lopban_8.miz
    
    begin
    
    reserve S,T,W,Y for
    RealNormSpace;
    
    reserve f,f1,f2 for
    PartFunc of S, T; 
    
    reserve Z for
    Subset of S; 
    
    reserve i,n for
    Nat;
    
    theorem :: 
    
    LOPBAN_8:1
    
    
    
    
    
    Th020: for E,F be 
    RealNormSpace, E1 be 
    Subset of E, f be 
    PartFunc of E, F st E1 is 
    dense & F is 
    complete & ( 
    dom f) 
    = E1 & f 
    is_uniformly_continuous_on E1 holds (ex g be 
    Function of E, F st (g 
    | E1) 
    = f & g 
    is_uniformly_continuous_on the 
    carrier of E & (for x be 
    Point of E holds ex seq be 
    sequence of E st ( 
    rng seq) 
    c= E1 & seq is 
    convergent & ( 
    lim seq) 
    = x & (f 
    /* seq) is 
    convergent & (g 
    . x) 
    = ( 
    lim (f 
    /* seq))) & (for x be 
    Point of E, seq be 
    sequence of E st ( 
    rng seq) 
    c= E1 & seq is 
    convergent & ( 
    lim seq) 
    = x holds (f 
    /* seq) is 
    convergent & (g 
    . x) 
    = ( 
    lim (f 
    /* seq)))) & (for g1,g2 be 
    Function of E, F st (g1 
    | E1) 
    = f & g1 
    is_continuous_on the 
    carrier of E & (g2 
    | E1) 
    = f & g2 
    is_continuous_on the 
    carrier of E holds g1 
    = g2) 
    
    proof
    
      let E,F be
    RealNormSpace, E1 be 
    Subset of E, f be 
    PartFunc of E, F; 
    
      assume that
    
      
    
    A1: E1 is 
    dense and 
    
      
    
    A2: F is 
    complete and 
    
      
    
    A3: ( 
    dom f) 
    = E1 and 
    
      
    
    A4: f 
    is_uniformly_continuous_on E1; 
    
      
    
      
    
    A6: for x be 
    Point of E, seq be 
    sequence of E st ( 
    rng seq) 
    c= E1 & seq is 
    convergent holds for s be 
    Real st 
    0  
    < s holds ex n be 
    Nat st for m be 
    Nat st n 
    <= m holds 
    ||.(((f
    /* seq) 
    . m) 
    - ((f 
    /* seq) 
    . n)).|| 
    < s 
    
      proof
    
        let x be
    Point of E, seq be 
    sequence of E; 
    
        assume that
    
        
    
    A7: ( 
    rng seq) 
    c= E1 and 
    
        
    
    A8: seq is 
    convergent;
    
        set fseq = (f
    /* seq); 
    
        let r be
    Real;
    
        assume
    0  
    < r; 
    
        then
    
        consider s be
    Real such that 
    
        
    
    A10: 
    0  
    < s & for x1,x2 be 
    Point of E st x1 
    in E1 & x2 
    in E1 & 
    ||.(x1
    - x2).|| 
    < s holds 
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    < r by 
    A4,
    NFCONT_2:def 1;
    
        consider n be
    Nat such that 
    
        
    
    A11: for m be 
    Nat st n 
    <= m holds 
    ||.((seq
    . m) 
    - (seq 
    . n)).|| 
    < s by 
    A8,
    A10,
    LOPBAN_3: 4;
    
        take n;
    
        let m be
    Nat;
    
        assume n
    <= m; 
    
        then
    
        
    
    A13: 
    ||.((seq
    . m) 
    - (seq 
    . n)).|| 
    < s by 
    A11;
    
        
    
        
    
    A14: n 
    in  
    NAT & m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        
    
        
    
    B14: (seq 
    . m) 
    in ( 
    rng seq) & (seq 
    . n) 
    in ( 
    rng seq) by 
    FUNCT_2: 4,
    ORDINAL1:def 12;
    
        (f
    /. (seq 
    . m)) 
    = (fseq 
    . m) & (f 
    /. (seq 
    . n)) 
    = (fseq 
    . n) by 
    A3,
    A7,
    A14,
    FUNCT_2: 109;
    
        hence
    ||.((fseq
    . m) 
    - (fseq 
    . n)).|| 
    < r by 
    A7,
    A10,
    A13,
    B14;
    
      end;
    
      
    
      
    
    A16: for x be 
    Point of E, seq be 
    sequence of E st ( 
    rng seq) 
    c= E1 & seq is 
    convergent holds (f 
    /* seq) is 
    convergent
    
      proof
    
        let x be
    Point of E, seq be 
    sequence of E; 
    
        assume that
    
        
    
    A17: ( 
    rng seq) 
    c= E1 and 
    
        
    
    A18: seq is 
    convergent;
    
        for s be
    Real st 
    0  
    < s holds ex n be 
    Nat st for m be 
    Nat st n 
    <= m holds 
    ||.(((f
    /* seq) 
    . m) 
    - ((f 
    /* seq) 
    . n)).|| 
    < s by 
    A6,
    A17,
    A18;
    
        hence thesis by
    A2,
    LOPBAN_1:def 15,
    LOPBAN_3: 5;
    
      end;
    
      
    
      
    
    A19: for x be 
    Point of E, seq1,seq2 be 
    sequence of E st ( 
    rng seq1) 
    c= E1 & seq1 is 
    convergent & ( 
    lim seq1) 
    = x & ( 
    rng seq2) 
    c= E1 & seq2 is 
    convergent & ( 
    lim seq2) 
    = x holds ( 
    lim (f 
    /* seq1)) 
    = ( 
    lim (f 
    /* seq2)) 
    
      proof
    
        let x be
    Point of E, seq1,seq2 be 
    sequence of E; 
    
        assume that
    
        
    
    A20: ( 
    rng seq1) 
    c= E1 & seq1 is 
    convergent & ( 
    lim seq1) 
    = x and 
    
        
    
    A21: ( 
    rng seq2) 
    c= E1 & seq2 is 
    convergent & ( 
    lim seq2) 
    = x; 
    
        deffunc
    
    F2(
    Nat) = (seq1
    . $1); 
    
        deffunc
    
    F3(
    Nat) = (seq2
    . $1); 
    
        consider s be
    sequence of the 
    carrier of E such that 
    
        
    
    A22: for n be 
    Nat holds (s 
    . (2 
    * n)) 
    =  
    F2(n) & (s
    . ((2 
    * n) 
    + 1)) 
    =  
    F3(n) from
    INTEGR20:sch 1;
    
        
    
    B23: 
    
        now
    
          let y be
    object;
    
          assume y
    in ( 
    rng s); 
    
          then
    
          consider i be
    object such that 
    
          
    
    A23: i 
    in  
    NAT & y 
    = (s 
    . i) by 
    FUNCT_2: 11;
    
          reconsider i as
    Nat by 
    A23;
    
          consider k be
    Nat such that 
    
          
    
    A24: i 
    = (2 
    * k) or i 
    = ((2 
    * k) 
    + 1) by 
    INTEGR20: 14;
    
          reconsider k1 = k, i1 = i as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          per cases by
    A24;
    
            suppose i
    = (2 
    * k1); 
    
            then (s
    . i) 
    = (seq1 
    . k1) by 
    A22;
    
            then (s
    . i) 
    in ( 
    rng seq1) by 
    FUNCT_2: 4;
    
            hence y
    in E1 by 
    A20,
    A23;
    
          end;
    
            suppose i
    = ((2 
    * k1) 
    + 1); 
    
            then (s
    . i) 
    = (seq2 
    . k1) by 
    A22;
    
            then (s
    . i) 
    in ( 
    rng seq2) by 
    FUNCT_2: 4;
    
            hence y
    in E1 by 
    A21,
    A23;
    
          end;
    
        end;
    
        then
    
        
    
    A28: ( 
    rng s) 
    c= E1 by 
    TARSKI:def 3;
    
        now
    
          let p be
    Real;
    
          assume
    
          
    
    A30: 
    0  
    < p; 
    
          then
    
          consider n1 be
    Nat such that 
    
          
    
    A31: for m be 
    Nat st n1 
    <= m holds 
    ||.((seq1
    . m) 
    - x).|| 
    < p by 
    A20,
    NORMSP_1:def 7;
    
          consider n2 be
    Nat such that 
    
          
    
    A32: for m be 
    Nat st n2 
    <= m holds 
    ||.((seq2
    . m) 
    - x).|| 
    < p by 
    A21,
    A30,
    NORMSP_1:def 7;
    
          reconsider n3 = (
    max (n1,n2)) as 
    Nat by 
    TARSKI: 1;
    
          
    
          
    
    A33: n1 
    <= n3 & n2 
    <= n3 by 
    XXREAL_0: 25;
    
          reconsider n = ((2
    * n3) 
    + 1) as 
    Nat;
    
          take n;
    
          let m be
    Nat;
    
          assume
    
          
    
    A34: n 
    <= m; 
    
          consider k be
    Nat such that 
    
          
    
    A35: m 
    = (2 
    * k) or m 
    = ((2 
    * k) 
    + 1) by 
    INTEGR20: 14;
    
          reconsider k1 = k, m1 = m as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          per cases by
    A35;
    
            suppose
    
            
    
    A36: m 
    = (2 
    * k1); 
    
            then
    
            
    
    A37: (s 
    . m) 
    = (seq1 
    . k1) by 
    A22;
    
            
    
            
    
    A38: (2 
    * n3) 
    <= ((2 
    * k) 
    - 1) by 
    A34,
    A36,
    XREAL_1: 19;
    
            ((2
    * k) 
    - 1) 
    < (((2 
    * k) 
    - 1) 
    + 1) by 
    XREAL_1: 145;
    
            then (2
    * n3) 
    <= (2 
    * k) by 
    A38,
    XXREAL_0: 2;
    
            then ((2
    * n3) 
    / 2) 
    <= ((2 
    * k) 
    / 2) by 
    XREAL_1: 72;
    
            then n1
    <= k by 
    A33,
    XXREAL_0: 2;
    
            hence
    ||.((s
    . m) 
    - x).|| 
    < p by 
    A31,
    A37;
    
          end;
    
            suppose
    
            
    
    A39: m 
    = ((2 
    * k) 
    + 1); 
    
            then
    
            
    
    A40: (s 
    . m1) 
    = (seq2 
    . k1) by 
    A22;
    
            (((2
    * n3) 
    + 1) 
    - 1) 
    <= (((2 
    * k) 
    + 1) 
    - 1) by 
    A34,
    A39,
    XREAL_1: 13;
    
            then ((2
    * n3) 
    / 2) 
    <= ((2 
    * k) 
    / 2) by 
    XREAL_1: 72;
    
            then n2
    <= k by 
    A33,
    XXREAL_0: 2;
    
            hence
    ||.((s
    . m) 
    - x).|| 
    < p by 
    A32,
    A40;
    
          end;
    
        end;
    
        then
    
        
    
    A42: (f 
    /* s) is 
    convergent by 
    A16,
    A28,
    NORMSP_1:def 6;
    
        for i be
    Nat holds ((f 
    /* s) 
    . (2 
    * i)) 
    = ((f 
    /* seq1) 
    . i) & ((f 
    /* s) 
    . ((2 
    * i) 
    + 1)) 
    = ((f 
    /* seq2) 
    . i) 
    
        proof
    
          let i be
    Nat;
    
          
    
          
    
    A43: i 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          (2
    * i) 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          
    
          hence ((f
    /* s) 
    . (2 
    * i)) 
    = (f 
    /. (s 
    . (2 
    * i))) by 
    A3,
    B23,
    FUNCT_2: 109,
    TARSKI:def 3
    
          .= (f
    /. (seq1 
    . i)) by 
    A22
    
          .= ((f
    /* seq1) 
    . i) by 
    A3,
    A20,
    A43,
    FUNCT_2: 109;
    
          
    
          thus ((f
    /* s) 
    . ((2 
    * i) 
    + 1)) 
    = (f 
    /. (s 
    . ((2 
    * i) 
    + 1))) by 
    A3,
    B23,
    FUNCT_2: 109,
    TARSKI:def 3
    
          .= (f
    /. (seq2 
    . i)) by 
    A22
    
          .= ((f
    /* seq2) 
    . i) by 
    A3,
    A21,
    A43,
    FUNCT_2: 109;
    
        end;
    
        then (
    lim (f 
    /* seq1)) 
    = ( 
    lim (f 
    /* s)) & ( 
    lim (f 
    /* seq2)) 
    = ( 
    lim (f 
    /* s)) by 
    A42,
    INTEGR20: 18;
    
        hence thesis;
    
      end;
    
      defpred
    
    P1[
    object, 
    object] means ex seq be
    sequence of E st ( 
    rng seq) 
    c= E1 & seq is 
    convergent & ( 
    lim seq) 
    = $1 & (f 
    /* seq) is 
    convergent & $2 
    = ( 
    lim (f 
    /* seq)); 
    
      
    
      
    
    A46: for x be 
    Element of E holds ex y be 
    Element of F st 
    P1[x, y]
    
      proof
    
        let x be
    Element of E; 
    
        consider seq be
    sequence of E such that 
    
        
    
    A47: ( 
    rng seq) 
    c= E1 & seq is 
    convergent & ( 
    lim seq) 
    = x by 
    A1,
    NORMSP_3: 14;
    
        take y = (
    lim (f 
    /* seq)); 
    
        thus thesis by
    A16,
    A47;
    
      end;
    
      consider g be
    Function of E, F such that 
    
      
    
    A49: for x be 
    Element of E holds 
    P1[x, (g
    . x)] from 
    FUNCT_2:sch 3(
    A46);
    
      
    
      
    
    A50: ( 
    dom g) 
    = the 
    carrier of E by 
    FUNCT_2:def 1;
    
      
    
      
    
    A51: ( 
    dom f) 
    = (the 
    carrier of E 
    /\ E1) by 
    A3,
    XBOOLE_1: 28
    
      .= ((
    dom g) 
    /\ E1) by 
    FUNCT_2:def 1;
    
      
    
      
    
    A52: f 
    is_continuous_on E1 by 
    A4,
    NFCONT_2: 7;
    
      for x be
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    = (g 
    . x) 
    
      proof
    
        let x0 be
    object;
    
        assume
    
        
    
    A53: x0 
    in ( 
    dom f); 
    
        then
    
        
    
    A54: x0 
    in ( 
    dom g) & x0 
    in E1 by 
    A51,
    XBOOLE_0:def 4;
    
        reconsider x = x0 as
    Point of E by 
    A53;
    
        reconsider seq1 = (
    NAT  
    --> x) as 
    sequence of E; 
    
        for n be
    Nat holds (seq1 
    . n) 
    = x by 
    FUNCOP_1: 7,
    ORDINAL1:def 12;
    
        then
    
        
    
    A56: seq1 is 
    convergent & ( 
    lim seq1) 
    = x by 
    NORMSP_3: 23;
    
        
    
        
    
    A58: ( 
    rng seq1) 
    c= E1 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng seq1); 
    
          then
    
          consider i be
    object such that 
    
          
    
    A57: i 
    in  
    NAT & y 
    = (seq1 
    . i) by 
    FUNCT_2: 11;
    
          reconsider i as
    Nat by 
    A57;
    
          thus y
    in E1 by 
    A54,
    A57,
    FUNCOP_1: 7;
    
        end;
    
        then (f
    /* seq1) is 
    convergent & ( 
    lim (f 
    /* seq1)) 
    = (f 
    /. ( 
    lim seq1)) by 
    A52,
    A54,
    A56,
    NFCONT_1: 18;
    
        then
    
        
    
    A59: ( 
    lim (f 
    /* seq1)) 
    = (f 
    . x) by 
    A53,
    A56,
    PARTFUN1:def 6;
    
        consider seq2 be
    sequence of E such that 
    
        
    
    A60: ( 
    rng seq2) 
    c= E1 & seq2 is 
    convergent & ( 
    lim seq2) 
    = x & (f 
    /* seq2) is 
    convergent & (g 
    . x) 
    = ( 
    lim (f 
    /* seq2)) by 
    A49;
    
        thus thesis by
    A19,
    A56,
    A58,
    A59,
    A60;
    
      end;
    
      then
    
      
    
    A61: (g 
    | E1) 
    = f by 
    A51,
    FUNCT_1: 46;
    
      
    
      
    
    A62: for x be 
    Point of E, seq be 
    sequence of E st ( 
    rng seq) 
    c= E1 & seq is 
    convergent & ( 
    lim seq) 
    = x holds (f 
    /* seq) is 
    convergent & (g 
    . x) 
    = ( 
    lim (f 
    /* seq)) 
    
      proof
    
        let x be
    Point of E, seq be 
    sequence of E; 
    
        assume
    
        
    
    A63: ( 
    rng seq) 
    c= E1 & seq is 
    convergent & ( 
    lim seq) 
    = x; 
    
        consider seq1 be
    sequence of E such that 
    
        
    
    A64: ( 
    rng seq1) 
    c= E1 & seq1 is 
    convergent & ( 
    lim seq1) 
    = x & (f 
    /* seq1) is 
    convergent & (g 
    . x) 
    = ( 
    lim (f 
    /* seq1)) by 
    A49;
    
        thus (f
    /* seq) is 
    convergent by 
    A16,
    A63;
    
        thus thesis by
    A19,
    A63,
    A64;
    
      end;
    
      for r be
    Real st 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for x1,x2 be 
    Point of E st x1 
    in the 
    carrier of E & x2 
    in the 
    carrier of E & 
    ||.(x1
    - x2).|| 
    < s holds 
    ||.((g
    /. x1) 
    - (g 
    /. x2)).|| 
    < r 
    
      proof
    
        let r0 be
    Real;
    
        assume
    
        
    
    A65: 
    0  
    < r0; 
    
        set r1 = (r0
    / 2); 
    
        
    
        
    
    A66: 
    0  
    < r1 & r1 
    < r0 by 
    A65,
    XREAL_1: 215,
    XREAL_1: 216;
    
        set r = (r1
    / 3); 
    
        
    
        
    
    A67: 
    0  
    < r & r 
    < r1 by 
    A66,
    XREAL_1: 221,
    XREAL_1: 222;
    
        consider s0 be
    Real such that 
    
        
    
    A68: 
    0  
    < s0 & for x1,x2 be 
    Point of E st x1 
    in E1 & x2 
    in E1 & 
    ||.(x1
    - x2).|| 
    < s0 holds 
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    < r by 
    A4,
    A66,
    NFCONT_2:def 1,
    XREAL_1: 222;
    
        set s = (s0
    / 3); 
    
        
    
        
    
    A69: 
    0  
    < s & s 
    < s0 by 
    A68,
    XREAL_1: 221,
    XREAL_1: 222;
    
        take s;
    
        thus
    0  
    < s by 
    A68,
    XREAL_1: 222;
    
        let x1,x2 be
    Point of E; 
    
        assume
    
        
    
    A70: x1 
    in the 
    carrier of E & x2 
    in the 
    carrier of E & 
    ||.(x1
    - x2).|| 
    < s; 
    
        consider seq1 be
    sequence of E such that 
    
        
    
    A71: ( 
    rng seq1) 
    c= E1 & seq1 is 
    convergent & ( 
    lim seq1) 
    = x1 & (f 
    /* seq1) is 
    convergent & (g 
    . x1) 
    = ( 
    lim (f 
    /* seq1)) by 
    A49;
    
        consider M10 be
    Nat such that 
    
        
    
    A72: for n be 
    Nat st M10 
    <= n holds 
    ||.((seq1
    . n) 
    - x1).|| 
    < s by 
    A69,
    A71,
    NORMSP_1:def 7;
    
        consider M11 be
    Nat such that 
    
        
    
    A73: for n be 
    Nat st M11 
    <= n holds 
    ||.(((f
    /* seq1) 
    . n) 
    - (g 
    . x1)).|| 
    < r by 
    A67,
    A71,
    NORMSP_1:def 7;
    
        set M1 = (M10
    + M11); 
    
        
    
        
    
    A74: (M10 
    +  
    0 ) 
    <= M1 & (M11 
    +  
    0 ) 
    <= M1 by 
    XREAL_1: 7;
    
        consider seq2 be
    sequence of E such that 
    
        
    
    A75: ( 
    rng seq2) 
    c= E1 & seq2 is 
    convergent & ( 
    lim seq2) 
    = x2 & (f 
    /* seq2) is 
    convergent & (g 
    . x2) 
    = ( 
    lim (f 
    /* seq2)) by 
    A49;
    
        consider M20 be
    Nat such that 
    
        
    
    A76: for n be 
    Nat st M20 
    <= n holds 
    ||.((seq2
    . n) 
    - x2).|| 
    < s by 
    A69,
    A75,
    NORMSP_1:def 7;
    
        consider M21 be
    Nat such that 
    
        
    
    A77: for n be 
    Nat st M21 
    <= n holds 
    ||.(((f
    /* seq2) 
    . n) 
    - (g 
    . x2)).|| 
    < r by 
    A67,
    A75,
    NORMSP_1:def 7;
    
        set M2 = (M20
    + M21); 
    
        
    
        
    
    A78: (M20 
    +  
    0 ) 
    <= M2 & (M21 
    +  
    0 ) 
    <= M2 by 
    XREAL_1: 7;
    
        set n = (M1
    + M2); 
    
        
    
        
    
    A82: 
    ||.((seq1
    . n) 
    - x1).|| 
    < s & 
    ||.(((f
    /* seq1) 
    . n) 
    - (g 
    . x1)).|| 
    < r by 
    A72,
    A73,
    A74,
    XREAL_1: 7;
    
        
    
        
    
    A83: 
    ||.((seq2
    . n) 
    - x2).|| 
    < s & 
    ||.(((f
    /* seq2) 
    . n) 
    - (g 
    . x2)).|| 
    < r by 
    A76,
    A77,
    A78,
    XREAL_1: 7;
    
        ((seq2
    . n) 
    - (seq1 
    . n)) 
    = ((((seq2 
    . n) 
    - x2) 
    + x2) 
    - (seq1 
    . n)) by 
    RLVECT_4: 1
    
        .= ((((seq2
    . n) 
    - x2) 
    + ((x2 
    - x1) 
    + x1)) 
    - (seq1 
    . n)) by 
    RLVECT_4: 1
    
        .= (((((seq2
    . n) 
    - x2) 
    + (x2 
    - x1)) 
    + x1) 
    - (seq1 
    . n)) by 
    RLVECT_1:def 3
    
        .= ((((seq2
    . n) 
    - x2) 
    + (x2 
    - x1)) 
    + (x1 
    - (seq1 
    . n))) by 
    RLVECT_1: 28;
    
        then
    
        
    
    A84: 
    ||.((seq2
    . n) 
    - (seq1 
    . n)).|| 
    <= ( 
    ||.(((seq2
    . n) 
    - x2) 
    + (x2 
    - x1)).|| 
    +  
    ||.(x1
    - (seq1 
    . n)).||) by 
    NORMSP_1:def 1;
    
        
    ||.(((seq2
    . n) 
    - x2) 
    + (x2 
    - x1)).|| 
    <= ( 
    ||.((seq2
    . n) 
    - x2).|| 
    +  
    ||.(x2
    - x1).||) by 
    NORMSP_1:def 1;
    
        then (
    ||.(((seq2
    . n) 
    - x2) 
    + (x2 
    - x1)).|| 
    +  
    ||.(x1
    - (seq1 
    . n)).||) 
    <= (( 
    ||.((seq2
    . n) 
    - x2).|| 
    +  
    ||.(x2
    - x1).||) 
    +  
    ||.(x1
    - (seq1 
    . n)).||) by 
    XREAL_1: 7;
    
        then
    
        
    
    A85: 
    ||.((seq2
    . n) 
    - (seq1 
    . n)).|| 
    <= (( 
    ||.((seq2
    . n) 
    - x2).|| 
    +  
    ||.(x2
    - x1).||) 
    +  
    ||.(x1
    - (seq1 
    . n)).||) by 
    A84,
    XXREAL_0: 2;
    
        
    ||.(x2
    - x1).|| 
    < s by 
    A70,
    NORMSP_1: 7;
    
        then
    
        
    
    A86: ( 
    ||.((seq2
    . n) 
    - x2).|| 
    +  
    ||.(x2
    - x1).||) 
    < (s 
    + s) by 
    A83,
    XREAL_1: 8;
    
        
    ||.(x1
    - (seq1 
    . n)).|| 
    < s by 
    A82,
    NORMSP_1: 7;
    
        then ((
    ||.((seq2
    . n) 
    - x2).|| 
    +  
    ||.(x2
    - x1).||) 
    +  
    ||.(x1
    - (seq1 
    . n)).||) 
    < ((s 
    + s) 
    + s) by 
    A86,
    XREAL_1: 8;
    
        then
    ||.((seq2
    . n) 
    - (seq1 
    . n)).|| 
    < ((s 
    + s) 
    + s) by 
    A85,
    XXREAL_0: 2;
    
        then
    
        
    
    A87: 
    ||.((seq1
    . n) 
    - (seq2 
    . n)).|| 
    < ((s 
    + s) 
    + s) by 
    NORMSP_1: 7;
    
        
    
        
    
    A88: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        (seq2
    . n) 
    in ( 
    rng seq2) & (seq1 
    . n) 
    in ( 
    rng seq1) by 
    FUNCT_2: 4,
    ORDINAL1:def 12;
    
        then
    
        
    
    A89: 
    ||.((f
    /. (seq1 
    . n)) 
    - (f 
    /. (seq2 
    . n))).|| 
    < r by 
    A68,
    A71,
    A75,
    A87;
    
        ((g
    /. x1) 
    - (g 
    /. x2)) 
    = ((((g 
    /. x1) 
    - (f 
    /. (seq1 
    . n))) 
    + (f 
    /. (seq1 
    . n))) 
    - (g 
    /. x2)) by 
    RLVECT_4: 1
    
        .= ((((g
    /. x1) 
    - (f 
    /. (seq1 
    . n))) 
    + (((f 
    /. (seq1 
    . n)) 
    - (f 
    /. (seq2 
    . n))) 
    + (f 
    /. (seq2 
    . n)))) 
    - (g 
    /. x2)) by 
    RLVECT_4: 1
    
        .= (((((g
    /. x1) 
    - (f 
    /. (seq1 
    . n))) 
    + ((f 
    /. (seq1 
    . n)) 
    - (f 
    /. (seq2 
    . n)))) 
    + (f 
    /. (seq2 
    . n))) 
    - (g 
    /. x2)) by 
    RLVECT_1:def 3
    
        .= ((((g
    /. x1) 
    - (f 
    /. (seq1 
    . n))) 
    + ((f 
    /. (seq1 
    . n)) 
    - (f 
    /. (seq2 
    . n)))) 
    + ((f 
    /. (seq2 
    . n)) 
    - (g 
    /. x2))) by 
    RLVECT_1: 28;
    
        then
    
        
    
    A90: 
    ||.((g
    /. x1) 
    - (g 
    /. x2)).|| 
    <= ( 
    ||.(((g
    /. x1) 
    - (f 
    /. (seq1 
    . n))) 
    + ((f 
    /. (seq1 
    . n)) 
    - (f 
    /. (seq2 
    . n)))).|| 
    +  
    ||.((f
    /. (seq2 
    . n)) 
    - (g 
    /. x2)).||) by 
    NORMSP_1:def 1;
    
        
    ||.(((g
    /. x1) 
    - (f 
    /. (seq1 
    . n))) 
    + ((f 
    /. (seq1 
    . n)) 
    - (f 
    /. (seq2 
    . n)))).|| 
    <= ( 
    ||.((g
    /. x1) 
    - (f 
    /. (seq1 
    . n))).|| 
    +  
    ||.((f
    /. (seq1 
    . n)) 
    - (f 
    /. (seq2 
    . n))).||) by 
    NORMSP_1:def 1;
    
        then (
    ||.(((g
    /. x1) 
    - (f 
    /. (seq1 
    . n))) 
    + ((f 
    /. (seq1 
    . n)) 
    - (f 
    /. (seq2 
    . n)))).|| 
    +  
    ||.((f
    /. (seq2 
    . n)) 
    - (g 
    /. x2)).||) 
    <= (( 
    ||.((g
    /. x1) 
    - (f 
    /. (seq1 
    . n))).|| 
    +  
    ||.((f
    /. (seq1 
    . n)) 
    - (f 
    /. (seq2 
    . n))).||) 
    +  
    ||.((f
    /. (seq2 
    . n)) 
    - (g 
    /. x2)).||) by 
    XREAL_1: 7;
    
        then
    
        
    
    A91: 
    ||.((g
    /. x1) 
    - (g 
    /. x2)).|| 
    <= (( 
    ||.((g
    /. x1) 
    - (f 
    /. (seq1 
    . n))).|| 
    +  
    ||.((f
    /. (seq1 
    . n)) 
    - (f 
    /. (seq2 
    . n))).||) 
    +  
    ||.((f
    /. (seq2 
    . n)) 
    - (g 
    /. x2)).||) by 
    A90,
    XXREAL_0: 2;
    
        
    
        
    
    A92: 
    ||.((g
    /. x1) 
    - (f 
    /. (seq1 
    . n))).|| 
    =  
    ||.((f
    /. (seq1 
    . n)) 
    - (g 
    . x1)).|| by 
    NORMSP_1: 7
    
        .=
    ||.(((f
    /* seq1) 
    . n) 
    - (g 
    . x1)).|| by 
    A3,
    A71,
    A88,
    FUNCT_2: 109;
    
        
    
        
    
    A93: 
    ||.((f
    /. (seq2 
    . n)) 
    - (g 
    /. x2)).|| 
    =  
    ||.(((f
    /* seq2) 
    . n) 
    - (g 
    . x2)).|| by 
    A3,
    A75,
    A88,
    FUNCT_2: 109;
    
        (
    ||.((g
    /. x1) 
    - (f 
    /. (seq1 
    . n))).|| 
    +  
    ||.((f
    /. (seq1 
    . n)) 
    - (f 
    /. (seq2 
    . n))).||) 
    <= (r 
    + r) by 
    A82,
    A89,
    A92,
    XREAL_1: 7;
    
        then ((
    ||.((g
    /. x1) 
    - (f 
    /. (seq1 
    . n))).|| 
    +  
    ||.((f
    /. (seq1 
    . n)) 
    - (f 
    /. (seq2 
    . n))).||) 
    +  
    ||.((f
    /. (seq2 
    . n)) 
    - (g 
    /. x2)).||) 
    < ((r 
    + r) 
    + r) by 
    A83,
    A93,
    XREAL_1: 8;
    
        then
    ||.((g
    /. x1) 
    - (g 
    /. x2)).|| 
    < ((r 
    + r) 
    + r) by 
    A91,
    XXREAL_0: 2;
    
        hence
    ||.((g
    /. x1) 
    - (g 
    /. x2)).|| 
    < r0 by 
    A66,
    XXREAL_0: 2;
    
      end;
    
      hence ex g be
    Function of E, F st (g 
    | E1) 
    = f & g 
    is_uniformly_continuous_on the 
    carrier of E & (for x be 
    Point of E holds ex seq be 
    sequence of E st ( 
    rng seq) 
    c= E1 & seq is 
    convergent & ( 
    lim seq) 
    = x & (f 
    /* seq) is 
    convergent & (g 
    . x) 
    = ( 
    lim (f 
    /* seq))) & (for x be 
    Point of E, seq be 
    sequence of E st ( 
    rng seq) 
    c= E1 & seq is 
    convergent & ( 
    lim seq) 
    = x holds (f 
    /* seq) is 
    convergent & (g 
    . x) 
    = ( 
    lim (f 
    /* seq))) by 
    A49,
    A50,
    A61,
    A62,
    NFCONT_2:def 1;
    
      let g1,g2 be
    Function of E, F such that 
    
      
    
    A95: (g1 
    | E1) 
    = f & g1 
    is_continuous_on the 
    carrier of E and 
    
      
    
    A96: (g2 
    | E1) 
    = f & g2 
    is_continuous_on the 
    carrier of E; 
    
      for x be
    Element of E holds (g1 
    . x) 
    = (g2 
    . x) 
    
      proof
    
        let x be
    Element of E; 
    
        consider seq be
    sequence of E such that 
    
        
    
    A97: ( 
    rng seq) 
    c= E1 & seq is 
    convergent & ( 
    lim seq) 
    = x by 
    A1,
    NORMSP_3: 14;
    
        
    
        
    
    A106: (g1 
    /* seq) 
    = (f 
    /* seq) by 
    A3,
    A95,
    A97,
    FUNCT_2: 117
    
        .= (g2
    /* seq) by 
    A3,
    A96,
    A97,
    FUNCT_2: 117;
    
        
    
        thus (g1
    . x) 
    = (g1 
    /. ( 
    lim seq)) by 
    A97
    
        .= (
    lim (g2 
    /* seq)) by 
    A95,
    A97,
    A106,
    NFCONT_1: 18
    
        .= (g2
    /. x) by 
    A96,
    A97,
    NFCONT_1: 18
    
        .= (g2
    . x); 
    
      end;
    
      hence g1
    = g2 by 
    FUNCT_2:def 8;
    
    end;
    
    theorem :: 
    
    LOPBAN_8:2
    
    for E,F,G be
    RealNormSpace, f be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,F)), g be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)) holds ex h be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,G)) st h 
    = (g 
    * f) & 
    ||.h.||
    <= ( 
    ||.g.||
    *  
    ||.f.||)
    
    proof
    
      let E,F,G be
    RealNormSpace, f be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,F)), g be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)); 
    
      reconsider Lf = f as
    Lipschitzian  
    LinearOperator of E, F by 
    LOPBAN_1:def 9;
    
      reconsider Lg = g as
    Lipschitzian  
    LinearOperator of F, G by 
    LOPBAN_1:def 9;
    
      set Lh = (Lg
    * Lf); 
    
      reconsider Lh as
    Lipschitzian  
    LinearOperator of E, G by 
    LOPBAN_2: 2;
    
      reconsider h = Lh as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,G)) by 
    LOPBAN_1:def 9;
    
      take h;
    
      thus h
    = (g 
    * f); 
    
      
    
      
    
    A8: 
    ||.h.||
    = ( 
    upper_bound ( 
    PreNorms ( 
    modetrans (h,E,G)))) by 
    LOPBAN_1:def 13
    
      .= (
    upper_bound ( 
    PreNorms Lh)) by 
    LOPBAN_1: 29;
    
      for t be
    Real st t 
    in ( 
    PreNorms Lh) holds t 
    <= ( 
    ||.g.||
    *  
    ||.f.||)
    
      proof
    
        let t be
    Real;
    
        assume t
    in ( 
    PreNorms Lh); 
    
        then
    
        consider w be
    Point of E such that 
    
        
    
    A9: t 
    =  
    ||.(Lh
    . w).|| & 
    ||.w.||
    <= 1; 
    
        
    
        
    
    A10: 
    ||.(Lh
    . w).|| 
    =  
    ||.(Lg
    . (Lf 
    . w)).|| by 
    FUNCT_2: 15;
    
        
    
        
    
    A11: 
    ||.(Lf
    . w).|| 
    <= ( 
    ||.f.||
    *  
    ||.w.||) by
    LOPBAN_1: 32;
    
        (
    ||.f.||
    *  
    ||.w.||)
    <= ( 
    ||.f.||
    * 1) by 
    A9,
    XREAL_1: 64;
    
        then
    
        
    
    A12: 
    ||.(Lf
    . w).|| 
    <=  
    ||.f.|| by
    A11,
    XXREAL_0: 2;
    
        
    
        
    
    A13: 
    ||.(Lg
    . (Lf 
    . w)).|| 
    <= ( 
    ||.g.||
    *  
    ||.(Lf
    . w).||) by 
    LOPBAN_1: 32;
    
        (
    ||.g.||
    *  
    ||.(Lf
    . w).||) 
    <= ( 
    ||.g.||
    *  
    ||.f.||) by
    A12,
    XREAL_1: 64;
    
        hence thesis by
    A9,
    A10,
    A13,
    XXREAL_0: 2;
    
      end;
    
      hence
    ||.h.||
    <= ( 
    ||.g.||
    *  
    ||.f.||) by
    A8,
    SEQ_4: 45;
    
    end;
    
    theorem :: 
    
    LOPBAN_8:3
    
    
    
    
    
    LMCONT1: for E,F be 
    RealNormSpace, L be 
    Lipschitzian  
    LinearOperator of E, F holds L 
    is_Lipschitzian_on the 
    carrier of E & L 
    is_uniformly_continuous_on the 
    carrier of E 
    
    proof
    
      let E,F be
    RealNormSpace, L be 
    Lipschitzian  
    LinearOperator of E, F; 
    
      consider K be
    Real such that 
    
      
    
    A2: 
    0  
    <= K & for x be 
    VECTOR of E holds 
    ||.(L
    . x).|| 
    <= (K 
    *  
    ||.x.||) by
    LOPBAN_1:def 8;
    
      set r = (K
    + 1); 
    
      
    
      
    
    A3: (K 
    +  
    0 ) 
    < r by 
    XREAL_1: 8;
    
      set E0 = the
    carrier of E; 
    
      for x1,x2 be
    Point of E st x1 
    in E0 & x2 
    in E0 holds 
    ||.((L
    /. x1) 
    - (L 
    /. x2)).|| 
    <= (r 
    *  
    ||.(x1
    - x2).||) 
    
      proof
    
        let x1,x2 be
    Point of E; 
    
        ((L
    /. x1) 
    - (L 
    /. x2)) 
    = ((L 
    . x1) 
    + (( 
    - 1) 
    * (L 
    . x2))) by 
    RLVECT_1: 16
    
        .= ((L
    . x1) 
    + (L 
    . (( 
    - 1) 
    * x2))) by 
    LOPBAN_1:def 5
    
        .= (L
    . (x1 
    + (( 
    - 1) 
    * x2))) by 
    VECTSP_1:def 20
    
        .= (L
    . (x1 
    - x2)) by 
    RLVECT_1: 16;
    
        then
    
        
    
    A8: 
    ||.((L
    /. x1) 
    - (L 
    /. x2)).|| 
    <= (K 
    *  
    ||.(x1
    - x2).||) by 
    A2;
    
        (K
    *  
    ||.(x1
    - x2).||) 
    <= (r 
    *  
    ||.(x1
    - x2).||) by 
    A3,
    XREAL_1: 64;
    
        hence thesis by
    A8,
    XXREAL_0: 2;
    
      end;
    
      hence L
    is_Lipschitzian_on E0 by 
    A2,
    FUNCT_2:def 1;
    
      hence L
    is_uniformly_continuous_on E0 by 
    NFCONT_2: 9;
    
    end;
    
    theorem :: 
    
    LOPBAN_8:4
    
    for E,F be
    RealNormSpace, E1 be 
    SubRealNormSpace of E, f be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E1,F)) st F is 
    complete & ex E0 be 
    Subset of E st E0 
    = the 
    carrier of E1 & E0 is 
    dense holds (ex g be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,F)) st ( 
    dom g) 
    = the 
    carrier of E & (g 
    | the 
    carrier of E1) 
    = f & 
    ||.g.||
    =  
    ||.f.|| & ex Lf be
    PartFunc of E, F st Lf 
    = f & (for x be 
    Point of E holds ex seq be 
    sequence of E st ( 
    rng seq) 
    c= the 
    carrier of E1 & seq is 
    convergent & ( 
    lim seq) 
    = x & (Lf 
    /* seq) is 
    convergent & (g 
    . x) 
    = ( 
    lim (Lf 
    /* seq))) & (for x be 
    Point of E, seq be 
    sequence of E st ( 
    rng seq) 
    c= the 
    carrier of E1 & seq is 
    convergent & ( 
    lim seq) 
    = x holds (Lf 
    /* seq) is 
    convergent & (g 
    . x) 
    = ( 
    lim (Lf 
    /* seq)))) & (for g1,g2 be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,F)) st (g1 
    | the 
    carrier of E1) 
    = f & (g2 
    | the 
    carrier of E1) 
    = f holds g1 
    = g2) 
    
    proof
    
      let E,F be
    RealNormSpace, E1 be 
    SubRealNormSpace of E, f be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E1,F)); 
    
      assume that
    
      
    
    A1: F is 
    complete and 
    
      
    
    A2: ex E0 be 
    Subset of E st E0 
    = the 
    carrier of E1 & E0 is 
    dense;
    
      consider E0 be
    Subset of E such that 
    
      
    
    A3: E0 
    = the 
    carrier of E1 & E0 is 
    dense by 
    A2;
    
      reconsider L = f as
    Lipschitzian  
    LinearOperator of E1, F by 
    LOPBAN_1:def 9;
    
      
    
      
    
    A4: ( 
    dom L) 
    = the 
    carrier of E1 & ( 
    rng L) 
    c= the 
    carrier of F by 
    FUNCT_2:def 1;
    
      then L
    in ( 
    PFuncs (the 
    carrier of E,the 
    carrier of F)) by 
    A3,
    PARTFUN1:def 3;
    
      then
    
      reconsider Lf = L as
    PartFunc of E, F by 
    PARTFUN1: 46;
    
      
    
      
    
    A5: ( 
    dom Lf) 
    = E0 by 
    A3,
    FUNCT_2:def 1;
    
      consider K be
    Real such that 
    
      
    
    A6: 
    0  
    <= K & for x be 
    VECTOR of E1 holds 
    ||.(L
    . x).|| 
    <= (K 
    *  
    ||.x.||) by
    LOPBAN_1:def 8;
    
      set r = (K
    + 1); 
    
      
    
      
    
    A7: (K 
    +  
    0 ) 
    < r by 
    XREAL_1: 8;
    
      for x1,x2 be
    Point of E st x1 
    in E0 & x2 
    in E0 holds 
    ||.((Lf
    /. x1) 
    - (Lf 
    /. x2)).|| 
    <= (r 
    *  
    ||.(x1
    - x2).||) 
    
      proof
    
        let x1,x2 be
    Point of E; 
    
        assume x1
    in E0 & x2 
    in E0; 
    
        then
    
        reconsider xx1 = x1, xx2 = x2 as
    Point of E1 by 
    A3;
    
        
    
        
    
    A10: (( 
    - 1) 
    * x2) 
    = (( 
    - 1) 
    * xx2) by 
    NORMSP_3: 28;
    
        
    
        
    
    A11: (x1 
    - x2) 
    = (x1 
    + (( 
    - 1) 
    * x2)) by 
    RLVECT_1: 16
    
        .= (xx1
    + (( 
    - 1) 
    * xx2)) by 
    A10,
    NORMSP_3: 28
    
        .= (xx1
    - xx2) by 
    RLVECT_1: 16;
    
        
    
        
    
    A12: (Lf 
    /. x1) 
    = (L 
    . xx1) by 
    A4,
    PARTFUN1:def 6;
    
        (Lf
    /. x2) 
    = (L 
    . xx2) by 
    A4,
    PARTFUN1:def 6;
    
        
    
        then ((Lf
    /. x1) 
    - (Lf 
    /. x2)) 
    = ((L 
    . xx1) 
    + (( 
    - 1) 
    * (L 
    . xx2))) by 
    A12,
    RLVECT_1: 16
    
        .= ((L
    . xx1) 
    + (L 
    . (( 
    - 1) 
    * xx2))) by 
    LOPBAN_1:def 5
    
        .= (L
    . (xx1 
    + (( 
    - 1) 
    * xx2))) by 
    VECTSP_1:def 20
    
        .= (L
    . (xx1 
    - xx2)) by 
    RLVECT_1: 16;
    
        then
    ||.((Lf
    /. x1) 
    - (Lf 
    /. x2)).|| 
    <= (K 
    *  
    ||.(xx1
    - xx2).||) by 
    A6;
    
        then
    
        
    
    A14: 
    ||.((Lf
    /. x1) 
    - (Lf 
    /. x2)).|| 
    <= (K 
    *  
    ||.(x1
    - x2).||) by 
    A11,
    NORMSP_3: 28;
    
        (K
    *  
    ||.(x1
    - x2).||) 
    <= (r 
    *  
    ||.(x1
    - x2).||) by 
    A7,
    XREAL_1: 64;
    
        hence thesis by
    A14,
    XXREAL_0: 2;
    
      end;
    
      then Lf
    is_Lipschitzian_on E0 by 
    A3,
    A6,
    FUNCT_2:def 1;
    
      then
    
      
    
    A15: Lf 
    is_uniformly_continuous_on E0 by 
    NFCONT_2: 9;
    
      
    
      
    
    A16: (ex Pg be 
    Function of E, F st (Pg 
    | E0) 
    = Lf & Pg 
    is_uniformly_continuous_on the 
    carrier of E & (for x be 
    Point of E holds ex seq be 
    sequence of E st ( 
    rng seq) 
    c= E0 & seq is 
    convergent & ( 
    lim seq) 
    = x & (Lf 
    /* seq) is 
    convergent & (Pg 
    . x) 
    = ( 
    lim (Lf 
    /* seq))) & (for x be 
    Point of E, seq be 
    sequence of E st ( 
    rng seq) 
    c= E0 & seq is 
    convergent & ( 
    lim seq) 
    = x holds (Lf 
    /* seq) is 
    convergent & (Pg 
    . x) 
    = ( 
    lim (Lf 
    /* seq)))) & (for Pg1,Pg2 be 
    Function of E, F st (Pg1 
    | E0) 
    = Lf & Pg1 
    is_continuous_on the 
    carrier of E & (Pg2 
    | E0) 
    = Lf & Pg2 
    is_continuous_on the 
    carrier of E holds Pg1 
    = Pg2) by 
    A1,
    A3,
    A5,
    A15,
    Th020;
    
      consider Pg be
    Function of E, F such that 
    
      
    
    A17: (Pg 
    | E0) 
    = Lf and 
    
      
    
    A18: Pg 
    is_uniformly_continuous_on the 
    carrier of E and 
    
      
    
    A19: for x be 
    Point of E holds ex seq be 
    sequence of E st ( 
    rng seq) 
    c= E0 & seq is 
    convergent & ( 
    lim seq) 
    = x & (Lf 
    /* seq) is 
    convergent & (Pg 
    . x) 
    = ( 
    lim (Lf 
    /* seq)) and 
    
      
    
    A20: for x be 
    Point of E, seq be 
    sequence of E st ( 
    rng seq) 
    c= E0 & seq is 
    convergent & ( 
    lim seq) 
    = x holds (Lf 
    /* seq) is 
    convergent & (Pg 
    . x) 
    = ( 
    lim (Lf 
    /* seq)) and 
    
      
    
    A21: for x be 
    Point of E holds ex seq be 
    sequence of E st ( 
    rng seq) 
    c= E0 & seq is 
    convergent & ( 
    lim seq) 
    = x & (Lf 
    /* seq) is 
    convergent & (Pg 
    . x) 
    = ( 
    lim (Lf 
    /* seq)) and 
    
      
    
    A22: for x be 
    Point of E, seq be 
    sequence of E st ( 
    rng seq) 
    c= E0 & seq is 
    convergent & ( 
    lim seq) 
    = x holds (Lf 
    /* seq) is 
    convergent & (Pg 
    . x) 
    = ( 
    lim (Lf 
    /* seq)) by 
    A16;
    
      
    
      
    
    A23: for x,y be 
    Point of E holds (Pg 
    . (x 
    + y)) 
    = ((Pg 
    . x) 
    + (Pg 
    . y)) 
    
      proof
    
        let x,y be
    Point of E; 
    
        consider xseq be
    sequence of E such that 
    
        
    
    A24: ( 
    rng xseq) 
    c= E0 & xseq is 
    convergent & ( 
    lim xseq) 
    = x & (Lf 
    /* xseq) is 
    convergent & (Pg 
    . x) 
    = ( 
    lim (Lf 
    /* xseq)) by 
    A19;
    
        consider yseq be
    sequence of E such that 
    
        
    
    A25: ( 
    rng yseq) 
    c= E0 & yseq is 
    convergent & ( 
    lim yseq) 
    = y & (Lf 
    /* yseq) is 
    convergent & (Pg 
    . y) 
    = ( 
    lim (Lf 
    /* yseq)) by 
    A19;
    
        
    
        
    
    A29: ( 
    rng (xseq 
    + yseq)) 
    c= E0 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng (xseq 
    + yseq)); 
    
          then
    
          consider n be
    Element of 
    NAT such that 
    
          
    
    A26: y 
    = ((xseq 
    + yseq) 
    . n) by 
    FUNCT_2: 113;
    
          (xseq
    . n) 
    in ( 
    rng xseq) & (yseq 
    . n) 
    in ( 
    rng yseq) by 
    FUNCT_2: 4;
    
          then
    
          reconsider xn = (xseq
    . n), yn = (yseq 
    . n) as 
    Point of E1 by 
    A3,
    A24,
    A25;
    
          ((xseq
    . n) 
    + (yseq 
    . n)) 
    = (xn 
    + yn) by 
    NORMSP_3: 28;
    
          then ((xseq
    . n) 
    + (yseq 
    . n)) 
    in E0 by 
    A3;
    
          hence y
    in E0 by 
    A26,
    NORMSP_1:def 2;
    
        end;
    
        
    
        
    
    A30: (xseq 
    + yseq) is 
    convergent by 
    A24,
    A25,
    NORMSP_1: 19;
    
        
    
        
    
    A31: ( 
    lim (xseq 
    + yseq)) 
    = (x 
    + y) by 
    A24,
    A25,
    NORMSP_1: 25;
    
        
    
        
    
    A32: ( 
    rng (xseq 
    + yseq)) 
    c= ( 
    dom Lf) by 
    A3,
    A29,
    FUNCT_2:def 1;
    
        
    
        
    
    A33: ( 
    rng xseq) 
    c= ( 
    dom Lf) by 
    A3,
    A24,
    FUNCT_2:def 1;
    
        
    
        
    
    A34: ( 
    rng yseq) 
    c= ( 
    dom Lf) by 
    A3,
    A25,
    FUNCT_2:def 1;
    
        
    
        
    
    B34: for n be 
    Nat holds ((Lf 
    /* (xseq 
    + yseq)) 
    . n) 
    = (((Lf 
    /* xseq) 
    . n) 
    + ((Lf 
    /* yseq) 
    . n)) 
    
        proof
    
          let n be
    Nat;
    
          
    
          
    
    A35: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          (xseq
    . n) 
    in ( 
    rng xseq) & (yseq 
    . n) 
    in ( 
    rng yseq) by 
    FUNCT_2: 4,
    ORDINAL1:def 12;
    
          then
    
          reconsider xn = (xseq
    . n), yn = (yseq 
    . n) as 
    Point of E1 by 
    A3,
    A24,
    A25;
    
          
    
          
    
    A37: ((xseq 
    . n) 
    + (yseq 
    . n)) 
    = (xn 
    + yn) by 
    NORMSP_3: 28;
    
          then ((xseq
    . n) 
    + (yseq 
    . n)) 
    in the 
    carrier of E1; 
    
          then
    
          
    
    A39: ((xseq 
    . n) 
    + (yseq 
    . n)) 
    in ( 
    dom L) by 
    FUNCT_2:def 1;
    
          
    
          thus ((Lf
    /* (xseq 
    + yseq)) 
    . n) 
    = (Lf 
    /. ((xseq 
    + yseq) 
    . n)) by 
    A32,
    A35,
    FUNCT_2: 109
    
          .= (Lf
    /. ((xseq 
    . n) 
    + (yseq 
    . n))) by 
    NORMSP_1:def 2
    
          .= (L
    . (xn 
    + yn)) by 
    A37,
    A39,
    PARTFUN1:def 6
    
          .= ((L
    /. xn) 
    + (L 
    /. yn)) by 
    VECTSP_1:def 20
    
          .= (((Lf
    /* xseq) 
    . n) 
    + (Lf 
    /. (yseq 
    . n))) by 
    A33,
    A35,
    FUNCT_2: 109
    
          .= (((Lf
    /* xseq) 
    . n) 
    + ((Lf 
    /* yseq) 
    . n)) by 
    A34,
    A35,
    FUNCT_2: 109;
    
        end;
    
        
    
        
    
    A41: ( 
    lim (Lf 
    /* (xseq 
    + yseq))) 
    = ( 
    lim ((Lf 
    /* xseq) 
    + (Lf 
    /* yseq))) by 
    B34,
    NORMSP_1:def 2
    
        .= ((
    lim (Lf 
    /* xseq)) 
    + ( 
    lim (Lf 
    /* yseq))) by 
    A24,
    A25,
    NORMSP_1: 25;
    
        thus (Pg
    . (x 
    + y)) 
    = ((Pg 
    . x) 
    + (Pg 
    . y)) by 
    A20,
    A24,
    A25,
    A29,
    A30,
    A31,
    A41;
    
      end;
    
      for x be
    Point of E, a be 
    Real holds (Pg 
    . (a 
    * x)) 
    = (a 
    * (Pg 
    . x)) 
    
      proof
    
        let x be
    Point of E, a be 
    Real;
    
        consider xseq be
    sequence of E such that 
    
        
    
    A42: ( 
    rng xseq) 
    c= E0 & xseq is 
    convergent & ( 
    lim xseq) 
    = x & (Lf 
    /* xseq) is 
    convergent & (Pg 
    . x) 
    = ( 
    lim (Lf 
    /* xseq)) by 
    A19;
    
        
    
        
    
    A46: ( 
    rng (a 
    * xseq)) 
    c= E0 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng (a 
    * xseq)); 
    
          then
    
          consider n be
    Element of 
    NAT such that 
    
          
    
    A43: y 
    = ((a 
    * xseq) 
    . n) by 
    FUNCT_2: 113;
    
          (xseq
    . n) 
    in ( 
    rng xseq) by 
    FUNCT_2: 4;
    
          then
    
          reconsider xn = (xseq
    . n) as 
    Point of E1 by 
    A3,
    A42;
    
          (a
    * (xseq 
    . n)) 
    = (a 
    * xn) by 
    NORMSP_3: 28;
    
          then (a
    * (xseq 
    . n)) 
    in E0 by 
    A3;
    
          hence y
    in E0 by 
    A43,
    NORMSP_1:def 5;
    
        end;
    
        
    
        
    
    A47: (a 
    * xseq) is 
    convergent by 
    A42,
    NORMSP_1: 22;
    
        
    
        
    
    A48: ( 
    lim (a 
    * xseq)) 
    = (a 
    * x) by 
    A42,
    NORMSP_1: 28;
    
        
    
        
    
    A49: ( 
    rng (a 
    * xseq)) 
    c= ( 
    dom Lf) by 
    A3,
    A46,
    FUNCT_2:def 1;
    
        
    
        
    
    A50: ( 
    rng xseq) 
    c= ( 
    dom Lf) by 
    A3,
    A42,
    FUNCT_2:def 1;
    
        
    
        
    
    B50: for n be 
    Nat holds ((Lf 
    /* (a 
    * xseq)) 
    . n) 
    = (a 
    * ((Lf 
    /* xseq) 
    . n)) 
    
        proof
    
          let n be
    Nat;
    
          
    
          
    
    A51: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          (xseq
    . n) 
    in ( 
    rng xseq) by 
    FUNCT_2: 4,
    ORDINAL1:def 12;
    
          then
    
          reconsider xn = (xseq
    . n) as 
    Point of E1 by 
    A3,
    A42;
    
          
    
          
    
    A53: (a 
    * (xseq 
    . n)) 
    = (a 
    * xn) by 
    NORMSP_3: 28;
    
          then (a
    * (xseq 
    . n)) 
    in the 
    carrier of E1; 
    
          then
    
          
    
    A55: (a 
    * (xseq 
    . n)) 
    in ( 
    dom L) by 
    FUNCT_2:def 1;
    
          
    
          thus ((Lf
    /* (a 
    * xseq)) 
    . n) 
    = (Lf 
    /. ((a 
    * xseq) 
    . n)) by 
    A49,
    A51,
    FUNCT_2: 109
    
          .= (Lf
    /. (a 
    * (xseq 
    . n))) by 
    NORMSP_1:def 5
    
          .= (L
    . (a 
    * xn)) by 
    A53,
    A55,
    PARTFUN1:def 6
    
          .= (a
    * (L 
    /. xn)) by 
    LOPBAN_1:def 5
    
          .= (a
    * ((Lf 
    /* xseq) 
    . n)) by 
    A50,
    A51,
    FUNCT_2: 109;
    
        end;
    
        (
    lim (Lf 
    /* (a 
    * xseq))) 
    = ( 
    lim (a 
    * (Lf 
    /* xseq))) by 
    B50,
    NORMSP_1:def 5
    
        .= (a
    * ( 
    lim (Lf 
    /* xseq))) by 
    A42,
    NORMSP_1: 28;
    
        hence (Pg
    . (a 
    * x)) 
    = (a 
    * (Pg 
    . x)) by 
    A20,
    A42,
    A46,
    A47,
    A48;
    
      end;
    
      then
    
      reconsider Pg as
    LinearOperator of E, F by 
    A23,
    LOPBAN_1:def 5,
    VECTSP_1:def 20;
    
      reconsider Pg as
    Lipschitzian  
    LinearOperator of E, F by 
    A18,
    NFCONT_2: 7,
    LOPBAN_7: 6;
    
      reconsider g = Pg as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,F)) by 
    LOPBAN_1:def 9;
    
      
    
      
    
    A58: ( 
    dom g) 
    = the 
    carrier of E by 
    FUNCT_2:def 1;
    
      
    
      
    
    A61: 
    ||.f.||
    = ( 
    upper_bound ( 
    PreNorms ( 
    modetrans (f,E1,F)))) by 
    LOPBAN_1:def 13
    
      .= (
    upper_bound ( 
    PreNorms L)) by 
    LOPBAN_1: 29;
    
      
    
      
    
    A63: 
    ||.g.||
    = ( 
    upper_bound ( 
    PreNorms ( 
    modetrans (g,E,F)))) by 
    LOPBAN_1:def 13
    
      .= (
    upper_bound ( 
    PreNorms Pg)) by 
    LOPBAN_1: 29;
    
      for t be
    Real st t 
    in ( 
    PreNorms L) holds t 
    <=  
    ||.g.||
    
      proof
    
        let t be
    Real;
    
        assume t
    in ( 
    PreNorms L); 
    
        then
    
        consider w be
    Point of E1 such that 
    
        
    
    A64: t 
    =  
    ||.(L
    . w).|| & 
    ||.w.||
    <= 1; 
    
        
    
        
    
    A65: the 
    carrier of E1 
    c= the 
    carrier of E by 
    DUALSP01:def 16;
    
        w
    in the 
    carrier of E1; 
    
        then
    
        reconsider w1 = w as
    Point of E by 
    A65;
    
        
    
        
    
    A67: 
    ||.w1.||
    <= 1 by 
    A64,
    NORMSP_3: 28;
    
        
    
        
    
    A68: not ( 
    PreNorms Pg) is 
    empty & ( 
    PreNorms Pg) is 
    bounded_above by 
    LOPBAN_1: 27;
    
        (L
    . w) 
    = (Pg 
    . w1) by 
    A3,
    A17,
    FUNCT_1: 49;
    
        then t
    in ( 
    PreNorms Pg) by 
    A64,
    A67;
    
        hence t
    <=  
    ||.g.|| by
    A63,
    A68,
    SEQ_4:def 1;
    
      end;
    
      then
    
      
    
    A69: 
    ||.f.||
    <=  
    ||.g.|| by
    A61,
    SEQ_4: 45;
    
      for t be
    Real st t 
    in ( 
    PreNorms Pg) holds t 
    <=  
    ||.f.||
    
      proof
    
        let t be
    Real;
    
        assume t
    in ( 
    PreNorms Pg); 
    
        then
    
        consider x be
    Point of E such that 
    
        
    
    A70: t 
    =  
    ||.(Pg
    . x).|| & 
    ||.x.||
    <= 1; 
    
        consider xseq be
    sequence of E such that 
    
        
    
    A71: ( 
    rng xseq) 
    c= E0 & xseq is 
    convergent & ( 
    lim xseq) 
    = x & (Lf 
    /* xseq) is 
    convergent & (Pg 
    . x) 
    = ( 
    lim (Lf 
    /* xseq)) by 
    A19;
    
        
    
        
    
    A72: 
    ||.(Pg
    . x).|| 
    = ( 
    lim  
    ||.(Lf
    /* xseq).||) by 
    A71,
    LOPBAN_1: 20;
    
        
    
        
    
    A73: 
    ||.xseq.|| is
    convergent & ( 
    lim  
    ||.xseq.||)
    =  
    ||.(
    lim xseq).|| by 
    A71,
    LOPBAN_1: 20;
    
        
    
        
    
    A74: 
    ||.(Lf
    /* xseq).|| is 
    convergent by 
    A71,
    NORMSP_1: 23;
    
        
    
        
    
    A75: ( 
    ||.f.||
    (#)  
    ||.xseq.||) is
    convergent by 
    A71,
    LOPBAN_1: 20,
    SEQ_2: 7;
    
        for n be
    Nat holds ( 
    ||.(Lf
    /* xseq).|| 
    . n) 
    <= (( 
    ||.f.||
    (#)  
    ||.xseq.||)
    . n) 
    
        proof
    
          let n be
    Nat;
    
          
    
          
    
    A77: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          
    
          
    
    A78: ( 
    rng xseq) 
    c= ( 
    dom Lf) by 
    A3,
    A71,
    FUNCT_2:def 1;
    
          (xseq
    . n) 
    in ( 
    rng xseq) by 
    FUNCT_2: 4,
    ORDINAL1:def 12;
    
          then
    
          reconsider xn = (xseq
    . n) as 
    Point of E1 by 
    A3,
    A71;
    
          
    
          
    
    A80: ( 
    dom Lf) 
    = the 
    carrier of E1 by 
    FUNCT_2:def 1;
    
          
    
          
    
    A81: ( 
    ||.(Lf
    /* xseq).|| 
    . n) 
    =  
    ||.((Lf
    /* xseq) 
    . n).|| by 
    NORMSP_0:def 4
    
          .=
    ||.(Lf
    /. (xseq 
    . n)).|| by 
    A77,
    A78,
    FUNCT_2: 109
    
          .=
    ||.(L
    . xn).|| by 
    A80,
    PARTFUN1:def 6;
    
          
    ||.(L
    . xn).|| 
    <= ( 
    ||.f.||
    *  
    ||.xn.||) by
    LOPBAN_1: 32;
    
          then
    ||.(L
    . xn).|| 
    <= ( 
    ||.f.||
    *  
    ||.(xseq
    . n).||) by 
    NORMSP_3: 28;
    
          then
    ||.(L
    . xn).|| 
    <= ( 
    ||.f.||
    * ( 
    ||.xseq.||
    . n)) by 
    NORMSP_0:def 4;
    
          hence thesis by
    A81,
    VALUED_1: 6;
    
        end;
    
        then (
    lim  
    ||.(Lf
    /* xseq).||) 
    <= ( 
    lim ( 
    ||.f.||
    (#)  
    ||.xseq.||)) by
    A74,
    A75,
    SEQ_2: 18;
    
        then
    
        
    
    A82: ( 
    lim  
    ||.(Lf
    /* xseq).||) 
    <= ( 
    ||.f.||
    *  
    ||.x.||) by
    A71,
    A73,
    SEQ_2: 8;
    
        (
    ||.f.||
    *  
    ||.x.||)
    <= ( 
    ||.f.||
    * 1) by 
    A70,
    XREAL_1: 64;
    
        hence t
    <=  
    ||.f.|| by
    A70,
    A72,
    A82,
    XXREAL_0: 2;
    
      end;
    
      then
    ||.g.||
    <=  
    ||.f.|| by
    A63,
    SEQ_4: 45;
    
      hence ex g be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,F)) st ( 
    dom g) 
    = the 
    carrier of E & (g 
    | the 
    carrier of E1) 
    = f & 
    ||.g.||
    =  
    ||.f.|| & ex Lf be
    PartFunc of E, F st Lf 
    = f & (for x be 
    Point of E holds ex seq be 
    sequence of E st ( 
    rng seq) 
    c= the 
    carrier of E1 & seq is 
    convergent & ( 
    lim seq) 
    = x & (Lf 
    /* seq) is 
    convergent & (g 
    . x) 
    = ( 
    lim (Lf 
    /* seq))) & (for x be 
    Point of E, seq be 
    sequence of E st ( 
    rng seq) 
    c= the 
    carrier of E1 & seq is 
    convergent & ( 
    lim seq) 
    = x holds (Lf 
    /* seq) is 
    convergent & (g 
    . x) 
    = ( 
    lim (Lf 
    /* seq))) by 
    A3,
    A17,
    A21,
    A22,
    A58,
    A69,
    XXREAL_0: 1;
    
      thus for g1,g2 be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,F)) st (g1 
    | the 
    carrier of E1) 
    = f & (g2 
    | the 
    carrier of E1) 
    = f holds g1 
    = g2 
    
      proof
    
        let g1,g2 be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,F)); 
    
        assume
    
        
    
    A84: (g1 
    | the 
    carrier of E1) 
    = f & (g2 
    | the 
    carrier of E1) 
    = f; 
    
        reconsider Pg1 = g1, Pg2 = g2 as
    Lipschitzian  
    LinearOperator of E, F by 
    LOPBAN_1:def 9;
    
        
    
        
    
    A85: Pg1 
    is_continuous_on the 
    carrier of E by 
    LMCONT1,
    NFCONT_2: 7;
    
        Pg2
    is_continuous_on the 
    carrier of E by 
    LMCONT1,
    NFCONT_2: 7;
    
        hence thesis by
    A1,
    A3,
    A5,
    A15,
    A84,
    A85,
    Th020;
    
      end;
    
    end;
    
    begin
    
    theorem :: 
    
    LOPBAN_8:5
    
    for E,F,G be non
    empty  
    set, f be 
    Function of 
    [:E, F:], G, x be
    object st x 
    in E holds (( 
    curry f) 
    . x) is 
    Function of F, G 
    
    proof
    
      let E,F,G be non
    empty  
    set, f be 
    Function of 
    [:E, F:], G, x be
    object;
    
      assume
    
      
    
    A1: x 
    in E; 
    
      (
    dom f) 
    =  
    [:E, F:] by
    FUNCT_2:def 1;
    
      then
    
      consider g be
    Function such that 
    
      
    
    A4: (( 
    curry f) 
    . x) 
    = g & ( 
    dom g) 
    = F & ( 
    rng g) 
    c= ( 
    rng f) & for y be 
    object st y 
    in F holds (g 
    . y) 
    = (f 
    . (x,y)) by 
    A1,
    FUNCT_5: 29,
    ZFMISC_1: 90;
    
      thus ((
    curry f) 
    . x) is 
    Function of F, G by 
    A4,
    XBOOLE_1: 1,
    FUNCT_2: 2;
    
    end;
    
    theorem :: 
    
    LOPBAN_8:6
    
    for E,F,G be non
    empty  
    set, f be 
    Function of 
    [:E, F:], G, y be
    object st y 
    in F holds (( 
    curry' f) 
    . y) is 
    Function of E, G 
    
    proof
    
      let E,F,G be non
    empty  
    set, f be 
    Function of 
    [:E, F:], G, y be
    object;
    
      assume
    
      
    
    A1: y 
    in F; 
    
      (
    dom f) 
    =  
    [:E, F:] by
    FUNCT_2:def 1;
    
      then ex g be
    Function st (( 
    curry' f) 
    . y) 
    = g & ( 
    dom g) 
    = E & ( 
    rng g) 
    c= ( 
    rng f) & for x be 
    object st x 
    in E holds (g 
    . x) 
    = (f 
    . (x,y)) by 
    A1,
    FUNCT_5: 32,
    ZFMISC_1: 90;
    
      hence ((
    curry' f) 
    . y) is 
    Function of E, G by 
    XBOOLE_1: 1,
    FUNCT_2: 2;
    
    end;
    
    theorem :: 
    
    LOPBAN_8:7
    
    
    
    
    
    LM4: for E,F,G be non 
    empty  
    set, f be 
    Function of 
    [:E, F:], G, x,y be
    object st x 
    in E & y 
    in F holds ((( 
    curry f) 
    . x) 
    . y) 
    = (f 
    . (x,y)) 
    
    proof
    
      let E,F,G be non
    empty  
    set, f be 
    Function of 
    [:E, F:], G, x,y be
    object;
    
      assume that
    
      
    
    A1: x 
    in E and 
    
      
    
    A2: y 
    in F; 
    
      (
    dom f) 
    =  
    [:E, F:] by
    FUNCT_2:def 1;
    
      then ex g be
    Function st (( 
    curry f) 
    . x) 
    = g & ( 
    dom g) 
    = F & ( 
    rng g) 
    c= ( 
    rng f) & for y be 
    object st y 
    in F holds (g 
    . y) 
    = (f 
    . (x,y)) by 
    A1,
    FUNCT_5: 29,
    ZFMISC_1: 90;
    
      hence (((
    curry f) 
    . x) 
    . y) 
    = (f 
    . (x,y)) by 
    A2;
    
    end;
    
    theorem :: 
    
    LOPBAN_8:8
    
    
    
    
    
    LM5: for E,F,G be non 
    empty  
    set, f be 
    Function of 
    [:E, F:], G, x,y be
    object st x 
    in E & y 
    in F holds ((( 
    curry' f) 
    . y) 
    . x) 
    = (f 
    . (x,y)) 
    
    proof
    
      let E,F,G be non
    empty  
    set, f be 
    Function of 
    [:E, F:], G, x,y be
    object;
    
      assume that
    
      
    
    A1: x 
    in E and 
    
      
    
    A2: y 
    in F; 
    
      (
    dom f) 
    =  
    [:E, F:] by
    FUNCT_2:def 1;
    
      then ex g be
    Function st (( 
    curry' f) 
    . y) 
    = g & ( 
    dom g) 
    = E & ( 
    rng g) 
    c= ( 
    rng f) & for x be 
    object st x 
    in E holds (g 
    . x) 
    = (f 
    . (x,y)) by 
    A2,
    FUNCT_5: 32,
    ZFMISC_1: 90;
    
      hence (((
    curry' f) 
    . y) 
    . x) 
    = (f 
    . (x,y)) by 
    A1;
    
    end;
    
    definition
    
      let E,F,G be
    RealLinearSpace;
    
      let f be
    Function of 
    [:the 
    carrier of E, the 
    carrier of F:], the 
    carrier of G; 
    
      :: 
    
    LOPBAN_8:def1
    
      attr f is
    
    Bilinear means (for v be 
    Point of E st v 
    in ( 
    dom ( 
    curry f)) holds (( 
    curry f) 
    . v) is 
    additive
    homogeneous  
    Function of F, G) & (for v be 
    Point of F st v 
    in ( 
    dom ( 
    curry' f)) holds (( 
    curry' f) 
    . v) is 
    additive
    homogeneous  
    Function of E, G); 
    
    end
    
    begin
    
    theorem :: 
    
    LOPBAN_8:9
    
    
    
    
    
    EX1: for E,F,G be 
    RealLinearSpace holds ( 
    [:the 
    carrier of E, the 
    carrier of F:] 
    --> ( 
    0. G)) is 
    Bilinear
    
    proof
    
      let E,F,G be
    RealLinearSpace;
    
      set f = (
    [:the 
    carrier of E, the 
    carrier of F:] 
    --> ( 
    0. G)); 
    
      
    
      
    
    A2: for x be 
    Point of E holds (( 
    curry f) 
    . x) is 
    additive
    homogeneous  
    Function of F, G 
    
      proof
    
        let x be
    Point of E; 
    
        reconsider L = ((
    curry f) 
    . x) as 
    Function of F, G; 
    
        
    
        
    
    A5: for y1,y2 be 
    Point of F holds (L 
    . (y1 
    + y2)) 
    = ((L 
    . y1) 
    + (L 
    . y2)) 
    
        proof
    
          let y1,y2 be
    Point of F; 
    
          
    
          
    
    A11: (L 
    . (y1 
    + y2)) 
    = (f 
    . (x,(y1 
    + y2))) by 
    LM4
    
          .= (
    0. G) by 
    ZFMISC_1: 87,
    FUNCOP_1: 7;
    
          
    
          
    
    A12: (L 
    . y1) 
    = (f 
    . (x,y1)) by 
    LM4
    
          .= (
    0. G) by 
    ZFMISC_1: 87,
    FUNCOP_1: 7;
    
          (L
    . y2) 
    = (f 
    . (x,y2)) by 
    LM4
    
          .= (
    0. G) by 
    ZFMISC_1: 87,
    FUNCOP_1: 7;
    
          hence (L
    . (y1 
    + y2)) 
    = ((L 
    . y1) 
    + (L 
    . y2)) by 
    A11,
    A12,
    RLVECT_1: 4;
    
        end;
    
        for y be
    Point of F, a be 
    Real holds (L 
    . (a 
    * y)) 
    = (a 
    * (L 
    . y)) 
    
        proof
    
          let y be
    Point of F, a be 
    Real;
    
          
    
          
    
    A18: (L 
    . (a 
    * y)) 
    = (f 
    . (x,(a 
    * y))) by 
    LM4
    
          .= (
    0. G) by 
    ZFMISC_1: 87,
    FUNCOP_1: 7;
    
          (L
    . y) 
    = (f 
    . (x,y)) by 
    LM4
    
          .= (
    0. G) by 
    ZFMISC_1: 87,
    FUNCOP_1: 7;
    
          hence (L
    . (a 
    * y)) 
    = (a 
    * (L 
    . y)) by 
    A18,
    RLVECT_1: 10;
    
        end;
    
        hence thesis by
    A5,
    LOPBAN_1:def 5,
    VECTSP_1:def 20;
    
      end;
    
      for x be
    Point of F st x 
    in ( 
    dom ( 
    curry' f)) holds (( 
    curry' f) 
    . x) is 
    additive
    homogeneous  
    Function of E, G 
    
      proof
    
        let x be
    Point of F; 
    
        assume x
    in ( 
    dom ( 
    curry' f)); 
    
        reconsider L = ((
    curry' f) 
    . x) as 
    Function of E, G; 
    
        
    
        
    
    A22: for y1,y2 be 
    Point of E holds (L 
    . (y1 
    + y2)) 
    = ((L 
    . y1) 
    + (L 
    . y2)) 
    
        proof
    
          let y1,y2 be
    Point of E; 
    
          
    
          
    
    A28: (L 
    . (y1 
    + y2)) 
    = (f 
    . ((y1 
    + y2),x)) by 
    LM5
    
          .= (
    0. G) by 
    ZFMISC_1: 87,
    FUNCOP_1: 7;
    
          
    
          
    
    A29: (L 
    . y1) 
    = (f 
    . (y1,x)) by 
    LM5
    
          .= (
    0. G) by 
    ZFMISC_1: 87,
    FUNCOP_1: 7;
    
          (L
    . y2) 
    = (f 
    . (y2,x)) by 
    LM5
    
          .= (
    0. G) by 
    ZFMISC_1: 87,
    FUNCOP_1: 7;
    
          hence (L
    . (y1 
    + y2)) 
    = ((L 
    . y1) 
    + (L 
    . y2)) by 
    A28,
    A29,
    RLVECT_1: 4;
    
        end;
    
        for y be
    Point of E, a be 
    Real holds (L 
    . (a 
    * y)) 
    = (a 
    * (L 
    . y)) 
    
        proof
    
          let y be
    Point of E, a be 
    Real;
    
          
    
          
    
    A35: (L 
    . (a 
    * y)) 
    = (f 
    . ((a 
    * y),x)) by 
    LM5
    
          .= (
    0. G) by 
    ZFMISC_1: 87,
    FUNCOP_1: 7;
    
          (L
    . y) 
    = (f 
    . (y,x)) by 
    LM5
    
          .= (
    0. G) by 
    ZFMISC_1: 87,
    FUNCOP_1: 7;
    
          hence (L
    . (a 
    * y)) 
    = (a 
    * (L 
    . y)) by 
    A35,
    RLVECT_1: 10;
    
        end;
    
        hence thesis by
    A22,
    LOPBAN_1:def 5,
    VECTSP_1:def 20;
    
      end;
    
      hence f is
    Bilinear by 
    A2;
    
    end;
    
    registration
    
      let E,F,G be
    RealLinearSpace;
    
      cluster 
    Bilinear for 
    Function of 
    [:the 
    carrier of E, the 
    carrier of F:], the 
    carrier of G; 
    
      correctness
    
      proof
    
        (
    [:the 
    carrier of E, the 
    carrier of F:] 
    --> ( 
    0. G)) is 
    Bilinear by 
    EX1;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    LOPBAN_8:10
    
    
    
    
    
    LM6: for E,F,G be 
    RealLinearSpace, L be 
    Function of 
    [:the 
    carrier of E, the 
    carrier of F:], the 
    carrier of G holds L is 
    Bilinear iff ((for x1,x2 be 
    Point of E, y be 
    Point of F holds (L 
    . ((x1 
    + x2),y)) 
    = ((L 
    . (x1,y)) 
    + (L 
    . (x2,y)))) & (for x be 
    Point of E, y be 
    Point of F, a be 
    Real holds (L 
    . ((a 
    * x),y)) 
    = (a 
    * (L 
    . (x,y)))) & (for x be 
    Point of E, y1,y2 be 
    Point of F holds (L 
    . (x,(y1 
    + y2))) 
    = ((L 
    . (x,y1)) 
    + (L 
    . (x,y2)))) & (for x be 
    Point of E, y be 
    Point of F, a be 
    Real holds (L 
    . (x,(a 
    * y))) 
    = (a 
    * (L 
    . (x,y))))) 
    
    proof
    
      let E,F,G be
    RealLinearSpace, L be 
    Function of 
    [:the 
    carrier of E, the 
    carrier of F:], the 
    carrier of G; 
    
      
    
      
    
    A1: ( 
    dom ( 
    curry L)) 
    = the 
    carrier of E & ( 
    dom ( 
    curry' L)) 
    = the 
    carrier of F by 
    FUNCT_2:def 1;
    
      hereby
    
        assume
    
        
    
    A2: L is 
    Bilinear;
    
        thus for x1,x2 be
    Point of E, y be 
    Point of F holds (L 
    . ((x1 
    + x2),y)) 
    = ((L 
    . (x1,y)) 
    + (L 
    . (x2,y))) 
    
        proof
    
          let x1,x2 be
    Point of E, y be 
    Point of F; 
    
          reconsider Ly = ((
    curry' L) 
    . y) as 
    additive
    homogeneous  
    Function of E, G by 
    A1,
    A2;
    
          
    
          
    
    A5: (Ly 
    . x1) 
    = (L 
    . (x1,y)) by 
    LM5;
    
          
    
          
    
    A6: (Ly 
    . x2) 
    = (L 
    . (x2,y)) by 
    LM5;
    
          
    
          thus (L
    . ((x1 
    + x2),y)) 
    = (Ly 
    . (x1 
    + x2)) by 
    LM5
    
          .= ((L
    . (x1,y)) 
    + (L 
    . (x2,y))) by 
    A5,
    A6,
    VECTSP_1:def 20;
    
        end;
    
        thus for x be
    Point of E, y be 
    Point of F, a be 
    Real holds (L 
    . ((a 
    * x),y)) 
    = (a 
    * (L 
    . (x,y))) 
    
        proof
    
          let x be
    Point of E, y be 
    Point of F, a be 
    Real;
    
          reconsider Ly = ((
    curry' L) 
    . y) as 
    additive
    homogeneous  
    Function of E, G by 
    A1,
    A2;
    
          
    
          thus (L
    . ((a 
    * x),y)) 
    = (Ly 
    . (a 
    * x)) by 
    LM5
    
          .= (a
    * (Ly 
    . x)) by 
    LOPBAN_1:def 5
    
          .= (a
    * (L 
    . (x,y))) by 
    LM5;
    
        end;
    
        thus for x be
    Point of E, y1,y2 be 
    Point of F holds (L 
    . (x,(y1 
    + y2))) 
    = ((L 
    . (x,y1)) 
    + (L 
    . (x,y2))) 
    
        proof
    
          let x be
    Point of E, y1,y2 be 
    Point of F; 
    
          reconsider Lx = ((
    curry L) 
    . x) as 
    additive
    homogeneous  
    Function of F, G by 
    A1,
    A2;
    
          
    
          
    
    A8: (Lx 
    . y1) 
    = (L 
    . (x,y1)) by 
    LM4;
    
          
    
          
    
    A9: (Lx 
    . y2) 
    = (L 
    . (x,y2)) by 
    LM4;
    
          
    
          thus (L
    . (x,(y1 
    + y2))) 
    = (Lx 
    . (y1 
    + y2)) by 
    LM4
    
          .= ((L
    . (x,y1)) 
    + (L 
    . (x,y2))) by 
    A8,
    A9,
    VECTSP_1:def 20;
    
        end;
    
        thus for x be
    Point of E, y be 
    Point of F, a be 
    Real holds (L 
    . (x,(a 
    * y))) 
    = (a 
    * (L 
    . (x,y))) 
    
        proof
    
          let x be
    Point of E, y be 
    Point of F, a be 
    Real;
    
          reconsider Lx = ((
    curry L) 
    . x) as 
    additive
    homogeneous  
    Function of F, G by 
    A1,
    A2;
    
          
    
          
    
    A10: (Lx 
    . y) 
    = (L 
    . (x,y)) by 
    LM4;
    
          
    
          thus (L
    . (x,(a 
    * y))) 
    = (Lx 
    . (a 
    * y)) by 
    LM4
    
          .= (a
    * (L 
    . (x,y))) by 
    A10,
    LOPBAN_1:def 5;
    
        end;
    
      end;
    
      assume that
    
      
    
    A11: for x1,x2 be 
    Point of E, y be 
    Point of F holds (L 
    . ((x1 
    + x2),y)) 
    = ((L 
    . (x1,y)) 
    + (L 
    . (x2,y))) and 
    
      
    
    A12: for x be 
    Point of E, y be 
    Point of F, a be 
    Real holds (L 
    . ((a 
    * x),y)) 
    = (a 
    * (L 
    . (x,y))) and 
    
      
    
    A13: for x be 
    Point of E, y1,y2 be 
    Point of F holds (L 
    . (x,(y1 
    + y2))) 
    = ((L 
    . (x,y1)) 
    + (L 
    . (x,y2))) and 
    
      
    
    A14: for x be 
    Point of E, y be 
    Point of F, a be 
    Real holds (L 
    . (x,(a 
    * y))) 
    = (a 
    * (L 
    . (x,y))); 
    
      
    
      
    
    A15: for x be 
    Point of E st x 
    in ( 
    dom ( 
    curry L)) holds (( 
    curry L) 
    . x) is 
    additive
    homogeneous  
    Function of F, G 
    
      proof
    
        let x be
    Point of E; 
    
        assume x
    in ( 
    dom ( 
    curry L)); 
    
        reconsider Lx = ((
    curry L) 
    . x) as 
    Function of F, G; 
    
        
    
        
    
    A16: for y1,y2 be 
    Point of F holds (Lx 
    . (y1 
    + y2)) 
    = ((Lx 
    . y1) 
    + (Lx 
    . y2)) 
    
        proof
    
          let y1,y2 be
    Point of F; 
    
          
    
          
    
    A17: (L 
    . (x,y1)) 
    = (Lx 
    . y1) by 
    LM4;
    
          
    
          thus (Lx
    . (y1 
    + y2)) 
    = (L 
    . (x,(y1 
    + y2))) by 
    LM4
    
          .= ((L
    . (x,y1)) 
    + (L 
    . (x,y2))) by 
    A13
    
          .= ((Lx
    . y1) 
    + (Lx 
    . y2)) by 
    A17,
    LM4;
    
        end;
    
        for y be
    Point of F, a be 
    Real holds (Lx 
    . (a 
    * y)) 
    = (a 
    * (Lx 
    . y)) 
    
        proof
    
          let y be
    Point of F, a be 
    Real;
    
          
    
          thus (Lx
    . (a 
    * y)) 
    = (L 
    . (x,(a 
    * y))) by 
    LM4
    
          .= (a
    * (L 
    . (x,y))) by 
    A14
    
          .= (a
    * (Lx 
    . y)) by 
    LM4;
    
        end;
    
        hence thesis by
    A16,
    LOPBAN_1:def 5,
    VECTSP_1:def 20;
    
      end;
    
      for y be
    Point of F st y 
    in ( 
    dom ( 
    curry' L)) holds (( 
    curry' L) 
    . y) is 
    additive
    homogeneous  
    Function of E, G 
    
      proof
    
        let y be
    Point of F; 
    
        assume y
    in ( 
    dom ( 
    curry' L)); 
    
        reconsider Ly = ((
    curry' L) 
    . y) as 
    Function of E, G; 
    
        
    
        
    
    A22: for x1,x2 be 
    Point of E holds (Ly 
    . (x1 
    + x2)) 
    = ((Ly 
    . x1) 
    + (Ly 
    . x2)) 
    
        proof
    
          let x1,x2 be
    Point of E; 
    
          
    
          
    
    A23: (L 
    . (x1,y)) 
    = (Ly 
    . x1) by 
    LM5;
    
          
    
          thus (Ly
    . (x1 
    + x2)) 
    = (L 
    . ((x1 
    + x2),y)) by 
    LM5
    
          .= ((L
    . (x1,y)) 
    + (L 
    . (x2,y))) by 
    A11
    
          .= ((Ly
    . x1) 
    + (Ly 
    . x2)) by 
    A23,
    LM5;
    
        end;
    
        for x be
    Point of E, a be 
    Real holds (Ly 
    . (a 
    * x)) 
    = (a 
    * (Ly 
    . x)) 
    
        proof
    
          let x be
    Point of E, a be 
    Real;
    
          
    
          thus (Ly
    . (a 
    * x)) 
    = (L 
    . ((a 
    * x),y)) by 
    LM5
    
          .= (a
    * (L 
    . (x,y))) by 
    A12
    
          .= (a
    * (Ly 
    . x)) by 
    LM5;
    
        end;
    
        hence thesis by
    A22,
    LOPBAN_1:def 5,
    VECTSP_1:def 20;
    
      end;
    
      hence L is
    Bilinear by 
    A15;
    
    end;
    
    definition
    
      let E,F,G be
    RealLinearSpace;
    
      let f be
    Function of 
    [:E, F:], G;
    
      :: 
    
    LOPBAN_8:def2
    
      attr f is
    
    Bilinear means ex g be 
    Function of 
    [:the 
    carrier of E, the 
    carrier of F:], the 
    carrier of G st f 
    = g & g is 
    Bilinear;
    
    end
    
    registration
    
      let E,F,G be
    RealLinearSpace;
    
      cluster 
    Bilinear for 
    Function of 
    [:E, F:], G;
    
      correctness
    
      proof
    
        set g = (
    [:the 
    carrier of E, the 
    carrier of F:] 
    --> ( 
    0. G)); 
    
        reconsider f = g as
    Function of 
    [:E, F:], G;
    
        take f;
    
        thus thesis by
    EX1;
    
      end;
    
    end
    
    definition
    
      let E,F,G be
    RealLinearSpace;
    
      let f be
    Function of 
    [:E, F:], G;
    
      let x be
    Point of E; 
    
      let y be
    Point of F; 
    
      :: original:
    .
    
      redefine
    
      func f
    
    . (x,y) -> 
    Point of G ; 
    
      correctness
    
      proof
    
        
    [x, y] is
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [x, y] as
    Point of 
    [:E, F:] by
    PRVECT_3: 9;
    
        (f
    . z) is 
    Point of G; 
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    LOPBAN_8:11
    
    for E,F,G be
    RealLinearSpace, L be 
    Function of 
    [:E, F:], G holds L is
    Bilinear iff ((for x1,x2 be 
    Point of E, y be 
    Point of F holds (L 
    . ((x1 
    + x2),y)) 
    = ((L 
    . (x1,y)) 
    + (L 
    . (x2,y)))) & (for x be 
    Point of E, y be 
    Point of F, a be 
    Real holds (L 
    . ((a 
    * x),y)) 
    = (a 
    * (L 
    . (x,y)))) & (for x be 
    Point of E, y1,y2 be 
    Point of F holds (L 
    . (x,(y1 
    + y2))) 
    = ((L 
    . (x,y1)) 
    + (L 
    . (x,y2)))) & (for x be 
    Point of E, y be 
    Point of F, a be 
    Real holds (L 
    . (x,(a 
    * y))) 
    = (a 
    * (L 
    . (x,y))))) by 
    LM6;
    
    definition
    
      let E,F,G be
    RealLinearSpace;
    
      mode
    
    BilinearOperator of E,F,G is 
    Bilinear  
    Function of 
    [:E, F:], G;
    
    end
    
    definition
    
      let E,F,G be
    RealNormSpace;
    
      let f be
    Function of 
    [:E, F:], G;
    
      :: 
    
    LOPBAN_8:def3
    
      attr f is
    
    Bilinear means ex g be 
    Function of 
    [:the 
    carrier of E, the 
    carrier of F:], the 
    carrier of G st f 
    = g & g is 
    Bilinear;
    
    end
    
    registration
    
      let E,F,G be
    RealNormSpace;
    
      cluster 
    Bilinear for 
    Function of 
    [:E, F:], G;
    
      correctness
    
      proof
    
        set g = (
    [:the 
    carrier of E, the 
    carrier of F:] 
    --> ( 
    0. G)); 
    
        reconsider f = g as
    Function of 
    [:E, F:], G;
    
        take f;
    
        thus thesis by
    EX1;
    
      end;
    
    end
    
    definition
    
      let E,F,G be
    RealNormSpace;
    
      mode
    
    BilinearOperator of E,F,G is 
    Bilinear  
    Function of 
    [:E, F:], G;
    
    end
    
    reserve E,F,G for
    RealNormSpace;
    
    reserve L for
    BilinearOperator of E, F, G; 
    
    reserve x for
    Element of E; 
    
    reserve y for
    Element of F; 
    
    definition
    
      let E,F,G be
    RealNormSpace;
    
      let f be
    Function of 
    [:E, F:], G;
    
      let x be
    Point of E; 
    
      let y be
    Point of F; 
    
      :: original:
    .
    
      redefine
    
      func f
    
    . (x,y) -> 
    Point of G ; 
    
      correctness
    
      proof
    
        
    [x, y] is
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [x, y] as
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        (f
    . z) is 
    Point of G; 
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    LOPBAN_8:12
    
    
    
    
    
    LM8: for E,F,G be 
    RealNormSpace, L be 
    Function of 
    [:E, F:], G holds L is
    Bilinear iff ((for x1,x2 be 
    Point of E, y be 
    Point of F holds (L 
    . ((x1 
    + x2),y)) 
    = ((L 
    . (x1,y)) 
    + (L 
    . (x2,y)))) & (for x be 
    Point of E, y be 
    Point of F, a be 
    Real holds (L 
    . ((a 
    * x),y)) 
    = (a 
    * (L 
    . (x,y)))) & (for x be 
    Point of E, y1,y2 be 
    Point of F holds (L 
    . (x,(y1 
    + y2))) 
    = ((L 
    . (x,y1)) 
    + (L 
    . (x,y2)))) & (for x be 
    Point of E, y be 
    Point of F, a be 
    Real holds (L 
    . (x,(a 
    * y))) 
    = (a 
    * (L 
    . (x,y))))) by 
    LM6;
    
    theorem :: 
    
    LOPBAN_8:13
    
    for E,F,G be
    RealNormSpace, f be 
    BilinearOperator of E, F, G holds (f 
    is_continuous_on the 
    carrier of 
    [:E, F:] iff f
    is_continuous_in ( 
    0.  
    [:E, F:])) & (f
    is_continuous_on the 
    carrier of 
    [:E, F:] iff ex K be
    Real st 
    0  
    <= K & for x be 
    Point of E, y be 
    Point of F holds 
    ||.(f
    . (x,y)).|| 
    <= ((K 
    *  
    ||.x.||)
    *  
    ||.y.||))
    
    proof
    
      let E,F,G be
    RealNormSpace, f be 
    BilinearOperator of E, F, G; 
    
      
    
      
    
    A1: ( 
    dom f) 
    = the 
    carrier of 
    [:E, F:] by
    FUNCT_2:def 1;
    
      
    
      
    
    A2: (f 
    . ( 
    0.  
    [:E, F:]))
    = (f 
    . (( 
    0. E),( 
    0. F))) by 
    PRVECT_3: 18
    
      .= (f
    . (( 
    0  
    * ( 
    0. E)),( 
    0. F))) by 
    RLVECT_1: 10
    
      .= (
    0  
    * (f 
    . (( 
    0. E),( 
    0. F)))) by 
    LM8
    
      .= (
    0. G) by 
    RLVECT_1: 10;
    
      
    
      
    
    A4: f 
    is_continuous_in ( 
    0.  
    [:E, F:]) implies ex K be
    Real st 
    0  
    <= K & for x be 
    Point of E, y be 
    Point of F holds 
    ||.(f
    . (x,y)).|| 
    <= ((K 
    *  
    ||.x.||)
    *  
    ||.y.||)
    
      proof
    
        assume f
    is_continuous_in ( 
    0.  
    [:E, F:]);
    
        then
    
        consider s be
    Real such that 
    
        
    
    A5: 
    0  
    < s & for z be 
    Point of 
    [:E, F:] st z
    in ( 
    dom f) & 
    ||.(z
    - ( 
    0.  
    [:E, F:])).||
    < s holds 
    ||.((f
    /. z) 
    - (f 
    /. ( 
    0.  
    [:E, F:]))).||
    < 1 by 
    NFCONT_1: 7;
    
        consider s1 be
    Real such that 
    
        
    
    A7: 
    0  
    < s1 & s1 
    < s & 
    [:(
    Ball (( 
    0. E),s1)), ( 
    Ball (( 
    0. F),s1)):] 
    c= ( 
    Ball (( 
    0.  
    [:E, F:]),s)) by
    A5,
    NDIFF_8: 22,
    PRVECT_3: 18;
    
        set s2 = (s1
    / 2); 
    
        
    
        
    
    A8: 
    0  
    < s2 & s2 
    < s1 by 
    A7,
    XREAL_1: 215,
    XREAL_1: 216;
    
        
    
    A9: 
    
        now
    
          let x be
    Point of E, y be 
    Point of F; 
    
          assume
    ||.x.||
    <= s2 & 
    ||.y.||
    <= s2; 
    
          then
    
          
    
    A10: 
    ||.x.||
    < s1 & 
    ||.y.||
    < s1 by 
    A8,
    XXREAL_0: 2;
    
          
    [x, y] is
    set by 
    TARSKI: 1;
    
          then
    
          reconsider z =
    [x, y] as
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
          
    ||.(x
    - ( 
    0. E)).|| 
    < s1 by 
    A10,
    RLVECT_1: 13;
    
          then
    ||.((
    0. E) 
    - x).|| 
    < s1 by 
    NORMSP_1: 7;
    
          then
    
          
    
    A12: x 
    in ( 
    Ball (( 
    0. E),s1)); 
    
          
    ||.(y
    - ( 
    0. F)).|| 
    < s1 by 
    A10,
    RLVECT_1: 13;
    
          then
    ||.((
    0. F) 
    - y).|| 
    < s1 by 
    NORMSP_1: 7;
    
          then y
    in ( 
    Ball (( 
    0. F),s1)); 
    
          then z
    in  
    [:(
    Ball (( 
    0. E),s1)), ( 
    Ball (( 
    0. F),s1)):] by 
    A12,
    ZFMISC_1: 87;
    
          then z
    in ( 
    Ball (( 
    0.  
    [:E, F:]),s)) by
    A7;
    
          then ex z1 be
    Point of 
    [:E, F:] st z
    = z1 & 
    ||.((
    0.  
    [:E, F:])
    - z1).|| 
    < s; 
    
          then
    ||.(z
    - ( 
    0.  
    [:E, F:])).||
    < s by 
    NORMSP_1: 7;
    
          then
    ||.((f
    /. z) 
    - (f 
    /. ( 
    0.  
    [:E, F:]))).||
    < 1 by 
    A5,
    A1;
    
          hence
    ||.(f
    . (x,y)).|| 
    < 1 by 
    A2,
    RLVECT_1: 13;
    
        end;
    
        
    
        
    
    A14: 
    0  
    < (s2 
    * s2) by 
    A8,
    XREAL_1: 129;
    
        take K = (1
    / (s2 
    * s2)); 
    
        thus
    0  
    <= K by 
    A7;
    
        let x be
    Point of E, y be 
    Point of F; 
    
        
    
        
    
    A15: (f 
    . (( 
    0. E),y)) 
    = (f 
    . (( 
    0  
    * ( 
    0. E)),y)) by 
    RLVECT_1: 10
    
        .= (
    0  
    * (f 
    . (( 
    0. E),y))) by 
    LM8
    
        .= (
    0. G) by 
    RLVECT_1: 10;
    
        
    
        
    
    A16: (f 
    . (x,( 
    0. F))) 
    = (f 
    . (x,( 
    0  
    * ( 
    0. F)))) by 
    RLVECT_1: 10
    
        .= (
    0  
    * (f 
    . (x,( 
    0. F)))) by 
    LM8
    
        .= (
    0. G) by 
    RLVECT_1: 10;
    
        thus
    ||.(f
    . (x,y)).|| 
    <= ((K 
    *  
    ||.x.||)
    *  
    ||.y.||)
    
        proof
    
          per cases ;
    
            suppose
    
            
    
    C16: x 
    <> ( 
    0. E) & y 
    <> ( 
    0. F); 
    
            then
    ||.x.||
    <>  
    0 & 
    ||.y.||
    <>  
    0 by 
    NORMSP_0:def 5;
    
            then
    
            
    
    A17: 
    0  
    <  
    ||.x.|| &
    0  
    <  
    ||.y.||;
    
            set x1 = ((s2
    /  
    ||.x.||)
    * x); 
    
            set y1 = ((s2
    /  
    ||.y.||)
    * y); 
    
            
    
            
    
    A19: 
    ||.x1.||
    = ( 
    |.(s2
    /  
    ||.x.||).|
    *  
    ||.x.||) by
    NORMSP_1:def 1
    
            .= ((s2
    /  
    ||.x.||)
    *  
    ||.x.||) by
    A7,
    COMPLEX1: 43
    
            .= s2 by
    C16,
    NORMSP_0:def 5,
    XCMPLX_1: 87;
    
            
    
            
    
    A21: 
    ||.y1.||
    = ( 
    |.(s2
    /  
    ||.y.||).|
    *  
    ||.y.||) by
    NORMSP_1:def 1
    
            .= ((s2
    /  
    ||.y.||)
    *  
    ||.y.||) by
    A7,
    COMPLEX1: 43
    
            .= s2 by
    C16,
    NORMSP_0:def 5,
    XCMPLX_1: 87;
    
            
    
            
    
    A23: (f 
    . (x1,y1)) 
    = ((s2 
    /  
    ||.x.||)
    * (f 
    . (x,((s2 
    /  
    ||.y.||)
    * y)))) by 
    LM8;
    
            (f
    . (x,((s2 
    /  
    ||.y.||)
    * y))) 
    = ((s2 
    /  
    ||.y.||)
    * (f 
    . (x,y))) by 
    LM8;
    
            
    
            then
    
            
    
    A24: (f 
    . (x1,y1)) 
    = (((s2 
    /  
    ||.x.||)
    * (s2 
    /  
    ||.y.||))
    * (f 
    . (x,y))) by 
    A23,
    RLVECT_1:def 7
    
            .= (((s2
    * s2) 
    / ( 
    ||.x.||
    *  
    ||.y.||))
    * (f 
    . (x,y))) by 
    XCMPLX_1: 76;
    
            
    
            
    
    A25: 
    0  
    < ( 
    ||.x.||
    *  
    ||.y.||) by
    A17,
    XREAL_1: 129;
    
            
    ||.(f
    . (x1,y1)).|| 
    = ( 
    |.((s2
    * s2) 
    / ( 
    ||.x.||
    *  
    ||.y.||)).|
    *  
    ||.(f
    . (x,y)).||) by 
    A24,
    NORMSP_1:def 1
    
            .= (((s2
    * s2) 
    / ( 
    ||.x.||
    *  
    ||.y.||))
    *  
    ||.(f
    . (x,y)).||) by 
    A7,
    COMPLEX1: 43;
    
            then
    
            
    
    A28: (((s2 
    * s2) 
    / ( 
    ||.x.||
    *  
    ||.y.||))
    *  
    ||.(f
    . (x,y)).||) 
    < 1 by 
    A9,
    A19,
    A21;
    
            ((((s2
    * s2) 
    / ( 
    ||.x.||
    *  
    ||.y.||))
    *  
    ||.(f
    . (x,y)).||) 
    * ( 
    ||.x.||
    *  
    ||.y.||))
    <= (1 
    * ( 
    ||.x.||
    *  
    ||.y.||)) by
    A28,
    XREAL_1: 64;
    
            then ((((s2
    * s2) 
    / ( 
    ||.x.||
    *  
    ||.y.||))
    * ( 
    ||.x.||
    *  
    ||.y.||))
    *  
    ||.(f
    . (x,y)).||) 
    <= ( 
    ||.x.||
    *  
    ||.y.||);
    
            then ((s2
    * s2) 
    *  
    ||.(f
    . (x,y)).||) 
    <= ( 
    ||.x.||
    *  
    ||.y.||) by
    A25,
    XCMPLX_1: 87;
    
            then (((s2
    * s2) 
    *  
    ||.(f
    . (x,y)).||) 
    / (s2 
    * s2)) 
    <= (( 
    ||.x.||
    *  
    ||.y.||)
    / (s2 
    * s2)) by 
    A7,
    XREAL_1: 72;
    
            then
    ||.(f
    . (x,y)).|| 
    <= (( 
    ||.x.||
    *  
    ||.y.||)
    / (s2 
    * s2)) by 
    A14,
    XCMPLX_1: 89;
    
            then
    ||.(f
    . (x,y)).|| 
    <= ((1 
    / (s2 
    * s2)) 
    * ( 
    ||.x.||
    *  
    ||.y.||)) by
    XCMPLX_1: 99;
    
            hence
    ||.(f
    . (x,y)).|| 
    <= ((K 
    *  
    ||.x.||)
    *  
    ||.y.||);
    
          end;
    
            suppose
    
            
    
    A29: x 
    = ( 
    0. E) or y 
    = ( 
    0. F); 
    
            then
    ||.x.||
    =  
    0 or 
    ||.y.||
    =  
    0 ; 
    
            hence
    ||.(f
    . (x,y)).|| 
    <= ((K 
    *  
    ||.x.||)
    *  
    ||.y.||) by
    A15,
    A16,
    A29;
    
          end;
    
        end;
    
      end;
    
      (ex K be
    Real st 
    0  
    <= K & for x be 
    Point of E, y be 
    Point of F holds 
    ||.(f
    . (x,y)).|| 
    <= ((K 
    *  
    ||.x.||)
    *  
    ||.y.||)) implies f
    is_continuous_on the 
    carrier of 
    [:E, F:]
    
      proof
    
        given K be
    Real such that 
    
        
    
    A32: 
    0  
    <= K & for x be 
    Point of E, y be 
    Point of F holds 
    ||.(f
    . (x,y)).|| 
    <= ((K 
    *  
    ||.x.||)
    *  
    ||.y.||);
    
        
    
        
    
    A33: the 
    carrier of 
    [:E, F:]
    c= ( 
    dom f) by 
    FUNCT_2:def 1;
    
        for z0 be
    Point of 
    [:E, F:], r1 be
    Real st z0 
    in the 
    carrier of 
    [:E, F:] &
    0  
    < r1 holds ex s be 
    Real st 
    0  
    < s & for z1 be 
    Point of 
    [:E, F:] st z1
    in the 
    carrier of 
    [:E, F:] &
    ||.(z1
    - z0).|| 
    < s holds 
    ||.((f
    /. z1) 
    - (f 
    /. z0)).|| 
    < r1 
    
        proof
    
          let z0 be
    Point of 
    [:E, F:], r1 be
    Real;
    
          assume
    
          
    
    A34: z0 
    in the 
    carrier of 
    [:E, F:] &
    0  
    < r1; 
    
          set r = (r1
    / 2); 
    
          
    
          
    
    A35: 
    0  
    < r & r 
    < r1 by 
    A34,
    XREAL_1: 215,
    XREAL_1: 216;
    
          consider x0 be
    Point of E, y0 be 
    Point of F such that 
    
          
    
    A36: z0 
    =  
    [x0, y0] by
    PRVECT_3: 18;
    
          set KXY0 = ((K
    + 1) 
    * (( 
    ||.x0.||
    + 1) 
    +  
    ||.y0.||));
    
          set s1 = (r
    / KXY0); 
    
          (K
    +  
    0 ) 
    < (K 
    + 1) by 
    XREAL_1: 8;
    
          then
    
          
    
    A39: (K 
    * (( 
    ||.x0.||
    + 1) 
    +  
    ||.y0.||))
    < ((K 
    + 1) 
    * (( 
    ||.x0.||
    + 1) 
    +  
    ||.y0.||)) by
    XREAL_1: 68;
    
          
    
          
    
    A40: 
    0  
    < KXY0 by 
    A32,
    XREAL_1: 129;
    
          then
    
          
    
    A41: 
    0  
    < s1 by 
    A35,
    XREAL_1: 139;
    
          set s = (
    min (s1,1)); 
    
          
    
          
    
    A42: s 
    <= 1 & s 
    <= s1 by 
    XXREAL_0: 17;
    
          
    
          
    
    A43: 
    0  
    < s by 
    A41,
    XXREAL_0: 21;
    
          then
    
          
    
    A44: ((K 
    * (( 
    ||.x0.||
    + 1) 
    +  
    ||.y0.||))
    * s) 
    <= (KXY0 
    * s1) by 
    A32,
    A39,
    A42,
    XREAL_1: 66;
    
          take s;
    
          thus
    0  
    < s by 
    A41,
    XXREAL_0: 21;
    
          let z1 be
    Point of 
    [:E, F:];
    
          assume
    
          
    
    A45: z1 
    in the 
    carrier of 
    [:E, F:] &
    ||.(z1
    - z0).|| 
    < s; 
    
          consider x1 be
    Point of E, y1 be 
    Point of F such that 
    
          
    
    A46: z1 
    =  
    [x1, y1] by
    PRVECT_3: 18;
    
          
    
          
    
    A47: ((f 
    . z1) 
    - (f 
    . z0)) 
    = ((((f 
    . (x1,y1)) 
    - (f 
    . (x0,y1))) 
    + (f 
    . (x0,y1))) 
    - (f 
    . (x0,y0))) by 
    A36,
    A46,
    RLVECT_4: 1
    
          .= (((f
    . (x1,y1)) 
    - (f 
    . (x0,y1))) 
    + ((f 
    . (x0,y1)) 
    - (f 
    . (x0,y0)))) by 
    RLVECT_1: 28;
    
          
    
          
    
    A49: ((f 
    . (x1,y1)) 
    - (f 
    . (x0,y1))) 
    = ((f 
    . (x1,y1)) 
    + (( 
    - 1) 
    * (f 
    . (x0,y1)))) by 
    RLVECT_1: 16
    
          .= ((f
    . (x1,y1)) 
    + (f 
    . ((( 
    - 1) 
    * x0),y1))) by 
    LM8
    
          .= (f
    . ((x1 
    + (( 
    - 1) 
    * x0)),y1)) by 
    LM8
    
          .= (f
    . ((x1 
    - x0),y1)) by 
    RLVECT_1: 16;
    
          
    
          
    
    A51: ((f 
    . (x0,y1)) 
    - (f 
    . (x0,y0))) 
    = ((f 
    . (x0,y1)) 
    + (( 
    - 1) 
    * (f 
    . (x0,y0)))) by 
    RLVECT_1: 16
    
          .= ((f
    . (x0,y1)) 
    + (f 
    . (x0,(( 
    - 1) 
    * y0)))) by 
    LM8
    
          .= (f
    . (x0,(y1 
    + (( 
    - 1) 
    * y0)))) by 
    LM8
    
          .= (f
    . (x0,(y1 
    - y0))) by 
    RLVECT_1: 16;
    
          
    
          
    
    A52: 
    ||.(f
    . ((x1 
    - x0),y1)).|| 
    <= ((K 
    *  
    ||.(x1
    - x0).||) 
    *  
    ||.y1.||) by
    A32;
    
          
    
          
    
    A53: 
    ||.(f
    . (x0,(y1 
    - y0))).|| 
    <= ((K 
    *  
    ||.x0.||)
    *  
    ||.(y1
    - y0).||) by 
    A32;
    
          (
    - z0) 
    =  
    [(
    - x0), ( 
    - y0)] by 
    A36,
    PRVECT_3: 18;
    
          then
    
          
    
    A54: (z1 
    - z0) 
    =  
    [(x1
    - x0), (y1 
    - y0)] by 
    A46,
    PRVECT_3: 18;
    
          then
    ||.(x1
    - x0).|| 
    <=  
    ||.(z1
    - z0).|| by 
    NDIFF_8: 21;
    
          then
    
          
    
    A55: 
    ||.(x1
    - x0).|| 
    < s by 
    A45,
    XXREAL_0: 2;
    
          
    ||.(y1
    - y0).|| 
    <=  
    ||.(z1
    - z0).|| by 
    A54,
    NDIFF_8: 21;
    
          then
    
          
    
    A56: 
    ||.(y1
    - y0).|| 
    < s by 
    A45,
    XXREAL_0: 2;
    
          (
    ||.(x1
    - x0).|| 
    *  
    ||.y1.||)
    <= (s 
    *  
    ||.y1.||) by
    A55,
    XREAL_1: 64;
    
          then (K
    * ( 
    ||.(x1
    - x0).|| 
    *  
    ||.y1.||))
    <= (K 
    * (s 
    *  
    ||.y1.||)) by
    A32,
    XREAL_1: 64;
    
          then
    
          
    
    A57: 
    ||.(f
    . ((x1 
    - x0),y1)).|| 
    <= ((K 
    * s) 
    *  
    ||.y1.||) by
    A52,
    XXREAL_0: 2;
    
          (
    ||.(y1
    - y0).|| 
    *  
    ||.x0.||)
    <= (s 
    *  
    ||.x0.||) by
    A56,
    XREAL_1: 64;
    
          then (K
    * ( 
    ||.x0.||
    *  
    ||.(y1
    - y0).||)) 
    <= (K 
    * (s 
    *  
    ||.x0.||)) by
    A32,
    XREAL_1: 64;
    
          then
    ||.(f
    . (x0,(y1 
    - y0))).|| 
    <= ((K 
    * s) 
    *  
    ||.x0.||) by
    A53,
    XXREAL_0: 2;
    
          then
    
          
    
    A58: ( 
    ||.(f
    . ((x1 
    - x0),y1)).|| 
    +  
    ||.(f
    . (x0,(y1 
    - y0))).||) 
    <= (((K 
    * s) 
    *  
    ||.y1.||)
    + ((K 
    * s) 
    *  
    ||.x0.||)) by
    A57,
    XREAL_1: 7;
    
          
    ||.y1.||
    =  
    ||.((y1
    - y0) 
    + y0).|| by 
    RLVECT_4: 1;
    
          then
    
          
    
    A60: 
    ||.y1.||
    <= ( 
    ||.(y1
    - y0).|| 
    +  
    ||.y0.||) by
    NORMSP_1:def 1;
    
          (
    ||.(y1
    - y0).|| 
    +  
    ||.y0.||)
    <= (s 
    +  
    ||.y0.||) by
    A56,
    XREAL_1: 7;
    
          then
    
          
    
    A61: 
    ||.y1.||
    <= (s 
    +  
    ||.y0.||) by
    A60,
    XXREAL_0: 2;
    
          (s
    +  
    ||.y0.||)
    <= (1 
    +  
    ||.y0.||) by
    A42,
    XREAL_1: 7;
    
          then
    ||.y1.||
    <= (1 
    +  
    ||.y0.||) by
    A61,
    XXREAL_0: 2;
    
          then (
    ||.y1.||
    +  
    ||.x0.||)
    <= ((1 
    +  
    ||.y0.||)
    +  
    ||.x0.||) by
    XREAL_1: 7;
    
          then (s
    * ( 
    ||.y1.||
    +  
    ||.x0.||))
    <= (s 
    * ((1 
    +  
    ||.y0.||)
    +  
    ||.x0.||)) by
    A43,
    XREAL_1: 64;
    
          then ((s
    * ( 
    ||.y1.||
    +  
    ||.x0.||))
    * K) 
    <= ((s 
    * ((1 
    +  
    ||.y0.||)
    +  
    ||.x0.||))
    * K) by 
    A32,
    XREAL_1: 64;
    
          then (
    ||.(f
    . ((x1 
    - x0),y1)).|| 
    +  
    ||.(f
    . (x0,(y1 
    - y0))).||) 
    <= ((K 
    * s) 
    * (( 
    ||.x0.||
    + 1) 
    +  
    ||.y0.||)) by
    A58,
    XXREAL_0: 2;
    
          then (
    ||.(f
    . ((x1 
    - x0),y1)).|| 
    +  
    ||.(f
    . (x0,(y1 
    - y0))).||) 
    <= (KXY0 
    * (r 
    / KXY0)) by 
    A44,
    XXREAL_0: 2;
    
          then
    
          
    
    A64: ( 
    ||.(f
    . ((x1 
    - x0),y1)).|| 
    +  
    ||.(f
    . (x0,(y1 
    - y0))).||) 
    <= r by 
    A40,
    XCMPLX_1: 87;
    
          
    ||.((f
    . z1) 
    - (f 
    . z0)).|| 
    <= ( 
    ||.((f
    . (x1,y1)) 
    - (f 
    . (x0,y1))).|| 
    +  
    ||.((f
    . (x0,y1)) 
    - (f 
    . (x0,y0))).||) by 
    A47,
    NORMSP_1:def 1;
    
          then
    ||.((f
    /. z1) 
    - (f 
    /. z0)).|| 
    <= r by 
    A49,
    A51,
    A64,
    XXREAL_0: 2;
    
          hence
    ||.((f
    /. z1) 
    - (f 
    /. z0)).|| 
    < r1 by 
    A35,
    XXREAL_0: 2;
    
        end;
    
        hence thesis by
    A33,
    NFCONT_1: 19;
    
      end;
    
      hence thesis by
    A4;
    
    end;