integra7.miz
begin
reserve a,b,r for
Real;
reserve A for non
empty
set;
reserve X,x for
set;
reserve f,g,F,G for
PartFunc of
REAL ,
REAL ;
reserve n for
Element of
NAT ;
theorem ::
INTEGRA7:1
Th1: for f,g be
Function of A,
REAL st (
rng f) is
bounded_above & (
rng g) is
bounded_above & (for x be
set st x
in A holds
|.((f
. x)
- (g
. x)).|
<= a) holds ((
upper_bound (
rng f))
- (
upper_bound (
rng g)))
<= a & ((
upper_bound (
rng g))
- (
upper_bound (
rng f)))
<= a
proof
let f,g be
Function of A,
REAL ;
assume that
A1: (
rng f) is
bounded_above and
A2: (
rng g) is
bounded_above and
A3: for x be
set st x
in A holds
|.((f
. x)
- (g
. x)).|
<= a;
A4: (
dom f)
= A by
FUNCT_2:def 1;
A5: for b st b
in (
rng g) holds b
<= ((
upper_bound (
rng f))
+ a)
proof
let b;
assume b
in (
rng g);
then
consider x be
Element of A such that x
in (
dom g) and
A6: b
= (g
. x) by
PARTFUN1: 3;
|.((f
. x)
- (g
. x)).|
<= a by
A3;
then
|.((g
. x)
- (f
. x)).|
<= a by
COMPLEX1: 60;
then ((g
. x)
- (f
. x))
<= a by
ABSVALUE: 5;
then
A7: b
<= (a
+ (f
. x)) by
A6,
XREAL_1: 20;
(f
. x)
in (
rng f) by
A4,
FUNCT_1: 3;
then (f
. x)
<= (
upper_bound (
rng f)) by
A1,
SEQ_4:def 1;
then (a
+ (f
. x))
<= (a
+ (
upper_bound (
rng f))) by
XREAL_1: 6;
hence thesis by
A7,
XXREAL_0: 2;
end;
A8: (
dom g)
= A by
FUNCT_2:def 1;
A9: (
upper_bound (
rng g))
<= ((
upper_bound (
rng f))
+ a) by
A5,
SEQ_4: 45;
A10: for b st b
in (
rng f) holds b
<= ((
upper_bound (
rng g))
+ a)
proof
let b;
assume b
in (
rng f);
then
consider x be
Element of A such that x
in (
dom f) and
A11: b
= (f
. x) by
PARTFUN1: 3;
(g
. x)
in (
rng g) by
A8,
FUNCT_1: 3;
then (g
. x)
<= (
upper_bound (
rng g)) by
A2,
SEQ_4:def 1;
then
A12: (a
+ (g
. x))
<= (a
+ (
upper_bound (
rng g))) by
XREAL_1: 6;
|.((f
. x)
- (g
. x)).|
<= a by
A3;
then ((f
. x)
- (g
. x))
<= a by
ABSVALUE: 5;
then b
<= (a
+ (g
. x)) by
A11,
XREAL_1: 20;
hence thesis by
A12,
XXREAL_0: 2;
end;
(
upper_bound (
rng f))
<= ((
upper_bound (
rng g))
+ a) by
A10,
SEQ_4: 45;
hence thesis by
A9,
XREAL_1: 20;
end;
theorem ::
INTEGRA7:2
Th2: for f,g be
Function of A,
REAL st (
rng f) is
bounded_below & (
rng g) is
bounded_below & (for x be
set st x
in A holds
|.((f
. x)
- (g
. x)).|
<= a) holds ((
lower_bound (
rng f))
- (
lower_bound (
rng g)))
<= a & ((
lower_bound (
rng g))
- (
lower_bound (
rng f)))
<= a
proof
let f,g be
Function of A,
REAL ;
assume that
A1: (
rng f) is
bounded_below and
A2: (
rng g) is
bounded_below and
A3: for x be
set st x
in A holds
|.((f
. x)
- (g
. x)).|
<= a;
A4: (
dom f)
= A by
FUNCT_2:def 1;
A5: for b st b
in (
rng g) holds ((
lower_bound (
rng f))
- a)
<= b
proof
let b;
assume b
in (
rng g);
then
consider x be
Element of A such that x
in (
dom g) and
A6: b
= (g
. x) by
PARTFUN1: 3;
(f
. x)
in (
rng f) by
A4,
FUNCT_1: 3;
then (
lower_bound (
rng f))
<= (f
. x) by
A1,
SEQ_4:def 2;
then
A7: ((
lower_bound (
rng f))
- a)
<= ((f
. x)
- a) by
XREAL_1: 9;
|.((f
. x)
- (g
. x)).|
<= a by
A3;
then ((f
. x)
- (g
. x))
<= a by
ABSVALUE: 5;
then ((f
. x)
- a)
<= b by
A6,
XREAL_1: 12;
hence thesis by
A7,
XXREAL_0: 2;
end;
A8: (
dom g)
= A by
FUNCT_2:def 1;
A9: ((
lower_bound (
rng f))
- a)
<= (
lower_bound (
rng g)) by
A5,
SEQ_4: 43;
A10: for b st b
in (
rng f) holds ((
lower_bound (
rng g))
- a)
<= b
proof
let b;
assume b
in (
rng f);
then
consider x be
Element of A such that x
in (
dom f) and
A11: b
= (f
. x) by
PARTFUN1: 3;
|.((f
. x)
- (g
. x)).|
<= a by
A3;
then
|.((g
. x)
- (f
. x)).|
<= a by
COMPLEX1: 60;
then ((g
. x)
- (f
. x))
<= a by
ABSVALUE: 5;
then
A12: ((g
. x)
- a)
<= b by
A11,
XREAL_1: 12;
(g
. x)
in (
rng g) by
A8,
FUNCT_1: 3;
then (
lower_bound (
rng g))
<= (g
. x) by
A2,
SEQ_4:def 2;
then ((
lower_bound (
rng g))
- a)
<= ((g
. x)
- a) by
XREAL_1: 9;
hence thesis by
A12,
XXREAL_0: 2;
end;
((
lower_bound (
rng g))
- a)
<= (
lower_bound (
rng f)) by
A10,
SEQ_4: 43;
hence thesis by
A9,
XREAL_1: 12;
end;
theorem ::
INTEGRA7:3
((f
| X)
| X) is
bounded implies (f
| X) is
bounded;
theorem ::
INTEGRA7:4
Th4: for x be
Real st x
in X & (f
| X)
is_differentiable_in x holds f
is_differentiable_in x
proof
let x be
Real;
assume that
A1: x
in X and
A2: (f
| X)
is_differentiable_in x;
consider N be
Neighbourhood of x such that
A3: N
c= (
dom (f
| X)) and
A4: ex L be
LinearFunc, R be
RestFunc st for x1 be
Real st x1
in N holds (((f
| X)
. x1)
- ((f
| X)
. x))
= ((L
. (x1
- x))
+ (R
. (x1
- x))) by
A2;
A5: ((f
| X)
. x)
= (f
. x) by
A1,
FUNCT_1: 49;
take N;
N
c= ((
dom f)
/\ X) by
A3,
RELAT_1: 61;
hence N
c= (
dom f) by
XBOOLE_1: 18;
consider L be
LinearFunc, R be
RestFunc such that
A6: for x1 be
Real st x1
in N holds (((f
| X)
. x1)
- ((f
| X)
. x))
= ((L
. (x1
- x))
+ (R
. (x1
- x))) by
A4;
take L, R;
let x1 be
Real;
assume
A7: x1
in N;
then ((f
| X)
. x1)
= (f
. x1) by
A3,
FUNCT_1: 47;
hence thesis by
A6,
A7,
A5;
end;
theorem ::
INTEGRA7:5
(f
| X)
is_differentiable_on X implies f
is_differentiable_on X
proof
assume
A1: (f
| X)
is_differentiable_on X;
then
A2: for x be
Real st x
in X holds (f
| X)
is_differentiable_in x;
X
c= (
dom (f
| X)) by
A1;
then X
c= ((
dom f)
/\ X) by
RELAT_1: 61;
then X
c= (
dom f) by
XBOOLE_1: 18;
hence thesis by
A2;
end;
theorem ::
INTEGRA7:6
Th6: f
is_differentiable_on X & g
is_differentiable_on X implies (f
+ g)
is_differentiable_on X & (f
- g)
is_differentiable_on X & (f
(#) g)
is_differentiable_on X
proof
assume that
A1: f
is_differentiable_on X and
A2: g
is_differentiable_on X;
reconsider Z = X as
Subset of
REAL by
A1,
FDIFF_1: 8;
reconsider Z as
open
Subset of
REAL by
A1,
FDIFF_1: 10;
X
c= (
dom f) & X
c= (
dom g) by
A1,
A2;
then
A3: Z
c= ((
dom f)
/\ (
dom g)) by
XBOOLE_1: 19;
then
A4: Z
c= (
dom (f
(#) g)) by
VALUED_1:def 4;
Z
c= (
dom (f
+ g)) & Z
c= (
dom (f
- g)) by
A3,
VALUED_1: 12,
VALUED_1:def 1;
hence thesis by
A1,
A2,
A4,
FDIFF_1: 18,
FDIFF_1: 19,
FDIFF_1: 21;
end;
theorem ::
INTEGRA7:7
Th7: f
is_differentiable_on X implies (r
(#) f)
is_differentiable_on X
proof
reconsider r1 = r as
Real;
assume
A1: f
is_differentiable_on X;
then
reconsider Z = X as
Subset of
REAL by
FDIFF_1: 8;
reconsider Z as
open
Subset of
REAL by
A1,
FDIFF_1: 10;
X
c= (
dom f) by
A1;
then Z
c= (
dom (r
(#) f)) by
VALUED_1:def 5;
then (r1
(#) f)
is_differentiable_on X by
A1,
FDIFF_1: 20;
hence thesis;
end;
theorem ::
INTEGRA7:8
Th8: (for x be
set st x
in X holds (g
. x)
<>
0 ) & f
is_differentiable_on X & g
is_differentiable_on X implies (f
/ g)
is_differentiable_on X
proof
assume that
A1: for x be
set st x
in X holds (g
. x)
<>
0 and
A2: f
is_differentiable_on X and
A3: g
is_differentiable_on X;
reconsider Z = X as
Subset of
REAL by
A2,
FDIFF_1: 8;
reconsider Z as
open
Subset of
REAL by
A2,
FDIFF_1: 10;
for x be
Real st x
in Z holds (g
. x)
<>
0 by
A1;
hence thesis by
A2,
A3,
FDIFF_2: 21;
end;
theorem ::
INTEGRA7:9
(for x be
set st x
in X holds (f
. x)
<>
0 ) & f
is_differentiable_on X implies (f
^ )
is_differentiable_on X
proof
assume that
A1: for x be
set st x
in X holds (f
. x)
<>
0 and
A2: f
is_differentiable_on X;
reconsider Z = X as
Subset of
REAL by
A2,
FDIFF_1: 8;
reconsider Z as
open
Subset of
REAL by
A2,
FDIFF_1: 10;
for x be
Real st x
in Z holds (f
. x)
<>
0 by
A1;
hence thesis by
A2,
FDIFF_2: 22;
end;
theorem ::
INTEGRA7:10
Th10: a
<= b &
['a, b']
c= X & F
is_differentiable_on X & (F
`| X)
is_integrable_on
['a, b'] & ((F
`| X)
|
['a, b']) is
bounded implies (F
. b)
= ((
integral ((F
`| X),a,b))
+ (F
. a))
proof
assume that
A1: a
<= b and
A2:
['a, b']
c= X & F
is_differentiable_on X & (F
`| X)
is_integrable_on
['a, b'] & ((F
`| X)
|
['a, b']) is
bounded;
(
integral ((F
`| X),a,b))
= (
integral ((F
`| X),
['a, b'])) by
A1,
INTEGRA5:def 4;
then
A3: (
integral ((F
`| X),a,b))
= ((F
. (
upper_bound
['a, b']))
- (F
. (
lower_bound
['a, b']))) by
A2,
INTEGRA5: 13;
A4:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A5:
[.a, b.]
=
[.(
lower_bound
[.a, b.]), (
upper_bound
[.a, b.]).] by
INTEGRA1: 4;
then a
= (
lower_bound
[.a, b.]) by
A4,
INTEGRA1: 5;
hence thesis by
A4,
A5,
A3,
INTEGRA1: 5;
end;
begin
definition
let X be
set, f be
PartFunc of
REAL ,
REAL ;
::
INTEGRA7:def1
func
IntegralFuncs (f,X) ->
set means
:
Def1: x
in it iff ex F be
PartFunc of
REAL ,
REAL st x
= F & F
is_differentiable_on X & (F
`| X)
= (f
| X);
existence
proof
defpred
P[
object] means ex F be
PartFunc of
REAL ,
REAL st $1
= F & F
is_differentiable_on X & (F
`| X)
= (f
| X);
consider Z be
set such that
A1: for x be
object holds x
in Z iff x
in (
PFuncs (
REAL ,
REAL )) &
P[x] from
XBOOLE_0:sch 1;
take Z;
let x;
thus x
in Z implies ex F be
PartFunc of
REAL ,
REAL st x
= F & F
is_differentiable_on X & (F
`| X)
= (f
| X) by
A1;
given F be
PartFunc of
REAL ,
REAL such that
A2: x
= F & F
is_differentiable_on X & (F
`| X)
= (f
| X);
F
in (
PFuncs (
REAL ,
REAL )) by
PARTFUN1: 45;
hence thesis by
A1,
A2;
end;
uniqueness
proof
let Z1,Z2 be
set such that
A3: x
in Z1 iff ex F be
PartFunc of
REAL ,
REAL st x
= F & F
is_differentiable_on X & (F
`| X)
= (f
| X) and
A4: x
in Z2 iff ex F be
PartFunc of
REAL ,
REAL st x
= F & F
is_differentiable_on X & (F
`| X)
= (f
| X);
for x be
object holds x
in Z1 iff x
in Z2
proof
let x be
object;
x
in Z1 iff ex F be
PartFunc of
REAL ,
REAL st x
= F & F
is_differentiable_on X & (F
`| X)
= (f
| X) by
A3;
hence thesis by
A4;
end;
hence thesis by
TARSKI: 2;
end;
end
definition
let X be
set, F,f be
PartFunc of
REAL ,
REAL ;
::
INTEGRA7:def2
pred F
is_integral_of f,X means F
in (
IntegralFuncs (f,X));
end
Lm1: F
is_integral_of (f,X) iff F
is_differentiable_on X & (F
`| X)
= (f
| X)
proof
hereby
assume F
is_integral_of (f,X);
then F
in (
IntegralFuncs (f,X));
then ex F9 be
PartFunc of
REAL ,
REAL st F
= F9 & F9
is_differentiable_on X & (F9
`| X)
= (f
| X) by
Def1;
hence F
is_differentiable_on X & (F
`| X)
= (f
| X);
end;
assume F
is_differentiable_on X & (F
`| X)
= (f
| X);
then F
in (
IntegralFuncs (f,X)) by
Def1;
hence thesis;
end;
theorem ::
INTEGRA7:11
Th11: F
is_integral_of (f,X) implies X
c= (
dom F)
proof
assume F
is_integral_of (f,X);
then F
in (
IntegralFuncs (f,X));
then ex G be
PartFunc of
REAL ,
REAL st F
= G & G
is_differentiable_on X & (G
`| X)
= (f
| X) by
Def1;
hence thesis;
end;
theorem ::
INTEGRA7:12
F
is_integral_of (f,X) & G
is_integral_of (g,X) implies (F
+ G)
is_integral_of ((f
+ g),X) & (F
- G)
is_integral_of ((f
- g),X)
proof
assume that
A1: F
is_integral_of (f,X) and
A2: G
is_integral_of (g,X);
A3: G
is_differentiable_on X by
A2,
Lm1;
A4: (G
`| X)
= (g
| X) by
A2,
Lm1;
then (
dom (g
| X))
= X by
A3,
FDIFF_1:def 7;
then ((
dom g)
/\ X)
= X by
RELAT_1: 61;
then
A5: X
c= (
dom g) by
XBOOLE_1: 18;
A6: F
is_differentiable_on X by
A1,
Lm1;
then
A7: (F
+ G)
is_differentiable_on X by
A3,
Th6;
A8: (F
`| X)
= (f
| X) by
A1,
Lm1;
then (
dom (f
| X))
= X by
A6,
FDIFF_1:def 7;
then ((
dom f)
/\ X)
= X by
RELAT_1: 61;
then X
c= (
dom f) by
XBOOLE_1: 18;
then
A9: X
c= ((
dom f)
/\ (
dom g)) by
A5,
XBOOLE_1: 19;
then
A10: X
c= (
dom (f
+ g)) by
VALUED_1:def 1;
A11:
now
let x be
Element of
REAL ;
assume x
in (
dom ((F
+ G)
`| X));
then
A12: x
in X by
A7,
FDIFF_1:def 7;
then (F
| X)
is_differentiable_in x by
A6;
then
A13: F
is_differentiable_in x by
A12,
Th4;
((G
`| X)
. x)
= (
diff (G,x)) by
A3,
A12,
FDIFF_1:def 7;
then
A14: (g
. x)
= (
diff (G,x)) by
A4,
A12,
FUNCT_1: 49;
((F
`| X)
. x)
= (
diff (F,x)) by
A6,
A12,
FDIFF_1:def 7;
then
A15: (f
. x)
= (
diff (F,x)) by
A8,
A12,
FUNCT_1: 49;
(G
| X)
is_differentiable_in x by
A3,
A12;
then
A16: G
is_differentiable_in x by
A12,
Th4;
(((F
+ G)
`| X)
. x)
= (
diff ((F
+ G),x)) by
A7,
A12,
FDIFF_1:def 7;
then (((F
+ G)
`| X)
. x)
= ((
diff (F,x))
+ (
diff (G,x))) by
A13,
A16,
FDIFF_1: 13;
then (((F
+ G)
`| X)
. x)
= ((f
+ g)
. x) by
A10,
A12,
A15,
A14,
VALUED_1:def 1;
hence (((F
+ G)
`| X)
. x)
= (((f
+ g)
| X)
. x) by
A12,
FUNCT_1: 49;
end;
A17: (F
- G)
is_differentiable_on X by
A6,
A3,
Th6;
A18: X
c= (
dom (f
- g)) by
A9,
VALUED_1: 12;
A19:
now
let x be
Element of
REAL ;
assume x
in (
dom ((F
- G)
`| X));
then
A20: x
in X by
A17,
FDIFF_1:def 7;
then (F
| X)
is_differentiable_in x by
A6;
then
A21: F
is_differentiable_in x by
A20,
Th4;
((G
`| X)
. x)
= (
diff (G,x)) by
A3,
A20,
FDIFF_1:def 7;
then
A22: (g
. x)
= (
diff (G,x)) by
A4,
A20,
FUNCT_1: 49;
((F
`| X)
. x)
= (
diff (F,x)) by
A6,
A20,
FDIFF_1:def 7;
then
A23: (f
. x)
= (
diff (F,x)) by
A8,
A20,
FUNCT_1: 49;
(G
| X)
is_differentiable_in x by
A3,
A20;
then
A24: G
is_differentiable_in x by
A20,
Th4;
(((F
- G)
`| X)
. x)
= (
diff ((F
- G),x)) by
A17,
A20,
FDIFF_1:def 7;
then (((F
- G)
`| X)
. x)
= ((
diff (F,x))
- (
diff (G,x))) by
A21,
A24,
FDIFF_1: 14;
then (((F
- G)
`| X)
. x)
= ((f
- g)
. x) by
A18,
A20,
A23,
A22,
VALUED_1: 13;
hence (((F
- G)
`| X)
. x)
= (((f
- g)
| X)
. x) by
A20,
FUNCT_1: 49;
end;
X
= (
dom ((f
+ g)
| X)) by
A10,
RELAT_1: 62;
then (
dom ((F
+ G)
`| X))
= (
dom ((f
+ g)
| X)) by
A7,
FDIFF_1:def 7;
then ((F
+ G)
`| X)
= ((f
+ g)
| X) by
A11,
PARTFUN1: 5;
hence (F
+ G)
is_integral_of ((f
+ g),X) by
A7,
Lm1;
X
= (
dom ((f
- g)
| X)) by
A18,
RELAT_1: 62;
then (
dom ((F
- G)
`| X))
= (
dom ((f
- g)
| X)) by
A17,
FDIFF_1:def 7;
then ((F
- G)
`| X)
= ((f
- g)
| X) by
A19,
PARTFUN1: 5;
hence thesis by
A17,
Lm1;
end;
theorem ::
INTEGRA7:13
F
is_integral_of (f,X) implies (r
(#) F)
is_integral_of ((r
(#) f),X)
proof
assume
A1: F
is_integral_of (f,X);
then
A2: F
is_differentiable_on X by
Lm1;
then
A3: (r
(#) F)
is_differentiable_on X by
Th7;
A4: (F
`| X)
= (f
| X) by
A1,
Lm1;
then (
dom (f
| X))
= X by
A2,
FDIFF_1:def 7;
then ((
dom f)
/\ X)
= X by
RELAT_1: 61;
then X
c= (
dom f) by
XBOOLE_1: 18;
then
A5: X
c= (
dom (r
(#) f)) by
VALUED_1:def 5;
A6:
now
reconsider r1 = r as
Real;
let x be
Element of
REAL ;
assume x
in (
dom ((r
(#) F)
`| X));
then
A7: x
in X by
A3,
FDIFF_1:def 7;
then (F
| X)
is_differentiable_in x by
A2;
then
A8: F
is_differentiable_in x by
A7,
Th4;
(((r
(#) F)
`| X)
. x)
= (
diff ((r
(#) F),x)) by
A3,
A7,
FDIFF_1:def 7;
then
A9: (((r1
(#) F)
`| X)
. x)
= (r1
* (
diff (F,x))) by
A8,
FDIFF_1: 15;
((F
`| X)
. x)
= (
diff (F,x)) by
A2,
A7,
FDIFF_1:def 7;
then (f
. x)
= (
diff (F,x)) by
A4,
A7,
FUNCT_1: 49;
then (((r
(#) F)
`| X)
. x)
= ((r
(#) f)
. x) by
A5,
A7,
A9,
VALUED_1:def 5;
hence (((r
(#) F)
`| X)
. x)
= (((r
(#) f)
| X)
. x) by
A7,
FUNCT_1: 49;
end;
X
= (
dom ((r
(#) f)
| X)) by
A5,
RELAT_1: 62;
then (
dom ((r
(#) F)
`| X))
= (
dom ((r
(#) f)
| X)) by
A3,
FDIFF_1:def 7;
then ((r
(#) F)
`| X)
= ((r
(#) f)
| X) by
A6,
PARTFUN1: 5;
hence thesis by
A3,
Lm1;
end;
theorem ::
INTEGRA7:14
F
is_integral_of (f,X) & G
is_integral_of (g,X) implies (F
(#) G)
is_integral_of (((f
(#) G)
+ (F
(#) g)),X)
proof
assume that
A1: F
is_integral_of (f,X) and
A2: G
is_integral_of (g,X);
A3: G
is_differentiable_on X by
A2,
Lm1;
A4: X
c= (
dom F) by
A1,
Th11;
A5: (G
`| X)
= (g
| X) by
A2,
Lm1;
then (
dom (g
| X))
= X by
A3,
FDIFF_1:def 7;
then ((
dom g)
/\ X)
= X by
RELAT_1: 61;
then X
c= (
dom g) by
XBOOLE_1: 18;
then X
c= ((
dom F)
/\ (
dom g)) by
A4,
XBOOLE_1: 19;
then
A6: X
c= (
dom (F
(#) g)) by
VALUED_1:def 4;
A7: X
c= (
dom G) by
A2,
Th11;
A8: F
is_differentiable_on X by
A1,
Lm1;
then
A9: (F
(#) G)
is_differentiable_on X by
A3,
Th6;
A10: (F
`| X)
= (f
| X) by
A1,
Lm1;
then (
dom (f
| X))
= X by
A8,
FDIFF_1:def 7;
then ((
dom f)
/\ X)
= X by
RELAT_1: 61;
then X
c= (
dom f) by
XBOOLE_1: 18;
then X
c= ((
dom f)
/\ (
dom G)) by
A7,
XBOOLE_1: 19;
then X
c= (
dom (f
(#) G)) by
VALUED_1:def 4;
then X
c= ((
dom (f
(#) G))
/\ (
dom (F
(#) g))) by
A6,
XBOOLE_1: 19;
then
A11: X
c= (
dom ((f
(#) G)
+ (F
(#) g))) by
VALUED_1:def 1;
A12:
now
let x be
Element of
REAL ;
assume x
in (
dom ((F
(#) G)
`| X));
then
A13: x
in X by
A9,
FDIFF_1:def 7;
then (F
| X)
is_differentiable_in x by
A8;
then
A14: F
is_differentiable_in x by
A13,
Th4;
((G
`| X)
. x)
= (
diff (G,x)) by
A3,
A13,
FDIFF_1:def 7;
then (g
. x)
= (
diff (G,x)) by
A5,
A13,
FUNCT_1: 49;
then
A15: ((F
(#) g)
. x)
= ((F
. x)
* (
diff (G,x))) by
VALUED_1: 5;
((F
`| X)
. x)
= (
diff (F,x)) by
A8,
A13,
FDIFF_1:def 7;
then (f
. x)
= (
diff (F,x)) by
A10,
A13,
FUNCT_1: 49;
then
A16: ((f
(#) G)
. x)
= ((G
. x)
* (
diff (F,x))) by
VALUED_1: 5;
(G
| X)
is_differentiable_in x by
A3,
A13;
then
A17: G
is_differentiable_in x by
A13,
Th4;
(((F
(#) G)
`| X)
. x)
= (
diff ((F
(#) G),x)) by
A9,
A13,
FDIFF_1:def 7;
then (((F
(#) G)
`| X)
. x)
= (((G
. x)
* (
diff (F,x)))
+ ((F
. x)
* (
diff (G,x)))) by
A14,
A17,
FDIFF_1: 16;
then (((F
(#) G)
`| X)
. x)
= (((F
(#) g)
+ (f
(#) G))
. x) by
A11,
A13,
A15,
A16,
VALUED_1:def 1;
hence (((F
(#) G)
`| X)
. x)
= ((((F
(#) g)
+ (f
(#) G))
| X)
. x) by
A13,
FUNCT_1: 49;
end;
X
= (
dom (((f
(#) G)
+ (F
(#) g))
| X)) by
A11,
RELAT_1: 62;
then (
dom ((F
(#) G)
`| X))
= (
dom (((f
(#) G)
+ (F
(#) g))
| X)) by
A9,
FDIFF_1:def 7;
then ((F
(#) G)
`| X)
= (((F
(#) g)
+ (f
(#) G))
| X) by
A12,
PARTFUN1: 5;
hence thesis by
A9,
Lm1;
end;
theorem ::
INTEGRA7:15
(for x be
set st x
in X holds (G
. x)
<>
0 ) & F
is_integral_of (f,X) & G
is_integral_of (g,X) implies (F
/ G)
is_integral_of ((((f
(#) G)
- (F
(#) g))
/ (G
(#) G)),X)
proof
assume that
A1: for x be
set st x
in X holds (G
. x)
<>
0 and
A2: F
is_integral_of (f,X) and
A3: G
is_integral_of (g,X);
A4: G
is_differentiable_on X by
A3,
Lm1;
A5: X
c= (
dom F) by
A2,
Th11;
A6: (G
`| X)
= (g
| X) by
A3,
Lm1;
then (
dom (g
| X))
= X by
A4,
FDIFF_1:def 7;
then ((
dom g)
/\ X)
= X by
RELAT_1: 61;
then X
c= (
dom g) by
XBOOLE_1: 18;
then X
c= ((
dom F)
/\ (
dom g)) by
A5,
XBOOLE_1: 19;
then
A7: X
c= (
dom (F
(#) g)) by
VALUED_1:def 4;
A8: X
c= (
dom G) by
A3,
Th11;
A9: F
is_differentiable_on X by
A2,
Lm1;
then
A10: (F
/ G)
is_differentiable_on X by
A1,
A4,
Th8;
A11: (F
`| X)
= (f
| X) by
A2,
Lm1;
then (
dom (f
| X))
= X by
A9,
FDIFF_1:def 7;
then ((
dom f)
/\ X)
= X by
RELAT_1: 61;
then X
c= (
dom f) by
XBOOLE_1: 18;
then X
c= ((
dom f)
/\ (
dom G)) by
A8,
XBOOLE_1: 19;
then X
c= (
dom (f
(#) G)) by
VALUED_1:def 4;
then X
c= ((
dom (f
(#) G))
/\ (
dom (F
(#) g))) by
A7,
XBOOLE_1: 19;
then
A12: X
c= (
dom ((f
(#) G)
- (F
(#) g))) by
VALUED_1: 12;
A13:
now
let x be
Element of
REAL ;
X
= ((
dom G)
/\ X) by
A3,
Th11,
XBOOLE_1: 28;
then
A14: X
= (
dom (G
| X)) by
RELAT_1: 61;
assume x
in (
dom ((F
/ G)
`| X));
then
A15: x
in X by
A10,
FDIFF_1:def 7;
then (F
| X)
is_differentiable_in x by
A9;
then
A16: F
is_differentiable_in x by
A15,
Th4;
(G
| X)
is_differentiable_in x by
A4,
A15;
then
A17: G
is_differentiable_in x by
A15,
Th4;
(G
. x)
= ((G
| X)
. x) by
A15,
FUNCT_1: 49;
then
A18: ((G
. x)
^2 )
= (((G
| X)
(#) (G
| X))
. x) by
VALUED_1: 5;
now
let y be
set;
assume
A19: y
in (
dom (G
| X));
then y
in ((
dom G)
/\ X) by
RELAT_1: 61;
then y
in X by
XBOOLE_0:def 4;
then
A20: (G
. y)
<>
0 by
A1;
((G
| X)
. y)
= (G
. y) by
A19,
FUNCT_1: 47;
then not ((G
| X)
. y)
in
{
0 } by
A20,
TARSKI:def 1;
hence not y
in ((G
| X)
"
{
0 }) by
FUNCT_1:def 7;
end;
then not x
in ((G
| X)
"
{
0 }) by
A15,
A14;
then x
in (((
dom (G
| X))
\ ((G
| X)
"
{
0 }))
/\ ((
dom (G
| X))
\ ((G
| X)
"
{
0 }))) by
A15,
A14,
XBOOLE_0:def 5;
then x
in ((
dom ((G
| X)
(#) (G
| X)))
\ (((G
| X)
(#) (G
| X))
"
{
0 })) by
RFUNCT_1: 2;
then x
in ((
dom ((f
(#) G)
- (F
(#) g)))
/\ ((
dom ((G
| X)
(#) (G
| X)))
\ (((G
| X)
(#) (G
| X))
"
{
0 }))) by
A12,
A15,
XBOOLE_0:def 4;
then
A21: x
in (
dom (((f
(#) G)
- (F
(#) g))
/ ((G
| X)
(#) (G
| X)))) by
RFUNCT_1:def 1;
((G
`| X)
. x)
= (
diff (G,x)) by
A4,
A15,
FDIFF_1:def 7;
then (g
. x)
= (
diff (G,x)) by
A6,
A15,
FUNCT_1: 49;
then
A22: ((F
(#) g)
. x)
= ((F
. x)
* (
diff (G,x))) by
VALUED_1: 5;
((F
`| X)
. x)
= (
diff (F,x)) by
A9,
A15,
FDIFF_1:def 7;
then (f
. x)
= (
diff (F,x)) by
A11,
A15,
FUNCT_1: 49;
then ((f
(#) G)
. x)
= ((G
. x)
* (
diff (F,x))) by
VALUED_1: 5;
then
A23: (((f
(#) G)
- (F
(#) g))
. x)
= (((
diff (F,x))
* (G
. x))
- ((
diff (G,x))
* (F
. x))) by
A12,
A15,
A22,
VALUED_1: 13;
(((F
/ G)
`| X)
. x)
= (
diff ((F
/ G),x)) & (G
. x)
<>
0 by
A1,
A10,
A15,
FDIFF_1:def 7;
then (((F
/ G)
`| X)
. x)
= ((((
diff (F,x))
* (G
. x))
- ((
diff (G,x))
* (F
. x)))
/ ((G
. x)
^2 )) by
A16,
A17,
FDIFF_2: 14;
then (((F
/ G)
`| X)
. x)
= ((((f
(#) G)
- (F
(#) g))
/ ((G
| X)
(#) (G
| X)))
. x) by
A21,
A23,
A18,
RFUNCT_1:def 1;
then (((F
/ G)
`| X)
. x)
= ((((f
(#) G)
- (F
(#) g))
/ ((G
(#) G)
| X))
. x) by
RFUNCT_1: 45;
hence (((F
/ G)
`| X)
. x)
= (((((f
(#) G)
- (F
(#) g))
/ (G
(#) G))
| X)
. x) by
RFUNCT_1: 48;
end;
now
assume ((G
| X)
"
{
0 })
<>
{} ;
then
consider y be
object such that
A24: y
in ((G
| X)
"
{
0 }) by
XBOOLE_0:def 1;
A25: y
in (
dom (G
| X)) by
A24,
FUNCT_1:def 7;
then
A26: ((G
| X)
. y)
= (G
. y) by
FUNCT_1: 47;
y
in ((
dom G)
/\ X) by
A25,
RELAT_1: 61;
then y
in X by
XBOOLE_0:def 4;
then
A27: (G
. y)
<>
0 by
A1;
((G
| X)
. y)
in
{
0 } by
A24,
FUNCT_1:def 7;
hence contradiction by
A27,
A26,
TARSKI:def 1;
end;
then (((
dom (G
| X))
\ ((G
| X)
"
{
0 }))
/\ ((
dom (G
| X))
\ ((G
| X)
"
{
0 })))
= (
dom (G
| X));
then ((
dom ((G
| X)
(#) (G
| X)))
\ (((G
| X)
(#) (G
| X))
"
{
0 }))
= (
dom (G
| X)) by
RFUNCT_1: 2;
then ((
dom ((G
| X)
(#) (G
| X)))
\ (((G
| X)
(#) (G
| X))
"
{
0 }))
= ((
dom G)
/\ X) by
RELAT_1: 61;
then
A28: ((
dom ((G
| X)
(#) (G
| X)))
\ (((G
| X)
(#) (G
| X))
"
{
0 }))
= X by
A3,
Th11,
XBOOLE_1: 28;
X
= (
dom (((f
(#) G)
- (F
(#) g))
| X)) by
A12,
RELAT_1: 62;
then ((
dom (((f
(#) G)
- (F
(#) g))
| X))
/\ ((
dom ((G
| X)
(#) (G
| X)))
\ (((G
| X)
(#) (G
| X))
"
{
0 })))
= X by
A28;
then (
dom ((((f
(#) G)
- (F
(#) g))
| X)
/ ((G
| X)
(#) (G
| X))))
= X by
RFUNCT_1:def 1;
then (
dom ((((f
(#) G)
- (F
(#) g))
| X)
/ ((G
(#) G)
| X)))
= X by
RFUNCT_1: 45;
then (
dom ((((f
(#) G)
- (F
(#) g))
/ (G
(#) G))
| X))
= X by
RFUNCT_1: 48;
then (
dom ((F
/ G)
`| X))
= (
dom ((((f
(#) G)
- (F
(#) g))
/ (G
(#) G))
| X)) by
A10,
FDIFF_1:def 7;
then ((F
/ G)
`| X)
= ((((f
(#) G)
- (F
(#) g))
/ (G
(#) G))
| X) by
A13,
PARTFUN1: 5;
hence thesis by
A10,
Lm1;
end;
theorem ::
INTEGRA7:16
a
<= b &
['a, b']
c= (
dom f) & (f
|
['a, b']) is
continuous &
].a, b.[
c= (
dom F) & (for x be
Real st x
in
].a, b.[ holds (F
. x)
= ((
integral (f,a,x))
+ (F
. a))) implies F
is_integral_of (f,
].a, b.[)
proof
set O =
].a, b.[;
assume that
A1: a
<= b and
A2:
['a, b']
c= (
dom f) and
A3: (f
|
['a, b']) is
continuous and
A4:
].a, b.[
c= (
dom F) and
A5: for x be
Real st x
in
].a, b.[ holds (F
. x)
= ((
integral (f,a,x))
+ (F
. a));
(
dom (F
| O))
= ((
dom F)
/\ O) by
PARTFUN2: 15;
then
A6: (
dom (F
| O))
= O by
A4,
XBOOLE_1: 28;
reconsider Fa = (F
. a) as
Element of
REAL by
XREAL_0:def 1;
set H1 = (
REAL
--> Fa);
deffunc
G0(
Real) = (
In ((
integral (f,a,$1)),
REAL ));
consider G1 be
Function of
REAL ,
REAL such that
A7: for h be
Element of
REAL holds (G1
. h)
=
G0(h) from
FUNCT_2:sch 4;
reconsider H = (H1
| O) as
PartFunc of
REAL ,
REAL ;
reconsider G = (G1
| O) as
PartFunc of
REAL ,
REAL ;
(
dom H)
= ((
dom H1)
/\ O) by
RELAT_1: 61;
then
A8: (
dom H)
= (
REAL
/\ O) by
FUNCT_2:def 1;
then
A9: (
dom H)
= O by
XBOOLE_1: 28;
now
let x be
Element of
REAL ;
reconsider z = x as
Real;
assume
A10: x
in (O
/\ (
dom H));
then (H
. x)
= (H1
. z) by
A9,
FUNCT_1: 47;
then (H
. x)
= (F
. a) by
FUNCOP_1: 7;
hence (H
/. x)
= (F
. a) by
A9,
A10,
PARTFUN1:def 6;
end;
then
A11: (H
| O) is
constant by
PARTFUN2: 35;
then
A12: H
is_differentiable_on O by
A9,
FDIFF_1: 22;
(
dom G)
= ((
dom G1)
/\ O) by
RELAT_1: 61;
then
A13: (
dom G)
= (
REAL
/\ O) by
FUNCT_2:def 1;
then
A14: O
= (
dom G) by
XBOOLE_1: 28;
A15:
now
let x be
Real;
reconsider z = x as
Element of
REAL by
XREAL_0:def 1;
assume x
in
].a, b.[;
then (G
. x)
= (G1
. x) by
A14,
FUNCT_1: 47;
then (G
. x)
=
G0(z) by
A7;
hence (G
. x)
= (
integral (f,a,x));
end;
A16:
now
let x be
object;
assume
A17: x
in (
dom (F
| O));
then
reconsider z = x as
Real;
reconsider z1 = z as
Element of
REAL by
XREAL_0:def 1;
(H
. x)
= (H1
. z1) by
A9,
A6,
A17,
FUNCT_1: 47;
then
A18: (H
. x)
= (F
. a) by
FUNCOP_1: 7;
((F
| O)
. x)
= (F
. z) by
A17,
FUNCT_1: 47;
then ((F
| O)
. x)
= ((
integral (f,a,z))
+ (F
. a)) by
A5,
A6,
A17;
hence ((F
| O)
. x)
= ((G
. x)
+ (H
. x)) by
A15,
A6,
A17,
A18;
end;
A19:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A20: O
c=
['a, b'] by
XXREAL_1: 25;
then
A21: O
c= (
dom f) by
A2,
XBOOLE_1: 1;
A22: for x be
Real st x
in O holds G
is_differentiable_in x & (
diff (G,x))
= (f
. x)
proof
let x be
Real;
reconsider z = x as
Real;
A23: (f
| O) is
continuous by
A3,
A19,
FCONT_1: 16,
XXREAL_1: 25;
assume
A24: x
in
].a, b.[;
then x
in (
dom (f
| O)) by
A21,
RELAT_1: 57;
then
A25: (f
| O)
is_continuous_in z by
A23,
FCONT_1:def 2;
for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x1 be
Real st x1
in (
dom f) &
|.(x1
- z).|
< s holds
|.((f
. x1)
- (f
. z)).|
< r
proof
let r be
Real;
consider ss1 be
Real such that
A26:
0
< ss1 and
A27:
].(z
- ss1), (z
+ ss1).[
c= O by
A24,
RCOMP_1: 19;
assume
0
< r;
then
consider s be
Real such that
A28:
0
< s and
A29: for x1 be
Real st x1
in (
dom (f
| O)) &
|.(x1
- z).|
< s holds
|.(((f
| O)
. x1)
- ((f
| O)
. z)).|
< r by
A25,
FCONT_1: 3;
set s1 = (
min (ss1,s));
take s1;
now
let x1 be
Real;
assume that x1
in (
dom f) and
A30:
|.(x1
- z).|
< s1;
s1
<= s by
XXREAL_0: 17;
then
A31:
|.(x1
- z).|
< s by
A30,
XXREAL_0: 2;
O
= (O
/\ (
dom f)) by
A2,
A20,
XBOOLE_1: 1,
XBOOLE_1: 28;
then
A32: O
= (
dom (f
| O)) by
PARTFUN2: 15;
s1
<= ss1 by
XXREAL_0: 17;
then
|.(x1
- z).|
< ss1 by
A30,
XXREAL_0: 2;
then
A33: x1
in
].(z
- ss1), (z
+ ss1).[ by
RCOMP_1: 1;
then
|.((f
. x1)
- (f
. z)).|
=
|.(((f
| O)
. x1)
- (f
. z)).| by
A27,
A32,
FUNCT_1: 47;
then
|.((f
. x1)
- (f
. z)).|
=
|.(((f
| O)
. x1)
- ((f
| O)
. z)).| by
A24,
A32,
FUNCT_1: 47;
hence
|.((f
. x1)
- (f
. z)).|
< r by
A29,
A27,
A31,
A33,
A32;
end;
hence thesis by
A28,
A26,
XXREAL_0: 15;
end;
then
A34: f
is_continuous_in z by
FCONT_1: 3;
(f
|
['a, b']) is
bounded & f
is_integrable_on
['a, b'] by
A2,
A3,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A2,
A14,
A15,
A24,
A34,
INTEGRA6: 28;
end;
then for x be
Real st x
in O holds G
is_differentiable_in x;
then
A35: G
is_differentiable_on O by
A14;
(
dom (F
| O))
= ((
dom G)
/\ (
dom H)) by
A13,
A8,
A6,
XBOOLE_1: 28;
then
A36: (F
| O)
= (G
+ H) by
A16,
VALUED_1:def 1;
then (F
| O)
is_differentiable_on O by
A35,
A12,
A6,
FDIFF_1: 18;
then for x be
Real st x
in O holds (F
| O)
is_differentiable_in x;
then
A37: F
is_differentiable_on O by
A4;
A38:
now
let x be
Element of
REAL ;
assume x
in (
dom (F
`| O));
then
A39: x
in O by
A37,
FDIFF_1:def 7;
then x
in ((
dom f)
/\ O) by
A21,
XBOOLE_0:def 4;
then
A40: x
in (
dom (f
| O)) by
PARTFUN2: 15;
((F
`| O)
. x)
= (((F
| O)
`| O)
. x) by
A37,
FDIFF_2: 16;
then ((F
`| O)
. x)
= ((
diff (G,x))
+ (
diff (H,x))) by
A35,
A12,
A6,
A36,
A39,
FDIFF_1: 18;
then
A41: ((F
`| O)
. x)
= ((f
. x)
+ (
diff (H,x))) by
A22,
A39;
((H
`| O)
. x)
=
0 by
A9,
A11,
A39,
FDIFF_1: 22;
then (
diff (H,x))
=
0 by
A12,
A39,
FDIFF_1:def 7;
hence ((F
`| O)
. x)
= ((f
| O)
. x) by
A40,
A41,
FUNCT_1: 47;
end;
(
dom (F
`| O))
= O by
A37,
FDIFF_1:def 7;
then (
dom (F
`| O))
= (O
/\ (
dom f)) by
A2,
A20,
XBOOLE_1: 1,
XBOOLE_1: 28;
then (
dom (F
`| O))
= (
dom (f
| O)) by
PARTFUN2: 15;
then (F
`| O)
= (f
| O) by
A38,
PARTFUN1: 5;
hence thesis by
A37,
Lm1;
end;
theorem ::
INTEGRA7:17
for x,x0 be
Real st (f
|
[.a, b.]) is
continuous &
[.a, b.]
c= (
dom f) & x
in
].a, b.[ & x0
in
].a, b.[ & F
is_integral_of (f,
].a, b.[) holds (F
. x)
= ((
integral (f,x0,x))
+ (F
. x0))
proof
let x,x0 be
Real;
set O =
].a, b.[;
assume that
A1: (f
|
[.a, b.]) is
continuous and
A2:
[.a, b.]
c= (
dom f) and
A3: x
in
].a, b.[ & x0
in
].a, b.[ and
A4: F
is_integral_of (f,
].a, b.[);
A5: F
is_differentiable_on O & (F
`| O)
= (f
| O) by
A4,
Lm1;
A6: O
c=
[.a, b.] by
XXREAL_1: 25;
A7:
[.x, x0.]
c=
].a, b.[ by
A3,
XXREAL_2:def 12;
A8:
now
assume
A9: x
< x0;
then
A10:
['x, x0']
c=
].a, b.[ by
A7,
INTEGRA5:def 3;
then
A11: (f
|
['x, x0']) is
continuous by
A1,
A6,
FCONT_1: 16,
XBOOLE_1: 1;
((F
`|
].a, b.[)
||
['x, x0'])
= ((f
|
].a, b.[)
|
['x, x0']) by
A4,
Lm1;
then
A12: ((F
`|
].a, b.[)
||
['x, x0'])
= (f
||
['x, x0']) by
A10,
FUNCT_1: 51;
A13:
['x, x0']
c=
[.a, b.] by
A6,
A10,
XBOOLE_1: 1;
then
['x, x0']
c= (
dom f) by
A2,
XBOOLE_1: 1;
then f
is_integrable_on
['x, x0'] by
A11,
INTEGRA5: 17;
then (f
||
['x, x0']) is
integrable;
then
A14: (F
`|
].a, b.[)
is_integrable_on
['x, x0'] by
A12;
((F
`|
].a, b.[)
|
['x, x0']) is
bounded by
A2,
A12,
A13,
A11,
INTEGRA5: 10,
XBOOLE_1: 1;
then (F
. x0)
= ((
integral ((f
|
].a, b.[),x,x0))
+ (F
. x)) by
A5,
A9,
A10,
A14,
Th10;
then (F
. x0)
= ((
integral ((f
|
].a, b.[),
['x, x0']))
+ (F
. x)) by
A9,
INTEGRA5:def 4;
then (F
. x0)
= ((
integral (f,
['x, x0']))
+ (F
. x)) by
A10,
FUNCT_1: 51;
then
A15: (F
. x0)
= ((
integral (f,x,x0))
+ (F
. x)) by
A9,
INTEGRA5:def 4;
(
integral (f,x0,x))
= (
- (
integral (f,
['x, x0']))) by
A9,
INTEGRA5:def 4;
then (
integral (f,x0,x))
= (
- (
integral (f,x,x0))) by
A9,
INTEGRA5:def 4;
hence thesis by
A15;
end;
A16:
[.x0, x.]
c=
].a, b.[ by
A3,
XXREAL_2:def 12;
now
assume
A17: x0
<= x;
then
A18:
['x0, x']
c=
].a, b.[ by
A16,
INTEGRA5:def 3;
then
A19: (f
|
['x0, x']) is
continuous by
A1,
A6,
FCONT_1: 16,
XBOOLE_1: 1;
((F
`|
].a, b.[)
||
['x0, x'])
= ((f
|
].a, b.[)
|
['x0, x']) by
A4,
Lm1;
then
A20: ((F
`|
].a, b.[)
||
['x0, x'])
= (f
||
['x0, x']) by
A18,
FUNCT_1: 51;
['x0, x']
c=
[.a, b.] by
A6,
A18,
XBOOLE_1: 1;
then
A21:
['x0, x']
c= (
dom f) by
A2,
XBOOLE_1: 1;
(f
|
['x0, x']) is
continuous by
A1,
A6,
A18,
FCONT_1: 16,
XBOOLE_1: 1;
then f
is_integrable_on
['x0, x'] by
A21,
INTEGRA5: 17;
then (f
||
['x0, x']) is
integrable;
then (F
`|
].a, b.[)
is_integrable_on
['x0, x'] by
A20;
then (F
. x)
= ((
integral ((f
|
].a, b.[),x0,x))
+ (F
. x0)) by
A5,
A17,
A18,
A20,
A21,
A19,
Th10,
INTEGRA5: 10;
then (F
. x)
= ((
integral ((f
|
].a, b.[),
['x0, x']))
+ (F
. x0)) by
A17,
INTEGRA5:def 4;
then (F
. x)
= ((
integral (f,
['x0, x']))
+ (F
. x0)) by
A18,
FUNCT_1: 51;
hence thesis by
A17,
INTEGRA5:def 4;
end;
hence thesis by
A8;
end;
theorem ::
INTEGRA7:18
Th18: a
<= b &
['a, b']
c= X & F
is_integral_of (f,X) & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded implies (F
. b)
= ((
integral (f,a,b))
+ (F
. a))
proof
assume that
A1: a
<= b and
A2:
['a, b']
c= X;
assume
A3: F
is_integral_of (f,X);
then
A4: F
is_differentiable_on X & (F
`| X)
= (f
| X) by
Lm1;
assume f
is_integrable_on
['a, b'];
then
A5: (f
||
['a, b']) is
integrable;
assume
A6: (f
|
['a, b']) is
bounded;
((F
`| X)
||
['a, b'])
= ((f
| X)
|
['a, b']) by
A3,
Lm1;
then
A7: ((F
`| X)
||
['a, b'])
= (f
||
['a, b']) by
A2,
FUNCT_1: 51;
then (F
`| X)
is_integrable_on
['a, b'] by
A5;
then (F
. b)
= ((
integral ((f
| X),a,b))
+ (F
. a)) by
A1,
A2,
A4,
A7,
A6,
Th10;
then (F
. b)
= ((
integral ((f
| X),
['a, b']))
+ (F
. a)) by
A1,
INTEGRA5:def 4;
then (F
. b)
= ((
integral (f,
['a, b']))
+ (F
. a)) by
A2,
FUNCT_1: 51;
hence thesis by
A1,
INTEGRA5:def 4;
end;
theorem ::
INTEGRA7:19
Th19: a
<= b &
[.a, b.]
c= X & X
c= (
dom f) & (f
| X) is
continuous implies (f
|
['a, b']) is
continuous & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded
proof
assume a
<= b;
then
A1:
[.a, b.]
=
['a, b'] by
INTEGRA5:def 3;
assume that
A2:
[.a, b.]
c= X and
A3: X
c= (
dom f) and
A4: (f
| X) is
continuous;
thus
A5: (f
|
['a, b']) is
continuous by
A1,
A2,
A4,
FCONT_1: 16;
[.a, b.]
c= (
dom f) by
A2,
A3,
XBOOLE_1: 1;
hence thesis by
A1,
A5,
INTEGRA5: 10,
INTEGRA5: 17;
end;
theorem ::
INTEGRA7:20
Th20: a
<= b &
[.a, b.]
c= X & X
c= (
dom f) & (f
| X) is
continuous & F
is_integral_of (f,X) implies (F
. b)
= ((
integral (f,a,b))
+ (F
. a))
proof
assume that
A1: a
<= b and
A2:
[.a, b.]
c= X and
A3: X
c= (
dom f);
assume (f
| X) is
continuous;
then
A4: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded by
A1,
A2,
A3,
Th19;
A5:
[.a, b.]
=
['a, b'] by
A1,
INTEGRA5:def 3;
assume F
is_integral_of (f,X);
hence thesis by
A1,
A2,
A5,
A4,
Th18;
end;
theorem ::
INTEGRA7:21
Th21: b
<= a &
['b, a']
c= X & f
is_integrable_on
['b, a'] & g
is_integrable_on
['b, a'] & (f
|
['b, a']) is
bounded & (g
|
['b, a']) is
bounded & X
c= (
dom f) & X
c= (
dom g) & F
is_integral_of (f,X) & G
is_integral_of (g,X) implies (((F
. a)
* (G
. a))
- ((F
. b)
* (G
. b)))
= ((
integral ((f
(#) G),b,a))
+ (
integral ((F
(#) g),b,a)))
proof
assume that
A1: b
<= a and
A2:
['b, a']
c= X and
A3: f
is_integrable_on
['b, a'] and
A4: g
is_integrable_on
['b, a'] and
A5: (f
|
['b, a']) is
bounded and
A6: (g
|
['b, a']) is
bounded;
set I =
['b, a'];
assume that
A7: X
c= (
dom f) and
A8: X
c= (
dom g) and
A9: F
is_integral_of (f,X) and
A10: G
is_integral_of (g,X);
A11: X
c= (
dom G) by
A10,
Th11;
then
A12: I
c= (
dom G) by
A2,
XBOOLE_1: 1;
A13: G
is_differentiable_on X by
A10,
Lm1;
then
A14: (G
| X) is
continuous by
FDIFF_1: 25;
then
A15: (G
| I) is
bounded by
A2,
A12,
FCONT_1: 16,
INTEGRA5: 10;
then
A16: ((f
(#) G)
| (I
/\ I)) is
bounded by
A5,
RFUNCT_1: 84;
A17: X
c= (
dom F) by
A9,
Th11;
then
A18: I
c= (
dom F) by
A2,
XBOOLE_1: 1;
A19: F
is_differentiable_on X by
A9,
Lm1;
then
A20: X is
open
Subset of
REAL by
FDIFF_1: 8,
FDIFF_1: 10;
A21: (F
| X) is
continuous by
A19,
FDIFF_1: 25;
then
A22: (F
| I) is
bounded by
A2,
A18,
FCONT_1: 16,
INTEGRA5: 10;
then
A23: ((F
(#) g)
| (I
/\ I)) is
bounded by
A6,
RFUNCT_1: 84;
then
A24: (((f
(#) G)
+ (F
(#) g))
| (I
/\ I)) is
bounded by
A16,
RFUNCT_1: 83;
(F
| I) is
continuous by
A2,
A21,
FCONT_1: 16;
then
A25: F
is_integrable_on I by
A18,
INTEGRA5: 17;
I
c= (
dom g) by
A2,
A8,
XBOOLE_1: 1;
then
A26: (F
(#) g)
is_integrable_on I by
A4,
A6,
A18,
A25,
A22,
INTEGRA6: 14;
(F
`| X)
= (f
| X) & (G
`| X)
= (g
| X) by
A9,
A10,
Lm1;
then ((F
(#) G)
`| X)
= (((f
| X)
(#) G)
+ (F
(#) (g
| X))) by
A19,
A13,
A20,
FDIFF_2: 20;
then ((F
(#) G)
`| X)
= (((f
(#) G)
| X)
+ (F
(#) (g
| X))) by
RFUNCT_1: 45;
then ((F
(#) G)
`| X)
= (((f
(#) G)
| X)
+ ((F
(#) g)
| X)) by
RFUNCT_1: 45;
then
A27: ((F
(#) G)
`| X)
= (((f
(#) G)
+ (F
(#) g))
| X) by
RFUNCT_1: 44;
(F
(#) G)
is_differentiable_on X by
A19,
A13,
A20,
FDIFF_2: 20;
then
A28: (F
(#) G)
is_integral_of (((f
(#) G)
+ (F
(#) g)),X) by
A27,
Lm1;
(
min (b,a))
= b by
A1,
XXREAL_0:def 9;
then
A29: (
max (b,a))
= a by
XXREAL_0: 36;
b
<= (
max (b,a)) &
[.b, a.]
= I by
A1,
INTEGRA5:def 3,
XXREAL_0: 25;
then
A30: b
in I & a
in I by
A29,
XXREAL_1: 1;
X
c= ((
dom F)
/\ (
dom g)) by
A8,
A17,
XBOOLE_1: 19;
then X
c= (
dom (F
(#) g)) by
VALUED_1:def 4;
then
A31: I
c= (
dom (F
(#) g)) by
A2,
XBOOLE_1: 1;
(G
| I) is
continuous by
A2,
A14,
FCONT_1: 16;
then
A32: G
is_integrable_on I by
A12,
INTEGRA5: 17;
X
c= ((
dom f)
/\ (
dom G)) by
A7,
A11,
XBOOLE_1: 19;
then X
c= (
dom (f
(#) G)) by
VALUED_1:def 4;
then
A33: I
c= (
dom (f
(#) G)) by
A2,
XBOOLE_1: 1;
I
c= (
dom f) by
A2,
A7,
XBOOLE_1: 1;
then
A34: (f
(#) G)
is_integrable_on I by
A3,
A5,
A12,
A32,
A15,
INTEGRA6: 14;
then ((f
(#) G)
+ (F
(#) g))
is_integrable_on I by
A33,
A31,
A26,
A16,
A23,
INTEGRA6: 11;
then ((F
(#) G)
. a)
= ((
integral (((f
(#) G)
+ (F
(#) g)),b,a))
+ ((F
(#) G)
. b)) by
A1,
A2,
A24,
A28,
Th18;
then ((F
(#) G)
. b)
= ((F
. b)
* (G
. b)) & (((F
(#) G)
. a)
- ((F
(#) G)
. b))
= ((
integral ((f
(#) G),b,a))
+ (
integral ((F
(#) g),b,a))) by
A1,
A33,
A31,
A34,
A26,
A16,
A23,
A30,
INTEGRA6: 24,
VALUED_1: 5;
hence thesis by
VALUED_1: 5;
end;
theorem ::
INTEGRA7:22
b
<= a &
[.b, a.]
c= X & X
c= (
dom f) & X
c= (
dom g) & (f
| X) is
continuous & (g
| X) is
continuous & F
is_integral_of (f,X) & G
is_integral_of (g,X) implies (((F
. a)
* (G
. a))
- ((F
. b)
* (G
. b)))
= ((
integral ((f
(#) G),b,a))
+ (
integral ((F
(#) g),b,a)))
proof
assume that
A1: b
<= a and
A2:
[.b, a.]
c= X;
assume that
A3: X
c= (
dom f) and
A4: X
c= (
dom g) and
A5: (f
| X) is
continuous and
A6: (g
| X) is
continuous and
A7: F
is_integral_of (f,X) & G
is_integral_of (g,X);
A8:
[.b, a.]
c= (
dom f) by
A2,
A3,
XBOOLE_1: 1;
A9:
[.b, a.]
=
['b, a'] by
A1,
INTEGRA5:def 3;
then (f
|
['b, a']) is
continuous by
A2,
A5,
FCONT_1: 16;
then
A10: f
is_integrable_on
['b, a'] by
A8,
A9,
INTEGRA5: 17;
A11:
[.b, a.]
c= (
dom g) by
A2,
A4,
XBOOLE_1: 1;
then
A12: (g
|
['b, a']) is
bounded by
A2,
A6,
A9,
FCONT_1: 16,
INTEGRA5: 10;
(g
|
['b, a']) is
continuous by
A2,
A6,
A9,
FCONT_1: 16;
then
A13: g
is_integrable_on
['b, a'] by
A11,
A9,
INTEGRA5: 17;
(f
|
['b, a']) is
bounded by
A2,
A5,
A8,
A9,
FCONT_1: 16,
INTEGRA5: 10;
hence thesis by
A1,
A2,
A3,
A4,
A7,
A9,
A10,
A13,
A12,
Th21;
end;
begin
theorem ::
INTEGRA7:23
Th23:
sin
is_integral_of (
cos ,
REAL )
proof
A1: (
dom (
cos
|
REAL ))
= (
REAL
/\
REAL ) by
SIN_COS: 24;
A2:
now
let x be
object;
assume
A3: x
in (
dom (
sin
`|
REAL ));
then
reconsider z = x as
Real;
((
sin
`|
REAL )
. x)
= (
diff (
sin ,z)) by
A3,
FDIFF_1:def 7,
SIN_COS: 68;
then ((
sin
`|
REAL )
. x)
= (
cos
. z) by
SIN_COS: 64;
hence ((
sin
`|
REAL )
. x)
= ((
cos
|
REAL )
. x);
end;
(
dom (
sin
`|
REAL ))
=
REAL by
FDIFF_1:def 7,
SIN_COS: 68;
then (
sin
`|
REAL )
= (
cos
|
REAL ) by
A1,
A2,
FUNCT_1: 2;
hence thesis by
Lm1,
SIN_COS: 68;
end;
theorem ::
INTEGRA7:24
((
sin
. b)
- (
sin
. a))
= (
integral (
cos ,a,b))
proof
A1: (
min (a,b))
<= a by
XXREAL_0: 17;
A2:
REAL
= (
dom
cos ) &
[.(
min (a,b)), (
max (a,b)).]
c=
REAL by
FUNCT_2:def 1;
(
cos
|
REAL ) is
continuous & a
<= (
max (a,b)) by
FDIFF_1: 25,
SIN_COS: 67,
XXREAL_0: 25;
then
A3: (
sin
. (
max (a,b)))
= ((
integral (
cos ,(
min (a,b)),(
max (a,b))))
+ (
sin
. (
min (a,b)))) by
A1,
A2,
Th20,
Th23,
XXREAL_0: 2;
A4:
now
assume
A5: (
min (a,b))
= a;
then (
max (a,b))
= b by
XXREAL_0: 36;
hence thesis by
A3,
A5;
end;
now
assume
A6: (
min (a,b))
= b;
then
A7: (
max (a,b))
= a by
XXREAL_0: 36;
now
assume b
< a;
then (
integral (
cos ,a,b))
= (
- (
integral (
cos ,
['b, a']))) by
INTEGRA5:def 4;
then (
sin
. a)
= ((
- (
integral (
cos ,a,b)))
+ (
sin
. b)) by
A1,
A3,
A6,
A7,
INTEGRA5:def 4;
hence thesis;
end;
hence thesis by
A1,
A4,
A6,
XXREAL_0: 1;
end;
hence thesis by
A4,
XXREAL_0: 15;
end;
theorem ::
INTEGRA7:25
Th25: ((
- 1)
(#)
cos )
is_integral_of (
sin ,
REAL )
proof
A1: (
dom (
sin
|
REAL ))
= (
REAL
/\
REAL ) by
SIN_COS: 24;
A2: (
dom ((
- 1)
(#)
cos ))
= (
[#]
REAL ) by
SIN_COS: 24,
VALUED_1:def 5;
A3:
now
let x be
object;
assume
A4: x
in (
dom (((
- 1)
(#)
cos )
`|
REAL ));
then
reconsider z = x as
Real;
((((
- 1)
(#)
cos )
`|
REAL )
. x)
= ((
- 1)
* (
diff (
cos ,z))) by
A2,
A4,
FDIFF_1: 20,
SIN_COS: 67;
then ((((
- 1)
(#)
cos )
`|
REAL )
. x)
= ((
- 1)
* (
- (
sin
. z))) by
SIN_COS: 63;
hence ((((
- 1)
(#)
cos )
`|
REAL )
. x)
= ((
sin
|
REAL )
. x);
end;
A5: ((
- 1)
(#)
cos )
is_differentiable_on
REAL by
A2,
FDIFF_1: 20,
SIN_COS: 67;
then (
dom (((
- 1)
(#)
cos )
`|
REAL ))
=
REAL by
FDIFF_1:def 7;
then (((
- 1)
(#)
cos )
`|
REAL )
= (
sin
|
REAL ) by
A1,
A3,
FUNCT_1: 2;
hence thesis by
A5,
Lm1;
end;
theorem ::
INTEGRA7:26
((
cos
. a)
- (
cos
. b))
= (
integral (
sin ,a,b))
proof
A1: (
min (a,b))
<= a by
XXREAL_0: 17;
(
max (a,b))
in
REAL by
XREAL_0:def 1;
then
A2: (
max (a,b))
in (
dom ((
- 1)
(#)
cos )) by
SIN_COS: 24,
VALUED_1:def 5;
(
min (a,b))
in
REAL by
XREAL_0:def 1;
then
A3: (
min (a,b))
in (
dom ((
- 1)
(#)
cos )) by
SIN_COS: 24,
VALUED_1:def 5;
A4: a
<= (
max (a,b)) &
[.(
min (a,b)), (
max (a,b)).]
c=
REAL by
XXREAL_0: 25;
(
sin
|
REAL ) is
continuous &
REAL
c= (
dom
sin ) by
FDIFF_1: 25,
FUNCT_2:def 1,
SIN_COS: 68;
then (((
- 1)
(#)
cos )
. (
max (a,b)))
= ((
integral (
sin ,(
min (a,b)),(
max (a,b))))
+ (((
- 1)
(#)
cos )
. (
min (a,b)))) by
A1,
A4,
Th20,
Th25,
XXREAL_0: 2;
then ((
- 1)
* (
cos
. (
max (a,b))))
= ((
integral (
sin ,(
min (a,b)),(
max (a,b))))
+ (((
- 1)
(#)
cos )
. (
min (a,b)))) by
A2,
VALUED_1:def 5;
then ((
- 1)
* (
cos
. (
max (a,b))))
= ((
integral (
sin ,(
min (a,b)),(
max (a,b))))
+ ((
- 1)
* (
cos
. (
min (a,b))))) by
A3,
VALUED_1:def 5;
then
A5: ((
cos
. (
min (a,b)))
- (
cos
. (
max (a,b))))
= (
integral (
sin ,(
min (a,b)),(
max (a,b))));
A6:
now
assume
A7: (
min (a,b))
= a;
then (
max (a,b))
= b by
XXREAL_0: 36;
hence thesis by
A5,
A7;
end;
now
assume
A8: (
min (a,b))
= b;
then
A9: (
max (a,b))
= a by
XXREAL_0: 36;
b
< a implies ((
cos
. a)
- (
cos
. b))
= (
integral (
sin ,a,b))
proof
assume
A10: b
< a;
then (
integral (
sin ,a,b))
= (
- (
integral (
sin ,
['b, a']))) by
INTEGRA5:def 4;
then (
integral (
sin ,a,b))
= (
- (
integral (
sin ,b,a))) by
A10,
INTEGRA5:def 4;
hence thesis by
A5,
A8,
A9;
end;
hence thesis by
A1,
A6,
A8,
XXREAL_0: 1;
end;
hence thesis by
A6,
XXREAL_0: 15;
end;
theorem ::
INTEGRA7:27
Th27:
exp_R
is_integral_of (
exp_R ,
REAL )
proof
A1: (
dom (
exp_R
|
REAL ))
= (
REAL
/\
REAL ) by
TAYLOR_1: 16;
A2:
now
let x be
object;
assume
A3: x
in (
dom (
exp_R
`|
REAL ));
then
reconsider z = x as
Real;
reconsider z1 = z as
Element of
REAL by
XREAL_0:def 1;
((
exp_R
`|
REAL )
. x)
= (
diff (
exp_R ,z)) by
A3,
FDIFF_1:def 7,
TAYLOR_1: 16;
then ((
exp_R
`|
REAL )
. x)
= (
exp_R
. z1) by
TAYLOR_1: 16;
hence ((
exp_R
`|
REAL )
. x)
= ((
exp_R
|
REAL )
. x);
end;
(
dom (
exp_R
`|
REAL ))
=
REAL by
FDIFF_1:def 7,
TAYLOR_1: 16;
then (
exp_R
`|
REAL )
= (
exp_R
|
REAL ) by
A1,
A2,
FUNCT_1: 2;
hence thesis by
Lm1,
TAYLOR_1: 16;
end;
theorem ::
INTEGRA7:28
((
exp_R
. b)
- (
exp_R
. a))
= (
integral (
exp_R ,a,b))
proof
A1: (
min (a,b))
<= a by
XXREAL_0: 17;
A2:
[.(
min (a,b)), (
max (a,b)).]
c=
REAL ;
(
exp_R
|
REAL ) is
continuous & a
<= (
max (a,b)) by
FDIFF_1: 25,
TAYLOR_1: 16,
XXREAL_0: 25;
then
A3: (
exp_R
. (
max (a,b)))
= ((
integral (
exp_R ,(
min (a,b)),(
max (a,b))))
+ (
exp_R
. (
min (a,b)))) by
A1,
A2,
Th20,
Th27,
SIN_COS: 47,
XXREAL_0: 2;
A4: (
min (a,b))
= a implies ((
exp_R
. b)
- (
exp_R
. a))
= (
integral (
exp_R ,a,b))
proof
assume
A5: (
min (a,b))
= a;
then (
max (a,b))
= b by
XXREAL_0: 36;
hence thesis by
A3,
A5;
end;
(
min (a,b))
= b implies ((
exp_R
. b)
- (
exp_R
. a))
= (
integral (
exp_R ,a,b))
proof
assume
A6: (
min (a,b))
= b;
then
A7: (
max (a,b))
= a by
XXREAL_0: 36;
b
< a implies ((
exp_R
. b)
- (
exp_R
. a))
= (
integral (
exp_R ,a,b))
proof
assume b
< a;
then (
integral (
exp_R ,a,b))
= (
- (
integral (
exp_R ,
['b, a']))) by
INTEGRA5:def 4;
then (
exp_R
. a)
= ((
- (
integral (
exp_R ,a,b)))
+ (
exp_R
. b)) by
A1,
A3,
A6,
A7,
INTEGRA5:def 4;
hence thesis;
end;
hence thesis by
A1,
A4,
A6,
XXREAL_0: 1;
end;
hence thesis by
A4,
XXREAL_0: 15;
end;
theorem ::
INTEGRA7:29
Th29: (
#Z (n
+ 1))
is_integral_of (((n
+ 1)
(#) (
#Z n)),
REAL )
proof
reconsider m = (n
+ 1) as
Nat;
A1: (
dom (((n
+ 1)
(#) (
#Z n))
|
REAL ))
= (
REAL
/\
REAL ) by
FUNCT_2:def 1;
A2: (
dom (
#Z (n
+ 1)))
=
REAL by
FUNCT_2:def 1;
for x be
Real st x
in
REAL holds ((
#Z (n
+ 1))
|
REAL )
is_differentiable_in x by
TAYLOR_1: 2;
then
A3: (
#Z (n
+ 1))
is_differentiable_on
REAL by
A2;
A4: (
dom (
#Z n))
=
REAL by
FUNCT_2:def 1;
A5:
now
let x be
object;
assume
A6: x
in (
dom ((
#Z (n
+ 1))
`|
REAL ));
then
reconsider z = x as
Real;
(((
#Z (n
+ 1))
`|
REAL )
. x)
= (
diff ((
#Z (n
+ 1)),z)) by
A3,
A6,
FDIFF_1:def 7;
then (((
#Z (n
+ 1))
`|
REAL )
. x)
= (m
* (z
#Z (m
- 1))) by
TAYLOR_1: 2;
then
A7: (((
#Z (n
+ 1))
`|
REAL )
. x)
= ((n
+ 1)
* ((
#Z n)
. x)) by
TAYLOR_1:def 1;
x
in (
dom (
#Z n)) by
A4,
A6;
then x
in (
dom ((n
+ 1)
(#) (
#Z n))) by
VALUED_1:def 5;
then (((
#Z (n
+ 1))
`|
REAL )
. x)
= (((n
+ 1)
(#) (
#Z n))
. x) by
A7,
VALUED_1:def 5;
hence (((
#Z (n
+ 1))
`|
REAL )
. x)
= ((((n
+ 1)
(#) (
#Z n))
|
REAL )
. x);
end;
(
dom ((
#Z (n
+ 1))
`|
REAL ))
=
REAL by
A3,
FDIFF_1:def 7;
then ((
#Z (n
+ 1))
`|
REAL )
= (((n
+ 1)
(#) (
#Z n))
|
REAL ) by
A1,
A5,
FUNCT_1: 2;
hence thesis by
A3,
Lm1;
end;
theorem ::
INTEGRA7:30
(((
#Z (n
+ 1))
. b)
- ((
#Z (n
+ 1))
. a))
= (
integral (((n
+ 1)
(#) (
#Z n)),a,b))
proof
A1: (
[#]
REAL )
c= (
dom ((n
+ 1)
(#) (
#Z n))) by
FUNCT_2:def 1;
A2: (
dom (
#Z n))
=
REAL by
FUNCT_2:def 1;
for x be
Real st x
in
REAL holds ((
#Z n)
|
REAL )
is_differentiable_in x by
TAYLOR_1: 2;
then (
#Z n)
is_differentiable_on
REAL by
A2;
then
A3: (((n
+ 1)
(#) (
#Z n))
|
REAL ) is
continuous by
A1,
FDIFF_1: 20,
FDIFF_1: 25;
A4: (
min (a,b))
<= a by
XXREAL_0: 17;
A5:
[.(
min (a,b)), (
max (a,b)).]
c=
REAL ;
a
<= (
max (a,b)) by
XXREAL_0: 25;
then (
min (a,b))
<= (
max (a,b)) by
A4,
XXREAL_0: 2;
then
A6: ((
#Z (n
+ 1))
. (
max (a,b)))
= ((
integral (((n
+ 1)
(#) (
#Z n)),(
min (a,b)),(
max (a,b))))
+ ((
#Z (n
+ 1))
. (
min (a,b)))) by
A1,
A3,
A5,
Th20,
Th29;
A7: (
min (a,b))
= a implies (((
#Z (n
+ 1))
. b)
- ((
#Z (n
+ 1))
. a))
= (
integral (((n
+ 1)
(#) (
#Z n)),a,b))
proof
assume
A8: (
min (a,b))
= a;
then (
max (a,b))
= b by
XXREAL_0: 36;
hence thesis by
A6,
A8;
end;
(
min (a,b))
= b implies (((
#Z (n
+ 1))
. b)
- ((
#Z (n
+ 1))
. a))
= (
integral (((n
+ 1)
(#) (
#Z n)),a,b))
proof
assume
A9: (
min (a,b))
= b;
then
A10: (
max (a,b))
= a by
XXREAL_0: 36;
b
< a implies (((
#Z (n
+ 1))
. b)
- ((
#Z (n
+ 1))
. a))
= (
integral (((n
+ 1)
(#) (
#Z n)),a,b))
proof
assume b
< a;
then (
integral (((n
+ 1)
(#) (
#Z n)),a,b))
= (
- (
integral (((n
+ 1)
(#) (
#Z n)),
['b, a']))) by
INTEGRA5:def 4;
then ((
#Z (n
+ 1))
. a)
= ((
- (
integral (((n
+ 1)
(#) (
#Z n)),a,b)))
+ ((
#Z (n
+ 1))
. b)) by
A4,
A6,
A9,
A10,
INTEGRA5:def 4;
hence thesis;
end;
hence thesis by
A4,
A7,
A9,
XXREAL_0: 1;
end;
hence thesis by
A7,
XXREAL_0: 15;
end;
begin
theorem ::
INTEGRA7:31
for H be
Functional_Sequence of
REAL ,
REAL , rseq be
Real_Sequence st a
< b & (for n be
Element of
NAT holds (H
. n)
is_integrable_on
['a, b'] & ((H
. n)
|
['a, b']) is
bounded & (rseq
. n)
= (
integral ((H
. n),a,b))) & H
is_unif_conv_on
['a, b'] holds ((
lim (H,
['a, b']))
|
['a, b']) is
bounded & (
lim (H,
['a, b']))
is_integrable_on
['a, b'] & rseq is
convergent & (
lim rseq)
= (
integral ((
lim (H,
['a, b'])),a,b))
proof
let H be
Functional_Sequence of
REAL ,
REAL , rseq be
Real_Sequence;
set AB =
['a, b'];
assume that
A1: a
< b and
A2: for n be
Element of
NAT holds (H
. n)
is_integrable_on AB & ((H
. n)
| AB) is
bounded & (rseq
. n)
= (
integral ((H
. n),a,b)) and
A3: H
is_unif_conv_on AB;
consider T be
DivSequence of AB such that
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 by
INTEGRA4: 11;
A5: for n be
Nat holds (H
. n)
is_integrable_on AB & ((H
. n)
| AB) is
bounded & (rseq
. n)
= (
integral ((H
. n),a,b))
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A2;
end;
A6: AB
common_on_dom H by
A3,
SEQFUNC: 43;
A7: for n be
Element of
NAT holds ((H
. n)
|| AB) is
Function of AB,
REAL & (((H
. n)
|| AB)
| AB) is
bounded & (
lower_sum (((H
. n)
|| AB),T)) is
convergent & (
lim (
lower_sum (((H
. n)
|| AB),T)))
= (
lower_integral ((H
. n)
|| AB)) & (
upper_sum (((H
. n)
|| AB),T)) is
convergent & (
lim (
upper_sum (((H
. n)
|| AB),T)))
= (
upper_integral ((H
. n)
|| AB)) & (
lower_integral ((H
. n)
|| AB))
= (
upper_integral ((H
. n)
|| AB)) & (rseq
. n)
= (
integral ((H
. n)
|| AB))
proof
let n be
Element of
NAT ;
AB
c= (
dom (H
. n)) by
A6,
SEQFUNC:def 9;
hence
A8: ((H
. n)
|| AB) is
Function of AB,
REAL by
FUNCT_2: 68,
INTEGRA5: 6;
thus (((H
. n)
|| AB)
| AB) is
bounded by
A2;
hence (
lower_sum (((H
. n)
|| AB),T)) is
convergent & (
lim (
lower_sum (((H
. n)
|| AB),T)))
= (
lower_integral ((H
. n)
|| AB)) & (
upper_sum (((H
. n)
|| AB),T)) is
convergent & (
lim (
upper_sum (((H
. n)
|| AB),T)))
= (
upper_integral ((H
. n)
|| AB)) by
A4,
A8,
INTEGRA4: 8,
INTEGRA4: 9;
(H
. n)
is_integrable_on AB by
A2;
then ((H
. n)
|| AB) is
integrable;
hence (
lower_integral ((H
. n)
|| AB))
= (
upper_integral ((H
. n)
|| AB));
(rseq
. n)
= (
integral ((H
. n),a,b)) by
A2;
then (rseq
. n)
= (
integral ((H
. n),AB)) by
A1,
INTEGRA5:def 4;
hence thesis;
end;
set L1 = (
lower_integral ((
lim (H,AB))
|| AB));
set K1 = (
upper_integral ((
lim (H,AB))
|| AB));
A9:
0
< (b
- a) by
A1,
XREAL_1: 50;
reconsider jj = 1 as
Real;
consider K be
Nat such that
A10: for n be
Nat, x be
Element of
REAL st n
>= K & x
in AB holds
|.(((H
. n)
. x)
- ((
lim (H,AB))
. x)).|
< jj by
A3,
SEQFUNC: 43;
((H
. K)
| AB) is
bounded by
A5;
then
consider r be
Real such that
A11: for c be
object st c
in (AB
/\ (
dom (H
. K))) holds
|.((H
. K)
. c).|
<= r by
RFUNCT_1: 73;
set H0 = ((
lim (H,AB))
|| AB);
H
is_point_conv_on AB by
A3,
SEQFUNC: 22;
then
A12: (
dom (
lim (H,AB)))
= AB by
SEQFUNC: 21;
then
A13: H0 is
Function of AB,
REAL by
FUNCT_2: 68,
INTEGRA5: 6;
(
dom (
lim (H,AB)))
c= (
dom (H
. K)) by
A6,
A12,
SEQFUNC:def 9;
then
A14: (AB
/\ (
dom (
lim (H,AB))))
c= (AB
/\ (
dom (H
. K))) by
XBOOLE_1: 26;
now
let c be
object;
((
lim (H,AB))
. c)
= (((H
. K)
. c)
- (((H
. K)
. c)
- ((
lim (H,AB))
. c)));
then
A15:
|.((
lim (H,AB))
. c).|
<= (
|.((H
. K)
. c).|
+
|.(((H
. K)
. c)
- ((
lim (H,AB))
. c)).|) by
COMPLEX1: 57;
assume
A16: c
in (AB
/\ (
dom (
lim (H,AB))));
then c
in AB by
XBOOLE_0:def 4;
then
A17:
|.(((H
. K)
. c)
- ((
lim (H,AB))
. c)).|
< 1 by
A10;
|.((H
. K)
. c).|
<= r by
A11,
A14,
A16;
then (
|.((H
. K)
. c).|
+
|.(((H
. K)
. c)
- ((
lim (H,AB))
. c)).|)
<= (r
+ 1) by
A17,
XREAL_1: 7;
hence
|.((
lim (H,AB))
. c).|
<= (r
+ 1) by
A15,
XXREAL_0: 2;
end;
hence
A18: ((
lim (H,AB))
| AB) is
bounded by
RFUNCT_1: 73;
then
A19: (H0
| AB) is
bounded_above;
A20: (H0
| AB) is
bounded_below by
A18;
then
A21: (
upper_sum (H0,T)) is
convergent by
A4,
A19,
A13,
INTEGRA4: 9;
A22: for e be
Real st
0
< e holds ex N be
Element of
NAT st for n,k be
Element of
NAT st N
<= n holds
|.(((
upper_sum (((H
. n)
|| AB),T))
. k)
- ((
upper_sum (H0,T))
. k)).|
<= (e
* (b
- a))
proof
let e be
Real;
assume
0
< e;
then
consider N be
Nat such that
A23: for n be
Nat, x be
Element of
REAL st n
>= N & x
in AB holds
|.(((H
. n)
. x)
- ((
lim (H,AB))
. x)).|
< e by
A3,
SEQFUNC: 43;
reconsider N as
Element of
NAT by
ORDINAL1:def 12;
take N;
let n,k be
Element of
NAT ;
reconsider Tk = (T
. k) as
Division of AB;
set l0 = (
len Tk);
A24: (
dom Tk)
= (
Seg l0) by
FINSEQ_1:def 3;
set Hn = ((H
. n)
|| AB);
(
len (
upper_volume (Hn,(T
. k))))
= l0 by
INTEGRA1:def 6;
then
reconsider R1 = (
upper_volume (Hn,(T
. k))) as
Element of (l0
-tuples_on
REAL ) by
FINSEQ_2: 92;
(
len (
upper_volume (H0,(T
. k))))
= l0 by
INTEGRA1:def 6;
then
reconsider R2 = (
upper_volume (H0,(T
. k))) as
Element of (l0
-tuples_on
REAL ) by
FINSEQ_2: 92;
(((
upper_sum (H0,T))
. k)
- ((
upper_sum (Hn,T))
. k))
= ((
upper_sum (H0,(T
. k)))
- ((
upper_sum (Hn,T))
. k)) by
INTEGRA2:def 2;
then (((
upper_sum (H0,T))
. k)
- ((
upper_sum (Hn,T))
. k))
= ((
upper_sum (H0,(T
. k)))
- (
upper_sum (Hn,(T
. k)))) by
INTEGRA2:def 2;
then
A25: (((
upper_sum (H0,T))
. k)
- ((
upper_sum (Hn,T))
. k))
= (
Sum (R2
- R1)) by
RVSUM_1: 90;
consider H1 be
Function of AB,
REAL such that
A26: (
rng H1)
=
{e} and
A27: (H1
| AB) is
bounded by
INTEGRA4: 5;
(
len (
upper_volume (H1,(T
. k))))
= l0 by
INTEGRA1:def 6;
then
reconsider R3 = (
upper_volume (H1,(T
. k))) as
Element of (l0
-tuples_on
REAL ) by
FINSEQ_2: 92;
A28: (
vol AB)
= (b
- a) by
A1,
INTEGRA6: 5;
(
upper_bound (
rng H1))
= e by
A26,
SEQ_4: 9;
then
A29: (
upper_sum (H1,(T
. k)))
<= (e
* (b
- a)) by
A27,
A28,
INTEGRA1: 27;
assume
A30: N
<= n;
A31: for i be
Element of
NAT st i
in (
dom Tk) holds ((R1
- R2)
. i)
<= (R3
. i) & ((R2
- R1)
. i)
<= (R3
. i)
proof
let i be
Element of
NAT ;
A32:
0
<= (
vol (
divset ((T
. k),i))) by
INTEGRA1: 9;
assume
A33: i
in (
dom Tk);
A34: ((
upper_bound (
rng (Hn
| (
divset ((T
. k),i)))))
- (
upper_bound (
rng (H0
| (
divset ((T
. k),i))))))
<= (
upper_bound (
rng (H1
| (
divset ((T
. k),i))))) & ((
upper_bound (
rng (H0
| (
divset ((T
. k),i)))))
- (
upper_bound (
rng (Hn
| (
divset ((T
. k),i))))))
<= (
upper_bound (
rng (H1
| (
divset ((T
. k),i)))))
proof
A35: (
divset ((T
. k),i))
c= AB by
A33,
INTEGRA1: 8;
then
reconsider g = (H0
| (
divset ((T
. k),i))) as
Function of (
divset ((T
. k),i)),
REAL by
A13,
FUNCT_2: 32;
consider x0 be
object such that
A36: x0
in (
divset ((T
. k),i)) by
XBOOLE_0:def 1;
Hn is
Function of AB,
REAL by
A7;
then
reconsider f = (Hn
| (
divset ((T
. k),i))) as
Function of (
divset ((T
. k),i)),
REAL by
A35,
FUNCT_2: 32;
A37: for x be
set st x
in (
divset ((T
. k),i)) holds
|.((f
. x)
- (g
. x)).|
<= e
proof
let x be
set;
assume
A38: x
in (
divset ((T
. k),i));
then
|.((f
. x)
- (g
. x)).|
=
|.((Hn
. x)
- (g
. x)).| by
FUNCT_1: 49;
then
|.((f
. x)
- (g
. x)).|
=
|.((Hn
. x)
- (H0
. x)).| by
A38,
FUNCT_1: 49;
then
|.((f
. x)
- (g
. x)).|
=
|.(((H
. n)
. x)
- (H0
. x)).| by
A35,
A38,
FUNCT_1: 49;
then
|.((f
. x)
- (g
. x)).|
=
|.(((H
. n)
. x)
- ((
lim (H,AB))
. x)).| by
A35,
A38,
FUNCT_1: 49;
hence thesis by
A23,
A30,
A35,
A38;
end;
(Hn
| AB) is
bounded by
A7;
then (f
| (
divset ((T
. k),i))) is
bounded_above by
A33,
INTEGRA1: 8,
INTEGRA2: 5;
then
A39: (
rng f) is
bounded_above by
INTEGRA1: 13;
(H1
. x0)
in
{e} by
A26,
A35,
A36,
FUNCT_2: 4;
then (H1
. x0)
= e by
TARSKI:def 1;
then
A40: ((H1
| (
divset ((T
. k),i)))
. x0)
= e by
A36,
FUNCT_1: 49;
(H1
| (
divset ((T
. k),i))) is
Function of (
divset ((T
. k),i)),
REAL by
A35,
FUNCT_2: 32;
then e
in (
rng (H1
| (
divset ((T
. k),i)))) by
A36,
A40,
FUNCT_2: 4;
then
A41:
{e}
c= (
rng (H1
| (
divset ((T
. k),i)))) by
ZFMISC_1: 31;
(
rng (H1
| (
divset ((T
. k),i))))
c=
{e} by
A26,
RELAT_1: 70;
then (
rng (H1
| (
divset ((T
. k),i))))
=
{e} by
A41,
XBOOLE_0:def 10;
then
A42: e
= (
upper_bound (
rng (H1
| (
divset ((T
. k),i))))) by
SEQ_4: 9;
(g
| (
divset ((T
. k),i))) is
bounded_above by
A19,
A33,
INTEGRA1: 8,
INTEGRA2: 5;
then
A43: (
rng g) is
bounded_above by
INTEGRA1: 13;
hence ((
upper_bound (
rng (Hn
| (
divset ((T
. k),i)))))
- (
upper_bound (
rng (H0
| (
divset ((T
. k),i))))))
<= (
upper_bound (
rng (H1
| (
divset ((T
. k),i))))) by
A39,
A42,
A37,
Th1;
for x be
set st x
in (
divset ((T
. k),i)) holds
|.((g
. x)
- (f
. x)).|
<= (
upper_bound (
rng (H1
| (
divset ((T
. k),i)))))
proof
let x be
set;
assume x
in (
divset ((T
. k),i));
then
|.((f
. x)
- (g
. x)).|
<= (
upper_bound (
rng (H1
| (
divset ((T
. k),i))))) by
A42,
A37;
hence thesis by
COMPLEX1: 60;
end;
hence thesis by
A39,
A43,
Th1;
end;
((R1
- R2)
. i)
= ((R1
. i)
- (R2
. i)) by
RVSUM_1: 27;
then ((R1
- R2)
. i)
= (((
upper_bound (
rng (Hn
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i))))
- ((
upper_volume (H0,(T
. k)))
. i)) by
A33,
INTEGRA1:def 6;
then ((R1
- R2)
. i)
= (((
upper_bound (
rng (Hn
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i))))
- ((
upper_bound (
rng (H0
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i))))) by
A33,
INTEGRA1:def 6;
then ((R1
- R2)
. i)
= (((
upper_bound (
rng (Hn
| (
divset ((T
. k),i)))))
- (
upper_bound (
rng (H0
| (
divset ((T
. k),i))))))
* (
vol (
divset ((T
. k),i))));
then ((R1
- R2)
. i)
<= ((
upper_bound (
rng (H1
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i)))) by
A34,
A32,
XREAL_1: 64;
hence ((R1
- R2)
. i)
<= (R3
. i) by
A33,
INTEGRA1:def 6;
((R2
- R1)
. i)
= ((R2
. i)
- (R1
. i)) by
RVSUM_1: 27;
then ((R2
- R1)
. i)
= (((
upper_bound (
rng (H0
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i))))
- ((
upper_volume (Hn,(T
. k)))
. i)) by
A33,
INTEGRA1:def 6;
then ((R2
- R1)
. i)
= (((
upper_bound (
rng (H0
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i))))
- ((
upper_bound (
rng (Hn
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i))))) by
A33,
INTEGRA1:def 6;
then ((R2
- R1)
. i)
= (((
upper_bound (
rng (H0
| (
divset ((T
. k),i)))))
- (
upper_bound (
rng (Hn
| (
divset ((T
. k),i))))))
* (
vol (
divset ((T
. k),i))));
then ((R2
- R1)
. i)
<= ((
upper_bound (
rng (H1
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i)))) by
A34,
A32,
XREAL_1: 64;
hence thesis by
A33,
INTEGRA1:def 6;
end;
then for i be
Nat st i
in (
dom Tk) holds ((R2
- R1)
. i)
<= (R3
. i);
then (((
upper_sum (H0,T))
. k)
- ((
upper_sum (Hn,T))
. k))
<= (
Sum R3) by
A24,
A25,
RVSUM_1: 82;
then (((
upper_sum (H0,T))
. k)
- ((
upper_sum (Hn,T))
. k))
<= (e
* (b
- a)) by
A29,
XXREAL_0: 2;
then
A44: (
- (e
* (b
- a)))
<= (
- (((
upper_sum (H0,T))
. k)
- ((
upper_sum (((H
. n)
|| AB),T))
. k))) by
XREAL_1: 24;
(((
upper_sum (Hn,T))
. k)
- ((
upper_sum (H0,T))
. k))
= ((
upper_sum (Hn,(T
. k)))
- ((
upper_sum (H0,T))
. k)) by
INTEGRA2:def 2;
then (((
upper_sum (Hn,T))
. k)
- ((
upper_sum (H0,T))
. k))
= ((
upper_sum (Hn,(T
. k)))
- (
upper_sum (H0,(T
. k)))) by
INTEGRA2:def 2;
then
A45: (((
upper_sum (Hn,T))
. k)
- ((
upper_sum (H0,T))
. k))
= (
Sum (R1
- R2)) by
RVSUM_1: 90;
for i be
Nat st i
in (
Seg l0) holds ((R1
- R2)
. i)
<= (R3
. i) by
A24,
A31;
then (((
upper_sum (Hn,T))
. k)
- ((
upper_sum (H0,T))
. k))
<= (
Sum R3) by
A45,
RVSUM_1: 82;
then (((
upper_sum (((H
. n)
|| AB),T))
. k)
- ((
upper_sum (H0,T))
. k))
<= (e
* (b
- a)) by
A29,
XXREAL_0: 2;
hence
|.(((
upper_sum (((H
. n)
|| AB),T))
. k)
- ((
upper_sum (H0,T))
. k)).|
<= (e
* (b
- a)) by
A44,
ABSVALUE: 5;
end;
A46: for e be
Real st
0
< e holds ex N be
Element of
NAT st for n be
Element of
NAT st N
<= n holds
|.((
upper_integral ((H
. n)
|| AB))
- (
upper_integral ((
lim (H,AB))
|| AB))).|
<= e
proof
let e be
Real;
reconsider ee = e as
Real;
assume
0
< e;
then
consider N be
Element of
NAT such that
A47: for n,k be
Element of
NAT st N
<= n holds
|.(((
upper_sum (((H
. n)
|| AB),T))
. k)
- ((
upper_sum (H0,T))
. k)).|
<= ((ee
/ (b
- a))
* (b
- a)) by
A22,
A9,
XREAL_1: 139;
take N;
A48:
now
let n,k be
Element of
NAT ;
assume N
<= n;
then
|.(((
upper_sum (((H
. n)
|| AB),T))
. k)
- ((
upper_sum (H0,T))
. k)).|
<= ((e
/ (b
- a))
* (b
- a)) by
A47;
hence
|.(((
upper_sum (((H
. n)
|| AB),T))
. k)
- ((
upper_sum (H0,T))
. k)).|
<= e by
A9,
XCMPLX_1: 87;
end;
hereby
let n be
Element of
NAT ;
assume
A49: N
<= n;
A50:
now
let k be
Nat;
k
in
NAT by
ORDINAL1:def 12;
then
|.(((
upper_sum (((H
. n)
|| AB),T))
. k)
- ((
upper_sum (H0,T))
. k)).|
<= e by
A48,
A49;
then
|.(((
upper_sum (((H
. n)
|| AB),T))
. k)
+ ((
- (
upper_sum (H0,T)))
. k)).|
<= e by
SEQ_1: 10;
then
|.(((
upper_sum (((H
. n)
|| AB),T))
+ (
- (
upper_sum (H0,T))))
. k).|
<= e by
SEQ_1: 7;
hence (
|.((
upper_sum (((H
. n)
|| AB),T))
- (
upper_sum (H0,T))).|
. k)
<= e by
SEQ_1: 12;
end;
A51: (
upper_sum (((H
. n)
|| AB),T)) is
convergent by
A7;
then (
lim ((
upper_sum (((H
. n)
|| AB),T))
- (
upper_sum (H0,T))))
= ((
lim (
upper_sum (((H
. n)
|| AB),T)))
- (
lim (
upper_sum (H0,T)))) by
A21,
SEQ_2: 12;
then (
lim ((
upper_sum (((H
. n)
|| AB),T))
- (
upper_sum (H0,T))))
= ((
upper_integral ((H
. n)
|| AB))
- (
lim (
upper_sum (H0,T)))) by
A7;
then
A52: (
lim ((
upper_sum (((H
. n)
|| AB),T))
- (
upper_sum (H0,T))))
= ((
upper_integral ((H
. n)
|| AB))
- (
upper_integral ((
lim (H,AB))
|| AB))) by
A4,
A19,
A20,
A13,
INTEGRA4: 9;
A53: ((
upper_sum (((H
. n)
|| AB),T))
- (
upper_sum (H0,T))) is
convergent by
A21,
A51;
then (
abs ((
upper_sum (((H
. n)
|| AB),T))
- (
upper_sum (H0,T)))) is
convergent by
SEQ_4: 13;
then (
lim
|.((
upper_sum (((H
. n)
|| AB),T))
- (
upper_sum (H0,T))).|)
<= e by
A50,
PREPOWER: 2;
hence
|.((
upper_integral ((H
. n)
|| AB))
- (
upper_integral ((
lim (H,AB))
|| AB))).|
<= e by
A53,
A52,
SEQ_4: 14;
end;
end;
A54: (
lower_sum (H0,T)) is
convergent by
A4,
A19,
A20,
A13,
INTEGRA4: 8;
A55: for e be
Real st
0
< e holds ex N be
Element of
NAT st for n,k be
Element of
NAT st N
<= n holds
|.(((
lower_sum (((H
. n)
|| AB),T))
. k)
- ((
lower_sum (H0,T))
. k)).|
<= (e
* (b
- a))
proof
let e be
Real;
assume
0
< e;
then
consider N be
Nat such that
A56: for n be
Nat, x be
Element of
REAL st n
>= N & x
in AB holds
|.(((H
. n)
. x)
- ((
lim (H,AB))
. x)).|
< e by
A3,
SEQFUNC: 43;
reconsider N as
Element of
NAT by
ORDINAL1:def 12;
take N;
hereby
let n,k be
Element of
NAT ;
set Hn = ((H
. n)
|| AB);
reconsider Tk = (T
. k) as
Division of AB;
set l0 = (
len Tk);
consider H1 be
Function of AB,
REAL such that
A57: (
rng H1)
=
{e} and
A58: (H1
| AB) is
bounded by
INTEGRA4: 5;
A59: (
lower_sum (H1,(T
. k)))
<= (
upper_sum (H1,(T
. k))) by
A58,
INTEGRA1: 28;
(
len (
lower_volume (H0,(T
. k))))
= l0 by
INTEGRA1:def 7;
then
reconsider R2 = (
lower_volume (H0,(T
. k))) as
Element of (l0
-tuples_on
REAL ) by
FINSEQ_2: 92;
(
len (
lower_volume (Hn,(T
. k))))
= l0 by
INTEGRA1:def 7;
then
reconsider R1 = (
lower_volume (Hn,(T
. k))) as
Element of (l0
-tuples_on
REAL ) by
FINSEQ_2: 92;
(
len (
lower_volume (H1,(T
. k))))
= l0 by
INTEGRA1:def 7;
then
reconsider R3 = (
lower_volume (H1,(T
. k))) as
Element of (l0
-tuples_on
REAL ) by
FINSEQ_2: 92;
assume
A60: N
<= n;
A61: for i be
Element of
NAT st i
in (
dom Tk) holds ((R1
- R2)
. i)
<= (R3
. i) & ((R2
- R1)
. i)
<= (R3
. i)
proof
let i be
Element of
NAT ;
consider x0 be
object such that
A62: x0
in (
divset ((T
. k),i)) by
XBOOLE_0:def 1;
A63: (
rng (H1
| (
divset ((T
. k),i))))
c=
{e} by
A57,
RELAT_1: 70;
assume
A64: i
in (
dom Tk);
then
A65: (
divset ((T
. k),i))
c= AB by
INTEGRA1: 8;
then
reconsider g = (H0
| (
divset ((T
. k),i))) as
Function of (
divset ((T
. k),i)),
REAL by
A13,
FUNCT_2: 32;
Hn is
Function of AB,
REAL by
A7;
then
reconsider f = (Hn
| (
divset ((T
. k),i))) as
Function of (
divset ((T
. k),i)),
REAL by
A65,
FUNCT_2: 32;
A66:
0
<= (
vol (
divset ((T
. k),i))) by
INTEGRA1: 9;
(H1
. x0)
in
{e} by
A57,
A65,
A62,
FUNCT_2: 4;
then (H1
. x0)
= e by
TARSKI:def 1;
then
A67: ((H1
| (
divset ((T
. k),i)))
. x0)
= e by
A62,
FUNCT_1: 49;
(H1
| (
divset ((T
. k),i))) is
Function of (
divset ((T
. k),i)),
REAL by
A65,
FUNCT_2: 32;
then e
in (
rng (H1
| (
divset ((T
. k),i)))) by
A62,
A67,
FUNCT_2: 4;
then
{e}
c= (
rng (H1
| (
divset ((T
. k),i)))) by
ZFMISC_1: 31;
then (
rng (H1
| (
divset ((T
. k),i))))
=
{e} by
A63,
XBOOLE_0:def 10;
then
A68: e
= (
lower_bound (
rng (H1
| (
divset ((T
. k),i))))) by
SEQ_4: 9;
A69:
now
let x be
set;
assume
A70: x
in (
divset ((T
. k),i));
then
|.((f
. x)
- (g
. x)).|
=
|.((Hn
. x)
- (g
. x)).| by
FUNCT_1: 49;
then
|.((f
. x)
- (g
. x)).|
=
|.((Hn
. x)
- (H0
. x)).| by
A70,
FUNCT_1: 49;
then
|.((f
. x)
- (g
. x)).|
=
|.(((H
. n)
. x)
- (H0
. x)).| by
A65,
A70,
FUNCT_1: 49;
then
|.((f
. x)
- (g
. x)).|
=
|.(((H
. n)
. x)
- ((
lim (H,AB))
. x)).| by
A65,
A70,
FUNCT_1: 49;
hence
|.((f
. x)
- (g
. x)).|
<= e by
A56,
A60,
A65,
A70;
end;
((R2
- R1)
. i)
= ((R2
. i)
- (R1
. i)) by
RVSUM_1: 27;
then ((R2
- R1)
. i)
= (((
lower_bound (
rng (H0
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i))))
- ((
lower_volume (Hn,(T
. k)))
. i)) by
A64,
INTEGRA1:def 7;
then ((R2
- R1)
. i)
= (((
lower_bound (
rng (H0
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i))))
- ((
lower_bound (
rng (Hn
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i))))) by
A64,
INTEGRA1:def 7;
then
A71: ((R2
- R1)
. i)
= (((
lower_bound (
rng (H0
| (
divset ((T
. k),i)))))
- (
lower_bound (
rng (Hn
| (
divset ((T
. k),i))))))
* (
vol (
divset ((T
. k),i))));
((R1
- R2)
. i)
= ((R1
. i)
- (R2
. i)) by
RVSUM_1: 27;
then ((R1
- R2)
. i)
= (((
lower_bound (
rng (Hn
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i))))
- ((
lower_volume (H0,(T
. k)))
. i)) by
A64,
INTEGRA1:def 7;
then ((R1
- R2)
. i)
= (((
lower_bound (
rng (Hn
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i))))
- ((
lower_bound (
rng (H0
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i))))) by
A64,
INTEGRA1:def 7;
then
A72: ((R1
- R2)
. i)
= (((
lower_bound (
rng (Hn
| (
divset ((T
. k),i)))))
- (
lower_bound (
rng (H0
| (
divset ((T
. k),i))))))
* (
vol (
divset ((T
. k),i))));
(Hn
| AB) is
bounded by
A7;
then (f
| (
divset ((T
. k),i))) is
bounded_below by
A64,
INTEGRA1: 8,
INTEGRA2: 6;
then
A73: (
rng f) is
bounded_below by
INTEGRA1: 11;
(g
| (
divset ((T
. k),i))) is
bounded_below by
A20,
A64,
INTEGRA1: 8,
INTEGRA2: 6;
then
A74: (
rng g) is
bounded_below by
INTEGRA1: 11;
then ((
lower_bound (
rng (Hn
| (
divset ((T
. k),i)))))
- (
lower_bound (
rng (H0
| (
divset ((T
. k),i))))))
<= (
lower_bound (
rng (H1
| (
divset ((T
. k),i))))) by
A73,
A68,
A69,
Th2;
then ((R1
- R2)
. i)
<= ((
lower_bound (
rng (H1
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i)))) by
A72,
A66,
XREAL_1: 64;
hence ((R1
- R2)
. i)
<= (R3
. i) by
A64,
INTEGRA1:def 7;
now
let x be
set;
assume x
in (
divset ((T
. k),i));
then
|.((f
. x)
- (g
. x)).|
<= (
lower_bound (
rng (H1
| (
divset ((T
. k),i))))) by
A68,
A69;
hence
|.((g
. x)
- (f
. x)).|
<= (
lower_bound (
rng (H1
| (
divset ((T
. k),i))))) by
COMPLEX1: 60;
end;
then ((
lower_bound (
rng (H0
| (
divset ((T
. k),i)))))
- (
lower_bound (
rng (Hn
| (
divset ((T
. k),i))))))
<= (
lower_bound (
rng (H1
| (
divset ((T
. k),i))))) by
A73,
A74,
Th2;
then ((R2
- R1)
. i)
<= ((
lower_bound (
rng (H1
| (
divset ((T
. k),i)))))
* (
vol (
divset ((T
. k),i)))) by
A71,
A66,
XREAL_1: 64;
hence thesis by
A64,
INTEGRA1:def 7;
end;
(((
lower_sum (Hn,T))
. k)
- ((
lower_sum (H0,T))
. k))
= ((
lower_sum (Hn,(T
. k)))
- ((
lower_sum (H0,T))
. k)) by
INTEGRA2:def 3;
then (((
lower_sum (Hn,T))
. k)
- ((
lower_sum (H0,T))
. k))
= ((
lower_sum (Hn,(T
. k)))
- (
lower_sum (H0,(T
. k)))) by
INTEGRA2:def 3;
then
A75: (((
lower_sum (Hn,T))
. k)
- ((
lower_sum (H0,T))
. k))
= (
Sum (R1
- R2)) by
RVSUM_1: 90;
A76: (
vol AB)
= (b
- a) by
A1,
INTEGRA6: 5;
(
upper_bound (
rng H1))
= e by
A57,
SEQ_4: 9;
then (
upper_sum (H1,(T
. k)))
<= (e
* (b
- a)) by
A58,
A76,
INTEGRA1: 27;
then
A77: (
lower_sum (H1,(T
. k)))
<= (e
* (b
- a)) by
A59,
XXREAL_0: 2;
(((
lower_sum (H0,T))
. k)
- ((
lower_sum (Hn,T))
. k))
= ((
lower_sum (H0,(T
. k)))
- ((
lower_sum (Hn,T))
. k)) by
INTEGRA2:def 3;
then (((
lower_sum (H0,T))
. k)
- ((
lower_sum (Hn,T))
. k))
= ((
lower_sum (H0,(T
. k)))
- (
lower_sum (Hn,(T
. k)))) by
INTEGRA2:def 3;
then
A78: (((
lower_sum (H0,T))
. k)
- ((
lower_sum (Hn,T))
. k))
= (
Sum (R2
- R1)) by
RVSUM_1: 90;
A79: (
Seg l0)
= (
dom Tk) by
FINSEQ_1:def 3;
then for i be
Nat st i
in (
Seg l0) holds ((R2
- R1)
. i)
<= (R3
. i) by
A61;
then (((
lower_sum (H0,T))
. k)
- ((
lower_sum (Hn,T))
. k))
<= (
Sum R3) by
A78,
RVSUM_1: 82;
then (((
lower_sum (H0,T))
. k)
- ((
lower_sum (Hn,T))
. k))
<= (e
* (b
- a)) by
A77,
XXREAL_0: 2;
then
A80: (
- (e
* (b
- a)))
<= (
- (((
lower_sum (H0,T))
. k)
- ((
lower_sum (((H
. n)
|| AB),T))
. k))) by
XREAL_1: 24;
for i be
Nat st i
in (
Seg l0) holds ((R1
- R2)
. i)
<= (R3
. i) by
A79,
A61;
then (((
lower_sum (Hn,T))
. k)
- ((
lower_sum (H0,T))
. k))
<= (
lower_sum (H1,(T
. k))) by
A75,
RVSUM_1: 82;
then (((
lower_sum (((H
. n)
|| AB),T))
. k)
- ((
lower_sum (H0,T))
. k))
<= (e
* (b
- a)) by
A77,
XXREAL_0: 2;
hence
|.(((
lower_sum (((H
. n)
|| AB),T))
. k)
- ((
lower_sum (H0,T))
. k)).|
<= (e
* (b
- a)) by
A80,
ABSVALUE: 5;
end;
end;
A81: for e be
Real st
0
< e holds ex N be
Element of
NAT st for n,k be
Element of
NAT st N
<= n holds
|.(((
lower_sum (((H
. n)
|| AB),T))
. k)
- ((
lower_sum (H0,T))
. k)).|
<= e
proof
let e be
Real;
assume
0
< e;
then
consider N be
Element of
NAT such that
A82: for n,k be
Element of
NAT st N
<= n holds
|.(((
lower_sum (((H
. n)
|| AB),T))
. k)
- ((
lower_sum (H0,T))
. k)).|
<= ((e
/ (b
- a))
* (b
- a)) by
A55,
A9,
XREAL_1: 139;
take N;
hereby
let n,k be
Element of
NAT ;
assume N
<= n;
then
|.(((
lower_sum (((H
. n)
|| AB),T))
. k)
- ((
lower_sum (H0,T))
. k)).|
<= ((e
/ (b
- a))
* (b
- a)) by
A82;
hence
|.(((
lower_sum (((H
. n)
|| AB),T))
. k)
- ((
lower_sum (H0,T))
. k)).|
<= e by
A9,
XCMPLX_1: 87;
end;
end;
A83: for e be
Real st
0
< e holds ex N be
Element of
NAT st for n be
Element of
NAT st N
<= n holds
|.((
lower_integral ((H
. n)
|| AB))
- (
lower_integral ((
lim (H,AB))
|| AB))).|
<= e
proof
let e be
Real;
assume
0
< e;
then
consider N be
Element of
NAT such that
A84: for n,k be
Element of
NAT st N
<= n holds
|.(((
lower_sum (((H
. n)
|| AB),T))
. k)
- ((
lower_sum (H0,T))
. k)).|
<= e by
A81;
take N;
hereby
let n be
Element of
NAT ;
set LHT = (
lower_sum (((H
. n)
|| AB),T));
assume
A85: N
<= n;
A86:
now
let k be
Nat;
k
in
NAT by
ORDINAL1:def 12;
then
|.((LHT
. k)
- ((
lower_sum (H0,T))
. k)).|
<= e by
A84,
A85;
then
|.((LHT
. k)
+ ((
- (
lower_sum (H0,T)))
. k)).|
<= e by
SEQ_1: 10;
then
|.((LHT
+ (
- (
lower_sum (H0,T))))
. k).|
<= e by
SEQ_1: 7;
hence ((
abs (LHT
- (
lower_sum (H0,T))))
. k)
<= e by
SEQ_1: 12;
end;
A87: LHT is
convergent by
A7;
then (
lim (LHT
- (
lower_sum (H0,T))))
= ((
lim LHT)
- (
lim (
lower_sum (H0,T)))) by
A54,
SEQ_2: 12;
then (
lim (LHT
- (
lower_sum (H0,T))))
= ((
lower_integral ((H
. n)
|| AB))
- (
lim (
lower_sum (H0,T)))) by
A7;
then
A88: (
lim (LHT
- (
lower_sum (H0,T))))
= ((
lower_integral ((H
. n)
|| AB))
- (
lower_integral ((
lim (H,AB))
|| AB))) by
A4,
A19,
A20,
A13,
INTEGRA4: 8;
A89: (LHT
- (
lower_sum (H0,T))) is
convergent by
A54,
A87;
then
|.(LHT
- (
lower_sum (H0,T))).| is
convergent by
SEQ_4: 13;
then (
lim
|.(LHT
- (
lower_sum (H0,T))).|)
<= e by
A86,
PREPOWER: 2;
hence
|.((
lower_integral ((H
. n)
|| AB))
- (
lower_integral ((
lim (H,AB))
|| AB))).|
<= e by
A88,
A89,
SEQ_4: 14;
end;
end;
A90:
now
let e1 be
Real;
set e = (e1
/ 2);
assume
A91:
0
< e1;
then
A92:
0
< (e1
/ 2) by
XREAL_1: 215;
then
consider N1 be
Element of
NAT such that
A93: for n be
Element of
NAT st N1
<= n holds
|.((
upper_integral ((H
. n)
|| AB))
- (
upper_integral ((
lim (H,AB))
|| AB))).|
<= (e
/ 2) by
A46,
XREAL_1: 215;
consider N2 be
Element of
NAT such that
A94: for n be
Element of
NAT st N2
<= n holds
|.((
lower_integral ((H
. n)
|| AB))
- (
lower_integral ((
lim (H,AB))
|| AB))).|
<= (e
/ 2) by
A83,
A92,
XREAL_1: 215;
reconsider n = (
max (N1,N2)) as
Element of
NAT ;
set K = (
upper_integral ((H
. n)
|| AB));
set L = (
lower_integral ((H
. n)
|| AB));
|.(L
- L1).|
<= (e
/ 2) by
A94,
XXREAL_0: 25;
then
A95:
|.(K
- L1).|
<= (e
/ 2) by
A7;
((K
- K1)
- (K
- L1))
= (L1
- K1);
then
A96:
|.(L1
- K1).|
<= (
|.(K
- K1).|
+
|.(K
- L1).|) by
COMPLEX1: 57;
|.(K
- K1).|
<= (e
/ 2) by
A93,
XXREAL_0: 25;
then (
|.(K
- K1).|
+
|.(K
- L1).|)
<= ((e
/ 2)
+ (e
/ 2)) by
A95,
XREAL_1: 7;
then
A97:
|.(L1
- K1).|
<= e by
A96,
XXREAL_0: 2;
(e1
/ 2)
< e1 by
A91,
XREAL_1: 216;
hence
|.(L1
- K1).|
< e1 by
A97,
XXREAL_0: 2;
end;
A98: K1
= L1 by
COMPLEX1: 62,
A90;
H0 is
upper_integrable & H0 is
lower_integrable by
A19,
A20,
A13,
INTEGRA4: 10;
then ((
lim (H,AB))
|| AB) is
integrable by
A98;
hence (
lim (H,AB))
is_integrable_on AB;
A99: for p be
Real st
0
< p holds ex n be
Nat st for m be
Nat st n
<= m holds
|.((rseq
. m)
- (
integral ((
lim (H,AB)),a,b))).|
< p
proof
let p be
Real;
set e = (p
/ 2);
assume
A100:
0
< p;
then
consider N be
Element of
NAT such that
A101: for n be
Element of
NAT st N
<= n holds
|.((
upper_integral ((H
. n)
|| AB))
- (
upper_integral ((
lim (H,AB))
|| AB))).|
<= e by
A46,
XREAL_1: 215;
take N;
A102: (p
/ 2)
< p by
A100,
XREAL_1: 216;
hereby
let n be
Nat;
A103: n
in
NAT by
ORDINAL1:def 12;
(
upper_integral ((H
. n)
|| AB))
= (
integral ((H
. n)
|| AB));
then
A104: (
upper_integral ((H
. n)
|| AB))
= (rseq
. n) by
A7,
A103;
(
upper_integral ((
lim (H,AB))
|| AB))
= (
integral ((
lim (H,AB)),AB));
then
A105: (
upper_integral ((
lim (H,AB))
|| AB))
= (
integral ((
lim (H,AB)),a,b)) by
A1,
INTEGRA5:def 4;
assume N
<= n;
then
|.((
upper_integral ((H
. n)
|| AB))
- (
upper_integral ((
lim (H,AB))
|| AB))).|
<= e by
A101,
A103;
hence
|.((rseq
. n)
- (
integral ((
lim (H,AB)),a,b))).|
< p by
A102,
A104,
A105,
XXREAL_0: 2;
end;
end;
hence rseq is
convergent by
SEQ_2:def 6;
hence thesis by
A99,
SEQ_2:def 7;
end;