL_0: 2;
end;
hence c
< (D
. i) by
A49,
A46,
A47,
XXREAL_0: 2;
end;
hence thesis;
end;
set XAC = (
chi (
['a, c'],
['a, c']));
set XCB = (
chi (
['c, b'],
['c, b']));
consider T1 be
DivSequence of
['a, c'] such that
A53: (
delta T1) is
convergent & (
lim (
delta T1))
=
0 by
INTEGRA4: 11;
A54: for n be
Element of
NAT holds ex D be
Division of
['c, b'] st D
= (T2
. n) & 1
<= (
len D)
proof
let n be
Element of
NAT ;
reconsider D = (T2
. n) as
Division of
['c, b'];
take D;
consider E be
Division of
['c, b'] such that
A55: E
= (S2
. n) and
A56: (T2
. n)
= (E
/^ 1) by
A38;
ex E1 be
Division of
['c, b'] st E1
= (S2
. n) & 2
<= (
len E1) by
A30;
then 1
<= (
len E) & (2
- 1)
<= ((
len E)
- 1) by
A55,
XREAL_1: 13,
XXREAL_0: 2;
hence thesis by
A56,
RFINSEQ:def 1;
end;
A57: (
integral (f,c,b))
= (
integral (f,
['c, b'])) by
A8,
INTEGRA5:def 4
.= (
integral FCB);
A58: (
integral (f,a,c))
= (
integral (f,
['a, c'])) by
A13,
INTEGRA5:def 4;
defpred
P2[
Element of
NAT ,
set] means ex S1 be
Division of
['a, c'], S2 be
Division of
['c, b'] st S1
= (T1
. $1) & S2
= (T2
. $1) & $2
= (S1
^ S2);
A59:
[.a, b.]
=
[.(
lower_bound
[.a, b.]), (
upper_bound
[.a, b.]).] by
A7,
INTEGRA1: 4;
then
A60: (
upper_bound
['a, b'])
= b by
A7,
INTEGRA1: 5;
A61: for i be
Element of
NAT holds ex T be
Element of (
divs
['a, b']) st
P2[i, T]
proof
let i0 be
Element of
NAT ;
reconsider S1 = (T1
. i0) as
Division of
['a, c'];
reconsider S2 = (T2
. i0) as
Division of
['c, b'];
set T = (S1
^ S2);
ex D be
Division of
['c, b'] st D
= (T2
. i0) & 1
<= (
len D) by
A54;
then (
len S2)
in (
Seg (
len S2));
then
A62: (
len S2)
in (
dom S2) by
FINSEQ_1:def 3;
A63: (
rng S1)
c=
['a, c'] by
INTEGRA1:def 2;
now
let i,j be
Nat;
assume that
A64: i
in (
dom T) and
A65: j
in (
dom T) and
A66: i
< j;
A67: 1
<= i by
A64,
FINSEQ_3: 25;
A68: j
<= (
len T) by
A65,
FINSEQ_3: 25;
A69: i
<= (
len T) by
A64,
FINSEQ_3: 25;
A70:
now
j
<= ((
len S1)
+ (
len S2)) by
A68,
FINSEQ_1: 22;
then
A71: (j
- (
len S1))
<= (
len S2) by
XREAL_1: 20;
assume
A72: j
> (
len S1);
then
A73: (T
. j)
= (S2
. (j
- (
len S1))) by
A68,
FINSEQ_1: 24;
A74: ((
len S1)
+ 1)
<= j by
A72,
NAT_1: 13;
then
consider m be
Nat such that
A75: (((
len S1)
+ 1)
+ m)
= j by
NAT_1: 10;
reconsider m as
Element of
NAT by
ORDINAL1:def 12;
(1
+ m)
= (j
- (
len S1)) by
A75;
then 1
<= (1
+ m) by
A74,
XREAL_1: 19;
then (1
+ m)
in (
Seg (
len S2)) by
A75,
A71;
then
A76: (j
- (
len S1))
in (
dom S2) by
A75,
FINSEQ_1:def 3;
A77:
now
i
<= ((
len S1)
+ (
len S2)) by
A69,
FINSEQ_1: 22;
then
A78: (i
- (
len S1))
<= (
len S2) by
XREAL_1: 20;
A79: (i
- (
len S1))
< (j
- (
len S1)) by
A66,
XREAL_1: 14;
assume
A80: i
> (
len S1);
then
A81: ((
len S1)
+ 1)
<= i by
NAT_1: 13;
then
consider m be
Nat such that
A82: (((
len S1)
+ 1)
+ m)
= i by
NAT_1: 10;
reconsider m as
Element of
NAT by
ORDINAL1:def 12;
(1
+ m)
= (i
- (
len S1)) by
A82;
then 1
<= (1
+ m) by
A81,
XREAL_1: 19;
then (1
+ m)
in (
Seg (
len S2)) by
A82,
A78;
then
A83: (i
- (
len S1))
in (
dom S2) by
A82,
FINSEQ_1:def 3;
(T
. i)
= (S2
. (i
- (
len S1))) by
A69,
A80,
FINSEQ_1: 24;
hence (T
. i)
< (T
. j) by
A73,
A76,
A79,
A83,
SEQM_3:def 1;
end;
now
assume i
<= (
len S1);
then
A84: i
in (
dom S1) by
A67,
FINSEQ_3: 25;
then (T
. i)
= (S1
. i) by
FINSEQ_1:def 7;
then (T
. i)
in (
rng S1) by
A84,
FUNCT_1:def 3;
then
A85: (T
. i)
<= c by
A14,
A63,
XXREAL_1: 1;
ex DD be
Division of
['c, b'] st DD
= (T2
. i0) & for k be
Element of
NAT st k
in (
dom DD) holds c
< (DD
. k) by
A39;
hence (T
. i)
< (T
. j) by
A73,
A76,
A85,
XXREAL_0: 2;
end;
hence (T
. i)
< (T
. j) by
A77;
end;
A86: 1
<= j by
A65,
FINSEQ_3: 25;
now
assume
A87: j
<= (
len S1);
then
A88: j
in (
dom S1) by
A86,
FINSEQ_3: 25;
then
A89: (T
. j)
= (S1
. j) by
FINSEQ_1:def 7;
i
<= (
len S1) by
A66,
A87,
XXREAL_0: 2;
then
A90: i
in (
dom S1) by
A67,
FINSEQ_3: 25;
then (T
. i)
= (S1
. i) by
FINSEQ_1:def 7;
hence (T
. i)
< (T
. j) by
A66,
A90,
A88,
A89,
SEQM_3:def 1;
end;
hence (T
. i)
< (T
. j) by
A70;
end;
then
A91: T is non
empty
increasing
FinSequence of
REAL by
SEQM_3:def 1;
(
rng S2)
c=
['c, b'] by
INTEGRA1:def 2;
then ((
rng S1)
\/ (
rng S2))
c= (
['a, c']
\/
['c, b']) by
A63,
XBOOLE_1: 13;
then ((
rng S1)
\/ (
rng S2))
c=
[.a, b.] by
A13,
A8,
A14,
A9,
XXREAL_1: 174;
then
A92: (
rng T)
c=
['a, b'] by
A7,
FINSEQ_1: 31;
(T
. (
len T))
= (T
. ((
len S1)
+ (
len S2))) by
FINSEQ_1: 22
.= (S2
. (
len S2)) by
A62,
FINSEQ_1:def 7
.= (
upper_bound
['a, b']) by
A60,
A11,
INTEGRA1:def 2;
then T is
Division of
['a, b'] by
A92,
A91,
INTEGRA1:def 2;
then T is
Element of (
divs
['a, b']) by
INTEGRA1:def 3;
hence thesis;
end;
consider T be
DivSequence of
['a, b'] such that
A93: for i be
Element of
NAT holds
P2[i, (T
. i)] from
FUNCT_2:sch 3(
A61);
A94: (
lower_bound
['a, b'])
= a by
A7,
A59,
INTEGRA1: 5;
A95: for i,k be
Element of
NAT , S0 be
Division of
['a, c'] st S0
= (T1
. i) & k
in (
Seg (
len S0)) holds (
divset ((T
. i),k))
= (
divset ((T1
. i),k))
proof
let i,k be
Element of
NAT , S0 be
Division of
['a, c'];
assume
A96: S0
= (T1
. i);
reconsider S = (T
. i) as
Division of
['a, b'];
A97: (
divset ((T1
. i),k))
=
[.(
lower_bound (
divset ((T1
. i),k))), (
upper_bound (
divset ((T1
. i),k))).] by
INTEGRA1: 4;
consider S1 be
Division of
['a, c'], S2 be
Division of
['c, b'] such that
A98: S1
= (T1
. i) and S2
= (T2
. i) and
A99: (T
. i)
= (S1
^ S2) by
A93;
assume
A100: k
in (
Seg (
len S0));
then
A101: k
in (
dom S1) by
A96,
A98,
FINSEQ_1:def 3;
(
len S)
= ((
len S1)
+ (
len S2)) by
A99,
FINSEQ_1: 22;
then (
len S1)
<= (
len S) by
NAT_1: 11;
then (
Seg (
len S1))
c= (
Seg (
len S)) by
FINSEQ_1: 5;
then k
in (
Seg (
len S)) by
A96,
A100,
A98;
then
A102: k
in (
dom S) by
FINSEQ_1:def 3;
A103: (
divset ((T
. i),k))
=
[.(
lower_bound (
divset ((T
. i),k))), (
upper_bound (
divset ((T
. i),k))).] by
INTEGRA1: 4;
A104:
now
k
<= (
len S1) & (k
- 1)
<= (k
-
0 ) by
A96,
A100,
A98,
FINSEQ_1: 1,
XREAL_1: 10;
then
A105: (k
- 1)
<= (
len S1) by
XXREAL_0: 2;
assume
A106: k
<> 1;
1
<= k by
A100,
FINSEQ_1: 1;
then
A107: 1
< k by
A106,
XXREAL_0: 1;
then (1
+ 1)
<= k by
NAT_1: 13;
then
A108: (2
- 1)
<= (k
- 1) by
XREAL_1: 9;
(k
- 1) is
Element of
NAT by
A107,
NAT_1: 20;
then (k
- 1)
in (
Seg (
len S1)) by
A105,
A108;
then
A109: (k
- 1)
in (
dom S1) by
FINSEQ_1:def 3;
thus (
divset ((T
. i),k))
=
[.(S
. (k
- 1)), (
upper_bound (
divset ((T
. i),k))).] by
A102,
A103,
A106,
INTEGRA1:def 4
.=
[.(S
. (k
- 1)), (S
. k).] by
A102,
A106,
INTEGRA1:def 4
.=
[.(S
. (k
- 1)), (S1
. k).] by
A99,
A101,
FINSEQ_1:def 7
.=
[.(S1
. (k
- 1)), (S1
. k).] by
A99,
A109,
FINSEQ_1:def 7
.=
[.(
lower_bound (
divset ((T1
. i),k))), (S1
. k).] by
A98,
A101,
A106,
INTEGRA1:def 4
.= (
divset ((T1
. i),k)) by
A98,
A101,
A97,
A106,
INTEGRA1:def 4;
end;
now
assume
A110: k
= 1;
hence (
divset ((T
. i),k))
=
[.(
lower_bound
['a, b']), (
upper_bound (
divset ((T
. i),k))).] by
A102,
A103,
INTEGRA1:def 4
.=
[.(
lower_bound
['a, b']), (S
. k).] by
A102,
A110,
INTEGRA1:def 4
.=
[.(
lower_bound
['a, b']), (S1
. k).] by
A99,
A101,
FINSEQ_1:def 7
.=
[.(
lower_bound (
divset ((T1
. i),k))), (S1
. 1).] by
A94,
A16,
A98,
A101,
A110,
INTEGRA1:def 4
.= (
divset ((T1
. i),k)) by
A98,
A101,
A97,
A110,
INTEGRA1:def 4;
end;
hence thesis by
A104;
end;
A111: (
upper_bound
['a, c'])
= c by
A14,
A15,
INTEGRA1: 5;
A112: for i,k be
Element of
NAT , S01 be
Division of
['a, c'], S02 be
Division of
['c, b'] st S01
= (T1
. i) & S02
= (T2
. i) & k
in (
Seg (
len S02)) holds (
divset ((T
. i),((
len S01)
+ k)))
= (
divset ((T2
. i),k))
proof
let i,k be
Element of
NAT , S01 be
Division of
['a, c'], S02 be
Division of
['c, b'];
assume that
A113: S01
= (T1
. i) and
A114: S02
= (T2
. i);
reconsider S = (T
. i) as
Division of
['a, b'];
consider S1 be
Division of
['a, c'], S2 be
Division of
['c, b'] such that
A115: S1
= (T1
. i) and
A116: S2
= (T2
. i) and
A117: (T
. i)
= (S1
^ S2) by
A93;
assume
A118: k
in (
Seg (
len S02));
then
A119: k
in (
dom S2) by
A114,
A116,
FINSEQ_1:def 3;
then
A120: ((
len S1)
+ k)
in (
dom S) by
A117,
FINSEQ_1: 28;
A121: (
divset ((T2
. i),k))
=
[.(
lower_bound (
divset ((T2
. i),k))), (
upper_bound (
divset ((T2
. i),k))).] by
INTEGRA1: 4;
A122: (
divset ((T
. i),((
len S1)
+ k)))
=
[.(
lower_bound (
divset ((T
. i),((
len S1)
+ k)))), (
upper_bound (
divset ((T
. i),((
len S1)
+ k)))).] by
INTEGRA1: 4;
A123:
now
k
<= (
len S2) & (k
- 1)
<= (k
-
0 ) by
A114,
A118,
A116,
FINSEQ_1: 1,
XREAL_1: 10;
then
A124: (k
- 1)
<= (
len S2) by
XXREAL_0: 2;
assume
A125: k
<> 1;
A126: 1
<= k by
A118,
FINSEQ_1: 1;
then
A127: 1
< k by
A125,
XXREAL_0: 1;
then (1
+ 1)
<= k by
NAT_1: 13;
then
A128: (2
- 1)
<= (k
- 1) by
XREAL_1: 9;
(k
- 1) is
Element of
NAT by
A127,
NAT_1: 20;
then (k
- 1)
in (
Seg (
len S2)) by
A124,
A128;
then
A129: (k
- 1)
in (
dom S2) by
FINSEQ_1:def 3;
A130: (1
+
0 )
< (k
+ (
len S1)) by
A126,
XREAL_1: 8;
hence (
divset ((T
. i),((
len S1)
+ k)))
=
[.(S
. (((
len S1)
+ k)
- 1)), (
upper_bound (
divset ((T
. i),((
len S1)
+ k)))).] by
A120,
A122,
INTEGRA1:def 4
.=
[.(S
. (((
len S1)
+ k)
- 1)), (S
. ((
len S1)
+ k)).] by
A120,
A130,
INTEGRA1:def 4
.=
[.(S
. ((
len S1)
+ (k
- 1))), (S2
. k).] by
A117,
A119,
FINSEQ_1:def 7
.=
[.(S2
. (k
- 1)), (S2
. k).] by
A117,
A129,
FINSEQ_1:def 7
.=
[.(
lower_bound (
divset ((T2
. i),k))), (S2
. k).] by
A116,
A119,
A125,
INTEGRA1:def 4
.= (
divset ((T2
. i),k)) by
A116,
A119,
A121,
A125,
INTEGRA1:def 4;
end;
now
(
len S1)
in (
Seg (
len S1)) by
FINSEQ_1: 3;
then
A131: (
len S1)
in (
dom S1) by
FINSEQ_1:def 3;
assume
A132: k
= 1;
(
len S1)
<>
0 ;
then
A133: ((
len S1)
+ k)
<> 1 by
A132;
hence (
divset ((T
. i),((
len S1)
+ k)))
=
[.(S
. (((
len S1)
+ k)
- 1)), (
upper_bound (
divset ((T
. i),((
len S1)
+ k)))).] by
A120,
A122,
INTEGRA1:def 4
.=
[.(S1
. (
len S1)), (
upper_bound (
divset ((T
. i),((
len S1)
+ k)))).] by
A117,
A132,
A131,
FINSEQ_1:def 7
.=
[.(
upper_bound
['a, c']), (
upper_bound (
divset ((T
. i),((
len S1)
+ k)))).] by
INTEGRA1:def 2
.=
[.(
lower_bound
['c, b']), (S
. ((
len S1)
+ k)).] by
A19,
A111,
A120,
A133,
INTEGRA1:def 4
.=
[.(
lower_bound
['c, b']), (S2
. k).] by
A117,
A119,
FINSEQ_1:def 7
.=
[.(
lower_bound (
divset ((T2
. i),k))), (S2
. 1).] by
A116,
A119,
A132,
INTEGRA1:def 4
.= (
divset ((T2
. i),k)) by
A116,
A119,
A121,
A132,
INTEGRA1:def 4;
end;
hence thesis by
A113,
A115,
A123;
end;
set XAB = (
chi (
['a, b'],
['a, b']));
A134: for i,k be
Element of
NAT , S0 be
Division of
['c, b'] st S0
= (T2
. i) & k
in (
Seg (
len S0)) holds (
divset ((T2
. i),k))
c=
['c, b']
proof
let i,k be
Element of
NAT , S0 be
Division of
['c, b'];
assume that
A135: S0
= (T2
. i) and
A136: k
in (
Seg (
len S0));
k
in (
dom S0) by
A136,
FINSEQ_1:def 3;
hence thesis by
A135,
INTEGRA1: 8;
end;
A137:
['a, c']
c=
['a, b'] by
A7,
A8,
A14,
XXREAL_1: 34;
then (f
|
['a, c']) is
bounded by
A4,
RFUNCT_1: 74;
then
A138: (FAC
|
['a, c']) is
bounded;
A139: for i,k be
Element of
NAT , S0 be
Division of
['a, c'] st S0
= (T1
. i) & k
in (
Seg (
len S0)) holds (
divset ((T1
. i),k))
c=
['a, c']
proof
let i,k be
Element of
NAT , S0 be
Division of
['a, c'];
assume that
A140: S0
= (T1
. i) and
A141: k
in (
Seg (
len S0));
k
in (
dom S0) by
A141,
FINSEQ_1:def 3;
hence thesis by
A140,
INTEGRA1: 8;
end;
A142: for i be
Element of
NAT holds (
upper_volume ((f
||
['a, b']),(T
. i)))
= ((
upper_volume (FAC,(T1
. i)))
^ (
upper_volume (FCB,(T2
. i))))
proof
let i be
Element of
NAT ;
reconsider F = (
upper_volume (FAB,(T
. i))) as
FinSequence of
REAL ;
reconsider F1 = (
upper_volume (FAC,(T1
. i))) as
FinSequence of
REAL ;
reconsider F2 = (
upper_volume (FCB,(T2
. i))) as
FinSequence of
REAL ;
reconsider S = (T
. i) as
Division of
['a, b'];
consider S1 be
Division of
['a, c'], S2 be
Division of
['c, b'] such that
A143: S1
= (T1
. i) and
A144: S2
= (T2
. i) and
A145: (T
. i)
= (S1
^ S2) by
A93;
A146: (
len F)
= (
len S) by
INTEGRA1:def 6
.= ((
len S1)
+ (
len S2)) by
A145,
FINSEQ_1: 22
.= ((
len F1)
+ (
len S2)) by
A143,
INTEGRA1:def 6
.= ((
len F1)
+ (
len F2)) by
A144,
INTEGRA1:def 6;
A147:
now
let k be
Nat;
assume
A148: k
in (
dom F2);
then
A149: k
in (
Seg (
len F2)) by
FINSEQ_1:def 3;
then 1
<= k by
FINSEQ_1: 1;
then
A150: (1
+ (
len F1))
<= (k
+ (
len F1)) by
XREAL_1: 6;
k
<= (
len F2) by
A149,
FINSEQ_1: 1;
then
A151: ((
len F1)
+ k)
<= (
len F) by
A146,
XREAL_1: 6;
1
<= (1
+ (
len F1)) by
NAT_1: 11;
then 1
<= (k
+ (
len F1)) by
A150,
XXREAL_0: 2;
then (k
+ (
len F1))
in (
Seg (
len F)) by
A151;
then ((
len F1)
+ k)
in (
Seg (
len S)) by
INTEGRA1:def 6;
then ((
len F1)
+ k)
in (
dom S) by
FINSEQ_1:def 3;
then
A152: (F
. ((
len F1)
+ k))
= ((
upper_bound (
rng (FAB
| (
divset ((T
. i),((
len F1)
+ k))))))
* (
vol (
divset ((T
. i),((
len F1)
+ k))))) by
INTEGRA1:def 6;
k
in (
Seg (
len F2)) by
A148,
FINSEQ_1:def 3;
then
A153: k
in (
Seg (
len S2)) by
A144,
INTEGRA1:def 6;
then
A154: k
in (
dom S2) by
FINSEQ_1:def 3;
(
len F1)
= (
len S1) by
A143,
INTEGRA1:def 6;
then
A155: (
divset ((T
. i),((
len F1)
+ k)))
= (
divset ((T2
. i),k)) by
A112,
A143,
A144,
A153;
then
A156: (
divset ((T
. i),((
len F1)
+ k)))
c=
['c, b'] by
A134,
A144,
A153;
then (
divset ((T
. i),((
len F1)
+ k)))
c=
['a, b'] by
A17;
then (F
. ((
len F1)
+ k))
= ((
upper_bound (
rng (FCB
| (
divset ((T2
. i),k)))))
* (
vol (
divset ((T2
. i),k)))) by
A152,
A155,
A156,
Th3;
hence (F
. ((
len F1)
+ k))
= (F2
. k) by
A144,
A154,
INTEGRA1:def 6;
end;
A157:
now
let k be
Nat;
assume k
in (
dom F1);
then
A158: k
in (
Seg (
len F1)) by
FINSEQ_1:def 3;
then
A159: k
in (
Seg (
len S1)) by
A143,
INTEGRA1:def 6;
then
A160: k
in (
dom S1) by
FINSEQ_1:def 3;
(
len F1)
<= (
len F) by
A146,
NAT_1: 11;
then (
Seg (
len F1))
c= (
Seg (
len F)) by
FINSEQ_1: 5;
then k
in (
Seg (
len F)) by
A158;
then k
in (
Seg (
len S)) by
INTEGRA1:def 6;
then k
in (
dom S) by
FINSEQ_1:def 3;
then
A161: (F
. k)
= ((
upper_bound (
rng (FAB
| (
divset ((T
. i),k)))))
* (
vol (
divset ((T
. i),k)))) by
INTEGRA1:def 6;
A162: (
divset ((T
. i),k))
= (
divset ((T1
. i),k)) by
A95,
A143,
A159;
then
A163: (
divset ((T
. i),k))
c=
['a, c'] by
A139,
A143,
A159;
then (
divset ((T
. i),k))
c=
['a, b'] by
A137;
then (F
. k)
= ((
upper_bound (
rng (FAC
| (
divset ((T1
. i),k)))))
* (
vol (
divset ((T1
. i),k)))) by
A161,
A162,
A163,
Th3;
hence (F
. k)
= (F1
. k) by
A143,
A160,
INTEGRA1:def 6;
end;
(
dom F)
= (
Seg ((
len F1)
+ (
len F2))) by
A146,
FINSEQ_1:def 3;
hence thesis by
A157,
A147,
FINSEQ_1:def 7;
end;
A164: for i be
Element of
NAT holds (
Sum (
upper_volume (FAB,(T
. i))))
= ((
Sum (
upper_volume (FAC,(T1
. i))))
+ (
Sum (
upper_volume (FCB,(T2
. i)))))
proof
let i be
Element of
NAT ;
(
upper_volume (FAB,(T
. i)))
= ((
upper_volume (FAC,(T1
. i)))
^ (
upper_volume (FCB,(T2
. i)))) by
A142;
hence thesis by
RVSUM_1: 75;
end;
now
let i be
Nat;
reconsider ii = i as
Element of
NAT by
ORDINAL1:def 12;
thus ((
upper_sum (FAB,T))
. i)
= (
upper_sum (FAB,(T
. ii))) by
INTEGRA2:def 2
.= ((
upper_sum (FAC,(T1
. ii)))
+ (
Sum (
upper_volume (FCB,(T2
. ii))))) by
A164
.= (((
upper_sum (FAC,T1))
. i)
+ (
upper_sum (FCB,(T2
. ii)))) by
INTEGRA2:def 2
.= (((
upper_sum (FAC,T1))
. i)
+ ((
upper_sum (FCB,T2))
. i)) by
INTEGRA2:def 2;
end;
then
A165: (
upper_sum (FAB,T))
= ((
upper_sum (FAC,T1))
+ (
upper_sum (FCB,T2))) by
SEQ_1: 7;
A166: FCB is
Function of
['c, b'],
REAL by
A2,
A17,
Lm1,
XBOOLE_1: 1;
then
A167: (
lower_integral FCB)
<= (
upper_integral FCB) by
A18,
INTEGRA1: 49;
A168:
now
let e be
Real;
assume
0
< e;
then
consider m be
Nat such that
A169: for n be
Nat st m
<= n holds
|.(((
delta PS2)
. n)
-
0 ).|
< e by
A25,
SEQ_2:def 7;
take m;
hereby
let n be
Nat;
A170: n
<= (n
+ K) by
NAT_1: 11;
assume m
<= n;
then m
<= (n
+ K) by
A170,
XXREAL_0: 2;
then
|.(((
delta PS2)
. (n
+ K))
-
0 ).|
< e by
A169;
then
A171:
|.((
delta (PS2
. (n
+ K)))
-
0 ).|
< e by
INTEGRA3:def 2;
n
in
NAT by
ORDINAL1:def 12;
then ex k be
Element of
NAT , e1 be
Division of
['c, b'] st k
= n & e1
= (S2
. n) & e1
= (PS2
. (k
+ K)) by
A29;
hence
|.(((
delta S2)
. n)
-
0 ).|
< e by
A171,
INTEGRA3:def 2;
end;
end;
A172:
now
let e be
Real;
assume
A173: e
>
0 ;
then
consider m be
Nat such that
A174: for n be
Nat st m
<= n holds
|.(((
delta S2)
. n)
-
0 ).|
< (e
/ 2) by
A168,
XREAL_1: 215;
take m;
A175: (e
/ 2)
< e by
A173,
XREAL_1: 216;
let nn be
Nat;
assume
A176: m
<= nn;
reconsider n = nn as
Element of
NAT by
ORDINAL1:def 12;
|.(((
delta S2)
. n)
-
0 ).|
< (e
/ 2) by
A174,
A176;
then
0
<= (
delta (S2
. n)) &
|.(
delta (S2
. n)).|
< (e
/ 2) by
INTEGRA3: 9,
INTEGRA3:def 2;
then
A177: (
max (
rng (
upper_volume (XCB,(S2
. n)))))
< (e
/ 2) by
ABSVALUE:def 1;
A178: for y be
Real st y
in (
rng (
upper_volume (XCB,(T2
. n)))) holds y
< e
proof
reconsider D = (T2
. n) as
Division of
['c, b'];
let y be
Real;
assume y
in (
rng (
upper_volume (XCB,(T2
. n))));
then
consider x be
object such that
A179: x
in (
dom (
upper_volume (XCB,(T2
. n)))) and
A180: y
= ((
upper_volume (XCB,(T2
. n)))
. x) by
FUNCT_1:def 3;
reconsider i = x as
Element of
NAT by
A179;
A181: x
in (
Seg (
len (
upper_volume (XCB,(T2
. n))))) by
A179,
FINSEQ_1:def 3;
consider E1 be
Division of
['c, b'] such that
A182: E1
= (S2
. n) and
A183: 2
<= (
len E1) by
A30;
set i1 = (i
+ 1);
consider E be
Division of
['c, b'] such that
A184: E
= (S2
. n) and
A185: (T2
. n)
= (E
/^ 1) by
A38;
A186: 1
<= (
len E1) by
A183,
XXREAL_0: 2;
then
A187: (
len D)
= ((
len E)
- 1) by
A184,
A185,
A182,
RFINSEQ:def 1;
A188: (
len (
upper_volume (XCB,(T2
. n))))
= (
len D) by
INTEGRA1:def 6;
then
A189: (
dom (
upper_volume (XCB,(T2
. n))))
= (
dom D) by
FINSEQ_3: 29;
A190:
now
(
len (
upper_volume (XCB,(S2
. n))))
= (
len E) by
A184,
INTEGRA1:def 6;
then 2
in (
Seg (
len (
upper_volume (XCB,(S2
. n))))) by
A184,
A182,
A183;
then 2
in (
dom (
upper_volume (XCB,(S2
. n)))) by
FINSEQ_1:def 3;
then ((
upper_volume (XCB,(S2
. n)))
. 2)
in (
rng (
upper_volume (XCB,(S2
. n)))) by
FUNCT_1:def 3;
then ((
upper_volume (XCB,(S2
. n)))
. 2)
<= (
max (
rng (
upper_volume (XCB,(S2
. n))))) by
XXREAL_2:def 8;
then
A191: ((
upper_volume (XCB,(S2
. n)))
. 2)
< (e
/ 2) by
A177,
XXREAL_0: 2;
assume
A192: i
= 1;
then
A193: 1
in (
dom D) by
A181,
A188,
FINSEQ_1:def 3;
(
len (
upper_volume (XCB,(S2
. n))))
= ((
len D)
+ 1) by
A184,
A187,
INTEGRA1:def 6;
then (
len (
upper_volume (XCB,(S2
. n))))
= ((
len (
upper_volume (XCB,(T2
. n))))
+ 1) by
INTEGRA1:def 6;
then 1
in (
Seg (
len (
upper_volume (XCB,(S2
. n))))) by
A181,
A192,
FINSEQ_2: 8;
then 1
in (
dom (
upper_volume (XCB,(S2
. n)))) by
FINSEQ_1:def 3;
then ((
upper_volume (XCB,(S2
. n)))
. 1)
in (
rng (
upper_volume (XCB,(S2
. n)))) by
FUNCT_1:def 3;
then ((
upper_volume (XCB,(S2
. n)))
. 1)
<= (
max (
rng (
upper_volume (XCB,(S2
. n))))) by
XXREAL_2:def 8;
then
A194: ((
upper_volume (XCB,(S2
. n)))
. 1)
< (e
/ 2) by
A177,
XXREAL_0: 2;
A195: 2
in (
dom E) by
A184,
A182,
A183,
FINSEQ_3: 25;
1
in (
Seg (
len E)) by
A184,
A182,
A186;
then
A196: 1
in (
dom E) by
FINSEQ_1:def 3;
(
divset ((S2
. n),1))
=
[.(
lower_bound (
divset ((S2
. n),1))), (
upper_bound (
divset ((S2
. n),1))).] by
INTEGRA1: 4;
then
A197: (
divset ((S2
. n),1))
=
[.(
lower_bound
['c, b']), (
upper_bound (
divset ((S2
. n),1))).] by
A184,
A196,
INTEGRA1:def 4;
then
A198:
[.(
lower_bound
['c, b']), (
upper_bound (
divset ((S2
. n),1))).]
=
[.(
lower_bound
[.(
lower_bound
['c, b']), (
upper_bound (
divset ((S2
. n),1))).]), (
upper_bound
[.(
lower_bound
['c, b']), (
upper_bound (
divset ((S2
. n),1))).]).] by
INTEGRA1: 4;
A199: (
divset ((T2
. n),i))
=
[.(
lower_bound (
divset ((T2
. n),1))), (
upper_bound (
divset ((T2
. n),1))).] by
A192,
INTEGRA1: 4
.=
[.(
lower_bound
['c, b']), (
upper_bound (
divset ((T2
. n),1))).] by
A193,
INTEGRA1:def 4
.=
[.(
lower_bound
['c, b']), (D
. 1).] by
A193,
INTEGRA1:def 4
.=
[.(
lower_bound
['c, b']), (E
. (1
+ 1)).] by
A184,
A185,
A182,
A186,
A193,
RFINSEQ:def 1
.=
[.(
lower_bound
['c, b']), (
upper_bound (
divset ((S2
. n),2))).] by
A184,
A195,
INTEGRA1:def 4;
then
[.(
lower_bound
['c, b']), (
upper_bound (
divset ((S2
. n),2))).]
=
[.(
lower_bound
[.(
lower_bound
['c, b']), (
upper_bound (
divset ((S2
. n),2))).]), (
upper_bound
[.(
lower_bound
['c, b']), (
upper_bound (
divset ((S2
. n),2))).]).] by
INTEGRA1: 4;
then
A200: (
lower_bound
['c, b'])
= (
lower_bound
[.(
lower_bound
['c, b']), (
upper_bound (
divset ((S2
. n),2))).]) & (
upper_bound (
divset ((S2
. n),2)))
= (
upper_bound
[.(
lower_bound
['c, b']), (
upper_bound (
divset ((S2
. n),2))).]) by
A199,
INTEGRA1: 5;
y
= (
vol (
divset ((T2
. n),1))) by
A179,
A180,
A189,
A192,
INTEGRA1: 20;
then y
= (((
upper_bound (
divset ((S2
. n),2)))
- (
upper_bound (
divset ((S2
. n),1))))
+ ((
upper_bound
[.(
lower_bound
['c, b']), (
upper_bound (
divset ((S2
. n),1))).])
- (
lower_bound
['c, b']))) by
A192,
A199,
A200,
A197;
then
A201: y
= (((
upper_bound (
divset ((S2
. n),2)))
- (
upper_bound (
divset ((S2
. n),1))))
+ (
vol (
divset ((S2
. n),1)))) by
A197,
A198,
INTEGRA1: 5;
(
divset ((S2
. n),2))
=
[.(
lower_bound (
divset ((S2
. n),2))), (
upper_bound (
divset ((S2
. n),2))).] by
INTEGRA1: 4;
then (
divset ((S2
. n),2))
=
[.(E
. (2
- 1)), (
upper_bound (
divset ((S2
. n),2))).] by
A184,
A195,
INTEGRA1:def 4;
then
A202: (
divset ((S2
. n),2))
=
[.(
upper_bound (
divset ((S2
. n),1))), (
upper_bound (
divset ((S2
. n),2))).] by
A184,
A196,
INTEGRA1:def 4;
then
[.(
upper_bound (
divset ((S2
. n),1))), (
upper_bound (
divset ((S2
. n),2))).]
=
[.(
lower_bound
[.(
upper_bound (
divset ((S2
. n),1))), (
upper_bound (
divset ((S2
. n),2))).]), (
upper_bound
[.(
upper_bound (
divset ((S2
. n),1))), (
upper_bound (
divset ((S2
. n),2))).]).] by
INTEGRA1: 4;
then y
= ((
vol (
divset ((S2
. n),2)))
+ (
vol (
divset ((S2
. n),1)))) by
A202,
A201,
INTEGRA1: 5;
then y
= (((
upper_volume (XCB,(S2
. n)))
. 2)
+ (
vol (
divset ((S2
. n),1)))) by
A184,
A195,
INTEGRA1: 20;
then y
= (((
upper_volume (XCB,(S2
. n)))
. 2)
+ ((
upper_volume (XCB,(S2
. n)))
. 1)) by
A184,
A196,
INTEGRA1: 20;
then y
< ((e
/ 2)
+ (e
/ 2)) by
A191,
A194,
XREAL_1: 8;
hence thesis;
end;
A203: y
= ((
upper_bound (
rng (XCB
| (
divset ((T2
. n),i)))))
* (
vol (
divset ((T2
. n),i)))) by
A179,
A180,
A189,
INTEGRA1:def 6;
now
(
len (
upper_volume (XCB,(S2
. n))))
= ((
len D)
+ 1) by
A184,
A187,
INTEGRA1:def 6;
then (
len (
upper_volume (XCB,(S2
. n))))
= ((
len (
upper_volume (XCB,(T2
. n))))
+ 1) by
INTEGRA1:def 6;
then
A204: i1
in (
Seg (
len (
upper_volume (XCB,(S2
. n))))) by
A181,
FINSEQ_1: 60;
then
A205: i1
in (
dom (
upper_volume (XCB,(S2
. n)))) by
FINSEQ_1:def 3;
A206: i1
in (
dom (
upper_volume (XCB,(S2
. n)))) by
A204,
FINSEQ_1:def 3;
A207: i
in (
dom D) by
A181,
A188,
FINSEQ_1:def 3;
(
Seg ((
len D)
+ 1))
= (
Seg (
len E)) by
A187;
then i1
in (
Seg (
len E)) by
A181,
A188,
FINSEQ_1: 60;
then
A208: i1
in (
dom E) by
FINSEQ_1:def 3;
(
len (
upper_volume (XCB,(S2
. n))))
= (
len E) by
A184,
INTEGRA1:def 6;
then
A209: (
dom (
upper_volume (XCB,(S2
. n))))
= (
dom E) by
FINSEQ_3: 29;
assume
A210: i
<> 1;
i
in (
Seg (
len D)) by
A179,
A188,
FINSEQ_1:def 3;
then 1
<= i by
FINSEQ_1: 1;
then
A211: 1
< i by
A210,
XXREAL_0: 1;
then
A212: (i
- 1)
in (
Seg (
len D)) by
A181,
A188,
FINSEQ_3: 12;
then
A213: (i
- 1)
in (
dom D) by
FINSEQ_1:def 3;
reconsider i9 = (i
- 1) as
Element of
NAT by
A212;
(1
+ 1)
< (i
+ 1) by
A211,
XREAL_1: 8;
then
A214: i1
<> 1;
(
divset ((T2
. n),i))
=
[.(
lower_bound (
divset ((T2
. n),i))), (
upper_bound (
divset ((T2
. n),i))).] by
INTEGRA1: 4
.=
[.(D
. (i
- 1)), (
upper_bound (
divset ((T2
. n),i))).] by
A210,
A207,
INTEGRA1:def 4
.=
[.(D
. (i
- 1)), (D
. i).] by
A210,
A207,
INTEGRA1:def 4
.=
[.(E
. (i9
+ 1)), (D
. i).] by
A184,
A185,
A182,
A186,
A213,
RFINSEQ:def 1
.=
[.(E
. ((i
- 1)
+ 1)), (E
. (i
+ 1)).] by
A184,
A185,
A182,
A186,
A207,
RFINSEQ:def 1
.=
[.(E
. (i1
- 1)), (
upper_bound (
divset ((S2
. n),i1))).] by
A184,
A214,
A208,
INTEGRA1:def 4
.=
[.(
lower_bound (
divset ((S2
. n),i1))), (
upper_bound (
divset ((S2
. n),i1))).] by
A184,
A214,
A208,
INTEGRA1:def 4
.= (
divset ((S2
. n),i1)) by
INTEGRA1: 4;
then y
= ((
upper_volume (XCB,(S2
. n)))
. i1) by
A203,
A184,
A205,
A209,
INTEGRA1:def 6;
then y
in (
rng (
upper_volume (XCB,(S2
. n)))) by
A206,
FUNCT_1:def 3;
then y
<= (
max (
rng (
upper_volume (XCB,(S2
. n))))) by
XXREAL_2:def 8;
then y
< (e
/ 2) by
A177,
XXREAL_0: 2;
hence thesis by
A175,
XXREAL_0: 2;
end;
hence thesis by
A190;
end;
(
max (
rng (
upper_volume (XCB,(T2
. n)))))
in (
rng (
upper_volume (XCB,(T2
. n)))) by
XXREAL_2:def 8;
then
0
<= (
delta (T2
. n)) & (
delta (T2
. n))
< e by
A178,
INTEGRA3: 9;
then
|.(
delta (T2
. n)).|
< e by
ABSVALUE:def 1;
hence
|.(((
delta T2)
. nn)
-
0 ).|
< e by
INTEGRA3:def 2;
end;
then
A215: (
delta T2) is
convergent by
SEQ_2:def 6;
then
A216: (
lim (
delta T2))
=
0 by
A172,
SEQ_2:def 7;
then
A217: (
upper_sum (FCB,T2)) is
convergent & (
lim (
upper_sum (FCB,T2)))
= (
upper_integral FCB) by
A166,
A18,
A215,
INTEGRA4: 9;
A218:
now
let e be
Real;
assume
A219:
0
< e;
then
consider n1 be
Nat such that
A220: for m be
Nat st n1
<= m holds
|.(((
delta T1)
. m)
-
0 ).|
< e by
A53,
SEQ_2:def 7;
consider n2 be
Nat such that
A221: for m be
Nat st n2
<= m holds
|.(((
delta T2)
. m)
-
0 ).|
< e by
A172,
A219;
reconsider n = (
max (n1,n2)) as
Nat by
TARSKI: 1;
take n;
let mm be
Nat;
assume
A222: n
<= mm;
reconsider m = mm as
Element of
NAT by
ORDINAL1:def 12;
n2
<= n by
XXREAL_0: 25;
then n2
<= m by
A222,
XXREAL_0: 2;
then
|.(((
delta T2)
. m)
-
0 ).|
< e by
A221;
then
A223:
|.(
delta (T2
. m)).|
< e by
INTEGRA3:def 2;
0
<= (
delta (T2
. m)) by
INTEGRA3: 9;
then
A224: (
max (
rng (
upper_volume (XCB,(T2
. m)))))
< e by
A223,
ABSVALUE:def 1;
n1
<= n by
XXREAL_0: 25;
then n1
<= m by
A222,
XXREAL_0: 2;
then
|.(((
delta T1)
. m)
-
0 ).|
< e by
A220;
then
A225:
|.(
delta (T1
. m)).|
< e by
INTEGRA3:def 2;
0
<= (
delta (T1
. m)) by
INTEGRA3: 9;
then
A226: (
max (
rng (
upper_volume (XAC,(T1
. m)))))
< e by
A225,
ABSVALUE:def 1;
A227: for r be
Real st r
in (
rng (
upper_volume (XAB,(T
. m)))) holds r
< e
proof
reconsider Tm = (T
. m) as
Division of
['a, b'];
let y be
Real;
assume y
in (
rng (
upper_volume (XAB,(T
. m))));
then
consider x be
object such that
A228: x
in (
dom (
upper_volume (XAB,(T
. m)))) and
A229: y
= ((
upper_volume (XAB,(T
. m)))
. x) by
FUNCT_1:def 3;
reconsider i = x as
Element of
NAT by
A228;
A230: x
in (
Seg (
len (
upper_volume (XAB,(T
. m))))) by
A228,
FINSEQ_1:def 3;
then
A231: 1
<= i by
FINSEQ_1: 1;
A232: (
len (
upper_volume (XAB,(T
. m))))
= (
len Tm) by
INTEGRA1:def 6;
then
A233: i
<= (
len Tm) by
A230,
FINSEQ_1: 1;
(
dom (
upper_volume (XAB,(T
. m))))
= (
dom Tm) by
A232,
FINSEQ_3: 29;
then
A234: y
= ((
upper_bound (
rng (XAB
| (
divset ((T
. m),i)))))
* (
vol (
divset ((T
. m),i)))) by
A228,
A229,
INTEGRA1:def 6;
consider S1 be
Division of
['a, c'], S2 be
Division of
['c, b'] such that
A235: S1
= (T1
. m) and
A236: S2
= (T2
. m) and
A237: (T
. m)
= (S1
^ S2) by
A93;
A238: (
len Tm)
= ((
len S1)
+ (
len S2)) by
A237,
FINSEQ_1: 22;
per cases ;
suppose i
<= (
len S1);
then
A239: i
in (
Seg (
len S1)) by
A231;
then
A240: i
in (
dom S1) by
FINSEQ_1:def 3;
(
len (
upper_volume (XAC,(T1
. m))))
= (
len S1) by
A235,
INTEGRA1:def 6;
then
A241: i
in (
dom (
upper_volume (XAC,(T1
. m)))) by
A239,
FINSEQ_1:def 3;
A242: (
divset ((T1
. m),i))
= (
divset ((T
. m),i)) by
A95,
A235,
A239;
A243: (
divset ((T1
. m),i))
c=
['a, c'] by
A139,
A235,
A239;
then (
divset ((T1
. m),i))
c=
['a, b'] by
A137;
then (XAC
| (
divset ((T1
. m),i)))
= (XAB
| (
divset ((T
. m),i))) by
A242,
A243,
Th4;
then y
= ((
upper_volume (XAC,(T1
. m)))
. i) by
A234,
A235,
A240,
A242,
INTEGRA1:def 6;
then y
in (
rng (
upper_volume (XAC,(T1
. m)))) by
A241,
FUNCT_1:def 3;
then y
<= (
max (
rng (
upper_volume (XAC,(T1
. m))))) by
XXREAL_2:def 8;
hence thesis by
A226,
XXREAL_0: 2;
end;
suppose i
> (
len S1);
then
A244: ((
len S1)
+ 1)
<= i by
NAT_1: 13;
then
consider k be
Nat such that
A245: (((
len S1)
+ 1)
+ k)
= i by
NAT_1: 10;
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
set i1 = (1
+ k);
A246: (i
- (
len S1))
<= (
len S2) by
A238,
A233,
XREAL_1: 20;
(1
+ k)
= (i
- (
len S1)) by
A245;
then 1
<= (1
+ k) by
A244,
XREAL_1: 19;
then
A247: (1
+ k)
in (
Seg (
len S2)) by
A245,
A246;
then
A248: (1
+ k)
in (
dom S2) by
FINSEQ_1:def 3;
A249: (
divset ((T2
. m),i1))
= (
divset ((T
. m),((
len S1)
+ i1))) by
A112,
A235,
A236,
A247;
A250: (
divset ((T2
. m),i1))
c=
['c, b'] by
A134,
A236,
A247;
then (
divset ((T2
. m),i1))
c=
['a, b'] by
A17;
then y
= ((
upper_bound (
rng (XCB
| (
divset ((T2
. m),i1)))))
* (
vol (
divset ((T2
. m),i1)))) by
A234,
A245,
A249,
A250,
Th4;
then
A251: y
= ((
upper_volume (XCB,(T2
. m)))
. i1) by
A236,
A248,
INTEGRA1:def 6;
(
len (
upper_volume (XCB,(T2
. m))))
= (
len S2) by
A236,
INTEGRA1:def 6;
then i1
in (
dom (
upper_volume (XCB,(T2
. m)))) by
A247,
FINSEQ_1:def 3;
then y
in (
rng (
upper_volume (XCB,(T2
. m)))) by
A251,
FUNCT_1:def 3;
then y
<= (
max (
rng (
upper_volume (XCB,(T2
. m))))) by
XXREAL_2:def 8;
hence thesis by
A224,
XXREAL_0: 2;
end;
end;
A252:
0
<= (
delta (T
. m)) by
INTEGRA3: 9;
(
max (
rng (
upper_volume (XAB,(T
. m)))))
in (
rng (
upper_volume (XAB,(T
. m)))) by
XXREAL_2:def 8;
then (
delta (T
. m))
< e by
A227;
then
|.(
delta (T
. m)).|
< e by
A252,
ABSVALUE:def 1;
hence
|.(((
delta T)
. mm)
-
0 ).|
< e by
INTEGRA3:def 2;
end;
then
A253: (
delta T) is
convergent by
SEQ_2:def 6;
then
A254: (
lim (
delta T))
=
0 by
A218,
SEQ_2:def 7;
(FAB
|
['a, b']) is
bounded by
A4;
then
A255: (
upper_integral FAB)
= (
lim (
upper_sum (FAB,T))) by
A12,
A253,
A254,
INTEGRA4: 9;
A256: for i be
Element of
NAT holds (
lower_volume (FAB,(T
. i)))
= ((
lower_volume (FAC,(T1
. i)))
^ (
lower_volume (FCB,(T2
. i))))
proof
let i be
Element of
NAT ;
reconsider F = (
lower_volume (FAB,(T
. i))) as
FinSequence of
REAL ;
reconsider F1 = (
lower_volume (FAC,(T1
. i))) as
FinSequence of
REAL ;
reconsider F2 = (
lower_volume (FCB,(T2
. i))) as
FinSequence of
REAL ;
reconsider S = (T
. i) as
Division of
['a, b'];
consider S1 be
Division of
['a, c'], S2 be
Division of
['c, b'] such that
A257: S1
= (T1
. i) and
A258: S2
= (T2
. i) and
A259: (T
. i)
= (S1
^ S2) by
A93;
A260: (
len F)
= (
len S) by
INTEGRA1:def 7
.= ((
len S1)
+ (
len S2)) by
A259,
FINSEQ_1: 22
.= ((
len F1)
+ (
len S2)) by
A257,
INTEGRA1:def 7;
then
A261: (
len F)
= ((
len F1)
+ (
len F2)) by
A258,
INTEGRA1:def 7;
A262:
now
let k be
Nat;
assume k
in (
dom F2);
then
A263: k
in (
Seg (
len F2)) by
FINSEQ_1:def 3;
then 1
<= k by
FINSEQ_1: 1;
then
A264: (1
+ (
len F1))
<= (k
+ (
len F1)) by
XREAL_1: 6;
k
<= (
len F2) by
A263,
FINSEQ_1: 1;
then
A265: ((
len F1)
+ k)
<= (
len F) by
A261,
XREAL_1: 6;
1
<= (1
+ (
len F1)) by
NAT_1: 11;
then 1
<= (k
+ (
len F1)) by
A264,
XXREAL_0: 2;
then (k
+ (
len F1))
in (
Seg (
len F)) by
A265;
then ((
len F1)
+ k)
in (
Seg (
len S)) by
INTEGRA1:def 7;
then ((
len F1)
+ k)
in (
dom S) by
FINSEQ_1:def 3;
then
A266: (F
. ((
len F1)
+ k))
= ((
lower_bound (
rng (FAB
| (
divset ((T
. i),((
len F1)
+ k))))))
* (
vol (
divset ((T
. i),((
len F1)
+ k))))) by
INTEGRA1:def 7;
A267: k
in (
Seg (
len S2)) by
A258,
A263,
INTEGRA1:def 7;
then
A268: k
in (
dom S2) by
FINSEQ_1:def 3;
(
len F1)
= (
len S1) by
A257,
INTEGRA1:def 7;
then
A269: (
divset ((T
. i),((
len F1)
+ k)))
= (
divset ((T2
. i),k)) by
A112,
A257,
A258,
A267;
A270: (
divset ((T2
. i),k))
c=
['c, b'] by
A134,
A258,
A267;
then (
divset ((T
. i),((
len F1)
+ k)))
c=
['a, b'] by
A17,
A269;
then (F
. ((
len F1)
+ k))
= ((
lower_bound (
rng (FCB
| (
divset ((T2
. i),k)))))
* (
vol (
divset ((T2
. i),k)))) by
A266,
A269,
A270,
Th3;
hence (F
. ((
len F1)
+ k))
= (F2
. k) by
A258,
A268,
INTEGRA1:def 7;
end;
A271:
now
let k be
Nat;
(
len (
lower_volume (FAB,(T
. i))))
= (
len S) by
INTEGRA1:def 7;
then
A272: (
dom (
lower_volume (FAB,(T
. i))))
= (
dom S) by
FINSEQ_3: 29;
assume
A273: k
in (
dom F1);
then k
in (
Seg (
len F1)) by
FINSEQ_1:def 3;
then
A274: k
in (
Seg (
len S1)) by
A257,
INTEGRA1:def 7;
then
A275: k
in (
dom S1) by
FINSEQ_1:def 3;
(
len F1)
<= (
len F) by
A260,
NAT_1: 11;
then (
dom F1)
c= (
dom F) by
FINSEQ_3: 30;
then
A276: (F
. k)
= ((
lower_bound (
rng (FAB
| (
divset ((T
. i),k)))))
* (
vol (
divset ((T
. i),k)))) by
A273,
A272,
INTEGRA1:def 7;
A277: (
divset ((T
. i),k))
= (
divset ((T1
. i),k)) & (
divset ((T1
. i),k))
c=
['a, c'] by
A139,
A95,
A257,
A274;
then (
divset ((T
. i),k))
c=
['a, b'] by
A137;
then (F
. k)
= ((
lower_bound (
rng (FAC
| (
divset ((T1
. i),k)))))
* (
vol (
divset ((T1
. i),k)))) by
A276,
A277,
Th3;
hence (F
. k)
= (F1
. k) by
A257,
A275,
INTEGRA1:def 7;
end;
(
dom F)
= (
Seg ((
len F1)
+ (
len F2))) by
A261,
FINSEQ_1:def 3;
hence thesis by
A271,
A262,
FINSEQ_1:def 7;
end;
A278: for i be
Element of
NAT holds (
Sum (
lower_volume (FAB,(T
. i))))
= ((
Sum (
lower_volume (FAC,(T1
. i))))
+ (
Sum (
lower_volume (FCB,(T2
. i)))))
proof
let i be
Element of
NAT ;
(
lower_volume (FAB,(T
. i)))
= ((
lower_volume (FAC,(T1
. i)))
^ (
lower_volume (FCB,(T2
. i)))) by
A256;
hence thesis by
RVSUM_1: 75;
end;
now
let i be
Nat;
reconsider ii = i as
Element of
NAT by
ORDINAL1:def 12;
thus ((
lower_sum (FAB,T))
. i)
= (
lower_sum (FAB,(T
. ii))) by
INTEGRA2:def 3
.= ((
lower_sum (FAC,(T1
. ii)))
+ (
Sum (
lower_volume (FCB,(T2
. ii))))) by
A278
.= (((
lower_sum (FAC,T1))
. i)
+ (
lower_sum (FCB,(T2
. ii)))) by
INTEGRA2:def 3
.= (((
lower_sum (FAC,T1))
. i)
+ ((
lower_sum (FCB,T2))
. i)) by
INTEGRA2:def 3;
end;
then
A279: (
lower_sum (FAB,T))
= ((
lower_sum (FAC,T1))
+ (
lower_sum (FCB,T2))) by
SEQ_1: 7;
A280: FAC is
Function of
['a, c'],
REAL by
A2,
A137,
Lm1,
XBOOLE_1: 1;
then
A281: FAC is
upper_integrable & FAC is
lower_integrable by
A138,
INTEGRA4: 10;
A282: (
upper_sum (FAC,T1)) is
convergent & (
lim (
upper_sum (FAC,T1)))
= (
upper_integral FAC) by
A280,
A138,
A53,
INTEGRA4: 9;
then
A283: ((
upper_integral FAC)
+ (
upper_integral FCB))
= (
upper_integral FAB) by
A165,
A217,
A255,
SEQ_2: 6;
A284: (
lower_sum (FAC,T1)) is
convergent & (
lim (
lower_sum (FAC,T1)))
= (
lower_integral FAC) by
A280,
A138,
A53,
INTEGRA4: 8;
(FAB
|
['a, b']) is
bounded by
A4;
then
A285: (
lower_integral FAB)
= (
lim (
lower_sum (FAB,T))) by
A12,
A253,
A254,
INTEGRA4: 8;
(
lower_sum (FCB,T2)) is
convergent & (
lim (
lower_sum (FCB,T2)))
= (
lower_integral FCB) by
A166,
A18,
A215,
A216,
INTEGRA4: 8;
then
A286: ((
lower_integral FAC)
+ (
lower_integral FCB))
= (
lower_integral FAB) by
A279,
A284,
A285,
SEQ_2: 6;
(
integral (f,a,b))
= (
integral (f,
['a, b'])) by
A1,
INTEGRA5:def 4
.= ((
integral FAC)
+ (
integral FCB)) by
A165,
A282,
A217,
A255,
SEQ_2: 6;
hence (
integral (f,a,b))
= ((
integral (f,a,c))
+ (
integral (f,c,b))) by
A58,
A57;
FAB is
integrable by
A3;
then
A287: (
upper_integral FAB)
= (
lower_integral FAB);
A288: FCB is
upper_integrable & FCB is
lower_integrable by
A166,
A18,
INTEGRA4: 10;
A289: (
lower_integral FAC)
<= (
upper_integral FAC) by
A280,
A138,
INTEGRA1: 49;
then (
lower_integral FCB)
= (
upper_integral FCB) by
A287,
A283,
A286,
A167,
Th1;
then
A290: FCB is
integrable by
A288;
(
lower_integral FAC)
= (
upper_integral FAC) by
A287,
A283,
A286,
A289,
A167,
Th1;
then FAC is
integrable by
A281;
hence thesis by
A290;
end;
theorem ::
INTEGRA6:17
Th17: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] implies f
is_integrable_on
['a, c'] & f
is_integrable_on
['c, b'] & (
integral (f,a,b))
= ((
integral (f,a,c))
+ (
integral (f,c,b)))
proof
assume that
A1: a
<= b and
A2: f
is_integrable_on
['a, b'] and
A3: (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'];
now
assume
A4: b
= c;
then
A5:
['c, b']
=
[.c, b.] by
INTEGRA5:def 3;
thus f
is_integrable_on
['a, c'] by
A2,
A4;
['c, b']
=
[.(
lower_bound
['c, b']), (
upper_bound
['c, b']).] by
INTEGRA1: 4;
then (
lower_bound
['c, b'])
= c & (
upper_bound
['c, b'])
= b by
A5,
INTEGRA1: 5;
then
A6: (
vol
['c, b'])
=
0 by
A4;
then (f
||
['c, b']) is
integrable by
INTEGRA4: 6;
hence f
is_integrable_on
['c, b'];
(
integral (f,c,b))
= (
integral (f,
['c, b'])) by
A5,
INTEGRA5: 19;
then (
integral (f,c,b))
=
0 by
A6,
INTEGRA4: 6;
hence (
integral (f,a,b))
= ((
integral (f,a,c))
+ (
integral (f,c,b))) by
A4;
end;
hence thesis by
A1,
A2,
A3,
Lm2;
end;
Lm3: for a,b,c be
Real st a
<= c & c
<= b holds c
in
['a, b'] &
['a, c']
c=
['a, b'] &
['c, b']
c=
['a, b']
proof
let a,b,c be
Real;
assume that
A1: a
<= c and
A2: c
<= b;
A3: c
in
[.a, b.] by
A1,
A2,
XXREAL_1: 1;
hence c
in
['a, b'] by
A1,
A2,
INTEGRA5:def 3,
XXREAL_0: 2;
A4:
['c, b']
=
[.c, b.] by
A2,
INTEGRA5:def 3;
a
<= b by
A1,
A2,
XXREAL_0: 2;
then
A5: a
in
[.a, b.] & b
in
[.a, b.] by
XXREAL_1: 1;
['a, b']
=
[.a, b.] &
['a, c']
=
[.a, c.] by
A1,
A2,
INTEGRA5:def 3,
XXREAL_0: 2;
hence thesis by
A4,
A3,
A5,
XXREAL_2:def 12;
end;
theorem ::
INTEGRA6:18
Th18: a
<= c & c
<= d & d
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) implies f
is_integrable_on
['c, d'] & (f
|
['c, d']) is
bounded &
['c, d']
c= (
dom f)
proof
assume that
A1: a
<= c and
A2: c
<= d and
A3: d
<= b and
A4: f
is_integrable_on
['a, b'] and
A5: (f
|
['a, b']) is
bounded and
A6:
['a, b']
c= (
dom f);
a
<= d by
A1,
A2,
XXREAL_0: 2;
then
A7: a
<= b by
A3,
XXREAL_0: 2;
A8: c
<= b by
A2,
A3,
XXREAL_0: 2;
then c
in
['a, b'] by
A1,
Lm3;
then
A9: f
is_integrable_on
['c, b'] by
A4,
A5,
A6,
A7,
Th17;
A10: d
in
['c, b'] by
A2,
A3,
Lm3;
A11:
['c, b']
c=
['a, b'] by
A1,
A8,
Lm3;
then
['c, b']
c= (
dom f) & (f
|
['c, b']) is
bounded by
A5,
A6,
RFUNCT_1: 74;
hence f
is_integrable_on
['c, d'] by
A8,
A10,
A9,
Th17;
['c, d']
c=
['c, b'] by
A2,
A3,
Lm3;
then
A12:
['c, d']
c=
['a, b'] by
A11;
hence (f
|
['c, d']) is
bounded by
A5,
RFUNCT_1: 74;
thus thesis by
A6,
A12;
end;
theorem ::
INTEGRA6:19
a
<= c & c
<= d & d
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) implies (f
+ g)
is_integrable_on
['c, d'] & ((f
+ g)
|
['c, d']) is
bounded
proof
assume that
A1: a
<= c and
A2: c
<= d & d
<= b and
A3: f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded and
A4:
['a, b']
c= (
dom f) and
A5:
['a, b']
c= (
dom g);
A6:
['c, d']
c=
['c, b'] by
A2,
Lm3;
A7: (f
|
['c, d']) is
bounded & (g
|
['c, d']) is
bounded by
A1,
A2,
A3,
A4,
A5,
Th18;
c
<= b by
A2,
XXREAL_0: 2;
then
A8:
['c, b']
c=
['a, b'] by
A1,
Lm3;
then
['c, b']
c= (
dom f) by
A4;
then
A9:
['c, d']
c= (
dom f) by
A6;
['c, b']
c= (
dom g) by
A5,
A8;
then
A10:
['c, d']
c= (
dom g) by
A6;
f
is_integrable_on
['c, d'] & g
is_integrable_on
['c, d'] by
A1,
A2,
A3,
A4,
A5,
Th18;
hence (f
+ g)
is_integrable_on
['c, d'] by
A7,
A9,
A10,
Th11;
((f
+ g)
| (
['c, d']
/\
['c, d'])) is
bounded by
A7,
RFUNCT_1: 83;
hence thesis;
end;
Lm4: for a,b,c,d be
Real, f be
PartFunc of
REAL ,
REAL st a
<= b & c
<= d & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] holds (
integral (f,a,d))
= ((
integral (f,a,c))
+ (
integral (f,c,d)))
proof
let a,b,c,d be
Real, f be
PartFunc of
REAL ,
REAL ;
assume that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded and
A4:
['a, b']
c= (
dom f) and
A5: c
in
['a, b'] and
A6: d
in
['a, b'];
A7: f
is_integrable_on
['a, d'] by
A1,
A3,
A4,
A6,
Th17;
A8:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A9: a
<= d by
A6,
XXREAL_1: 1;
A10: d
<= b by
A6,
A8,
XXREAL_1: 1;
then
['a, d']
c=
['a, b'] by
A9,
Lm3;
then
A11:
['a, d']
c= (
dom f) by
A4;
a
<= c by
A5,
A8,
XXREAL_1: 1;
then
A12: c
in
['a, d'] by
A2,
Lm3;
(f
|
['a, d']) is
bounded by
A3,
A4,
A9,
A10,
Th18;
hence thesis by
A9,
A12,
A11,
A7,
Th17;
end;
theorem ::
INTEGRA6:20
Th20: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] implies (
integral (f,a,d))
= ((
integral (f,a,c))
+ (
integral (f,c,d)))
proof
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'];
now
assume
A2: not c
<= d;
then (
integral (f,a,c))
= ((
integral (f,a,d))
+ (
integral (f,d,c))) by
A1,
Lm4;
then
A3: (
integral (f,a,d))
= ((
integral (f,a,c))
- (
integral (f,d,c)));
(
integral (f,c,d))
= (
- (
integral (f,
['d, c']))) by
A2,
INTEGRA5:def 4;
hence thesis by
A2,
A3,
INTEGRA5:def 4;
end;
hence thesis by
A1,
Lm4;
end;
Lm5: for a,b,c,d be
Real, f be
PartFunc of
REAL ,
REAL st a
<= b & c
<= d & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] holds
['c, d']
c= (
dom (
abs f)) & (
abs f)
is_integrable_on
['c, d'] & ((
abs f)
|
['c, d']) is
bounded &
|.(
integral (f,c,d)).|
<= (
integral ((
abs f),c,d))
proof
let a,b,c,d be
Real, f be
PartFunc of
REAL ,
REAL such that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) and
A4: c
in
['a, b'] & d
in
['a, b'];
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A5: a
<= c & d
<= b by
A4,
XXREAL_1: 1;
then
A6: (f
|
['c, d']) is
bounded by
A2,
A3,
Th18;
['c, d']
c= (
dom f) & f
is_integrable_on
['c, d'] by
A2,
A3,
A5,
Th18;
hence thesis by
A2,
A6,
Th7,
Th8,
RFUNCT_1: 82,
VALUED_1:def 11;
end;
theorem ::
INTEGRA6:21
Th21: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] implies
['(
min (c,d)), (
max (c,d))']
c= (
dom (
abs f)) & (
abs f)
is_integrable_on
['(
min (c,d)), (
max (c,d))'] & ((
abs f)
|
['(
min (c,d)), (
max (c,d))']) is
bounded &
|.(
integral (f,c,d)).|
<= (
integral ((
abs f),(
min (c,d)),(
max (c,d))))
proof
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'];
A2:
now
assume
A3: not c
<= d;
then (
integral (f,c,d))
= (
- (
integral (f,
['d, c']))) by
INTEGRA5:def 4;
then (
integral (f,c,d))
= (
- (
integral (f,d,c))) by
A3,
INTEGRA5:def 4;
then
A4:
|.(
integral (f,c,d)).|
=
|.(
integral (f,d,c)).| by
COMPLEX1: 52;
d
= (
min (c,d)) & c
= (
max (c,d)) by
A3,
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
A1,
A3,
A4,
Lm5;
end;
now
assume
A5: c
<= d;
then c
= (
min (c,d)) & d
= (
max (c,d)) by
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
A1,
A5,
Lm5;
end;
hence thesis by
A2;
end;
Lm6: a
<= b & c
<= d & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] implies
['c, d']
c= (
dom (
abs f)) & (
abs f)
is_integrable_on
['c, d'] & ((
abs f)
|
['c, d']) is
bounded &
|.(
integral (f,c,d)).|
<= (
integral ((
abs f),c,d))
proof
assume that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'];
(
min (c,d))
= c & (
max (c,d))
= d by
A2,
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
A1,
A3,
Th21;
end;
Lm7: a
<= b & c
<= d & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] implies
|.(
integral (f,d,c)).|
<= (
integral ((
abs f),c,d))
proof
assume that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] and
A4: d
in
['a, b'];
A5:
|.(
integral (f,c,d)).|
<= (
integral ((
abs f),c,d)) & (
integral (f,c,d))
= (
integral (f,
['c, d'])) by
A1,
A2,
A3,
A4,
Lm6,
INTEGRA5:def 4;
per cases ;
suppose c
= d;
hence thesis by
A1,
A3,
Lm6;
end;
suppose c
<> d;
then c
< d by
A2,
XXREAL_0: 1;
then (
integral (f,d,c))
= (
- (
integral (f,
['c, d']))) by
INTEGRA5:def 4;
hence thesis by
A5,
COMPLEX1: 52;
end;
end;
theorem ::
INTEGRA6:22
a
<= b & c
<= d & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] implies
['c, d']
c= (
dom (
abs f)) & (
abs f)
is_integrable_on
['c, d'] & ((
abs f)
|
['c, d']) is
bounded &
|.(
integral (f,c,d)).|
<= (
integral ((
abs f),c,d)) &
|.(
integral (f,d,c)).|
<= (
integral ((
abs f),c,d)) by
Lm6,
Lm7;
Lm8: (a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['(
min (c,d)), (
max (c,d))'] holds
|.(f
. x).|
<= e) implies
|.(
integral (f,c,d)).|
<= (e
*
|.(d
- c).|)
proof
set A =
['(
min (c,d)), (
max (c,d))'];
assume that
A1: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] and
A2: for x be
Real st x
in
['(
min (c,d)), (
max (c,d))'] holds
|.(f
. x).|
<= e;
(
rng (
abs f))
c=
REAL ;
then
A3: (
abs f) is
Function of (
dom (
abs f)),
REAL by
FUNCT_2: 2;
['(
min (c,d)), (
max (c,d))']
c= (
dom (
abs f)) by
A1,
Th21;
then
reconsider g = ((
abs f)
|| A) as
Function of A,
REAL by
A3,
FUNCT_2: 32;
A4: (
vol A)
=
|.(d
- c).| by
Th6;
(
abs f)
is_integrable_on A by
A1,
Th21;
then
A5: g is
integrable;
reconsider e as
Real;
consider h be
Function of A,
REAL such that
A6: (
rng h)
=
{e} and
A7: (h
| A) is
bounded by
INTEGRA4: 5;
A8:
now
let x be
Real;
assume
A9: x
in A;
then (g
. x)
= ((
abs f)
. x) by
FUNCT_1: 49;
then
A10: (g
. x)
=
|.(f
. x).| by
VALUED_1: 18;
(h
. x)
in
{e} by
A6,
A9,
FUNCT_2: 4;
then (h
. x)
= e by
TARSKI:def 1;
hence (g
. x)
<= (h
. x) by
A2,
A9,
A10;
end;
A11:
|.(
integral (f,c,d)).|
<= (
integral ((
abs f),(
min (c,d)),(
max (c,d)))) by
A1,
Th21;
(
min (c,d))
<= c & c
<= (
max (c,d)) by
XXREAL_0: 17,
XXREAL_0: 25;
then (
min (c,d))
<= (
max (c,d)) by
XXREAL_0: 2;
then
A12: (
integral ((
abs f),(
min (c,d)),(
max (c,d))))
= (
integral ((
abs f),A)) by
INTEGRA5:def 4;
((
abs f)
| A) is
bounded by
A1,
Th21;
then
A13: (g
| A) is
bounded;
h is
integrable & (
integral h)
= (e
* (
vol A)) by
A6,
INTEGRA4: 4;
then (
integral ((
abs f),(
min (c,d)),(
max (c,d))))
<= (e
*
|.(d
- c).|) by
A12,
A7,
A8,
A5,
A13,
A4,
INTEGRA2: 34;
hence thesis by
A11,
XXREAL_0: 2;
end;
Lm9: (a
<= b & c
<= d & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['c, d'] holds
|.(f
. x).|
<= e) implies
|.(
integral (f,c,d)).|
<= (e
* (d
- c))
proof
assume that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & (d
in
['a, b'] & for x be
Real st x
in
['c, d'] holds
|.(f
. x).|
<= e);
0
<= (d
- c) by
A2,
XREAL_1: 48;
then
A4:
|.(d
- c).|
= (d
- c) by
ABSVALUE:def 1;
(
min (c,d))
= c & (
max (c,d))
= d by
A2,
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
A1,
A3,
A4,
Lm8;
end;
Lm10: (a
<= b & c
<= d & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['c, d'] holds
|.(f
. x).|
<= e) implies
|.(
integral (f,d,c)).|
<= (e
* (d
- c))
proof
assume that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] and
A4: d
in
['a, b'] and
A5: for x be
Real st x
in
['c, d'] holds
|.(f
. x).|
<= e;
A6:
|.(
integral (f,c,d)).|
<= (e
* (d
- c)) & (
integral (f,c,d))
= (
integral (f,
['c, d'])) by
A1,
A2,
A3,
A4,
A5,
Lm9,
INTEGRA5:def 4;
per cases ;
suppose c
= d;
hence thesis by
A1,
A3,
A5,
Lm9;
end;
suppose c
<> d;
then c
< d by
A2,
XXREAL_0: 1;
then (
integral (f,d,c))
= (
- (
integral (f,
['c, d']))) by
INTEGRA5:def 4;
hence thesis by
A6,
COMPLEX1: 52;
end;
end;
theorem ::
INTEGRA6:23
(a
<= b & c
<= d & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['c, d'] holds
|.(f
. x).|
<= e) implies
|.(
integral (f,c,d)).|
<= (e
* (d
- c)) &
|.(
integral (f,d,c)).|
<= (e
* (d
- c)) by
Lm9,
Lm10;
Lm11: for a,b,c,d be
Real, f,g be
PartFunc of
REAL ,
REAL st a
<= b & c
<= d & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & c
in
['a, b'] & d
in
['a, b'] holds (f
+ g)
is_integrable_on
['c, d'] & ((f
+ g)
|
['c, d']) is
bounded & (
integral ((f
+ g),c,d))
= ((
integral (f,c,d))
+ (
integral (g,c,d))) & (f
- g)
is_integrable_on
['c, d'] & ((f
- g)
|
['c, d']) is
bounded & (
integral ((f
- g),c,d))
= ((
integral (f,c,d))
- (
integral (g,c,d)))
proof
let a,b,c,d be
Real, f,g be
PartFunc of
REAL ,
REAL ;
assume that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] and
A4: g
is_integrable_on
['a, b'] and
A5: (f
|
['a, b']) is
bounded and
A6: (g
|
['a, b']) is
bounded and
A7:
['a, b']
c= (
dom f) and
A8:
['a, b']
c= (
dom g) and
A9: c
in
['a, b'] & d
in
['a, b'];
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A10: a
<= c & d
<= b by
A9,
XXREAL_1: 1;
then
A11: f
is_integrable_on
['c, d'] &
['c, d']
c= (
dom f) by
A2,
A3,
A5,
A7,
Th18;
A12: g
is_integrable_on
['c, d'] &
['c, d']
c= (
dom g) by
A2,
A4,
A6,
A8,
A10,
Th18;
A13: (f
|
['c, d']) is
bounded & (g
|
['c, d']) is
bounded by
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A10,
Th18;
then ((f
+ g)
| (
['c, d']
/\
['c, d'])) is
bounded by
RFUNCT_1: 83;
hence thesis by
A2,
A11,
A13,
A12,
Th11,
Th12,
RFUNCT_1: 84;
end;
theorem ::
INTEGRA6:24
Th24: a
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & c
in
['a, b'] & d
in
['a, b'] implies (
integral ((f
+ g),c,d))
= ((
integral (f,c,d))
+ (
integral (g,c,d))) & (
integral ((f
- g),c,d))
= ((
integral (f,c,d))
- (
integral (g,c,d)))
proof
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & c
in
['a, b'] & d
in
['a, b'];
now
assume
A2: not c
<= d;
then
A3: (
integral (f,c,d))
= (
- (
integral (f,
['d, c']))) by
INTEGRA5:def 4;
A4: (
integral (g,c,d))
= (
- (
integral (g,
['d, c']))) by
A2,
INTEGRA5:def 4;
(
integral ((f
+ g),c,d))
= (
- (
integral ((f
+ g),
['d, c']))) by
A2,
INTEGRA5:def 4;
hence (
integral ((f
+ g),c,d))
= (
- (
integral ((f
+ g),d,c))) by
A2,
INTEGRA5:def 4
.= (
- ((
integral (f,d,c))
+ (
integral (g,d,c)))) by
A1,
A2,
Lm11
.= ((
- (
integral (f,d,c)))
- (
integral (g,d,c)))
.= ((
integral (f,c,d))
- (
integral (g,d,c))) by
A2,
A3,
INTEGRA5:def 4
.= ((
integral (f,c,d))
+ (
integral (g,c,d))) by
A2,
A4,
INTEGRA5:def 4;
(
integral ((f
- g),c,d))
= (
- (
integral ((f
- g),
['d, c']))) by
A2,
INTEGRA5:def 4;
hence (
integral ((f
- g),c,d))
= (
- (
integral ((f
- g),d,c))) by
A2,
INTEGRA5:def 4
.= (
- ((
integral (f,d,c))
- (
integral (g,d,c)))) by
A1,
A2,
Lm11
.= (
- ((
integral (f,d,c))
+ (
integral (g,c,d)))) by
A2,
A4,
INTEGRA5:def 4
.= ((
- (
integral (f,d,c)))
- (
integral (g,c,d)))
.= ((
integral (f,c,d))
- (
integral (g,c,d))) by
A2,
A3,
INTEGRA5:def 4;
end;
hence thesis by
A1,
Lm11;
end;
Lm12: for a,b,c,d,e be
Real, f be
PartFunc of
REAL ,
REAL st a
<= b & c
<= d & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] holds (
integral ((e
(#) f),c,d))
= (e
* (
integral (f,c,d)))
proof
let a,b,c,d,e be
Real, f be
PartFunc of
REAL ,
REAL ;
assume that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) and
A4: c
in
['a, b'] & d
in
['a, b'];
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A5: a
<= c & d
<= b by
A4,
XXREAL_1: 1;
then
A6:
['c, d']
c= (
dom f) by
A2,
A3,
Th18;
f
is_integrable_on
['c, d'] & (f
|
['c, d']) is
bounded by
A2,
A3,
A5,
Th18;
hence thesis by
A2,
A6,
Th10;
end;
theorem ::
INTEGRA6:25
a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] implies (
integral ((e
(#) f),c,d))
= (e
* (
integral (f,c,d)))
proof
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'];
now
assume
A2: not c
<= d;
then
A3: (
integral (f,c,d))
= (
- (
integral (f,
['d, c']))) by
INTEGRA5:def 4;
thus (
integral ((e
(#) f),c,d))
= (
- (
integral ((e
(#) f),
['d, c']))) by
A2,
INTEGRA5:def 4
.= (
- (
integral ((e
(#) f),d,c))) by
A2,
INTEGRA5:def 4
.= (
- (e
* (
integral (f,d,c)))) by
A1,
A2,
Lm12
.= (e
* (
- (
integral (f,d,c))))
.= (e
* (
integral (f,c,d))) by
A2,
A3,
INTEGRA5:def 4;
end;
hence thesis by
A1,
Lm12;
end;
theorem ::
INTEGRA6:26
Th26: (a
<= b &
['a, b']
c= (
dom f) & for x be
Real st x
in
['a, b'] holds (f
. x)
= e) implies f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (
integral (f,a,b))
= (e
* (b
- a))
proof
assume that
A1: a
<= b and
A2:
['a, b']
c= (
dom f) and
A3: for x be
Real st x
in
['a, b'] holds (f
. x)
= e;
(
rng f)
c=
REAL ;
then f is
Function of (
dom f),
REAL by
FUNCT_2: 2;
then
reconsider g = (f
||
['a, b']) as
Function of
['a, b'],
REAL by
A2,
FUNCT_2: 32;
reconsider e1 = e as
Real;
consider h be
Function of
['a, b'],
REAL such that
A4: (
rng h)
=
{e1} and
A5: (h
|
['a, b']) is
bounded by
INTEGRA4: 5;
(
integral h)
= (e1
* (
vol
['a, b'])) by
A4,
INTEGRA4: 4;
then
A6: (
integral h)
= (e
* (b
- a)) by
A1,
Th5;
A7: for x be
object st x
in
['a, b'] holds (g
. x)
= (h
. x)
proof
let x0 be
object;
assume
A8: x0
in
['a, b'];
then
reconsider x = x0 as
Real;
(g
. x0)
= (f
. x) by
A8,
FUNCT_1: 49;
then
A9: (g
. x0)
= e by
A3,
A8;
(h
. x)
in
{e1} by
A4,
A8,
FUNCT_2: 4;
hence thesis by
A9,
TARSKI:def 1;
end;
then
A10: h
= g by
FUNCT_2: 12;
h is
integrable by
A4,
INTEGRA4: 4;
hence f
is_integrable_on
['a, b'] by
A10;
thus (f
|
['a, b']) is
bounded by
A5,
A10;
(
integral (f,a,b))
= (
integral (f,
['a, b'])) by
A1,
INTEGRA5:def 4;
hence thesis by
A7,
A6,
FUNCT_2: 12;
end;
theorem ::
INTEGRA6:27
Th27: a
<= b & (for x be
Real st x
in
['a, b'] holds (f
. x)
= e) &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] implies (
integral (f,c,d))
= (e
* (d
- c))
proof
assume that
A1: a
<= b and
A2: for x be
Real st x
in
['a, b'] holds (f
. x)
= e and
A3:
['a, b']
c= (
dom f) and
A4: c
in
['a, b'] and
A5: d
in
['a, b'];
A6: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded by
A1,
A2,
A3,
Th26;
A7:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A8: c
<= b by
A4,
XXREAL_1: 1;
A9: a
<= c by
A4,
A7,
XXREAL_1: 1;
then
A10:
['c, b']
c=
['a, b'] by
A8,
Lm3;
A11: d
<= b by
A5,
A7,
XXREAL_1: 1;
A12: a
<= d by
A5,
A7,
XXREAL_1: 1;
A13:
['a, c']
c=
['a, b'] by
A9,
A8,
Lm3;
per cases ;
suppose
A14: c
<= d;
then
['c, d']
c=
['c, b'] by
A11,
Lm3;
then
['c, d']
c=
['a, b'] by
A10;
then
A15: for x be
Real st x
in
['c, d'] holds (f
. x)
= e by
A2;
['c, d']
c= (
dom f) by
A3,
A9,
A11,
A6,
A14,
Th18;
hence thesis by
A14,
A15,
Th26;
end;
suppose
A16: not c
<= d;
then
['d, c']
c=
['a, c'] by
A12,
Lm3;
then
['d, c']
c=
['a, b'] by
A13;
then
A17: for x be
Real st x
in
['d, c'] holds (f
. x)
= e by
A2;
(
integral (f,c,d))
= (
- (
integral (f,
['d, c']))) by
A16,
INTEGRA5:def 4;
then
A18: (
integral (f,c,d))
= (
- (
integral (f,d,c))) by
A16,
INTEGRA5:def 4;
['d, c']
c= (
dom f) by
A3,
A12,
A8,
A6,
A16,
Th18;
then (
integral (f,d,c))
= (e
* (c
- d)) by
A16,
A17,
Th26;
hence thesis by
A18;
end;
end;
begin
theorem ::
INTEGRA6:28
Th28: for x0 be
Real, F be
PartFunc of
REAL ,
REAL st a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
].a, b.[
c= (
dom F) & (for x be
Real st x
in
].a, b.[ holds (F
. x)
= (
integral (f,a,x))) & x0
in
].a, b.[ & f
is_continuous_in x0 holds F
is_differentiable_in x0 & (
diff (F,x0))
= (f
. x0)
proof
deffunc
F2(
object) =
0 ;
let x0 be
Real, F be
PartFunc of
REAL ,
REAL ;
assume that
A1: a
<= b and
A2: f
is_integrable_on
['a, b'] and
A3: (f
|
['a, b']) is
bounded and
A4:
['a, b']
c= (
dom f) and
A5:
].a, b.[
c= (
dom F) and
A6: for x be
Real st x
in
].a, b.[ holds (F
. x)
= (
integral (f,a,x)) and
A7: x0
in
].a, b.[ and
A8: f
is_continuous_in x0;
defpred
C1[
object] means (x0
+ (
In ($1,
REAL )))
in
].a, b.[;
deffunc
F0(
Real) = (
In (((f
. x0)
* $1),
REAL ));
consider L be
Function of
REAL ,
REAL such that
A9: for h be
Element of
REAL holds (L
. h)
=
F0(h) from
FUNCT_2:sch 4;
A10: for h be
Real holds (L
. h)
= ((f
. x0)
* h)
proof
let h be
Real;
reconsider h as
Element of
REAL by
XREAL_0:def 1;
(L
. h)
=
F0(h) by
A9;
hence thesis;
end;
reconsider L as
PartFunc of
REAL ,
REAL ;
deffunc
F1(
object) = (((F
. (x0
+ (
In ($1,
REAL ))))
- (F
. x0))
- (L
. (
In ($1,
REAL ))));
reconsider L as
LinearFunc by
A10,
FDIFF_1:def 3;
consider R be
Function such that
A11: (
dom R)
=
REAL & for x be
object st x
in
REAL holds (
C1[x] implies (R
. x)
=
F1(x)) & ( not
C1[x] implies (R
. x)
=
F2(x)) from
PARTFUN1:sch 1;
(
rng R)
c=
REAL
proof
let y be
object;
assume y
in (
rng R);
then
consider x be
object such that
A12: x
in (
dom R) and
A13: y
= (R
. x) by
FUNCT_1:def 3;
A14: not
C1[x] implies (R
. x)
=
F2(x) by
A11,
A12;
C1[x] implies (R
. x)
=
F1(x) by
A11,
A12;
hence thesis by
A13,
A14,
XREAL_0:def 1;
end;
then
reconsider R as
PartFunc of
REAL ,
REAL by
A11,
RELSET_1: 4;
A15: R is
total by
A11,
PARTFUN1:def 2;
A16:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
A17: for h be
0
-convergent
non-zero
Real_Sequence holds ((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
=
0
proof
let h be
0
-convergent
non-zero
Real_Sequence;
A18: for e be
Real st
0
< e holds ex n be
Nat st for m be
Nat st n
<= m holds
|.((((h
" )
(#) (R
/* h))
. m)
-
0 ).|
< e
proof
reconsider fx0 = (f
. x0) as
Element of
REAL by
XREAL_0:def 1;
set g = (
REAL
--> fx0);
let e0 be
Real;
set e = (e0
/ 2);
A19: h is
convergent & (
lim h)
=
0 ;
assume
A20:
0
< e0;
then
0
< e by
XREAL_1: 215;
then
consider p be
Real such that
A21:
0
< p and
A22: for t be
Real st t
in (
dom f) &
|.(t
- x0).|
< p holds
|.((f
. t)
- (f
. x0)).|
< e by
A8,
FCONT_1: 3;
A23:
0
< (p
/ 2) by
A21,
XREAL_1: 215;
A24: (p
/ 2)
< p by
A21,
XREAL_1: 216;
consider N be
Neighbourhood of x0 such that
A25: N
c=
].a, b.[ by
A7,
RCOMP_1: 18;
consider q be
Real such that
A26:
0
< q and
A27: N
=
].(x0
- q), (x0
+ q).[ by
RCOMP_1:def 6;
A28: (q
/ 2)
< q by
A26,
XREAL_1: 216;
set r = (
min ((p
/ 2),(q
/ 2)));
0
< (q
/ 2) by
A26,
XREAL_1: 215;
then
0
< r by
A23,
XXREAL_0: 15;
then
consider n be
Nat such that
A29: for m be
Nat st n
<= m holds
|.((h
. m)
-
0 ).|
< r by
A19,
SEQ_2:def 7;
take n;
let m be
Nat;
r
<= (q
/ 2) by
XXREAL_0: 17;
then
A30:
].(x0
- r), (x0
+ r).[
c=
].(x0
- q), (x0
+ q).[ by
A28,
Th2,
XXREAL_0: 2;
assume n
<= m;
then
A31:
|.((h
. m)
-
0 ).|
< r by
A29;
then
|.((x0
+ (h
. m))
- x0).|
< r;
then (x0
+ (h
. m))
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1: 1;
then
A32: (x0
+ (h
. m))
in
].(x0
- q), (x0
+ q).[ by
A30;
then
A33: (x0
+ (h
. m))
in
].a, b.[ by
A25,
A27;
then (x0
+ (
In ((h
. m),
REAL )))
in
].a, b.[;
then (R
. (h
. m))
= (((F
. (x0
+ (
In ((h
. m),
REAL ))))
- (F
. x0))
- (L
. (
In ((h
. m),
REAL )))) by
A11;
then (R
. (h
. m))
= (((F
. (x0
+ (h
. m)))
- (F
. x0))
- (L
. (
In ((h
. m),
REAL ))));
then (R
. (h
. m))
= (((F
. (x0
+ (h
. m)))
- (F
. x0))
- (L
. (h
. m)));
then
A34: (R
. (h
. m))
= (((F
. (x0
+ (h
. m)))
- (F
. x0))
- ((f
. x0)
* (h
. m))) by
A10;
(F
. (x0
+ (h
. m)))
= (
integral (f,a,(x0
+ (h
. m)))) by
A6,
A25,
A27,
A32;
then
A35: (R
. (h
. m))
= (((
integral (f,a,(x0
+ (h
. m))))
- (
integral (f,a,x0)))
- ((f
. x0)
* (h
. m))) by
A6,
A7,
A34;
A36: (
dom g)
=
REAL by
FUNCT_2:def 1;
then (
['a, b']
/\
['a, b'])
c= ((
dom f)
/\ (
dom g)) by
A4,
XBOOLE_1: 27;
then
A37:
['a, b']
c= (
dom (f
- g)) by
VALUED_1: 12;
A38:
].a, b.[
c=
[.a, b.] by
XXREAL_1: 25;
then
A39: (
integral (f,a,(x0
+ (h
. m))))
= ((
integral (f,a,x0))
+ (
integral (f,x0,(x0
+ (h
. m))))) by
A1,
A2,
A3,
A4,
A7,
A16,
A33,
Th20;
A40: r
<= (p
/ 2) by
XXREAL_0: 17;
A41: for x be
Real st x
in
['(
min (x0,(x0
+ (h
. m)))), (
max (x0,(x0
+ (h
. m))))'] holds
|.((f
- g)
. x).|
<= e
proof
let x be
Real;
reconsider x1 = x as
Real;
A42: (
min (x0,(x0
+ (h
. m))))
<= x0 & x0
<= (
max (x0,(x0
+ (h
. m)))) by
XXREAL_0: 17,
XXREAL_0: 25;
assume x
in
['(
min (x0,(x0
+ (h
. m)))), (
max (x0,(x0
+ (h
. m))))'];
then
A43: x
in
[.(
min (x0,(x0
+ (h
. m)))), (
max (x0,(x0
+ (h
. m)))).] by
A42,
INTEGRA5:def 3,
XXREAL_0: 2;
|.(x
- x0).|
<=
|.(h
. m).|
proof
per cases ;
suppose x0
<= (x0
+ (h
. m));
then x0
= (
min (x0,(x0
+ (h
. m)))) & (x0
+ (h
. m))
= (
max (x0,(x0
+ (h
. m)))) by
XXREAL_0:def 9,
XXREAL_0:def 10;
then x
in { z where z be
Real : x0
<= z & z
<= (x0
+ (h
. m)) } by
A43,
RCOMP_1:def 1;
then
A44: ex z be
Real st x
= z & x0
<= z & z
<= (x0
+ (h
. m));
then
0
<= (x
- x0) by
XREAL_1: 48;
then
A45:
|.(x
- x0).|
= (x
- x0) by
ABSVALUE:def 1;
A46: (x
- x0)
<= ((x0
+ (h
. m))
- x0) by
A44,
XREAL_1: 9;
then
0
<= (h
. m) by
A44,
XREAL_1: 48;
hence thesis by
A46,
A45,
ABSVALUE:def 1;
end;
suppose
A47: not x0
<= (x0
+ (h
. m));
then x0
= (
max (x0,(x0
+ (h
. m)))) & (x0
+ (h
. m))
= (
min (x0,(x0
+ (h
. m)))) by
XXREAL_0:def 9,
XXREAL_0:def 10;
then x
in { z where z be
Real : (x0
+ (h
. m))
<= z & z
<= x0 } by
A43,
RCOMP_1:def 1;
then
A48: ex z be
Real st x
= z & (x0
+ (h
. m))
<= z & z
<= x0;
then
A49: ((x0
+ (h
. m))
- x0)
<= (x
- x0) by
XREAL_1: 9;
per cases ;
suppose
A50: (x
- x0)
<>
0 ;
((x0
+ (h
. m))
- x0)
< (x0
- x0) by
A47,
XREAL_1: 14;
then
A51:
|.(h
. m).|
= (
- (h
. m)) by
ABSVALUE:def 1;
(x
- x0)
<
0 by
A48,
A50,
XREAL_1: 47;
then
|.(x
- x0).|
= (
- (x
- x0)) by
ABSVALUE:def 1;
hence thesis by
A49,
A51,
XREAL_1: 24;
end;
suppose (x
- x0)
=
0 ;
then
|.(x
- x0).|
=
0 by
ABSVALUE:def 1;
hence thesis by
COMPLEX1: 46;
end;
end;
end;
then
A52:
|.(x
- x0).|
< r by
A31,
XXREAL_0: 2;
then x
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1: 1;
then x
in
].(x0
- q), (x0
+ q).[ by
A30;
then x
in
].a, b.[ by
A25,
A27;
then
A53: x
in
[.a, b.] by
A38;
A54: x1
in
REAL by
XREAL_0:def 1;
|.(x
- x0).|
< (p
/ 2) by
A40,
A52,
XXREAL_0: 2;
then
|.(x
- x0).|
< p by
A24,
XXREAL_0: 2;
then
|.((f
. x)
- (f
. x0)).|
<= e by
A4,
A16,
A22,
A53;
then
|.((f
. x1)
- (g
. x1)).|
<= e by
FUNCOP_1: 7,
A54;
hence thesis by
A16,
A37,
A53,
VALUED_1: 13;
end;
A55: for x be
Real st x
in
['a, b'] holds (g
. x)
= (f
. x0) by
FUNCOP_1: 7;
then
A56: (g
|
['a, b']) is
bounded by
A1,
A36,
Th26;
then
A57: ((f
- g)
| (
['a, b']
/\
['a, b'])) is
bounded by
A3,
RFUNCT_1: 84;
A58: m
in
NAT by
ORDINAL1:def 12;
(
rng h)
c= (
dom R) by
A11;
then ((R
. (h
. m))
/ (h
. m))
= (((R
/* h)
. m)
/ (h
. m)) by
FUNCT_2: 108,
A58;
then ((R
. (h
. m))
/ (h
. m))
= (((R
/* h)
. m)
* ((h
" )
. m)) by
VALUED_1: 10;
then
A59: ((R
. (h
. m))
/ (h
. m))
= (((h
" )
(#) (R
/* h))
. m) by
SEQ_1: 8;
(h
. m)
<>
0 by
SEQ_1: 4,
A58;
then
A60:
0
<
|.(h
. m).| by
COMPLEX1: 47;
A61: g
is_integrable_on
['a, b'] by
A1,
A36,
A55,
Th26;
then (f
- g)
is_integrable_on
['a, b'] by
A2,
A3,
A4,
A36,
A56,
Th11;
then
A62:
|.(
integral ((f
- g),x0,(x0
+ (h
. m)))).|
<= (e
*
|.((x0
+ (h
. m))
- x0).|) by
A1,
A7,
A16,
A38,
A33,
A57,
A37,
A41,
Lm8;
(
integral (g,x0,(x0
+ (h
. m))))
= ((f
. x0)
* ((x0
+ (h
. m))
- x0)) by
A1,
A7,
A16,
A38,
A33,
A36,
A55,
Th27;
then (R
. (h
. m))
= (
integral ((f
- g),x0,(x0
+ (h
. m)))) by
A1,
A2,
A3,
A4,
A7,
A16,
A38,
A33,
A35,
A36,
A61,
A56,
A39,
Th24;
then
|.((R
. (h
. m))
/ (h
. m)).|
= (
|.(R
. (h
. m)).|
/
|.(h
. m).|) & (
|.(R
. (h
. m)).|
/
|.(h
. m).|)
<= ((e
*
|.(h
. m).|)
/
|.(h
. m).|) by
A62,
A60,
COMPLEX1: 67,
XREAL_1: 72;
then
A63:
|.((R
. (h
. m))
/ (h
. m)).|
<= e by
A60,
XCMPLX_1: 89;
e
< e0 by
A20,
XREAL_1: 216;
hence thesis by
A63,
A59,
XXREAL_0: 2;
end;
hence ((h
" )
(#) (R
/* h)) is
convergent by
SEQ_2:def 6;
hence thesis by
A18,
SEQ_2:def 7;
end;
consider N be
Neighbourhood of x0 such that
A64: N
c=
].a, b.[ by
A7,
RCOMP_1: 18;
reconsider R as
RestFunc by
A15,
A17,
FDIFF_1:def 2;
A65: for x be
Real st x
in N holds ((F
. x)
- (F
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0)))
proof
let x be
Real;
assume x
in N;
then
A66: (x0
+ (x
- x0))
in N;
reconsider x as
Real;
A67: (x0
+ (x
- x0))
in N by
A66;
C1[(x
- x0)] by
A67,
A64;
then (R
. (x
- x0))
=
F1(-) by
A11;
hence thesis;
end;
A68: N
c= (
dom F) by
A5,
A64;
hence
A69: F
is_differentiable_in x0 by
A65,
FDIFF_1:def 4;
(L
. 1)
= ((f
. x0)
* 1) by
A10;
hence thesis by
A68,
A65,
A69,
FDIFF_1:def 5;
end;
Lm13: for a,b be
Real, f be
PartFunc of
REAL ,
REAL holds ex F be
PartFunc of
REAL ,
REAL st
].a, b.[
c= (
dom F) & for x be
Real st x
in
].a, b.[ holds (F
. x)
= (
integral (f,a,x))
proof
deffunc
G(
Real) =
0 ;
let a,b be
Real;
let f be
PartFunc of
REAL ,
REAL ;
defpred
C[
set] means $1
in
].a, b.[;
deffunc
F(
Real) = (
integral (f,a,$1));
consider F be
Function such that
A1: (
dom F)
=
REAL & for x be
Element of
REAL holds (
C[x] implies (F
. x)
=
F(x)) & ( not
C[x] implies (F
. x)
=
G(x)) from
PARTFUN1:sch 4;
now
let y be
object;
assume y
in (
rng F);
then
consider x be
object such that
A2: x
in (
dom F) and
A3: y
= (F
. x) by
FUNCT_1:def 3;
reconsider x as
Element of
REAL by
A1,
A2;
A4:
now
assume not x
in
].a, b.[;
then (F
. x)
= (
In (
0 ,
REAL )) by
A1;
hence y
in
REAL by
A3;
end;
now
assume x
in
].a, b.[;
then (F
. x)
= (
integral (f,a,x)) by
A1;
hence y
in
REAL by
A3,
XREAL_0:def 1;
end;
hence y
in
REAL by
A4;
end;
then (
rng F)
c=
REAL ;
then
reconsider F as
PartFunc of
REAL ,
REAL by
A1,
RELSET_1: 4;
take F;
thus thesis by
A1;
end;
theorem ::
INTEGRA6:29
for x0 be
Real st a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & x0
in
].a, b.[ & f
is_continuous_in x0 holds ex F be
PartFunc of
REAL ,
REAL st
].a, b.[
c= (
dom F) & (for x be
Real st x
in
].a, b.[ holds (F
. x)
= (
integral (f,a,x))) & F
is_differentiable_in x0 & (
diff (F,x0))
= (f
. x0)
proof
let x0 be
Real;
consider F be
PartFunc of
REAL ,
REAL such that
A1:
].a, b.[
c= (
dom F) & for x be
Real st x
in
].a, b.[ holds (F
. x)
= (
integral (f,a,x)) by
Lm13;
assume a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & x0
in
].a, b.[ & f
is_continuous_in x0;
then F
is_differentiable_in x0 & (
diff (F,x0))
= (f
. x0) by
A1,
Th28;
hence thesis by
A1;
end;