bhsp_4.miz
begin
reserve a,b,r,M2 for
Real;
reserve Rseq,Rseq1,Rseq2 for
Real_Sequence;
reserve k,n,m,m1,m2 for
Nat;
deffunc
09(
RealUnitarySpace) = (
0. $1);
definition
let X be non
empty
addLoopStr;
let seq be
sequence of X;
::
BHSP_4:def1
func
Partial_Sums (seq) ->
sequence of X means
:
Def1: (it
.
0 )
= (seq
.
0 ) & for n holds (it
. (n
+ 1))
= ((it
. n)
+ (seq
. (n
+ 1)));
existence
proof
deffunc
G(
Nat,
Point of X) = ($2
+ (seq
. ($1
+ 1)));
consider f be
sequence of the
carrier of X such that
A1: (f
.
0 )
= (seq
.
0 ) & for n be
Nat holds (f
. (n
+ 1))
=
G(n,.) from
NAT_1:sch 12;
take f;
thus thesis by
A1;
end;
uniqueness
proof
let seq1,seq2 be
sequence of X;
assume that
A2: (seq1
.
0 )
= (seq
.
0 ) and
A3: for n holds (seq1
. (n
+ 1))
= ((seq1
. n)
+ (seq
. (n
+ 1))) and
A4: (seq2
.
0 )
= (seq
.
0 ) and
A5: for n holds (seq2
. (n
+ 1))
= ((seq2
. n)
+ (seq
. (n
+ 1)));
defpred
P[
Nat] means (seq1
. $1)
= (seq2
. $1);
A6: for k st
P[k] holds
P[(k
+ 1)]
proof
let k;
assume (seq1
. k)
= (seq2
. k);
hence (seq1
. (k
+ 1))
= ((seq2
. k)
+ (seq
. (k
+ 1))) by
A3
.= (seq2
. (k
+ 1)) by
A5;
end;
A7:
P[
0 ] by
A2,
A4;
for n holds
P[n] from
NAT_1:sch 2(
A7,
A6);
then for n be
Element of
NAT holds
P[n];
hence seq1
= seq2;
end;
end
theorem ::
BHSP_4:1
Th1: for X be
Abelian
add-associative non
empty
addLoopStr, seq1,seq2 be
sequence of X holds ((
Partial_Sums seq1)
+ (
Partial_Sums seq2))
= (
Partial_Sums (seq1
+ seq2))
proof
let X be
Abelian
add-associative non
empty
addLoopStr, seq1,seq2 be
sequence of X;
set PSseq1 = (
Partial_Sums seq1);
set PSseq2 = (
Partial_Sums seq2);
A1:
now
let n;
thus ((PSseq1
+ PSseq2)
. (n
+ 1))
= ((PSseq1
. (n
+ 1))
+ (PSseq2
. (n
+ 1))) by
NORMSP_1:def 2
.= (((PSseq1
. n)
+ (seq1
. (n
+ 1)))
+ (PSseq2
. (n
+ 1))) by
Def1
.= (((PSseq1
. n)
+ (seq1
. (n
+ 1)))
+ ((seq2
. (n
+ 1))
+ (PSseq2
. n))) by
Def1
.= ((((PSseq1
. n)
+ (seq1
. (n
+ 1)))
+ (seq2
. (n
+ 1)))
+ (PSseq2
. n)) by
RLVECT_1:def 3
.= (((PSseq1
. n)
+ ((seq1
. (n
+ 1))
+ (seq2
. (n
+ 1))))
+ (PSseq2
. n)) by
RLVECT_1:def 3
.= (((PSseq1
. n)
+ ((seq1
+ seq2)
. (n
+ 1)))
+ (PSseq2
. n)) by
NORMSP_1:def 2
.= (((PSseq1
. n)
+ (PSseq2
. n))
+ ((seq1
+ seq2)
. (n
+ 1))) by
RLVECT_1:def 3
.= (((PSseq1
+ PSseq2)
. n)
+ ((seq1
+ seq2)
. (n
+ 1))) by
NORMSP_1:def 2;
end;
((PSseq1
+ PSseq2)
.
0 )
= ((PSseq1
.
0 )
+ (PSseq2
.
0 )) by
NORMSP_1:def 2
.= ((seq1
.
0 )
+ (PSseq2
.
0 )) by
Def1
.= ((seq1
.
0 )
+ (seq2
.
0 )) by
Def1
.= ((seq1
+ seq2)
.
0 ) by
NORMSP_1:def 2;
hence thesis by
A1,
Def1;
end;
theorem ::
BHSP_4:2
Th2: for X be
Abelian
add-associative
right_zeroed
right_complementable non
empty
addLoopStr, seq1,seq2 be
sequence of X holds ((
Partial_Sums seq1)
- (
Partial_Sums seq2))
= (
Partial_Sums (seq1
- seq2))
proof
let X be
Abelian
add-associative
right_zeroed
right_complementable non
empty
addLoopStr, seq1,seq2 be
sequence of X;
set PSseq1 = (
Partial_Sums seq1);
set PSseq2 = (
Partial_Sums seq2);
A1:
now
let n;
thus ((PSseq1
- PSseq2)
. (n
+ 1))
= ((PSseq1
. (n
+ 1))
- (PSseq2
. (n
+ 1))) by
NORMSP_1:def 3
.= (((PSseq1
. n)
+ (seq1
. (n
+ 1)))
- (PSseq2
. (n
+ 1))) by
Def1
.= (((PSseq1
. n)
+ (seq1
. (n
+ 1)))
- ((seq2
. (n
+ 1))
+ (PSseq2
. n))) by
Def1
.= ((((PSseq1
. n)
+ (seq1
. (n
+ 1)))
- (seq2
. (n
+ 1)))
- (PSseq2
. n)) by
RLVECT_1: 27
.= (((PSseq1
. n)
+ ((seq1
. (n
+ 1))
- (seq2
. (n
+ 1))))
- (PSseq2
. n)) by
RLVECT_1:def 3
.= (((PSseq1
. n)
- (PSseq2
. n))
+ ((seq1
. (n
+ 1))
- (seq2
. (n
+ 1)))) by
RLVECT_1:def 3
.= (((PSseq1
- PSseq2)
. n)
+ ((seq1
. (n
+ 1))
- (seq2
. (n
+ 1)))) by
NORMSP_1:def 3
.= (((PSseq1
- PSseq2)
. n)
+ ((seq1
- seq2)
. (n
+ 1))) by
NORMSP_1:def 3;
end;
((PSseq1
- PSseq2)
.
0 )
= ((PSseq1
.
0 )
- (PSseq2
.
0 )) by
NORMSP_1:def 3
.= ((seq1
.
0 )
- (PSseq2
.
0 )) by
Def1
.= ((seq1
.
0 )
- (seq2
.
0 )) by
Def1
.= ((seq1
- seq2)
.
0 ) by
NORMSP_1:def 3;
hence thesis by
A1,
Def1;
end;
theorem ::
BHSP_4:3
Th3: for X be
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
RLSStruct, seq be
sequence of X holds (
Partial_Sums (a
* seq))
= (a
* (
Partial_Sums seq))
proof
let X be
vector-distributive
scalar-distributive
scalar-associative
scalar-unital non
empty
RLSStruct, seq be
sequence of X;
set PSseq = (
Partial_Sums seq);
A1:
now
let n;
thus ((a
* PSseq)
. (n
+ 1))
= (a
* (PSseq
. (n
+ 1))) by
NORMSP_1:def 5
.= (a
* ((PSseq
. n)
+ (seq
. (n
+ 1)))) by
Def1
.= ((a
* (PSseq
. n))
+ (a
* (seq
. (n
+ 1)))) by
RLVECT_1:def 5
.= (((a
* PSseq)
. n)
+ (a
* (seq
. (n
+ 1)))) by
NORMSP_1:def 5
.= (((a
* PSseq)
. n)
+ ((a
* seq)
. (n
+ 1))) by
NORMSP_1:def 5;
end;
((a
* PSseq)
.
0 )
= (a
* (PSseq
.
0 )) by
NORMSP_1:def 5
.= (a
* (seq
.
0 )) by
Def1
.= ((a
* seq)
.
0 ) by
NORMSP_1:def 5;
hence thesis by
A1,
Def1;
end;
reserve X for
RealUnitarySpace;
reserve g for
Point of X;
reserve seq,seq1,seq2 for
sequence of X;
theorem ::
BHSP_4:4
(
Partial_Sums (
- seq))
= (
- (
Partial_Sums seq))
proof
(
Partial_Sums ((
- 1)
* seq))
= ((
- 1)
* (
Partial_Sums seq)) by
Th3;
then (
Partial_Sums (
- seq))
= ((
- 1)
* (
Partial_Sums seq)) by
BHSP_1: 55;
hence thesis by
BHSP_1: 55;
end;
theorem ::
BHSP_4:5
((a
* (
Partial_Sums seq1))
+ (b
* (
Partial_Sums seq2)))
= (
Partial_Sums ((a
* seq1)
+ (b
* seq2)))
proof
thus ((a
* (
Partial_Sums seq1))
+ (b
* (
Partial_Sums seq2)))
= ((
Partial_Sums (a
* seq1))
+ (b
* (
Partial_Sums seq2))) by
Th3
.= ((
Partial_Sums (a
* seq1))
+ (
Partial_Sums (b
* seq2))) by
Th3
.= (
Partial_Sums ((a
* seq1)
+ (b
* seq2))) by
Th1;
end;
definition
let X, seq;
::
BHSP_4:def2
attr seq is
summable means
:
Def2: (
Partial_Sums seq) is
convergent;
::
BHSP_4:def3
func
Sum (seq) ->
Point of X equals (
lim (
Partial_Sums seq));
coherence ;
end
theorem ::
BHSP_4:6
seq1 is
summable & seq2 is
summable implies (seq1
+ seq2) is
summable & (
Sum (seq1
+ seq2))
= ((
Sum seq1)
+ (
Sum seq2))
proof
assume seq1 is
summable & seq2 is
summable;
then
A1: (
Partial_Sums seq1) is
convergent & (
Partial_Sums seq2) is
convergent;
then ((
Partial_Sums seq1)
+ (
Partial_Sums seq2)) is
convergent by
BHSP_2: 3;
then (
Partial_Sums (seq1
+ seq2)) is
convergent by
Th1;
hence (seq1
+ seq2) is
summable;
thus (
Sum (seq1
+ seq2))
= (
lim ((
Partial_Sums seq1)
+ (
Partial_Sums seq2))) by
Th1
.= ((
Sum seq1)
+ (
Sum seq2)) by
A1,
BHSP_2: 13;
end;
theorem ::
BHSP_4:7
seq1 is
summable & seq2 is
summable implies (seq1
- seq2) is
summable & (
Sum (seq1
- seq2))
= ((
Sum seq1)
- (
Sum seq2))
proof
assume seq1 is
summable & seq2 is
summable;
then
A1: (
Partial_Sums seq1) is
convergent & (
Partial_Sums seq2) is
convergent;
then ((
Partial_Sums seq1)
- (
Partial_Sums seq2)) is
convergent by
BHSP_2: 4;
then (
Partial_Sums (seq1
- seq2)) is
convergent by
Th2;
hence (seq1
- seq2) is
summable;
thus (
Sum (seq1
- seq2))
= (
lim ((
Partial_Sums seq1)
- (
Partial_Sums seq2))) by
Th2
.= ((
Sum seq1)
- (
Sum seq2)) by
A1,
BHSP_2: 14;
end;
theorem ::
BHSP_4:8
seq is
summable implies (a
* seq) is
summable & (
Sum (a
* seq))
= (a
* (
Sum seq))
proof
assume seq is
summable;
then
A1: (
Partial_Sums seq) is
convergent;
then (a
* (
Partial_Sums seq)) is
convergent by
BHSP_2: 5;
then (
Partial_Sums (a
* seq)) is
convergent by
Th3;
hence (a
* seq) is
summable;
thus (
Sum (a
* seq))
= (
lim (a
* (
Partial_Sums seq))) by
Th3
.= (a
* (
Sum seq)) by
A1,
BHSP_2: 15;
end;
theorem ::
BHSP_4:9
Th9: seq is
summable implies seq is
convergent & (
lim seq)
= (
0. X)
proof
set PSseq = (
Partial_Sums seq);
now
let n;
(PSseq
. (n
+ 1))
= ((PSseq
. n)
+ (seq
. (n
+ 1))) by
Def1
.= ((PSseq
. n)
+ ((seq
^\ 1)
. n)) by
NAT_1:def 3;
hence ((PSseq
^\ 1)
. n)
= ((PSseq
. n)
+ ((seq
^\ 1)
. n)) by
NAT_1:def 3;
end;
then
A1: (PSseq
^\ 1)
= (PSseq
+ (seq
^\ 1)) by
NORMSP_1:def 2;
((seq
^\ 1)
+ (PSseq
- PSseq))
= (seq
^\ 1)
proof
let n be
Element of
NAT ;
thus (((seq
^\ 1)
+ (PSseq
- PSseq))
. n)
= (((seq
^\ 1)
. n)
+ ((PSseq
- PSseq)
. n)) by
NORMSP_1:def 2
.= (((seq
^\ 1)
. n)
+ ((PSseq
. n)
- (PSseq
. n))) by
NORMSP_1:def 3
.= (((seq
^\ 1)
. n)
+
09(X)) by
RLVECT_1: 15
.= ((seq
^\ 1)
. n);
end;
then
A2: (seq
^\ 1)
= ((PSseq
^\ 1)
- PSseq) by
A1,
BHSP_1: 61;
assume seq is
summable;
then
A3: PSseq is
convergent;
A4: (seq
^\ 1) is
convergent by
A3,
A2,
BHSP_2: 4;
hence seq is
convergent by
BHSP_3: 37;
(
lim (PSseq
^\ 1))
= (
lim PSseq) by
A3,
BHSP_3: 36;
then (
lim ((PSseq
^\ 1)
- PSseq))
= ((
lim PSseq)
- (
lim PSseq)) by
A3,
BHSP_2: 14
.=
09(X) by
RLVECT_1: 15;
hence thesis by
A2,
A4,
BHSP_3: 28,
BHSP_3: 37;
end;
theorem ::
BHSP_4:10
Th10: for X be
RealHilbertSpace, seq be
sequence of X holds seq is
summable iff for r st r
>
0 holds ex k st for n, m st n
>= k & m
>= k holds
||.(((
Partial_Sums seq)
. n)
- ((
Partial_Sums seq)
. m)).||
< r by
BHSP_3: 2,
BHSP_3:def 4;
theorem ::
BHSP_4:11
seq is
summable implies (
Partial_Sums seq) is
bounded;
theorem ::
BHSP_4:12
Th12: for seq, seq1 st for n holds (seq1
. n)
= (seq
.
0 ) holds (
Partial_Sums (seq
^\ 1))
= (((
Partial_Sums seq)
^\ 1)
- seq1)
proof
let seq, seq1;
assume
A1: for n holds (seq1
. n)
= (seq
.
0 );
A2:
now
let n;
thus ((((
Partial_Sums seq)
^\ 1)
- seq1)
. (n
+ 1))
= ((((
Partial_Sums seq)
^\ 1)
. (n
+ 1))
- (seq1
. (n
+ 1))) by
NORMSP_1:def 3
.= ((((
Partial_Sums seq)
^\ 1)
. (n
+ 1))
- (seq
.
0 )) by
A1
.= (((
Partial_Sums seq)
. ((n
+ 1)
+ 1))
- (seq
.
0 )) by
NAT_1:def 3
.= (((seq
. ((n
+ 1)
+ 1))
+ ((
Partial_Sums seq)
. (n
+ 1)))
- (seq
.
0 )) by
Def1
.= (((seq
. ((n
+ 1)
+ 1))
+ ((
Partial_Sums seq)
. (n
+ 1)))
- (seq1
. n)) by
A1
.= ((seq
. ((n
+ 1)
+ 1))
+ (((
Partial_Sums seq)
. (n
+ 1))
- (seq1
. n))) by
RLVECT_1:def 3
.= ((seq
. ((n
+ 1)
+ 1))
+ ((((
Partial_Sums seq)
^\ 1)
. n)
- (seq1
. n))) by
NAT_1:def 3
.= ((seq
. ((n
+ 1)
+ 1))
+ ((((
Partial_Sums seq)
^\ 1)
- seq1)
. n)) by
NORMSP_1:def 3
.= (((((
Partial_Sums seq)
^\ 1)
- seq1)
. n)
+ ((seq
^\ 1)
. (n
+ 1))) by
NAT_1:def 3;
end;
((((
Partial_Sums seq)
^\ 1)
- seq1)
.
0 )
= ((((
Partial_Sums seq)
^\ 1)
.
0 )
- (seq1
.
0 )) by
NORMSP_1:def 3
.= ((((
Partial_Sums seq)
^\ 1)
.
0 )
- (seq
.
0 )) by
A1
.= (((
Partial_Sums seq)
. (
0
+ 1))
- (seq
.
0 )) by
NAT_1:def 3
.= ((((
Partial_Sums seq)
.
0 )
+ (seq
. (
0
+ 1)))
- (seq
.
0 )) by
Def1
.= (((seq
. (
0
+ 1))
+ (seq
.
0 ))
- (seq
.
0 )) by
Def1
.= ((seq
. (
0
+ 1))
+ ((seq
.
0 )
- (seq
.
0 ))) by
RLVECT_1:def 3
.= ((seq
. (
0
+ 1))
+
09(X)) by
RLVECT_1: 15
.= (seq
. (
0
+ 1))
.= ((seq
^\ 1)
.
0 ) by
NAT_1:def 3;
hence thesis by
A2,
Def1;
end;
theorem ::
BHSP_4:13
Th13: seq is
summable implies for k holds (seq
^\ k) is
summable
proof
defpred
P[
Nat] means (seq
^\ $1) is
summable;
A1: for k st
P[k] holds
P[(k
+ 1)]
proof
let k;
reconsider seq1 = (
NAT
--> ((seq
^\ k)
.
0 )) as
sequence of X;
assume (seq
^\ k) is
summable;
then
A2: (
Partial_Sums (seq
^\ k)) is
convergent;
for m holds (seq1
. m)
= ((seq
^\ k)
.
0 ) by
ORDINAL1:def 12,
FUNCOP_1: 7;
then seq1 is
convergent & (
Partial_Sums ((seq
^\ k)
^\ 1))
= (((
Partial_Sums (seq
^\ k))
^\ 1)
- seq1) by
Th12;
then (seq
^\ (k
+ 1))
= ((seq
^\ k)
^\ 1) & (
Partial_Sums ((seq
^\ k)
^\ 1)) is
convergent by
A2,
BHSP_2: 4,
BHSP_3: 31;
hence thesis by
Def2;
end;
assume seq is
summable;
then
A3:
P[
0 ] by
NAT_1: 47;
thus for k holds
P[k] from
NAT_1:sch 2(
A3,
A1);
end;
theorem ::
BHSP_4:14
(ex k st (seq
^\ k) is
summable) implies seq is
summable
proof
given k such that
A1: (seq
^\ k) is
summable;
((seq
^\ k)
^\ 1) is
summable by
A1,
Th13;
then
A2: (
Partial_Sums ((seq
^\ k)
^\ 1)) is
convergent;
reconsider seq1 = (
NAT
--> ((
Partial_Sums seq)
. k)) as
sequence of X;
defpred
P[
Nat] means (((
Partial_Sums seq)
^\ (k
+ 1))
. $1)
= (((
Partial_Sums (seq
^\ (k
+ 1)))
. $1)
+ (seq1
. $1));
A3: ((
Partial_Sums (seq
^\ (k
+ 1)))
.
0 )
= ((seq
^\ (k
+ 1))
.
0 ) by
Def1
.= (seq
. (
0
+ (k
+ 1))) by
NAT_1:def 3
.= (seq
. (k
+ 1));
A4:
now
let m;
A5: m
in
NAT by
ORDINAL1:def 12;
assume
A6:
P[m];
(((
Partial_Sums (seq
^\ (k
+ 1)))
. (m
+ 1))
+ (seq1
. (m
+ 1)))
= ((seq1
. (m
+ 1))
+ (((
Partial_Sums (seq
^\ (k
+ 1)))
. m)
+ ((seq
^\ (k
+ 1))
. (m
+ 1)))) by
Def1
.= (((seq1
. (m
+ 1))
+ ((
Partial_Sums (seq
^\ (k
+ 1)))
. m))
+ ((seq
^\ (k
+ 1))
. (m
+ 1))) by
RLVECT_1:def 3
.= ((((
Partial_Sums seq)
. k)
+ ((
Partial_Sums (seq
^\ (k
+ 1)))
. m))
+ ((seq
^\ (k
+ 1))
. (m
+ 1)))
.= ((((
Partial_Sums seq)
^\ (k
+ 1))
. m)
+ ((seq
^\ (k
+ 1))
. (m
+ 1))) by
A6,
FUNCOP_1: 7,
A5
.= (((
Partial_Sums seq)
. (m
+ (k
+ 1)))
+ ((seq
^\ (k
+ 1))
. (m
+ 1))) by
NAT_1:def 3
.= (((
Partial_Sums seq)
. (m
+ (k
+ 1)))
+ (seq
. ((m
+ 1)
+ (k
+ 1)))) by
NAT_1:def 3
.= ((
Partial_Sums seq)
. ((m
+ (k
+ 1))
+ 1)) by
Def1
.= ((
Partial_Sums seq)
. ((m
+ 1)
+ (k
+ 1)))
.= (((
Partial_Sums seq)
^\ (k
+ 1))
. (m
+ 1)) by
NAT_1:def 3;
hence
P[(m
+ 1)];
end;
(((
Partial_Sums seq)
^\ (k
+ 1))
.
0 )
= ((
Partial_Sums seq)
. (
0
+ (k
+ 1))) by
NAT_1:def 3
.= (((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1))) by
Def1
.= (((
Partial_Sums (seq
^\ (k
+ 1)))
.
0 )
+ (seq1
.
0 )) by
A3;
then
A7:
P[
0 ];
for m holds
P[m] from
NAT_1:sch 2(
A7,
A4);
then
A8: ((
Partial_Sums seq)
^\ (k
+ 1))
= ((
Partial_Sums (seq
^\ (k
+ 1)))
+ seq1) by
NORMSP_1:def 2
.= ((
Partial_Sums ((seq
^\ k)
^\ 1))
+ seq1) by
BHSP_3: 31;
((
Partial_Sums seq)
^\ (k
+ 1)) is
convergent by
A2,
A8,
BHSP_2: 3;
hence thesis by
BHSP_3: 37;
end;
definition
let X, seq, n;
::
BHSP_4:def4
func
Sum (seq,n) ->
Point of X equals ((
Partial_Sums seq)
. n);
coherence ;
end
theorem ::
BHSP_4:15
(
Sum (seq,
0 ))
= (seq
.
0 ) by
Def1;
theorem ::
BHSP_4:16
Th16: (
Sum (seq,1))
= ((
Sum (seq,
0 ))
+ (seq
. 1))
proof
((
Partial_Sums seq)
. 1)
= (((
Partial_Sums seq)
.
0 )
+ (seq
. (
0
+ 1))) by
Def1
.= (((
Partial_Sums seq)
.
0 )
+ (seq
. 1));
hence thesis;
end;
theorem ::
BHSP_4:17
Th17: (
Sum (seq,1))
= ((seq
.
0 )
+ (seq
. 1))
proof
thus (
Sum (seq,1))
= ((
Sum (seq,
0 ))
+ (seq
. 1)) by
Th16
.= ((seq
.
0 )
+ (seq
. 1)) by
Def1;
end;
theorem ::
BHSP_4:18
(
Sum (seq,(n
+ 1)))
= ((
Sum (seq,n))
+ (seq
. (n
+ 1))) by
Def1;
theorem ::
BHSP_4:19
Th19: (seq
. (n
+ 1))
= ((
Sum (seq,(n
+ 1)))
- (
Sum (seq,n)))
proof
thus ((
Sum (seq,(n
+ 1)))
- (
Sum (seq,n)))
= (((seq
. (n
+ 1))
+ (
Sum (seq,n)))
- (
Sum (seq,n))) by
Def1
.= ((seq
. (n
+ 1))
+ ((
Sum (seq,n))
- (
Sum (seq,n)))) by
RLVECT_1:def 3
.= ((seq
. (n
+ 1))
+ (
0. X)) by
RLVECT_1: 15
.= (seq
. (n
+ 1));
end;
theorem ::
BHSP_4:20
(seq
. 1)
= ((
Sum (seq,1))
- (
Sum (seq,
0 )))
proof
(seq
. (
0
+ 1))
= ((
Sum (seq,(
0
+ 1)))
- (
Sum (seq,
0 ))) by
Th19;
hence thesis;
end;
definition
let X, seq, n, m;
::
BHSP_4:def5
func
Sum (seq,n,m) ->
Point of X equals ((
Sum (seq,n))
- (
Sum (seq,m)));
coherence ;
end
theorem ::
BHSP_4:21
(
Sum (seq,1,
0 ))
= (seq
. 1)
proof
(
Sum (seq,1,
0 ))
= (((seq
.
0 )
+ (seq
. 1))
- (
Sum (seq,
0 ))) by
Th17
.= (((seq
. 1)
+ (seq
.
0 ))
- (seq
.
0 )) by
Def1
.= ((seq
. 1)
+ ((seq
.
0 )
- (seq
.
0 ))) by
RLVECT_1:def 3
.= ((seq
. 1)
+
09(X)) by
RLVECT_1: 15;
hence thesis;
end;
theorem ::
BHSP_4:22
(
Sum (seq,(n
+ 1),n))
= (seq
. (n
+ 1)) by
Th19;
theorem ::
BHSP_4:23
Th23: for X be
RealHilbertSpace, seq be
sequence of X holds seq is
summable iff for r st r
>
0 holds ex k st for n, m st n
>= k & m
>= k holds
||.((
Sum (seq,n))
- (
Sum (seq,m))).||
< r
proof
let X be
RealHilbertSpace, seq be
sequence of X;
thus seq is
summable implies for r st r
>
0 holds ex k st for n, m st n
>= k & m
>= k holds
||.((
Sum (seq,n))
- (
Sum (seq,m))).||
< r
proof
assume
A1: seq is
summable;
now
let r;
assume r
>
0 ;
then
consider k such that
A2: for n, m st n
>= k & m
>= k holds
||.(((
Partial_Sums seq)
. n)
- ((
Partial_Sums seq)
. m)).||
< r by
A1,
Th10;
take k;
let n, m;
assume n
>= k & m
>= k;
hence
||.((
Sum (seq,n))
- (
Sum (seq,m))).||
< r by
A2;
end;
hence thesis;
end;
thus (for r st r
>
0 holds ex k st for n, m st n
>= k & m
>= k holds
||.((
Sum (seq,n))
- (
Sum (seq,m))).||
< r) implies seq is
summable
proof
assume
A3: for r st r
>
0 holds ex k st for n, m st n
>= k & m
>= k holds
||.((
Sum (seq,n))
- (
Sum (seq,m))).||
< r;
now
let r;
assume r
>
0 ;
then
consider k such that
A4: for n, m st n
>= k & m
>= k holds
||.((
Sum (seq,n))
- (
Sum (seq,m))).||
< r by
A3;
take k;
let n, m;
assume n
>= k & m
>= k;
then
||.((
Sum (seq,n))
- (
Sum (seq,m))).||
< r by
A4;
hence
||.(((
Partial_Sums seq)
. n)
- ((
Partial_Sums seq)
. m)).||
< r;
end;
hence thesis by
Th10;
end;
end;
theorem ::
BHSP_4:24
for X be
RealHilbertSpace, seq be
sequence of X holds seq is
summable iff for r st r
>
0 holds ex k st for n, m st n
>= k & m
>= k holds
||.(
Sum (seq,n,m)).||
< r
proof
let X be
RealHilbertSpace, seq be
sequence of X;
thus seq is
summable implies for r st r
>
0 holds ex k st for n, m st n
>= k & m
>= k holds
||.(
Sum (seq,n,m)).||
< r
proof
assume
A1: seq is
summable;
now
let r;
assume r
>
0 ;
then
consider k such that
A2: for n, m st n
>= k & m
>= k holds
||.((
Sum (seq,n))
- (
Sum (seq,m))).||
< r by
A1,
Th23;
take k;
let n, m;
assume n
>= k & m
>= k;
hence
||.(
Sum (seq,n,m)).||
< r by
A2;
end;
hence thesis;
end;
thus (for r st r
>
0 holds ex k st for n, m st n
>= k & m
>= k holds
||.(
Sum (seq,n,m)).||
< r) implies seq is
summable
proof
assume
A3: for r st r
>
0 holds ex k st for n, m st n
>= k & m
>= k holds
||.(
Sum (seq,n,m)).||
< r;
now
let r;
assume r
>
0 ;
then
consider k such that
A4: for n, m st n
>= k & m
>= k holds
||.(
Sum (seq,n,m)).||
< r by
A3;
take k;
let n, m;
assume n
>= k & m
>= k;
then
||.(
Sum (seq,n,m)).||
< r by
A4;
hence
||.((
Sum (seq,n))
- (
Sum (seq,m))).||
< r;
end;
hence thesis by
Th23;
end;
end;
definition
let X, seq;
::
BHSP_4:def6
attr seq is
absolutely_summable means
||.seq.|| is
summable;
end
theorem ::
BHSP_4:25
seq1 is
absolutely_summable & seq2 is
absolutely_summable implies (seq1
+ seq2) is
absolutely_summable
proof
A1: for n be
Nat holds (
||.(seq1
+ seq2).||
. n)
>=
0 & (
||.(seq1
+ seq2).||
. n)
<= ((
||.seq1.||
+
||.seq2.||)
. n)
proof
let n be
Nat;
(
||.(seq1
+ seq2).||
. n)
=
||.((seq1
+ seq2)
. n).|| by
BHSP_2:def 3;
hence (
||.(seq1
+ seq2).||
. n)
>=
0 by
BHSP_1: 28;
(
||.(seq1
+ seq2).||
. n)
=
||.((seq1
+ seq2)
. n).|| by
BHSP_2:def 3
.=
||.((seq1
. n)
+ (seq2
. n)).|| by
NORMSP_1:def 2;
then (
||.(seq1
+ seq2).||
. n)
<= (
||.(seq1
. n).||
+
||.(seq2
. n).||) by
BHSP_1: 30;
then (
||.(seq1
+ seq2).||
. n)
<= ((
||.seq1.||
. n)
+
||.(seq2
. n).||) by
BHSP_2:def 3;
then (
||.(seq1
+ seq2).||
. n)
<= ((
||.seq1.||
. n)
+ (
||.seq2.||
. n)) by
BHSP_2:def 3;
hence (
||.(seq1
+ seq2).||
. n)
<= ((
||.seq1.||
+
||.seq2.||)
. n) by
SEQ_1: 7;
end;
assume seq1 is
absolutely_summable & seq2 is
absolutely_summable;
then
||.seq1.|| is
summable &
||.seq2.|| is
summable;
then (
||.seq1.||
+
||.seq2.||) is
summable by
SERIES_1: 7;
then
||.(seq1
+ seq2).|| is
summable by
A1,
SERIES_1: 20;
hence thesis;
end;
theorem ::
BHSP_4:26
seq is
absolutely_summable implies (a
* seq) is
absolutely_summable
proof
A1: for n be
Nat holds (
||.(a
* seq).||
. n)
>=
0 & (
||.(a
* seq).||
. n)
<= ((
|.a.|
(#)
||.seq.||)
. n)
proof
let n be
Nat;
(
||.(a
* seq).||
. n)
=
||.((a
* seq)
. n).|| by
BHSP_2:def 3;
hence (
||.(a
* seq).||
. n)
>=
0 by
BHSP_1: 28;
(
||.(a
* seq).||
. n)
=
||.((a
* seq)
. n).|| by
BHSP_2:def 3
.=
||.(a
* (seq
. n)).|| by
NORMSP_1:def 5
.= (
|.a.|
*
||.(seq
. n).||) by
BHSP_1: 27
.= (
|.a.|
* (
||.seq.||
. n)) by
BHSP_2:def 3
.= ((
|.a.|
(#)
||.seq.||)
. n) by
SEQ_1: 9;
hence (
||.(a
* seq).||
. n)
<= ((
|.a.|
(#)
||.seq.||)
. n);
end;
assume seq is
absolutely_summable;
then
||.seq.|| is
summable;
then (
|.a.|
(#)
||.seq.||) is
summable by
SERIES_1: 10;
then
||.(a
* seq).|| is
summable by
A1,
SERIES_1: 20;
hence thesis;
end;
theorem ::
BHSP_4:27
(for n be
Nat holds (
||.seq.||
. n)
<= (Rseq
. n)) & Rseq is
summable implies seq is
absolutely_summable
proof
A1: for n be
Nat holds (
||.seq.||
. n)
>=
0
proof
let n be
Nat;
(
||.seq.||
. n)
=
||.(seq
. n).|| by
BHSP_2:def 3;
hence thesis by
BHSP_1: 28;
end;
assume (for n be
Nat holds (
||.seq.||
. n)
<= (Rseq
. n)) & Rseq is
summable;
then
||.seq.|| is
summable by
A1,
SERIES_1: 20;
hence thesis;
end;
theorem ::
BHSP_4:28
(for n be
Nat holds (seq
. n)
<> (
0. X) & (Rseq
. n)
= (
||.(seq
. (n
+ 1)).||
/
||.(seq
. n).||)) & Rseq is
convergent & (
lim Rseq)
< 1 implies seq is
absolutely_summable
proof
assume that
A1: for n be
Nat holds (seq
. n)
<>
09(X) & (Rseq
. n)
= (
||.(seq
. (n
+ 1)).||
/
||.(seq
. n).||) and
A2: Rseq is
convergent & (
lim Rseq)
< 1;
for n be
Nat holds (
||.seq.||
. n)
>
0 & (Rseq
. n)
= ((
||.seq.||
. (n
+ 1))
/ (
||.seq.||
. n))
proof
let n be
Nat;
A3:
||.(seq
. n).||
<>
0 by
A1,
BHSP_1: 26;
||.(seq
. n).||
>=
0 by
BHSP_1: 28;
hence (
||.seq.||
. n)
>
0 by
A3,
BHSP_2:def 3;
(Rseq
. n)
= (
||.(seq
. (n
+ 1)).||
/
||.(seq
. n).||) by
A1
.= ((
||.seq.||
. (n
+ 1))
/
||.(seq
. n).||) by
BHSP_2:def 3;
hence (Rseq
. n)
= ((
||.seq.||
. (n
+ 1))
/ (
||.seq.||
. n)) by
BHSP_2:def 3;
end;
hence thesis by
A2,
SERIES_1: 26;
end;
theorem ::
BHSP_4:29
Th29: r
>
0 & (ex m st for n st n
>= m holds
||.(seq
. n).||
>= r) implies not seq is
convergent or (
lim seq)
<> (
0. X)
proof
assume
A1: r
>
0 ;
given m such that
A2: for n st n
>= m holds
||.(seq
. n).||
>= r;
per cases ;
suppose not seq is
convergent;
hence thesis;
end;
suppose
A3: seq is
convergent;
now
assume (
lim seq)
=
09(X);
then
consider k be
Nat such that
A4: for n be
Nat st n
>= k holds
||.((seq
. n)
-
09(X)).||
< r by
A1,
A3,
BHSP_2: 19;
set n = (m
+ k);
(m
+ k)
>= k by
NAT_1: 11;
then n
>= k;
then
||.((seq
. n)
-
09(X)).||
< r by
A4;
then
A5:
||.(seq
. n).||
< r;
(m
+ k)
>= m by
NAT_1: 11;
then n
>= m;
hence contradiction by
A2,
A5;
end;
hence thesis;
end;
end;
theorem ::
BHSP_4:30
Th30: (for n holds (seq
. n)
<> (
0. X)) & (ex m st for n st n
>= m holds (
||.(seq
. (n
+ 1)).||
/
||.(seq
. n).||)
>= 1) implies not seq is
summable
proof
assume
A1: for n holds (seq
. n)
<>
09(X);
given m such that
A2: for n st n
>= m holds (
||.(seq
. (n
+ 1)).||
/
||.(seq
. n).||)
>= 1;
A3:
now
defpred
P[
Nat] means
||.(seq
. (m
+ $1)).||
>=
||.(seq
. m).||;
let n;
A4: for k st
P[k] holds
P[(k
+ 1)]
proof
let k;
assume
A5:
||.(seq
. (m
+ k)).||
>=
||.(seq
. m).||;
A6:
||.(seq
. (m
+ k)).||
<>
0 by
A1,
BHSP_1: 26;
(
||.(seq
. ((m
+ k)
+ 1)).||
/
||.(seq
. (m
+ k)).||)
>= 1 &
||.(seq
. (m
+ k)).||
>=
0 by
A2,
BHSP_1: 28,
NAT_1: 11;
then
||.(seq
. ((m
+ k)
+ 1)).||
>=
||.(seq
. (m
+ k)).|| by
A6,
XREAL_1: 191;
hence thesis by
A5,
XXREAL_0: 2;
end;
A7:
P[
0 ];
A8: for k holds
P[k] from
NAT_1:sch 2(
A7,
A4);
assume n
>= m;
then
consider k be
Nat such that
A9: n
= (m
+ k) by
NAT_1: 10;
thus
||.(seq
. n).||
>=
||.(seq
. m).|| by
A8,
A9;
end;
A10:
||.(seq
. m).||
<>
0 by
A1,
BHSP_1: 26;
||.(seq
. m).||
>=
0 by
BHSP_1: 28;
then not seq is
convergent or (
lim seq)
<>
09(X) by
A10,
A3,
Th29;
hence thesis by
Th9;
end;
theorem ::
BHSP_4:31
(for n holds (seq
. n)
<> (
0. X)) & (for n holds (Rseq
. n)
= (
||.(seq
. (n
+ 1)).||
/
||.(seq
. n).||)) & Rseq is
convergent & (
lim Rseq)
> 1 implies not seq is
summable
proof
assume that
A1: for n holds (seq
. n)
<>
09(X) and
A2: for n holds (Rseq
. n)
= (
||.(seq
. (n
+ 1)).||
/
||.(seq
. n).||) and
A3: Rseq is
convergent and
A4: (
lim Rseq)
> 1;
((
lim Rseq)
- 1)
>
0 by
A4,
XREAL_1: 50;
then
consider m be
Nat such that
A5: for n be
Nat st n
>= m holds
|.((Rseq
. n)
- (
lim Rseq)).|
< ((
lim Rseq)
- 1) by
A3,
SEQ_2:def 7;
now
let n;
A6: (m
+ 1)
>= m by
NAT_1: 11;
A7: (Rseq
. n)
= (
||.(seq
. (n
+ 1)).||
/
||.(seq
. n).||) by
A2;
assume n
>= (m
+ 1);
then n
>= m by
A6,
XXREAL_0: 2;
then
|.((
||.(seq
. (n
+ 1)).||
/
||.(seq
. n).||)
- (
lim Rseq)).|
< ((
lim Rseq)
- 1) by
A5,
A7;
then (
- ((
lim Rseq)
- 1))
< ((
||.(seq
. (n
+ 1)).||
/
||.(seq
. n).||)
- (
lim Rseq)) by
SEQ_2: 1;
then ((1
- (
lim Rseq))
+ (
lim Rseq))
< (((
||.(seq
. (n
+ 1)).||
/
||.(seq
. n).||)
- (
lim Rseq))
+ (
lim Rseq)) by
XREAL_1: 6;
hence (
||.(seq
. (n
+ 1)).||
/
||.(seq
. n).||)
>= 1;
end;
hence thesis by
A1,
Th30;
end;
theorem ::
BHSP_4:32
(for n holds (Rseq
. n)
= (n
-root
||.(seq
. n).||)) & Rseq is
convergent & (
lim Rseq)
< 1 implies seq is
absolutely_summable
proof
assume that
A1: for n holds (Rseq
. n)
= (n
-root
||.(seq
. n).||) and
A2: Rseq is
convergent & (
lim Rseq)
< 1;
for n be
Nat holds (
||.seq.||
. n)
>=
0 & (Rseq
. n)
= (n
-root (
||.seq.||
. n))
proof
let n be
Nat;
(
||.seq.||
. n)
=
||.(seq
. n).|| by
BHSP_2:def 3;
hence (
||.seq.||
. n)
>=
0 by
BHSP_1: 28;
(Rseq
. n)
= (n
-root
||.(seq
. n).||) by
A1;
hence (Rseq
. n)
= (n
-root (
||.seq.||
. n)) by
BHSP_2:def 3;
end;
hence thesis by
A2,
SERIES_1: 28;
end;
theorem ::
BHSP_4:33
(for n holds (Rseq
. n)
= (n
-root (
||.seq.||
. n))) & (ex m st for n st n
>= m holds (Rseq
. n)
>= 1) implies not seq is
summable
proof
assume
A1: for n holds (Rseq
. n)
= (n
-root (
||.seq.||
. n));
given m such that
A2: for n st n
>= m holds (Rseq
. n)
>= 1;
now
let n;
assume
A3: n
>= (m
+ 1);
(m
+ 1)
>= 1 by
NAT_1: 11;
then
A4: n
>= 1 by
A3,
XXREAL_0: 2;
(m
+ 1)
>= m by
NAT_1: 11;
then
A5: n
>= m by
A3,
XXREAL_0: 2;
(Rseq
. n)
= (n
-root (
||.seq.||
. n)) by
A1
.= (n
-root
||.(seq
. n).||) by
BHSP_2:def 3;
then
||.(seq
. n).||
>=
0 & ((n
-root
||.(seq
. n).||)
|^ n)
>= 1 by
A2,
A5,
BHSP_1: 28,
PREPOWER: 11;
hence
||.(seq
. n).||
>= 1 by
A4,
POWER: 4;
end;
then not seq is
convergent or (
lim seq)
<>
09(X) by
Th29;
hence thesis by
Th9;
end;
theorem ::
BHSP_4:34
(for n holds (Rseq
. n)
= (n
-root (
||.seq.||
. n))) & Rseq is
convergent & (
lim Rseq)
> 1 implies not seq is
summable
proof
assume that
A1: for n holds (Rseq
. n)
= (n
-root (
||.seq.||
. n)) and
A2: Rseq is
convergent and
A3: (
lim Rseq)
> 1;
((
lim Rseq)
- 1)
>
0 by
A3,
XREAL_1: 50;
then
consider m be
Nat such that
A4: for n be
Nat st n
>= m holds
|.((Rseq
. n)
- (
lim Rseq)).|
< ((
lim Rseq)
- 1) by
A2,
SEQ_2:def 7;
now
let n;
assume
A5: n
>= (m
+ 1);
A6: (Rseq
. n)
= (n
-root (
||.seq.||
. n)) by
A1
.= (n
-root
||.(seq
. n).||) by
BHSP_2:def 3;
(m
+ 1)
>= m by
NAT_1: 11;
then n
>= m by
A5,
XXREAL_0: 2;
then
|.((n
-root
||.(seq
. n).||)
- (
lim Rseq)).|
< ((
lim Rseq)
- 1) by
A4,
A6;
then (
- ((
lim Rseq)
- 1))
< ((n
-root
||.(seq
. n).||)
- (
lim Rseq)) by
SEQ_2: 1;
then ((1
- (
lim Rseq))
+ (
lim Rseq))
< (((n
-root
||.(seq
. n).||)
- (
lim Rseq))
+ (
lim Rseq)) by
XREAL_1: 6;
then
A7:
||.(seq
. n).||
>=
0 & ((n
-root
||.(seq
. n).||)
|^ n)
>= 1 by
BHSP_1: 28,
PREPOWER: 11;
(m
+ 1)
>= 1 by
NAT_1: 11;
then n
>= 1 by
A5,
XXREAL_0: 2;
hence
||.(seq
. n).||
>= 1 by
A7,
POWER: 4;
end;
then not seq is
convergent or (
lim seq)
<>
09(X) by
Th29;
hence thesis by
Th9;
end;
theorem ::
BHSP_4:35
Th35: (
Partial_Sums
||.seq.||) is
non-decreasing
proof
now
let n be
Nat;
||.(seq
. (n
+ 1)).||
>=
0 by
BHSP_1: 28;
then (
||.seq.||
. (n
+ 1))
>=
0 by
BHSP_2:def 3;
then (
0
+ ((
Partial_Sums
||.seq.||)
. n))
<= ((
||.seq.||
. (n
+ 1))
+ ((
Partial_Sums
||.seq.||)
. n)) by
XREAL_1: 6;
hence ((
Partial_Sums
||.seq.||)
. n)
<= ((
Partial_Sums
||.seq.||)
. (n
+ 1)) by
SERIES_1:def 1;
end;
hence thesis;
end;
theorem ::
BHSP_4:36
for n holds ((
Partial_Sums
||.seq.||)
. n)
>=
0
proof
let n;
||.(seq
.
0 ).||
>=
0 by
BHSP_1: 28;
then
A1: (
||.seq.||
.
0 )
>=
0 by
BHSP_2:def 3;
((
Partial_Sums
||.seq.||)
.
0 )
<= ((
Partial_Sums
||.seq.||)
. n) by
Th35,
SEQM_3: 11;
hence thesis by
A1,
SERIES_1:def 1;
end;
theorem ::
BHSP_4:37
Th37: for n holds
||.((
Partial_Sums seq)
. n).||
<= ((
Partial_Sums
||.seq.||)
. n)
proof
defpred
P[
Nat] means
||.((
Partial_Sums seq)
. $1).||
<= ((
Partial_Sums
||.seq.||)
. $1);
A1:
now
let n;
assume
P[n];
then
A2: (
||.((
Partial_Sums seq)
. n).||
+
||.(seq
. (n
+ 1)).||)
<= (((
Partial_Sums
||.seq.||)
. n)
+
||.(seq
. (n
+ 1)).||) by
XREAL_1: 6;
((
Partial_Sums seq)
. (n
+ 1))
= (((
Partial_Sums seq)
. n)
+ (seq
. (n
+ 1))) by
Def1;
then
||.((
Partial_Sums seq)
. (n
+ 1)).||
<= (
||.((
Partial_Sums seq)
. n).||
+
||.(seq
. (n
+ 1)).||) by
BHSP_1: 30;
then
||.((
Partial_Sums seq)
. (n
+ 1)).||
<= (((
Partial_Sums
||.seq.||)
. n)
+
||.(seq
. (n
+ 1)).||) by
A2,
XXREAL_0: 2;
then
||.((
Partial_Sums seq)
. (n
+ 1)).||
<= (((
Partial_Sums
||.seq.||)
. n)
+ (
||.seq.||
. (n
+ 1))) by
BHSP_2:def 3;
hence
P[(n
+ 1)] by
SERIES_1:def 1;
end;
((
Partial_Sums
||.seq.||)
.
0 )
= (
||.seq.||
.
0 ) by
SERIES_1:def 1
.=
||.(seq
.
0 ).|| by
BHSP_2:def 3;
then
A3:
P[
0 ] by
Def1;
thus for n holds
P[n] from
NAT_1:sch 2(
A3,
A1);
end;
theorem ::
BHSP_4:38
for n holds
||.(
Sum (seq,n)).||
<= (
Sum (
||.seq.||,n)) by
Th37;
theorem ::
BHSP_4:39
Th39: for n, m holds
||.(((
Partial_Sums seq)
. m)
- ((
Partial_Sums seq)
. n)).||
<=
|.(((
Partial_Sums
||.seq.||)
. m)
- ((
Partial_Sums
||.seq.||)
. n)).|
proof
let n, m;
A1:
now
reconsider d = n, t = m as
Integer;
set PSseq9 = (
Partial_Sums
||.seq.||);
set PSseq = (
Partial_Sums seq);
defpred
P[
Nat] means
||.((PSseq
. m)
- (PSseq
. (m
+ $1))).||
<=
|.((PSseq9
. m)
- (PSseq9
. (m
+ $1))).|;
A2: PSseq9 is
non-decreasing by
Th35;
A3:
now
let k;
A4:
||.(seq
. ((m
+ k)
+ 1)).||
>=
0 by
BHSP_1: 28;
A5:
|.((PSseq9
. m)
- (PSseq9
. (m
+ (k
+ 1)))).|
=
|.(
- ((PSseq9
. (m
+ (k
+ 1)))
- (PSseq9
. m))).|
.=
|.((PSseq9
. ((m
+ k)
+ 1))
- (PSseq9
. m)).| by
COMPLEX1: 52
.=
|.(((PSseq9
. (m
+ k))
+ (
||.seq.||
. ((m
+ k)
+ 1)))
- (PSseq9
. m)).| by
SERIES_1:def 1
.=
|.((
||.(seq
. ((m
+ k)
+ 1)).||
+ (PSseq9
. (m
+ k)))
- (PSseq9
. m)).| by
BHSP_2:def 3
.=
|.(((PSseq9
. (m
+ k))
- (PSseq9
. m))
+
||.(seq
. ((m
+ k)
+ 1)).||).|;
||.((PSseq
. m)
- (PSseq
. (m
+ (k
+ 1)))).||
=
||.((PSseq
. m)
- ((PSseq
. (m
+ k))
+ (seq
. ((m
+ k)
+ 1)))).|| by
Def1
.=
||.(((PSseq
. m)
- (PSseq
. (m
+ k)))
- (seq
. ((m
+ k)
+ 1))).|| by
RLVECT_1: 27
.=
||.(((PSseq
. m)
- (PSseq
. (m
+ k)))
+ (
- (seq
. ((m
+ k)
+ 1)))).||;
then
||.((PSseq
. m)
- (PSseq
. (m
+ (k
+ 1)))).||
<= (
||.((PSseq
. m)
- (PSseq
. (m
+ k))).||
+
||.(
- (seq
. ((m
+ k)
+ 1))).||) by
BHSP_1: 30;
then
A6:
||.((PSseq
. m)
- (PSseq
. (m
+ (k
+ 1)))).||
<= (
||.((PSseq
. m)
- (PSseq
. (m
+ k))).||
+
||.(seq
. ((m
+ k)
+ 1)).||) by
BHSP_1: 31;
A7: ((PSseq9
. (m
+ k))
- (PSseq9
. m))
>=
0 by
A2,
SEQM_3: 5,
XREAL_1: 48;
assume
P[k];
then (
||.((PSseq
. m)
- (PSseq
. (m
+ k))).||
+
||.(seq
. ((m
+ k)
+ 1)).||)
<= (
|.((PSseq9
. m)
- (PSseq9
. (m
+ k))).|
+
||.(seq
. ((m
+ k)
+ 1)).||) by
XREAL_1: 6;
then
||.((PSseq
. m)
- (PSseq
. (m
+ (k
+ 1)))).||
<= (
|.(
- ((PSseq9
. (m
+ k))
- (PSseq9
. m))).|
+
||.(seq
. ((m
+ k)
+ 1)).||) by
A6,
XXREAL_0: 2;
then
||.((PSseq
. m)
- (PSseq
. (m
+ (k
+ 1)))).||
<= (
|.((PSseq9
. (m
+ k))
- (PSseq9
. m)).|
+
||.(seq
. ((m
+ k)
+ 1)).||) by
COMPLEX1: 52;
then
||.((PSseq
. m)
- (PSseq
. (m
+ (k
+ 1)))).||
<= (((PSseq9
. (m
+ k))
- (PSseq9
. m))
+
||.(seq
. ((m
+ k)
+ 1)).||) by
A7,
ABSVALUE:def 1;
hence
P[(k
+ 1)] by
A7,
A4,
A5,
ABSVALUE:def 1;
end;
assume n
>= m;
then
reconsider k = (d
- t) as
Element of
NAT by
INT_1: 5;
A8: (m
+ k)
= n;
||.((PSseq
. m)
- (PSseq
. (m
+
0 ))).||
=
||.
09(X).|| by
RLVECT_1: 15
.=
0 by
BHSP_1: 26;
then
A9:
P[
0 ] by
COMPLEX1: 46;
for k holds
P[k] from
NAT_1:sch 2(
A9,
A3);
hence thesis by
A8;
end;
now
reconsider d = n, t = m as
Integer;
set PSseq9 = (
Partial_Sums
||.seq.||);
set PSseq = (
Partial_Sums seq);
defpred
P[
Nat] means
||.((PSseq
. (n
+ $1))
- (PSseq
. n)).||
<=
|.((PSseq9
. (n
+ $1))
- (PSseq9
. n)).|;
A10: PSseq9 is
non-decreasing by
Th35;
A11:
now
let k;
A12:
||.(seq
. ((n
+ k)
+ 1)).||
>=
0 by
BHSP_1: 28;
A13:
|.((PSseq9
. (n
+ (k
+ 1)))
- (PSseq9
. n)).|
=
|.(((PSseq9
. (n
+ k))
+ (
||.seq.||
. ((n
+ k)
+ 1)))
- (PSseq9
. n)).| by
SERIES_1:def 1
.=
|.((
||.(seq
. ((n
+ k)
+ 1)).||
+ (PSseq9
. (n
+ k)))
- (PSseq9
. n)).| by
BHSP_2:def 3
.=
|.(
||.(seq
. ((n
+ k)
+ 1)).||
+ ((PSseq9
. (n
+ k))
- (PSseq9
. n))).|;
assume
P[k];
then
A14: (
||.(seq
. ((n
+ k)
+ 1)).||
+
||.((PSseq
. (n
+ k))
- (PSseq
. n)).||)
<= (
||.(seq
. ((n
+ k)
+ 1)).||
+
|.((PSseq9
. (n
+ k))
- (PSseq9
. n)).|) by
XREAL_1: 7;
A15: ((PSseq9
. (n
+ k))
- (PSseq9
. n))
>=
0 by
A10,
SEQM_3: 5,
XREAL_1: 48;
||.((PSseq
. (n
+ (k
+ 1)))
- (PSseq
. n)).||
=
||.(((seq
. ((n
+ k)
+ 1))
+ (PSseq
. (n
+ k)))
- (PSseq
. n)).|| by
Def1
.=
||.((seq
. ((n
+ k)
+ 1))
+ ((PSseq
. (n
+ k))
- (PSseq
. n))).|| by
RLVECT_1:def 3;
then
||.((PSseq
. (n
+ (k
+ 1)))
- (PSseq
. n)).||
<= (
||.(seq
. ((n
+ k)
+ 1)).||
+
||.((PSseq
. (n
+ k))
- (PSseq
. n)).||) by
BHSP_1: 30;
then
||.((PSseq
. (n
+ (k
+ 1)))
- (PSseq
. n)).||
<= (
||.(seq
. ((n
+ k)
+ 1)).||
+
|.((PSseq9
. (n
+ k))
- (PSseq9
. n)).|) by
A14,
XXREAL_0: 2;
then
||.((PSseq
. (n
+ (k
+ 1)))
- (PSseq
. n)).||
<= (
||.(seq
. ((n
+ k)
+ 1)).||
+ ((PSseq9
. (n
+ k))
- (PSseq9
. n))) by
A15,
ABSVALUE:def 1;
hence
P[(k
+ 1)] by
A15,
A12,
A13,
ABSVALUE:def 1;
end;
assume n
<= m;
then
reconsider k = (t
- d) as
Element of
NAT by
INT_1: 5;
A16: (n
+ k)
= m;
||.((PSseq
. (n
+
0 ))
- (PSseq
. n)).||
=
||.
09(X).|| by
RLVECT_1: 15
.=
0 by
BHSP_1: 26;
then
A17:
P[
0 ] by
COMPLEX1: 46;
for k holds
P[k] from
NAT_1:sch 2(
A17,
A11);
hence thesis by
A16;
end;
hence thesis by
A1;
end;
theorem ::
BHSP_4:40
for n, m holds
||.((
Sum (seq,m))
- (
Sum (seq,n))).||
<=
|.((
Sum (
||.seq.||,m))
- (
Sum (
||.seq.||,n))).| by
Th39;
theorem ::
BHSP_4:41
for n, m holds
||.(
Sum (seq,m,n)).||
<=
|.(
Sum (
||.seq.||,m,n)).| by
Th39;
theorem ::
BHSP_4:42
for X be
RealHilbertSpace, seq be
sequence of X holds seq is
absolutely_summable implies seq is
summable
proof
let X be
RealHilbertSpace, seq be
sequence of X;
assume that
A1: seq is
absolutely_summable;
A2:
||.seq.|| is
summable by
A1;
now
let r;
assume r
>
0 ;
then
consider k be
Nat such that
A3: for m be
Nat st m
>= k holds
|.(((
Partial_Sums
||.seq.||)
. m)
- ((
Partial_Sums
||.seq.||)
. k)).|
< (r
/ 2) by
A2,
SERIES_1: 21,
XREAL_1: 215;
reconsider k as
Nat;
take k;
now
let m, n;
A4:
||.(((
Partial_Sums seq)
. n)
- ((
Partial_Sums seq)
. m)).||
<=
|.(((
Partial_Sums
||.seq.||)
. n)
- ((
Partial_Sums
||.seq.||)
. m)).| by
Th39;
assume m
>= k & n
>= k;
then
|.(((
Partial_Sums
||.seq.||)
. m)
- ((
Partial_Sums
||.seq.||)
. k)).|
< (r
/ 2) &
|.(((
Partial_Sums
||.seq.||)
. n)
- ((
Partial_Sums
||.seq.||)
. k)).|
< (r
/ 2) by
A3;
then
A5: (
|.(((
Partial_Sums
||.seq.||)
. n)
- ((
Partial_Sums
||.seq.||)
. k)).|
+
|.(((
Partial_Sums
||.seq.||)
. m)
- ((
Partial_Sums
||.seq.||)
. k)).|)
< ((r
/ 2)
+ (r
/ 2)) by
XREAL_1: 8;
|.(((
Partial_Sums
||.seq.||)
. n)
- ((
Partial_Sums
||.seq.||)
. m)).|
=
|.((((
Partial_Sums
||.seq.||)
. n)
- ((
Partial_Sums
||.seq.||)
. k))
- (((
Partial_Sums
||.seq.||)
. m)
- ((
Partial_Sums
||.seq.||)
. k))).|;
then
|.(((
Partial_Sums
||.seq.||)
. n)
- ((
Partial_Sums
||.seq.||)
. m)).|
<= (
|.(((
Partial_Sums
||.seq.||)
. n)
- ((
Partial_Sums
||.seq.||)
. k)).|
+
|.(((
Partial_Sums
||.seq.||)
. m)
- ((
Partial_Sums
||.seq.||)
. k)).|) by
COMPLEX1: 57;
then
|.(((
Partial_Sums
||.seq.||)
. n)
- ((
Partial_Sums
||.seq.||)
. m)).|
< r by
A5,
XXREAL_0: 2;
hence
||.(((
Partial_Sums seq)
. n)
- ((
Partial_Sums seq)
. m)).||
< r by
A4,
XXREAL_0: 2;
end;
hence for n, m st n
>= k & m
>= k holds
||.(((
Partial_Sums seq)
. n)
- ((
Partial_Sums seq)
. m)).||
< r;
end;
hence thesis by
Th10;
end;
definition
let X, seq, Rseq;
::
BHSP_4:def7
func Rseq
* seq ->
sequence of X means
:
Def7: for n holds (it
. n)
= ((Rseq
. n)
* (seq
. n));
existence
proof
deffunc
F(
Nat) = ((Rseq
. $1)
* (seq
. $1));
consider M be
sequence of X such that
A1: for n be
Element of
NAT holds (M
. n)
=
F(n) from
FUNCT_2:sch 4;
take M;
let n;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A1;
end;
uniqueness
proof
let seq1, seq2;
assume that
A2: for n holds (seq1
. n)
= ((Rseq
. n)
* (seq
. n)) and
A3: for n holds (seq2
. n)
= ((Rseq
. n)
* (seq
. n));
let n be
Element of
NAT ;
(seq1
. n)
= ((Rseq
. n)
* (seq
. n)) by
A2;
hence (seq1
. n)
= (seq2
. n) by
A3;
end;
end
theorem ::
BHSP_4:43
(Rseq
* (seq1
+ seq2))
= ((Rseq
* seq1)
+ (Rseq
* seq2))
proof
let n be
Element of
NAT ;
thus ((Rseq
* (seq1
+ seq2))
. n)
= ((Rseq
. n)
* ((seq1
+ seq2)
. n)) by
Def7
.= ((Rseq
. n)
* ((seq1
. n)
+ (seq2
. n))) by
NORMSP_1:def 2
.= (((Rseq
. n)
* (seq1
. n))
+ ((Rseq
. n)
* (seq2
. n))) by
RLVECT_1:def 5
.= (((Rseq
* seq1)
. n)
+ ((Rseq
. n)
* (seq2
. n))) by
Def7
.= (((Rseq
* seq1)
. n)
+ ((Rseq
* seq2)
. n)) by
Def7
.= (((Rseq
* seq1)
+ (Rseq
* seq2))
. n) by
NORMSP_1:def 2;
end;
theorem ::
BHSP_4:44
((Rseq1
+ Rseq2)
* seq)
= ((Rseq1
* seq)
+ (Rseq2
* seq))
proof
let n be
Element of
NAT ;
thus (((Rseq1
+ Rseq2)
* seq)
. n)
= (((Rseq1
+ Rseq2)
. n)
* (seq
. n)) by
Def7
.= (((Rseq1
. n)
+ (Rseq2
. n))
* (seq
. n)) by
SEQ_1: 7
.= (((Rseq1
. n)
* (seq
. n))
+ ((Rseq2
. n)
* (seq
. n))) by
RLVECT_1:def 6
.= (((Rseq1
* seq)
. n)
+ ((Rseq2
. n)
* (seq
. n))) by
Def7
.= (((Rseq1
* seq)
. n)
+ ((Rseq2
* seq)
. n)) by
Def7
.= (((Rseq1
* seq)
+ (Rseq2
* seq))
. n) by
NORMSP_1:def 2;
end;
theorem ::
BHSP_4:45
((Rseq1
(#) Rseq2)
* seq)
= (Rseq1
* (Rseq2
* seq))
proof
let n be
Element of
NAT ;
thus (((Rseq1
(#) Rseq2)
* seq)
. n)
= (((Rseq1
(#) Rseq2)
. n)
* (seq
. n)) by
Def7
.= (((Rseq1
. n)
* (Rseq2
. n))
* (seq
. n)) by
SEQ_1: 8
.= ((Rseq1
. n)
* ((Rseq2
. n)
* (seq
. n))) by
RLVECT_1:def 7
.= ((Rseq1
. n)
* ((Rseq2
* seq)
. n)) by
Def7
.= ((Rseq1
* (Rseq2
* seq))
. n) by
Def7;
end;
theorem ::
BHSP_4:46
Th46: ((a
(#) Rseq)
* seq)
= (a
* (Rseq
* seq))
proof
let n be
Element of
NAT ;
thus (((a
(#) Rseq)
* seq)
. n)
= (((a
(#) Rseq)
. n)
* (seq
. n)) by
Def7
.= ((a
* (Rseq
. n))
* (seq
. n)) by
SEQ_1: 9
.= (a
* ((Rseq
. n)
* (seq
. n))) by
RLVECT_1:def 7
.= (a
* ((Rseq
* seq)
. n)) by
Def7
.= ((a
* (Rseq
* seq))
. n) by
NORMSP_1:def 5;
end;
theorem ::
BHSP_4:47
(Rseq
* (
- seq))
= ((
- Rseq)
* seq)
proof
let n be
Element of
NAT ;
thus ((Rseq
* (
- seq))
. n)
= ((Rseq
. n)
* ((
- seq)
. n)) by
Def7
.= ((Rseq
. n)
* (
- (seq
. n))) by
BHSP_1: 44
.= ((
- (Rseq
. n))
* (seq
. n)) by
RLVECT_1: 24
.= (((
- Rseq)
. n)
* (seq
. n)) by
SEQ_1: 10
.= (((
- Rseq)
* seq)
. n) by
Def7;
end;
theorem ::
BHSP_4:48
Th48: Rseq is
convergent & seq is
convergent implies (Rseq
* seq) is
convergent
proof
assume that
A1: Rseq is
convergent and
A2: seq is
convergent;
consider p be
Real such that
A3: for r be
Real st r
>
0 holds ex m be
Nat st for n be
Nat st n
>= m holds
|.((Rseq
. n)
- p).|
< r by
A1,
SEQ_2:def 6;
consider g such that
A4: for r st r
>
0 holds ex m be
Nat st for n be
Nat st n
>= m holds
||.((seq
. n)
- g).||
< r by
A2,
BHSP_2: 9;
reconsider p as
Real;
now
take h = (p
* g);
let r;
consider b be
Real such that
A5: b
>
0 and
A6: for n be
Nat holds
|.(Rseq
. n).|
< b by
A1,
SEQ_2: 3,
SEQ_2: 13;
reconsider b as
Real;
A7: (b
+
||.g.||)
> (
0
+
0 ) by
A5,
BHSP_1: 28,
XREAL_1: 8;
assume
A8: r
>
0 ;
then
consider m1 be
Nat such that
A9: for n be
Nat st n
>= m1 holds
|.((Rseq
. n)
- p).|
< (r
/ (b
+
||.g.||)) by
A3,
A7,
XREAL_1: 139;
consider m2 be
Nat such that
A10: for n be
Nat st n
>= m2 holds
||.((seq
. n)
- g).||
< (r
/ (b
+
||.g.||)) by
A4,
A7,
A8,
XREAL_1: 139;
reconsider m = (m1
+ m2) as
Nat;
take m;
let n be
Nat such that
A11: n
>= m;
(m1
+ m2)
>= m1 by
NAT_1: 12;
then n
>= m1 by
A11,
XXREAL_0: 2;
then
||.g.||
>=
0 &
|.((Rseq
. n)
- p).|
<= (r
/ (b
+
||.g.||)) by
A9,
BHSP_1: 28;
then
A12: (
||.g.||
*
|.((Rseq
. n)
- p).|)
<= (
||.g.||
* (r
/ (b
+
||.g.||))) by
XREAL_1: 64;
A13:
|.(Rseq
. n).|
>=
0 &
||.((seq
. n)
- g).||
>=
0 by
BHSP_1: 28,
COMPLEX1: 46;
m
>= m2 by
NAT_1: 12;
then n
>= m2 by
A11,
XXREAL_0: 2;
then
A14:
||.((seq
. n)
- g).||
< (r
/ (b
+
||.g.||)) by
A10;
|.(Rseq
. n).|
< b by
A6;
then (
|.(Rseq
. n).|
*
||.((seq
. n)
- g).||)
< (b
* (r
/ (b
+
||.g.||))) by
A14,
A13,
XREAL_1: 96;
then ((
|.(Rseq
. n).|
*
||.((seq
. n)
- g).||)
+ (
||.g.||
*
|.((Rseq
. n)
- p).|))
< ((b
* (r
/ (b
+
||.g.||)))
+ (
||.g.||
* (r
/ (b
+
||.g.||)))) by
A12,
XREAL_1: 8;
then ((
|.(Rseq
. n).|
*
||.((seq
. n)
- g).||)
+ (
||.g.||
*
|.((Rseq
. n)
- p).|))
< (((b
* r)
/ (b
+
||.g.||))
+ (
||.g.||
* (r
/ (b
+
||.g.||)))) by
XCMPLX_1: 74;
then ((
|.(Rseq
. n).|
*
||.((seq
. n)
- g).||)
+ (
||.g.||
*
|.((Rseq
. n)
- p).|))
< (((b
* r)
/ (b
+
||.g.||))
+ ((
||.g.||
* r)
/ (b
+
||.g.||))) by
XCMPLX_1: 74;
then ((
|.(Rseq
. n).|
*
||.((seq
. n)
- g).||)
+ (
||.g.||
*
|.((Rseq
. n)
- p).|))
< (((b
* r)
+ (
||.g.||
* r))
/ (b
+
||.g.||)) by
XCMPLX_1: 62;
then ((
|.(Rseq
. n).|
*
||.((seq
. n)
- g).||)
+ (
||.g.||
*
|.((Rseq
. n)
- p).|))
< (((b
+
||.g.||)
* r)
/ (b
+
||.g.||));
then
A15: ((
|.(Rseq
. n).|
*
||.((seq
. n)
- g).||)
+ (
||.g.||
*
|.((Rseq
. n)
- p).|))
< r by
A7,
XCMPLX_1: 89;
||.(((Rseq
* seq)
. n)
- (p
* g)).||
=
||.(((Rseq
. n)
* (seq
. n))
- (p
* g)).|| by
Def7
.=
||.((((Rseq
. n)
* (seq
. n))
- (p
* g))
+
09(X)).||
.=
||.((((Rseq
. n)
* (seq
. n))
- (p
* g))
+ (((Rseq
. n)
* g)
- ((Rseq
. n)
* g))).|| by
RLVECT_1: 15
.=
||.(((Rseq
. n)
* (seq
. n))
- ((p
* g)
- (((Rseq
. n)
* g)
- ((Rseq
. n)
* g)))).|| by
RLVECT_1: 29
.=
||.(((Rseq
. n)
* (seq
. n))
- (((Rseq
. n)
* g)
+ ((p
* g)
- ((Rseq
. n)
* g)))).|| by
RLVECT_1: 29
.=
||.((((Rseq
. n)
* (seq
. n))
- ((Rseq
. n)
* g))
- ((p
* g)
- ((Rseq
. n)
* g))).|| by
RLVECT_1: 27
.=
||.((((Rseq
. n)
* (seq
. n))
- ((Rseq
. n)
* g))
+ (((Rseq
. n)
* g)
- (p
* g))).|| by
RLVECT_1: 33;
then
||.(((Rseq
* seq)
. n)
- (p
* g)).||
<= (
||.(((Rseq
. n)
* (seq
. n))
- ((Rseq
. n)
* g)).||
+
||.(((Rseq
. n)
* g)
- (p
* g)).||) by
BHSP_1: 30;
then
||.(((Rseq
* seq)
. n)
- (p
* g)).||
<= (
||.((Rseq
. n)
* ((seq
. n)
- g)).||
+
||.(((Rseq
. n)
* g)
- (p
* g)).||) by
RLVECT_1: 34;
then
||.(((Rseq
* seq)
. n)
- (p
* g)).||
<= (
||.((Rseq
. n)
* ((seq
. n)
- g)).||
+
||.(((Rseq
. n)
- p)
* g).||) by
RLVECT_1: 35;
then
||.(((Rseq
* seq)
. n)
- (p
* g)).||
<= ((
|.(Rseq
. n).|
*
||.((seq
. n)
- g).||)
+
||.(((Rseq
. n)
- p)
* g).||) by
BHSP_1: 27;
then
||.(((Rseq
* seq)
. n)
- (p
* g)).||
<= ((
|.(Rseq
. n).|
*
||.((seq
. n)
- g).||)
+ (
||.g.||
*
|.((Rseq
. n)
- p).|)) by
BHSP_1: 27;
hence
||.(((Rseq
* seq)
. n)
- h).||
< r by
A15,
XXREAL_0: 2;
end;
hence thesis by
BHSP_2: 9;
end;
theorem ::
BHSP_4:49
Rseq is
bounded & seq is
bounded implies (Rseq
* seq) is
bounded
proof
assume that
A1: Rseq is
bounded and
A2: seq is
bounded;
consider M1 be
Real such that
A3: M1
>
0 and
A4: for n be
Nat holds
|.(Rseq
. n).|
< M1 by
A1,
SEQ_2: 3;
consider M2 such that
A5: M2
>
0 and
A6: for n holds
||.(seq
. n).||
<= M2 by
A2,
BHSP_3:def 3;
now
reconsider M = (M1
* M2) as
Real;
take M;
now
let n;
|.(Rseq
. n).|
>=
0 by
COMPLEX1: 46;
then
A7: (
|.(Rseq
. n).|
*
||.(seq
. n).||)
<= (
|.(Rseq
. n).|
* M2) by
A6,
XREAL_1: 64;
|.(Rseq
. n).|
<= M1 by
A4;
then
A8: (
|.(Rseq
. n).|
* M2)
<= (M1
* M2) by
A5,
XREAL_1: 64;
||.((Rseq
* seq)
. n).||
=
||.((Rseq
. n)
* (seq
. n)).|| by
Def7
.= (
|.(Rseq
. n).|
*
||.(seq
. n).||) by
BHSP_1: 27;
hence
||.((Rseq
* seq)
. n).||
<= M by
A7,
A8,
XXREAL_0: 2;
end;
hence M
>
0 & for n holds
||.((Rseq
* seq)
. n).||
<= M by
A3,
A5,
XREAL_1: 129;
end;
hence thesis by
BHSP_3:def 3;
end;
theorem ::
BHSP_4:50
Rseq is
convergent & seq is
convergent implies (Rseq
* seq) is
convergent & (
lim (Rseq
* seq))
= ((
lim Rseq)
* (
lim seq))
proof
assume that
A1: Rseq is
convergent and
A2: seq is
convergent;
consider b be
Real such that
A3: b
>
0 and
A4: for n be
Nat holds
|.(Rseq
. n).|
< b by
A1,
SEQ_2: 3,
SEQ_2: 13;
reconsider b as
Real;
A5: (b
+
||.(
lim seq).||)
> (
0
+
0 ) by
A3,
BHSP_1: 28,
XREAL_1: 8;
A6:
||.(
lim seq).||
>=
0 by
BHSP_1: 28;
A7:
now
let r;
assume r
>
0 ;
then
A8: (r
/ (b
+
||.(
lim seq).||))
>
0 by
A5,
XREAL_1: 139;
then
consider m1 be
Nat such that
A9: for n be
Nat st n
>= m1 holds
|.((Rseq
. n)
- (
lim Rseq)).|
< (r
/ (b
+
||.(
lim seq).||)) by
A1,
SEQ_2:def 7;
consider m2 be
Nat such that
A10: for n be
Nat st n
>= m2 holds (
dist ((seq
. n),(
lim seq)))
< (r
/ (b
+
||.(
lim seq).||)) by
A2,
A8,
BHSP_2:def 2;
take m = (m1
+ m2);
let n be
Nat such that
A11: n
>= m;
(m1
+ m2)
>= m1 by
NAT_1: 12;
then n
>= m1 by
A11,
XXREAL_0: 2;
then
|.((Rseq
. n)
- (
lim Rseq)).|
<= (r
/ (b
+
||.(
lim seq).||)) by
A9;
then
A12: (
||.(
lim seq).||
*
|.((Rseq
. n)
- (
lim Rseq)).|)
<= (
||.(
lim seq).||
* (r
/ (b
+
||.(
lim seq).||))) by
A6,
XREAL_1: 64;
A13:
||.((seq
. n)
- (
lim seq)).||
>=
0 by
BHSP_1: 28;
m
>= m2 by
NAT_1: 12;
then n
>= m2 by
A11,
XXREAL_0: 2;
then (
dist ((seq
. n),(
lim seq)))
< (r
/ (b
+
||.(
lim seq).||)) by
A10;
then
A14:
||.((seq
. n)
- (
lim seq)).||
< (r
/ (b
+
||.(
lim seq).||)) by
BHSP_1:def 5;
|.(Rseq
. n).|
< b &
|.(Rseq
. n).|
>=
0 by
A4,
COMPLEX1: 46;
then (
|.(Rseq
. n).|
*
||.((seq
. n)
- (
lim seq)).||)
< (b
* (r
/ (b
+
||.(
lim seq).||))) by
A14,
A13,
XREAL_1: 96;
then ((
|.(Rseq
. n).|
*
||.((seq
. n)
- (
lim seq)).||)
+ (
||.(
lim seq).||
*
|.((Rseq
. n)
- (
lim Rseq)).|))
< ((b
* (r
/ (b
+
||.(
lim seq).||)))
+ (
||.(
lim seq).||
* (r
/ (b
+
||.(
lim seq).||)))) by
A12,
XREAL_1: 8;
then ((
|.(Rseq
. n).|
*
||.((seq
. n)
- (
lim seq)).||)
+ (
||.(
lim seq).||
*
|.((Rseq
. n)
- (
lim Rseq)).|))
< (((b
* r)
/ (b
+
||.(
lim seq).||))
+ (
||.(
lim seq).||
* (r
/ (b
+
||.(
lim seq).||)))) by
XCMPLX_1: 74;
then ((
|.(Rseq
. n).|
*
||.((seq
. n)
- (
lim seq)).||)
+ (
||.(
lim seq).||
*
|.((Rseq
. n)
- (
lim Rseq)).|))
< (((b
* r)
/ (b
+
||.(
lim seq).||))
+ ((
||.(
lim seq).||
* r)
/ (b
+
||.(
lim seq).||))) by
XCMPLX_1: 74;
then ((
|.(Rseq
. n).|
*
||.((seq
. n)
- (
lim seq)).||)
+ (
||.(
lim seq).||
*
|.((Rseq
. n)
- (
lim Rseq)).|))
< (((b
* r)
+ (
||.(
lim seq).||
* r))
/ (b
+
||.(
lim seq).||)) by
XCMPLX_1: 62;
then ((
|.(Rseq
. n).|
*
||.((seq
. n)
- (
lim seq)).||)
+ (
||.(
lim seq).||
*
|.((Rseq
. n)
- (
lim Rseq)).|))
< (((b
+
||.(
lim seq).||)
* r)
/ (b
+
||.(
lim seq).||));
then
A15: ((
|.(Rseq
. n).|
*
||.((seq
. n)
- (
lim seq)).||)
+ (
||.(
lim seq).||
*
|.((Rseq
. n)
- (
lim Rseq)).|))
< r by
A5,
XCMPLX_1: 89;
||.(((Rseq
* seq)
. n)
- ((
lim Rseq)
* (
lim seq))).||
=
||.(((Rseq
. n)
* (seq
. n))
- ((
lim Rseq)
* (
lim seq))).|| by
Def7
.=
||.((((Rseq
. n)
* (seq
. n))
- ((
lim Rseq)
* (
lim seq)))
+
09(X)).||
.=
||.((((Rseq
. n)
* (seq
. n))
- ((
lim Rseq)
* (
lim seq)))
+ (((Rseq
. n)
* (
lim seq))
- ((Rseq
. n)
* (
lim seq)))).|| by
RLVECT_1: 15
.=
||.(((Rseq
. n)
* (seq
. n))
- (((
lim Rseq)
* (
lim seq))
- (((Rseq
. n)
* (
lim seq))
- ((Rseq
. n)
* (
lim seq))))).|| by
RLVECT_1: 29
.=
||.(((Rseq
. n)
* (seq
. n))
- (((Rseq
. n)
* (
lim seq))
+ (((
lim Rseq)
* (
lim seq))
- ((Rseq
. n)
* (
lim seq))))).|| by
RLVECT_1: 29
.=
||.((((Rseq
. n)
* (seq
. n))
- ((Rseq
. n)
* (
lim seq)))
- (((
lim Rseq)
* (
lim seq))
- ((Rseq
. n)
* (
lim seq)))).|| by
RLVECT_1: 27
.=
||.((((Rseq
. n)
* (seq
. n))
- ((Rseq
. n)
* (
lim seq)))
+ (((Rseq
. n)
* (
lim seq))
- ((
lim Rseq)
* (
lim seq)))).|| by
RLVECT_1: 33;
then
||.(((Rseq
* seq)
. n)
- ((
lim Rseq)
* (
lim seq))).||
<= (
||.(((Rseq
. n)
* (seq
. n))
- ((Rseq
. n)
* (
lim seq))).||
+
||.(((Rseq
. n)
* (
lim seq))
- ((
lim Rseq)
* (
lim seq))).||) by
BHSP_1: 30;
then
||.(((Rseq
* seq)
. n)
- ((
lim Rseq)
* (
lim seq))).||
<= (
||.((Rseq
. n)
* ((seq
. n)
- (
lim seq))).||
+
||.(((Rseq
. n)
* (
lim seq))
- ((
lim Rseq)
* (
lim seq))).||) by
RLVECT_1: 34;
then
||.(((Rseq
* seq)
. n)
- ((
lim Rseq)
* (
lim seq))).||
<= (
||.((Rseq
. n)
* ((seq
. n)
- (
lim seq))).||
+
||.(((Rseq
. n)
- (
lim Rseq))
* (
lim seq)).||) by
RLVECT_1: 35;
then
||.(((Rseq
* seq)
. n)
- ((
lim Rseq)
* (
lim seq))).||
<= ((
|.(Rseq
. n).|
*
||.((seq
. n)
- (
lim seq)).||)
+
||.(((Rseq
. n)
- (
lim Rseq))
* (
lim seq)).||) by
BHSP_1: 27;
then
||.(((Rseq
* seq)
. n)
- ((
lim Rseq)
* (
lim seq))).||
<= ((
|.(Rseq
. n).|
*
||.((seq
. n)
- (
lim seq)).||)
+ (
||.(
lim seq).||
*
|.((Rseq
. n)
- (
lim Rseq)).|)) by
BHSP_1: 27;
then
||.(((Rseq
* seq)
. n)
- ((
lim Rseq)
* (
lim seq))).||
< r by
A15,
XXREAL_0: 2;
hence (
dist (((Rseq
* seq)
. n),((
lim Rseq)
* (
lim seq))))
< r by
BHSP_1:def 5;
end;
(Rseq
* seq) is
convergent by
A1,
A2,
Th48;
hence thesis by
A7,
BHSP_2:def 2;
end;
definition
let Rseq;
::
BHSP_4:def8
attr Rseq is
Cauchy means for r st r
>
0 holds ex k st for n, m st n
>= k & m
>= k holds
|.((Rseq
. n)
- (Rseq
. m)).|
< r;
end
theorem ::
BHSP_4:51
for X be
RealHilbertSpace, seq be
sequence of X holds seq is
Cauchy & Rseq is
Cauchy implies (Rseq
* seq) is
Cauchy
proof
let X be
RealHilbertSpace, seq be
sequence of X;
assume that
A1: seq is
Cauchy and
A2: Rseq is
Cauchy;
now
let r be
Real;
assume
A3: r
>
0 ;
consider k such that
A4: for n, m st n
>= k & m
>= k holds
|.((Rseq
. n)
- (Rseq
. m)).|
< r by
A2,
A3;
reconsider k as
Nat;
take k;
let n be
Nat;
thus n
>= k implies
|.((Rseq
. n)
- (Rseq
. k)).|
< r by
A4;
end;
then
A5: Rseq is
convergent by
SEQ_4: 41;
(Rseq
* seq) is
convergent by
A5,
Th48,
A1,
BHSP_3:def 4;
hence thesis;
end;
theorem ::
BHSP_4:52
Th52: for n holds ((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
= (((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
- ((Rseq
* (
Partial_Sums seq))
. (n
+ 1)))
proof
defpred
P[
Nat] means ((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. $1)
= (((
Partial_Sums (Rseq
* seq))
. ($1
+ 1))
- ((Rseq
* (
Partial_Sums seq))
. ($1
+ 1)));
A1: ((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
.
0 )
= (((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq))
.
0 ) by
Def1
.= (((Rseq
- (Rseq
^\ 1))
.
0 )
* ((
Partial_Sums seq)
.
0 )) by
Def7
.= (((Rseq
+ (
- (Rseq
^\ 1)))
.
0 )
* (seq
.
0 )) by
Def1
.= (((Rseq
.
0 )
+ ((
- (Rseq
^\ 1))
.
0 ))
* (seq
.
0 )) by
SEQ_1: 7
.= (((Rseq
.
0 )
+ (
- ((Rseq
^\ 1)
.
0 )))
* (seq
.
0 )) by
SEQ_1: 10
.= (((Rseq
.
0 )
- ((Rseq
^\ 1)
.
0 ))
* (seq
.
0 ))
.= (((Rseq
.
0 )
- (Rseq
. (
0
+ 1)))
* (seq
.
0 )) by
NAT_1:def 3
.= (((Rseq
.
0 )
* (seq
.
0 ))
- ((Rseq
. 1)
* (seq
.
0 ))) by
RLVECT_1: 35;
A2: ((Rseq
* (
Partial_Sums seq))
. (
0
+ 1))
= ((Rseq
. (
0
+ 1))
* ((
Partial_Sums seq)
. (
0
+ 1))) by
Def7
.= ((Rseq
. (
0
+ 1))
* (((
Partial_Sums seq)
.
0 )
+ (seq
. (
0
+ 1)))) by
Def1
.= ((Rseq
. 1)
* ((seq
.
0 )
+ (seq
. 1))) by
Def1
.= (((Rseq
. 1)
* (seq
.
0 ))
+ ((Rseq
. 1)
* (seq
. 1))) by
RLVECT_1:def 5;
A3:
now
let n;
assume
P[n];
then (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ ((Rseq
* (
Partial_Sums seq))
. (n
+ 1)))
= (((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
- (((Rseq
* (
Partial_Sums seq))
. (n
+ 1))
- ((Rseq
* (
Partial_Sums seq))
. (n
+ 1)))) by
RLVECT_1: 29;
then
A4: (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ ((Rseq
* (
Partial_Sums seq))
. (n
+ 1)))
= (((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
-
09(X)) by
RLVECT_1: 15;
((
Partial_Sums (Rseq
* seq))
. ((n
+ 1)
+ 1))
= (((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
+ ((Rseq
* seq)
. ((n
+ 1)
+ 1))) by
Def1
.= ((((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ ((Rseq
* (
Partial_Sums seq))
. (n
+ 1)))
+ ((Rseq
* seq)
. ((n
+ 1)
+ 1))) by
A4
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ (((Rseq
* (
Partial_Sums seq))
. (n
+ 1))
+ ((Rseq
* seq)
. ((n
+ 1)
+ 1)))) by
RLVECT_1:def 3
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ (((Rseq
. (n
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1)))
+ ((Rseq
* seq)
. ((n
+ 1)
+ 1)))) by
Def7
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ (((((Rseq
. (n
+ 1))
- (Rseq
. ((n
+ 1)
+ 1)))
+ (Rseq
. ((n
+ 1)
+ 1)))
* ((
Partial_Sums seq)
. (n
+ 1)))
+ ((Rseq
. ((n
+ 1)
+ 1))
* (seq
. ((n
+ 1)
+ 1))))) by
Def7
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ (((((Rseq
. (n
+ 1))
- (Rseq
. ((n
+ 1)
+ 1)))
* ((
Partial_Sums seq)
. (n
+ 1)))
+ ((Rseq
. ((n
+ 1)
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1))))
+ ((Rseq
. ((n
+ 1)
+ 1))
* (seq
. ((n
+ 1)
+ 1))))) by
RLVECT_1:def 6
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ (((((Rseq
. (n
+ 1))
- ((Rseq
^\ 1)
. (n
+ 1)))
* ((
Partial_Sums seq)
. (n
+ 1)))
+ ((Rseq
. ((n
+ 1)
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1))))
+ ((Rseq
. ((n
+ 1)
+ 1))
* (seq
. ((n
+ 1)
+ 1))))) by
NAT_1:def 3
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ (((((Rseq
. (n
+ 1))
+ (
- ((Rseq
^\ 1)
. (n
+ 1))))
* ((
Partial_Sums seq)
. (n
+ 1)))
+ ((Rseq
. ((n
+ 1)
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1))))
+ ((Rseq
. ((n
+ 1)
+ 1))
* (seq
. ((n
+ 1)
+ 1)))))
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ (((((Rseq
. (n
+ 1))
+ ((
- (Rseq
^\ 1))
. (n
+ 1)))
* ((
Partial_Sums seq)
. (n
+ 1)))
+ ((Rseq
. ((n
+ 1)
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1))))
+ ((Rseq
. ((n
+ 1)
+ 1))
* (seq
. ((n
+ 1)
+ 1))))) by
SEQ_1: 10
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ (((((Rseq
- (Rseq
^\ 1))
. (n
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1)))
+ ((Rseq
. ((n
+ 1)
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1))))
+ ((Rseq
. ((n
+ 1)
+ 1))
* (seq
. ((n
+ 1)
+ 1))))) by
SEQ_1: 7
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ ((((Rseq
- (Rseq
^\ 1))
. (n
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1)))
+ (((Rseq
. ((n
+ 1)
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1)))
+ ((Rseq
. ((n
+ 1)
+ 1))
* (seq
. ((n
+ 1)
+ 1)))))) by
RLVECT_1:def 3
.= ((((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ (((Rseq
- (Rseq
^\ 1))
. (n
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1))))
+ (((Rseq
. ((n
+ 1)
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1)))
+ ((Rseq
. ((n
+ 1)
+ 1))
* (seq
. ((n
+ 1)
+ 1))))) by
RLVECT_1:def 3
.= ((((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ (((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq))
. (n
+ 1)))
+ (((Rseq
. ((n
+ 1)
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1)))
+ ((Rseq
. ((n
+ 1)
+ 1))
* (seq
. ((n
+ 1)
+ 1))))) by
Def7
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. (n
+ 1))
+ (((Rseq
. ((n
+ 1)
+ 1))
* ((
Partial_Sums seq)
. (n
+ 1)))
+ ((Rseq
. ((n
+ 1)
+ 1))
* (seq
. ((n
+ 1)
+ 1))))) by
Def1
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. (n
+ 1))
+ ((Rseq
. ((n
+ 1)
+ 1))
* (((
Partial_Sums seq)
. (n
+ 1))
+ (seq
. ((n
+ 1)
+ 1))))) by
RLVECT_1:def 5
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. (n
+ 1))
+ ((Rseq
. ((n
+ 1)
+ 1))
* ((
Partial_Sums seq)
. ((n
+ 1)
+ 1)))) by
Def1
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. (n
+ 1))
+ ((Rseq
* (
Partial_Sums seq))
. ((n
+ 1)
+ 1))) by
Def7;
then (((
Partial_Sums (Rseq
* seq))
. ((n
+ 1)
+ 1))
- ((Rseq
* (
Partial_Sums seq))
. ((n
+ 1)
+ 1)))
= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. (n
+ 1))
+ (((Rseq
* (
Partial_Sums seq))
. ((n
+ 1)
+ 1))
- ((Rseq
* (
Partial_Sums seq))
. ((n
+ 1)
+ 1)))) by
RLVECT_1:def 3;
then (((
Partial_Sums (Rseq
* seq))
. ((n
+ 1)
+ 1))
- ((Rseq
* (
Partial_Sums seq))
. ((n
+ 1)
+ 1)))
= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. (n
+ 1))
+
09(X)) by
RLVECT_1: 15;
hence
P[(n
+ 1)];
end;
((
Partial_Sums (Rseq
* seq))
. (
0
+ 1))
= (((
Partial_Sums (Rseq
* seq))
.
0 )
+ ((Rseq
* seq)
. (
0
+ 1))) by
Def1
.= (((Rseq
* seq)
.
0 )
+ ((Rseq
* seq)
. 1)) by
Def1
.= (((Rseq
.
0 )
* (seq
.
0 ))
+ ((Rseq
* seq)
. 1)) by
Def7
.= (((Rseq
.
0 )
* (seq
.
0 ))
+ ((Rseq
. 1)
* (seq
. 1))) by
Def7;
then ((
Partial_Sums (Rseq
* seq))
. (
0
+ 1))
= ((((Rseq
.
0 )
* (seq
.
0 ))
+
09(X))
+ ((Rseq
. 1)
* (seq
. 1)))
.= ((((Rseq
.
0 )
* (seq
.
0 ))
+ (((Rseq
. 1)
* (seq
.
0 ))
- ((Rseq
. 1)
* (seq
.
0 ))))
+ ((Rseq
. 1)
* (seq
. 1))) by
RLVECT_1: 15
.= (((((Rseq
.
0 )
* (seq
.
0 ))
+ (
- ((Rseq
. 1)
* (seq
.
0 ))))
+ ((Rseq
. 1)
* (seq
.
0 )))
+ ((Rseq
. 1)
* (seq
. 1))) by
RLVECT_1:def 3
.= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
.
0 )
+ ((Rseq
* (
Partial_Sums seq))
. (
0
+ 1))) by
A1,
A2,
RLVECT_1:def 3;
then (((
Partial_Sums (Rseq
* seq))
. (
0
+ 1))
- ((Rseq
* (
Partial_Sums seq))
. (
0
+ 1)))
= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
.
0 )
+ (((Rseq
* (
Partial_Sums seq))
. (
0
+ 1))
- ((Rseq
* (
Partial_Sums seq))
. (
0
+ 1)))) by
RLVECT_1:def 3;
then (((
Partial_Sums (Rseq
* seq))
. (
0
+ 1))
- ((Rseq
* (
Partial_Sums seq))
. (
0
+ 1)))
= (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
.
0 )
+
09(X)) by
RLVECT_1: 15;
then
A5:
P[
0 ];
thus for n holds
P[n] from
NAT_1:sch 2(
A5,
A3);
end;
theorem ::
BHSP_4:53
Th53: for n holds ((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
= (((Rseq
* (
Partial_Sums seq))
. (n
+ 1))
- ((
Partial_Sums (((Rseq
^\ 1)
- Rseq)
* (
Partial_Sums seq)))
. n))
proof
let n;
(((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ ((Rseq
* (
Partial_Sums seq))
. (n
+ 1)))
= ((((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
- ((Rseq
* (
Partial_Sums seq))
. (n
+ 1)))
+ ((Rseq
* (
Partial_Sums seq))
. (n
+ 1))) by
Th52;
then (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ ((Rseq
* (
Partial_Sums seq))
. (n
+ 1)))
= (((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
- (((Rseq
* (
Partial_Sums seq))
. (n
+ 1))
- ((Rseq
* (
Partial_Sums seq))
. (n
+ 1)))) by
RLVECT_1: 29;
then (((
Partial_Sums ((Rseq
- (Rseq
^\ 1))
* (
Partial_Sums seq)))
. n)
+ ((Rseq
* (
Partial_Sums seq))
. (n
+ 1)))
= (((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
-
09(X)) by
RLVECT_1: 15;
then ((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
= (((Rseq
* (
Partial_Sums seq))
. (n
+ 1))
+ ((
Partial_Sums ((((
- 1)
(#) (Rseq
^\ 1))
- (
- Rseq))
* (
Partial_Sums seq)))
. n));
then ((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
= (((Rseq
* (
Partial_Sums seq))
. (n
+ 1))
+ ((
Partial_Sums (((
- 1)
(#) ((Rseq
^\ 1)
- Rseq))
* (
Partial_Sums seq)))
. n)) by
SEQ_1: 24;
then ((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
= (((Rseq
* (
Partial_Sums seq))
. (n
+ 1))
+ ((
Partial_Sums ((
- 1)
* (((Rseq
^\ 1)
- Rseq)
* (
Partial_Sums seq))))
. n)) by
Th46;
then ((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
= (((Rseq
* (
Partial_Sums seq))
. (n
+ 1))
+ (((
- 1)
* (
Partial_Sums (((Rseq
^\ 1)
- Rseq)
* (
Partial_Sums seq))))
. n)) by
Th3;
then ((
Partial_Sums (Rseq
* seq))
. (n
+ 1))
= (((Rseq
* (
Partial_Sums seq))
. (n
+ 1))
+ ((
- 1)
* ((
Partial_Sums (((Rseq
^\ 1)
- Rseq)
* (
Partial_Sums seq)))
. n))) by
NORMSP_1:def 5;
hence thesis by
RLVECT_1: 16;
end;
theorem ::
BHSP_4:54
for n holds (
Sum ((Rseq
* seq),(n
+ 1)))
= (((Rseq
* (
Partial_Sums seq))
. (n
+ 1))
- (
Sum ((((Rseq
^\ 1)
- Rseq)
* (
Partial_Sums seq)),n))) by
Th53;