lopban_4.miz
begin
reserve X for
Banach_Algebra,
w,z,z1,z2 for
Element of X,
k,l,m,n,n1,n2 for
Nat,
seq,seq1,seq2,s,s9 for
sequence of X,
rseq for
Real_Sequence;
definition
let X be non
empty
multMagma;
let x,y be
Element of X;
::
LOPBAN_4:def1
pred x,y
are_commutative means (x
* y)
= (y
* x);
reflexivity ;
symmetry ;
end
Lm1: (z
* (z
#N n))
= (z
#N (n
+ 1)) & ((z
#N n)
* z)
= (z
#N (n
+ 1)) & (z
* (z
#N n))
= ((z
#N n)
* z)
proof
defpred
P[
Nat] means (z
* (z
#N $1))
= (z
#N ($1
+ 1));
A1: (z
#N (
0
+ 1))
= (((z
GeoSeq )
.
0 )
* z) by
LOPBAN_3:def 9
.= ((
1. X)
* z) by
LOPBAN_3:def 9
.= z by
LOPBAN_3: 38;
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
thus (z
* (z
#N (k
+ 1)))
= (z
* (((z
GeoSeq )
. k)
* z)) by
LOPBAN_3:def 9
.= ((z
* (z
#N k))
* z) by
LOPBAN_3: 38
.= (z
#N ((k
+ 1)
+ 1)) by
A3,
LOPBAN_3:def 9;
end;
(z
* (z
#N
0 ))
= (z
* (
1. X)) by
LOPBAN_3:def 9
.= z by
LOPBAN_3: 38;
then
A4:
P[
0 ] by
A1;
A5: for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A2);
now
let n;
thus (z
* (z
#N n))
= (z
#N (n
+ 1)) by
A5;
thus ((z
#N n)
* z)
= (z
#N (n
+ 1)) by
LOPBAN_3:def 9;
hence (z
* (z
#N n))
= ((z
#N n)
* z) by
A5;
end;
hence thesis;
end;
Lm2: for z, w st (z,w)
are_commutative holds (w
* (z
#N n))
= ((z
#N n)
* w) & (z
* (w
#N n))
= ((w
#N n)
* z)
proof
let z, w such that
A1: (z,w)
are_commutative ;
defpred
P[
Nat] means (w
* (z
#N $1))
= ((z
#N $1)
* w) & (z
* (w
#N $1))
= ((w
#N $1)
* z);
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
A4: (z
* (w
#N (k
+ 1)))
= (z
* ((w
#N k)
* w)) by
Lm1
.= ((z
* (w
#N k))
* w) by
LOPBAN_3: 38
.= ((w
#N k)
* (z
* w)) by
A3,
LOPBAN_3: 38
.= ((w
#N k)
* (w
* z)) by
A1
.= (((w
#N k)
* w)
* z) by
LOPBAN_3: 38
.= ((w
#N (k
+ 1))
* z) by
Lm1;
(w
* (z
#N (k
+ 1)))
= (w
* ((z
#N k)
* z)) by
Lm1
.= ((w
* (z
#N k))
* z) by
LOPBAN_3: 38
.= ((z
#N k)
* (w
* z)) by
A3,
LOPBAN_3: 38
.= ((z
#N k)
* (z
* w)) by
A1
.= (((z
#N k)
* z)
* w) by
LOPBAN_3: 38
.= ((z
#N (k
+ 1))
* w) by
Lm1;
hence thesis by
A4;
end;
A5: (w
#N
0 )
= (
1. X) by
LOPBAN_3:def 9;
then
A6: (z
* (w
#N
0 ))
= z by
LOPBAN_3: 38
.= ((w
#N
0 )
* z) by
A5,
LOPBAN_3: 38;
A7: (z
#N
0 )
= (
1. X) by
LOPBAN_3:def 9;
then (w
* (z
#N
0 ))
= w by
LOPBAN_3: 38
.= ((z
#N
0 )
* w) by
A7,
LOPBAN_3: 38;
then
A8:
P[
0 ] by
A6;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A8,
A2);
hence thesis;
end;
theorem ::
LOPBAN_4:1
Th1: seq1 is
convergent & seq2 is
convergent & (
lim (seq1
- seq2))
= (
0. X) implies (
lim seq1)
= (
lim seq2)
proof
assume that
A1: seq1 is
convergent and
A2: seq2 is
convergent and
A3: (
lim (seq1
- seq2))
= (
0. X);
((
lim seq1)
- (
lim seq2))
= (
0. X) by
A1,
A2,
A3,
NORMSP_1: 26;
then (((
lim seq1)
- (
lim seq2))
+ (
lim seq2))
= (
lim seq2) by
LOPBAN_3: 38;
then ((
lim seq1)
- ((
lim seq2)
- (
lim seq2)))
= (
lim seq2) by
LOPBAN_3: 38;
then ((
lim seq1)
- (
0. X))
= (
lim seq2) by
RLVECT_1: 15;
hence thesis by
RLVECT_1: 13;
end;
theorem ::
LOPBAN_4:2
Th2: for z st for n be
Nat holds (s
. n)
= z holds (
lim s)
= z
proof
let z;
assume
A1: for n be
Nat holds (s
. n)
= z;
A2:
now
let p be
Real such that
A3:
0
< p;
reconsider k =
0 as
Nat;
take k;
let n such that k
<= n;
(s
. n)
= z by
A1;
hence
||.((s
. n)
- z).||
< p by
A3,
NORMSP_1: 6;
end;
then s is
convergent;
hence thesis by
A2,
NORMSP_1:def 7;
end;
theorem ::
LOPBAN_4:3
Th3: s is
convergent & s9 is
convergent implies (s
* s9) is
convergent
proof
assume that
A1: s is
convergent and
A2: s9 is
convergent;
consider g1 be
Point of X such that
A3: for p be
Real st
0
< p holds ex n st for m st n
<= m holds
||.((s
. m)
- g1).||
< p by
A1;
||.s.|| is
bounded by
A1,
NORMSP_1: 23,
SEQ_2: 13;
then
consider R be
Real such that
A4: for n be
Nat holds (
||.s.||
. n)
< R by
SEQ_2:def 3;
A5:
now
let n;
||.(s
. n).||
= (
||.s.||
. n) by
NORMSP_0:def 4;
hence
||.(s
. n).||
< R by
A4;
end;
||.(s
. 1).||
= (
||.s.||
. 1) by
NORMSP_0:def 4;
then
0
<= (
||.s.||
. 1) by
NORMSP_1: 4;
then
A6:
0
< R by
A4;
consider g2 be
Point of X such that
A7: for p be
Real st
0
< p holds ex n st for m st n
<= m holds
||.((s9
. m)
- g2).||
< p by
A2;
take g = (g1
* g2);
let p be
Real;
reconsider R as
Real;
A8: (
0
+
0 )
< (
||.g2.||
+ R) by
A6,
NORMSP_1: 4,
XREAL_1: 8;
assume
A9:
0
< p;
then
consider n1 such that
A10: for m st n1
<= m holds
||.((s
. m)
- g1).||
< (p
/ (
||.g2.||
+ R)) by
A3,
A8,
XREAL_1: 139;
consider n2 such that
A11: for m st n2
<= m holds
||.((s9
. m)
- g2).||
< (p
/ (
||.g2.||
+ R)) by
A7,
A8,
A9,
XREAL_1: 139;
take n = (n1
+ n2);
let m such that
A12: n
<= m;
n2
<= n by
NAT_1: 12;
then n2
<= m by
A12,
XXREAL_0: 2;
then
A13:
||.((s9
. m)
- g2).||
< (p
/ (
||.g2.||
+ R)) by
A11;
A14:
0
<=
||.(s
. m).|| by
NORMSP_1: 4;
A15:
||.((s
. m)
* ((s9
. m)
- g2)).||
<= (
||.(s
. m).||
*
||.((s9
. m)
- g2).||) by
LOPBAN_3: 38;
A16:
0
<=
||.((s9
. m)
- g2).|| by
NORMSP_1: 4;
n1
<= (n1
+ n2) by
NAT_1: 12;
then n1
<= m by
A12,
XXREAL_0: 2;
then
A17:
||.((s
. m)
- g1).||
<= (p
/ (
||.g2.||
+ R)) by
A10;
||.(((s
* s9)
. m)
- g).||
=
||.(((s
. m)
* (s9
. m))
- (g1
* g2)).|| by
LOPBAN_3:def 7
.=
||.((((s
. m)
* (s9
. m))
- ((s
. m)
* g2))
+ (((s
. m)
* g2)
- (g1
* g2))).|| by
LOPBAN_3: 38
.=
||.(((s
. m)
* ((s9
. m)
- g2))
+ (((s
. m)
* g2)
- (g1
* g2))).|| by
LOPBAN_3: 38
.=
||.(((s
. m)
* ((s9
. m)
- g2))
+ (((s
. m)
- g1)
* g2)).|| by
LOPBAN_3: 38;
then
A18:
||.(((s
* s9)
. m)
- g).||
<= (
||.((s
. m)
* ((s9
. m)
- g2)).||
+
||.(((s
. m)
- g1)
* g2).||) by
NORMSP_1:def 1;
||.(s
. m).||
< R by
A5;
then (
||.(s
. m).||
*
||.((s9
. m)
- g2).||)
< (R
* (p
/ (
||.g2.||
+ R))) by
A14,
A16,
A13,
XREAL_1: 96;
then
A19:
||.((s
. m)
* ((s9
. m)
- g2)).||
< (R
* (p
/ (
||.g2.||
+ R))) by
A15,
XXREAL_0: 2;
A20:
||.(((s
. m)
- g1)
* g2).||
<= (
||.g2.||
*
||.((s
. m)
- g1).||) by
LOPBAN_3: 38;
0
<=
||.g2.|| by
NORMSP_1: 4;
then (
||.g2.||
*
||.((s
. m)
- g1).||)
<= (
||.g2.||
* (p
/ (
||.g2.||
+ R))) by
A17,
XREAL_1: 64;
then
A21:
||.(((s
. m)
- g1)
* g2).||
<= (
||.g2.||
* (p
/ (
||.g2.||
+ R))) by
A20,
XXREAL_0: 2;
((R
* (p
/ (
||.g2.||
+ R)))
+ (
||.g2.||
* (p
/ (
||.g2.||
+ R))))
= ((p
/ (
||.g2.||
+ R))
* (
||.g2.||
+ R))
.= p by
A8,
XCMPLX_1: 87;
then (
||.((s
. m)
* ((s9
. m)
- g2)).||
+
||.(((s
. m)
- g1)
* g2).||)
< p by
A19,
A21,
XREAL_1: 8;
hence
||.(((s
* s9)
. m)
- g).||
< p by
A18,
XXREAL_0: 2;
end;
theorem ::
LOPBAN_4:4
Th4: s is
convergent implies (z
* s) is
convergent
proof
A1:
0
<=
||.z.|| by
NORMSP_1: 4;
assume s is
convergent;
then
consider g1 be
Point of X such that
A2: for p be
Real st
0
< p holds ex n st for m st n
<= m holds
||.((s
. m)
- g1).||
< p;
take g = (z
* g1);
let p be
Real;
A3: (
0
+
0 )
< (
||.z.||
+ 1) by
NORMSP_1: 4,
XREAL_1: 8;
assume
A4:
0
< p;
then
consider n such that
A5: for m st n
<= m holds
||.((s
. m)
- g1).||
< (p
/ (
||.z.||
+ 1)) by
A2,
A3,
XREAL_1: 139;
take n;
let m;
assume n
<= m;
then
A6:
||.((s
. m)
- g1).||
< (p
/ (
||.z.||
+ 1)) by
A5;
A7:
||.(z
* ((s
. m)
- g1)).||
<= (
||.z.||
*
||.((s
. m)
- g1).||) by
LOPBAN_3: 38;
A8: (
0
+
||.z.||)
< (
||.z.||
+ 1) by
XREAL_1: 8;
0
< (p
/ (
||.z.||
+ 1)) by
A3,
A4,
XREAL_1: 139;
then
A9: (
||.z.||
* (p
/ (
||.z.||
+ 1)))
< ((
||.z.||
+ 1)
* (p
/ (
||.z.||
+ 1))) by
A1,
A8,
XREAL_1: 97;
A10:
||.(((z
* s)
. m)
- g).||
=
||.((z
* (s
. m))
- (z
* g1)).|| by
LOPBAN_3:def 5
.=
||.(z
* ((s
. m)
- g1)).|| by
LOPBAN_3: 38;
0
<=
||.((s
. m)
- g1).|| by
NORMSP_1: 4;
then (
||.z.||
*
||.((s
. m)
- g1).||)
<= (
||.z.||
* (p
/ (
||.z.||
+ 1))) by
A1,
A6,
XREAL_1: 66;
then
A11:
||.(z
* ((s
. m)
- g1)).||
<= (
||.z.||
* (p
/ (
||.z.||
+ 1))) by
A7,
XXREAL_0: 2;
((
||.z.||
+ 1)
* (p
/ (
||.z.||
+ 1)))
= p by
A3,
XCMPLX_1: 87;
hence
||.(((z
* s)
. m)
- g).||
< p by
A10,
A11,
A9,
XXREAL_0: 2;
end;
theorem ::
LOPBAN_4:5
Th5: s is
convergent implies (s
* z) is
convergent
proof
A1:
0
<=
||.z.|| by
NORMSP_1: 4;
assume s is
convergent;
then
consider g1 be
Point of X such that
A2: for p be
Real st
0
< p holds ex n st for m st n
<= m holds
||.((s
. m)
- g1).||
< p;
take g = (g1
* z);
let p be
Real;
A3: (
0
+
0 )
< (
||.z.||
+ 1) by
NORMSP_1: 4,
XREAL_1: 8;
assume
A4:
0
< p;
then
consider n such that
A5: for m st n
<= m holds
||.((s
. m)
- g1).||
< (p
/ (
||.z.||
+ 1)) by
A2,
A3,
XREAL_1: 139;
take n;
let m;
assume n
<= m;
then
A6:
||.((s
. m)
- g1).||
< (p
/ (
||.z.||
+ 1)) by
A5;
A7:
||.(((s
. m)
- g1)
* z).||
<= (
||.((s
. m)
- g1).||
*
||.z.||) by
LOPBAN_3: 38;
A8: (
0
+
||.z.||)
< (
||.z.||
+ 1) by
XREAL_1: 8;
0
< (p
/ (
||.z.||
+ 1)) by
A3,
A4,
XREAL_1: 139;
then
A9: ((p
/ (
||.z.||
+ 1))
*
||.z.||)
< ((p
/ (
||.z.||
+ 1))
* (
||.z.||
+ 1)) by
A1,
A8,
XREAL_1: 97;
A10:
||.(((s
* z)
. m)
- g).||
=
||.(((s
. m)
* z)
- (g1
* z)).|| by
LOPBAN_3:def 6
.=
||.(((s
. m)
- g1)
* z).|| by
LOPBAN_3: 38;
0
<=
||.((s
. m)
- g1).|| by
NORMSP_1: 4;
then (
||.((s
. m)
- g1).||
*
||.z.||)
<= ((p
/ (
||.z.||
+ 1))
*
||.z.||) by
A1,
A6,
XREAL_1: 66;
then
A11:
||.(((s
. m)
- g1)
* z).||
<= ((p
/ (
||.z.||
+ 1))
*
||.z.||) by
A7,
XXREAL_0: 2;
((p
/ (
||.z.||
+ 1))
* (
||.z.||
+ 1))
= p by
A3,
XCMPLX_1: 87;
hence
||.(((s
* z)
. m)
- g).||
< p by
A10,
A11,
A9,
XXREAL_0: 2;
end;
theorem ::
LOPBAN_4:6
Th6: s is
convergent implies (
lim (z
* s))
= (z
* (
lim s))
proof
assume
A1: s is
convergent;
set g1 = (
lim s);
set g = (z
* g1);
A2: (
0
+
0 )
< (
||.z.||
+ 1) by
NORMSP_1: 4,
XREAL_1: 8;
A3:
0
<=
||.z.|| by
NORMSP_1: 4;
A4:
now
let p be
Real;
assume
0
< p;
then
A5:
0
< (p
/ (
||.z.||
+ 1)) by
A2,
XREAL_1: 139;
then
consider n such that
A6: for m st n
<= m holds
||.((s
. m)
- g1).||
< (p
/ (
||.z.||
+ 1)) by
A1,
NORMSP_1:def 7;
take n;
let m;
assume n
<= m;
then
A7:
||.((s
. m)
- g1).||
< (p
/ (
||.z.||
+ 1)) by
A6;
0
<=
||.((s
. m)
- g1).|| by
NORMSP_1: 4;
then
A8: (
||.z.||
*
||.((s
. m)
- g1).||)
<= (
||.z.||
* (p
/ (
||.z.||
+ 1))) by
A3,
A7,
XREAL_1: 66;
||.(z
* ((s
. m)
- g1)).||
<= (
||.z.||
*
||.((s
. m)
- g1).||) by
LOPBAN_3: 38;
then
A9:
||.(z
* ((s
. m)
- g1)).||
<= (
||.z.||
* (p
/ (
||.z.||
+ 1))) by
A8,
XXREAL_0: 2;
A10:
||.(((z
* s)
. m)
- g).||
=
||.((z
* (s
. m))
- (z
* g1)).|| by
LOPBAN_3:def 5
.=
||.(z
* ((s
. m)
- g1)).|| by
LOPBAN_3: 38;
(
0
+
||.z.||)
< (
||.z.||
+ 1) by
XREAL_1: 8;
then
A11: (
||.z.||
* (p
/ (
||.z.||
+ 1)))
< ((
||.z.||
+ 1)
* (p
/ (
||.z.||
+ 1))) by
A3,
A5,
XREAL_1: 97;
((
||.z.||
+ 1)
* (p
/ (
||.z.||
+ 1)))
= p by
A2,
XCMPLX_1: 87;
hence
||.(((z
* s)
. m)
- g).||
< p by
A10,
A9,
A11,
XXREAL_0: 2;
end;
(z
* s) is
convergent by
A1,
Th4;
hence thesis by
A4,
NORMSP_1:def 7;
end;
theorem ::
LOPBAN_4:7
Th7: s is
convergent implies (
lim (s
* z))
= ((
lim s)
* z)
proof
assume
A1: s is
convergent;
set g1 = (
lim s);
set g = (g1
* z);
A2: (
0
+
0 )
< (
||.z.||
+ 1) by
NORMSP_1: 4,
XREAL_1: 8;
A3:
0
<=
||.z.|| by
NORMSP_1: 4;
A4:
now
let p be
Real;
assume
0
< p;
then
A5:
0
< (p
/ (
||.z.||
+ 1)) by
A2,
XREAL_1: 139;
then
consider n such that
A6: for m st n
<= m holds
||.((s
. m)
- g1).||
< (p
/ (
||.z.||
+ 1)) by
A1,
NORMSP_1:def 7;
take n;
let m;
assume n
<= m;
then
A7:
||.((s
. m)
- g1).||
< (p
/ (
||.z.||
+ 1)) by
A6;
0
<=
||.((s
. m)
- g1).|| by
NORMSP_1: 4;
then
A8: (
||.((s
. m)
- g1).||
*
||.z.||)
<= ((p
/ (
||.z.||
+ 1))
*
||.z.||) by
A3,
A7,
XREAL_1: 66;
||.(((s
. m)
- g1)
* z).||
<= (
||.((s
. m)
- g1).||
*
||.z.||) by
LOPBAN_3: 38;
then
A9:
||.(((s
. m)
- g1)
* z).||
<= ((p
/ (
||.z.||
+ 1))
*
||.z.||) by
A8,
XXREAL_0: 2;
A10:
||.(((s
* z)
. m)
- g).||
=
||.(((s
. m)
* z)
- (g1
* z)).|| by
LOPBAN_3:def 6
.=
||.(((s
. m)
- g1)
* z).|| by
LOPBAN_3: 38;
(
0
+
||.z.||)
< (
||.z.||
+ 1) by
XREAL_1: 8;
then
A11: ((p
/ (
||.z.||
+ 1))
*
||.z.||)
< ((p
/ (
||.z.||
+ 1))
* (
||.z.||
+ 1)) by
A3,
A5,
XREAL_1: 97;
((p
/ (
||.z.||
+ 1))
* (
||.z.||
+ 1))
= p by
A2,
XCMPLX_1: 87;
hence
||.(((s
* z)
. m)
- g).||
< p by
A10,
A9,
A11,
XXREAL_0: 2;
end;
(s
* z) is
convergent by
A1,
Th5;
hence thesis by
A4,
NORMSP_1:def 7;
end;
theorem ::
LOPBAN_4:8
Th8: s is
convergent & s9 is
convergent implies (
lim (s
* s9))
= ((
lim s)
* (
lim s9))
proof
assume that
A1: s is
convergent and
A2: s9 is
convergent;
||.s.|| is
bounded by
A1,
NORMSP_1: 23,
SEQ_2: 13;
then
consider R be
Real such that
A3: for n be
Nat holds (
||.s.||
. n)
< R by
SEQ_2:def 3;
set g2 = (
lim s9);
set g1 = (
lim s);
set g = (g1
* g2);
A4:
now
let n;
||.(s
. n).||
= (
||.s.||
. n) by
NORMSP_0:def 4;
hence
||.(s
. n).||
< R by
A3;
end;
||.(s
. 1).||
= (
||.s.||
. 1) by
NORMSP_0:def 4;
then
0
<= (
||.s.||
. 1) by
NORMSP_1: 4;
then
A5:
0
< R by
A3;
reconsider R as
Real;
A6: (
0
+
0 )
< (
||.g2.||
+ R) by
A5,
NORMSP_1: 4,
XREAL_1: 8;
A7:
0
<=
||.g2.|| by
NORMSP_1: 4;
A8:
now
let p be
Real;
assume
0
< p;
then
A9:
0
< (p
/ (
||.g2.||
+ R)) by
A6,
XREAL_1: 139;
then
consider n1 such that
A10: for m st n1
<= m holds
||.((s
. m)
- g1).||
< (p
/ (
||.g2.||
+ R)) by
A1,
NORMSP_1:def 7;
consider n2 such that
A11: for m st n2
<= m holds
||.((s9
. m)
- g2).||
< (p
/ (
||.g2.||
+ R)) by
A2,
A9,
NORMSP_1:def 7;
take n = (n1
+ n2);
let m such that
A12: n
<= m;
n1
<= (n1
+ n2) by
NAT_1: 12;
then n1
<= m by
A12,
XXREAL_0: 2;
then
||.((s
. m)
- g1).||
<= (p
/ (
||.g2.||
+ R)) by
A10;
then
A13: (
||.g2.||
*
||.((s
. m)
- g1).||)
<= (
||.g2.||
* (p
/ (
||.g2.||
+ R))) by
A7,
XREAL_1: 64;
||.(((s
. m)
- g1)
* g2).||
<= (
||.g2.||
*
||.((s
. m)
- g1).||) by
LOPBAN_3: 38;
then
A14:
||.(((s
. m)
- g1)
* g2).||
<= (
||.g2.||
* (p
/ (
||.g2.||
+ R))) by
A13,
XXREAL_0: 2;
A15:
0
<=
||.(s
. m).|| by
NORMSP_1: 4;
||.(((s
* s9)
. m)
- g).||
=
||.(((s
. m)
* (s9
. m))
- (g1
* g2)).|| by
LOPBAN_3:def 7
.=
||.((((s
. m)
* (s9
. m))
- ((s
. m)
* g2))
+ (((s
. m)
* g2)
- (g1
* g2))).|| by
LOPBAN_3: 38
.=
||.(((s
. m)
* ((s9
. m)
- g2))
+ (((s
. m)
* g2)
- (g1
* g2))).|| by
LOPBAN_3: 38
.=
||.(((s
. m)
* ((s9
. m)
- g2))
+ (((s
. m)
- g1)
* g2)).|| by
LOPBAN_3: 38;
then
A16:
||.(((s
* s9)
. m)
- g).||
<= (
||.((s
. m)
* ((s9
. m)
- g2)).||
+
||.(((s
. m)
- g1)
* g2).||) by
NORMSP_1:def 1;
A17:
||.((s
. m)
* ((s9
. m)
- g2)).||
<= (
||.(s
. m).||
*
||.((s9
. m)
- g2).||) by
LOPBAN_3: 38;
n2
<= n by
NAT_1: 12;
then n2
<= m by
A12,
XXREAL_0: 2;
then
A18:
||.((s9
. m)
- g2).||
< (p
/ (
||.g2.||
+ R)) by
A11;
A19:
0
<=
||.((s9
. m)
- g2).|| by
NORMSP_1: 4;
||.(s
. m).||
< R by
A4;
then (
||.(s
. m).||
*
||.((s9
. m)
- g2).||)
< (R
* (p
/ (
||.g2.||
+ R))) by
A15,
A19,
A18,
XREAL_1: 96;
then
A20:
||.((s
. m)
* ((s9
. m)
- g2)).||
< (R
* (p
/ (
||.g2.||
+ R))) by
A17,
XXREAL_0: 2;
((R
* (p
/ (
||.g2.||
+ R)))
+ (
||.g2.||
* (p
/ (
||.g2.||
+ R))))
= ((p
/ (
||.g2.||
+ R))
* (
||.g2.||
+ R))
.= p by
A6,
XCMPLX_1: 87;
then (
||.((s
. m)
* ((s9
. m)
- g2)).||
+
||.(((s
. m)
- g1)
* g2).||)
< p by
A20,
A14,
XREAL_1: 8;
hence
||.(((s
* s9)
. m)
- g).||
< p by
A16,
XXREAL_0: 2;
end;
(s
* s9) is
convergent by
A1,
A2,
Th3;
hence thesis by
A8,
NORMSP_1:def 7;
end;
theorem ::
LOPBAN_4:9
Th9: (
Partial_Sums (z
* seq))
= (z
* (
Partial_Sums seq)) & (
Partial_Sums (seq
* z))
= ((
Partial_Sums seq)
* z)
proof
A1: (
Partial_Sums (seq
* z))
= ((
Partial_Sums seq)
* z)
proof
defpred
P[
Nat] means ((
Partial_Sums (seq
* z))
. $1)
= (((
Partial_Sums seq)
* z)
. $1);
A2:
now
let n;
assume
A3:
P[n];
((
Partial_Sums (seq
* z))
. (n
+ 1))
= (((
Partial_Sums (seq
* z))
. n)
+ ((seq
* z)
. (n
+ 1))) by
BHSP_4:def 1
.= ((((
Partial_Sums seq)
. n)
* z)
+ ((seq
* z)
. (n
+ 1))) by
A3,
LOPBAN_3:def 6
.= ((((
Partial_Sums seq)
. n)
* z)
+ ((seq
. (n
+ 1))
* z)) by
LOPBAN_3:def 6
.= ((((
Partial_Sums seq)
. n)
+ (seq
. (n
+ 1)))
* z) by
LOPBAN_3: 38
.= (((
Partial_Sums seq)
. (n
+ 1))
* z) by
BHSP_4:def 1
.= (((
Partial_Sums seq)
* z)
. (n
+ 1)) by
LOPBAN_3:def 6;
hence
P[(n
+ 1)];
end;
((
Partial_Sums (seq
* z))
.
0 )
= ((seq
* z)
.
0 ) by
BHSP_4:def 1
.= ((seq
.
0 )
* z) by
LOPBAN_3:def 6
.= (((
Partial_Sums seq)
.
0 )
* z) by
BHSP_4:def 1
.= (((
Partial_Sums seq)
* z)
.
0 ) by
LOPBAN_3:def 6;
then
A4:
P[
0 ];
for n holds
P[n] from
NAT_1:sch 2(
A4,
A2);
then for n be
Element of
NAT holds
P[n];
hence thesis by
FUNCT_2: 63;
end;
(
Partial_Sums (z
* seq))
= (z
* (
Partial_Sums seq))
proof
defpred
P[
Nat] means ((
Partial_Sums (z
* seq))
. $1)
= ((z
* (
Partial_Sums seq))
. $1);
A5:
now
let n;
assume
A6:
P[n];
((
Partial_Sums (z
* seq))
. (n
+ 1))
= (((
Partial_Sums (z
* seq))
. n)
+ ((z
* seq)
. (n
+ 1))) by
BHSP_4:def 1
.= ((z
* ((
Partial_Sums seq)
. n))
+ ((z
* seq)
. (n
+ 1))) by
A6,
LOPBAN_3:def 5
.= ((z
* ((
Partial_Sums seq)
. n))
+ (z
* (seq
. (n
+ 1)))) by
LOPBAN_3:def 5
.= (z
* (((
Partial_Sums seq)
. n)
+ (seq
. (n
+ 1)))) by
LOPBAN_3: 38
.= (z
* ((
Partial_Sums seq)
. (n
+ 1))) by
BHSP_4:def 1
.= ((z
* (
Partial_Sums seq))
. (n
+ 1)) by
LOPBAN_3:def 5;
hence
P[(n
+ 1)];
end;
((
Partial_Sums (z
* seq))
.
0 )
= ((z
* seq)
.
0 ) by
BHSP_4:def 1
.= (z
* (seq
.
0 )) by
LOPBAN_3:def 5
.= (z
* ((
Partial_Sums seq)
.
0 )) by
BHSP_4:def 1
.= ((z
* (
Partial_Sums seq))
.
0 ) by
LOPBAN_3:def 5;
then
A7:
P[
0 ];
for n holds
P[n] from
NAT_1:sch 2(
A7,
A5);
then for n be
Element of
NAT holds
P[n];
hence thesis by
FUNCT_2: 63;
end;
hence thesis by
A1;
end;
theorem ::
LOPBAN_4:10
Th10:
||.((
Partial_Sums seq)
. k).||
<= ((
Partial_Sums
||.seq.||)
. k)
proof
defpred
P[
Nat] means
||.((
Partial_Sums seq)
. $1).||
<= ((
Partial_Sums
||.seq.||)
. $1);
A1:
now
let k;
assume
P[k];
then
A2: (
||.((
Partial_Sums seq)
. k).||
+
||.(seq
. (k
+ 1)).||)
<= (((
Partial_Sums
||.seq.||)
. k)
+
||.(seq
. (k
+ 1)).||) by
XREAL_1: 6;
A3:
||.(((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1))).||
<= (
||.((
Partial_Sums seq)
. k).||
+
||.(seq
. (k
+ 1)).||) by
NORMSP_1:def 1;
||.((
Partial_Sums seq)
. (k
+ 1)).||
=
||.(((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1))).|| by
BHSP_4:def 1;
then
||.((
Partial_Sums seq)
. (k
+ 1)).||
<= (((
Partial_Sums
||.seq.||)
. k)
+
||.(seq
. (k
+ 1)).||) by
A3,
A2,
XXREAL_0: 2;
then
||.((
Partial_Sums seq)
. (k
+ 1)).||
<= (((
Partial_Sums
||.seq.||)
. k)
+ (
||.seq.||
. (k
+ 1))) by
NORMSP_0:def 4;
hence
P[(k
+ 1)] by
SERIES_1:def 1;
end;
((
Partial_Sums
||.seq.||)
.
0 )
= (
||.seq.||
.
0 ) by
SERIES_1:def 1
.=
||.(seq
.
0 ).|| by
NORMSP_0:def 4;
then
A4:
P[
0 ] by
BHSP_4:def 1;
for k holds
P[k] from
NAT_1:sch 2(
A4,
A1);
hence thesis;
end;
theorem ::
LOPBAN_4:11
Th11: (for n st n
<= m holds (seq1
. n)
= (seq2
. n)) implies ((
Partial_Sums seq1)
. m)
= ((
Partial_Sums seq2)
. m)
proof
defpred
P[
Nat] means $1
<= m implies ((
Partial_Sums seq1)
. $1)
= ((
Partial_Sums seq2)
. $1);
assume
A1: for n st n
<= m holds (seq1
. n)
= (seq2
. n);
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
assume
A4: (k
+ 1)
<= m;
k
< (k
+ 1) by
XREAL_1: 29;
hence ((
Partial_Sums seq1)
. (k
+ 1))
= (((
Partial_Sums seq2)
. k)
+ (seq1
. (k
+ 1))) by
A3,
A4,
BHSP_4:def 1,
XXREAL_0: 2
.= (((
Partial_Sums seq2)
. k)
+ (seq2
. (k
+ 1))) by
A1,
A4
.= ((
Partial_Sums seq2)
. (k
+ 1)) by
BHSP_4:def 1;
end;
A5:
P[
0 ]
proof
assume
0
<= m;
thus ((
Partial_Sums seq1)
.
0 )
= (seq1
.
0 ) by
BHSP_4:def 1
.= (seq2
.
0 ) by
A1
.= ((
Partial_Sums seq2)
.
0 ) by
BHSP_4:def 1;
end;
for k holds
P[k] from
NAT_1:sch 2(
A5,
A2);
hence thesis;
end;
theorem ::
LOPBAN_4:12
Th12: (for n holds
||.(seq
. n).||
<= (rseq
. n)) & rseq is
convergent & (
lim rseq)
=
0 implies seq is
convergent & (
lim seq)
= (
0. X)
proof
assume that
A1: for n holds
||.(seq
. n).||
<= (rseq
. n) and
A2: rseq is
convergent and
A3: (
lim rseq)
=
0 ;
now
let p be
Real;
assume
0
< p;
then
consider n be
Nat such that
A4: for m be
Nat st n
<= m holds
|.((rseq
. m)
-
0 ).|
< p by
A2,
A3,
SEQ_2:def 7;
reconsider n as
Nat;
take n;
let m;
assume n
<= m;
then
A5:
|.((rseq
. m)
-
0 ).|
< p by
A4;
A6:
||.((seq
. m)
- (
0. X)).||
=
||.(seq
. m).|| by
RLVECT_1: 13;
A7: (rseq
. m)
<=
|.(rseq
. m).| by
ABSVALUE: 4;
||.(seq
. m).||
<= (rseq
. m) by
A1;
then
||.((seq
. m)
- (
0. X)).||
<=
|.(rseq
. m).| by
A6,
A7,
XXREAL_0: 2;
hence
||.((seq
. m)
- (
0. X)).||
< p by
A5,
XXREAL_0: 2;
end;
then
A8: for p be
Real st
0
< p holds ex n st for m st n
<= m holds
||.((seq
. m)
- (
0. X)).||
< p;
hence seq is
convergent;
hence thesis by
A8,
NORMSP_1:def 7;
end;
definition
let X;
let z be
Element of X;
::
LOPBAN_4:def2
func z
rExpSeq ->
sequence of X means
:
Def2: for n holds (it
. n)
= ((1
/ (n
! ))
* (z
#N n));
existence
proof
deffunc
U(
Nat) = ((1
/ ($1
! ))
* (z
#N $1));
consider s be
sequence of X such that
A1: for n be
Element of
NAT holds (s
. n)
=
U(n) from
FUNCT_2:sch 4;
take s;
let n;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A1;
end;
uniqueness
proof
let S1,S2 be
sequence of X;
assume that
A2: for n be
Nat holds (S1
. n)
= ((1
/ (n
! ))
* (z
#N n)) and
A3: for n be
Nat holds (S2
. n)
= ((1
/ (n
! ))
* (z
#N n));
for n be
Element of
NAT holds (S1
. n)
= (S2
. n)
proof
let n be
Element of
NAT ;
(S1
. n)
= ((1
/ (n
! ))
* (z
#N n)) by
A2;
hence thesis by
A3;
end;
hence thesis by
FUNCT_2: 63;
end;
end
scheme ::
LOPBAN_4:sch1
ExNormSpaceCASE { RNS() -> non
empty
Banach_Algebra , F(
Nat,
Nat) ->
Point of RNS() } :
for k holds ex seq be
sequence of RNS() st for n holds (n
<= k implies (seq
. n)
= F(k,n)) & (n
> k implies (seq
. n)
= (
0. RNS()));
let k;
defpred
P[
object,
object] means ex n st (n
= $1 & (n
<= k implies $2
= F(k,n)) & (n
> k implies $2
= (
0. RNS())));
A1:
now
let x be
object;
assume x
in
NAT ;
then
consider n such that
A2: n
= x;
reconsider chk = (
CHK (n,k)) as
Element of
REAL by
XREAL_0:def 1;
A3: n
> k implies (chk
* F(k,n))
= (
0. RNS()) by
RLVECT_1: 10,
SIN_COS:def 1;
reconsider y = (chk
* F(k,n)) as
object;
take y;
now
assume n
<= k;
hence (chk
* F(k,n))
= (1
* F(k,n)) by
SIN_COS:def 1
.= F(k,n) by
RLVECT_1:def 8;
end;
hence
P[x, y] by
A2,
A3;
end;
consider f be
Function such that
A4: (
dom f)
=
NAT and
A5: for x be
object st x
in
NAT holds
P[x, (f
. x)] from
CLASSES1:sch 1(
A1);
now
let x be
object;
assume x
in
NAT ;
then ex n st n
= x & (n
<= k implies (f
. x)
= F(k,n)) & (n
> k implies (f
. x)
= (
0. RNS())) by
A5;
hence (f
. x)
in the
carrier of RNS();
end;
then
reconsider f as
sequence of RNS() by
A4,
FUNCT_2: 3;
take seq = f;
let n;
A6: n
in
NAT by
ORDINAL1:def 12;
ex l be
Nat st l
= n & (l
<= k implies (seq
. n)
= F(k,l)) & (l
> k implies (seq
. n)
= (
0. RNS())) by
A5,
A6;
hence thesis;
end;
theorem ::
LOPBAN_4:13
Th13: (for k st
0
< k holds (((k
-' 1)
! )
* k)
= (k
! )) & for m, k st k
<= m holds (((m
-' k)
! )
* ((m
+ 1)
- k))
= (((m
+ 1)
-' k)
! )
proof
A1:
now
let k;
A2: k
in
NAT by
ORDINAL1:def 12;
assume
0
< k;
then (
0
+ 1)
<= k by
INT_1: 7,
A2;
then ((k
-' 1)
+ 1)
= ((k
- 1)
+ 1) by
XREAL_1: 233
.= k;
hence (k
! )
= (((k
-' 1)
! )
* k) by
NEWTON: 15;
end;
now
let m, k such that
A3: k
<= m;
m
<= (m
+ 1) by
XREAL_1: 29;
then ((m
+ 1)
-' k)
= ((m
+ 1)
- k) by
A3,
XREAL_1: 233,
XXREAL_0: 2
.= ((m
- k)
+ 1)
.= ((m
-' k)
+ 1) by
A3,
XREAL_1: 233;
hence (((m
+ 1)
-' k)
! )
= (((m
-' k)
! )
* ((m
-' k)
+ 1)) by
NEWTON: 15
.= (((m
-' k)
! )
* ((m
- k)
+ 1)) by
A3,
XREAL_1: 233
.= (((m
-' k)
! )
* ((m
+ 1)
- k));
end;
hence thesis by
A1;
end;
definition
let n be
Nat;
::
LOPBAN_4:def3
func
Coef (n) ->
Real_Sequence means
:
Def3: for k be
Nat holds (k
<= n implies (it
. k)
= ((n
! )
/ ((k
! )
* ((n
-' k)
! )))) & (k
> n implies (it
. k)
=
0 );
existence
proof
deffunc
U(
Nat,
Nat) = (($1
! )
/ (($2
! )
* (($1
-' $2)
! )));
for n be
Nat holds ex seq be
Real_Sequence st for k be
Nat holds (k
<= n implies (seq
. k)
=
U(n,k)) & (k
> n implies (seq
. k)
=
0 ) from
SIN_COS:sch 2;
hence thesis;
end;
uniqueness
proof
let seq1,seq2 be
Real_Sequence;
assume that
A1: for k be
Nat holds (k
<= n implies (seq1
. k)
= ((n
! )
/ ((k
! )
* ((n
-' k)
! )))) & (k
> n implies (seq1
. k)
=
0 ) and
A2: for k be
Nat holds (k
<= n implies (seq2
. k)
= ((n
! )
/ ((k
! )
* ((n
-' k)
! )))) & (k
> n implies (seq2
. k)
=
0 );
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (seq1
. k)
= ((n
! )
/ ((k
! )
* ((n
-' k)
! ))) by
A1
.= (seq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (seq1
. k)
=
0 by
A1
.= (seq2
. k) by
A2,
A4;
end;
end;
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
definition
let n be
Nat;
::
LOPBAN_4:def4
func
Coef_e (n) ->
Real_Sequence means
:
Def4: for k be
Nat holds (k
<= n implies (it
. k)
= (1
/ ((k
! )
* ((n
-' k)
! )))) & (k
> n implies (it
. k)
=
0 );
existence
proof
deffunc
U(
Nat,
Nat) = (1
/ (($2
! )
* (($1
-' $2)
! )));
for n be
Nat holds ex seq be
Real_Sequence st for k be
Nat holds (k
<= n implies (seq
. k)
=
U(n,k)) & (k
> n implies (seq
. k)
=
0 ) from
SIN_COS:sch 2;
hence thesis;
end;
uniqueness
proof
let seq1,seq2 be
Real_Sequence;
assume that
A1: for k be
Nat holds (k
<= n implies (seq1
. k)
= (1
/ ((k
! )
* ((n
-' k)
! )))) & (k
> n implies (seq1
. k)
=
0 ) and
A2: for k be
Nat holds (k
<= n implies (seq2
. k)
= (1
/ ((k
! )
* ((n
-' k)
! )))) & (k
> n implies (seq2
. k)
=
0 );
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (seq1
. k)
= (1
/ ((k
! )
* ((n
-' k)
! ))) by
A1
.= (seq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (seq1
. k)
=
0 by
A1
.= (seq2
. k) by
A2,
A4;
end;
end;
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
definition
let X be non
empty
ZeroStr, seq be
sequence of X;
::
LOPBAN_4:def5
func
Shift seq ->
sequence of X means
:
Def5: (it
.
0 )
= (
0. X) & for k be
Nat holds (it
. (k
+ 1))
= (seq
. k);
existence
proof
deffunc
U(
Nat,
set) = (seq
. $1);
consider f be
sequence of the
carrier of X such that
A1: (f
.
0 )
= (
0. X) & for n be
Nat holds (f
. (n
+ 1))
=
U(n,.) from
NAT_1:sch 12;
take f;
thus thesis by
A1;
end;
uniqueness
proof
let seq1,seq2 be
sequence of X;
assume that
A2: (seq1
.
0 )
= (
0. X) and
A3: for n holds (seq1
. (n
+ 1))
= (seq
. n) and
A4: (seq2
.
0 )
= (
0. X) and
A5: for n holds (seq2
. (n
+ 1))
= (seq
. n);
defpred
X[
Nat] means (seq1
. $1)
= (seq2
. $1);
A6: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume (seq1
. k)
= (seq2
. k);
thus (seq1
. (k
+ 1))
= (seq
. k) by
A3
.= (seq2
. (k
+ 1)) by
A5;
end;
A7:
X[
0 ] by
A2,
A4;
for n holds
X[n] from
NAT_1:sch 2(
A7,
A6);
then for n be
Element of
NAT holds
X[n];
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
definition
let n;
let X;
let z,w be
Element of X;
::
LOPBAN_4:def6
func
Expan (n,z,w) ->
sequence of X means
:
Def6: for k be
Nat holds (k
<= n implies (it
. k)
= ((((
Coef n)
. k)
* (z
#N k))
* (w
#N (n
-' k)))) & (n
< k implies (it
. k)
= (
0. X));
existence
proof
deffunc
U(
Nat,
Nat) = ((((
Coef $1)
. $2)
* (z
#N $2))
* (w
#N ($1
-' $2)));
for n holds ex seq st for k holds (k
<= n implies (seq
. k)
=
U(n,k)) & (k
> n implies (seq
. k)
= (
0. X)) from
ExNormSpaceCASE;
hence thesis;
end;
uniqueness
proof
let seq1, seq2;
assume that
A1: for k holds (k
<= n implies (seq1
. k)
= ((((
Coef n)
. k)
* (z
#N k))
* (w
#N (n
-' k)))) & (k
> n implies (seq1
. k)
= (
0. X)) and
A2: for k holds (k
<= n implies (seq2
. k)
= ((((
Coef n)
. k)
* (z
#N k))
* (w
#N (n
-' k)))) & (k
> n implies (seq2
. k)
= (
0. X));
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (seq1
. k)
= ((((
Coef n)
. k)
* (z
#N k))
* (w
#N (n
-' k))) by
A1
.= (seq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (seq1
. k)
= (
0. X) by
A1
.= (seq2
. k) by
A2,
A4;
end;
end;
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
definition
let n;
let X;
let z,w be
Element of X;
::
LOPBAN_4:def7
func
Expan_e (n,z,w) ->
sequence of X means
:
Def7: for k be
Nat holds (k
<= n implies (it
. k)
= ((((
Coef_e n)
. k)
* (z
#N k))
* (w
#N (n
-' k)))) & (n
< k implies (it
. k)
= (
0. X));
existence
proof
deffunc
U(
Nat,
Nat) = ((((
Coef_e $1)
. $2)
* (z
#N $2))
* (w
#N ($1
-' $2)));
for n holds ex seq st for k holds (k
<= n implies (seq
. k)
=
U(n,k)) & (k
> n implies (seq
. k)
= (
0. X)) from
ExNormSpaceCASE;
hence thesis;
end;
uniqueness
proof
let seq1, seq2;
assume that
A1: for k holds (k
<= n implies (seq1
. k)
= ((((
Coef_e n)
. k)
* (z
#N k))
* (w
#N (n
-' k)))) & (k
> n implies (seq1
. k)
= (
0. X)) and
A2: for k holds (k
<= n implies (seq2
. k)
= ((((
Coef_e n)
. k)
* (z
#N k))
* (w
#N (n
-' k)))) & (k
> n implies (seq2
. k)
= (
0. X));
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (seq1
. k)
= ((((
Coef_e n)
. k)
* (z
#N k))
* (w
#N (n
-' k))) by
A1
.= (seq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (seq1
. k)
= (
0. X) by
A1
.= (seq2
. k) by
A2,
A4;
end;
end;
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
definition
let n;
let X;
let z,w be
Element of X;
::
LOPBAN_4:def8
func
Alfa (n,z,w) ->
sequence of X means
:
Def8: for k be
Nat holds (k
<= n implies (it
. k)
= (((z
rExpSeq )
. k)
* ((
Partial_Sums (w
rExpSeq ))
. (n
-' k)))) & (n
< k implies (it
. k)
= (
0. X));
existence
proof
deffunc
U(
Nat,
Nat) = (((z
rExpSeq )
. $2)
* ((
Partial_Sums (w
rExpSeq ))
. ($1
-' $2)));
for n holds ex seq st for k holds (k
<= n implies (seq
. k)
=
U(n,k)) & (k
> n implies (seq
. k)
= (
0. X)) from
ExNormSpaceCASE;
hence thesis;
end;
uniqueness
proof
let seq1, seq2;
assume that
A1: for k holds (k
<= n implies (seq1
. k)
= (((z
rExpSeq )
. k)
* ((
Partial_Sums (w
rExpSeq ))
. (n
-' k)))) & (k
> n implies (seq1
. k)
= (
0. X)) and
A2: for k holds (k
<= n implies (seq2
. k)
= (((z
rExpSeq )
. k)
* ((
Partial_Sums (w
rExpSeq ))
. (n
-' k)))) & (k
> n implies (seq2
. k)
= (
0. X));
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (seq1
. k)
= (((z
rExpSeq )
. k)
* ((
Partial_Sums (w
rExpSeq ))
. (n
-' k))) by
A1
.= (seq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (seq1
. k)
= (
0. X) by
A1
.= (seq2
. k) by
A2,
A4;
end;
end;
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
definition
let X;
let z,w be
Element of X;
let n be
Nat;
::
LOPBAN_4:def9
func
Conj (n,z,w) ->
sequence of X means
:
Def9: for k be
Nat holds (k
<= n implies (it
. k)
= (((z
rExpSeq )
. k)
* (((
Partial_Sums (w
rExpSeq ))
. n)
- ((
Partial_Sums (w
rExpSeq ))
. (n
-' k))))) & (n
< k implies (it
. k)
= (
0. X));
existence
proof
deffunc
U(
Nat,
Nat) = (((z
rExpSeq )
. $2)
* (((
Partial_Sums (w
rExpSeq ))
. $1)
- ((
Partial_Sums (w
rExpSeq ))
. ($1
-' $2))));
for n holds ex seq st for k holds (k
<= n implies (seq
. k)
=
U(n,k)) & (k
> n implies (seq
. k)
= (
0. X)) from
ExNormSpaceCASE;
hence thesis;
end;
uniqueness
proof
let seq1, seq2;
assume that
A1: for k holds (k
<= n implies (seq1
. k)
= (((z
rExpSeq )
. k)
* (((
Partial_Sums (w
rExpSeq ))
. n)
- ((
Partial_Sums (w
rExpSeq ))
. (n
-' k))))) & (k
> n implies (seq1
. k)
= (
0. X)) and
A2: for k holds (k
<= n implies (seq2
. k)
= (((z
rExpSeq )
. k)
* (((
Partial_Sums (w
rExpSeq ))
. n)
- ((
Partial_Sums (w
rExpSeq ))
. (n
-' k))))) & (k
> n implies (seq2
. k)
= (
0. X));
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (seq1
. k)
= (((z
rExpSeq )
. k)
* (((
Partial_Sums (w
rExpSeq ))
. n)
- ((
Partial_Sums (w
rExpSeq ))
. (n
-' k)))) by
A1
.= (seq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (seq1
. k)
= (
0. X) by
A1
.= (seq2
. k) by
A2,
A4;
end;
end;
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
theorem ::
LOPBAN_4:14
Th14: ((z
rExpSeq )
. (n
+ 1))
= (((1
/ (n
+ 1))
* z)
* ((z
rExpSeq )
. n)) & ((z
rExpSeq )
.
0 )
= (
1. X) &
||.((z
rExpSeq )
. n).||
<= ((
||.z.||
rExpSeq )
. n)
proof
defpred
X[
Nat] means
||.((z
rExpSeq )
. $1).||
<= ((
||.z.||
rExpSeq )
. $1);
A1: ((z
rExpSeq )
.
0 )
= ((1
/ (
0
! ))
* (z
#N
0 )) by
Def2
.= ((1
/ 1)
* (
1. X)) by
LOPBAN_3:def 9,
NEWTON: 12
.= (
1. X) by
RLVECT_1:def 8;
A2:
now
let n be
Nat;
thus ((z
rExpSeq )
. (n
+ 1))
= ((1
/ ((n
+ 1)
! ))
* (z
#N (n
+ 1))) by
Def2
.= ((1
/ ((n
+ 1)
! ))
* (((z
GeoSeq )
. n)
* z)) by
LOPBAN_3:def 9
.= ((1
/ ((n
! )
* (n
+ 1)))
* ((z
#N n)
* z)) by
NEWTON: 15
.= (((1
* 1)
/ ((n
! )
* (n
+ 1)))
* (z
* (z
#N n))) by
Lm1
.= (((1
/ (n
! ))
* (1
/ (n
+ 1)))
* (z
* (z
#N n))) by
XCMPLX_1: 76
.= (((1
/ (n
+ 1))
* z)
* ((1
/ (n
! ))
* (z
#N n))) by
LOPBAN_3: 38
.= (((1
/ (n
+ 1))
* z)
* ((z
rExpSeq )
. n)) by
Def2;
end;
A3: for n be
Nat st
X[n] holds
X[(n
+ 1)]
proof
let n such that
A4:
X[n];
0
<=
||.((1
/ (n
+ 1))
* z).|| by
NORMSP_1: 4;
then
A5: (
||.((1
/ (n
+ 1))
* z).||
*
||.((z
rExpSeq )
. n).||)
<= (
||.((1
/ (n
+ 1))
* z).||
* ((
||.z.||
rExpSeq )
. n)) by
A4,
XREAL_1: 64;
A6:
||.(((1
/ (n
+ 1))
* z)
* ((z
rExpSeq )
. n)).||
<= (
||.((1
/ (n
+ 1))
* z).||
*
||.((z
rExpSeq )
. n).||) by
LOPBAN_3: 38;
A7: (((1
/ (n
+ 1))
*
||.z.||)
* ((
||.z.||
rExpSeq )
. n))
= ((1
/ (n
+ 1))
* (((
||.z.||
rExpSeq )
. n)
*
||.z.||))
.= ((1
/ (n
+ 1))
* (((
||.z.||
|^ n)
/ (n
! ))
*
||.z.||)) by
SIN_COS:def 5
.= ((1
/ (n
+ 1))
* (((
||.z.||
|^ n)
*
||.z.||)
/ (n
! ))) by
XCMPLX_1: 74
.= ((1
/ (n
+ 1))
* ((
||.z.||
|^ (n
+ 1))
/ (n
! ))) by
NEWTON: 6
.= ((
||.z.||
|^ (n
+ 1))
/ ((n
! )
* (n
+ 1))) by
XCMPLX_1: 103
.= ((
||.z.||
|^ (n
+ 1))
/ ((n
+ 1)
! )) by
NEWTON: 15
.= ((
||.z.||
rExpSeq )
. (n
+ 1)) by
SIN_COS:def 5;
A8:
||.((1
/ (n
+ 1))
* z).||
= (
|.(1
/ (n
+ 1)).|
*
||.z.||) by
NORMSP_1:def 1
.= ((1
/ (n
+ 1))
*
||.z.||) by
ABSVALUE:def 1;
||.((z
rExpSeq )
. (n
+ 1)).||
=
||.(((1
/ (n
+ 1))
* z)
* ((z
rExpSeq )
. n)).|| by
A2;
hence thesis by
A6,
A8,
A5,
A7,
XXREAL_0: 2;
end;
((
||.z.||
rExpSeq )
.
0 )
= ((
||.z.||
|^
0 )
/ (
0
! )) by
SIN_COS:def 5
.= (1
/ (
0
! )) by
NEWTON: 4
.= (1
/ (
Prod_real_n
.
0 )) by
SIN_COS:def 3
.= (1
/ 1) by
SIN_COS:def 2
.= 1;
then
A9:
X[
0 ] by
A1,
LOPBAN_3: 38;
for n holds
X[n] from
NAT_1:sch 2(
A9,
A3);
hence thesis by
A2,
A1;
end;
theorem ::
LOPBAN_4:15
Th15: for X be non
empty
ZeroStr, seq be
sequence of X holds
0
< k implies ((
Shift seq)
. k)
= (seq
. (k
-' 1))
proof
let X be non
empty
ZeroStr, seq be
sequence of X;
A1: k
in
NAT by
ORDINAL1:def 12;
assume
A2:
0
< k;
then
A3: (
0
+ 1)
<= k by
INT_1: 7,
A1;
consider m be
Nat such that
A4: (m
+ 1)
= k by
A2,
NAT_1: 6;
A5: m
= (k
- 1) by
A4;
thus ((
Shift seq)
. k)
= (seq
. m) by
A4,
Def5
.= (seq
. (k
-' 1)) by
A3,
A5,
XREAL_1: 233;
end;
theorem ::
LOPBAN_4:16
Th16: ((
Partial_Sums seq)
. k)
= (((
Partial_Sums (
Shift seq))
. k)
+ (seq
. k))
proof
defpred
X[
Nat] means ((
Partial_Sums seq)
. $1)
= (((
Partial_Sums (
Shift seq))
. $1)
+ (seq
. $1));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume ((
Partial_Sums seq)
. k)
= (((
Partial_Sums (
Shift seq))
. k)
+ (seq
. k));
hence ((
Partial_Sums seq)
. (k
+ 1))
= ((((
Partial_Sums (
Shift seq))
. k)
+ (seq
. k))
+ (seq
. (k
+ 1))) by
BHSP_4:def 1
.= ((((
Partial_Sums (
Shift seq))
. k)
+ ((
Shift seq)
. (k
+ 1)))
+ (seq
. (k
+ 1))) by
Def5
.= (((
Partial_Sums (
Shift seq))
. (k
+ 1))
+ (seq
. (k
+ 1))) by
BHSP_4:def 1;
end;
((
Partial_Sums seq)
.
0 )
= (seq
.
0 ) by
BHSP_4:def 1
.= ((
0. X)
+ (seq
.
0 )) by
RLVECT_1: 4
.= (((
Shift seq)
.
0 )
+ (seq
.
0 )) by
Def5
.= (((
Partial_Sums (
Shift seq))
.
0 )
+ (seq
.
0 )) by
BHSP_4:def 1;
then
A2:
X[
0 ];
for k holds
X[k] from
NAT_1:sch 2(
A2,
A1);
hence thesis;
end;
theorem ::
LOPBAN_4:17
Th17: for z, w st (z,w)
are_commutative holds ((z
+ w)
#N n)
= ((
Partial_Sums (
Expan (n,z,w)))
. n)
proof
let z, w such that
A1: (z,w)
are_commutative ;
defpred
X[
Nat] means ((z
+ w)
#N $1)
= ((
Partial_Sums (
Expan ($1,z,w)))
. $1);
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n such that
A3: ((z
+ w)
#N n)
= ((
Partial_Sums (
Expan (n,z,w)))
. n);
A4: n
< (n
+ 1) by
XREAL_1: 29;
A5: n
in
NAT by
ORDINAL1:def 12;
now
let k be
Element of
NAT ;
A6:
now
A7:
now
assume
A8: k
< (n
+ 1);
A9:
now
A10: (((k
! )
* ((n
-' k)
! ))
* ((n
+ 1)
- k))
= ((k
! )
* (((n
-' k)
! )
* ((n
+ 1)
- k)));
A11: ((k
+ 1)
- 1)
<= ((n
+ 1)
- 1) by
A8,
INT_1: 7,
A5;
then
A12: ((n
-' k)
+ 1)
= ((n
- k)
+ 1) by
XREAL_1: 233
.= ((n
+ 1)
- k)
.= ((n
+ 1)
-' k) by
A8,
XREAL_1: 233;
((n
+ 1)
- k)
<>
0 by
A8;
then
A13: ((n
! )
/ ((k
! )
* ((n
-' k)
! )))
= (((n
! )
* ((n
+ 1)
- k))
/ (((k
! )
* ((n
-' k)
! ))
* ((n
+ 1)
- k))) by
XCMPLX_1: 91
.= (((n
! )
* ((n
+ 1)
- k))
/ ((k
! )
* (((n
+ 1)
-' k)
! ))) by
A11,
A10,
Th13;
assume
A14: k
<>
0 ;
then
A15: (
0
+ 1)
<= k by
INT_1: 7;
then
A16: ((k
-' 1)
+ 1)
= ((k
- 1)
+ 1) by
XREAL_1: 233
.= k;
k
< (k
+ 1) by
XREAL_1: 29;
then (k
- 1)
<= ((k
+ 1)
- 1) by
XREAL_1: 9;
then (k
- 1)
<= n by
A11,
XXREAL_0: 2;
then
A17: (k
-' 1)
<= n by
A15,
XREAL_1: 233;
then
A18: (n
-' (k
-' 1))
= (n
- (k
-' 1)) by
XREAL_1: 233
.= (n
- (k
- 1)) by
A15,
XREAL_1: 233
.= ((n
+ 1)
- k)
.= ((n
+ 1)
-' k) by
A8,
XREAL_1: 233;
A19: (n
-' (k
-' 1))
= (n
- (k
-' 1)) by
A17,
XREAL_1: 233
.= (n
- (k
- 1)) by
A15,
XREAL_1: 233
.= ((n
+ 1)
- k)
.= ((n
+ 1)
-' k) by
A8,
XREAL_1: 233;
((((k
-' 1)
! )
* ((n
-' (k
-' 1))
! ))
* k)
= ((k
* ((k
-' 1)
! ))
* ((n
-' (k
-' 1))
! ))
.= ((k
! )
* (((n
+ 1)
-' k)
! )) by
A14,
A19,
Th13;
then
A20: ((n
! )
/ (((k
-' 1)
! )
* ((n
-' (k
-' 1))
! )))
= (((n
! )
* k)
/ ((k
! )
* (((n
+ 1)
-' k)
! ))) by
A14,
XCMPLX_1: 91;
((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((((
Expan (n,z,w))
* w)
. k)
+ ((
Shift ((
Expan (n,z,w))
* z))
. k)) by
NORMSP_1:def 2
.= ((((
Expan (n,z,w))
. k)
* w)
+ ((
Shift ((
Expan (n,z,w))
* z))
. k)) by
LOPBAN_3:def 6
.= ((((
Expan (n,z,w))
. k)
* w)
+ (((
Expan (n,z,w))
* z)
. (k
-' 1))) by
A14,
Th15
.= ((((
Expan (n,z,w))
. k)
* w)
+ (((
Expan (n,z,w))
. (k
-' 1))
* z)) by
LOPBAN_3:def 6
.= ((((((
Coef n)
. k)
* (z
#N k))
* (w
#N (n
-' k)))
* w)
+ (((
Expan (n,z,w))
. (k
-' 1))
* z)) by
A11,
Def6
.= ((((((
Coef n)
. k)
* (z
#N k))
* (w
#N (n
-' k)))
* w)
+ (((((
Coef n)
. (k
-' 1))
* (z
#N (k
-' 1)))
* (w
#N (n
-' (k
-' 1))))
* z)) by
A17,
Def6
.= (((((
Coef n)
. k)
* (z
#N k))
* ((w
#N (n
-' k))
* w))
+ (((((
Coef n)
. (k
-' 1))
* (z
#N (k
-' 1)))
* (w
#N (n
-' (k
-' 1))))
* z)) by
LOPBAN_3: 38
.= (((((
Coef n)
. k)
* (z
#N k))
* (w
#N ((n
-' k)
+ 1)))
+ (((((
Coef n)
. (k
-' 1))
* (z
#N (k
-' 1)))
* (w
#N (n
-' (k
-' 1))))
* z)) by
Lm1
.= (((((
Coef n)
. k)
* (z
#N k))
* (w
#N ((n
-' k)
+ 1)))
+ ((((
Coef n)
. (k
-' 1))
* (z
#N (k
-' 1)))
* ((w
#N (n
-' (k
-' 1)))
* z))) by
LOPBAN_3: 38
.= (((((
Coef n)
. k)
* (z
#N k))
* (w
#N ((n
-' k)
+ 1)))
+ ((((
Coef n)
. (k
-' 1))
* (z
#N (k
-' 1)))
* (z
* (w
#N (n
-' (k
-' 1)))))) by
A1,
Lm2
.= (((((
Coef n)
. k)
* (z
#N k))
* (w
#N ((n
-' k)
+ 1)))
+ (((((
Coef n)
. (k
-' 1))
* (z
#N (k
-' 1)))
* z)
* (w
#N (n
-' (k
-' 1))))) by
LOPBAN_3: 38
.= (((((
Coef n)
. k)
* (z
#N k))
* (w
#N ((n
-' k)
+ 1)))
+ ((((
Coef n)
. (k
-' 1))
* ((z
#N (k
-' 1))
* z))
* (w
#N (n
-' (k
-' 1))))) by
LOPBAN_3: 38
.= (((((
Coef n)
. k)
* (z
#N k))
* (w
#N ((n
-' k)
+ 1)))
+ ((((
Coef n)
. (k
-' 1))
* (z
#N ((k
-' 1)
+ 1)))
* (w
#N (n
-' (k
-' 1))))) by
Lm1;
then
A21: ((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((((
Coef n)
. k)
* ((z
#N k)
* (w
#N ((n
+ 1)
-' k))))
+ ((((
Coef n)
. (k
-' 1))
* (z
#N k))
* (w
#N ((n
+ 1)
-' k)))) by
A12,
A18,
A16,
LOPBAN_3: 38
.= ((((
Coef n)
. k)
* ((z
#N k)
* (w
#N ((n
+ 1)
-' k))))
+ (((
Coef n)
. (k
-' 1))
* ((z
#N k)
* (w
#N ((n
+ 1)
-' k))))) by
LOPBAN_3: 38
.= ((((
Coef n)
. k)
+ ((
Coef n)
. (k
-' 1)))
* ((z
#N k)
* (w
#N ((n
+ 1)
-' k)))) by
LOPBAN_3: 38;
(((
Coef n)
. k)
+ ((
Coef n)
. (k
-' 1)))
= (((n
! )
/ ((k
! )
* ((n
-' k)
! )))
+ ((
Coef n)
. (k
-' 1))) by
A11,
Def3
.= (((n
! )
/ ((k
! )
* ((n
-' k)
! )))
+ ((n
! )
/ (((k
-' 1)
! )
* ((n
-' (k
-' 1))
! )))) by
A17,
Def3;
then (((
Coef n)
. k)
+ ((
Coef n)
. (k
-' 1)))
= ((((n
! )
* ((n
+ 1)
- k))
+ ((n
! )
* k))
/ ((k
! )
* (((n
+ 1)
-' k)
! ))) by
A13,
A20,
XCMPLX_1: 62
.= (((n
! )
* (((n
+ 1)
- k)
+ k))
/ ((k
! )
* (((n
+ 1)
-' k)
! )))
.= (((n
+ 1)
! )
/ ((k
! )
* (((n
+ 1)
-' k)
! ))) by
NEWTON: 15
.= ((
Coef (n
+ 1))
. k) by
A8,
Def3;
then ((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((((
Coef (n
+ 1))
. k)
* (z
#N k))
* (w
#N ((n
+ 1)
-' k))) by
A21,
LOPBAN_3: 38
.= ((
Expan ((n
+ 1),z,w))
. k) by
A8,
Def6;
hence ((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((
Expan ((n
+ 1),z,w))
. k);
end;
now
A22: ((n
+ 1)
-'
0 )
= ((n
+ 1)
-
0 ) by
XREAL_1: 233;
then
A23: ((
Coef (n
+ 1))
.
0 )
= (((n
+ 1)
! )
/ ((
0
! )
* ((n
+ 1)
! ))) by
Def3
.= 1 by
NEWTON: 12,
XCMPLX_1: 60;
A24: (n
-'
0 )
= (n
-
0 ) by
XREAL_1: 233;
then
A25: ((
Coef n)
.
0 )
= ((n
! )
/ ((
0
! )
* (n
! ))) by
Def3
.= 1 by
NEWTON: 12,
XCMPLX_1: 60;
assume
A26: k
=
0 ;
then ((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((((
Expan (n,z,w))
* w)
.
0 )
+ ((
Shift ((
Expan (n,z,w))
* z))
.
0 )) by
NORMSP_1:def 2
.= ((((
Expan (n,z,w))
.
0 )
* w)
+ ((
Shift ((
Expan (n,z,w))
* z))
.
0 )) by
LOPBAN_3:def 6
.= ((((
Expan (n,z,w))
.
0 )
* w)
+ (
0. X)) by
Def5
.= (((
Expan (n,z,w))
.
0 )
* w) by
LOPBAN_3: 38
.= (((((
Coef n)
.
0 )
* (z
#N
0 ))
* (w
#N (n
-'
0 )))
* w) by
Def6
.= ((((
Coef n)
.
0 )
* (z
#N
0 ))
* ((w
#N (n
-'
0 ))
* w)) by
LOPBAN_3: 38
.= ((((
Coef (n
+ 1))
.
0 )
* (z
#N
0 ))
* (w
#N ((n
+ 1)
-'
0 ))) by
A24,
A22,
A25,
A23,
Lm1
.= ((
Expan ((n
+ 1),z,w))
. k) by
A26,
Def6;
hence ((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((
Expan ((n
+ 1),z,w))
. k);
end;
hence ((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((
Expan ((n
+ 1),z,w))
. k) by
A9;
end;
A27:
now
A28: ((n
+ 1)
-' (n
+ 1))
= ((n
+ 1)
- (n
+ 1)) by
XREAL_1: 233
.=
0 ;
then
A29: ((
Coef (n
+ 1))
. (n
+ 1))
= (((n
+ 1)
! )
/ (((n
+ 1)
! )
* (
0
! ))) by
Def3
.= 1 by
NEWTON: 12,
XCMPLX_1: 60;
A30: (n
-' n)
= (n
- n) by
XREAL_1: 233
.=
0 ;
then
A31: ((
Coef n)
. n)
= ((n
! )
/ ((n
! )
* (
0
! ))) by
Def3
.= 1 by
NEWTON: 12,
XCMPLX_1: 60;
A32: n
< (n
+ 1) by
XREAL_1: 29;
assume
A33: k
= (n
+ 1);
then ((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((((
Expan (n,z,w))
* w)
. (n
+ 1))
+ ((
Shift ((
Expan (n,z,w))
* z))
. (n
+ 1))) by
NORMSP_1:def 2
.= ((((
Expan (n,z,w))
. (n
+ 1))
* w)
+ ((
Shift ((
Expan (n,z,w))
* z))
. (n
+ 1))) by
LOPBAN_3:def 6
.= (((
0. X)
* w)
+ ((
Shift ((
Expan (n,z,w))
* z))
. (n
+ 1))) by
A32,
Def6
.= ((
0. X)
+ ((
Shift ((
Expan (n,z,w))
* z))
. (n
+ 1))) by
LOPBAN_3: 38
.= ((
Shift ((
Expan (n,z,w))
* z))
. (n
+ 1)) by
LOPBAN_3: 38
.= (((
Expan (n,z,w))
* z)
. n) by
Def5
.= (((
Expan (n,z,w))
. n)
* z) by
LOPBAN_3:def 6
.= (((((
Coef n)
. n)
* (z
#N n))
* (w
#N (n
-' n)))
* z) by
Def6
.= ((((
Coef n)
. n)
* (z
#N n))
* ((w
#N (n
-' n))
* z)) by
LOPBAN_3: 38
.= ((((
Coef n)
. n)
* (z
#N n))
* (z
* (w
#N (n
-' n)))) by
A1,
Lm2
.= (((((
Coef n)
. n)
* (z
#N n))
* z)
* (w
#N (n
-' n))) by
LOPBAN_3: 38
.= ((((
Coef n)
. n)
* ((z
#N n)
* z))
* (w
#N (n
-' n))) by
LOPBAN_3: 38
.= ((((
Coef (n
+ 1))
. (n
+ 1))
* (z
#N (n
+ 1)))
* (w
#N (n
-' n))) by
A31,
A29,
Lm1
.= ((
Expan ((n
+ 1),z,w))
. k) by
A33,
A30,
A28,
Def6;
hence ((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((
Expan ((n
+ 1),z,w))
. k);
end;
assume k
<= (n
+ 1);
hence ((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((
Expan ((n
+ 1),z,w))
. k) by
A27,
A7,
XXREAL_0: 1;
end;
now
assume
A34: (n
+ 1)
< k;
then
A35: ((n
+ 1)
- 1)
< (k
- 1) by
XREAL_1: 9;
then
A36: (n
+
0 )
< ((k
- 1)
+ 1) by
XREAL_1: 8;
(
0
+ 1)
<= (n
+ 1) by
XREAL_1: 6;
then
A37: (k
- 1)
= (k
-' 1) by
A34,
XREAL_1: 233,
XXREAL_0: 2;
((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((((
Expan (n,z,w))
* w)
. k)
+ ((
Shift ((
Expan (n,z,w))
* z))
. k)) by
NORMSP_1:def 2
.= ((((
Expan (n,z,w))
. k)
* w)
+ ((
Shift ((
Expan (n,z,w))
* z))
. k)) by
LOPBAN_3:def 6
.= ((((
Expan (n,z,w))
. k)
* w)
+ (((
Expan (n,z,w))
* z)
. (k
-' 1))) by
A36,
Th15
.= ((((
Expan (n,z,w))
. k)
* w)
+ (((
Expan (n,z,w))
. (k
-' 1))
* z)) by
LOPBAN_3:def 6
.= (((
0. X)
* w)
+ (((
Expan (n,z,w))
. (k
-' 1))
* z)) by
A36,
Def6
.= ((
0. X)
+ (((
Expan (n,z,w))
. (k
-' 1))
* z)) by
LOPBAN_3: 38
.= ((
0. X)
+ ((
0. X)
* z)) by
A35,
A37,
Def6
.= ((
0. X)
+ (
0. X)) by
LOPBAN_3: 38
.= (
0. X) by
LOPBAN_3: 38;
hence ((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((
Expan ((n
+ 1),z,w))
. k) by
A34,
Def6;
end;
hence ((((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
. k)
= ((
Expan ((n
+ 1),z,w))
. k) by
A6;
end;
then
A38: (((
Expan (n,z,w))
* w)
+ (
Shift ((
Expan (n,z,w))
* z)))
= (
Expan ((n
+ 1),z,w)) by
FUNCT_2: 63;
A39: n
< (n
+ 1) by
XREAL_1: 29;
((
Partial_Sums ((
Expan (n,z,w))
* w))
. (n
+ 1))
= (((
Partial_Sums ((
Expan (n,z,w))
* w))
. n)
+ (((
Expan (n,z,w))
* w)
. (n
+ 1))) by
BHSP_4:def 1
.= (((
Partial_Sums ((
Expan (n,z,w))
* w))
. n)
+ (((
Expan (n,z,w))
. (n
+ 1))
* w)) by
LOPBAN_3:def 6;
then
A40: ((
Partial_Sums ((
Expan (n,z,w))
* w))
. (n
+ 1))
= (((
Partial_Sums ((
Expan (n,z,w))
* w))
. n)
+ ((
0. X)
* w)) by
A39,
Def6
.= (((
Partial_Sums ((
Expan (n,z,w))
* w))
. n)
+ (
0. X)) by
LOPBAN_3: 38
.= ((
Partial_Sums ((
Expan (n,z,w))
* w))
. n) by
LOPBAN_3: 38;
((
Partial_Sums ((
Expan (n,z,w))
* z))
. (n
+ 1))
= (((
Partial_Sums ((
Expan (n,z,w))
* z))
. n)
+ (((
Expan (n,z,w))
* z)
. (n
+ 1))) by
BHSP_4:def 1
.= (((
Partial_Sums ((
Expan (n,z,w))
* z))
. n)
+ (((
Expan (n,z,w))
. (n
+ 1))
* z)) by
LOPBAN_3:def 6;
then
A41: ((
Partial_Sums ((
Expan (n,z,w))
* z))
. (n
+ 1))
= (((
Partial_Sums ((
Expan (n,z,w))
* z))
. n)
+ ((
0. X)
* z)) by
A4,
Def6
.= (((
Partial_Sums ((
Expan (n,z,w))
* z))
. n)
+ (
0. X)) by
LOPBAN_3: 38
.= ((
Partial_Sums ((
Expan (n,z,w))
* z))
. n) by
LOPBAN_3: 38;
(
0
+ n)
< (n
+ 1) by
XREAL_1: 29;
then
A42: ((
Expan (n,z,w))
. (n
+ 1))
= (
0. X) by
Def6;
((
Partial_Sums ((
Expan (n,z,w))
* z))
. (n
+ 1))
= (((
Partial_Sums (
Shift ((
Expan (n,z,w))
* z)))
. (n
+ 1))
+ (((
Expan (n,z,w))
* z)
. (n
+ 1))) by
Th16;
then
A43: ((
Partial_Sums ((
Expan (n,z,w))
* z))
. (n
+ 1))
= (((
Partial_Sums (
Shift ((
Expan (n,z,w))
* z)))
. (n
+ 1))
+ (((
Expan (n,z,w))
. (n
+ 1))
* z)) by
LOPBAN_3:def 6
.= (((
Partial_Sums (
Shift ((
Expan (n,z,w))
* z)))
. (n
+ 1))
+ (
0. X)) by
A42,
LOPBAN_3: 38
.= ((
Partial_Sums (
Shift ((
Expan (n,z,w))
* z)))
. (n
+ 1)) by
LOPBAN_3: 38;
now
let k be
Element of
NAT ;
thus (((
Expan (n,z,w))
* (z
+ w))
. k)
= (((
Expan (n,z,w))
. k)
* (z
+ w)) by
LOPBAN_3:def 6
.= ((((
Expan (n,z,w))
. k)
* z)
+ (((
Expan (n,z,w))
. k)
* w)) by
LOPBAN_3: 38
.= ((((
Expan (n,z,w))
* z)
. k)
+ (((
Expan (n,z,w))
. k)
* w)) by
LOPBAN_3:def 6
.= ((((
Expan (n,z,w))
* z)
. k)
+ (((
Expan (n,z,w))
* w)
. k)) by
LOPBAN_3:def 6
.= ((((
Expan (n,z,w))
* z)
+ ((
Expan (n,z,w))
* w))
. k) by
NORMSP_1:def 2;
end;
then
A44: ((
Expan (n,z,w))
* (z
+ w))
= (((
Expan (n,z,w))
* z)
+ ((
Expan (n,z,w))
* w)) by
FUNCT_2: 63;
((z
+ w)
#N (n
+ 1))
= ((((z
+ w)
GeoSeq )
. n)
* (z
+ w)) by
LOPBAN_3:def 9
.= (((
Partial_Sums (
Expan (n,z,w)))
* (z
+ w))
. n) by
A3,
LOPBAN_3:def 6
.= ((
Partial_Sums ((
Expan (n,z,w))
* (z
+ w)))
. n) by
Th9;
then ((z
+ w)
#N (n
+ 1))
= (((
Partial_Sums ((
Expan (n,z,w))
* z))
+ (
Partial_Sums ((
Expan (n,z,w))
* w)))
. n) by
A44,
LOPBAN_3: 15
.= (((
Partial_Sums ((
Expan (n,z,w))
* z))
. n)
+ ((
Partial_Sums ((
Expan (n,z,w))
* w))
. n)) by
NORMSP_1:def 2;
hence ((z
+ w)
#N (n
+ 1))
= (((
Partial_Sums ((
Expan (n,z,w))
* w))
+ (
Partial_Sums (
Shift ((
Expan (n,z,w))
* z))))
. (n
+ 1)) by
A41,
A40,
A43,
NORMSP_1:def 2
.= ((
Partial_Sums (
Expan ((n
+ 1),z,w)))
. (n
+ 1)) by
A38,
LOPBAN_3: 15;
end;
A45: (
0
-'
0 )
= (
0
-
0 ) by
XREAL_0:def 2
.=
0 ;
((
Partial_Sums (
Expan (
0 ,z,w)))
.
0 )
= ((
Expan (
0 ,z,w))
.
0 ) by
BHSP_4:def 1
.= ((((
Coef
0 )
.
0 )
* (z
#N
0 ))
* (w
#N
0 )) by
A45,
Def6
.= (((1
/ (1
* 1))
* (z
#N
0 ))
* (w
#N
0 )) by
A45,
Def3,
NEWTON: 12
.= (((z
GeoSeq )
.
0 )
* (w
#N
0 )) by
RLVECT_1:def 8
.= ((
1. X)
* ((w
GeoSeq )
.
0 )) by
LOPBAN_3:def 9
.= ((
1. X)
* (
1. X)) by
LOPBAN_3:def 9
.= (
1. X) by
LOPBAN_3: 38;
then
A46:
X[
0 ] by
LOPBAN_3:def 9;
for n holds
X[n] from
NAT_1:sch 2(
A46,
A2);
hence thesis;
end;
theorem ::
LOPBAN_4:18
Th18: (
Expan_e (n,z,w))
= ((1
/ (n
! ))
* (
Expan (n,z,w)))
proof
now
let k be
Element of
NAT ;
A1:
now
A2: (1
/ ((k
! )
* ((n
-' k)
! )))
= ((((n
! )
* 1)
/ (n
! ))
/ ((k
! )
* ((n
-' k)
! ))) by
XCMPLX_1: 60
.= (((1
/ (n
! ))
* (n
! ))
/ ((k
! )
* ((n
-' k)
! ))) by
XCMPLX_1: 74;
assume
A3: k
<= n;
hence ((
Expan_e (n,z,w))
. k)
= ((((
Coef_e n)
. k)
* (z
#N k))
* (w
#N (n
-' k))) by
Def7
.= (((1
/ ((k
! )
* ((n
-' k)
! )))
* (z
#N k))
* (w
#N (n
-' k))) by
A3,
Def4;
hence ((
Expan_e (n,z,w))
. k)
= ((((1
/ (n
! ))
* (n
! ))
/ ((k
! )
* ((n
-' k)
! )))
* ((z
#N k)
* (w
#N (n
-' k)))) by
A2,
LOPBAN_3: 38
.= (((1
/ (n
! ))
* ((n
! )
/ ((k
! )
* ((n
-' k)
! ))))
* ((z
#N k)
* (w
#N (n
-' k)))) by
XCMPLX_1: 74
.= ((1
/ (n
! ))
* (((n
! )
/ ((k
! )
* ((n
-' k)
! )))
* ((z
#N k)
* (w
#N (n
-' k))))) by
LOPBAN_3: 38
.= ((1
/ (n
! ))
* ((((n
! )
/ ((k
! )
* ((n
-' k)
! )))
* (z
#N k))
* (w
#N (n
-' k)))) by
LOPBAN_3: 38
.= ((1
/ (n
! ))
* ((((
Coef n)
. k)
* (z
#N k))
* (w
#N (n
-' k)))) by
A3,
Def3
.= ((1
/ (n
! ))
* ((
Expan (n,z,w))
. k)) by
A3,
Def6
.= (((1
/ (n
! ))
* (
Expan (n,z,w)))
. k) by
NORMSP_1:def 5;
end;
now
assume
A4: n
< k;
hence ((
Expan_e (n,z,w))
. k)
= (
0. X) by
Def7
.= ((1
/ (n
! ))
* (
0. X)) by
LOPBAN_3: 38
.= ((1
/ (n
! ))
* ((
Expan (n,z,w))
. k)) by
A4,
Def6
.= (((1
/ (n
! ))
* (
Expan (n,z,w)))
. k) by
NORMSP_1:def 5;
end;
hence ((
Expan_e (n,z,w))
. k)
= (((1
/ (n
! ))
* (
Expan (n,z,w)))
. k) by
A1;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
LOPBAN_4:19
Th19: for z, w st (z,w)
are_commutative holds ((1
/ (n
! ))
* ((z
+ w)
#N n))
= ((
Partial_Sums (
Expan_e (n,z,w)))
. n)
proof
let z, w;
assume (z,w)
are_commutative ;
hence ((1
/ (n
! ))
* ((z
+ w)
#N n))
= ((1
/ (n
! ))
* ((
Partial_Sums (
Expan (n,z,w)))
. n)) by
Th17
.= (((1
/ (n
! ))
* (
Partial_Sums (
Expan (n,z,w))))
. n) by
NORMSP_1:def 5
.= ((
Partial_Sums ((1
/ (n
! ))
* (
Expan (n,z,w))))
. n) by
LOPBAN_3: 19
.= ((
Partial_Sums (
Expan_e (n,z,w)))
. n) by
Th18;
end;
theorem ::
LOPBAN_4:20
Th20: ((
0. X)
rExpSeq ) is
norm_summable & (
Sum ((
0. X)
rExpSeq ))
= (
1. X)
proof
defpred
X[
set] means ((
Partial_Sums
||.((
0. X)
rExpSeq ).||)
. $1)
= 1;
A1: for n be
Nat st
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat such that
A2: ((
Partial_Sums
||.((
0. X)
rExpSeq ).||)
. n)
= 1;
thus ((
Partial_Sums
||.((
0. X)
rExpSeq ).||)
. (n
+ 1))
= (1
+ (
||.((
0. X)
rExpSeq ).||
. (n
+ 1))) by
A2,
SERIES_1:def 1
.= (1
+
||.(((
0. X)
rExpSeq )
. (n
+ 1)).||) by
NORMSP_0:def 4
.= (1
+
||.(((1
/ (n
+ 1))
* (
0. X))
* (((
0. X)
rExpSeq )
. n)).||) by
Th14
.= (1
+
||.((
0. X)
* (((
0. X)
rExpSeq )
. n)).||) by
LOPBAN_3: 38
.= (1
+
||.(
0. X).||) by
LOPBAN_3: 38
.= (1
+
0 ) by
LOPBAN_3: 38
.= 1;
end;
((
Partial_Sums
||.((
0. X)
rExpSeq ).||)
.
0 )
= (
||.((
0. X)
rExpSeq ).||
.
0 ) by
SERIES_1:def 1
.=
||.(((
0. X)
rExpSeq )
.
0 ).|| by
NORMSP_0:def 4
.=
||.(
1. X).|| by
Th14
.= 1 by
LOPBAN_3: 38;
then
A3:
X[
0 ];
A4: for n be
Nat holds
X[n] from
NAT_1:sch 2(
A3,
A1);
(
Partial_Sums
||.((
0. X)
rExpSeq ).||) is
constant by
A4;
then
A5:
||.((
0. X)
rExpSeq ).|| is
summable by
SERIES_1:def 2;
defpred
X[
set] means ((
Partial_Sums ((
0. X)
rExpSeq ))
. $1)
= (
1. X);
A6: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums ((
0. X)
rExpSeq ))
. n)
= (
1. X);
hence ((
Partial_Sums ((
0. X)
rExpSeq ))
. (n
+ 1))
= ((
1. X)
+ (((
0. X)
rExpSeq )
. (n
+ 1))) by
BHSP_4:def 1
.= ((
1. X)
+ (((1
/ (n
+ 1))
* (
0. X))
* (((
0. X)
rExpSeq )
. n))) by
Th14
.= ((
1. X)
+ ((
0. X)
* (((
0. X)
rExpSeq )
. n))) by
LOPBAN_3: 38
.= ((
1. X)
+ (
0. X)) by
LOPBAN_3: 38
.= (
1. X) by
LOPBAN_3: 38;
end;
((
Partial_Sums ((
0. X)
rExpSeq ))
.
0 )
= (((
0. X)
rExpSeq )
.
0 ) by
BHSP_4:def 1
.= (
1. X) by
Th14;
then
A7:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A7,
A6);
hence thesis by
A5,
Th2;
end;
registration
let X;
let z be
Element of X;
cluster (z
rExpSeq ) ->
norm_summable;
coherence
proof
ex m be
Nat st for n be
Nat st m
<= n holds
||.((z
rExpSeq )
. n).||
<= ((
||.z.||
rExpSeq )
. n)
proof
take
0 ;
thus thesis by
Th14;
end;
hence thesis by
LOPBAN_3: 27,
SIN_COS: 45;
end;
end
theorem ::
LOPBAN_4:21
Th21: ((z
rExpSeq )
.
0 )
= (
1. X) & ((
Expan (
0 ,z,w))
.
0 )
= (
1. X)
proof
thus ((z
rExpSeq )
.
0 )
= ((1
/ (
0
! ))
* (z
#N
0 )) by
Def2
.= ((1
/ 1)
* (
1. X)) by
LOPBAN_3:def 9,
NEWTON: 12
.= (
1. X) by
LOPBAN_3: 38;
A1: (
0
-'
0 )
=
0 by
XREAL_1: 232;
hence ((
Expan (
0 ,z,w))
.
0 )
= ((((
Coef
0 )
.
0 )
* (z
#N
0 ))
* (w
#N
0 )) by
Def6
.= (((1
/ (1
* 1))
* (z
#N
0 ))
* (w
#N
0 )) by
A1,
Def3,
NEWTON: 12
.= (((z
GeoSeq )
.
0 )
* (w
#N
0 )) by
LOPBAN_3: 38
.= ((
1. X)
* ((w
GeoSeq )
.
0 )) by
LOPBAN_3:def 9
.= ((
1. X)
* (
1. X)) by
LOPBAN_3:def 9
.= (
1. X) by
LOPBAN_3: 38;
end;
theorem ::
LOPBAN_4:22
Th22: l
<= k implies ((
Alfa ((k
+ 1),z,w))
. l)
= (((
Alfa (k,z,w))
. l)
+ ((
Expan_e ((k
+ 1),z,w))
. l))
proof
assume
A1: l
<= k;
A2: k
< (k
+ 1) by
XREAL_1: 29;
then
A3: l
<= (k
+ 1) by
A1,
XXREAL_0: 2;
A4: (((z
rExpSeq )
. l)
* ((w
rExpSeq )
. ((k
+ 1)
-' l)))
= (((1
/ (l
! ))
* (z
#N l))
* ((w
rExpSeq )
. ((k
+ 1)
-' l))) by
Def2
.= (((1
/ (l
! ))
* (z
#N l))
* ((1
/ (((k
+ 1)
-' l)
! ))
* (w
#N ((k
+ 1)
-' l)))) by
Def2
.= (((1
/ (l
! ))
* (1
/ (((k
+ 1)
-' l)
! )))
* ((z
#N l)
* (w
#N ((k
+ 1)
-' l)))) by
LOPBAN_3: 38
.= ((1
/ ((l
! )
* (((k
+ 1)
-' l)
! )))
* ((z
#N l)
* (w
#N ((k
+ 1)
-' l)))) by
XCMPLX_1: 102
.= (((
Coef_e (k
+ 1))
. l)
* ((z
#N l)
* (w
#N ((k
+ 1)
-' l)))) by
A3,
Def4
.= ((((
Coef_e (k
+ 1))
. l)
* (z
#N l))
* (w
#N ((k
+ 1)
-' l))) by
LOPBAN_3: 38
.= ((
Expan_e ((k
+ 1),z,w))
. l) by
A3,
Def7;
((k
+ 1)
-' l)
= ((k
+ 1)
- l) by
A1,
A2,
XREAL_1: 233,
XXREAL_0: 2;
then
A5: ((k
+ 1)
-' l)
= ((k
- l)
+ 1)
.= ((k
-' l)
+ 1) by
A1,
XREAL_1: 233;
then ((
Alfa ((k
+ 1),z,w))
. l)
= (((z
rExpSeq )
. l)
* ((
Partial_Sums (w
rExpSeq ))
. ((k
-' l)
+ 1))) by
A3,
Def8
.= (((z
rExpSeq )
. l)
* (((
Partial_Sums (w
rExpSeq ))
. (k
-' l))
+ ((w
rExpSeq )
. ((k
+ 1)
-' l)))) by
A5,
BHSP_4:def 1
.= ((((z
rExpSeq )
. l)
* ((
Partial_Sums (w
rExpSeq ))
. (k
-' l)))
+ (((z
rExpSeq )
. l)
* ((w
rExpSeq )
. ((k
+ 1)
-' l)))) by
LOPBAN_3: 38
.= (((
Alfa (k,z,w))
. l)
+ (((z
rExpSeq )
. l)
* ((w
rExpSeq )
. ((k
+ 1)
-' l)))) by
A1,
Def8;
hence thesis by
A4;
end;
theorem ::
LOPBAN_4:23
Th23: ((
Partial_Sums (
Alfa ((k
+ 1),z,w)))
. k)
= (((
Partial_Sums (
Alfa (k,z,w)))
. k)
+ ((
Partial_Sums (
Expan_e ((k
+ 1),z,w)))
. k))
proof
now
let l be
Nat;
assume l
<= k;
hence ((
Alfa ((k
+ 1),z,w))
. l)
= (((
Alfa (k,z,w))
. l)
+ ((
Expan_e ((k
+ 1),z,w))
. l)) by
Th22
.= (((
Alfa (k,z,w))
+ (
Expan_e ((k
+ 1),z,w)))
. l) by
NORMSP_1:def 2;
end;
hence ((
Partial_Sums (
Alfa ((k
+ 1),z,w)))
. k)
= ((
Partial_Sums ((
Alfa (k,z,w))
+ (
Expan_e ((k
+ 1),z,w))))
. k) by
Th11
.= (((
Partial_Sums (
Alfa (k,z,w)))
+ (
Partial_Sums (
Expan_e ((k
+ 1),z,w))))
. k) by
LOPBAN_3: 15
.= (((
Partial_Sums (
Alfa (k,z,w)))
. k)
+ ((
Partial_Sums (
Expan_e ((k
+ 1),z,w)))
. k)) by
NORMSP_1:def 2;
end;
theorem ::
LOPBAN_4:24
Th24: ((z
rExpSeq )
. k)
= ((
Expan_e (k,z,w))
. k)
proof
A1:
0
= (k
- k);
then
A2: ((k
-' k)
! )
= 1 by
NEWTON: 12,
XREAL_1: 233;
(k
-' k)
=
0 by
A1,
XREAL_1: 233;
hence ((
Expan_e (k,z,w))
. k)
= ((((
Coef_e k)
. k)
* (z
#N k))
* (w
#N
0 )) by
Def7
.= ((((
Coef_e k)
. k)
* (z
#N k))
* (
1. X)) by
LOPBAN_3: 39
.= (((
Coef_e k)
. k)
* (z
#N k)) by
LOPBAN_3: 38
.= ((1
/ ((k
! )
* 1))
* (z
#N k)) by
A2,
Def4
.= ((z
rExpSeq )
. k) by
Def2;
end;
theorem ::
LOPBAN_4:25
Th25: for z, w st (z,w)
are_commutative holds ((
Partial_Sums ((z
+ w)
rExpSeq ))
. n)
= ((
Partial_Sums (
Alfa (n,z,w)))
. n)
proof
let z, w such that
A1: (z,w)
are_commutative ;
defpred
X[
Nat] means ((
Partial_Sums ((z
+ w)
rExpSeq ))
. $1)
= ((
Partial_Sums (
Alfa ($1,z,w)))
. $1);
A2: for k st
X[k] holds
X[(k
+ 1)]
proof
let k such that
A3: ((
Partial_Sums ((z
+ w)
rExpSeq ))
. k)
= ((
Partial_Sums (
Alfa (k,z,w)))
. k);
((k
+ 1)
-' (k
+ 1))
=
0 by
XREAL_1: 232;
then ((
Alfa ((k
+ 1),z,w))
. (k
+ 1))
= (((z
rExpSeq )
. (k
+ 1))
* ((
Partial_Sums (w
rExpSeq ))
.
0 )) by
Def8
.= (((z
rExpSeq )
. (k
+ 1))
* ((w
rExpSeq )
.
0 )) by
BHSP_4:def 1
.= (((z
rExpSeq )
. (k
+ 1))
* (
1. X)) by
Th21
.= ((z
rExpSeq )
. (k
+ 1)) by
LOPBAN_3: 38
.= ((
Expan_e ((k
+ 1),z,w))
. (k
+ 1)) by
Th24;
then
A4: (((
Partial_Sums (
Expan_e ((k
+ 1),z,w)))
. k)
+ ((
Alfa ((k
+ 1),z,w))
. (k
+ 1)))
= ((
Partial_Sums (
Expan_e ((k
+ 1),z,w)))
. (k
+ 1)) by
BHSP_4:def 1
.= ((1
/ ((k
+ 1)
! ))
* ((z
+ w)
#N (k
+ 1))) by
A1,
Th19;
((
Partial_Sums (
Alfa ((k
+ 1),z,w)))
. (k
+ 1))
= (((
Partial_Sums (
Alfa ((k
+ 1),z,w)))
. k)
+ ((
Alfa ((k
+ 1),z,w))
. (k
+ 1))) by
BHSP_4:def 1
.= ((((
Partial_Sums (
Alfa (k,z,w)))
. k)
+ ((
Partial_Sums (
Expan_e ((k
+ 1),z,w)))
. k))
+ ((
Alfa ((k
+ 1),z,w))
. (k
+ 1))) by
Th23
.= (((
Partial_Sums ((z
+ w)
rExpSeq ))
. k)
+ (((
Partial_Sums (
Expan_e ((k
+ 1),z,w)))
. k)
+ ((
Alfa ((k
+ 1),z,w))
. (k
+ 1)))) by
A3,
LOPBAN_3: 38;
then ((
Partial_Sums (
Alfa ((k
+ 1),z,w)))
. (k
+ 1))
= (((
Partial_Sums ((z
+ w)
rExpSeq ))
. k)
+ (((z
+ w)
rExpSeq )
. (k
+ 1))) by
A4,
Def2
.= ((
Partial_Sums ((z
+ w)
rExpSeq ))
. (k
+ 1)) by
BHSP_4:def 1;
hence ((
Partial_Sums ((z
+ w)
rExpSeq ))
. (k
+ 1))
= ((
Partial_Sums (
Alfa ((k
+ 1),z,w)))
. (k
+ 1));
end;
A5: ((
Partial_Sums ((z
+ w)
rExpSeq ))
.
0 )
= (((z
+ w)
rExpSeq )
.
0 ) by
BHSP_4:def 1
.= (
1. X) by
Th21;
A6: (
0
-'
0 )
=
0 by
XREAL_1: 232;
((
Partial_Sums (
Alfa (
0 ,z,w)))
.
0 )
= ((
Alfa (
0 ,z,w))
.
0 ) by
BHSP_4:def 1
.= (((z
rExpSeq )
.
0 )
* ((
Partial_Sums (w
rExpSeq ))
.
0 )) by
A6,
Def8
.= (((z
rExpSeq )
.
0 )
* ((w
rExpSeq )
.
0 )) by
BHSP_4:def 1
.= ((
1. X)
* ((w
rExpSeq )
.
0 )) by
Th21
.= ((
1. X)
* (
1. X)) by
Th21
.= (
1. X) by
LOPBAN_3: 38;
then
A7:
X[
0 ] by
A5;
for n holds
X[n] from
NAT_1:sch 2(
A7,
A2);
hence thesis;
end;
theorem ::
LOPBAN_4:26
Th26: for z, w st (z,w)
are_commutative holds ((((
Partial_Sums (z
rExpSeq ))
. k)
* ((
Partial_Sums (w
rExpSeq ))
. k))
- ((
Partial_Sums ((z
+ w)
rExpSeq ))
. k))
= ((
Partial_Sums (
Conj (k,z,w)))
. k)
proof
let z, w;
assume (z,w)
are_commutative ;
then
A1: ((((
Partial_Sums (z
rExpSeq ))
. k)
* ((
Partial_Sums (w
rExpSeq ))
. k))
- ((
Partial_Sums ((z
+ w)
rExpSeq ))
. k))
= ((((
Partial_Sums (z
rExpSeq ))
. k)
* ((
Partial_Sums (w
rExpSeq ))
. k))
- ((
Partial_Sums (
Alfa (k,z,w)))
. k)) by
Th25
.= ((((
Partial_Sums (z
rExpSeq ))
* ((
Partial_Sums (w
rExpSeq ))
. k))
. k)
- ((
Partial_Sums (
Alfa (k,z,w)))
. k)) by
LOPBAN_3:def 6
.= (((
Partial_Sums ((z
rExpSeq )
* ((
Partial_Sums (w
rExpSeq ))
. k)))
. k)
- ((
Partial_Sums (
Alfa (k,z,w)))
. k)) by
Th9
.= (((
Partial_Sums ((z
rExpSeq )
* ((
Partial_Sums (w
rExpSeq ))
. k)))
- (
Partial_Sums (
Alfa (k,z,w))))
. k) by
NORMSP_1:def 3
.= ((
Partial_Sums (((z
rExpSeq )
* ((
Partial_Sums (w
rExpSeq ))
. k))
- (
Alfa (k,z,w))))
. k) by
LOPBAN_3: 16;
for l be
Nat st l
<= k holds ((((z
rExpSeq )
* ((
Partial_Sums (w
rExpSeq ))
. k))
- (
Alfa (k,z,w)))
. l)
= ((
Conj (k,z,w))
. l)
proof
let l be
Nat such that
A2: l
<= k;
thus ((((z
rExpSeq )
* ((
Partial_Sums (w
rExpSeq ))
. k))
- (
Alfa (k,z,w)))
. l)
= ((((z
rExpSeq )
* ((
Partial_Sums (w
rExpSeq ))
. k))
. l)
- ((
Alfa (k,z,w))
. l)) by
NORMSP_1:def 3
.= ((((z
rExpSeq )
. l)
* ((
Partial_Sums (w
rExpSeq ))
. k))
- ((
Alfa (k,z,w))
. l)) by
LOPBAN_3:def 6
.= ((((z
rExpSeq )
. l)
* ((
Partial_Sums (w
rExpSeq ))
. k))
- (((z
rExpSeq )
. l)
* ((
Partial_Sums (w
rExpSeq ))
. (k
-' l)))) by
A2,
Def8
.= (((z
rExpSeq )
. l)
* (((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l)))) by
LOPBAN_3: 38
.= ((
Conj (k,z,w))
. l) by
A2,
Def9;
end;
hence thesis by
A1,
Th11;
end;
theorem ::
LOPBAN_4:27
Th27: for n be
Nat holds
0
<= ((
||.z.||
rExpSeq )
. n)
proof
defpred
P[
Nat] means
0
<= (
||.z.||
|^ $1);
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A2:
P[k];
A3:
0
<=
||.z.|| by
NORMSP_1: 4;
(
||.z.||
|^ (k
+ 1))
= ((
||.z.||
|^ k)
*
||.z.||) by
NEWTON: 6;
hence thesis by
A2,
A3;
end;
A4:
P[
0 ] by
NEWTON: 4;
let n be
Nat;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A4,
A1);
then
A5:
0
<= (
||.z.||
|^ n);
A6: ((
||.z.||
|^ n)
/ (n
! ))
= ((
||.z.||
|^ n)
* ((n
! )
" )) by
XCMPLX_0:def 9;
thus thesis by
A5,
A6,
SIN_COS:def 5;
end;
theorem ::
LOPBAN_4:28
Th28: for k be
Nat holds
||.((
Partial_Sums (z
rExpSeq ))
. k).||
<= ((
Partial_Sums (
||.z.||
rExpSeq ))
. k) & ((
Partial_Sums (
||.z.||
rExpSeq ))
. k)
<= (
Sum (
||.z.||
rExpSeq )) &
||.((
Partial_Sums (z
rExpSeq ))
. k).||
<= (
Sum (
||.z.||
rExpSeq ))
proof
let k be
Nat;
defpred
X[
Nat] means
||.((
Partial_Sums (z
rExpSeq ))
. $1).||
<= ((
Partial_Sums (
||.z.||
rExpSeq ))
. $1);
A1: ((
Partial_Sums (
||.z.||
rExpSeq ))
.
0 )
= ((
||.z.||
rExpSeq )
.
0 ) by
SERIES_1:def 1
.= ((
||.z.||
|^
0 )
/ (
0
! )) by
SIN_COS:def 5
.= 1 by
NEWTON: 4,
NEWTON: 12;
A2: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume
||.((
Partial_Sums (z
rExpSeq ))
. k).||
<= ((
Partial_Sums (
||.z.||
rExpSeq ))
. k);
then
A3: (
||.((
Partial_Sums (z
rExpSeq ))
. k).||
+ ((
||.z.||
rExpSeq )
. (k
+ 1)))
<= (((
Partial_Sums (
||.z.||
rExpSeq ))
. k)
+ ((
||.z.||
rExpSeq )
. (k
+ 1))) by
XREAL_1: 6;
A4:
||.(((
Partial_Sums (z
rExpSeq ))
. k)
+ ((z
rExpSeq )
. (k
+ 1))).||
<= (
||.((
Partial_Sums (z
rExpSeq ))
. k).||
+
||.((z
rExpSeq )
. (k
+ 1)).||) by
LOPBAN_3: 38;
||.((z
rExpSeq )
. (k
+ 1)).||
<= ((
||.z.||
rExpSeq )
. (k
+ 1)) by
Th14;
then
A5: (
||.((
Partial_Sums (z
rExpSeq ))
. k).||
+
||.((z
rExpSeq )
. (k
+ 1)).||)
<= (
||.((
Partial_Sums (z
rExpSeq ))
. k).||
+ ((
||.z.||
rExpSeq )
. (k
+ 1))) by
XREAL_1: 7;
A6: (((
Partial_Sums (
||.z.||
rExpSeq ))
. k)
+ ((
||.z.||
rExpSeq )
. (k
+ 1)))
= ((
Partial_Sums (
||.z.||
rExpSeq ))
. (k
+ 1)) by
SERIES_1:def 1;
||.((
Partial_Sums (z
rExpSeq ))
. (k
+ 1)).||
=
||.(((
Partial_Sums (z
rExpSeq ))
. k)
+ ((z
rExpSeq )
. (k
+ 1))).|| by
BHSP_4:def 1;
then
||.((
Partial_Sums (z
rExpSeq ))
. (k
+ 1)).||
<= (
||.((
Partial_Sums (z
rExpSeq ))
. k).||
+ ((
||.z.||
rExpSeq )
. (k
+ 1))) by
A4,
A5,
XXREAL_0: 2;
hence thesis by
A3,
A6,
XXREAL_0: 2;
end;
||.((
Partial_Sums (z
rExpSeq ))
.
0 ).||
=
||.((z
rExpSeq )
.
0 ).|| by
BHSP_4:def 1
.=
||.((1
/ (
0
! ))
* (z
#N
0 )).|| by
Def2
.=
||.((1
/ 1)
* (
1. X)).|| by
LOPBAN_3:def 9,
NEWTON: 12
.=
||.(
1. X).|| by
LOPBAN_3: 38
.= 1 by
LOPBAN_3: 38;
then
A7:
X[
0 ] by
A1;
A8: for k be
Nat holds
X[k] from
NAT_1:sch 2(
A7,
A2);
hence
||.((
Partial_Sums (z
rExpSeq ))
. k).||
<= ((
Partial_Sums (
||.z.||
rExpSeq ))
. k);
A9: for n be
Nat holds
0
<= ((
||.z.||
rExpSeq )
. n) by
Th27;
(
||.z.||
rExpSeq ) is
summable by
SIN_COS: 45;
then
A10: (
Partial_Sums (
||.z.||
rExpSeq )) is
bounded_above by
A9,
SERIES_1: 17;
then ((
Partial_Sums (
||.z.||
rExpSeq ))
. k)
<= (
lim (
Partial_Sums (
||.z.||
rExpSeq ))) by
A9,
SEQ_4: 37,
SERIES_1: 16;
hence ((
Partial_Sums (
||.z.||
rExpSeq ))
. k)
<= (
Sum (
||.z.||
rExpSeq )) by
SERIES_1:def 3;
now
let k be
Nat;
(
lim (
Partial_Sums (
||.z.||
rExpSeq )))
= (
Sum (
||.z.||
rExpSeq )) by
SERIES_1:def 3;
hence ((
Partial_Sums (
||.z.||
rExpSeq ))
. k)
<= (
Sum (
||.z.||
rExpSeq )) by
A9,
A10,
SEQ_4: 37,
SERIES_1: 16;
end;
then
A11: ((
Partial_Sums (
||.z.||
rExpSeq ))
. k)
<= (
Sum (
||.z.||
rExpSeq ));
||.((
Partial_Sums (z
rExpSeq ))
. k).||
<= ((
Partial_Sums (
||.z.||
rExpSeq ))
. k) by
A8;
hence thesis by
A11,
XXREAL_0: 2;
end;
theorem ::
LOPBAN_4:29
Th29: 1
<= (
Sum (
||.z.||
rExpSeq ))
proof
||.((
Partial_Sums (z
rExpSeq ))
.
0 ).||
=
||.((z
rExpSeq )
.
0 ).|| by
BHSP_4:def 1
.=
||.(
1. X).|| by
Th14
.= 1 by
LOPBAN_3: 38;
hence thesis by
Th28;
end;
theorem ::
LOPBAN_4:30
Th30:
|.((
Partial_Sums (
||.z.||
rExpSeq ))
. n).|
= ((
Partial_Sums (
||.z.||
rExpSeq ))
. n) & (n
<= m implies
|.(((
Partial_Sums (
||.z.||
rExpSeq ))
. m)
- ((
Partial_Sums (
||.z.||
rExpSeq ))
. n)).|
= (((
Partial_Sums (
||.z.||
rExpSeq ))
. m)
- ((
Partial_Sums (
||.z.||
rExpSeq ))
. n)))
proof
for n be
Nat holds
0
<= ((
||.z.||
rExpSeq )
. n) by
Th27;
hence thesis by
COMSEQ_3: 9;
end;
theorem ::
LOPBAN_4:31
Th31:
|.((
Partial_Sums
||.(
Conj (k,z,w)).||)
. n).|
= ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. n)
proof
A1: ((
Partial_Sums
||.(
Conj (k,z,w)).||)
.
0 )
= (
||.(
Conj (k,z,w)).||
.
0 ) by
SERIES_1:def 1;
A2:
now
let n be
Nat;
(
||.(
Conj (k,z,w)).||
. n)
=
||.((
Conj (k,z,w))
. n).|| by
NORMSP_0:def 4;
hence
0
<= (
||.(
Conj (k,z,w)).||
. n) by
NORMSP_1: 4;
end;
then (
Partial_Sums
||.(
Conj (k,z,w)).||) is
non-decreasing by
SERIES_1: 16;
then
A3: ((
Partial_Sums
||.(
Conj (k,z,w)).||)
.
0 )
<= ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. n) by
SEQM_3: 6;
0
<= (
||.(
Conj (k,z,w)).||
.
0 ) by
A2;
hence thesis by
A3,
A1,
ABSVALUE:def 1;
end;
theorem ::
LOPBAN_4:32
Th32: for p be
Real st p
>
0 holds ex n st for k st n
<= k holds
|.((
Partial_Sums
||.(
Conj (k,z,w)).||)
. k).|
< p
proof
let p be
Real such that
A1: p
>
0 ;
reconsider pp = p as
Real;
set p1 = (
min ((pp
/ (4
* (
Sum (
||.z.||
rExpSeq )))),(pp
/ (4
* (
Sum (
||.w.||
rExpSeq ))))));
A2: 1
<= (
Sum (
||.z.||
rExpSeq )) by
Th29;
then (
0
* (
Sum (
||.z.||
rExpSeq )))
< (4
* (
Sum (
||.z.||
rExpSeq ))) by
XREAL_1: 68;
then
A3: (
0
/ (4
* (
Sum (
||.z.||
rExpSeq ))))
< (p
/ (4
* (
Sum (
||.z.||
rExpSeq )))) by
A1,
XREAL_1: 74;
A4: 1
<= (
Sum (
||.w.||
rExpSeq )) by
Th29;
then (
0
* (
Sum (
||.w.||
rExpSeq )))
< (4
* (
Sum (
||.w.||
rExpSeq ))) by
XREAL_1: 68;
then (
0
/ (4
* (
Sum (
||.w.||
rExpSeq ))))
< (p
/ (4
* (
Sum (
||.w.||
rExpSeq )))) by
A1,
XREAL_1: 74;
then
A5: p1
>
0 by
A3,
XXREAL_0: 15;
(
Partial_Sums (w
rExpSeq )) is
convergent by
LOPBAN_3:def 1;
then for s be
Real st
0
< s holds ex n be
Nat st for m be
Nat st n
<= m holds
||.(((
Partial_Sums (w
rExpSeq ))
. m)
- ((
Partial_Sums (w
rExpSeq ))
. n)).||
< s by
LOPBAN_3: 4;
then (
Partial_Sums (w
rExpSeq )) is
Cauchy_sequence_by_Norm by
LOPBAN_3: 5;
then
consider n2 such that
A6: for k,l be
Nat st n2
<= k & n2
<= l holds
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. l)).||
< p1 by
A5,
RSSPACE3: 8;
(
||.z.||
rExpSeq ) is
summable by
SIN_COS: 45;
then (
Partial_Sums (
||.z.||
rExpSeq )) is
convergent by
SERIES_1:def 2;
then
consider n1 be
Nat such that
A7: for k,l be
Nat st n1
<= k & n1
<= l holds
|.(((
Partial_Sums (
||.z.||
rExpSeq ))
. k)
- ((
Partial_Sums (
||.z.||
rExpSeq ))
. l)).|
< p1 by
A5,
COMSEQ_3: 4;
set n3 = (n1
+ n2);
take n4 = (n3
+ n3);
A8:
now
let n;
let k be
Nat;
let l be
Nat such that
A9: l
<= k;
A10:
||.(((z
rExpSeq )
. l)
* (((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l)))).||
<= (
||.((z
rExpSeq )
. l).||
*
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l))).||) by
LOPBAN_3: 38;
0
<=
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l))).|| by
NORMSP_1: 4;
then
A11: (
||.((z
rExpSeq )
. l).||
*
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l))).||)
<= (((
||.z.||
rExpSeq )
. l)
*
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l))).||) by
Th14,
XREAL_1: 64;
(
||.(
Conj (k,z,w)).||
. l)
=
||.((
Conj (k,z,w))
. l).|| by
NORMSP_0:def 4
.=
||.(((z
rExpSeq )
. l)
* (((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l)))).|| by
A9,
Def9;
hence (
||.(
Conj (k,z,w)).||
. l)
<= (((
||.z.||
rExpSeq )
. l)
*
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l))).||) by
A10,
A11,
XXREAL_0: 2;
end;
A12:
now
let k be
Nat;
let l be
Nat;
A13:
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l))).||
<= (
||.((
Partial_Sums (w
rExpSeq ))
. k).||
+
||.((
Partial_Sums (w
rExpSeq ))
. (k
-' l)).||) by
NORMSP_1: 3;
||.((
Partial_Sums (w
rExpSeq ))
. (k
-' l)).||
<= (
Sum (
||.w.||
rExpSeq )) by
Th28;
then
A14: ((
Sum (
||.w.||
rExpSeq ))
+
||.((
Partial_Sums (w
rExpSeq ))
. (k
-' l)).||)
<= ((
Sum (
||.w.||
rExpSeq ))
+ (
Sum (
||.w.||
rExpSeq ))) by
XREAL_1: 6;
||.((
Partial_Sums (w
rExpSeq ))
. k).||
<= (
Sum (
||.w.||
rExpSeq )) by
Th28;
then (
||.((
Partial_Sums (w
rExpSeq ))
. k).||
+
||.((
Partial_Sums (w
rExpSeq ))
. (k
-' l)).||)
<= ((
Sum (
||.w.||
rExpSeq ))
+
||.((
Partial_Sums (w
rExpSeq ))
. (k
-' l)).||) by
XREAL_1: 6;
then (
||.((
Partial_Sums (w
rExpSeq ))
. k).||
+
||.((
Partial_Sums (w
rExpSeq ))
. (k
-' l)).||)
<= (2
* (
Sum (
||.w.||
rExpSeq ))) by
A14,
XXREAL_0: 2;
then
A15:
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l))).||
<= (2
* (
Sum (
||.w.||
rExpSeq ))) by
A13,
XXREAL_0: 2;
assume l
<= k;
then
A16: (
||.(
Conj (k,z,w)).||
. l)
<= (((
||.z.||
rExpSeq )
. l)
*
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l))).||) by
A8;
0
<= ((
||.z.||
rExpSeq )
. l) by
Th27;
then (((
||.z.||
rExpSeq )
. l)
*
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l))).||)
<= (((
||.z.||
rExpSeq )
. l)
* (2
* (
Sum (
||.w.||
rExpSeq )))) by
A15,
XREAL_1: 64;
hence (
||.(
Conj (k,z,w)).||
. l)
<= (((
||.z.||
rExpSeq )
. l)
* (2
* (
Sum (
||.w.||
rExpSeq )))) by
A16,
XXREAL_0: 2;
end;
now
0
< (p
/ 4) by
A1,
XREAL_1: 224;
then
A17: (
0
+ (p
/ 4))
< ((p
/ 4)
+ (p
/ 4)) by
XREAL_1: 6;
A18:
0
<> (
Sum (
||.z.||
rExpSeq )) by
Th29;
A19: ((
Sum (
||.z.||
rExpSeq ))
* (p
/ (4
* (
Sum (
||.z.||
rExpSeq )))))
= ((
Sum (
||.z.||
rExpSeq ))
* (p
* ((4
* (
Sum (
||.z.||
rExpSeq )))
" ))) by
XCMPLX_0:def 9
.= (((
Sum (
||.z.||
rExpSeq ))
* p)
* ((4
* (
Sum (
||.z.||
rExpSeq )))
" ))
.= (((
Sum (
||.z.||
rExpSeq ))
* p)
/ (4
* (
Sum (
||.z.||
rExpSeq )))) by
XCMPLX_0:def 9
.= (p
/ 4) by
A18,
XCMPLX_1: 91;
let k such that
A20: n4
<= k;
A21: (
0
+ n3)
<= (n3
+ n3) by
XREAL_1: 6;
then (k
-' n3)
= (k
- n3) by
A20,
XREAL_1: 233,
XXREAL_0: 2;
then
A22: k
= ((k
-' n3)
+ n3);
A23: n3
<= k by
A20,
A21,
XXREAL_0: 2;
now
let l be
Nat;
A24: (
0
+ n2)
<= (n1
+ n2) by
XREAL_1: 6;
(
0
+ n3)
<= (n3
+ n3) by
XREAL_1: 6;
then n2
<= n4 by
A24,
XXREAL_0: 2;
then
A25: n2
<= k by
A20,
XXREAL_0: 2;
A26:
0
<= ((
||.z.||
rExpSeq )
. l) by
Th27;
assume
A27: l
<= n3;
then
A28: ((n3
+ n3)
- n3)
<= ((n3
+ n3)
- l) by
XREAL_1: 10;
l
<= k by
A23,
A27,
XXREAL_0: 2;
then
A29: (
||.(
Conj (k,z,w)).||
. l)
<= (((
||.z.||
rExpSeq )
. l)
*
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l))).||) by
A8;
(n4
- l)
<= (k
- l) by
A20,
XREAL_1: 9;
then
A30: n3
<= (k
- l) by
A28,
XXREAL_0: 2;
(k
-' l)
= (k
- l) by
A23,
A27,
XREAL_1: 233,
XXREAL_0: 2;
then n2
<= (k
-' l) by
A24,
A30,
XXREAL_0: 2;
then
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l))).||
< p1 by
A6,
A25;
then (((
||.z.||
rExpSeq )
. l)
*
||.(((
Partial_Sums (w
rExpSeq ))
. k)
- ((
Partial_Sums (w
rExpSeq ))
. (k
-' l))).||)
<= (((
||.z.||
rExpSeq )
. l)
* p1) by
A26,
XREAL_1: 64;
hence (
||.(
Conj (k,z,w)).||
. l)
<= (p1
* ((
||.z.||
rExpSeq )
. l)) by
A29,
XXREAL_0: 2;
end;
then
A31: ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. n3)
<= (((
Partial_Sums (
||.z.||
rExpSeq ))
. n3)
* p1) by
COMSEQ_3: 7;
A32: (n1
+
0 )
<= (n1
+ n2) by
XREAL_1: 6;
then n1
<= k by
A23,
XXREAL_0: 2;
then
|.(((
Partial_Sums (
||.z.||
rExpSeq ))
. k)
- ((
Partial_Sums (
||.z.||
rExpSeq ))
. n3)).|
<= p1 by
A7,
A32;
then (((
Partial_Sums (
||.z.||
rExpSeq ))
. k)
- ((
Partial_Sums (
||.z.||
rExpSeq ))
. n3))
<= p1 by
A20,
A21,
Th30,
XXREAL_0: 2;
then
A33: ((((
Partial_Sums (
||.z.||
rExpSeq ))
. k)
- ((
Partial_Sums (
||.z.||
rExpSeq ))
. n3))
* (2
* (
Sum (
||.w.||
rExpSeq ))))
<= (p1
* (2
* (
Sum (
||.w.||
rExpSeq )))) by
A4,
XREAL_1: 64;
for l be
Nat st l
<= k holds (
||.(
Conj (k,z,w)).||
. l)
<= ((2
* (
Sum (
||.w.||
rExpSeq )))
* ((
||.z.||
rExpSeq )
. l)) by
A12;
then (((
Partial_Sums
||.(
Conj (k,z,w)).||)
. k)
- ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. n3))
<= ((((
Partial_Sums (
||.z.||
rExpSeq ))
. k)
- ((
Partial_Sums (
||.z.||
rExpSeq ))
. n3))
* (2
* (
Sum (
||.w.||
rExpSeq )))) by
A22,
COMSEQ_3: 8;
then
A34: (((
Partial_Sums
||.(
Conj (k,z,w)).||)
. k)
- ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. n3))
<= (p1
* (2
* (
Sum (
||.w.||
rExpSeq )))) by
A33,
XXREAL_0: 2;
A35:
0
<> (
Sum (
||.w.||
rExpSeq )) by
Th29;
(((
Partial_Sums (
||.z.||
rExpSeq ))
. n3)
* p1)
<= ((
Sum (
||.z.||
rExpSeq ))
* p1) by
A5,
Th28,
XREAL_1: 64;
then
A36: ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. n3)
<= ((
Sum (
||.z.||
rExpSeq ))
* p1) by
A31,
XXREAL_0: 2;
((
Sum (
||.z.||
rExpSeq ))
* p1)
<= ((
Sum (
||.z.||
rExpSeq ))
* (p
/ (4
* (
Sum (
||.z.||
rExpSeq ))))) by
A2,
XREAL_1: 64,
XXREAL_0: 17;
then ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. n3)
<= (p
/ 4) by
A36,
A19,
XXREAL_0: 2;
then
A37: ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. n3)
< (p
/ 2) by
A17,
XXREAL_0: 2;
(
0
* (
Sum (
||.w.||
rExpSeq )))
< (2
* (
Sum (
||.w.||
rExpSeq ))) by
A4,
XREAL_1: 68;
then
A38: ((2
* (
Sum (
||.w.||
rExpSeq )))
* p1)
<= ((2
* (
Sum (
||.w.||
rExpSeq )))
* (p
/ (4
* (
Sum (
||.w.||
rExpSeq ))))) by
XREAL_1: 64,
XXREAL_0: 17;
((2
* (
Sum (
||.w.||
rExpSeq )))
* (p
/ (4
* (
Sum (
||.w.||
rExpSeq )))))
= ((2
* (
Sum (
||.w.||
rExpSeq )))
* (p
* ((4
* (
Sum (
||.w.||
rExpSeq )))
" ))) by
XCMPLX_0:def 9
.= (((2
* (
Sum (
||.w.||
rExpSeq )))
* p)
* ((4
* (
Sum (
||.w.||
rExpSeq )))
" ))
.= (((2
* p)
* (
Sum (
||.w.||
rExpSeq )))
/ (4
* (
Sum (
||.w.||
rExpSeq )))) by
XCMPLX_0:def 9
.= ((2
* p)
/ 4) by
A35,
XCMPLX_1: 91
.= (p
/ 2);
then (((
Partial_Sums
||.(
Conj (k,z,w)).||)
. k)
- ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. n3))
<= (p
/ 2) by
A34,
A38,
XXREAL_0: 2;
then ((((
Partial_Sums
||.(
Conj (k,z,w)).||)
. k)
- ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. n3))
+ ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. n3))
< ((p
/ 2)
+ (p
/ 2)) by
A37,
XREAL_1: 8;
hence
|.((
Partial_Sums
||.(
Conj (k,z,w)).||)
. k).|
< p by
Th31;
end;
hence thesis;
end;
theorem ::
LOPBAN_4:33
Th33: for seq st for k holds (seq
. k)
= ((
Partial_Sums (
Conj (k,z,w)))
. k) holds seq is
convergent & (
lim seq)
= (
0. X)
proof
deffunc
U(
Nat) = ((
Partial_Sums
||.(
Conj ($1,z,w)).||)
. $1);
ex rseq be
Real_Sequence st for k be
Nat holds (rseq
. k)
=
U(k) from
SEQ_1:sch 1;
then
consider rseq be
Real_Sequence such that
A1: for k be
Nat holds (rseq
. k)
= ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. k);
let seq such that
A2: for k holds (seq
. k)
= ((
Partial_Sums (
Conj (k,z,w)))
. k);
A3:
now
let k;
||.(seq
. k).||
=
||.((
Partial_Sums (
Conj (k,z,w)))
. k).|| by
A2;
hence
||.(seq
. k).||
<= ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. k) by
Th10;
end;
A4:
now
let k;
||.(seq
. k).||
<= ((
Partial_Sums
||.(
Conj (k,z,w)).||)
. k) by
A3;
hence
||.(seq
. k).||
<= (rseq
. k) by
A1;
end;
A5:
now
let p be
Real;
assume p
>
0 ;
then
consider n such that
A6: for k st n
<= k holds
|.((
Partial_Sums
||.(
Conj (k,z,w)).||)
. k).|
< p by
Th32;
reconsider n as
Nat;
take n;
let k be
Nat such that
A7: n
<= k;
|.((rseq
. k)
-
0 ).|
=
|.((
Partial_Sums
||.(
Conj (k,z,w)).||)
. k).| by
A1;
hence
|.((rseq
. k)
-
0 ).|
< p by
A6,
A7;
end;
then
A8: rseq is
convergent by
SEQ_2:def 6;
then (
lim rseq)
=
0 by
A5,
SEQ_2:def 7;
hence thesis by
A4,
A8,
Th12;
end;
Lm3: for z, w st (z,w)
are_commutative holds ((
Sum (z
rExpSeq ))
* (
Sum (w
rExpSeq )))
= (
Sum ((z
+ w)
rExpSeq ))
proof
let z, w such that
A1: (z,w)
are_commutative ;
deffunc
U(
Nat) = ((
Partial_Sums (
Conj ($1,z,w)))
. $1);
ex seq st for k be
Element of
NAT holds (seq
. k)
=
U(k) from
FUNCT_2:sch 4;
then
consider seq be
sequence of X such that
A2: for k be
Element of
NAT holds (seq
. k)
= ((
Partial_Sums (
Conj (k,z,w)))
. k);
A3: for k be
Nat holds (seq
. k)
= ((
Partial_Sums (
Conj (k,z,w)))
. k)
proof
let k be
Nat;
k
in
NAT by
ORDINAL1:def 12;
hence thesis by
A2;
end;
now
let k be
Element of
NAT ;
thus (seq
. k)
= ((
Partial_Sums (
Conj (k,z,w)))
. k) by
A2
.= ((((
Partial_Sums (z
rExpSeq ))
. k)
* ((
Partial_Sums (w
rExpSeq ))
. k))
- ((
Partial_Sums ((z
+ w)
rExpSeq ))
. k)) by
A1,
Th26
.= ((((
Partial_Sums (z
rExpSeq ))
* (
Partial_Sums (w
rExpSeq )))
. k)
- ((
Partial_Sums ((z
+ w)
rExpSeq ))
. k)) by
LOPBAN_3:def 7
.= ((((
Partial_Sums (z
rExpSeq ))
* (
Partial_Sums (w
rExpSeq )))
- (
Partial_Sums ((z
+ w)
rExpSeq )))
. k) by
NORMSP_1:def 3;
end;
then
A4: seq
= (((
Partial_Sums (z
rExpSeq ))
* (
Partial_Sums (w
rExpSeq )))
- (
Partial_Sums ((z
+ w)
rExpSeq ))) by
FUNCT_2: 63;
A5: (
Partial_Sums (w
rExpSeq )) is
convergent by
LOPBAN_3:def 1;
A6: (
lim seq)
= (
0. X) by
A3,
Th33;
A7: (
Partial_Sums ((z
+ w)
rExpSeq )) is
convergent by
LOPBAN_3:def 1;
A8: (
Partial_Sums (z
rExpSeq )) is
convergent by
LOPBAN_3:def 1;
then
A9: (
lim ((
Partial_Sums (z
rExpSeq ))
* (
Partial_Sums (w
rExpSeq ))))
= ((
lim (
Partial_Sums (z
rExpSeq )))
* (
lim (
Partial_Sums (w
rExpSeq )))) by
A5,
Th8;
((
Partial_Sums (z
rExpSeq ))
* (
Partial_Sums (w
rExpSeq ))) is
convergent by
A8,
A5,
Th3;
hence thesis by
A4,
A7,
A9,
A6,
Th1;
end;
definition
let X be
Banach_Algebra;
::
LOPBAN_4:def10
func
exp_ X ->
Function of the
carrier of X, the
carrier of X means
:
Def10: for z be
Element of X holds (it
. z)
= (
Sum (z
rExpSeq ));
existence
proof
deffunc
U(
Element of X) = (
Sum ($1
rExpSeq ));
ex f be
Function of the
carrier of X, the
carrier of X st for z be
Element of X holds (f
. z)
=
U(z) from
FUNCT_2:sch 4;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of the
carrier of X, the
carrier of X;
assume that
A1: for z be
Element of X holds (f1
. z)
= (
Sum (z
rExpSeq )) and
A2: for z be
Element of X holds (f2
. z)
= (
Sum (z
rExpSeq ));
for z be
Element of X holds (f1
. z)
= (f2
. z)
proof
let z be
Element of X;
thus (f1
. z)
= (
Sum (z
rExpSeq )) by
A1
.= (f2
. z) by
A2;
end;
hence f1
= f2 by
FUNCT_2: 63;
end;
end
definition
let X, z;
::
LOPBAN_4:def11
func
exp z ->
Element of X equals ((
exp_ X)
. z);
correctness ;
end
theorem ::
LOPBAN_4:34
for z holds (
exp z)
= (
Sum (z
rExpSeq )) by
Def10;
theorem ::
LOPBAN_4:35
Th35: for z1, z2 st (z1,z2)
are_commutative holds (
exp (z1
+ z2))
= ((
exp z1)
* (
exp z2)) & (
exp (z2
+ z1))
= ((
exp z2)
* (
exp z1)) & (
exp (z1
+ z2))
= (
exp (z2
+ z1)) & ((
exp z1),(
exp z2))
are_commutative
proof
let z1, z2 such that
A1: (z1,z2)
are_commutative ;
A2: (
exp (z2
+ z1))
= (
Sum ((z2
+ z1)
rExpSeq )) by
Def10
.= ((
Sum (z2
rExpSeq ))
* (
Sum (z1
rExpSeq ))) by
A1,
Lm3
.= ((
exp z2)
* (
Sum (z1
rExpSeq ))) by
Def10
.= ((
exp z2)
* (
exp z1)) by
Def10;
(
exp (z1
+ z2))
= (
Sum ((z1
+ z2)
rExpSeq )) by
Def10
.= ((
Sum (z1
rExpSeq ))
* (
Sum (z2
rExpSeq ))) by
A1,
Lm3
.= ((
exp z1)
* (
Sum (z2
rExpSeq ))) by
Def10
.= ((
exp z1)
* (
exp z2)) by
Def10;
hence thesis by
A2;
end;
theorem ::
LOPBAN_4:36
for z1, z2 st (z1,z2)
are_commutative holds (z1
* (
exp z2))
= ((
exp z2)
* z1)
proof
let z1, z2 such that
A1: (z1,z2)
are_commutative ;
now
let n be
Element of
NAT ;
thus ((z1
* (z2
rExpSeq ))
. n)
= (z1
* ((z2
rExpSeq )
. n)) by
LOPBAN_3:def 5
.= (z1
* ((1
/ (n
! ))
* (z2
#N n))) by
Def2
.= ((1
/ (n
! ))
* (z1
* (z2
#N n))) by
LOPBAN_3: 38
.= ((1
/ (n
! ))
* ((z2
#N n)
* z1)) by
A1,
Lm2
.= (((1
/ (n
! ))
* (z2
#N n))
* z1) by
LOPBAN_3: 38
.= (((z2
rExpSeq )
. n)
* z1) by
Def2
.= (((z2
rExpSeq )
* z1)
. n) by
LOPBAN_3:def 6;
end;
then
A2: (z1
* (z2
rExpSeq ))
= ((z2
rExpSeq )
* z1) by
FUNCT_2: 63;
A3: (
Partial_Sums (z2
rExpSeq )) is
convergent by
LOPBAN_3:def 1;
thus (z1
* (
exp z2))
= (z1
* (
Sum (z2
rExpSeq ))) by
Def10
.= (
lim (z1
* (
Partial_Sums (z2
rExpSeq )))) by
A3,
Th6
.= (
lim (
Partial_Sums (z1
* (z2
rExpSeq )))) by
Th9
.= (
lim ((
Partial_Sums (z2
rExpSeq ))
* z1)) by
A2,
Th9
.= ((
Sum (z2
rExpSeq ))
* z1) by
A3,
Th7
.= ((
exp z2)
* z1) by
Def10;
end;
theorem ::
LOPBAN_4:37
Th37: (
exp (
0. X))
= (
1. X)
proof
(
exp (
0. X))
= (
Sum ((
0. X)
rExpSeq )) by
Def10
.= (
1. X) by
Th20;
hence thesis;
end;
theorem ::
LOPBAN_4:38
Th38: ((
exp z)
* (
exp (
- z)))
= (
1. X) & ((
exp (
- z))
* (
exp z))
= (
1. X)
proof
reconsider jj = 1 as
Real;
(z
* (
- z))
= (z
* ((
- jj)
* z)) by
LOPBAN_3: 38
.= ((
- jj)
* (z
* z)) by
LOPBAN_3: 38
.= (((
- jj)
* z)
* z) by
LOPBAN_3: 38
.= ((
- z)
* z) by
LOPBAN_3: 38;
then
A1: (z,(
- z))
are_commutative ;
hence ((
exp z)
* (
exp (
- z)))
= (
exp (z
+ (
- z))) by
Th35
.= (
exp (
0. X)) by
RLVECT_1: 5
.= (
1. X) by
Th37;
thus ((
exp (
- z))
* (
exp z))
= (
exp ((
- z)
+ z)) by
A1,
Th35
.= (
exp (
0. X)) by
RLVECT_1: 5
.= (
1. X) by
Th37;
end;
theorem ::
LOPBAN_4:39
(
exp z) is
invertible & ((
exp z)
" )
= (
exp (
- z)) & (
exp (
- z)) is
invertible & ((
exp (
- z))
" )
= (
exp z)
proof
A1: ((
exp (
- z))
* (
exp z))
= (
1. X) by
Th38;
A2: ((
exp z)
* (
exp (
- z)))
= (
1. X) by
Th38;
hence (
exp z) is
invertible by
A1;
hence ((
exp z)
" )
= (
exp (
- z)) by
A2,
A1,
LOPBAN_3:def 8;
thus (
exp (
- z)) is
invertible by
A2,
A1;
hence thesis by
A2,
A1,
LOPBAN_3:def 8;
end;
theorem ::
LOPBAN_4:40
Th40: for z holds for s,t be
Real holds ((s
* z),(t
* z))
are_commutative
proof
let z;
let s,t be
Real;
((s
* z)
* (t
* z))
= ((s
* t)
* (z
* z)) by
LOPBAN_3: 38
.= ((t
* z)
* (s
* z)) by
LOPBAN_3: 38;
hence thesis;
end;
theorem ::
LOPBAN_4:41
for z holds for s,t be
Real holds ((
exp (s
* z))
* (
exp (t
* z)))
= (
exp ((s
+ t)
* z)) & ((
exp (t
* z))
* (
exp (s
* z)))
= (
exp ((t
+ s)
* z)) & (
exp ((s
+ t)
* z))
= (
exp ((t
+ s)
* z)) & ((
exp (s
* z)),(
exp (t
* z)))
are_commutative
proof
let z;
let s,t be
Real;
A1: ((s
* z),(t
* z))
are_commutative by
Th40;
hence
A2: ((
exp (s
* z))
* (
exp (t
* z)))
= (
exp ((s
* z)
+ (t
* z))) by
Th35
.= (
exp ((s
+ t)
* z)) by
LOPBAN_3: 38;
thus
A3: ((
exp (t
* z))
* (
exp (s
* z)))
= (
exp ((t
* z)
+ (s
* z))) by
A1,
Th35
.= (
exp ((t
+ s)
* z)) by
LOPBAN_3: 38;
thus (
exp ((s
+ t)
* z))
= (
exp ((t
+ s)
* z));
thus thesis by
A2,
A3;
end;