jordan1g.miz
begin
reserve n for
Nat;
registration
cluster
trivial for
FinSequence;
existence
proof
take
{} ;
thus thesis;
end;
end
theorem ::
JORDAN1G:1
Th1: for f be
trivial
FinSequence holds f is
empty or ex x be
object st f
=
<*x*>
proof
let f be
trivial
FinSequence;
assume f is non
empty;
then
consider x be
object such that
A1: f
=
{x} by
ZFMISC_1: 131;
x
in
{x} by
TARSKI:def 1;
then
consider y,z be
object such that
A2: x
=
[y, z] by
A1,
RELAT_1:def 1;
A3: 1
in (
dom f) by
A1,
FINSEQ_5: 6;
take z;
(
dom f)
=
{y} by
A1,
A2,
RELAT_1: 9;
then 1
= y by
A3,
TARSKI:def 1;
hence thesis by
A1,
A2,
FINSEQ_1:def 5;
end;
registration
let p be non
trivial
FinSequence;
cluster (
Rev p) -> non
trivial;
coherence
proof
assume
A1: (
Rev p) is
trivial;
per cases by
A1,
Th1;
suppose (
Rev p) is
empty;
hence contradiction;
end;
suppose ex x be
object st (
Rev p)
=
<*x*>;
then
consider x be
object such that
A2: (
Rev p)
=
<*x*>;
p
= (
Rev
<*x*>) by
A2
.=
<*x*> by
FINSEQ_5: 60;
hence contradiction;
end;
end;
end
theorem ::
JORDAN1G:2
Th2: for D be non
empty
set holds for f be
FinSequence of D holds for G be
Matrix of D holds for p be
set holds f
is_sequence_on G implies (f
-: p)
is_sequence_on G
proof
let D be non
empty
set;
let f be
FinSequence of D;
let G be
Matrix of D;
let p be
set;
assume f
is_sequence_on G;
then (f
| (p
.. f))
is_sequence_on G by
GOBOARD1: 22;
hence thesis by
FINSEQ_5:def 1;
end;
theorem ::
JORDAN1G:3
Th3: for D be non
empty
set holds for f be
FinSequence of D holds for G be
Matrix of D holds for p be
Element of D st p
in (
rng f) holds f
is_sequence_on G implies (f
:- p)
is_sequence_on G
proof
let D be non
empty
set;
let f be
FinSequence of D;
let G be
Matrix of D;
let p be
Element of D;
assume that
A1: p
in (
rng f) and
A2: f
is_sequence_on G;
ex i be
Element of
NAT st (i
+ 1)
= (p
.. f) & (f
:- p)
= (f
/^ i) by
A1,
FINSEQ_5: 49;
hence thesis by
A2,
JORDAN8: 2;
end;
theorem ::
JORDAN1G:4
Th4: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds (
Upper_Seq (C,n))
is_sequence_on (
Gauge (C,n))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
(
Cage (C,n))
is_sequence_on (
Gauge (C,n)) by
JORDAN9:def 1;
then (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
is_sequence_on (
Gauge (C,n)) by
REVROT_1: 34;
then ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n)))))
is_sequence_on (
Gauge (C,n)) by
Th2;
hence thesis by
JORDAN1E:def 1;
end;
theorem ::
JORDAN1G:5
Th5: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds (
Lower_Seq (C,n))
is_sequence_on (
Gauge (C,n))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
(
Cage (C,n))
is_sequence_on (
Gauge (C,n)) by
JORDAN9:def 1;
then
A1: (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
is_sequence_on (
Gauge (C,n)) by
REVROT_1: 34;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
then ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n)))))
is_sequence_on (
Gauge (C,n)) by
A1,
Th3;
hence thesis by
JORDAN1E:def 2;
end;
registration
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
cluster (
Upper_Seq (C,n)) ->
standard;
coherence
proof
(
Upper_Seq (C,n))
is_sequence_on (
Gauge (C,n)) by
Th4;
hence thesis by
JORDAN8: 4;
end;
cluster (
Lower_Seq (C,n)) ->
standard;
coherence
proof
(
Lower_Seq (C,n))
is_sequence_on (
Gauge (C,n)) by
Th5;
hence thesis by
JORDAN8: 4;
end;
end
theorem ::
JORDAN1G:6
Th6: for G be
Y_equal-in-column
Y_increasing-in-line
Matrix of (
TOP-REAL 2) holds for i1,i2,j1,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) holds ((G
* (i1,j1))
`2 )
= ((G
* (i2,j2))
`2 ) implies j1
= j2
proof
let G be
Y_equal-in-column
Y_increasing-in-line
Matrix of (
TOP-REAL 2);
let i1,i2,j1,j2 be
Nat;
assume that
A1:
[i1, j1]
in (
Indices G) and
A2:
[i2, j2]
in (
Indices G) and
A3: ((G
* (i1,j1))
`2 )
= ((G
* (i2,j2))
`2 ) and
A4: j1
<> j2;
A5: 1
<= j1 & j1
<= (
width G) by
A1,
MATRIX_0: 32;
A6: j1
< j2 or j1
> j2 by
A4,
XXREAL_0: 1;
A7: 1
<= i2 & i2
<= (
len G) by
A2,
MATRIX_0: 32;
A8: 1
<= j2 & j2
<= (
width G) by
A2,
MATRIX_0: 32;
A9: 1
<= i1 & i1
<= (
len G) by
A1,
MATRIX_0: 32;
then ((G
* (i1,j2))
`2 )
= ((G
* (1,j2))
`2 ) by
A8,
GOBOARD5: 1
.= ((G
* (i2,j2))
`2 ) by
A7,
A8,
GOBOARD5: 1;
hence contradiction by
A3,
A9,
A5,
A8,
A6,
GOBOARD5: 4;
end;
theorem ::
JORDAN1G:7
Th7: for G be
X_equal-in-line
X_increasing-in-column
Matrix of (
TOP-REAL 2) holds for i1,i2,j1,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) holds ((G
* (i1,j1))
`1 )
= ((G
* (i2,j2))
`1 ) implies i1
= i2
proof
let G be
X_equal-in-line
X_increasing-in-column
Matrix of (
TOP-REAL 2);
let i1,i2,j1,j2 be
Nat;
assume that
A1:
[i1, j1]
in (
Indices G) and
A2:
[i2, j2]
in (
Indices G) and
A3: ((G
* (i1,j1))
`1 )
= ((G
* (i2,j2))
`1 ) and
A4: i1
<> i2;
A5: 1
<= i1 & i1
<= (
len G) by
A1,
MATRIX_0: 32;
A6: 1
<= i2 & i2
<= (
len G) by
A2,
MATRIX_0: 32;
A7: 1
<= j2 & j2
<= (
width G) by
A2,
MATRIX_0: 32;
A8: i1
< i2 or i1
> i2 by
A4,
XXREAL_0: 1;
1
<= j1 & j1
<= (
width G) by
A1,
MATRIX_0: 32;
then ((G
* (i1,j1))
`1 )
= ((G
* (i1,1))
`1 ) by
A5,
GOBOARD5: 2
.= ((G
* (i1,j2))
`1 ) by
A5,
A7,
GOBOARD5: 2;
hence contradiction by
A3,
A5,
A6,
A7,
A8,
GOBOARD5: 3;
end;
theorem ::
JORDAN1G:8
Th8: for f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2) st ((f
/. 1)
<> (
N-min (
L~ f)) & (f
/. (
len f))
<> (
N-min (
L~ f))) or ((f
/. 1)
<> (
N-max (
L~ f)) & (f
/. (
len f))
<> (
N-max (
L~ f))) holds ((
N-min (
L~ f))
`1 )
< ((
N-max (
L~ f))
`1 )
proof
let f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2);
set p = (
N-min (
L~ f));
set i = (p
.. f);
assume
A1: (f
/. 1)
<> (
N-min (
L~ f)) & (f
/. (
len f))
<> (
N-min (
L~ f)) or (f
/. 1)
<> (
N-max (
L~ f)) & (f
/. (
len f))
<> (
N-max (
L~ f));
A2: (
len f)
>= 2 by
NAT_D: 60;
A3: (p
`2 )
= (
N-bound (
L~ f)) by
EUCLID: 52;
A4: p
in (
rng f) by
SPRECT_2: 39;
then
A5: i
in (
dom f) by
FINSEQ_4: 20;
then
A6: 1
<= i & i
<= (
len f) by
FINSEQ_3: 25;
A7: p
= (f
. i) by
A4,
FINSEQ_4: 19
.= (f
/. i) by
A5,
PARTFUN1:def 6;
per cases by
A6,
XXREAL_0: 1;
suppose
A8: i
= 1;
(p
`2 )
= ((
N-max (
L~ f))
`2 ) by
PSCOMP_1: 37;
then
A9: (p
`1 )
<> ((
N-max (
L~ f))
`1 ) by
A1,
A7,
A8,
TOPREAL3: 6;
(p
`1 )
<= ((
N-max (
L~ f))
`1 ) by
PSCOMP_1: 38;
hence thesis by
A9,
XXREAL_0: 1;
end;
suppose
A10: i
= (
len f);
(p
`2 )
= ((
N-max (
L~ f))
`2 ) by
PSCOMP_1: 37;
then
A11: (p
`1 )
<> ((
N-max (
L~ f))
`1 ) by
A1,
A7,
A10,
TOPREAL3: 6;
(p
`1 )
<= ((
N-max (
L~ f))
`1 ) by
PSCOMP_1: 38;
hence thesis by
A11,
XXREAL_0: 1;
end;
suppose that
A12: 1
< i and
A13: i
< (
len f);
A14: ((i
-' 1)
+ 1)
= i by
A12,
XREAL_1: 235;
then
A15: (i
-' 1)
>= 1 by
A12,
NAT_1: 13;
then
A16: (f
/. (i
-' 1))
in (
LSeg (f,(i
-' 1))) by
A13,
A14,
TOPREAL1: 21;
(i
-' 1)
<= i by
A14,
NAT_1: 11;
then (i
-' 1)
<= (
len f) by
A13,
XXREAL_0: 2;
then
A17: (i
-' 1)
in (
dom f) by
A15,
FINSEQ_3: 25;
then
A18: (f
/. (i
-' 1))
in (
L~ f) by
A2,
GOBOARD1: 1;
A19: (i
+ 1)
<= (
len f) by
A13,
NAT_1: 13;
then
A20: (f
/. (i
+ 1))
in (
LSeg (f,i)) by
A12,
TOPREAL1: 21;
(i
+ 1)
>= 1 by
NAT_1: 11;
then
A21: (i
+ 1)
in (
dom f) by
A19,
FINSEQ_3: 25;
then
A22: (f
/. (i
+ 1))
in (
L~ f) by
A2,
GOBOARD1: 1;
A23: p
<> (f
/. (i
+ 1)) by
A4,
A7,
A21,
FINSEQ_4: 20,
GOBOARD7: 29;
A24: p
in (
LSeg (f,i)) by
A7,
A12,
A19,
TOPREAL1: 21;
A25: p
in (
LSeg (f,(i
-' 1))) by
A7,
A13,
A14,
A15,
TOPREAL1: 21;
A26: p
<> (f
/. (i
-' 1)) by
A5,
A7,
A14,
A17,
GOBOARD7: 29;
A27: not ((
LSeg (f,(i
-' 1))) is
vertical & (
LSeg (f,i)) is
vertical)
proof
assume (
LSeg (f,(i
-' 1))) is
vertical & (
LSeg (f,i)) is
vertical;
then
A28: (p
`1 )
= ((f
/. (i
+ 1))
`1 ) & (p
`1 )
= ((f
/. (i
-' 1))
`1 ) by
A25,
A24,
A16,
A20,
SPPOL_1:def 3;
A29: ((f
/. (i
+ 1))
`2 )
<= ((f
/. (i
-' 1))
`2 ) or ((f
/. (i
+ 1))
`2 )
>= ((f
/. (i
-' 1))
`2 );
A30: (p
`2 )
>= ((f
/. (i
+ 1))
`2 ) & (p
`2 )
>= ((f
/. (i
-' 1))
`2 ) by
A3,
A18,
A22,
PSCOMP_1: 24;
(
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) & (
LSeg (f,(i
-' 1)))
= (
LSeg ((f
/. i),(f
/. (i
-' 1)))) by
A12,
A13,
A14,
A15,
A19,
TOPREAL1:def 3;
then (f
/. (i
-' 1))
in (
LSeg (f,i)) or (f
/. (i
+ 1))
in (
LSeg (f,(i
-' 1))) by
A7,
A28,
A30,
A29,
GOBOARD7: 7;
then (f
/. (i
-' 1))
in ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,i))) or (f
/. (i
+ 1))
in ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,i))) by
A16,
A20,
XBOOLE_0:def 4;
then (((i
-' 1)
+ 1)
+ 1)
= ((i
-' 1)
+ (1
+ 1)) & ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,i)))
<>
{(f
/. i)} by
A7,
A26,
A23,
TARSKI:def 1;
hence contradiction by
A14,
A15,
A19,
TOPREAL1:def 6;
end;
now
per cases by
A27,
SPPOL_1: 19;
suppose (
LSeg (f,(i
-' 1))) is
horizontal;
then
A31: (p
`2 )
= ((f
/. (i
-' 1))
`2 ) by
A25,
A16,
SPPOL_1:def 2;
then
A32: (f
/. (i
-' 1))
in (
N-most (
L~ f)) by
A2,
A3,
A17,
GOBOARD1: 1,
SPRECT_2: 10;
then
A33: ((f
/. (i
-' 1))
`1 )
>= (p
`1 ) by
PSCOMP_1: 39;
((f
/. (i
-' 1))
`1 )
<> (p
`1 ) by
A5,
A7,
A14,
A17,
A31,
GOBOARD7: 29,
TOPREAL3: 6;
then
A34: ((f
/. (i
-' 1))
`1 )
> (p
`1 ) by
A33,
XXREAL_0: 1;
((f
/. (i
-' 1))
`1 )
<= ((
N-max (
L~ f))
`1 ) by
A32,
PSCOMP_1: 39;
hence thesis by
A34,
XXREAL_0: 2;
end;
suppose (
LSeg (f,i)) is
horizontal;
then
A35: (p
`2 )
= ((f
/. (i
+ 1))
`2 ) by
A24,
A20,
SPPOL_1:def 2;
then
A36: (f
/. (i
+ 1))
in (
N-most (
L~ f)) by
A2,
A3,
A21,
GOBOARD1: 1,
SPRECT_2: 10;
then
A37: ((f
/. (i
+ 1))
`1 )
>= (p
`1 ) by
PSCOMP_1: 39;
((f
/. (i
+ 1))
`1 )
<> (p
`1 ) by
A5,
A7,
A21,
A35,
GOBOARD7: 29,
TOPREAL3: 6;
then
A38: ((f
/. (i
+ 1))
`1 )
> (p
`1 ) by
A37,
XXREAL_0: 1;
((f
/. (i
+ 1))
`1 )
<= ((
N-max (
L~ f))
`1 ) by
A36,
PSCOMP_1: 39;
hence thesis by
A38,
XXREAL_0: 2;
end;
end;
hence thesis;
end;
end;
theorem ::
JORDAN1G:9
for f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2) st ((f
/. 1)
<> (
N-min (
L~ f)) & (f
/. (
len f))
<> (
N-min (
L~ f))) or ((f
/. 1)
<> (
N-max (
L~ f)) & (f
/. (
len f))
<> (
N-max (
L~ f))) holds (
N-min (
L~ f))
<> (
N-max (
L~ f))
proof
let f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2);
assume (f
/. 1)
<> (
N-min (
L~ f)) & (f
/. (
len f))
<> (
N-min (
L~ f)) or (f
/. 1)
<> (
N-max (
L~ f)) & (f
/. (
len f))
<> (
N-max (
L~ f));
then ((
N-min (
L~ f))
`1 )
< ((
N-max (
L~ f))
`1 ) by
Th8;
hence thesis;
end;
theorem ::
JORDAN1G:10
Th10: for f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2) st ((f
/. 1)
<> (
S-min (
L~ f)) & (f
/. (
len f))
<> (
S-min (
L~ f))) or ((f
/. 1)
<> (
S-max (
L~ f)) & (f
/. (
len f))
<> (
S-max (
L~ f))) holds ((
S-min (
L~ f))
`1 )
< ((
S-max (
L~ f))
`1 )
proof
let f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2);
set p = (
S-min (
L~ f));
set i = (p
.. f);
assume
A1: (f
/. 1)
<> (
S-min (
L~ f)) & (f
/. (
len f))
<> (
S-min (
L~ f)) or (f
/. 1)
<> (
S-max (
L~ f)) & (f
/. (
len f))
<> (
S-max (
L~ f));
A2: (
len f)
>= 2 by
NAT_D: 60;
A3: (p
`2 )
= (
S-bound (
L~ f)) by
EUCLID: 52;
A4: p
in (
rng f) by
SPRECT_2: 41;
then
A5: i
in (
dom f) by
FINSEQ_4: 20;
then
A6: 1
<= i & i
<= (
len f) by
FINSEQ_3: 25;
A7: p
= (f
. i) by
A4,
FINSEQ_4: 19
.= (f
/. i) by
A5,
PARTFUN1:def 6;
per cases by
A6,
XXREAL_0: 1;
suppose
A8: i
= 1;
(p
`2 )
= ((
S-max (
L~ f))
`2 ) by
PSCOMP_1: 53;
then
A9: (p
`1 )
<> ((
S-max (
L~ f))
`1 ) by
A1,
A7,
A8,
TOPREAL3: 6;
(p
`1 )
<= ((
S-max (
L~ f))
`1 ) by
PSCOMP_1: 54;
hence thesis by
A9,
XXREAL_0: 1;
end;
suppose
A10: i
= (
len f);
(p
`2 )
= ((
S-max (
L~ f))
`2 ) by
PSCOMP_1: 53;
then
A11: (p
`1 )
<> ((
S-max (
L~ f))
`1 ) by
A1,
A7,
A10,
TOPREAL3: 6;
(p
`1 )
<= ((
S-max (
L~ f))
`1 ) by
PSCOMP_1: 54;
hence thesis by
A11,
XXREAL_0: 1;
end;
suppose that
A12: 1
< i and
A13: i
< (
len f);
A14: ((i
-' 1)
+ 1)
= i by
A12,
XREAL_1: 235;
then
A15: (i
-' 1)
>= 1 by
A12,
NAT_1: 13;
then
A16: (f
/. (i
-' 1))
in (
LSeg (f,(i
-' 1))) by
A13,
A14,
TOPREAL1: 21;
(i
-' 1)
<= i by
A14,
NAT_1: 11;
then (i
-' 1)
<= (
len f) by
A13,
XXREAL_0: 2;
then
A17: (i
-' 1)
in (
dom f) by
A15,
FINSEQ_3: 25;
then
A18: (f
/. (i
-' 1))
in (
L~ f) by
A2,
GOBOARD1: 1;
A19: (i
+ 1)
<= (
len f) by
A13,
NAT_1: 13;
then
A20: (f
/. (i
+ 1))
in (
LSeg (f,i)) by
A12,
TOPREAL1: 21;
(i
+ 1)
>= 1 by
NAT_1: 11;
then
A21: (i
+ 1)
in (
dom f) by
A19,
FINSEQ_3: 25;
then
A22: (f
/. (i
+ 1))
in (
L~ f) by
A2,
GOBOARD1: 1;
A23: p
<> (f
/. (i
+ 1)) by
A4,
A7,
A21,
FINSEQ_4: 20,
GOBOARD7: 29;
A24: p
in (
LSeg (f,i)) by
A7,
A12,
A19,
TOPREAL1: 21;
A25: p
in (
LSeg (f,(i
-' 1))) by
A7,
A13,
A14,
A15,
TOPREAL1: 21;
A26: p
<> (f
/. (i
-' 1)) by
A5,
A7,
A14,
A17,
GOBOARD7: 29;
A27: not ((
LSeg (f,(i
-' 1))) is
vertical & (
LSeg (f,i)) is
vertical)
proof
assume (
LSeg (f,(i
-' 1))) is
vertical & (
LSeg (f,i)) is
vertical;
then
A28: (p
`1 )
= ((f
/. (i
+ 1))
`1 ) & (p
`1 )
= ((f
/. (i
-' 1))
`1 ) by
A25,
A24,
A16,
A20,
SPPOL_1:def 3;
A29: ((f
/. (i
+ 1))
`2 )
<= ((f
/. (i
-' 1))
`2 ) or ((f
/. (i
+ 1))
`2 )
>= ((f
/. (i
-' 1))
`2 );
A30: (p
`2 )
<= ((f
/. (i
+ 1))
`2 ) & (p
`2 )
<= ((f
/. (i
-' 1))
`2 ) by
A3,
A18,
A22,
PSCOMP_1: 24;
(
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) & (
LSeg (f,(i
-' 1)))
= (
LSeg ((f
/. i),(f
/. (i
-' 1)))) by
A12,
A13,
A14,
A15,
A19,
TOPREAL1:def 3;
then (f
/. (i
-' 1))
in (
LSeg (f,i)) or (f
/. (i
+ 1))
in (
LSeg (f,(i
-' 1))) by
A7,
A28,
A30,
A29,
GOBOARD7: 7;
then (f
/. (i
-' 1))
in ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,i))) or (f
/. (i
+ 1))
in ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,i))) by
A16,
A20,
XBOOLE_0:def 4;
then (((i
-' 1)
+ 1)
+ 1)
= ((i
-' 1)
+ (1
+ 1)) & ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,i)))
<>
{(f
/. i)} by
A7,
A26,
A23,
TARSKI:def 1;
hence contradiction by
A14,
A15,
A19,
TOPREAL1:def 6;
end;
now
per cases by
A27,
SPPOL_1: 19;
suppose (
LSeg (f,(i
-' 1))) is
horizontal;
then
A31: (p
`2 )
= ((f
/. (i
-' 1))
`2 ) by
A25,
A16,
SPPOL_1:def 2;
then
A32: (f
/. (i
-' 1))
in (
S-most (
L~ f)) by
A2,
A3,
A17,
GOBOARD1: 1,
SPRECT_2: 11;
then
A33: ((f
/. (i
-' 1))
`1 )
>= (p
`1 ) by
PSCOMP_1: 55;
((f
/. (i
-' 1))
`1 )
<> (p
`1 ) by
A5,
A7,
A14,
A17,
A31,
GOBOARD7: 29,
TOPREAL3: 6;
then
A34: ((f
/. (i
-' 1))
`1 )
> (p
`1 ) by
A33,
XXREAL_0: 1;
((f
/. (i
-' 1))
`1 )
<= ((
S-max (
L~ f))
`1 ) by
A32,
PSCOMP_1: 55;
hence thesis by
A34,
XXREAL_0: 2;
end;
suppose (
LSeg (f,i)) is
horizontal;
then
A35: (p
`2 )
= ((f
/. (i
+ 1))
`2 ) by
A24,
A20,
SPPOL_1:def 2;
then
A36: (f
/. (i
+ 1))
in (
S-most (
L~ f)) by
A2,
A3,
A21,
GOBOARD1: 1,
SPRECT_2: 11;
then
A37: ((f
/. (i
+ 1))
`1 )
>= (p
`1 ) by
PSCOMP_1: 55;
((f
/. (i
+ 1))
`1 )
<> (p
`1 ) by
A5,
A7,
A21,
A35,
GOBOARD7: 29,
TOPREAL3: 6;
then
A38: ((f
/. (i
+ 1))
`1 )
> (p
`1 ) by
A37,
XXREAL_0: 1;
((f
/. (i
+ 1))
`1 )
<= ((
S-max (
L~ f))
`1 ) by
A36,
PSCOMP_1: 55;
hence thesis by
A38,
XXREAL_0: 2;
end;
end;
hence thesis;
end;
end;
theorem ::
JORDAN1G:11
for f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2) st ((f
/. 1)
<> (
S-min (
L~ f)) & (f
/. (
len f))
<> (
S-min (
L~ f))) or ((f
/. 1)
<> (
S-max (
L~ f)) & (f
/. (
len f))
<> (
S-max (
L~ f))) holds (
S-min (
L~ f))
<> (
S-max (
L~ f))
proof
let f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2);
assume (f
/. 1)
<> (
S-min (
L~ f)) & (f
/. (
len f))
<> (
S-min (
L~ f)) or (f
/. 1)
<> (
S-max (
L~ f)) & (f
/. (
len f))
<> (
S-max (
L~ f));
then ((
S-min (
L~ f))
`1 )
< ((
S-max (
L~ f))
`1 ) by
Th10;
hence thesis;
end;
theorem ::
JORDAN1G:12
Th12: for f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2) st ((f
/. 1)
<> (
W-min (
L~ f)) & (f
/. (
len f))
<> (
W-min (
L~ f))) or ((f
/. 1)
<> (
W-max (
L~ f)) & (f
/. (
len f))
<> (
W-max (
L~ f))) holds ((
W-min (
L~ f))
`2 )
< ((
W-max (
L~ f))
`2 )
proof
let f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2);
set p = (
W-min (
L~ f));
set i = (p
.. f);
assume
A1: (f
/. 1)
<> (
W-min (
L~ f)) & (f
/. (
len f))
<> (
W-min (
L~ f)) or (f
/. 1)
<> (
W-max (
L~ f)) & (f
/. (
len f))
<> (
W-max (
L~ f));
A2: (
len f)
>= 2 by
NAT_D: 60;
A3: (p
`1 )
= (
W-bound (
L~ f)) by
EUCLID: 52;
A4: p
in (
rng f) by
SPRECT_2: 43;
then
A5: i
in (
dom f) by
FINSEQ_4: 20;
then
A6: 1
<= i & i
<= (
len f) by
FINSEQ_3: 25;
A7: p
= (f
. i) by
A4,
FINSEQ_4: 19
.= (f
/. i) by
A5,
PARTFUN1:def 6;
per cases by
A6,
XXREAL_0: 1;
suppose
A8: i
= 1;
(p
`1 )
= ((
W-max (
L~ f))
`1 ) by
PSCOMP_1: 29;
then
A9: (p
`2 )
<> ((
W-max (
L~ f))
`2 ) by
A1,
A7,
A8,
TOPREAL3: 6;
(p
`2 )
<= ((
W-max (
L~ f))
`2 ) by
PSCOMP_1: 30;
hence thesis by
A9,
XXREAL_0: 1;
end;
suppose
A10: i
= (
len f);
(p
`1 )
= ((
W-max (
L~ f))
`1 ) by
PSCOMP_1: 29;
then
A11: (p
`2 )
<> ((
W-max (
L~ f))
`2 ) by
A1,
A7,
A10,
TOPREAL3: 6;
(p
`2 )
<= ((
W-max (
L~ f))
`2 ) by
PSCOMP_1: 30;
hence thesis by
A11,
XXREAL_0: 1;
end;
suppose that
A12: 1
< i and
A13: i
< (
len f);
A14: ((i
-' 1)
+ 1)
= i by
A12,
XREAL_1: 235;
then
A15: (i
-' 1)
>= 1 by
A12,
NAT_1: 13;
then
A16: (f
/. (i
-' 1))
in (
LSeg (f,(i
-' 1))) by
A13,
A14,
TOPREAL1: 21;
(i
-' 1)
<= i by
A14,
NAT_1: 11;
then (i
-' 1)
<= (
len f) by
A13,
XXREAL_0: 2;
then
A17: (i
-' 1)
in (
dom f) by
A15,
FINSEQ_3: 25;
then
A18: (f
/. (i
-' 1))
in (
L~ f) by
A2,
GOBOARD1: 1;
A19: (i
+ 1)
<= (
len f) by
A13,
NAT_1: 13;
then
A20: (f
/. (i
+ 1))
in (
LSeg (f,i)) by
A12,
TOPREAL1: 21;
(i
+ 1)
>= 1 by
NAT_1: 11;
then
A21: (i
+ 1)
in (
dom f) by
A19,
FINSEQ_3: 25;
then
A22: (f
/. (i
+ 1))
in (
L~ f) by
A2,
GOBOARD1: 1;
A23: p
<> (f
/. (i
+ 1)) by
A4,
A7,
A21,
FINSEQ_4: 20,
GOBOARD7: 29;
A24: p
in (
LSeg (f,i)) by
A7,
A12,
A19,
TOPREAL1: 21;
A25: p
in (
LSeg (f,(i
-' 1))) by
A7,
A13,
A14,
A15,
TOPREAL1: 21;
A26: p
<> (f
/. (i
-' 1)) by
A5,
A7,
A14,
A17,
GOBOARD7: 29;
A27: not ((
LSeg (f,(i
-' 1))) is
horizontal & (
LSeg (f,i)) is
horizontal)
proof
assume (
LSeg (f,(i
-' 1))) is
horizontal & (
LSeg (f,i)) is
horizontal;
then
A28: (p
`2 )
= ((f
/. (i
+ 1))
`2 ) & (p
`2 )
= ((f
/. (i
-' 1))
`2 ) by
A25,
A24,
A16,
A20,
SPPOL_1:def 2;
A29: ((f
/. (i
+ 1))
`1 )
<= ((f
/. (i
-' 1))
`1 ) or ((f
/. (i
+ 1))
`1 )
>= ((f
/. (i
-' 1))
`1 );
A30: (p
`1 )
<= ((f
/. (i
+ 1))
`1 ) & (p
`1 )
<= ((f
/. (i
-' 1))
`1 ) by
A3,
A18,
A22,
PSCOMP_1: 24;
(
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) & (
LSeg (f,(i
-' 1)))
= (
LSeg ((f
/. i),(f
/. (i
-' 1)))) by
A12,
A13,
A14,
A15,
A19,
TOPREAL1:def 3;
then (f
/. (i
-' 1))
in (
LSeg (f,i)) or (f
/. (i
+ 1))
in (
LSeg (f,(i
-' 1))) by
A7,
A28,
A30,
A29,
GOBOARD7: 8;
then (f
/. (i
-' 1))
in ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,i))) or (f
/. (i
+ 1))
in ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,i))) by
A16,
A20,
XBOOLE_0:def 4;
then (((i
-' 1)
+ 1)
+ 1)
= ((i
-' 1)
+ (1
+ 1)) & ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,i)))
<>
{(f
/. i)} by
A7,
A26,
A23,
TARSKI:def 1;
hence contradiction by
A14,
A15,
A19,
TOPREAL1:def 6;
end;
now
per cases by
A27,
SPPOL_1: 19;
suppose (
LSeg (f,(i
-' 1))) is
vertical;
then
A31: (p
`1 )
= ((f
/. (i
-' 1))
`1 ) by
A25,
A16,
SPPOL_1:def 3;
then
A32: (f
/. (i
-' 1))
in (
W-most (
L~ f)) by
A2,
A3,
A17,
GOBOARD1: 1,
SPRECT_2: 12;
then
A33: ((f
/. (i
-' 1))
`2 )
>= (p
`2 ) by
PSCOMP_1: 31;
((f
/. (i
-' 1))
`2 )
<> (p
`2 ) by
A5,
A7,
A14,
A17,
A31,
GOBOARD7: 29,
TOPREAL3: 6;
then
A34: ((f
/. (i
-' 1))
`2 )
> (p
`2 ) by
A33,
XXREAL_0: 1;
((f
/. (i
-' 1))
`2 )
<= ((
W-max (
L~ f))
`2 ) by
A32,
PSCOMP_1: 31;
hence thesis by
A34,
XXREAL_0: 2;
end;
suppose (
LSeg (f,i)) is
vertical;
then
A35: (p
`1 )
= ((f
/. (i
+ 1))
`1 ) by
A24,
A20,
SPPOL_1:def 3;
then
A36: (f
/. (i
+ 1))
in (
W-most (
L~ f)) by
A2,
A3,
A21,
GOBOARD1: 1,
SPRECT_2: 12;
then
A37: ((f
/. (i
+ 1))
`2 )
>= (p
`2 ) by
PSCOMP_1: 31;
((f
/. (i
+ 1))
`2 )
<> (p
`2 ) by
A5,
A7,
A21,
A35,
GOBOARD7: 29,
TOPREAL3: 6;
then
A38: ((f
/. (i
+ 1))
`2 )
> (p
`2 ) by
A37,
XXREAL_0: 1;
((f
/. (i
+ 1))
`2 )
<= ((
W-max (
L~ f))
`2 ) by
A36,
PSCOMP_1: 31;
hence thesis by
A38,
XXREAL_0: 2;
end;
end;
hence thesis;
end;
end;
theorem ::
JORDAN1G:13
for f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2) st ((f
/. 1)
<> (
W-min (
L~ f)) & (f
/. (
len f))
<> (
W-min (
L~ f))) or ((f
/. 1)
<> (
W-max (
L~ f)) & (f
/. (
len f))
<> (
W-max (
L~ f))) holds (
W-min (
L~ f))
<> (
W-max (
L~ f))
proof
let f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2);
assume (f
/. 1)
<> (
W-min (
L~ f)) & (f
/. (
len f))
<> (
W-min (
L~ f)) or (f
/. 1)
<> (
W-max (
L~ f)) & (f
/. (
len f))
<> (
W-max (
L~ f));
then ((
W-min (
L~ f))
`2 )
< ((
W-max (
L~ f))
`2 ) by
Th12;
hence thesis;
end;
theorem ::
JORDAN1G:14
Th14: for f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2) st ((f
/. 1)
<> (
E-min (
L~ f)) & (f
/. (
len f))
<> (
E-min (
L~ f))) or ((f
/. 1)
<> (
E-max (
L~ f)) & (f
/. (
len f))
<> (
E-max (
L~ f))) holds ((
E-min (
L~ f))
`2 )
< ((
E-max (
L~ f))
`2 )
proof
let f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2);
set p = (
E-min (
L~ f));
set i = (p
.. f);
assume
A1: (f
/. 1)
<> (
E-min (
L~ f)) & (f
/. (
len f))
<> (
E-min (
L~ f)) or (f
/. 1)
<> (
E-max (
L~ f)) & (f
/. (
len f))
<> (
E-max (
L~ f));
A2: (
len f)
>= 2 by
NAT_D: 60;
A3: (p
`1 )
= (
E-bound (
L~ f)) by
EUCLID: 52;
A4: p
in (
rng f) by
SPRECT_2: 45;
then
A5: i
in (
dom f) by
FINSEQ_4: 20;
then
A6: 1
<= i & i
<= (
len f) by
FINSEQ_3: 25;
A7: p
= (f
. i) by
A4,
FINSEQ_4: 19
.= (f
/. i) by
A5,
PARTFUN1:def 6;
per cases by
A6,
XXREAL_0: 1;
suppose
A8: i
= 1;
(p
`1 )
= ((
E-max (
L~ f))
`1 ) by
PSCOMP_1: 45;
then
A9: (p
`2 )
<> ((
E-max (
L~ f))
`2 ) by
A1,
A7,
A8,
TOPREAL3: 6;
(p
`2 )
<= ((
E-max (
L~ f))
`2 ) by
PSCOMP_1: 46;
hence thesis by
A9,
XXREAL_0: 1;
end;
suppose
A10: i
= (
len f);
(p
`1 )
= ((
E-max (
L~ f))
`1 ) by
PSCOMP_1: 45;
then
A11: (p
`2 )
<> ((
E-max (
L~ f))
`2 ) by
A1,
A7,
A10,
TOPREAL3: 6;
(p
`2 )
<= ((
E-max (
L~ f))
`2 ) by
PSCOMP_1: 46;
hence thesis by
A11,
XXREAL_0: 1;
end;
suppose that
A12: 1
< i and
A13: i
< (
len f);
A14: ((i
-' 1)
+ 1)
= i by
A12,
XREAL_1: 235;
then
A15: (i
-' 1)
>= 1 by
A12,
NAT_1: 13;
then
A16: (f
/. (i
-' 1))
in (
LSeg (f,(i
-' 1))) by
A13,
A14,
TOPREAL1: 21;
(i
-' 1)
<= i by
A14,
NAT_1: 11;
then (i
-' 1)
<= (
len f) by
A13,
XXREAL_0: 2;
then
A17: (i
-' 1)
in (
dom f) by
A15,
FINSEQ_3: 25;
then
A18: (f
/. (i
-' 1))
in (
L~ f) by
A2,
GOBOARD1: 1;
A19: (i
+ 1)
<= (
len f) by
A13,
NAT_1: 13;
then
A20: (f
/. (i
+ 1))
in (
LSeg (f,i)) by
A12,
TOPREAL1: 21;
(i
+ 1)
>= 1 by
NAT_1: 11;
then
A21: (i
+ 1)
in (
dom f) by
A19,
FINSEQ_3: 25;
then
A22: (f
/. (i
+ 1))
in (
L~ f) by
A2,
GOBOARD1: 1;
A23: p
<> (f
/. (i
+ 1)) by
A4,
A7,
A21,
FINSEQ_4: 20,
GOBOARD7: 29;
A24: p
in (
LSeg (f,i)) by
A7,
A12,
A19,
TOPREAL1: 21;
A25: p
in (
LSeg (f,(i
-' 1))) by
A7,
A13,
A14,
A15,
TOPREAL1: 21;
A26: p
<> (f
/. (i
-' 1)) by
A5,
A7,
A14,
A17,
GOBOARD7: 29;
A27: not ((
LSeg (f,(i
-' 1))) is
horizontal & (
LSeg (f,i)) is
horizontal)
proof
assume (
LSeg (f,(i
-' 1))) is
horizontal & (
LSeg (f,i)) is
horizontal;
then
A28: (p
`2 )
= ((f
/. (i
+ 1))
`2 ) & (p
`2 )
= ((f
/. (i
-' 1))
`2 ) by
A25,
A24,
A16,
A20,
SPPOL_1:def 2;
A29: ((f
/. (i
+ 1))
`1 )
<= ((f
/. (i
-' 1))
`1 ) or ((f
/. (i
+ 1))
`1 )
>= ((f
/. (i
-' 1))
`1 );
A30: (p
`1 )
>= ((f
/. (i
+ 1))
`1 ) & (p
`1 )
>= ((f
/. (i
-' 1))
`1 ) by
A3,
A18,
A22,
PSCOMP_1: 24;
(
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) & (
LSeg (f,(i
-' 1)))
= (
LSeg ((f
/. i),(f
/. (i
-' 1)))) by
A12,
A13,
A14,
A15,
A19,
TOPREAL1:def 3;
then (f
/. (i
-' 1))
in (
LSeg (f,i)) or (f
/. (i
+ 1))
in (
LSeg (f,(i
-' 1))) by
A7,
A28,
A30,
A29,
GOBOARD7: 8;
then (f
/. (i
-' 1))
in ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,i))) or (f
/. (i
+ 1))
in ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,i))) by
A16,
A20,
XBOOLE_0:def 4;
then (((i
-' 1)
+ 1)
+ 1)
= ((i
-' 1)
+ (1
+ 1)) & ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,i)))
<>
{(f
/. i)} by
A7,
A26,
A23,
TARSKI:def 1;
hence contradiction by
A14,
A15,
A19,
TOPREAL1:def 6;
end;
now
per cases by
A27,
SPPOL_1: 19;
suppose (
LSeg (f,(i
-' 1))) is
vertical;
then
A31: (p
`1 )
= ((f
/. (i
-' 1))
`1 ) by
A25,
A16,
SPPOL_1:def 3;
then
A32: (f
/. (i
-' 1))
in (
E-most (
L~ f)) by
A2,
A3,
A17,
GOBOARD1: 1,
SPRECT_2: 13;
then
A33: ((f
/. (i
-' 1))
`2 )
>= (p
`2 ) by
PSCOMP_1: 47;
((f
/. (i
-' 1))
`2 )
<> (p
`2 ) by
A5,
A7,
A14,
A17,
A31,
GOBOARD7: 29,
TOPREAL3: 6;
then
A34: ((f
/. (i
-' 1))
`2 )
> (p
`2 ) by
A33,
XXREAL_0: 1;
((f
/. (i
-' 1))
`2 )
<= ((
E-max (
L~ f))
`2 ) by
A32,
PSCOMP_1: 47;
hence thesis by
A34,
XXREAL_0: 2;
end;
suppose (
LSeg (f,i)) is
vertical;
then
A35: (p
`1 )
= ((f
/. (i
+ 1))
`1 ) by
A24,
A20,
SPPOL_1:def 3;
then
A36: (f
/. (i
+ 1))
in (
E-most (
L~ f)) by
A2,
A3,
A21,
GOBOARD1: 1,
SPRECT_2: 13;
then
A37: ((f
/. (i
+ 1))
`2 )
>= (p
`2 ) by
PSCOMP_1: 47;
((f
/. (i
+ 1))
`2 )
<> (p
`2 ) by
A5,
A7,
A21,
A35,
GOBOARD7: 29,
TOPREAL3: 6;
then
A38: ((f
/. (i
+ 1))
`2 )
> (p
`2 ) by
A37,
XXREAL_0: 1;
((f
/. (i
+ 1))
`2 )
<= ((
E-max (
L~ f))
`2 ) by
A36,
PSCOMP_1: 47;
hence thesis by
A38,
XXREAL_0: 2;
end;
end;
hence thesis;
end;
end;
theorem ::
JORDAN1G:15
for f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2) st ((f
/. 1)
<> (
E-min (
L~ f)) & (f
/. (
len f))
<> (
E-min (
L~ f))) or ((f
/. 1)
<> (
E-max (
L~ f)) & (f
/. (
len f))
<> (
E-max (
L~ f))) holds (
E-min (
L~ f))
<> (
E-max (
L~ f))
proof
let f be
standard
special
unfolded non
trivial
FinSequence of (
TOP-REAL 2);
assume (f
/. 1)
<> (
E-min (
L~ f)) & (f
/. (
len f))
<> (
E-min (
L~ f)) or (f
/. 1)
<> (
E-max (
L~ f)) & (f
/. (
len f))
<> (
E-max (
L~ f));
then ((
E-min (
L~ f))
`2 )
< ((
E-max (
L~ f))
`2 ) by
Th14;
hence thesis;
end;
theorem ::
JORDAN1G:16
Th16: for D be non
empty
set holds for f be
FinSequence of D holds for p,q be
Element of D st p
in (
rng f) & q
in (
rng f) & (q
.. f)
<= (p
.. f) holds ((f
-: p)
:- q)
= ((f
:- q)
-: p)
proof
let D be non
empty
set;
let f be
FinSequence of D;
let p,q be
Element of D;
assume that
A1: p
in (
rng f) and
A2: q
in (
rng f) and
A3: (q
.. f)
<= (p
.. f);
A4: (f
-: p)
= (f
| (p
.. f)) & ((f
:- q)
-: p)
= ((f
:- q)
| (p
.. (f
:- q))) by
FINSEQ_5:def 1;
consider i be
Element of
NAT such that
A5: (i
+ 1)
= (q
.. f) and
A6: (f
:- q)
= (f
/^ i) by
A2,
FINSEQ_5: 49;
A7: i
< (p
.. f) by
A3,
A5,
NAT_1: 13;
then (p
.. f)
= (i
+ (p
.. (f
/^ i))) by
A1,
FINSEQ_6: 56;
then
A8: (p
.. (f
/^ i))
= ((p
.. f)
- i)
.= ((p
.. f)
-' i) by
A7,
XREAL_1: 233;
q
in (
rng (f
-: p)) by
A1,
A2,
A3,
FINSEQ_5: 46;
then
A9: ex j be
Element of
NAT st (j
+ 1)
= (q
.. (f
-: p)) & ((f
-: p)
:- q)
= ((f
-: p)
/^ j) by
FINSEQ_5: 49;
(q
.. (f
-: p))
= (q
.. f) by
A1,
A2,
A3,
SPRECT_5: 3;
hence thesis by
A5,
A6,
A9,
A4,
A8,
FINSEQ_5: 80;
end;
theorem ::
JORDAN1G:17
Th17: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat holds ((
L~ ((
Cage (C,n))
-: (
W-min (
L~ (
Cage (C,n))))))
/\ (
L~ ((
Cage (C,n))
:- (
W-min (
L~ (
Cage (C,n)))))))
=
{(
N-min (
L~ (
Cage (C,n)))), (
W-min (
L~ (
Cage (C,n))))}
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
set US = ((
Cage (C,n))
-: (
W-min (
L~ (
Cage (C,n)))));
set LS = ((
Cage (C,n))
:- (
W-min (
L~ (
Cage (C,n)))));
set f = (
Cage (C,n));
set pW = (
W-min (
L~ (
Cage (C,n))));
set pN = (
N-min (
L~ (
Cage (C,n))));
set pNa = (
N-max (
L~ (
Cage (C,n))));
set pSa = (
S-max (
L~ (
Cage (C,n))));
set pSi = (
S-min (
L~ (
Cage (C,n))));
set pEa = (
E-max (
L~ (
Cage (C,n))));
set pEi = (
E-min (
L~ (
Cage (C,n))));
A1: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
then
A2: ((
Cage (C,n))
-: pW)
<>
{} by
FINSEQ_5: 47;
(
len (f
-: pW))
= (pW
.. f) by
A1,
FINSEQ_5: 42;
then ((f
-: pW)
/. (
len (f
-: pW)))
= pW by
A1,
FINSEQ_5: 45;
then
A3: pW
in (
rng ((
Cage (C,n))
-: pW)) by
A2,
FINSEQ_6: 168;
A4: (f
/. 1)
= pN by
JORDAN9: 32;
then (pEa
.. f)
< (pEi
.. f) by
SPRECT_2: 71;
then (pNa
.. f)
< (pEi
.. f) by
A4,
SPRECT_2: 70,
XXREAL_0: 2;
then (pNa
.. f)
< (pSa
.. f) by
A4,
SPRECT_2: 72,
XXREAL_0: 2;
then
A5: (pNa
.. f)
< (pSi
.. f) by
A4,
SPRECT_2: 73,
XXREAL_0: 2;
(((
Cage (C,n))
-: pW)
/. 1)
= ((
Cage (C,n))
/. 1) by
A1,
FINSEQ_5: 44
.= pN by
JORDAN9: 32;
then
A6: (
N-min (
L~ (
Cage (C,n))))
in (
rng ((
Cage (C,n))
-: (
W-min (
L~ (
Cage (C,n)))))) by
A2,
FINSEQ_6: 42;
(
N-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) & (pSi
.. f)
<= (pW
.. f) by
A4,
SPRECT_2: 40,
SPRECT_2: 74;
then
A7: pNa
in (
rng (f
-: pW)) by
A1,
A5,
FINSEQ_5: 46,
XXREAL_0: 2;
A8:
{pN, pNa, pW}
c= (
rng US) by
A6,
A7,
A3,
ENUMSET1:def 1;
then
A9: (
card
{pN, pNa, pW})
c= (
card (
rng US)) by
CARD_1: 11;
(((
Cage (C,n))
:- pW)
/. 1)
= pW by
FINSEQ_5: 53;
then
A10: (
W-min (
L~ (
Cage (C,n))))
in (
rng ((
Cage (C,n))
:- (
W-min (
L~ (
Cage (C,n)))))) by
FINSEQ_6: 42;
((f
:- pW)
/. (
len (f
:- pW)))
= (f
/. (
len f)) by
A1,
FINSEQ_5: 54
.= (f
/. 1) by
FINSEQ_6:def 1
.= pN by
JORDAN9: 32;
then
A11: pN
in (
rng ((
Cage (C,n))
:- pW)) by
FINSEQ_6: 168;
{pN, pW}
c= (
rng LS) by
A11,
A10,
TARSKI:def 2;
then
A12: (
card
{pN, pW})
c= (
card (
rng LS)) by
CARD_1: 11;
(
card (
rng LS))
c= (
card (
dom LS)) by
CARD_2: 61;
then
A13: (
card (
rng LS))
c= (
len LS) by
CARD_1: 62;
(
W-max (
L~ f))
in (
L~ f) & (pN
`2 )
= (
N-bound (
L~ f)) by
EUCLID: 52,
SPRECT_1: 13;
then ((
W-max (
L~ f))
`2 )
<= (pN
`2 ) by
PSCOMP_1: 24;
then
A14: pN
<> pW by
SPRECT_2: 57;
then (
card
{pN, pW})
= 2 by
CARD_2: 57;
then (
Segm 2)
c= (
Segm (
len LS)) by
A12,
A13;
then (
len LS)
>= 2 by
NAT_1: 39;
then
A15: (
rng LS)
c= (
L~ LS) by
SPPOL_2: 18;
(LS
/. (
len LS))
= ((
Cage (C,n))
/. (
len (
Cage (C,n)))) by
A1,
FINSEQ_5: 54
.= ((
Cage (C,n))
/. 1) by
FINSEQ_6:def 1
.= (
N-min (
L~ (
Cage (C,n)))) by
JORDAN9: 32;
then
A16: (
N-min (
L~ (
Cage (C,n))))
in (
rng LS) by
FINSEQ_6: 168;
((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
<= ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)));
then
A17: (
W-min (
L~ (
Cage (C,n))))
in (
rng LS) & (
W-min (
L~ (
Cage (C,n))))
in (
rng US) by
A1,
FINSEQ_5: 46,
FINSEQ_6: 61;
(
W-max (
L~ f))
in (
L~ f) & (pNa
`2 )
= (
N-bound (
L~ f)) by
EUCLID: 52,
SPRECT_1: 13;
then ((
W-max (
L~ f))
`2 )
<= (pNa
`2 ) by
PSCOMP_1: 24;
then pN
<> pNa & pNa
<> pW by
SPRECT_2: 52,
SPRECT_2: 57;
then
A18: (
card
{pN, pNa, pW})
= 3 by
A14,
CARD_2: 58;
(
card (
rng US))
c= (
card (
dom US)) by
CARD_2: 61;
then (
card (
rng US))
c= (
len US) by
CARD_1: 62;
then (
Segm 3)
c= (
Segm (
len US)) by
A18,
A9;
then
A19: (
len US)
>= 3 by
NAT_1: 39;
then
A20: (
rng US)
c= (
L~ US) by
SPPOL_2: 18,
XXREAL_0: 2;
thus ((
L~ US)
/\ (
L~ LS))
c=
{(
N-min (
L~ (
Cage (C,n)))), (
W-min (
L~ (
Cage (C,n))))}
proof
let x be
object;
assume
A21: x
in ((
L~ US)
/\ (
L~ LS));
then
reconsider x1 = x as
Point of (
TOP-REAL 2);
assume
A22: not x
in
{(
N-min (
L~ (
Cage (C,n)))), (
W-min (
L~ (
Cage (C,n))))};
x
in (
L~ US) by
A21,
XBOOLE_0:def 4;
then
consider i1 be
Nat such that
A23: 1
<= i1 and
A24: (i1
+ 1)
<= (
len US) and
A25: x1
in (
LSeg (US,i1)) by
SPPOL_2: 13;
A26: (
LSeg (US,i1))
= (
LSeg (f,i1)) by
A24,
SPPOL_2: 9;
x
in (
L~ LS) by
A21,
XBOOLE_0:def 4;
then
consider i2 be
Nat such that
A27: 1
<= i2 and
A28: (i2
+ 1)
<= (
len LS) and
A29: x1
in (
LSeg (LS,i2)) by
SPPOL_2: 13;
set i3 = (i2
-' 1);
A30: (i3
+ 1)
= i2 by
A27,
XREAL_1: 235;
then
A31: (1
+ (pW
.. f))
<= ((i3
+ 1)
+ (pW
.. f)) by
A27,
XREAL_1: 7;
A32: (
len LS)
= (((
len f)
- (pW
.. f))
+ 1) by
A1,
FINSEQ_5: 50;
then i2
< (((
len f)
- (pW
.. f))
+ 1) by
A28,
NAT_1: 13;
then (i2
- 1)
< ((
len f)
- (pW
.. f)) by
XREAL_1: 19;
then
A33: ((i2
- 1)
+ (pW
.. f))
< (
len f) by
XREAL_1: 20;
(i2
- 1)
>= (1
- 1) by
A27,
XREAL_1: 9;
then
A34: (i3
+ (pW
.. f))
< (
len f) by
A33,
XREAL_0:def 2;
A35: (
LSeg (LS,i2))
= (
LSeg (f,(i3
+ (pW
.. f)))) by
A1,
A30,
SPPOL_2: 10;
A36: (
len US)
= (pW
.. f) by
A1,
FINSEQ_5: 42;
then (i1
+ 1)
< ((pW
.. f)
+ 1) by
A24,
NAT_1: 13;
then (i1
+ 1)
< ((i3
+ (pW
.. f))
+ 1) by
A31,
XXREAL_0: 2;
then
A37: (i1
+ 1)
<= (i3
+ (pW
.. f)) by
NAT_1: 13;
A38: (((pW
.. f)
-' 1)
+ 1)
= (pW
.. f) by
A1,
FINSEQ_4: 21,
XREAL_1: 235;
(i3
+ 1)
< (((
len f)
- (pW
.. f))
+ 1) by
A28,
A30,
A32,
NAT_1: 13;
then i3
< ((
len f)
- (pW
.. f)) by
XREAL_1: 7;
then
A39: (i3
+ (pW
.. f))
< (
len f) by
XREAL_1: 20;
then
A40: ((i3
+ (pW
.. f))
+ 1)
<= (
len f) by
NAT_1: 13;
now
per cases by
A23,
A37,
XXREAL_0: 1;
suppose (i1
+ 1)
< (i3
+ (pW
.. f)) & i1
> 1;
then (
LSeg (f,i1))
misses (
LSeg (f,(i3
+ (pW
.. f)))) by
A39,
GOBOARD5:def 4;
then ((
LSeg (f,i1))
/\ (
LSeg (f,(i3
+ (pW
.. f)))))
=
{} ;
hence contradiction by
A25,
A29,
A26,
A35,
XBOOLE_0:def 4;
end;
suppose
A41: i1
= 1;
(i3
+ (pW
.. f))
>= (
0
+ 3) by
A19,
A36,
XREAL_1: 7;
then
A42: (i1
+ 1)
< (i3
+ (pW
.. f)) by
A41,
XXREAL_0: 2;
now
per cases by
A40,
XXREAL_0: 1;
suppose ((i3
+ (pW
.. f))
+ 1)
< (
len f);
then (
LSeg (f,i1))
misses (
LSeg (f,(i3
+ (pW
.. f)))) by
A42,
GOBOARD5:def 4;
then ((
LSeg (f,i1))
/\ (
LSeg (f,(i3
+ (pW
.. f)))))
=
{} ;
hence contradiction by
A25,
A29,
A26,
A35,
XBOOLE_0:def 4;
end;
suppose ((i3
+ (pW
.. f))
+ 1)
= (
len f);
then (i3
+ (pW
.. f))
= ((
len f)
- 1);
then (i3
+ (pW
.. f))
= ((
len f)
-' 1) by
XREAL_0:def 2;
then ((
LSeg (f,i1))
/\ (
LSeg (f,(i3
+ (pW
.. f)))))
=
{(f
/. 1)} by
A41,
GOBOARD7: 34,
REVROT_1: 30;
then x1
in
{(f
/. 1)} by
A25,
A29,
A26,
A35,
XBOOLE_0:def 4;
then x1
= (f
/. 1) by
TARSKI:def 1
.= pN by
JORDAN9: 32;
hence contradiction by
A22,
TARSKI:def 2;
end;
end;
hence contradiction;
end;
suppose
A43: (i1
+ 1)
= (i3
+ (pW
.. f));
(i3
+ (pW
.. f))
>= (pW
.. f) by
NAT_1: 11;
then (pW
.. f)
< (
len f) by
A34,
XXREAL_0: 2;
then ((pW
.. f)
+ 1)
<= (
len f) by
NAT_1: 13;
then
A44: (((pW
.. f)
-' 1)
+ (1
+ 1))
<= (
len f) by
A38;
(
0
+ (pW
.. f))
<= (i3
+ (pW
.. f)) by
XREAL_1: 7;
then (pW
.. f)
= (i1
+ 1) by
A24,
A36,
A43,
XXREAL_0: 1;
then ((
LSeg (f,i1))
/\ (
LSeg (f,(i3
+ (pW
.. f)))))
=
{(f
/. (pW
.. f))} by
A23,
A38,
A43,
A44,
TOPREAL1:def 6;
then x1
in
{(f
/. (pW
.. f))} by
A25,
A29,
A26,
A35,
XBOOLE_0:def 4;
then x1
= (f
/. (pW
.. f)) by
TARSKI:def 1
.= pW by
A1,
FINSEQ_5: 38;
hence contradiction by
A22,
TARSKI:def 2;
end;
end;
hence contradiction;
end;
A45: (US
/. 1)
= ((
Cage (C,n))
/. 1) by
A1,
FINSEQ_5: 44
.= (
N-min (
L~ (
Cage (C,n)))) by
JORDAN9: 32;
US is non
empty by
A8;
then
A46: (
N-min (
L~ (
Cage (C,n))))
in (
rng US) by
A45,
FINSEQ_6: 42;
thus
{(
N-min (
L~ (
Cage (C,n)))), (
W-min (
L~ (
Cage (C,n))))}
c= ((
L~ US)
/\ (
L~ LS))
proof
let x be
object;
assume
A47: x
in
{(
N-min (
L~ (
Cage (C,n)))), (
W-min (
L~ (
Cage (C,n))))};
per cases by
A47,
TARSKI:def 2;
suppose x
= (
N-min (
L~ (
Cage (C,n))));
hence thesis by
A15,
A20,
A46,
A16,
XBOOLE_0:def 4;
end;
suppose x
= (
W-min (
L~ (
Cage (C,n))));
hence thesis by
A15,
A20,
A17,
XBOOLE_0:def 4;
end;
end;
end;
theorem ::
JORDAN1G:18
Th18: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds (
Lower_Seq (C,n))
= ((
Rotate ((
Cage (C,n)),(
E-max (
L~ (
Cage (C,n))))))
-: (
W-min (
L~ (
Cage (C,n)))))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
set Nmi = (
N-min (
L~ (
Cage (C,n))));
set Nma = (
N-max (
L~ (
Cage (C,n))));
set Wmi = (
W-min (
L~ (
Cage (C,n))));
set Wma = (
W-max (
L~ (
Cage (C,n))));
set Ema = (
E-max (
L~ (
Cage (C,n))));
set Emi = (
E-min (
L~ (
Cage (C,n))));
set Sma = (
S-max (
L~ (
Cage (C,n))));
set Smi = (
S-min (
L~ (
Cage (C,n))));
set RotWmi = (
Rotate ((
Cage (C,n)),Wmi));
set RotEma = (
Rotate ((
Cage (C,n)),Ema));
A1: Ema
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
Wma
in (
L~ (
Cage (C,n))) & (Nmi
`2 )
= (
N-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52,
SPRECT_1: 13;
then (Wma
`2 )
<= (Nmi
`2 ) by
PSCOMP_1: 24;
then Nmi
<> Wmi by
SPRECT_2: 57;
then
A2: (
card
{Nmi, Wmi})
= 2 by
CARD_2: 57;
A3: Wmi
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
then
A4: ((
Cage (C,n))
-: Wmi)
<>
{} by
FINSEQ_5: 47;
(
len ((
Cage (C,n))
-: Wmi))
= (Wmi
.. (
Cage (C,n))) by
A3,
FINSEQ_5: 42;
then (((
Cage (C,n))
-: Wmi)
/. (
len ((
Cage (C,n))
-: Wmi)))
= Wmi by
A3,
FINSEQ_5: 45;
then
A5: Wmi
in (
rng ((
Cage (C,n))
-: Wmi)) by
A4,
FINSEQ_6: 168;
(((
Cage (C,n))
-: Wmi)
/. 1)
= ((
Cage (C,n))
/. 1) by
A3,
FINSEQ_5: 44
.= Nmi by
JORDAN9: 32;
then
A6: Nmi
in (
rng ((
Cage (C,n))
-: Wmi)) by
A4,
FINSEQ_6: 42;
{Nmi, Wmi}
c= (
rng ((
Cage (C,n))
-: Wmi)) by
A6,
A5,
TARSKI:def 2;
then
A7: (
card
{Nmi, Wmi})
c= (
card (
rng ((
Cage (C,n))
-: Wmi))) by
CARD_1: 11;
(
card (
rng ((
Cage (C,n))
-: Wmi)))
c= (
card (
dom ((
Cage (C,n))
-: Wmi))) by
CARD_2: 61;
then (
card (
rng ((
Cage (C,n))
-: Wmi)))
c= (
len ((
Cage (C,n))
-: Wmi)) by
CARD_1: 62;
then (
Segm 2)
c= (
Segm (
len ((
Cage (C,n))
-: Wmi))) by
A2,
A7;
then (
len ((
Cage (C,n))
-: Wmi))
>= 2 by
NAT_1: 39;
then
A8: (
rng ((
Cage (C,n))
-: Wmi))
c= (
L~ ((
Cage (C,n))
-: Wmi)) by
SPPOL_2: 18;
A9: ((
Cage (C,n))
/. 1)
= Nmi by
JORDAN9: 32;
then (Emi
.. (
Cage (C,n)))
<= (Sma
.. (
Cage (C,n))) by
SPRECT_2: 72;
then (Ema
.. (
Cage (C,n)))
< (Sma
.. (
Cage (C,n))) by
A9,
SPRECT_2: 71,
XXREAL_0: 2;
then
A10: (Ema
.. (
Cage (C,n)))
< (Smi
.. (
Cage (C,n))) by
A9,
SPRECT_2: 73,
XXREAL_0: 2;
then
A11: (Ema
.. (
Cage (C,n)))
< (Wmi
.. (
Cage (C,n))) by
A9,
SPRECT_2: 74,
XXREAL_0: 2;
A12: (Smi
.. (
Cage (C,n)))
<= (Wmi
.. (
Cage (C,n))) by
A9,
SPRECT_2: 74;
then
A13: Ema
in (
rng ((
Cage (C,n))
-: Wmi)) by
A3,
A1,
A10,
FINSEQ_5: 46,
XXREAL_0: 2;
(Nma
`1 )
<= ((
NE-corner (
L~ (
Cage (C,n))))
`1 ) by
PSCOMP_1: 38;
then (Nmi
`1 )
< (Nma
`1 ) & (Nma
`1 )
<= (
E-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52,
SPRECT_2: 51;
then
A14: Nmi
<> Ema by
EUCLID: 52;
A15: not Ema
in (
rng ((
Cage (C,n))
:- Wmi))
proof
(((
Cage (C,n))
:- Wmi)
/. 1)
= Wmi by
FINSEQ_5: 53;
then
A16: Wmi
in (
rng ((
Cage (C,n))
:- Wmi)) by
FINSEQ_6: 42;
(((
Cage (C,n))
:- Wmi)
/. (
len ((
Cage (C,n))
:- Wmi)))
= ((
Cage (C,n))
/. (
len (
Cage (C,n)))) by
A3,
FINSEQ_5: 54
.= ((
Cage (C,n))
/. 1) by
FINSEQ_6:def 1
.= Nmi by
JORDAN9: 32;
then
A17: Nmi
in (
rng ((
Cage (C,n))
:- Wmi)) by
FINSEQ_6: 168;
{Nmi, Wmi}
c= (
rng ((
Cage (C,n))
:- Wmi)) by
A17,
A16,
TARSKI:def 2;
then
A18: (
card
{Nmi, Wmi})
c= (
card (
rng ((
Cage (C,n))
:- Wmi))) by
CARD_1: 11;
Wma
in (
L~ (
Cage (C,n))) & (Nmi
`2 )
= (
N-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52,
SPRECT_1: 13;
then (Wma
`2 )
<= (Nmi
`2 ) by
PSCOMP_1: 24;
then Nmi
<> Wmi by
SPRECT_2: 57;
then
A19: (
card
{Nmi, Wmi})
= 2 by
CARD_2: 57;
(
card (
rng ((
Cage (C,n))
:- Wmi)))
c= (
card (
dom ((
Cage (C,n))
:- Wmi))) by
CARD_2: 61;
then (
card (
rng ((
Cage (C,n))
:- Wmi)))
c= (
len ((
Cage (C,n))
:- Wmi)) by
CARD_1: 62;
then (
Segm 2)
c= (
Segm (
len ((
Cage (C,n))
:- Wmi))) by
A19,
A18;
then (
len ((
Cage (C,n))
:- Wmi))
>= 2 by
NAT_1: 39;
then
A20: (
rng ((
Cage (C,n))
:- Wmi))
c= (
L~ ((
Cage (C,n))
:- Wmi)) by
SPPOL_2: 18;
assume Ema
in (
rng ((
Cage (C,n))
:- Wmi));
then Ema
in ((
L~ ((
Cage (C,n))
-: Wmi))
/\ (
L~ ((
Cage (C,n))
:- Wmi))) by
A13,
A8,
A20,
XBOOLE_0:def 4;
then Ema
in
{Nmi, Wmi} by
Th17;
then Ema
= Wmi by
A14,
TARSKI:def 2;
hence contradiction by
TOPREAL5: 19;
end;
A21: (Nma
.. (
Cage (C,n)))
<= (Ema
.. (
Cage (C,n))) by
A9,
SPRECT_2: 70;
A22: (Nmi
.. (
Cage (C,n)))
< (Nma
.. (
Cage (C,n))) by
A9,
SPRECT_2: 68;
then
A23: Nmi
in (
rng (
Cage (C,n))) & (Nmi
.. (
Cage (C,n)))
< (Ema
.. (
Cage (C,n))) by
A9,
SPRECT_2: 39,
SPRECT_2: 70,
XXREAL_0: 2;
then
A24: Nmi
in (
rng ((
Cage (C,n))
-: Wmi)) by
A3,
A11,
FINSEQ_5: 46,
XXREAL_0: 2;
A25: (Ema
.. ((
Cage (C,n))
-: Wmi))
<> 1
proof
assume
A26: (Ema
.. ((
Cage (C,n))
-: Wmi))
= 1;
(Nmi
.. ((
Cage (C,n))
-: Wmi))
= (Nmi
.. (
Cage (C,n))) by
A3,
A23,
A11,
SPRECT_5: 3,
XXREAL_0: 2
.= 1 by
A9,
FINSEQ_6: 43;
hence contradiction by
A22,
A21,
A13,
A24,
A26,
FINSEQ_5: 9;
end;
then Ema
in (
rng (((
Cage (C,n))
-: Wmi)
/^ 1)) by
A13,
FINSEQ_6: 78;
then
A27: Ema
in ((
rng (((
Cage (C,n))
-: Wmi)
/^ 1))
\ (
rng ((
Cage (C,n))
:- Wmi))) by
A15,
XBOOLE_0:def 5;
A28: Wmi
in (
rng ((
Cage (C,n))
:- Ema)) by
A3,
A1,
A12,
A10,
FINSEQ_6: 62,
XXREAL_0: 2;
(RotWmi
:- Ema)
= ((((
Cage (C,n))
:- Wmi)
^ (((
Cage (C,n))
-: Wmi)
/^ 1))
:- Ema) by
A3,
FINSEQ_6:def 2
.= ((((
Cage (C,n))
-: Wmi)
/^ 1)
:- Ema) by
A27,
FINSEQ_6: 65
.= (((
Cage (C,n))
-: Wmi)
:- Ema) by
A13,
A25,
FINSEQ_6: 83
.= (((
Cage (C,n))
:- Ema)
-: Wmi) by
A3,
A1,
A12,
A10,
Th16,
XXREAL_0: 2
.= ((((
Cage (C,n))
:- Ema)
^ (((
Cage (C,n))
-: Ema)
/^ 1))
-: Wmi) by
A28,
FINSEQ_6: 66
.= (RotEma
-: Wmi) by
A1,
FINSEQ_6:def 2;
hence thesis by
JORDAN1E:def 2;
end;
theorem ::
JORDAN1G:19
Th19: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
W-min (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
= 1
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
((
Upper_Seq (C,n))
/. 1)
= (
W-min (
L~ (
Cage (C,n)))) by
JORDAN1F: 5;
hence thesis by
FINSEQ_6: 43;
end;
theorem ::
JORDAN1G:20
Th20: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
W-min (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
< ((
W-max (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
set Wmi = (
W-min (
L~ (
Cage (C,n))));
set Wma = (
W-max (
L~ (
Cage (C,n))));
set Nmi = (
N-min (
L~ (
Cage (C,n))));
set Nma = (
N-max (
L~ (
Cage (C,n))));
set Ema = (
E-max (
L~ (
Cage (C,n))));
set Rot = (
Rotate ((
Cage (C,n)),Wmi));
A1: (
L~ Rot)
= (
L~ (
Cage (C,n))) by
REVROT_1: 33;
then
A2: Wmi
in (
rng Rot) by
SPRECT_2: 43;
A3: Wma
in (
rng Rot) by
A1,
SPRECT_2: 44;
A4: Ema
in (
rng Rot) by
A1,
SPRECT_2: 46;
Wmi
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
then
A5: (Rot
/. 1)
= Wmi by
FINSEQ_6: 92;
then
A6: (Wmi
.. Rot)
< (Wma
.. Rot) by
A1,
SPRECT_5: 21;
A7: (
Upper_Seq (C,n))
= (Rot
-: Ema) & (Nma
.. Rot)
<= (Ema
.. Rot) by
A1,
A5,
JORDAN1E:def 1,
SPRECT_5: 25;
(Nmi
.. Rot)
< (Nma
.. Rot) by
A1,
A5,
SPRECT_5: 24;
then
A8: (Wma
.. Rot)
< (Nma
.. Rot) by
A1,
A5,
SPRECT_5: 23,
XXREAL_0: 2;
then (Wma
.. Rot)
< (Ema
.. Rot) by
A1,
A5,
SPRECT_5: 25,
XXREAL_0: 2;
then (Wmi
.. (Rot
-: Ema))
= (Wmi
.. Rot) by
A2,
A4,
A6,
SPRECT_5: 3,
XXREAL_0: 2;
hence thesis by
A4,
A6,
A7,
A8,
A3,
SPRECT_5: 3,
XXREAL_0: 2;
end;
theorem ::
JORDAN1G:21
Th21: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
W-max (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
<= ((
N-min (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
set Wmi = (
W-min (
L~ (
Cage (C,n))));
set Wma = (
W-max (
L~ (
Cage (C,n))));
set Nmi = (
N-min (
L~ (
Cage (C,n))));
set Nma = (
N-max (
L~ (
Cage (C,n))));
set Ema = (
E-max (
L~ (
Cage (C,n))));
set Rot = (
Rotate ((
Cage (C,n)),Wmi));
A1: (
L~ Rot)
= (
L~ (
Cage (C,n))) by
REVROT_1: 33;
then
A2: Wma
in (
rng Rot) by
SPRECT_2: 44;
A3: Nmi
in (
rng Rot) by
A1,
SPRECT_2: 39;
A4: Ema
in (
rng Rot) by
A1,
SPRECT_2: 46;
Wmi
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
then
A5: (Rot
/. 1)
= Wmi by
FINSEQ_6: 92;
then
A6: (Wma
.. Rot)
<= (Nmi
.. Rot) by
A1,
SPRECT_5: 23;
A7: (
Upper_Seq (C,n))
= (Rot
-: Ema) & (Nma
.. Rot)
<= (Ema
.. Rot) by
A1,
A5,
JORDAN1E:def 1,
SPRECT_5: 25;
A8: (Nmi
.. Rot)
< (Nma
.. Rot) by
A1,
A5,
SPRECT_5: 24;
then (Nmi
.. Rot)
< (Ema
.. Rot) by
A1,
A5,
SPRECT_5: 25,
XXREAL_0: 2;
then (Wma
.. (Rot
-: Ema))
= (Wma
.. Rot) by
A2,
A4,
A6,
SPRECT_5: 3,
XXREAL_0: 2;
hence thesis by
A4,
A6,
A8,
A7,
A3,
SPRECT_5: 3,
XXREAL_0: 2;
end;
theorem ::
JORDAN1G:22
Th22: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
N-min (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
< ((
N-max (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
set Wmi = (
W-min (
L~ (
Cage (C,n))));
set Nmi = (
N-min (
L~ (
Cage (C,n))));
set Nma = (
N-max (
L~ (
Cage (C,n))));
set Ema = (
E-max (
L~ (
Cage (C,n))));
set Rot = (
Rotate ((
Cage (C,n)),Wmi));
A1: (
L~ Rot)
= (
L~ (
Cage (C,n))) by
REVROT_1: 33;
then
A2: Ema
in (
rng Rot) by
SPRECT_2: 46;
Wmi
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
then (Rot
/. 1)
= Wmi by
FINSEQ_6: 92;
then
A3: (Nmi
.. Rot)
< (Nma
.. Rot) & (Nma
.. Rot)
<= (Ema
.. Rot) by
A1,
SPRECT_5: 24,
SPRECT_5: 25;
A4: Nma
in (
rng Rot) by
A1,
SPRECT_2: 40;
Nmi
in (
rng Rot) by
A1,
SPRECT_2: 39;
then (
Upper_Seq (C,n))
= (Rot
-: Ema) & (Nmi
.. (Rot
-: Ema))
= (Nmi
.. Rot) by
A2,
A3,
JORDAN1E:def 1,
SPRECT_5: 3,
XXREAL_0: 2;
hence thesis by
A2,
A3,
A4,
SPRECT_5: 3;
end;
theorem ::
JORDAN1G:23
Th23: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
N-max (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
<= ((
E-max (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
set Wmi = (
W-min (
L~ (
Cage (C,n))));
set Nma = (
N-max (
L~ (
Cage (C,n))));
set Ema = (
E-max (
L~ (
Cage (C,n))));
set Rot = (
Rotate ((
Cage (C,n)),Wmi));
A1: (
L~ Rot)
= (
L~ (
Cage (C,n))) by
REVROT_1: 33;
then
A2: Ema
in (
rng Rot) by
SPRECT_2: 46;
Wmi
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
then (Rot
/. 1)
= Wmi by
FINSEQ_6: 92;
then
A3: (Nma
.. Rot)
<= (Ema
.. Rot) by
A1,
SPRECT_5: 25;
Nma
in (
rng Rot) by
A1,
SPRECT_2: 40;
then (
Upper_Seq (C,n))
= (Rot
-: Ema) & (Nma
.. (Rot
-: Ema))
= (Nma
.. Rot) by
A2,
A3,
JORDAN1E:def 1,
SPRECT_5: 3;
hence thesis by
A2,
A3,
SPRECT_5: 3;
end;
theorem ::
JORDAN1G:24
Th24: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
E-max (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
= (
len (
Upper_Seq (C,n)))
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A1: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
(
Upper_Seq (C,n))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n))))) & ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
<= ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
JORDAN1E:def 1;
then (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Upper_Seq (C,n))) by
A1,
FINSEQ_5: 46;
then
A2: (
Upper_Seq (C,n))
just_once_values (
E-max (
L~ (
Cage (C,n)))) by
FINSEQ_4: 8;
((
Upper_Seq (C,n))
/. (
len (
Upper_Seq (C,n))))
= (
E-max (
L~ (
Cage (C,n)))) by
JORDAN1F: 7;
hence thesis by
A2,
FINSEQ_6: 166;
end;
theorem ::
JORDAN1G:25
Th25: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
E-max (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
= 1
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
((
Lower_Seq (C,n))
/. 1)
= (
E-max (
L~ (
Cage (C,n)))) by
JORDAN1F: 6;
hence thesis by
FINSEQ_6: 43;
end;
theorem ::
JORDAN1G:26
Th26: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
E-max (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
< ((
E-min (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
set Ema = (
E-max (
L~ (
Cage (C,n))));
set Emi = (
E-min (
L~ (
Cage (C,n))));
set Sma = (
S-max (
L~ (
Cage (C,n))));
set Smi = (
S-min (
L~ (
Cage (C,n))));
set Wmi = (
W-min (
L~ (
Cage (C,n))));
set Rot = (
Rotate ((
Cage (C,n)),Ema));
A1: (
Lower_Seq (C,n))
= (Rot
-: Wmi) by
Th18;
A2: (
L~ Rot)
= (
L~ (
Cage (C,n))) by
REVROT_1: 33;
then
A3: Ema
in (
rng Rot) by
SPRECT_2: 46;
A4: Emi
in (
rng Rot) by
A2,
SPRECT_2: 45;
A5: Wmi
in (
rng Rot) by
A2,
SPRECT_2: 43;
Ema
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A6: (Rot
/. 1)
= Ema by
FINSEQ_6: 92;
then
A7: (Ema
.. Rot)
< (Emi
.. Rot) by
A2,
SPRECT_5: 37;
A8: (Smi
.. Rot)
<= (Wmi
.. Rot) by
A2,
A6,
SPRECT_5: 41;
(Sma
.. Rot)
< (Smi
.. Rot) by
A2,
A6,
SPRECT_5: 40;
then
A9: (Emi
.. Rot)
< (Smi
.. Rot) by
A2,
A6,
SPRECT_5: 39,
XXREAL_0: 2;
then (Emi
.. Rot)
< (Wmi
.. Rot) by
A2,
A6,
SPRECT_5: 41,
XXREAL_0: 2;
then (Ema
.. (Rot
-: Wmi))
= (Ema
.. Rot) by
A3,
A5,
A7,
SPRECT_5: 3,
XXREAL_0: 2;
hence thesis by
A1,
A5,
A7,
A8,
A9,
A4,
SPRECT_5: 3,
XXREAL_0: 2;
end;
theorem ::
JORDAN1G:27
Th27: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
E-min (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
<= ((
S-max (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
set Ema = (
E-max (
L~ (
Cage (C,n))));
set Emi = (
E-min (
L~ (
Cage (C,n))));
set Sma = (
S-max (
L~ (
Cage (C,n))));
set Smi = (
S-min (
L~ (
Cage (C,n))));
set Wmi = (
W-min (
L~ (
Cage (C,n))));
set Rot = (
Rotate ((
Cage (C,n)),Ema));
A1: (
Lower_Seq (C,n))
= (Rot
-: Wmi) by
Th18;
A2: (
L~ Rot)
= (
L~ (
Cage (C,n))) by
REVROT_1: 33;
then
A3: Emi
in (
rng Rot) by
SPRECT_2: 45;
A4: Sma
in (
rng Rot) by
A2,
SPRECT_2: 42;
A5: Wmi
in (
rng Rot) by
A2,
SPRECT_2: 43;
Ema
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A6: (Rot
/. 1)
= Ema by
FINSEQ_6: 92;
then
A7: (Emi
.. Rot)
<= (Sma
.. Rot) by
A2,
SPRECT_5: 39;
A8: (Smi
.. Rot)
<= (Wmi
.. Rot) by
A2,
A6,
SPRECT_5: 41;
A9: (Sma
.. Rot)
< (Smi
.. Rot) by
A2,
A6,
SPRECT_5: 40;
then (Sma
.. Rot)
< (Wmi
.. Rot) by
A2,
A6,
SPRECT_5: 41,
XXREAL_0: 2;
then (Emi
.. (Rot
-: Wmi))
= (Emi
.. Rot) by
A3,
A5,
A7,
SPRECT_5: 3,
XXREAL_0: 2;
hence thesis by
A1,
A5,
A7,
A9,
A8,
A4,
SPRECT_5: 3,
XXREAL_0: 2;
end;
theorem ::
JORDAN1G:28
Th28: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
S-max (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
< ((
S-min (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
set Ema = (
E-max (
L~ (
Cage (C,n))));
set Sma = (
S-max (
L~ (
Cage (C,n))));
set Smi = (
S-min (
L~ (
Cage (C,n))));
set Wmi = (
W-min (
L~ (
Cage (C,n))));
set Rot = (
Rotate ((
Cage (C,n)),Ema));
A1: (
Lower_Seq (C,n))
= (Rot
-: Wmi) by
Th18;
A2: (
L~ Rot)
= (
L~ (
Cage (C,n))) by
REVROT_1: 33;
then
A3: Wmi
in (
rng Rot) by
SPRECT_2: 43;
Ema
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then (Rot
/. 1)
= Ema by
FINSEQ_6: 92;
then
A4: (Sma
.. Rot)
< (Smi
.. Rot) & (Smi
.. Rot)
<= (Wmi
.. Rot) by
A2,
SPRECT_5: 40,
SPRECT_5: 41;
A5: Smi
in (
rng Rot) by
A2,
SPRECT_2: 41;
Sma
in (
rng Rot) by
A2,
SPRECT_2: 42;
then (Sma
.. (Rot
-: Wmi))
= (Sma
.. Rot) by
A3,
A4,
SPRECT_5: 3,
XXREAL_0: 2;
hence thesis by
A1,
A3,
A4,
A5,
SPRECT_5: 3;
end;
theorem ::
JORDAN1G:29
Th29: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
S-min (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
<= ((
W-min (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
set Ema = (
E-max (
L~ (
Cage (C,n))));
set Smi = (
S-min (
L~ (
Cage (C,n))));
set Wmi = (
W-min (
L~ (
Cage (C,n))));
set Rot = (
Rotate ((
Cage (C,n)),Ema));
A1: (
Lower_Seq (C,n))
= (Rot
-: Wmi) by
Th18;
A2: (
L~ Rot)
= (
L~ (
Cage (C,n))) by
REVROT_1: 33;
then
A3: Wmi
in (
rng Rot) by
SPRECT_2: 43;
Ema
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then (Rot
/. 1)
= Ema by
FINSEQ_6: 92;
then
A4: (Smi
.. Rot)
<= (Wmi
.. Rot) by
A2,
SPRECT_5: 41;
Smi
in (
rng Rot) by
A2,
SPRECT_2: 41;
then (Smi
.. (Rot
-: Wmi))
= (Smi
.. Rot) by
A3,
A4,
SPRECT_5: 3;
hence thesis by
A1,
A3,
A4,
SPRECT_5: 3;
end;
theorem ::
JORDAN1G:30
Th30: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
W-min (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
= (
len (
Lower_Seq (C,n)))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
(
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
then
A1: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
E-max (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 46;
(
Lower_Seq (C,n))
= ((
Rotate ((
Cage (C,n)),(
E-max (
L~ (
Cage (C,n))))))
-: (
W-min (
L~ (
Cage (C,n))))) & ((
W-min (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
E-max (
L~ (
Cage (C,n)))))))
<= ((
W-min (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
E-max (
L~ (
Cage (C,n))))))) by
Th18;
then (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Lower_Seq (C,n))) by
A1,
FINSEQ_5: 46;
then
A2: (
Lower_Seq (C,n))
just_once_values (
W-min (
L~ (
Cage (C,n)))) by
FINSEQ_4: 8;
((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
= (
W-min (
L~ (
Cage (C,n)))) by
JORDAN1F: 8;
hence thesis by
A2,
FINSEQ_6: 166;
end;
theorem ::
JORDAN1G:31
Th31: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds (((
Upper_Seq (C,n))
/. 2)
`1 )
= (
W-bound (
L~ (
Cage (C,n))))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
set Ca = (
Cage (C,n));
set US = (
Upper_Seq (C,n));
set Wmin = (
W-min (
L~ (
Cage (C,n))));
set Emax = (
E-max (
L~ (
Cage (C,n))));
set Nmin = (
N-min (
L~ (
Cage (C,n))));
Emax
in (
rng Ca) by
SPRECT_2: 46;
then
A1: Emax
in (
rng (
Rotate (Ca,Wmin))) by
FINSEQ_6: 90,
SPRECT_2: 43;
(
len US)
>= 3 by
JORDAN1E: 15;
then (
len US)
>= 2 by
XXREAL_0: 2;
then 2
in (
Seg (
len US)) by
FINSEQ_1: 1;
then
A2: 2
in (
Seg (Emax
.. (
Rotate (Ca,Wmin)))) by
JORDAN1E: 8;
((Ca
:- Wmin)
/. 1)
= Wmin by
FINSEQ_5: 53;
then
A3: Wmin
in (
rng (Ca
:- Wmin)) by
FINSEQ_6: 42;
(Ca
/. 1)
= Nmin by
JORDAN9: 32;
then (Wmin
.. Ca)
< (
len Ca) by
SPRECT_2: 76;
then
A4: ((Wmin
.. Ca)
+ 1)
<= (
len Ca) by
NAT_1: 13;
(
W-max (
L~ Ca))
in (
L~ Ca) & (Nmin
`2 )
= (
N-bound (
L~ Ca)) by
EUCLID: 52,
SPRECT_1: 13;
then ((
W-max (
L~ Ca))
`2 )
<= (Nmin
`2 ) by
PSCOMP_1: 24;
then Nmin
<> Wmin by
SPRECT_2: 57;
then
A5: (
card
{Nmin, Wmin})
= 2 by
CARD_2: 57;
A6: Wmin
in (
rng Ca) by
SPRECT_2: 43;
then
A7: 1
<= (Wmin
.. Ca) by
FINSEQ_4: 21;
((Ca
:- Wmin)
/. (
len (Ca
:- Wmin)))
= (Ca
/. (
len Ca)) by
A6,
FINSEQ_5: 54
.= (Ca
/. 1) by
FINSEQ_6:def 1
.= Nmin by
JORDAN9: 32;
then
A8: Nmin
in (
rng (Ca
:- Wmin)) by
FINSEQ_6: 168;
{Nmin, Wmin}
c= (
rng (Ca
:- Wmin)) by
A8,
A3,
TARSKI:def 2;
then
A9: (
card
{Nmin, Wmin})
c= (
card (
rng (Ca
:- Wmin))) by
CARD_1: 11;
(
card (
rng (Ca
:- Wmin)))
c= (
card (
dom (Ca
:- Wmin))) by
CARD_2: 61;
then (
card (
rng (Ca
:- Wmin)))
c= (
len (Ca
:- Wmin)) by
CARD_1: 62;
then (
Segm 2)
c= (
Segm (
len (Ca
:- Wmin))) by
A5,
A9;
then
A10: (
len (Ca
:- Wmin))
>= 2 by
NAT_1: 39;
then
A11: (
len (Ca
:- Wmin))
>= 1 by
XXREAL_0: 2;
A12: (US
/. 1)
= (((
Rotate (Ca,Wmin))
-: Emax)
/. 1) by
JORDAN1E:def 1
.= ((
Rotate (Ca,Wmin))
/. 1) by
A1,
FINSEQ_5: 44
.= (Ca
/. ((1
-' 1)
+ (Wmin
.. Ca))) by
A6,
A11,
FINSEQ_6: 174
.= (Ca
/. (
0
+ (Wmin
.. Ca))) by
XREAL_1: 232;
(US
/. 2)
= (((
Rotate (Ca,Wmin))
-: Emax)
/. 2) by
JORDAN1E:def 1
.= ((
Rotate (Ca,Wmin))
/. 2) by
A1,
A2,
FINSEQ_5: 43
.= (Ca
/. ((2
-' 1)
+ (Wmin
.. Ca))) by
A6,
A10,
FINSEQ_6: 174
.= (Ca
/. ((2
- 1)
+ (Wmin
.. Ca))) by
XREAL_0:def 2;
hence thesis by
A7,
A4,
A12,
JORDAN1E: 22,
JORDAN1F: 5;
end;
theorem ::
JORDAN1G:32
for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds (((
Lower_Seq (C,n))
/. 2)
`1 )
= (
E-bound (
L~ (
Cage (C,n))))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
set Ca = (
Cage (C,n));
set LS = (
Lower_Seq (C,n));
set Emax = (
E-max (
L~ (
Cage (C,n))));
set Emin = (
E-min (
L~ (
Cage (C,n))));
set Smax = (
S-max (
L~ (
Cage (C,n))));
set Smin = (
S-min (
L~ (
Cage (C,n))));
set Wmin = (
W-min (
L~ (
Cage (C,n))));
set Nmin = (
N-min (
L~ (
Cage (C,n))));
Wmin
in (
rng Ca) by
SPRECT_2: 43;
then
A1: Wmin
in (
rng (
Rotate (Ca,Emax))) by
FINSEQ_6: 90,
SPRECT_2: 46;
(
len LS)
>= 3 by
JORDAN1E: 15;
then (
len LS)
>= 2 by
XXREAL_0: 2;
then 2
<= (Wmin
.. LS) by
Th30;
then 2
<= (Wmin
.. ((
Rotate (Ca,Emax))
-: Wmin)) by
Th18;
then 2
<= (Wmin
.. (
Rotate (Ca,Emax))) by
A1,
FINSEQ_6: 72;
then
A2: 2
in (
Seg (Wmin
.. (
Rotate (Ca,Emax)))) by
FINSEQ_1: 1;
((Ca
:- Emax)
/. 1)
= Emax by
FINSEQ_5: 53;
then
A3: Emax
in (
rng (Ca
:- Emax)) by
FINSEQ_6: 42;
(
N-max (
L~ Ca))
in (
L~ Ca) & (Emax
`1 )
= (
E-bound (
L~ Ca)) by
EUCLID: 52,
SPRECT_1: 11;
then ((
N-max (
L~ Ca))
`1 )
<= (Emax
`1 ) by
PSCOMP_1: 24;
then Nmin
<> Emax by
SPRECT_2: 51;
then
A4: (
card
{Nmin, Emax})
= 2 by
CARD_2: 57;
A5: (Ca
/. 1)
= Nmin by
JORDAN9: 32;
then (Emax
.. Ca)
< (Emin
.. Ca) by
SPRECT_2: 71;
then (Emax
.. Ca)
< (Smax
.. Ca) by
A5,
SPRECT_2: 72,
XXREAL_0: 2;
then (Emax
.. Ca)
< (Smin
.. Ca) by
A5,
SPRECT_2: 73,
XXREAL_0: 2;
then (Emax
.. Ca)
< (Wmin
.. Ca) by
A5,
SPRECT_2: 74,
XXREAL_0: 2;
then (Emax
.. Ca)
< (
len Ca) by
A5,
SPRECT_2: 76,
XXREAL_0: 2;
then
A6: ((Emax
.. Ca)
+ 1)
<= (
len Ca) by
NAT_1: 13;
A7: Emax
in (
rng Ca) by
SPRECT_2: 46;
then
A8: 1
<= (Emax
.. Ca) by
FINSEQ_4: 21;
((Ca
:- Emax)
/. (
len (Ca
:- Emax)))
= (Ca
/. (
len Ca)) by
A7,
FINSEQ_5: 54
.= (Ca
/. 1) by
FINSEQ_6:def 1
.= Nmin by
JORDAN9: 32;
then
A9: Nmin
in (
rng (Ca
:- Emax)) by
FINSEQ_6: 168;
{Nmin, Emax}
c= (
rng (Ca
:- Emax)) by
A9,
A3,
TARSKI:def 2;
then
A10: (
card
{Nmin, Emax})
c= (
card (
rng (Ca
:- Emax))) by
CARD_1: 11;
(
card (
rng (Ca
:- Emax)))
c= (
card (
dom (Ca
:- Emax))) by
CARD_2: 61;
then (
card (
rng (Ca
:- Emax)))
c= (
len (Ca
:- Emax)) by
CARD_1: 62;
then (
Segm 2)
c= (
Segm (
len (Ca
:- Emax))) by
A4,
A10;
then
A11: (
len (Ca
:- Emax))
>= 2 by
NAT_1: 39;
then
A12: (
len (Ca
:- Emax))
>= 1 by
XXREAL_0: 2;
A13: (LS
/. 1)
= (((
Rotate (Ca,Emax))
-: Wmin)
/. 1) by
Th18
.= ((
Rotate (Ca,Emax))
/. 1) by
A1,
FINSEQ_5: 44
.= (Ca
/. ((1
-' 1)
+ (Emax
.. Ca))) by
A7,
A12,
FINSEQ_6: 174
.= (Ca
/. (
0
+ (Emax
.. Ca))) by
XREAL_1: 232;
(LS
/. 2)
= (((
Rotate (Ca,Emax))
-: Wmin)
/. 2) by
Th18
.= ((
Rotate (Ca,Emax))
/. 2) by
A1,
A2,
FINSEQ_5: 43
.= (Ca
/. ((2
-' 1)
+ (Emax
.. Ca))) by
A7,
A11,
FINSEQ_6: 174
.= (Ca
/. ((2
- 1)
+ (Emax
.. Ca))) by
XREAL_0:def 2;
hence thesis by
A8,
A6,
A13,
JORDAN1E: 20,
JORDAN1F: 6;
end;
theorem ::
JORDAN1G:33
Th33: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
= ((
W-bound C)
+ (
E-bound C))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
thus ((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
= ((
W-bound (
L~ (
Cage (C,n))))
+ ((
E-bound C)
+ (((
E-bound C)
- (
W-bound C))
/ (2
|^ n)))) by
JORDAN1A: 64
.= (((
W-bound C)
- (((
E-bound C)
- (
W-bound C))
/ (2
|^ n)))
+ ((
E-bound C)
+ (((
E-bound C)
- (
W-bound C))
/ (2
|^ n)))) by
JORDAN1A: 62
.= ((
W-bound C)
+ (
E-bound C));
end;
theorem ::
JORDAN1G:34
for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds ((
S-bound (
L~ (
Cage (C,n))))
+ (
N-bound (
L~ (
Cage (C,n)))))
= ((
S-bound C)
+ (
N-bound C))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
thus ((
S-bound (
L~ (
Cage (C,n))))
+ (
N-bound (
L~ (
Cage (C,n)))))
= ((
S-bound (
L~ (
Cage (C,n))))
+ ((
N-bound C)
+ (((
N-bound C)
- (
S-bound C))
/ (2
|^ n)))) by
JORDAN10: 6
.= (((
S-bound C)
- (((
N-bound C)
- (
S-bound C))
/ (2
|^ n)))
+ ((
N-bound C)
+ (((
N-bound C)
- (
S-bound C))
/ (2
|^ n)))) by
JORDAN1A: 63
.= ((
S-bound C)
+ (
N-bound C));
end;
theorem ::
JORDAN1G:35
Th35: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat, i be
Nat st 1
<= i & i
<= (
width (
Gauge (C,n))) & n
>
0 holds (((
Gauge (C,n))
* ((
Center (
Gauge (C,n))),i))
`1 )
= (((
W-bound C)
+ (
E-bound C))
/ 2)
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat, i be
Nat such that
A1: 1
<= i & i
<= (
width (
Gauge (C,n)));
reconsider ii = i as
Nat;
A2: (
len (
Gauge (C,n)))
= (
width (
Gauge (C,n))) by
JORDAN8:def 1;
assume
A3: n
>
0 ;
(
len (
Gauge (C,1)))
>= 4 by
JORDAN8: 10;
then
A4: (
len (
Gauge (C,1)))
>= 1 by
XXREAL_0: 2;
thus (((
Gauge (C,n))
* ((
Center (
Gauge (C,n))),i))
`1 )
= (((
Gauge (C,n))
* ((
Center (
Gauge (C,n))),ii))
`1 )
.= (((
Gauge (C,1))
* ((
Center (
Gauge (C,1))),1))
`1 ) by
A1,
A2,
A4,
A3,
JORDAN1A: 36
.= (((
W-bound C)
+ (
E-bound C))
/ 2) by
A4,
JORDAN1A: 38;
end;
theorem ::
JORDAN1G:36
for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n,i be
Nat st 1
<= i & i
<= (
len (
Gauge (C,n))) & n
>
0 holds (((
Gauge (C,n))
* (i,(
Center (
Gauge (C,n)))))
`2 )
= (((
S-bound C)
+ (
N-bound C))
/ 2)
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n,i be
Nat such that
A1: 1
<= i & i
<= (
len (
Gauge (C,n)));
(
len (
Gauge (C,1)))
>= 4 by
JORDAN8: 10;
then
A2: (
len (
Gauge (C,1)))
>= 1 by
XXREAL_0: 2;
assume n
>
0 ;
hence (((
Gauge (C,n))
* (i,(
Center (
Gauge (C,n)))))
`2 )
= (((
Gauge (C,1))
* (1,(
Center (
Gauge (C,1)))))
`2 ) by
A1,
A2,
JORDAN1A: 37
.= (((
S-bound C)
+ (
N-bound C))
/ 2) by
A2,
JORDAN1A: 39;
end;
theorem ::
JORDAN1G:37
Th37: for f be
S-Sequence_in_R2 holds for k1,k2 be
Nat st 1
<= k1 & k1
<= (
len f) & 1
<= k2 & k2
<= (
len f) & (f
/. 1)
in (
L~ (
mid (f,k1,k2))) holds k1
= 1 or k2
= 1
proof
let f be
S-Sequence_in_R2;
let k1,k2 be
Nat;
assume that
A1: 1
<= k1 and
A2: k1
<= (
len f) and
A3: 1
<= k2 and
A4: k2
<= (
len f) and
A5: (f
/. 1)
in (
L~ (
mid (f,k1,k2)));
AA: k1
in (
dom f) by
FINSEQ_3: 25,
A1,
A2;
assume that
A6: k1
<> 1 and
A7: k2
<> 1;
A8: (
len f)
>= 2 by
TOPREAL1:def 8;
consider j be
Nat such that
A9: 1
<= j and
A10: (j
+ 1)
<= (
len (
mid (f,k1,k2))) and
A11: (f
/. 1)
in (
LSeg ((
mid (f,k1,k2)),j)) by
A5,
SPPOL_2: 13;
per cases by
XXREAL_0: 1;
suppose
A12: k1
< k2;
then (
len (
mid (f,k1,k2)))
= ((k2
-' k1)
+ 1) by
A1,
A2,
A3,
A4,
FINSEQ_6: 118;
then j
< ((k2
-' k1)
+ 1) by
A10,
NAT_1: 13;
then (
LSeg ((
mid (f,k1,k2)),j))
= (
LSeg (f,((j
+ k1)
-' 1))) by
A1,
A4,
A9,
A12,
JORDAN4: 19;
then
A13: ((j
+ k1)
-' 1)
= 1 by
A11,
A8,
JORDAN5B: 30;
(j
+ k1)
>= (1
+ 1) by
A1,
A9,
XREAL_1: 7;
then ((j
+ k1)
- 1)
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
then (j
+ (k1
- 1))
= 1 by
A13,
XREAL_0:def 2;
then (k1
- 1)
= (1
- j);
then (k1
- 1)
<=
0 by
A9,
XREAL_1: 47;
then (k1
- 1)
=
0 by
A1,
XREAL_1: 48;
hence contradiction by
A6;
end;
suppose
A14: k1
> k2;
then (
len (
mid (f,k1,k2)))
= ((k1
-' k2)
+ 1) by
A1,
A2,
A3,
A4,
FINSEQ_6: 118;
then
A15: j
< ((k1
-' k2)
+ 1) by
A10,
NAT_1: 13;
(k1
- k2)
>
0 by
A14,
XREAL_1: 50;
then (k1
-' k2)
= (k1
- k2) by
XREAL_0:def 2;
then (j
- 1)
< (k1
- k2) by
A15,
XREAL_1: 19;
then ((j
- 1)
+ k2)
< k1 by
XREAL_1: 20;
then (j
+ (
- (1
- k2)))
< k1;
then
A16: (k2
- 1)
< (k1
- j) by
XREAL_1: 20;
(
LSeg ((
mid (f,k1,k2)),j))
= (
LSeg (f,(k1
-' j))) by
A2,
A3,
A9,
A14,
A15,
JORDAN4: 20;
then (k1
-' j)
= 1 by
A11,
A8,
JORDAN5B: 30;
then (k1
- j)
= 1 by
XREAL_0:def 2;
then k2
< (1
+ 1) by
A16,
XREAL_1: 19;
then k2
<= 1 by
NAT_1: 13;
hence contradiction by
A3,
A7,
XXREAL_0: 1;
end;
suppose k1
= k2;
then (
mid (f,k1,k2))
=
<*(f
. k1)*> by
AA,
JORDAN4: 15
.=
<*(f
/. k1)*> by
AA,
PARTFUN1:def 6;
hence contradiction by
A5,
SPPOL_2: 12;
end;
end;
theorem ::
JORDAN1G:38
Th38: for f be
S-Sequence_in_R2 holds for k1,k2 be
Nat st 1
<= k1 & k1
<= (
len f) & 1
<= k2 & k2
<= (
len f) & (f
/. (
len f))
in (
L~ (
mid (f,k1,k2))) holds k1
= (
len f) or k2
= (
len f)
proof
let f be
S-Sequence_in_R2;
let k1,k2 be
Nat;
assume that
A1: 1
<= k1 and
A2: k1
<= (
len f) and
A3: 1
<= k2 and
A4: k2
<= (
len f) and
A5: (f
/. (
len f))
in (
L~ (
mid (f,k1,k2)));
AA: k1
in (
dom f) by
A1,
A2,
FINSEQ_3: 25;
assume that
A6: k1
<> (
len f) and
A7: k2
<> (
len f);
consider j be
Nat such that
A8: 1
<= j and
A9: (j
+ 1)
<= (
len (
mid (f,k1,k2))) and
A10: (f
/. (
len f))
in (
LSeg ((
mid (f,k1,k2)),j)) by
A5,
SPPOL_2: 13;
per cases by
XXREAL_0: 1;
suppose
A11: k1
< k2;
then
A12: (
len (
mid (f,k1,k2)))
= ((k2
-' k1)
+ 1) by
A1,
A2,
A3,
A4,
FINSEQ_6: 118;
then
A13: j
< ((k2
-' k1)
+ 1) by
A9,
NAT_1: 13;
A14: (j
+ k1)
>= (1
+ 1) by
A1,
A8,
XREAL_1: 7;
then
A15: ((j
+ k1)
- 1)
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
then
A16: ((j
+ k1)
-' 1)
= ((j
+ k1)
- 1) by
XREAL_0:def 2;
(k2
- k1)
>
0 by
A11,
XREAL_1: 50;
then
A17: (k2
-' k1)
= (k2
- k1) by
XREAL_0:def 2;
then (j
- 1)
< (k2
- k1) by
A13,
XREAL_1: 19;
then ((j
- 1)
+ k1)
< k2 by
XREAL_1: 20;
then
A18: ((j
+ k1)
- 1)
< (
len f) by
A4,
XXREAL_0: 2;
then
A19: ((j
+ k1)
-' 1)
in (
dom f) by
A15,
A16,
FINSEQ_3: 25;
A20: (j
+ k1)
>= 1 by
A14,
XXREAL_0: 2;
(((j
+ k1)
- 1)
+ 1)
<= (
len f) by
A16,
A18,
NAT_1: 13;
then (j
+ k1)
in (
Seg (
len f)) by
A20,
FINSEQ_1: 1;
then
A21: (((j
+ k1)
-' 1)
+ 1)
in (
dom f) by
A16,
FINSEQ_1:def 3;
(
LSeg ((
mid (f,k1,k2)),j))
= (
LSeg (f,((j
+ k1)
-' 1))) by
A1,
A4,
A8,
A11,
A13,
JORDAN4: 19;
then
A22: (((j
+ k1)
-' 1)
+ 1)
= (
len f) by
A10,
A19,
A21,
GOBOARD2: 2;
A23: ((j
+ k1)
-' 1)
= ((j
+ k1)
- 1) by
A15,
XREAL_0:def 2;
j
< ((k2
+ 1)
- k1) by
A9,
A17,
A12,
NAT_1: 13;
then (
len f)
< (k2
+ 1) by
A22,
A23,
XREAL_1: 20;
then (
len f)
<= k2 by
NAT_1: 13;
hence contradiction by
A4,
A7,
XXREAL_0: 1;
end;
suppose
A24: k1
> k2;
then (
len (
mid (f,k1,k2)))
= ((k1
-' k2)
+ 1) by
A1,
A2,
A3,
A4,
FINSEQ_6: 118;
then
A25: j
< ((k1
-' k2)
+ 1) by
A9,
NAT_1: 13;
(k1
- k2)
>
0 by
A24,
XREAL_1: 50;
then (k1
-' k2)
= (k1
- k2) by
XREAL_0:def 2;
then (j
- 1)
< (k1
- k2) by
A25,
XREAL_1: 19;
then ((j
- 1)
+ k2)
< k1 by
XREAL_1: 20;
then
A26: (j
+ (
- (1
- k2)))
< k1;
then
A27: (
- (1
- k2))
< (k1
- j) by
XREAL_1: 20;
A28: (k2
- 1)
>=
0 by
A3,
XREAL_1: 48;
then
A29: ((k1
- j)
+ 1)
> (
0
+ 1) by
A27,
XREAL_1: 6;
(k2
- 1)
< (k1
- j) by
A26,
XREAL_1: 20;
then
A30: (k1
- j)
>
0 by
A3,
XREAL_1: 48;
then
A31: (k1
-' j)
= (k1
- j) by
XREAL_0:def 2;
(k1
- j)
<= (k1
- 1) by
A8,
XREAL_1: 10;
then ((k1
- j)
+ 1)
<= ((k1
- 1)
+ 1) by
XREAL_1: 7;
then (k1
- j)
< k1 by
A31,
NAT_1: 13;
then
A32: (k1
- j)
< (
len f) by
A2,
XXREAL_0: 2;
then ((k1
- j)
+ 1)
<= (
len f) by
A31,
NAT_1: 13;
then
A33: ((k1
-' j)
+ 1)
in (
dom f) by
A31,
A29,
FINSEQ_3: 25;
(k1
- j)
>= (
0
+ 1) by
A27,
A28,
A31,
NAT_1: 13;
then
A34: (k1
-' j)
in (
dom f) by
A31,
A32,
FINSEQ_3: 25;
(
LSeg ((
mid (f,k1,k2)),j))
= (
LSeg (f,(k1
-' j))) by
A2,
A3,
A8,
A24,
A25,
JORDAN4: 20;
then ((k1
-' j)
+ 1)
= (
len f) by
A10,
A34,
A33,
GOBOARD2: 2;
then
A35: ((k1
- j)
+ 1)
= (
len f) by
A30,
XREAL_0:def 2;
(k1
- j)
<= (k1
- 1) by
A8,
XREAL_1: 10;
then (
len f)
<= ((k1
- 1)
+ 1) by
A35,
XREAL_1: 7;
hence contradiction by
A2,
A6,
XXREAL_0: 1;
end;
suppose k1
= k2;
then (
mid (f,k1,k2))
=
<*(f
. k1)*> by
AA,
JORDAN4: 15
.=
<*(f
/. k1)*> by
AA,
PARTFUN1:def 6;
hence contradiction by
A5,
SPPOL_2: 12;
end;
end;
theorem ::
JORDAN1G:39
Th39: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat holds (
rng (
Upper_Seq (C,n)))
c= (
rng (
Cage (C,n))) & (
rng (
Lower_Seq (C,n)))
c= (
rng (
Cage (C,n)))
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A1: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
(
Upper_Seq (C,n))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n))))) by
JORDAN1E:def 1;
then (
rng (
Upper_Seq (C,n)))
c= (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_5: 48;
hence (
rng (
Upper_Seq (C,n)))
c= (
rng (
Cage (C,n))) by
FINSEQ_6: 90,
SPRECT_2: 43;
(
Lower_Seq (C,n))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n))))) by
JORDAN1E:def 2;
then (
rng (
Lower_Seq (C,n)))
c= (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
A1,
FINSEQ_5: 55;
hence thesis by
FINSEQ_6: 90,
SPRECT_2: 43;
end;
theorem ::
JORDAN1G:40
Th40: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds (
Upper_Seq (C,n))
is_a_h.c._for (
Cage (C,n))
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
A1: (((
Upper_Seq (C,n))
/. 1)
`1 )
= ((
W-min (
L~ (
Cage (C,n))))
`1 ) by
JORDAN1F: 5
.= (
W-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
A2: (((
Upper_Seq (C,n))
/. (
len (
Upper_Seq (C,n))))
`1 )
= ((
E-max (
L~ (
Cage (C,n))))
`1 ) by
JORDAN1F: 7
.= (
E-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
(
Upper_Seq (C,n))
is_in_the_area_of (
Cage (C,n)) by
JORDAN1E: 17;
hence thesis by
A1,
A2,
SPRECT_2:def 2;
end;
theorem ::
JORDAN1G:41
Th41: for C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds (
Rev (
Lower_Seq (C,n)))
is_a_h.c._for (
Cage (C,n))
proof
let C be
compact non
vertical non
horizontal
Subset of (
TOP-REAL 2);
A1: (((
Rev (
Lower_Seq (C,n)))
/. 1)
`1 )
= (((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
`1 ) by
FINSEQ_5: 65
.= ((
W-min (
L~ (
Cage (C,n))))
`1 ) by
JORDAN1F: 8
.= (
W-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
A2: (((
Rev (
Lower_Seq (C,n)))
/. (
len (
Rev (
Lower_Seq (C,n)))))
`1 )
= (((
Rev (
Lower_Seq (C,n)))
/. (
len (
Lower_Seq (C,n))))
`1 ) by
FINSEQ_5:def 3
.= (((
Lower_Seq (C,n))
/. 1)
`1 ) by
FINSEQ_5: 65
.= ((
E-max (
L~ (
Cage (C,n))))
`1 ) by
JORDAN1F: 6
.= (
E-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
(
Rev (
Lower_Seq (C,n)))
is_in_the_area_of (
Cage (C,n)) by
JORDAN1E: 18,
SPRECT_3: 51;
hence thesis by
A1,
A2,
SPRECT_2:def 2;
end;
theorem ::
JORDAN1G:42
Th42: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for i be
Nat st 1
< i & i
<= (
len (
Gauge (C,n))) holds not ((
Gauge (C,n))
* (i,1))
in (
rng (
Upper_Seq (C,n)))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let i be
Nat;
assume that
A1: 1
< i & i
<= (
len (
Gauge (C,n))) and
A2: ((
Gauge (C,n))
* (i,1))
in (
rng (
Upper_Seq (C,n)));
consider i2 be
Nat such that
A3: i2
in (
dom (
Upper_Seq (C,n))) and
A4: ((
Upper_Seq (C,n))
. i2)
= ((
Gauge (C,n))
* (i,1)) by
A2,
FINSEQ_2: 10;
reconsider i2 as
Nat;
A5: 1
<= i2 & i2
<= (
len (
Upper_Seq (C,n))) by
A3,
FINSEQ_3: 25;
set f = (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))));
set i1 = ((
N-min (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)));
A6: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) & (
rng f)
= (
rng (
Cage (C,n))) by
FINSEQ_6: 90,
SPRECT_2: 43,
SPRECT_2: 46;
(
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
then
A7: (f
/. 1)
= (
W-min (
L~ (
Cage (C,n)))) by
FINSEQ_6: 92;
(
L~ (
Cage (C,n)))
= (
L~ f) by
REVROT_1: 33;
then
A8: ((
N-min (
L~ (
Cage (C,n))))
.. f)
< ((
N-max (
L~ (
Cage (C,n))))
.. f) & ((
N-max (
L~ (
Cage (C,n))))
.. f)
<= ((
E-max (
L~ (
Cage (C,n))))
.. f) by
A7,
SPRECT_5: 24,
SPRECT_5: 25;
((
E-max (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
= (
len (
Upper_Seq (C,n))) by
Th24;
then ((
N-max (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
<= (
len (
Upper_Seq (C,n))) by
Th23;
then
A9: i1
< (
len (
Upper_Seq (C,n))) by
Th22,
XXREAL_0: 2;
3
<= (
len (
Lower_Seq (C,n))) by
JORDAN1E: 15;
then
A10: 2
<= (
len (
Lower_Seq (C,n))) by
XXREAL_0: 2;
A11: (
len (
Gauge (C,n)))
= (
width (
Gauge (C,n))) by
JORDAN8:def 1;
4
<= (
len (
Gauge (C,n))) by
JORDAN8: 10;
then
A12: 1
<= (
len (
Gauge (C,n))) by
XXREAL_0: 2;
((
W-min (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
= 1 & ((
W-max (
L~ (
Cage (C,n))))
.. (
Upper_Seq (C,n)))
<= i1 by
Th19,
Th21;
then
A13: i1
> 1 by
Th20,
XXREAL_0: 2;
then
A14: i1
in (
dom (
Upper_Seq (C,n))) by
A9,
FINSEQ_3: 25;
(
Upper_Seq (C,n))
= (f
-: (
E-max (
L~ (
Cage (C,n))))) & (
N-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
JORDAN1E:def 1,
SPRECT_2: 39;
then
A15: (
N-min (
L~ (
Cage (C,n))))
in (
rng (
Upper_Seq (C,n))) by
A6,
A8,
FINSEQ_5: 46,
XXREAL_0: 2;
then
A16: ((
Upper_Seq (C,n))
/. i1)
= (
N-min (
L~ (
Cage (C,n)))) by
FINSEQ_5: 38;
A17: i1
in
NAT & i2
in
NAT by
ORDINAL1:def 12;
A18: i1
<> i2
proof
assume i1
= i2;
then ((
Gauge (C,n))
* (i,1))
= (
N-min (
L~ (
Cage (C,n)))) by
A4,
A14,
A16,
PARTFUN1:def 6;
then (((
Gauge (C,n))
* (i,1))
`2 )
= (
N-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
then (
S-bound (
L~ (
Cage (C,n))))
= (
N-bound (
L~ (
Cage (C,n)))) by
A1,
JORDAN1A: 72;
hence contradiction by
SPRECT_1: 16;
end;
then (
mid ((
Upper_Seq (C,n)),i1,i2)) is
being_S-Seq by
A13,
A9,
A5,
JORDAN3: 6,
A17;
then
reconsider h1 = (
mid ((
Upper_Seq (C,n)),i1,i2)) as
one-to-one
special
FinSequence of (
TOP-REAL 2);
set h = (
Rev h1);
A19: (
len h1)
= (
len h) by
FINSEQ_5:def 3;
then
A20: h1 is non
empty by
A3,
A14,
SPRECT_2: 5;
then
A21: ((h
/. (
len h))
`2 )
= ((h1
/. 1)
`2 ) by
A19,
FINSEQ_5: 65
.= (((
Upper_Seq (C,n))
/. i1)
`2 ) by
A3,
A14,
SPRECT_2: 8
.= ((
N-min (
L~ (
Cage (C,n))))
`2 ) by
A15,
FINSEQ_5: 38
.= (
N-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
h1
is_in_the_area_of (
Cage (C,n)) by
A3,
A14,
JORDAN1E: 17,
SPRECT_2: 22;
then
A22: h
is_in_the_area_of (
Cage (C,n)) by
SPRECT_3: 51;
((h
/. 1)
`2 )
= ((h1
/. (
len h1))
`2 ) by
A20,
FINSEQ_5: 65
.= (((
Upper_Seq (C,n))
/. i2)
`2 ) by
A3,
A14,
SPRECT_2: 9
.= (((
Gauge (C,n))
* (i,1))
`2 ) by
A3,
A4,
PARTFUN1:def 6
.= (
S-bound (
L~ (
Cage (C,n)))) by
A1,
JORDAN1A: 72;
then
A23: (
Rev (
Lower_Seq (C,n))) is
special & h
is_a_v.c._for (
Cage (C,n)) by
A22,
A21,
SPRECT_2:def 3;
(
len h)
>= 1 by
A3,
A14,
A19,
SPRECT_2: 5;
then (
len h)
> 1 by
A3,
A14,
A18,
A19,
SPRECT_2: 6,
XXREAL_0: 1;
then
A24: (1
+ 1)
<= (
len h) by
NAT_1: 13;
(
len (
Lower_Seq (C,n)))
= (
len (
Rev (
Lower_Seq (C,n)))) & h is
special by
FINSEQ_5:def 3,
SPPOL_2: 40;
then (
L~ (
Rev (
Lower_Seq (C,n))))
= (
L~ (
Lower_Seq (C,n))) & (
L~ (
Rev (
Lower_Seq (C,n))))
meets (
L~ h) by
A10,
A24,
A23,
Th41,
SPPOL_2: 22,
SPRECT_2: 29;
then
consider x be
object such that
A25: x
in (
L~ (
Lower_Seq (C,n))) and
A26: x
in (
L~ h) by
XBOOLE_0: 3;
A27: (
L~ h)
= (
L~ h1) by
SPPOL_2: 22;
(
L~ (
mid ((
Upper_Seq (C,n)),i1,i2)))
c= (
L~ (
Upper_Seq (C,n))) by
A13,
A9,
A5,
JORDAN4: 35;
then x
in ((
L~ (
Upper_Seq (C,n)))
/\ (
L~ (
Lower_Seq (C,n)))) by
A25,
A26,
A27,
XBOOLE_0:def 4;
then
A28: x
in
{(
W-min (
L~ (
Cage (C,n)))), (
E-max (
L~ (
Cage (C,n))))} by
JORDAN1E: 16;
per cases by
A28,
TARSKI:def 2;
suppose x
= (
W-min (
L~ (
Cage (C,n))));
then x
= ((
Upper_Seq (C,n))
/. 1) by
JORDAN1F: 5;
then i2
= 1 by
A13,
A9,
A5,
A26,
A27,
Th37;
then ((
Upper_Seq (C,n))
/. 1)
= ((
Gauge (C,n))
* (i,1)) by
A3,
A4,
PARTFUN1:def 6;
then (
W-min (
L~ (
Cage (C,n))))
= ((
Gauge (C,n))
* (i,1)) by
JORDAN1F: 5;
then (((
Gauge (C,n))
* (i,1))
`1 )
= (
W-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52
.= (((
Gauge (C,n))
* (1,1))
`1 ) by
A12,
JORDAN1A: 73;
hence contradiction by
A1,
A12,
A11,
GOBOARD5: 3;
end;
suppose x
= (
E-max (
L~ (
Cage (C,n))));
then x
= ((
Upper_Seq (C,n))
/. (
len (
Upper_Seq (C,n)))) by
JORDAN1F: 7;
then i2
= (
len (
Upper_Seq (C,n))) by
A13,
A9,
A5,
A26,
A27,
Th38;
then ((
Upper_Seq (C,n))
/. (
len (
Upper_Seq (C,n))))
= ((
Gauge (C,n))
* (i,1)) by
A3,
A4,
PARTFUN1:def 6;
then
A29: (
E-max (
L~ (
Cage (C,n))))
= ((
Gauge (C,n))
* (i,1)) by
JORDAN1F: 7;
((
SE-corner (
L~ (
Cage (C,n))))
`2 )
<= ((
E-min (
L~ (
Cage (C,n))))
`2 ) by
PSCOMP_1: 46;
then ((
SE-corner (
L~ (
Cage (C,n))))
`2 )
< ((
E-max (
L~ (
Cage (C,n))))
`2 ) by
SPRECT_2: 53,
XXREAL_0: 2;
then (
S-bound (
L~ (
Cage (C,n))))
< (((
Gauge (C,n))
* (i,1))
`2 ) by
A29,
EUCLID: 52;
hence contradiction by
A1,
JORDAN1A: 72;
end;
end;
theorem ::
JORDAN1G:43
Th43: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for i be
Nat st 1
<= i & i
< (
len (
Gauge (C,n))) holds not ((
Gauge (C,n))
* (i,(
width (
Gauge (C,n)))))
in (
rng (
Lower_Seq (C,n)))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let i be
Nat;
set wi = (
width (
Gauge (C,n)));
assume that
A1: 1
<= i & i
< (
len (
Gauge (C,n))) and
A2: ((
Gauge (C,n))
* (i,wi))
in (
rng (
Lower_Seq (C,n)));
consider i2 be
Nat such that
A3: i2
in (
dom (
Lower_Seq (C,n))) and
A4: ((
Lower_Seq (C,n))
. i2)
= ((
Gauge (C,n))
* (i,wi)) by
A2,
FINSEQ_2: 10;
reconsider i2 as
Nat;
A5: 1
<= i2 & i2
<= (
len (
Lower_Seq (C,n))) by
A3,
FINSEQ_3: 25;
3
<= (
len (
Upper_Seq (C,n))) by
JORDAN1E: 15;
then
A6: 2
<= (
len (
Upper_Seq (C,n))) by
XXREAL_0: 2;
set f = (
Rotate ((
Cage (C,n)),(
E-max (
L~ (
Cage (C,n))))));
set i1 = ((
S-max (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)));
A7: (
len (
Gauge (C,n)))
= (
width (
Gauge (C,n))) by
JORDAN8:def 1;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A8: (f
/. 1)
= (
E-max (
L~ (
Cage (C,n)))) by
FINSEQ_6: 92;
(
L~ (
Cage (C,n)))
= (
L~ f) by
REVROT_1: 33;
then
A9: ((
S-max (
L~ (
Cage (C,n))))
.. f)
< ((
S-min (
L~ (
Cage (C,n))))
.. f) & ((
S-min (
L~ (
Cage (C,n))))
.. f)
<= ((
W-min (
L~ (
Cage (C,n))))
.. f) by
A8,
SPRECT_5: 40,
SPRECT_5: 41;
A10: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) & (
rng f)
= (
rng (
Cage (C,n))) by
FINSEQ_6: 90,
SPRECT_2: 43,
SPRECT_2: 46;
((
W-min (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
= (
len (
Lower_Seq (C,n))) by
Th30;
then ((
S-min (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
<= (
len (
Lower_Seq (C,n))) by
Th29;
then
A11: i1
< (
len (
Lower_Seq (C,n))) by
Th28,
XXREAL_0: 2;
((
E-max (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
= 1 & ((
E-min (
L~ (
Cage (C,n))))
.. (
Lower_Seq (C,n)))
<= i1 by
Th25,
Th27;
then
A12: i1
> 1 by
Th26,
XXREAL_0: 2;
then
A13: i1
in (
dom (
Lower_Seq (C,n))) by
A11,
FINSEQ_3: 25;
(
Lower_Seq (C,n))
= (f
-: (
W-min (
L~ (
Cage (C,n))))) & (
S-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
Th18,
SPRECT_2: 42;
then
A14: (
S-max (
L~ (
Cage (C,n))))
in (
rng (
Lower_Seq (C,n))) by
A10,
A9,
FINSEQ_5: 46,
XXREAL_0: 2;
then
A15: ((
Lower_Seq (C,n))
/. i1)
= (
S-max (
L~ (
Cage (C,n)))) by
FINSEQ_5: 38;
A16: i1
in
NAT & i2
in
NAT by
ORDINAL1:def 12;
A17: i1
<> i2
proof
assume i1
= i2;
then ((
Gauge (C,n))
* (i,wi))
= (
S-max (
L~ (
Cage (C,n)))) by
A4,
A13,
A15,
PARTFUN1:def 6;
then (((
Gauge (C,n))
* (i,wi))
`2 )
= (
S-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
then (
N-bound (
L~ (
Cage (C,n))))
= (
S-bound (
L~ (
Cage (C,n)))) by
A1,
A7,
JORDAN1A: 70;
hence contradiction by
SPRECT_1: 16;
end;
then (
mid ((
Lower_Seq (C,n)),i1,i2)) is
being_S-Seq by
A12,
A11,
A5,
JORDAN3: 6,
A16;
then
reconsider h = (
mid ((
Lower_Seq (C,n)),i1,i2)) as
one-to-one
special
FinSequence of (
TOP-REAL 2);
A18: ((h
/. 1)
`2 )
= (((
Lower_Seq (C,n))
/. i1)
`2 ) by
A3,
A13,
SPRECT_2: 8
.= ((
S-max (
L~ (
Cage (C,n))))
`2 ) by
A14,
FINSEQ_5: 38
.= (
S-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
(
len h)
>= 1 by
A3,
A13,
SPRECT_2: 5;
then (
len h)
> 1 by
A3,
A13,
A17,
SPRECT_2: 6,
XXREAL_0: 1;
then
A19: (1
+ 1)
<= (
len h) by
NAT_1: 13;
A20: h
is_in_the_area_of (
Cage (C,n)) by
A3,
A13,
JORDAN1E: 18,
SPRECT_2: 22;
((h
/. (
len h))
`2 )
= (((
Lower_Seq (C,n))
/. i2)
`2 ) by
A3,
A13,
SPRECT_2: 9
.= (((
Gauge (C,n))
* (i,wi))
`2 ) by
A3,
A4,
PARTFUN1:def 6
.= (
N-bound (
L~ (
Cage (C,n)))) by
A1,
A7,
JORDAN1A: 70;
then h
is_a_v.c._for (
Cage (C,n)) by
A20,
A18,
SPRECT_2:def 3;
then (
L~ (
Upper_Seq (C,n)))
meets (
L~ h) by
A6,
A19,
Th40,
SPRECT_2: 29;
then
consider x be
object such that
A21: x
in (
L~ (
Upper_Seq (C,n))) and
A22: x
in (
L~ h) by
XBOOLE_0: 3;
(
L~ (
mid ((
Lower_Seq (C,n)),i1,i2)))
c= (
L~ (
Lower_Seq (C,n))) by
A12,
A11,
A5,
JORDAN4: 35;
then x
in ((
L~ (
Lower_Seq (C,n)))
/\ (
L~ (
Upper_Seq (C,n)))) by
A21,
A22,
XBOOLE_0:def 4;
then
A23: x
in
{(
W-min (
L~ (
Cage (C,n)))), (
E-max (
L~ (
Cage (C,n))))} by
JORDAN1E: 16;
4
<= (
len (
Gauge (C,n))) by
JORDAN8: 10;
then
A24: 1
<= (
len (
Gauge (C,n))) by
XXREAL_0: 2;
per cases by
A23,
TARSKI:def 2;
suppose x
= (
E-max (
L~ (
Cage (C,n))));
then x
= ((
Lower_Seq (C,n))
/. 1) by
JORDAN1F: 6;
then i2
= 1 by
A12,
A11,
A5,
A22,
Th37;
then ((
Lower_Seq (C,n))
/. 1)
= ((
Gauge (C,n))
* (i,wi)) by
A3,
A4,
PARTFUN1:def 6;
then (
E-max (
L~ (
Cage (C,n))))
= ((
Gauge (C,n))
* (i,wi)) by
JORDAN1F: 6;
then (((
Gauge (C,n))
* (i,wi))
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52
.= (((
Gauge (C,n))
* ((
len (
Gauge (C,n))),wi))
`1 ) by
A7,
A24,
JORDAN1A: 71;
hence contradiction by
A1,
A7,
A24,
GOBOARD5: 3;
end;
suppose x
= (
W-min (
L~ (
Cage (C,n))));
then x
= ((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n)))) by
JORDAN1F: 8;
then i2
= (
len (
Lower_Seq (C,n))) by
A12,
A11,
A5,
A22,
Th38;
then ((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
= ((
Gauge (C,n))
* (i,wi)) by
A3,
A4,
PARTFUN1:def 6;
then
A25: (
W-min (
L~ (
Cage (C,n))))
= ((
Gauge (C,n))
* (i,wi)) by
JORDAN1F: 8;
((
NW-corner (
L~ (
Cage (C,n))))
`2 )
>= ((
W-max (
L~ (
Cage (C,n))))
`2 ) by
PSCOMP_1: 30;
then ((
NW-corner (
L~ (
Cage (C,n))))
`2 )
> ((
W-min (
L~ (
Cage (C,n))))
`2 ) by
SPRECT_2: 57,
XXREAL_0: 2;
then (
N-bound (
L~ (
Cage (C,n))))
> (((
Gauge (C,n))
* (i,wi))
`2 ) by
A25,
EUCLID: 52;
hence contradiction by
A1,
A7,
JORDAN1A: 70;
end;
end;
theorem ::
JORDAN1G:44
Th44: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for i be
Nat st 1
< i & i
<= (
len (
Gauge (C,n))) holds not ((
Gauge (C,n))
* (i,1))
in (
L~ (
Upper_Seq (C,n)))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let i be
Nat such that
A1: 1
< i & i
<= (
len (
Gauge (C,n))) and
A2: ((
Gauge (C,n))
* (i,1))
in (
L~ (
Upper_Seq (C,n)));
set Gi1 = ((
Gauge (C,n))
* (i,1));
consider ii be
Nat such that
A3: 1
<= ii and
A4: (ii
+ 1)
<= (
len (
Upper_Seq (C,n))) and
A5: Gi1
in (
LSeg ((
Upper_Seq (C,n)),ii)) by
A2,
SPPOL_2: 13;
A6: (
LSeg ((
Upper_Seq (C,n)),ii))
= (
LSeg (((
Upper_Seq (C,n))
/. ii),((
Upper_Seq (C,n))
/. (ii
+ 1)))) by
A3,
A4,
TOPREAL1:def 3;
(ii
+ 1)
>= 1 by
NAT_1: 11;
then
A7: (ii
+ 1)
in (
dom (
Upper_Seq (C,n))) by
A4,
FINSEQ_3: 25;
(
len (
Gauge (C,n)))
>= 4 by
JORDAN8: 10;
then (
len (
Gauge (C,n)))
= (
width (
Gauge (C,n))) & (
len (
Gauge (C,n)))
> 1 by
JORDAN8:def 1,
XXREAL_0: 2;
then
A8:
[i, 1]
in (
Indices (
Gauge (C,n))) by
A1,
MATRIX_0: 30;
ii
< (
len (
Upper_Seq (C,n))) by
A4,
NAT_1: 13;
then
A9: ii
in (
dom (
Upper_Seq (C,n))) by
A3,
FINSEQ_3: 25;
A10: not Gi1
in (
rng (
Upper_Seq (C,n))) by
A1,
Th42;
(
Upper_Seq (C,n))
is_sequence_on (
Gauge (C,n)) by
Th4;
then
consider i1,j1,i2,j2 be
Nat such that
A11:
[i1, j1]
in (
Indices (
Gauge (C,n))) and
A12: ((
Upper_Seq (C,n))
/. ii)
= ((
Gauge (C,n))
* (i1,j1)) and
A13:
[i2, j2]
in (
Indices (
Gauge (C,n))) and
A14: ((
Upper_Seq (C,n))
/. (ii
+ 1))
= ((
Gauge (C,n))
* (i2,j2)) and
A15: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A3,
A4,
JORDAN8: 3;
A16: 1
<= i1 by
A11,
MATRIX_0: 32;
A17: j2
<= (
width (
Gauge (C,n))) by
A13,
MATRIX_0: 32;
A18: 1
<= j1 by
A11,
MATRIX_0: 32;
A19: i1
<= (
len (
Gauge (C,n))) by
A11,
MATRIX_0: 32;
A20: 1
<= j2 by
A13,
MATRIX_0: 32;
A21: i2
<= (
len (
Gauge (C,n))) by
A13,
MATRIX_0: 32;
A22: 1
<= i2 by
A13,
MATRIX_0: 32;
A23: j1
<= (
width (
Gauge (C,n))) by
A11,
MATRIX_0: 32;
per cases by
A15;
suppose
A24: i1
= i2 & (j1
+ 1)
= j2;
then j1
<= j2 by
NAT_1: 11;
then (((
Gauge (C,n))
* (i1,j1))
`2 )
<= (((
Gauge (C,n))
* (i2,j2))
`2 ) by
A16,
A19,
A18,
A17,
A24,
SPRECT_3: 12;
then
A25: (((
Gauge (C,n))
* (i1,j1))
`2 )
<= (Gi1
`2 ) by
A5,
A6,
A12,
A14,
TOPREAL1: 4;
(((
Gauge (C,n))
* (i1,j1))
`1 )
= (((
Gauge (C,n))
* (i2,1))
`1 ) by
A16,
A19,
A18,
A23,
A24,
GOBOARD5: 2
.= (((
Gauge (C,n))
* (i2,j2))
`1 ) by
A22,
A21,
A20,
A17,
GOBOARD5: 2;
then (
LSeg (((
Upper_Seq (C,n))
/. ii),((
Upper_Seq (C,n))
/. (ii
+ 1)))) is
vertical by
A12,
A14,
SPPOL_1: 16;
then (Gi1
`1 )
= (((
Gauge (C,n))
* (i1,j1))
`1 ) by
A5,
A6,
A12,
SPPOL_1: 41;
then
A26: i1
= i by
A11,
A8,
Th7;
then (Gi1
`2 )
<= (((
Gauge (C,n))
* (i1,j1))
`2 ) by
A16,
A19,
A18,
A23,
SPRECT_3: 12;
then j1
= 1 by
A11,
A8,
A25,
Th6,
XXREAL_0: 1;
hence contradiction by
A12,
A9,
A10,
A26,
PARTFUN2: 2;
end;
suppose
A27: (i1
+ 1)
= i2 & j1
= j2;
then (((
Gauge (C,n))
* (i1,j1))
`2 )
= (((
Gauge (C,n))
* (1,j2))
`2 ) by
A16,
A19,
A18,
A23,
GOBOARD5: 1
.= (((
Gauge (C,n))
* (i2,j2))
`2 ) by
A22,
A21,
A20,
A17,
GOBOARD5: 1;
then (
LSeg (((
Upper_Seq (C,n))
/. ii),((
Upper_Seq (C,n))
/. (ii
+ 1)))) is
horizontal by
A12,
A14,
SPPOL_1: 15;
then (Gi1
`2 )
= (((
Gauge (C,n))
* (i1,j1))
`2 ) by
A5,
A6,
A12,
SPPOL_1: 40;
then
A28: j1
= 1 by
A11,
A8,
Th6;
i2
> 1 by
A16,
A27,
NAT_1: 13;
then not ((
Upper_Seq (C,n))
/. (ii
+ 1))
in (
rng (
Upper_Seq (C,n))) by
A14,
A21,
A27,
A28,
Th42;
hence contradiction by
A7,
PARTFUN2: 2;
end;
suppose
A29: i1
= (i2
+ 1) & j1
= j2;
then (((
Gauge (C,n))
* (i1,j1))
`2 )
= (((
Gauge (C,n))
* (1,j2))
`2 ) by
A16,
A19,
A18,
A23,
GOBOARD5: 1
.= (((
Gauge (C,n))
* (i2,j2))
`2 ) by
A22,
A21,
A20,
A17,
GOBOARD5: 1;
then (
LSeg (((
Upper_Seq (C,n))
/. ii),((
Upper_Seq (C,n))
/. (ii
+ 1)))) is
horizontal by
A12,
A14,
SPPOL_1: 15;
then (Gi1
`2 )
= (((
Gauge (C,n))
* (i1,j1))
`2 ) by
A5,
A6,
A12,
SPPOL_1: 40;
then
A30: j1
= 1 by
A11,
A8,
Th6;
i1
> 1 by
A22,
A29,
NAT_1: 13;
then not ((
Upper_Seq (C,n))
/. ii)
in (
rng (
Upper_Seq (C,n))) by
A12,
A19,
A30,
Th42;
hence contradiction by
A9,
PARTFUN2: 2;
end;
suppose
A31: i1
= i2 & j1
= (j2
+ 1);
then j2
<= j1 by
NAT_1: 11;
then (((
Gauge (C,n))
* (i2,j2))
`2 )
<= (((
Gauge (C,n))
* (i1,j1))
`2 ) by
A16,
A19,
A23,
A20,
A31,
SPRECT_3: 12;
then
A32: (((
Gauge (C,n))
* (i2,j2))
`2 )
<= (Gi1
`2 ) by
A5,
A6,
A12,
A14,
TOPREAL1: 4;
(((
Gauge (C,n))
* (i1,j1))
`1 )
= (((
Gauge (C,n))
* (i2,1))
`1 ) by
A16,
A19,
A18,
A23,
A31,
GOBOARD5: 2
.= (((
Gauge (C,n))
* (i2,j2))
`1 ) by
A22,
A21,
A20,
A17,
GOBOARD5: 2;
then (
LSeg (((
Upper_Seq (C,n))
/. ii),((
Upper_Seq (C,n))
/. (ii
+ 1)))) is
vertical by
A12,
A14,
SPPOL_1: 16;
then (Gi1
`1 )
= (((
Gauge (C,n))
* (i1,j1))
`1 ) by
A5,
A6,
A12,
SPPOL_1: 41;
then
A33: i1
= i by
A11,
A8,
Th7;
then (Gi1
`2 )
<= (((
Gauge (C,n))
* (i2,j2))
`2 ) by
A22,
A21,
A20,
A17,
A31,
SPRECT_3: 12;
then j2
= 1 by
A13,
A8,
A32,
Th6,
XXREAL_0: 1;
hence contradiction by
A14,
A7,
A10,
A31,
A33,
PARTFUN2: 2;
end;
end;
theorem ::
JORDAN1G:45
for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for i be
Nat st 1
<= i & i
< (
len (
Gauge (C,n))) holds not ((
Gauge (C,n))
* (i,(
width (
Gauge (C,n)))))
in (
L~ (
Lower_Seq (C,n)))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
set wi = (
width (
Gauge (C,n)));
let i be
Nat such that
A1: 1
<= i & i
< (
len (
Gauge (C,n))) and
A2: ((
Gauge (C,n))
* (i,wi))
in (
L~ (
Lower_Seq (C,n)));
set Gi1 = ((
Gauge (C,n))
* (i,wi));
consider ii be
Nat such that
A3: 1
<= ii and
A4: (ii
+ 1)
<= (
len (
Lower_Seq (C,n))) and
A5: Gi1
in (
LSeg ((
Lower_Seq (C,n)),ii)) by
A2,
SPPOL_2: 13;
A6: (
LSeg ((
Lower_Seq (C,n)),ii))
= (
LSeg (((
Lower_Seq (C,n))
/. ii),((
Lower_Seq (C,n))
/. (ii
+ 1)))) by
A3,
A4,
TOPREAL1:def 3;
(ii
+ 1)
>= 1 by
NAT_1: 11;
then
A7: (ii
+ 1)
in (
dom (
Lower_Seq (C,n))) by
A4,
FINSEQ_3: 25;
(
len (
Gauge (C,n)))
>= 4 by
JORDAN8: 10;
then (
len (
Gauge (C,n)))
= (
width (
Gauge (C,n))) & (
len (
Gauge (C,n)))
> 1 by
JORDAN8:def 1,
XXREAL_0: 2;
then
A8:
[i, wi]
in (
Indices (
Gauge (C,n))) by
A1,
MATRIX_0: 30;
ii
< (
len (
Lower_Seq (C,n))) by
A4,
NAT_1: 13;
then
A9: ii
in (
dom (
Lower_Seq (C,n))) by
A3,
FINSEQ_3: 25;
A10: not Gi1
in (
rng (
Lower_Seq (C,n))) by
A1,
Th43;
(
Lower_Seq (C,n))
is_sequence_on (
Gauge (C,n)) by
Th5;
then
consider i1,j1,i2,j2 be
Nat such that
A11:
[i1, j1]
in (
Indices (
Gauge (C,n))) and
A12: ((
Lower_Seq (C,n))
/. ii)
= ((
Gauge (C,n))
* (i1,j1)) and
A13:
[i2, j2]
in (
Indices (
Gauge (C,n))) and
A14: ((
Lower_Seq (C,n))
/. (ii
+ 1))
= ((
Gauge (C,n))
* (i2,j2)) and
A15: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A3,
A4,
JORDAN8: 3;
A16: 1
<= i1 by
A11,
MATRIX_0: 32;
A17: j2
<= (
width (
Gauge (C,n))) by
A13,
MATRIX_0: 32;
A18: 1
<= j1 by
A11,
MATRIX_0: 32;
A19: i1
<= (
len (
Gauge (C,n))) by
A11,
MATRIX_0: 32;
A20: 1
<= j2 by
A13,
MATRIX_0: 32;
A21: i2
<= (
len (
Gauge (C,n))) by
A13,
MATRIX_0: 32;
A22: 1
<= i2 by
A13,
MATRIX_0: 32;
A23: j1
<= (
width (
Gauge (C,n))) by
A11,
MATRIX_0: 32;
per cases by
A15;
suppose
A24: i1
= i2 & (j2
+ 1)
= j1;
then j1
>= j2 by
NAT_1: 11;
then (((
Gauge (C,n))
* (i1,j1))
`2 )
>= (((
Gauge (C,n))
* (i2,j2))
`2 ) by
A16,
A19,
A23,
A20,
A24,
SPRECT_3: 12;
then
A25: (((
Gauge (C,n))
* (i1,j1))
`2 )
>= (Gi1
`2 ) by
A5,
A6,
A12,
A14,
TOPREAL1: 4;
(((
Gauge (C,n))
* (i1,j1))
`1 )
= (((
Gauge (C,n))
* (i2,1))
`1 ) by
A16,
A19,
A18,
A23,
A24,
GOBOARD5: 2
.= (((
Gauge (C,n))
* (i2,j2))
`1 ) by
A22,
A21,
A20,
A17,
GOBOARD5: 2;
then (
LSeg (((
Lower_Seq (C,n))
/. ii),((
Lower_Seq (C,n))
/. (ii
+ 1)))) is
vertical by
A12,
A14,
SPPOL_1: 16;
then (Gi1
`1 )
= (((
Gauge (C,n))
* (i1,j1))
`1 ) by
A5,
A6,
A12,
SPPOL_1: 41;
then
A26: i1
= i by
A11,
A8,
Th7;
then (Gi1
`2 )
>= (((
Gauge (C,n))
* (i1,j1))
`2 ) by
A16,
A19,
A18,
A23,
SPRECT_3: 12;
then j1
= wi by
A11,
A8,
A25,
Th6,
XXREAL_0: 1;
hence contradiction by
A12,
A9,
A10,
A26,
PARTFUN2: 2;
end;
suppose
A27: (i2
+ 1)
= i1 & j1
= j2;
then (((
Gauge (C,n))
* (i1,j1))
`2 )
= (((
Gauge (C,n))
* (1,j2))
`2 ) by
A16,
A19,
A18,
A23,
GOBOARD5: 1
.= (((
Gauge (C,n))
* (i2,j2))
`2 ) by
A22,
A21,
A20,
A17,
GOBOARD5: 1;
then (
LSeg (((
Lower_Seq (C,n))
/. ii),((
Lower_Seq (C,n))
/. (ii
+ 1)))) is
horizontal by
A12,
A14,
SPPOL_1: 15;
then (Gi1
`2 )
= (((
Gauge (C,n))
* (i1,j1))
`2 ) by
A5,
A6,
A12,
SPPOL_1: 40;
then
A28: j1
= wi by
A11,
A8,
Th6;
i2
< (
len (
Gauge (C,n))) by
A19,
A27,
NAT_1: 13;
then not ((
Lower_Seq (C,n))
/. (ii
+ 1))
in (
rng (
Lower_Seq (C,n))) by
A14,
A22,
A27,
A28,
Th43;
hence contradiction by
A7,
PARTFUN2: 2;
end;
suppose
A29: i2
= (i1
+ 1) & j1
= j2;
then (((
Gauge (C,n))
* (i1,j1))
`2 )
= (((
Gauge (C,n))
* (1,j2))
`2 ) by
A16,
A19,
A18,
A23,
GOBOARD5: 1
.= (((
Gauge (C,n))
* (i2,j2))
`2 ) by
A22,
A21,
A20,
A17,
GOBOARD5: 1;
then (
LSeg (((
Lower_Seq (C,n))
/. ii),((
Lower_Seq (C,n))
/. (ii
+ 1)))) is
horizontal by
A12,
A14,
SPPOL_1: 15;
then (Gi1
`2 )
= (((
Gauge (C,n))
* (i1,j1))
`2 ) by
A5,
A6,
A12,
SPPOL_1: 40;
then
A30: j1
= wi by
A11,
A8,
Th6;
i1
< (
len (
Gauge (C,n))) by
A21,
A29,
NAT_1: 13;
then not ((
Lower_Seq (C,n))
/. ii)
in (
rng (
Lower_Seq (C,n))) by
A12,
A16,
A30,
Th43;
hence contradiction by
A9,
PARTFUN2: 2;
end;
suppose
A31: i1
= i2 & j2
= (j1
+ 1);
then j2
>= j1 by
NAT_1: 11;
then (((
Gauge (C,n))
* (i2,j2))
`2 )
>= (((
Gauge (C,n))
* (i1,j1))
`2 ) by
A16,
A19,
A18,
A17,
A31,
SPRECT_3: 12;
then
A32: (((
Gauge (C,n))
* (i2,j2))
`2 )
>= (Gi1
`2 ) by
A5,
A6,
A12,
A14,
TOPREAL1: 4;
(((
Gauge (C,n))
* (i1,j1))
`1 )
= (((
Gauge (C,n))
* (i2,1))
`1 ) by
A16,
A19,
A18,
A23,
A31,
GOBOARD5: 2
.= (((
Gauge (C,n))
* (i2,j2))
`1 ) by
A22,
A21,
A20,
A17,
GOBOARD5: 2;
then (
LSeg (((
Lower_Seq (C,n))
/. ii),((
Lower_Seq (C,n))
/. (ii
+ 1)))) is
vertical by
A12,
A14,
SPPOL_1: 16;
then (Gi1
`1 )
= (((
Gauge (C,n))
* (i1,j1))
`1 ) by
A5,
A6,
A12,
SPPOL_1: 41;
then
A33: i1
= i by
A11,
A8,
Th7;
then (Gi1
`2 )
>= (((
Gauge (C,n))
* (i2,j2))
`2 ) by
A22,
A21,
A20,
A17,
A31,
SPRECT_3: 12;
then j2
= wi by
A13,
A8,
A32,
Th6,
XXREAL_0: 1;
hence contradiction by
A14,
A7,
A10,
A31,
A33,
PARTFUN2: 2;
end;
end;
theorem ::
JORDAN1G:46
Th46: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for i,j be
Nat st 1
<= i & i
<= (
len (
Gauge (C,n))) & 1
<= j & j
<= (
width (
Gauge (C,n))) & ((
Gauge (C,n))
* (i,j))
in (
L~ (
Cage (C,n))) holds (
LSeg (((
Gauge (C,n))
* (i,1)),((
Gauge (C,n))
* (i,j))))
meets (
L~ (
Lower_Seq (C,n)))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let i,j be
Nat;
set Gij = ((
Gauge (C,n))
* (i,j));
assume that
A1: 1
<= i and
A2: i
<= (
len (
Gauge (C,n))) and
A3: 1
<= j & j
<= (
width (
Gauge (C,n))) and
A4: Gij
in (
L~ (
Cage (C,n)));
A5: (
Lower_Seq (C,n))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n))))) by
JORDAN1E:def 2;
set Wmi = (
W-min (
L~ (
Cage (C,n))));
set h = (
mid ((
Lower_Seq (C,n)),2,(
len (
Lower_Seq (C,n)))));
set v1 = (
L_Cut ((
Upper_Seq (C,n)),Gij));
set NE = (
NE-corner (
L~ (
Cage (C,n))));
set Gv1 = (
<*((
Gauge (C,n))
* (i,1))*>
^ v1);
set v = (Gv1
^
<*NE*>);
A6: (
L~ (
Cage (C,n)))
= ((
L~ (
Upper_Seq (C,n)))
\/ (
L~ (
Lower_Seq (C,n)))) by
JORDAN1E: 13;
A7: (
Upper_Seq (C,n))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n))))) by
JORDAN1E:def 1;
A8: (
len (
Upper_Seq (C,n)))
>= 3 by
JORDAN1E: 15;
then
A9: (
len (
Upper_Seq (C,n)))
>= 1 by
XXREAL_0: 2;
A10: (
len (
Lower_Seq (C,n)))
>= 3 by
JORDAN1E: 15;
then
A11: (
len (
Lower_Seq (C,n)))
>= 2 & (
len (
Lower_Seq (C,n)))
>= 1 by
XXREAL_0: 2;
A12: (
len (
Gauge (C,n)))
= (
width (
Gauge (C,n))) by
JORDAN8:def 1;
A13: (((
Gauge (C,n))
* (i,1))
`2 )
= (
S-bound (
L~ (
Cage (C,n)))) by
A1,
A2,
JORDAN1A: 72;
now
per cases by
A1,
A4,
A6,
XBOOLE_0:def 3,
XXREAL_0: 1;
suppose
A14: Gij
in (
L~ (
Upper_Seq (C,n))) & i
= 1;
set G11 = ((
Gauge (C,n))
* (1,1));
A15: Wmi
in (
L~ (
Cage (C,n))) by
SPRECT_1: 13;
(
S-bound (
L~ (
Cage (C,n))))
= (G11
`2 ) by
A2,
A14,
JORDAN1A: 72;
then
A16: (Wmi
`1 )
= (
W-bound (
L~ (
Cage (C,n)))) & (G11
`2 )
<= (Wmi
`2 ) by
A15,
EUCLID: 52,
PSCOMP_1: 24;
A17: (
rng (
Lower_Seq (C,n)))
c= (
L~ (
Lower_Seq (C,n))) by
A10,
SPPOL_2: 18,
XXREAL_0: 2;
A18: (Gij
`1 )
= (
W-bound (
L~ (
Cage (C,n)))) by
A3,
A12,
A14,
JORDAN1A: 73;
then Gij
in (
W-most (
L~ (
Cage (C,n)))) by
A4,
SPRECT_2: 12;
then
A19: (Wmi
`2 )
<= (Gij
`2 ) by
PSCOMP_1: 31;
((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
= Wmi by
JORDAN1F: 8;
then
A20: Wmi
in (
rng (
Lower_Seq (C,n))) by
FINSEQ_6: 168;
(G11
`1 )
= (
W-bound (
L~ (
Cage (C,n)))) by
A2,
A14,
JORDAN1A: 73;
then Wmi
in (
LSeg (((
Gauge (C,n))
* (1,1)),((
Gauge (C,n))
* (1,j)))) by
A14,
A16,
A18,
A19,
GOBOARD7: 7;
hence thesis by
A14,
A17,
A20,
XBOOLE_0: 3;
end;
suppose
A21: Gij
in (
L~ (
Upper_Seq (C,n))) & Gij
<> ((
Upper_Seq (C,n))
. (
len (
Upper_Seq (C,n)))) & (
E-max (
L~ (
Cage (C,n))))
<> NE & i
> 1;
(
len (
Cage (C,n)))
> 4 by
GOBOARD7: 34;
then
A22: (
rng (
Cage (C,n)))
c= (
L~ (
Cage (C,n))) by
SPPOL_2: 18,
XXREAL_0: 2;
A23: not NE
in (
rng (
Cage (C,n)))
proof
A24: (NE
`2 )
= (
N-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
then (NE
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) & (NE
`2 )
>= (
S-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52,
SPRECT_1: 22;
then NE
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) & (p
`2 )
<= (
N-bound (
L~ (
Cage (C,n)))) & (p
`2 )
>= (
S-bound (
L~ (
Cage (C,n)))) } by
A24;
then
A25: NE
in (
LSeg ((
SE-corner (
L~ (
Cage (C,n)))),(
NE-corner (
L~ (
Cage (C,n)))))) by
SPRECT_1: 23;
assume NE
in (
rng (
Cage (C,n)));
then NE
in ((
LSeg ((
SE-corner (
L~ (
Cage (C,n)))),(
NE-corner (
L~ (
Cage (C,n))))))
/\ (
L~ (
Cage (C,n)))) by
A22,
A25,
XBOOLE_0:def 4;
then
A26: (NE
`2 )
<= ((
E-max (
L~ (
Cage (C,n))))
`2 ) by
PSCOMP_1: 47;
A27: ((
E-max (
L~ (
Cage (C,n))))
`1 )
= (NE
`1 ) by
PSCOMP_1: 45;
((
E-max (
L~ (
Cage (C,n))))
`2 )
<= (NE
`2 ) by
PSCOMP_1: 46;
then ((
E-max (
L~ (
Cage (C,n))))
`2 )
= (NE
`2 ) by
A26,
XXREAL_0: 1;
hence contradiction by
A21,
A27,
TOPREAL3: 6;
end;
A28:
now
per cases ;
suppose Gij
<> ((
Upper_Seq (C,n))
. ((
Index (Gij,(
Upper_Seq (C,n))))
+ 1));
then v1
= (
<*Gij*>
^ (
mid ((
Upper_Seq (C,n)),((
Index (Gij,(
Upper_Seq (C,n))))
+ 1),(
len (
Upper_Seq (C,n)))))) by
JORDAN3:def 3;
then (
rng v1)
= ((
rng
<*Gij*>)
\/ (
rng (
mid ((
Upper_Seq (C,n)),((
Index (Gij,(
Upper_Seq (C,n))))
+ 1),(
len (
Upper_Seq (C,n))))))) by
FINSEQ_1: 31;
then
A29: (
rng v1)
= (
{Gij}
\/ (
rng (
mid ((
Upper_Seq (C,n)),((
Index (Gij,(
Upper_Seq (C,n))))
+ 1),(
len (
Upper_Seq (C,n))))))) by
FINSEQ_1: 38;
not NE
in (
L~ (
Cage (C,n)))
proof
assume NE
in (
L~ (
Cage (C,n)));
then
consider i be
Nat such that
A30: 1
<= i and
A31: (i
+ 1)
<= (
len (
Cage (C,n))) and
A32: NE
in (
LSeg (((
Cage (C,n))
/. i),((
Cage (C,n))
/. (i
+ 1)))) by
SPPOL_2: 14;
per cases by
A30,
A31,
TOPREAL1:def 5;
suppose
A33: (((
Cage (C,n))
/. i)
`1 )
= (((
Cage (C,n))
/. (i
+ 1))
`1 );
(((
Cage (C,n))
/. i)
`2 )
<= (((
Cage (C,n))
/. (i
+ 1))
`2 ) or (((
Cage (C,n))
/. i)
`2 )
>= (((
Cage (C,n))
/. (i
+ 1))
`2 );
then
A34: (NE
`2 )
<= (((
Cage (C,n))
/. (i
+ 1))
`2 ) or (NE
`2 )
<= (((
Cage (C,n))
/. i)
`2 ) by
A32,
TOPREAL1: 4;
A35: (NE
`1 )
= (((
Cage (C,n))
/. i)
`1 ) by
A32,
A33,
GOBOARD7: 5;
A36: 1
<= (i
+ 1) by
NAT_1: 11;
then
A37: (i
+ 1)
in (
dom (
Cage (C,n))) by
A31,
FINSEQ_3: 25;
A38: (NE
`2 )
= (
N-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
then
A39: (((
Cage (C,n))
/. (i
+ 1))
`2 )
<= (NE
`2 ) by
A31,
A36,
JORDAN5D: 11;
A40: i
< (
len (
Cage (C,n))) by
A31,
NAT_1: 13;
then (((
Cage (C,n))
/. i)
`2 )
<= (NE
`2 ) by
A30,
A38,
JORDAN5D: 11;
then (NE
`2 )
= (((
Cage (C,n))
/. (i
+ 1))
`2 ) or (NE
`2 )
= (((
Cage (C,n))
/. i)
`2 ) by
A39,
A34,
XXREAL_0: 1;
then
A41: NE
= ((
Cage (C,n))
/. (i
+ 1)) or NE
= ((
Cage (C,n))
/. i) by
A33,
A35,
TOPREAL3: 6;
i
in (
dom (
Cage (C,n))) by
A30,
A40,
FINSEQ_3: 25;
hence contradiction by
A23,
A37,
A41,
PARTFUN2: 2;
end;
suppose
A42: (((
Cage (C,n))
/. i)
`2 )
= (((
Cage (C,n))
/. (i
+ 1))
`2 );
(((
Cage (C,n))
/. i)
`1 )
<= (((
Cage (C,n))
/. (i
+ 1))
`1 ) or (((
Cage (C,n))
/. i)
`1 )
>= (((
Cage (C,n))
/. (i
+ 1))
`1 );
then
A43: (NE
`1 )
<= (((
Cage (C,n))
/. (i
+ 1))
`1 ) or (NE
`1 )
<= (((
Cage (C,n))
/. i)
`1 ) by
A32,
TOPREAL1: 3;
A44: (NE
`2 )
= (((
Cage (C,n))
/. i)
`2 ) by
A32,
A42,
GOBOARD7: 6;
A45: 1
<= (i
+ 1) by
NAT_1: 11;
then
A46: (i
+ 1)
in (
dom (
Cage (C,n))) by
A31,
FINSEQ_3: 25;
A47: (NE
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
then
A48: (((
Cage (C,n))
/. (i
+ 1))
`1 )
<= (NE
`1 ) by
A31,
A45,
JORDAN5D: 12;
A49: i
< (
len (
Cage (C,n))) by
A31,
NAT_1: 13;
then (((
Cage (C,n))
/. i)
`1 )
<= (NE
`1 ) by
A30,
A47,
JORDAN5D: 12;
then (NE
`1 )
= (((
Cage (C,n))
/. (i
+ 1))
`1 ) or (NE
`1 )
= (((
Cage (C,n))
/. i)
`1 ) by
A48,
A43,
XXREAL_0: 1;
then
A50: NE
= ((
Cage (C,n))
/. (i
+ 1)) or NE
= ((
Cage (C,n))
/. i) by
A42,
A44,
TOPREAL3: 6;
i
in (
dom (
Cage (C,n))) by
A30,
A49,
FINSEQ_3: 25;
hence contradiction by
A23,
A46,
A50,
PARTFUN2: 2;
end;
end;
then
A51: not NE
in
{Gij} by
A4,
TARSKI:def 1;
(
rng (
mid ((
Upper_Seq (C,n)),((
Index (Gij,(
Upper_Seq (C,n))))
+ 1),(
len (
Upper_Seq (C,n))))))
c= (
rng (
Upper_Seq (C,n))) & (
rng (
Upper_Seq (C,n)))
c= (
rng (
Cage (C,n))) by
Th39,
FINSEQ_6: 119;
then (
rng (
mid ((
Upper_Seq (C,n)),((
Index (Gij,(
Upper_Seq (C,n))))
+ 1),(
len (
Upper_Seq (C,n))))))
c= (
rng (
Cage (C,n)));
then not NE
in (
rng (
mid ((
Upper_Seq (C,n)),((
Index (Gij,(
Upper_Seq (C,n))))
+ 1),(
len (
Upper_Seq (C,n)))))) by
A23;
hence not NE
in (
rng v1) by
A29,
A51,
XBOOLE_0:def 3;
end;
suppose Gij
= ((
Upper_Seq (C,n))
. ((
Index (Gij,(
Upper_Seq (C,n))))
+ 1));
then v1
= (
mid ((
Upper_Seq (C,n)),((
Index (Gij,(
Upper_Seq (C,n))))
+ 1),(
len (
Upper_Seq (C,n))))) by
JORDAN3:def 3;
then
A52: (
rng v1)
c= (
rng (
Upper_Seq (C,n))) by
FINSEQ_6: 119;
(
rng (
Upper_Seq (C,n)))
c= (
rng (
Cage (C,n))) by
Th39;
then (
rng v1)
c= (
rng (
Cage (C,n))) by
A52;
hence not NE
in (
rng v1) by
A23;
end;
end;
(
S-bound (
L~ (
Cage (C,n))))
< (
N-bound (
L~ (
Cage (C,n)))) by
SPRECT_1: 32;
then NE
<> ((
Gauge (C,n))
* (i,1)) by
A13,
EUCLID: 52;
then not NE
in
{((
Gauge (C,n))
* (i,1))} by
TARSKI:def 1;
then not NE
in (
rng
<*((
Gauge (C,n))
* (i,1))*>) by
FINSEQ_1: 39;
then not NE
in ((
rng
<*((
Gauge (C,n))
* (i,1))*>)
\/ (
rng v1)) by
A28,
XBOOLE_0:def 3;
then not NE
in (
rng Gv1) by
FINSEQ_1: 31;
then (
rng Gv1)
misses
{NE} by
ZFMISC_1: 50;
then
A53: (
rng Gv1)
misses (
rng
<*NE*>) by
FINSEQ_1: 38;
A54: (
len v)
= ((
len Gv1)
+ 1) by
FINSEQ_2: 16
.= ((1
+ (
len v1))
+ 1) by
FINSEQ_5: 8;
A55: v1 is non
empty by
A21,
JORDAN1E: 3;
then
A56: (
0
+ 1)
<= (
len v1) by
NAT_1: 13;
then 1
in (
dom v1) by
FINSEQ_3: 25;
then
A57: (v1
/. 1)
= (v1
. 1) by
PARTFUN1:def 6
.= Gij by
A21,
JORDAN3: 23;
then
A58: ((v1
^
<*NE*>)
/. 1)
= Gij by
A56,
BOOLMARK: 7;
(1
+ (
len v1))
>= (1
+ 1) by
A56,
XREAL_1: 7;
then
A59: 2
< (
len v) by
A54,
NAT_1: 13;
A60: v1 is
being_S-Seq by
A21,
JORDAN3: 34;
v
= (
<*((
Gauge (C,n))
* (i,1))*>
^ (v1
^
<*NE*>)) by
FINSEQ_1: 32;
then (v
/. 1)
= ((
Gauge (C,n))
* (i,1)) by
FINSEQ_5: 15;
then
A61: ((v
/. 1)
`2 )
= (
S-bound (
L~ (
Cage (C,n)))) by
A1,
A2,
JORDAN1A: 72;
(
len v)
= ((
len Gv1)
+ 1) by
FINSEQ_2: 16;
then (v
/. (
len v))
= NE by
FINSEQ_4: 67;
then
A62: ((v
/. (
len v))
`2 )
= (
N-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
A63: ((
Cage (C,n))
/. 1)
= (
N-min (
L~ (
Cage (C,n)))) by
JORDAN9: 32;
then ((
N-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
<= ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
SPRECT_2: 70;
then
A64: ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
> 1 by
A63,
SPRECT_2: 69,
XXREAL_0: 2;
((
E-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
<= ((
S-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A63,
SPRECT_2: 72;
then ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
< ((
S-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A63,
SPRECT_2: 71,
XXREAL_0: 2;
then ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
< ((
S-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A63,
SPRECT_2: 73,
XXREAL_0: 2;
then
A65: ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
< ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A63,
SPRECT_2: 74,
XXREAL_0: 2;
then ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
< (
len (
Cage (C,n))) by
A63,
SPRECT_2: 76,
XXREAL_0: 2;
then
A66: (((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
+ 1)
<= (
len (
Cage (C,n))) by
NAT_1: 13;
A67: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then ((
Cage (C,n))
/. ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
= (
E-max (
L~ (
Cage (C,n)))) by
FINSEQ_5: 38;
then
A68: (((
Cage (C,n))
/. (((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
+ 1))
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) by
A64,
A66,
JORDAN1E: 20;
A69: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
then
A70: ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
= (((
len (
Cage (C,n)))
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
- ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))) by
A67,
A65,
SPRECT_5: 9;
now
let m be
Nat;
assume
A71: m
in (
dom
<*((
Gauge (C,n))
* (i,1))*>);
then m
in (
Seg 1) by
FINSEQ_1: 38;
then m
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then (
<*((
Gauge (C,n))
* (i,1))*>
. m)
= ((
Gauge (C,n))
* (i,1)) by
FINSEQ_1: 40;
then
A72: (
<*((
Gauge (C,n))
* (i,1))*>
/. m)
= ((
Gauge (C,n))
* (i,1)) by
A71,
PARTFUN1:def 6;
(
width (
Gauge (C,n)))
>= 4 by
A12,
JORDAN8: 10;
then
A73: 1
<= (
width (
Gauge (C,n))) by
XXREAL_0: 2;
then (((
Gauge (C,n))
* (1,1))
`1 )
<= (((
Gauge (C,n))
* (i,1))
`1 ) by
A1,
A2,
SPRECT_3: 13;
hence (
W-bound (
L~ (
Cage (C,n))))
<= ((
<*((
Gauge (C,n))
* (i,1))*>
/. m)
`1 ) by
A12,
A72,
A73,
JORDAN1A: 73;
(((
Gauge (C,n))
* (i,1))
`1 )
<= (((
Gauge (C,n))
* ((
len (
Gauge (C,n))),1))
`1 ) by
A1,
A2,
A73,
SPRECT_3: 13;
hence ((
<*((
Gauge (C,n))
* (i,1))*>
/. m)
`1 )
<= (
E-bound (
L~ (
Cage (C,n)))) by
A12,
A72,
A73,
JORDAN1A: 71;
thus (
S-bound (
L~ (
Cage (C,n))))
<= ((
<*((
Gauge (C,n))
* (i,1))*>
/. m)
`2 ) by
A1,
A2,
A72,
JORDAN1A: 72;
(
S-bound (
L~ (
Cage (C,n))))
= (((
Gauge (C,n))
* (i,1))
`2 ) by
A1,
A2,
JORDAN1A: 72;
hence ((
<*((
Gauge (C,n))
* (i,1))*>
/. m)
`2 )
<= (
N-bound (
L~ (
Cage (C,n)))) by
A72,
SPRECT_1: 22;
end;
then
A74:
<*((
Gauge (C,n))
* (i,1))*>
is_in_the_area_of (
Cage (C,n)) by
SPRECT_2:def 1;
A75:
<*NE*>
is_in_the_area_of (
Cage (C,n)) by
SPRECT_2: 25;
3
<= (
len (
Lower_Seq (C,n))) by
JORDAN1E: 15;
then 2
<= (
len (
Lower_Seq (C,n))) by
XXREAL_0: 2;
then
A76: 2
in (
dom (
Lower_Seq (C,n))) by
FINSEQ_3: 25;
<*Gij*>
is_in_the_area_of (
Cage (C,n)) by
A21,
JORDAN1E: 17,
SPRECT_3: 46;
then v1
is_in_the_area_of (
Cage (C,n)) by
A21,
JORDAN1E: 17,
SPRECT_3: 56;
then Gv1
is_in_the_area_of (
Cage (C,n)) by
A74,
SPRECT_2: 24;
then v
is_in_the_area_of (
Cage (C,n)) by
A75,
SPRECT_2: 24;
then
A77: v
is_a_v.c._for (
Cage (C,n)) by
A61,
A62,
SPRECT_2:def 3;
A78: (((1
+ (((
len (
Cage (C,n)))
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
- ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))))
+ ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
- (
len (
Cage (C,n))))
= (1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))));
A79: (
len (
Lower_Seq (C,n)))
in (
dom (
Lower_Seq (C,n))) by
FINSEQ_5: 6;
then h
is_in_the_area_of (
Cage (C,n)) by
A76,
JORDAN1E: 18,
SPRECT_2: 22;
then
A80: (
Rev h)
is_in_the_area_of (
Cage (C,n)) by
SPRECT_3: 51;
(1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
<= (
0
+ ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))) by
A65,
NAT_1: 13;
then ((1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
- ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
<=
0 by
XREAL_1: 20;
then
A81: ((
len (
Cage (C,n)))
+ ((1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
- ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))))
<= ((
len (
Cage (C,n)))
+
0 ) by
XREAL_1: 6;
A82: (
len (
Lower_Seq (C,n)))
>= (2
+ 1) by
JORDAN1E: 15;
then
A83: (
len (
Lower_Seq (C,n)))
> 2 by
NAT_1: 13;
((
len (
Cage (C,n)))
+
0 )
<= ((
len (
Cage (C,n)))
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))) by
XREAL_1: 6;
then ((
len (
Cage (C,n)))
- ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
<= ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
A70,
XREAL_1: 9;
then (((
len (
Cage (C,n)))
- ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
+ 1)
<= (1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
XREAL_1: 6;
then
A84: (
len ((
Cage (C,n))
:- (
W-min (
L~ (
Cage (C,n))))))
<= (1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
A69,
FINSEQ_5: 50;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A85: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
A86: (
L~ v1)
c= (
L~ (
Upper_Seq (C,n))) by
A21,
JORDAN3: 42;
A87: (
len (
Lower_Seq (C,n)))
> 1 by
A82,
XXREAL_0: 2;
then
A88: h is non
empty by
A83,
JORDAN1B: 2;
A89: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
A67,
FINSEQ_6: 90,
SPRECT_2: 43;
then ((
Lower_Seq (C,n))
/. (1
+ 1))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. (1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))))) by
A5,
A76,
FINSEQ_5: 52
.= ((
Cage (C,n))
/. (((1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))))
+ ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
-' (
len (
Cage (C,n))))) by
A69,
A70,
A84,
A81,
FINSEQ_6: 182
.= ((
Cage (C,n))
/. (((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
+ 1)) by
A70,
A78,
XREAL_0:def 2;
then ((h
/. 1)
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) by
A76,
A79,
A68,
SPRECT_2: 8;
then (((
Rev h)
/. (
len h))
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) by
A88,
FINSEQ_5: 65;
then
A90: (((
Rev h)
/. (
len (
Rev h)))
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) by
FINSEQ_5:def 3;
((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. (
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
A5,
A89,
FINSEQ_5: 54
.= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. 1) by
FINSEQ_6:def 1
.= (
W-min (
L~ (
Cage (C,n)))) by
A69,
FINSEQ_6: 92;
then (((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
`1 )
= (
W-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
then ((h
/. (
len h))
`1 )
= (
W-bound (
L~ (
Cage (C,n)))) by
A76,
A79,
SPRECT_2: 9;
then (((
Rev h)
/. 1)
`1 )
= (
W-bound (
L~ (
Cage (C,n)))) by
A88,
FINSEQ_5: 65;
then
A91: (
Rev h)
is_a_h.c._for (
Cage (C,n)) by
A80,
A90,
SPRECT_2:def 2;
A92: (
len (
Upper_Seq (C,n)))
in (
dom (
Upper_Seq (C,n))) by
A9,
FINSEQ_3: 25;
set ci = (
mid ((
Upper_Seq (C,n)),((
Index (Gij,(
Upper_Seq (C,n))))
+ 1),(
len (
Upper_Seq (C,n)))));
(
rng (
Upper_Seq (C,n)))
c= (
L~ (
Upper_Seq (C,n))) by
A8,
SPPOL_2: 18,
XXREAL_0: 2;
then
A93: not ((
Gauge (C,n))
* (i,1))
in (
rng (
Upper_Seq (C,n))) by
A2,
A21,
Th44;
not ((
Gauge (C,n))
* (i,1))
in (
L~ (
Upper_Seq (C,n))) by
A2,
A21,
Th44;
then not ((
Gauge (C,n))
* (i,1))
in
{Gij} by
A21,
TARSKI:def 1;
then
A94: not ((
Gauge (C,n))
* (i,1))
in (
rng
<*Gij*>) by
FINSEQ_1: 38;
now
per cases ;
suppose
A95: Gij
<> ((
Upper_Seq (C,n))
. ((
Index (Gij,(
Upper_Seq (C,n))))
+ 1));
(
rng ci)
c= (
rng (
Upper_Seq (C,n))) by
FINSEQ_6: 119;
then not ((
Gauge (C,n))
* (i,1))
in (
rng ci) by
A93;
then not ((
Gauge (C,n))
* (i,1))
in ((
rng
<*Gij*>)
\/ (
rng ci)) by
A94,
XBOOLE_0:def 3;
then not ((
Gauge (C,n))
* (i,1))
in (
rng (
<*Gij*>
^ ci)) by
FINSEQ_1: 31;
hence not ((
Gauge (C,n))
* (i,1))
in (
rng v1) by
A95,
JORDAN3:def 3;
end;
suppose Gij
= ((
Upper_Seq (C,n))
. ((
Index (Gij,(
Upper_Seq (C,n))))
+ 1));
then v1
= ci by
JORDAN3:def 3;
then (
rng v1)
c= (
rng (
Upper_Seq (C,n))) by
FINSEQ_6: 119;
hence not ((
Gauge (C,n))
* (i,1))
in (
rng v1) by
A93;
end;
end;
then
{((
Gauge (C,n))
* (i,1))}
misses (
rng v1) by
ZFMISC_1: 50;
then
A96: (
rng
<*((
Gauge (C,n))
* (i,1))*>)
misses (
rng v1) by
FINSEQ_1: 38;
A97:
<*NE*> is
one-to-one by
FINSEQ_3: 93;
((
Lower_Seq (C,n))
/. 1)
= (((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n)))))
/. 1) by
JORDAN1E:def 2
.= (
E-max (
L~ (
Cage (C,n)))) by
FINSEQ_5: 53;
then
A98: not (
E-max (
L~ (
Cage (C,n))))
in (
L~ h) by
A83,
JORDAN5B: 16;
<*((
Gauge (C,n))
* (i,1))*> is
one-to-one by
FINSEQ_3: 93;
then Gv1 is
one-to-one by
A96,
A60,
FINSEQ_3: 91;
then
A99: v is
one-to-one by
A53,
A97,
FINSEQ_3: 91;
A100: (
L~ h)
c= (
L~ (
Lower_Seq (C,n))) by
A11,
JORDAN4: 35;
((
<*((
Gauge (C,n))
* (i,1))*>
/. (
len
<*((
Gauge (C,n))
* (i,1))*>))
`1 )
= ((
<*((
Gauge (C,n))
* (i,1))*>
/. 1)
`1 ) by
FINSEQ_1: 39
.= (((
Gauge (C,n))
* (i,1))
`1 ) by
FINSEQ_4: 16
.= ((v1
/. 1)
`1 ) by
A1,
A2,
A3,
A57,
GOBOARD5: 2;
then
A101: Gv1 is
special by
A60,
GOBOARD2: 8;
(
len v1)
in (
dom v1) by
A56,
FINSEQ_3: 25;
then
A102: (v1
/. (
len v1))
= (v1
. (
len v1)) by
PARTFUN1:def 6
.= ((
Upper_Seq (C,n))
. (
len (
Upper_Seq (C,n)))) by
A21,
JORDAN1B: 4
.= ((
Upper_Seq (C,n))
/. (
len (
Upper_Seq (C,n)))) by
A92,
PARTFUN1:def 6
.= (((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n)))))
/. ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
A7,
A85,
FINSEQ_5: 42
.= (
E-max (
L~ (
Cage (C,n)))) by
A85,
FINSEQ_5: 45;
then (Gv1
/. (
len Gv1))
= (
E-max (
L~ (
Cage (C,n)))) by
A55,
SPRECT_3: 1;
then ((Gv1
/. (
len Gv1))
`1 )
= (NE
`1 ) by
PSCOMP_1: 45
.= ((
<*NE*>
/. 1)
`1 ) by
FINSEQ_4: 16;
then
A103: v is
special by
A101,
GOBOARD2: 8;
h is
S-Sequence_in_R2 by
A83,
A87,
JORDAN3: 6;
then
A104: (
Rev h) is
S-Sequence_in_R2;
then 2
<= (
len (
Rev h)) by
TOPREAL1:def 8;
then (
L~ (
Rev h))
meets (
L~ v) by
A59,
A99,
A103,
A104,
A91,
A77,
SPRECT_2: 29;
then (
L~ h)
meets (
L~ v) by
SPPOL_2: 22;
then
consider x be
object such that
A105: x
in (
L~ h) and
A106: x
in (
L~ v) by
XBOOLE_0: 3;
A107: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
(
L~ v)
= (
L~ (
<*((
Gauge (C,n))
* (i,1))*>
^ (v1
^
<*NE*>))) by
FINSEQ_1: 32
.= ((
LSeg (((
Gauge (C,n))
* (i,1)),((v1
^
<*NE*>)
/. 1)))
\/ (
L~ (v1
^
<*NE*>))) by
SPPOL_2: 20
.= ((
LSeg (((
Gauge (C,n))
* (i,1)),((v1
^
<*NE*>)
/. 1)))
\/ ((
L~ v1)
\/ (
LSeg ((v1
/. (
len v1)),NE)))) by
A55,
SPPOL_2: 19;
then
A108: x
in (
LSeg (((
Gauge (C,n))
* (i,1)),((v1
^
<*NE*>)
/. 1))) or x
in ((
L~ v1)
\/ (
LSeg ((v1
/. (
len v1)),NE))) by
A106,
XBOOLE_0:def 3;
now
per cases by
A108,
XBOOLE_0:def 3;
suppose x
in (
LSeg (((
Gauge (C,n))
* (i,1)),((v1
^
<*NE*>)
/. 1)));
then x
in (
L~
<*((
Gauge (C,n))
* (i,1)), Gij*>) by
A58,
SPPOL_2: 21;
hence (
L~ (
Lower_Seq (C,n)))
meets (
L~
<*((
Gauge (C,n))
* (i,1)), Gij*>) by
A105,
A100,
XBOOLE_0: 3;
end;
suppose
A109: x
in (
L~ v1);
then x
in ((
L~ (
Upper_Seq (C,n)))
/\ (
L~ (
Lower_Seq (C,n)))) by
A105,
A100,
A86,
XBOOLE_0:def 4;
then x
in
{(
W-min (
L~ (
Cage (C,n)))), (
E-max (
L~ (
Cage (C,n))))} by
JORDAN1E: 16;
then
A110: x
= (
W-min (
L~ (
Cage (C,n)))) by
A105,
A98,
TARSKI:def 2;
1
in (
dom (
Upper_Seq (C,n))) by
A9,
FINSEQ_3: 25;
then ((
Upper_Seq (C,n))
. 1)
= ((
Upper_Seq (C,n))
/. 1) by
PARTFUN1:def 6
.= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. 1) by
A7,
A85,
FINSEQ_5: 44
.= (
W-min (
L~ (
Cage (C,n)))) by
A107,
FINSEQ_6: 92;
then x
= Gij by
A21,
A109,
A110,
JORDAN1E: 7;
then x
in (
LSeg (((
Gauge (C,n))
* (i,1)),Gij)) by
RLTOPSP1: 68;
then x
in (
L~
<*((
Gauge (C,n))
* (i,1)), Gij*>) by
SPPOL_2: 21;
hence (
L~ (
Lower_Seq (C,n)))
meets (
L~
<*((
Gauge (C,n))
* (i,1)), Gij*>) by
A105,
A100,
XBOOLE_0: 3;
end;
suppose
A111: x
in (
LSeg ((v1
/. (
len v1)),NE));
x
in (
L~ (
Cage (C,n))) by
A6,
A105,
A100,
XBOOLE_0:def 3;
then x
in ((
LSeg ((
E-max (
L~ (
Cage (C,n)))),NE))
/\ (
L~ (
Cage (C,n)))) by
A102,
A111,
XBOOLE_0:def 4;
then x
in
{(
E-max (
L~ (
Cage (C,n))))} by
PSCOMP_1: 51;
hence (
L~ (
Lower_Seq (C,n)))
meets (
L~
<*((
Gauge (C,n))
* (i,1)), Gij*>) by
A105,
A98,
TARSKI:def 1;
end;
end;
then (
L~
<*((
Gauge (C,n))
* (i,1)), Gij*>)
meets (
L~ (
Lower_Seq (C,n)));
hence thesis by
SPPOL_2: 21;
end;
suppose
A112: Gij
in (
L~ (
Upper_Seq (C,n))) & Gij
<> ((
Upper_Seq (C,n))
. (
len (
Upper_Seq (C,n)))) & (
E-max (
L~ (
Cage (C,n))))
= NE & i
> 1;
now
let m be
Nat;
assume
A113: m
in (
dom
<*((
Gauge (C,n))
* (i,1))*>);
then m
in (
Seg 1) by
FINSEQ_1: 38;
then m
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then (
<*((
Gauge (C,n))
* (i,1))*>
. m)
= ((
Gauge (C,n))
* (i,1)) by
FINSEQ_1: 40;
then
A114: (
<*((
Gauge (C,n))
* (i,1))*>
/. m)
= ((
Gauge (C,n))
* (i,1)) by
A113,
PARTFUN1:def 6;
(
width (
Gauge (C,n)))
>= 4 by
A12,
JORDAN8: 10;
then
A115: 1
<= (
width (
Gauge (C,n))) by
XXREAL_0: 2;
then (((
Gauge (C,n))
* (1,1))
`1 )
<= (((
Gauge (C,n))
* (i,1))
`1 ) by
A1,
A2,
SPRECT_3: 13;
hence (
W-bound (
L~ (
Cage (C,n))))
<= ((
<*((
Gauge (C,n))
* (i,1))*>
/. m)
`1 ) by
A12,
A114,
A115,
JORDAN1A: 73;
(((
Gauge (C,n))
* (i,1))
`1 )
<= (((
Gauge (C,n))
* ((
len (
Gauge (C,n))),1))
`1 ) by
A1,
A2,
A115,
SPRECT_3: 13;
hence ((
<*((
Gauge (C,n))
* (i,1))*>
/. m)
`1 )
<= (
E-bound (
L~ (
Cage (C,n)))) by
A12,
A114,
A115,
JORDAN1A: 71;
thus (
S-bound (
L~ (
Cage (C,n))))
<= ((
<*((
Gauge (C,n))
* (i,1))*>
/. m)
`2 ) by
A1,
A2,
A114,
JORDAN1A: 72;
(
S-bound (
L~ (
Cage (C,n))))
= (((
Gauge (C,n))
* (i,1))
`2 ) by
A1,
A2,
JORDAN1A: 72;
hence ((
<*((
Gauge (C,n))
* (i,1))*>
/. m)
`2 )
<= (
N-bound (
L~ (
Cage (C,n)))) by
A114,
SPRECT_1: 22;
end;
then
A116:
<*((
Gauge (C,n))
* (i,1))*>
is_in_the_area_of (
Cage (C,n)) by
SPRECT_2:def 1;
<*Gij*>
is_in_the_area_of (
Cage (C,n)) by
A112,
JORDAN1E: 17,
SPRECT_3: 46;
then v1
is_in_the_area_of (
Cage (C,n)) by
A112,
JORDAN1E: 17,
SPRECT_3: 56;
then
A117: Gv1
is_in_the_area_of (
Cage (C,n)) by
A116,
SPRECT_2: 24;
A118: (
len (
Upper_Seq (C,n)))
in (
dom (
Upper_Seq (C,n))) by
A9,
FINSEQ_3: 25;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A119: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
A120: v1 is non
empty by
A112,
JORDAN1E: 3;
then
A121: (
0
+ 1)
<= (
len v1) by
NAT_1: 13;
then 1
in (
dom v1) by
FINSEQ_3: 25;
then
A122: (v1
/. 1)
= (v1
. 1) by
PARTFUN1:def 6
.= Gij by
A112,
JORDAN3: 23;
(
len v1)
in (
dom v1) by
A121,
FINSEQ_3: 25;
then (v1
/. (
len v1))
= (v1
. (
len v1)) by
PARTFUN1:def 6
.= ((
Upper_Seq (C,n))
. (
len (
Upper_Seq (C,n)))) by
A112,
JORDAN1B: 4
.= ((
Upper_Seq (C,n))
/. (
len (
Upper_Seq (C,n)))) by
A118,
PARTFUN1:def 6
.= (((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n)))))
/. ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
A7,
A119,
FINSEQ_5: 42
.= (
E-max (
L~ (
Cage (C,n)))) by
A119,
FINSEQ_5: 45;
then (Gv1
/. (
len Gv1))
= (
E-max (
L~ (
Cage (C,n)))) by
A120,
SPRECT_3: 1;
then
A123: ((Gv1
/. (
len Gv1))
`2 )
= (
N-bound (
L~ (
Cage (C,n)))) by
A112,
EUCLID: 52;
(Gv1
/. 1)
= ((
Gauge (C,n))
* (i,1)) by
FINSEQ_5: 15;
then ((Gv1
/. 1)
`2 )
= (
S-bound (
L~ (
Cage (C,n)))) by
A1,
A2,
JORDAN1A: 72;
then
A124: Gv1
is_a_v.c._for (
Cage (C,n)) by
A117,
A123,
SPRECT_2:def 3;
A125: ((
Cage (C,n))
/. 1)
= (
N-min (
L~ (
Cage (C,n)))) by
JORDAN9: 32;
then ((
N-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
<= ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
SPRECT_2: 70;
then
A126: ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
> 1 by
A125,
SPRECT_2: 69,
XXREAL_0: 2;
((
E-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
<= ((
S-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A125,
SPRECT_2: 72;
then ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
< ((
S-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A125,
SPRECT_2: 71,
XXREAL_0: 2;
then ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
< ((
S-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A125,
SPRECT_2: 73,
XXREAL_0: 2;
then
A127: ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
< ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))) by
A125,
SPRECT_2: 74,
XXREAL_0: 2;
then ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
< (
len (
Cage (C,n))) by
A125,
SPRECT_2: 76,
XXREAL_0: 2;
then
A128: (((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
+ 1)
<= (
len (
Cage (C,n))) by
NAT_1: 13;
A129: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then ((
Cage (C,n))
/. ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
= (
E-max (
L~ (
Cage (C,n)))) by
FINSEQ_5: 38;
then
A130: (((
Cage (C,n))
/. (((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
+ 1))
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) by
A126,
A128,
JORDAN1E: 20;
(1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
<= (
0
+ ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))) by
A127,
NAT_1: 13;
then ((1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
- ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
<=
0 by
XREAL_1: 20;
then
A131: ((
len (
Cage (C,n)))
+ ((1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
- ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))))
<= ((
len (
Cage (C,n)))
+
0 ) by
XREAL_1: 6;
A132: (
len (
Lower_Seq (C,n)))
>= (2
+ 1) by
JORDAN1E: 15;
then
A133: (
len (
Lower_Seq (C,n)))
> 2 by
NAT_1: 13;
set ci = (
mid ((
Upper_Seq (C,n)),((
Index (Gij,(
Upper_Seq (C,n))))
+ 1),(
len (
Upper_Seq (C,n)))));
(
rng (
Upper_Seq (C,n)))
c= (
L~ (
Upper_Seq (C,n))) by
A8,
SPPOL_2: 18,
XXREAL_0: 2;
then
A134: not ((
Gauge (C,n))
* (i,1))
in (
rng (
Upper_Seq (C,n))) by
A2,
A112,
Th44;
not ((
Gauge (C,n))
* (i,1))
in (
L~ (
Upper_Seq (C,n))) by
A2,
A112,
Th44;
then not ((
Gauge (C,n))
* (i,1))
in
{Gij} by
A112,
TARSKI:def 1;
then
A135: not ((
Gauge (C,n))
* (i,1))
in (
rng
<*Gij*>) by
FINSEQ_1: 38;
now
per cases ;
suppose
A136: Gij
<> ((
Upper_Seq (C,n))
. ((
Index (Gij,(
Upper_Seq (C,n))))
+ 1));
(
rng ci)
c= (
rng (
Upper_Seq (C,n))) by
FINSEQ_6: 119;
then not ((
Gauge (C,n))
* (i,1))
in (
rng ci) by
A134;
then not ((
Gauge (C,n))
* (i,1))
in ((
rng
<*Gij*>)
\/ (
rng ci)) by
A135,
XBOOLE_0:def 3;
then not ((
Gauge (C,n))
* (i,1))
in (
rng (
<*Gij*>
^ ci)) by
FINSEQ_1: 31;
hence not ((
Gauge (C,n))
* (i,1))
in (
rng v1) by
A136,
JORDAN3:def 3;
end;
suppose Gij
= ((
Upper_Seq (C,n))
. ((
Index (Gij,(
Upper_Seq (C,n))))
+ 1));
then v1
= ci by
JORDAN3:def 3;
then (
rng v1)
c= (
rng (
Upper_Seq (C,n))) by
FINSEQ_6: 119;
hence not ((
Gauge (C,n))
* (i,1))
in (
rng v1) by
A134;
end;
end;
then
{((
Gauge (C,n))
* (i,1))}
misses (
rng v1) by
ZFMISC_1: 50;
then
A137: (
rng
<*((
Gauge (C,n))
* (i,1))*>)
misses (
rng v1) by
FINSEQ_1: 38;
A138: (((1
+ (((
len (
Cage (C,n)))
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
- ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))))
+ ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
- (
len (
Cage (C,n))))
= (1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))));
(1
+ (
len v1))
>= (1
+ 1) by
A121,
XREAL_1: 7;
then
A139: (
len Gv1)
>= 2 by
FINSEQ_5: 8;
3
<= (
len (
Lower_Seq (C,n))) by
JORDAN1E: 15;
then 2
<= (
len (
Lower_Seq (C,n))) by
XXREAL_0: 2;
then
A140: 2
in (
dom (
Lower_Seq (C,n))) by
FINSEQ_3: 25;
((
Lower_Seq (C,n))
/. 1)
= (((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n)))))
/. 1) by
JORDAN1E:def 2
.= (
E-max (
L~ (
Cage (C,n)))) by
FINSEQ_5: 53;
then
A141: not (
E-max (
L~ (
Cage (C,n))))
in (
L~ h) by
A133,
JORDAN5B: 16;
A142: v1 is
being_S-Seq by
A112,
JORDAN3: 34;
((
<*((
Gauge (C,n))
* (i,1))*>
/. (
len
<*((
Gauge (C,n))
* (i,1))*>))
`1 )
= ((
<*((
Gauge (C,n))
* (i,1))*>
/. 1)
`1 ) by
FINSEQ_1: 39
.= (((
Gauge (C,n))
* (i,1))
`1 ) by
FINSEQ_4: 16
.= ((v1
/. 1)
`1 ) by
A1,
A2,
A3,
A122,
GOBOARD5: 2;
then
A143: Gv1 is
special by
A142,
GOBOARD2: 8;
A144: (
L~ Gv1)
= ((
LSeg (((
Gauge (C,n))
* (i,1)),(v1
/. 1)))
\/ (
L~ v1)) by
A120,
SPPOL_2: 20;
A145: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
then
A146: ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))
= (((
len (
Cage (C,n)))
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
- ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))) by
A129,
A127,
SPRECT_5: 9;
((
len (
Cage (C,n)))
+
0 )
<= ((
len (
Cage (C,n)))
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))) by
XREAL_1: 6;
then ((
len (
Cage (C,n)))
- ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
<= ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
A146,
XREAL_1: 9;
then (((
len (
Cage (C,n)))
- ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
+ 1)
<= (1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
XREAL_1: 6;
then
A147: (
len ((
Cage (C,n))
:- (
W-min (
L~ (
Cage (C,n))))))
<= (1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
A145,
FINSEQ_5: 50;
A148: (
len (
Lower_Seq (C,n)))
> 1 by
A132,
XXREAL_0: 2;
then
A149: h is non
empty by
A133,
JORDAN1B: 2;
A150: (
len (
Lower_Seq (C,n)))
in (
dom (
Lower_Seq (C,n))) by
FINSEQ_5: 6;
then h
is_in_the_area_of (
Cage (C,n)) by
A140,
JORDAN1E: 18,
SPRECT_2: 22;
then
A151: (
Rev h)
is_in_the_area_of (
Cage (C,n)) by
SPRECT_3: 51;
A152: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
A129,
FINSEQ_6: 90,
SPRECT_2: 43;
then ((
Lower_Seq (C,n))
/. (1
+ 1))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. (1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))))) by
A5,
A140,
FINSEQ_5: 52
.= ((
Cage (C,n))
/. (((1
+ ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))))
+ ((
W-min (
L~ (
Cage (C,n))))
.. (
Cage (C,n))))
-' (
len (
Cage (C,n))))) by
A145,
A146,
A147,
A131,
FINSEQ_6: 182
.= ((
Cage (C,n))
/. (((
E-max (
L~ (
Cage (C,n))))
.. (
Cage (C,n)))
+ 1)) by
A146,
A138,
XREAL_0:def 2;
then ((h
/. 1)
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) by
A140,
A150,
A130,
SPRECT_2: 8;
then (((
Rev h)
/. (
len h))
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) by
A149,
FINSEQ_5: 65;
then
A153: (((
Rev h)
/. (
len (
Rev h)))
`1 )
= (
E-bound (
L~ (
Cage (C,n)))) by
FINSEQ_5:def 3;
((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. (
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
A5,
A152,
FINSEQ_5: 54
.= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. 1) by
FINSEQ_6:def 1
.= (
W-min (
L~ (
Cage (C,n)))) by
A145,
FINSEQ_6: 92;
then (((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
`1 )
= (
W-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
then ((h
/. (
len h))
`1 )
= (
W-bound (
L~ (
Cage (C,n)))) by
A140,
A150,
SPRECT_2: 9;
then (((
Rev h)
/. 1)
`1 )
= (
W-bound (
L~ (
Cage (C,n)))) by
A149,
FINSEQ_5: 65;
then
A154: (
Rev h)
is_a_h.c._for (
Cage (C,n)) by
A151,
A153,
SPRECT_2:def 2;
<*((
Gauge (C,n))
* (i,1))*> is
one-to-one by
FINSEQ_3: 93;
then
A155: Gv1 is
one-to-one by
A137,
A142,
FINSEQ_3: 91;
A156: (
L~ h)
c= (
L~ (
Lower_Seq (C,n))) by
A11,
JORDAN4: 35;
h is
S-Sequence_in_R2 by
A133,
A148,
JORDAN3: 6;
then
A157: (
Rev h) is
S-Sequence_in_R2;
then 2
<= (
len (
Rev h)) by
TOPREAL1:def 8;
then (
L~ (
Rev h))
meets (
L~ Gv1) by
A139,
A155,
A143,
A157,
A154,
A124,
SPRECT_2: 29;
then (
L~ h)
meets (
L~ Gv1) by
SPPOL_2: 22;
then
consider x be
object such that
A158: x
in (
L~ h) and
A159: x
in (
L~ Gv1) by
XBOOLE_0: 3;
A160: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
A161: (
L~ v1)
c= (
L~ (
Upper_Seq (C,n))) by
A112,
JORDAN3: 42;
now
per cases by
A159,
A144,
XBOOLE_0:def 3;
suppose x
in (
LSeg (((
Gauge (C,n))
* (i,1)),(v1
/. 1)));
then x
in (
L~
<*((
Gauge (C,n))
* (i,1)), Gij*>) by
A122,
SPPOL_2: 21;
hence (
L~ (
Lower_Seq (C,n)))
meets (
L~
<*((
Gauge (C,n))
* (i,1)), Gij*>) by
A158,
A156,
XBOOLE_0: 3;
end;
suppose
A162: x
in (
L~ v1);
then x
in ((
L~ (
Upper_Seq (C,n)))
/\ (
L~ (
Lower_Seq (C,n)))) by
A158,
A156,
A161,
XBOOLE_0:def 4;
then x
in
{(
W-min (
L~ (
Cage (C,n)))), (
E-max (
L~ (
Cage (C,n))))} by
JORDAN1E: 16;
then
A163: x
= (
W-min (
L~ (
Cage (C,n)))) by
A158,
A141,
TARSKI:def 2;
1
in (
dom (
Upper_Seq (C,n))) by
A9,
FINSEQ_3: 25;
then ((
Upper_Seq (C,n))
. 1)
= ((
Upper_Seq (C,n))
/. 1) by
PARTFUN1:def 6
.= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. 1) by
A7,
A119,
FINSEQ_5: 44
.= (
W-min (
L~ (
Cage (C,n)))) by
A160,
FINSEQ_6: 92;
then x
= Gij by
A112,
A162,
A163,
JORDAN1E: 7;
then x
in (
LSeg (((
Gauge (C,n))
* (i,1)),Gij)) by
RLTOPSP1: 68;
then x
in (
L~
<*((
Gauge (C,n))
* (i,1)), Gij*>) by
SPPOL_2: 21;
hence (
L~ (
Lower_Seq (C,n)))
meets (
L~
<*((
Gauge (C,n))
* (i,1)), Gij*>) by
A158,
A156,
XBOOLE_0: 3;
end;
end;
then (
L~
<*((
Gauge (C,n))
* (i,1)), Gij*>)
meets (
L~ (
Lower_Seq (C,n)));
hence thesis by
SPPOL_2: 21;
end;
suppose
A164: Gij
in (
L~ (
Lower_Seq (C,n)));
Gij
in (
LSeg (((
Gauge (C,n))
* (i,1)),Gij)) by
RLTOPSP1: 68;
hence thesis by
A164,
XBOOLE_0: 3;
end;
suppose
A165: Gij
in (
L~ (
Upper_Seq (C,n))) & Gij
= ((
Upper_Seq (C,n))
. (
len (
Upper_Seq (C,n))));
A166: Gij
in (
LSeg (((
Gauge (C,n))
* (i,1)),Gij)) by
RLTOPSP1: 68;
A167: (
rng (
Lower_Seq (C,n)))
c= (
L~ (
Lower_Seq (C,n))) & (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Lower_Seq (C,n))) by
A5,
A10,
FINSEQ_6: 61,
SPPOL_2: 18,
XXREAL_0: 2;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A168: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
(
len (
Upper_Seq (C,n)))
in (
dom (
Upper_Seq (C,n))) by
A9,
FINSEQ_3: 25;
then ((
Upper_Seq (C,n))
. (
len (
Upper_Seq (C,n))))
= ((
Upper_Seq (C,n))
/. (
len (
Upper_Seq (C,n)))) by
PARTFUN1:def 6
.= (((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n)))))
/. ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
A7,
A168,
FINSEQ_5: 42
.= (
E-max (
L~ (
Cage (C,n)))) by
A168,
FINSEQ_5: 45;
hence thesis by
A165,
A167,
A166,
XBOOLE_0: 3;
end;
end;
hence thesis;
end;
theorem ::
JORDAN1G:47
Th47: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat st n
>
0 holds (
First_Point ((
L~ (
Upper_Seq (C,n))),(
W-min (
L~ (
Cage (C,n)))),(
E-max (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
in (
rng (
Upper_Seq (C,n)))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
assume
A1: n
>
0 ;
set sr = (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2);
set Ebo = (
E-bound (
L~ (
Cage (C,n))));
set Wbo = (
W-bound (
L~ (
Cage (C,n))));
set Emax = (
E-max (
L~ (
Cage (C,n))));
set Wmin = (
W-min (
L~ (
Cage (C,n))));
set FiP = (
First_Point ((
L~ (
Upper_Seq (C,n))),Wmin,Emax,(
Vertical_Line sr)));
A2: 1
<= (
Center (
Gauge (C,n))) by
JORDAN1B: 11;
A3: ((
Upper_Seq (C,n))
/. 1)
= (
W-min (
L~ (
Cage (C,n)))) & ((
Upper_Seq (C,n))
/. (
len (
Upper_Seq (C,n))))
= (
E-max (
L~ (
Cage (C,n)))) by
JORDAN1F: 5,
JORDAN1F: 7;
then
A4: (
L~ (
Upper_Seq (C,n)))
is_an_arc_of (Wmin,Emax) by
TOPREAL1: 25;
A5: Wbo
< Ebo by
SPRECT_1: 31;
then Wbo
< sr by
XREAL_1: 226;
then
A6: (Wmin
`1 )
<= sr by
EUCLID: 52;
A7: (
Center (
Gauge (C,n)))
<= (
len (
Gauge (C,n))) by
JORDAN1B: 13;
sr
< Ebo by
A5,
XREAL_1: 226;
then
A8: sr
<= (Emax
`1 ) by
EUCLID: 52;
then
A9: (
L~ (
Upper_Seq (C,n)))
meets (
Vertical_Line sr) by
A4,
A6,
JORDAN6: 49;
((
L~ (
Upper_Seq (C,n)))
/\ (
Vertical_Line sr)) is
closed by
A4,
A6,
A8,
JORDAN6: 49;
then
A10: FiP
in ((
L~ (
Upper_Seq (C,n)))
/\ (
Vertical_Line sr)) by
A4,
A9,
JORDAN5C:def 1;
then FiP
in (
L~ (
Upper_Seq (C,n))) by
XBOOLE_0:def 4;
then
consider t be
Nat such that
A11: 1
<= t and
A12: (t
+ 1)
<= (
len (
Upper_Seq (C,n))) and
A13: FiP
in (
LSeg ((
Upper_Seq (C,n)),t)) by
SPPOL_2: 13;
A14: (
LSeg ((
Upper_Seq (C,n)),t))
= (
LSeg (((
Upper_Seq (C,n))
/. t),((
Upper_Seq (C,n))
/. (t
+ 1)))) by
A11,
A12,
TOPREAL1:def 3;
t
< (
len (
Upper_Seq (C,n))) by
A12,
NAT_1: 13;
then
A15: t
in (
dom (
Upper_Seq (C,n))) by
A11,
FINSEQ_3: 25;
1
<= (t
+ 1) by
A11,
NAT_1: 13;
then
A16: (t
+ 1)
in (
dom (
Upper_Seq (C,n))) by
A12,
FINSEQ_3: 25;
FiP
in (
Vertical_Line sr) by
A10,
XBOOLE_0:def 4;
then
A17: (FiP
`1 )
= sr by
JORDAN6: 31;
A18: FiP
= (
First_Point ((
LSeg ((
Upper_Seq (C,n)),t)),((
Upper_Seq (C,n))
/. t),((
Upper_Seq (C,n))
/. (t
+ 1)),(
Vertical_Line sr))) by
A3,
A9,
A11,
A12,
A13,
JORDAN5C: 19,
JORDAN6: 30;
now
per cases by
SPPOL_1: 19;
suppose
A19: (
LSeg ((
Upper_Seq (C,n)),t)) is
vertical;
then (((
Upper_Seq (C,n))
/. (t
+ 1))
`1 )
= sr by
A13,
A14,
A17,
SPPOL_1: 41;
then ((
Upper_Seq (C,n))
/. (t
+ 1))
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= sr };
then
A20: ((
Upper_Seq (C,n))
/. (t
+ 1))
in (
Vertical_Line sr) by
JORDAN6:def 6;
A21: (
LSeg ((
Upper_Seq (C,n)),t)) is
closed & (
LSeg ((
Upper_Seq (C,n)),t))
is_an_arc_of (((
Upper_Seq (C,n))
/. t),((
Upper_Seq (C,n))
/. (t
+ 1))) by
A14,
A15,
A16,
GOBOARD7: 29,
TOPREAL1: 9;
(((
Upper_Seq (C,n))
/. t)
`1 )
= sr by
A13,
A14,
A17,
A19,
SPPOL_1: 41;
then ((
Upper_Seq (C,n))
/. t)
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= sr };
then ((
Upper_Seq (C,n))
/. t)
in (
Vertical_Line sr) by
JORDAN6:def 6;
then (
LSeg ((
Upper_Seq (C,n)),t))
c= (
Vertical_Line sr) by
A14,
A20,
JORDAN1A: 13;
then (
First_Point ((
LSeg ((
Upper_Seq (C,n)),t)),((
Upper_Seq (C,n))
/. t),((
Upper_Seq (C,n))
/. (t
+ 1)),(
Vertical_Line sr)))
= ((
Upper_Seq (C,n))
/. t) by
A21,
JORDAN5C: 7;
hence thesis by
A18,
A15,
PARTFUN2: 2;
end;
suppose (
LSeg ((
Upper_Seq (C,n)),t)) is
horizontal;
then
A22: (((
Upper_Seq (C,n))
/. t)
`2 )
= (((
Upper_Seq (C,n))
/. (t
+ 1))
`2 ) by
A14,
SPPOL_1: 15;
then
A23: (FiP
`2 )
= (((
Upper_Seq (C,n))
/. t)
`2 ) by
A13,
A14,
GOBOARD7: 6;
(
Upper_Seq (C,n))
is_sequence_on (
Gauge (C,n)) by
Th4;
then
consider i1,j1,i2,j2 be
Nat such that
A24:
[i1, j1]
in (
Indices (
Gauge (C,n))) and
A25: ((
Upper_Seq (C,n))
/. t)
= ((
Gauge (C,n))
* (i1,j1)) and
A26:
[i2, j2]
in (
Indices (
Gauge (C,n))) and
A27: ((
Upper_Seq (C,n))
/. (t
+ 1))
= ((
Gauge (C,n))
* (i2,j2)) and
A28: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A11,
A12,
JORDAN8: 3;
A29: 1
<= i1 by
A24,
MATRIX_0: 32;
A30: 1
<= i2 by
A26,
MATRIX_0: 32;
A31: i1
<= (
len (
Gauge (C,n))) by
A24,
MATRIX_0: 32;
A32: j1
= j2 by
A22,
A24,
A25,
A26,
A27,
Th6;
A33: i2
<= (
len (
Gauge (C,n))) by
A26,
MATRIX_0: 32;
A34: 1
<= j1 & j1
<= (
width (
Gauge (C,n))) by
A24,
MATRIX_0: 32;
then
A35: (((
Gauge (C,n))
* ((
Center (
Gauge (C,n))),j1))
`1 )
= (((
W-bound C)
+ (
E-bound C))
/ 2) by
A1,
Th35
.= (FiP
`1 ) by
A17,
Th33;
(((
Gauge (C,n))
* ((
Center (
Gauge (C,n))),j1))
`2 )
= (((
Gauge (C,n))
* (1,j1))
`2 ) by
A2,
A7,
A34,
GOBOARD5: 1
.= (FiP
`2 ) by
A23,
A25,
A29,
A31,
A34,
GOBOARD5: 1;
then
A36: FiP
= ((
Gauge (C,n))
* ((
Center (
Gauge (C,n))),j1)) by
A35,
TOPREAL3: 6;
now
per cases by
A28,
A32;
suppose
A37: (i1
+ 1)
= i2;
i1
< (i1
+ 1) by
NAT_1: 13;
then
A38: (((
Gauge (C,n))
* (i1,j1))
`1 )
<= (((
Gauge (C,n))
* ((i1
+ 1),j1))
`1 ) by
A29,
A34,
A33,
A37,
SPRECT_3: 13;
then (((
Gauge (C,n))
* (i1,j1))
`1 )
<= (FiP
`1 ) by
A13,
A14,
A25,
A27,
A32,
A37,
TOPREAL1: 3;
then i1
<= (
Center (
Gauge (C,n))) by
A2,
A31,
A34,
A35,
GOBOARD5: 3;
then i1
= (
Center (
Gauge (C,n))) or i1
< (
Center (
Gauge (C,n))) by
XXREAL_0: 1;
then
A39: i1
= (
Center (
Gauge (C,n))) or (i1
+ 1)
<= (
Center (
Gauge (C,n))) by
NAT_1: 13;
(FiP
`1 )
<= (((
Gauge (C,n))
* ((i1
+ 1),j1))
`1 ) by
A13,
A14,
A25,
A27,
A32,
A37,
A38,
TOPREAL1: 3;
then (
Center (
Gauge (C,n)))
<= (i1
+ 1) by
A7,
A34,
A30,
A35,
A37,
GOBOARD5: 3;
then i1
= (
Center (
Gauge (C,n))) or (i1
+ 1)
= (
Center (
Gauge (C,n))) by
A39,
XXREAL_0: 1;
hence thesis by
A15,
A16,
A25,
A27,
A32,
A36,
A37,
PARTFUN2: 2;
end;
suppose
A40: i1
= (i2
+ 1);
i2
< (i2
+ 1) by
NAT_1: 13;
then
A41: (((
Gauge (C,n))
* (i2,j1))
`1 )
<= (((
Gauge (C,n))
* ((i2
+ 1),j1))
`1 ) by
A31,
A34,
A30,
A40,
SPRECT_3: 13;
then (((
Gauge (C,n))
* (i2,j1))
`1 )
<= (FiP
`1 ) by
A13,
A14,
A25,
A27,
A32,
A40,
TOPREAL1: 3;
then i2
<= (
Center (
Gauge (C,n))) by
A2,
A34,
A33,
A35,
GOBOARD5: 3;
then i2
= (
Center (
Gauge (C,n))) or i2
< (
Center (
Gauge (C,n))) by
XXREAL_0: 1;
then
A42: i2
= (
Center (
Gauge (C,n))) or (i2
+ 1)
<= (
Center (
Gauge (C,n))) by
NAT_1: 13;
(FiP
`1 )
<= (((
Gauge (C,n))
* ((i2
+ 1),j1))
`1 ) by
A13,
A14,
A25,
A27,
A32,
A40,
A41,
TOPREAL1: 3;
then (
Center (
Gauge (C,n)))
<= (i2
+ 1) by
A7,
A29,
A34,
A35,
A40,
GOBOARD5: 3;
then i2
= (
Center (
Gauge (C,n))) or (i2
+ 1)
= (
Center (
Gauge (C,n))) by
A42,
XXREAL_0: 1;
hence thesis by
A15,
A16,
A25,
A27,
A32,
A36,
A40,
PARTFUN2: 2;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
JORDAN1G:48
Th48: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat st n
>
0 holds (
Last_Point ((
L~ (
Lower_Seq (C,n))),(
E-max (
L~ (
Cage (C,n)))),(
W-min (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
in (
rng (
Lower_Seq (C,n)))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
assume
A1: n
>
0 ;
set sr = (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2);
set Ebo = (
E-bound (
L~ (
Cage (C,n))));
set Wbo = (
W-bound (
L~ (
Cage (C,n))));
set Emax = (
E-max (
L~ (
Cage (C,n))));
set Wmin = (
W-min (
L~ (
Cage (C,n))));
set LaP = (
Last_Point ((
L~ (
Lower_Seq (C,n))),Emax,Wmin,(
Vertical_Line sr)));
A2: ((
Lower_Seq (C,n))
/. 1)
= (
E-max (
L~ (
Cage (C,n)))) & ((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
= (
W-min (
L~ (
Cage (C,n)))) by
JORDAN1F: 6,
JORDAN1F: 8;
then
A3: (
L~ (
Lower_Seq (C,n)))
is_an_arc_of (Emax,Wmin) by
TOPREAL1: 25;
A4: Wbo
<= Ebo by
SPRECT_1: 21;
then Wbo
<= sr by
JORDAN6: 1;
then
A5: (Wmin
`1 )
<= sr by
EUCLID: 52;
sr
<= Ebo by
A4,
JORDAN6: 1;
then
A6: sr
<= (Emax
`1 ) by
EUCLID: 52;
A7: (
L~ (
Lower_Seq (C,n)))
is_an_arc_of (Wmin,Emax) by
A2,
JORDAN5B: 14,
TOPREAL1: 25;
then
A8: (
L~ (
Lower_Seq (C,n)))
meets (
Vertical_Line sr) by
A5,
A6,
JORDAN6: 49;
((
L~ (
Lower_Seq (C,n)))
/\ (
Vertical_Line sr)) is
closed by
A7,
A5,
A6,
JORDAN6: 49;
then
A9: LaP
in ((
L~ (
Lower_Seq (C,n)))
/\ (
Vertical_Line sr)) by
A3,
A8,
JORDAN5C:def 2;
then LaP
in (
L~ (
Lower_Seq (C,n))) by
XBOOLE_0:def 4;
then
consider t be
Nat such that
A10: 1
<= t and
A11: (t
+ 1)
<= (
len (
Lower_Seq (C,n))) and
A12: LaP
in (
LSeg ((
Lower_Seq (C,n)),t)) by
SPPOL_2: 13;
A13: (
LSeg ((
Lower_Seq (C,n)),t))
= (
LSeg (((
Lower_Seq (C,n))
/. t),((
Lower_Seq (C,n))
/. (t
+ 1)))) by
A10,
A11,
TOPREAL1:def 3;
1
<= (t
+ 1) by
A10,
NAT_1: 13;
then
A14: (t
+ 1)
in (
dom (
Lower_Seq (C,n))) by
A11,
FINSEQ_3: 25;
t
< (
len (
Lower_Seq (C,n))) by
A11,
NAT_1: 13;
then
A15: t
in (
dom (
Lower_Seq (C,n))) by
A10,
FINSEQ_3: 25;
LaP
in (
Vertical_Line sr) by
A9,
XBOOLE_0:def 4;
then
A16: (LaP
`1 )
= sr by
JORDAN6: 31;
A17: LaP
= (
Last_Point ((
LSeg ((
Lower_Seq (C,n)),t)),((
Lower_Seq (C,n))
/. t),((
Lower_Seq (C,n))
/. (t
+ 1)),(
Vertical_Line sr))) by
A2,
A8,
A10,
A11,
A12,
JORDAN5C: 20,
JORDAN6: 30;
now
per cases by
SPPOL_1: 19;
suppose
A18: (
LSeg ((
Lower_Seq (C,n)),t)) is
vertical;
then (((
Lower_Seq (C,n))
/. (t
+ 1))
`1 )
= sr by
A12,
A13,
A16,
SPPOL_1: 41;
then ((
Lower_Seq (C,n))
/. (t
+ 1))
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= sr };
then
A19: ((
Lower_Seq (C,n))
/. (t
+ 1))
in (
Vertical_Line sr) by
JORDAN6:def 6;
A20: (
LSeg ((
Lower_Seq (C,n)),t)) is
closed & (
LSeg ((
Lower_Seq (C,n)),t))
is_an_arc_of (((
Lower_Seq (C,n))
/. t),((
Lower_Seq (C,n))
/. (t
+ 1))) by
A13,
A15,
A14,
GOBOARD7: 29,
TOPREAL1: 9;
(((
Lower_Seq (C,n))
/. t)
`1 )
= sr by
A12,
A13,
A16,
A18,
SPPOL_1: 41;
then ((
Lower_Seq (C,n))
/. t)
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= sr };
then ((
Lower_Seq (C,n))
/. t)
in (
Vertical_Line sr) by
JORDAN6:def 6;
then (
LSeg ((
Lower_Seq (C,n)),t))
c= (
Vertical_Line sr) by
A13,
A19,
JORDAN1A: 13;
then (
Last_Point ((
LSeg ((
Lower_Seq (C,n)),t)),((
Lower_Seq (C,n))
/. t),((
Lower_Seq (C,n))
/. (t
+ 1)),(
Vertical_Line sr)))
= ((
Lower_Seq (C,n))
/. (t
+ 1)) by
A20,
JORDAN5C: 7;
hence thesis by
A17,
A14,
PARTFUN2: 2;
end;
suppose (
LSeg ((
Lower_Seq (C,n)),t)) is
horizontal;
then
A21: (((
Lower_Seq (C,n))
/. t)
`2 )
= (((
Lower_Seq (C,n))
/. (t
+ 1))
`2 ) by
A13,
SPPOL_1: 15;
then
A22: (LaP
`2 )
= (((
Lower_Seq (C,n))
/. t)
`2 ) by
A12,
A13,
GOBOARD7: 6;
(
Lower_Seq (C,n))
is_sequence_on (
Gauge (C,n)) by
Th5;
then
consider i1,j1,i2,j2 be
Nat such that
A23:
[i1, j1]
in (
Indices (
Gauge (C,n))) and
A24: ((
Lower_Seq (C,n))
/. t)
= ((
Gauge (C,n))
* (i1,j1)) and
A25:
[i2, j2]
in (
Indices (
Gauge (C,n))) and
A26: ((
Lower_Seq (C,n))
/. (t
+ 1))
= ((
Gauge (C,n))
* (i2,j2)) and
A27: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A10,
A11,
JORDAN8: 3;
A28: 1
<= i1 by
A23,
MATRIX_0: 32;
A29: j1
= j2 by
A21,
A23,
A24,
A25,
A26,
Th6;
A30: i2
<= (
len (
Gauge (C,n))) by
A25,
MATRIX_0: 32;
A31: i1
<= (
len (
Gauge (C,n))) by
A23,
MATRIX_0: 32;
A32: 1
<= i2 by
A25,
MATRIX_0: 32;
A33: (
Center (
Gauge (C,n)))
<= (
len (
Gauge (C,n))) by
JORDAN1B: 13;
A34: 1
<= j1 & j1
<= (
width (
Gauge (C,n))) by
A23,
MATRIX_0: 32;
then
A35: (((
Gauge (C,n))
* ((
Center (
Gauge (C,n))),j1))
`1 )
= (((
W-bound C)
+ (
E-bound C))
/ 2) by
A1,
Th35
.= (LaP
`1 ) by
A16,
Th33;
A36: 1
<= (
Center (
Gauge (C,n))) by
JORDAN1B: 11;
then (((
Gauge (C,n))
* ((
Center (
Gauge (C,n))),j1))
`2 )
= (((
Gauge (C,n))
* (1,j1))
`2 ) by
A34,
A33,
GOBOARD5: 1
.= (LaP
`2 ) by
A22,
A24,
A28,
A31,
A34,
GOBOARD5: 1;
then
A37: LaP
= ((
Gauge (C,n))
* ((
Center (
Gauge (C,n))),j1)) by
A35,
TOPREAL3: 6;
now
per cases by
A27,
A29;
suppose
A38: (i1
+ 1)
= i2;
i1
< (i1
+ 1) by
NAT_1: 13;
then
A39: (((
Gauge (C,n))
* (i1,j1))
`1 )
<= (((
Gauge (C,n))
* ((i1
+ 1),j1))
`1 ) by
A28,
A34,
A30,
A38,
SPRECT_3: 13;
then (((
Gauge (C,n))
* (i1,j1))
`1 )
<= (LaP
`1 ) by
A12,
A13,
A24,
A26,
A29,
A38,
TOPREAL1: 3;
then i1
<= (
Center (
Gauge (C,n))) by
A31,
A34,
A36,
A35,
GOBOARD5: 3;
then i1
= (
Center (
Gauge (C,n))) or i1
< (
Center (
Gauge (C,n))) by
XXREAL_0: 1;
then
A40: i1
= (
Center (
Gauge (C,n))) or (i1
+ 1)
<= (
Center (
Gauge (C,n))) by
NAT_1: 13;
(LaP
`1 )
<= (((
Gauge (C,n))
* ((i1
+ 1),j1))
`1 ) by
A12,
A13,
A24,
A26,
A29,
A38,
A39,
TOPREAL1: 3;
then (
Center (
Gauge (C,n)))
<= (i1
+ 1) by
A34,
A32,
A33,
A35,
A38,
GOBOARD5: 3;
then i1
= (
Center (
Gauge (C,n))) or (i1
+ 1)
= (
Center (
Gauge (C,n))) by
A40,
XXREAL_0: 1;
hence thesis by
A15,
A14,
A24,
A26,
A29,
A37,
A38,
PARTFUN2: 2;
end;
suppose
A41: i1
= (i2
+ 1);
i2
< (i2
+ 1) by
NAT_1: 13;
then
A42: (((
Gauge (C,n))
* (i2,j1))
`1 )
<= (((
Gauge (C,n))
* ((i2
+ 1),j1))
`1 ) by
A31,
A34,
A32,
A41,
SPRECT_3: 13;
then (((
Gauge (C,n))
* (i2,j1))
`1 )
<= (LaP
`1 ) by
A12,
A13,
A24,
A26,
A29,
A41,
TOPREAL1: 3;
then i2
<= (
Center (
Gauge (C,n))) by
A34,
A30,
A36,
A35,
GOBOARD5: 3;
then i2
= (
Center (
Gauge (C,n))) or i2
< (
Center (
Gauge (C,n))) by
XXREAL_0: 1;
then
A43: i2
= (
Center (
Gauge (C,n))) or (i2
+ 1)
<= (
Center (
Gauge (C,n))) by
NAT_1: 13;
(LaP
`1 )
<= (((
Gauge (C,n))
* ((i2
+ 1),j1))
`1 ) by
A12,
A13,
A24,
A26,
A29,
A41,
A42,
TOPREAL1: 3;
then (
Center (
Gauge (C,n)))
<= (i2
+ 1) by
A28,
A34,
A33,
A35,
A41,
GOBOARD5: 3;
then i2
= (
Center (
Gauge (C,n))) or (i2
+ 1)
= (
Center (
Gauge (C,n))) by
A43,
XXREAL_0: 1;
hence thesis by
A15,
A14,
A24,
A26,
A29,
A37,
A41,
PARTFUN2: 2;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
JORDAN1G:49
Th49: for f be
S-Sequence_in_R2 holds for p be
Point of (
TOP-REAL 2) st p
in (
rng f) holds (
R_Cut (f,p))
= (
mid (f,1,(p
.. f)))
proof
let f be
S-Sequence_in_R2;
let p be
Point of (
TOP-REAL 2);
assume
A1: p
in (
rng f);
then
consider i be
Nat such that
A2: i
in (
dom f) and
A3: (f
. i)
= p by
FINSEQ_2: 10;
reconsider i as
Nat;
A4: i
<= (
len f) by
A2,
FINSEQ_3: 25;
(
len f)
>= 2 by
TOPREAL1:def 8;
then
A5: (
rng f)
c= (
L~ f) by
SPPOL_2: 18;
then
A6: 1
<= (
Index (p,f)) by
A1,
JORDAN3: 8;
A7: (
Index (p,f))
< (
len f) by
A1,
A5,
JORDAN3: 8;
A8: (
0
+ 1)
<= i by
A2,
FINSEQ_3: 25;
then
A9: (i
- 1)
>=
0 by
XREAL_1: 19;
per cases by
A8,
XXREAL_0: 1;
suppose
A10: 1
< i;
1
<= (
len f) by
A8,
A4,
XXREAL_0: 2;
then 1
in (
dom f) by
FINSEQ_3: 25;
then p
<> (f
. 1) by
A2,
A3,
A10,
FUNCT_1:def 4;
then
A11: (
R_Cut (f,p))
= ((
mid (f,1,(
Index (p,f))))
^
<*p*>) by
JORDAN3:def 4;
A12: ((
Index (p,f))
+ 1)
= i by
A3,
A4,
A10,
JORDAN3: 12;
A13: (
len (
mid (f,1,(
Index (p,f)))))
= (((
Index (p,f))
-' 1)
+ 1) by
A6,
A7,
JORDAN4: 8
.= (i
-' 1) by
A1,
A5,
A12,
JORDAN3: 8,
NAT_D: 38;
A14: (
len (
mid (f,1,i)))
= ((i
-' 1)
+ 1) by
A8,
A4,
JORDAN4: 8
.= i by
A8,
XREAL_1: 235;
then
A15: (
dom (
mid (f,1,i)))
= (
Seg i) by
FINSEQ_1:def 3;
A16:
now
let j be
Nat;
reconsider a = j as
Nat;
assume
A17: j
in (
dom (
mid (f,1,i)));
then
A18: 1
<= j by
A15,
FINSEQ_1: 1;
A19: j
<= i by
A15,
A17,
FINSEQ_1: 1;
now
per cases by
A19,
XXREAL_0: 1;
suppose j
< i;
then
A20: j
<= (
Index (p,f)) by
A12,
NAT_1: 13;
then j
<= (i
-' 1) by
A9,
A12,
XREAL_0:def 2;
then
A21: j
in (
dom (
mid (f,1,(
Index (p,f))))) by
A13,
A18,
FINSEQ_3: 25;
thus ((
mid (f,1,i))
. j)
= (f
. a) by
A4,
A18,
A19,
FINSEQ_6: 123
.= ((
mid (f,1,(
Index (p,f))))
. a) by
A7,
A18,
A20,
FINSEQ_6: 123
.= (((
mid (f,1,(
Index (p,f))))
^
<*p*>)
. j) by
A21,
FINSEQ_1:def 7;
end;
suppose
A22: j
= i;
A23: ((i
-' 1)
+ 1)
= i by
A8,
XREAL_1: 235;
thus ((
mid (f,1,i))
. j)
= (f
. a) by
A4,
A18,
A19,
FINSEQ_6: 123
.= (((
mid (f,1,(
Index (p,f))))
^
<*p*>)
. j) by
A3,
A13,
A22,
A23,
FINSEQ_1: 42;
end;
end;
hence ((
mid (f,1,i))
. j)
= (((
mid (f,1,(
Index (p,f))))
^
<*p*>)
. j);
end;
(
len ((
mid (f,1,(
Index (p,f))))
^
<*p*>))
= ((i
-' 1)
+ 1) by
A13,
FINSEQ_2: 16
.= i by
A8,
XREAL_1: 235;
then (
mid (f,1,i))
= (
R_Cut (f,p)) by
A11,
A14,
A16,
FINSEQ_2: 9;
hence thesis by
A2,
A3,
FINSEQ_5: 11;
end;
suppose
A24: 1
= i;
then
A25: (
R_Cut (f,p))
=
<*p*> by
A3,
JORDAN3:def 4;
A26: p
= (f
/. 1) by
A2,
A3,
A24,
PARTFUN1:def 6;
then
S: (p
.. f)
= 1 by
FINSEQ_6: 43;
(f
/. 1)
= (f
. 1) by
A2,
PARTFUN1:def 6,
A24;
hence thesis by
A2,
A24,
A25,
A26,
S,
JORDAN4: 15;
end;
end;
theorem ::
JORDAN1G:50
Th50: for f be
S-Sequence_in_R2 holds for Q be
closed
Subset of (
TOP-REAL 2) st (
L~ f)
meets Q & not (f
/. 1)
in Q & (
First_Point ((
L~ f),(f
/. 1),(f
/. (
len f)),Q))
in (
rng f) holds ((
L~ (
mid (f,1,((
First_Point ((
L~ f),(f
/. 1),(f
/. (
len f)),Q))
.. f))))
/\ Q)
=
{(
First_Point ((
L~ f),(f
/. 1),(f
/. (
len f)),Q))}
proof
let f be
S-Sequence_in_R2;
let Q be
closed
Subset of (
TOP-REAL 2);
assume that
A1: (
L~ f)
meets Q & not (f
/. 1)
in Q and
A2: (
First_Point ((
L~ f),(f
/. 1),(f
/. (
len f)),Q))
in (
rng f);
((
L~ (
R_Cut (f,(
First_Point ((
L~ f),(f
/. 1),(f
/. (
len f)),Q)))))
/\ Q)
=
{(
First_Point ((
L~ f),(f
/. 1),(f
/. (
len f)),Q))} by
A1,
SPRECT_4: 1;
hence thesis by
A2,
Th49;
end;
theorem ::
JORDAN1G:51
Th51: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat st n
>
0 holds for k be
Nat st 1
<= k & k
< ((
First_Point ((
L~ (
Upper_Seq (C,n))),(
W-min (
L~ (
Cage (C,n)))),(
E-max (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
.. (
Upper_Seq (C,n))) holds (((
Upper_Seq (C,n))
/. k)
`1 )
< (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2)
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
assume
A1: n
>
0 ;
set US = (
Upper_Seq (C,n));
set sr = (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2);
set Ebo = (
E-bound (
L~ (
Cage (C,n))));
set Wbo = (
W-bound (
L~ (
Cage (C,n))));
set Emax = (
E-max (
L~ (
Cage (C,n))));
set Wmin = (
W-min (
L~ (
Cage (C,n))));
set FiP = (
First_Point ((
L~ US),Wmin,Emax,(
Vertical_Line sr)));
defpred
P[
Nat] means 1
<= $1 & $1
< (FiP
.. US) implies ((US
/. $1)
`1 )
< sr;
A2: Wbo
< Ebo by
SPRECT_1: 31;
then
A3: Wbo
< sr by
XREAL_1: 226;
A4: sr
< Ebo by
A2,
XREAL_1: 226;
A5: for k be non
zero
Nat st
P[k] holds
P[(k
+ 1)]
proof
set GC1 = ((
Gauge (C,n))
* ((
Center (
Gauge (C,n))),1));
let k be non
zero
Nat;
assume
A6: 1
<= k & k
< (FiP
.. US) implies ((US
/. k)
`1 )
< sr;
4
<= (
len (
Gauge (C,n))) by
JORDAN8: 10;
then 1
<= (
len (
Gauge (C,n))) by
XXREAL_0: 2;
then
A7: 1
<= (
width (
Gauge (C,n))) by
JORDAN8:def 1;
then
A8: (GC1
`1 )
= (((
W-bound C)
+ (
E-bound C))
/ 2) by
A1,
Th35
.= sr by
Th33;
A9: k
>= 1 by
NAT_1: 14;
A10: (US
/. (
len US))
= Emax by
JORDAN1F: 7;
A11: FiP
in (
rng US) by
A1,
Th47;
then
A12: (FiP
.. (
Upper_Seq (C,n)))
in (
dom (
Upper_Seq (C,n))) by
FINSEQ_4: 20;
then
A13: 1
<= (FiP
.. US) by
FINSEQ_3: 25;
A14: 1
<= (
Center (
Gauge (C,n))) by
JORDAN1B: 11;
A15: (US
/. 1)
= Wmin by
JORDAN1F: 5;
reconsider kk = k as
Nat;
assume that
A16: 1
<= (k
+ 1) and
A17: (k
+ 1)
< (FiP
.. US);
A18: (FiP
.. US)
<= (
len US) by
A12,
FINSEQ_3: 25;
then
A19: (k
+ 1)
<= (
len US) by
A17,
XXREAL_0: 2;
US
is_sequence_on (
Gauge (C,n)) by
Th4;
then
consider i1,j1,i2,j2 be
Nat such that
A20:
[i1, j1]
in (
Indices (
Gauge (C,n))) and
A21: (US
/. kk)
= ((
Gauge (C,n))
* (i1,j1)) and
A22:
[i2, j2]
in (
Indices (
Gauge (C,n))) and
A23: (US
/. (kk
+ 1))
= ((
Gauge (C,n))
* (i2,j2)) and
A24: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A9,
A19,
JORDAN8: 3;
A25: 1
<= i1 by
A20,
MATRIX_0: 32;
A26: 1
<= j1 & j1
<= (
width (
Gauge (C,n))) by
A20,
MATRIX_0: 32;
A27: j2
<= (
width (
Gauge (C,n))) by
A22,
MATRIX_0: 32;
A28: 1
<= i2 & 1
<= j2 by
A22,
MATRIX_0: 32;
A29: i2
<= (
len (
Gauge (C,n))) by
A22,
MATRIX_0: 32;
A30: i1
<= (
len (
Gauge (C,n))) by
A20,
MATRIX_0: 32;
A31: (
Center (
Gauge (C,n)))
<= (
len (
Gauge (C,n))) & (i1
+ 1)
>= 1 by
JORDAN1B: 13,
NAT_1: 11;
now
per cases by
A24;
suppose i1
= i2 & (j1
+ 1)
= j2;
then ((US
/. k)
`1 )
= (((
Gauge (C,n))
* (i2,1))
`1 ) by
A21,
A25,
A30,
A26,
GOBOARD5: 2
.= ((US
/. (k
+ 1))
`1 ) by
A23,
A29,
A28,
A27,
GOBOARD5: 2;
hence thesis by
A6,
A17,
NAT_1: 13,
NAT_1: 14;
end;
suppose
A32: (i1
+ 1)
= i2 & j1
= j2;
A33:
now
A34: (k
+ 1)
>= (1
+ 1) by
A9,
XREAL_1: 7;
(
len (
mid (US,1,(FiP
.. US))))
= (((FiP
.. US)
-' 1)
+ 1) by
A13,
A18,
JORDAN4: 8
.= (FiP
.. US) by
A13,
XREAL_1: 235;
then
A35: (
rng (
mid (US,1,(FiP
.. US))))
c= (
L~ (
mid (US,1,(FiP
.. US)))) by
A17,
A34,
SPPOL_2: 18,
XXREAL_0: 2;
A36: (US
/. (FiP
.. US))
= FiP by
A11,
FINSEQ_5: 38;
A37:
now
assume (US
/. 1)
in (
Vertical_Line sr);
then (Wmin
`1 )
= sr by
A15,
JORDAN6: 31;
hence contradiction by
A3,
EUCLID: 52;
end;
A38: (Wmin
`1 )
<= sr & sr
<= (Emax
`1 ) by
A3,
A4,
EUCLID: 52;
A39: (
Vertical_Line sr) is
closed & (
L~ US)
is_an_arc_of (Wmin,Emax) by
A15,
A10,
JORDAN6: 30,
TOPREAL1: 25;
(
First_Point ((
L~ US),(US
/. 1),(US
/. (
len US)),(
Vertical_Line sr)))
in (
rng US) by
A1,
A15,
A10,
Th47;
then
A40: ((
L~ (
mid (US,1,(FiP
.. US))))
/\ (
Vertical_Line sr))
=
{FiP} by
A15,
A10,
A39,
A38,
A37,
Th50,
JORDAN6: 49;
A41: (
mid (US,1,(FiP
.. US)))
= (US
| (FiP
.. US)) & (US
| (
Seg (FiP
.. US)))
= (US
| (FiP
.. US)) by
A13,
FINSEQ_1:def 15,
FINSEQ_6: 116;
assume ((US
/. (k
+ 1))
`1 )
= sr;
then (US
/. (k
+ 1))
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= sr };
then
A42: (US
/. (k
+ 1))
in (
Vertical_Line sr) by
JORDAN6:def 6;
A43: (k
+ 1)
in (
dom US) by
A16,
A19,
FINSEQ_3: 25;
(k
+ 1)
in (
Seg (FiP
.. US)) by
A16,
A17,
FINSEQ_1: 1;
then (US
/. (k
+ 1))
in (
rng (
mid (US,1,(FiP
.. US)))) by
A41,
A43,
PARTFUN2: 18;
then (US
/. (k
+ 1))
in
{FiP} by
A42,
A35,
A40,
XBOOLE_0:def 4;
then (US
/. (k
+ 1))
= FiP by
TARSKI:def 1;
hence contradiction by
A17,
A12,
A43,
A36,
PARTFUN2: 10;
end;
i1
< (
Center (
Gauge (C,n))) by
A6,
A17,
A21,
A30,
A26,
A14,
A7,
A8,
JORDAN1A: 18,
NAT_1: 13,
NAT_1: 14;
then (i1
+ 1)
<= (
Center (
Gauge (C,n))) by
NAT_1: 13;
then ((US
/. (k
+ 1))
`1 )
<= sr by
A23,
A26,
A7,
A8,
A31,
A32,
JORDAN1A: 18;
hence thesis by
A33,
XXREAL_0: 1;
end;
suppose i1
= (i2
+ 1) & j1
= j2;
then i2
< i1 by
NAT_1: 13;
then ((US
/. (k
+ 1))
`1 )
<= ((US
/. k)
`1 ) by
A21,
A23,
A30,
A26,
A28,
A27,
JORDAN1A: 18;
hence thesis by
A6,
A17,
NAT_1: 13,
NAT_1: 14,
XXREAL_0: 2;
end;
suppose i1
= i2 & j1
= (j2
+ 1);
then ((US
/. k)
`1 )
= (((
Gauge (C,n))
* (i2,1))
`1 ) by
A21,
A25,
A30,
A26,
GOBOARD5: 2
.= ((US
/. (k
+ 1))
`1 ) by
A23,
A29,
A28,
A27,
GOBOARD5: 2;
hence thesis by
A6,
A17,
NAT_1: 13,
NAT_1: 14;
end;
end;
hence thesis;
end;
A44:
P[1]
proof
assume that 1
<= 1 and 1
< (FiP
.. US);
(US
/. 1)
= Wmin by
JORDAN1F: 5;
hence thesis by
A3,
EUCLID: 52;
end;
A45: for k be non
zero
Nat holds
P[k] from
NAT_1:sch 10(
A44,
A5);
let k be
Nat;
assume 1
<= k & k
< ((
First_Point ((
L~ (
Upper_Seq (C,n))),(
W-min (
L~ (
Cage (C,n)))),(
E-max (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
.. (
Upper_Seq (C,n)));
hence thesis by
A45;
end;
theorem ::
JORDAN1G:52
Th52: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat st n
>
0 holds for k be
Nat st 1
<= k & k
< ((
First_Point ((
L~ (
Rev (
Lower_Seq (C,n)))),(
W-min (
L~ (
Cage (C,n)))),(
E-max (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
.. (
Rev (
Lower_Seq (C,n)))) holds (((
Rev (
Lower_Seq (C,n)))
/. k)
`1 )
< (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2)
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
assume
A1: n
>
0 ;
set LS = (
Lower_Seq (C,n));
set sr = (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2);
set Ebo = (
E-bound (
L~ (
Cage (C,n))));
set Wbo = (
W-bound (
L~ (
Cage (C,n))));
set Emax = (
E-max (
L~ (
Cage (C,n))));
set Wmin = (
W-min (
L~ (
Cage (C,n))));
set RLS = (
Rev LS);
set FiP = (
First_Point ((
L~ RLS),Wmin,Emax,(
Vertical_Line sr)));
set LaP = (
Last_Point ((
L~ LS),Emax,Wmin,(
Vertical_Line sr)));
A2: (
L~ RLS)
= (
L~ LS) by
SPPOL_2: 22;
A3: (
len RLS)
= (
len LS) by
FINSEQ_5:def 3;
defpred
P[
Nat] means 1
<= $1 & $1
< (FiP
.. RLS) implies ((RLS
/. $1)
`1 )
< sr;
A4: (
rng RLS)
= (
rng LS) by
FINSEQ_5: 57;
A5: Wbo
< Ebo by
SPRECT_1: 31;
then
A6: Wbo
< sr by
XREAL_1: 226;
A7: sr
< Ebo by
A5,
XREAL_1: 226;
A8: for k be non
zero
Nat st
P[k] holds
P[(k
+ 1)]
proof
A9: Wbo
<= Ebo by
SPRECT_1: 21;
then Wbo
<= sr by
JORDAN6: 1;
then
A10: (Wmin
`1 )
<= sr by
EUCLID: 52;
sr
<= Ebo by
A9,
JORDAN6: 1;
then
A11: sr
<= (Emax
`1 ) by
EUCLID: 52;
A12: (RLS
/. (
len RLS))
= (LS
/. 1) by
A3,
FINSEQ_5: 65
.= Emax by
JORDAN1F: 6;
set GC1 = ((
Gauge (C,n))
* ((
Center (
Gauge (C,n))),1));
let k be non
zero
Nat;
assume
A13: 1
<= k & k
< (FiP
.. RLS) implies ((RLS
/. k)
`1 )
< sr;
4
<= (
len (
Gauge (C,n))) by
JORDAN8: 10;
then 1
<= (
len (
Gauge (C,n))) by
XXREAL_0: 2;
then
A14: 1
<= (
width (
Gauge (C,n))) by
JORDAN8:def 1;
then
A15: (GC1
`1 )
= (((
W-bound C)
+ (
E-bound C))
/ 2) by
A1,
Th35
.= sr by
Th33;
A16: (LS
/. 1)
= Emax & (LS
/. (
len LS))
= Wmin by
JORDAN1F: 6,
JORDAN1F: 8;
then
A17: (
L~ LS)
is_an_arc_of (Emax,Wmin) by
TOPREAL1: 25;
A18: 1
<= (
Center (
Gauge (C,n))) by
JORDAN1B: 11;
A19: (RLS
/. 1)
= (LS
/. (
len LS)) by
FINSEQ_5: 65
.= Wmin by
JORDAN1F: 8;
(
L~ LS)
is_an_arc_of (Wmin,Emax) by
A16,
JORDAN5B: 14,
TOPREAL1: 25;
then (
L~ LS)
meets (
Vertical_Line sr) & ((
L~ LS)
/\ (
Vertical_Line sr)) is
closed by
A10,
A11,
JORDAN6: 49;
then
A20: FiP
= LaP by
A2,
A17,
JORDAN5C: 18;
then
A21: (FiP
.. RLS)
in (
dom RLS) by
A1,
A4,
Th48,
FINSEQ_4: 20;
then
A22: 1
<= (FiP
.. RLS) by
FINSEQ_3: 25;
A23: k
>= 1 by
NAT_1: 14;
reconsider kk = k as
Nat;
assume that
A24: 1
<= (k
+ 1) and
A25: (k
+ 1)
< (FiP
.. RLS);
A26: (FiP
.. RLS)
<= (
len RLS) by
A21,
FINSEQ_3: 25;
then
A27: (k
+ 1)
<= (
len RLS) by
A25,
XXREAL_0: 2;
LS
is_sequence_on (
Gauge (C,n)) by
Th5;
then RLS
is_sequence_on (
Gauge (C,n)) by
JORDAN9: 5;
then
consider i1,j1,i2,j2 be
Nat such that
A28:
[i1, j1]
in (
Indices (
Gauge (C,n))) and
A29: (RLS
/. kk)
= ((
Gauge (C,n))
* (i1,j1)) and
A30:
[i2, j2]
in (
Indices (
Gauge (C,n))) and
A31: (RLS
/. (kk
+ 1))
= ((
Gauge (C,n))
* (i2,j2)) and
A32: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A23,
A27,
JORDAN8: 3;
A33: 1
<= i1 by
A28,
MATRIX_0: 32;
A34: 1
<= j1 & j1
<= (
width (
Gauge (C,n))) by
A28,
MATRIX_0: 32;
A35: i2
<= (
len (
Gauge (C,n))) by
A30,
MATRIX_0: 32;
A36: i1
<= (
len (
Gauge (C,n))) by
A28,
MATRIX_0: 32;
A37: j2
<= (
width (
Gauge (C,n))) by
A30,
MATRIX_0: 32;
A38: 1
<= i2 & 1
<= j2 by
A30,
MATRIX_0: 32;
A39: (
Center (
Gauge (C,n)))
<= (
len (
Gauge (C,n))) & (i1
+ 1)
>= 1 by
JORDAN1B: 13,
NAT_1: 11;
now
per cases by
A32;
suppose i1
= i2 & (j1
+ 1)
= j2;
then ((RLS
/. k)
`1 )
= (((
Gauge (C,n))
* (i2,1))
`1 ) by
A29,
A33,
A36,
A34,
GOBOARD5: 2
.= ((RLS
/. (k
+ 1))
`1 ) by
A31,
A35,
A38,
A37,
GOBOARD5: 2;
hence thesis by
A13,
A25,
NAT_1: 13,
NAT_1: 14;
end;
suppose
A40: (i1
+ 1)
= i2 & j1
= j2;
A41:
now
A42:
now
assume (RLS
/. 1)
in (
Vertical_Line sr);
then (Wmin
`1 )
= sr by
A19,
JORDAN6: 31;
hence contradiction by
A6,
EUCLID: 52;
end;
assume ((RLS
/. (k
+ 1))
`1 )
= sr;
then (RLS
/. (k
+ 1))
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= sr };
then
A43: (RLS
/. (k
+ 1))
in (
Vertical_Line sr) by
JORDAN6:def 6;
A44: sr
<= (Emax
`1 ) by
A7,
EUCLID: 52;
(
L~ RLS)
is_an_arc_of (Wmin,Emax) & (Wmin
`1 )
<= sr by
A6,
A19,
A12,
EUCLID: 52,
TOPREAL1: 25;
then
A45: (
L~ RLS)
meets (
Vertical_Line sr) by
A44,
JORDAN6: 49;
A46: (RLS
/. (FiP
.. RLS))
= FiP by
A1,
A4,
A20,
Th48,
FINSEQ_5: 38;
A47: (k
+ 1)
>= (1
+ 1) by
A23,
XREAL_1: 7;
(
len (
mid (RLS,1,(FiP
.. RLS))))
= (((FiP
.. RLS)
-' 1)
+ 1) by
A22,
A26,
JORDAN4: 8
.= (FiP
.. RLS) by
A22,
XREAL_1: 235;
then
A48: (
rng (
mid (RLS,1,(FiP
.. RLS))))
c= (
L~ (
mid (RLS,1,(FiP
.. RLS)))) by
A25,
A47,
SPPOL_2: 18,
XXREAL_0: 2;
A49: (k
+ 1)
in (
dom RLS) by
A24,
A27,
FINSEQ_3: 25;
(
Vertical_Line sr) is
closed & RLS is
being_S-Seq by
JORDAN6: 30;
then
A50: ((
L~ (
mid (RLS,1,(FiP
.. RLS))))
/\ (
Vertical_Line sr))
=
{FiP} by
A1,
A4,
A20,
A19,
A12,
A45,
A42,
Th48,
Th50;
A51: (
mid (RLS,1,(FiP
.. RLS)))
= (RLS
| (FiP
.. RLS)) & (RLS
| (
Seg (FiP
.. RLS)))
= (RLS
| (FiP
.. RLS)) by
A22,
FINSEQ_1:def 15,
FINSEQ_6: 116;
(k
+ 1)
in (
Seg (FiP
.. RLS)) by
A24,
A25,
FINSEQ_1: 1;
then (RLS
/. (k
+ 1))
in (
rng (
mid (RLS,1,(FiP
.. RLS)))) by
A51,
A49,
PARTFUN2: 18;
then (RLS
/. (k
+ 1))
in
{FiP} by
A43,
A48,
A50,
XBOOLE_0:def 4;
then (RLS
/. (k
+ 1))
= FiP by
TARSKI:def 1;
hence contradiction by
A25,
A21,
A49,
A46,
PARTFUN2: 10;
end;
i1
< (
Center (
Gauge (C,n))) by
A13,
A25,
A29,
A36,
A34,
A18,
A14,
A15,
JORDAN1A: 18,
NAT_1: 13,
NAT_1: 14;
then (i1
+ 1)
<= (
Center (
Gauge (C,n))) by
NAT_1: 13;
then ((RLS
/. (k
+ 1))
`1 )
<= sr by
A31,
A34,
A14,
A15,
A39,
A40,
JORDAN1A: 18;
hence thesis by
A41,
XXREAL_0: 1;
end;
suppose i1
= (i2
+ 1) & j1
= j2;
then i2
< i1 by
NAT_1: 13;
then ((RLS
/. (k
+ 1))
`1 )
<= ((RLS
/. k)
`1 ) by
A29,
A31,
A36,
A34,
A38,
A37,
JORDAN1A: 18;
hence thesis by
A13,
A25,
NAT_1: 13,
NAT_1: 14,
XXREAL_0: 2;
end;
suppose i1
= i2 & j1
= (j2
+ 1);
then ((RLS
/. k)
`1 )
= (((
Gauge (C,n))
* (i2,1))
`1 ) by
A29,
A33,
A36,
A34,
GOBOARD5: 2
.= ((RLS
/. (k
+ 1))
`1 ) by
A31,
A35,
A38,
A37,
GOBOARD5: 2;
hence thesis by
A13,
A25,
NAT_1: 13,
NAT_1: 14;
end;
end;
hence thesis;
end;
A52:
P[1]
proof
assume that 1
<= 1 and 1
< (FiP
.. RLS);
(RLS
/. 1)
= (LS
/. (
len LS)) by
FINSEQ_5: 65
.= Wmin by
JORDAN1F: 8;
hence thesis by
A6,
EUCLID: 52;
end;
A53: for k be non
zero
Nat holds
P[k] from
NAT_1:sch 10(
A52,
A8);
let k be
Nat;
assume 1
<= k & k
< ((
First_Point ((
L~ (
Rev (
Lower_Seq (C,n)))),(
W-min (
L~ (
Cage (C,n)))),(
E-max (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
.. (
Rev (
Lower_Seq (C,n))));
hence thesis by
A53;
end;
theorem ::
JORDAN1G:53
Th53: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat st n
>
0 holds for q be
Point of (
TOP-REAL 2) holds q
in (
rng (
mid ((
Upper_Seq (C,n)),2,((
First_Point ((
L~ (
Upper_Seq (C,n))),(
W-min (
L~ (
Cage (C,n)))),(
E-max (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
.. (
Upper_Seq (C,n)))))) implies (q
`1 )
<= (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2)
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
set Wmin = (
W-min (
L~ (
Cage (C,n))));
set Emax = (
E-max (
L~ (
Cage (C,n))));
set Wbo = (
W-bound (
L~ (
Cage (C,n))));
set Ebo = (
E-bound (
L~ (
Cage (C,n))));
set sr = (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2);
set US = (
Upper_Seq (C,n));
set FiP = (
First_Point ((
L~ US),Wmin,Emax,(
Vertical_Line sr)));
A1: (US
/. 1)
= Wmin by
JORDAN1F: 5;
(US
/. (
len US))
= Emax by
JORDAN1F: 7;
then
A2: (
L~ US)
is_an_arc_of (Wmin,Emax) by
A1,
TOPREAL1: 25;
assume
A3: n
>
0 ;
then
A4: FiP
in (
rng US) by
Th47;
then
A5: (FiP
.. US)
in (
dom US) by
FINSEQ_4: 20;
then
A6: (FiP
.. US)
<= (
len US) by
FINSEQ_3: 25;
A7: Wbo
< Ebo by
SPRECT_1: 31;
then
A8: Wbo
< sr by
XREAL_1: 226;
sr
< Ebo by
A7,
XREAL_1: 226;
then
A9: sr
<= (Emax
`1 ) by
EUCLID: 52;
(Wmin
`1 )
<= sr by
A8,
EUCLID: 52;
then (
L~ US)
meets (
Vertical_Line sr) & ((
L~ US)
/\ (
Vertical_Line sr)) is
closed by
A2,
A9,
JORDAN6: 49;
then FiP
in ((
L~ US)
/\ (
Vertical_Line sr)) by
A2,
JORDAN5C:def 1;
then FiP
in (
Vertical_Line sr) by
XBOOLE_0:def 4;
then
A10: (FiP
`1 )
= sr by
JORDAN6: 31;
A11: Wmin
in (
rng US) by
A1,
FINSEQ_6: 42;
A12:
now
assume (FiP
.. US)
= 1;
then (FiP
.. US)
= ((US
/. 1)
.. US) by
FINSEQ_6: 43
.= (Wmin
.. US) by
JORDAN1F: 5;
then FiP
= Wmin by
A4,
A11,
FINSEQ_5: 9;
hence contradiction by
A8,
A10,
EUCLID: 52;
end;
1
<= (FiP
.. US) by
A5,
FINSEQ_3: 25;
then (FiP
.. US)
> 1 by
A12,
XXREAL_0: 1;
then
A13: ((1
+ 1)
+
0 )
<= (FiP
.. US) by
NAT_1: 13;
then ((FiP
.. US)
- 2)
>=
0 by
XREAL_1: 19;
then ((FiP
.. US)
-' 2)
= ((FiP
.. US)
- 2) by
XREAL_0:def 2;
then
A14: (
len (
mid (US,2,(FiP
.. US))))
= (((FiP
.. US)
- 2)
+ 1) by
A6,
A13,
JORDAN4: 8;
let q be
Point of (
TOP-REAL 2);
assume q
in (
rng (
mid (US,2,(FiP
.. US))));
then
consider k be
Element of
NAT such that
A15: k
in (
dom (
mid (US,2,(FiP
.. US)))) and
A16: q
= ((
mid (US,2,(FiP
.. US)))
/. k) by
PARTFUN2: 2;
(k
+ 2)
>= (1
+ 1) by
NAT_1: 11;
then
A17: ((k
+ 2)
- 1)
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
(
len US)
>= 3 by
JORDAN1E: 15;
then (
len US)
>= 2 by
XXREAL_0: 2;
then 2
in (
dom US) by
FINSEQ_3: 25;
then
A18: ((
mid (US,2,(FiP
.. US)))
/. k)
= (US
/. ((k
+ 2)
-' 1)) by
A15,
A5,
A13,
SPRECT_2: 3
.= (US
/. (k
+ (2
- 1))) by
A17,
XREAL_0:def 2;
k
<= (
len (
mid (US,2,(FiP
.. US)))) by
A15,
FINSEQ_3: 25;
then k
< ((((FiP
.. US)
- 2)
+ 1)
+ 1) by
A14,
NAT_1: 13;
then
A19: (k
+ 1)
<= (FiP
.. US) by
NAT_1: 13;
per cases by
A19,
XXREAL_0: 1;
suppose (k
+ 1)
< (FiP
.. US);
hence thesis by
A3,
A16,
A18,
Th51,
NAT_1: 11;
end;
suppose (k
+ 1)
= (FiP
.. US);
hence thesis by
A16,
A4,
A10,
A18,
FINSEQ_5: 38;
end;
end;
theorem ::
JORDAN1G:54
Th54: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat st n
>
0 holds ((
First_Point ((
L~ (
Upper_Seq (C,n))),(
W-min (
L~ (
Cage (C,n)))),(
E-max (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
`2 )
> ((
Last_Point ((
L~ (
Lower_Seq (C,n))),(
E-max (
L~ (
Cage (C,n)))),(
W-min (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
`2 )
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
set sr = (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2);
set Wmin = (
W-min (
L~ (
Cage (C,n))));
set Emax = (
E-max (
L~ (
Cage (C,n))));
set Nbo = (
N-bound (
L~ (
Cage (C,n))));
set Ebo = (
E-bound (
L~ (
Cage (C,n))));
set Sbo = (
S-bound (
L~ (
Cage (C,n))));
set Wbo = (
W-bound (
L~ (
Cage (C,n))));
set SW = (
SW-corner (
L~ (
Cage (C,n))));
set FiP = (
First_Point ((
L~ (
Upper_Seq (C,n))),Wmin,Emax,(
Vertical_Line sr)));
set LaP = (
Last_Point ((
L~ (
Lower_Seq (C,n))),Emax,Wmin,(
Vertical_Line sr)));
set g = ((
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n)))))
^
<*
|[Ebo, (FiP
`2 )]|*>);
set h = ((
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP))
^
<*
|[sr, Nbo]|*>);
A1: ((
Upper_Seq (C,n))
/. 1)
= (
W-min (
L~ (
Cage (C,n)))) by
JORDAN1F: 5;
A2: Wbo
<= Ebo by
SPRECT_1: 21;
then Wbo
<= sr by
JORDAN6: 1;
then
A3: (Wmin
`1 )
<= sr by
EUCLID: 52;
sr
<= Ebo by
A2,
JORDAN6: 1;
then
A4: sr
<= (Emax
`1 ) by
EUCLID: 52;
set GCw = ((
Gauge (C,n))
* ((
Center (
Gauge (C,n))),(
width (
Gauge (C,n)))));
A5: 1
<= (
Center (
Gauge (C,n))) by
JORDAN1B: 11;
(
len (
Gauge (C,n)))
= (
width (
Gauge (C,n))) by
JORDAN8:def 1;
then
A6: (GCw
`2 )
= Nbo by
A5,
JORDAN1A: 70,
JORDAN1B: 13;
A7: (SW
`2 )
<= (Wmin
`2 ) by
PSCOMP_1: 30;
A8: (
|[sr, Nbo]|
`2 )
= Nbo by
EUCLID: 52;
set RevL = ((
Rev (
Lower_Seq (C,n)))
-: LaP);
A9:
<*
|[Ebo, (FiP
`2 )]|*> is
one-to-one &
<*
|[Ebo, (FiP
`2 )]|*> is
special by
FINSEQ_3: 93;
A10: (
rng ((
Rev (
Lower_Seq (C,n)))
-: LaP))
c= (
rng (
Rev (
Lower_Seq (C,n)))) by
FINSEQ_5: 48;
A11: ((
Lower_Seq (C,n))
/. 1)
= (
E-max (
L~ (
Cage (C,n)))) & ((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
= (
W-min (
L~ (
Cage (C,n)))) by
JORDAN1F: 6,
JORDAN1F: 8;
then
A12: (
L~ (
Lower_Seq (C,n)))
is_an_arc_of (Emax,Wmin) by
TOPREAL1: 25;
A13: 4
<= (
len (
Gauge (C,n))) by
JORDAN8: 10;
then
A14: (
len (
Gauge (C,n)))
>= 3 by
XXREAL_0: 2;
A15: Wbo
< Ebo by
SPRECT_1: 31;
then
A16: Wbo
< sr by
XREAL_1: 226;
(
L~ (
Lower_Seq (C,n)))
is_an_arc_of (Wmin,Emax) by
A11,
JORDAN5B: 14,
TOPREAL1: 25;
then
A17: (
L~ (
Lower_Seq (C,n)))
meets (
Vertical_Line sr) & ((
L~ (
Lower_Seq (C,n)))
/\ (
Vertical_Line sr)) is
closed by
A3,
A4,
JORDAN6: 49;
then
A18: LaP
in ((
L~ (
Lower_Seq (C,n)))
/\ (
Vertical_Line sr)) by
A12,
JORDAN5C:def 2;
then
A19: LaP
in (
L~ (
Lower_Seq (C,n))) by
XBOOLE_0:def 4;
then LaP
in ((
L~ (
Upper_Seq (C,n)))
\/ (
L~ (
Lower_Seq (C,n)))) by
XBOOLE_0:def 3;
then
A20: LaP
in (
L~ (
Cage (C,n))) by
JORDAN1E: 13;
assume
A21: n
>
0 ;
then
A22: FiP
in (
rng (
Upper_Seq (C,n))) by
Th47;
then
A23: (FiP
.. (
Upper_Seq (C,n)))
in (
dom (
Upper_Seq (C,n))) by
FINSEQ_4: 20;
then
A24: 1
<= (FiP
.. (
Upper_Seq (C,n))) by
FINSEQ_3: 25;
1
<= (
len (
Gauge (C,n))) by
A13,
XXREAL_0: 2;
then 1
<= (
width (
Gauge (C,n))) by
JORDAN8:def 1;
then (GCw
`1 )
= (((
W-bound C)
+ (
E-bound C))
/ 2) by
A21,
Th35
.= sr by
Th33;
then GCw
=
|[sr, Nbo]| by
A6,
EUCLID: 53;
then not
|[sr, Nbo]|
in (
rng (
Lower_Seq (C,n))) by
A5,
A14,
Th43,
JORDAN1B: 15;
then not
|[sr, Nbo]|
in (
rng (
Rev (
Lower_Seq (C,n)))) by
FINSEQ_5: 57;
then
A25: not
|[sr, Nbo]|
in (
rng ((
Rev (
Lower_Seq (C,n)))
-: LaP)) by
A10;
(SW
`2 )
= Sbo by
EUCLID: 52;
then
|[sr, Nbo]|
<> SW by
A8,
SPRECT_1: 32;
then not
|[sr, Nbo]|
in
{SW} by
TARSKI:def 1;
then not
|[sr, Nbo]|
in (
rng
<*SW*>) by
FINSEQ_1: 38;
then not
|[sr, Nbo]|
in ((
rng
<*SW*>)
\/ (
rng ((
Rev (
Lower_Seq (C,n)))
-: LaP))) by
A25,
XBOOLE_0:def 3;
then not
|[sr, Nbo]|
in (
rng (
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP))) by
FINSEQ_1: 31;
then (
rng (
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP)))
misses
{
|[sr, Nbo]|} by
ZFMISC_1: 50;
then ((
rng (
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP)))
/\
{
|[sr, Nbo]|})
=
{} ;
then ((
rng (
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP)))
/\ (
rng
<*
|[sr, Nbo]|*>))
=
{} by
FINSEQ_1: 38;
then
A26: (
rng (
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP)))
misses (
rng
<*
|[sr, Nbo]|*>);
LaP
in (
rng (
Lower_Seq (C,n))) by
A21,
Th48;
then
A27: LaP
in (
rng (
Rev (
Lower_Seq (C,n)))) by
FINSEQ_5: 57;
then
A28: RevL is non
empty by
FINSEQ_5: 47;
A29: (
len RevL)
= (LaP
.. (
Rev (
Lower_Seq (C,n)))) by
A27,
FINSEQ_5: 42;
A30: ((
Upper_Seq (C,n))
/. (
len (
Upper_Seq (C,n))))
= (
E-max (
L~ (
Cage (C,n)))) by
JORDAN1F: 7;
then
A31: (
L~ (
Upper_Seq (C,n)))
is_an_arc_of (Wmin,Emax) by
A1,
TOPREAL1: 25;
A32: sr
< Ebo by
A15,
XREAL_1: 226;
then
A33: sr
<= (Emax
`1 ) by
EUCLID: 52;
(Wmin
`1 )
<= sr by
A16,
EUCLID: 52;
then (
L~ (
Upper_Seq (C,n)))
meets (
Vertical_Line sr) & ((
L~ (
Upper_Seq (C,n)))
/\ (
Vertical_Line sr)) is
closed by
A31,
A33,
JORDAN6: 49;
then
A34: FiP
in ((
L~ (
Upper_Seq (C,n)))
/\ (
Vertical_Line sr)) by
A31,
JORDAN5C:def 1;
then
A35: FiP
in (
L~ (
Upper_Seq (C,n))) by
XBOOLE_0:def 4;
then FiP
in ((
L~ (
Upper_Seq (C,n)))
\/ (
L~ (
Lower_Seq (C,n)))) by
XBOOLE_0:def 3;
then
A36: FiP
in (
L~ (
Cage (C,n))) by
JORDAN1E: 13;
now
let m be
Nat;
assume m
in (
dom
<*
|[Ebo, (FiP
`2 )]|*>);
then m
in (
Seg 1) by
FINSEQ_1: 38;
then m
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then
A37: (
<*
|[Ebo, (FiP
`2 )]|*>
/. m)
=
|[Ebo, (FiP
`2 )]| by
FINSEQ_4: 16;
then ((
<*
|[Ebo, (FiP
`2 )]|*>
/. m)
`1 )
= Ebo by
EUCLID: 52;
hence (
W-bound (
L~ (
Cage (C,n))))
<= ((
<*
|[Ebo, (FiP
`2 )]|*>
/. m)
`1 ) & ((
<*
|[Ebo, (FiP
`2 )]|*>
/. m)
`1 )
<= (
E-bound (
L~ (
Cage (C,n)))) by
SPRECT_1: 21;
((
<*
|[Ebo, (FiP
`2 )]|*>
/. m)
`2 )
= (FiP
`2 ) by
A37,
EUCLID: 52;
hence (
S-bound (
L~ (
Cage (C,n))))
<= ((
<*
|[Ebo, (FiP
`2 )]|*>
/. m)
`2 ) & ((
<*
|[Ebo, (FiP
`2 )]|*>
/. m)
`2 )
<= (
N-bound (
L~ (
Cage (C,n)))) by
A36,
PSCOMP_1: 24;
end;
then
A38:
<*
|[Ebo, (FiP
`2 )]|*>
is_in_the_area_of (
Cage (C,n)) by
SPRECT_2:def 1;
A39: FiP
in (
Vertical_Line sr) by
A34,
XBOOLE_0:def 4;
then
A40: (FiP
`1 )
= sr by
JORDAN6: 31;
now
assume ((
rng (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n))))))
/\
{
|[Ebo, (FiP
`2 )]|})
<>
{} ;
then
consider x be
object such that
A41: x
in ((
rng (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n))))))
/\
{
|[Ebo, (FiP
`2 )]|}) by
XBOOLE_0:def 1;
x
in (
rng (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n)))))) & x
in
{
|[Ebo, (FiP
`2 )]|} by
A41,
XBOOLE_0:def 4;
then
|[Ebo, (FiP
`2 )]|
in (
rng (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n)))))) by
TARSKI:def 1;
then (
|[Ebo, (FiP
`2 )]|
`1 )
<= sr by
A21,
Th53;
hence contradiction by
A32,
EUCLID: 52;
end;
then (
rng (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n))))))
misses
{
|[Ebo, (FiP
`2 )]|};
then
A42: (
rng (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n))))))
misses (
rng
<*
|[Ebo, (FiP
`2 )]|*>) by
FINSEQ_1: 38;
A43: (FiP
.. (
Upper_Seq (C,n)))
<= (
len (
Upper_Seq (C,n))) by
A23,
FINSEQ_3: 25;
LaP
in (
Vertical_Line sr) by
A18,
XBOOLE_0:def 4;
then
A44: (LaP
`1 )
= sr by
JORDAN6: 31;
A45:
now
assume (FiP
`2 )
= (LaP
`2 );
then FiP
= LaP by
A40,
A44,
TOPREAL3: 6;
then FiP
in ((
L~ (
Upper_Seq (C,n)))
/\ (
L~ (
Lower_Seq (C,n)))) by
A35,
A19,
XBOOLE_0:def 4;
then FiP
in
{Wmin, Emax} by
JORDAN1E: 16;
then FiP
= Wmin or FiP
= Emax by
TARSKI:def 2;
hence contradiction by
A16,
A32,
A40,
EUCLID: 52;
end;
(
len (
Upper_Seq (C,n)))
>= 3 by
JORDAN1E: 15;
then
A46: (
len (
Upper_Seq (C,n)))
> 2 by
XXREAL_0: 2;
then
A47: 2
in (
dom (
Upper_Seq (C,n))) by
FINSEQ_3: 25;
then
A48: (((
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n)))))
/. (
len (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n)))))))
`2 )
= (((
Upper_Seq (C,n))
/. (FiP
.. (
Upper_Seq (C,n))))
`2 ) by
A23,
SPRECT_2: 9
.= (FiP
`2 ) by
A22,
FINSEQ_5: 38
.= (
|[Ebo, (FiP
`2 )]|
`2 ) by
EUCLID: 52
.= ((
<*
|[Ebo, (FiP
`2 )]|*>
/. 1)
`2 ) by
FINSEQ_4: 16;
2
<> (FiP
.. (
Upper_Seq (C,n)))
proof
assume 2
= (FiP
.. (
Upper_Seq (C,n)));
then ((
Upper_Seq (C,n))
/. 2)
= FiP by
A22,
FINSEQ_5: 38;
then (FiP
`1 )
= Wbo by
Th31;
then Wbo
= sr by
A39,
JORDAN6: 31;
hence contradiction by
SPRECT_1: 31;
end;
then (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n))))) is
being_S-Seq by
A46,
A24,
A43,
JORDAN3: 6;
then
reconsider g as
one-to-one
special
FinSequence of (
TOP-REAL 2) by
A42,
A48,
A9,
FINSEQ_3: 91,
GOBOARD2: 8;
(
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n)))))
is_in_the_area_of (
Cage (C,n)) by
A47,
A23,
JORDAN1E: 17,
SPRECT_2: 22;
then
A49: g
is_in_the_area_of (
Cage (C,n)) by
A38,
SPRECT_2: 24;
A50: ((g
/. (
len g))
`1 )
= ((
<*
|[Ebo, (FiP
`2 )]|*>
/. (
len
<*
|[Ebo, (FiP
`2 )]|*>))
`1 ) by
SPRECT_3: 1
.= ((
<*
|[Ebo, (FiP
`2 )]|*>
/. 1)
`1 ) by
FINSEQ_1: 39
.= (
|[Ebo, (FiP
`2 )]|
`1 ) by
FINSEQ_4: 16
.= (
E-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
A51: 1
<= (
len (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n)))))) by
A47,
A23,
SPRECT_2: 5;
then 1
in (
dom (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n)))))) by
FINSEQ_3: 25;
then ((g
/. 1)
`1 )
= (((
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n)))))
/. 1)
`1 ) by
FINSEQ_4: 68
.= (((
Upper_Seq (C,n))
/. 2)
`1 ) by
A47,
A23,
SPRECT_2: 8
.= (
W-bound (
L~ (
Cage (C,n)))) by
Th31;
then
A52: g
is_a_h.c._for (
Cage (C,n)) by
A49,
A50,
SPRECT_2:def 2;
assume (FiP
`2 )
<= (LaP
`2 );
then
A53: (FiP
`2 )
< (LaP
`2 ) by
A45,
XXREAL_0: 1;
A54: (
rng (
Lower_Seq (C,n)))
c= (
rng (
Cage (C,n))) by
Th39;
now
per cases ;
suppose
A55: SW
<> Wmin;
not SW
in (
rng (
Lower_Seq (C,n)))
proof
(SW
`1 )
= (Wmin
`1 ) by
PSCOMP_1: 29;
then
A56: (SW
`2 )
<> (Wmin
`2 ) by
A55,
TOPREAL3: 6;
assume SW
in (
rng (
Lower_Seq (C,n)));
then
A57: SW
in (
rng (
Cage (C,n))) by
A54;
(
len (
Cage (C,n)))
> 4 by
GOBOARD7: 34;
then
A58: (
rng (
Cage (C,n)))
c= (
L~ (
Cage (C,n))) by
SPPOL_2: 18,
XXREAL_0: 2;
(SW
`1 )
= (
W-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
then SW
in (
W-most (
L~ (
Cage (C,n)))) by
A57,
A58,
SPRECT_2: 12;
then (Wmin
`2 )
<= (SW
`2 ) by
PSCOMP_1: 31;
hence contradiction by
A7,
A56,
XXREAL_0: 1;
end;
then not SW
in (
rng (
Rev (
Lower_Seq (C,n)))) by
FINSEQ_5: 57;
then not SW
in (
rng ((
Rev (
Lower_Seq (C,n)))
-: LaP)) by
A10;
then
{SW}
misses (
rng ((
Rev (
Lower_Seq (C,n)))
-: LaP)) by
ZFMISC_1: 50;
then (
{SW}
/\ (
rng ((
Rev (
Lower_Seq (C,n)))
-: LaP)))
=
{} ;
then ((
rng
<*SW*>)
/\ (
rng ((
Rev (
Lower_Seq (C,n)))
-: LaP)))
=
{} by
FINSEQ_1: 38;
then
A59: (
rng
<*SW*>)
misses (
rng ((
Rev (
Lower_Seq (C,n)))
-: LaP));
<*SW*> is
one-to-one by
FINSEQ_3: 93;
then
A60: (
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP)) is
one-to-one by
A59,
FINSEQ_3: 91;
set FiP2 = (
First_Point ((
L~ (
Lower_Seq (C,n))),Wmin,Emax,(
Vertical_Line sr)));
set midU = (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n)))));
reconsider RevLS = (
Rev (
Lower_Seq (C,n))) as
special
FinSequence of (
TOP-REAL 2);
((
<*SW*>
/. (
len
<*SW*>))
`1 )
= ((
<*SW*>
/. 1)
`1 ) by
FINSEQ_1: 39
.= (SW
`1 ) by
FINSEQ_4: 16
.= (
W-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52
.= ((
W-min (
L~ (
Cage (C,n))))
`1 ) by
EUCLID: 52
.= (((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
`1 ) by
JORDAN1F: 8
.= (((
Rev (
Lower_Seq (C,n)))
/. 1)
`1 ) by
FINSEQ_5: 65
.= ((((
Rev (
Lower_Seq (C,n)))
-: LaP)
/. 1)
`1 ) by
A27,
FINSEQ_5: 44;
then
A61: (
<*SW*>
^ (RevLS
-: LaP)) is
special by
GOBOARD2: 8;
((
Rev (
Lower_Seq (C,n)))
-: LaP) is non
empty by
A27,
FINSEQ_5: 47;
then
A62: (((
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP))
/. (
len (
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP))))
`1 )
= ((((
Rev (
Lower_Seq (C,n)))
-: LaP)
/. (
len ((
Rev (
Lower_Seq (C,n)))
-: LaP)))
`1 ) by
SPRECT_3: 1
.= ((((
Rev (
Lower_Seq (C,n)))
-: LaP)
/. (LaP
.. (
Rev (
Lower_Seq (C,n)))))
`1 ) by
A27,
FINSEQ_5: 42
.= (LaP
`1 ) by
A27,
FINSEQ_5: 45
.= (
|[sr, Nbo]|
`1 ) by
A44,
EUCLID: 52
.= ((
<*
|[sr, Nbo]|*>
/. 1)
`1 ) by
FINSEQ_4: 16;
<*
|[sr, Nbo]|*> is
one-to-one &
<*
|[sr, Nbo]|*> is
special by
FINSEQ_3: 93;
then
reconsider h as
one-to-one
special
FinSequence of (
TOP-REAL 2) by
A26,
A60,
A62,
A61,
FINSEQ_3: 91,
GOBOARD2: 8;
A63: (
|[Ebo, (FiP
`2 )]|
`1 )
= Ebo by
EUCLID: 52;
now
let m be
Nat;
assume m
in (
dom
<*SW*>);
then m
in (
Seg 1) by
FINSEQ_1: 38;
then m
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then
A64: (
<*SW*>
/. m)
= SW by
FINSEQ_4: 16;
then ((
<*SW*>
/. m)
`1 )
= Wbo by
EUCLID: 52;
hence (
W-bound (
L~ (
Cage (C,n))))
<= ((
<*SW*>
/. m)
`1 ) & ((
<*SW*>
/. m)
`1 )
<= (
E-bound (
L~ (
Cage (C,n)))) by
SPRECT_1: 21;
((
<*SW*>
/. m)
`2 )
= Sbo by
A64,
EUCLID: 52;
hence (
S-bound (
L~ (
Cage (C,n))))
<= ((
<*SW*>
/. m)
`2 ) & ((
<*SW*>
/. m)
`2 )
<= (
N-bound (
L~ (
Cage (C,n)))) by
SPRECT_1: 22;
end;
then
A65:
<*SW*>
is_in_the_area_of (
Cage (C,n)) by
SPRECT_2:def 1;
A66: (RevL
/. (
len RevL))
= (RevL
/. (LaP
.. (
Rev (
Lower_Seq (C,n))))) by
A27,
FINSEQ_5: 42
.= LaP by
A27,
FINSEQ_5: 45;
now
let m be
Nat;
A67: (
W-bound (
L~ (
Cage (C,n))))
<= (
E-bound (
L~ (
Cage (C,n)))) by
SPRECT_1: 21;
assume m
in (
dom
<*
|[sr, Nbo]|*>);
then m
in (
Seg 1) by
FINSEQ_1: 38;
then m
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then
A68: (
<*
|[sr, Nbo]|*>
/. m)
=
|[sr, Nbo]| by
FINSEQ_4: 16;
then ((
<*
|[sr, Nbo]|*>
/. m)
`1 )
= sr by
EUCLID: 52;
hence (
W-bound (
L~ (
Cage (C,n))))
<= ((
<*
|[sr, Nbo]|*>
/. m)
`1 ) & ((
<*
|[sr, Nbo]|*>
/. m)
`1 )
<= (
E-bound (
L~ (
Cage (C,n)))) by
A67,
JORDAN6: 1;
((
<*
|[sr, Nbo]|*>
/. m)
`2 )
= Nbo by
A68,
EUCLID: 52;
hence (
S-bound (
L~ (
Cage (C,n))))
<= ((
<*
|[sr, Nbo]|*>
/. m)
`2 ) & ((
<*
|[sr, Nbo]|*>
/. m)
`2 )
<= (
N-bound (
L~ (
Cage (C,n)))) by
SPRECT_1: 22;
end;
then
A69:
<*
|[sr, Nbo]|*>
is_in_the_area_of (
Cage (C,n)) by
SPRECT_2:def 1;
A70: (
L~ (
Rev (
Lower_Seq (C,n))))
= (
L~ (
Lower_Seq (C,n))) & FiP2
= LaP by
A12,
A17,
JORDAN5C: 18,
SPPOL_2: 22;
(
Rev (
Lower_Seq (C,n)))
is_in_the_area_of (
Cage (C,n)) by
JORDAN1E: 18,
SPRECT_3: 51;
then ((
Rev (
Lower_Seq (C,n)))
-: LaP)
is_in_the_area_of (
Cage (C,n)) by
A27,
JORDAN1E: 1;
then (
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP))
is_in_the_area_of (
Cage (C,n)) by
A65,
SPRECT_2: 24;
then
A71: h
is_in_the_area_of (
Cage (C,n)) by
A69,
SPRECT_2: 24;
(
len (
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP)))
= (1
+ (
len ((
Rev (
Lower_Seq (C,n)))
-: LaP))) by
FINSEQ_5: 8;
then
A72: (
len (
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP)))
>= 1 by
NAT_1: 11;
1
in (
dom h) by
FINSEQ_5: 6;
then (h
/. 1)
= (h
. 1) by
PARTFUN1:def 6;
then
A73: ((h
/. 1)
`2 )
= (((
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP))
/. 1)
`2 ) by
A72,
FINSEQ_6: 109
.= (SW
`2 ) by
FINSEQ_5: 15
.= (
S-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
A74: (
len h)
= ((
len (
<*SW*>
^ ((
Rev (
Lower_Seq (C,n)))
-: LaP)))
+ 1) by
FINSEQ_2: 16;
then
A75: (1
+ 1)
<= (
len h) by
A72,
XREAL_1: 7;
(
L~ (
Cage (C,n)))
= ((
L~ (
Upper_Seq (C,n)))
\/ (
L~ (
Lower_Seq (C,n)))) by
JORDAN1E: 13;
then
A76: (
L~ (
Upper_Seq (C,n)))
c= (
L~ (
Cage (C,n))) by
XBOOLE_1: 7;
A77: (midU
/. (
len midU))
= ((
Upper_Seq (C,n))
/. (FiP
.. (
Upper_Seq (C,n)))) by
A47,
A23,
SPRECT_2: 9
.= FiP by
A22,
FINSEQ_5: 38;
A78: Wmin
in (
rng (
Upper_Seq (C,n))) by
A1,
FINSEQ_6: 42;
now
assume (FiP
.. (
Upper_Seq (C,n)))
= 1;
then (FiP
.. (
Upper_Seq (C,n)))
= (((
Upper_Seq (C,n))
/. 1)
.. (
Upper_Seq (C,n))) by
FINSEQ_6: 43
.= (Wmin
.. (
Upper_Seq (C,n))) by
JORDAN1F: 5;
then FiP
= Wmin by
A22,
A78,
FINSEQ_5: 9;
hence contradiction by
A16,
A40,
EUCLID: 52;
end;
then (FiP
.. (
Upper_Seq (C,n)))
> 1 by
A24,
XXREAL_0: 1;
then
A79: ((1
+ 1)
+
0 )
<= (FiP
.. (
Upper_Seq (C,n))) by
NAT_1: 13;
then ((FiP
.. (
Upper_Seq (C,n)))
- 2)
>=
0 by
XREAL_1: 19;
then ((FiP
.. (
Upper_Seq (C,n)))
-' 2)
= ((FiP
.. (
Upper_Seq (C,n)))
- 2) by
XREAL_0:def 2;
then
A80: (
len midU)
= (((FiP
.. (
Upper_Seq (C,n)))
- 2)
+ 1) by
A43,
A79,
JORDAN4: 8
.= ((FiP
.. (
Upper_Seq (C,n)))
- (2
- 1));
1
in (
dom RevL) by
A28,
FINSEQ_5: 6;
then
A81: ((RevL
^
<*
|[sr, Nbo]|*>)
/. 1)
= (RevL
/. 1) by
FINSEQ_4: 68
.= ((
Rev (
Lower_Seq (C,n)))
/. 1) by
A27,
FINSEQ_5: 44
.= ((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n)))) by
FINSEQ_5: 65
.= Wmin by
JORDAN1F: 8;
A82: (SW
`2 )
<= (Wmin
`2 ) by
PSCOMP_1: 30;
(
len g)
= ((
len (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n))))))
+ 1) by
FINSEQ_2: 16;
then
A83: (1
+ 1)
<= (
len g) by
A51,
XREAL_1: 7;
A84: (
L~ g)
= ((
L~ midU)
\/ (
LSeg ((midU
/. (
len midU)),
|[Ebo, (FiP
`2 )]|))) by
A47,
A23,
SPPOL_2: 19,
SPRECT_2: 7;
(
L~ (
Rev (
Lower_Seq (C,n))))
= ((
L~ RevL)
\/ (
L~ ((
Rev (
Lower_Seq (C,n)))
:- LaP))) by
A27,
SPPOL_2: 24;
then (
L~ RevL)
c= (
L~ (
Rev (
Lower_Seq (C,n)))) by
XBOOLE_1: 7;
then
A85: (
L~ RevL)
c= (
L~ (
Lower_Seq (C,n))) by
SPPOL_2: 22;
A86: (LaP
`2 )
<= Nbo by
A20,
PSCOMP_1: 24;
A87: (
|[Ebo, (FiP
`2 )]|
`2 )
= (FiP
`2 ) by
EUCLID: 52;
then
A88: (
LSeg (FiP,
|[Ebo, (FiP
`2 )]|)) is
horizontal by
SPPOL_1: 15;
(LaP
`1 )
= (
|[sr, Nbo]|
`1 ) by
A44,
EUCLID: 52;
then
A89: (
LSeg (LaP,
|[sr, Nbo]|)) is
vertical by
SPPOL_1: 16;
A90: (
L~ midU)
c= (
L~ (
Upper_Seq (C,n))) by
A47,
A23,
SPRECT_3: 18;
((h
/. (
len h))
`2 )
= (
|[sr, Nbo]|
`2 ) by
A74,
FINSEQ_4: 67
.= (
N-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
then h
is_a_v.c._for (
Cage (C,n)) by
A71,
A73,
SPRECT_2:def 3;
then (
L~ g)
meets (
L~ h) by
A52,
A75,
A83,
SPRECT_2: 29;
then
consider x be
object such that
A91: x
in (
L~ g) and
A92: x
in (
L~ h) by
XBOOLE_0: 3;
reconsider x as
Point of (
TOP-REAL 2) by
A91;
(
L~ h)
= (
L~ (
<*SW*>
^ (((
Rev (
Lower_Seq (C,n)))
-: LaP)
^
<*
|[sr, Nbo]|*>))) by
FINSEQ_1: 32
.= ((
LSeg (SW,((RevL
^
<*
|[sr, Nbo]|*>)
/. 1)))
\/ (
L~ (RevL
^
<*
|[sr, Nbo]|*>))) by
SPPOL_2: 20
.= ((
LSeg (SW,((RevL
^
<*
|[sr, Nbo]|*>)
/. 1)))
\/ ((
L~ RevL)
\/ (
LSeg ((RevL
/. (
len RevL)),
|[sr, Nbo]|)))) by
A27,
FINSEQ_5: 47,
SPPOL_2: 19;
then
A93: x
in (
LSeg (SW,((RevL
^
<*
|[sr, Nbo]|*>)
/. 1))) or x
in ((
L~ RevL)
\/ (
LSeg ((RevL
/. (
len RevL)),
|[sr, Nbo]|))) by
A92,
XBOOLE_0:def 3;
A94: (SW
`1 )
= (Wmin
`1 ) by
PSCOMP_1: 29;
then
A95: (
LSeg (SW,Wmin)) is
vertical by
SPPOL_1: 16;
now
per cases by
A93,
A81,
A66,
XBOOLE_0:def 3;
suppose
A96: x
in (
LSeg (SW,Wmin));
then
A97: (x
`2 )
<= (Wmin
`2 ) by
A82,
TOPREAL1: 4;
A98: (x
`1 )
= (SW
`1 ) by
A95,
A96,
SPPOL_1: 41;
then
A99: (x
`1 )
= Wbo by
EUCLID: 52;
now
per cases by
A91,
A84,
A77,
XBOOLE_0:def 3;
suppose
A100: x
in (
L~ midU);
then x
in (
L~ (
Upper_Seq (C,n))) by
A90;
then x
in (
W-most (
L~ (
Cage (C,n)))) by
A76,
A98,
EUCLID: 52,
SPRECT_2: 12;
then (x
`2 )
>= (Wmin
`2 ) by
PSCOMP_1: 31;
then (x
`2 )
= (Wmin
`2 ) by
A97,
XXREAL_0: 1;
then x
= Wmin by
A94,
A98,
TOPREAL3: 6;
then (FiP
.. (
Upper_Seq (C,n)))
= 1 by
A46,
A1,
A24,
A43,
A100,
Th37;
then Wmin
= FiP by
A1,
A22,
FINSEQ_5: 38;
hence contradiction by
A16,
A40,
EUCLID: 52;
end;
suppose x
in (
LSeg (FiP,
|[Ebo, (FiP
`2 )]|));
hence contradiction by
A16,
A32,
A40,
A63,
A99,
TOPREAL1: 3;
end;
end;
hence contradiction;
end;
suppose
A101: x
in (
L~ RevL);
now
per cases by
A91,
A84,
A77,
XBOOLE_0:def 3;
suppose
A102: x
in (
L~ midU);
then x
in ((
L~ (
Upper_Seq (C,n)))
/\ (
L~ (
Lower_Seq (C,n)))) by
A90,
A85,
A101,
XBOOLE_0:def 4;
then
A103: x
in
{Wmin, Emax} by
JORDAN1E: 16;
now
per cases by
A103,
TARSKI:def 2;
suppose x
= Wmin;
then (FiP
.. (
Upper_Seq (C,n)))
= 1 by
A46,
A1,
A24,
A43,
A102,
Th37;
then Wmin
= FiP by
A1,
A22,
FINSEQ_5: 38;
hence contradiction by
A16,
A40,
EUCLID: 52;
end;
suppose x
= Emax;
then (FiP
.. (
Upper_Seq (C,n)))
= (
len (
Upper_Seq (C,n))) by
A46,
A30,
A24,
A43,
A102,
Th38;
then Emax
= FiP by
A30,
A22,
FINSEQ_5: 38;
hence contradiction by
A32,
A40,
EUCLID: 52;
end;
end;
hence contradiction;
end;
suppose
A104: x
in (
LSeg (FiP,
|[Ebo, (FiP
`2 )]|));
(
LSeg (FiP,
|[Ebo, (FiP
`2 )]|)) is
horizontal by
A87,
SPPOL_1: 15;
then
A105: (x
`2 )
= (FiP
`2 ) by
A104,
SPPOL_1: 40;
consider i be
Nat such that
A106: 1
<= i and
A107: (i
+ 1)
<= (
len RevL) and
A108: x
in (
LSeg ((RevL
/. i),(RevL
/. (i
+ 1)))) by
A101,
SPPOL_2: 14;
A109: i
< (
len RevL) by
A107,
NAT_1: 13;
then
A110: (((
Rev (
Lower_Seq (C,n)))
/. i)
`1 )
< sr by
A21,
A29,
A70,
A106,
Th52;
i
in (
Seg (LaP
.. (
Rev (
Lower_Seq (C,n))))) by
A29,
A106,
A109,
FINSEQ_1: 1;
then
A111: (RevL
/. i)
= ((
Rev (
Lower_Seq (C,n)))
/. i) by
A27,
FINSEQ_5: 43;
(i
+ 1)
>= 1 by
NAT_1: 11;
then (i
+ 1)
in (
Seg (LaP
.. (
Rev (
Lower_Seq (C,n))))) by
A29,
A107,
FINSEQ_1: 1;
then
A112: (RevL
/. (i
+ 1))
= ((
Rev (
Lower_Seq (C,n)))
/. (i
+ 1)) by
A27,
FINSEQ_5: 43;
A113: (FiP
`1 )
<= (x
`1 ) by
A32,
A40,
A63,
A104,
TOPREAL1: 3;
now
per cases by
A107,
XXREAL_0: 1;
suppose
A114: (i
+ 1)
< (
len RevL);
((RevL
/. i)
`1 )
<= ((RevL
/. (i
+ 1))
`1 ) or ((RevL
/. (i
+ 1))
`1 )
<= ((RevL
/. i)
`1 );
then
A115: (x
`1 )
<= ((RevL
/. (i
+ 1))
`1 ) or (x
`1 )
<= ((RevL
/. i)
`1 ) by
A108,
TOPREAL1: 3;
(((
Rev (
Lower_Seq (C,n)))
/. (i
+ 1))
`1 )
< sr by
A21,
A29,
A70,
A114,
Th52,
NAT_1: 11;
hence contradiction by
A40,
A113,
A111,
A112,
A110,
A115,
XXREAL_0: 2;
end;
suppose
A116: (i
+ 1)
= (
len RevL);
then (i
+ 1)
<= (
len (
Rev (
Lower_Seq (C,n)))) by
A27,
A29,
FINSEQ_4: 21;
then (
LSeg (((
Rev (
Lower_Seq (C,n)))
/. i),((
Rev (
Lower_Seq (C,n)))
/. (i
+ 1))))
= (
LSeg ((
Rev (
Lower_Seq (C,n))),i)) by
A106,
TOPREAL1:def 3;
then (
LSeg ((RevL
/. i),(RevL
/. (i
+ 1)))) is
vertical or (
LSeg ((RevL
/. i),(RevL
/. (i
+ 1)))) is
horizontal by
A111,
A112,
SPPOL_1: 19;
hence contradiction by
A44,
A45,
A66,
A105,
A108,
A111,
A110,
A116,
SPPOL_1: 16,
SPPOL_1: 40;
end;
end;
hence contradiction;
end;
end;
hence contradiction;
end;
suppose
A117: x
in (
LSeg (LaP,
|[sr, Nbo]|));
then
A118: (LaP
`2 )
<= (x
`2 ) by
A8,
A86,
TOPREAL1: 4;
A119: (x
`1 )
= (LaP
`1 ) by
A89,
A117,
SPPOL_1: 41;
now
per cases by
A91,
A84,
A77,
XBOOLE_0:def 3;
suppose x
in (
L~ midU);
then
consider i be
Nat such that
A120: 1
<= i and
A121: (i
+ 1)
<= (
len midU) and
A122: x
in (
LSeg ((midU
/. i),(midU
/. (i
+ 1)))) by
SPPOL_2: 14;
(i
+ 2)
>= (1
+ 1) by
NAT_1: 11;
then
A123: ((i
+ 2)
- 1)
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
i
< (
len midU) by
A121,
NAT_1: 13;
then i
in (
dom midU) by
A120,
FINSEQ_3: 25;
then
A124: (midU
/. i)
= ((
Upper_Seq (C,n))
/. ((i
+ 2)
-' 1)) by
A47,
A23,
A79,
SPRECT_2: 3
.= ((
Upper_Seq (C,n))
/. (i
+ (2
- 1))) by
A123,
XREAL_0:def 2;
((i
+ 1)
+ 2)
>= (1
+ 1) by
NAT_1: 11;
then
A125: (((i
+ 1)
+ 2)
- 1)
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
A126: 1
<= (i
+ 1) by
NAT_1: 11;
then (i
+ 1)
in (
dom midU) by
A121,
FINSEQ_3: 25;
then
A127: (midU
/. (i
+ 1))
= ((
Upper_Seq (C,n))
/. (((i
+ 1)
+ 2)
-' 1)) by
A47,
A23,
A79,
SPRECT_2: 3
.= ((
Upper_Seq (C,n))
/. ((i
+ 1)
+ (2
- 1))) by
A125,
XREAL_0:def 2;
A128: ((i
+ 1)
+ 1)
<= (((FiP
.. (
Upper_Seq (C,n)))
- 1)
+ 1) by
A80,
A121,
XREAL_1: 7;
then (i
+ 1)
< (FiP
.. (
Upper_Seq (C,n))) by
NAT_1: 13;
then
A129: ((midU
/. i)
`1 )
< sr by
A21,
A124,
Th51,
NAT_1: 11;
((i
+ 1)
+ 1)
<= (
len (
Upper_Seq (C,n))) by
A43,
A128,
XXREAL_0: 2;
then (
LSeg ((midU
/. i),(midU
/. (i
+ 1))))
= (
LSeg ((
Upper_Seq (C,n)),(i
+ 1))) by
A124,
A126,
A127,
TOPREAL1:def 3;
then
A130: (
LSeg ((midU
/. i),(midU
/. (i
+ 1)))) is
vertical or (
LSeg ((midU
/. i),(midU
/. (i
+ 1)))) is
horizontal by
SPPOL_1: 19;
now
per cases by
A121,
XXREAL_0: 1;
suppose (i
+ 1)
< (
len midU);
then ((i
+ 1)
+ 1)
<= (
len midU) by
NAT_1: 13;
then (((i
+ 1)
+ 1)
+ 1)
<= (((FiP
.. (
Upper_Seq (C,n)))
- 1)
+ 1) by
A80,
XREAL_1: 7;
then ((i
+ 1)
+ 1)
< (FiP
.. (
Upper_Seq (C,n))) by
NAT_1: 13;
then
A131: ((midU
/. (i
+ 1))
`1 )
< sr by
A21,
A127,
Th51,
NAT_1: 11;
((midU
/. i)
`1 )
<= ((midU
/. (i
+ 1))
`1 ) or ((midU
/. (i
+ 1))
`1 )
<= ((midU
/. i)
`1 );
hence contradiction by
A44,
A119,
A122,
A129,
A131,
TOPREAL1: 3;
end;
suppose
A132: (i
+ 1)
= (
len midU);
then ((midU
/. i)
`2 )
= ((midU
/. (i
+ 1))
`2 ) by
A40,
A77,
A129,
A130,
SPPOL_1: 15,
SPPOL_1: 16;
hence contradiction by
A53,
A77,
A118,
A122,
A132,
GOBOARD7: 6;
end;
end;
hence contradiction;
end;
suppose x
in (
LSeg (FiP,
|[Ebo, (FiP
`2 )]|));
hence contradiction by
A53,
A88,
A118,
SPPOL_1: 40;
end;
end;
hence contradiction;
end;
end;
hence contradiction;
end;
suppose
A133: SW
= Wmin;
reconsider RevLS = (
Rev (
Lower_Seq (C,n))) as
special
FinSequence of (
TOP-REAL 2);
set h = (((
Rev (
Lower_Seq (C,n)))
-: LaP)
^
<*
|[sr, Nbo]|*>);
A134:
<*
|[sr, Nbo]|*> is
one-to-one & (RevLS
-: LaP) is
special by
FINSEQ_3: 93;
(
rng ((
Rev (
Lower_Seq (C,n)))
-: LaP))
misses
{
|[sr, Nbo]|} by
A25,
ZFMISC_1: 50;
then ((
rng ((
Rev (
Lower_Seq (C,n)))
-: LaP))
/\
{
|[sr, Nbo]|})
=
{} ;
then ((
rng ((
Rev (
Lower_Seq (C,n)))
-: LaP))
/\ (
rng
<*
|[sr, Nbo]|*>))
=
{} by
FINSEQ_1: 38;
then
A135: (
rng ((
Rev (
Lower_Seq (C,n)))
-: LaP))
misses (
rng
<*
|[sr, Nbo]|*>);
((((
Rev (
Lower_Seq (C,n)))
-: LaP)
/. (
len ((
Rev (
Lower_Seq (C,n)))
-: LaP)))
`1 )
= ((((
Rev (
Lower_Seq (C,n)))
-: LaP)
/. (LaP
.. (
Rev (
Lower_Seq (C,n)))))
`1 ) by
A27,
FINSEQ_5: 42
.= (LaP
`1 ) by
A27,
FINSEQ_5: 45
.= (
|[sr, Nbo]|
`1 ) by
A44,
EUCLID: 52
.= ((
<*
|[sr, Nbo]|*>
/. 1)
`1 ) by
FINSEQ_4: 16;
then
reconsider h as
one-to-one
special
FinSequence of (
TOP-REAL 2) by
A135,
A134,
FINSEQ_3: 91,
GOBOARD2: 8;
now
let m be
Nat;
A136: (
W-bound (
L~ (
Cage (C,n))))
<= (
E-bound (
L~ (
Cage (C,n)))) by
SPRECT_1: 21;
assume m
in (
dom
<*
|[sr, Nbo]|*>);
then m
in (
Seg 1) by
FINSEQ_1: 38;
then m
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then
A137: (
<*
|[sr, Nbo]|*>
/. m)
=
|[sr, Nbo]| by
FINSEQ_4: 16;
then ((
<*
|[sr, Nbo]|*>
/. m)
`1 )
= sr by
EUCLID: 52;
hence (
W-bound (
L~ (
Cage (C,n))))
<= ((
<*
|[sr, Nbo]|*>
/. m)
`1 ) & ((
<*
|[sr, Nbo]|*>
/. m)
`1 )
<= (
E-bound (
L~ (
Cage (C,n)))) by
A136,
JORDAN6: 1;
((
<*
|[sr, Nbo]|*>
/. m)
`2 )
= Nbo by
A137,
EUCLID: 52;
hence (
S-bound (
L~ (
Cage (C,n))))
<= ((
<*
|[sr, Nbo]|*>
/. m)
`2 ) & ((
<*
|[sr, Nbo]|*>
/. m)
`2 )
<= (
N-bound (
L~ (
Cage (C,n)))) by
SPRECT_1: 22;
end;
then
A138:
<*
|[sr, Nbo]|*>
is_in_the_area_of (
Cage (C,n)) by
SPRECT_2:def 1;
(
Rev (
Lower_Seq (C,n)))
is_in_the_area_of (
Cage (C,n)) by
JORDAN1E: 18,
SPRECT_3: 51;
then ((
Rev (
Lower_Seq (C,n)))
-: LaP)
is_in_the_area_of (
Cage (C,n)) by
A27,
JORDAN1E: 1;
then
A139: h
is_in_the_area_of (
Cage (C,n)) by
A138,
SPRECT_2: 24;
A140: (
len h)
= ((
len ((
Rev (
Lower_Seq (C,n)))
-: LaP))
+ 1) by
FINSEQ_2: 16;
then
A141: ((h
/. (
len h))
`2 )
= (
|[sr, Nbo]|
`2 ) by
FINSEQ_4: 67
.= (
N-bound (
L~ (
Cage (C,n)))) by
EUCLID: 52;
(
L~ (
Rev (
Lower_Seq (C,n))))
= ((
L~ RevL)
\/ (
L~ ((
Rev (
Lower_Seq (C,n)))
:- LaP))) by
A27,
SPPOL_2: 24;
then (
L~ RevL)
c= (
L~ (
Rev (
Lower_Seq (C,n)))) by
XBOOLE_1: 7;
then
A142: (
L~ RevL)
c= (
L~ (
Lower_Seq (C,n))) by
SPPOL_2: 22;
A143: (LaP
`2 )
<= Nbo by
A20,
PSCOMP_1: 24;
(LaP
.. (
Rev (
Lower_Seq (C,n))))
>= (
0
+ 1) by
A28,
A29,
NAT_1: 13;
then
A144: (
len ((
Rev (
Lower_Seq (C,n)))
-: LaP))
>= 1 by
A27,
FINSEQ_5: 42;
1
in (
dom h) by
FINSEQ_5: 6;
then (h
/. 1)
= (h
. 1) by
PARTFUN1:def 6;
then ((h
/. 1)
`2 )
= ((((
Rev (
Lower_Seq (C,n)))
-: LaP)
/. 1)
`2 ) by
A144,
FINSEQ_6: 109
.= (((
Rev (
Lower_Seq (C,n)))
/. 1)
`2 ) by
A27,
FINSEQ_5: 44
.= (((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
`2 ) by
FINSEQ_5: 65
.= (Wmin
`2 ) by
JORDAN1F: 8
.= (
S-bound (
L~ (
Cage (C,n)))) by
A133,
EUCLID: 52;
then
A145: h
is_a_v.c._for (
Cage (C,n)) by
A139,
A141,
SPRECT_2:def 3;
set FiP2 = (
First_Point ((
L~ (
Lower_Seq (C,n))),Wmin,Emax,(
Vertical_Line sr)));
set midU = (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n)))));
A146: (
|[Ebo, (FiP
`2 )]|
`1 )
= Ebo by
EUCLID: 52;
A147: (
L~ g)
= ((
L~ midU)
\/ (
LSeg ((midU
/. (
len midU)),
|[Ebo, (FiP
`2 )]|))) by
A47,
A23,
SPPOL_2: 19,
SPRECT_2: 7;
A148: Wmin
in (
rng (
Upper_Seq (C,n))) by
A1,
FINSEQ_6: 42;
now
assume (FiP
.. (
Upper_Seq (C,n)))
= 1;
then (FiP
.. (
Upper_Seq (C,n)))
= (((
Upper_Seq (C,n))
/. 1)
.. (
Upper_Seq (C,n))) by
FINSEQ_6: 43
.= (Wmin
.. (
Upper_Seq (C,n))) by
JORDAN1F: 5;
then FiP
= Wmin by
A22,
A148,
FINSEQ_5: 9;
hence contradiction by
A16,
A40,
EUCLID: 52;
end;
then (FiP
.. (
Upper_Seq (C,n)))
> 1 by
A24,
XXREAL_0: 1;
then
A149: ((1
+ 1)
+
0 )
<= (FiP
.. (
Upper_Seq (C,n))) by
NAT_1: 13;
then ((FiP
.. (
Upper_Seq (C,n)))
- 2)
>=
0 by
XREAL_1: 19;
then ((FiP
.. (
Upper_Seq (C,n)))
-' 2)
= ((FiP
.. (
Upper_Seq (C,n)))
- 2) by
XREAL_0:def 2;
then
A150: (
len midU)
= (((FiP
.. (
Upper_Seq (C,n)))
- 2)
+ 1) by
A43,
A149,
JORDAN4: 8
.= ((FiP
.. (
Upper_Seq (C,n)))
- (2
- 1));
(LaP
`1 )
= (
|[sr, Nbo]|
`1 ) by
A44,
EUCLID: 52;
then
A151: (
LSeg (LaP,
|[sr, Nbo]|)) is
vertical by
SPPOL_1: 16;
(
len g)
= ((
len (
mid ((
Upper_Seq (C,n)),2,(FiP
.. (
Upper_Seq (C,n))))))
+ 1) by
FINSEQ_2: 16;
then
A152: (1
+ 1)
<= (
len g) by
A51,
XREAL_1: 7;
A153: (RevL
/. (
len RevL))
= (RevL
/. (LaP
.. (
Rev (
Lower_Seq (C,n))))) by
A27,
FINSEQ_5: 42
.= LaP by
A27,
FINSEQ_5: 45;
(1
+ 1)
<= (
len h) by
A144,
A140,
XREAL_1: 7;
then (
L~ g)
meets (
L~ h) by
A52,
A145,
A152,
SPRECT_2: 29;
then
consider x be
object such that
A154: x
in (
L~ g) and
A155: x
in (
L~ h) by
XBOOLE_0: 3;
reconsider x as
Point of (
TOP-REAL 2) by
A154;
A156: (
L~ h)
= ((
L~ RevL)
\/ (
LSeg ((RevL
/. (
len RevL)),
|[sr, Nbo]|))) by
A27,
FINSEQ_5: 47,
SPPOL_2: 19;
A157: (midU
/. (
len midU))
= ((
Upper_Seq (C,n))
/. (FiP
.. (
Upper_Seq (C,n)))) by
A47,
A23,
SPRECT_2: 9
.= FiP by
A22,
FINSEQ_5: 38;
A158: (
L~ midU)
c= (
L~ (
Upper_Seq (C,n))) by
A47,
A23,
SPRECT_3: 18;
A159: (
L~ (
Rev (
Lower_Seq (C,n))))
= (
L~ (
Lower_Seq (C,n))) & FiP2
= LaP by
A12,
A17,
JORDAN5C: 18,
SPPOL_2: 22;
A160: (
|[Ebo, (FiP
`2 )]|
`2 )
= (FiP
`2 ) by
EUCLID: 52;
then
A161: (
LSeg (FiP,
|[Ebo, (FiP
`2 )]|)) is
horizontal by
SPPOL_1: 15;
now
per cases by
A155,
A156,
A153,
XBOOLE_0:def 3;
suppose
A162: x
in (
L~ RevL);
now
per cases by
A154,
A147,
A157,
XBOOLE_0:def 3;
suppose
A163: x
in (
L~ midU);
then x
in ((
L~ (
Upper_Seq (C,n)))
/\ (
L~ (
Lower_Seq (C,n)))) by
A158,
A142,
A162,
XBOOLE_0:def 4;
then
A164: x
in
{Wmin, Emax} by
JORDAN1E: 16;
now
per cases by
A164,
TARSKI:def 2;
suppose x
= Wmin;
then (FiP
.. (
Upper_Seq (C,n)))
= 1 by
A46,
A1,
A24,
A43,
A163,
Th37;
then Wmin
= FiP by
A1,
A22,
FINSEQ_5: 38;
hence contradiction by
A16,
A40,
EUCLID: 52;
end;
suppose x
= Emax;
then (FiP
.. (
Upper_Seq (C,n)))
= (
len (
Upper_Seq (C,n))) by
A46,
A30,
A24,
A43,
A163,
Th38;
then Emax
= FiP by
A30,
A22,
FINSEQ_5: 38;
hence contradiction by
A32,
A40,
EUCLID: 52;
end;
end;
hence contradiction;
end;
suppose
A165: x
in (
LSeg (FiP,
|[Ebo, (FiP
`2 )]|));
(
LSeg (FiP,
|[Ebo, (FiP
`2 )]|)) is
horizontal by
A160,
SPPOL_1: 15;
then
A166: (x
`2 )
= (FiP
`2 ) by
A165,
SPPOL_1: 40;
consider i be
Nat such that
A167: 1
<= i and
A168: (i
+ 1)
<= (
len RevL) and
A169: x
in (
LSeg ((RevL
/. i),(RevL
/. (i
+ 1)))) by
A162,
SPPOL_2: 14;
A170: i
< (
len RevL) by
A168,
NAT_1: 13;
then
A171: (((
Rev (
Lower_Seq (C,n)))
/. i)
`1 )
< sr by
A21,
A29,
A159,
A167,
Th52;
i
in (
Seg (LaP
.. (
Rev (
Lower_Seq (C,n))))) by
A29,
A167,
A170,
FINSEQ_1: 1;
then
A172: (RevL
/. i)
= ((
Rev (
Lower_Seq (C,n)))
/. i) by
A27,
FINSEQ_5: 43;
(i
+ 1)
>= 1 by
NAT_1: 11;
then (i
+ 1)
in (
Seg (LaP
.. (
Rev (
Lower_Seq (C,n))))) by
A29,
A168,
FINSEQ_1: 1;
then
A173: (RevL
/. (i
+ 1))
= ((
Rev (
Lower_Seq (C,n)))
/. (i
+ 1)) by
A27,
FINSEQ_5: 43;
A174: (FiP
`1 )
<= (x
`1 ) by
A32,
A40,
A146,
A165,
TOPREAL1: 3;
now
per cases by
A168,
XXREAL_0: 1;
suppose
A175: (i
+ 1)
< (
len RevL);
((RevL
/. i)
`1 )
<= ((RevL
/. (i
+ 1))
`1 ) or ((RevL
/. (i
+ 1))
`1 )
<= ((RevL
/. i)
`1 );
then
A176: (x
`1 )
<= ((RevL
/. (i
+ 1))
`1 ) or (x
`1 )
<= ((RevL
/. i)
`1 ) by
A169,
TOPREAL1: 3;
(((
Rev (
Lower_Seq (C,n)))
/. (i
+ 1))
`1 )
< sr by
A21,
A29,
A159,
A175,
Th52,
NAT_1: 11;
hence contradiction by
A40,
A174,
A172,
A173,
A171,
A176,
XXREAL_0: 2;
end;
suppose
A177: (i
+ 1)
= (
len RevL);
then (i
+ 1)
<= (
len (
Rev (
Lower_Seq (C,n)))) by
A27,
A29,
FINSEQ_4: 21;
then (
LSeg (((
Rev (
Lower_Seq (C,n)))
/. i),((
Rev (
Lower_Seq (C,n)))
/. (i
+ 1))))
= (
LSeg ((
Rev (
Lower_Seq (C,n))),i)) by
A167,
TOPREAL1:def 3;
then (
LSeg ((RevL
/. i),(RevL
/. (i
+ 1)))) is
vertical or (
LSeg ((RevL
/. i),(RevL
/. (i
+ 1)))) is
horizontal by
A172,
A173,
SPPOL_1: 19;
hence contradiction by
A44,
A45,
A153,
A166,
A169,
A172,
A171,
A177,
SPPOL_1: 16,
SPPOL_1: 40;
end;
end;
hence contradiction;
end;
end;
hence contradiction;
end;
suppose
A178: x
in (
LSeg (LaP,
|[sr, Nbo]|));
then
A179: (LaP
`2 )
<= (x
`2 ) by
A8,
A143,
TOPREAL1: 4;
A180: (x
`1 )
= (LaP
`1 ) by
A151,
A178,
SPPOL_1: 41;
now
per cases by
A154,
A147,
A157,
XBOOLE_0:def 3;
suppose x
in (
L~ midU);
then
consider i be
Nat such that
A181: 1
<= i and
A182: (i
+ 1)
<= (
len midU) and
A183: x
in (
LSeg ((midU
/. i),(midU
/. (i
+ 1)))) by
SPPOL_2: 14;
(i
+ 2)
>= (1
+ 1) by
NAT_1: 11;
then
A184: ((i
+ 2)
- 1)
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
i
< (
len midU) by
A182,
NAT_1: 13;
then i
in (
dom midU) by
A181,
FINSEQ_3: 25;
then
A185: (midU
/. i)
= ((
Upper_Seq (C,n))
/. ((i
+ 2)
-' 1)) by
A47,
A23,
A149,
SPRECT_2: 3
.= ((
Upper_Seq (C,n))
/. (i
+ (2
- 1))) by
A184,
XREAL_0:def 2;
((i
+ 1)
+ 2)
>= (1
+ 1) by
NAT_1: 11;
then
A186: (((i
+ 1)
+ 2)
- 1)
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
A187: 1
<= (i
+ 1) by
NAT_1: 11;
then (i
+ 1)
in (
dom midU) by
A182,
FINSEQ_3: 25;
then
A188: (midU
/. (i
+ 1))
= ((
Upper_Seq (C,n))
/. (((i
+ 1)
+ 2)
-' 1)) by
A47,
A23,
A149,
SPRECT_2: 3
.= ((
Upper_Seq (C,n))
/. ((i
+ 1)
+ (2
- 1))) by
A186,
XREAL_0:def 2;
A189: ((i
+ 1)
+ 1)
<= (((FiP
.. (
Upper_Seq (C,n)))
- 1)
+ 1) by
A150,
A182,
XREAL_1: 7;
then (i
+ 1)
< (FiP
.. (
Upper_Seq (C,n))) by
NAT_1: 13;
then
A190: ((midU
/. i)
`1 )
< sr by
A21,
A185,
Th51,
NAT_1: 11;
((i
+ 1)
+ 1)
<= (
len (
Upper_Seq (C,n))) by
A43,
A189,
XXREAL_0: 2;
then (
LSeg ((midU
/. i),(midU
/. (i
+ 1))))
= (
LSeg ((
Upper_Seq (C,n)),(i
+ 1))) by
A185,
A187,
A188,
TOPREAL1:def 3;
then
A191: (
LSeg ((midU
/. i),(midU
/. (i
+ 1)))) is
vertical or (
LSeg ((midU
/. i),(midU
/. (i
+ 1)))) is
horizontal by
SPPOL_1: 19;
now
per cases by
A182,
XXREAL_0: 1;
suppose (i
+ 1)
< (
len midU);
then ((i
+ 1)
+ 1)
<= (
len midU) by
NAT_1: 13;
then (((i
+ 1)
+ 1)
+ 1)
<= (((FiP
.. (
Upper_Seq (C,n)))
- 1)
+ 1) by
A150,
XREAL_1: 7;
then ((i
+ 1)
+ 1)
< (FiP
.. (
Upper_Seq (C,n))) by
NAT_1: 13;
then
A192: ((midU
/. (i
+ 1))
`1 )
< sr by
A21,
A188,
Th51,
NAT_1: 11;
((midU
/. i)
`1 )
<= ((midU
/. (i
+ 1))
`1 ) or ((midU
/. (i
+ 1))
`1 )
<= ((midU
/. i)
`1 );
hence contradiction by
A44,
A180,
A183,
A190,
A192,
TOPREAL1: 3;
end;
suppose
A193: (i
+ 1)
= (
len midU);
then ((midU
/. i)
`2 )
= ((midU
/. (i
+ 1))
`2 ) by
A40,
A157,
A190,
A191,
SPPOL_1: 15,
SPPOL_1: 16;
hence contradiction by
A53,
A157,
A179,
A183,
A193,
GOBOARD7: 6;
end;
end;
hence contradiction;
end;
suppose x
in (
LSeg (FiP,
|[Ebo, (FiP
`2 )]|));
hence contradiction by
A53,
A161,
A179,
SPPOL_1: 40;
end;
end;
hence contradiction;
end;
end;
hence contradiction;
end;
end;
hence contradiction;
end;
theorem ::
JORDAN1G:55
Th55: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat st n
>
0 holds (
L~ (
Upper_Seq (C,n)))
= (
Upper_Arc (
L~ (
Cage (C,n))))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
A1: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then
A2: (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
SPRECT_2: 43;
A3: (
Upper_Seq (C,n))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n))))) by
JORDAN1E:def 1;
then ((
Upper_Seq (C,n))
/. 1)
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. 1) by
A2,
FINSEQ_5: 44;
then
A4: ((
Upper_Seq (C,n))
/. 1)
= (
W-min (
L~ (
Cage (C,n)))) by
A1,
FINSEQ_6: 92;
((
Upper_Seq (C,n))
/. (
len (
Upper_Seq (C,n))))
= (((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
-: (
E-max (
L~ (
Cage (C,n)))))
/. ((
E-max (
L~ (
Cage (C,n))))
.. (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
A3,
A2,
FINSEQ_5: 42
.= (
E-max (
L~ (
Cage (C,n)))) by
A2,
FINSEQ_5: 45;
then
A5: (
L~ (
Upper_Seq (C,n)))
is_an_arc_of ((
W-min (
L~ (
Cage (C,n)))),(
E-max (
L~ (
Cage (C,n))))) by
A4,
TOPREAL1: 25;
assume n
>
0 ;
then
A6: ((
First_Point ((
L~ (
Upper_Seq (C,n))),(
W-min (
L~ (
Cage (C,n)))),(
E-max (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
`2 )
> ((
Last_Point ((
L~ (
Lower_Seq (C,n))),(
E-max (
L~ (
Cage (C,n)))),(
W-min (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
`2 ) by
Th54;
A7: ((
Lower_Seq (C,n))
/. 1)
= (((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n)))))
/. 1) by
JORDAN1E:def 2
.= (
E-max (
L~ (
Cage (C,n)))) by
FINSEQ_5: 53;
(
Lower_Seq (C,n))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n))))) by
JORDAN1E:def 2;
then ((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. (
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
A2,
FINSEQ_5: 54
.= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. 1) by
FINSEQ_6:def 1
.= (
W-min (
L~ (
Cage (C,n)))) by
A1,
FINSEQ_6: 92;
then
A8: (
L~ (
Lower_Seq (C,n)))
is_an_arc_of ((
E-max (
L~ (
Cage (C,n)))),(
W-min (
L~ (
Cage (C,n))))) by
A7,
TOPREAL1: 25;
((
L~ (
Upper_Seq (C,n)))
/\ (
L~ (
Lower_Seq (C,n))))
=
{(
W-min (
L~ (
Cage (C,n)))), (
E-max (
L~ (
Cage (C,n))))} & ((
L~ (
Upper_Seq (C,n)))
\/ (
L~ (
Lower_Seq (C,n))))
= (
L~ (
Cage (C,n))) by
JORDAN1E: 13,
JORDAN1E: 16;
hence thesis by
A5,
A8,
A6,
JORDAN6:def 8;
end;
theorem ::
JORDAN1G:56
Th56: for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat st n
>
0 holds (
L~ (
Lower_Seq (C,n)))
= (
Lower_Arc (
L~ (
Cage (C,n))))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
A1: (
W-min (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 43;
A2: ((
Lower_Seq (C,n))
/. 1)
= (((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n)))))
/. 1) by
JORDAN1E:def 2
.= (
E-max (
L~ (
Cage (C,n)))) by
FINSEQ_5: 53;
(
E-max (
L~ (
Cage (C,n))))
in (
rng (
Cage (C,n))) by
SPRECT_2: 46;
then (
Lower_Seq (C,n))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
:- (
E-max (
L~ (
Cage (C,n))))) & (
E-max (
L~ (
Cage (C,n))))
in (
rng (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))) by
FINSEQ_6: 90,
JORDAN1E:def 2,
SPRECT_2: 43;
then ((
Lower_Seq (C,n))
/. (
len (
Lower_Seq (C,n))))
= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. (
len (
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n)))))))) by
FINSEQ_5: 54
.= ((
Rotate ((
Cage (C,n)),(
W-min (
L~ (
Cage (C,n))))))
/. 1) by
FINSEQ_6:def 1
.= (
W-min (
L~ (
Cage (C,n)))) by
A1,
FINSEQ_6: 92;
then
A3: (
L~ (
Lower_Seq (C,n)))
is_an_arc_of ((
E-max (
L~ (
Cage (C,n)))),(
W-min (
L~ (
Cage (C,n))))) by
A2,
TOPREAL1: 25;
assume n
>
0 ;
then
A4: (
L~ (
Upper_Seq (C,n)))
= (
Upper_Arc (
L~ (
Cage (C,n)))) & ((
First_Point ((
L~ (
Upper_Seq (C,n))),(
W-min (
L~ (
Cage (C,n)))),(
E-max (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
`2 )
> ((
Last_Point ((
L~ (
Lower_Seq (C,n))),(
E-max (
L~ (
Cage (C,n)))),(
W-min (
L~ (
Cage (C,n)))),(
Vertical_Line (((
W-bound (
L~ (
Cage (C,n))))
+ (
E-bound (
L~ (
Cage (C,n)))))
/ 2))))
`2 ) by
Th54,
Th55;
((
L~ (
Upper_Seq (C,n)))
/\ (
L~ (
Lower_Seq (C,n))))
=
{(
W-min (
L~ (
Cage (C,n)))), (
E-max (
L~ (
Cage (C,n))))} & ((
L~ (
Upper_Seq (C,n)))
\/ (
L~ (
Lower_Seq (C,n))))
= (
L~ (
Cage (C,n))) by
JORDAN1E: 13,
JORDAN1E: 16;
hence thesis by
A3,
A4,
JORDAN6:def 9;
end;
theorem ::
JORDAN1G:57
for C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2) holds for n be
Nat st n
>
0 holds for i,j be
Nat st 1
<= i & i
<= (
len (
Gauge (C,n))) & 1
<= j & j
<= (
width (
Gauge (C,n))) & ((
Gauge (C,n))
* (i,j))
in (
L~ (
Cage (C,n))) holds (
LSeg (((
Gauge (C,n))
* (i,1)),((
Gauge (C,n))
* (i,j))))
meets (
Lower_Arc (
L~ (
Cage (C,n))))
proof
let C be
compact
connected non
vertical non
horizontal
Subset of (
TOP-REAL 2);
let n be
Nat;
assume n
>
0 ;
then
A1: (
L~ (
Lower_Seq (C,n)))
= (
Lower_Arc (
L~ (
Cage (C,n)))) by
Th56;
let i,j be
Nat;
assume 1
<= i & i
<= (
len (
Gauge (C,n))) & 1
<= j & j
<= (
width (
Gauge (C,n))) & ((
Gauge (C,n))
* (i,j))
in (
L~ (
Cage (C,n)));
hence thesis by
A1,
Th46;
end;