lopban13.miz
    
    begin
    
    reserve X,Y,Z for non
    trivial  
    RealBanachSpace;
    
    definition
    
      let X,Y be
    RealNormSpace;
    
      let u be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      :: 
    
    LOPBAN13:def1
    
      attr u is
    
    invertible means u is 
    one-to-one & ( 
    rng u) 
    = the 
    carrier of Y & (u 
    " ) is 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)); 
    
    end
    
    definition
    
      let X,Y be
    RealNormSpace;
    
      let u be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume
    
      
    
    A1: u is 
    invertible;
    
      :: 
    
    LOPBAN13:def2
    
      func
    
    Inv u -> 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)) equals 
    
      :
    
    Def1: (u 
    " ); 
    
      correctness by
    A1;
    
    end
    
    theorem :: 
    
    LOPBAN13:1
    
    
    
    
    
    LOPBAN410: for X be 
    RealNormSpace, seq be 
    sequence of X, k be 
    Nat holds 
    ||.((
    Partial_Sums seq) 
    . k).|| 
    <= (( 
    Partial_Sums  
    ||.seq.||)
    . k) 
    
    proof
    
      let X be
    RealNormSpace, seq be 
    sequence of X; 
    
      defpred
    
    P[
    Nat] means
    ||.((
    Partial_Sums seq) 
    . $1).|| 
    <= (( 
    Partial_Sums  
    ||.seq.||)
    . $1); 
    
      
    
    A1: 
    
      now
    
        let k be
    Nat;
    
        assume
    P[k];
    
        then
    
        
    
    A2: ( 
    ||.((
    Partial_Sums seq) 
    . k).|| 
    +  
    ||.(seq
    . (k 
    + 1)).||) 
    <= ((( 
    Partial_Sums  
    ||.seq.||)
    . k) 
    +  
    ||.(seq
    . (k 
    + 1)).||) by 
    XREAL_1: 6;
    
        
    
        
    
    A3: 
    ||.(((
    Partial_Sums seq) 
    . k) 
    + (seq 
    . (k 
    + 1))).|| 
    <= ( 
    ||.((
    Partial_Sums seq) 
    . k).|| 
    +  
    ||.(seq
    . (k 
    + 1)).||) by 
    NORMSP_1:def 1;
    
        
    ||.((
    Partial_Sums seq) 
    . (k 
    + 1)).|| 
    =  
    ||.(((
    Partial_Sums seq) 
    . k) 
    + (seq 
    . (k 
    + 1))).|| by 
    BHSP_4:def 1;
    
        then
    ||.((
    Partial_Sums seq) 
    . (k 
    + 1)).|| 
    <= ((( 
    Partial_Sums  
    ||.seq.||)
    . k) 
    +  
    ||.(seq
    . (k 
    + 1)).||) by 
    A3,
    A2,
    XXREAL_0: 2;
    
        then
    ||.((
    Partial_Sums seq) 
    . (k 
    + 1)).|| 
    <= ((( 
    Partial_Sums  
    ||.seq.||)
    . k) 
    + ( 
    ||.seq.||
    . (k 
    + 1))) by 
    NORMSP_0:def 4;
    
        hence
    P[(k
    + 1)] by 
    SERIES_1:def 1;
    
      end;
    
      ((
    Partial_Sums  
    ||.seq.||)
    .  
    0 ) 
    = ( 
    ||.seq.||
    .  
    0 ) by 
    SERIES_1:def 1
    
      .=
    ||.(seq
    .  
    0 ).|| by 
    NORMSP_0:def 4;
    
      then
    
      
    
    A4: 
    P[
    0 ] by 
    BHSP_4:def 1;
    
      for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A4,
    A1);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    LOPBAN13:2
    
    
    
    
    
    LM0: for X be 
    RealBanachSpace, s be 
    sequence of X st s is 
    norm_summable holds 
    ||.(
    Sum s).|| 
    <= ( 
    Sum  
    ||.s.||)
    
    proof
    
      let X be
    RealBanachSpace, s be 
    sequence of X; 
    
      assume
    
      
    
    A1: s is 
    norm_summable;
    
      then
    
      
    
    A3: 
    ||.s.|| is
    summable;
    
      
    
    A5: 
    
      now
    
        let k be
    Nat;
    
        (
    ||.(
    Partial_Sums s).|| 
    . k) 
    =  
    ||.((
    Partial_Sums s) 
    . k).|| by 
    NORMSP_0:def 4;
    
        hence (
    ||.(
    Partial_Sums s).|| 
    . k) 
    <= (( 
    Partial_Sums  
    ||.s.||)
    . k) by 
    LOPBAN410;
    
      end;
    
      
    
      
    
    A6: s is 
    summable by 
    A1;
    
      then
    
      
    
    A8: 
    ||.(
    Partial_Sums s).|| is 
    convergent by 
    NORMSP_1: 23;
    
      (
    lim  
    ||.(
    Partial_Sums s).||) 
    =  
    ||.(
    Sum s).|| by 
    A6,
    LOPBAN_1: 20;
    
      hence
    ||.(
    Sum s).|| 
    <= ( 
    Sum  
    ||.s.||) by
    A3,
    A5,
    A8,
    SEQ_2: 18;
    
    end;
    
    theorem :: 
    
    LOPBAN13:3
    
    
    
    
    
    LM1: for X be 
    Banach_Algebra, z be 
    Point of X st 
    ||.z.||
    < 1 holds (z 
    GeoSeq ) is 
    norm_summable & 
    ||.(
    Sum (z 
    GeoSeq )).|| 
    <= (1 
    / (1 
    -  
    ||.z.||))
    
    proof
    
      let X be
    Banach_Algebra;
    
      let z be
    Element of X; 
    
      
    
      
    
    A1: for n be 
    Nat holds ( 
    0  
    <= ( 
    ||.(z
    GeoSeq ).|| 
    . n) & ( 
    ||.(z
    GeoSeq ).|| 
    . n) 
    <= (( 
    ||.z.||
    GeoSeq ) 
    . n)) 
    
      proof
    
        defpred
    
    S1[
    Nat] means (
    0  
    <= ( 
    ||.(z
    GeoSeq ).|| 
    . $1) & ( 
    ||.(z
    GeoSeq ).|| 
    . $1) 
    <= (( 
    ||.z.||
    GeoSeq ) 
    . $1)); 
    
        
    
        
    
    A3: for k be 
    Nat st 
    S1[k] holds
    S1[(k
    + 1)] 
    
        proof
    
          let k be
    Nat;
    
          
    ||.(((z
    GeoSeq ) 
    . k) 
    * z).|| 
    <= ( 
    ||.((z
    GeoSeq ) 
    . k).|| 
    *  
    ||.z.||) by
    LOPBAN_2:def 9;
    
          then
    
          
    
    A4: 
    ||.(((z
    GeoSeq ) 
    . k) 
    * z).|| 
    <= (( 
    ||.(z
    GeoSeq ).|| 
    . k) 
    *  
    ||.z.||) by
    NORMSP_0:def 4;
    
          assume
    S1[k];
    
          then ((
    ||.(z
    GeoSeq ).|| 
    . k) 
    *  
    ||.z.||)
    <= ((( 
    ||.z.||
    GeoSeq ) 
    . k) 
    *  
    ||.z.||) by
    XREAL_1: 64;
    
          then
    
          
    
    A5: 
    ||.(((z
    GeoSeq ) 
    . k) 
    * z).|| 
    <= ((( 
    ||.z.||
    GeoSeq ) 
    . k) 
    *  
    ||.z.||) by
    A4,
    XXREAL_0: 2;
    
          (
    ||.(z
    GeoSeq ).|| 
    . (k 
    + 1)) 
    =  
    ||.((z
    GeoSeq ) 
    . (k 
    + 1)).|| by 
    NORMSP_0:def 4
    
          .=
    ||.(((z
    GeoSeq ) 
    . k) 
    * z).|| by 
    LOPBAN_3:def 9;
    
          hence
    S1[(k
    + 1)] by 
    A5,
    PREPOWER: 3;
    
        end;
    
        
    ||.((z
    GeoSeq ) 
    .  
    0 ).|| 
    =  
    ||.(
    1. X).|| by 
    LOPBAN_3:def 9
    
        .= 1 by
    LOPBAN_2:def 10
    
        .= ((
    ||.z.||
    GeoSeq ) 
    .  
    0 ) by 
    PREPOWER: 3;
    
        then
    
        
    
    A6: 
    S1[
    0 ] by 
    NORMSP_0:def 4;
    
        for n be
    Nat holds 
    S1[n] from
    NAT_1:sch 2(
    A6,
    A3);
    
        hence for n be
    Nat holds ( 
    0  
    <= ( 
    ||.(z
    GeoSeq ).|| 
    . n) & ( 
    ||.(z
    GeoSeq ).|| 
    . n) 
    <= (( 
    ||.z.||
    GeoSeq ) 
    . n)); 
    
      end;
    
      assume
    ||.z.||
    < 1; 
    
      then
    |.
    ||.z.||.|
    < 1 by 
    ABSVALUE:def 1;
    
      then
    
      
    
    A7: ( 
    ||.z.||
    GeoSeq ) is 
    summable & ( 
    Sum ( 
    ||.z.||
    GeoSeq )) 
    = (1 
    / (1 
    -  
    ||.z.||)) by
    SERIES_1: 24;
    
      then
    
      
    
    A8: 
    ||.(z
    GeoSeq ).|| is 
    summable & ( 
    Sum  
    ||.(z
    GeoSeq ).||) 
    <= ( 
    Sum ( 
    ||.z.||
    GeoSeq )) by 
    A1,
    SERIES_1: 20;
    
      (z
    GeoSeq ) is 
    norm_summable by 
    A1,
    A7,
    SERIES_1: 20;
    
      then
    ||.(
    Sum (z 
    GeoSeq )).|| 
    <= ( 
    Sum  
    ||.(z
    GeoSeq ).||) by 
    LM0;
    
      hence thesis by
    A7,
    A8,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    LOPBAN13:4
    
    
    
    
    
    LM2: for S be 
    Banach_Algebra, w be 
    Point of S st 
    ||.w.||
    < 1 holds (( 
    1. S) 
    + w) is 
    invertible & (( 
    - w) 
    GeoSeq ) is 
    norm_summable & ((( 
    1. S) 
    + w) 
    " ) 
    = ( 
    Sum (( 
    - w) 
    GeoSeq )) & 
    ||.(((
    1. S) 
    + w) 
    " ).|| 
    <= (1 
    / (1 
    -  
    ||.w.||))
    
    proof
    
      let S be
    Banach_Algebra, w be 
    Point of S; 
    
      assume
    
      
    
    A1: 
    ||.w.||
    < 1; 
    
      set x = ((
    1. S) 
    + w); 
    
      
    
      
    
    A2: 
    ||.((
    1. S) 
    - x).|| 
    =  
    ||.(x
    - ( 
    1. S)).|| by 
    NORMSP_1: 7
    
      .=
    ||.w.|| by
    RLVECT_4: 1;
    
      then
    
      
    
    A3: x is 
    invertible & (x 
    " ) 
    = ( 
    Sum ((( 
    1. S) 
    - x) 
    GeoSeq )) by 
    A1,
    LOPBAN_3: 42;
    
      ((
    1. S) 
    - x) 
    = ((( 
    1. S) 
    - ( 
    1. S)) 
    - w) by 
    RLVECT_1: 27
    
      .= ((
    0. S) 
    - w) by 
    RLVECT_1: 15
    
      .= (
    - w) by 
    RLVECT_1: 14;
    
      hence thesis by
    A1,
    A2,
    A3,
    LM1;
    
    end;
    
    theorem :: 
    
    LOPBAN13:5
    
    for X be non
    trivial  
    RealBanachSpace, v1,v2 be 
    Lipschitzian  
    LinearOperator of X, X, w1,w2 be 
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X), a be 
    Real st v1 
    = w1 & v2 
    = w2 holds (v1 
    * v2) 
    = (w1 
    * w2) & (v1 
    + v2) 
    = (w1 
    + w2) & (a 
    (#) v1) 
    = (a 
    * w1) 
    
    proof
    
      let X be non
    trivial  
    RealBanachSpace, v1,v2 be 
    Lipschitzian  
    LinearOperator of X, X, w1,w2 be 
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X), a be 
    Real;
    
      set S = (
    R_Normed_Algebra_of_BoundedLinearOperators X); 
    
      assume
    
      
    
    A1: v1 
    = w1 & v2 
    = w2; 
    
      reconsider zw1 = w1, zw2 = w2 as
    Element of ( 
    BoundedLinearOperators (X,X)); 
    
      v1
    = ( 
    modetrans (v1,X,X)) & v2 
    = ( 
    modetrans (v2,X,X)) by 
    LOPBAN_1: 29;
    
      
    
      hence (v1
    * v2) 
    = (zw1 
    * zw2) by 
    A1
    
      .= (w1
    * w2) by 
    LOPBAN_2:def 4;
    
      reconsider zw1 = w1, zw2 = w2 as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)); 
    
      reconsider zw12 = (zw1
    + zw2) as 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)); 
    
      zw12 is
    Lipschitzian  
    LinearOperator of X, X by 
    LOPBAN_1:def 9;
    
      then
    
      
    
    A4: ( 
    dom zw12) 
    = the 
    carrier of X by 
    FUNCT_2:def 1;
    
      
    
      
    
    A5: ( 
    dom (v1 
    + v2)) 
    = (( 
    dom v1) 
    /\ ( 
    dom v2)) by 
    VFUNCT_1:def 1
    
      .= (the
    carrier of X 
    /\ ( 
    dom v2)) by 
    FUNCT_2:def 1
    
      .= (the
    carrier of X 
    /\ the 
    carrier of X) by 
    FUNCT_2:def 1
    
      .= the
    carrier of X; 
    
      for s be
    object st s 
    in ( 
    dom (v1 
    + v2)) holds ((v1 
    + v2) 
    . s) 
    = (zw12 
    . s) 
    
      proof
    
        let s be
    object;
    
        assume
    
        
    
    A6: s 
    in ( 
    dom (v1 
    + v2)); 
    
        then
    
        reconsider d = s as
    Point of X; 
    
        
    
        thus ((v1
    + v2) 
    . s) 
    = ((v1 
    + v2) 
    /. d) by 
    A5,
    PARTFUN1:def 6
    
        .= ((v1
    /. d) 
    + (v2 
    /. d)) by 
    A6,
    VFUNCT_1:def 1
    
        .= (zw12
    . s) by 
    A1,
    LOPBAN_1: 35;
    
      end;
    
      hence (v1
    + v2) 
    = (w1 
    + w2) by 
    A4,
    A5,
    FUNCT_1: 2;
    
      reconsider zw12 = (a
    * zw1) as 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)); 
    
      zw12 is
    Lipschitzian  
    LinearOperator of X, X by 
    LOPBAN_1:def 9;
    
      then
    
      
    
    A8: ( 
    dom zw12) 
    = the 
    carrier of X by 
    FUNCT_2:def 1;
    
      
    
      
    
    A9: ( 
    dom (a 
    (#) v1)) 
    = ( 
    dom v1) by 
    VFUNCT_1:def 4
    
      .= the
    carrier of X by 
    FUNCT_2:def 1;
    
      for s be
    object st s 
    in ( 
    dom (a 
    (#) v1)) holds ((a 
    (#) v1) 
    . s) 
    = (zw12 
    . s) 
    
      proof
    
        let s be
    object;
    
        assume
    
        
    
    A10: s 
    in ( 
    dom (a 
    (#) v1)); 
    
        then
    
        reconsider d = s as
    Point of X; 
    
        
    
        thus ((a
    (#) v1) 
    . s) 
    = ((a 
    (#) v1) 
    /. d) by 
    A9,
    PARTFUN1:def 6
    
        .= (a
    * (v1 
    /. d)) by 
    A10,
    VFUNCT_1:def 4
    
        .= (zw12
    . s) by 
    A1,
    LOPBAN_1: 36;
    
      end;
    
      hence (a
    (#) v1) 
    = (a 
    * w1) by 
    A8,
    A9,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    LOPBAN13:6
    
    for X be non
    trivial  
    RealBanachSpace, v1,v2 be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)), w1,w2 be 
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X), a be 
    Real st v1 
    = w1 & v2 
    = w2 holds (v1 
    + v2) 
    = (w1 
    + w2) & (a 
    * v1) 
    = (a 
    * w1); 
    
    theorem :: 
    
    LOPBAN13:7
    
    for X be non
    trivial  
    RealBanachSpace, v1,v2 be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)), w1,w2 be 
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X) st v1 
    = w1 & v2 
    = w2 holds (v1 
    * v2) 
    = (w1 
    * w2) 
    
    proof
    
      let X be non
    trivial  
    RealBanachSpace, v1,v2 be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)), w1,w2 be 
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X); 
    
      set S = (
    R_Normed_Algebra_of_BoundedLinearOperators X); 
    
      assume
    
      
    
    A1: v1 
    = w1 & v2 
    = w2; 
    
      reconsider zw1 = w1, zw2 = w2 as
    Element of ( 
    BoundedLinearOperators (X,X)); 
    
      
    
      thus (v1
    * v2) 
    = (zw1 
    * zw2) by 
    A1
    
      .= (w1
    * w2) by 
    LOPBAN_2:def 4;
    
    end;
    
    theorem :: 
    
    LOPBAN13:8
    
    
    
    
    
    LM4: for X be non 
    trivial  
    RealBanachSpace, v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)), w be 
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X) st v 
    = w holds (v is 
    invertible iff w is 
    invertible) & (w is
    invertible implies (v 
    " ) 
    = (w 
    " )) 
    
    proof
    
      let X be non
    trivial  
    RealBanachSpace, v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)), w be 
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X); 
    
      set S = (
    R_Normed_Algebra_of_BoundedLinearOperators X); 
    
      assume
    
      
    
    A1: v 
    = w; 
    
      
    
      
    
    A2: v is 
    Lipschitzian  
    LinearOperator of X, X by 
    LOPBAN_1:def 9;
    
      
    
      
    
    A4: v is 
    invertible implies w is 
    invertible
    
      proof
    
        assume
    
        
    
    A5: v is 
    invertible;
    
        then
    
        reconsider x = (v
    " ) as 
    Point of S; 
    
        
    
        
    
    A7: (v 
    " ) is 
    Lipschitzian  
    LinearOperator of X, X by 
    A5,
    LOPBAN_1:def 9;
    
        reconsider zx = x, zv = v as
    Element of ( 
    BoundedLinearOperators (X,X)); 
    
        (
    dom v) 
    = the 
    carrier of X & ( 
    rng v) 
    = the 
    carrier of X by 
    A2,
    A5,
    FUNCT_2:def 1;
    
        then
    
        
    
    A9: ((v 
    " ) 
    * v) 
    = ( 
    id X) & (v 
    * (v 
    " )) 
    = ( 
    id X) by 
    A5,
    FUNCT_1: 39;
    
        
    
        
    
    A10: (v 
    " ) 
    = ( 
    modetrans ((v 
    " ),X,X)) & v 
    = ( 
    modetrans (v,X,X)) by 
    A2,
    A7,
    LOPBAN_1: 29;
    
        
    
        then
    
        
    
    A11: ((v 
    " ) 
    * v) 
    = (zx 
    * zv) 
    
        .= (x
    * w) by 
    A1,
    LOPBAN_2:def 4;
    
        (v
    * (v 
    " )) 
    = (zv 
    * zx) by 
    A10
    
        .= (w
    * x) by 
    A1,
    LOPBAN_2:def 4;
    
        hence w is
    invertible by 
    A9,
    A11;
    
      end;
    
      w is
    invertible implies v is 
    invertible & (v 
    " ) 
    = (w 
    " ) 
    
      proof
    
        assume
    
        
    
    A13: w is 
    invertible;
    
        
    
        
    
    A14: v is 
    Lipschitzian  
    LinearOperator of X, X by 
    LOPBAN_1:def 9;
    
        reconsider y = (w
    " ) as 
    Lipschitzian  
    LinearOperator of X, X by 
    LOPBAN_1:def 9;
    
        reconsider zy = y, zw = w as
    Element of ( 
    BoundedLinearOperators (X,X)); 
    
        
    
        
    
    A15: y 
    = ( 
    modetrans (y,X,X)) & v 
    = ( 
    modetrans (v,X,X)) by 
    A14,
    LOPBAN_1: 29;
    
        
    
        then
    
        
    
    A16: (y 
    * v) 
    = (zy 
    * zw) by 
    A1
    
        .= ((w
    " ) 
    * w) by 
    LOPBAN_2:def 4
    
        .= (
    id X) by 
    A13,
    LOPBAN_3:def 8;
    
        
    
        
    
    A17: (v 
    * y) 
    = (zw 
    * zy) by 
    A1,
    A15
    
        .= (w
    * (w 
    " )) by 
    LOPBAN_2:def 4
    
        .= (
    id X) by 
    A13,
    LOPBAN_3:def 8;
    
        reconsider y0 = y, v0 = v as
    Function of the 
    carrier of X, the 
    carrier of X by 
    LOPBAN_1:def 9;
    
        
    
        
    
    A18: ( 
    dom v) 
    = the 
    carrier of X by 
    A14,
    FUNCT_2:def 1;
    
        
    
        
    
    A19: v0 is 
    one-to-one & v0 is 
    onto by 
    A16,
    A17,
    FUNCT_2: 23;
    
        then (
    dom y) 
    = ( 
    rng v) by 
    FUNCT_2:def 1;
    
        hence thesis by
    A16,
    A18,
    A19,
    FUNCT_1: 41;
    
      end;
    
      hence thesis by
    A4;
    
    end;
    
    theorem :: 
    
    LOPBAN13:9
    
    
    
    
    
    Th1: for v,I be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)) st I 
    = ( 
    id X) & 
    ||.v.||
    < 1 holds (I 
    + v) is 
    invertible & 
    ||.(
    Inv (I 
    + v)).|| 
    <= (1 
    / (1 
    -  
    ||.v.||)) & ex w be
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X) st w 
    = v & (( 
    - w) 
    GeoSeq ) is 
    norm_summable & ( 
    Inv (I 
    + v)) 
    = ( 
    Sum (( 
    - w) 
    GeoSeq )) 
    
    proof
    
      let v,I be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)); 
    
      assume that
    
      
    
    A1: I 
    = ( 
    id X) and 
    
      
    
    A2: 
    ||.v.||
    < 1; 
    
      set S = (
    R_Normed_Algebra_of_BoundedLinearOperators X); 
    
      reconsider w = v as
    Point of S; 
    
      set x = ((
    1. S) 
    + w); 
    
      
    ||.w.||
    < 1 by 
    A2;
    
      then
    
      
    
    A3: x is 
    invertible & (( 
    - w) 
    GeoSeq ) is 
    norm_summable & (x 
    " ) 
    = ( 
    Sum (( 
    - w) 
    GeoSeq )) & 
    ||.(x
    " ).|| 
    <= (1 
    / (1 
    -  
    ||.w.||)) by
    LM2;
    
      hence
    
      
    
    A6: (I 
    + v) is 
    invertible by 
    A1,
    LM4;
    
      
    
      
    
    A7: ((I 
    + v) 
    " ) 
    = (x 
    " ) by 
    A1,
    A3,
    LM4;
    
      hence
    ||.(
    Inv (I 
    + v)).|| 
    <= (1 
    / (1 
    -  
    ||.v.||)) by
    A3,
    A6,
    Def1;
    
      thus thesis by
    A3,
    A6,
    A7,
    Def1;
    
    end;
    
    theorem :: 
    
    LOPBAN13:10
    
    
    
    
    
    RELAT136: for X,Y,Z,W be 
    RealNormSpace, f be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), g be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)), h be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Z,W)) holds (h 
    * (g 
    * f)) 
    = ((h 
    * g) 
    * f) 
    
    proof
    
      let X,Y,Z,W be
    RealNormSpace, f be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), g be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)), h be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Z,W)); 
    
      
    
      
    
    A2: (h 
    * g) is 
    Lipschitzian  
    LinearOperator of Y, W by 
    LOPBAN_2: 2;
    
      (g
    * f) is 
    Lipschitzian  
    LinearOperator of X, Z by 
    LOPBAN_2: 2;
    
      
    
      hence (h
    * (g 
    * f)) 
    = (( 
    modetrans (h,Z,W)) 
    * (( 
    modetrans (g,Y,Z)) 
    * ( 
    modetrans (f,X,Y)))) by 
    LOPBAN_1: 29
    
      .= (((
    modetrans (h,Z,W)) 
    * ( 
    modetrans (g,Y,Z))) 
    * ( 
    modetrans (f,X,Y))) by 
    RELAT_1: 36
    
      .= ((h
    * g) 
    * f) by 
    A2,
    LOPBAN_1: 29;
    
    end;
    
    theorem :: 
    
    LOPBAN13:11
    
    
    
    
    
    FUNCT229: for X,Y be 
    RealNormSpace, f be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st f is 
    one-to-one & ( 
    rng f) 
    = the 
    carrier of Y holds ((f 
    " ) 
    * f) 
    = ( 
    id X) & (f 
    * (f 
    " )) 
    = ( 
    id Y) 
    
    proof
    
      let X,Y be
    RealNormSpace, f be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume
    
      
    
    A1: f is 
    one-to-one & ( 
    rng f) 
    = the 
    carrier of Y; 
    
      
    
      
    
    A2: f is 
    Lipschitzian  
    LinearOperator of X, Y by 
    LOPBAN_1:def 9;
    
      hence ((f
    " ) 
    * f) 
    = ( 
    id X) by 
    A1,
    FUNCT_2: 29;
    
      thus (f
    * (f 
    " )) 
    = ( 
    id Y) by 
    A1,
    A2,
    FUNCT_2: 29;
    
    end;
    
    theorem :: 
    
    LOPBAN13:12
    
    
    
    
    
    LM50: for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is 
    invertible holds 
    0  
    <  
    ||.u.|| &
    0  
    <  
    ||.(
    Inv u).|| 
    
    proof
    
      let u be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume
    
      
    
    A1: u is 
    invertible;
    
      set S = (
    R_Normed_Algebra_of_BoundedLinearOperators X); 
    
      reconsider Lu = u as
    Lipschitzian  
    LinearOperator of X, Y by 
    LOPBAN_1:def 9;
    
      reconsider LInvu = (
    Inv u) as 
    Lipschitzian  
    LinearOperator of Y, X by 
    LOPBAN_1:def 9;
    
      
    
      
    
    A8: (( 
    BoundedLinearOperatorsNorm (X,X)) 
    . (LInvu 
    * Lu)) 
    <= ((( 
    BoundedLinearOperatorsNorm (Y,X)) 
    . LInvu) 
    * (( 
    BoundedLinearOperatorsNorm (X,Y)) 
    . Lu)) by 
    LOPBAN_2: 2;
    
      LInvu
    = (u 
    " ) by 
    A1,
    Def1;
    
      
    
      then ((
    BoundedLinearOperatorsNorm (X,X)) 
    . (LInvu 
    * Lu)) 
    =  
    ||.(
    1. S).|| by 
    A1,
    FUNCT_2: 29
    
      .= 1 by
    LOPBAN_2:def 10;
    
      then
    ||.(
    Inv u).|| 
    <>  
    0 & 
    ||.u.||
    <>  
    0 by 
    A8;
    
      hence
    0  
    <  
    ||.u.|| &
    0  
    <  
    ||.(
    Inv u).||; 
    
    end;
    
    theorem :: 
    
    LOPBAN13:13
    
    
    
    
    
    Th2: for u,v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is 
    invertible & 
    ||.v.||
    < (1 
    /  
    ||.(
    Inv u).||) holds (u 
    + v) is 
    invertible & 
    ||.(
    Inv (u 
    + v)).|| 
    <= (1 
    / ((1 
    /  
    ||.(
    Inv u).||) 
    -  
    ||.v.||)) & ex w be
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X), s,I be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)) st w 
    = (( 
    Inv u) 
    * v) & s 
    = w & I 
    = ( 
    id X) & 
    ||.s.||
    < 1 & (( 
    - w) 
    GeoSeq ) is 
    norm_summable & (I 
    + s) is 
    invertible & 
    ||.(
    Inv (I 
    + s)).|| 
    <= (1 
    / (1 
    -  
    ||.s.||)) & (
    Inv (I 
    + s)) 
    = ( 
    Sum (( 
    - w) 
    GeoSeq )) & ( 
    Inv (u 
    + v)) 
    = (( 
    Inv (I 
    + s)) 
    * ( 
    Inv u)) 
    
    proof
    
      let u,v be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume that
    
      
    
    A1: u is 
    invertible and 
    
      
    
    A2: 
    ||.v.||
    < (1 
    /  
    ||.(
    Inv u).||); 
    
      set S = (
    R_Normed_Algebra_of_BoundedLinearOperators X); 
    
      (
    1. S) 
    = ( 
    id X); 
    
      then
    
      reconsider I = (
    id X) as 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)); 
    
      reconsider Is = I as
    Point of S; 
    
      
    
      
    
    A6: u is 
    Lipschitzian  
    LinearOperator of X, Y by 
    LOPBAN_1:def 9;
    
      
    
      
    
    A7: v is 
    Lipschitzian  
    LinearOperator of X, Y by 
    LOPBAN_1:def 9;
    
      reconsider udv = ((
    Inv u) 
    * v) as 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)); 
    
      reconsider udv2 = udv as
    Point of S; 
    
      reconsider Lu = u, Lv = v as
    Lipschitzian  
    LinearOperator of X, Y by 
    LOPBAN_1:def 9;
    
      reconsider LInvu = (
    Inv u) as 
    Lipschitzian  
    LinearOperator of Y, X by 
    LOPBAN_1:def 9;
    
      
    
      
    
    A14: ( 
    modetrans (LInvu,Y,X)) 
    = LInvu & ( 
    modetrans (Lv,X,Y)) 
    = Lv by 
    LOPBAN_1: 29;
    
      then
    
      
    
    A15: 
    ||.udv.||
    <= ( 
    ||.(
    Inv u).|| 
    *  
    ||.v.||) by
    LOPBAN_2: 2;
    
      LInvu
    = (u 
    " ) by 
    A1,
    Def1;
    
      
    
      then
    
      
    
    A17: (( 
    BoundedLinearOperatorsNorm (X,X)) 
    . (LInvu 
    * Lu)) 
    =  
    ||.(
    1. S).|| by 
    A1,
    FUNCT_2: 29
    
      .= 1 by
    LOPBAN_2:def 10;
    
      
    
      
    
    A18: 
    ||.(
    Inv u).|| 
    <>  
    0  
    
      proof
    
        assume
    ||.(
    Inv u).|| 
    =  
    0 ; 
    
        then 1
    <= ( 
    0  
    * (( 
    BoundedLinearOperatorsNorm (X,Y)) 
    . u)) by 
    A17,
    LOPBAN_2: 2;
    
        hence contradiction;
    
      end;
    
      then (
    ||.(
    Inv u).|| 
    *  
    ||.v.||)
    < ( 
    ||.(
    Inv u).|| 
    * (1 
    /  
    ||.(
    Inv u).||)) by 
    A2,
    XREAL_1: 68;
    
      then
    
      
    
    A20: ( 
    ||.(
    Inv u).|| 
    *  
    ||.v.||)
    < 1 by 
    A18,
    XCMPLX_1: 106;
    
      then
    
      
    
    A21: 
    ||.udv.||
    < 1 by 
    A15,
    XXREAL_0: 2;
    
      then
    
      
    
    A22: (I 
    + udv) is 
    invertible & 
    ||.(
    Inv (I 
    + udv)).|| 
    <= (1 
    / (1 
    -  
    ||.udv.||)) & ex w be
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X) st w 
    = udv & (( 
    - w) 
    GeoSeq ) is 
    norm_summable & ( 
    Inv (I 
    + udv)) 
    = ( 
    Sum (( 
    - w) 
    GeoSeq )) by 
    Th1;
    
      
    
      
    
    A23: (u 
    + v) is 
    Lipschitzian  
    LinearOperator of X, Y by 
    LOPBAN_1:def 9;
    
      then
    
      
    
    A24: ( 
    modetrans ((u 
    + v),X,Y)) 
    = (u 
    + v) by 
    LOPBAN_1: 29;
    
      
    
      
    
    A25: (I 
    + udv) is 
    Lipschitzian  
    LinearOperator of X, X by 
    LOPBAN_1:def 9;
    
      then
    
      
    
    A26: ( 
    modetrans ((I 
    + udv),X,X)) 
    = (I 
    + udv) by 
    LOPBAN_1: 29;
    
      
    
      
    
    A27: ( 
    modetrans (u,X,Y)) 
    = u by 
    A6,
    LOPBAN_1: 29;
    
      
    
      
    
    A28: for x be 
    Element of the 
    carrier of X holds ((u 
    + v) 
    . x) 
    = ((u 
    * (I 
    + udv)) 
    . x) 
    
      proof
    
        let x be
    Element of the 
    carrier of X; 
    
        
    
        
    
    A33: ((u 
    * (I 
    + udv)) 
    . x) 
    = (( 
    modetrans (u,X,Y)) 
    . (( 
    modetrans ((I 
    + udv),X,X)) 
    . x)) by 
    FUNCT_2: 15
    
        .= (u
    . ((I 
    + udv) 
    . x)) by 
    A25,
    A27,
    LOPBAN_1: 29;
    
        
    
        
    
    A35: ((I 
    + udv) 
    . x) 
    = ((( 
    id X) 
    . x) 
    + (udv 
    . x)) by 
    LOPBAN_1: 35
    
        .= (x
    + (udv 
    . x)); 
    
        Lu is
    additive;
    
        then
    
        
    
    A37: (Lu 
    . ((I 
    + udv) 
    . x)) 
    = ((Lu 
    . x) 
    + (Lu 
    . (udv 
    . x))) by 
    A35;
    
        
    
        
    
    A39: ( 
    Inv u) is 
    Lipschitzian  
    LinearOperator of Y, X by 
    LOPBAN_1:def 9;
    
        
    
        
    
    A40: ( 
    modetrans (v,X,Y)) 
    = v by 
    A7,
    LOPBAN_1: 29;
    
        (u
    . (udv 
    . x)) 
    = (u 
    . (( 
    modetrans (( 
    Inv u),Y,X)) 
    . (( 
    modetrans (v,X,Y)) 
    . x))) by 
    FUNCT_2: 15
    
        .= (u
    . (( 
    Inv u) 
    . (v 
    . x))) by 
    A39,
    A40,
    LOPBAN_1: 29
    
        .= (u
    . ((u 
    " ) 
    . (v 
    . x))) by 
    A1,
    Def1
    
        .= (v
    . x) by 
    A1,
    FUNCT_1: 35;
    
        hence thesis by
    A33,
    A37,
    LOPBAN_1: 35;
    
      end;
    
      then
    
      
    
    A43: (u 
    + v) is 
    one-to-one by 
    A1,
    A22,
    A23,
    A26,
    A27,
    FUNCT_2:def 7;
    
      
    
      
    
    A44: ( 
    modetrans (u,X,Y)) is 
    onto by 
    A1,
    A6,
    LOPBAN_1: 29;
    
      (
    modetrans ((I 
    + udv),X,X)) is 
    onto by 
    A22,
    A25,
    LOPBAN_1: 29;
    
      then ((
    modetrans (u,X,Y)) 
    * ( 
    modetrans ((I 
    + udv),X,X))) is 
    onto by 
    A44,
    FUNCT_2: 27;
    
      then
    
      
    
    A46: ( 
    rng (u 
    + v)) 
    = the 
    carrier of Y by 
    A23,
    A28,
    FUNCT_2:def 7;
    
      set Iuv = ((
    Inv (I 
    + udv)) 
    * ( 
    Inv u)); 
    
      Iuv is
    Lipschitzian  
    LinearOperator of Y, X by 
    LOPBAN_2: 2;
    
      then
    
      
    
    A48: ( 
    modetrans (Iuv,Y,X)) 
    = Iuv by 
    LOPBAN_1: 29;
    
      (
    Inv u) is 
    Lipschitzian  
    LinearOperator of Y, X by 
    LOPBAN_1:def 9;
    
      then
    
      
    
    A49: ( 
    modetrans (( 
    Inv u),Y,X)) 
    = ( 
    Inv u) by 
    LOPBAN_1: 29;
    
      
    
      
    
    B49: ( 
    Inv (I 
    + udv)) is 
    Lipschitzian  
    LinearOperator of X, X by 
    LOPBAN_1:def 9;
    
      then
    
      
    
    A50: ( 
    modetrans (( 
    Inv (I 
    + udv)),X,X)) 
    = ( 
    Inv (I 
    + udv)) by 
    LOPBAN_1: 29;
    
      
    
      
    
    A51: ( 
    modetrans (((I 
    + udv) 
    " ),X,X)) 
    = ( 
    modetrans (( 
    Inv (I 
    + udv)),X,X)) by 
    A21,
    Def1,
    Th1
    
      .= (
    Inv (I 
    + udv)) by 
    B49,
    LOPBAN_1: 29
    
      .= ((I
    + udv) 
    " ) by 
    A21,
    Def1,
    Th1;
    
      (
    modetrans (( 
    Inv u),Y,X)) 
    = (u 
    " ) by 
    A1,
    A49,
    Def1;
    
      
    
      then
    
      
    
    A53: (( 
    Inv u) 
    * u) 
    = ((u 
    " ) 
    * u) by 
    A6,
    LOPBAN_1: 29
    
      .= (
    id X) by 
    A1,
    FUNCT229;
    
      ((
    Inv u) 
    * u) is 
    Lipschitzian  
    LinearOperator of X, X by 
    LOPBAN_2: 2;
    
      then (
    modetrans ((( 
    Inv u) 
    * u),X,X)) 
    = ( 
    id X) by 
    A53,
    LOPBAN_1: 29;
    
      
    
      then
    
      
    
    A55: ((( 
    Inv u) 
    * u) 
    * (I 
    + udv)) 
    = (( 
    id X) 
    * (I 
    + udv)) by 
    A25,
    LOPBAN_1: 29
    
      .= (I
    + udv) by 
    A25,
    FUNCT_2: 17;
    
      
    
      
    
    A56: (( 
    modetrans (Iuv,Y,X)) 
    * ( 
    modetrans ((u 
    + v),X,Y))) 
    = ((( 
    Inv (I 
    + udv)) 
    * ( 
    Inv u)) 
    * (u 
    + v)) 
    
      .= ((
    Inv (I 
    + udv)) 
    * (( 
    Inv u) 
    * (u 
    + v))) by 
    RELAT136
    
      .= ((
    Inv (I 
    + udv)) 
    * (( 
    Inv u) 
    * (u 
    * (I 
    + udv)))) by 
    A23,
    A28,
    FUNCT_2:def 7
    
      .= ((
    Inv (I 
    + udv)) 
    * (I 
    + udv)) by 
    A55,
    RELAT136
    
      .= ((
    modetrans (((I 
    + udv) 
    " ),X,X)) 
    * ( 
    modetrans ((I 
    + udv),X,X))) by 
    A21,
    Def1,
    Th1
    
      .= (((I
    + udv) 
    " ) 
    * (I 
    + udv)) by 
    A25,
    A51,
    LOPBAN_1: 29
    
      .= (
    id X) by 
    A22,
    FUNCT229;
    
      then
    
      
    
    A57: (( 
    modetrans ((u 
    + v),X,Y)) 
    " ) 
    = ( 
    modetrans (Iuv,Y,X)) by 
    A24,
    A43,
    A46,
    FUNCT_2: 30;
    
      thus
    
      
    
    A58: (u 
    + v) is 
    invertible by 
    A24,
    A43,
    A46,
    A48,
    A56,
    FUNCT_2: 30;
    
      reconsider Iuvp = Iuv as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)); 
    
      
    
      
    
    A59: (( 
    BoundedLinearOperatorsNorm (Y,X)) 
    . Iuv) 
    <= ((( 
    BoundedLinearOperatorsNorm (X,X)) 
    . ( 
    modetrans (( 
    Inv (I 
    + udv)),X,X))) 
    * (( 
    BoundedLinearOperatorsNorm (Y,X)) 
    . ( 
    modetrans (( 
    Inv u),Y,X)))) by 
    LOPBAN_2: 2;
    
      (((
    BoundedLinearOperatorsNorm (X,X)) 
    . ( 
    Inv (I 
    + udv))) 
    * (( 
    BoundedLinearOperatorsNorm (Y,X)) 
    . ( 
    Inv u))) 
    <= ((1 
    / (1 
    -  
    ||.udv.||))
    *  
    ||.(
    Inv u).||) by 
    A22,
    XREAL_1: 64;
    
      then
    
      
    
    A64: 
    ||.Iuvp.||
    <= ((1 
    / (1 
    -  
    ||.udv.||))
    *  
    ||.(
    Inv u).||) by 
    A49,
    A50,
    A59,
    XXREAL_0: 2;
    
      
    
      
    
    A65: (1 
    - ( 
    ||.(
    Inv u).|| 
    *  
    ||.v.||))
    <= (1 
    -  
    ||.udv.||) by
    A14,
    LOPBAN_2: 2,
    XREAL_1: 10;
    
      
    0  
    < (1 
    - ( 
    ||.(
    Inv u).|| 
    *  
    ||.v.||)) by
    A20,
    XREAL_1: 50;
    
      then (1
    / (1 
    -  
    ||.udv.||))
    <= (1 
    / (1 
    - ( 
    ||.(
    Inv u).|| 
    *  
    ||.v.||))) by
    A65,
    XREAL_1: 118;
    
      then ((1
    / (1 
    -  
    ||.udv.||))
    *  
    ||.(
    Inv u).||) 
    <= ((1 
    / (1 
    - ( 
    ||.(
    Inv u).|| 
    *  
    ||.v.||)))
    *  
    ||.(
    Inv u).||) by 
    XREAL_1: 64;
    
      then
    
      
    
    A67: ((1 
    / (1 
    -  
    ||.udv.||))
    *  
    ||.(
    Inv u).||) 
    <= ( 
    ||.(
    Inv u).|| 
    / (1 
    - ( 
    ||.(
    Inv u).|| 
    *  
    ||.v.||))) by
    XCMPLX_1: 99;
    
      ((1
    - ( 
    ||.(
    Inv u).|| 
    *  
    ||.v.||))
    /  
    ||.(
    Inv u).||) 
    = ((1 
    /  
    ||.(
    Inv u).||) 
    - (( 
    ||.(
    Inv u).|| 
    *  
    ||.v.||)
    /  
    ||.(
    Inv u).||)) by 
    XCMPLX_1: 120
    
      .= ((1
    /  
    ||.(
    Inv u).||) 
    -  
    ||.v.||) by
    A18,
    XCMPLX_1: 89;
    
      then (1
    / ((1 
    /  
    ||.(
    Inv u).||) 
    -  
    ||.v.||))
    = ( 
    ||.(
    Inv u).|| 
    / (1 
    - ( 
    ||.(
    Inv u).|| 
    *  
    ||.v.||))) by
    XCMPLX_1: 57;
    
      then
    ||.Iuvp.||
    <= (1 
    / ((1 
    /  
    ||.(
    Inv u).||) 
    -  
    ||.v.||)) by
    A64,
    A67,
    XXREAL_0: 2;
    
      hence
    ||.(
    Inv (u 
    + v)).|| 
    <= (1 
    / ((1 
    /  
    ||.(
    Inv u).||) 
    -  
    ||.v.||)) by
    A24,
    A48,
    A57,
    A58,
    Def1;
    
      consider w be
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X) such that 
    
      
    
    A70: w 
    = udv & (( 
    - w) 
    GeoSeq ) is 
    norm_summable & ( 
    Inv (I 
    + udv)) 
    = ( 
    Sum (( 
    - w) 
    GeoSeq )) by 
    A21,
    Th1;
    
      reconsider S = (
    Sum (( 
    - w) 
    GeoSeq )) as 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)); 
    
      take w, udv, I;
    
      thus w
    = (( 
    Inv u) 
    * v) & udv 
    = w & I 
    = ( 
    id X) & 
    ||.udv.||
    < 1 & (( 
    - w) 
    GeoSeq ) is 
    norm_summable & (I 
    + udv) is 
    invertible & 
    ||.(
    Inv (I 
    + udv)).|| 
    <= (1 
    / (1 
    -  
    ||.udv.||)) & (
    Inv (I 
    + udv)) 
    = ( 
    Sum (( 
    - w) 
    GeoSeq )) by 
    A21,
    A70,
    Th1;
    
      thus (
    Inv (u 
    + v)) 
    = (( 
    Inv (I 
    + udv)) 
    * ( 
    Inv u)) by 
    A24,
    A48,
    A57,
    A58,
    Def1;
    
    end;
    
    theorem :: 
    
    LOPBAN13:14
    
    
    
    
    
    Th3: for S be 
    Subset of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st S 
    = { v where v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) : v is 
    invertible } holds S is
    open
    
    proof
    
      let S be
    Subset of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume
    
      
    
    A1: S 
    = { v where v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) : v is 
    invertible };
    
      set P = (
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      for u be
    Point of P st u 
    in S holds ex r be 
    Real st r 
    >  
    0 & ( 
    Ball (u,r)) 
    c= S 
    
      proof
    
        let u be
    Point of P; 
    
        assume u
    in S; 
    
        then
    
        
    
    A2: ex v be 
    Point of P st u 
    = v & v is 
    invertible by 
    A1;
    
        then
    
        
    
    A3: 
    0  
    <  
    ||.(
    Inv u).|| by 
    LM50;
    
        set r = (1
    /  
    ||.(
    Inv u).||); 
    
        take r;
    
        thus
    0  
    < r by 
    A3,
    XREAL_1: 139;
    
        now
    
          let x be
    object;
    
          assume x
    in ( 
    Ball (u,r)); 
    
          then x
    in { y where y be 
    Point of P : 
    ||.(y
    - u).|| 
    < r } by 
    NDIFF_8: 17;
    
          then
    
          consider v be
    Point of P such that 
    
          
    
    A4: x 
    = v & 
    ||.(v
    - u).|| 
    < r; 
    
          v
    = (u 
    + (v 
    - u)) by 
    RLVECT_4: 1;
    
          then v is
    invertible by 
    A2,
    A4,
    Th2;
    
          hence x
    in S by 
    A1,
    A4;
    
        end;
    
        hence (
    Ball (u,r)) 
    c= S by 
    TARSKI:def 3;
    
      end;
    
      hence S is
    open by 
    NDIFF_8: 20;
    
    end;
    
    definition
    
      let X, Y;
    
      :: 
    
    LOPBAN13:def3
    
      func
    
    InvertibleOperators (X,Y) -> 
    open  
    Subset of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) equals { v where v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) : v is 
    invertible };
    
      correctness
    
      proof
    
        set S = { v where v be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) : v is 
    invertible };
    
        now
    
          let x be
    object;
    
          assume x
    in S; 
    
          then ex v be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st x 
    = v & v is 
    invertible;
    
          hence x
    in the 
    carrier of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
        end;
    
        then
    
        reconsider S as
    Subset of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) by 
    TARSKI:def 3;
    
        S is
    open by 
    Th3;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    LOPBAN13:15
    
    
    
    
    
    LM60: for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is 
    invertible holds ( 
    Inv u) is 
    invertible & ( 
    Inv ( 
    Inv u)) 
    = u 
    
    proof
    
      let u be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume
    
      
    
    A1: u is 
    invertible;
    
      then
    
      
    
    A3: ( 
    Inv u) 
    = (u 
    " ) by 
    Def1;
    
      reconsider Lu = u as
    Lipschitzian  
    LinearOperator of X, Y by 
    LOPBAN_1:def 9;
    
      
    
      
    
    A5: ( 
    rng ( 
    Inv u)) 
    = ( 
    dom Lu) by 
    A1,
    A3,
    FUNCT_1: 33
    
      .= the
    carrier of X by 
    FUNCT_2:def 1;
    
      
    
      
    
    A6: (( 
    Inv u) 
    " ) 
    = u by 
    A1,
    A3,
    FUNCT_1: 43;
    
      thus (
    Inv u) is 
    invertible by 
    A1,
    A3,
    A5,
    FUNCT_1: 43;
    
      hence (
    Inv ( 
    Inv u)) 
    = u by 
    A6,
    Def1;
    
    end;
    
    theorem :: 
    
    LOPBAN13:16
    
    
    
    
    
    LM70: ex I be 
    Function of ( 
    InvertibleOperators (X,Y)), ( 
    InvertibleOperators (Y,X)) st I is 
    one-to-one & I is 
    onto & for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    in ( 
    InvertibleOperators (X,Y)) holds (I 
    . u) 
    = ( 
    Inv u) 
    
    proof
    
      set S = (
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      defpred
    
    P1[
    object, 
    object] means ex u be
    Point of S st $1 
    = u & $2 
    = ( 
    Inv u); 
    
      
    
      
    
    A1: for x be 
    object st x 
    in ( 
    InvertibleOperators (X,Y)) holds ex y be 
    object st y 
    in ( 
    InvertibleOperators (Y,X)) & 
    P1[x, y]
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    InvertibleOperators (X,Y)); 
    
        then
    
        consider u be
    Point of S such that 
    
        
    
    A2: x 
    = u & u is 
    invertible;
    
        take y = (
    Inv u); 
    
        y is
    invertible by 
    A2,
    LM60;
    
        hence y
    in ( 
    InvertibleOperators (Y,X)); 
    
        thus
    P1[x, y] by
    A2;
    
      end;
    
      consider I be
    Function of ( 
    InvertibleOperators (X,Y)), ( 
    InvertibleOperators (Y,X)) such that 
    
      
    
    A3: for x be 
    object st x 
    in ( 
    InvertibleOperators (X,Y)) holds 
    P1[x, (I
    . x)] from 
    FUNCT_2:sch 1(
    A1);
    
      take I;
    
      
    
      
    
    A4: for u be 
    Point of S st u 
    in ( 
    InvertibleOperators (X,Y)) holds (I 
    . u) 
    = ( 
    Inv u) 
    
      proof
    
        let u be
    Point of S; 
    
        assume u
    in ( 
    InvertibleOperators (X,Y)); 
    
        then
    P1[u, (I
    . u)] by 
    A3;
    
        hence (I
    . u) 
    = ( 
    Inv u); 
    
      end;
    
      
    
      
    
    A5: ( 
    InvertibleOperators (X,Y)) 
    <>  
    {} implies ( 
    InvertibleOperators (Y,X)) 
    <>  
    {}  
    
      proof
    
        assume (
    InvertibleOperators (X,Y)) 
    <>  
    {} ; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A6: x 
    in ( 
    InvertibleOperators (X,Y)) by 
    XBOOLE_0:def 1;
    
        consider u be
    Point of S such that 
    
        
    
    A7: x 
    = u & u is 
    invertible by 
    A6;
    
        (
    Inv u) is 
    invertible by 
    A7,
    LM60;
    
        then (
    Inv u) 
    in ( 
    InvertibleOperators (Y,X)); 
    
        hence (
    InvertibleOperators (Y,X)) 
    <>  
    {} ; 
    
      end;
    
      
    
      
    
    B7: for x1,x2 be 
    object st x1 
    in ( 
    InvertibleOperators (X,Y)) & x2 
    in ( 
    InvertibleOperators (X,Y)) & (I 
    . x1) 
    = (I 
    . x2) holds x1 
    = x2 
    
      proof
    
        let x1,x2 be
    object;
    
        assume that
    
        
    
    A8: x1 
    in ( 
    InvertibleOperators (X,Y)) & x2 
    in ( 
    InvertibleOperators (X,Y)) and 
    
        
    
    A9: (I 
    . x1) 
    = (I 
    . x2); 
    
        reconsider u1 = x1, u2 = x2 as
    Point of S by 
    A8;
    
        
    
        
    
    A10: (ex v1 be 
    Point of S st u1 
    = v1 & v1 is 
    invertible) & (ex v2 be
    Point of S st u2 
    = v2 & v2 is 
    invertible) by
    A8;
    
        
    
        
    
    A11: (I 
    . u1) 
    = ( 
    Inv u1) by 
    A4,
    A8;
    
        u1
    = ( 
    Inv ( 
    Inv u1)) by 
    A10,
    LM60
    
        .= (
    Inv ( 
    Inv u2)) by 
    A4,
    A8,
    A9,
    A11
    
        .= u2 by
    A10,
    LM60;
    
        hence x1
    = x2; 
    
      end;
    
      now
    
        let y be
    object;
    
        assume y
    in ( 
    InvertibleOperators (Y,X)); 
    
        then
    
        consider v be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)) such that 
    
        
    
    A15: y 
    = v & v is 
    invertible;
    
        (
    Inv v) is 
    invertible by 
    A15,
    LM60;
    
        then
    
        
    
    A16: ( 
    Inv v) 
    in ( 
    InvertibleOperators (X,Y)); 
    
        (
    Inv ( 
    Inv v)) 
    = v by 
    A15,
    LM60;
    
        then y
    = (I 
    . ( 
    Inv v)) by 
    A4,
    A15,
    A16;
    
        hence y
    in ( 
    rng I) by 
    A5,
    A16,
    FUNCT_2: 4;
    
      end;
    
      then (
    InvertibleOperators (Y,X)) 
    c= ( 
    rng I) by 
    TARSKI:def 3;
    
      hence thesis by
    A4,
    A5,
    B7,
    FUNCT_2: 19,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    LOPBAN13:17
    
    
    
    
    
    LMTh2: for u,v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is 
    invertible & 
    ||.(v
    - u).|| 
    < (1 
    /  
    ||.(
    Inv u).||) holds v is 
    invertible & 
    ||.(
    Inv v).|| 
    <= (1 
    / ((1 
    /  
    ||.(
    Inv u).||) 
    -  
    ||.(v
    - u).||)) & ex w be 
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X), s,I be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)) st w 
    = (( 
    Inv u) 
    * (v 
    - u)) & s 
    = w & I 
    = ( 
    id X) & 
    ||.s.||
    < 1 & (( 
    - w) 
    GeoSeq ) is 
    norm_summable & (I 
    + s) is 
    invertible & 
    ||.(
    Inv (I 
    + s)).|| 
    <= (1 
    / (1 
    -  
    ||.s.||)) & (
    Inv (I 
    + s)) 
    = ( 
    Sum (( 
    - w) 
    GeoSeq )) & ( 
    Inv v) 
    = (( 
    Inv (I 
    + s)) 
    * ( 
    Inv u)) 
    
    proof
    
      let u,v be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume
    
      
    
    A1: u is 
    invertible & 
    ||.(v
    - u).|| 
    < (1 
    /  
    ||.(
    Inv u).||); 
    
      set vu = (v
    - u); 
    
      v
    = (u 
    + vu) by 
    RLVECT_4: 1;
    
      hence thesis by
    A1,
    Th2;
    
    end;
    
    begin
    
    theorem :: 
    
    LOPBAN13:18
    
    
    
    
    
    NRM: for X,Y,Z be 
    RealNormSpace, u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)), w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Z)) st w 
    = (v 
    * u) holds 
    ||.w.||
    <= ( 
    ||.v.||
    *  
    ||.u.||)
    
    proof
    
      let X,Y,Z be
    RealNormSpace, u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)), w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Z)); 
    
      assume
    
      
    
    A2: w 
    = (v 
    * u); 
    
      (
    modetrans (v,Y,Z)) 
    = v & ( 
    modetrans (u,X,Y)) 
    = u by 
    LOPBAN_1:def 11;
    
      hence
    ||.w.||
    <= ( 
    ||.v.||
    *  
    ||.u.||) by
    A2,
    LOPBAN_2: 2;
    
    end;
    
    theorem :: 
    
    LOPBAN13:19
    
    
    
    
    
    LM100: for X,Y,Z be 
    RealNormSpace, u,v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)) holds (w 
    * (u 
    - v)) 
    = ((w 
    * u) 
    - (w 
    * v)) & (w 
    * (u 
    + v)) 
    = ((w 
    * u) 
    + (w 
    * v)) 
    
    proof
    
      let X,Y,Z be
    RealNormSpace, u,v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)); 
    
      
    
      
    
    A2: ( 
    modetrans (u,X,Y)) 
    = u by 
    LOPBAN_1:def 11;
    
      for x be
    Point of X holds ((w 
    * (u 
    - v)) 
    . x) 
    = (((w 
    * u) 
    . x) 
    - ((w 
    * v) 
    . x)) 
    
      proof
    
        let x be
    Point of X; 
    
        
    
        
    
    A6: ( 
    modetrans (w,Y,Z)) is 
    additive;
    
        
    
        thus ((w
    * (u 
    - v)) 
    . x) 
    = (( 
    modetrans (w,Y,Z)) 
    . (( 
    modetrans ((u 
    - v),X,Y)) 
    . x)) by 
    FUNCT_2: 15
    
        .= ((
    modetrans (w,Y,Z)) 
    . ((u 
    - v) 
    . x)) by 
    LOPBAN_1:def 11
    
        .= ((
    modetrans (w,Y,Z)) 
    . ((u 
    . x) 
    - (v 
    . x))) by 
    LOPBAN_1: 40
    
        .= (((
    modetrans (w,Y,Z)) 
    . (u 
    . x)) 
    + (( 
    modetrans (w,Y,Z)) 
    . ( 
    - (v 
    . x)))) by 
    A6
    
        .= (((
    modetrans (w,Y,Z)) 
    . (u 
    . x)) 
    + (( 
    modetrans (w,Y,Z)) 
    . (( 
    - 1) 
    * (v 
    . x)))) by 
    RLVECT_1: 16
    
        .= (((
    modetrans (w,Y,Z)) 
    . (u 
    . x)) 
    + (( 
    - 1) 
    * (( 
    modetrans (w,Y,Z)) 
    . (v 
    . x)))) by 
    LOPBAN_1:def 5
    
        .= (((
    modetrans (w,Y,Z)) 
    . (u 
    . x)) 
    - (( 
    modetrans (w,Y,Z)) 
    . (v 
    . x))) by 
    RLVECT_1: 16
    
        .= (((
    modetrans (w,Y,Z)) 
    . (( 
    modetrans (u,X,Y)) 
    . x)) 
    - (( 
    modetrans (w,Y,Z)) 
    . (( 
    modetrans (v,X,Y)) 
    . x))) by 
    A2,
    LOPBAN_1:def 11
    
        .= ((((
    modetrans (w,Y,Z)) 
    * ( 
    modetrans (u,X,Y))) 
    . x) 
    - (( 
    modetrans (w,Y,Z)) 
    . (( 
    modetrans (v,X,Y)) 
    . x))) by 
    FUNCT_2: 15
    
        .= (((w
    * u) 
    . x) 
    - ((w 
    * v) 
    . x)) by 
    FUNCT_2: 15;
    
      end;
    
      hence (w
    * (u 
    - v)) 
    = ((w 
    * u) 
    - (w 
    * v)) by 
    LOPBAN_1: 40;
    
      for x be
    Point of X holds ((w 
    * (u 
    + v)) 
    . x) 
    = (((w 
    * u) 
    . x) 
    + ((w 
    * v) 
    . x)) 
    
      proof
    
        let x be
    Point of X; 
    
        
    
        
    
    A7: ( 
    modetrans (w,Y,Z)) is 
    additive;
    
        
    
        thus ((w
    * (u 
    + v)) 
    . x) 
    = (( 
    modetrans (w,Y,Z)) 
    . (( 
    modetrans ((u 
    + v),X,Y)) 
    . x)) by 
    FUNCT_2: 15
    
        .= ((
    modetrans (w,Y,Z)) 
    . ((u 
    + v) 
    . x)) by 
    LOPBAN_1:def 11
    
        .= ((
    modetrans (w,Y,Z)) 
    . ((u 
    . x) 
    + (v 
    . x))) by 
    LOPBAN_1: 35
    
        .= (((
    modetrans (w,Y,Z)) 
    . (u 
    . x)) 
    + (( 
    modetrans (w,Y,Z)) 
    . (v 
    . x))) by 
    A7
    
        .= (((
    modetrans (w,Y,Z)) 
    . (( 
    modetrans (u,X,Y)) 
    . x)) 
    + (( 
    modetrans (w,Y,Z)) 
    . (( 
    modetrans (v,X,Y)) 
    . x))) by 
    A2,
    LOPBAN_1:def 11
    
        .= ((((
    modetrans (w,Y,Z)) 
    * ( 
    modetrans (u,X,Y))) 
    . x) 
    + (( 
    modetrans (w,Y,Z)) 
    . (( 
    modetrans (v,X,Y)) 
    . x))) by 
    FUNCT_2: 15
    
        .= (((w
    * u) 
    . x) 
    + ((w 
    * v) 
    . x)) by 
    FUNCT_2: 15;
    
      end;
    
      hence (w
    * (u 
    + v)) 
    = ((w 
    * u) 
    + (w 
    * v)) by 
    LOPBAN_1: 35;
    
    end;
    
    theorem :: 
    
    LOPBAN13:20
    
    
    
    
    
    LM200: for X,Y,Z be 
    RealNormSpace, w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), u,v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)) holds ((u 
    - v) 
    * w) 
    = ((u 
    * w) 
    - (v 
    * w)) & ((u 
    + v) 
    * w) 
    = ((u 
    * w) 
    + (v 
    * w)) 
    
    proof
    
      let X,Y,Z be
    RealNormSpace, w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), u,v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)); 
    
      
    
      
    
    A1: ( 
    modetrans (w,X,Y)) 
    = w by 
    LOPBAN_1:def 11;
    
      
    
      
    
    A2: ( 
    modetrans (u,Y,Z)) 
    = u by 
    LOPBAN_1:def 11;
    
      for x be
    Point of X holds (((u 
    - v) 
    * w) 
    . x) 
    = (((u 
    * w) 
    . x) 
    - ((v 
    * w) 
    . x)) 
    
      proof
    
        let x be
    Point of X; 
    
        
    
        thus (((u
    - v) 
    * w) 
    . x) 
    = (( 
    modetrans ((u 
    - v),Y,Z)) 
    . (( 
    modetrans (w,X,Y)) 
    . x)) by 
    FUNCT_2: 15
    
        .= ((
    modetrans ((u 
    - v),Y,Z)) 
    . (w 
    . x)) by 
    LOPBAN_1:def 11
    
        .= ((u
    - v) 
    . (w 
    . x)) by 
    LOPBAN_1:def 11
    
        .= ((u
    . (w 
    . x)) 
    - (v 
    . (w 
    . x))) by 
    LOPBAN_1: 40
    
        .= (((
    modetrans (u,Y,Z)) 
    . (( 
    modetrans (w,X,Y)) 
    . x)) 
    - (( 
    modetrans (v,Y,Z)) 
    . (( 
    modetrans (w,X,Y)) 
    . x))) by 
    A1,
    A2,
    LOPBAN_1:def 11
    
        .= ((((
    modetrans (u,Y,Z)) 
    * ( 
    modetrans (w,X,Y))) 
    . x) 
    - (( 
    modetrans (v,Y,Z)) 
    . (( 
    modetrans (w,X,Y)) 
    . x))) by 
    FUNCT_2: 15
    
        .= (((u
    * w) 
    . x) 
    - ((v 
    * w) 
    . x)) by 
    FUNCT_2: 15;
    
      end;
    
      hence ((u
    - v) 
    * w) 
    = ((u 
    * w) 
    - (v 
    * w)) by 
    LOPBAN_1: 40;
    
      for x be
    Point of X holds (((u 
    + v) 
    * w) 
    . x) 
    = (((u 
    * w) 
    . x) 
    + ((v 
    * w) 
    . x)) 
    
      proof
    
        let x be
    Point of X; 
    
        
    
        thus (((u
    + v) 
    * w) 
    . x) 
    = (( 
    modetrans ((u 
    + v),Y,Z)) 
    . (( 
    modetrans (w,X,Y)) 
    . x)) by 
    FUNCT_2: 15
    
        .= ((
    modetrans ((u 
    + v),Y,Z)) 
    . (w 
    . x)) by 
    LOPBAN_1:def 11
    
        .= ((u
    + v) 
    . (w 
    . x)) by 
    LOPBAN_1:def 11
    
        .= ((u
    . (w 
    . x)) 
    + (v 
    . (w 
    . x))) by 
    LOPBAN_1: 35
    
        .= (((
    modetrans (u,Y,Z)) 
    . (( 
    modetrans (w,X,Y)) 
    . x)) 
    + (( 
    modetrans (v,Y,Z)) 
    . (( 
    modetrans (w,X,Y)) 
    . x))) by 
    A1,
    A2,
    LOPBAN_1:def 11
    
        .= ((((
    modetrans (u,Y,Z)) 
    * ( 
    modetrans (w,X,Y))) 
    . x) 
    + (( 
    modetrans (v,Y,Z)) 
    . (( 
    modetrans (w,X,Y)) 
    . x))) by 
    FUNCT_2: 15
    
        .= (((u
    * w) 
    . x) 
    + ((v 
    * w) 
    . x)) by 
    FUNCT_2: 15;
    
      end;
    
      hence ((u
    + v) 
    * w) 
    = ((u 
    * w) 
    + (v 
    * w)) by 
    LOPBAN_1: 35;
    
    end;
    
    theorem :: 
    
    LOPBAN13:21
    
    
    
    
    
    LM300: for X,Y be 
    RealNormSpace, u,v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) holds (u 
    - (u 
    + v)) 
    = ( 
    - v) 
    
    proof
    
      let X,Y be
    RealNormSpace, u,v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      
    
      thus (u
    - (u 
    + v)) 
    = ((u 
    - u) 
    - v) by 
    RLVECT_1: 27
    
      .= ((
    0. ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y))) 
    - v) by 
    RLVECT_1: 15
    
      .= (
    - v) by 
    RLVECT_1: 14;
    
    end;
    
    theorem :: 
    
    LOPBAN13:22
    
    
    
    
    
    LM400: for X,Y be 
    RealNormSpace, u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is 
    invertible holds (( 
    Inv u) 
    * u) 
    = ( 
    id X) & (u 
    * ( 
    Inv u)) 
    = ( 
    id Y) 
    
    proof
    
      let X,Y be
    RealNormSpace, v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume
    
      
    
    A1: v is 
    invertible;
    
      v is
    Lipschitzian  
    LinearOperator of X, Y by 
    LOPBAN_1:def 9;
    
      then
    
      
    
    A7: ( 
    dom v) 
    = the 
    carrier of X & ( 
    rng v) 
    = the 
    carrier of Y by 
    A1,
    FUNCT_2:def 1;
    
      (
    Inv v) 
    = (v 
    " ) by 
    A1,
    Def1;
    
      then
    
      
    
    A9: ( 
    modetrans (( 
    Inv v),Y,X)) 
    = (v 
    " ) by 
    LOPBAN_1:def 11;
    
      then
    
      
    
    A11: (( 
    Inv v) 
    * v) 
    = ((v 
    " ) 
    * v) by 
    LOPBAN_1:def 11;
    
      (v
    * ( 
    Inv v)) 
    = (v 
    * (v 
    " )) by 
    A9,
    LOPBAN_1:def 11;
    
      hence thesis by
    A1,
    A7,
    A11,
    FUNCT_1: 39;
    
    end;
    
    theorem :: 
    
    LOPBAN13:23
    
    
    
    
    
    LMTh3: for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is 
    invertible holds for r be 
    Real st 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st 
    ||.(v
    - u).|| 
    < s holds 
    ||.((
    Inv v) 
    - ( 
    Inv u)).|| 
    < r 
    
    proof
    
      let u be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume
    
      
    
    A1: u is 
    invertible;
    
      let r be
    Real;
    
      assume
    
      
    
    A2: 
    0  
    < r; 
    
      set r0 = (r
    / 2); 
    
      
    
      
    
    A3: 
    0  
    < r0 & r0 
    < r by 
    A2,
    XREAL_1: 215,
    XREAL_1: 216;
    
      set s1 = (1
    /  
    ||.(
    Inv u).||); 
    
      set AG = (
    R_Normed_Algebra_of_BoundedLinearOperators X); 
    
      
    
      
    
    A5: 
    0  
    <  
    ||.(
    Inv u).|| by 
    A1,
    LM50;
    
      then
    
      
    
    A6: 
    0  
    < s1 by 
    XREAL_1: 139;
    
      set s2 = ((1
    / 2) 
    /  
    ||.(
    Inv u).||); 
    
      
    
      
    
    A7: 
    0  
    < s2 by 
    A5,
    XREAL_1: 139;
    
      
    
      
    
    A8: 
    0  
    < ( 
    ||.(
    Inv u).|| 
    *  
    ||.(
    Inv u).||) by 
    A5,
    XREAL_1: 129;
    
      
    
      
    
    A9: 
    0  
    < (r0 
    / 2) by 
    A3,
    XREAL_1: 215;
    
      set s3 = ((r0
    / 2) 
    / ( 
    ||.(
    Inv u).|| 
    *  
    ||.(
    Inv u).||)); 
    
      
    
      
    
    A10: 
    0  
    < s3 by 
    A8,
    A9,
    XREAL_1: 139;
    
      set s4 = (
    min (s1,s2)); 
    
      
    
      
    
    A11: 
    0  
    < s4 & s4 
    <= s1 & s4 
    <= s2 by 
    A6,
    A7,
    XXREAL_0: 15,
    XXREAL_0: 17;
    
      set s = (
    min (s4,s3)); 
    
      
    
      
    
    B11: 
    0  
    < s & s 
    <= s4 & s 
    <= s3 by 
    A10,
    A11,
    XXREAL_0: 15,
    XXREAL_0: 17;
    
      then
    
      
    
    A12: 
    0  
    < s & s 
    <= s1 & s 
    <= s2 & s 
    <= s3 by 
    A11,
    XXREAL_0: 2;
    
      take s;
    
      thus
    0  
    < s by 
    A10,
    A11,
    XXREAL_0: 15;
    
      let v be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume
    
      
    
    A13: 
    ||.(v
    - u).|| 
    < s; 
    
      then
    ||.(v
    - u).|| 
    < s1 by 
    A12,
    XXREAL_0: 2;
    
      then
    
      consider w be
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X), s,I be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)) such that 
    
      
    
    A14: w 
    = (( 
    Inv u) 
    * (v 
    - u)) & s 
    = w & I 
    = ( 
    id X) & 
    ||.s.||
    < 1 & (( 
    - w) 
    GeoSeq ) is 
    norm_summable & (I 
    + s) is 
    invertible & 
    ||.(
    Inv (I 
    + s)).|| 
    <= (1 
    / (1 
    -  
    ||.s.||)) & (
    Inv (I 
    + s)) 
    = ( 
    Sum (( 
    - w) 
    GeoSeq )) & ( 
    Inv v) 
    = (( 
    Inv (I 
    + s)) 
    * ( 
    Inv u)) by 
    A1,
    LMTh2;
    
      reconsider sA = s as
    Point of AG; 
    
      
    
      
    
    A16: (I 
    * ( 
    Inv u)) 
    = (( 
    id X) 
    * ( 
    modetrans (( 
    Inv u),Y,X))) by 
    A14,
    LOPBAN_1:def 11
    
      .= (
    modetrans (( 
    Inv u),Y,X)) by 
    FUNCT_2: 17
    
      .= (
    Inv u) by 
    LOPBAN_1:def 11;
    
      reconsider IIu = (I
    * ( 
    Inv u)) as 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)); 
    
      ((
    Inv v) 
    - ( 
    Inv u)) 
    = ((( 
    Inv (I 
    + s)) 
    - I) 
    * ( 
    Inv u)) by 
    A14,
    A16,
    LM200;
    
      then
    
      
    
    A18: 
    ||.((
    Inv v) 
    - ( 
    Inv u)).|| 
    <= ( 
    ||.((
    Inv (I 
    + s)) 
    - I).|| 
    *  
    ||.(
    Inv u).||) by 
    NRM;
    
      
    
      
    
    A19: (( 
    Inv (I 
    + s)) 
    * (I 
    + s)) 
    = I by 
    A14,
    LM400;
    
      ((
    Inv (I 
    + s)) 
    * I) 
    = (( 
    modetrans (( 
    Inv (I 
    + s)),X,X)) 
    * ( 
    id X)) by 
    A14,
    LOPBAN_1:def 11
    
      .= (
    modetrans (( 
    Inv (I 
    + s)),X,X)) by 
    FUNCT_2: 17
    
      .= (
    Inv (I 
    + s)) by 
    LOPBAN_1:def 11;
    
      
    
      then ((
    Inv (I 
    + s)) 
    - I) 
    = (( 
    Inv (I 
    + s)) 
    * (I 
    - (I 
    + s))) by 
    A19,
    LM100
    
      .= ((
    Inv (I 
    + s)) 
    * ( 
    - s)) by 
    LM300;
    
      then
    ||.((
    Inv (I 
    + s)) 
    - I).|| 
    <= ( 
    ||.(
    Inv (I 
    + s)).|| 
    *  
    ||.(
    - s).||) by 
    NRM;
    
      then
    
      
    
    A23: 
    ||.((
    Inv (I 
    + s)) 
    - I).|| 
    <= ( 
    ||.(
    Inv (I 
    + s)).|| 
    *  
    ||.s.||) by
    NORMSP_1: 2;
    
      
    
      
    
    A24: 
    ||.s.||
    <= ( 
    ||.(
    Inv u).|| 
    *  
    ||.(v
    - u).||) by 
    A14,
    NRM;
    
      (
    ||.(
    Inv (I 
    + s)).|| 
    *  
    ||.s.||)
    <= ( 
    ||.(
    Inv (I 
    + s)).|| 
    * ( 
    ||.(
    Inv u).|| 
    *  
    ||.(v
    - u).||)) by 
    A14,
    NRM,
    XREAL_1: 64;
    
      then
    
      
    
    A25: 
    ||.((
    Inv (I 
    + s)) 
    - I).|| 
    <= (( 
    ||.(
    Inv (I 
    + s)).|| 
    *  
    ||.(
    Inv u).||) 
    *  
    ||.(v
    - u).||) by 
    A23,
    XXREAL_0: 2;
    
      (
    ||.(
    Inv (I 
    + s)).|| 
    * ( 
    ||.(
    Inv u).|| 
    *  
    ||.(v
    - u).||)) 
    <= ((1 
    / (1 
    -  
    ||.s.||))
    * ( 
    ||.(
    Inv u).|| 
    *  
    ||.(v
    - u).||)) by 
    A14,
    XREAL_1: 64;
    
      then
    ||.((
    Inv (I 
    + s)) 
    - I).|| 
    <= (((1 
    / (1 
    -  
    ||.s.||))
    *  
    ||.(
    Inv u).||) 
    *  
    ||.(v
    - u).||) by 
    A25,
    XXREAL_0: 2;
    
      then (
    ||.((
    Inv (I 
    + s)) 
    - I).|| 
    *  
    ||.(
    Inv u).||) 
    <= ((((1 
    / (1 
    -  
    ||.s.||))
    *  
    ||.(
    Inv u).||) 
    *  
    ||.(v
    - u).||) 
    *  
    ||.(
    Inv u).||) by 
    XREAL_1: 64;
    
      then
    
      
    
    A29: 
    ||.((
    Inv v) 
    - ( 
    Inv u)).|| 
    <= ((((1 
    / (1 
    -  
    ||.s.||))
    *  
    ||.(
    Inv u).||) 
    *  
    ||.(v
    - u).||) 
    *  
    ||.(
    Inv u).||) by 
    A18,
    XXREAL_0: 2;
    
      
    ||.(v
    - u).|| 
    < s2 by 
    A12,
    A13,
    XXREAL_0: 2;
    
      then (
    ||.(
    Inv u).|| 
    *  
    ||.(v
    - u).||) 
    <= ( 
    ||.(
    Inv u).|| 
    * ((1 
    / 2) 
    /  
    ||.(
    Inv u).||)) by 
    XREAL_1: 64;
    
      then (
    ||.(
    Inv u).|| 
    *  
    ||.(v
    - u).||) 
    <= (1 
    / 2) by 
    A5,
    XCMPLX_1: 87;
    
      then
    ||.s.||
    <= (1 
    / 2) by 
    A24,
    XXREAL_0: 2;
    
      then (1
    - (1 
    / 2)) 
    <= (1 
    -  
    ||.s.||) by
    XREAL_1: 10;
    
      then (1
    / (1 
    -  
    ||.s.||))
    <= (1 
    / (1 
    / 2)) by 
    XREAL_1: 118;
    
      then
    
      
    
    A32: ((1 
    / (1 
    -  
    ||.s.||))
    * (( 
    ||.(
    Inv u).|| 
    *  
    ||.(
    Inv u).||) 
    *  
    ||.(v
    - u).||)) 
    <= (2 
    * (( 
    ||.(
    Inv u).|| 
    *  
    ||.(
    Inv u).||) 
    *  
    ||.(v
    - u).||)) by 
    XREAL_1: 64;
    
      
    ||.(v
    - u).|| 
    < s3 by 
    B11,
    A13,
    XXREAL_0: 2;
    
      then (
    ||.(v
    - u).|| 
    * ( 
    ||.(
    Inv u).|| 
    *  
    ||.(
    Inv u).||)) 
    <= (s3 
    * ( 
    ||.(
    Inv u).|| 
    *  
    ||.(
    Inv u).||)) by 
    XREAL_1: 64;
    
      then (
    ||.(v
    - u).|| 
    * ( 
    ||.(
    Inv u).|| 
    *  
    ||.(
    Inv u).||)) 
    <= (r0 
    / 2) by 
    A8,
    XCMPLX_1: 87;
    
      then (2
    * ( 
    ||.(
    Inv u).|| 
    * ( 
    ||.(
    Inv u).|| 
    *  
    ||.(v
    - u).||))) 
    <= ((r0 
    / 2) 
    * 2) by 
    XREAL_1: 64;
    
      then ((1
    / (1 
    -  
    ||.s.||))
    * (( 
    ||.(
    Inv u).|| 
    *  
    ||.(
    Inv u).||) 
    *  
    ||.(v
    - u).||)) 
    <= r0 by 
    A32,
    XXREAL_0: 2;
    
      then
    ||.((
    Inv v) 
    - ( 
    Inv u)).|| 
    <= r0 by 
    A29,
    XXREAL_0: 2;
    
      hence
    ||.((
    Inv v) 
    - ( 
    Inv u)).|| 
    < r by 
    A3,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    LOPBAN13:24
    
    
    
    
    
    LM80: for I be 
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)) st ( 
    dom I) 
    = ( 
    InvertibleOperators (X,Y)) & for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    in ( 
    InvertibleOperators (X,Y)) holds (I 
    . u) 
    = ( 
    Inv u) holds I 
    is_continuous_on ( 
    InvertibleOperators (X,Y)) 
    
    proof
    
      let I be
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)); 
    
      assume
    
      
    
    A1: ( 
    dom I) 
    = ( 
    InvertibleOperators (X,Y)) & for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    in ( 
    InvertibleOperators (X,Y)) holds (I 
    . u) 
    = ( 
    Inv u); 
    
      set S = (
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      set T = (
    InvertibleOperators (X,Y)); 
    
      for x0 be
    Point of S holds for r be 
    Real st x0 
    in T & 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for x1 be 
    Point of S st x1 
    in T & 
    ||.(x1
    - x0).|| 
    < s holds 
    ||.((I
    /. x1) 
    - (I 
    /. x0)).|| 
    < r 
    
      proof
    
        let x0 be
    Point of S; 
    
        let r be
    Real;
    
        assume
    
        
    
    A2: x0 
    in T & 
    0  
    < r; 
    
        then ex u be
    Point of S st x0 
    = u & u is 
    invertible;
    
        then
    
        consider s be
    Real such that 
    
        
    
    A4: 
    0  
    < s & for v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st 
    ||.(v
    - x0).|| 
    < s holds 
    ||.((
    Inv v) 
    - ( 
    Inv x0)).|| 
    < r by 
    A2,
    LMTh3;
    
        take s;
    
        thus
    0  
    < s by 
    A4;
    
        let x1 be
    Point of S; 
    
        assume
    
        
    
    A5: x1 
    in T & 
    ||.(x1
    - x0).|| 
    < s; 
    
        
    
        
    
    A7: (I 
    /. x0) 
    = (I 
    . x0) by 
    A1,
    A2,
    PARTFUN1:def 6
    
        .= (
    Inv x0) by 
    A1,
    A2;
    
        (I
    /. x1) 
    = (I 
    . x1) by 
    A1,
    A5,
    PARTFUN1:def 6
    
        .= (
    Inv x1) by 
    A1,
    A5;
    
        hence thesis by
    A4,
    A5,
    A7;
    
      end;
    
      hence I
    is_continuous_on ( 
    InvertibleOperators (X,Y)) by 
    A1,
    NFCONT_1: 19;
    
    end;
    
    theorem :: 
    
    LOPBAN13:25
    
    ex I be
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)) st ( 
    dom I) 
    = ( 
    InvertibleOperators (X,Y)) & ( 
    rng I) 
    = ( 
    InvertibleOperators (Y,X)) & I is 
    one-to-one & I 
    is_continuous_on ( 
    InvertibleOperators (X,Y)) & (ex J be 
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)), ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st J 
    = (I 
    " ) & J is 
    one-to-one & ( 
    dom J) 
    = ( 
    InvertibleOperators (Y,X)) & ( 
    rng J) 
    = ( 
    InvertibleOperators (X,Y)) & J 
    is_continuous_on ( 
    InvertibleOperators (Y,X))) & for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    in ( 
    InvertibleOperators (X,Y)) holds (I 
    . u) 
    = ( 
    Inv u) 
    
    proof
    
      set S = (
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      set K = (
    R_NormSpace_of_BoundedLinearOperators (Y,X)); 
    
      consider J be
    Function of ( 
    InvertibleOperators (X,Y)), ( 
    InvertibleOperators (Y,X)) such that 
    
      
    
    A1: J is 
    one-to-one & J is 
    onto & for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    in ( 
    InvertibleOperators (X,Y)) holds (J 
    . u) 
    = ( 
    Inv u) by 
    LM70;
    
      
    
      
    
    A2: ( 
    InvertibleOperators (X,Y)) 
    <>  
    {} implies ( 
    InvertibleOperators (Y,X)) 
    <>  
    {}  
    
      proof
    
        assume (
    InvertibleOperators (X,Y)) 
    <>  
    {} ; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A3: x 
    in ( 
    InvertibleOperators (X,Y)) by 
    XBOOLE_0:def 1;
    
        consider u be
    Point of S such that 
    
        
    
    A4: x 
    = u & u is 
    invertible by 
    A3;
    
        (
    Inv u) is 
    invertible by 
    A4,
    LM60;
    
        then (
    Inv u) 
    in ( 
    InvertibleOperators (Y,X)); 
    
        hence (
    InvertibleOperators (Y,X)) 
    <>  
    {} ; 
    
      end;
    
      then (
    dom J) 
    = ( 
    InvertibleOperators (X,Y)) by 
    FUNCT_2:def 1;
    
      then J
    in ( 
    PFuncs (the 
    carrier of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)),the 
    carrier of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)))) by 
    A1,
    PARTFUN1:def 3;
    
      then
    
      reconsider I = J as
    PartFunc of the 
    carrier of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), the 
    carrier of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)) by 
    PARTFUN1: 46;
    
      take I;
    
      thus
    
      
    
    A9: ( 
    dom I) 
    = ( 
    InvertibleOperators (X,Y)) by 
    A2,
    FUNCT_2:def 1;
    
      thus (
    rng I) 
    = ( 
    InvertibleOperators (Y,X)) by 
    A1;
    
      thus I is
    one-to-one by 
    A1;
    
      reconsider L = (J
    " ) as 
    Function of ( 
    InvertibleOperators (Y,X)), ( 
    InvertibleOperators (X,Y)) by 
    A1,
    FUNCT_2: 25;
    
      
    
      
    
    A14: ( 
    dom (J 
    " )) 
    = ( 
    InvertibleOperators (Y,X)) by 
    A1,
    FUNCT_1: 33;
    
      
    
      
    
    A16: ( 
    rng (J 
    " )) 
    = ( 
    dom J) by 
    A1,
    FUNCT_1: 33
    
      .= (
    InvertibleOperators (X,Y)) by 
    A2,
    FUNCT_2:def 1;
    
      then L
    in ( 
    PFuncs (the 
    carrier of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)),the 
    carrier of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)))) by 
    A14,
    PARTFUN1:def 3;
    
      then
    
      reconsider L as
    PartFunc of the 
    carrier of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)), the 
    carrier of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) by 
    PARTFUN1: 46;
    
      for v be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)) st v 
    in ( 
    InvertibleOperators (Y,X)) holds (L 
    . v) 
    = ( 
    Inv v) 
    
      proof
    
        let v be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)); 
    
        assume v
    in ( 
    InvertibleOperators (Y,X)); 
    
        then
    
        consider u be
    object such that 
    
        
    
    A23: u 
    in ( 
    InvertibleOperators (X,Y)) & (J 
    . u) 
    = v by 
    A1,
    FUNCT_2: 11;
    
        reconsider u as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) by 
    A23;
    
        
    
        
    
    A24: ex u0 be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    = u0 & u0 is 
    invertible by 
    A23;
    
        (
    Inv v) 
    = ( 
    Inv ( 
    Inv u)) by 
    A1,
    A23
    
        .= u by
    A24,
    LM60;
    
        hence thesis by
    A1,
    A2,
    A23,
    FUNCT_2: 26;
    
      end;
    
      hence thesis by
    A1,
    A9,
    A14,
    A16,
    LM80;
    
    end;
    
    theorem :: 
    
    LOPBAN13:26
    
    
    
    
    
    LOPBAN1623: for X,Y,Z be 
    RealNormSpace, u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)) holds (w 
    * ( 
    - u)) 
    = ( 
    - (w 
    * u)) & (( 
    - w) 
    * u) 
    = ( 
    - (w 
    * u)) 
    
    proof
    
      let X,Y,Z be
    RealNormSpace, u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)); 
    
      for x be
    Point of X holds ((w 
    * ( 
    - u)) 
    . x) 
    = (( 
    - 1) 
    * ((w 
    * u) 
    . x)) 
    
      proof
    
        let x be
    Point of X; 
    
        
    
        thus ((w
    * ( 
    - u)) 
    . x) 
    = (( 
    modetrans (w,Y,Z)) 
    . (( 
    modetrans (( 
    - u),X,Y)) 
    . x)) by 
    FUNCT_2: 15
    
        .= ((
    modetrans (w,Y,Z)) 
    . (( 
    - u) 
    . x)) by 
    LOPBAN_1:def 11
    
        .= ((
    modetrans (w,Y,Z)) 
    . ((( 
    - 1) 
    * u) 
    . x)) by 
    RLVECT_1: 16
    
        .= ((
    modetrans (w,Y,Z)) 
    . (( 
    - 1) 
    * (u 
    . x))) by 
    LOPBAN_1: 36
    
        .= ((
    - 1) 
    * (( 
    modetrans (w,Y,Z)) 
    . (u 
    . x))) by 
    LOPBAN_1:def 5
    
        .= ((
    - 1) 
    * (( 
    modetrans (w,Y,Z)) 
    . (( 
    modetrans (u,X,Y)) 
    . x))) by 
    LOPBAN_1:def 11
    
        .= ((
    - 1) 
    * ((w 
    * u) 
    . x)) by 
    FUNCT_2: 15;
    
      end;
    
      
    
      hence (w
    * ( 
    - u)) 
    = (( 
    - 1) 
    * (w 
    * u)) by 
    LOPBAN_1: 36
    
      .= (
    - (w 
    * u)) by 
    RLVECT_1: 16;
    
      for x be
    Point of X holds ((( 
    - w) 
    * u) 
    . x) 
    = (( 
    - 1) 
    * ((w 
    * u) 
    . x)) 
    
      proof
    
        let x be
    Point of X; 
    
        
    
        thus (((
    - w) 
    * u) 
    . x) 
    = (( 
    modetrans (( 
    - w),Y,Z)) 
    . (( 
    modetrans (u,X,Y)) 
    . x)) by 
    FUNCT_2: 15
    
        .= ((
    - w) 
    . (( 
    modetrans (u,X,Y)) 
    . x)) by 
    LOPBAN_1:def 11
    
        .= (((
    - 1) 
    * w) 
    . (( 
    modetrans (u,X,Y)) 
    . x)) by 
    RLVECT_1: 16
    
        .= ((
    - 1) 
    * (w 
    . (( 
    modetrans (u,X,Y)) 
    . x))) by 
    LOPBAN_1: 36
    
        .= ((
    - 1) 
    * (( 
    modetrans (w,Y,Z)) 
    . (( 
    modetrans (u,X,Y)) 
    . x))) by 
    LOPBAN_1:def 11
    
        .= ((
    - 1) 
    * ((w 
    * u) 
    . x)) by 
    FUNCT_2: 15;
    
      end;
    
      
    
      hence ((
    - w) 
    * u) 
    = (( 
    - 1) 
    * (w 
    * u)) by 
    LOPBAN_1: 36
    
      .= (
    - (w 
    * u)) by 
    RLVECT_1: 16;
    
    end;
    
    theorem :: 
    
    LOPBAN13:27
    
    for X,Y,Z be
    RealNormSpace, u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)) holds (( 
    - w) 
    * ( 
    - u)) 
    = (w 
    * u) 
    
    proof
    
      let X,Y,Z be
    RealNormSpace, u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)); 
    
      
    
      thus ((
    - w) 
    * ( 
    - u)) 
    = ( 
    - (w 
    * ( 
    - u))) by 
    LOPBAN1623
    
      .= (
    - ( 
    - (w 
    * u))) by 
    LOPBAN1623
    
      .= (w
    * u) by 
    RLVECT_1: 17;
    
    end;
    
    theorem :: 
    
    LOPBAN13:28
    
    
    
    
    
    LOPBAN1624: for X,Y,Z be 
    RealNormSpace, u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)), r be 
    Real holds (w 
    * (r 
    * u)) 
    = ((r 
    * w) 
    * u) & ((r 
    * w) 
    * u) 
    = ((r 
    * w) 
    * u) & ((r 
    * w) 
    * u) 
    = (r 
    * (w 
    * u)) 
    
    proof
    
      let X,Y,Z be
    RealNormSpace, u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)), r be 
    Real;
    
      
    
      
    
    A3: for x be 
    Point of X holds ((w 
    * (r 
    * u)) 
    . x) 
    = (r 
    * ((w 
    * u) 
    . x)) 
    
      proof
    
        let x be
    Point of X; 
    
        
    
        thus ((w
    * (r 
    * u)) 
    . x) 
    = (( 
    modetrans (w,Y,Z)) 
    . (( 
    modetrans ((r 
    * u),X,Y)) 
    . x)) by 
    FUNCT_2: 15
    
        .= ((
    modetrans (w,Y,Z)) 
    . ((r 
    * u) 
    . x)) by 
    LOPBAN_1:def 11
    
        .= ((
    modetrans (w,Y,Z)) 
    . (r 
    * (u 
    . x))) by 
    LOPBAN_1: 36
    
        .= (r
    * (( 
    modetrans (w,Y,Z)) 
    . (u 
    . x))) by 
    LOPBAN_1:def 5
    
        .= (r
    * (( 
    modetrans (w,Y,Z)) 
    . (( 
    modetrans (u,X,Y)) 
    . x))) by 
    LOPBAN_1:def 11
    
        .= (r
    * ((w 
    * u) 
    . x)) by 
    FUNCT_2: 15;
    
      end;
    
      for x be
    Point of X holds (((r 
    * w) 
    * u) 
    . x) 
    = (r 
    * ((w 
    * u) 
    . x)) 
    
      proof
    
        let x be
    Point of X; 
    
        
    
        thus (((r
    * w) 
    * u) 
    . x) 
    = (( 
    modetrans ((r 
    * w),Y,Z)) 
    . (( 
    modetrans (u,X,Y)) 
    . x)) by 
    FUNCT_2: 15
    
        .= ((r
    * w) 
    . (( 
    modetrans (u,X,Y)) 
    . x)) by 
    LOPBAN_1:def 11
    
        .= (r
    * (w 
    . (( 
    modetrans (u,X,Y)) 
    . x))) by 
    LOPBAN_1: 36
    
        .= (r
    * (( 
    modetrans (w,Y,Z)) 
    . (( 
    modetrans (u,X,Y)) 
    . x))) by 
    LOPBAN_1:def 11
    
        .= (r
    * ((w 
    * u) 
    . x)) by 
    FUNCT_2: 15;
    
      end;
    
      then ((r
    * w) 
    * u) 
    = (r 
    * (w 
    * u)) by 
    LOPBAN_1: 36;
    
      hence thesis by
    A3,
    LOPBAN_1: 36;
    
    end;
    
    theorem :: 
    
    LOPBAN13:29
    
    for X,Y,Z be
    RealNormSpace holds ex I be 
    BilinearOperator of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)), ( 
    R_NormSpace_of_BoundedLinearOperators (X,Z)) st I 
    is_continuous_on the 
    carrier of 
    [:(
    R_NormSpace_of_BoundedLinearOperators (X,Y)), ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)):] & for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)) holds (I 
    . (u,v)) 
    = (v 
    * u) 
    
    proof
    
      let X,Y,Z be
    RealNormSpace;
    
      set E = (
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      set F = (
    R_NormSpace_of_BoundedLinearOperators (Y,Z)); 
    
      set G = (
    R_NormSpace_of_BoundedLinearOperators (X,Z)); 
    
      defpred
    
    P1[
    object, 
    object] means ex u be
    Point of E, v be 
    Point of F st $1 
    =  
    [u, v] & $2
    = (v 
    * u); 
    
      
    
      
    
    A1: for x be 
    object st x 
    in the 
    carrier of 
    [:E, F:] holds ex y be
    object st y 
    in the 
    carrier of G & 
    P1[x, y]
    
      proof
    
        let x be
    object;
    
        assume x
    in the 
    carrier of 
    [:E, F:];
    
        then
    
        consider u be
    Point of E, v be 
    Point of F such that 
    
        
    
    A2: x 
    =  
    [u, v] by
    PRVECT_3: 18;
    
        take y = (v
    * u); 
    
        thus y
    in the 
    carrier of G & 
    P1[x, y] by
    A2;
    
      end;
    
      consider L be
    Function of the 
    carrier of 
    [:E, F:], the
    carrier of G such that 
    
      
    
    A3: for x be 
    object st x 
    in the 
    carrier of 
    [:E, F:] holds
    P1[x, (L
    . x)] from 
    FUNCT_2:sch 1(
    A1);
    
      
    
      
    
    A4: for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,Z)) holds (L 
    . (u,v)) 
    = (v 
    * u) 
    
      proof
    
        let u be
    Point of E, v be 
    Point of F; 
    
        
    [u, v] is
    set by 
    TARSKI: 1;
    
        then
    
        reconsider x =
    [u, v] as
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        consider u1 be
    Point of E, v1 be 
    Point of F such that 
    
        
    
    A5: x 
    =  
    [u1, v1] & (L
    . x) 
    = (v1 
    * u1) by 
    A3;
    
        u
    = u1 & v 
    = v1 by 
    A5,
    XTUPLE_0: 1;
    
        hence thesis by
    A5;
    
      end;
    
      
    
      
    
    A6: for x1,x2 be 
    Point of E, y be 
    Point of F holds (L 
    . ((x1 
    + x2),y)) 
    = ((L 
    . (x1,y)) 
    + (L 
    . (x2,y))) 
    
      proof
    
        let x1,x2 be
    Point of E, y be 
    Point of F; 
    
        
    
        thus (L
    . ((x1 
    + x2),y)) 
    = (y 
    * (x1 
    + x2)) by 
    A4
    
        .= ((y
    * x1) 
    + (y 
    * x2)) by 
    LM100
    
        .= ((L
    . (x1,y)) 
    + (y 
    * x2)) by 
    A4
    
        .= ((L
    . (x1,y)) 
    + (L 
    . (x2,y))) by 
    A4;
    
      end;
    
      
    
      
    
    A7: for x be 
    Point of E, y be 
    Point of F, a be 
    Real holds (L 
    . ((a 
    * x),y)) 
    = (a 
    * (L 
    . (x,y))) 
    
      proof
    
        let x be
    Point of E, y be 
    Point of F, a be 
    Real;
    
        
    
        thus (L
    . ((a 
    * x),y)) 
    = (y 
    * (a 
    * x)) by 
    A4
    
        .= ((a
    * y) 
    * x) by 
    LOPBAN1624
    
        .= (a
    * (y 
    * x)) by 
    LOPBAN1624
    
        .= (a
    * (L 
    . (x,y))) by 
    A4;
    
      end;
    
      
    
      
    
    A8: for x be 
    Point of E, y1,y2 be 
    Point of F holds (L 
    . (x,(y1 
    + y2))) 
    = ((L 
    . (x,y1)) 
    + (L 
    . (x,y2))) 
    
      proof
    
        let x be
    Point of E, y1,y2 be 
    Point of F; 
    
        
    
        thus (L
    . (x,(y1 
    + y2))) 
    = ((y1 
    + y2) 
    * x) by 
    A4
    
        .= ((y1
    * x) 
    + (y2 
    * x)) by 
    LM200
    
        .= ((L
    . (x,y1)) 
    + (y2 
    * x)) by 
    A4
    
        .= ((L
    . (x,y1)) 
    + (L 
    . (x,y2))) by 
    A4;
    
      end;
    
      for x be
    Point of E, y be 
    Point of F, a be 
    Real holds (L 
    . (x,(a 
    * y))) 
    = (a 
    * (L 
    . (x,y))) 
    
      proof
    
        let x be
    Point of E, y be 
    Point of F, a be 
    Real;
    
        
    
        thus (L
    . (x,(a 
    * y))) 
    = ((a 
    * y) 
    * x) by 
    A4
    
        .= (a
    * (y 
    * x)) by 
    LOPBAN1624
    
        .= (a
    * (L 
    . (x,y))) by 
    A4;
    
      end;
    
      then
    
      reconsider L as
    BilinearOperator of E, F, G by 
    A6,
    A7,
    A8,
    LOPBAN_8: 12;
    
      take L;
    
      set K = 1;
    
      for x be
    Point of E, y be 
    Point of F holds 
    ||.(L
    . (x,y)).|| 
    <= ((K 
    *  
    ||.x.||)
    *  
    ||.y.||)
    
      proof
    
        let x be
    Point of E, y be 
    Point of F; 
    
        (L
    . (x,y)) 
    = (y 
    * x) by 
    A4;
    
        hence
    ||.(L
    . (x,y)).|| 
    <= ((K 
    *  
    ||.x.||)
    *  
    ||.y.||) by
    NRM;
    
      end;
    
      hence thesis by
    A4,
    LOPBAN_8: 13;
    
    end;
    
    theorem :: 
    
    LOPBAN13:30
    
    
    
    
    
    XXXX: for X,Y be 
    RealNormSpace, v be 
    Lipschitzian  
    LinearOperator of X, Y, w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), a be 
    Real st v 
    = w holds (a 
    * w) 
    = (a 
    (#) v) 
    
    proof
    
      let X,Y be
    RealNormSpace, v be 
    Lipschitzian  
    LinearOperator of X, Y, w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), a be 
    Real;
    
      set S = (
    R_Normed_Algebra_of_BoundedLinearOperators X); 
    
      assume
    
      
    
    A1: v 
    = w; 
    
      (a
    * w) is 
    Lipschitzian  
    LinearOperator of X, Y by 
    LOPBAN_1:def 9;
    
      then
    
      
    
    A3: ( 
    dom (a 
    * w)) 
    = the 
    carrier of X by 
    FUNCT_2:def 1;
    
      
    
      
    
    A4: ( 
    dom (a 
    (#) v)) 
    = ( 
    dom v) by 
    VFUNCT_1:def 4
    
      .= the
    carrier of X by 
    FUNCT_2:def 1;
    
      for s be
    object st s 
    in ( 
    dom (a 
    (#) v)) holds ((a 
    (#) v) 
    . s) 
    = ((a 
    * w) 
    . s) 
    
      proof
    
        let s be
    object;
    
        assume
    
        
    
    A5: s 
    in ( 
    dom (a 
    (#) v)); 
    
        then
    
        reconsider d = s as
    Point of X; 
    
        
    
        thus ((a
    (#) v) 
    . s) 
    = ((a 
    (#) v) 
    /. d) by 
    A4,
    PARTFUN1:def 6
    
        .= (a
    * (v 
    /. d)) by 
    A5,
    VFUNCT_1:def 4
    
        .= ((a
    * w) 
    . s) by 
    A1,
    LOPBAN_1: 36;
    
      end;
    
      hence (a
    (#) v) 
    = (a 
    * w) by 
    A3,
    A4,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    LOPBAN13:31
    
    for X,Y be
    RealNormSpace, v be 
    Lipschitzian  
    LinearOperator of X, Y, w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), a be 
    Real st v 
    = w holds ( 
    - w) 
    = ( 
    - v) 
    
    proof
    
      let X,Y be
    RealNormSpace, v be 
    Lipschitzian  
    LinearOperator of X, Y, w be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), a be 
    Real;
    
      assume
    
      
    
    A1: v 
    = w; 
    
      
    
      thus (
    - w) 
    = (( 
    - 1) 
    * w) by 
    RLVECT_1: 16
    
      .= ((
    - 1) 
    (#) v) by 
    A1,
    XXXX
    
      .= (
    - v) by 
    VFUNCT_1: 23;
    
    end;