integra5.miz
begin
reserve i,k,n,m for
Element of
NAT ;
reserve a,b,r,r1,r2,s,x,x1,x2 for
Real;
reserve A for non
empty
closed_interval
Subset of
REAL ;
reserve X for
set;
theorem ::
INTEGRA5:1
Th1: for F,F1,F2 be
FinSequence of
REAL , r1, r2 st (F1
= (
<*r1*>
^ F) or F1
= (F
^
<*r1*>)) & (F2
= (
<*r2*>
^ F) or F2
= (F
^
<*r2*>)) holds (
Sum (F1
- F2))
= (r1
- r2)
proof
let F,F1,F2 be
FinSequence of
REAL ;
let r1, r2;
assume that
A1: F1
= (
<*r1*>
^ F) or F1
= (F
^
<*r1*>) and
A2: F2
= (
<*r2*>
^ F) or F2
= (F
^
<*r2*>);
(
len F1)
= ((
len F)
+ (
len
<*r1*>)) by
A1,
FINSEQ_1: 22;
then
A3: (
len F1)
= ((
len F)
+ 1) by
FINSEQ_1: 39;
(
len F2)
= ((
len
<*r2*>)
+ (
len F)) by
A2,
FINSEQ_1: 22;
then
A4: (
len F2)
= (1
+ (
len F)) by
FINSEQ_1: 39;
(F1
- F2)
= (
diffreal
.: (F1,F2)) by
RVSUM_1:def 6;
then
A5: (
len F1)
= (
len (F1
- F2)) by
A3,
A4,
FINSEQ_2: 72;
for k st k
in (
dom F1) holds ((F1
- F2)
. k)
= ((F1
/. k)
- (F2
/. k))
proof
let k;
assume
A6: k
in (
dom F1);
then
A7: (F1
. k)
= (F1
/. k) by
PARTFUN1:def 6;
A8: k
in (
Seg (
len F1)) by
A6,
FINSEQ_1:def 3;
then k
in (
dom F2) by
A3,
A4,
FINSEQ_1:def 3;
then
A9: (F2
. k)
= (F2
/. k) by
PARTFUN1:def 6;
k
in (
dom (F1
- F2)) by
A5,
A8,
FINSEQ_1:def 3;
hence thesis by
A7,
A9,
VALUED_1: 13;
end;
then
A10: (
Sum (F1
- F2))
= ((
Sum F1)
- (
Sum F2)) by
A3,
A4,
A5,
INTEGRA1: 22;
(
Sum F1)
= (r1
+ (
Sum F)) & (
Sum F2)
= ((
Sum F)
+ r2) by
A1,
A2,
RVSUM_1: 74,
RVSUM_1: 76;
hence thesis by
A10;
end;
theorem ::
INTEGRA5:2
Th2: for F1,F2 be
FinSequence of
REAL st (
len F1)
= (
len F2) holds (
len (F1
+ F2))
= (
len F1) & (
len (F1
- F2))
= (
len F1) & (
Sum (F1
+ F2))
= ((
Sum F1)
+ (
Sum F2)) & (
Sum (F1
- F2))
= ((
Sum F1)
- (
Sum F2))
proof
let F1,F2 be
FinSequence of
REAL ;
assume
A1: (
len F1)
= (
len F2);
(F1
+ F2)
= (
addreal
.: (F1,F2)) by
RVSUM_1:def 4;
hence
A2: (
len F1)
= (
len (F1
+ F2)) by
A1,
FINSEQ_2: 72;
(F1
- F2)
= (
diffreal
.: (F1,F2)) by
RVSUM_1:def 6;
hence
A3: (
len F1)
= (
len (F1
- F2)) by
A1,
FINSEQ_2: 72;
for k st k
in (
dom F1) holds ((F1
+ F2)
. k)
= ((F1
/. k)
+ (F2
/. k))
proof
let k;
assume
A4: k
in (
dom F1);
then
A5: (F1
. k)
= (F1
/. k) by
PARTFUN1:def 6;
A6: k
in (
Seg (
len F1)) by
A4,
FINSEQ_1:def 3;
then k
in (
dom F2) by
A1,
FINSEQ_1:def 3;
then
A7: (F2
. k)
= (F2
/. k) by
PARTFUN1:def 6;
k
in (
dom (F1
+ F2)) by
A2,
A6,
FINSEQ_1:def 3;
hence thesis by
A5,
A7,
VALUED_1:def 1;
end;
hence (
Sum (F1
+ F2))
= ((
Sum F1)
+ (
Sum F2)) by
A1,
A2,
INTEGRA1: 21;
for k st k
in (
dom F1) holds ((F1
- F2)
. k)
= ((F1
/. k)
- (F2
/. k))
proof
let k;
assume
A8: k
in (
dom F1);
then
A9: (F1
. k)
= (F1
/. k) by
PARTFUN1:def 6;
A10: k
in (
Seg (
len F1)) by
A8,
FINSEQ_1:def 3;
then k
in (
dom F2) by
A1,
FINSEQ_1:def 3;
then
A11: (F2
. k)
= (F2
/. k) by
PARTFUN1:def 6;
k
in (
dom (F1
- F2)) by
A3,
A10,
FINSEQ_1:def 3;
hence thesis by
A9,
A11,
VALUED_1: 13;
end;
hence thesis by
A1,
A3,
INTEGRA1: 22;
end;
theorem ::
INTEGRA5:3
Th3: for F1,F2 be
FinSequence of
REAL st (
len F1)
= (
len F2) & (for i st i
in (
dom F1) holds (F1
. i)
<= (F2
. i)) holds (
Sum F1)
<= (
Sum F2)
proof
let F1,F2 be
FinSequence of
REAL ;
assume that
A1: (
len F1)
= (
len F2) and
A2: for i st i
in (
dom F1) holds (F1
. i)
<= (F2
. i);
reconsider R1 = F1 as
Element of ((
len F1)
-tuples_on
REAL ) by
FINSEQ_2: 92;
reconsider R2 = F2 as
Element of ((
len F1)
-tuples_on
REAL ) by
A1,
FINSEQ_2: 92;
for i be
Nat st i
in (
Seg (
len F1)) holds (R1
. i)
<= (R2
. i)
proof
let i be
Nat;
assume i
in (
Seg (
len F1));
then i
in (
dom F1) by
FINSEQ_1:def 3;
hence thesis by
A2;
end;
hence thesis by
RVSUM_1: 82;
end;
begin
notation
let f be
PartFunc of
REAL ,
REAL ;
let C be non
empty
Subset of
REAL ;
synonym f
|| C for f
| C;
end
definition
let f be
PartFunc of
REAL ,
REAL ;
let C be non
empty
Subset of
REAL ;
:: original:
||
redefine
func f
|| C ->
PartFunc of C,
REAL ;
correctness by
PARTFUN1: 10;
end
theorem ::
INTEGRA5:4
Th4: for f,g be
PartFunc of
REAL ,
REAL , C be non
empty
Subset of
REAL holds ((f
|| C)
(#) (g
|| C))
= ((f
(#) g)
|| C)
proof
let f,g be
PartFunc of
REAL ,
REAL ;
let C be non
empty
Subset of
REAL ;
A1: (
dom ((f
(#) g)
|| C))
= ((
dom (f
(#) g))
/\ C) by
RELAT_1: 61
.= (((
dom f)
/\ (
dom g))
/\ C) by
VALUED_1:def 4;
A2: (
dom ((f
|| C)
(#) (g
|| C)))
= ((
dom (f
| C))
/\ (
dom (g
|| C))) by
VALUED_1:def 4
.= (((
dom f)
/\ C)
/\ (
dom (g
| C))) by
RELAT_1: 61
.= (((
dom f)
/\ C)
/\ ((
dom g)
/\ C)) by
RELAT_1: 61
.= ((((
dom f)
/\ C)
/\ C)
/\ (
dom g)) by
XBOOLE_1: 16
.= (((
dom f)
/\ (C
/\ C))
/\ (
dom g)) by
XBOOLE_1: 16
.= (((
dom f)
/\ C)
/\ (
dom g));
then
A3: (
dom ((f
|| C)
(#) (g
|| C)))
= (
dom ((f
(#) g)
|| C)) by
A1,
XBOOLE_1: 16;
for c be
Element of C st c
in (
dom ((f
|| C)
(#) (g
|| C))) holds (((f
|| C)
(#) (g
|| C))
. c)
= (((f
(#) g)
|| C)
. c)
proof
let c be
Element of C;
A4: (((f
|| C)
(#) (g
|| C))
. c)
= (((f
| C)
. c)
* ((g
| C)
. c)) by
VALUED_1: 5;
assume
A5: c
in (
dom ((f
|| C)
(#) (g
|| C)));
then
A6: c
in ((
dom (f
|| C))
/\ (
dom (g
|| C))) by
VALUED_1:def 4;
then
A7: c
in (
dom (f
|| C)) by
XBOOLE_0:def 4;
A8: c
in (
dom (g
|| C)) by
A6,
XBOOLE_0:def 4;
(((f
(#) g)
|| C)
. c)
= ((f
(#) g)
. c) by
A3,
A5,
FUNCT_1: 47
.= ((f
. c)
* (g
. c)) by
VALUED_1: 5
.= (((f
| C)
. c)
* (g
. c)) by
A7,
FUNCT_1: 47;
hence thesis by
A8,
A4,
FUNCT_1: 47;
end;
hence thesis by
A2,
A1,
PARTFUN1: 5,
XBOOLE_1: 16;
end;
theorem ::
INTEGRA5:5
Th5: for f,g be
PartFunc of
REAL ,
REAL , C be non
empty
Subset of
REAL holds ((f
+ g)
|| C)
= ((f
|| C)
+ (g
|| C))
proof
let f,g be
PartFunc of
REAL ,
REAL ;
let C be non
empty
Subset of
REAL ;
A1: (
dom ((f
|| C)
+ (g
|| C)))
= ((
dom (f
| C))
/\ (
dom (g
|| C))) by
VALUED_1:def 1
.= (((
dom f)
/\ C)
/\ (
dom (g
| C))) by
RELAT_1: 61
.= (((
dom f)
/\ C)
/\ ((
dom g)
/\ C)) by
RELAT_1: 61
.= ((
dom f)
/\ (C
/\ ((
dom g)
/\ C))) by
XBOOLE_1: 16
.= ((
dom f)
/\ ((
dom g)
/\ (C
/\ C))) by
XBOOLE_1: 16
.= ((
dom f)
/\ ((
dom g)
/\ C));
A2: (
dom ((f
+ g)
|| C))
= ((
dom (f
+ g))
/\ C) by
RELAT_1: 61
.= (((
dom f)
/\ (
dom g))
/\ C) by
VALUED_1:def 1;
then
A3: (
dom ((f
+ g)
|| C))
= (
dom ((f
|| C)
+ (g
|| C))) by
A1,
XBOOLE_1: 16;
for c be
Element of C st c
in (
dom ((f
+ g)
|| C)) holds (((f
+ g)
|| C)
. c)
= (((f
|| C)
+ (g
|| C))
. c)
proof
let c be
Element of C;
assume
A4: c
in (
dom ((f
+ g)
|| C));
then c
in ((
dom (f
+ g))
/\ C) by
RELAT_1: 61;
then
A5: c
in (
dom (f
+ g)) by
XBOOLE_0:def 4;
A6: c
in ((
dom (f
|| C))
/\ (
dom (g
|| C))) by
A3,
A4,
VALUED_1:def 1;
then
A7: c
in (
dom (f
|| C)) by
XBOOLE_0:def 4;
A8: (((f
+ g)
|| C)
. c)
= ((f
+ g)
. c) by
A4,
FUNCT_1: 47
.= ((f
. c)
+ (g
. c)) by
A5,
VALUED_1:def 1;
A9: c
in (
dom (g
|| C)) by
A6,
XBOOLE_0:def 4;
(((f
|| C)
+ (g
|| C))
. c)
= (((f
| C)
. c)
+ ((g
|| C)
. c)) by
A3,
A4,
VALUED_1:def 1
.= ((f
. c)
+ ((g
| C)
. c)) by
A7,
FUNCT_1: 47;
hence thesis by
A8,
A9,
FUNCT_1: 47;
end;
hence thesis by
A2,
A1,
PARTFUN1: 5,
XBOOLE_1: 16;
end;
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL ,
REAL ;
::
INTEGRA5:def1
pred f
is_integrable_on A means (f
|| A) is
integrable;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL ,
REAL ;
::
INTEGRA5:def2
func
integral (f,A) ->
Real equals (
integral (f
|| A));
correctness ;
end
theorem ::
INTEGRA5:6
Th6: for f be
PartFunc of
REAL ,
REAL st A
c= (
dom f) holds (f
|| A) is
total
proof
let f be
PartFunc of
REAL ,
REAL ;
assume
A1: A
c= (
dom f);
(
dom (f
|| A))
= ((
dom f)
/\ A) by
RELAT_1: 61
.= A by
A1,
XBOOLE_1: 28;
hence thesis by
PARTFUN1:def 2;
end;
theorem ::
INTEGRA5:7
for f be
PartFunc of
REAL ,
REAL st (f
| A) is
bounded_above holds ((f
|| A)
| A) is
bounded_above;
theorem ::
INTEGRA5:8
for f be
PartFunc of
REAL ,
REAL st (f
| A) is
bounded_below holds ((f
|| A)
| A) is
bounded_below;
theorem ::
INTEGRA5:9
for f be
PartFunc of
REAL ,
REAL st (f
| A) is
bounded holds ((f
|| A)
| A) is
bounded;
begin
theorem ::
INTEGRA5:10
Th10: for f be
PartFunc of
REAL ,
REAL st A
c= (
dom f) & (f
| A) is
continuous holds (f
| A) is
bounded
proof
let f be
PartFunc of
REAL ,
REAL ;
assume
A1: A
c= (
dom f);
assume (f
| A) is
continuous;
then
A2: (f
.: A) is
real-bounded by
A1,
FCONT_1: 29,
RCOMP_1: 10;
then
consider a be
Real such that
A3: a is
UpperBound of (f
.: A) by
XXREAL_2:def 10;
A4: for r be
Real st r
in (f
.: A) holds r
<= a by
A3,
XXREAL_2:def 1;
consider b be
Real such that
A5: b is
LowerBound of (f
.: A) by
A2,
XXREAL_2:def 9;
A6: for r be
Real st r
in (f
.: A) holds b
<= r by
A5,
XXREAL_2:def 2;
for x be
object st x
in (A
/\ (
dom f)) holds b
<= (f
. x)
proof
let x be
object;
assume x
in (A
/\ (
dom f));
then x
in A & x
in (
dom f) by
XBOOLE_0:def 4;
then (f
. x)
in (f
.: A) by
FUNCT_1:def 6;
hence thesis by
A6;
end;
then
A7: (f
| A) is
bounded_below by
RFUNCT_1: 71;
for x be
object st x
in (A
/\ (
dom f)) holds (f
. x)
<= a
proof
let x be
object;
assume x
in (A
/\ (
dom f));
then x
in A & x
in (
dom f) by
XBOOLE_0:def 4;
then (f
. x)
in (f
.: A) by
FUNCT_1:def 6;
hence thesis by
A4;
end;
then (f
| A) is
bounded_above by
RFUNCT_1: 70;
hence thesis by
A7;
end;
theorem ::
INTEGRA5:11
Th11: for f be
PartFunc of
REAL ,
REAL st A
c= (
dom f) & (f
| A) is
continuous holds f
is_integrable_on A
proof
let f be
PartFunc of
REAL ,
REAL ;
assume
A1: A
c= (
dom f);
reconsider g = (f
| A) as
PartFunc of A,
REAL by
PARTFUN1: 10;
A2: (
dom g)
= ((
dom f)
/\ A) by
RELAT_1: 61
.= A by
A1,
XBOOLE_1: 28;
then
A3: g is
total by
PARTFUN1:def 2;
for y be
object st y
in (f
.: A) holds y
in (
rng g)
proof
let y be
object;
assume y
in (f
.: A);
then
consider x be
object such that x
in (
dom f) and
A4: x
in A and
A5: y
= (f
. x) by
FUNCT_1:def 6;
(g
. x)
in (
rng g) by
A2,
A4,
FUNCT_1:def 3;
hence thesis by
A2,
A4,
A5,
FUNCT_1: 47;
end;
then
A6: (f
.: A)
c= (
rng g) by
TARSKI:def 3;
for y be
object st y
in (
rng g) holds y
in (f
.: A)
proof
let y be
object;
assume y
in (
rng g);
then
consider x be
object such that
A7: x
in (
dom g) and
A8: y
= (g
. x) by
FUNCT_1:def 3;
(f
. x)
in (f
.: A) by
A1,
A2,
A7,
FUNCT_1:def 6;
hence thesis by
A7,
A8,
FUNCT_1: 47;
end;
then (
rng g)
c= (f
.: A) by
TARSKI:def 3;
then
A9: (
rng g)
= (f
.: A) by
A6,
XBOOLE_0:def 10;
assume
A10: (f
| A) is
continuous;
then (f
.: A) is
real-bounded by
A1,
FCONT_1: 29,
RCOMP_1: 10;
then
A11: (g
| A) is
bounded_above & (g
| A) is
bounded_below by
A9,
INTEGRA1: 12,
INTEGRA1: 14;
reconsider g as
Function of A,
REAL by
A3;
A12: (f
| A) is
uniformly_continuous by
A1,
A10,
FCONT_2: 11;
for T be
DivSequence of A st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds ((
lim (
upper_sum (g,T)))
- (
lim (
lower_sum (g,T))))
=
0
proof
let T be
DivSequence of A;
reconsider osc = ((
upper_sum (g,T))
- (
lower_sum (g,T))) as
Real_Sequence;
assume
A13: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
A14: for r be
Real st
0
< r holds ex n be
Nat st for m be
Nat st n
<= m holds
|.((osc
. m)
-
0 ).|
< r
proof
let r be
Real;
assume
A15: r
>
0 ;
ex r1 st r1
>
0 & (r1
* (
vol A))
< r
proof
per cases by
INTEGRA1: 9;
suppose
A16: (
vol A)
=
0 ;
take 1;
(r1
* (
vol A))
< r by
A15,
A16;
hence thesis;
end;
suppose
A17: (
vol A)
>
0 ;
then (r
/ (
vol A))
>
0 by
A15,
XREAL_1: 139;
then
consider r1 be
Real such that
A18:
0
< r1 and
A19: r1
< (r
/ (
vol A)) by
XREAL_1: 5;
take r1;
(r1
* (
vol A))
< r by
A17,
A19,
XREAL_1: 79;
hence thesis by
A18;
end;
end;
then
consider r1 such that
A20: r1
>
0 and
A21: (r1
* (
vol A))
< r;
consider s such that
A22:
0
< s and
A23: for x1, x2 st x1
in (
dom (f
| A)) & x2
in (
dom (f
| A)) &
|.(x1
- x2).|
< s holds
|.((f
. x1)
- (f
. x2)).|
< r1 by
A12,
A20,
FCONT_2: 1;
consider n be
Nat such that
A24: for m be
Nat st n
<= m holds
|.(((
delta T)
. m)
-
0 ).|
< s by
A13,
A22,
SEQ_2:def 7;
A25: for m st n
<= m holds (((
upper_sum (g,T))
. m)
- ((
lower_sum (g,T))
. m))
<= (r1
* (
vol A))
proof
let m;
reconsider D = (T
. m) as
Division of A;
(
len (
upper_volume (g,D)))
= (
len D) by
INTEGRA1:def 6;
then
reconsider UV = (
upper_volume (g,D)) as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
(
len (
lower_volume (g,D)))
= (
len D) by
INTEGRA1:def 7;
then
reconsider LV = (
lower_volume (g,D)) as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
reconsider OSC = (UV
- LV) as
Element of ((
len D)
-tuples_on
REAL );
(
len (
upper_volume ((
chi (A,A)),D)))
= (
len D) by
INTEGRA1:def 6;
then
reconsider VOL = (
upper_volume ((
chi (A,A)),D)) as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
assume
A26: n
<= m;
A27: for k st k
in (
dom D) holds (((
upper_volume (g,D))
. k)
- ((
lower_volume (g,D))
. k))
<= (r1
* ((
upper_volume ((
chi (A,A)),D))
. k))
proof
let k;
assume
A28: k
in (
dom D);
reconsider h = (g
| (
divset (D,k))) as
PartFunc of (
divset (D,k)),
REAL by
PARTFUN1: 10;
(
dom g)
= A by
PARTFUN1:def 2;
then ((
dom g)
/\ (
divset (D,k)))
= (
divset (D,k)) by
A28,
INTEGRA1: 8,
XBOOLE_1: 28;
then (
dom h)
= (
divset (D,k)) by
RELAT_1: 61;
then h is
total by
PARTFUN1:def 2;
then
reconsider h as
Function of (
divset (D,k)),
REAL ;
A29: for x1, x2 st x1
in (
divset (D,k)) & x2
in (
divset (D,k)) holds
|.((h
. x1)
- (h
. x2)).|
<= r1
proof
((
upper_volume ((
chi (A,A)),D))
. k)
= (
vol (
divset (D,k))) by
A28,
INTEGRA1: 20;
then
A30: ((
upper_volume ((
chi (A,A)),D))
. k)
>=
0 by
INTEGRA1: 9;
k
in (
Seg (
len D)) by
A28,
FINSEQ_1:def 3;
then k
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
INTEGRA1:def 6;
then k
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
then
A31: ((
upper_volume ((
chi (A,A)),D))
. k)
in (
rng (
upper_volume ((
chi (A,A)),D))) by
FUNCT_1:def 3;
(
dom h)
= ((
dom g)
/\ (
divset (D,k))) by
RELAT_1: 61;
then
A32: (
dom h)
c= (
dom g) by
XBOOLE_1: 17;
let x1, x2;
assume that
A33: x1
in (
divset (D,k)) and
A34: x2
in (
divset (D,k));
A35: x2
in (
dom h) by
A34,
PARTFUN1:def 2;
then (g
. x2)
= (h
. x2) by
FUNCT_1: 47;
then
A36: (f
. x2)
= (h
. x2) by
A35,
A32,
FUNCT_1: 47;
A37:
|.(x1
- x2).|
<= ((
delta T)
. m)
proof
now
per cases ;
suppose x1
>= x2;
then (x1
- x2)
>=
0 by
XREAL_1: 48;
then
A38:
|.(x1
- x2).|
= (x1
- x2) by
ABSVALUE:def 1;
x1
<= (
upper_bound (
divset (D,k))) & x2
>= (
lower_bound (
divset (D,k))) by
A33,
A34,
INTEGRA2: 1;
then
|.(x1
- x2).|
<= ((
upper_bound (
divset (D,k)))
- (
lower_bound (
divset (D,k)))) by
A38,
XREAL_1: 13;
then
A39:
|.(x1
- x2).|
<= (
vol (
divset (D,k))) by
INTEGRA1:def 5;
k
in (
Seg (
len D)) by
A28,
FINSEQ_1:def 3;
then k
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
INTEGRA1:def 6;
then k
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
then ((
upper_volume ((
chi (A,A)),D))
. k)
in (
rng (
upper_volume ((
chi (A,A)),D))) by
FUNCT_1:def 3;
then ((
upper_volume ((
chi (A,A)),D))
. k)
<= (
max (
rng (
upper_volume ((
chi (A,A)),D)))) by
XXREAL_2:def 8;
then
A40: ((
upper_volume ((
chi (A,A)),D))
. k)
<= (
delta (T
. m)) by
INTEGRA3:def 1;
((
upper_volume ((
chi (A,A)),D))
. k)
= (
vol (
divset (D,k))) by
A28,
INTEGRA1: 20;
then
|.(x1
- x2).|
<= (
delta (T
. m)) by
A39,
A40,
XXREAL_0: 2;
hence thesis by
INTEGRA3:def 2;
end;
suppose x1
< x2;
then (x1
- x2)
<
0 by
XREAL_1: 49;
then
|.(x1
- x2).|
= (
- (x1
- x2)) by
ABSVALUE:def 1;
then
A41:
|.(x1
- x2).|
= (x2
- x1);
x2
<= (
upper_bound (
divset (D,k))) & x1
>= (
lower_bound (
divset (D,k))) by
A33,
A34,
INTEGRA2: 1;
then
|.(x1
- x2).|
<= ((
upper_bound (
divset (D,k)))
- (
lower_bound (
divset (D,k)))) by
A41,
XREAL_1: 13;
then
A42:
|.(x1
- x2).|
<= (
vol (
divset (D,k))) by
INTEGRA1:def 5;
k
in (
Seg (
len D)) by
A28,
FINSEQ_1:def 3;
then k
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
INTEGRA1:def 6;
then k
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
then ((
upper_volume ((
chi (A,A)),D))
. k)
in (
rng (
upper_volume ((
chi (A,A)),D))) by
FUNCT_1:def 3;
then ((
upper_volume ((
chi (A,A)),D))
. k)
<= (
max (
rng (
upper_volume ((
chi (A,A)),D)))) by
XXREAL_2:def 8;
then
A43: ((
upper_volume ((
chi (A,A)),D))
. k)
<= (
delta (T
. m)) by
INTEGRA3:def 1;
((
upper_volume ((
chi (A,A)),D))
. k)
= (
vol (
divset (D,k))) by
A28,
INTEGRA1: 20;
then
|.(x1
- x2).|
<= (
delta (T
. m)) by
A42,
A43,
XXREAL_0: 2;
hence thesis by
INTEGRA3:def 2;
end;
end;
hence thesis;
end;
((
delta T)
. m)
= (
delta D) by
INTEGRA3:def 2
.= (
max (
rng (
upper_volume ((
chi (A,A)),D)))) by
INTEGRA3:def 1;
then (((
delta T)
. m)
-
0 )
>=
0 by
A30,
A31,
XXREAL_2:def 8;
then
A44:
|.(x1
- x2).|
<=
|.(((
delta T)
. m)
-
0 ).| by
A37,
ABSVALUE:def 1;
|.(((
delta T)
. m)
-
0 ).|
< s by
A24,
A26;
then
A45:
|.(x1
- x2).|
< s by
A44,
XXREAL_0: 2;
A46: x1
in (
dom h) by
A33,
PARTFUN1:def 2;
then (g
. x1)
= (h
. x1) by
FUNCT_1: 47;
then (f
. x1)
= (h
. x1) by
A46,
A32,
FUNCT_1: 47;
hence thesis by
A23,
A45,
A46,
A35,
A32,
A36;
end;
(
vol (
divset (D,k)))
>=
0 by
INTEGRA1: 9;
then (((
upper_bound (
rng (g
| (
divset (D,k)))))
- (
lower_bound (
rng (g
| (
divset (D,k))))))
* (
vol (
divset (D,k))))
<= (r1
* (
vol (
divset (D,k)))) by
A29,
INTEGRA4: 24,
XREAL_1: 64;
then (((
upper_bound (
rng (g
| (
divset (D,k)))))
* (
vol (
divset (D,k))))
- ((
lower_bound (
rng (g
| (
divset (D,k)))))
* (
vol (
divset (D,k)))))
<= (r1
* (
vol (
divset (D,k))));
then (((
upper_volume (g,D))
. k)
- ((
lower_bound (
rng (g
| (
divset (D,k)))))
* (
vol (
divset (D,k)))))
<= (r1
* (
vol (
divset (D,k)))) by
A28,
INTEGRA1:def 6;
then (((
upper_volume (g,D))
. k)
- ((
lower_volume (g,D))
. k))
<= (r1
* (
vol (
divset (D,k)))) by
A28,
INTEGRA1:def 7;
hence thesis by
A28,
INTEGRA1: 20;
end;
for k be
Nat st k
in (
Seg (
len D)) holds (OSC
. k)
<= ((r1
* VOL)
. k)
proof
let k be
Nat;
assume k
in (
Seg (
len D));
then
A47: k
in (
dom D) by
FINSEQ_1:def 3;
(OSC
. k)
= (((
upper_volume (g,D))
. k)
- ((
lower_volume (g,D))
. k)) by
RVSUM_1: 27;
then (OSC
. k)
<= (r1
* (VOL
. k)) by
A27,
A47;
hence thesis by
RVSUM_1: 45;
end;
then (
Sum OSC)
<= (
Sum (r1
* VOL)) by
RVSUM_1: 82;
then (
Sum OSC)
<= (r1
* (
Sum VOL)) by
RVSUM_1: 87;
then ((
Sum UV)
- (
Sum LV))
<= (r1
* (
Sum VOL)) by
RVSUM_1: 90;
then ((
upper_sum (g,D))
- (
Sum LV))
<= (r1
* (
Sum VOL)) by
INTEGRA1:def 8;
then ((
upper_sum (g,D))
- (
lower_sum (g,D)))
<= (r1
* (
Sum VOL)) by
INTEGRA1:def 9;
then ((
upper_sum (g,D))
- (
lower_sum (g,D)))
<= (r1
* (
vol A)) by
INTEGRA1: 24;
then (((
upper_sum (g,T))
. m)
- (
lower_sum (g,D)))
<= (r1
* (
vol A)) by
INTEGRA2:def 2;
hence thesis by
INTEGRA2:def 3;
end;
take n;
let m be
Nat;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
reconsider D = (T
. mm) as
Division of A;
assume n
<= m;
then (((
upper_sum (g,T))
. mm)
- ((
lower_sum (g,T))
. mm))
<= (r1
* (
vol A)) by
A25;
then
A48: (((
upper_sum (g,T))
. m)
- ((
lower_sum (g,T))
. m))
< r by
A21,
XXREAL_0: 2;
(
upper_sum (g,D))
>= (
lower_sum (g,D)) by
A11,
INTEGRA1: 28;
then ((
upper_sum (g,T))
. mm)
>= (
lower_sum (g,D)) by
INTEGRA2:def 2;
then ((
upper_sum (g,T))
. mm)
>= ((
lower_sum (g,T))
. mm) by
INTEGRA2:def 3;
then
A49: (((
upper_sum (g,T))
. m)
- ((
lower_sum (g,T))
. m))
>=
0 by
XREAL_1: 48;
(osc
. m)
= (((
upper_sum (g,T))
. m)
+ ((
- (
lower_sum (g,T)))
. m)) by
SEQ_1: 7
.= (((
upper_sum (g,T))
. m)
+ (
- ((
lower_sum (g,T))
. m))) by
SEQ_1: 10
.= (((
upper_sum (g,T))
. m)
- ((
lower_sum (g,T))
. m));
hence thesis by
A48,
A49,
ABSVALUE:def 1;
end;
then osc is
convergent by
SEQ_2:def 6;
then
A50: (
lim osc)
=
0 by
A14,
SEQ_2:def 7;
(
upper_sum (g,T)) is
convergent & (
lower_sum (g,T)) is
convergent by
A11,
A13,
INTEGRA4: 8,
INTEGRA4: 9;
hence thesis by
A50,
SEQ_2: 12;
end;
then g is
integrable by
A11,
INTEGRA4: 12;
hence thesis;
end;
theorem ::
INTEGRA5:12
Th12: for f be
PartFunc of
REAL ,
REAL , D be
Division of A st A
c= X & f
is_differentiable_on X & ((f
`| X)
| A) is
bounded holds (
lower_sum (((f
`| X)
|| A),D))
<= ((f
. (
upper_bound A))
- (f
. (
lower_bound A))) & ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
<= (
upper_sum (((f
`| X)
|| A),D))
proof
let f be
PartFunc of
REAL ,
REAL ;
let D be
Division of A;
assume that
A1: A
c= X and
A2: f
is_differentiable_on X and
A3: ((f
`| X)
| A) is
bounded;
((
len D)
- 1)
in
NAT
proof
ex j be
Nat st (
len D)
= (1
+ j) by
NAT_1: 10,
NAT_1: 14;
hence thesis by
ORDINAL1:def 12;
end;
then
reconsider k1 = ((
len D)
- 1) as
Element of
NAT ;
deffunc
G(
Nat) = (
In ((f
. (
lower_bound (
divset (D,($1
+ 1))))),
REAL ));
deffunc
F(
Nat) = (
In (((f
. (
upper_bound (
divset (D,$1))))
- (f
. (
lower_bound (
divset (D,$1))))),
REAL ));
consider p be
FinSequence of
REAL such that
A4: (
len p)
= (
len D) & for i be
Nat st i
in (
dom p) holds (p
. i)
=
F(i) from
FINSEQ_2:sch 1;
X
c= (
dom f) by
A2,
FDIFF_1:def 6;
then
A5: A
c= (
dom f) by
A1,
XBOOLE_1: 1;
A6: for k st k
in (
dom D) holds ex r st r
in (
divset (D,k)) & ((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
= ((
diff (f,r))
* (
vol (
divset (D,k))))
proof
let k;
assume
A7: k
in (
dom D);
now
per cases ;
suppose
A8: (
lower_bound (
divset (D,k)))
= (
upper_bound (
divset (D,k)));
consider r such that
A9: r
= (
upper_bound (
divset (D,k)));
A10: r
in (
divset (D,k))
proof
ex a, b st a
<= b & a
= (
lower_bound (
divset (D,k))) & b
= (
upper_bound (
divset (D,k))) by
SEQ_4: 11;
hence thesis by
A9,
INTEGRA2: 1;
end;
((
upper_bound (
divset (D,k)))
- (
lower_bound (
divset (D,k))))
=
0 by
A8;
then (
vol (
divset (D,k)))
=
0 by
INTEGRA1:def 5;
then ((
diff (f,r))
* (
vol (
divset (D,k))))
=
0 ;
hence thesis by
A8,
A10;
end;
suppose
A11: (
lower_bound (
divset (D,k)))
<> (
upper_bound (
divset (D,k)));
ex r1, r2 st r1
<= r2 & r1
= (
lower_bound (
divset (D,k))) & r2
= (
upper_bound (
divset (D,k))) by
SEQ_4: 11;
then
A12: (
lower_bound (
divset (D,k)))
< (
upper_bound (
divset (D,k))) by
A11,
XXREAL_0: 1;
(f
| X) is
continuous by
A2,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A13: (f
| (
divset (D,k))) is
continuous by
A7,
FCONT_1: 16,
INTEGRA1: 8;
A14: (
divset (D,k))
=
[.(
lower_bound (
divset (D,k))), (
upper_bound (
divset (D,k))).] by
INTEGRA1: 4;
then
A15:
].(
lower_bound (
divset (D,k))), (
upper_bound (
divset (D,k))).[
c= (
divset (D,k)) by
XXREAL_1: 25;
A16: (
divset (D,k))
c= A by
A7,
INTEGRA1: 8;
then
].(
lower_bound (
divset (D,k))), (
upper_bound (
divset (D,k))).[
c= A by
A15,
XBOOLE_1: 1;
then f
is_differentiable_on
].(
lower_bound (
divset (D,k))), (
upper_bound (
divset (D,k))).[ by
A1,
A2,
FDIFF_1: 26,
XBOOLE_1: 1;
then
consider r such that
A17: r
in
].(
lower_bound (
divset (D,k))), (
upper_bound (
divset (D,k))).[ and
A18: (
diff (f,r))
= (((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
/ ((
upper_bound (
divset (D,k)))
- (
lower_bound (
divset (D,k))))) by
A5,
A16,
A13,
A12,
A14,
ROLLE: 3,
XBOOLE_1: 1;
((
upper_bound (
divset (D,k)))
- (
lower_bound (
divset (D,k))))
>
0 by
A12,
XREAL_1: 50;
then ((
diff (f,r))
* ((
upper_bound (
divset (D,k)))
- (
lower_bound (
divset (D,k)))))
= ((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k))))) by
A18,
XCMPLX_1: 87;
then ((
diff (f,r))
* (
vol (
divset (D,k))))
= ((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k))))) by
INTEGRA1:def 5;
hence thesis by
A15,
A17;
end;
end;
hence thesis;
end;
A19: (
dom p)
= (
Seg (
len D)) by
A4,
FINSEQ_1:def 3;
A20: for i st i
in (
Seg k1) holds (
upper_bound (
divset (D,i)))
= (
lower_bound (
divset (D,(i
+ 1))))
proof
let i;
assume
A21: i
in (
Seg k1);
then i
<= k1 by
FINSEQ_1: 1;
then
A22: (i
+ 1)
<= (k1
+ 1) by
XREAL_1: 7;
1
<= i by
A21,
FINSEQ_1: 1;
then (1
+
0 )
<= (i
+ 1) by
XREAL_1: 7;
then (i
+ 1)
in (
Seg (
len D)) by
A22,
FINSEQ_1: 1;
then
A23: (i
+ 1)
in (
dom D) by
FINSEQ_1:def 3;
(k1
+ 1)
= (
len D);
then k1
<= (
len D) by
NAT_1: 11;
then (
Seg k1)
c= (
Seg (
len D)) by
FINSEQ_1: 5;
then i
in (
Seg (
len D)) by
A21;
then
A24: i
in (
dom D) by
FINSEQ_1:def 3;
A25: ((i
+ 1)
- 1)
= i;
now
per cases ;
suppose
A26: i
= 1;
then (
upper_bound (
divset (D,i)))
= (D
. i) by
A24,
INTEGRA1:def 4;
hence thesis by
A23,
A25,
A26,
INTEGRA1:def 4;
end;
suppose
A27: i
<> 1;
i
>= 1 by
A21,
FINSEQ_1: 1;
then (i
+ 1)
>= (1
+ 1) by
XREAL_1: 6;
then
A28: (i
+ 1)
<> 1;
(
upper_bound (
divset (D,i)))
= (D
. i) by
A24,
A27,
INTEGRA1:def 4;
hence thesis by
A23,
A25,
A28,
INTEGRA1:def 4;
end;
end;
hence thesis;
end;
consider s2 be
FinSequence of
REAL such that
A29: (
len s2)
= k1 & for i be
Nat st i
in (
dom s2) holds (s2
. i)
=
G(i) from
FINSEQ_2:sch 1;
A30: for k st k
in (
dom D) holds (
rng (((f
`| X)
|| A)
| (
divset (D,k)))) is
real-bounded
proof
(
dom (f
`| X))
= X by
A2,
FDIFF_1:def 7;
then
reconsider g = (f
`| X) as
PartFunc of X,
REAL by
RELSET_1: 5;
let k;
assume k
in (
dom D);
consider r1 be
Real such that
A31: for x be
object st x
in (A
/\ (
dom (f
`| X))) holds ((f
`| X)
. x)
<= r1 by
A3,
RFUNCT_1: 70;
consider r2 be
Real such that
A32: for x be
object st x
in (A
/\ (
dom (f
`| X))) holds ((f
`| X)
. x)
>= r2 by
A3,
RFUNCT_1: 71;
A33: (
dom ((f
`| X)
| A))
= ((
dom (f
`| X))
/\ A) by
RELAT_1: 61;
for x be
object st x
in (A
/\ (
dom ((f
`| X)
|| A))) holds (((f
`| X)
|| A)
. x)
>= r2
proof
let x be
object;
A34: (A
/\ (A
/\ (
dom (f
`| X))))
= ((A
/\ A)
/\ (
dom (f
`| X))) by
XBOOLE_1: 16
.= (A
/\ (
dom (f
`| X)));
reconsider y = (g
. x) as
Real;
assume
A35: x
in (A
/\ (
dom ((f
`| X)
|| A)));
then y
>= r2 by
A32,
A33,
A34;
hence thesis by
A33,
A35,
A34,
FUNCT_1: 47;
end;
then (((f
`| X)
|| A)
| A) is
bounded_below by
RFUNCT_1: 71;
then
A36: (
rng (((f
`| X)
|| A)
| (
divset (D,k)))) is
bounded_below by
INTEGRA4: 19;
for x be
object st x
in (A
/\ (
dom ((f
`| X)
|| A))) holds (((f
`| X)
|| A)
. x)
<= r1
proof
let x be
object;
A37: (A
/\ (A
/\ (
dom (f
`| X))))
= ((A
/\ A)
/\ (
dom (f
`| X))) by
XBOOLE_1: 16
.= (A
/\ (
dom (f
`| X)));
reconsider y = (g
. x) as
Real;
assume
A38: x
in (A
/\ (
dom ((f
`| X)
|| A)));
then y
<= r1 by
A31,
A33,
A37;
hence thesis by
A33,
A38,
A37,
FUNCT_1: 47;
end;
then (((f
`| X)
|| A)
| A) is
bounded_above by
RFUNCT_1: 70;
then (
rng (((f
`| X)
|| A)
| (
divset (D,k)))) is
bounded_above by
INTEGRA4: 18;
hence thesis by
A36;
end;
deffunc
F1(
Nat) = (
In ((f
. (
upper_bound (
divset (D,$1)))),
REAL ));
consider s1 be
FinSequence of
REAL such that
A39: (
len s1)
= k1 & for i be
Nat st i
in (
dom s1) holds (s1
. i)
=
F1(i) from
FINSEQ_2:sch 1;
A40: (
dom s2)
= (
Seg k1) by
A29,
FINSEQ_1:def 3;
reconsider flb = (f
. (
lower_bound A)), fub = (f
. (
upper_bound A)) as
Element of
REAL by
XREAL_0:def 1;
(
len (s1
^
<*(f
. (
upper_bound A))*>))
= (
len (
<*(f
. (
lower_bound A))*>
^ s2)) & (
len (s1
^
<*(f
. (
upper_bound A))*>))
= (
len p) & for i st i
in (
dom (s1
^
<*fub*>)) holds (p
. i)
= (((s1
^
<*fub*>)
/. i)
- ((
<*flb*>
^ s2)
/. i))
proof
(
dom
<*(f
. (
upper_bound A))*>)
= (
Seg 1) by
FINSEQ_1:def 8;
then (
len
<*(f
. (
upper_bound A))*>)
= 1 by
FINSEQ_1:def 3;
then
A41: (
len (s1
^
<*(f
. (
upper_bound A))*>))
= (k1
+ 1) by
A39,
FINSEQ_1: 22;
(
dom
<*(f
. (
lower_bound A))*>)
= (
Seg 1) by
FINSEQ_1:def 8;
then (
len
<*(f
. (
lower_bound A))*>)
= 1 by
FINSEQ_1:def 3;
hence
A42: (
len (s1
^
<*(f
. (
upper_bound A))*>))
= (
len (
<*(f
. (
lower_bound A))*>
^ s2)) by
A29,
A41,
FINSEQ_1: 22;
thus (
len (s1
^
<*(f
. (
upper_bound A))*>))
= (
len p) by
A4,
A41;
let i;
assume
A43: i
in (
dom (s1
^
<*fub*>));
then
A44: ((s1
^
<*fub*>)
/. i)
= ((s1
^
<*(f
. (
upper_bound A))*>)
. i) by
PARTFUN1:def 6;
i
in (
Seg (
len (s1
^
<*(f
. (
upper_bound A))*>))) by
A43,
FINSEQ_1:def 3;
then i
in (
dom (
<*(f
. (
lower_bound A))*>
^ s2)) by
A42,
FINSEQ_1:def 3;
then
A45: ((
<*flb*>
^ s2)
/. i)
= ((
<*flb*>
^ s2)
. i) by
PARTFUN1:def 6;
A46: (
len D)
= 1 or (
len D) is non
trivial by
NAT_2:def 1;
now
per cases by
A46,
NAT_2: 29;
suppose
A47: (
len D)
= 1;
then
A48: i
in (
Seg 1) by
A41,
A43,
FINSEQ_1:def 3;
then
A49: i
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
s1
=
{} by
A39,
A47;
then (s1
^
<*(f
. (
upper_bound A))*>)
=
<*(f
. (
upper_bound A))*> by
FINSEQ_1: 34;
then
A50: ((s1
^
<*fub*>)
/. i)
= (f
. (
upper_bound A)) by
A44,
A49,
FINSEQ_1:def 8;
A51: i
in (
dom D) by
A47,
A48,
FINSEQ_1:def 3;
s2
=
{} by
A29,
A47;
then (
<*(f
. (
lower_bound A))*>
^ s2)
=
<*(f
. (
lower_bound A))*> by
FINSEQ_1: 34;
then
A52: ((
<*flb*>
^ s2)
/. i)
= (f
. (
lower_bound A)) by
A45,
A49,
FINSEQ_1:def 8;
(D
. i)
= (
upper_bound A) by
A47,
A49,
INTEGRA1:def 2;
then
A53: (
upper_bound (
divset (D,i)))
= (
upper_bound A) by
A49,
A51,
INTEGRA1:def 4;
(p
. i)
=
F(i) by
A4,
A19,
A47,
A48
.= ((f
. (
upper_bound (
divset (D,i))))
- (f
. (
lower_bound (
divset (D,i)))));
hence thesis by
A49,
A51,
A50,
A52,
A53,
INTEGRA1:def 4;
end;
suppose
A54: (
len D)
>= 2;
1
= (2
- 1);
then
A55: k1
>= 1 by
A54,
XREAL_1: 9;
now
per cases ;
suppose
A56: i
= 1;
then
A57: i
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
then i
in (
dom
<*(f
. (
lower_bound A))*>) by
FINSEQ_1:def 8;
then ((
<*(f
. (
lower_bound A))*>
^ s2)
. i)
= (
<*(f
. (
lower_bound A))*>
. i) by
FINSEQ_1:def 7;
then
A58: ((
<*(f
. (
lower_bound A))*>
^ s2)
. i)
= (f
. (
lower_bound A)) by
A56,
FINSEQ_1:def 8;
(
Seg 1)
c= (
Seg k1) by
A55,
FINSEQ_1: 5;
then i
in (
Seg k1) by
A57;
then
A59: i
in (
dom s1) by
A39,
FINSEQ_1:def 3;
then ((s1
^
<*(f
. (
upper_bound A))*>)
. i)
= (s1
. i) by
FINSEQ_1:def 7
.=
F1(i) by
A39,
A59;
then
A60: ((s1
^
<*(f
. (
upper_bound A))*>)
. i)
= (f
. (
upper_bound (
divset (D,i))));
A61: i
in (
Seg 2) by
A56,
FINSEQ_1: 2,
TARSKI:def 2;
A62: (
Seg 2)
c= (
Seg (
len D)) by
A54,
FINSEQ_1: 5;
then i
in (
Seg (
len D)) by
A61;
then
A63: i
in (
dom D) by
FINSEQ_1:def 3;
(p
. i)
=
F(i) by
A4,
A19,
A62,
A61
.= ((f
. (
upper_bound (
divset (D,i))))
- (f
. (
lower_bound (
divset (D,i)))));
hence thesis by
A44,
A45,
A56,
A63,
A60,
A58,
INTEGRA1:def 4;
end;
suppose
A64: i
= (
len D);
then (i
- (
len s1))
in (
Seg 1) by
A39,
FINSEQ_1: 2,
TARSKI:def 1;
then
A65: (i
- (
len s1))
in (
dom
<*(f
. (
upper_bound A))*>) by
FINSEQ_1:def 8;
i
= ((i
- (
len s1))
+ (
len s1));
then ((s1
^
<*(f
. (
upper_bound A))*>)
. i)
= (
<*(f
. (
upper_bound A))*>
. (i
- (
len s1))) by
A65,
FINSEQ_1:def 7;
then
A66: ((s1
^
<*fub*>)
/. i)
= (f
. (
upper_bound A)) by
A39,
A44,
A64,
FINSEQ_1:def 8;
A67: (
len
<*(f
. (
lower_bound A))*>)
= 1 by
FINSEQ_1: 40;
A68: i
<> 1 by
A54,
A64;
i
in (
Seg (
len D)) by
A64,
FINSEQ_1: 3;
then
A69: i
in (
dom D) by
FINSEQ_1:def 3;
(p
. i)
=
F(i) by
A4,
A19,
A64,
FINSEQ_1: 3
.= ((f
. (
upper_bound (
divset (D,i))))
- (f
. (
lower_bound (
divset (D,i)))));
then (p
. i)
= ((f
. (
upper_bound (
divset (D,i))))
- (f
. (D
. (i
- 1)))) by
A69,
A68,
INTEGRA1:def 4;
then
A70: (p
. i)
= ((f
. (D
. i))
- (f
. (D
. (i
- 1)))) by
A69,
A68,
INTEGRA1:def 4;
(i
- 1)
<>
0 by
A54,
A64;
then
A71: (i
- 1)
in (
Seg k1) by
A64,
FINSEQ_1: 3;
then
reconsider i1 = (i
- 1) as
Nat;
A72: ((
len
<*(f
. (
lower_bound A))*>)
+ (i
- (
len
<*(f
. (
lower_bound A))*>)))
= i & (i
- (
len
<*(f
. (
lower_bound A))*>))
in (
dom s2) by
A29,
A67,
FINSEQ_1:def 3,
A71;
then ((
<*(f
. (
lower_bound A))*>
^ s2)
. i)
= (s2
. i1) by
FINSEQ_1:def 7,
A67
.=
G(i1) by
A29,
A67,
A72;
then ((
<*(f
. (
lower_bound A))*>
^ s2)
. i)
= (f
. (
lower_bound (
divset (D,i))));
then ((
<*(f
. (
lower_bound A))*>
^ s2)
. i)
= (f
. (D
. (i
- 1))) by
A69,
A68,
INTEGRA1:def 4;
hence thesis by
A45,
A64,
A66,
A70,
INTEGRA1:def 2;
end;
suppose
A73: i
<> 1 & i
<> (
len D);
((
len s1)
+ (
len
<*(f
. (
upper_bound A))*>))
= (k1
+ 1) by
A39,
FINSEQ_1: 39;
then
A74: i
in (
Seg (
len D)) by
A43,
FINSEQ_1:def 7;
A75: i
in (
dom s1) & i
in (
Seg k1) & (i
- 1)
in (
Seg k1) & ((i
- 1)
+ 1)
= i & (i
- (
len
<*(f
. (
lower_bound A))*>))
in (
dom s2)
proof
i
<>
0 by
A74,
FINSEQ_1: 1;
then i is non
trivial by
A73,
NAT_2:def 1;
then i
>= (1
+ 1) by
NAT_2: 29;
then
A76: (i
- 1)
>= 1 by
XREAL_1: 19;
A77: 1
<= i by
A74,
FINSEQ_1: 1;
i
<= (
len D) by
A74,
FINSEQ_1: 1;
then
A78: i
< (k1
+ 1) by
A73,
XXREAL_0: 1;
then
A79: i
<= k1 by
NAT_1: 13;
then i
in (
Seg (
len s1)) by
A39,
A77,
FINSEQ_1: 1;
hence i
in (
dom s1) by
FINSEQ_1:def 3;
thus i
in (
Seg k1) by
A77,
A79,
FINSEQ_1: 1;
i
<= k1 by
A78,
NAT_1: 13;
then (i
- 1)
<= (k1
- 1) by
XREAL_1: 9;
then
A80: ((i
- 1)
+
0 )
<= ((k1
- 1)
+ 1) by
XREAL_1: 7;
ex j be
Nat st i
= (1
+ j) by
A77,
NAT_1: 10;
hence (i
- 1)
in (
Seg k1) by
A76,
A80,
FINSEQ_1: 1;
then
A81: (i
- (
len
<*(f
. (
lower_bound A))*>))
in (
Seg (
len s2)) by
A29,
FINSEQ_1: 39;
thus ((i
- 1)
+ 1)
= i;
thus thesis by
A81,
FINSEQ_1:def 3;
end;
then
A82: (i
- (
len
<*(f
. (
lower_bound A))*>))
in (
Seg (
len s2)) by
FINSEQ_1:def 3;
then (i
- (
len
<*(f
. (
lower_bound A))*>))
<= (
len s2) by
FINSEQ_1: 1;
then
A83: i
<= ((
len
<*(f
. (
lower_bound A))*>)
+ (
len s2)) by
XREAL_1: 20;
i
>= 1 by
A74,
FINSEQ_1: 1;
then
reconsider i1 = (i
- 1) as
Element of
NAT by
INT_1: 5;
1
<= (i
- (
len
<*(f
. (
lower_bound A))*>)) by
A82,
FINSEQ_1: 1;
then ((
len
<*(f
. (
lower_bound A))*>)
+ 1)
<= i by
XREAL_1: 19;
then ((
<*(f
. (
lower_bound A))*>
^ s2)
. i)
= (s2
. (i
- (
len
<*(f
. (
lower_bound A))*>))) by
A83,
FINSEQ_1: 23;
then ((
<*(f
. (
lower_bound A))*>
^ s2)
. i)
= (s2
. (i
- 1)) by
FINSEQ_1: 39
.=
G(i1) by
A29,
A40,
A75;
then
A84: ((
<*(f
. (
lower_bound A))*>
^ s2)
. i)
= (f
. (
lower_bound (
divset (D,i))));
((s1
^
<*(f
. (
upper_bound A))*>)
. i)
= (s1
. i) by
A75,
FINSEQ_1:def 7
.=
F1(i) by
A39,
A75;
then
A85: ((s1
^
<*(f
. (
upper_bound A))*>)
. i)
= (f
. (
upper_bound (
divset (D,i))));
thus (p
. i)
=
F(i) by
A4,
A19,
A74
.= (((s1
^
<*fub*>)
/. i)
- ((
<*flb*>
^ s2)
/. i)) by
A44,
A45,
A84,
A85;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
then (
Sum p)
= ((
Sum (s1
^
<*(f
. (
upper_bound A))*>))
- (
Sum (
<*(f
. (
lower_bound A))*>
^ s2))) by
INTEGRA1: 22;
then (
Sum p)
= (((
Sum s1)
+ (f
. (
upper_bound A)))
- (
Sum (
<*(f
. (
lower_bound A))*>
^ s2))) by
RVSUM_1: 74;
then
A86: (
Sum p)
= (((
Sum s1)
+ (f
. (
upper_bound A)))
- ((f
. (
lower_bound A))
+ (
Sum s2))) by
RVSUM_1: 76;
A87: (
dom s1)
= (
Seg k1) by
A39,
FINSEQ_1:def 3;
A88: (
dom s1)
= (
Seg k1) by
A39,
FINSEQ_1:def 3;
for i be
Nat st i
in (
dom s1) holds (s1
. i)
= (s2
. i)
proof
let i be
Nat;
assume
A89: i
in (
dom s1);
then (s1
. i)
=
F1(i) by
A39
.= (f
. (
upper_bound (
divset (D,i))));
then (s1
. i)
= (f
. (
lower_bound (
divset (D,(i
+ 1))))) by
A20,
A87,
A89
.=
G(i);
hence thesis by
A88,
A29,
A40,
A89;
end;
then
A90: s1
= s2 by
A39,
A29,
FINSEQ_2: 9;
A91: for k, r st k
in (
dom D) & r
in (
divset (D,k)) holds (
diff (f,r))
in (
rng (((f
`| X)
|| A)
| (
divset (D,k))))
proof
A92: (
dom ((f
`| X)
| A))
= ((
dom (f
`| X))
/\ A) by
RELAT_1: 61
.= (X
/\ A) by
A2,
FDIFF_1:def 7
.= A by
A1,
XBOOLE_1: 28;
let k, r;
assume that
A93: k
in (
dom D) and
A94: r
in (
divset (D,k));
A95: (
divset (D,k))
c= A by
A93,
INTEGRA1: 8;
then (
divset (D,k))
c= X by
A1,
XBOOLE_1: 1;
then ((f
`| X)
. r)
= (
diff (f,r)) by
A2,
A94,
FDIFF_1:def 7;
then
A96: (
diff (f,r))
= (((f
`| X)
|| A)
. r) by
A94,
A95,
A92,
FUNCT_1: 47;
A97: (
dom (((f
`| X)
|| A)
| (
divset (D,k))))
= (A
/\ (
divset (D,k))) by
A92,
RELAT_1: 61
.= (
divset (D,k)) by
A93,
INTEGRA1: 8,
XBOOLE_1: 28;
then ((((f
`| X)
|| A)
| (
divset (D,k)))
. r)
in (
rng (((f
`| X)
|| A)
| (
divset (D,k)))) by
A94,
FUNCT_1:def 3;
hence thesis by
A94,
A96,
A97,
FUNCT_1: 47;
end;
A98: for k st k
in (
dom D) holds ((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
<= ((
upper_volume (((f
`| X)
|| A),D))
. k)
proof
let k;
A99: (
vol (
divset (D,k)))
>=
0 by
INTEGRA1: 9;
assume
A100: k
in (
dom D);
then
consider r such that
A101: r
in (
divset (D,k)) and
A102: ((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
= ((
diff (f,r))
* (
vol (
divset (D,k)))) by
A6;
A103: (
rng (((f
`| X)
|| A)
| (
divset (D,k)))) is
real-bounded by
A30,
A100;
(
diff (f,r))
in (
rng (((f
`| X)
|| A)
| (
divset (D,k)))) by
A91,
A100,
A101;
then (
diff (f,r))
<= (
upper_bound (
rng (((f
`| X)
|| A)
| (
divset (D,k))))) by
A103,
SEQ_4:def 1;
then ((
diff (f,r))
* (
vol (
divset (D,k))))
<= ((
upper_bound (
rng (((f
`| X)
|| A)
| (
divset (D,k)))))
* (
vol (
divset (D,k)))) by
A99,
XREAL_1: 64;
hence thesis by
A100,
A102,
INTEGRA1:def 6;
end;
A104: ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
<= (
upper_sum (((f
`| X)
|| A),D))
proof
(
len (
upper_volume (((f
`| X)
|| A),D)))
= (
len D) by
INTEGRA1:def 6;
then
reconsider q = (
upper_volume (((f
`| X)
|| A),D)) as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
A105: for k be
Nat st k
in (
Seg (
len D)) holds (p
. k)
<= ((
upper_volume (((f
`| X)
|| A),D))
. k)
proof
let k be
Nat;
assume
A106: k
in (
Seg (
len D));
A107: ((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
=
F(k)
.= (p
. k) by
A4,
A19,
A106;
k
in (
dom D) by
FINSEQ_1:def 3,
A106;
hence thesis by
A98,
A107;
end;
reconsider p as
Element of ((
len D)
-tuples_on
REAL ) by
A4,
FINSEQ_2: 92;
(
Sum p)
<= (
Sum q) by
A105,
RVSUM_1: 82;
hence thesis by
A90,
A86,
INTEGRA1:def 8;
end;
A108: for k st k
in (
dom D) holds ((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
>= ((
lower_volume (((f
`| X)
|| A),D))
. k)
proof
let k;
assume
A109: k
in (
dom D);
then
A110: (
vol (
divset (D,k)))
>=
0 & ((
lower_bound (
rng (((f
`| X)
|| A)
| (
divset (D,k)))))
* (
vol (
divset (D,k))))
= ((
lower_volume (((f
`| X)
|| A),D))
. k) by
INTEGRA1: 9,
INTEGRA1:def 7;
A111: (
rng (((f
`| X)
|| A)
| (
divset (D,k)))) is
real-bounded by
A30,
A109;
consider r such that
A112: r
in (
divset (D,k)) and
A113: ((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
= ((
diff (f,r))
* (
vol (
divset (D,k)))) by
A6,
A109;
(
diff (f,r))
in (
rng (((f
`| X)
|| A)
| (
divset (D,k)))) by
A91,
A109,
A112;
then (
diff (f,r))
>= (
lower_bound (
rng (((f
`| X)
|| A)
| (
divset (D,k))))) by
A111,
SEQ_4:def 2;
hence thesis by
A113,
A110,
XREAL_1: 64;
end;
((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
>= (
lower_sum (((f
`| X)
|| A),D))
proof
(
len (
lower_volume (((f
`| X)
|| A),D)))
= (
len D) by
INTEGRA1:def 7;
then
reconsider q = (
lower_volume (((f
`| X)
|| A),D)) as
Element of ((
len D)
-tuples_on
REAL ) by
FINSEQ_2: 92;
A114: for k be
Nat st k
in (
Seg (
len D)) holds (p
. k)
>= ((
lower_volume (((f
`| X)
|| A),D))
. k)
proof
let k be
Nat;
assume
A115: k
in (
Seg (
len D));
A116: ((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
=
F(k)
.= (p
. k) by
A4,
A19,
A115;
k
in (
dom D) by
FINSEQ_1:def 3,
A115;
hence thesis by
A108,
A116;
end;
reconsider p as
Element of ((
len D)
-tuples_on
REAL ) by
A4,
FINSEQ_2: 92;
(
Sum q)
<= (
Sum p) by
A114,
RVSUM_1: 82;
hence thesis by
A90,
A86,
INTEGRA1:def 9;
end;
hence thesis by
A104;
end;
::$Notion-Name
theorem ::
INTEGRA5:13
Th13: for f be
PartFunc of
REAL ,
REAL st A
c= X & f
is_differentiable_on X & (f
`| X)
is_integrable_on A & ((f
`| X)
| A) is
bounded holds (
integral ((f
`| X),A))
= ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
proof
let f be
PartFunc of
REAL ,
REAL ;
assume that
A1: A
c= X & f
is_differentiable_on X and
A2: (f
`| X)
is_integrable_on A and
A3: ((f
`| X)
| A) is
bounded;
((f
`| X)
|| A) is
integrable by
A2;
then
A4: (
upper_integral ((f
`| X)
|| A))
= (
lower_integral ((f
`| X)
|| A)) by
INTEGRA1:def 16;
A5: for r be
Real st r
in (
rng (
upper_sum_set ((f
`| X)
|| A))) holds ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
<= r
proof
let r be
Real;
assume r
in (
rng (
upper_sum_set ((f
`| X)
|| A)));
then
consider D be
Element of (
divs A) such that
A6: D
in (
dom (
upper_sum_set ((f
`| X)
|| A))) & r
= ((
upper_sum_set ((f
`| X)
|| A))
. D) by
PARTFUN1: 3;
reconsider D as
Division of A by
INTEGRA1:def 3;
r
= (
upper_sum (((f
`| X)
|| A),D)) by
A6,
INTEGRA1:def 10;
hence thesis by
A1,
A3,
Th12;
end;
((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
<= (
lower_bound (
rng (
upper_sum_set ((f
`| X)
|| A)))) by
A5,
SEQ_4: 43;
then
A7: (
upper_integral ((f
`| X)
|| A))
>= ((f
. (
upper_bound A))
- (f
. (
lower_bound A))) by
INTEGRA1:def 14;
A8: for r be
Real st r
in (
rng (
lower_sum_set ((f
`| X)
|| A))) holds r
<= ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
proof
let r be
Real;
assume r
in (
rng (
lower_sum_set ((f
`| X)
|| A)));
then
consider D be
Element of (
divs A) such that
A9: D
in (
dom (
lower_sum_set ((f
`| X)
|| A))) & r
= ((
lower_sum_set ((f
`| X)
|| A))
. D) by
PARTFUN1: 3;
reconsider D as
Division of A by
INTEGRA1:def 3;
r
= (
lower_sum (((f
`| X)
|| A),D)) by
A9,
INTEGRA1:def 11;
hence thesis by
A1,
A3,
Th12;
end;
(
upper_bound (
rng (
lower_sum_set ((f
`| X)
|| A))))
<= ((f
. (
upper_bound A))
- (f
. (
lower_bound A))) by
A8,
SEQ_4: 45;
then (
upper_integral ((f
`| X)
|| A))
<= ((f
. (
upper_bound A))
- (f
. (
lower_bound A))) by
A4,
INTEGRA1:def 15;
then (
upper_integral ((f
`| X)
|| A))
= ((f
. (
upper_bound A))
- (f
. (
lower_bound A))) by
A7,
XXREAL_0: 1;
hence thesis by
INTEGRA1:def 17;
end;
theorem ::
INTEGRA5:14
Th14: for f be
PartFunc of
REAL ,
REAL st (f
| A) is
non-decreasing & A
c= (
dom f) holds (
rng (f
| A)) is
real-bounded
proof
let f be
PartFunc of
REAL ,
REAL ;
assume that
A1: (f
| A) is
non-decreasing and
A2: A
c= (
dom f);
A3: (
dom (f
| A))
= ((
dom f)
/\ A) by
RELAT_1: 61
.= A by
A2,
XBOOLE_1: 28;
(f
. (
lower_bound A)) is
LowerBound of (
rng (f
| A))
proof
(
lower_bound A)
<= (
upper_bound A) by
SEQ_4: 11;
then (
lower_bound A)
in (
dom (f
| A)) by
A3,
INTEGRA2: 1;
then
A4: (
lower_bound A)
in ((
dom f)
/\ A) by
RELAT_1: 61;
let y be
ExtReal;
assume y
in (
rng (f
| A));
then
consider x be
Element of
REAL such that
A5: x
in (
dom (f
| A)) and
A6: y
= ((f
| A)
. x) by
PARTFUN1: 3;
A7: x
in ((
dom f)
/\ A) by
A5,
RELAT_1: 61;
y
= (f
. x) & x
>= (
lower_bound A) by
A5,
A6,
FUNCT_1: 47,
INTEGRA2: 1;
hence thesis by
A1,
A7,
A4,
RFUNCT_2: 24;
end;
then
A8: (
rng (f
| A)) is
bounded_below;
(f
. (
upper_bound A)) is
UpperBound of (
rng (f
| A))
proof
(
lower_bound A)
<= (
upper_bound A) by
SEQ_4: 11;
then (
upper_bound A)
in (
dom (f
| A)) by
A3,
INTEGRA2: 1;
then
A9: (
upper_bound A)
in ((
dom f)
/\ A) by
RELAT_1: 61;
let y be
ExtReal;
assume y
in (
rng (f
| A));
then
consider x be
Element of
REAL such that
A10: x
in (
dom (f
| A)) and
A11: y
= ((f
| A)
. x) by
PARTFUN1: 3;
A12: x
in ((
dom f)
/\ A) by
A10,
RELAT_1: 61;
y
= (f
. x) & x
<= (
upper_bound A) by
A10,
A11,
FUNCT_1: 47,
INTEGRA2: 1;
hence thesis by
A1,
A12,
A9,
RFUNCT_2: 24;
end;
then (
rng (f
| A)) is
bounded_above;
hence thesis by
A8;
end;
theorem ::
INTEGRA5:15
Th15: for f be
PartFunc of
REAL ,
REAL st (f
| A) is
non-decreasing & A
c= (
dom f) holds (
lower_bound (
rng (f
| A)))
= (f
. (
lower_bound A)) & (
upper_bound (
rng (f
| A)))
= (f
. (
upper_bound A))
proof
let f be
PartFunc of
REAL ,
REAL ;
assume that
A1: (f
| A) is
non-decreasing and
A2: A
c= (
dom f);
A3: (
dom (f
| A))
= ((
dom f)
/\ A) by
RELAT_1: 61
.= A by
A2,
XBOOLE_1: 28;
then
A4: (
rng (f
| A))
<>
{} by
RELAT_1: 42;
A5: (
lower_bound A)
<= (
upper_bound A) by
SEQ_4: 11;
then
A6: (
upper_bound A)
in (
dom (f
| A)) by
A3,
INTEGRA2: 1;
then
A7: (
upper_bound A)
in ((
dom f)
/\ A) by
RELAT_1: 61;
A8: for x be
Real st x
in (
rng (f
| A)) holds x
<= (f
. (
upper_bound A))
proof
let y be
Real;
assume y
in (
rng (f
| A));
then
consider x be
Element of
REAL such that
A9: x
in (
dom (f
| A)) and
A10: y
= ((f
| A)
. x) by
PARTFUN1: 3;
x
in ((
dom f)
/\ A) & (
upper_bound A)
>= x by
A9,
INTEGRA2: 1,
RELAT_1: 61;
then (f
. (
upper_bound A))
>= (f
. x) by
A1,
A7,
RFUNCT_2: 24;
hence thesis by
A9,
A10,
FUNCT_1: 47;
end;
A11: (
lower_bound A)
in (
dom (f
| A)) by
A3,
A5,
INTEGRA2: 1;
then
A12: (
lower_bound A)
in ((
dom f)
/\ A) by
RELAT_1: 61;
A13: for y be
Real st y
in (
rng (f
| A)) holds y
>= (f
. (
lower_bound A))
proof
let y be
Real;
assume y
in (
rng (f
| A));
then
consider x be
Element of
REAL such that
A14: x
in (
dom (f
| A)) and
A15: y
= ((f
| A)
. x) by
PARTFUN1: 3;
x
in ((
dom f)
/\ A) & (
lower_bound A)
<= x by
A14,
INTEGRA2: 1,
RELAT_1: 61;
then (f
. (
lower_bound A))
<= (f
. x) by
A1,
A12,
RFUNCT_2: 24;
hence thesis by
A14,
A15,
FUNCT_1: 47;
end;
for a be
Real st for x be
Real st x
in (
rng (f
| A)) holds x
>= a holds (f
. (
lower_bound A))
>= a
proof
let a be
Real;
assume
A16: for x be
Real st x
in (
rng (f
| A)) holds x
>= a;
(f
. (
lower_bound A))
= ((f
| A)
. (
lower_bound A)) & ((f
| A)
. (
lower_bound A))
in (
rng (f
| A)) by
A11,
FUNCT_1: 47,
FUNCT_1:def 3;
hence thesis by
A16;
end;
hence (
lower_bound (
rng (f
| A)))
= (f
. (
lower_bound A)) by
A4,
A13,
SEQ_4: 44;
for a be
Real st for x be
Real st x
in (
rng (f
| A)) holds x
<= a holds (f
. (
upper_bound A))
<= a
proof
let a be
Real;
assume
A17: for x be
Real st x
in (
rng (f
| A)) holds x
<= a;
(f
. (
upper_bound A))
= ((f
| A)
. (
upper_bound A)) & ((f
| A)
. (
upper_bound A))
in (
rng (f
| A)) by
A6,
FUNCT_1: 47,
FUNCT_1:def 3;
hence thesis by
A17;
end;
hence thesis by
A4,
A8,
SEQ_4: 46;
end;
Lm1: for f be
PartFunc of
REAL ,
REAL st (f
| A) is
non-decreasing & A
c= (
dom f) holds f
is_integrable_on A
proof
let f be
PartFunc of
REAL ,
REAL ;
assume that
A1: (f
| A) is
non-decreasing and
A2: A
c= (
dom f);
A3: for D be
Division of A, k st k
in (
dom D) holds
0
<= (((
upper_volume ((f
|| A),D))
. k)
- ((
lower_volume ((f
|| A),D))
. k)) & (((
upper_volume ((f
|| A),D))
. k)
- ((
lower_volume ((f
|| A),D))
. k))
<= (((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
* (
delta D))
proof
let D be
Division of A;
let k;
assume
A4: k
in (
dom D);
then
A5: ((
upper_volume ((f
|| A),D))
. k)
= ((
upper_bound (
rng ((f
|| A)
| (
divset (D,k)))))
* (
vol (
divset (D,k)))) & ((
lower_volume ((f
|| A),D))
. k)
= ((
lower_bound (
rng ((f
|| A)
| (
divset (D,k)))))
* (
vol (
divset (D,k)))) by
INTEGRA1:def 6,
INTEGRA1:def 7;
k
in (
Seg (
len D)) by
A4,
FINSEQ_1:def 3;
then k
in (
Seg (
len (
upper_volume ((
chi (A,A)),D)))) by
INTEGRA1:def 6;
then
A6: k
in (
dom (
upper_volume ((
chi (A,A)),D))) by
FINSEQ_1:def 3;
(
vol (
divset (D,k)))
= ((
upper_volume ((
chi (A,A)),D))
. k) by
A4,
INTEGRA1: 20;
then (
vol (
divset (D,k)))
in (
rng (
upper_volume ((
chi (A,A)),D))) by
A6,
FUNCT_1:def 3;
then (
vol (
divset (D,k)))
<= (
max (
rng (
upper_volume ((
chi (A,A)),D)))) by
XXREAL_2:def 8;
then
A7: (
vol (
divset (D,k)))
<= (
delta D) by
INTEGRA3:def 1;
A8: (
divset (D,k))
c= A by
A4,
INTEGRA1: 8;
then
A9: (
divset (D,k))
c= (
dom f) by
A2,
XBOOLE_1: 1;
(f
| (
divset (D,k))) is
non-decreasing by
A1,
A4,
INTEGRA1: 8,
RFUNCT_2: 30;
then
A10: (
lower_bound (
rng (f
| (
divset (D,k)))))
= (f
. (
lower_bound (
divset (D,k)))) & (
upper_bound (
rng (f
| (
divset (D,k)))))
= (f
. (
upper_bound (
divset (D,k)))) by
A9,
Th15;
(
dom (f
| (
divset (D,k))))
= ((
dom f)
/\ (
divset (D,k))) by
RELAT_1: 61
.= (
divset (D,k)) by
A2,
A8,
XBOOLE_1: 1,
XBOOLE_1: 28;
then
A11: (
rng (f
| (
divset (D,k))))
<>
{} by
RELAT_1: 42;
A12: (
rng (f
| (
divset (D,k))))
= (
rng ((f
|| A)
| (
divset (D,k)))) by
A8,
FUNCT_1: 51;
(
rng (f
| A)) is
real-bounded by
A1,
A2,
Th14;
then (
rng (f
| (
divset (D,k)))) is
real-bounded by
A12,
RELAT_1: 70,
XXREAL_2: 45;
then
A13: ((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
>=
0 by
A10,
A11,
SEQ_4: 11,
XREAL_1: 48;
(
vol (
divset (D,k)))
>=
0 by
INTEGRA1: 9;
then (
0
* (
vol (
divset (D,k))))
<= (((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
* (
vol (
divset (D,k)))) by
A13;
hence
0
<= (((
upper_volume ((f
|| A),D))
. k)
- ((
lower_volume ((f
|| A),D))
. k)) by
A10,
A5,
A12;
(((
upper_volume ((f
|| A),D))
. k)
- ((
lower_volume ((f
|| A),D))
. k))
= (((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
* (
vol (
divset (D,k)))) by
A10,
A5,
A12;
hence thesis by
A13,
A7,
XREAL_1: 64;
end;
A14: for D be
Division of A holds ((
upper_sum ((f
|| A),D))
- (
lower_sum ((f
|| A),D)))
<= ((
delta D)
* ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))) & ((
upper_sum ((f
|| A),D))
- (
lower_sum ((f
|| A),D)))
>=
0
proof
let D be
Division of A;
deffunc
F2(
Nat) = (
In ((f
. (
upper_bound (
divset (D,$1)))),
REAL ));
consider F1 be
FinSequence of
REAL such that
A15: (
len F1)
= (
len D) & for i be
Nat st i
in (
dom F1) holds (F1
. i)
=
F2(i) from
FINSEQ_2:sch 1;
((
len D)
- 1)
in
NAT
proof
ex j be
Nat st (
len D)
= (1
+ j) by
NAT_1: 10,
NAT_1: 14;
hence thesis by
ORDINAL1:def 12;
end;
then
consider k1 be
Element of
NAT such that
A16: k1
= ((
len D)
- 1);
deffunc
G(
Nat) = (
In ((f
. (
lower_bound (
divset (D,$1)))),
REAL ));
consider F2 be
FinSequence of
REAL such that
A17: (
len F2)
= (
len D) & for i be
Nat st i
in (
dom F2) holds (F2
. i)
=
G(i) from
FINSEQ_2:sch 1;
deffunc
G1(
Nat) = (
In ((f
. (
upper_bound (
divset (D,$1)))),
REAL ));
A18: (
dom F2)
= (
Seg (
len D)) by
A17,
FINSEQ_1:def 3;
consider F be
FinSequence of
REAL such that
A19: (
len F)
= k1 & for i be
Nat st i
in (
dom F) holds (F
. i)
=
G1(i) from
FINSEQ_2:sch 1;
A20: (
dom F)
= (
Seg k1) by
A19,
FINSEQ_1:def 3;
A21: for i be
Nat st 1
<= i & i
<= (
len F2) holds (F2
. i)
= ((
<*(f
. (
lower_bound A))*>
^ F)
. i)
proof
let i be
Nat;
assume that
A22: 1
<= i and
A23: i
<= (
len F2);
per cases ;
suppose
A24: i
= 1;
A25: i
in (
Seg (
len D)) by
A17,
A22,
A23,
FINSEQ_1: 1;
then
A26: i
in (
dom D) by
FINSEQ_1:def 3;
(F2
. i)
=
G(i) by
A17,
A18,
A25
.= (f
. (
lower_bound (
divset (D,i))))
.= (f
. (
lower_bound A)) by
A24,
A26,
INTEGRA1:def 4;
hence thesis by
A24,
FINSEQ_1: 41;
end;
suppose
A27: i
<> 1;
then
A28: i
> 1 by
A22,
XXREAL_0: 1;
then (1
+ 1)
<= i by
NAT_1: 13;
then
A29: ((
len
<*(f
. (
lower_bound A))*>)
+ 1)
<= i by
FINSEQ_1: 39;
A30: i
in (
Seg (
len D)) by
A17,
A22,
A23,
FINSEQ_1: 1;
then
A31: i
in (
dom D) by
FINSEQ_1:def 3;
then
reconsider k2 = (i
- 1) as
Element of
NAT by
A27,
INTEGRA1: 7;
(1
+ 1)
<= (k2
+ 1) by
A28,
NAT_1: 13;
then
A32: 1
<= k2 by
XREAL_1: 19;
(k2
+ 1)
<= (
len F2) by
A23;
then
A33: k2
<= ((
len D)
- 1) by
A17,
XREAL_1: 19;
then
A34: k2
in (
Seg k1) by
A16,
A32,
FINSEQ_1: 1;
A35: (
upper_bound (
divset (D,k2)))
= (D
. (i
- 1))
proof
(
len D)
<= ((
len D)
+ 1) by
NAT_1: 13;
then ((
len D)
- 1)
<= (
len D) by
XREAL_1: 20;
then k2
<= (
len D) by
A33,
XXREAL_0: 2;
then k2
in (
Seg (
len D)) by
A32,
FINSEQ_1: 1;
then
A36: k2
in (
dom D) by
FINSEQ_1:def 3;
per cases ;
suppose k2
= 1;
hence thesis by
A36,
INTEGRA1:def 4;
end;
suppose k2
<> 1;
hence thesis by
A36,
INTEGRA1:def 4;
end;
end;
(
len F2)
= (1
+ ((
len D)
- 1)) by
A17
.= ((
len
<*(f
. (
lower_bound A))*>)
+ (
len F)) by
A16,
A19,
FINSEQ_1: 39;
then
A37: ((
<*(f
. (
lower_bound A))*>
^ F)
. i)
= (F
. (i
- (
len
<*(f
. (
lower_bound A))*>))) by
A23,
A29,
FINSEQ_1: 23
.= (F
. (i
- 1)) by
FINSEQ_1: 39;
(F2
. i)
=
G(i) by
A17,
A18,
A30
.= (f
. (
lower_bound (
divset (D,i))))
.= (f
. (
upper_bound (
divset (D,k2)))) by
A27,
A31,
INTEGRA1:def 4,
A35
.=
G1(k2);
hence thesis by
A19,
A20,
A37,
A34;
end;
end;
(
len (
<*(f
. (
lower_bound A))*>
^ F))
= ((
len
<*(f
. (
lower_bound A))*>)
+ (
len F)) by
FINSEQ_1: 22
.= (1
+ ((
len D)
- 1)) by
A16,
A19,
FINSEQ_1: 39
.= (
len D);
then
A38: F2
= (
<*(f
. (
lower_bound A))*>
^ F) by
A17,
A21,
FINSEQ_1: 14;
(
len (
upper_volume ((f
|| A),D)))
= (
len D) & (
len (
lower_volume ((f
|| A),D)))
= (
len D) by
INTEGRA1:def 6,
INTEGRA1:def 7;
then
A39: (
Sum ((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D))))
= ((
Sum (
upper_volume ((f
|| A),D)))
- (
Sum (
lower_volume ((f
|| A),D)))) by
Th2
.= ((
upper_sum ((f
|| A),D))
- (
Sum (
lower_volume ((f
|| A),D)))) by
INTEGRA1:def 8
.= ((
upper_sum ((f
|| A),D))
- (
lower_sum ((f
|| A),D))) by
INTEGRA1:def 9;
A40: (
dom F1)
= (
Seg (
len D)) by
A15,
FINSEQ_1:def 3;
A41: for i be
Nat st 1
<= i & i
<= (
len F1) holds (F1
. i)
= ((F
^
<*(f
. (
upper_bound A))*>)
. i)
proof
let i be
Nat;
assume that
A42: 1
<= i and
A43: i
<= (
len F1);
now
per cases ;
suppose i
<= (
len F);
then
A44: i
in (
Seg (
len F)) by
A42,
FINSEQ_1: 1;
then
A45: (F
. i)
=
G1(i) by
A19,
A20
.= (f
. (
upper_bound (
divset (D,i))));
A46: i
in (
dom F) by
A19,
A20,
A44;
i
in (
Seg (
len F1)) by
A42,
A43,
FINSEQ_1: 1;
then (F1
. i)
=
F2(i) by
A15,
A40
.= (f
. (
upper_bound (
divset (D,i))));
hence thesis by
A46,
A45,
FINSEQ_1:def 7;
end;
suppose i
> (
len F);
then
A47: i
>= ((
len F)
+ 1) by
NAT_1: 13;
then
A48: i
= ((
len F)
+ 1) by
A15,
A16,
A19,
A43,
XXREAL_0: 1;
A49: i
in (
Seg (
len F1)) by
A42,
A43,
FINSEQ_1: 1;
then
A50: i
in (
dom D) by
A15,
FINSEQ_1:def 3;
A51: (
upper_bound (
divset (D,i)))
= (D
. i)
proof
now
per cases ;
suppose i
= 1;
hence thesis by
A50,
INTEGRA1:def 4;
end;
suppose i
<> 1;
hence thesis by
A50,
INTEGRA1:def 4;
end;
end;
hence thesis;
end;
(F1
. i)
=
F2(i) by
A15,
A40,
A49
.= (f
. (
upper_bound (
divset (D,i))));
then (F1
. i)
= (f
. (D
. (
len D))) by
A15,
A16,
A19,
A43,
A47,
A51,
XXREAL_0: 1
.= (f
. (
upper_bound A)) by
INTEGRA1:def 2;
hence thesis by
A48,
FINSEQ_1: 42;
end;
end;
hence thesis;
end;
(
len (
upper_volume ((f
|| A),D)))
= (
len D) & (
len (
lower_volume ((f
|| A),D)))
= (
len D) by
INTEGRA1:def 6,
INTEGRA1:def 7;
then
A52: (
len ((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D))))
= (
len D) by
Th2;
A53: (
len (F1
- F2))
= (
len D) by
A15,
A17,
Th2;
A54: for k st k
in (
dom ((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D)))) holds (((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D)))
. k)
<= (((
delta D)
* (F1
- F2))
. k)
proof
let k;
assume
A55: k
in (
dom ((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D))));
then k
in (
Seg (
len (F1
- F2))) by
A52,
A53,
FINSEQ_1:def 3;
then
A56: k
in (
dom (F1
- F2)) by
FINSEQ_1:def 3;
A57: k
in (
Seg (
len D)) by
A52,
A55,
FINSEQ_1:def 3;
then k
in (
dom D) by
FINSEQ_1:def 3;
then (((
upper_volume ((f
|| A),D))
. k)
- ((
lower_volume ((f
|| A),D))
. k))
<= (((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
* (
delta D)) by
A3;
then
A58: (((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D)))
. k)
<= (((f
. (
upper_bound (
divset (D,k))))
- (f
. (
lower_bound (
divset (D,k)))))
* (
delta D)) by
A55,
VALUED_1: 13;
A59: (F1
. k)
=
F2(k) by
A15,
A40,
A57
.= (f
. (
upper_bound (
divset (D,k))));
(F2
. k)
=
G(k) by
A17,
A18,
A57
.= (f
. (
lower_bound (
divset (D,k))));
then (((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D)))
. k)
<= ((
delta D)
* ((F1
- F2)
. k)) by
A58,
A56,
VALUED_1: 13,
A59;
hence thesis by
RVSUM_1: 44;
end;
((
delta D)
* (F1
- F2))
= (((
delta D)
multreal )
* (F1
- F2)) by
RVSUM_1:def 7;
then (
len ((
delta D)
* (F1
- F2)))
= (
len (F1
- F2)) by
FINSEQ_2: 33;
then (
len ((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D))))
= (
len ((
delta D)
* (F1
- F2))) by
A15,
A17,
A52,
Th2;
then
A60: (
Sum ((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D))))
<= (
Sum ((
delta D)
* (F1
- F2))) by
A54,
Th3;
(
len (F
^
<*(f
. (
upper_bound A))*>))
= ((
len F)
+ (
len
<*(f
. (
upper_bound A))*>)) by
FINSEQ_1: 22
.= (((
len D)
- 1)
+ 1) by
A16,
A19,
FINSEQ_1: 39
.= (
len D);
then F1
= (F
^
<*(f
. (
upper_bound A))*>) by
A15,
A41,
FINSEQ_1: 14;
then (
Sum (F1
- F2))
= ((f
. (
upper_bound A))
- (f
. (
lower_bound A))) by
A38,
Th1;
hence ((
upper_sum ((f
|| A),D))
- (
lower_sum ((f
|| A),D)))
<= ((
delta D)
* ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))) by
A39,
A60,
RVSUM_1: 87;
for k be
Nat st k
in (
dom ((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D)))) holds
0
<= (((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D)))
. k)
proof
let k be
Nat;
set r = (((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D)))
. k);
A61: (
len (
upper_volume ((f
|| A),D)))
= (
len D) & (
len (
lower_volume ((f
|| A),D)))
= (
len D) by
INTEGRA1:def 6,
INTEGRA1:def 7;
assume
A62: k
in (
dom ((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D))));
then k
in (
Seg (
len ((
upper_volume ((f
|| A),D))
- (
lower_volume ((f
|| A),D))))) by
FINSEQ_1:def 3;
then k
in (
Seg (
len D)) by
A61,
Th2;
then
A63: k
in (
dom D) by
FINSEQ_1:def 3;
r
= (((
upper_volume ((f
|| A),D))
. k)
- ((
lower_volume ((f
|| A),D))
. k)) by
A62,
VALUED_1: 13;
hence thesis by
A3,
A63;
end;
hence thesis by
A39,
RVSUM_1: 84;
end;
A64: (f
|| A) is
total & ((f
|| A)
| A) is
bounded
proof
consider x be
Element of
REAL such that
A65: x
in A by
SUBSET_1: 4;
A66: (
dom (f
|| A))
= ((
dom f)
/\ A) by
RELAT_1: 61
.= A by
A2,
XBOOLE_1: 28;
hence (f
|| A) is
total by
PARTFUN1:def 2;
(
lower_bound A)
<= x & x
<= (
upper_bound A) by
A65,
INTEGRA2: 1;
then
A67: (
lower_bound A)
<= (
upper_bound A) by
XXREAL_0: 2;
for x be
object st x
in (A
/\ (
dom (f
|| A))) holds ((f
|| A)
. x)
>= ((f
|| A)
. (
lower_bound A))
proof
(
lower_bound A)
in A by
A67,
INTEGRA2: 1;
then
A68: (
lower_bound A)
in (A
/\ (
dom f)) & (f
. (
lower_bound A))
= ((f
| A)
. (
lower_bound A)) by
A2,
A66,
FUNCT_1: 47,
XBOOLE_1: 28;
let x be
object;
assume
A69: x
in (A
/\ (
dom (f
|| A)));
then x
in A;
then
A70: x
in (A
/\ (
dom f)) by
A2,
XBOOLE_1: 28;
reconsider x as
Element of A by
A69;
x
>= (
lower_bound A) & (f
. x)
= ((f
| A)
. x) by
A66,
FUNCT_1: 47,
INTEGRA2: 1;
hence thesis by
A1,
A70,
A68,
RFUNCT_2: 24;
end;
then
A71: ((f
|| A)
| A) is
bounded_below by
RFUNCT_1: 71;
for x be
object st x
in (A
/\ (
dom (f
|| A))) holds ((f
|| A)
. x)
<= ((f
|| A)
. (
upper_bound A))
proof
(
upper_bound A)
in A by
A67,
INTEGRA2: 1;
then
A72: (
upper_bound A)
in (A
/\ (
dom f)) & (f
. (
upper_bound A))
= ((f
| A)
. (
upper_bound A)) by
A2,
A66,
FUNCT_1: 47,
XBOOLE_1: 28;
let x be
object;
assume
A73: x
in (A
/\ (
dom (f
|| A)));
then x
in A;
then
A74: x
in (A
/\ (
dom f)) by
A2,
XBOOLE_1: 28;
reconsider x as
Element of A by
A73;
x
<= (
upper_bound A) & (f
. x)
= ((f
| A)
. x) by
A66,
FUNCT_1: 47,
INTEGRA2: 1;
hence thesis by
A1,
A74,
A72,
RFUNCT_2: 24;
end;
then ((f
|| A)
| A) is
bounded_above by
RFUNCT_1: 70;
hence thesis by
A71;
end;
for T be
DivSequence of A st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds ((
lim (
upper_sum ((f
|| A),T)))
- (
lim (
lower_sum ((f
|| A),T))))
=
0
proof
let T be
DivSequence of A;
assume
A75: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
A76: for r be
Real st
0
< r holds ex n be
Nat st for m be
Nat st n
<= m holds
|.((((
upper_sum ((f
|| A),T))
- (
lower_sum ((f
|| A),T)))
. m)
-
0 ).|
< r
proof
consider x be
Element of
REAL such that
A77: x
in A by
SUBSET_1: 4;
A78: A
= (A
/\ (
dom f)) by
A2,
XBOOLE_1: 28;
let r be
Real;
assume
A79:
0
< r;
(
lower_bound A)
<= x & x
<= (
upper_bound A) by
A77,
INTEGRA2: 1;
then
A80: (
lower_bound A)
<= (
upper_bound A) by
XXREAL_0: 2;
then (
lower_bound A)
in A & (
upper_bound A)
in A by
INTEGRA2: 1;
then
A81: (f
. (
lower_bound A))
<= (f
. (
upper_bound A)) by
A1,
A80,
A78,
RFUNCT_2: 24;
per cases by
A81,
XXREAL_0: 1;
suppose
A82: (f
. (
lower_bound A))
= (f
. (
upper_bound A));
reconsider n =
0 as
Nat;
take n;
let m be
Nat;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
assume n
<= m;
reconsider D1 = (T
. mm) as
Division of A;
A83: (((
upper_sum ((f
|| A),T))
- (
lower_sum ((f
|| A),T)))
. m)
= (((
upper_sum ((f
|| A),T))
. m)
+ ((
- (
lower_sum ((f
|| A),T)))
. m)) by
SEQ_1: 7
.= (((
upper_sum ((f
|| A),T))
. m)
+ (
- ((
lower_sum ((f
|| A),T))
. m))) by
SEQ_1: 10
.= ((
upper_sum ((f
|| A),D1))
+ (
- ((
lower_sum ((f
|| A),T))
. m))) by
INTEGRA2:def 2
.= ((
upper_sum ((f
|| A),D1))
+ (
- (
lower_sum ((f
|| A),D1)))) by
INTEGRA2:def 3;
((
upper_sum ((f
|| A),D1))
- (
lower_sum ((f
|| A),D1)))
<= ((
delta D1)
* ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))) & ((
upper_sum ((f
|| A),D1))
- (
lower_sum ((f
|| A),D1)))
>=
0 by
A14;
hence thesis by
A79,
A82,
A83,
ABSVALUE:def 1;
end;
suppose (f
. (
lower_bound A))
< (f
. (
upper_bound A));
then
A84: ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
>
0 by
XREAL_1: 50;
then (r
/ ((f
. (
upper_bound A))
- (f
. (
lower_bound A))))
>
0 by
A79,
XREAL_1: 139;
then
consider n be
Nat such that
A85: for m be
Nat st n
<= m holds
|.(((
delta T)
. m)
-
0 ).|
< (r
/ ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))) by
A75,
SEQ_2:def 7;
A86: for m st n
<= m holds ((
delta T)
. m)
< (r
/ ((f
. (
upper_bound A))
- (f
. (
lower_bound A))))
proof
let m;
assume n
<= m;
then
A87:
|.(((
delta T)
. m)
-
0 ).|
< (r
/ ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))) by
A85;
((
delta T)
. m)
<=
|.((
delta T)
. m).| by
ABSVALUE: 4;
hence thesis by
A87,
XXREAL_0: 2;
end;
take n;
let m be
Nat;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
reconsider D = (T
. mm) as
Division of A;
A88:
|.((
upper_sum ((f
|| A),D))
- (
lower_sum ((f
|| A),D))).|
=
|.((((
upper_sum ((f
|| A),T))
. mm)
- (
lower_sum ((f
|| A),D)))
-
0 ).| by
INTEGRA2:def 2
.=
|.((((
upper_sum ((f
|| A),T))
. mm)
- ((
lower_sum ((f
|| A),T))
. m))
-
0 ).| by
INTEGRA2:def 3
.=
|.((((
upper_sum ((f
|| A),T))
. m)
+ (
- ((
lower_sum ((f
|| A),T))
. m)))
-
0 ).|
.=
|.((((
upper_sum ((f
|| A),T))
. m)
+ ((
- (
lower_sum ((f
|| A),T)))
. m))
-
0 ).| by
SEQ_1: 10
.=
|.((((
upper_sum ((f
|| A),T))
- (
lower_sum ((f
|| A),T)))
. m)
-
0 ).| by
SEQ_1: 7;
assume n
<= m;
then ((
delta T)
. mm)
< (r
/ ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))) by
A86;
then (((
delta T)
. m)
* ((f
. (
upper_bound A))
- (f
. (
lower_bound A))))
< r by
A84,
XREAL_1: 79;
then
A89: ((
delta D)
* ((f
. (
upper_bound A))
- (f
. (
lower_bound A))))
< r by
INTEGRA3:def 2;
((
upper_sum ((f
|| A),D))
- (
lower_sum ((f
|| A),D)))
<= ((
delta D)
* ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))) by
A14;
then
A90: ((
upper_sum ((f
|| A),D))
- (
lower_sum ((f
|| A),D)))
< r by
A89,
XXREAL_0: 2;
((
upper_sum ((f
|| A),D))
- (
lower_sum ((f
|| A),D)))
>=
0 by
A14;
hence thesis by
A90,
A88,
ABSVALUE:def 1;
end;
end;
A91: (
upper_sum ((f
|| A),T)) is
convergent & (
lower_sum ((f
|| A),T)) is
convergent by
A64,
A75,
INTEGRA4: 8,
INTEGRA4: 9;
then ((
upper_sum ((f
|| A),T))
- (
lower_sum ((f
|| A),T))) is
convergent;
then (
lim ((
upper_sum ((f
|| A),T))
- (
lower_sum ((f
|| A),T))))
=
0 by
A76,
SEQ_2:def 7;
hence thesis by
A91,
SEQ_2: 12;
end;
then (f
|| A) is
integrable by
A64,
INTEGRA4: 12;
hence thesis;
end;
theorem ::
INTEGRA5:16
for f be
PartFunc of
REAL ,
REAL st (f
| A) is
monotone & A
c= (
dom f) holds f
is_integrable_on A
proof
let f be
PartFunc of
REAL ,
REAL ;
assume that
A1: (f
| A) is
monotone and
A2: A
c= (
dom f);
per cases by
A1,
RFUNCT_2:def 5;
suppose (f
| A) is
non-decreasing;
hence thesis by
A2,
Lm1;
end;
suppose (f
| A) is
non-increasing;
then
A3: (((
- 1)
(#) f)
| A) is
non-decreasing by
RFUNCT_2: 35;
A4: ((
- f)
|| A) is
total & (((
- f)
|| A)
| A) is
bounded
proof
consider x be
Element of
REAL such that
A5: x
in A by
SUBSET_1: 4;
A6: (
dom ((
- f)
|| A))
= ((
dom (
- f))
/\ A) by
RELAT_1: 61
.= ((
dom f)
/\ A) by
VALUED_1: 8
.= A by
A2,
XBOOLE_1: 28;
hence ((
- f)
|| A) is
total by
PARTFUN1:def 2;
(
lower_bound A)
<= x & x
<= (
upper_bound A) by
A5,
INTEGRA2: 1;
then
A7: (
lower_bound A)
<= (
upper_bound A) by
XXREAL_0: 2;
for x be
object st x
in (A
/\ (
dom ((
- f)
|| A))) holds (((
- f)
|| A)
. x)
>= (((
- f)
|| A)
. (
lower_bound A))
proof
let x be
object;
assume x
in (A
/\ (
dom ((
- f)
|| A)));
then
reconsider x as
Element of A;
A8: x
>= (
lower_bound A) & ((
- f)
. x)
= (((
- f)
| A)
. x) by
A6,
FUNCT_1: 47,
INTEGRA2: 1;
(
lower_bound A)
in A by
A7,
INTEGRA2: 1;
then
A9: ((
- f)
. (
lower_bound A))
= (((
- f)
| A)
. (
lower_bound A)) by
A6,
FUNCT_1: 47;
A10: A
= (A
/\ (
dom f)) by
A2,
XBOOLE_1: 28
.= (A
/\ (
dom (
- f))) by
VALUED_1: 8;
then (
lower_bound A)
in (A
/\ (
dom (
- f))) by
A7,
INTEGRA2: 1;
hence thesis by
A3,
A10,
A8,
A9,
RFUNCT_2: 24;
end;
then
A11: (((
- f)
|| A)
| A) is
bounded_below by
RFUNCT_1: 71;
for x be
object st x
in (A
/\ (
dom ((
- f)
|| A))) holds (((
- f)
|| A)
. x)
<= (((
- f)
|| A)
. (
upper_bound A))
proof
let x be
object;
assume x
in (A
/\ (
dom ((
- f)
|| A)));
then
reconsider x as
Element of A;
A12: x
<= (
upper_bound A) & ((
- f)
. x)
= (((
- f)
| A)
. x) by
A6,
FUNCT_1: 47,
INTEGRA2: 1;
(
upper_bound A)
in A by
A7,
INTEGRA2: 1;
then
A13: ((
- f)
. (
upper_bound A))
= (((
- f)
| A)
. (
upper_bound A)) by
A6,
FUNCT_1: 47;
A14: A
= (A
/\ (
dom f)) by
A2,
XBOOLE_1: 28
.= (A
/\ (
dom (
- f))) by
VALUED_1: 8;
then (
upper_bound A)
in (A
/\ (
dom (
- f))) by
A7,
INTEGRA2: 1;
hence thesis by
A3,
A14,
A12,
A13,
RFUNCT_2: 24;
end;
then (((
- f)
|| A)
| A) is
bounded_above by
RFUNCT_1: 70;
hence thesis by
A11;
end;
(
dom f)
= (
dom (
- f)) by
VALUED_1: 8;
then (
- f)
is_integrable_on A by
A2,
A3,
Lm1;
then ((
- f)
|| A) is
integrable;
then
A15: ((
- 1)
(#) ((
- f)
|| A)) is
integrable by
A4,
INTEGRA2: 31;
A16: (
dom ((
- f)
|| A))
= ((
dom (
- f))
/\ A) by
RELAT_1: 61
.= ((
dom f)
/\ A) by
VALUED_1: 8
.= A by
A2,
XBOOLE_1: 28;
then
A17: A
= (
dom ((
- 1)
(#) ((
- f)
|| A))) by
VALUED_1:def 5;
A18: (
dom (f
|| A))
= ((
dom f)
/\ A) by
RELAT_1: 61;
then
A19: (
dom (f
|| A))
= A by
A2,
XBOOLE_1: 28;
A20: (
dom ((
- 1)
(#) ((
- f)
|| A)))
= A by
A16,
VALUED_1:def 5;
A21: for z be
Element of A st z
in A holds (((
- 1)
(#) ((
- f)
|| A))
. z)
= ((f
|| A)
. z)
proof
let z be
Element of A;
assume z
in A;
(((
- f)
|| A)
. z)
= ((
- f)
. z) by
A16,
FUNCT_1: 47
.= (
- (f
. z)) by
VALUED_1: 8;
then (((
- 1)
(#) ((
- f)
|| A))
. z)
= ((
- 1)
* (
- (f
. z))) by
A20,
VALUED_1:def 5
.= (f
. z);
hence thesis by
A19,
FUNCT_1: 47;
end;
A
= (
dom (f
|| A)) by
A2,
A18,
XBOOLE_1: 28;
then ((
- 1)
(#) ((
- f)
|| A))
= (f
|| A) by
A21,
A17,
PARTFUN1: 5;
hence thesis by
A15;
end;
end;
theorem ::
INTEGRA5:17
for f be
PartFunc of
REAL ,
REAL , A,B be non
empty
closed_interval
Subset of
REAL st A
c= (
dom f) & (f
| A) is
continuous & B
c= A holds f
is_integrable_on B
proof
let f be
PartFunc of
REAL ,
REAL , A,B be non
empty
closed_interval
Subset of
REAL such that
A1: A
c= (
dom f) and
A2: (f
| A) is
continuous and
A3: B
c= A;
(f
| B) is
continuous by
A2,
A3,
FCONT_1: 16;
hence thesis by
A1,
A3,
Th11,
XBOOLE_1: 1;
end;
theorem ::
INTEGRA5:18
for f be
PartFunc of
REAL ,
REAL , A,B,C be non
empty
closed_interval
Subset of
REAL , X st A
c= X & f
is_differentiable_on X & ((f
`| X)
| A) is
continuous & (
lower_bound A)
= (
lower_bound B) & (
upper_bound B)
= (
lower_bound C) & (
upper_bound C)
= (
upper_bound A) holds B
c= A & C
c= A & (
integral ((f
`| X),A))
= ((
integral ((f
`| X),B))
+ (
integral ((f
`| X),C)))
proof
let f be
PartFunc of
REAL ,
REAL ;
let A,B,C be non
empty
closed_interval
Subset of
REAL ;
let X;
assume that
A1: A
c= X & f
is_differentiable_on X and
A2: ((f
`| X)
| A) is
continuous and
A3: (
lower_bound A)
= (
lower_bound B) and
A4: (
upper_bound B)
= (
lower_bound C) and
A5: (
upper_bound C)
= (
upper_bound A);
consider x be
Element of
REAL such that
A6: x
in B by
SUBSET_1: 4;
(
lower_bound B)
<= x & x
<= (
upper_bound B) by
A6,
INTEGRA2: 1;
then
A7: (
lower_bound B)
<= (
upper_bound B) by
XXREAL_0: 2;
consider x be
Element of
REAL such that
A8: x
in C by
SUBSET_1: 4;
(
lower_bound C)
<= x & x
<= (
upper_bound C) by
A8,
INTEGRA2: 1;
then
A9: (
lower_bound C)
<= (
upper_bound C) by
XXREAL_0: 2;
for x be
object st x
in B holds x
in A
proof
let x be
object;
assume
A10: x
in B;
then
reconsider x as
Real;
x
<= (
upper_bound B) by
A10,
INTEGRA2: 1;
then
A11: x
<= (
upper_bound A) by
A4,
A5,
A9,
XXREAL_0: 2;
(
lower_bound A)
<= x by
A3,
A10,
INTEGRA2: 1;
hence thesis by
A11,
INTEGRA2: 1;
end;
hence
A12: B
c= A by
TARSKI:def 3;
A13: A
c= (
dom (f
`| X)) by
A1,
FDIFF_1:def 7;
then
A14: ((f
`| X)
| A) is
bounded by
A2,
Th10;
then
A15: ((f
`| X)
| B) is
bounded by
A12,
RFUNCT_1: 74;
for x be
object st x
in C holds x
in A
proof
let x be
object;
assume
A16: x
in C;
then
reconsider x as
Real;
(
lower_bound C)
<= x by
A16,
INTEGRA2: 1;
then
A17: (
lower_bound A)
<= x by
A3,
A4,
A7,
XXREAL_0: 2;
x
<= (
upper_bound A) by
A5,
A16,
INTEGRA2: 1;
hence thesis by
A17,
INTEGRA2: 1;
end;
hence
A18: C
c= A by
TARSKI:def 3;
then
A19: ((f
`| X)
| C) is
bounded by
A14,
RFUNCT_1: 74;
((f
`| X)
| C) is
continuous by
A2,
A18,
FCONT_1: 16;
then (f
`| X)
is_integrable_on C by
A13,
A18,
Th11,
XBOOLE_1: 1;
then
A20: (
integral ((f
`| X),C))
= ((f
. (
upper_bound C))
- (f
. (
lower_bound C))) by
A1,
A18,
A19,
Th13,
XBOOLE_1: 1;
((f
`| X)
| B) is
continuous by
A2,
A12,
FCONT_1: 16;
then (f
`| X)
is_integrable_on B by
A13,
A12,
Th11,
XBOOLE_1: 1;
then
A21: (
integral ((f
`| X),B))
= ((f
. (
upper_bound B))
- (f
. (
lower_bound B))) by
A1,
A12,
A15,
Th13,
XBOOLE_1: 1;
(f
`| X)
is_integrable_on A by
A2,
A13,
Th11;
then (
integral ((f
`| X),A))
= ((f
. (
upper_bound A))
- (f
. (
lower_bound A))) by
A1,
A2,
A13,
Th10,
Th13;
hence thesis by
A3,
A4,
A5,
A21,
A20;
end;
definition
let a,b be
Real;
assume
A1: a
<= b;
::
INTEGRA5:def3
func
['a,b'] -> non
empty
closed_interval
Subset of
REAL equals
:
Def3:
[.a, b.];
correctness by
A1,
MEASURE5: 14;
end
definition
let a,b be
Real;
let f be
PartFunc of
REAL ,
REAL ;
::
INTEGRA5:def4
func
integral (f,a,b) ->
Real equals
:
Def4: (
integral (f,
['a, b'])) if a
<= b
otherwise (
- (
integral (f,
['b, a'])));
correctness ;
end
theorem ::
INTEGRA5:19
for f be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL , a, b st A
=
[.a, b.] holds (
integral (f,A))
= (
integral (f,a,b))
proof
let f be
PartFunc of
REAL ,
REAL ;
let A be non
empty
closed_interval
Subset of
REAL ;
let a, b;
consider a1,b1 be
Real such that
A1: a1
<= b1 and
A2: A
=
[.a1, b1.] by
MEASURE5: 14;
assume A
=
[.a, b.];
then
A3: a1
= a & b1
= b by
A2,
INTEGRA1: 5;
then (
integral (f,a,b))
= (
integral (f,
['a, b'])) by
A1,
Def4;
hence thesis by
A1,
A2,
A3,
Def3;
end;
theorem ::
INTEGRA5:20
for f be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL , a, b st A
=
[.b, a.] holds (
- (
integral (f,A)))
= (
integral (f,a,b))
proof
let f be
PartFunc of
REAL ,
REAL ;
let A be non
empty
closed_interval
Subset of
REAL ;
let a, b;
consider a1,b1 be
Real such that
A1: a1
<= b1 and
A2: A
=
[.a1, b1.] by
MEASURE5: 14;
assume
A3: A
=
[.b, a.];
then
A4: a1
= b & b1
= a by
A2,
INTEGRA1: 5;
now
per cases by
A1,
A4,
XXREAL_0: 1;
suppose
A5: b
< a;
then (
integral (f,a,b))
= (
- (
integral (f,
['b, a']))) by
Def4;
hence thesis by
A3,
A5,
Def3;
end;
suppose
A6: b
= a;
A
=
[.(
lower_bound A), (
upper_bound A).] by
INTEGRA1: 4;
then (
lower_bound A)
= b & (
upper_bound A)
= a by
A3,
INTEGRA1: 5;
then (
vol A)
= ((
upper_bound A)
- (
upper_bound A)) by
A6,
INTEGRA1:def 5
.=
0 ;
then
A7: (
integral (f,A))
=
0 by
INTEGRA4: 6;
(
integral (f,a,b))
= (
integral (f,
['a, b'])) by
A6,
Def4;
hence thesis by
A3,
A6,
A7,
Def3;
end;
end;
hence thesis;
end;
theorem ::
INTEGRA5:21
for f,g be
PartFunc of
REAL ,
REAL , X be
open
Subset of
REAL st f
is_differentiable_on X & g
is_differentiable_on X & A
c= X & (f
`| X)
is_integrable_on A & ((f
`| X)
| A) is
bounded & (g
`| X)
is_integrable_on A & ((g
`| X)
| A) is
bounded holds (
integral (((f
`| X)
(#) g),A))
= ((((f
. (
upper_bound A))
* (g
. (
upper_bound A)))
- ((f
. (
lower_bound A))
* (g
. (
lower_bound A))))
- (
integral ((f
(#) (g
`| X)),A)))
proof
let f,g be
PartFunc of
REAL ,
REAL ;
let X be
open
Subset of
REAL ;
assume that
A1: f
is_differentiable_on X and
A2: g
is_differentiable_on X and
A3: A
c= X and
A4: (f
`| X)
is_integrable_on A and
A5: ((f
`| X)
| A) is
bounded and
A6: (g
`| X)
is_integrable_on A and
A7: ((g
`| X)
| A) is
bounded;
A8: ((f
(#) g)
`| X)
= (((f
`| X)
(#) g)
+ (f
(#) (g
`| X))) by
A1,
A2,
FDIFF_2: 20;
(g
| X) is
continuous by
A2,
FDIFF_1: 25;
then
A9: (g
| A) is
continuous by
A3,
FCONT_1: 16;
X
c= (
dom g) by
A2,
FDIFF_1:def 6;
then
A10: A
c= (
dom g) by
A3,
XBOOLE_1: 1;
then
A11: (g
|| A) is
Function of A,
REAL by
Th6,
FUNCT_2: 68;
X
c= (
dom g) by
A2,
FDIFF_1:def 6;
then g
is_integrable_on A by
A3,
A9,
Th11,
XBOOLE_1: 1;
then
A12: (g
|| A) is
integrable;
A13: A
c= (
dom (g
`| X)) by
A2,
A3,
FDIFF_1:def 7;
then
A14: ((g
`| X)
|| A) is
Function of A,
REAL by
Th6,
FUNCT_2: 68;
(g
| X) is
continuous by
A2,
FDIFF_1: 25;
then (g
| A) is
bounded by
A3,
A10,
Th10,
FCONT_1: 16;
then
A15: (((f
`| X)
(#) g)
| (A
/\ A)) is
bounded by
A5,
RFUNCT_1: 84;
then
A16: ((((f
`| X)
(#) g)
|| A)
| A) is
bounded;
(f
| X) is
continuous by
A1,
FDIFF_1: 25;
then
A17: (f
| A) is
continuous by
A3,
FCONT_1: 16;
X
c= (
dom f) by
A1,
FDIFF_1:def 6;
then f
is_integrable_on A by
A3,
A17,
Th11,
XBOOLE_1: 1;
then
A18: (f
|| A) is
integrable;
A19: A
c= (
dom (f
`| X)) by
A1,
A3,
FDIFF_1:def 7;
then
A20: ((f
`| X)
|| A) is
Function of A,
REAL by
Th6,
FUNCT_2: 68;
A21: ((g
`| X)
|| A) is
integrable & (((g
`| X)
|| A)
| A) is
bounded by
A6,
A7;
A22: ((f
`| X)
|| A) is
integrable & (((f
`| X)
|| A)
| A) is
bounded by
A4,
A5;
(
dom ((f
`| X)
(#) g))
= ((
dom (f
`| X))
/\ (
dom g)) by
VALUED_1:def 4;
then A
c= (
dom ((f
`| X)
(#) g)) by
A10,
A19,
XBOOLE_1: 19;
then
A23: (((f
`| X)
(#) g)
|| A) is
Function of A,
REAL by
Th6,
FUNCT_2: 68;
X
c= (
dom f) by
A1,
FDIFF_1:def 6;
then
A24: A
c= (
dom f) by
A3,
XBOOLE_1: 1;
then
A25: (f
|| A) is
Function of A,
REAL by
Th6,
FUNCT_2: 68;
(f
| X) is
continuous by
A1,
FDIFF_1: 25;
then (f
| A) is
bounded by
A3,
A24,
Th10,
FCONT_1: 16;
then
A26: ((f
(#) (g
`| X))
| (A
/\ A)) is
bounded by
A7,
RFUNCT_1: 84;
then
A27: (((f
(#) (g
`| X))
|| A)
| A) is
bounded;
((((f
`| X)
(#) g)
+ (f
(#) (g
`| X)))
| (A
/\ A)) is
bounded by
A15,
A26,
RFUNCT_1: 83;
then
A28: (((f
(#) g)
`| X)
| A) is
bounded by
A1,
A2,
FDIFF_2: 20;
A29: ((f
(#) g)
. (
upper_bound A))
= ((f
. (
upper_bound A))
* (g
. (
upper_bound A))) & ((f
(#) g)
. (
lower_bound A))
= ((f
. (
lower_bound A))
* (g
. (
lower_bound A))) by
VALUED_1: 5;
(
dom (f
(#) (g
`| X)))
= ((
dom f)
/\ (
dom (g
`| X))) by
VALUED_1:def 4;
then A
c= (
dom (f
(#) (g
`| X))) by
A24,
A13,
XBOOLE_1: 19;
then
A30: ((f
(#) (g
`| X))
|| A) is
Function of A,
REAL by
Th6,
FUNCT_2: 68;
((g
|| A)
| A) is
bounded by
A9,
A10,
Th10;
then (((f
`| X)
|| A)
(#) (g
|| A)) is
integrable by
A12,
A11,
A20,
A22,
INTEGRA4: 29;
then
A31: (((f
`| X)
(#) g)
|| A) is
integrable by
Th4;
((f
|| A)
| A) is
bounded by
A17,
A24,
Th10;
then ((f
|| A)
(#) ((g
`| X)
|| A)) is
integrable by
A18,
A25,
A14,
A21,
INTEGRA4: 29;
then
A32: ((f
(#) (g
`| X))
|| A) is
integrable by
Th4;
then (
integral ((((f
`| X)
(#) g)
|| A)
+ ((f
(#) (g
`| X))
|| A)))
= ((
integral (((f
`| X)
(#) g)
|| A))
+ (
integral ((f
(#) (g
`| X))
|| A))) by
A31,
A23,
A16,
A30,
A27,
INTEGRA1: 57;
then
A33: (
integral ((((f
`| X)
(#) g)
+ (f
(#) (g
`| X)))
|| A))
= ((
integral (((f
`| X)
(#) g),A))
+ (
integral ((f
(#) (g
`| X)),A))) by
Th5;
((((f
`| X)
(#) g)
|| A)
+ ((f
(#) (g
`| X))
|| A)) is
integrable by
A31,
A32,
A23,
A16,
A30,
A27,
INTEGRA1: 57;
then ((((f
`| X)
(#) g)
+ (f
(#) (g
`| X)))
|| A) is
integrable by
Th5;
then
A34: ((f
(#) g)
`| X)
is_integrable_on A by
A8;
(
integral (((f
(#) g)
`| X)
|| A))
= (
integral (((f
(#) g)
`| X),A))
.= (((f
(#) g)
. (
upper_bound A))
- ((f
(#) g)
. (
lower_bound A))) by
A1,
A2,
A3,
A34,
A28,
Th13,
FDIFF_2: 20;
hence thesis by
A8,
A29,
A33;
end;