integr18.miz
    
    begin
    
    reserve X for
    RealNormSpace;
    
    definition
    
      let X be
    RealNormSpace;
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      let f be
    Function of A, the 
    carrier of X; 
    
      let D be
    Division of A; 
    
      :: 
    
    INTEGR18:def1
    
      mode
    
    middle_volume of f,D -> 
    FinSequence of X means 
    
      :
    
    Def1: ( 
    len it ) 
    = ( 
    len D) & for i be 
    Nat st i 
    in ( 
    dom D) holds ex c be 
    Point of X st c 
    in ( 
    rng (f 
    | ( 
    divset (D,i)))) & (it 
    . i) 
    = (( 
    vol ( 
    divset (D,i))) 
    * c); 
    
      correctness
    
      proof
    
        defpred
    
    P1[
    Nat, 
    set] means ex c be
    Point of X st c 
    in ( 
    rng (f 
    | ( 
    divset (D,$1)))) & $2 
    = (( 
    vol ( 
    divset (D,$1))) 
    * c); 
    
        
    
        
    
    A1: ( 
    Seg ( 
    len D)) 
    = ( 
    dom D) by 
    FINSEQ_1:def 3;
    
        
    
        
    
    A2: for k be 
    Nat st k 
    in ( 
    Seg ( 
    len D)) holds ex x be 
    Element of the 
    carrier of X st 
    P1[k, x]
    
        proof
    
          let k be
    Nat;
    
          assume k
    in ( 
    Seg ( 
    len D)); 
    
          then
    
          
    
    A3: k 
    in ( 
    dom D) by 
    FINSEQ_1:def 3;
    
          (
    dom f) 
    = A by 
    FUNCT_2:def 1;
    
          then (
    dom (f 
    | ( 
    divset (D,k)))) 
    = ( 
    divset (D,k)) by 
    A3,
    INTEGRA1: 8,
    RELAT_1: 62;
    
          then (
    rng (f 
    | ( 
    divset (D,k)))) is non 
    empty by 
    RELAT_1: 42;
    
          then
    
          consider c be
    object such that 
    
          
    
    A4: c 
    in ( 
    rng (f 
    | ( 
    divset (D,k)))); 
    
          reconsider c as
    Point of X by 
    A4;
    
          ((
    vol ( 
    divset (D,k))) 
    * c) is 
    Element of the 
    carrier of X; 
    
          hence thesis by
    A4;
    
        end;
    
        consider p be
    FinSequence of the 
    carrier of X such that 
    
        
    
    A5: ( 
    dom p) 
    = ( 
    Seg ( 
    len D)) & for k be 
    Nat st k 
    in ( 
    Seg ( 
    len D)) holds 
    P1[k, (p
    . k)] from 
    FINSEQ_1:sch 5(
    A2);
    
        (
    len p) 
    = ( 
    len D) by 
    A5,
    FINSEQ_1:def 3;
    
        hence thesis by
    A5,
    A1;
    
      end;
    
    end
    
    definition
    
      let X be
    RealNormSpace;
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      let f be
    Function of A, the 
    carrier of X; 
    
      let D be
    Division of A; 
    
      let F be
    middle_volume of f, D; 
    
      :: 
    
    INTEGR18:def2
    
      func
    
    middle_sum (f,F) -> 
    Point of X equals ( 
    Sum F); 
    
      coherence ;
    
    end
    
    definition
    
      let X be
    RealNormSpace;
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL , f be 
    Function of A, the 
    carrier of X, T be 
    DivSequence of A; 
    
      :: 
    
    INTEGR18:def3
    
      mode
    
    middle_volume_Sequence of f,T -> 
    sequence of (the 
    carrier of X 
    * ) means 
    
      :
    
    Def3: for k be 
    Element of 
    NAT holds (it 
    . k) is 
    middle_volume of f, (T 
    . k); 
    
      correctness
    
      proof
    
        defpred
    
    P[
    Element of 
    NAT , 
    set] means $2 is
    middle_volume of f, (T 
    . $1); 
    
        
    
        
    
    A1: for x be 
    Element of 
    NAT holds ex y be 
    Element of (the 
    carrier of X 
    * ) st 
    P[x, y]
    
        proof
    
          let x be
    Element of 
    NAT ; 
    
          set y = the
    middle_volume of f, (T 
    . x); 
    
          reconsider y as
    Element of (the 
    carrier of X 
    * ) by 
    FINSEQ_1:def 11;
    
          y is
    middle_volume of f, (T 
    . x); 
    
          hence thesis;
    
        end;
    
        ex f be
    sequence of (the 
    carrier of X 
    * ) st for x be 
    Element of 
    NAT holds 
    P[x, (f
    . x)] from 
    FUNCT_2:sch 3(
    A1);
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let X be
    RealNormSpace;
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL , f be 
    Function of A, the 
    carrier of X, T be 
    DivSequence of A, S be 
    middle_volume_Sequence of f, T, k be 
    Nat;
    
      :: original:
    .
    
      redefine
    
      func S
    
    . k -> 
    middle_volume of f, (T 
    . k) ; 
    
      coherence
    
      proof
    
        k
    in  
    NAT by 
    ORDINAL1:def 12;
    
        hence thesis by
    Def3;
    
      end;
    
    end
    
    definition
    
      let X be
    RealNormSpace;
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL , f be 
    Function of A, the 
    carrier of X, T be 
    DivSequence of A, S be 
    middle_volume_Sequence of f, T; 
    
      :: 
    
    INTEGR18:def4
    
      func
    
    middle_sum (f,S) -> 
    sequence of X means 
    
      :
    
    Def4: for i be 
    Nat holds (it 
    . i) 
    = ( 
    middle_sum (f,(S 
    . i))); 
    
      existence
    
      proof
    
        deffunc
    
    H1(
    Nat) = (
    middle_sum (f,(S 
    . $1))); 
    
        consider IT be
    sequence of the 
    carrier of X such that 
    
        
    
    A1: for i be 
    Element of 
    NAT holds (IT 
    . i) 
    =  
    H1(i) from
    FUNCT_2:sch 4;
    
        take IT;
    
        let n be
    Nat;
    
        n
    in  
    NAT by 
    ORDINAL1:def 12;
    
        hence thesis by
    A1;
    
      end;
    
      uniqueness
    
      proof
    
        let F1,F2 be
    sequence of X; 
    
        assume that
    
        
    
    A2: for i be 
    Nat holds (F1 
    . i) 
    = ( 
    middle_sum (f,(S 
    . i))) and 
    
        
    
    A3: for i be 
    Nat holds (F2 
    . i) 
    = ( 
    middle_sum (f,(S 
    . i))); 
    
        for i be
    Element of 
    NAT holds (F1 
    . i) 
    = (F2 
    . i) 
    
        proof
    
          let i be
    Element of 
    NAT ; 
    
          (F1
    . i) 
    = ( 
    middle_sum (f,(S 
    . i))) by 
    A2
    
          .= (F2
    . i) by 
    A3;
    
          hence (F1
    . i) 
    = (F2 
    . i); 
    
        end;
    
        hence F1
    = F2 by 
    FUNCT_2: 63;
    
      end;
    
    end
    
    begin
    
    definition
    
      let X be
    RealNormSpace;
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      let f be
    Function of A, the 
    carrier of X; 
    
      :: 
    
    INTEGR18:def5
    
      attr f is
    
    integrable means ex I be 
    Point of X st for T be 
    DivSequence of A, S be 
    middle_volume_Sequence of f, T st ( 
    delta T) is 
    convergent & ( 
    lim ( 
    delta T)) 
    =  
    0 holds ( 
    middle_sum (f,S)) is 
    convergent & ( 
    lim ( 
    middle_sum (f,S))) 
    = I; 
    
    end
    
    theorem :: 
    
    INTEGR18:1
    
    
    
    
    
    Th1: for X be 
    RealNormSpace, R1,R2,R3 be 
    FinSequence of X st ( 
    len R1) 
    = ( 
    len R2) & R3 
    = (R1 
    + R2) holds ( 
    Sum R3) 
    = (( 
    Sum R1) 
    + ( 
    Sum R2)) 
    
    proof
    
      let X be
    RealNormSpace, R1,R2,R3 be 
    FinSequence of X; 
    
      assume
    
      
    
    A1: ( 
    len R1) 
    = ( 
    len R2) & R3 
    = (R1 
    + R2); 
    
      then (
    dom R1) 
    = ( 
    dom R2) by 
    FINSEQ_3: 29;
    
      hence (
    Sum R3) 
    = (( 
    Sum R1) 
    + ( 
    Sum R2)) by 
    A1,
    BINOM: 7;
    
    end;
    
    theorem :: 
    
    INTEGR18:2
    
    for X be
    RealNormSpace, R1,R2,R3 be 
    FinSequence of X st ( 
    len R1) 
    = ( 
    len R2) & R3 
    = (R1 
    - R2) holds ( 
    Sum R3) 
    = (( 
    Sum R1) 
    - ( 
    Sum R2)) 
    
    proof
    
      let X be
    RealNormSpace, R1,R2,R3 be 
    FinSequence of X; 
    
      assume
    
      
    
    A1: ( 
    len R1) 
    = ( 
    len R2) & R3 
    = (R1 
    - R2); 
    
      then
    
      
    
    A2: ( 
    dom R1) 
    = ( 
    dom R2) by 
    FINSEQ_3: 29;
    
      
    
      
    
    A3: ( 
    dom R3) 
    = (( 
    dom R1) 
    /\ ( 
    dom R2)) by 
    A1,
    VFUNCT_1:def 2
    
      .= (
    dom R1) by 
    A2;
    
      then
    
      
    
    A4: ( 
    len R3) 
    = ( 
    len R1) by 
    FINSEQ_3: 29;
    
      
    
      
    
    A5: for k be 
    Nat st k 
    in ( 
    dom R1) holds (R3 
    . k) 
    = ((R1 
    /. k) 
    - (R2 
    /. k)) 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A6: k 
    in ( 
    dom R1); 
    
        
    
        thus (R3
    . k) 
    = (R3 
    /. k) by 
    A6,
    A3,
    PARTFUN1:def 6
    
        .= ((R1
    /. k) 
    - (R2 
    /. k)) by 
    A1,
    A6,
    A3,
    VFUNCT_1:def 2;
    
      end;
    
      thus thesis by
    A1,
    A4,
    A5,
    RLVECT_2: 5;
    
    end;
    
    theorem :: 
    
    INTEGR18:3
    
    
    
    
    
    Th3: for X be 
    RealNormSpace, R1,R2 be 
    FinSequence of X, a be 
    Real st R2 
    = (a 
    (#) R1) holds ( 
    Sum R2) 
    = (a 
    * ( 
    Sum R1)) 
    
    proof
    
      let X be
    RealNormSpace, R1,R2 be 
    FinSequence of X, a be 
    Real;
    
      assume
    
      
    
    A1: R2 
    = (a 
    (#) R1); 
    
      (
    dom R2) 
    = ( 
    dom R1) by 
    A1,
    VFUNCT_1:def 4;
    
      then
    
      
    
    A2: ( 
    len R2) 
    = ( 
    len R1) by 
    FINSEQ_3: 29;
    
      
    
      
    
    A3: for k be 
    Nat st k 
    in ( 
    dom R1) holds (R2 
    . k) 
    = (a 
    * (R1 
    /. k)) 
    
      proof
    
        let k be
    Nat;
    
        assume k
    in ( 
    dom R1); 
    
        then
    
        
    
    A4: k 
    in ( 
    dom R2) by 
    A1,
    VFUNCT_1:def 4;
    
        
    
        thus (R2
    . k) 
    = (R2 
    /. k) by 
    A4,
    PARTFUN1:def 6
    
        .= (a
    * (R1 
    /. k)) by 
    A4,
    A1,
    VFUNCT_1:def 4;
    
      end;
    
      thus thesis by
    A2,
    A3,
    RLVECT_2: 3;
    
    end;
    
    definition
    
      let X be
    RealNormSpace;
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      let f be
    Function of A, the 
    carrier of X; 
    
      assume
    
      
    
    A1: f is 
    integrable;
    
      :: 
    
    INTEGR18:def6
    
      func
    
    integral (f) -> 
    Point of X means 
    
      :
    
    Def6: for T be 
    DivSequence of A, S be 
    middle_volume_Sequence of f, T st ( 
    delta T) is 
    convergent & ( 
    lim ( 
    delta T)) 
    =  
    0 holds ( 
    middle_sum (f,S)) is 
    convergent & ( 
    lim ( 
    middle_sum (f,S))) 
    = it ; 
    
      existence by
    A1;
    
      uniqueness
    
      proof
    
        let I1,I2 be
    Point of X; 
    
        assume
    
        
    
    A2: for T be 
    DivSequence of A, S be 
    middle_volume_Sequence of f, T st ( 
    delta T) is 
    convergent & ( 
    lim ( 
    delta T)) 
    =  
    0 holds ( 
    middle_sum (f,S)) is 
    convergent & ( 
    lim ( 
    middle_sum (f,S))) 
    = I1; 
    
        assume
    
        
    
    A3: for T be 
    DivSequence of A, S be 
    middle_volume_Sequence of f, T st ( 
    delta T) is 
    convergent & ( 
    lim ( 
    delta T)) 
    =  
    0 holds ( 
    middle_sum (f,S)) is 
    convergent & ( 
    lim ( 
    middle_sum (f,S))) 
    = I2; 
    
        consider T be
    DivSequence of A such that 
    
        
    
    A4: ( 
    delta T) is 
    convergent & ( 
    lim ( 
    delta T)) 
    =  
    0 by 
    INTEGRA4: 11;
    
        set S = the
    middle_volume_Sequence of f, T; 
    
        
    
        thus I1
    = ( 
    lim ( 
    middle_sum (f,S))) by 
    A2,
    A4
    
        .= I2 by
    A3,
    A4;
    
      end;
    
    end
    
    theorem :: 
    
    INTEGR18:4
    
    
    
    
    
    Th4: for X be 
    RealNormSpace, A be non 
    empty
    closed_interval  
    Subset of 
    REAL , r be 
    Real, f,h be 
    Function of A, the 
    carrier of X st h 
    = (r 
    (#) f) & f is 
    integrable holds h is 
    integrable & ( 
    integral h) 
    = (r 
    * ( 
    integral f)) 
    
    proof
    
      let X be
    RealNormSpace, A be non 
    empty
    closed_interval  
    Subset of 
    REAL , r be 
    Real, f,h be 
    Function of A, the 
    carrier of X; 
    
      assume
    
      
    
    A1: h 
    = (r 
    (#) f) & f is 
    integrable;
    
      
    
      
    
    A2: ( 
    dom h) 
    = A & ( 
    dom f) 
    = A by 
    FUNCT_2:def 1;
    
      
    
    A3: 
    
      now
    
        let T be
    DivSequence of A, S be 
    middle_volume_Sequence of h, T; 
    
        assume
    
        
    
    A4: ( 
    delta T) is 
    convergent & ( 
    lim ( 
    delta T)) 
    =  
    0 ; 
    
        defpred
    
    P[
    Element of 
    NAT , 
    set] means ex p be
    FinSequence of 
    REAL st p 
    = $2 & ( 
    len p) 
    = ( 
    len (T 
    . $1)) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . $1)) holds (p 
    . i) 
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . $1),i)))) & ex z be 
    Point of X st z 
    = ((h 
    | ( 
    divset ((T 
    . $1),i))) 
    . (p 
    . i)) & ((S 
    . $1) 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . $1),i))) 
    * z); 
    
        
    
        
    
    A5: for k be 
    Element of 
    NAT holds ex p be 
    Element of ( 
    REAL  
    * ) st 
    P[k, p]
    
        proof
    
          let k be
    Element of 
    NAT ; 
    
          defpred
    
    P1[
    Nat, 
    set] means $2
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . k),$1)))) & ex c be 
    Point of X st c 
    = ((h 
    | ( 
    divset ((T 
    . k),$1))) 
    . $2) & ((S 
    . k) 
    . $1) 
    = (( 
    vol ( 
    divset ((T 
    . k),$1))) 
    * c); 
    
          
    
          
    
    A6: ( 
    Seg ( 
    len (T 
    . k))) 
    = ( 
    dom (T 
    . k)) by 
    FINSEQ_1:def 3;
    
          
    
          
    
    A7: for i be 
    Nat st i 
    in ( 
    Seg ( 
    len (T 
    . k))) holds ex x be 
    Element of 
    REAL st 
    P1[i, x]
    
          proof
    
            let i be
    Nat;
    
            assume i
    in ( 
    Seg ( 
    len (T 
    . k))); 
    
            then i
    in ( 
    dom (T 
    . k)) by 
    FINSEQ_1:def 3;
    
            then
    
            consider c be
    Point of X such that 
    
            
    
    A8: c 
    in ( 
    rng (h 
    | ( 
    divset ((T 
    . k),i)))) & ((S 
    . k) 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * c) by 
    Def1;
    
            consider x be
    object such that 
    
            
    
    A9: x 
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . k),i)))) & c 
    = ((h 
    | ( 
    divset ((T 
    . k),i))) 
    . x) by 
    A8,
    FUNCT_1:def 3;
    
            x
    in ( 
    dom h) & x 
    in ( 
    divset ((T 
    . k),i)) by 
    A9,
    RELAT_1: 57;
    
            then
    
            reconsider x as
    Element of 
    REAL ; 
    
            take x;
    
            thus thesis by
    A8,
    A9;
    
          end;
    
          consider p be
    FinSequence of 
    REAL such that 
    
          
    
    A10: ( 
    dom p) 
    = ( 
    Seg ( 
    len (T 
    . k))) & for i be 
    Nat st i 
    in ( 
    Seg ( 
    len (T 
    . k))) holds 
    P1[i, (p
    . i)] from 
    FINSEQ_1:sch 5(
    A7);
    
          take p;
    
          (
    len p) 
    = ( 
    len (T 
    . k)) by 
    A10,
    FINSEQ_1:def 3;
    
          hence thesis by
    A10,
    A6,
    FINSEQ_1:def 11;
    
        end;
    
        consider F be
    sequence of ( 
    REAL  
    * ) such that 
    
        
    
    A11: for x be 
    Element of 
    NAT holds 
    P[x, (F
    . x)] from 
    FUNCT_2:sch 3(
    A5);
    
        defpred
    
    P1[
    Element of 
    NAT , 
    set] means ex q be
    middle_volume of f, (T 
    . $1) st q 
    = $2 & for i be 
    Nat st i 
    in ( 
    dom (T 
    . $1)) holds ex z be 
    Point of X st ((F 
    . $1) 
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . $1),i)))) & z 
    = ((f 
    | ( 
    divset ((T 
    . $1),i))) 
    . ((F 
    . $1) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . $1),i))) 
    * z); 
    
        
    
        
    
    A12: for k be 
    Element of 
    NAT holds ex y be 
    Element of (the 
    carrier of X 
    * ) st 
    P1[k, y]
    
        proof
    
          let k be
    Element of 
    NAT ; 
    
          defpred
    
    P11[
    Nat, 
    set] means ex c be
    Point of X st ((F 
    . k) 
    . $1) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . k),$1)))) & c 
    = ((f 
    | ( 
    divset ((T 
    . k),$1))) 
    . ((F 
    . k) 
    . $1)) & $2 
    = (( 
    vol ( 
    divset ((T 
    . k),$1))) 
    * c); 
    
          
    
          
    
    A13: ( 
    Seg ( 
    len (T 
    . k))) 
    = ( 
    dom (T 
    . k)) by 
    FINSEQ_1:def 3;
    
          
    
          
    
    A14: for i be 
    Nat st i 
    in ( 
    Seg ( 
    len (T 
    . k))) holds ex x be 
    Element of the 
    carrier of X st 
    P11[i, x]
    
          proof
    
            let i be
    Nat;
    
            assume i
    in ( 
    Seg ( 
    len (T 
    . k))); 
    
            then
    
            
    
    A15: i 
    in ( 
    dom (T 
    . k)) by 
    FINSEQ_1:def 3;
    
            consider p be
    FinSequence of 
    REAL such that 
    
            
    
    A16: p 
    = (F 
    . k) & ( 
    len p) 
    = ( 
    len (T 
    . k)) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . k)) holds (p 
    . i) 
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . k),i)))) & ex z be 
    Point of X st z 
    = ((h 
    | ( 
    divset ((T 
    . k),i))) 
    . (p 
    . i)) & ((S 
    . k) 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * z) by 
    A11;
    
            (p
    . i) 
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . k),i)))) by 
    A15,
    A16;
    
            then
    
            
    
    A17: (p 
    . i) 
    in ( 
    dom h) & (p 
    . i) 
    in ( 
    divset ((T 
    . k),i)) by 
    RELAT_1: 57;
    
            then (p
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . k),i)))) by 
    A2,
    RELAT_1: 57;
    
            then ((f
    | ( 
    divset ((T 
    . k),i))) 
    . (p 
    . i)) 
    in ( 
    rng (f 
    | ( 
    divset ((T 
    . k),i)))) by 
    FUNCT_1: 3;
    
            then
    
            reconsider x = ((f
    | ( 
    divset ((T 
    . k),i))) 
    . (p 
    . i)) as 
    Element of the 
    carrier of X; 
    
            
    
            
    
    A18: ((F 
    . k) 
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . k),i)))) by 
    A16,
    A17,
    A2,
    RELAT_1: 57;
    
            ((
    vol ( 
    divset ((T 
    . k),i))) 
    * x) is 
    Element of the 
    carrier of X; 
    
            hence thesis by
    A16,
    A18;
    
          end;
    
          consider q be
    FinSequence of the 
    carrier of X such that 
    
          
    
    A19: ( 
    dom q) 
    = ( 
    Seg ( 
    len (T 
    . k))) & for i be 
    Nat st i 
    in ( 
    Seg ( 
    len (T 
    . k))) holds 
    P11[i, (q
    . i)] from 
    FINSEQ_1:sch 5(
    A14);
    
          
    
          
    
    A20: ( 
    len q) 
    = ( 
    len (T 
    . k)) by 
    A19,
    FINSEQ_1:def 3;
    
          now
    
            let i be
    Nat;
    
            assume i
    in ( 
    dom (T 
    . k)); 
    
            then i
    in ( 
    Seg ( 
    len (T 
    . k))) by 
    FINSEQ_1:def 3;
    
            then
    
            consider c be
    Point of X such that 
    
            
    
    A21: ((F 
    . k) 
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . k),i)))) & c 
    = ((f 
    | ( 
    divset ((T 
    . k),i))) 
    . ((F 
    . k) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * c) by 
    A19;
    
            thus ex c be
    Point of X st c 
    in ( 
    rng (f 
    | ( 
    divset ((T 
    . k),i)))) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * c) by 
    A21,
    FUNCT_1: 3;
    
          end;
    
          then
    
          reconsider q as
    middle_volume of f, (T 
    . k) by 
    A20,
    Def1;
    
          q is
    Element of (the 
    carrier of X 
    * ) by 
    FINSEQ_1:def 11;
    
          hence thesis by
    A13,
    A19;
    
        end;
    
        consider Sf be
    sequence of (the 
    carrier of X 
    * ) such that 
    
        
    
    A22: for x be 
    Element of 
    NAT holds 
    P1[x, (Sf
    . x)] from 
    FUNCT_2:sch 3(
    A12);
    
        now
    
          let k be
    Element of 
    NAT ; 
    
          ex q be
    middle_volume of f, (T 
    . k) st q 
    = (Sf 
    . k) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . k)) holds ex z be 
    Point of X st ((F 
    . k) 
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . k),i)))) & z 
    = ((f 
    | ( 
    divset ((T 
    . k),i))) 
    . ((F 
    . k) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * z) by 
    A22;
    
          hence (Sf
    . k) is 
    middle_volume of f, (T 
    . k); 
    
        end;
    
        then
    
        reconsider Sf as
    middle_volume_Sequence of f, T by 
    Def3;
    
        
    
        
    
    A23: ( 
    middle_sum (f,Sf)) is 
    convergent by 
    A1,
    A4;
    
        
    
        
    
    A24: (r 
    * ( 
    middle_sum (f,Sf))) 
    = ( 
    middle_sum (h,S)) 
    
        proof
    
          now
    
            let n be
    Nat;
    
            
    
            
    
    A25: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
            consider p be
    FinSequence of 
    REAL such that 
    
            
    
    A26: p 
    = (F 
    . n) & ( 
    len p) 
    = ( 
    len (T 
    . n)) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . n)) holds (p 
    . i) 
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . n),i)))) & ex z be 
    Point of X st z 
    = ((h 
    | ( 
    divset ((T 
    . n),i))) 
    . (p 
    . i)) & ((S 
    . n) 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * z) by 
    A11,
    A25;
    
            consider q be
    middle_volume of f, (T 
    . n) such that 
    
            
    
    A27: q 
    = (Sf 
    . n) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . n)) holds ex z be 
    Point of X st ((F 
    . n) 
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . n),i)))) & z 
    = ((f 
    | ( 
    divset ((T 
    . n),i))) 
    . ((F 
    . n) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * z) by 
    A22,
    A25;
    
            (
    len (Sf 
    . n)) 
    = ( 
    len (T 
    . n)) & ( 
    len (S 
    . n)) 
    = ( 
    len (T 
    . n)) by 
    Def1;
    
            then
    
            
    
    A28: ( 
    dom (Sf 
    . n)) 
    = ( 
    dom (T 
    . n)) & ( 
    dom (S 
    . n)) 
    = ( 
    dom (T 
    . n)) by 
    FINSEQ_3: 29;
    
            now
    
              let x be
    Element of 
    NAT ; 
    
              assume
    
              
    
    A29: x 
    in ( 
    dom (S 
    . n)); 
    
              reconsider i = x as
    Nat;
    
              consider t be
    Point of X such that 
    
              
    
    A30: t 
    = ((h 
    | ( 
    divset ((T 
    . n),i))) 
    . ((F 
    . n) 
    . i)) & ((S 
    . n) 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * t) by 
    A29,
    A28,
    A26;
    
              consider z be
    Point of X such that 
    
              
    
    A31: ((F 
    . n) 
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . n),i)))) & z 
    = ((f 
    | ( 
    divset ((T 
    . n),i))) 
    . ((F 
    . n) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * z) by 
    A27,
    A29,
    A28;
    
              
    
              
    
    A32: ((F 
    . n) 
    . i) 
    in ( 
    divset ((T 
    . n),i)) by 
    A31,
    RELAT_1: 57;
    
              ((F
    . n) 
    . i) 
    in A by 
    A31;
    
              then
    
              
    
    A33: ((F 
    . n) 
    . i) 
    in ( 
    dom h) by 
    FUNCT_2:def 1;
    
              
    
              
    
    A34: ((F 
    . n) 
    . i) 
    in ( 
    dom f) by 
    A31,
    RELAT_1: 57;
    
              
    
              
    
    A35: (f 
    /. ((F 
    . n) 
    . i)) 
    = (f 
    . ((F 
    . n) 
    . i)) by 
    A34,
    PARTFUN1:def 6
    
              .= z by
    A31,
    A32,
    FUNCT_1: 49;
    
              
    
              
    
    A36: t 
    = ((h 
    | ( 
    divset ((T 
    . n),i))) 
    . ((F 
    . n) 
    . i)) by 
    A30
    
              .= (h
    . ((F 
    . n) 
    . i)) by 
    A32,
    FUNCT_1: 49
    
              .= (h
    /. ((F 
    . n) 
    . i)) by 
    A33,
    PARTFUN1:def 6
    
              .= (r
    * (f 
    /. ((F 
    . n) 
    . i))) by 
    A33,
    A1,
    VFUNCT_1:def 4
    
              .= (r
    * z) by 
    A35;
    
              
    
              
    
    A37: (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * z) 
    = ((Sf 
    . n) 
    . x) by 
    A31,
    A27
    
              .= ((Sf
    . n) 
    /. x) by 
    A29,
    A28,
    PARTFUN1:def 6;
    
              
    
              thus ((S
    . n) 
    /. x) 
    = ((S 
    . n) 
    . x) by 
    A29,
    PARTFUN1:def 6
    
              .= ((
    vol ( 
    divset ((T 
    . n),i))) 
    * t) by 
    A30
    
              .= ((
    vol ( 
    divset ((T 
    . n),i))) 
    * (r 
    * z)) by 
    A36
    
              .= (((
    vol ( 
    divset ((T 
    . n),i))) 
    * r) 
    * z) by 
    RLVECT_1:def 7
    
              .= (r
    * (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * z)) by 
    RLVECT_1:def 7
    
              .= (r
    * ((Sf 
    . n) 
    /. x)) by 
    A37;
    
            end;
    
            then
    
            
    
    A38: (r 
    (#) (Sf 
    . n)) 
    = (S 
    . n) by 
    A28,
    VFUNCT_1:def 4;
    
            
    
            thus (r
    * (( 
    middle_sum (f,Sf)) 
    . n)) 
    = (r 
    * ( 
    middle_sum (f,(Sf 
    . n)))) by 
    Def4
    
            .= (r
    * ( 
    Sum (Sf 
    . n))) 
    
            .= (
    Sum (S 
    . n)) by 
    A38,
    Th3
    
            .= (
    middle_sum (h,(S 
    . n))) 
    
            .= ((
    middle_sum (h,S)) 
    . n) by 
    Def4;
    
          end;
    
          hence thesis by
    NORMSP_1:def 5;
    
        end;
    
        
    
        
    
    A39: ( 
    lim (r 
    * ( 
    middle_sum (f,Sf)))) 
    = (r 
    * ( 
    lim ( 
    middle_sum (f,Sf)))) by 
    A23,
    NORMSP_1: 28
    
        .= (r
    * ( 
    integral f)) by 
    Def6,
    A1,
    A4;
    
        thus (
    middle_sum (h,S)) is 
    convergent by 
    A23,
    A24,
    NORMSP_1: 22;
    
        thus (
    lim ( 
    middle_sum (h,S))) 
    = (r 
    * ( 
    integral f)) by 
    A24,
    A39;
    
      end;
    
      hence h is
    integrable;
    
      hence (
    integral h) 
    = (r 
    * ( 
    integral f)) by 
    Def6,
    A3;
    
    end;
    
    reconsider jj = 1 as
    Real;
    
    theorem :: 
    
    INTEGR18:5
    
    
    
    
    
    Th5: for X be 
    RealNormSpace, A be non 
    empty
    closed_interval  
    Subset of 
    REAL , f,h be 
    Function of A, the 
    carrier of X st h 
    = ( 
    - f) & f is 
    integrable holds h is 
    integrable & ( 
    integral h) 
    = ( 
    - ( 
    integral f)) 
    
    proof
    
      let X be
    RealNormSpace, A be non 
    empty
    closed_interval  
    Subset of 
    REAL , f,h be 
    Function of A, the 
    carrier of X; 
    
      assume
    
      
    
    A1: h 
    = ( 
    - f) & f is 
    integrable;
    
      then
    
      
    
    A2: h 
    = (( 
    - jj) 
    (#) f) by 
    VFUNCT_1: 23;
    
      hence h is
    integrable by 
    A1,
    Th4;
    
      (
    integral h) 
    = (( 
    - jj) 
    * ( 
    integral f)) by 
    A1,
    A2,
    Th4;
    
      hence (
    integral h) 
    = ( 
    - ( 
    integral f)) by 
    RLVECT_1: 16;
    
    end;
    
    theorem :: 
    
    INTEGR18:6
    
    
    
    
    
    Th6: for X be 
    RealNormSpace, A be non 
    empty
    closed_interval  
    Subset of 
    REAL , f,g,h be 
    Function of A, the 
    carrier of X st h 
    = (f 
    + g) & f is 
    integrable & g is 
    integrable holds h is 
    integrable & ( 
    integral h) 
    = (( 
    integral f) 
    + ( 
    integral g)) 
    
    proof
    
      let X be
    RealNormSpace, A be non 
    empty
    closed_interval  
    Subset of 
    REAL , f,g,h be 
    Function of A, the 
    carrier of X; 
    
      assume
    
      
    
    A1: h 
    = (f 
    + g) & f is 
    integrable & g is 
    integrable;
    
      
    
      
    
    A2: ( 
    dom h) 
    = A & ( 
    dom f) 
    = A & ( 
    dom g) 
    = A by 
    FUNCT_2:def 1;
    
      
    
    A3: 
    
      now
    
        let T be
    DivSequence of A, S be 
    middle_volume_Sequence of h, T; 
    
        assume
    
        
    
    A4: ( 
    delta T) is 
    convergent & ( 
    lim ( 
    delta T)) 
    =  
    0 ; 
    
        defpred
    
    P[
    Element of 
    NAT , 
    set] means ex p be
    FinSequence of 
    REAL st p 
    = $2 & ( 
    len p) 
    = ( 
    len (T 
    . $1)) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . $1)) holds (p 
    . i) 
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . $1),i)))) & ex z be 
    Point of X st z 
    = ((h 
    | ( 
    divset ((T 
    . $1),i))) 
    . (p 
    . i)) & ((S 
    . $1) 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . $1),i))) 
    * z); 
    
        
    
        
    
    A5: for k be 
    Element of 
    NAT holds ex p be 
    Element of ( 
    REAL  
    * ) st 
    P[k, p]
    
        proof
    
          let k be
    Element of 
    NAT ; 
    
          defpred
    
    P1[
    Nat, 
    set] means $2
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . k),$1)))) & ex c be 
    Point of X st c 
    = ((h 
    | ( 
    divset ((T 
    . k),$1))) 
    . $2) & ((S 
    . k) 
    . $1) 
    = (( 
    vol ( 
    divset ((T 
    . k),$1))) 
    * c); 
    
          
    
          
    
    A6: ( 
    Seg ( 
    len (T 
    . k))) 
    = ( 
    dom (T 
    . k)) by 
    FINSEQ_1:def 3;
    
          
    
          
    
    A7: for i be 
    Nat st i 
    in ( 
    Seg ( 
    len (T 
    . k))) holds ex x be 
    Element of 
    REAL st 
    P1[i, x]
    
          proof
    
            let i be
    Nat;
    
            assume i
    in ( 
    Seg ( 
    len (T 
    . k))); 
    
            then i
    in ( 
    dom (T 
    . k)) by 
    FINSEQ_1:def 3;
    
            then
    
            consider c be
    Point of X such that 
    
            
    
    A8: c 
    in ( 
    rng (h 
    | ( 
    divset ((T 
    . k),i)))) & ((S 
    . k) 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * c) by 
    Def1;
    
            consider x be
    object such that 
    
            
    
    A9: x 
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . k),i)))) & c 
    = ((h 
    | ( 
    divset ((T 
    . k),i))) 
    . x) by 
    A8,
    FUNCT_1:def 3;
    
            x
    in ( 
    dom h) & x 
    in ( 
    divset ((T 
    . k),i)) by 
    A9,
    RELAT_1: 57;
    
            then
    
            reconsider x as
    Element of 
    REAL ; 
    
            take x;
    
            thus thesis by
    A8,
    A9;
    
          end;
    
          consider p be
    FinSequence of 
    REAL such that 
    
          
    
    A10: ( 
    dom p) 
    = ( 
    Seg ( 
    len (T 
    . k))) & for i be 
    Nat st i 
    in ( 
    Seg ( 
    len (T 
    . k))) holds 
    P1[i, (p
    . i)] from 
    FINSEQ_1:sch 5(
    A7);
    
          take p;
    
          (
    len p) 
    = ( 
    len (T 
    . k)) by 
    A10,
    FINSEQ_1:def 3;
    
          hence thesis by
    A10,
    A6,
    FINSEQ_1:def 11;
    
        end;
    
        consider F be
    sequence of ( 
    REAL  
    * ) such that 
    
        
    
    A11: for x be 
    Element of 
    NAT holds 
    P[x, (F
    . x)] from 
    FUNCT_2:sch 3(
    A5);
    
        defpred
    
    P1[
    Element of 
    NAT , 
    set] means ex q be
    middle_volume of f, (T 
    . $1) st q 
    = $2 & for i be 
    Nat st i 
    in ( 
    dom (T 
    . $1)) holds ex z be 
    Point of X st ((F 
    . $1) 
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . $1),i)))) & z 
    = ((f 
    | ( 
    divset ((T 
    . $1),i))) 
    . ((F 
    . $1) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . $1),i))) 
    * z); 
    
        
    
        
    
    A12: for k be 
    Element of 
    NAT holds ex y be 
    Element of (the 
    carrier of X 
    * ) st 
    P1[k, y]
    
        proof
    
          let k be
    Element of 
    NAT ; 
    
          defpred
    
    P11[
    Nat, 
    set] means ex c be
    Point of X st ((F 
    . k) 
    . $1) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . k),$1)))) & c 
    = ((f 
    | ( 
    divset ((T 
    . k),$1))) 
    . ((F 
    . k) 
    . $1)) & $2 
    = (( 
    vol ( 
    divset ((T 
    . k),$1))) 
    * c); 
    
          
    
          
    
    A13: ( 
    Seg ( 
    len (T 
    . k))) 
    = ( 
    dom (T 
    . k)) by 
    FINSEQ_1:def 3;
    
          
    
          
    
    A14: for i be 
    Nat st i 
    in ( 
    Seg ( 
    len (T 
    . k))) holds ex x be 
    Element of the 
    carrier of X st 
    P11[i, x]
    
          proof
    
            let i be
    Nat;
    
            assume i
    in ( 
    Seg ( 
    len (T 
    . k))); 
    
            then
    
            
    
    A15: i 
    in ( 
    dom (T 
    . k)) by 
    FINSEQ_1:def 3;
    
            consider p be
    FinSequence of 
    REAL such that 
    
            
    
    A16: p 
    = (F 
    . k) & ( 
    len p) 
    = ( 
    len (T 
    . k)) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . k)) holds (p 
    . i) 
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . k),i)))) & ex z be 
    Point of X st z 
    = ((h 
    | ( 
    divset ((T 
    . k),i))) 
    . (p 
    . i)) & ((S 
    . k) 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * z) by 
    A11;
    
            (p
    . i) 
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . k),i)))) by 
    A15,
    A16;
    
            then
    
            
    
    A17: (p 
    . i) 
    in ( 
    dom h) & (p 
    . i) 
    in ( 
    divset ((T 
    . k),i)) by 
    RELAT_1: 57;
    
            then (p
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . k),i)))) by 
    A2,
    RELAT_1: 57;
    
            then ((f
    | ( 
    divset ((T 
    . k),i))) 
    . (p 
    . i)) 
    in ( 
    rng (f 
    | ( 
    divset ((T 
    . k),i)))) by 
    FUNCT_1: 3;
    
            then
    
            reconsider x = ((f
    | ( 
    divset ((T 
    . k),i))) 
    . (p 
    . i)) as 
    Element of the 
    carrier of X; 
    
            
    
            
    
    A18: ((F 
    . k) 
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . k),i)))) by 
    A16,
    A17,
    A2,
    RELAT_1: 57;
    
            ((
    vol ( 
    divset ((T 
    . k),i))) 
    * x) is 
    Element of the 
    carrier of X; 
    
            hence thesis by
    A16,
    A18;
    
          end;
    
          consider q be
    FinSequence of the 
    carrier of X such that 
    
          
    
    A19: ( 
    dom q) 
    = ( 
    Seg ( 
    len (T 
    . k))) & for i be 
    Nat st i 
    in ( 
    Seg ( 
    len (T 
    . k))) holds 
    P11[i, (q
    . i)] from 
    FINSEQ_1:sch 5(
    A14);
    
          
    
          
    
    A20: ( 
    len q) 
    = ( 
    len (T 
    . k)) by 
    A19,
    FINSEQ_1:def 3;
    
          now
    
            let i be
    Nat;
    
            assume i
    in ( 
    dom (T 
    . k)); 
    
            then i
    in ( 
    Seg ( 
    len (T 
    . k))) by 
    FINSEQ_1:def 3;
    
            then
    
            consider c be
    Point of X such that 
    
            
    
    A21: ((F 
    . k) 
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . k),i)))) & c 
    = ((f 
    | ( 
    divset ((T 
    . k),i))) 
    . ((F 
    . k) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * c) by 
    A19;
    
            thus ex c be
    Point of X st c 
    in ( 
    rng (f 
    | ( 
    divset ((T 
    . k),i)))) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * c) by 
    A21,
    FUNCT_1: 3;
    
          end;
    
          then
    
          reconsider q as
    middle_volume of f, (T 
    . k) by 
    A20,
    Def1;
    
          q is
    Element of (the 
    carrier of X 
    * ) by 
    FINSEQ_1:def 11;
    
          hence thesis by
    A13,
    A19;
    
        end;
    
        consider Sf be
    sequence of (the 
    carrier of X 
    * ) such that 
    
        
    
    A22: for x be 
    Element of 
    NAT holds 
    P1[x, (Sf
    . x)] from 
    FUNCT_2:sch 3(
    A12);
    
        now
    
          let k be
    Element of 
    NAT ; 
    
          ex q be
    middle_volume of f, (T 
    . k) st q 
    = (Sf 
    . k) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . k)) holds ex z be 
    Point of X st ((F 
    . k) 
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . k),i)))) & z 
    = ((f 
    | ( 
    divset ((T 
    . k),i))) 
    . ((F 
    . k) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * z) by 
    A22;
    
          hence (Sf
    . k) is 
    middle_volume of f, (T 
    . k); 
    
        end;
    
        then
    
        reconsider Sf as
    middle_volume_Sequence of f, T by 
    Def3;
    
        defpred
    
    Q1[
    Element of 
    NAT , 
    set] means ex q be
    middle_volume of g, (T 
    . $1) st q 
    = $2 & for i be 
    Nat st i 
    in ( 
    dom (T 
    . $1)) holds ex z be 
    Point of X st ((F 
    . $1) 
    . i) 
    in ( 
    dom (g 
    | ( 
    divset ((T 
    . $1),i)))) & z 
    = ((g 
    | ( 
    divset ((T 
    . $1),i))) 
    . ((F 
    . $1) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . $1),i))) 
    * z); 
    
        
    
        
    
    A23: for k be 
    Element of 
    NAT holds ex y be 
    Element of (the 
    carrier of X 
    * ) st 
    Q1[k, y]
    
        proof
    
          let k be
    Element of 
    NAT ; 
    
          defpred
    
    Q11[
    Nat, 
    set] means ex c be
    Point of X st ((F 
    . k) 
    . $1) 
    in ( 
    dom (g 
    | ( 
    divset ((T 
    . k),$1)))) & c 
    = ((g 
    | ( 
    divset ((T 
    . k),$1))) 
    . ((F 
    . k) 
    . $1)) & $2 
    = (( 
    vol ( 
    divset ((T 
    . k),$1))) 
    * c); 
    
          
    
          
    
    A24: ( 
    Seg ( 
    len (T 
    . k))) 
    = ( 
    dom (T 
    . k)) by 
    FINSEQ_1:def 3;
    
          
    
          
    
    A25: for i be 
    Nat st i 
    in ( 
    Seg ( 
    len (T 
    . k))) holds ex x be 
    Element of the 
    carrier of X st 
    Q11[i, x]
    
          proof
    
            let i be
    Nat;
    
            assume i
    in ( 
    Seg ( 
    len (T 
    . k))); 
    
            then
    
            
    
    A26: i 
    in ( 
    dom (T 
    . k)) by 
    FINSEQ_1:def 3;
    
            consider p be
    FinSequence of 
    REAL such that 
    
            
    
    A27: p 
    = (F 
    . k) & ( 
    len p) 
    = ( 
    len (T 
    . k)) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . k)) holds (p 
    . i) 
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . k),i)))) & ex z be 
    Point of X st z 
    = ((h 
    | ( 
    divset ((T 
    . k),i))) 
    . (p 
    . i)) & ((S 
    . k) 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * z) by 
    A11;
    
            (p
    . i) 
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . k),i)))) by 
    A26,
    A27;
    
            then
    
            
    
    A28: (p 
    . i) 
    in ( 
    dom h) & (p 
    . i) 
    in ( 
    divset ((T 
    . k),i)) by 
    RELAT_1: 57;
    
            then (p
    . i) 
    in ( 
    dom (g 
    | ( 
    divset ((T 
    . k),i)))) by 
    A2,
    RELAT_1: 57;
    
            then ((g
    | ( 
    divset ((T 
    . k),i))) 
    . (p 
    . i)) 
    in ( 
    rng (g 
    | ( 
    divset ((T 
    . k),i)))) by 
    FUNCT_1: 3;
    
            then
    
            reconsider x = ((g
    | ( 
    divset ((T 
    . k),i))) 
    . (p 
    . i)) as 
    Element of the 
    carrier of X; 
    
            
    
            
    
    A29: ((F 
    . k) 
    . i) 
    in ( 
    dom (g 
    | ( 
    divset ((T 
    . k),i)))) by 
    A27,
    A28,
    A2,
    RELAT_1: 57;
    
            ((
    vol ( 
    divset ((T 
    . k),i))) 
    * x) is 
    Element of the 
    carrier of X; 
    
            hence thesis by
    A27,
    A29;
    
          end;
    
          consider q be
    FinSequence of the 
    carrier of X such that 
    
          
    
    A30: ( 
    dom q) 
    = ( 
    Seg ( 
    len (T 
    . k))) & for i be 
    Nat st i 
    in ( 
    Seg ( 
    len (T 
    . k))) holds 
    Q11[i, (q
    . i)] from 
    FINSEQ_1:sch 5(
    A25);
    
          
    
          
    
    A31: ( 
    len q) 
    = ( 
    len (T 
    . k)) by 
    A30,
    FINSEQ_1:def 3;
    
          now
    
            let i be
    Nat;
    
            assume i
    in ( 
    dom (T 
    . k)); 
    
            then i
    in ( 
    Seg ( 
    len (T 
    . k))) by 
    FINSEQ_1:def 3;
    
            then
    
            consider c be
    Point of X such that 
    
            
    
    A32: ((F 
    . k) 
    . i) 
    in ( 
    dom (g 
    | ( 
    divset ((T 
    . k),i)))) & c 
    = ((g 
    | ( 
    divset ((T 
    . k),i))) 
    . ((F 
    . k) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * c) by 
    A30;
    
            thus ex c be
    Point of X st c 
    in ( 
    rng (g 
    | ( 
    divset ((T 
    . k),i)))) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * c) by 
    A32,
    FUNCT_1: 3;
    
          end;
    
          then
    
          reconsider q as
    middle_volume of g, (T 
    . k) by 
    A31,
    Def1;
    
          q is
    Element of (the 
    carrier of X 
    * ) by 
    FINSEQ_1:def 11;
    
          hence thesis by
    A24,
    A30;
    
        end;
    
        consider Sg be
    sequence of (the 
    carrier of X 
    * ) such that 
    
        
    
    A33: for x be 
    Element of 
    NAT holds 
    Q1[x, (Sg
    . x)] from 
    FUNCT_2:sch 3(
    A23);
    
        now
    
          let k be
    Element of 
    NAT ; 
    
          ex q be
    middle_volume of g, (T 
    . k) st q 
    = (Sg 
    . k) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . k)) holds ex z be 
    Point of X st ((F 
    . k) 
    . i) 
    in ( 
    dom (g 
    | ( 
    divset ((T 
    . k),i)))) & z 
    = ((g 
    | ( 
    divset ((T 
    . k),i))) 
    . ((F 
    . k) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . k),i))) 
    * z) by 
    A33;
    
          hence (Sg
    . k) is 
    middle_volume of g, (T 
    . k); 
    
        end;
    
        then
    
        reconsider Sg as
    middle_volume_Sequence of g, T by 
    Def3;
    
        
    
        
    
    A34: ( 
    middle_sum (f,Sf)) is 
    convergent & ( 
    lim ( 
    middle_sum (f,Sf))) 
    = ( 
    integral f) by 
    Def6,
    A1,
    A4;
    
        
    
        
    
    A35: ( 
    middle_sum (g,Sg)) is 
    convergent & ( 
    lim ( 
    middle_sum (g,Sg))) 
    = ( 
    integral g) by 
    Def6,
    A1,
    A4;
    
        
    
        
    
    A36: (( 
    middle_sum (f,Sf)) 
    + ( 
    middle_sum (g,Sg))) 
    = ( 
    middle_sum (h,S)) 
    
        proof
    
          now
    
            let n be
    Nat;
    
            
    
            
    
    A37: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
            consider p be
    FinSequence of 
    REAL such that 
    
            
    
    A38: p 
    = (F 
    . n) & ( 
    len p) 
    = ( 
    len (T 
    . n)) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . n)) holds (p 
    . i) 
    in ( 
    dom (h 
    | ( 
    divset ((T 
    . n),i)))) & ex z be 
    Point of X st z 
    = ((h 
    | ( 
    divset ((T 
    . n),i))) 
    . (p 
    . i)) & ((S 
    . n) 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * z) by 
    A11,
    A37;
    
            consider q be
    middle_volume of f, (T 
    . n) such that 
    
            
    
    A39: q 
    = (Sf 
    . n) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . n)) holds ex z be 
    Point of X st ((F 
    . n) 
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . n),i)))) & z 
    = ((f 
    | ( 
    divset ((T 
    . n),i))) 
    . ((F 
    . n) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * z) by 
    A22,
    A37;
    
            consider r be
    middle_volume of g, (T 
    . n) such that 
    
            
    
    A40: r 
    = (Sg 
    . n) & for i be 
    Nat st i 
    in ( 
    dom (T 
    . n)) holds ex z be 
    Point of X st ((F 
    . n) 
    . i) 
    in ( 
    dom (g 
    | ( 
    divset ((T 
    . n),i)))) & z 
    = ((g 
    | ( 
    divset ((T 
    . n),i))) 
    . ((F 
    . n) 
    . i)) & (r 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * z) by 
    A33,
    A37;
    
            
    
            
    
    A41: ( 
    len (Sf 
    . n)) 
    = ( 
    len (T 
    . n)) & ( 
    len (Sg 
    . n)) 
    = ( 
    len (T 
    . n)) & ( 
    len (S 
    . n)) 
    = ( 
    len (T 
    . n)) by 
    Def1;
    
            
    
            
    
    A42: ( 
    dom (Sf 
    . n)) 
    = ( 
    dom (T 
    . n)) & ( 
    dom (Sg 
    . n)) 
    = ( 
    dom (T 
    . n)) & ( 
    dom (S 
    . n)) 
    = ( 
    dom (T 
    . n)) by 
    A41,
    FINSEQ_3: 29;
    
            now
    
              let i be
    Nat;
    
              assume 1
    <= i & i 
    <= ( 
    len (S 
    . n)); 
    
              then i
    in ( 
    Seg ( 
    len (S 
    . n))) by 
    FINSEQ_1: 1;
    
              then
    
              
    
    A43: i 
    in ( 
    dom (S 
    . n)) by 
    FINSEQ_1:def 3;
    
              consider t be
    Point of X such that 
    
              
    
    A44: t 
    = ((h 
    | ( 
    divset ((T 
    . n),i))) 
    . ((F 
    . n) 
    . i)) & ((S 
    . n) 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * t) by 
    A43,
    A42,
    A38;
    
              consider z be
    Point of X such that 
    
              
    
    A45: ((F 
    . n) 
    . i) 
    in ( 
    dom (f 
    | ( 
    divset ((T 
    . n),i)))) & z 
    = ((f 
    | ( 
    divset ((T 
    . n),i))) 
    . ((F 
    . n) 
    . i)) & (q 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * z) by 
    A39,
    A43,
    A42;
    
              consider w be
    Point of X such that 
    
              
    
    A46: ((F 
    . n) 
    . i) 
    in ( 
    dom (g 
    | ( 
    divset ((T 
    . n),i)))) & w 
    = ((g 
    | ( 
    divset ((T 
    . n),i))) 
    . ((F 
    . n) 
    . i)) & (r 
    . i) 
    = (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * w) by 
    A40,
    A43,
    A42;
    
              
    
              
    
    A47: ((F 
    . n) 
    . i) 
    in ( 
    divset ((T 
    . n),i)) by 
    A46,
    RELAT_1: 57;
    
              
    
              
    
    A48: ((F 
    . n) 
    . i) 
    in ( 
    dom g) by 
    A46,
    RELAT_1: 57;
    
              
    
              
    
    A49: ((F 
    . n) 
    . i) 
    in A by 
    A46;
    
              then
    
              
    
    A50: ((F 
    . n) 
    . i) 
    in ( 
    dom h) by 
    FUNCT_2:def 1;
    
              
    
              
    
    A51: ((F 
    . n) 
    . i) 
    in ( 
    dom f) by 
    A49,
    FUNCT_2:def 1;
    
              
    
              
    
    A52: (f 
    /. ((F 
    . n) 
    . i)) 
    = (f 
    . ((F 
    . n) 
    . i)) by 
    A51,
    PARTFUN1:def 6
    
              .= z by
    A45,
    A47,
    FUNCT_1: 49;
    
              
    
              
    
    A53: (g 
    /. ((F 
    . n) 
    . i)) 
    = (g 
    . ((F 
    . n) 
    . i)) by 
    A48,
    PARTFUN1:def 6
    
              .= w by
    A46,
    A47,
    FUNCT_1: 49;
    
              
    
              
    
    A54: t 
    = ((h 
    | ( 
    divset ((T 
    . n),i))) 
    . ((F 
    . n) 
    . i)) by 
    A44
    
              .= (h
    . ((F 
    . n) 
    . i)) by 
    A47,
    FUNCT_1: 49
    
              .= (h
    /. ((F 
    . n) 
    . i)) by 
    A50,
    PARTFUN1:def 6
    
              .= ((f
    /. ((F 
    . n) 
    . i)) 
    + (g 
    /. ((F 
    . n) 
    . i))) by 
    A50,
    A1,
    VFUNCT_1:def 1
    
              .= (z
    + w) by 
    A52,
    A53;
    
              
    
              
    
    A55: (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * z) 
    = ((Sf 
    . n) 
    . i) by 
    A45,
    A39
    
              .= ((Sf
    . n) 
    /. i) by 
    A43,
    A42,
    PARTFUN1:def 6;
    
              
    
              
    
    A56: (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * w) 
    = ((Sg 
    . n) 
    . i) by 
    A46,
    A40
    
              .= ((Sg
    . n) 
    /. i) by 
    A43,
    A42,
    PARTFUN1:def 6;
    
              
    
              thus ((S
    . n) 
    /. i) 
    = ((S 
    . n) 
    . i) by 
    A43,
    PARTFUN1:def 6
    
              .= ((
    vol ( 
    divset ((T 
    . n),i))) 
    * t) by 
    A44
    
              .= (((
    vol ( 
    divset ((T 
    . n),i))) 
    * z) 
    + (( 
    vol ( 
    divset ((T 
    . n),i))) 
    * w)) by 
    A54,
    RLVECT_1:def 5
    
              .= (((Sf
    . n) 
    /. i) 
    + ((Sg 
    . n) 
    /. i)) by 
    A55,
    A56;
    
            end;
    
            then
    
            
    
    A57: ((Sf 
    . n) 
    + (Sg 
    . n)) 
    = (S 
    . n) by 
    A42,
    BINOM:def 1;
    
            
    
            thus (((
    middle_sum (f,Sf)) 
    . n) 
    + (( 
    middle_sum (g,Sg)) 
    . n)) 
    = (( 
    middle_sum (f,(Sf 
    . n))) 
    + (( 
    middle_sum (g,Sg)) 
    . n)) by 
    Def4
    
            .= ((
    middle_sum (f,(Sf 
    . n))) 
    + ( 
    middle_sum (g,(Sg 
    . n)))) by 
    Def4
    
            .= ((
    Sum (Sf 
    . n)) 
    + ( 
    middle_sum (g,(Sg 
    . n)))) 
    
            .= ((
    Sum (Sf 
    . n)) 
    + ( 
    Sum (Sg 
    . n))) 
    
            .= (
    Sum (S 
    . n)) by 
    A57,
    A41,
    Th1
    
            .= (
    middle_sum (h,(S 
    . n))) 
    
            .= ((
    middle_sum (h,S)) 
    . n) by 
    Def4;
    
          end;
    
          hence thesis by
    NORMSP_1:def 2;
    
        end;
    
        hence (
    middle_sum (h,S)) is 
    convergent by 
    A34,
    A35,
    NORMSP_1: 19;
    
        thus (
    lim ( 
    middle_sum (h,S))) 
    = (( 
    integral f) 
    + ( 
    integral g)) by 
    A34,
    A35,
    A36,
    NORMSP_1: 25;
    
      end;
    
      hence h is
    integrable;
    
      hence (
    integral h) 
    = (( 
    integral f) 
    + ( 
    integral g)) by 
    Def6,
    A3;
    
    end;
    
    theorem :: 
    
    INTEGR18:7
    
    for X be
    RealNormSpace, A be non 
    empty
    closed_interval  
    Subset of 
    REAL , f,g,h be 
    Function of A, the 
    carrier of X st h 
    = (f 
    - g) & f is 
    integrable & g is 
    integrable holds h is 
    integrable & ( 
    integral h) 
    = (( 
    integral f) 
    - ( 
    integral g)) 
    
    proof
    
      let X be
    RealNormSpace, A be non 
    empty
    closed_interval  
    Subset of 
    REAL , f,g,h be 
    Function of A, the 
    carrier of X; 
    
      assume
    
      
    
    A1: h 
    = (f 
    - g) & f is 
    integrable & g is 
    integrable;
    
      then
    
      
    
    A2: h 
    = (f 
    + ( 
    - g)) by 
    VFUNCT_1: 25;
    
      (
    dom ( 
    - g)) 
    = ( 
    dom g) by 
    VFUNCT_1:def 5
    
      .= A by
    FUNCT_2:def 1;
    
      then
    
      reconsider gg = (
    - g) as 
    Function of A, the 
    carrier of X by 
    FUNCT_2:def 1;
    
      
    
      
    
    A3: gg is 
    integrable by 
    A1,
    Th5;
    
      hence h is
    integrable by 
    A1,
    A2,
    Th6;
    
      (
    integral h) 
    = (( 
    integral f) 
    + ( 
    integral gg)) by 
    A1,
    A2,
    A3,
    Th6;
    
      then (
    integral h) 
    = (( 
    integral f) 
    + ( 
    - ( 
    integral g))) by 
    A1,
    Th5;
    
      hence (
    integral h) 
    = (( 
    integral f) 
    - ( 
    integral g)) by 
    RLVECT_1:def 11;
    
    end;
    
    definition
    
      let X be
    RealNormSpace;
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      let f be
    PartFunc of 
    REAL , the 
    carrier of X; 
    
      :: 
    
    INTEGR18:def7
    
      pred f
    
    is_integrable_on A means ex g be 
    Function of A, the 
    carrier of X st g 
    = (f 
    | A) & g is 
    integrable;
    
    end
    
    definition
    
      let X be
    RealNormSpace;
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      let f be
    PartFunc of 
    REAL , the 
    carrier of X; 
    
      assume
    
      
    
    A1: A 
    c= ( 
    dom f); 
    
      :: 
    
    INTEGR18:def8
    
      func
    
    integral (f,A) -> 
    Element of X means 
    
      :
    
    Def8: ex g be 
    Function of A, the 
    carrier of X st g 
    = (f 
    | A) & it 
    = ( 
    integral g); 
    
      correctness
    
      proof
    
        
    
        
    
    A2: ( 
    dom (f 
    | A)) 
    = A by 
    A1,
    RELAT_1: 62;
    
        (
    rng (f 
    | A)) 
    c= the 
    carrier of X; 
    
        then
    
        reconsider g = (f
    | A) as 
    Function of A, the 
    carrier of X by 
    A2,
    FUNCT_2: 2;
    
        (
    integral g) is 
    Point of X; 
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    INTEGR18:8
    
    for A be non
    empty
    closed_interval  
    Subset of 
    REAL , f be 
    PartFunc of 
    REAL , the 
    carrier of X, g be 
    Function of A, the 
    carrier of X st (f 
    | A) 
    = g holds f 
    is_integrable_on A iff g is 
    integrable;
    
    theorem :: 
    
    INTEGR18:9
    
    for A be non
    empty
    closed_interval  
    Subset of 
    REAL , f be 
    PartFunc of 
    REAL , the 
    carrier of X, g be 
    Function of A, the 
    carrier of X st A 
    c= ( 
    dom f) & (f 
    | A) 
    = g holds ( 
    integral (f,A)) 
    = ( 
    integral g) by 
    Def8;
    
    theorem :: 
    
    INTEGR18:10
    
    
    
    
    
    Th10: for X,Y be non 
    empty  
    set, V be 
    RealNormSpace, g,f be 
    PartFunc of X, the 
    carrier of V, g1,f1 be 
    PartFunc of Y, the 
    carrier of V st g 
    = g1 & f 
    = f1 holds (g1 
    + f1) 
    = (g 
    + f) 
    
    proof
    
      let X,Y be non
    empty  
    set, V be 
    RealNormSpace, g,f be 
    PartFunc of X, the 
    carrier of V, g1,f1 be 
    PartFunc of Y, the 
    carrier of V; 
    
      assume
    
      
    
    A1: g 
    = g1 & f 
    = f1; 
    
      
    
      
    
    A2: ( 
    dom (g 
    + f)) 
    = (( 
    dom g) 
    /\ ( 
    dom f)) by 
    VFUNCT_1:def 1
    
      .= ((
    dom g1) 
    /\ ( 
    dom f1)) by 
    A1;
    
      
    
      
    
    A3: (g 
    + f) is 
    PartFunc of Y, the 
    carrier of V by 
    A2,
    RELSET_1: 5;
    
      for c be
    Element of Y st c 
    in ( 
    dom (g 
    + f)) holds ((g 
    + f) 
    /. c) 
    = ((g1 
    /. c) 
    + (f1 
    /. c)) by 
    A1,
    VFUNCT_1:def 1;
    
      hence thesis by
    A3,
    A2,
    VFUNCT_1:def 1;
    
    end;
    
    theorem :: 
    
    INTEGR18:11
    
    for X,Y be non
    empty  
    set, V be 
    RealNormSpace, g,f be 
    PartFunc of X, the 
    carrier of V, g1,f1 be 
    PartFunc of Y, the 
    carrier of V st g 
    = g1 & f 
    = f1 holds (g1 
    - f1) 
    = (g 
    - f) 
    
    proof
    
      let X,Y be non
    empty  
    set, V be 
    RealNormSpace, g,f be 
    PartFunc of X, the 
    carrier of V, g1,f1 be 
    PartFunc of Y, the 
    carrier of V; 
    
      assume
    
      
    
    A1: g 
    = g1 & f 
    = f1; 
    
      
    
      
    
    A2: ( 
    dom (g 
    - f)) 
    = (( 
    dom g) 
    /\ ( 
    dom f)) by 
    VFUNCT_1:def 2
    
      .= ((
    dom g1) 
    /\ ( 
    dom f1)) by 
    A1;
    
      
    
      
    
    A3: (g 
    - f) is 
    PartFunc of Y, the 
    carrier of V by 
    A2,
    RELSET_1: 5;
    
      for c be
    Element of Y st c 
    in ( 
    dom (g 
    - f)) holds ((g 
    - f) 
    /. c) 
    = ((g1 
    /. c) 
    - (f1 
    /. c)) by 
    A1,
    VFUNCT_1:def 2;
    
      hence thesis by
    A3,
    A2,
    VFUNCT_1:def 2;
    
    end;
    
    theorem :: 
    
    INTEGR18:12
    
    
    
    
    
    Th12: for r be 
    Real, X,Y be non 
    empty  
    set, V be 
    RealNormSpace, g be 
    PartFunc of X, the 
    carrier of V, g1 be 
    PartFunc of Y, the 
    carrier of V st g 
    = g1 holds (r 
    (#) g1) 
    = (r 
    (#) g) 
    
    proof
    
      let r be
    Real, X,Y be non 
    empty  
    set, V be 
    RealNormSpace, g be 
    PartFunc of X, the 
    carrier of V, g1 be 
    PartFunc of Y, the 
    carrier of V; 
    
      assume
    
      
    
    A1: g 
    = g1; 
    
      
    
      
    
    A2: ( 
    dom (r 
    (#) g)) 
    = ( 
    dom g) by 
    VFUNCT_1:def 4
    
      .= (
    dom g1) by 
    A1;
    
      
    
      
    
    A3: (r 
    (#) g) is 
    PartFunc of Y, the 
    carrier of V by 
    A2,
    RELSET_1: 5;
    
      for c be
    Element of Y st c 
    in ( 
    dom (r 
    (#) g)) holds ((r 
    (#) g) 
    /. c) 
    = (r 
    * (g1 
    /. c)) by 
    A1,
    VFUNCT_1:def 4;
    
      hence thesis by
    A3,
    A2,
    VFUNCT_1:def 4;
    
    end;
    
    begin
    
    theorem :: 
    
    INTEGR18:13
    
    
    
    
    
    Th13: for r be 
    Real holds for A be non 
    empty
    closed_interval  
    Subset of 
    REAL holds for f be 
    PartFunc of 
    REAL , the 
    carrier of X st A 
    c= ( 
    dom f) & f 
    is_integrable_on A holds (r 
    (#) f) 
    is_integrable_on A & ( 
    integral ((r 
    (#) f),A)) 
    = (r 
    * ( 
    integral (f,A))) 
    
    proof
    
      let r be
    Real;
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      let f be
    PartFunc of 
    REAL , the 
    carrier of X; 
    
      assume
    
      
    
    A1: A 
    c= ( 
    dom f) & f 
    is_integrable_on A; 
    
      
    
      
    
    A2: A 
    c= ( 
    dom (r 
    (#) f)) by 
    A1,
    VFUNCT_1:def 4;
    
      consider g be
    Function of A, the 
    carrier of X such that 
    
      
    
    A3: g 
    = (f 
    | A) & g is 
    integrable by 
    A1;
    
      
    
      
    
    A4: ((r 
    (#) f) 
    | A) 
    = (r 
    (#) (f 
    | A)) by 
    VFUNCT_1: 31
    
      .= (r
    (#) g) by 
    A3,
    Th12;
    
      (r
    (#) g) is 
    total by 
    VFUNCT_1: 34;
    
      then
    
      reconsider gg = (r
    (#) g) as 
    Function of A, the 
    carrier of X; 
    
      gg is
    integrable & ( 
    integral gg) 
    = (r 
    * ( 
    integral g)) by 
    A3,
    Th4;
    
      hence (r
    (#) f) 
    is_integrable_on A by 
    A4;
    
      
    
      thus (
    integral ((r 
    (#) f),A)) 
    = ( 
    integral gg) by 
    A4,
    A2,
    Def8
    
      .= (r
    * ( 
    integral g)) by 
    A3,
    Th4
    
      .= (r
    * ( 
    integral (f,A))) by 
    A3,
    A1,
    Def8;
    
    end;
    
    theorem :: 
    
    INTEGR18:14
    
    
    
    
    
    Th14: for A be non 
    empty
    closed_interval  
    Subset of 
    REAL , f1,f2 be 
    PartFunc of 
    REAL , the 
    carrier of X st f1 
    is_integrable_on A & f2 
    is_integrable_on A & A 
    c= ( 
    dom f1) & A 
    c= ( 
    dom f2) holds (f1 
    + f2) 
    is_integrable_on A & ( 
    integral ((f1 
    + f2),A)) 
    = (( 
    integral (f1,A)) 
    + ( 
    integral (f2,A))) 
    
    proof
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      let f1,f2 be
    PartFunc of 
    REAL , the 
    carrier of X; 
    
      assume that
    
      
    
    A1: f1 
    is_integrable_on A & f2 
    is_integrable_on A and 
    
      
    
    A2: A 
    c= ( 
    dom f1) & A 
    c= ( 
    dom f2); 
    
      A
    c= (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    A2,
    XBOOLE_1: 19;
    
      then
    
      
    
    A3: A 
    c= ( 
    dom (f1 
    + f2)) by 
    VFUNCT_1:def 1;
    
      consider g1 be
    Function of A, the 
    carrier of X such that 
    
      
    
    A4: g1 
    = (f1 
    | A) & g1 is 
    integrable by 
    A1;
    
      consider g2 be
    Function of A, the 
    carrier of X such that 
    
      
    
    A5: g2 
    = (f2 
    | A) & g2 is 
    integrable by 
    A1;
    
      ((f1
    + f2) 
    | A) 
    = ((f1 
    | A) 
    + (f2 
    | A)) by 
    VFUNCT_1: 27;
    
      then
    
      
    
    A6: ((f1 
    + f2) 
    | A) 
    = (g1 
    + g2) by 
    A4,
    A5,
    Th10;
    
      (g1
    + g2) is 
    total by 
    VFUNCT_1: 32;
    
      then
    
      reconsider g = (g1
    + g2) as 
    Function of A, the 
    carrier of X; 
    
      g is
    integrable by 
    Th6,
    A4,
    A5;
    
      hence (f1
    + f2) 
    is_integrable_on A by 
    A6;
    
      
    
      thus (
    integral ((f1 
    + f2),A)) 
    = ( 
    integral g) by 
    Def8,
    A6,
    A3
    
      .= ((
    integral g1) 
    + ( 
    integral g2)) by 
    Th6,
    A4,
    A5
    
      .= ((
    integral (f1,A)) 
    + ( 
    integral g2)) by 
    A2,
    A4,
    Def8
    
      .= ((
    integral (f1,A)) 
    + ( 
    integral (f2,A))) by 
    A2,
    A5,
    Def8;
    
    end;
    
    theorem :: 
    
    INTEGR18:15
    
    for A be non
    empty
    closed_interval  
    Subset of 
    REAL , f1,f2 be 
    PartFunc of 
    REAL , the 
    carrier of X st f1 
    is_integrable_on A & f2 
    is_integrable_on A & A 
    c= ( 
    dom f1) & A 
    c= ( 
    dom f2) holds (f1 
    - f2) 
    is_integrable_on A & ( 
    integral ((f1 
    - f2),A)) 
    = (( 
    integral (f1,A)) 
    - ( 
    integral (f2,A))) 
    
    proof
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      let f1,f2 be
    PartFunc of 
    REAL , the 
    carrier of X; 
    
      assume that
    
      
    
    A1: f1 
    is_integrable_on A & f2 
    is_integrable_on A and 
    
      
    
    A2: A 
    c= ( 
    dom f1) & A 
    c= ( 
    dom f2); 
    
      
    
      
    
    A3: (f1 
    - f2) 
    = (f1 
    + ( 
    - f2)) by 
    VFUNCT_1: 25;
    
      
    
      
    
    A4: ( 
    dom ( 
    - f2)) 
    = ( 
    dom f2) by 
    VFUNCT_1:def 5;
    
      
    
      
    
    A5: ( 
    - f2) 
    = (( 
    - jj) 
    (#) f2) by 
    VFUNCT_1: 23;
    
      then
    
      
    
    A6: ( 
    - f2) 
    is_integrable_on A by 
    A1,
    A2,
    Th13;
    
      hence (f1
    - f2) 
    is_integrable_on A by 
    A1,
    A2,
    A3,
    A4,
    Th14;
    
      
    
      thus (
    integral ((f1 
    - f2),A)) 
    = ( 
    integral ((f1 
    + ( 
    - f2)),A)) by 
    VFUNCT_1: 25
    
      .= ((
    integral (f1,A)) 
    + ( 
    integral (( 
    - f2),A))) by 
    A1,
    A2,
    A4,
    A6,
    Th14
    
      .= ((
    integral (f1,A)) 
    + (( 
    - jj) 
    * ( 
    integral (f2,A)))) by 
    A1,
    A2,
    A5,
    Th13
    
      .= ((
    integral (f1,A)) 
    + ( 
    - ( 
    integral (f2,A)))) by 
    RLVECT_1: 16
    
      .= ((
    integral (f1,A)) 
    - ( 
    integral (f2,A))) by 
    RLVECT_1:def 11;
    
    end;
    
    definition
    
      let X be
    RealNormSpace;
    
      let f be
    PartFunc of 
    REAL , the 
    carrier of X; 
    
      let a,b be
    Real;
    
      :: 
    
    INTEGR18:def9
    
      func
    
    integral (f,a,b) -> 
    Element of X equals 
    
      :
    
    Def9: ( 
    integral (f, 
    ['a, b'])) if a
    <= b 
    
      otherwise (
    - ( 
    integral (f, 
    ['b, a'])));
    
      correctness ;
    
    end
    
    theorem :: 
    
    INTEGR18:16
    
    
    
    
    
    Th16: for f be 
    PartFunc of 
    REAL , the 
    carrier of X, A be non 
    empty
    closed_interval  
    Subset of 
    REAL , a,b be 
    Real st A 
    =  
    [.a, b.] holds (
    integral (f,A)) 
    = ( 
    integral (f,a,b)) 
    
    proof
    
      let f be
    PartFunc of 
    REAL , the 
    carrier of X; 
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      let a,b be
    Real;
    
      consider a1,b1 be
    Real such that 
    
      
    
    A1: a1 
    <= b1 and 
    
      
    
    A2: A 
    =  
    [.a1, b1.] by
    MEASURE5: 14;
    
      assume A
    =  
    [.a, b.];
    
      then
    
      
    
    A3: a1 
    = a & b1 
    = b by 
    A2,
    INTEGRA1: 5;
    
      then (
    integral (f,a,b)) 
    = ( 
    integral (f, 
    ['a, b'])) by
    A1,
    Def9;
    
      hence thesis by
    A1,
    A2,
    A3,
    INTEGRA5:def 3;
    
    end;
    
    theorem :: 
    
    INTEGR18:17
    
    
    
    
    
    Th17: for f be 
    PartFunc of 
    REAL , the 
    carrier of X, A be non 
    empty
    closed_interval  
    Subset of 
    REAL st ( 
    vol A) 
    =  
    0 & A 
    c= ( 
    dom f) holds f 
    is_integrable_on A & ( 
    integral (f,A)) 
    = ( 
    0. X) 
    
    proof
    
      let f be
    PartFunc of 
    REAL , the 
    carrier of X, A be non 
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      assume
    
      
    
    A1: ( 
    vol A) 
    =  
    0 & A 
    c= ( 
    dom f); 
    
      f is
    Function of ( 
    dom f), ( 
    rng f) by 
    FUNCT_2: 1;
    
      then f is
    Function of ( 
    dom f), the 
    carrier of X by 
    FUNCT_2: 2;
    
      then
    
      reconsider g = (f
    | A) as 
    Function of A, the 
    carrier of X by 
    A1,
    FUNCT_2: 32;
    
      
    
      
    
    A2: for T be 
    DivSequence of A, S be 
    middle_volume_Sequence of g, T st ( 
    delta T) is 
    convergent & ( 
    lim ( 
    delta T)) 
    =  
    0 holds ( 
    middle_sum (g,S)) is 
    convergent & ( 
    lim ( 
    middle_sum (g,S))) 
    = ( 
    0. X) 
    
      proof
    
        let T be
    DivSequence of A, S be 
    middle_volume_Sequence of g, T; 
    
        assume (
    delta T) is 
    convergent & ( 
    lim ( 
    delta T)) 
    =  
    0 ; 
    
        
    
        
    
    A3: for i be 
    Nat holds ( 
    middle_sum (g,(S 
    . i))) 
    = ( 
    0. X) 
    
        proof
    
          let i be
    Nat;
    
          
    
          
    
    A4: ( 
    len (S 
    . i)) 
    = ( 
    len (S 
    . i)); 
    
          now
    
            let k be
    Nat, v be 
    Element of X; 
    
            assume
    
            
    
    A5: k 
    in ( 
    dom (S 
    . i)) & v 
    = ((S 
    . i) 
    . k); 
    
            then k
    in ( 
    Seg ( 
    len (S 
    . i))) by 
    FINSEQ_1:def 3;
    
            then k
    in ( 
    Seg ( 
    len (T 
    . i))) by 
    Def1;
    
            then
    
            
    
    A6: k 
    in ( 
    dom (T 
    . i)) by 
    FINSEQ_1:def 3;
    
            then
    
            consider c be
    VECTOR of X such that 
    
            
    
    A7: c 
    in ( 
    rng (g 
    | ( 
    divset ((T 
    . i),k)))) & ((S 
    . i) 
    . k) 
    = (( 
    vol ( 
    divset ((T 
    . i),k))) 
    * c) by 
    Def1;
    
            
    0  
    <= ( 
    vol ( 
    divset ((T 
    . i),k))) & ( 
    vol ( 
    divset ((T 
    . i),k))) 
    <=  
    0 by 
    A1,
    A6,
    INTEGRA1: 8,
    INTEGRA1: 9,
    INTEGRA2: 38;
    
            then
    
            
    
    A8: ( 
    vol ( 
    divset ((T 
    . i),k))) 
    =  
    0 ; 
    
            ((S
    . i) 
    . k) 
    = ( 
    0. X) by 
    A8,
    A7,
    RLVECT_1: 10;
    
            hence ((S
    . i) 
    . k) 
    = ( 
    - v) by 
    A5,
    RLVECT_1: 12;
    
          end;
    
          then (
    Sum (S 
    . i)) 
    = ( 
    - ( 
    Sum (S 
    . i))) by 
    A4,
    RLVECT_1: 40;
    
          hence thesis by
    RLVECT_1: 19;
    
        end;
    
        
    
        
    
    A9: for i be 
    Nat holds (( 
    middle_sum (g,S)) 
    . i) 
    = ( 
    0. X) 
    
        proof
    
          let i be
    Nat;
    
          
    
          thus ((
    middle_sum (g,S)) 
    . i) 
    = ( 
    middle_sum (g,(S 
    . i))) by 
    Def4
    
          .= (
    0. X) by 
    A3;
    
        end;
    
        
    
        
    
    A10: for r be 
    Real st 
    0  
    < r holds ex m be 
    Nat st for n be 
    Nat st m 
    <= n holds 
    ||.(((
    middle_sum (g,S)) 
    . n) 
    - ( 
    0. X)).|| 
    < r 
    
        proof
    
          let r be
    Real;
    
          assume
    
          
    
    A11: 
    0  
    < r; 
    
          take m =
    0 ; 
    
          let n be
    Nat;
    
          assume m
    <= n; 
    
          
    ||.(((
    middle_sum (g,S)) 
    . n) 
    - ( 
    0. X)).|| 
    =  
    ||.((
    0. X) 
    - ( 
    0. X)).|| by 
    A9
    
          .=
    0 by 
    NORMSP_1: 6;
    
          hence
    ||.(((
    middle_sum (g,S)) 
    . n) 
    - ( 
    0. X)).|| 
    < r by 
    A11;
    
        end;
    
        hence (
    middle_sum (g,S)) is 
    convergent by 
    NORMSP_1:def 6;
    
        hence (
    lim ( 
    middle_sum (g,S))) 
    = ( 
    0. X) by 
    A10,
    NORMSP_1:def 7;
    
      end;
    
      then
    
      
    
    A12: g is 
    integrable;
    
      hence f
    is_integrable_on A; 
    
      (
    integral g) 
    = ( 
    0. X) by 
    A12,
    A2,
    Def6;
    
      hence (
    integral (f,A)) 
    = ( 
    0. X) by 
    Def8,
    A1;
    
    end;
    
    theorem :: 
    
    INTEGR18:18
    
    for f be
    PartFunc of 
    REAL , the 
    carrier of X, A be non 
    empty
    closed_interval  
    Subset of 
    REAL , a,b be 
    Real st A 
    =  
    [.b, a.] & A
    c= ( 
    dom f) holds ( 
    - ( 
    integral (f,A))) 
    = ( 
    integral (f,a,b)) 
    
    proof
    
      let f be
    PartFunc of 
    REAL , the 
    carrier of X; 
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      let a,b be
    Real;
    
      consider a1,b1 be
    Real such that 
    
      
    
    A1: a1 
    <= b1 and 
    
      
    
    A2: A 
    =  
    [.a1, b1.] by
    MEASURE5: 14;
    
      assume
    
      
    
    A3: A 
    =  
    [.b, a.] & A
    c= ( 
    dom f); 
    
      then
    
      
    
    A4: a1 
    = b & b1 
    = a by 
    A2,
    INTEGRA1: 5;
    
      now
    
        per cases by
    A1,
    A4,
    XXREAL_0: 1;
    
          suppose
    
          
    
    A5: b 
    < a; 
    
          then (
    integral (f,a,b)) 
    = ( 
    - ( 
    integral (f, 
    ['b, a']))) by
    Def9;
    
          hence thesis by
    A3,
    A5,
    INTEGRA5:def 3;
    
        end;
    
          suppose
    
          
    
    A6: b 
    = a; 
    
          A
    =  
    [.(
    lower_bound A), ( 
    upper_bound A).] by 
    INTEGRA1: 4;
    
          then (
    lower_bound A) 
    = b & ( 
    upper_bound A) 
    = a by 
    A3,
    INTEGRA1: 5;
    
          
    
          then
    
          
    
    A7: ( 
    vol A) 
    = (( 
    upper_bound A) 
    - ( 
    upper_bound A)) by 
    A6
    
          .=
    0 ; 
    
          
    
          
    
    A8: ( 
    integral (f,a,b)) 
    = ( 
    integral (f,A)) by 
    A3,
    A6,
    Th16;
    
          
    
          
    
    A9: ( 
    - ( 
    integral (f,a,b))) 
    = ( 
    - ( 
    integral (f,A))) by 
    A3,
    A6,
    Th16;
    
          (
    integral (f,a,b)) 
    = ( 
    0. X) by 
    A7,
    A3,
    Th17,
    A8;
    
          hence thesis by
    A9,
    RLVECT_1: 12;
    
        end;
    
      end;
    
      hence thesis;
    
    end;