lopban13.miz
begin
reserve X,Y,Z for non
trivial
RealBanachSpace;
definition
let X,Y be
RealNormSpace;
let u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
::
LOPBAN13:def1
attr u is
invertible means u is
one-to-one & (
rng u)
= the
carrier of Y & (u
" ) is
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,X));
end
definition
let X,Y be
RealNormSpace;
let u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
assume
A1: u is
invertible;
::
LOPBAN13:def2
func
Inv u ->
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,X)) equals
:
Def1: (u
" );
correctness by
A1;
end
theorem ::
LOPBAN13:1
LOPBAN410: for X be
RealNormSpace, seq be
sequence of X, k be
Nat holds
||.((
Partial_Sums seq)
. k).||
<= ((
Partial_Sums
||.seq.||)
. k)
proof
let X be
RealNormSpace, seq be
sequence of X;
defpred
P[
Nat] means
||.((
Partial_Sums seq)
. $1).||
<= ((
Partial_Sums
||.seq.||)
. $1);
A1:
now
let k be
Nat;
assume
P[k];
then
A2: (
||.((
Partial_Sums seq)
. k).||
+
||.(seq
. (k
+ 1)).||)
<= (((
Partial_Sums
||.seq.||)
. k)
+
||.(seq
. (k
+ 1)).||) by
XREAL_1: 6;
A3:
||.(((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1))).||
<= (
||.((
Partial_Sums seq)
. k).||
+
||.(seq
. (k
+ 1)).||) by
NORMSP_1:def 1;
||.((
Partial_Sums seq)
. (k
+ 1)).||
=
||.(((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1))).|| by
BHSP_4:def 1;
then
||.((
Partial_Sums seq)
. (k
+ 1)).||
<= (((
Partial_Sums
||.seq.||)
. k)
+
||.(seq
. (k
+ 1)).||) by
A3,
A2,
XXREAL_0: 2;
then
||.((
Partial_Sums seq)
. (k
+ 1)).||
<= (((
Partial_Sums
||.seq.||)
. k)
+ (
||.seq.||
. (k
+ 1))) by
NORMSP_0:def 4;
hence
P[(k
+ 1)] by
SERIES_1:def 1;
end;
((
Partial_Sums
||.seq.||)
.
0 )
= (
||.seq.||
.
0 ) by
SERIES_1:def 1
.=
||.(seq
.
0 ).|| by
NORMSP_0:def 4;
then
A4:
P[
0 ] by
BHSP_4:def 1;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A4,
A1);
hence thesis;
end;
theorem ::
LOPBAN13:2
LM0: for X be
RealBanachSpace, s be
sequence of X st s is
norm_summable holds
||.(
Sum s).||
<= (
Sum
||.s.||)
proof
let X be
RealBanachSpace, s be
sequence of X;
assume
A1: s is
norm_summable;
then
A3:
||.s.|| is
summable;
A5:
now
let k be
Nat;
(
||.(
Partial_Sums s).||
. k)
=
||.((
Partial_Sums s)
. k).|| by
NORMSP_0:def 4;
hence (
||.(
Partial_Sums s).||
. k)
<= ((
Partial_Sums
||.s.||)
. k) by
LOPBAN410;
end;
A6: s is
summable by
A1;
then
A8:
||.(
Partial_Sums s).|| is
convergent by
NORMSP_1: 23;
(
lim
||.(
Partial_Sums s).||)
=
||.(
Sum s).|| by
A6,
LOPBAN_1: 20;
hence
||.(
Sum s).||
<= (
Sum
||.s.||) by
A3,
A5,
A8,
SEQ_2: 18;
end;
theorem ::
LOPBAN13:3
LM1: for X be
Banach_Algebra, z be
Point of X st
||.z.||
< 1 holds (z
GeoSeq ) is
norm_summable &
||.(
Sum (z
GeoSeq )).||
<= (1
/ (1
-
||.z.||))
proof
let X be
Banach_Algebra;
let z be
Element of X;
A1: for n be
Nat holds (
0
<= (
||.(z
GeoSeq ).||
. n) & (
||.(z
GeoSeq ).||
. n)
<= ((
||.z.||
GeoSeq )
. n))
proof
defpred
S1[
Nat] means (
0
<= (
||.(z
GeoSeq ).||
. $1) & (
||.(z
GeoSeq ).||
. $1)
<= ((
||.z.||
GeoSeq )
. $1));
A3: for k be
Nat st
S1[k] holds
S1[(k
+ 1)]
proof
let k be
Nat;
||.(((z
GeoSeq )
. k)
* z).||
<= (
||.((z
GeoSeq )
. k).||
*
||.z.||) by
LOPBAN_2:def 9;
then
A4:
||.(((z
GeoSeq )
. k)
* z).||
<= ((
||.(z
GeoSeq ).||
. k)
*
||.z.||) by
NORMSP_0:def 4;
assume
S1[k];
then ((
||.(z
GeoSeq ).||
. k)
*
||.z.||)
<= (((
||.z.||
GeoSeq )
. k)
*
||.z.||) by
XREAL_1: 64;
then
A5:
||.(((z
GeoSeq )
. k)
* z).||
<= (((
||.z.||
GeoSeq )
. k)
*
||.z.||) by
A4,
XXREAL_0: 2;
(
||.(z
GeoSeq ).||
. (k
+ 1))
=
||.((z
GeoSeq )
. (k
+ 1)).|| by
NORMSP_0:def 4
.=
||.(((z
GeoSeq )
. k)
* z).|| by
LOPBAN_3:def 9;
hence
S1[(k
+ 1)] by
A5,
PREPOWER: 3;
end;
||.((z
GeoSeq )
.
0 ).||
=
||.(
1. X).|| by
LOPBAN_3:def 9
.= 1 by
LOPBAN_2:def 10
.= ((
||.z.||
GeoSeq )
.
0 ) by
PREPOWER: 3;
then
A6:
S1[
0 ] by
NORMSP_0:def 4;
for n be
Nat holds
S1[n] from
NAT_1:sch 2(
A6,
A3);
hence for n be
Nat holds (
0
<= (
||.(z
GeoSeq ).||
. n) & (
||.(z
GeoSeq ).||
. n)
<= ((
||.z.||
GeoSeq )
. n));
end;
assume
||.z.||
< 1;
then
|.
||.z.||.|
< 1 by
ABSVALUE:def 1;
then
A7: (
||.z.||
GeoSeq ) is
summable & (
Sum (
||.z.||
GeoSeq ))
= (1
/ (1
-
||.z.||)) by
SERIES_1: 24;
then
A8:
||.(z
GeoSeq ).|| is
summable & (
Sum
||.(z
GeoSeq ).||)
<= (
Sum (
||.z.||
GeoSeq )) by
A1,
SERIES_1: 20;
(z
GeoSeq ) is
norm_summable by
A1,
A7,
SERIES_1: 20;
then
||.(
Sum (z
GeoSeq )).||
<= (
Sum
||.(z
GeoSeq ).||) by
LM0;
hence thesis by
A7,
A8,
XXREAL_0: 2;
end;
theorem ::
LOPBAN13:4
LM2: for S be
Banach_Algebra, w be
Point of S st
||.w.||
< 1 holds ((
1. S)
+ w) is
invertible & ((
- w)
GeoSeq ) is
norm_summable & (((
1. S)
+ w)
" )
= (
Sum ((
- w)
GeoSeq )) &
||.(((
1. S)
+ w)
" ).||
<= (1
/ (1
-
||.w.||))
proof
let S be
Banach_Algebra, w be
Point of S;
assume
A1:
||.w.||
< 1;
set x = ((
1. S)
+ w);
A2:
||.((
1. S)
- x).||
=
||.(x
- (
1. S)).|| by
NORMSP_1: 7
.=
||.w.|| by
RLVECT_4: 1;
then
A3: x is
invertible & (x
" )
= (
Sum (((
1. S)
- x)
GeoSeq )) by
A1,
LOPBAN_3: 42;
((
1. S)
- x)
= (((
1. S)
- (
1. S))
- w) by
RLVECT_1: 27
.= ((
0. S)
- w) by
RLVECT_1: 15
.= (
- w) by
RLVECT_1: 14;
hence thesis by
A1,
A2,
A3,
LM1;
end;
theorem ::
LOPBAN13:5
for X be non
trivial
RealBanachSpace, v1,v2 be
Lipschitzian
LinearOperator of X, X, w1,w2 be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X), a be
Real st v1
= w1 & v2
= w2 holds (v1
* v2)
= (w1
* w2) & (v1
+ v2)
= (w1
+ w2) & (a
(#) v1)
= (a
* w1)
proof
let X be non
trivial
RealBanachSpace, v1,v2 be
Lipschitzian
LinearOperator of X, X, w1,w2 be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X), a be
Real;
set S = (
R_Normed_Algebra_of_BoundedLinearOperators X);
assume
A1: v1
= w1 & v2
= w2;
reconsider zw1 = w1, zw2 = w2 as
Element of (
BoundedLinearOperators (X,X));
v1
= (
modetrans (v1,X,X)) & v2
= (
modetrans (v2,X,X)) by
LOPBAN_1: 29;
hence (v1
* v2)
= (zw1
* zw2) by
A1
.= (w1
* w2) by
LOPBAN_2:def 4;
reconsider zw1 = w1, zw2 = w2 as
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X));
reconsider zw12 = (zw1
+ zw2) as
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X));
zw12 is
Lipschitzian
LinearOperator of X, X by
LOPBAN_1:def 9;
then
A4: (
dom zw12)
= the
carrier of X by
FUNCT_2:def 1;
A5: (
dom (v1
+ v2))
= ((
dom v1)
/\ (
dom v2)) by
VFUNCT_1:def 1
.= (the
carrier of X
/\ (
dom v2)) by
FUNCT_2:def 1
.= (the
carrier of X
/\ the
carrier of X) by
FUNCT_2:def 1
.= the
carrier of X;
for s be
object st s
in (
dom (v1
+ v2)) holds ((v1
+ v2)
. s)
= (zw12
. s)
proof
let s be
object;
assume
A6: s
in (
dom (v1
+ v2));
then
reconsider d = s as
Point of X;
thus ((v1
+ v2)
. s)
= ((v1
+ v2)
/. d) by
A5,
PARTFUN1:def 6
.= ((v1
/. d)
+ (v2
/. d)) by
A6,
VFUNCT_1:def 1
.= (zw12
. s) by
A1,
LOPBAN_1: 35;
end;
hence (v1
+ v2)
= (w1
+ w2) by
A4,
A5,
FUNCT_1: 2;
reconsider zw12 = (a
* zw1) as
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X));
zw12 is
Lipschitzian
LinearOperator of X, X by
LOPBAN_1:def 9;
then
A8: (
dom zw12)
= the
carrier of X by
FUNCT_2:def 1;
A9: (
dom (a
(#) v1))
= (
dom v1) by
VFUNCT_1:def 4
.= the
carrier of X by
FUNCT_2:def 1;
for s be
object st s
in (
dom (a
(#) v1)) holds ((a
(#) v1)
. s)
= (zw12
. s)
proof
let s be
object;
assume
A10: s
in (
dom (a
(#) v1));
then
reconsider d = s as
Point of X;
thus ((a
(#) v1)
. s)
= ((a
(#) v1)
/. d) by
A9,
PARTFUN1:def 6
.= (a
* (v1
/. d)) by
A10,
VFUNCT_1:def 4
.= (zw12
. s) by
A1,
LOPBAN_1: 36;
end;
hence (a
(#) v1)
= (a
* w1) by
A8,
A9,
FUNCT_1: 2;
end;
theorem ::
LOPBAN13:6
for X be non
trivial
RealBanachSpace, v1,v2 be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X)), w1,w2 be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X), a be
Real st v1
= w1 & v2
= w2 holds (v1
+ v2)
= (w1
+ w2) & (a
* v1)
= (a
* w1);
theorem ::
LOPBAN13:7
for X be non
trivial
RealBanachSpace, v1,v2 be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X)), w1,w2 be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X) st v1
= w1 & v2
= w2 holds (v1
* v2)
= (w1
* w2)
proof
let X be non
trivial
RealBanachSpace, v1,v2 be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X)), w1,w2 be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X);
set S = (
R_Normed_Algebra_of_BoundedLinearOperators X);
assume
A1: v1
= w1 & v2
= w2;
reconsider zw1 = w1, zw2 = w2 as
Element of (
BoundedLinearOperators (X,X));
thus (v1
* v2)
= (zw1
* zw2) by
A1
.= (w1
* w2) by
LOPBAN_2:def 4;
end;
theorem ::
LOPBAN13:8
LM4: for X be non
trivial
RealBanachSpace, v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X)), w be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X) st v
= w holds (v is
invertible iff w is
invertible) & (w is
invertible implies (v
" )
= (w
" ))
proof
let X be non
trivial
RealBanachSpace, v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X)), w be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X);
set S = (
R_Normed_Algebra_of_BoundedLinearOperators X);
assume
A1: v
= w;
A2: v is
Lipschitzian
LinearOperator of X, X by
LOPBAN_1:def 9;
A4: v is
invertible implies w is
invertible
proof
assume
A5: v is
invertible;
then
reconsider x = (v
" ) as
Point of S;
A7: (v
" ) is
Lipschitzian
LinearOperator of X, X by
A5,
LOPBAN_1:def 9;
reconsider zx = x, zv = v as
Element of (
BoundedLinearOperators (X,X));
(
dom v)
= the
carrier of X & (
rng v)
= the
carrier of X by
A2,
A5,
FUNCT_2:def 1;
then
A9: ((v
" )
* v)
= (
id X) & (v
* (v
" ))
= (
id X) by
A5,
FUNCT_1: 39;
A10: (v
" )
= (
modetrans ((v
" ),X,X)) & v
= (
modetrans (v,X,X)) by
A2,
A7,
LOPBAN_1: 29;
then
A11: ((v
" )
* v)
= (zx
* zv)
.= (x
* w) by
A1,
LOPBAN_2:def 4;
(v
* (v
" ))
= (zv
* zx) by
A10
.= (w
* x) by
A1,
LOPBAN_2:def 4;
hence w is
invertible by
A9,
A11;
end;
w is
invertible implies v is
invertible & (v
" )
= (w
" )
proof
assume
A13: w is
invertible;
A14: v is
Lipschitzian
LinearOperator of X, X by
LOPBAN_1:def 9;
reconsider y = (w
" ) as
Lipschitzian
LinearOperator of X, X by
LOPBAN_1:def 9;
reconsider zy = y, zw = w as
Element of (
BoundedLinearOperators (X,X));
A15: y
= (
modetrans (y,X,X)) & v
= (
modetrans (v,X,X)) by
A14,
LOPBAN_1: 29;
then
A16: (y
* v)
= (zy
* zw) by
A1
.= ((w
" )
* w) by
LOPBAN_2:def 4
.= (
id X) by
A13,
LOPBAN_3:def 8;
A17: (v
* y)
= (zw
* zy) by
A1,
A15
.= (w
* (w
" )) by
LOPBAN_2:def 4
.= (
id X) by
A13,
LOPBAN_3:def 8;
reconsider y0 = y, v0 = v as
Function of the
carrier of X, the
carrier of X by
LOPBAN_1:def 9;
A18: (
dom v)
= the
carrier of X by
A14,
FUNCT_2:def 1;
A19: v0 is
one-to-one & v0 is
onto by
A16,
A17,
FUNCT_2: 23;
then (
dom y)
= (
rng v) by
FUNCT_2:def 1;
hence thesis by
A16,
A18,
A19,
FUNCT_1: 41;
end;
hence thesis by
A4;
end;
theorem ::
LOPBAN13:9
Th1: for v,I be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X)) st I
= (
id X) &
||.v.||
< 1 holds (I
+ v) is
invertible &
||.(
Inv (I
+ v)).||
<= (1
/ (1
-
||.v.||)) & ex w be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X) st w
= v & ((
- w)
GeoSeq ) is
norm_summable & (
Inv (I
+ v))
= (
Sum ((
- w)
GeoSeq ))
proof
let v,I be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X));
assume that
A1: I
= (
id X) and
A2:
||.v.||
< 1;
set S = (
R_Normed_Algebra_of_BoundedLinearOperators X);
reconsider w = v as
Point of S;
set x = ((
1. S)
+ w);
||.w.||
< 1 by
A2;
then
A3: x is
invertible & ((
- w)
GeoSeq ) is
norm_summable & (x
" )
= (
Sum ((
- w)
GeoSeq )) &
||.(x
" ).||
<= (1
/ (1
-
||.w.||)) by
LM2;
hence
A6: (I
+ v) is
invertible by
A1,
LM4;
A7: ((I
+ v)
" )
= (x
" ) by
A1,
A3,
LM4;
hence
||.(
Inv (I
+ v)).||
<= (1
/ (1
-
||.v.||)) by
A3,
A6,
Def1;
thus thesis by
A3,
A6,
A7,
Def1;
end;
theorem ::
LOPBAN13:10
RELAT136: for X,Y,Z,W be
RealNormSpace, f be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), g be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z)), h be
Point of (
R_NormSpace_of_BoundedLinearOperators (Z,W)) holds (h
* (g
* f))
= ((h
* g)
* f)
proof
let X,Y,Z,W be
RealNormSpace, f be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), g be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z)), h be
Point of (
R_NormSpace_of_BoundedLinearOperators (Z,W));
A2: (h
* g) is
Lipschitzian
LinearOperator of Y, W by
LOPBAN_2: 2;
(g
* f) is
Lipschitzian
LinearOperator of X, Z by
LOPBAN_2: 2;
hence (h
* (g
* f))
= ((
modetrans (h,Z,W))
* ((
modetrans (g,Y,Z))
* (
modetrans (f,X,Y)))) by
LOPBAN_1: 29
.= (((
modetrans (h,Z,W))
* (
modetrans (g,Y,Z)))
* (
modetrans (f,X,Y))) by
RELAT_1: 36
.= ((h
* g)
* f) by
A2,
LOPBAN_1: 29;
end;
theorem ::
LOPBAN13:11
FUNCT229: for X,Y be
RealNormSpace, f be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st f is
one-to-one & (
rng f)
= the
carrier of Y holds ((f
" )
* f)
= (
id X) & (f
* (f
" ))
= (
id Y)
proof
let X,Y be
RealNormSpace, f be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
assume
A1: f is
one-to-one & (
rng f)
= the
carrier of Y;
A2: f is
Lipschitzian
LinearOperator of X, Y by
LOPBAN_1:def 9;
hence ((f
" )
* f)
= (
id X) by
A1,
FUNCT_2: 29;
thus (f
* (f
" ))
= (
id Y) by
A1,
A2,
FUNCT_2: 29;
end;
theorem ::
LOPBAN13:12
LM50: for u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is
invertible holds
0
<
||.u.|| &
0
<
||.(
Inv u).||
proof
let u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
assume
A1: u is
invertible;
set S = (
R_Normed_Algebra_of_BoundedLinearOperators X);
reconsider Lu = u as
Lipschitzian
LinearOperator of X, Y by
LOPBAN_1:def 9;
reconsider LInvu = (
Inv u) as
Lipschitzian
LinearOperator of Y, X by
LOPBAN_1:def 9;
A8: ((
BoundedLinearOperatorsNorm (X,X))
. (LInvu
* Lu))
<= (((
BoundedLinearOperatorsNorm (Y,X))
. LInvu)
* ((
BoundedLinearOperatorsNorm (X,Y))
. Lu)) by
LOPBAN_2: 2;
LInvu
= (u
" ) by
A1,
Def1;
then ((
BoundedLinearOperatorsNorm (X,X))
. (LInvu
* Lu))
=
||.(
1. S).|| by
A1,
FUNCT_2: 29
.= 1 by
LOPBAN_2:def 10;
then
||.(
Inv u).||
<>
0 &
||.u.||
<>
0 by
A8;
hence
0
<
||.u.|| &
0
<
||.(
Inv u).||;
end;
theorem ::
LOPBAN13:13
Th2: for u,v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is
invertible &
||.v.||
< (1
/
||.(
Inv u).||) holds (u
+ v) is
invertible &
||.(
Inv (u
+ v)).||
<= (1
/ ((1
/
||.(
Inv u).||)
-
||.v.||)) & ex w be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X), s,I be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X)) st w
= ((
Inv u)
* v) & s
= w & I
= (
id X) &
||.s.||
< 1 & ((
- w)
GeoSeq ) is
norm_summable & (I
+ s) is
invertible &
||.(
Inv (I
+ s)).||
<= (1
/ (1
-
||.s.||)) & (
Inv (I
+ s))
= (
Sum ((
- w)
GeoSeq )) & (
Inv (u
+ v))
= ((
Inv (I
+ s))
* (
Inv u))
proof
let u,v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
assume that
A1: u is
invertible and
A2:
||.v.||
< (1
/
||.(
Inv u).||);
set S = (
R_Normed_Algebra_of_BoundedLinearOperators X);
(
1. S)
= (
id X);
then
reconsider I = (
id X) as
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X));
reconsider Is = I as
Point of S;
A6: u is
Lipschitzian
LinearOperator of X, Y by
LOPBAN_1:def 9;
A7: v is
Lipschitzian
LinearOperator of X, Y by
LOPBAN_1:def 9;
reconsider udv = ((
Inv u)
* v) as
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X));
reconsider udv2 = udv as
Point of S;
reconsider Lu = u, Lv = v as
Lipschitzian
LinearOperator of X, Y by
LOPBAN_1:def 9;
reconsider LInvu = (
Inv u) as
Lipschitzian
LinearOperator of Y, X by
LOPBAN_1:def 9;
A14: (
modetrans (LInvu,Y,X))
= LInvu & (
modetrans (Lv,X,Y))
= Lv by
LOPBAN_1: 29;
then
A15:
||.udv.||
<= (
||.(
Inv u).||
*
||.v.||) by
LOPBAN_2: 2;
LInvu
= (u
" ) by
A1,
Def1;
then
A17: ((
BoundedLinearOperatorsNorm (X,X))
. (LInvu
* Lu))
=
||.(
1. S).|| by
A1,
FUNCT_2: 29
.= 1 by
LOPBAN_2:def 10;
A18:
||.(
Inv u).||
<>
0
proof
assume
||.(
Inv u).||
=
0 ;
then 1
<= (
0
* ((
BoundedLinearOperatorsNorm (X,Y))
. u)) by
A17,
LOPBAN_2: 2;
hence contradiction;
end;
then (
||.(
Inv u).||
*
||.v.||)
< (
||.(
Inv u).||
* (1
/
||.(
Inv u).||)) by
A2,
XREAL_1: 68;
then
A20: (
||.(
Inv u).||
*
||.v.||)
< 1 by
A18,
XCMPLX_1: 106;
then
A21:
||.udv.||
< 1 by
A15,
XXREAL_0: 2;
then
A22: (I
+ udv) is
invertible &
||.(
Inv (I
+ udv)).||
<= (1
/ (1
-
||.udv.||)) & ex w be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X) st w
= udv & ((
- w)
GeoSeq ) is
norm_summable & (
Inv (I
+ udv))
= (
Sum ((
- w)
GeoSeq )) by
Th1;
A23: (u
+ v) is
Lipschitzian
LinearOperator of X, Y by
LOPBAN_1:def 9;
then
A24: (
modetrans ((u
+ v),X,Y))
= (u
+ v) by
LOPBAN_1: 29;
A25: (I
+ udv) is
Lipschitzian
LinearOperator of X, X by
LOPBAN_1:def 9;
then
A26: (
modetrans ((I
+ udv),X,X))
= (I
+ udv) by
LOPBAN_1: 29;
A27: (
modetrans (u,X,Y))
= u by
A6,
LOPBAN_1: 29;
A28: for x be
Element of the
carrier of X holds ((u
+ v)
. x)
= ((u
* (I
+ udv))
. x)
proof
let x be
Element of the
carrier of X;
A33: ((u
* (I
+ udv))
. x)
= ((
modetrans (u,X,Y))
. ((
modetrans ((I
+ udv),X,X))
. x)) by
FUNCT_2: 15
.= (u
. ((I
+ udv)
. x)) by
A25,
A27,
LOPBAN_1: 29;
A35: ((I
+ udv)
. x)
= (((
id X)
. x)
+ (udv
. x)) by
LOPBAN_1: 35
.= (x
+ (udv
. x));
Lu is
additive;
then
A37: (Lu
. ((I
+ udv)
. x))
= ((Lu
. x)
+ (Lu
. (udv
. x))) by
A35;
A39: (
Inv u) is
Lipschitzian
LinearOperator of Y, X by
LOPBAN_1:def 9;
A40: (
modetrans (v,X,Y))
= v by
A7,
LOPBAN_1: 29;
(u
. (udv
. x))
= (u
. ((
modetrans ((
Inv u),Y,X))
. ((
modetrans (v,X,Y))
. x))) by
FUNCT_2: 15
.= (u
. ((
Inv u)
. (v
. x))) by
A39,
A40,
LOPBAN_1: 29
.= (u
. ((u
" )
. (v
. x))) by
A1,
Def1
.= (v
. x) by
A1,
FUNCT_1: 35;
hence thesis by
A33,
A37,
LOPBAN_1: 35;
end;
then
A43: (u
+ v) is
one-to-one by
A1,
A22,
A23,
A26,
A27,
FUNCT_2:def 7;
A44: (
modetrans (u,X,Y)) is
onto by
A1,
A6,
LOPBAN_1: 29;
(
modetrans ((I
+ udv),X,X)) is
onto by
A22,
A25,
LOPBAN_1: 29;
then ((
modetrans (u,X,Y))
* (
modetrans ((I
+ udv),X,X))) is
onto by
A44,
FUNCT_2: 27;
then
A46: (
rng (u
+ v))
= the
carrier of Y by
A23,
A28,
FUNCT_2:def 7;
set Iuv = ((
Inv (I
+ udv))
* (
Inv u));
Iuv is
Lipschitzian
LinearOperator of Y, X by
LOPBAN_2: 2;
then
A48: (
modetrans (Iuv,Y,X))
= Iuv by
LOPBAN_1: 29;
(
Inv u) is
Lipschitzian
LinearOperator of Y, X by
LOPBAN_1:def 9;
then
A49: (
modetrans ((
Inv u),Y,X))
= (
Inv u) by
LOPBAN_1: 29;
B49: (
Inv (I
+ udv)) is
Lipschitzian
LinearOperator of X, X by
LOPBAN_1:def 9;
then
A50: (
modetrans ((
Inv (I
+ udv)),X,X))
= (
Inv (I
+ udv)) by
LOPBAN_1: 29;
A51: (
modetrans (((I
+ udv)
" ),X,X))
= (
modetrans ((
Inv (I
+ udv)),X,X)) by
A21,
Def1,
Th1
.= (
Inv (I
+ udv)) by
B49,
LOPBAN_1: 29
.= ((I
+ udv)
" ) by
A21,
Def1,
Th1;
(
modetrans ((
Inv u),Y,X))
= (u
" ) by
A1,
A49,
Def1;
then
A53: ((
Inv u)
* u)
= ((u
" )
* u) by
A6,
LOPBAN_1: 29
.= (
id X) by
A1,
FUNCT229;
((
Inv u)
* u) is
Lipschitzian
LinearOperator of X, X by
LOPBAN_2: 2;
then (
modetrans (((
Inv u)
* u),X,X))
= (
id X) by
A53,
LOPBAN_1: 29;
then
A55: (((
Inv u)
* u)
* (I
+ udv))
= ((
id X)
* (I
+ udv)) by
A25,
LOPBAN_1: 29
.= (I
+ udv) by
A25,
FUNCT_2: 17;
A56: ((
modetrans (Iuv,Y,X))
* (
modetrans ((u
+ v),X,Y)))
= (((
Inv (I
+ udv))
* (
Inv u))
* (u
+ v))
.= ((
Inv (I
+ udv))
* ((
Inv u)
* (u
+ v))) by
RELAT136
.= ((
Inv (I
+ udv))
* ((
Inv u)
* (u
* (I
+ udv)))) by
A23,
A28,
FUNCT_2:def 7
.= ((
Inv (I
+ udv))
* (I
+ udv)) by
A55,
RELAT136
.= ((
modetrans (((I
+ udv)
" ),X,X))
* (
modetrans ((I
+ udv),X,X))) by
A21,
Def1,
Th1
.= (((I
+ udv)
" )
* (I
+ udv)) by
A25,
A51,
LOPBAN_1: 29
.= (
id X) by
A22,
FUNCT229;
then
A57: ((
modetrans ((u
+ v),X,Y))
" )
= (
modetrans (Iuv,Y,X)) by
A24,
A43,
A46,
FUNCT_2: 30;
thus
A58: (u
+ v) is
invertible by
A24,
A43,
A46,
A48,
A56,
FUNCT_2: 30;
reconsider Iuvp = Iuv as
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,X));
A59: ((
BoundedLinearOperatorsNorm (Y,X))
. Iuv)
<= (((
BoundedLinearOperatorsNorm (X,X))
. (
modetrans ((
Inv (I
+ udv)),X,X)))
* ((
BoundedLinearOperatorsNorm (Y,X))
. (
modetrans ((
Inv u),Y,X)))) by
LOPBAN_2: 2;
(((
BoundedLinearOperatorsNorm (X,X))
. (
Inv (I
+ udv)))
* ((
BoundedLinearOperatorsNorm (Y,X))
. (
Inv u)))
<= ((1
/ (1
-
||.udv.||))
*
||.(
Inv u).||) by
A22,
XREAL_1: 64;
then
A64:
||.Iuvp.||
<= ((1
/ (1
-
||.udv.||))
*
||.(
Inv u).||) by
A49,
A50,
A59,
XXREAL_0: 2;
A65: (1
- (
||.(
Inv u).||
*
||.v.||))
<= (1
-
||.udv.||) by
A14,
LOPBAN_2: 2,
XREAL_1: 10;
0
< (1
- (
||.(
Inv u).||
*
||.v.||)) by
A20,
XREAL_1: 50;
then (1
/ (1
-
||.udv.||))
<= (1
/ (1
- (
||.(
Inv u).||
*
||.v.||))) by
A65,
XREAL_1: 118;
then ((1
/ (1
-
||.udv.||))
*
||.(
Inv u).||)
<= ((1
/ (1
- (
||.(
Inv u).||
*
||.v.||)))
*
||.(
Inv u).||) by
XREAL_1: 64;
then
A67: ((1
/ (1
-
||.udv.||))
*
||.(
Inv u).||)
<= (
||.(
Inv u).||
/ (1
- (
||.(
Inv u).||
*
||.v.||))) by
XCMPLX_1: 99;
((1
- (
||.(
Inv u).||
*
||.v.||))
/
||.(
Inv u).||)
= ((1
/
||.(
Inv u).||)
- ((
||.(
Inv u).||
*
||.v.||)
/
||.(
Inv u).||)) by
XCMPLX_1: 120
.= ((1
/
||.(
Inv u).||)
-
||.v.||) by
A18,
XCMPLX_1: 89;
then (1
/ ((1
/
||.(
Inv u).||)
-
||.v.||))
= (
||.(
Inv u).||
/ (1
- (
||.(
Inv u).||
*
||.v.||))) by
XCMPLX_1: 57;
then
||.Iuvp.||
<= (1
/ ((1
/
||.(
Inv u).||)
-
||.v.||)) by
A64,
A67,
XXREAL_0: 2;
hence
||.(
Inv (u
+ v)).||
<= (1
/ ((1
/
||.(
Inv u).||)
-
||.v.||)) by
A24,
A48,
A57,
A58,
Def1;
consider w be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X) such that
A70: w
= udv & ((
- w)
GeoSeq ) is
norm_summable & (
Inv (I
+ udv))
= (
Sum ((
- w)
GeoSeq )) by
A21,
Th1;
reconsider S = (
Sum ((
- w)
GeoSeq )) as
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X));
take w, udv, I;
thus w
= ((
Inv u)
* v) & udv
= w & I
= (
id X) &
||.udv.||
< 1 & ((
- w)
GeoSeq ) is
norm_summable & (I
+ udv) is
invertible &
||.(
Inv (I
+ udv)).||
<= (1
/ (1
-
||.udv.||)) & (
Inv (I
+ udv))
= (
Sum ((
- w)
GeoSeq )) by
A21,
A70,
Th1;
thus (
Inv (u
+ v))
= ((
Inv (I
+ udv))
* (
Inv u)) by
A24,
A48,
A57,
A58,
Def1;
end;
theorem ::
LOPBAN13:14
Th3: for S be
Subset of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st S
= { v where v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) : v is
invertible } holds S is
open
proof
let S be
Subset of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
assume
A1: S
= { v where v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) : v is
invertible };
set P = (
R_NormSpace_of_BoundedLinearOperators (X,Y));
for u be
Point of P st u
in S holds ex r be
Real st r
>
0 & (
Ball (u,r))
c= S
proof
let u be
Point of P;
assume u
in S;
then
A2: ex v be
Point of P st u
= v & v is
invertible by
A1;
then
A3:
0
<
||.(
Inv u).|| by
LM50;
set r = (1
/
||.(
Inv u).||);
take r;
thus
0
< r by
A3,
XREAL_1: 139;
now
let x be
object;
assume x
in (
Ball (u,r));
then x
in { y where y be
Point of P :
||.(y
- u).||
< r } by
NDIFF_8: 17;
then
consider v be
Point of P such that
A4: x
= v &
||.(v
- u).||
< r;
v
= (u
+ (v
- u)) by
RLVECT_4: 1;
then v is
invertible by
A2,
A4,
Th2;
hence x
in S by
A1,
A4;
end;
hence (
Ball (u,r))
c= S by
TARSKI:def 3;
end;
hence S is
open by
NDIFF_8: 20;
end;
definition
let X, Y;
::
LOPBAN13:def3
func
InvertibleOperators (X,Y) ->
open
Subset of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) equals { v where v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) : v is
invertible };
correctness
proof
set S = { v where v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) : v is
invertible };
now
let x be
object;
assume x
in S;
then ex v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st x
= v & v is
invertible;
hence x
in the
carrier of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
end;
then
reconsider S as
Subset of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) by
TARSKI:def 3;
S is
open by
Th3;
hence thesis;
end;
end
theorem ::
LOPBAN13:15
LM60: for u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is
invertible holds (
Inv u) is
invertible & (
Inv (
Inv u))
= u
proof
let u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
assume
A1: u is
invertible;
then
A3: (
Inv u)
= (u
" ) by
Def1;
reconsider Lu = u as
Lipschitzian
LinearOperator of X, Y by
LOPBAN_1:def 9;
A5: (
rng (
Inv u))
= (
dom Lu) by
A1,
A3,
FUNCT_1: 33
.= the
carrier of X by
FUNCT_2:def 1;
A6: ((
Inv u)
" )
= u by
A1,
A3,
FUNCT_1: 43;
thus (
Inv u) is
invertible by
A1,
A3,
A5,
FUNCT_1: 43;
hence (
Inv (
Inv u))
= u by
A6,
Def1;
end;
theorem ::
LOPBAN13:16
LM70: ex I be
Function of (
InvertibleOperators (X,Y)), (
InvertibleOperators (Y,X)) st I is
one-to-one & I is
onto & for u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st u
in (
InvertibleOperators (X,Y)) holds (I
. u)
= (
Inv u)
proof
set S = (
R_NormSpace_of_BoundedLinearOperators (X,Y));
defpred
P1[
object,
object] means ex u be
Point of S st $1
= u & $2
= (
Inv u);
A1: for x be
object st x
in (
InvertibleOperators (X,Y)) holds ex y be
object st y
in (
InvertibleOperators (Y,X)) &
P1[x, y]
proof
let x be
object;
assume x
in (
InvertibleOperators (X,Y));
then
consider u be
Point of S such that
A2: x
= u & u is
invertible;
take y = (
Inv u);
y is
invertible by
A2,
LM60;
hence y
in (
InvertibleOperators (Y,X));
thus
P1[x, y] by
A2;
end;
consider I be
Function of (
InvertibleOperators (X,Y)), (
InvertibleOperators (Y,X)) such that
A3: for x be
object st x
in (
InvertibleOperators (X,Y)) holds
P1[x, (I
. x)] from
FUNCT_2:sch 1(
A1);
take I;
A4: for u be
Point of S st u
in (
InvertibleOperators (X,Y)) holds (I
. u)
= (
Inv u)
proof
let u be
Point of S;
assume u
in (
InvertibleOperators (X,Y));
then
P1[u, (I
. u)] by
A3;
hence (I
. u)
= (
Inv u);
end;
A5: (
InvertibleOperators (X,Y))
<>
{} implies (
InvertibleOperators (Y,X))
<>
{}
proof
assume (
InvertibleOperators (X,Y))
<>
{} ;
then
consider x be
object such that
A6: x
in (
InvertibleOperators (X,Y)) by
XBOOLE_0:def 1;
consider u be
Point of S such that
A7: x
= u & u is
invertible by
A6;
(
Inv u) is
invertible by
A7,
LM60;
then (
Inv u)
in (
InvertibleOperators (Y,X));
hence (
InvertibleOperators (Y,X))
<>
{} ;
end;
B7: for x1,x2 be
object st x1
in (
InvertibleOperators (X,Y)) & x2
in (
InvertibleOperators (X,Y)) & (I
. x1)
= (I
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume that
A8: x1
in (
InvertibleOperators (X,Y)) & x2
in (
InvertibleOperators (X,Y)) and
A9: (I
. x1)
= (I
. x2);
reconsider u1 = x1, u2 = x2 as
Point of S by
A8;
A10: (ex v1 be
Point of S st u1
= v1 & v1 is
invertible) & (ex v2 be
Point of S st u2
= v2 & v2 is
invertible) by
A8;
A11: (I
. u1)
= (
Inv u1) by
A4,
A8;
u1
= (
Inv (
Inv u1)) by
A10,
LM60
.= (
Inv (
Inv u2)) by
A4,
A8,
A9,
A11
.= u2 by
A10,
LM60;
hence x1
= x2;
end;
now
let y be
object;
assume y
in (
InvertibleOperators (Y,X));
then
consider v be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,X)) such that
A15: y
= v & v is
invertible;
(
Inv v) is
invertible by
A15,
LM60;
then
A16: (
Inv v)
in (
InvertibleOperators (X,Y));
(
Inv (
Inv v))
= v by
A15,
LM60;
then y
= (I
. (
Inv v)) by
A4,
A15,
A16;
hence y
in (
rng I) by
A5,
A16,
FUNCT_2: 4;
end;
then (
InvertibleOperators (Y,X))
c= (
rng I) by
TARSKI:def 3;
hence thesis by
A4,
A5,
B7,
FUNCT_2: 19,
XBOOLE_0:def 10;
end;
theorem ::
LOPBAN13:17
LMTh2: for u,v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is
invertible &
||.(v
- u).||
< (1
/
||.(
Inv u).||) holds v is
invertible &
||.(
Inv v).||
<= (1
/ ((1
/
||.(
Inv u).||)
-
||.(v
- u).||)) & ex w be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X), s,I be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X)) st w
= ((
Inv u)
* (v
- u)) & s
= w & I
= (
id X) &
||.s.||
< 1 & ((
- w)
GeoSeq ) is
norm_summable & (I
+ s) is
invertible &
||.(
Inv (I
+ s)).||
<= (1
/ (1
-
||.s.||)) & (
Inv (I
+ s))
= (
Sum ((
- w)
GeoSeq )) & (
Inv v)
= ((
Inv (I
+ s))
* (
Inv u))
proof
let u,v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
assume
A1: u is
invertible &
||.(v
- u).||
< (1
/
||.(
Inv u).||);
set vu = (v
- u);
v
= (u
+ vu) by
RLVECT_4: 1;
hence thesis by
A1,
Th2;
end;
begin
theorem ::
LOPBAN13:18
NRM: for X,Y,Z be
RealNormSpace, u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), v be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z)), w be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Z)) st w
= (v
* u) holds
||.w.||
<= (
||.v.||
*
||.u.||)
proof
let X,Y,Z be
RealNormSpace, u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), v be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z)), w be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Z));
assume
A2: w
= (v
* u);
(
modetrans (v,Y,Z))
= v & (
modetrans (u,X,Y))
= u by
LOPBAN_1:def 11;
hence
||.w.||
<= (
||.v.||
*
||.u.||) by
A2,
LOPBAN_2: 2;
end;
theorem ::
LOPBAN13:19
LM100: for X,Y,Z be
RealNormSpace, u,v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), w be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z)) holds (w
* (u
- v))
= ((w
* u)
- (w
* v)) & (w
* (u
+ v))
= ((w
* u)
+ (w
* v))
proof
let X,Y,Z be
RealNormSpace, u,v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), w be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z));
A2: (
modetrans (u,X,Y))
= u by
LOPBAN_1:def 11;
for x be
Point of X holds ((w
* (u
- v))
. x)
= (((w
* u)
. x)
- ((w
* v)
. x))
proof
let x be
Point of X;
A6: (
modetrans (w,Y,Z)) is
additive;
thus ((w
* (u
- v))
. x)
= ((
modetrans (w,Y,Z))
. ((
modetrans ((u
- v),X,Y))
. x)) by
FUNCT_2: 15
.= ((
modetrans (w,Y,Z))
. ((u
- v)
. x)) by
LOPBAN_1:def 11
.= ((
modetrans (w,Y,Z))
. ((u
. x)
- (v
. x))) by
LOPBAN_1: 40
.= (((
modetrans (w,Y,Z))
. (u
. x))
+ ((
modetrans (w,Y,Z))
. (
- (v
. x)))) by
A6
.= (((
modetrans (w,Y,Z))
. (u
. x))
+ ((
modetrans (w,Y,Z))
. ((
- 1)
* (v
. x)))) by
RLVECT_1: 16
.= (((
modetrans (w,Y,Z))
. (u
. x))
+ ((
- 1)
* ((
modetrans (w,Y,Z))
. (v
. x)))) by
LOPBAN_1:def 5
.= (((
modetrans (w,Y,Z))
. (u
. x))
- ((
modetrans (w,Y,Z))
. (v
. x))) by
RLVECT_1: 16
.= (((
modetrans (w,Y,Z))
. ((
modetrans (u,X,Y))
. x))
- ((
modetrans (w,Y,Z))
. ((
modetrans (v,X,Y))
. x))) by
A2,
LOPBAN_1:def 11
.= ((((
modetrans (w,Y,Z))
* (
modetrans (u,X,Y)))
. x)
- ((
modetrans (w,Y,Z))
. ((
modetrans (v,X,Y))
. x))) by
FUNCT_2: 15
.= (((w
* u)
. x)
- ((w
* v)
. x)) by
FUNCT_2: 15;
end;
hence (w
* (u
- v))
= ((w
* u)
- (w
* v)) by
LOPBAN_1: 40;
for x be
Point of X holds ((w
* (u
+ v))
. x)
= (((w
* u)
. x)
+ ((w
* v)
. x))
proof
let x be
Point of X;
A7: (
modetrans (w,Y,Z)) is
additive;
thus ((w
* (u
+ v))
. x)
= ((
modetrans (w,Y,Z))
. ((
modetrans ((u
+ v),X,Y))
. x)) by
FUNCT_2: 15
.= ((
modetrans (w,Y,Z))
. ((u
+ v)
. x)) by
LOPBAN_1:def 11
.= ((
modetrans (w,Y,Z))
. ((u
. x)
+ (v
. x))) by
LOPBAN_1: 35
.= (((
modetrans (w,Y,Z))
. (u
. x))
+ ((
modetrans (w,Y,Z))
. (v
. x))) by
A7
.= (((
modetrans (w,Y,Z))
. ((
modetrans (u,X,Y))
. x))
+ ((
modetrans (w,Y,Z))
. ((
modetrans (v,X,Y))
. x))) by
A2,
LOPBAN_1:def 11
.= ((((
modetrans (w,Y,Z))
* (
modetrans (u,X,Y)))
. x)
+ ((
modetrans (w,Y,Z))
. ((
modetrans (v,X,Y))
. x))) by
FUNCT_2: 15
.= (((w
* u)
. x)
+ ((w
* v)
. x)) by
FUNCT_2: 15;
end;
hence (w
* (u
+ v))
= ((w
* u)
+ (w
* v)) by
LOPBAN_1: 35;
end;
theorem ::
LOPBAN13:20
LM200: for X,Y,Z be
RealNormSpace, w be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), u,v be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z)) holds ((u
- v)
* w)
= ((u
* w)
- (v
* w)) & ((u
+ v)
* w)
= ((u
* w)
+ (v
* w))
proof
let X,Y,Z be
RealNormSpace, w be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), u,v be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z));
A1: (
modetrans (w,X,Y))
= w by
LOPBAN_1:def 11;
A2: (
modetrans (u,Y,Z))
= u by
LOPBAN_1:def 11;
for x be
Point of X holds (((u
- v)
* w)
. x)
= (((u
* w)
. x)
- ((v
* w)
. x))
proof
let x be
Point of X;
thus (((u
- v)
* w)
. x)
= ((
modetrans ((u
- v),Y,Z))
. ((
modetrans (w,X,Y))
. x)) by
FUNCT_2: 15
.= ((
modetrans ((u
- v),Y,Z))
. (w
. x)) by
LOPBAN_1:def 11
.= ((u
- v)
. (w
. x)) by
LOPBAN_1:def 11
.= ((u
. (w
. x))
- (v
. (w
. x))) by
LOPBAN_1: 40
.= (((
modetrans (u,Y,Z))
. ((
modetrans (w,X,Y))
. x))
- ((
modetrans (v,Y,Z))
. ((
modetrans (w,X,Y))
. x))) by
A1,
A2,
LOPBAN_1:def 11
.= ((((
modetrans (u,Y,Z))
* (
modetrans (w,X,Y)))
. x)
- ((
modetrans (v,Y,Z))
. ((
modetrans (w,X,Y))
. x))) by
FUNCT_2: 15
.= (((u
* w)
. x)
- ((v
* w)
. x)) by
FUNCT_2: 15;
end;
hence ((u
- v)
* w)
= ((u
* w)
- (v
* w)) by
LOPBAN_1: 40;
for x be
Point of X holds (((u
+ v)
* w)
. x)
= (((u
* w)
. x)
+ ((v
* w)
. x))
proof
let x be
Point of X;
thus (((u
+ v)
* w)
. x)
= ((
modetrans ((u
+ v),Y,Z))
. ((
modetrans (w,X,Y))
. x)) by
FUNCT_2: 15
.= ((
modetrans ((u
+ v),Y,Z))
. (w
. x)) by
LOPBAN_1:def 11
.= ((u
+ v)
. (w
. x)) by
LOPBAN_1:def 11
.= ((u
. (w
. x))
+ (v
. (w
. x))) by
LOPBAN_1: 35
.= (((
modetrans (u,Y,Z))
. ((
modetrans (w,X,Y))
. x))
+ ((
modetrans (v,Y,Z))
. ((
modetrans (w,X,Y))
. x))) by
A1,
A2,
LOPBAN_1:def 11
.= ((((
modetrans (u,Y,Z))
* (
modetrans (w,X,Y)))
. x)
+ ((
modetrans (v,Y,Z))
. ((
modetrans (w,X,Y))
. x))) by
FUNCT_2: 15
.= (((u
* w)
. x)
+ ((v
* w)
. x)) by
FUNCT_2: 15;
end;
hence ((u
+ v)
* w)
= ((u
* w)
+ (v
* w)) by
LOPBAN_1: 35;
end;
theorem ::
LOPBAN13:21
LM300: for X,Y be
RealNormSpace, u,v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) holds (u
- (u
+ v))
= (
- v)
proof
let X,Y be
RealNormSpace, u,v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
thus (u
- (u
+ v))
= ((u
- u)
- v) by
RLVECT_1: 27
.= ((
0. (
R_NormSpace_of_BoundedLinearOperators (X,Y)))
- v) by
RLVECT_1: 15
.= (
- v) by
RLVECT_1: 14;
end;
theorem ::
LOPBAN13:22
LM400: for X,Y be
RealNormSpace, u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is
invertible holds ((
Inv u)
* u)
= (
id X) & (u
* (
Inv u))
= (
id Y)
proof
let X,Y be
RealNormSpace, v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
assume
A1: v is
invertible;
v is
Lipschitzian
LinearOperator of X, Y by
LOPBAN_1:def 9;
then
A7: (
dom v)
= the
carrier of X & (
rng v)
= the
carrier of Y by
A1,
FUNCT_2:def 1;
(
Inv v)
= (v
" ) by
A1,
Def1;
then
A9: (
modetrans ((
Inv v),Y,X))
= (v
" ) by
LOPBAN_1:def 11;
then
A11: ((
Inv v)
* v)
= ((v
" )
* v) by
LOPBAN_1:def 11;
(v
* (
Inv v))
= (v
* (v
" )) by
A9,
LOPBAN_1:def 11;
hence thesis by
A1,
A7,
A11,
FUNCT_1: 39;
end;
theorem ::
LOPBAN13:23
LMTh3: for u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is
invertible holds for r be
Real st
0
< r holds ex s be
Real st
0
< s & for v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st
||.(v
- u).||
< s holds
||.((
Inv v)
- (
Inv u)).||
< r
proof
let u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
assume
A1: u is
invertible;
let r be
Real;
assume
A2:
0
< r;
set r0 = (r
/ 2);
A3:
0
< r0 & r0
< r by
A2,
XREAL_1: 215,
XREAL_1: 216;
set s1 = (1
/
||.(
Inv u).||);
set AG = (
R_Normed_Algebra_of_BoundedLinearOperators X);
A5:
0
<
||.(
Inv u).|| by
A1,
LM50;
then
A6:
0
< s1 by
XREAL_1: 139;
set s2 = ((1
/ 2)
/
||.(
Inv u).||);
A7:
0
< s2 by
A5,
XREAL_1: 139;
A8:
0
< (
||.(
Inv u).||
*
||.(
Inv u).||) by
A5,
XREAL_1: 129;
A9:
0
< (r0
/ 2) by
A3,
XREAL_1: 215;
set s3 = ((r0
/ 2)
/ (
||.(
Inv u).||
*
||.(
Inv u).||));
A10:
0
< s3 by
A8,
A9,
XREAL_1: 139;
set s4 = (
min (s1,s2));
A11:
0
< s4 & s4
<= s1 & s4
<= s2 by
A6,
A7,
XXREAL_0: 15,
XXREAL_0: 17;
set s = (
min (s4,s3));
B11:
0
< s & s
<= s4 & s
<= s3 by
A10,
A11,
XXREAL_0: 15,
XXREAL_0: 17;
then
A12:
0
< s & s
<= s1 & s
<= s2 & s
<= s3 by
A11,
XXREAL_0: 2;
take s;
thus
0
< s by
A10,
A11,
XXREAL_0: 15;
let v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y));
assume
A13:
||.(v
- u).||
< s;
then
||.(v
- u).||
< s1 by
A12,
XXREAL_0: 2;
then
consider w be
Point of (
R_Normed_Algebra_of_BoundedLinearOperators X), s,I be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,X)) such that
A14: w
= ((
Inv u)
* (v
- u)) & s
= w & I
= (
id X) &
||.s.||
< 1 & ((
- w)
GeoSeq ) is
norm_summable & (I
+ s) is
invertible &
||.(
Inv (I
+ s)).||
<= (1
/ (1
-
||.s.||)) & (
Inv (I
+ s))
= (
Sum ((
- w)
GeoSeq )) & (
Inv v)
= ((
Inv (I
+ s))
* (
Inv u)) by
A1,
LMTh2;
reconsider sA = s as
Point of AG;
A16: (I
* (
Inv u))
= ((
id X)
* (
modetrans ((
Inv u),Y,X))) by
A14,
LOPBAN_1:def 11
.= (
modetrans ((
Inv u),Y,X)) by
FUNCT_2: 17
.= (
Inv u) by
LOPBAN_1:def 11;
reconsider IIu = (I
* (
Inv u)) as
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,X));
((
Inv v)
- (
Inv u))
= (((
Inv (I
+ s))
- I)
* (
Inv u)) by
A14,
A16,
LM200;
then
A18:
||.((
Inv v)
- (
Inv u)).||
<= (
||.((
Inv (I
+ s))
- I).||
*
||.(
Inv u).||) by
NRM;
A19: ((
Inv (I
+ s))
* (I
+ s))
= I by
A14,
LM400;
((
Inv (I
+ s))
* I)
= ((
modetrans ((
Inv (I
+ s)),X,X))
* (
id X)) by
A14,
LOPBAN_1:def 11
.= (
modetrans ((
Inv (I
+ s)),X,X)) by
FUNCT_2: 17
.= (
Inv (I
+ s)) by
LOPBAN_1:def 11;
then ((
Inv (I
+ s))
- I)
= ((
Inv (I
+ s))
* (I
- (I
+ s))) by
A19,
LM100
.= ((
Inv (I
+ s))
* (
- s)) by
LM300;
then
||.((
Inv (I
+ s))
- I).||
<= (
||.(
Inv (I
+ s)).||
*
||.(
- s).||) by
NRM;
then
A23:
||.((
Inv (I
+ s))
- I).||
<= (
||.(
Inv (I
+ s)).||
*
||.s.||) by
NORMSP_1: 2;
A24:
||.s.||
<= (
||.(
Inv u).||
*
||.(v
- u).||) by
A14,
NRM;
(
||.(
Inv (I
+ s)).||
*
||.s.||)
<= (
||.(
Inv (I
+ s)).||
* (
||.(
Inv u).||
*
||.(v
- u).||)) by
A14,
NRM,
XREAL_1: 64;
then
A25:
||.((
Inv (I
+ s))
- I).||
<= ((
||.(
Inv (I
+ s)).||
*
||.(
Inv u).||)
*
||.(v
- u).||) by
A23,
XXREAL_0: 2;
(
||.(
Inv (I
+ s)).||
* (
||.(
Inv u).||
*
||.(v
- u).||))
<= ((1
/ (1
-
||.s.||))
* (
||.(
Inv u).||
*
||.(v
- u).||)) by
A14,
XREAL_1: 64;
then
||.((
Inv (I
+ s))
- I).||
<= (((1
/ (1
-
||.s.||))
*
||.(
Inv u).||)
*
||.(v
- u).||) by
A25,
XXREAL_0: 2;
then (
||.((
Inv (I
+ s))
- I).||
*
||.(
Inv u).||)
<= ((((1
/ (1
-
||.s.||))
*
||.(
Inv u).||)
*
||.(v
- u).||)
*
||.(
Inv u).||) by
XREAL_1: 64;
then
A29:
||.((
Inv v)
- (
Inv u)).||
<= ((((1
/ (1
-
||.s.||))
*
||.(
Inv u).||)
*
||.(v
- u).||)
*
||.(
Inv u).||) by
A18,
XXREAL_0: 2;
||.(v
- u).||
< s2 by
A12,
A13,
XXREAL_0: 2;
then (
||.(
Inv u).||
*
||.(v
- u).||)
<= (
||.(
Inv u).||
* ((1
/ 2)
/
||.(
Inv u).||)) by
XREAL_1: 64;
then (
||.(
Inv u).||
*
||.(v
- u).||)
<= (1
/ 2) by
A5,
XCMPLX_1: 87;
then
||.s.||
<= (1
/ 2) by
A24,
XXREAL_0: 2;
then (1
- (1
/ 2))
<= (1
-
||.s.||) by
XREAL_1: 10;
then (1
/ (1
-
||.s.||))
<= (1
/ (1
/ 2)) by
XREAL_1: 118;
then
A32: ((1
/ (1
-
||.s.||))
* ((
||.(
Inv u).||
*
||.(
Inv u).||)
*
||.(v
- u).||))
<= (2
* ((
||.(
Inv u).||
*
||.(
Inv u).||)
*
||.(v
- u).||)) by
XREAL_1: 64;
||.(v
- u).||
< s3 by
B11,
A13,
XXREAL_0: 2;
then (
||.(v
- u).||
* (
||.(
Inv u).||
*
||.(
Inv u).||))
<= (s3
* (
||.(
Inv u).||
*
||.(
Inv u).||)) by
XREAL_1: 64;
then (
||.(v
- u).||
* (
||.(
Inv u).||
*
||.(
Inv u).||))
<= (r0
/ 2) by
A8,
XCMPLX_1: 87;
then (2
* (
||.(
Inv u).||
* (
||.(
Inv u).||
*
||.(v
- u).||)))
<= ((r0
/ 2)
* 2) by
XREAL_1: 64;
then ((1
/ (1
-
||.s.||))
* ((
||.(
Inv u).||
*
||.(
Inv u).||)
*
||.(v
- u).||))
<= r0 by
A32,
XXREAL_0: 2;
then
||.((
Inv v)
- (
Inv u)).||
<= r0 by
A29,
XXREAL_0: 2;
hence
||.((
Inv v)
- (
Inv u)).||
< r by
A3,
XXREAL_0: 2;
end;
theorem ::
LOPBAN13:24
LM80: for I be
PartFunc of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), (
R_NormSpace_of_BoundedLinearOperators (Y,X)) st (
dom I)
= (
InvertibleOperators (X,Y)) & for u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st u
in (
InvertibleOperators (X,Y)) holds (I
. u)
= (
Inv u) holds I
is_continuous_on (
InvertibleOperators (X,Y))
proof
let I be
PartFunc of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), (
R_NormSpace_of_BoundedLinearOperators (Y,X));
assume
A1: (
dom I)
= (
InvertibleOperators (X,Y)) & for u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st u
in (
InvertibleOperators (X,Y)) holds (I
. u)
= (
Inv u);
set S = (
R_NormSpace_of_BoundedLinearOperators (X,Y));
set T = (
InvertibleOperators (X,Y));
for x0 be
Point of S holds for r be
Real st x0
in T &
0
< r holds ex s be
Real st
0
< s & for x1 be
Point of S st x1
in T &
||.(x1
- x0).||
< s holds
||.((I
/. x1)
- (I
/. x0)).||
< r
proof
let x0 be
Point of S;
let r be
Real;
assume
A2: x0
in T &
0
< r;
then ex u be
Point of S st x0
= u & u is
invertible;
then
consider s be
Real such that
A4:
0
< s & for v be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st
||.(v
- x0).||
< s holds
||.((
Inv v)
- (
Inv x0)).||
< r by
A2,
LMTh3;
take s;
thus
0
< s by
A4;
let x1 be
Point of S;
assume
A5: x1
in T &
||.(x1
- x0).||
< s;
A7: (I
/. x0)
= (I
. x0) by
A1,
A2,
PARTFUN1:def 6
.= (
Inv x0) by
A1,
A2;
(I
/. x1)
= (I
. x1) by
A1,
A5,
PARTFUN1:def 6
.= (
Inv x1) by
A1,
A5;
hence thesis by
A4,
A5,
A7;
end;
hence I
is_continuous_on (
InvertibleOperators (X,Y)) by
A1,
NFCONT_1: 19;
end;
theorem ::
LOPBAN13:25
ex I be
PartFunc of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), (
R_NormSpace_of_BoundedLinearOperators (Y,X)) st (
dom I)
= (
InvertibleOperators (X,Y)) & (
rng I)
= (
InvertibleOperators (Y,X)) & I is
one-to-one & I
is_continuous_on (
InvertibleOperators (X,Y)) & (ex J be
PartFunc of (
R_NormSpace_of_BoundedLinearOperators (Y,X)), (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st J
= (I
" ) & J is
one-to-one & (
dom J)
= (
InvertibleOperators (Y,X)) & (
rng J)
= (
InvertibleOperators (X,Y)) & J
is_continuous_on (
InvertibleOperators (Y,X))) & for u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st u
in (
InvertibleOperators (X,Y)) holds (I
. u)
= (
Inv u)
proof
set S = (
R_NormSpace_of_BoundedLinearOperators (X,Y));
set K = (
R_NormSpace_of_BoundedLinearOperators (Y,X));
consider J be
Function of (
InvertibleOperators (X,Y)), (
InvertibleOperators (Y,X)) such that
A1: J is
one-to-one & J is
onto & for u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st u
in (
InvertibleOperators (X,Y)) holds (J
. u)
= (
Inv u) by
LM70;
A2: (
InvertibleOperators (X,Y))
<>
{} implies (
InvertibleOperators (Y,X))
<>
{}
proof
assume (
InvertibleOperators (X,Y))
<>
{} ;
then
consider x be
object such that
A3: x
in (
InvertibleOperators (X,Y)) by
XBOOLE_0:def 1;
consider u be
Point of S such that
A4: x
= u & u is
invertible by
A3;
(
Inv u) is
invertible by
A4,
LM60;
then (
Inv u)
in (
InvertibleOperators (Y,X));
hence (
InvertibleOperators (Y,X))
<>
{} ;
end;
then (
dom J)
= (
InvertibleOperators (X,Y)) by
FUNCT_2:def 1;
then J
in (
PFuncs (the
carrier of (
R_NormSpace_of_BoundedLinearOperators (X,Y)),the
carrier of (
R_NormSpace_of_BoundedLinearOperators (Y,X)))) by
A1,
PARTFUN1:def 3;
then
reconsider I = J as
PartFunc of the
carrier of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), the
carrier of (
R_NormSpace_of_BoundedLinearOperators (Y,X)) by
PARTFUN1: 46;
take I;
thus
A9: (
dom I)
= (
InvertibleOperators (X,Y)) by
A2,
FUNCT_2:def 1;
thus (
rng I)
= (
InvertibleOperators (Y,X)) by
A1;
thus I is
one-to-one by
A1;
reconsider L = (J
" ) as
Function of (
InvertibleOperators (Y,X)), (
InvertibleOperators (X,Y)) by
A1,
FUNCT_2: 25;
A14: (
dom (J
" ))
= (
InvertibleOperators (Y,X)) by
A1,
FUNCT_1: 33;
A16: (
rng (J
" ))
= (
dom J) by
A1,
FUNCT_1: 33
.= (
InvertibleOperators (X,Y)) by
A2,
FUNCT_2:def 1;
then L
in (
PFuncs (the
carrier of (
R_NormSpace_of_BoundedLinearOperators (Y,X)),the
carrier of (
R_NormSpace_of_BoundedLinearOperators (X,Y)))) by
A14,
PARTFUN1:def 3;
then
reconsider L as
PartFunc of the
carrier of (
R_NormSpace_of_BoundedLinearOperators (Y,X)), the
carrier of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) by
PARTFUN1: 46;
for v be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,X)) st v
in (
InvertibleOperators (Y,X)) holds (L
. v)
= (
Inv v)
proof
let v be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,X));
assume v
in (
InvertibleOperators (Y,X));
then
consider u be
object such that
A23: u
in (
InvertibleOperators (X,Y)) & (J
. u)
= v by
A1,
FUNCT_2: 11;
reconsider u as
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) by
A23;
A24: ex u0 be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)) st u
= u0 & u0 is
invertible by
A23;
(
Inv v)
= (
Inv (
Inv u)) by
A1,
A23
.= u by
A24,
LM60;
hence thesis by
A1,
A2,
A23,
FUNCT_2: 26;
end;
hence thesis by
A1,
A9,
A14,
A16,
LM80;
end;
theorem ::
LOPBAN13:26
LOPBAN1623: for X,Y,Z be
RealNormSpace, u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), w be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z)) holds (w
* (
- u))
= (
- (w
* u)) & ((
- w)
* u)
= (
- (w
* u))
proof
let X,Y,Z be
RealNormSpace, u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), w be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z));
for x be
Point of X holds ((w
* (
- u))
. x)
= ((
- 1)
* ((w
* u)
. x))
proof
let x be
Point of X;
thus ((w
* (
- u))
. x)
= ((
modetrans (w,Y,Z))
. ((
modetrans ((
- u),X,Y))
. x)) by
FUNCT_2: 15
.= ((
modetrans (w,Y,Z))
. ((
- u)
. x)) by
LOPBAN_1:def 11
.= ((
modetrans (w,Y,Z))
. (((
- 1)
* u)
. x)) by
RLVECT_1: 16
.= ((
modetrans (w,Y,Z))
. ((
- 1)
* (u
. x))) by
LOPBAN_1: 36
.= ((
- 1)
* ((
modetrans (w,Y,Z))
. (u
. x))) by
LOPBAN_1:def 5
.= ((
- 1)
* ((
modetrans (w,Y,Z))
. ((
modetrans (u,X,Y))
. x))) by
LOPBAN_1:def 11
.= ((
- 1)
* ((w
* u)
. x)) by
FUNCT_2: 15;
end;
hence (w
* (
- u))
= ((
- 1)
* (w
* u)) by
LOPBAN_1: 36
.= (
- (w
* u)) by
RLVECT_1: 16;
for x be
Point of X holds (((
- w)
* u)
. x)
= ((
- 1)
* ((w
* u)
. x))
proof
let x be
Point of X;
thus (((
- w)
* u)
. x)
= ((
modetrans ((
- w),Y,Z))
. ((
modetrans (u,X,Y))
. x)) by
FUNCT_2: 15
.= ((
- w)
. ((
modetrans (u,X,Y))
. x)) by
LOPBAN_1:def 11
.= (((
- 1)
* w)
. ((
modetrans (u,X,Y))
. x)) by
RLVECT_1: 16
.= ((
- 1)
* (w
. ((
modetrans (u,X,Y))
. x))) by
LOPBAN_1: 36
.= ((
- 1)
* ((
modetrans (w,Y,Z))
. ((
modetrans (u,X,Y))
. x))) by
LOPBAN_1:def 11
.= ((
- 1)
* ((w
* u)
. x)) by
FUNCT_2: 15;
end;
hence ((
- w)
* u)
= ((
- 1)
* (w
* u)) by
LOPBAN_1: 36
.= (
- (w
* u)) by
RLVECT_1: 16;
end;
theorem ::
LOPBAN13:27
for X,Y,Z be
RealNormSpace, u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), w be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z)) holds ((
- w)
* (
- u))
= (w
* u)
proof
let X,Y,Z be
RealNormSpace, u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), w be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z));
thus ((
- w)
* (
- u))
= (
- (w
* (
- u))) by
LOPBAN1623
.= (
- (
- (w
* u))) by
LOPBAN1623
.= (w
* u) by
RLVECT_1: 17;
end;
theorem ::
LOPBAN13:28
LOPBAN1624: for X,Y,Z be
RealNormSpace, u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), w be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z)), r be
Real holds (w
* (r
* u))
= ((r
* w)
* u) & ((r
* w)
* u)
= ((r
* w)
* u) & ((r
* w)
* u)
= (r
* (w
* u))
proof
let X,Y,Z be
RealNormSpace, u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), w be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z)), r be
Real;
A3: for x be
Point of X holds ((w
* (r
* u))
. x)
= (r
* ((w
* u)
. x))
proof
let x be
Point of X;
thus ((w
* (r
* u))
. x)
= ((
modetrans (w,Y,Z))
. ((
modetrans ((r
* u),X,Y))
. x)) by
FUNCT_2: 15
.= ((
modetrans (w,Y,Z))
. ((r
* u)
. x)) by
LOPBAN_1:def 11
.= ((
modetrans (w,Y,Z))
. (r
* (u
. x))) by
LOPBAN_1: 36
.= (r
* ((
modetrans (w,Y,Z))
. (u
. x))) by
LOPBAN_1:def 5
.= (r
* ((
modetrans (w,Y,Z))
. ((
modetrans (u,X,Y))
. x))) by
LOPBAN_1:def 11
.= (r
* ((w
* u)
. x)) by
FUNCT_2: 15;
end;
for x be
Point of X holds (((r
* w)
* u)
. x)
= (r
* ((w
* u)
. x))
proof
let x be
Point of X;
thus (((r
* w)
* u)
. x)
= ((
modetrans ((r
* w),Y,Z))
. ((
modetrans (u,X,Y))
. x)) by
FUNCT_2: 15
.= ((r
* w)
. ((
modetrans (u,X,Y))
. x)) by
LOPBAN_1:def 11
.= (r
* (w
. ((
modetrans (u,X,Y))
. x))) by
LOPBAN_1: 36
.= (r
* ((
modetrans (w,Y,Z))
. ((
modetrans (u,X,Y))
. x))) by
LOPBAN_1:def 11
.= (r
* ((w
* u)
. x)) by
FUNCT_2: 15;
end;
then ((r
* w)
* u)
= (r
* (w
* u)) by
LOPBAN_1: 36;
hence thesis by
A3,
LOPBAN_1: 36;
end;
theorem ::
LOPBAN13:29
for X,Y,Z be
RealNormSpace holds ex I be
BilinearOperator of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), (
R_NormSpace_of_BoundedLinearOperators (Y,Z)), (
R_NormSpace_of_BoundedLinearOperators (X,Z)) st I
is_continuous_on the
carrier of
[:(
R_NormSpace_of_BoundedLinearOperators (X,Y)), (
R_NormSpace_of_BoundedLinearOperators (Y,Z)):] & for u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), v be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z)) holds (I
. (u,v))
= (v
* u)
proof
let X,Y,Z be
RealNormSpace;
set E = (
R_NormSpace_of_BoundedLinearOperators (X,Y));
set F = (
R_NormSpace_of_BoundedLinearOperators (Y,Z));
set G = (
R_NormSpace_of_BoundedLinearOperators (X,Z));
defpred
P1[
object,
object] means ex u be
Point of E, v be
Point of F st $1
=
[u, v] & $2
= (v
* u);
A1: for x be
object st x
in the
carrier of
[:E, F:] holds ex y be
object st y
in the
carrier of G &
P1[x, y]
proof
let x be
object;
assume x
in the
carrier of
[:E, F:];
then
consider u be
Point of E, v be
Point of F such that
A2: x
=
[u, v] by
PRVECT_3: 18;
take y = (v
* u);
thus y
in the
carrier of G &
P1[x, y] by
A2;
end;
consider L be
Function of the
carrier of
[:E, F:], the
carrier of G such that
A3: for x be
object st x
in the
carrier of
[:E, F:] holds
P1[x, (L
. x)] from
FUNCT_2:sch 1(
A1);
A4: for u be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), v be
Point of (
R_NormSpace_of_BoundedLinearOperators (Y,Z)) holds (L
. (u,v))
= (v
* u)
proof
let u be
Point of E, v be
Point of F;
[u, v] is
set by
TARSKI: 1;
then
reconsider x =
[u, v] as
Point of
[:E, F:] by
PRVECT_3: 18;
consider u1 be
Point of E, v1 be
Point of F such that
A5: x
=
[u1, v1] & (L
. x)
= (v1
* u1) by
A3;
u
= u1 & v
= v1 by
A5,
XTUPLE_0: 1;
hence thesis by
A5;
end;
A6: for x1,x2 be
Point of E, y be
Point of F holds (L
. ((x1
+ x2),y))
= ((L
. (x1,y))
+ (L
. (x2,y)))
proof
let x1,x2 be
Point of E, y be
Point of F;
thus (L
. ((x1
+ x2),y))
= (y
* (x1
+ x2)) by
A4
.= ((y
* x1)
+ (y
* x2)) by
LM100
.= ((L
. (x1,y))
+ (y
* x2)) by
A4
.= ((L
. (x1,y))
+ (L
. (x2,y))) by
A4;
end;
A7: for x be
Point of E, y be
Point of F, a be
Real holds (L
. ((a
* x),y))
= (a
* (L
. (x,y)))
proof
let x be
Point of E, y be
Point of F, a be
Real;
thus (L
. ((a
* x),y))
= (y
* (a
* x)) by
A4
.= ((a
* y)
* x) by
LOPBAN1624
.= (a
* (y
* x)) by
LOPBAN1624
.= (a
* (L
. (x,y))) by
A4;
end;
A8: for x be
Point of E, y1,y2 be
Point of F holds (L
. (x,(y1
+ y2)))
= ((L
. (x,y1))
+ (L
. (x,y2)))
proof
let x be
Point of E, y1,y2 be
Point of F;
thus (L
. (x,(y1
+ y2)))
= ((y1
+ y2)
* x) by
A4
.= ((y1
* x)
+ (y2
* x)) by
LM200
.= ((L
. (x,y1))
+ (y2
* x)) by
A4
.= ((L
. (x,y1))
+ (L
. (x,y2))) by
A4;
end;
for x be
Point of E, y be
Point of F, a be
Real holds (L
. (x,(a
* y)))
= (a
* (L
. (x,y)))
proof
let x be
Point of E, y be
Point of F, a be
Real;
thus (L
. (x,(a
* y)))
= ((a
* y)
* x) by
A4
.= (a
* (y
* x)) by
LOPBAN1624
.= (a
* (L
. (x,y))) by
A4;
end;
then
reconsider L as
BilinearOperator of E, F, G by
A6,
A7,
A8,
LOPBAN_8: 12;
take L;
set K = 1;
for x be
Point of E, y be
Point of F holds
||.(L
. (x,y)).||
<= ((K
*
||.x.||)
*
||.y.||)
proof
let x be
Point of E, y be
Point of F;
(L
. (x,y))
= (y
* x) by
A4;
hence
||.(L
. (x,y)).||
<= ((K
*
||.x.||)
*
||.y.||) by
NRM;
end;
hence thesis by
A4,
LOPBAN_8: 13;
end;
theorem ::
LOPBAN13:30
XXXX: for X,Y be
RealNormSpace, v be
Lipschitzian
LinearOperator of X, Y, w be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), a be
Real st v
= w holds (a
* w)
= (a
(#) v)
proof
let X,Y be
RealNormSpace, v be
Lipschitzian
LinearOperator of X, Y, w be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), a be
Real;
set S = (
R_Normed_Algebra_of_BoundedLinearOperators X);
assume
A1: v
= w;
(a
* w) is
Lipschitzian
LinearOperator of X, Y by
LOPBAN_1:def 9;
then
A3: (
dom (a
* w))
= the
carrier of X by
FUNCT_2:def 1;
A4: (
dom (a
(#) v))
= (
dom v) by
VFUNCT_1:def 4
.= the
carrier of X by
FUNCT_2:def 1;
for s be
object st s
in (
dom (a
(#) v)) holds ((a
(#) v)
. s)
= ((a
* w)
. s)
proof
let s be
object;
assume
A5: s
in (
dom (a
(#) v));
then
reconsider d = s as
Point of X;
thus ((a
(#) v)
. s)
= ((a
(#) v)
/. d) by
A4,
PARTFUN1:def 6
.= (a
* (v
/. d)) by
A5,
VFUNCT_1:def 4
.= ((a
* w)
. s) by
A1,
LOPBAN_1: 36;
end;
hence (a
(#) v)
= (a
* w) by
A3,
A4,
FUNCT_1: 2;
end;
theorem ::
LOPBAN13:31
for X,Y be
RealNormSpace, v be
Lipschitzian
LinearOperator of X, Y, w be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), a be
Real st v
= w holds (
- w)
= (
- v)
proof
let X,Y be
RealNormSpace, v be
Lipschitzian
LinearOperator of X, Y, w be
Point of (
R_NormSpace_of_BoundedLinearOperators (X,Y)), a be
Real;
assume
A1: v
= w;
thus (
- w)
= ((
- 1)
* w) by
RLVECT_1: 16
.= ((
- 1)
(#) v) by
A1,
XXXX
.= (
- v) by
VFUNCT_1: 23;
end;