integr18.miz
begin
reserve X for
RealNormSpace;
definition
let X be
RealNormSpace;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A, the
carrier of X;
let D be
Division of A;
::
INTEGR18:def1
mode
middle_volume of f,D ->
FinSequence of X means
:
Def1: (
len it )
= (
len D) & for i be
Nat st i
in (
dom D) holds ex c be
Point of X st c
in (
rng (f
| (
divset (D,i)))) & (it
. i)
= ((
vol (
divset (D,i)))
* c);
correctness
proof
defpred
P1[
Nat,
set] means ex c be
Point of X st c
in (
rng (f
| (
divset (D,$1)))) & $2
= ((
vol (
divset (D,$1)))
* c);
A1: (
Seg (
len D))
= (
dom D) by
FINSEQ_1:def 3;
A2: for k be
Nat st k
in (
Seg (
len D)) holds ex x be
Element of the
carrier of X st
P1[k, x]
proof
let k be
Nat;
assume k
in (
Seg (
len D));
then
A3: k
in (
dom D) by
FINSEQ_1:def 3;
(
dom f)
= A by
FUNCT_2:def 1;
then (
dom (f
| (
divset (D,k))))
= (
divset (D,k)) by
A3,
INTEGRA1: 8,
RELAT_1: 62;
then (
rng (f
| (
divset (D,k)))) is non
empty by
RELAT_1: 42;
then
consider c be
object such that
A4: c
in (
rng (f
| (
divset (D,k))));
reconsider c as
Point of X by
A4;
((
vol (
divset (D,k)))
* c) is
Element of the
carrier of X;
hence thesis by
A4;
end;
consider p be
FinSequence of the
carrier of X such that
A5: (
dom p)
= (
Seg (
len D)) & for k be
Nat st k
in (
Seg (
len D)) holds
P1[k, (p
. k)] from
FINSEQ_1:sch 5(
A2);
(
len p)
= (
len D) by
A5,
FINSEQ_1:def 3;
hence thesis by
A5,
A1;
end;
end
definition
let X be
RealNormSpace;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A, the
carrier of X;
let D be
Division of A;
let F be
middle_volume of f, D;
::
INTEGR18:def2
func
middle_sum (f,F) ->
Point of X equals (
Sum F);
coherence ;
end
definition
let X be
RealNormSpace;
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A, the
carrier of X, T be
DivSequence of A;
::
INTEGR18:def3
mode
middle_volume_Sequence of f,T ->
sequence of (the
carrier of X
* ) means
:
Def3: for k be
Element of
NAT holds (it
. k) is
middle_volume of f, (T
. k);
correctness
proof
defpred
P[
Element of
NAT ,
set] means $2 is
middle_volume of f, (T
. $1);
A1: for x be
Element of
NAT holds ex y be
Element of (the
carrier of X
* ) st
P[x, y]
proof
let x be
Element of
NAT ;
set y = the
middle_volume of f, (T
. x);
reconsider y as
Element of (the
carrier of X
* ) by
FINSEQ_1:def 11;
y is
middle_volume of f, (T
. x);
hence thesis;
end;
ex f be
sequence of (the
carrier of X
* ) st for x be
Element of
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 3(
A1);
hence thesis;
end;
end
definition
let X be
RealNormSpace;
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A, the
carrier of X, T be
DivSequence of A, S be
middle_volume_Sequence of f, T, k be
Nat;
:: original:
.
redefine
func S
. k ->
middle_volume of f, (T
. k) ;
coherence
proof
k
in
NAT by
ORDINAL1:def 12;
hence thesis by
Def3;
end;
end
definition
let X be
RealNormSpace;
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A, the
carrier of X, T be
DivSequence of A, S be
middle_volume_Sequence of f, T;
::
INTEGR18:def4
func
middle_sum (f,S) ->
sequence of X means
:
Def4: for i be
Nat holds (it
. i)
= (
middle_sum (f,(S
. i)));
existence
proof
deffunc
H1(
Nat) = (
middle_sum (f,(S
. $1)));
consider IT be
sequence of the
carrier of X such that
A1: for i be
Element of
NAT holds (IT
. i)
=
H1(i) from
FUNCT_2:sch 4;
take IT;
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A1;
end;
uniqueness
proof
let F1,F2 be
sequence of X;
assume that
A2: for i be
Nat holds (F1
. i)
= (
middle_sum (f,(S
. i))) and
A3: for i be
Nat holds (F2
. i)
= (
middle_sum (f,(S
. i)));
for i be
Element of
NAT holds (F1
. i)
= (F2
. i)
proof
let i be
Element of
NAT ;
(F1
. i)
= (
middle_sum (f,(S
. i))) by
A2
.= (F2
. i) by
A3;
hence (F1
. i)
= (F2
. i);
end;
hence F1
= F2 by
FUNCT_2: 63;
end;
end
begin
definition
let X be
RealNormSpace;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A, the
carrier of X;
::
INTEGR18:def5
attr f is
integrable means ex I be
Point of X st for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I;
end
theorem ::
INTEGR18:1
Th1: for X be
RealNormSpace, R1,R2,R3 be
FinSequence of X st (
len R1)
= (
len R2) & R3
= (R1
+ R2) holds (
Sum R3)
= ((
Sum R1)
+ (
Sum R2))
proof
let X be
RealNormSpace, R1,R2,R3 be
FinSequence of X;
assume
A1: (
len R1)
= (
len R2) & R3
= (R1
+ R2);
then (
dom R1)
= (
dom R2) by
FINSEQ_3: 29;
hence (
Sum R3)
= ((
Sum R1)
+ (
Sum R2)) by
A1,
BINOM: 7;
end;
theorem ::
INTEGR18:2
for X be
RealNormSpace, R1,R2,R3 be
FinSequence of X st (
len R1)
= (
len R2) & R3
= (R1
- R2) holds (
Sum R3)
= ((
Sum R1)
- (
Sum R2))
proof
let X be
RealNormSpace, R1,R2,R3 be
FinSequence of X;
assume
A1: (
len R1)
= (
len R2) & R3
= (R1
- R2);
then
A2: (
dom R1)
= (
dom R2) by
FINSEQ_3: 29;
A3: (
dom R3)
= ((
dom R1)
/\ (
dom R2)) by
A1,
VFUNCT_1:def 2
.= (
dom R1) by
A2;
then
A4: (
len R3)
= (
len R1) by
FINSEQ_3: 29;
A5: for k be
Nat st k
in (
dom R1) holds (R3
. k)
= ((R1
/. k)
- (R2
/. k))
proof
let k be
Nat;
assume
A6: k
in (
dom R1);
thus (R3
. k)
= (R3
/. k) by
A6,
A3,
PARTFUN1:def 6
.= ((R1
/. k)
- (R2
/. k)) by
A1,
A6,
A3,
VFUNCT_1:def 2;
end;
thus thesis by
A1,
A4,
A5,
RLVECT_2: 5;
end;
theorem ::
INTEGR18:3
Th3: for X be
RealNormSpace, R1,R2 be
FinSequence of X, a be
Real st R2
= (a
(#) R1) holds (
Sum R2)
= (a
* (
Sum R1))
proof
let X be
RealNormSpace, R1,R2 be
FinSequence of X, a be
Real;
assume
A1: R2
= (a
(#) R1);
(
dom R2)
= (
dom R1) by
A1,
VFUNCT_1:def 4;
then
A2: (
len R2)
= (
len R1) by
FINSEQ_3: 29;
A3: for k be
Nat st k
in (
dom R1) holds (R2
. k)
= (a
* (R1
/. k))
proof
let k be
Nat;
assume k
in (
dom R1);
then
A4: k
in (
dom R2) by
A1,
VFUNCT_1:def 4;
thus (R2
. k)
= (R2
/. k) by
A4,
PARTFUN1:def 6
.= (a
* (R1
/. k)) by
A4,
A1,
VFUNCT_1:def 4;
end;
thus thesis by
A2,
A3,
RLVECT_2: 3;
end;
definition
let X be
RealNormSpace;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A, the
carrier of X;
assume
A1: f is
integrable;
::
INTEGR18:def6
func
integral (f) ->
Point of X means
:
Def6: for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= it ;
existence by
A1;
uniqueness
proof
let I1,I2 be
Point of X;
assume
A2: for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I1;
assume
A3: for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I2;
consider T be
DivSequence of A such that
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 by
INTEGRA4: 11;
set S = the
middle_volume_Sequence of f, T;
thus I1
= (
lim (
middle_sum (f,S))) by
A2,
A4
.= I2 by
A3,
A4;
end;
end
theorem ::
INTEGR18:4
Th4: for X be
RealNormSpace, A be non
empty
closed_interval
Subset of
REAL , r be
Real, f,h be
Function of A, the
carrier of X st h
= (r
(#) f) & f is
integrable holds h is
integrable & (
integral h)
= (r
* (
integral f))
proof
let X be
RealNormSpace, A be non
empty
closed_interval
Subset of
REAL , r be
Real, f,h be
Function of A, the
carrier of X;
assume
A1: h
= (r
(#) f) & f is
integrable;
A2: (
dom h)
= A & (
dom f)
= A by
FUNCT_2:def 1;
A3:
now
let T be
DivSequence of A, S be
middle_volume_Sequence of h, T;
assume
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
defpred
P[
Element of
NAT ,
set] means ex p be
FinSequence of
REAL st p
= $2 & (
len p)
= (
len (T
. $1)) & for i be
Nat st i
in (
dom (T
. $1)) holds (p
. i)
in (
dom (h
| (
divset ((T
. $1),i)))) & ex z be
Point of X st z
= ((h
| (
divset ((T
. $1),i)))
. (p
. i)) & ((S
. $1)
. i)
= ((
vol (
divset ((T
. $1),i)))
* z);
A5: for k be
Element of
NAT holds ex p be
Element of (
REAL
* ) st
P[k, p]
proof
let k be
Element of
NAT ;
defpred
P1[
Nat,
set] means $2
in (
dom (h
| (
divset ((T
. k),$1)))) & ex c be
Point of X st c
= ((h
| (
divset ((T
. k),$1)))
. $2) & ((S
. k)
. $1)
= ((
vol (
divset ((T
. k),$1)))
* c);
A6: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A7: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
then
consider c be
Point of X such that
A8: c
in (
rng (h
| (
divset ((T
. k),i)))) & ((S
. k)
. i)
= ((
vol (
divset ((T
. k),i)))
* c) by
Def1;
consider x be
object such that
A9: x
in (
dom (h
| (
divset ((T
. k),i)))) & c
= ((h
| (
divset ((T
. k),i)))
. x) by
A8,
FUNCT_1:def 3;
x
in (
dom h) & x
in (
divset ((T
. k),i)) by
A9,
RELAT_1: 57;
then
reconsider x as
Element of
REAL ;
take x;
thus thesis by
A8,
A9;
end;
consider p be
FinSequence of
REAL such that
A10: (
dom p)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P1[i, (p
. i)] from
FINSEQ_1:sch 5(
A7);
take p;
(
len p)
= (
len (T
. k)) by
A10,
FINSEQ_1:def 3;
hence thesis by
A10,
A6,
FINSEQ_1:def 11;
end;
consider F be
sequence of (
REAL
* ) such that
A11: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A5);
defpred
P1[
Element of
NAT ,
set] means ex q be
middle_volume of f, (T
. $1) st q
= $2 & for i be
Nat st i
in (
dom (T
. $1)) holds ex z be
Point of X st ((F
. $1)
. i)
in (
dom (f
| (
divset ((T
. $1),i)))) & z
= ((f
| (
divset ((T
. $1),i)))
. ((F
. $1)
. i)) & (q
. i)
= ((
vol (
divset ((T
. $1),i)))
* z);
A12: for k be
Element of
NAT holds ex y be
Element of (the
carrier of X
* ) st
P1[k, y]
proof
let k be
Element of
NAT ;
defpred
P11[
Nat,
set] means ex c be
Point of X st ((F
. k)
. $1)
in (
dom (f
| (
divset ((T
. k),$1)))) & c
= ((f
| (
divset ((T
. k),$1)))
. ((F
. k)
. $1)) & $2
= ((
vol (
divset ((T
. k),$1)))
* c);
A13: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A14: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of the
carrier of X st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then
A15: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
consider p be
FinSequence of
REAL such that
A16: p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (h
| (
divset ((T
. k),i)))) & ex z be
Point of X st z
= ((h
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= ((
vol (
divset ((T
. k),i)))
* z) by
A11;
(p
. i)
in (
dom (h
| (
divset ((T
. k),i)))) by
A15,
A16;
then
A17: (p
. i)
in (
dom h) & (p
. i)
in (
divset ((T
. k),i)) by
RELAT_1: 57;
then (p
. i)
in (
dom (f
| (
divset ((T
. k),i)))) by
A2,
RELAT_1: 57;
then ((f
| (
divset ((T
. k),i)))
. (p
. i))
in (
rng (f
| (
divset ((T
. k),i)))) by
FUNCT_1: 3;
then
reconsider x = ((f
| (
divset ((T
. k),i)))
. (p
. i)) as
Element of the
carrier of X;
A18: ((F
. k)
. i)
in (
dom (f
| (
divset ((T
. k),i)))) by
A16,
A17,
A2,
RELAT_1: 57;
((
vol (
divset ((T
. k),i)))
* x) is
Element of the
carrier of X;
hence thesis by
A16,
A18;
end;
consider q be
FinSequence of the
carrier of X such that
A19: (
dom q)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P11[i, (q
. i)] from
FINSEQ_1:sch 5(
A14);
A20: (
len q)
= (
len (T
. k)) by
A19,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (T
. k));
then i
in (
Seg (
len (T
. k))) by
FINSEQ_1:def 3;
then
consider c be
Point of X such that
A21: ((F
. k)
. i)
in (
dom (f
| (
divset ((T
. k),i)))) & c
= ((f
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= ((
vol (
divset ((T
. k),i)))
* c) by
A19;
thus ex c be
Point of X st c
in (
rng (f
| (
divset ((T
. k),i)))) & (q
. i)
= ((
vol (
divset ((T
. k),i)))
* c) by
A21,
FUNCT_1: 3;
end;
then
reconsider q as
middle_volume of f, (T
. k) by
A20,
Def1;
q is
Element of (the
carrier of X
* ) by
FINSEQ_1:def 11;
hence thesis by
A13,
A19;
end;
consider Sf be
sequence of (the
carrier of X
* ) such that
A22: for x be
Element of
NAT holds
P1[x, (Sf
. x)] from
FUNCT_2:sch 3(
A12);
now
let k be
Element of
NAT ;
ex q be
middle_volume of f, (T
. k) st q
= (Sf
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Point of X st ((F
. k)
. i)
in (
dom (f
| (
divset ((T
. k),i)))) & z
= ((f
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= ((
vol (
divset ((T
. k),i)))
* z) by
A22;
hence (Sf
. k) is
middle_volume of f, (T
. k);
end;
then
reconsider Sf as
middle_volume_Sequence of f, T by
Def3;
A23: (
middle_sum (f,Sf)) is
convergent by
A1,
A4;
A24: (r
* (
middle_sum (f,Sf)))
= (
middle_sum (h,S))
proof
now
let n be
Nat;
A25: n
in
NAT by
ORDINAL1:def 12;
consider p be
FinSequence of
REAL such that
A26: p
= (F
. n) & (
len p)
= (
len (T
. n)) & for i be
Nat st i
in (
dom (T
. n)) holds (p
. i)
in (
dom (h
| (
divset ((T
. n),i)))) & ex z be
Point of X st z
= ((h
| (
divset ((T
. n),i)))
. (p
. i)) & ((S
. n)
. i)
= ((
vol (
divset ((T
. n),i)))
* z) by
A11,
A25;
consider q be
middle_volume of f, (T
. n) such that
A27: q
= (Sf
. n) & for i be
Nat st i
in (
dom (T
. n)) holds ex z be
Point of X st ((F
. n)
. i)
in (
dom (f
| (
divset ((T
. n),i)))) & z
= ((f
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= ((
vol (
divset ((T
. n),i)))
* z) by
A22,
A25;
(
len (Sf
. n))
= (
len (T
. n)) & (
len (S
. n))
= (
len (T
. n)) by
Def1;
then
A28: (
dom (Sf
. n))
= (
dom (T
. n)) & (
dom (S
. n))
= (
dom (T
. n)) by
FINSEQ_3: 29;
now
let x be
Element of
NAT ;
assume
A29: x
in (
dom (S
. n));
reconsider i = x as
Nat;
consider t be
Point of X such that
A30: t
= ((h
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & ((S
. n)
. i)
= ((
vol (
divset ((T
. n),i)))
* t) by
A29,
A28,
A26;
consider z be
Point of X such that
A31: ((F
. n)
. i)
in (
dom (f
| (
divset ((T
. n),i)))) & z
= ((f
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= ((
vol (
divset ((T
. n),i)))
* z) by
A27,
A29,
A28;
A32: ((F
. n)
. i)
in (
divset ((T
. n),i)) by
A31,
RELAT_1: 57;
((F
. n)
. i)
in A by
A31;
then
A33: ((F
. n)
. i)
in (
dom h) by
FUNCT_2:def 1;
A34: ((F
. n)
. i)
in (
dom f) by
A31,
RELAT_1: 57;
A35: (f
/. ((F
. n)
. i))
= (f
. ((F
. n)
. i)) by
A34,
PARTFUN1:def 6
.= z by
A31,
A32,
FUNCT_1: 49;
A36: t
= ((h
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) by
A30
.= (h
. ((F
. n)
. i)) by
A32,
FUNCT_1: 49
.= (h
/. ((F
. n)
. i)) by
A33,
PARTFUN1:def 6
.= (r
* (f
/. ((F
. n)
. i))) by
A33,
A1,
VFUNCT_1:def 4
.= (r
* z) by
A35;
A37: ((
vol (
divset ((T
. n),i)))
* z)
= ((Sf
. n)
. x) by
A31,
A27
.= ((Sf
. n)
/. x) by
A29,
A28,
PARTFUN1:def 6;
thus ((S
. n)
/. x)
= ((S
. n)
. x) by
A29,
PARTFUN1:def 6
.= ((
vol (
divset ((T
. n),i)))
* t) by
A30
.= ((
vol (
divset ((T
. n),i)))
* (r
* z)) by
A36
.= (((
vol (
divset ((T
. n),i)))
* r)
* z) by
RLVECT_1:def 7
.= (r
* ((
vol (
divset ((T
. n),i)))
* z)) by
RLVECT_1:def 7
.= (r
* ((Sf
. n)
/. x)) by
A37;
end;
then
A38: (r
(#) (Sf
. n))
= (S
. n) by
A28,
VFUNCT_1:def 4;
thus (r
* ((
middle_sum (f,Sf))
. n))
= (r
* (
middle_sum (f,(Sf
. n)))) by
Def4
.= (r
* (
Sum (Sf
. n)))
.= (
Sum (S
. n)) by
A38,
Th3
.= (
middle_sum (h,(S
. n)))
.= ((
middle_sum (h,S))
. n) by
Def4;
end;
hence thesis by
NORMSP_1:def 5;
end;
A39: (
lim (r
* (
middle_sum (f,Sf))))
= (r
* (
lim (
middle_sum (f,Sf)))) by
A23,
NORMSP_1: 28
.= (r
* (
integral f)) by
Def6,
A1,
A4;
thus (
middle_sum (h,S)) is
convergent by
A23,
A24,
NORMSP_1: 22;
thus (
lim (
middle_sum (h,S)))
= (r
* (
integral f)) by
A24,
A39;
end;
hence h is
integrable;
hence (
integral h)
= (r
* (
integral f)) by
Def6,
A3;
end;
reconsider jj = 1 as
Real;
theorem ::
INTEGR18:5
Th5: for X be
RealNormSpace, A be non
empty
closed_interval
Subset of
REAL , f,h be
Function of A, the
carrier of X st h
= (
- f) & f is
integrable holds h is
integrable & (
integral h)
= (
- (
integral f))
proof
let X be
RealNormSpace, A be non
empty
closed_interval
Subset of
REAL , f,h be
Function of A, the
carrier of X;
assume
A1: h
= (
- f) & f is
integrable;
then
A2: h
= ((
- jj)
(#) f) by
VFUNCT_1: 23;
hence h is
integrable by
A1,
Th4;
(
integral h)
= ((
- jj)
* (
integral f)) by
A1,
A2,
Th4;
hence (
integral h)
= (
- (
integral f)) by
RLVECT_1: 16;
end;
theorem ::
INTEGR18:6
Th6: for X be
RealNormSpace, A be non
empty
closed_interval
Subset of
REAL , f,g,h be
Function of A, the
carrier of X st h
= (f
+ g) & f is
integrable & g is
integrable holds h is
integrable & (
integral h)
= ((
integral f)
+ (
integral g))
proof
let X be
RealNormSpace, A be non
empty
closed_interval
Subset of
REAL , f,g,h be
Function of A, the
carrier of X;
assume
A1: h
= (f
+ g) & f is
integrable & g is
integrable;
A2: (
dom h)
= A & (
dom f)
= A & (
dom g)
= A by
FUNCT_2:def 1;
A3:
now
let T be
DivSequence of A, S be
middle_volume_Sequence of h, T;
assume
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
defpred
P[
Element of
NAT ,
set] means ex p be
FinSequence of
REAL st p
= $2 & (
len p)
= (
len (T
. $1)) & for i be
Nat st i
in (
dom (T
. $1)) holds (p
. i)
in (
dom (h
| (
divset ((T
. $1),i)))) & ex z be
Point of X st z
= ((h
| (
divset ((T
. $1),i)))
. (p
. i)) & ((S
. $1)
. i)
= ((
vol (
divset ((T
. $1),i)))
* z);
A5: for k be
Element of
NAT holds ex p be
Element of (
REAL
* ) st
P[k, p]
proof
let k be
Element of
NAT ;
defpred
P1[
Nat,
set] means $2
in (
dom (h
| (
divset ((T
. k),$1)))) & ex c be
Point of X st c
= ((h
| (
divset ((T
. k),$1)))
. $2) & ((S
. k)
. $1)
= ((
vol (
divset ((T
. k),$1)))
* c);
A6: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A7: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
then
consider c be
Point of X such that
A8: c
in (
rng (h
| (
divset ((T
. k),i)))) & ((S
. k)
. i)
= ((
vol (
divset ((T
. k),i)))
* c) by
Def1;
consider x be
object such that
A9: x
in (
dom (h
| (
divset ((T
. k),i)))) & c
= ((h
| (
divset ((T
. k),i)))
. x) by
A8,
FUNCT_1:def 3;
x
in (
dom h) & x
in (
divset ((T
. k),i)) by
A9,
RELAT_1: 57;
then
reconsider x as
Element of
REAL ;
take x;
thus thesis by
A8,
A9;
end;
consider p be
FinSequence of
REAL such that
A10: (
dom p)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P1[i, (p
. i)] from
FINSEQ_1:sch 5(
A7);
take p;
(
len p)
= (
len (T
. k)) by
A10,
FINSEQ_1:def 3;
hence thesis by
A10,
A6,
FINSEQ_1:def 11;
end;
consider F be
sequence of (
REAL
* ) such that
A11: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A5);
defpred
P1[
Element of
NAT ,
set] means ex q be
middle_volume of f, (T
. $1) st q
= $2 & for i be
Nat st i
in (
dom (T
. $1)) holds ex z be
Point of X st ((F
. $1)
. i)
in (
dom (f
| (
divset ((T
. $1),i)))) & z
= ((f
| (
divset ((T
. $1),i)))
. ((F
. $1)
. i)) & (q
. i)
= ((
vol (
divset ((T
. $1),i)))
* z);
A12: for k be
Element of
NAT holds ex y be
Element of (the
carrier of X
* ) st
P1[k, y]
proof
let k be
Element of
NAT ;
defpred
P11[
Nat,
set] means ex c be
Point of X st ((F
. k)
. $1)
in (
dom (f
| (
divset ((T
. k),$1)))) & c
= ((f
| (
divset ((T
. k),$1)))
. ((F
. k)
. $1)) & $2
= ((
vol (
divset ((T
. k),$1)))
* c);
A13: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A14: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of the
carrier of X st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then
A15: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
consider p be
FinSequence of
REAL such that
A16: p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (h
| (
divset ((T
. k),i)))) & ex z be
Point of X st z
= ((h
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= ((
vol (
divset ((T
. k),i)))
* z) by
A11;
(p
. i)
in (
dom (h
| (
divset ((T
. k),i)))) by
A15,
A16;
then
A17: (p
. i)
in (
dom h) & (p
. i)
in (
divset ((T
. k),i)) by
RELAT_1: 57;
then (p
. i)
in (
dom (f
| (
divset ((T
. k),i)))) by
A2,
RELAT_1: 57;
then ((f
| (
divset ((T
. k),i)))
. (p
. i))
in (
rng (f
| (
divset ((T
. k),i)))) by
FUNCT_1: 3;
then
reconsider x = ((f
| (
divset ((T
. k),i)))
. (p
. i)) as
Element of the
carrier of X;
A18: ((F
. k)
. i)
in (
dom (f
| (
divset ((T
. k),i)))) by
A16,
A17,
A2,
RELAT_1: 57;
((
vol (
divset ((T
. k),i)))
* x) is
Element of the
carrier of X;
hence thesis by
A16,
A18;
end;
consider q be
FinSequence of the
carrier of X such that
A19: (
dom q)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P11[i, (q
. i)] from
FINSEQ_1:sch 5(
A14);
A20: (
len q)
= (
len (T
. k)) by
A19,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (T
. k));
then i
in (
Seg (
len (T
. k))) by
FINSEQ_1:def 3;
then
consider c be
Point of X such that
A21: ((F
. k)
. i)
in (
dom (f
| (
divset ((T
. k),i)))) & c
= ((f
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= ((
vol (
divset ((T
. k),i)))
* c) by
A19;
thus ex c be
Point of X st c
in (
rng (f
| (
divset ((T
. k),i)))) & (q
. i)
= ((
vol (
divset ((T
. k),i)))
* c) by
A21,
FUNCT_1: 3;
end;
then
reconsider q as
middle_volume of f, (T
. k) by
A20,
Def1;
q is
Element of (the
carrier of X
* ) by
FINSEQ_1:def 11;
hence thesis by
A13,
A19;
end;
consider Sf be
sequence of (the
carrier of X
* ) such that
A22: for x be
Element of
NAT holds
P1[x, (Sf
. x)] from
FUNCT_2:sch 3(
A12);
now
let k be
Element of
NAT ;
ex q be
middle_volume of f, (T
. k) st q
= (Sf
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Point of X st ((F
. k)
. i)
in (
dom (f
| (
divset ((T
. k),i)))) & z
= ((f
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= ((
vol (
divset ((T
. k),i)))
* z) by
A22;
hence (Sf
. k) is
middle_volume of f, (T
. k);
end;
then
reconsider Sf as
middle_volume_Sequence of f, T by
Def3;
defpred
Q1[
Element of
NAT ,
set] means ex q be
middle_volume of g, (T
. $1) st q
= $2 & for i be
Nat st i
in (
dom (T
. $1)) holds ex z be
Point of X st ((F
. $1)
. i)
in (
dom (g
| (
divset ((T
. $1),i)))) & z
= ((g
| (
divset ((T
. $1),i)))
. ((F
. $1)
. i)) & (q
. i)
= ((
vol (
divset ((T
. $1),i)))
* z);
A23: for k be
Element of
NAT holds ex y be
Element of (the
carrier of X
* ) st
Q1[k, y]
proof
let k be
Element of
NAT ;
defpred
Q11[
Nat,
set] means ex c be
Point of X st ((F
. k)
. $1)
in (
dom (g
| (
divset ((T
. k),$1)))) & c
= ((g
| (
divset ((T
. k),$1)))
. ((F
. k)
. $1)) & $2
= ((
vol (
divset ((T
. k),$1)))
* c);
A24: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A25: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of the
carrier of X st
Q11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then
A26: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
consider p be
FinSequence of
REAL such that
A27: p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (h
| (
divset ((T
. k),i)))) & ex z be
Point of X st z
= ((h
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= ((
vol (
divset ((T
. k),i)))
* z) by
A11;
(p
. i)
in (
dom (h
| (
divset ((T
. k),i)))) by
A26,
A27;
then
A28: (p
. i)
in (
dom h) & (p
. i)
in (
divset ((T
. k),i)) by
RELAT_1: 57;
then (p
. i)
in (
dom (g
| (
divset ((T
. k),i)))) by
A2,
RELAT_1: 57;
then ((g
| (
divset ((T
. k),i)))
. (p
. i))
in (
rng (g
| (
divset ((T
. k),i)))) by
FUNCT_1: 3;
then
reconsider x = ((g
| (
divset ((T
. k),i)))
. (p
. i)) as
Element of the
carrier of X;
A29: ((F
. k)
. i)
in (
dom (g
| (
divset ((T
. k),i)))) by
A27,
A28,
A2,
RELAT_1: 57;
((
vol (
divset ((T
. k),i)))
* x) is
Element of the
carrier of X;
hence thesis by
A27,
A29;
end;
consider q be
FinSequence of the
carrier of X such that
A30: (
dom q)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
Q11[i, (q
. i)] from
FINSEQ_1:sch 5(
A25);
A31: (
len q)
= (
len (T
. k)) by
A30,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (T
. k));
then i
in (
Seg (
len (T
. k))) by
FINSEQ_1:def 3;
then
consider c be
Point of X such that
A32: ((F
. k)
. i)
in (
dom (g
| (
divset ((T
. k),i)))) & c
= ((g
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= ((
vol (
divset ((T
. k),i)))
* c) by
A30;
thus ex c be
Point of X st c
in (
rng (g
| (
divset ((T
. k),i)))) & (q
. i)
= ((
vol (
divset ((T
. k),i)))
* c) by
A32,
FUNCT_1: 3;
end;
then
reconsider q as
middle_volume of g, (T
. k) by
A31,
Def1;
q is
Element of (the
carrier of X
* ) by
FINSEQ_1:def 11;
hence thesis by
A24,
A30;
end;
consider Sg be
sequence of (the
carrier of X
* ) such that
A33: for x be
Element of
NAT holds
Q1[x, (Sg
. x)] from
FUNCT_2:sch 3(
A23);
now
let k be
Element of
NAT ;
ex q be
middle_volume of g, (T
. k) st q
= (Sg
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Point of X st ((F
. k)
. i)
in (
dom (g
| (
divset ((T
. k),i)))) & z
= ((g
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= ((
vol (
divset ((T
. k),i)))
* z) by
A33;
hence (Sg
. k) is
middle_volume of g, (T
. k);
end;
then
reconsider Sg as
middle_volume_Sequence of g, T by
Def3;
A34: (
middle_sum (f,Sf)) is
convergent & (
lim (
middle_sum (f,Sf)))
= (
integral f) by
Def6,
A1,
A4;
A35: (
middle_sum (g,Sg)) is
convergent & (
lim (
middle_sum (g,Sg)))
= (
integral g) by
Def6,
A1,
A4;
A36: ((
middle_sum (f,Sf))
+ (
middle_sum (g,Sg)))
= (
middle_sum (h,S))
proof
now
let n be
Nat;
A37: n
in
NAT by
ORDINAL1:def 12;
consider p be
FinSequence of
REAL such that
A38: p
= (F
. n) & (
len p)
= (
len (T
. n)) & for i be
Nat st i
in (
dom (T
. n)) holds (p
. i)
in (
dom (h
| (
divset ((T
. n),i)))) & ex z be
Point of X st z
= ((h
| (
divset ((T
. n),i)))
. (p
. i)) & ((S
. n)
. i)
= ((
vol (
divset ((T
. n),i)))
* z) by
A11,
A37;
consider q be
middle_volume of f, (T
. n) such that
A39: q
= (Sf
. n) & for i be
Nat st i
in (
dom (T
. n)) holds ex z be
Point of X st ((F
. n)
. i)
in (
dom (f
| (
divset ((T
. n),i)))) & z
= ((f
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= ((
vol (
divset ((T
. n),i)))
* z) by
A22,
A37;
consider r be
middle_volume of g, (T
. n) such that
A40: r
= (Sg
. n) & for i be
Nat st i
in (
dom (T
. n)) holds ex z be
Point of X st ((F
. n)
. i)
in (
dom (g
| (
divset ((T
. n),i)))) & z
= ((g
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (r
. i)
= ((
vol (
divset ((T
. n),i)))
* z) by
A33,
A37;
A41: (
len (Sf
. n))
= (
len (T
. n)) & (
len (Sg
. n))
= (
len (T
. n)) & (
len (S
. n))
= (
len (T
. n)) by
Def1;
A42: (
dom (Sf
. n))
= (
dom (T
. n)) & (
dom (Sg
. n))
= (
dom (T
. n)) & (
dom (S
. n))
= (
dom (T
. n)) by
A41,
FINSEQ_3: 29;
now
let i be
Nat;
assume 1
<= i & i
<= (
len (S
. n));
then i
in (
Seg (
len (S
. n))) by
FINSEQ_1: 1;
then
A43: i
in (
dom (S
. n)) by
FINSEQ_1:def 3;
consider t be
Point of X such that
A44: t
= ((h
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & ((S
. n)
. i)
= ((
vol (
divset ((T
. n),i)))
* t) by
A43,
A42,
A38;
consider z be
Point of X such that
A45: ((F
. n)
. i)
in (
dom (f
| (
divset ((T
. n),i)))) & z
= ((f
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (q
. i)
= ((
vol (
divset ((T
. n),i)))
* z) by
A39,
A43,
A42;
consider w be
Point of X such that
A46: ((F
. n)
. i)
in (
dom (g
| (
divset ((T
. n),i)))) & w
= ((g
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) & (r
. i)
= ((
vol (
divset ((T
. n),i)))
* w) by
A40,
A43,
A42;
A47: ((F
. n)
. i)
in (
divset ((T
. n),i)) by
A46,
RELAT_1: 57;
A48: ((F
. n)
. i)
in (
dom g) by
A46,
RELAT_1: 57;
A49: ((F
. n)
. i)
in A by
A46;
then
A50: ((F
. n)
. i)
in (
dom h) by
FUNCT_2:def 1;
A51: ((F
. n)
. i)
in (
dom f) by
A49,
FUNCT_2:def 1;
A52: (f
/. ((F
. n)
. i))
= (f
. ((F
. n)
. i)) by
A51,
PARTFUN1:def 6
.= z by
A45,
A47,
FUNCT_1: 49;
A53: (g
/. ((F
. n)
. i))
= (g
. ((F
. n)
. i)) by
A48,
PARTFUN1:def 6
.= w by
A46,
A47,
FUNCT_1: 49;
A54: t
= ((h
| (
divset ((T
. n),i)))
. ((F
. n)
. i)) by
A44
.= (h
. ((F
. n)
. i)) by
A47,
FUNCT_1: 49
.= (h
/. ((F
. n)
. i)) by
A50,
PARTFUN1:def 6
.= ((f
/. ((F
. n)
. i))
+ (g
/. ((F
. n)
. i))) by
A50,
A1,
VFUNCT_1:def 1
.= (z
+ w) by
A52,
A53;
A55: ((
vol (
divset ((T
. n),i)))
* z)
= ((Sf
. n)
. i) by
A45,
A39
.= ((Sf
. n)
/. i) by
A43,
A42,
PARTFUN1:def 6;
A56: ((
vol (
divset ((T
. n),i)))
* w)
= ((Sg
. n)
. i) by
A46,
A40
.= ((Sg
. n)
/. i) by
A43,
A42,
PARTFUN1:def 6;
thus ((S
. n)
/. i)
= ((S
. n)
. i) by
A43,
PARTFUN1:def 6
.= ((
vol (
divset ((T
. n),i)))
* t) by
A44
.= (((
vol (
divset ((T
. n),i)))
* z)
+ ((
vol (
divset ((T
. n),i)))
* w)) by
A54,
RLVECT_1:def 5
.= (((Sf
. n)
/. i)
+ ((Sg
. n)
/. i)) by
A55,
A56;
end;
then
A57: ((Sf
. n)
+ (Sg
. n))
= (S
. n) by
A42,
BINOM:def 1;
thus (((
middle_sum (f,Sf))
. n)
+ ((
middle_sum (g,Sg))
. n))
= ((
middle_sum (f,(Sf
. n)))
+ ((
middle_sum (g,Sg))
. n)) by
Def4
.= ((
middle_sum (f,(Sf
. n)))
+ (
middle_sum (g,(Sg
. n)))) by
Def4
.= ((
Sum (Sf
. n))
+ (
middle_sum (g,(Sg
. n))))
.= ((
Sum (Sf
. n))
+ (
Sum (Sg
. n)))
.= (
Sum (S
. n)) by
A57,
A41,
Th1
.= (
middle_sum (h,(S
. n)))
.= ((
middle_sum (h,S))
. n) by
Def4;
end;
hence thesis by
NORMSP_1:def 2;
end;
hence (
middle_sum (h,S)) is
convergent by
A34,
A35,
NORMSP_1: 19;
thus (
lim (
middle_sum (h,S)))
= ((
integral f)
+ (
integral g)) by
A34,
A35,
A36,
NORMSP_1: 25;
end;
hence h is
integrable;
hence (
integral h)
= ((
integral f)
+ (
integral g)) by
Def6,
A3;
end;
theorem ::
INTEGR18:7
for X be
RealNormSpace, A be non
empty
closed_interval
Subset of
REAL , f,g,h be
Function of A, the
carrier of X st h
= (f
- g) & f is
integrable & g is
integrable holds h is
integrable & (
integral h)
= ((
integral f)
- (
integral g))
proof
let X be
RealNormSpace, A be non
empty
closed_interval
Subset of
REAL , f,g,h be
Function of A, the
carrier of X;
assume
A1: h
= (f
- g) & f is
integrable & g is
integrable;
then
A2: h
= (f
+ (
- g)) by
VFUNCT_1: 25;
(
dom (
- g))
= (
dom g) by
VFUNCT_1:def 5
.= A by
FUNCT_2:def 1;
then
reconsider gg = (
- g) as
Function of A, the
carrier of X by
FUNCT_2:def 1;
A3: gg is
integrable by
A1,
Th5;
hence h is
integrable by
A1,
A2,
Th6;
(
integral h)
= ((
integral f)
+ (
integral gg)) by
A1,
A2,
A3,
Th6;
then (
integral h)
= ((
integral f)
+ (
- (
integral g))) by
A1,
Th5;
hence (
integral h)
= ((
integral f)
- (
integral g)) by
RLVECT_1:def 11;
end;
definition
let X be
RealNormSpace;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL , the
carrier of X;
::
INTEGR18:def7
pred f
is_integrable_on A means ex g be
Function of A, the
carrier of X st g
= (f
| A) & g is
integrable;
end
definition
let X be
RealNormSpace;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL , the
carrier of X;
assume
A1: A
c= (
dom f);
::
INTEGR18:def8
func
integral (f,A) ->
Element of X means
:
Def8: ex g be
Function of A, the
carrier of X st g
= (f
| A) & it
= (
integral g);
correctness
proof
A2: (
dom (f
| A))
= A by
A1,
RELAT_1: 62;
(
rng (f
| A))
c= the
carrier of X;
then
reconsider g = (f
| A) as
Function of A, the
carrier of X by
A2,
FUNCT_2: 2;
(
integral g) is
Point of X;
hence thesis;
end;
end
theorem ::
INTEGR18:8
for A be non
empty
closed_interval
Subset of
REAL , f be
PartFunc of
REAL , the
carrier of X, g be
Function of A, the
carrier of X st (f
| A)
= g holds f
is_integrable_on A iff g is
integrable;
theorem ::
INTEGR18:9
for A be non
empty
closed_interval
Subset of
REAL , f be
PartFunc of
REAL , the
carrier of X, g be
Function of A, the
carrier of X st A
c= (
dom f) & (f
| A)
= g holds (
integral (f,A))
= (
integral g) by
Def8;
theorem ::
INTEGR18:10
Th10: for X,Y be non
empty
set, V be
RealNormSpace, g,f be
PartFunc of X, the
carrier of V, g1,f1 be
PartFunc of Y, the
carrier of V st g
= g1 & f
= f1 holds (g1
+ f1)
= (g
+ f)
proof
let X,Y be non
empty
set, V be
RealNormSpace, g,f be
PartFunc of X, the
carrier of V, g1,f1 be
PartFunc of Y, the
carrier of V;
assume
A1: g
= g1 & f
= f1;
A2: (
dom (g
+ f))
= ((
dom g)
/\ (
dom f)) by
VFUNCT_1:def 1
.= ((
dom g1)
/\ (
dom f1)) by
A1;
A3: (g
+ f) is
PartFunc of Y, the
carrier of V by
A2,
RELSET_1: 5;
for c be
Element of Y st c
in (
dom (g
+ f)) holds ((g
+ f)
/. c)
= ((g1
/. c)
+ (f1
/. c)) by
A1,
VFUNCT_1:def 1;
hence thesis by
A3,
A2,
VFUNCT_1:def 1;
end;
theorem ::
INTEGR18:11
for X,Y be non
empty
set, V be
RealNormSpace, g,f be
PartFunc of X, the
carrier of V, g1,f1 be
PartFunc of Y, the
carrier of V st g
= g1 & f
= f1 holds (g1
- f1)
= (g
- f)
proof
let X,Y be non
empty
set, V be
RealNormSpace, g,f be
PartFunc of X, the
carrier of V, g1,f1 be
PartFunc of Y, the
carrier of V;
assume
A1: g
= g1 & f
= f1;
A2: (
dom (g
- f))
= ((
dom g)
/\ (
dom f)) by
VFUNCT_1:def 2
.= ((
dom g1)
/\ (
dom f1)) by
A1;
A3: (g
- f) is
PartFunc of Y, the
carrier of V by
A2,
RELSET_1: 5;
for c be
Element of Y st c
in (
dom (g
- f)) holds ((g
- f)
/. c)
= ((g1
/. c)
- (f1
/. c)) by
A1,
VFUNCT_1:def 2;
hence thesis by
A3,
A2,
VFUNCT_1:def 2;
end;
theorem ::
INTEGR18:12
Th12: for r be
Real, X,Y be non
empty
set, V be
RealNormSpace, g be
PartFunc of X, the
carrier of V, g1 be
PartFunc of Y, the
carrier of V st g
= g1 holds (r
(#) g1)
= (r
(#) g)
proof
let r be
Real, X,Y be non
empty
set, V be
RealNormSpace, g be
PartFunc of X, the
carrier of V, g1 be
PartFunc of Y, the
carrier of V;
assume
A1: g
= g1;
A2: (
dom (r
(#) g))
= (
dom g) by
VFUNCT_1:def 4
.= (
dom g1) by
A1;
A3: (r
(#) g) is
PartFunc of Y, the
carrier of V by
A2,
RELSET_1: 5;
for c be
Element of Y st c
in (
dom (r
(#) g)) holds ((r
(#) g)
/. c)
= (r
* (g1
/. c)) by
A1,
VFUNCT_1:def 4;
hence thesis by
A3,
A2,
VFUNCT_1:def 4;
end;
begin
theorem ::
INTEGR18:13
Th13: for r be
Real holds for A be non
empty
closed_interval
Subset of
REAL holds for f be
PartFunc of
REAL , the
carrier of X st A
c= (
dom f) & f
is_integrable_on A holds (r
(#) f)
is_integrable_on A & (
integral ((r
(#) f),A))
= (r
* (
integral (f,A)))
proof
let r be
Real;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL , the
carrier of X;
assume
A1: A
c= (
dom f) & f
is_integrable_on A;
A2: A
c= (
dom (r
(#) f)) by
A1,
VFUNCT_1:def 4;
consider g be
Function of A, the
carrier of X such that
A3: g
= (f
| A) & g is
integrable by
A1;
A4: ((r
(#) f)
| A)
= (r
(#) (f
| A)) by
VFUNCT_1: 31
.= (r
(#) g) by
A3,
Th12;
(r
(#) g) is
total by
VFUNCT_1: 34;
then
reconsider gg = (r
(#) g) as
Function of A, the
carrier of X;
gg is
integrable & (
integral gg)
= (r
* (
integral g)) by
A3,
Th4;
hence (r
(#) f)
is_integrable_on A by
A4;
thus (
integral ((r
(#) f),A))
= (
integral gg) by
A4,
A2,
Def8
.= (r
* (
integral g)) by
A3,
Th4
.= (r
* (
integral (f,A))) by
A3,
A1,
Def8;
end;
theorem ::
INTEGR18:14
Th14: for A be non
empty
closed_interval
Subset of
REAL , f1,f2 be
PartFunc of
REAL , the
carrier of X st f1
is_integrable_on A & f2
is_integrable_on A & A
c= (
dom f1) & A
c= (
dom f2) holds (f1
+ f2)
is_integrable_on A & (
integral ((f1
+ f2),A))
= ((
integral (f1,A))
+ (
integral (f2,A)))
proof
let A be non
empty
closed_interval
Subset of
REAL ;
let f1,f2 be
PartFunc of
REAL , the
carrier of X;
assume that
A1: f1
is_integrable_on A & f2
is_integrable_on A and
A2: A
c= (
dom f1) & A
c= (
dom f2);
A
c= ((
dom f1)
/\ (
dom f2)) by
A2,
XBOOLE_1: 19;
then
A3: A
c= (
dom (f1
+ f2)) by
VFUNCT_1:def 1;
consider g1 be
Function of A, the
carrier of X such that
A4: g1
= (f1
| A) & g1 is
integrable by
A1;
consider g2 be
Function of A, the
carrier of X such that
A5: g2
= (f2
| A) & g2 is
integrable by
A1;
((f1
+ f2)
| A)
= ((f1
| A)
+ (f2
| A)) by
VFUNCT_1: 27;
then
A6: ((f1
+ f2)
| A)
= (g1
+ g2) by
A4,
A5,
Th10;
(g1
+ g2) is
total by
VFUNCT_1: 32;
then
reconsider g = (g1
+ g2) as
Function of A, the
carrier of X;
g is
integrable by
Th6,
A4,
A5;
hence (f1
+ f2)
is_integrable_on A by
A6;
thus (
integral ((f1
+ f2),A))
= (
integral g) by
Def8,
A6,
A3
.= ((
integral g1)
+ (
integral g2)) by
Th6,
A4,
A5
.= ((
integral (f1,A))
+ (
integral g2)) by
A2,
A4,
Def8
.= ((
integral (f1,A))
+ (
integral (f2,A))) by
A2,
A5,
Def8;
end;
theorem ::
INTEGR18:15
for A be non
empty
closed_interval
Subset of
REAL , f1,f2 be
PartFunc of
REAL , the
carrier of X st f1
is_integrable_on A & f2
is_integrable_on A & A
c= (
dom f1) & A
c= (
dom f2) holds (f1
- f2)
is_integrable_on A & (
integral ((f1
- f2),A))
= ((
integral (f1,A))
- (
integral (f2,A)))
proof
let A be non
empty
closed_interval
Subset of
REAL ;
let f1,f2 be
PartFunc of
REAL , the
carrier of X;
assume that
A1: f1
is_integrable_on A & f2
is_integrable_on A and
A2: A
c= (
dom f1) & A
c= (
dom f2);
A3: (f1
- f2)
= (f1
+ (
- f2)) by
VFUNCT_1: 25;
A4: (
dom (
- f2))
= (
dom f2) by
VFUNCT_1:def 5;
A5: (
- f2)
= ((
- jj)
(#) f2) by
VFUNCT_1: 23;
then
A6: (
- f2)
is_integrable_on A by
A1,
A2,
Th13;
hence (f1
- f2)
is_integrable_on A by
A1,
A2,
A3,
A4,
Th14;
thus (
integral ((f1
- f2),A))
= (
integral ((f1
+ (
- f2)),A)) by
VFUNCT_1: 25
.= ((
integral (f1,A))
+ (
integral ((
- f2),A))) by
A1,
A2,
A4,
A6,
Th14
.= ((
integral (f1,A))
+ ((
- jj)
* (
integral (f2,A)))) by
A1,
A2,
A5,
Th13
.= ((
integral (f1,A))
+ (
- (
integral (f2,A)))) by
RLVECT_1: 16
.= ((
integral (f1,A))
- (
integral (f2,A))) by
RLVECT_1:def 11;
end;
definition
let X be
RealNormSpace;
let f be
PartFunc of
REAL , the
carrier of X;
let a,b be
Real;
::
INTEGR18:def9
func
integral (f,a,b) ->
Element of X equals
:
Def9: (
integral (f,
['a, b'])) if a
<= b
otherwise (
- (
integral (f,
['b, a'])));
correctness ;
end
theorem ::
INTEGR18:16
Th16: for f be
PartFunc of
REAL , the
carrier of X, A be non
empty
closed_interval
Subset of
REAL , a,b be
Real st A
=
[.a, b.] holds (
integral (f,A))
= (
integral (f,a,b))
proof
let f be
PartFunc of
REAL , the
carrier of X;
let A be non
empty
closed_interval
Subset of
REAL ;
let a,b be
Real;
consider a1,b1 be
Real such that
A1: a1
<= b1 and
A2: A
=
[.a1, b1.] by
MEASURE5: 14;
assume A
=
[.a, b.];
then
A3: a1
= a & b1
= b by
A2,
INTEGRA1: 5;
then (
integral (f,a,b))
= (
integral (f,
['a, b'])) by
A1,
Def9;
hence thesis by
A1,
A2,
A3,
INTEGRA5:def 3;
end;
theorem ::
INTEGR18:17
Th17: for f be
PartFunc of
REAL , the
carrier of X, A be non
empty
closed_interval
Subset of
REAL st (
vol A)
=
0 & A
c= (
dom f) holds f
is_integrable_on A & (
integral (f,A))
= (
0. X)
proof
let f be
PartFunc of
REAL , the
carrier of X, A be non
empty
closed_interval
Subset of
REAL ;
assume
A1: (
vol A)
=
0 & A
c= (
dom f);
f is
Function of (
dom f), (
rng f) by
FUNCT_2: 1;
then f is
Function of (
dom f), the
carrier of X by
FUNCT_2: 2;
then
reconsider g = (f
| A) as
Function of A, the
carrier of X by
A1,
FUNCT_2: 32;
A2: for T be
DivSequence of A, S be
middle_volume_Sequence of g, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (g,S)) is
convergent & (
lim (
middle_sum (g,S)))
= (
0. X)
proof
let T be
DivSequence of A, S be
middle_volume_Sequence of g, T;
assume (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
A3: for i be
Nat holds (
middle_sum (g,(S
. i)))
= (
0. X)
proof
let i be
Nat;
A4: (
len (S
. i))
= (
len (S
. i));
now
let k be
Nat, v be
Element of X;
assume
A5: k
in (
dom (S
. i)) & v
= ((S
. i)
. k);
then k
in (
Seg (
len (S
. i))) by
FINSEQ_1:def 3;
then k
in (
Seg (
len (T
. i))) by
Def1;
then
A6: k
in (
dom (T
. i)) by
FINSEQ_1:def 3;
then
consider c be
VECTOR of X such that
A7: c
in (
rng (g
| (
divset ((T
. i),k)))) & ((S
. i)
. k)
= ((
vol (
divset ((T
. i),k)))
* c) by
Def1;
0
<= (
vol (
divset ((T
. i),k))) & (
vol (
divset ((T
. i),k)))
<=
0 by
A1,
A6,
INTEGRA1: 8,
INTEGRA1: 9,
INTEGRA2: 38;
then
A8: (
vol (
divset ((T
. i),k)))
=
0 ;
((S
. i)
. k)
= (
0. X) by
A8,
A7,
RLVECT_1: 10;
hence ((S
. i)
. k)
= (
- v) by
A5,
RLVECT_1: 12;
end;
then (
Sum (S
. i))
= (
- (
Sum (S
. i))) by
A4,
RLVECT_1: 40;
hence thesis by
RLVECT_1: 19;
end;
A9: for i be
Nat holds ((
middle_sum (g,S))
. i)
= (
0. X)
proof
let i be
Nat;
thus ((
middle_sum (g,S))
. i)
= (
middle_sum (g,(S
. i))) by
Def4
.= (
0. X) by
A3;
end;
A10: for r be
Real st
0
< r holds ex m be
Nat st for n be
Nat st m
<= n holds
||.(((
middle_sum (g,S))
. n)
- (
0. X)).||
< r
proof
let r be
Real;
assume
A11:
0
< r;
take m =
0 ;
let n be
Nat;
assume m
<= n;
||.(((
middle_sum (g,S))
. n)
- (
0. X)).||
=
||.((
0. X)
- (
0. X)).|| by
A9
.=
0 by
NORMSP_1: 6;
hence
||.(((
middle_sum (g,S))
. n)
- (
0. X)).||
< r by
A11;
end;
hence (
middle_sum (g,S)) is
convergent by
NORMSP_1:def 6;
hence (
lim (
middle_sum (g,S)))
= (
0. X) by
A10,
NORMSP_1:def 7;
end;
then
A12: g is
integrable;
hence f
is_integrable_on A;
(
integral g)
= (
0. X) by
A12,
A2,
Def6;
hence (
integral (f,A))
= (
0. X) by
Def8,
A1;
end;
theorem ::
INTEGR18:18
for f be
PartFunc of
REAL , the
carrier of X, A be non
empty
closed_interval
Subset of
REAL , a,b be
Real st A
=
[.b, a.] & A
c= (
dom f) holds (
- (
integral (f,A)))
= (
integral (f,a,b))
proof
let f be
PartFunc of
REAL , the
carrier of X;
let A be non
empty
closed_interval
Subset of
REAL ;
let a,b be
Real;
consider a1,b1 be
Real such that
A1: a1
<= b1 and
A2: A
=
[.a1, b1.] by
MEASURE5: 14;
assume
A3: A
=
[.b, a.] & A
c= (
dom f);
then
A4: a1
= b & b1
= a by
A2,
INTEGRA1: 5;
now
per cases by
A1,
A4,
XXREAL_0: 1;
suppose
A5: b
< a;
then (
integral (f,a,b))
= (
- (
integral (f,
['b, a']))) by
Def9;
hence thesis by
A3,
A5,
INTEGRA5:def 3;
end;
suppose
A6: b
= a;
A
=
[.(
lower_bound A), (
upper_bound A).] by
INTEGRA1: 4;
then (
lower_bound A)
= b & (
upper_bound A)
= a by
A3,
INTEGRA1: 5;
then
A7: (
vol A)
= ((
upper_bound A)
- (
upper_bound A)) by
A6
.=
0 ;
A8: (
integral (f,a,b))
= (
integral (f,A)) by
A3,
A6,
Th16;
A9: (
- (
integral (f,a,b)))
= (
- (
integral (f,A))) by
A3,
A6,
Th16;
(
integral (f,a,b))
= (
0. X) by
A7,
A3,
Th17,
A8;
hence thesis by
A9,
RLVECT_1: 12;
end;
end;
hence thesis;
end;