integr20.miz
begin
reserve s1,s2,q1 for
Real_Sequence;
definition
let X be
RealNormSpace;
let f be
PartFunc of
REAL , the
carrier of X;
::
INTEGR20:def1
attr f is
uniformly_continuous means for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x1,x2 be
Real st x1
in (
dom f) & x2
in (
dom f) &
|.(x1
- x2).|
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r;
end
theorem ::
INTEGR20:1
Th1: for X be
set, Y be
RealNormSpace, f be
PartFunc of
REAL , the
carrier of Y holds (f
| X) is
uniformly_continuous iff for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x1,x2 be
Real st x1
in (
dom (f
| X)) & x2
in (
dom (f
| X)) &
|.(x1
- x2).|
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r
proof
let X be
set, Y be
RealNormSpace, f be
PartFunc of
REAL , the
carrier of Y;
thus (f
| X) is
uniformly_continuous implies for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x1,x2 be
Real st x1
in (
dom (f
| X)) & x2
in (
dom (f
| X)) &
|.(x1
- x2).|
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r
proof
assume
A1: (f
| X) is
uniformly_continuous;
let r be
Real;
assume
0
< r;
then
consider s be
Real such that
A2:
0
< s and
A3: for x1,x2 be
Real st x1
in (
dom (f
| X)) & x2
in (
dom (f
| X)) &
|.(x1
- x2).|
< s holds
||.(((f
| X)
/. x1)
- ((f
| X)
/. x2)).||
< r by
A1;
take s;
thus
0
< s by
A2;
let x1,x2 be
Real;
assume
A4: x1
in (
dom (f
| X)) & x2
in (
dom (f
| X));
then ((f
| X)
/. x1)
= (f
/. x1) & ((f
| X)
/. x2)
= (f
/. x2) by
PARTFUN1: 80;
hence thesis by
A3,
A4;
end;
assume
A5: for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x1,x2 be
Real st x1
in (
dom (f
| X)) & x2
in (
dom (f
| X)) &
|.(x1
- x2).|
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r;
let r be
Real;
assume
0
< r;
then
consider s be
Real such that
A6:
0
< s and
A7: for x1,x2 be
Real st x1
in (
dom (f
| X)) & x2
in (
dom (f
| X)) &
|.(x1
- x2).|
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A5;
take s;
thus
0
< s by
A6;
let x1,x2 be
Real;
assume
A8: x1
in (
dom (f
| X)) & x2
in (
dom (f
| X));
then ((f
| X)
/. x1)
= (f
/. x1) & ((f
| X)
/. x2)
= (f
/. x2) by
PARTFUN1: 80;
hence thesis by
A7,
A8;
end;
theorem ::
INTEGR20:2
for X,X1 be
set, Y be
RealNormSpace, f be
PartFunc of
REAL , the
carrier of Y holds (f
| X) is
uniformly_continuous & X1
c= X implies (f
| X1) is
uniformly_continuous
proof
let X,X1 be
set, Y be
RealNormSpace, f be
PartFunc of
REAL , the
carrier of Y;
assume that
A1: (f
| X) is
uniformly_continuous and
A2: X1
c= X;
now
let r be
Real;
assume
0
< r;
then
consider s be
Real such that
A3:
0
< s and
A4: for x1,x2 be
Real st x1
in (
dom (f
| X)) & x2
in (
dom (f
| X)) &
|.(x1
- x2).|
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1,
Th1;
take s;
thus
0
< s by
A3;
let x1,x2 be
Real;
assume that
A5: x1
in (
dom (f
| X1)) & x2
in (
dom (f
| X1)) &
|.(x1
- x2).|
< s;
(f
| X1)
c= (f
| X) by
A2,
RELAT_1: 75;
then (
dom (f
| X1))
c= (
dom (f
| X)) by
RELAT_1: 11;
hence
||.((f
/. x1)
- (f
/. x2)).||
< r by
A4,
A5;
end;
hence thesis by
Th1;
end;
theorem ::
INTEGR20:3
Th3: for X be
RealNormSpace, f be
PartFunc of
REAL , the
carrier of X, Z be
Subset of
REAL st Z
c= (
dom f) & Z is
compact & (f
| Z) is
continuous holds (f
| Z) is
uniformly_continuous
proof
let X be
RealNormSpace, f be
PartFunc of
REAL , the
carrier of X, Z be
Subset of
REAL ;
assume that
A1: Z
c= (
dom f) and
A2: Z is
compact and
A3: (f
| Z) is
continuous;
assume not thesis;
then
consider r be
Real such that
A4:
0
< r and
A5: for s be
Real st
0
< s holds ex x1,x2 be
Real st x1
in (
dom (f
| Z)) & x2
in (
dom (f
| Z)) &
|.(x1
- x2).|
< s & not
||.((f
/. x1)
- (f
/. x2)).||
< r by
Th1;
defpred
P[
Element of
NAT ,
Real] means $2
in Z & ex x2 be
Element of
REAL st x2
in Z &
|.($2
- x2).|
< (1
/ ($1
+ 1)) & not
||.((f
/. $2)
- (f
/. x2)).||
< r;
A6:
now
let n be
Element of
NAT ;
consider x1 be
Real such that
A7: ex x2 be
Real st x1
in (
dom (f
| Z)) & x2
in (
dom (f
| Z)) &
|.(x1
- x2).|
< (1
/ (n
+ 1)) & not
||.((f
/. x1)
- (f
/. x2)).||
< r by
A5;
reconsider x1 as
Element of
REAL by
XREAL_0:def 1;
take x1;
(
dom (f
| Z))
= Z by
A1,
RELAT_1: 62;
hence
P[n, x1] by
A7;
end;
consider s1 such that
A8: for n be
Element of
NAT holds
P[n, (s1
. n)] from
FUNCT_2:sch 3(
A6);
A9:
now
let x be
object;
assume x
in (
rng s1);
then ex n be
Element of
NAT st x
= (s1
. n) by
FUNCT_2: 113;
hence x
in Z by
A8;
end;
then (
rng s1)
c= Z;
then
consider q1 such that
A10: q1 is
subsequence of s1 & q1 is
convergent & (
lim q1)
in Z by
A2;
A11: (f
| Z)
is_continuous_in (
lim q1) by
A3,
A1,
A10,
RELAT_1: 57;
(
rng q1)
c= (
rng s1) by
A10,
VALUED_0: 21;
then (
rng q1)
c= Z & (
rng q1)
c= (
dom f) by
A1,
A9;
then (
rng q1)
c= ((
dom f)
/\ Z) by
XBOOLE_1: 19;
then
A12: (
rng q1)
c= (
dom (f
| Z)) by
RELAT_1: 61;
then
A13: ((f
| Z)
/. (
lim q1))
= (
lim ((f
| Z)
/* q1)) & ((f
| Z)
/* q1) is
convergent by
A10,
A11;
defpred
P[
Element of
NAT ,
Real] means $2
in Z &
|.((s1
. $1)
- $2).|
< (1
/ ($1
+ 1)) & not
||.((f
/. (s1
. $1))
- (f
/. $2)).||
< r;
A14: for n be
Element of
NAT holds ex x2 be
Element of
REAL st
P[n, x2] by
A8;
consider s2 such that
A15: for n be
Element of
NAT holds
P[n, (s2
. n)] from
FUNCT_2:sch 3(
A14);
A16:
now
let x be
object;
assume x
in (
rng s2);
then ex n be
Element of
NAT st x
= (s2
. n) by
FUNCT_2: 113;
hence x
in Z by
A15;
end;
consider Ns1 be
increasing
sequence of
NAT such that
A17: q1
= (s1
* Ns1) by
A10,
VALUED_0:def 17;
set q2 = (q1
- ((s1
- s2)
* Ns1));
now
let n be
Element of
NAT ;
thus (q2
. n)
= (((s1
* Ns1)
. n)
- (((s1
- s2)
* Ns1)
. n)) by
A17,
RFUNCT_2: 1
.= ((s1
. (Ns1
. n))
- (((s1
- s2)
* Ns1)
. n)) by
FUNCT_2: 15
.= ((s1
. (Ns1
. n))
- ((s1
- s2)
. (Ns1
. n))) by
FUNCT_2: 15
.= ((s1
. (Ns1
. n))
- ((s1
. (Ns1
. n))
- (s2
. (Ns1
. n)))) by
RFUNCT_2: 1
.= ((s2
* Ns1)
. n) by
FUNCT_2: 15;
end;
then
A18: q2
= (s2
* Ns1) & q2 is
subsequence of s2 by
FUNCT_2: 63;
then (
rng q2)
c= (
rng s2) by
VALUED_0: 21;
then (
rng q2)
c= Z & (
rng q2)
c= (
dom f) by
A1,
A16;
then (
rng q2)
c= ((
dom f)
/\ Z) by
XBOOLE_1: 19;
then
A19: (
rng q2)
c= (
dom (f
| Z)) by
RELAT_1: 61;
A20:
now
let p be
Real;
assume
A21:
0
< p;
consider k be
Nat such that
A22: (p
" )
< k by
SEQ_4: 3;
take k;
let m be
Nat;
A23: m
in
NAT by
ORDINAL1:def 12;
assume k
<= m;
then (k
+ 1)
<= (m
+ 1) by
XREAL_1: 6;
then (1
/ (m
+ 1))
<= (1
/ (k
+ 1)) by
XREAL_1: 118;
then
A24:
|.((s1
. m)
- (s2
. m)).|
< (1
/ (k
+ 1)) by
A15,
XXREAL_0: 2,
A23;
k
< (k
+ 1) by
NAT_1: 13;
then (p
" )
< (k
+ 1) by
A22,
XXREAL_0: 2;
then
A25: (1
/ (k
+ 1))
< (1
/ (p
" )) by
A21,
XREAL_1: 76;
|.(((s1
- s2)
. m)
-
0 ).|
=
|.((s1
. m)
- (s2
. m)).| by
RFUNCT_2: 1;
hence
|.(((s1
- s2)
. m)
-
0 ).|
< p by
A25,
A24,
XXREAL_0: 2;
end;
then
A26: (s1
- s2) is
convergent by
SEQ_2:def 6;
A27: ((s1
- s2)
* Ns1) is
convergent by
A20,
SEQ_2:def 6,
SEQ_4: 16;
then
A28: q2 is
convergent by
A10,
SEQ_2: 11;
(
lim (s1
- s2))
=
0 by
A20,
A26,
SEQ_2:def 7;
then (
lim ((s1
- s2)
* Ns1))
=
0 by
A20,
SEQ_2:def 6,
SEQ_4: 17;
then (
lim q2)
= ((
lim q1)
-
0 ) by
A10,
A27,
SEQ_2: 12;
then
A29: ((f
| Z)
/* q2) is
convergent & ((f
| Z)
/. (
lim q1))
= (
lim ((f
| Z)
/* q2)) by
A11,
A28,
A19;
then
A30: (((f
| Z)
/* q1)
- ((f
| Z)
/* q2)) is
convergent by
A13,
NORMSP_1: 20;
(
lim (((f
| Z)
/* q1)
- ((f
| Z)
/* q2)))
= (((f
| Z)
/. (
lim q1))
- ((f
| Z)
/. (
lim q1))) by
A13,
A29,
NORMSP_1: 26;
then
A31: (
lim (((f
| Z)
/* q1)
- ((f
| Z)
/* q2)))
= (
0. X) by
RLVECT_1: 15;
now
let n be
Nat;
consider k be
Nat such that
A32: for m be
Nat st k
<= m holds
||.(((((f
| Z)
/* q1)
- ((f
| Z)
/* q2))
. m)
- (
0. X)).||
< r by
A4,
A30,
A31,
NORMSP_1:def 7;
A33: (q1
. k)
in (
dom (f
| Z)) & (q2
. k)
in (
dom (f
| Z)) by
A12,
A19,
VALUED_0: 28;
A34: k
in
NAT by
ORDINAL1:def 12;
A35:
||.(((((f
| Z)
/* q1)
- ((f
| Z)
/* q2))
. k)
- (
0. X)).||
=
||.((((f
| Z)
/* q1)
. k)
- (((f
| Z)
/* q2)
. k)).|| by
NORMSP_1:def 3;
(((f
| Z)
/* q1)
. k)
= ((f
| Z)
/. (q1
. k)) & (((f
| Z)
/* q2)
. k)
= ((f
| Z)
/. (q2
. k)) by
A12,
A19,
FUNCT_2: 109,
A34;
then (((f
| Z)
/* q1)
. k)
= (f
/. (q1
. k)) & (((f
| Z)
/* q2)
. k)
= (f
/. (q2
. k)) by
A33,
PARTFUN1: 80;
then
||.((((f
| Z)
/* q1)
. k)
- (((f
| Z)
/* q2)
. k)).||
=
||.((f
/. (s1
. (Ns1
. k)))
- (f
/. ((s2
* Ns1)
. k))).|| by
A17,
A18,
FUNCT_2: 15,
ORDINAL1:def 12
.=
||.((f
/. (s1
. (Ns1
. k)))
- (f
/. (s2
. (Ns1
. k)))).|| by
FUNCT_2: 15,
ORDINAL1:def 12;
hence contradiction by
A15,
A32,
A35;
end;
hence contradiction;
end;
begin
theorem ::
INTEGR20:4
Th4: for X be
RealNormSpace, n,m be
Nat, a be
Function of
[:(
Seg n), (
Seg m):], X holds for p,q be
FinSequence of X st ((
dom p)
= (
Seg n) & for i be
Nat st i
in (
dom p) holds ex r be
FinSequence of X st ((
dom r)
= (
Seg m) & (p
. i)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (a
. (i,j)))) & ((
dom q)
= (
Seg m) & for j be
Nat st j
in (
dom q) holds ex s be
FinSequence of X st ((
dom s)
= (
Seg n) & (q
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (a
. (i,j)))) holds (
Sum p)
= (
Sum q)
proof
let X be
RealNormSpace;
defpred
P[
Nat] means for m be
Nat, a be
Function of
[:(
Seg $1), (
Seg m):], X holds for p,q be
FinSequence of X st ((
dom p)
= (
Seg $1) & for i be
Nat st i
in (
dom p) holds ex r be
FinSequence of X st ((
dom r)
= (
Seg m) & (p
. i)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (a
. (i,j)))) & ((
dom q)
= (
Seg m) & for j be
Nat st j
in (
dom q) holds ex s be
FinSequence of X st ((
dom s)
= (
Seg $1) & (q
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (a
. (i,j)))) holds (
Sum p)
= (
Sum q);
A1: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat such that
A2:
P[n];
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
A3: (
Seg n)
c= (
Seg (n
+ 1)) by
FINSEQ_1: 5,
NAT_1: 11;
now
let m be
Nat, a be
Function of
[:(
Seg (n
+ 1)), (
Seg m):], X;
let p,q be
FinSequence of X such that
A4: (
dom p)
= (
Seg (n
+ 1)) & for i be
Nat st i
in (
dom p) holds ex r be
FinSequence of X st ((
dom r)
= (
Seg m) & (p
. i)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (a
. (i,j))) and
A5: (
dom q)
= (
Seg m) & for j be
Nat st j
in (
dom q) holds ex s be
FinSequence of X st ((
dom s)
= (
Seg (n
+ 1)) & (q
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (a
. (i,j)));
A6: (
len p)
= (n
+ 1) by
A4,
FINSEQ_1:def 3;
set a0 = (a
|
[:(
Seg n), (
Seg m):]);
[:(
Seg n), (
Seg m):]
c=
[:(
Seg (n
+ 1)), (
Seg m):] by
A3,
ZFMISC_1: 95;
then
reconsider a0 as
Function of
[:(
Seg n), (
Seg m):], X by
FUNCT_2: 32;
A7: (
dom a0)
=
[:(
Seg n), (
Seg m):] by
FUNCT_2:def 1;
deffunc
F(
Nat) = (a
.
[(n
+ 1), $1]);
reconsider p0 = (p
| (
Seg n)) as
FinSequence of X by
FINSEQ_1: 18;
A8: (
dom p0)
= (
Seg n) by
A4,
A3,
RELAT_1: 62;
then
A9: (
len p0)
= n by
FINSEQ_1:def 3;
A10:
now
let i be
Nat;
assume
A11: i
in (
dom p0);
then
consider r be
FinSequence of X such that
A12: (
dom r)
= (
Seg m) & (p
. i)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (a
. (i,j)) by
A4,
A8,
FINSEQ_2: 8;
take r;
thus (
dom r)
= (
Seg m) & (p0
. i)
= (
Sum r) by
A11,
A12,
FUNCT_1: 47;
thus for j be
Nat st j
in (
dom r) holds (r
. j)
= (a0
. (i,j))
proof
let j be
Nat;
assume
A13: j
in (
dom r);
then (r
. j)
= (a
. (i,j)) by
A12;
hence (r
. j)
= (a0
. (i,j)) by
A8,
A11,
A12,
A13,
ZFMISC_1: 87,
A7,
FUNCT_1: 47;
end;
end;
reconsider m as
Element of
NAT by
ORDINAL1:def 12;
consider an be
FinSequence such that
A14: (
len an)
= m & for j be
Nat st j
in (
dom an) holds (an
. j)
=
F(j) from
FINSEQ_1:sch 2;
A15: (
dom an)
= (
Seg m) by
A14,
FINSEQ_1:def 3;
now
let i be
Nat;
assume
A16: i
in (
dom an);
(n
+ 1)
in (
Seg (n
+ 1)) by
FINSEQ_1: 4;
then
[(n
+ 1), i]
in
[:(
Seg (n
+ 1)), (
Seg m):] by
A16,
A15,
ZFMISC_1: 87;
then (a
. ((n
+ 1),i))
in the
carrier of X by
FUNCT_2: 5;
hence (an
. i)
in the
carrier of X by
A16,
A14;
end;
then
reconsider an as
FinSequence of X by
FINSEQ_2: 12;
A17: (
Sum an)
= (p
. (n
+ 1))
proof
consider r be
FinSequence of X such that
A18: (
dom r)
= (
Seg m) & (p
. (n
+ 1))
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (a
. ((n
+ 1),j)) by
A4,
FINSEQ_1: 4;
now
let j be
Nat;
assume
A19: j
in (
dom r);
then (r
. j)
= (a
. ((n
+ 1),j)) by
A18;
hence (r
. j)
= (an
. j) by
A14,
A15,
A18,
A19;
end;
hence thesis by
A14,
FINSEQ_1:def 3,
A18,
FINSEQ_1: 13;
end;
set q0 = (q
- an);
A20: (
dom q0)
= ((
dom q)
/\ (
dom an)) by
VFUNCT_1:def 2;
then
reconsider q0 = (q
- an) as
FinSequence by
A15,
A5,
FINSEQ_1:def 2;
for i be
Nat st i
in (
dom q0) holds (q0
. i)
in the
carrier of X
proof
let i be
Nat;
assume i
in (
dom q0);
then (q0
. i)
= ((q
- an)
/. i) by
PARTFUN1:def 6;
hence thesis;
end;
then
reconsider q0 as
FinSequence of the
carrier of X by
FINSEQ_2: 12;
A21: (
len q0)
= m by
A5,
A15,
A20,
FINSEQ_1:def 3;
A22:
now
let j be
Nat such that
A23: j
in (
dom q0);
consider s be
FinSequence of X such that
A24: (
dom s)
= (
Seg (n
+ 1)) & (q
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (a
. (i,j)) by
A5,
A15,
A20,
A23;
A25: (s
. (n
+ 1))
= (a
. ((n
+ 1),j)) by
A24,
FINSEQ_1: 4;
reconsider sn = (s
| (
Seg n)) as
FinSequence of X by
FINSEQ_1: 18;
take sn;
A26: (
len s)
= (n
+ 1) by
A24,
FINSEQ_1:def 3;
(an
/. j)
= (an
. j) by
A23,
A15,
A5,
A20,
PARTFUN1:def 6;
then (an
/. j)
= (s
. (n
+ 1)) by
A25,
A14,
A15,
A5,
A20,
A23;
then
A27: (an
/. j)
= (s
. (
len s)) by
A24,
FINSEQ_1:def 3;
thus
A28: (
dom sn)
= (
Seg n) by
A24,
A3,
RELAT_1: 62;
then
A29: (
len s)
= ((
len sn)
+ 1) by
A26,
FINSEQ_1:def 3;
(q
/. j)
= (
Sum s) by
A24,
A23,
A5,
A15,
A20,
PARTFUN1:def 6;
then ((q
/. j)
- (an
/. j))
= (((
Sum sn)
+ (an
/. j))
- (an
/. j)) by
A29,
A28,
RLVECT_1: 38,
A27
.= ((
Sum sn)
+ ((an
/. j)
- (an
/. j))) by
RLVECT_1:def 3;
then ((q
/. j)
- (an
/. j))
= ((
Sum sn)
+ (
0. X)) by
RLVECT_1: 15;
then (q0
/. j)
= (
Sum sn) by
A23,
VFUNCT_1:def 2;
hence (q0
. j)
= (
Sum sn) by
A23,
PARTFUN1:def 6;
thus for i be
Nat st i
in (
dom sn) holds (sn
. i)
= (a0
. (i,j))
proof
let i be
Nat such that
A30: i
in (
dom sn);
(sn
. i)
= (s
. i) by
A30,
FUNCT_1: 47;
then (sn
. i)
= (a
. (i,j)) by
A24,
A28,
A30,
A3;
hence (sn
. i)
= (a0
. (i,j)) by
A5,
A15,
A20,
A23,
A28,
A30,
ZFMISC_1: 87,
A7,
FUNCT_1: 47;
end;
end;
for i be
Nat st 1
<= i & i
<= (
len q) holds (q
/. i)
= ((q0
/. i)
+ (an
/. i))
proof
let i be
Nat;
assume 1
<= i & i
<= (
len q);
then i
in (
dom q) by
FINSEQ_3: 25;
then ((q0
/. i)
+ (an
/. i))
= (((q
/. i)
- (an
/. i))
+ (an
/. i)) by
A5,
A15,
A20,
VFUNCT_1:def 2
.= ((q
/. i)
- ((an
/. i)
- (an
/. i))) by
RLVECT_1: 29;
then ((q0
/. i)
+ (an
/. i))
= ((q
/. i)
- (
0. X)) by
RLVECT_1: 15;
hence thesis;
end;
then
A31: (q0
+ an)
= q by
A5,
A15,
A20,
BINOM:def 1;
(
Sum p)
= ((
Sum p0)
+ (
Sum an)) by
A8,
A6,
A9,
RLVECT_1: 38,
A17;
then (
Sum p)
= ((
Sum q0)
+ (
Sum an)) by
A2,
A10,
A8,
A5,
A15,
A20,
A22;
hence (
Sum p)
= (
Sum q) by
A31,
INTEGR18: 1,
A14,
A21;
end;
hence thesis;
end;
now
let m be
Nat, a be
Function of
[:(
Seg
0 ), (
Seg m):], X;
let p,q be
FinSequence of X such that
A32: (
dom p)
= (
Seg
0 ) and for i be
Nat st i
in (
dom p) holds ex r be
FinSequence of X st ((
dom r)
= (
Seg m) & (p
. i)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (a
. (i,j))) and (
dom q)
= (
Seg m) and
A33: for j be
Nat st j
in (
dom q) holds ex s be
FinSequence of X st ((
dom s)
= (
Seg
0 ) & (q
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (a
. (i,j)));
A34:
now
let z be
object;
assume
A35: z
in (
dom q);
then
reconsider j = z as
Nat;
consider s be
FinSequence of X such that
A36: (
dom s)
= (
Seg
0 ) & (q
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (a
. (i,j)) by
A33,
A35;
s
= (
<*> the
carrier of X) by
A36;
hence (q
. z)
= (
0. X) by
A36,
RLVECT_1: 43;
end;
A37: p
= (
<*> the
carrier of X) by
A32;
A38: (
len q)
= (
len q);
now
let k be
Nat, v be
Element of X;
assume
A39: k
in (
dom q) & v
= (q
. k);
then (q
. k)
= (
0. X) by
A34;
hence (q
. k)
= (
- v) by
A39;
end;
then (
Sum q)
= (
- (
Sum q)) by
A38,
RLVECT_1: 40;
then (
Sum q)
= (
0. X) by
RLVECT_1: 19;
hence (
Sum p)
= (
Sum q) by
RLVECT_1: 43,
A37;
end;
then
A40:
P[
0 ];
thus for n be
Nat holds
P[n] from
NAT_1:sch 2(
A40,
A1);
end;
definition
let A be
Subset of
REAL ;
::
INTEGR20:def2
func
xvol A ->
Real equals
:
Def2:
0 if A is
empty
otherwise (
vol A);
correctness ;
end
reserve n for
Element of
NAT ;
reserve a,b for
Real;
Lm1: for X,Y,Z be non
empty
set, f be
PartFunc of X, Y st Z
c= (
dom f) holds (f
| Z) is
Function of Z, Y
proof
let X,Y,Z be non
empty
set, f be
PartFunc of X, Y;
(
rng f)
c= Y;
then f is
Function of (
dom f), Y by
FUNCT_2: 2;
hence thesis by
FUNCT_2: 32;
end;
theorem ::
INTEGR20:5
Th5: for A be
real-bounded
Subset of
REAL holds
0
<= (
xvol A)
proof
let A be
real-bounded
Subset of
REAL ;
per cases ;
suppose A
<>
{} ;
then
0
<= (
vol A) by
INTEGRA1: 9;
hence
0
<= (
xvol A) by
Def2;
end;
suppose A
=
{} ;
hence
0
<= (
xvol A) by
Def2;
end;
end;
theorem ::
INTEGR20:6
Th6: for A be non
empty
closed_interval
Subset of
REAL , D be
Division of A, q be
FinSequence of
REAL st (
dom q)
= (
Seg (
len D)) & for i be
Nat st i
in (
Seg (
len D)) holds (q
. i)
= (
vol (
divset (D,i))) holds (
Sum q)
= (
vol A)
proof
let A be non
empty
closed_interval
Subset of
REAL , D be
Division of A, q be
FinSequence of
REAL ;
assume
A1: (
dom q)
= (
Seg (
len D)) & for i be
Nat st i
in (
Seg (
len D)) holds (q
. i)
= (
vol (
divset (D,i)));
set p = (
lower_volume ((
chi (A,A)),D));
(
dom q)
= (
Seg (
len D)) by
A1
.= (
Seg (
len p)) by
INTEGRA1:def 7;
then
A2: (
dom q)
= (
dom p) by
FINSEQ_1:def 3;
for k be
Nat st k
in (
dom q) holds (q
. k)
= (p
. k)
proof
let k be
Nat;
assume
A3: k
in (
dom q);
then
A4: (q
. k)
= (
vol (
divset (D,k))) by
A1;
k
in (
dom D) by
A3,
A1,
FINSEQ_1:def 3;
hence thesis by
A4,
INTEGRA1: 19;
end;
then q
= (
lower_volume ((
chi (A,A)),D)) by
A2,
FINSEQ_1: 13;
hence thesis by
INTEGRA1: 23;
end;
theorem ::
INTEGR20:7
Th7: for Y be
RealNormSpace, E be
Point of Y, q be
FinSequence of
REAL , S be
FinSequence of Y st (
len S)
= (
len q) & for i be
Nat st i
in (
dom S) holds ex r be
Real st r
= (q
. i) & (S
. i)
= (r
* E) holds (
Sum S)
= ((
Sum q)
* E)
proof
let Y be
RealNormSpace, E be
Point of Y;
defpred
P[
Nat] means for q be
FinSequence of
REAL , S be
FinSequence of Y st $1
= (
len S) & (
len S)
= (
len q) & for i be
Nat st i
in (
dom S) holds ex r be
Real st r
= (q
. i) & (S
. i)
= (r
* E) holds (
Sum S)
= ((
Sum q)
* E);
A1:
P[
0 ]
proof
let q be
FinSequence of
REAL , S be
FinSequence of Y;
assume
0
= (
len S) & (
len S)
= (
len q) & for i be
Nat st i
in (
dom S) holds ex r be
Real st r
= (q
. i) & (S
. i)
= (r
* E);
then
A2: (
<*> the
carrier of Y)
= S & (
<*>
REAL )
= q;
then ((
Sum q)
* E)
= (
0. Y) by
RLVECT_1: 10,
RVSUM_1: 72;
hence thesis by
A2,
RLVECT_1: 43;
end;
A3:
now
let i be
Nat;
assume
A4:
P[i];
now
let q be
FinSequence of
REAL , S be
FinSequence of Y;
set S0 = (S
| i), q0 = (q
| i);
assume
A5: (i
+ 1)
= (
len S) & (
len S)
= (
len q) & for i be
Nat st i
in (
dom S) holds ex r be
Real st r
= (q
. i) & (S
. i)
= (r
* E);
A6: for k be
Nat st k
in (
dom S0) holds ex r be
Real st r
= (q0
. k) & (S0
. k)
= (r
* E)
proof
let k be
Nat;
assume k
in (
dom S0);
then
A7: k
in (
Seg i) & k
in (
dom S) by
RELAT_1: 57;
then
consider r be
Real such that
A8: r
= (q
. k) & (S
. k)
= (r
* E) by
A5;
take r;
thus thesis by
A8,
A7,
FUNCT_1: 49;
end;
(
dom S)
= (
Seg (i
+ 1)) by
A5,
FINSEQ_1:def 3;
then
consider r be
Real such that
A9: r
= (q
. (i
+ 1)) & (S
. (i
+ 1))
= (r
* E) by
A5,
FINSEQ_1: 4;
A10: 1
<= (i
+ 1) & (i
+ 1)
<= (
len q) by
A5,
NAT_1: 11;
q
= ((q
| i)
^
<*(q
/. (i
+ 1))*>) by
A5,
FINSEQ_5: 21;
then q
= (q0
^
<*(q
. (i
+ 1))*>) by
A10,
FINSEQ_4: 15;
then ((
Sum q)
* E)
= (((
Sum q0)
+ (q
. (i
+ 1)))
* E) by
RVSUM_1: 74;
then
A11: ((
Sum q)
* E)
= (((
Sum q0)
* E)
+ ((q
. (i
+ 1))
* E)) by
RLVECT_1:def 6;
A12: i
= (
len S0) & i
= (
len q0) by
FINSEQ_1: 59,
A5,
NAT_1: 11;
reconsider v = (S
. (i
+ 1)) as
Point of Y by
A9;
S0
= (S
| (
dom S0)) by
FINSEQ_1:def 3,
A12;
then (
Sum S)
= ((
Sum S0)
+ v) by
A5,
A12,
RLVECT_1: 38;
hence (
Sum S)
= ((
Sum q)
* E) by
A9,
A4,
A6,
A12,
A11;
end;
hence
P[(i
+ 1)];
end;
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A1,
A3);
hence thesis;
end;
theorem ::
INTEGR20:8
Th8: for A be non
empty
closed_interval
Subset of
REAL , D be
Division of A, B be non
empty
closed_interval
Subset of
REAL , v be
FinSequence of
REAL st B
c= A & (
len D)
= (
len v) & for i be
Nat st i
in (
dom v) holds (v
. i)
= (
xvol (B
/\ (
divset (D,i)))) holds (
Sum v)
= (
vol B)
proof
defpred
P[
Nat] means for A be non
empty
closed_interval
Subset of
REAL , D be
Division of A, B be non
empty
closed_interval
Subset of
REAL , v be
FinSequence of
REAL st $1
= (
len D) & B
c= A & (
len D)
= (
len v) & for k be
Nat st k
in (
dom v) holds (v
. k)
= (
xvol (B
/\ (
divset (D,k)))) holds (
Sum v)
= (
vol B);
A1:
P[
0 ];
A2: for i be
Nat st
P[i] holds
P[(i
+ 1)]
proof
let i be
Nat;
assume
A3:
P[i];
let A be non
empty
closed_interval
Subset of
REAL , D be
Division of A, B be non
empty
closed_interval
Subset of
REAL , v be
FinSequence of
REAL ;
set D1 = (D
| i), v1 = (v
| i);
assume
A4: (i
+ 1)
= (
len D) & B
c= A & (
len D)
= (
len v) & for k be
Nat st k
in (
dom v) holds (v
. k)
= (
xvol (B
/\ (
divset (D,k))));
A5: (
dom D)
= (
Seg (i
+ 1)) & (
dom D)
= (
dom v) by
A4,
FINSEQ_1:def 3,
FINSEQ_3: 29;
then
A6: (v
. (i
+ 1))
= (
xvol (B
/\ (
divset (D,(i
+ 1))))) by
A4,
FINSEQ_1: 4;
A7: 1
<= (i
+ 1) & (i
+ 1)
<= (
len v) by
A4,
NAT_1: 11;
v
= ((v
| i)
^
<*(v
/. (i
+ 1))*>) by
A4,
FINSEQ_5: 21;
then
A8: v
= (v1
^
<*(v
. (i
+ 1))*>) by
A7,
FINSEQ_4: 15;
A9: (
lower_bound A)
<= (
lower_bound B) & (
upper_bound B)
<= (
upper_bound A) by
A4,
SEQ_4: 47,
SEQ_4: 48;
A10: (
rng D)
c= A by
INTEGRA1:def 2;
A11: (
rng D1)
c= (
rng D) by
RELAT_1: 70;
A12: (
Seg i)
c= (
dom D) by
A5,
FINSEQ_1: 5,
NAT_1: 11;
A13: i
= (
len D1) & i
= (
len v1) by
FINSEQ_1: 59,
A4,
NAT_1: 11;
then
A14: (
dom v1)
= (
Seg i) by
FINSEQ_1:def 3;
per cases ;
suppose
A15: i
<>
0 ;
then
A16: i
in (
dom D) by
A12,
FINSEQ_1: 3;
then
consider A1,A2 be non
empty
closed_interval
Subset of
REAL such that
A17: A1
=
[.(
lower_bound A), (D
. i).] & A2
=
[.(D
. i), (
upper_bound A).] & A
= (A1
\/ A2) by
INTEGRA1: 32;
for y be
object st y
in (
rng D1) holds y
in A1
proof
let y be
object;
assume
A18: y
in (
rng D1);
then y
in A by
A11,
A10;
then y
in
[.(
lower_bound A), (
upper_bound A).] by
INTEGRA1: 4;
then
consider y1 be
Real such that
A19: y
= y1 & (
lower_bound A)
<= y1 & y1
<= (
upper_bound A);
consider x be
object such that
A20: x
in (
dom D1) & y1
= (D1
. x) by
A18,
A19,
FUNCT_1:def 3;
reconsider x as
Nat by
A20;
A21: x
in (
Seg i) by
A13,
FINSEQ_1:def 3,
A20;
then
A22: x
<= i by
FINSEQ_1: 1;
now
assume x
<> i;
then x
< i by
A22,
XXREAL_0: 1;
hence (D
. x)
<= (D
. i) by
A16,
A12,
A21,
VALUED_0:def 13;
end;
then y1
<= (D
. i) by
A20,
A21,
FUNCT_1: 49;
hence y
in A1 by
A19,
A17;
end;
then
A23: (
rng D1)
c= A1;
A24: (D1
. i)
= (D
. i) by
A15,
FINSEQ_1: 3,
FUNCT_1: 49;
for e1,e2 be
ExtReal st e1
in (
dom D1) & e2
in (
dom D1) & e1
< e2 holds (D1
. e1)
< (D1
. e2)
proof
let e1,e2 be
ExtReal;
assume
A25: e1
in (
dom D1) & e2
in (
dom D1) & e1
< e2;
then
A26: e1
in (
Seg i) & e2
in (
Seg i) by
A13,
FINSEQ_1:def 3;
then (D1
. e1)
= (D
. e1) & (D1
. e2)
= (D
. e2) by
FUNCT_1: 49;
hence thesis by
A25,
VALUED_0:def 13,
A26,
A12;
end;
then
reconsider D1 as non
empty
increasing
FinSequence of
REAL by
A15,
VALUED_0:def 13;
A27: A1
=
[.(
lower_bound A1), (
upper_bound A1).] by
INTEGRA1: 4;
then (D1
. (
len D1))
= (
upper_bound A1) by
A13,
A24,
A17,
INTEGRA1: 5;
then
reconsider D1 as
Division of A1 by
A23,
INTEGRA1:def 2;
A28: 1
< (i
+ 1) by
A15,
NAT_1: 16;
(i
+ 1)
in (
dom D) by
A5,
FINSEQ_1: 4;
then
A29: (
lower_bound (
divset (D,(i
+ 1))))
= (D
. ((i
+ 1)
- 1)) & (
upper_bound (
divset (D,(i
+ 1))))
= (D
. (i
+ 1)) by
A28,
INTEGRA1:def 4;
then
A30: B
=
[.(
lower_bound B), (
upper_bound B).] & (
divset (D,(i
+ 1)))
=
[.(D
. i), (D
. (i
+ 1)).] by
INTEGRA1: 4;
A31: (D
. i)
<= (D
. (i
+ 1)) by
A29,
SEQ_4: 11;
per cases ;
suppose
A32: (
upper_bound B)
<= (D
. i);
then
[.(
lower_bound B), (
upper_bound B).]
c=
[.(
lower_bound A), (D
. i).] by
A9,
XXREAL_1: 34;
then
A33: B
c= A1 by
A17,
INTEGRA1: 4;
for k be
Nat st k
in (
dom v1) holds (v1
. k)
= (
xvol (B
/\ (
divset (D1,k))))
proof
let k be
Nat;
assume
A34: k
in (
dom v1);
then
A35: k
in (
Seg i) & k
in (
dom v) by
RELAT_1: 57;
then
A36: (v
. k)
= (v1
. k) by
FUNCT_1: 49;
A37: k
in (
dom D) & k
in (
dom D1) by
A34,
A35,
A13,
A4,
FINSEQ_3: 29;
A38: (
divset (D,k))
=
[.(
lower_bound (
divset (D,k))), (
upper_bound (
divset (D,k))).] & (
divset (D1,k))
=
[.(
lower_bound (
divset (D1,k))), (
upper_bound (
divset (D1,k))).] by
INTEGRA1: 4;
(
divset (D,k))
= (
divset (D1,k))
proof
per cases ;
suppose k
= 1;
then
A39: (
lower_bound (
divset (D,k)))
= (
lower_bound A) & (
upper_bound (
divset (D,k)))
= (D
. k) & (
lower_bound (
divset (D1,k)))
= (
lower_bound A1) & (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A37,
INTEGRA1:def 4;
(
lower_bound A)
= (
lower_bound A1) by
A17,
A27,
INTEGRA1: 5;
hence (
divset (D,k))
= (
divset (D1,k)) by
A39,
A35,
A38,
FUNCT_1: 49;
end;
suppose
A40: k
<> 1;
then
A41: (
lower_bound (
divset (D,k)))
= (D
. (k
- 1)) & (
upper_bound (
divset (D,k)))
= (D
. k) & (
lower_bound (
divset (D1,k)))
= (D1
. (k
- 1)) & (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A37,
INTEGRA1:def 4;
A42: 1
<= k by
A35,
FINSEQ_1: 1;
then (k
- 1)
in
NAT by
INT_1: 5;
then
reconsider k1 = (k
- 1) as
Nat;
1
< k by
A40,
A42,
XXREAL_0: 1;
then (D
. k1)
= (D1
. k1) by
A35,
FINSEQ_3: 12,
FUNCT_1: 49;
hence (
divset (D,k))
= (
divset (D1,k)) by
A41,
A35,
A38,
FUNCT_1: 49;
end;
end;
hence thesis by
A4,
A35,
A36;
end;
then
A43: (
Sum v1)
= (
vol B) by
A3,
A33,
A13;
A44:
[.(D
. i), (
upper_bound B).]
c=
{(D
. i)} by
A32,
XXREAL_1: 85;
(
lower_bound B)
<= (
upper_bound B) by
SEQ_4: 11;
then (
lower_bound B)
<= (D
. i) & (
upper_bound B)
<= (D
. (i
+ 1)) by
A32,
A31,
XXREAL_0: 2;
then
A45: (B
/\ (
divset (D,(i
+ 1))))
c=
{(D
. i)} by
A44,
A30,
XXREAL_1: 143;
reconsider BD = (B
/\ (
divset (D,(i
+ 1)))) as
real-bounded
Subset of
REAL by
XBOOLE_1: 17,
XXREAL_2: 45;
A46: (
xvol (B
/\ (
divset (D,(i
+ 1)))))
<= (
xvol
{(D
. i)})
proof
per cases ;
suppose (B
/\ (
divset (D,(i
+ 1))))
=
{} ;
then (
xvol (B
/\ (
divset (D,(i
+ 1)))))
=
0 by
Def2;
hence (
xvol (B
/\ (
divset (D,(i
+ 1)))))
<= (
xvol
{(D
. i)}) by
Th5;
end;
suppose (B
/\ (
divset (D,(i
+ 1))))
<>
{} ;
then
reconsider BD = (B
/\ (
divset (D,(i
+ 1)))) as non
empty
real-bounded
Subset of
REAL by
XBOOLE_1: 17,
XXREAL_2: 45;
reconsider Di =
{(D
. i)} as non
empty
real-bounded
Subset of
REAL ;
A47: (
xvol BD)
= (
vol BD) & (
xvol
{(D
. i)})
= (
vol
{(D
. i)}) by
Def2;
(
lower_bound Di)
<= (
lower_bound BD) & (
upper_bound BD)
<= (
upper_bound Di) by
A45,
SEQ_4: 47,
SEQ_4: 48;
hence (
xvol (B
/\ (
divset (D,(i
+ 1)))))
<= (
xvol
{(D
. i)}) by
A47,
XREAL_1: 13;
end;
end;
A48: (
vol
{(D
. i)})
= ((
upper_bound
{(D
. i)})
- (
upper_bound
{(D
. i)})) by
SEQ_4: 10;
0
<= (
xvol BD) by
Th5;
then (v
. (i
+ 1))
=
0 by
A6,
A46,
A48,
Def2;
then (
Sum v)
= ((
vol B)
+
0 ) by
A43,
A8,
RVSUM_1: 74;
hence (
Sum v)
= (
vol B);
end;
suppose
A49: (D
. i)
< (
upper_bound B);
per cases ;
suppose
A50: (
lower_bound B)
<= (D
. i);
then
reconsider B1 =
[.(
lower_bound B), (D
. i).], B2 =
[.(D
. i), (
upper_bound B).] as non
empty
closed_interval
Subset of
REAL by
XXREAL_1: 30,
A49,
MEASURE5:def 3;
(B1
\/ B2)
=
[.(
lower_bound B), (
upper_bound B).] by
A50,
A49,
XXREAL_1: 165;
then
A51: (B1
\/ B2)
= B by
INTEGRA1: 4;
B1
=
[.(
lower_bound B1), (
upper_bound B1).] & B2
=
[.(
lower_bound B2), (
upper_bound B2).] by
INTEGRA1: 4;
then
A52: (
lower_bound B)
= (
lower_bound B1) & (D
. i)
= (
upper_bound B1) & (D
. i)
= (
lower_bound B2) & (
upper_bound B)
= (
upper_bound B2) by
INTEGRA1: 5;
for k be
Nat st k
in (
dom v1) holds (v1
. k)
= (
xvol (B1
/\ (
divset (D1,k))))
proof
let k be
Nat;
assume
A53: k
in (
dom v1);
then
A54: k
in (
Seg i) & k
in (
dom v) by
RELAT_1: 57;
then
A55: (v
. k)
= (
xvol (B
/\ (
divset (D,k)))) by
A4;
A56: (v
. k)
= (v1
. k) by
A54,
FUNCT_1: 49;
A57: k
in (
dom D) & k
in (
dom D1) by
A53,
A54,
A4,
A13,
FINSEQ_3: 29;
A58: (
divset (D,k))
=
[.(
lower_bound (
divset (D,k))), (
upper_bound (
divset (D,k))).] & (
divset (D1,k))
=
[.(
lower_bound (
divset (D1,k))), (
upper_bound (
divset (D1,k))).] by
INTEGRA1: 4;
A59: (
divset (D,k))
= (
divset (D1,k))
proof
per cases ;
suppose k
= 1;
then
A60: (
lower_bound (
divset (D,k)))
= (
lower_bound A) & (
upper_bound (
divset (D,k)))
= (D
. k) & (
lower_bound (
divset (D1,k)))
= (
lower_bound A1) & (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A57,
INTEGRA1:def 4;
(
lower_bound A)
= (
lower_bound A1) by
A27,
A17,
INTEGRA1: 5;
hence (
divset (D,k))
= (
divset (D1,k)) by
A60,
A54,
A58,
FUNCT_1: 49;
end;
suppose
A61: k
<> 1;
then
A62: (
lower_bound (
divset (D,k)))
= (D
. (k
- 1)) & (
upper_bound (
divset (D,k)))
= (D
. k) & (
lower_bound (
divset (D1,k)))
= (D1
. (k
- 1)) & (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A57,
INTEGRA1:def 4;
A63: 1
<= k by
A54,
FINSEQ_1: 1;
then (k
- 1)
in
NAT by
INT_1: 5;
then
reconsider k1 = (k
- 1) as
Nat;
1
< k by
A61,
A63,
XXREAL_0: 1;
then (D
. k1)
= (D1
. k1) by
A54,
FINSEQ_3: 12,
FUNCT_1: 49;
hence (
divset (D,k))
= (
divset (D1,k)) by
A62,
A54,
A58,
FUNCT_1: 49;
end;
end;
then
A64: (B1
/\ (
divset (D1,k)))
c= (B
/\ (
divset (D,k))) by
A51,
XBOOLE_1: 7,
XBOOLE_1: 26;
for x be
object st x
in (B
/\ (
divset (D,k))) holds x
in (B1
/\ (
divset (D1,k)))
proof
let x be
object;
assume
A65: x
in (B
/\ (
divset (D,k)));
then
reconsider r = x as
Real;
A66: x
in B & x
in (
divset (D,k)) by
A65,
XBOOLE_0:def 4;
then
A67: ex r0 be
Real st r
= r0 & (
lower_bound B)
<= r0 & r0
<= (
upper_bound B) by
A30;
A68: ex r1 be
Real st r
= r1 & (
lower_bound (
divset (D,k)))
<= r1 & r1
<= (
upper_bound (
divset (D,k))) by
A58,
A66;
A69: k
<= i by
A54,
FINSEQ_1: 1;
A70:
now
assume k
<> i;
then k
< i by
A69,
XXREAL_0: 1;
hence (D
. k)
<= (D
. i) by
A16,
A57,
VALUED_0:def 13;
end;
k
= 1 or k
<> 1;
then (
upper_bound (
divset (D,k)))
<= (D
. i) by
A70,
A57,
INTEGRA1:def 4;
then r
<= (D
. i) by
A68,
XXREAL_0: 2;
then r
in B1 by
A67;
hence x
in (B1
/\ (
divset (D1,k))) by
XBOOLE_0:def 4,
A59,
A66;
end;
then (B
/\ (
divset (D,k)))
c= (B1
/\ (
divset (D1,k)));
hence thesis by
A55,
A56,
A64,
XBOOLE_0:def 10;
end;
then
A71: (
Sum v1)
= (
vol B1) by
A3,
A17,
A9,
XXREAL_1: 34,
A13;
(B
/\ (
divset (D,(i
+ 1))))
= ((B1
/\ (
divset (D,(i
+ 1))))
\/ (B2
/\ (
divset (D,(i
+ 1))))) by
A51,
XBOOLE_1: 23;
then (B
/\ (
divset (D,(i
+ 1))))
= (
[.(D
. i), (D
. i).]
\/ (B2
/\
[.(D
. i), (D
. (i
+ 1)).])) by
A30,
A50,
A31,
XXREAL_1: 143;
then
A72: (B
/\ (
divset (D,(i
+ 1))))
= ((
[.(D
. i), (D
. i).]
\/
[.(D
. i), (
upper_bound B).])
/\ (
[.(D
. i), (D
. i).]
\/
[.(D
. i), (D
. (i
+ 1)).])) by
XBOOLE_1: 24;
(D
. i)
<= (
upper_bound B) by
A52,
SEQ_4: 11;
then
A73: (
[.(D
. i), (D
. i).]
\/
[.(D
. i), (
upper_bound B).])
= B2 by
XXREAL_1: 165;
(
[.(D
. i), (D
. i).]
\/
[.(D
. i), (D
. (i
+ 1)).])
=
[.(D
. i), (D
. (i
+ 1)).] by
A31,
XXREAL_1: 165;
then
A74: (
[.(D
. i), (D
. i).]
\/
[.(D
. i), (D
. (i
+ 1)).])
= (
divset (D,(i
+ 1))) by
A29,
INTEGRA1: 4;
A75: (
upper_bound B)
<= (D
. (i
+ 1)) by
A4,
A9,
INTEGRA1:def 2;
for x be
object st x
in B2 holds x
in (
divset (D,(i
+ 1)))
proof
let x be
object;
assume
A76: x
in B2;
then
reconsider r = x as
Real;
A77: ex r0 be
Real st r
= r0 & (D
. i)
<= r0 & r0
<= (
upper_bound B) by
A76;
r
<= (D
. (i
+ 1)) by
A75,
XXREAL_0: 2,
A77;
hence x
in (
divset (D,(i
+ 1))) by
A30,
A77;
end;
then
A78: B2
c= (
divset (D,(i
+ 1)));
(v
. (i
+ 1))
= (
xvol (B
/\ (
divset (D,(i
+ 1))))) by
A4,
A5,
FINSEQ_1: 4;
then (v
. (i
+ 1))
= (
xvol B2) by
A78,
A74,
A72,
A73,
XBOOLE_1: 28;
then (v
. (i
+ 1))
= (
vol B2) by
Def2;
then (
Sum v)
= ((
vol B1)
+ (
vol B2)) by
A8,
RVSUM_1: 74,
A71;
hence (
Sum v)
= (
vol B) by
A52;
end;
suppose
A79: (D
. i)
< (
lower_bound B);
then
A80:
[.(
lower_bound B), (D
. i).]
=
{} by
XXREAL_1: 29;
reconsider B1 =
[.(
lower_bound B), (D
. i).] as
Subset of
REAL ;
reconsider B2 = B as non
empty
closed_interval
Subset of
REAL ;
now
let k0 be
object;
assume
A81: k0
in (
dom v1);
then
A82: k0
in (
Seg i) & k0
in (
dom v) by
RELAT_1: 57;
reconsider k = k0 as
Nat by
A81;
A83: k
in (
dom D) & k
in (
dom D1) by
A81,
A82,
A4,
A13,
FINSEQ_3: 29;
A84: (
divset (D,k))
=
[.(
lower_bound (
divset (D,k))), (
upper_bound (
divset (D,k))).] & (
divset (D1,k))
=
[.(
lower_bound (
divset (D1,k))), (
upper_bound (
divset (D1,k))).] by
INTEGRA1: 4;
A85: (
divset (D,k))
= (
divset (D1,k))
proof
per cases ;
suppose k
= 1;
then
A86: (
lower_bound (
divset (D,k)))
= (
lower_bound A) & (
upper_bound (
divset (D,k)))
= (D
. k) & (
lower_bound (
divset (D1,k)))
= (
lower_bound A1) & (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A83,
INTEGRA1:def 4;
(
lower_bound A)
= (
lower_bound A1) by
A27,
A17,
INTEGRA1: 5;
hence (
divset (D,k))
= (
divset (D1,k)) by
A84,
A86,
A82,
FUNCT_1: 49;
end;
suppose
A87: k
<> 1;
then
A88: (
lower_bound (
divset (D,k)))
= (D
. (k
- 1)) & (
upper_bound (
divset (D,k)))
= (D
. k) & (
lower_bound (
divset (D1,k)))
= (D1
. (k
- 1)) & (
upper_bound (
divset (D1,k)))
= (D1
. k) by
A83,
INTEGRA1:def 4;
A89: 1
<= k by
A82,
FINSEQ_1: 1;
then (k
- 1)
in
NAT by
INT_1: 5;
then
reconsider k1 = (k
- 1) as
Nat;
1
< k by
A87,
A89,
XXREAL_0: 1;
then (D
. k1)
= (D1
. k1) by
A82,
FINSEQ_3: 12,
FUNCT_1: 49;
hence (
divset (D,k))
= (
divset (D1,k)) by
A88,
A82,
A84,
FUNCT_1: 49;
end;
end;
for x be
object st x
in (B
/\ (
divset (D,k))) holds x
in (B1
/\ (
divset (D1,k)))
proof
let x be
object;
assume
A90: x
in (B
/\ (
divset (D,k)));
then
reconsider r = x as
Real;
A91: x
in B & x
in (
divset (D,k)) by
A90,
XBOOLE_0:def 4;
then
A92: (ex r0 be
Real st r
= r0 & (
lower_bound B)
<= r0 & r0
<= (
upper_bound B)) & (ex r1 be
Real st r
= r1 & (
lower_bound (
divset (D,k)))
<= r1 & r1
<= (
upper_bound (
divset (D,k)))) by
A30,
A84;
k
in (
Seg i) by
A81,
RELAT_1: 57;
then
A93: k
<= i by
FINSEQ_1: 1;
A94:
now
assume k
<> i;
then k
< i by
A93,
XXREAL_0: 1;
hence (D
. k)
<= (D
. i) by
A16,
A83,
VALUED_0:def 13;
end;
k
= 1 or k
<> 1;
then (
upper_bound (
divset (D,k)))
<= (D
. i) by
A94,
A83,
INTEGRA1:def 4;
then r
<= (D
. i) by
A92,
XXREAL_0: 2;
then r
in B1 by
A92;
hence x
in (B1
/\ (
divset (D1,k))) by
XBOOLE_0:def 4,
A85,
A91;
end;
then
A95: (B
/\ (
divset (D,k)))
c= (B1
/\ (
divset (D1,k)));
(v
. k)
= (
xvol (B
/\ (
divset (D,k)))) by
A82,
A4;
then (v
. k0)
=
0 by
Def2,
A80,
A95;
hence (v1
. k0)
=
0 by
A82,
FUNCT_1: 49;
end;
then v1
= ((
dom v1)
-->
0 ) by
FUNCOP_1: 11;
then v1
= (i
|->
0 ) by
A14,
FINSEQ_2:def 2;
then
A96: (
Sum v1)
=
0 by
RVSUM_1: 81;
A97: (
upper_bound B)
<= (D
. (i
+ 1)) by
A4,
A9,
INTEGRA1:def 2;
for x be
object st x
in B2 holds x
in (
divset (D,(i
+ 1)))
proof
let x be
object;
assume
A98: x
in B2;
then
reconsider r = x as
Real;
B
=
[.(
lower_bound B), (
upper_bound B).] by
INTEGRA1: 4;
then ex r0 be
Real st r
= r0 & (
lower_bound B)
<= r0 & r0
<= (
upper_bound B) by
A98;
then (D
. i)
<= r & r
<= (D
. (i
+ 1)) by
A97,
XXREAL_0: 2,
A79;
hence x
in (
divset (D,(i
+ 1))) by
A30;
end;
then
A99: B2
c= (
divset (D,(i
+ 1)));
(v
. (i
+ 1))
= (
xvol (B
/\ (
divset (D,(i
+ 1))))) by
A4,
A5,
FINSEQ_1: 4;
then (v
. (i
+ 1))
= (
xvol B) by
A99,
XBOOLE_1: 28;
then (v
. (i
+ 1))
= (
vol B) by
Def2;
then (
Sum v)
= (
0
+ (
vol B)) by
A8,
RVSUM_1: 74,
A96;
hence (
Sum v)
= (
vol B);
end;
end;
end;
suppose
A100: i
=
0 ;
then
A101: (D
. 1)
= (
upper_bound A) by
A4,
INTEGRA1:def 2;
(
dom D)
= (
Seg 1) by
A100,
A4,
FINSEQ_1:def 3;
then 1
in (
dom D);
then (
lower_bound (
divset (D,1)))
= (
lower_bound A) & (
upper_bound (
divset (D,1)))
= (D
. 1) by
INTEGRA1:def 4;
then (
divset (D,1))
=
[.(
lower_bound A), (
upper_bound A).] by
A101,
INTEGRA1: 4;
then
A102: (
divset (D,1))
= A by
INTEGRA1: 4;
(v
. 1)
= (
xvol (B
/\ (
divset (D,1)))) by
A100,
A4,
A5,
FINSEQ_1: 4;
then (v
. 1)
= (
xvol B) by
A102,
A4,
XBOOLE_1: 28;
then
A103: (v
. 1)
= (
vol B) by
Def2;
(
Sum v)
= ((
Sum v1)
+ (v
. 1)) by
A100,
A8,
RVSUM_1: 74;
then (
Sum v)
= (
0
+ (
vol B)) by
A100,
RVSUM_1: 72,
A103;
hence (
Sum v)
= (
vol B);
end;
end;
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
Lm2: for Y be
RealNormSpace, xseq,yseq be
FinSequence of Y st (
len xseq)
= ((
len yseq)
+ 1) & (xseq
| (
len yseq))
= yseq holds ex v be
Point of Y st v
= (xseq
/. (
len xseq)) & (
Sum xseq)
= ((
Sum yseq)
+ v)
proof
let Y be
RealNormSpace;
let xseq,yseq be
FinSequence of Y;
assume
A1: (
len xseq)
= ((
len yseq)
+ 1) & (xseq
| (
len yseq))
= yseq;
take v = (xseq
/. (
len xseq));
(
len xseq)
in (
Seg (
len xseq)) by
A1,
FINSEQ_1: 4;
then (
len xseq)
in (
dom xseq) by
FINSEQ_1:def 3;
then
A2: v
= (xseq
. (
len xseq)) by
PARTFUN1:def 6;
(xseq
| (
len yseq))
= (xseq
| (
dom yseq)) by
FINSEQ_1:def 3;
hence thesis by
A1,
A2,
RLVECT_1: 38;
end;
theorem ::
INTEGR20:9
Th9: for Y be
RealNormSpace, xseq be
FinSequence of Y, yseq be
FinSequence of
REAL st (
len xseq)
= (
len yseq) & (for i be
Element of
NAT st i
in (
dom xseq) holds ex v be
Point of Y st v
= (xseq
/. i) & (yseq
. i)
=
||.v.||) holds
||.(
Sum xseq).||
<= (
Sum yseq)
proof
let Y be
RealNormSpace;
defpred
P[
Nat] means for xseq be
FinSequence of Y, yseq be
FinSequence of
REAL st $1
= (
len xseq) & (
len xseq)
= (
len yseq) & (for i be
Element of
NAT st i
in (
dom xseq) holds ex v be
Point of Y st v
= (xseq
/. i) & (yseq
. i)
=
||.v.||) holds
||.(
Sum xseq).||
<= (
Sum yseq);
A1:
P[
0 ]
proof
let xseq be
FinSequence of Y, yseq be
FinSequence of
REAL ;
assume
A2:
0
= (
len xseq) & (
len xseq)
= (
len yseq) & (for i be
Element of
NAT st i
in (
dom xseq) holds ex v be
Point of Y st v
= (xseq
/. i) & (yseq
. i)
=
||.v.||);
then (
<*> the
carrier of Y)
= xseq;
then (
Sum xseq)
= (
0. Y) & (
<*>
REAL )
= yseq by
A2,
RLVECT_1: 43;
hence thesis by
RVSUM_1: 72;
end;
A3:
now
let i be
Nat;
assume
A4:
P[i];
now
let xseq be
FinSequence of Y, yseq be
FinSequence of
REAL ;
set xseq0 = (xseq
| i), yseq0 = (yseq
| i);
assume
A5: (i
+ 1)
= (
len xseq) & (
len xseq)
= (
len yseq) & (for i be
Element of
NAT st i
in (
dom xseq) holds ex v be
Point of Y st v
= (xseq
/. i) & (yseq
. i)
=
||.v.||);
A6: for k be
Element of
NAT st k
in (
dom xseq0) holds ex v be
Point of Y st v
= (xseq0
/. k) & (yseq0
. k)
=
||.v.||
proof
let k be
Element of
NAT ;
assume
A7: k
in (
dom xseq0);
then
A8: k
in (
Seg i) & k
in (
dom xseq) by
RELAT_1: 57;
then
consider v be
Point of Y such that
A9: v
= (xseq
/. k) & (yseq
. k)
=
||.v.|| by
A5;
take v;
(xseq
/. k)
= (xseq
. k) by
A8,
PARTFUN1:def 6;
then (xseq
/. k)
= (xseq0
. k) by
A8,
FUNCT_1: 49;
hence thesis by
A9,
A8,
A7,
PARTFUN1:def 6,
FUNCT_1: 49;
end;
(
dom xseq)
= (
Seg (i
+ 1)) by
A5,
FINSEQ_1:def 3;
then
consider w be
Point of Y such that
A10: w
= (xseq
/. (i
+ 1)) & (yseq
. (i
+ 1))
=
||.w.|| by
A5,
FINSEQ_1: 4;
A11: 1
<= (i
+ 1) & (i
+ 1)
<= (
len yseq) by
A5,
NAT_1: 11;
yseq
= ((yseq
| i)
^
<*(yseq
/. (i
+ 1))*>) by
A5,
FINSEQ_5: 21;
then yseq
= (yseq0
^
<*(yseq
. (i
+ 1))*>) by
A11,
FINSEQ_4: 15;
then
A12: (
Sum yseq)
= ((
Sum yseq0)
+ (yseq
. (i
+ 1))) by
RVSUM_1: 74;
A13: i
= (
len xseq0) by
A5,
FINSEQ_1: 59,
NAT_1: 11;
then
A14: ex v be
Point of Y st v
= (xseq
/. (
len xseq)) & (
Sum xseq)
= ((
Sum xseq0)
+ v) by
A5,
Lm2;
A15:
||.((
Sum xseq0)
+ w).||
<= (
||.(
Sum xseq0).||
+
||.w.||) by
NORMSP_1:def 1;
(
len xseq0)
= (
len yseq0) by
A5,
A13,
FINSEQ_1: 59,
NAT_1: 11;
then (
||.(
Sum xseq0).||
+
||.w.||)
<= ((
Sum yseq0)
+ (yseq
. (i
+ 1))) by
A10,
XREAL_1: 6,
A4,
A6,
A13;
hence
||.(
Sum xseq).||
<= (
Sum yseq) by
A5,
A10,
A12,
A14,
A15,
XXREAL_0: 2;
end;
hence
P[(i
+ 1)];
end;
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A1,
A3);
hence thesis;
end;
theorem ::
INTEGR20:10
Th10: for Y be
RealNormSpace, p be
FinSequence of Y, q be
FinSequence of
REAL st (
len p)
= (
len q) & (for j be
Nat st j
in (
dom p) holds
||.(p
/. j).||
<= (q
. j)) holds
||.(
Sum p).||
<= (
Sum q)
proof
let Y be
RealNormSpace;
let p be
FinSequence of Y, q be
FinSequence of
REAL ;
assume
A1: (
len p)
= (
len q) & (for j be
Nat st j
in (
dom p) holds
||.(p
/. j).||
<= (q
. j));
defpred
P1[
Nat,
set] means ex v be
Point of Y st v
= (p
/. $1) & $2
=
||.v.||;
A2: for i be
Nat st i
in (
Seg (
len p)) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len p));
reconsider w =
||.(p
/. i).|| as
Element of
REAL ;
take w;
thus thesis;
end;
consider u be
FinSequence of
REAL such that
A3: (
dom u)
= (
Seg (
len p)) & for i be
Nat st i
in (
Seg (
len p)) holds
P1[i, (u
. i)] from
FINSEQ_1:sch 5(
A2);
A4: for i be
Element of
NAT st i
in (
dom p) holds ex v be
Point of Y st v
= (p
/. i) & (u
. i)
=
||.v.||
proof
let i be
Element of
NAT ;
assume i
in (
dom p);
then i
in (
Seg (
len p)) by
FINSEQ_1:def 3;
hence ex v be
Point of Y st v
= (p
/. i) & (u
. i)
=
||.v.|| by
A3;
end;
A5: (
len u)
= (
len p) by
A3,
FINSEQ_1:def 3;
then
A6:
||.(
Sum p).||
<= (
Sum u) by
A4,
Th9;
set i = (
len p);
reconsider uu = u as
Element of (i
-tuples_on
REAL ) by
A5,
FINSEQ_2: 92;
reconsider qq = q as
Element of (i
-tuples_on
REAL ) by
A1,
FINSEQ_2: 92;
now
let j be
Nat;
assume j
in (
Seg i);
then
A7: j
in (
dom p) by
FINSEQ_1:def 3;
then ex v be
Point of Y st v
= (p
/. j) & (u
. j)
=
||.v.|| by
A4;
hence (uu
. j)
<= (qq
. j) by
A7,
A1;
end;
then (
Sum uu)
<= (
Sum qq) by
RVSUM_1: 82;
hence thesis by
A6,
XXREAL_0: 2;
end;
theorem ::
INTEGR20:11
Th11: for j be
Element of
NAT holds for A be non
empty
closed_interval
Subset of
REAL holds for D1 be
Division of A st j
in (
dom D1) holds (
vol (
divset (D1,j)))
<= (
delta D1)
proof
let j be
Element of
NAT ;
let A be non
empty
closed_interval
Subset of
REAL ;
let D1 be
Division of A;
assume
A1: j
in (
dom D1);
then j
in (
Seg (
len D1)) by
FINSEQ_1:def 3;
then j
in (
Seg (
len (
upper_volume ((
chi (A,A)),D1)))) by
INTEGRA1:def 6;
then j
in (
dom (
upper_volume ((
chi (A,A)),D1))) by
FINSEQ_1:def 3;
then ((
upper_volume ((
chi (A,A)),D1))
. j)
in (
rng (
upper_volume ((
chi (A,A)),D1))) by
FUNCT_1:def 3;
then ((
upper_volume ((
chi (A,A)),D1))
. j)
<= (
max (
rng (
upper_volume ((
chi (A,A)),D1)))) by
XXREAL_2:def 8;
hence (
vol (
divset (D1,j)))
<= (
delta D1) by
A1,
INTEGRA1: 20;
end;
theorem ::
INTEGR20:12
Th12: for A be non
empty
closed_interval
Subset of
REAL , D be
Division of A, r be
Real st (
delta D)
< r holds for i be
Nat, s,t be
Real st i
in (
dom D) & s
in (
divset (D,i)) & t
in (
divset (D,i)) holds
|.(s
- t).|
< r
proof
let A be non
empty
closed_interval
Subset of
REAL , D be
Division of A, r be
Real;
assume
A1: (
delta D)
< r;
let i be
Nat, s,t be
Real;
assume
A2: i
in (
dom D) & s
in (
divset (D,i)) & t
in (
divset (D,i));
then (
vol (
divset (D,i)))
<= (
delta D) by
Th11;
then
A3: ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i))))
< r by
A1,
XXREAL_0: 2;
s
<= (
upper_bound (
divset (D,i))) & t
<= (
upper_bound (
divset (D,i))) & (
lower_bound (
divset (D,i)))
<= s & (
lower_bound (
divset (D,i)))
<= t by
A2,
SEQ_4:def 1,
SEQ_4:def 2;
then
A4: (t
- s)
<= ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i)))) & (s
- t)
<= ((
upper_bound (
divset (D,i)))
- (
lower_bound (
divset (D,i)))) by
XREAL_1: 13;
per cases ;
suppose s
< t;
then (s
- t)
< (t
- t) by
XREAL_1: 14;
then
|.(s
- t).|
= (
- (s
- t)) by
ABSVALUE:def 1;
hence
|.(s
- t).|
< r by
A3,
A4,
XXREAL_0: 2;
end;
suppose not s
< t;
then (t
- t)
<= (s
- t) by
XREAL_1: 9;
then
|.(s
- t).|
= (s
- t) by
ABSVALUE:def 1;
hence
|.(s
- t).|
< r by
A3,
A4,
XXREAL_0: 2;
end;
end;
theorem ::
INTEGR20:13
Th13: for X be
RealBanachSpace, A be non
empty
closed_interval
Subset of
REAL , h be
Function of A, the
carrier of X st for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x1,x2 be
Real st x1
in (
dom h) & x2
in (
dom h) &
|.(x1
- x2).|
< s holds
||.((h
/. x1)
- (h
/. x2)).||
< r holds for T be
DivSequence of A, S be
middle_volume_Sequence of h, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (h,S)) is
convergent
proof
let X be
RealBanachSpace, A be non
empty
closed_interval
Subset of
REAL , h be
Function of A, the
carrier of X;
assume
A1: for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x1,x2 be
Real st x1
in (
dom h) & x2
in (
dom h) &
|.(x1
- x2).|
< s holds
||.((h
/. x1)
- (h
/. x2)).||
< r;
thus for T be
DivSequence of A, S be
middle_volume_Sequence of h, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (h,S)) is
convergent
proof
let T be
DivSequence of A, S be
middle_volume_Sequence of h, T;
assume
A2: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
defpred
P[
Element of
NAT ,
set] means ex p be
FinSequence of
REAL st p
= $2 & (
len p)
= (
len (T
. $1)) & for i be
Nat st i
in (
dom (T
. $1)) holds (p
. i)
in (
dom (h
| (
divset ((T
. $1),i)))) & ex z be
Point of X st z
= ((h
| (
divset ((T
. $1),i)))
. (p
. i)) & ((S
. $1)
. i)
= ((
vol (
divset ((T
. $1),i)))
* z);
A3: for k be
Element of
NAT holds ex p be
Element of (
REAL
* ) st
P[k, p]
proof
let k be
Element of
NAT ;
defpred
P1[
Nat,
set] means $2
in (
dom (h
| (
divset ((T
. k),$1)))) & ex c be
Point of X st c
= ((h
| (
divset ((T
. k),$1)))
. $2) & ((S
. k)
. $1)
= ((
vol (
divset ((T
. k),$1)))
* c);
A4: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A5: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
then
consider c be
Point of X such that
A6: c
in (
rng (h
| (
divset ((T
. k),i)))) & ((S
. k)
. i)
= ((
vol (
divset ((T
. k),i)))
* c) by
INTEGR18:def 1;
consider x be
object such that
A7: x
in (
dom (h
| (
divset ((T
. k),i)))) & c
= ((h
| (
divset ((T
. k),i)))
. x) by
A6,
FUNCT_1:def 3;
x
in (
dom h) & x
in (
divset ((T
. k),i)) by
A7,
RELAT_1: 57;
then
reconsider x as
Element of
REAL ;
take x;
thus thesis by
A6,
A7;
end;
consider p be
FinSequence of
REAL such that
A8: (
dom p)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P1[i, (p
. i)] from
FINSEQ_1:sch 5(
A5);
take p;
(
len p)
= (
len (T
. k)) by
A8,
FINSEQ_1:def 3;
hence thesis by
A8,
A4,
FINSEQ_1:def 11;
end;
consider Fn be
sequence of (
REAL
* ) such that
A9: for x be
Element of
NAT holds
P[x, (Fn
. x)] from
FUNCT_2:sch 3(
A3);
consider Fm be
sequence of (
REAL
* ) such that
A10: for x be
Element of
NAT holds
P[x, (Fm
. x)] from
FUNCT_2:sch 3(
A3);
A11:
0
<= (
vol A) by
INTEGRA1: 9;
now
let p be
Real;
set pp2 = (p
/ 2);
set pv = (pp2
/ ((
vol A)
+ 1));
assume p
>
0 ;
then
A12:
0
< pp2 & pp2
< p by
XREAL_1: 215,
XREAL_1: 216;
then
A13:
0
< pv by
A11,
XREAL_1: 139;
then (pv
* (
vol A))
< (pv
* ((
vol A)
+ 1)) by
XREAL_1: 29,
XREAL_1: 68;
then (pv
* (
vol A))
< pp2 by
A11,
XCMPLX_1: 87;
then
A14: (pv
* (
vol A))
< p by
A12,
XXREAL_0: 2;
set p2v = (pv
/ 2);
consider sk be
Real such that
A15:
0
< sk & for x1,x2 be
Real st x1
in (
dom h) & x2
in (
dom h) &
|.(x1
- x2).|
< sk holds
||.((h
/. x1)
- (h
/. x2)).||
< p2v by
A1,
A13,
XREAL_1: 215;
consider k be
Nat such that
A16: for i be
Nat st k
<= i holds
|.(((
delta T)
. i)
-
0 ).|
< sk by
A15,
A2,
SEQ_2:def 7;
take k;
let n,m be
Nat;
A17: n
in
NAT & m
in
NAT by
ORDINAL1:def 12;
assume n
>= k & m
>= k;
then
|.(((
delta T)
. n)
-
0 ).|
< sk &
|.(((
delta T)
. m)
-
0 ).|
< sk by
A16;
then
|.(
delta (T
. n)).|
< sk &
|.(
delta (T
. m)).|
< sk by
INTEGRA3:def 2,
A17;
then
A18: (
delta (T
. n))
< sk & (
delta (T
. m))
< sk by
INTEGRA3: 9,
ABSVALUE:def 1;
A19: ((
middle_sum (h,S))
. n)
= (
middle_sum (h,(S
. n))) & ((
middle_sum (h,S))
. m)
= (
middle_sum (h,(S
. m))) by
INTEGR18:def 4;
consider p1 be
FinSequence of
REAL such that
A20: p1
= (Fn
. n) & (
len p1)
= (
len (T
. n)) & for i be
Nat st i
in (
dom (T
. n)) holds (p1
. i)
in (
dom (h
| (
divset ((T
. n),i)))) & ex z be
Point of X st z
= ((h
| (
divset ((T
. n),i)))
. (p1
. i)) & ((S
. n)
. i)
= ((
vol (
divset ((T
. n),i)))
* z) by
A9,
A17;
consider p2 be
FinSequence of
REAL such that
A21: p2
= (Fm
. m) & (
len p2)
= (
len (T
. m)) & for i be
Nat st i
in (
dom (T
. m)) holds (p2
. i)
in (
dom (h
| (
divset ((T
. m),i)))) & ex z be
Point of X st z
= ((h
| (
divset ((T
. m),i)))
. (p2
. i)) & ((S
. m)
. i)
= ((
vol (
divset ((T
. m),i)))
* z) by
A10,
A17;
defpred
H1[
object,
object,
object] means ex i,j be
Nat, z be
Point of X st $1
= i & $2
= j & z
= ((h
| (
divset ((T
. n),i)))
. (p1
. i)) & $3
= ((
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
* z);
A22: for x,y be
object st x
in (
Seg (
len (T
. n))) & y
in (
Seg (
len (T
. m))) holds ex w be
object st w
in the
carrier of X &
H1[x, y, w]
proof
let x,y be
object;
assume
A23: x
in (
Seg (
len (T
. n))) & y
in (
Seg (
len (T
. m)));
then
reconsider i = x, j = y as
Nat;
i
in (
dom (T
. n)) by
FINSEQ_1:def 3,
A23;
then
consider z be
Point of X such that
A24: z
= ((h
| (
divset ((T
. n),i)))
. (p1
. i)) & ((S
. n)
. i)
= ((
vol (
divset ((T
. n),i)))
* z) by
A20;
((
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
* z)
in the
carrier of X;
hence thesis by
A24;
end;
consider Snm be
Function of
[:(
Seg (
len (T
. n))), (
Seg (
len (T
. m))):], the
carrier of X such that
A25: for x,y be
object st x
in (
Seg (
len (T
. n))) & y
in (
Seg (
len (T
. m))) holds
H1[x, y, (Snm
. (x,y))] from
BINOP_1:sch 1(
A22);
A26: for i,j be
Nat st i
in (
Seg (
len (T
. n))) & j
in (
Seg (
len (T
. m))) holds ex z be
Point of X st z
= ((h
| (
divset ((T
. n),i)))
. (p1
. i)) & (Snm
. (i,j))
= ((
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
* z)
proof
let i,j be
Nat;
assume i
in (
Seg (
len (T
. n))) & j
in (
Seg (
len (T
. m)));
then ex i1,j1 be
Nat, z be
Point of X st i
= i1 & j
= j1 & z
= ((h
| (
divset ((T
. n),i1)))
. (p1
. i1)) & (Snm
. (i,j))
= ((
xvol ((
divset ((T
. n),i1))
/\ (
divset ((T
. m),j1))))
* z) by
A25;
hence thesis;
end;
defpred
P1[
Nat,
object] means ex r be
FinSequence of X st (
dom r)
= (
Seg (
len (T
. m))) & $2
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (Snm
. ($1,j));
A27: for k be
Nat st k
in (
Seg (
len (T
. n))) holds ex x be
object st
P1[k, x]
proof
let k be
Nat;
assume
A28: k
in (
Seg (
len (T
. n)));
deffunc
G(
set) = (Snm
. (k,$1));
consider r be
FinSequence such that
A29: (
len r)
= (
len (T
. m)) and
A30: for j be
Nat st j
in (
dom r) holds (r
. j)
=
G(j) from
FINSEQ_1:sch 2;
A31: (
dom r)
= (
Seg (
len (T
. m))) by
A29,
FINSEQ_1:def 3;
for j be
Nat st j
in (
dom r) holds (r
. j)
in the
carrier of X
proof
let j be
Nat;
assume
A32: j
in (
dom r);
then
[k, j]
in
[:(
Seg (
len (T
. n))), (
Seg (
len (T
. m))):] by
A31,
A28,
ZFMISC_1: 87;
then (Snm
. (k,j))
in the
carrier of X by
FUNCT_2: 5;
hence thesis by
A30,
A32;
end;
then
reconsider r as
FinSequence of X by
FINSEQ_2: 12;
take x = (
Sum r);
thus thesis by
A30,
A31;
end;
consider Xp be
FinSequence such that
A33: (
dom Xp)
= (
Seg (
len (T
. n))) & for k be
Nat st k
in (
Seg (
len (T
. n))) holds
P1[k, (Xp
. k)] from
FINSEQ_1:sch 1(
A27);
for i be
Nat st i
in (
dom Xp) holds (Xp
. i)
in the
carrier of X
proof
let i be
Nat;
assume i
in (
dom Xp);
then ex r be
FinSequence of X st (
dom r)
= (
Seg (
len (T
. m))) & (Xp
. i)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (Snm
. (i,j)) by
A33;
hence thesis;
end;
then
reconsider Xp as
FinSequence of X by
FINSEQ_2: 12;
A34: (
len Xp)
= (
len (T
. n)) by
FINSEQ_1:def 3,
A33;
for k be
Nat st 1
<= k & k
<= (
len Xp) holds (Xp
. k)
= ((S
. n)
. k)
proof
let k be
Nat;
assume 1
<= k & k
<= (
len Xp);
then
A35: k
in (
Seg (
len Xp)) & k
in (
Seg (
len (T
. n))) by
A34;
then
A36: k
in (
dom Xp) & k
in (
dom (T
. n)) by
FINSEQ_1:def 3;
then
consider z be
Point of X such that
A37: z
= ((h
| (
divset ((T
. n),k)))
. (p1
. k)) & ((S
. n)
. k)
= ((
vol (
divset ((T
. n),k)))
* z) by
A20;
consider r be
FinSequence of X such that
A38: (
dom r)
= (
Seg (
len (T
. m))) & (Xp
. k)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (Snm
. (k,j)) by
A35,
A33;
defpred
P11[
Nat,
set] means $2
= (
xvol ((
divset ((T
. n),k))
/\ (
divset ((T
. m),$1))));
A39: for i be
Nat st i
in (
Seg (
len r)) holds ex x be
Element of
REAL st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len r));
(
xvol ((
divset ((T
. n),k))
/\ (
divset ((T
. m),i))))
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider vtntm be
FinSequence of
REAL such that
A40: (
dom vtntm)
= (
Seg (
len r)) & for i be
Nat st i
in (
Seg (
len r)) holds
P11[i, (vtntm
. i)] from
FINSEQ_1:sch 5(
A39);
A41: (
dom vtntm)
= (
dom r) & for j be
Nat st j
in (
dom vtntm) holds (vtntm
. j)
= (
xvol ((
divset ((T
. n),k))
/\ (
divset ((T
. m),j)))) by
A40,
FINSEQ_1:def 3;
A42: (
len vtntm)
= (
len r) & (
len (T
. m))
= (
len r) by
A38,
A40,
FINSEQ_1:def 3;
then
A43: (
Sum vtntm)
= (
vol (
divset ((T
. n),k))) by
Th8,
A40,
A36,
INTEGRA1: 8;
for j be
Nat st j
in (
dom r) holds ex x be
Real st x
= (vtntm
. j) & (r
. j)
= (x
* z)
proof
let j be
Nat;
assume
A44: j
in (
dom r);
then
A45: ex w be
Point of X st w
= ((h
| (
divset ((T
. n),k)))
. (p1
. k)) & (Snm
. (k,j))
= ((
xvol ((
divset ((T
. n),k))
/\ (
divset ((T
. m),j))))
* w) by
A26,
A35,
A38;
take (vtntm
. j);
(r
. j)
= ((
xvol ((
divset ((T
. n),k))
/\ (
divset ((T
. m),j))))
* z) by
A37,
A45,
A44,
A38;
hence thesis by
A41,
A44;
end;
hence thesis by
A37,
A38,
A43,
Th7,
A42;
end;
then
A46: Xp
= (S
. n) by
INTEGR18:def 1,
A34;
defpred
P2[
Nat,
object] means ex s be
FinSequence of X st (
dom s)
= (
Seg (
len (T
. n))) & $2
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (Snm
. (i,$1));
A47: for k be
Nat st k
in (
Seg (
len (T
. m))) holds ex x be
object st
P2[k, x]
proof
let k be
Nat;
assume
A48: k
in (
Seg (
len (T
. m)));
deffunc
G(
set) = (Snm
. ($1,k));
consider s be
FinSequence such that
A49: (
len s)
= (
len (T
. n)) and
A50: for i be
Nat st i
in (
dom s) holds (s
. i)
=
G(i) from
FINSEQ_1:sch 2;
A51: (
dom s)
= (
Seg (
len (T
. n))) by
A49,
FINSEQ_1:def 3;
for i be
Nat st i
in (
dom s) holds (s
. i)
in the
carrier of X
proof
let i be
Nat;
assume
A52: i
in (
dom s);
then
[i, k]
in
[:(
Seg (
len (T
. n))), (
Seg (
len (T
. m))):] by
A51,
A48,
ZFMISC_1: 87;
then (Snm
. (i,k))
in the
carrier of X by
FUNCT_2: 5;
hence thesis by
A50,
A52;
end;
then
reconsider s as
FinSequence of X by
FINSEQ_2: 12;
take x = (
Sum s);
thus thesis by
A50,
A51;
end;
consider Xq be
FinSequence such that
A53: (
dom Xq)
= (
Seg (
len (T
. m))) & for k be
Nat st k
in (
Seg (
len (T
. m))) holds
P2[k, (Xq
. k)] from
FINSEQ_1:sch 1(
A47);
for j be
Nat st j
in (
dom Xq) holds (Xq
. j)
in the
carrier of X
proof
let j be
Nat;
assume j
in (
dom Xq);
then ex s be
FinSequence of X st (
dom s)
= (
Seg (
len (T
. n))) & (Xq
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (Snm
. (i,j)) by
A53;
hence thesis;
end;
then
reconsider Xq as
FinSequence of X by
FINSEQ_2: 12;
defpred
H2[
object,
object,
object] means ex i,j be
Nat, z be
Point of X st $1
= i & $2
= j & z
= ((h
| (
divset ((T
. m),j)))
. (p2
. j)) & $3
= ((
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
* z);
A54: for x,y be
object st x
in (
Seg (
len (T
. n))) & y
in (
Seg (
len (T
. m))) holds ex w be
object st w
in the
carrier of X &
H2[x, y, w]
proof
let x,y be
object;
assume
A55: x
in (
Seg (
len (T
. n))) & y
in (
Seg (
len (T
. m)));
then
reconsider i = x, j = y as
Nat;
j
in (
dom (T
. m)) by
FINSEQ_1:def 3,
A55;
then
consider z be
Point of X such that
A56: z
= ((h
| (
divset ((T
. m),j)))
. (p2
. j)) & ((S
. m)
. j)
= ((
vol (
divset ((T
. m),j)))
* z) by
A21;
((
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
* z)
in the
carrier of X;
hence thesis by
A56;
end;
consider Smn be
Function of
[:(
Seg (
len (T
. n))), (
Seg (
len (T
. m))):], the
carrier of X such that
A57: for x,y be
object st x
in (
Seg (
len (T
. n))) & y
in (
Seg (
len (T
. m))) holds
H2[x, y, (Smn
. (x,y))] from
BINOP_1:sch 1(
A54);
A58: for i,j be
Nat st i
in (
Seg (
len (T
. n))) & j
in (
Seg (
len (T
. m))) holds ex z be
Point of X st z
= ((h
| (
divset ((T
. m),j)))
. (p2
. j)) & (Smn
. (i,j))
= ((
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
* z)
proof
let i,j be
Nat;
assume i
in (
Seg (
len (T
. n))) & j
in (
Seg (
len (T
. m)));
then ex i1,j1 be
Nat, z be
Point of X st i
= i1 & j
= j1 & z
= ((h
| (
divset ((T
. m),j1)))
. (p2
. j1)) & (Smn
. (i,j))
= ((
xvol ((
divset ((T
. n),i1))
/\ (
divset ((T
. m),j1))))
* z) by
A57;
hence thesis;
end;
defpred
P3[
Nat,
object] means ex s be
FinSequence of X st (
dom s)
= (
Seg (
len (T
. n))) & $2
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (Smn
. (i,$1));
A59: for k be
Nat st k
in (
Seg (
len (T
. m))) holds ex x be
object st
P3[k, x]
proof
let k be
Nat;
assume
A60: k
in (
Seg (
len (T
. m)));
deffunc
G(
set) = (Smn
. ($1,k));
consider s be
FinSequence such that
A61: (
len s)
= (
len (T
. n)) and
A62: for i be
Nat st i
in (
dom s) holds (s
. i)
=
G(i) from
FINSEQ_1:sch 2;
A63: (
dom s)
= (
Seg (
len (T
. n))) by
A61,
FINSEQ_1:def 3;
for i be
Nat st i
in (
dom s) holds (s
. i)
in the
carrier of X
proof
let i be
Nat;
assume
A64: i
in (
dom s);
then
[i, k]
in
[:(
Seg (
len (T
. n))), (
Seg (
len (T
. m))):] by
A63,
A60,
ZFMISC_1: 87;
then (Smn
. (i,k))
in the
carrier of X by
FUNCT_2: 5;
hence thesis by
A62,
A64;
end;
then
reconsider s as
FinSequence of X by
FINSEQ_2: 12;
take x = (
Sum s);
thus thesis by
A62,
A63;
end;
consider Zq be
FinSequence such that
A65: (
dom Zq)
= (
Seg (
len (T
. m))) & for k be
Nat st k
in (
Seg (
len (T
. m))) holds
P3[k, (Zq
. k)] from
FINSEQ_1:sch 1(
A59);
for j be
Nat st j
in (
dom Zq) holds (Zq
. j)
in the
carrier of X
proof
let j be
Nat;
assume j
in (
dom Zq);
then ex s be
FinSequence of X st (
dom s)
= (
Seg (
len (T
. n))) & (Zq
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (Smn
. (i,j)) by
A65;
hence thesis;
end;
then
reconsider Zq as
FinSequence of X by
FINSEQ_2: 12;
A66: (
len Zq)
= (
len (T
. m)) by
FINSEQ_1:def 3,
A65;
for k be
Nat st 1
<= k & k
<= (
len Zq) holds (Zq
. k)
= ((S
. m)
. k)
proof
let k be
Nat;
assume
A67: 1
<= k & k
<= (
len Zq);
then
consider s be
FinSequence of X such that
A68: (
dom s)
= (
Seg (
len (T
. n))) & (Zq
. k)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (Smn
. (i,k)) by
A65,
FINSEQ_3: 25;
A69: k
in (
Seg (
len (T
. m))) by
A67,
A66;
A70: k
in (
dom (T
. m)) by
A67,
A66,
FINSEQ_3: 25;
then
consider z be
Point of X such that
A71: z
= ((h
| (
divset ((T
. m),k)))
. (p2
. k)) & ((S
. m)
. k)
= ((
vol (
divset ((T
. m),k)))
* z) by
A21;
defpred
P11[
Nat,
set] means $2
= (
xvol ((
divset ((T
. n),$1))
/\ (
divset ((T
. m),k))));
A72: for i be
Nat st i
in (
Seg (
len s)) holds ex x be
Element of
REAL st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len s));
(
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),k))))
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider vtntm be
FinSequence of
REAL such that
A73: (
dom vtntm)
= (
Seg (
len s)) & for i be
Nat st i
in (
Seg (
len s)) holds
P11[i, (vtntm
. i)] from
FINSEQ_1:sch 5(
A72);
A74: (
dom vtntm)
= (
dom s) & (
len vtntm)
= (
len s) by
A73,
FINSEQ_1:def 3;
A75: for j be
Nat st j
in (
dom vtntm) holds (vtntm
. j)
= (
xvol ((
divset ((T
. m),k))
/\ (
divset ((T
. n),j)))) by
A73;
(
len s)
= (
len (T
. n)) by
A68,
FINSEQ_1:def 3;
then
A76: (
Sum vtntm)
= (
vol (
divset ((T
. m),k))) by
Th8,
A75,
A74,
A70,
INTEGRA1: 8;
for j be
Nat st j
in (
dom s) holds ex x be
Real st x
= (vtntm
. j) & (s
. j)
= (x
* z)
proof
let j be
Nat;
assume
A77: j
in (
dom s);
then
A78: ex w be
Point of X st w
= ((h
| (
divset ((T
. m),k)))
. (p2
. k)) & (Smn
. (j,k))
= ((
xvol ((
divset ((T
. n),j))
/\ (
divset ((T
. m),k))))
* w) by
A58,
A69,
A68;
take (vtntm
. j);
(s
. j)
= ((
xvol ((
divset ((T
. n),j))
/\ (
divset ((T
. m),k))))
* z) by
A71,
A78,
A77,
A68;
hence thesis by
A77,
A73,
A74;
end;
hence thesis by
A71,
A68,
A76,
Th7,
A74;
end;
then Zq
= (S
. m) by
INTEGR18:def 1,
A66;
then
A79: ((
Sum (S
. n))
- (
Sum (S
. m)))
= ((
Sum Xq)
- (
Sum Zq)) by
Th4,
A33,
A53,
A46;
set XZq = (Xq
- Zq);
A80: (
dom XZq)
= ((
dom Xq)
/\ (
dom Zq)) by
VFUNCT_1:def 2;
then
reconsider XZq = (Xq
- Zq) as
FinSequence by
A53,
A65,
FINSEQ_1:def 2;
now
let i be
Nat;
assume i
in (
dom XZq);
then (XZq
. i)
= ((Xq
- Zq)
/. i) by
PARTFUN1:def 6;
hence (XZq
. i)
in the
carrier of X;
end;
then
reconsider XZq = (Xq
- Zq) as
FinSequence of X by
FINSEQ_2: 12;
(
len Xq)
= (
len Zq) by
FINSEQ_3: 29,
A53,
A65;
then
A81: ((
Sum (S
. n))
- (
Sum (S
. m)))
= (
Sum XZq) by
A79,
INTEGR18: 2;
A82: for i,j be
Nat, Snmij,Smnij be
Point of X st i
in (
Seg (
len (T
. n))) & j
in (
Seg (
len (T
. m))) & Snmij
= (Snm
. (i,j)) & Smnij
= (Smn
. (i,j)) holds
||.(Snmij
- Smnij).||
<= ((
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
* pv)
proof
let i,j be
Nat, Snmij,Smnij be
Point of X;
assume
A83: i
in (
Seg (
len (T
. n))) & j
in (
Seg (
len (T
. m))) & Snmij
= (Snm
. (i,j)) & Smnij
= (Smn
. (i,j));
then
consider z1 be
Point of X such that
A84: z1
= ((h
| (
divset ((T
. n),i)))
. (p1
. i)) & (Snm
. (i,j))
= ((
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
* z1) by
A26;
consider z2 be
Point of X such that
A85: z2
= ((h
| (
divset ((T
. m),j)))
. (p2
. j)) & (Smn
. (i,j))
= ((
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
* z2) by
A58,
A83;
A86: i
in (
dom (T
. n)) & j
in (
dom (T
. m)) by
A83,
FINSEQ_1:def 3;
then
A87: (p1
. i)
in (
dom (h
| (
divset ((T
. n),i)))) & (p2
. j)
in (
dom (h
| (
divset ((T
. m),j)))) by
A20,
A21;
then (p1
. i)
in ((
dom h)
/\ (
divset ((T
. n),i))) & (p2
. j)
in ((
dom h)
/\ (
divset ((T
. m),j))) by
RELAT_1: 61;
then
A88: (p1
. i)
in (
dom h) & (p1
. i)
in (
divset ((T
. n),i)) & (p2
. j)
in (
dom h) & (p2
. j)
in (
divset ((T
. m),j)) by
XBOOLE_0:def 4;
z1
= (h
. (p1
. i)) & z2
= (h
. (p2
. j)) by
A84,
A85,
A87,
FUNCT_1: 47;
then
A89: z1
= (h
/. (p1
. i)) & z2
= (h
/. (p2
. j)) by
A88,
PARTFUN1:def 6;
per cases ;
suppose
A90: ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j)))
=
{} ;
then
A91: (
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
=
0 qua
Real by
Def2;
Snmij
= (
0. X) & Smnij
= (
0. X) by
A83,
A84,
A85,
A90,
Def2,
RLVECT_1: 10;
hence
||.(Snmij
- Smnij).||
<= ((
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
* pv) by
A91;
end;
suppose ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j)))
<>
{} ;
then
consider t be
object such that
A92: t
in ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))) by
XBOOLE_0:def 1;
reconsider t as
Real by
A92;
A93: (
dom h)
= A by
FUNCT_2:def 1;
A94: (
divset ((T
. m),j))
c= A by
A86,
INTEGRA1: 8;
A95: t
in (
divset ((T
. n),i)) & t
in (
divset ((T
. m),j)) by
A92,
XBOOLE_0:def 4;
then
|.((p1
. i)
- t).|
< sk &
|.(t
- (p2
. j)).|
< sk by
A86,
A88,
Th12,
A18;
then
A96:
||.((h
/. (p1
. i))
- (h
/. t)).||
< p2v &
||.((h
/. t)
- (h
/. (p2
. j))).||
< p2v by
A94,
A95,
A93,
A88,
A15;
reconsider DMN = ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))) as
real-bounded
Subset of
REAL by
XBOOLE_1: 17,
XXREAL_2: 45;
(Snmij
- Smnij)
= ((
xvol DMN)
* (((h
/. (p1
. i))
- (
0. X))
- (h
/. (p2
. j)))) by
A83,
A84,
A89,
A85,
RLVECT_1: 34;
then (Snmij
- Smnij)
= ((
xvol DMN)
* (((h
/. (p1
. i))
- ((h
/. t)
- (h
/. t)))
- (h
/. (p2
. j)))) by
RLVECT_1: 15;
then (Snmij
- Smnij)
= ((
xvol DMN)
* ((((h
/. (p1
. i))
- (h
/. t))
+ (h
/. t))
- (h
/. (p2
. j)))) by
RLVECT_1: 29;
then (Snmij
- Smnij)
= ((
xvol DMN)
* (((h
/. (p1
. i))
- (h
/. t))
+ ((h
/. t)
- (h
/. (p2
. j))))) by
RLVECT_1: 28;
then (Snmij
- Smnij)
= (((
xvol DMN)
* ((h
/. (p1
. i))
- (h
/. t)))
+ ((
xvol DMN)
* ((h
/. t)
- (h
/. (p2
. j))))) by
RLVECT_1:def 5;
then
A97:
||.(Snmij
- Smnij).||
<= (
||.((
xvol DMN)
* ((h
/. (p1
. i))
- (h
/. t))).||
+
||.((
xvol DMN)
* ((h
/. t)
- (h
/. (p2
. j)))).||) by
NORMSP_1:def 1;
||.((
xvol DMN)
* ((h
/. (p1
. i))
- (h
/. t))).||
= (
|.(
xvol DMN).|
*
||.((h
/. (p1
. i))
- (h
/. t)).||) &
||.((
xvol DMN)
* ((h
/. t)
- (h
/. (p2
. j)))).||
= (
|.(
xvol DMN).|
*
||.((h
/. t)
- (h
/. (p2
. j))).||) by
NORMSP_1:def 1;
then
A98:
||.((
xvol DMN)
* ((h
/. (p1
. i))
- (h
/. t))).||
= ((
xvol DMN)
*
||.((h
/. (p1
. i))
- (h
/. t)).||) &
||.((
xvol DMN)
* ((h
/. t)
- (h
/. (p2
. j)))).||
= ((
xvol DMN)
*
||.((h
/. t)
- (h
/. (p2
. j))).||) by
Th5,
ABSVALUE:def 1;
0
<= (
xvol DMN) by
Th5;
then
||.((
xvol DMN)
* ((h
/. (p1
. i))
- (h
/. t))).||
<= ((
xvol DMN)
* p2v) &
||.((
xvol DMN)
* ((h
/. t)
- (h
/. (p2
. j)))).||
<= ((
xvol DMN)
* p2v) by
A98,
A96,
XREAL_1: 64;
then (
||.((
xvol DMN)
* ((h
/. (p1
. i))
- (h
/. t))).||
+
||.((
xvol DMN)
* ((h
/. t)
- (h
/. (p2
. j)))).||)
<= (((
xvol DMN)
* p2v)
+ ((
xvol DMN)
* p2v)) by
XREAL_1: 7;
hence
||.(Snmij
- Smnij).||
<= ((
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
* pv) by
A97,
XXREAL_0: 2;
end;
end;
A99: for j be
Nat st j
in (
dom XZq) holds
||.(XZq
/. j).||
<= ((
vol (
divset ((T
. m),j)))
* pv)
proof
let j be
Nat;
assume
A100: j
in (
dom XZq);
then
A101: (XZq
/. j)
= ((Xq
/. j)
- (Zq
/. j)) by
VFUNCT_1:def 2;
A102: (Xq
/. j)
= (Xq
. j) & (Zq
/. j)
= (Zq
. j) by
A100,
A65,
A53,
A80,
PARTFUN1:def 6;
A103: (
dom XZq)
= ((
dom Xq)
/\ (
dom Zq)) by
VFUNCT_1:def 2;
consider Xsq be
FinSequence of X such that
A104: (
dom Xsq)
= (
Seg (
len (T
. n))) & (Xq
. j)
= (
Sum Xsq) & for i be
Nat st i
in (
dom Xsq) holds (Xsq
. i)
= (Snm
. (i,j)) by
A100,
A53,
A65,
A80;
consider Zsq be
FinSequence of X such that
A105: (
dom Zsq)
= (
Seg (
len (T
. n))) & (Zq
. j)
= (
Sum Zsq) & for i be
Nat st i
in (
dom Zsq) holds (Zsq
. i)
= (Smn
. (i,j)) by
A100,
A65,
A53,
A80;
set XZsq = (Xsq
- Zsq);
A106: (
dom XZsq)
= ((
dom Xsq)
/\ (
dom Zsq)) by
VFUNCT_1:def 2;
then
reconsider XZsq as
FinSequence by
A104,
A105,
FINSEQ_1:def 2;
now
let i be
Nat;
assume i
in (
dom XZsq);
then (XZsq
. i)
= ((Xsq
- Zsq)
/. i) by
PARTFUN1:def 6;
hence (XZsq
. i)
in the
carrier of X;
end;
then
reconsider XZsq as
FinSequence of X by
FINSEQ_2: 12;
defpred
P11[
Nat,
set] means $2
= (
xvol ((
divset ((T
. n),$1))
/\ (
divset ((T
. m),j))));
A107: for i be
Nat st i
in (
Seg (
len XZsq)) holds ex x be
Element of
REAL st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len XZsq));
(
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider vtntm be
FinSequence of
REAL such that
A108: (
dom vtntm)
= (
Seg (
len XZsq)) & for i be
Nat st i
in (
Seg (
len XZsq)) holds
P11[i, (vtntm
. i)] from
FINSEQ_1:sch 5(
A107);
A109: for i be
Nat st i
in (
dom vtntm) holds (vtntm
. i)
= (
xvol ((
divset ((T
. m),j))
/\ (
divset ((T
. n),i)))) by
A108;
A110: (
len vtntm)
= (
len XZsq) by
A108,
FINSEQ_1:def 3;
A111: (
len XZsq)
= (
len (T
. n)) by
A104,
A105,
A106,
FINSEQ_1:def 3;
reconsider pvtntm = (pv
* vtntm) as
FinSequence of
REAL ;
j
in (
dom (T
. m)) by
A100,
A103,
A53,
A65,
FINSEQ_1:def 3;
then (
divset ((T
. m),j))
c= A by
INTEGRA1: 8;
then (
Sum vtntm)
= (
vol (
divset ((T
. m),j))) by
Th8,
A109,
A110,
A104,
A105,
A106,
FINSEQ_1:def 3;
then
A112: (
Sum pvtntm)
= (pv
* (
vol (
divset ((T
. m),j)))) by
RVSUM_1: 87;
(
dom pvtntm)
= (
dom vtntm) by
VALUED_1:def 5;
then (
dom pvtntm)
= (
Seg (
len (T
. n))) by
A104,
A105,
A106,
A108,
FINSEQ_1:def 3;
then
A113: (
len pvtntm)
= (
len (T
. n)) by
FINSEQ_1:def 3;
for i be
Nat st i
in (
dom XZsq) holds
||.(XZsq
/. i).||
<= (pvtntm
. i)
proof
let i be
Nat;
assume
A114: i
in (
dom XZsq);
then
A115: (XZsq
/. i)
= ((Xsq
/. i)
- (Zsq
/. i)) by
VFUNCT_1:def 2;
(Xsq
/. i)
= (Xsq
. i) & (Zsq
/. i)
= (Zsq
. i) by
PARTFUN1:def 6,
A114,
A105,
A106,
A104;
then
A116: (Xsq
/. i)
= (Snm
. (i,j)) & (Zsq
/. i)
= (Smn
. (i,j)) by
A114,
A104,
A106,
A105;
(
dom vtntm)
= (
dom XZsq) by
A108,
FINSEQ_1:def 3;
then (pv
* (vtntm
. i))
= (pv
* (
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))) by
A108,
A114;
then ((pv
(#) vtntm)
. i)
= (pv
* (
xvol ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))))) by
VALUED_1: 6;
hence thesis by
A115,
A116,
A82,
A114,
A104,
A105,
A106,
A100,
A103,
A53,
A65;
end;
then
A117:
||.(
Sum XZsq).||
<= ((
vol (
divset ((T
. m),j)))
* pv) by
A112,
Th10,
A111,
A113;
(
len Xsq)
= (
len Zsq) by
FINSEQ_3: 29,
A104,
A105;
hence thesis by
A101,
A102,
A104,
A105,
A117,
INTEGR18: 2;
end;
defpred
P12[
Nat,
set] means $2
= (
vol (
divset ((T
. m),$1)));
A118: for i be
Nat st i
in (
Seg (
len XZq)) holds ex x be
Element of
REAL st
P12[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len XZq));
(
vol (
divset ((T
. m),i)))
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider vtm be
FinSequence of
REAL such that
A119: (
dom vtm)
= (
Seg (
len XZq)) & for i be
Nat st i
in (
Seg (
len XZq)) holds
P12[i, (vtm
. i)] from
FINSEQ_1:sch 5(
A118);
A120: (
len XZq)
= (
len (T
. m)) by
A53,
A65,
A80,
FINSEQ_1:def 3;
A121: (
Seg (
len XZq))
= (
dom XZq) by
FINSEQ_1:def 3;
A122: (
Sum vtm)
= (
vol A) by
A119,
Th6,
A120;
reconsider pvtm = (pv
* vtm) as
FinSequence of
REAL ;
(
dom pvtm)
= (
dom vtm) by
VALUED_1:def 5;
then (
dom pvtm)
= (
Seg (
len (T
. m))) by
A53,
A65,
A80,
A119,
FINSEQ_1:def 3;
then
A123: (
len pvtm)
= (
len (T
. m)) by
FINSEQ_1:def 3;
A124: (
Sum pvtm)
= (pv
* (
vol A)) by
RVSUM_1: 87,
A122;
for j be
Nat st j
in (
dom XZq) holds
||.(XZq
/. j).||
<= (pvtm
. j)
proof
let j be
Nat;
assume
A125: j
in (
dom XZq);
then (vtm
. j)
= (
vol (
divset ((T
. m),j))) by
A119,
A121;
then (pvtm
. j)
= ((
vol (
divset ((T
. m),j)))
* pv) by
VALUED_1: 6;
hence
||.(XZq
/. j).||
<= (pvtm
. j) by
A125,
A99;
end;
then
||.(
Sum XZq).||
<= ((
vol A)
* pv) by
A124,
A120,
A123,
Th10;
hence
||.(((
middle_sum (h,S))
. n)
- ((
middle_sum (h,S))
. m)).||
< p by
A19,
A81,
XXREAL_0: 2,
A14;
end;
hence (
middle_sum (h,S)) is
convergent by
RSSPACE3: 8,
LOPBAN_1:def 15;
end;
end;
scheme ::
INTEGR20:sch1
ExRealSeq2X { D() -> non
empty
set , F,G(
set) ->
Element of D() } :
ex s be
sequence of D() st for n be
Nat holds (s
. (2
* n))
= F(n) & (s
. ((2
* n)
+ 1))
= G(n);
defpred
X[
set] means ex m be
Nat st $1
= (2
* m);
consider N be
Subset of
NAT such that
A1: for n be
Element of
NAT holds n
in N iff
X[n] from
SUBSET_1:sch 3;
defpred
Y[
set] means ex m be
Nat st $1
= ((2
* m)
+ 1);
consider M be
Subset of
NAT such that
A2: for n be
Element of
NAT holds n
in M iff
Y[n] from
SUBSET_1:sch 3;
defpred
X[
Nat,
set] means ($1
in N implies $2
= F(/)) & ($1
in M implies $2
= G(/));
A3: for n holds ex r be
Element of D() st
X[n, r]
proof
let n be
Element of
NAT ;
now
assume
A4: n
in N;
reconsider r = F(/) as
Element of D();
take r;
hereby
assume n
in M;
then
A5: ex k be
Nat st n
= ((2
* k)
+ 1) by
A2;
ex m be
Nat st n
= (2
* m) by
A1,
A4;
hence contradiction by
A5;
end;
end;
hence thesis;
end;
consider f be
sequence of D() such that
A6: for n be
Element of
NAT holds
X[n, (f
. n)] from
FUNCT_2:sch 3(
A3);
reconsider f as
sequence of D();
take f;
let n be
Nat;
reconsider m = (2
* n) as
Nat;
A7: m
in
NAT by
ORDINAL1:def 12;
(f
. ((2
* n)
+ 1))
= G(/) by
A6,
A2;
hence (f
. (2
* n))
= F(n) & (f
. ((2
* n)
+ 1))
= G(n) by
A1,
A6,
A7;
end;
theorem ::
INTEGR20:14
Th14: for n be
Nat holds ex k be
Nat st n
= (2
* k) or n
= ((2
* k)
+ 1)
proof
let n be
Nat;
per cases ;
suppose n is
even;
then
consider k be
Nat such that
A1: n
= (2
* k);
take k;
thus n
= (2
* k) or n
= ((2
* k)
+ 1) by
A1;
end;
suppose n is
odd;
then (n
+ 1) is
even;
then
consider k1 be
Nat such that
A2: (n
+ 1)
= (2
* k1);
0
<> k1 by
A2;
then
reconsider k = (k1
- 1) as
Nat;
take k;
thus n
= (2
* k) or n
= ((2
* k)
+ 1) by
A2;
end;
end;
theorem ::
INTEGR20:15
Th15: for A be non
empty
closed_interval
Subset of
REAL , T0,T be
DivSequence of A holds ex T1 be
DivSequence of A st for i be
Nat holds (T1
. (2
* i))
= (T0
. i) & (T1
. ((2
* i)
+ 1))
= (T
. i)
proof
let A be non
empty
closed_interval
Subset of
REAL , T0,T be
DivSequence of A;
A1: (
dom T0)
=
NAT & (
dom T)
=
NAT by
FUNCT_2:def 1;
now
let i be
object;
assume i
in
NAT ;
then
reconsider i1 = i as
Nat;
(
rng (T0
. i1))
c=
REAL ;
hence (T0
. i)
in (
REAL
* ) by
FINSEQ_1:def 11;
end;
then
reconsider S0 = T0 as
sequence of (
REAL
* ) by
A1,
FUNCT_2: 3;
now
let i be
object;
assume i
in
NAT ;
then
reconsider i1 = i as
Nat;
(
rng (T
. i1))
c=
REAL ;
hence (T
. i)
in (
REAL
* ) by
FINSEQ_1:def 11;
end;
then
reconsider S = T as
sequence of (
REAL
* ) by
A1,
FUNCT_2: 3;
deffunc
F(
Nat) = (S0
/. $1);
deffunc
G(
Nat) = (S
/. $1);
consider T1 be
sequence of (
REAL
* ) such that
A2: for n be
Nat holds (T1
. (2
* n))
=
F(n) & (T1
. ((2
* n)
+ 1))
=
G(n) from
ExRealSeq2X;
A3: (
dom T1)
=
NAT by
FUNCT_2:def 1;
now
let i be
object;
assume i
in
NAT ;
then
reconsider j = i as
Nat;
consider k be
Nat such that
A4: j
= (2
* k) or j
= ((2
* k)
+ 1) by
Th14;
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
per cases by
A4;
suppose j
= (2
* k);
then (T1
. j)
= (S0
/. k) by
A2
.= (T0
. k);
hence (T1
. i)
in (
divs A) by
INTEGRA1:def 3;
end;
suppose j
= ((2
* k)
+ 1);
then (T1
. j)
= (S
/. k) by
A2
.= (T
. k);
hence (T1
. i)
in (
divs A) by
INTEGRA1:def 3;
end;
end;
then
reconsider T1 as
DivSequence of A by
A3,
FUNCT_2: 3;
take T1;
let i be
Nat;
i
in
NAT by
ORDINAL1:def 12;
then
A5: i
in (
dom S0) & i
in (
dom S) by
FUNCT_2:def 1;
A6: (T1
. (2
* i))
= (S0
/. i) by
A2
.= (T0
. i) by
A5,
PARTFUN1:def 6;
(T1
. ((2
* i)
+ 1))
= (S
/. i) by
A2
.= (T
. i) by
A5,
PARTFUN1:def 6;
hence thesis by
A6;
end;
theorem ::
INTEGR20:16
Th16: for A be non
empty
closed_interval
Subset of
REAL , T0,T,T1 be
DivSequence of A st (
delta T0) is
convergent & (
lim (
delta T0))
=
0 & (
delta T) is
convergent & (
lim (
delta T))
=
0 & for i be
Nat holds (T1
. (2
* i))
= (T0
. i) & (T1
. ((2
* i)
+ 1))
= (T
. i) holds (
delta T1) is
convergent & (
lim (
delta T1))
=
0
proof
let A be non
empty
closed_interval
Subset of
REAL , T0,T,T1 be
DivSequence of A;
assume that
A1: (
delta T0) is
convergent & (
lim (
delta T0))
=
0 and
A2: (
delta T) is
convergent & (
lim (
delta T))
=
0 and
A3: for i be
Nat holds (T1
. (2
* i))
= (T0
. i) & (T1
. ((2
* i)
+ 1))
= (T
. i);
A4:
now
let p be
Real;
assume
A5:
0
< p;
then
consider n1 be
Nat such that
A6: for m be
Nat st n1
<= m holds
|.(((
delta T0)
. m)
-
0 ).|
< p by
A1,
SEQ_2:def 7;
consider n2 be
Nat such that
A7: for m be
Nat st n2
<= m holds
|.(((
delta T)
. m)
-
0 ).|
< p by
A5,
A2,
SEQ_2:def 7;
reconsider n3 = (
max (n1,n2)) as
Nat by
TARSKI: 1;
A8: n1
<= n3 & n2
<= n3 by
XXREAL_0: 25;
reconsider n = ((2
* n3)
+ 1) as
Nat;
take n;
let m be
Nat;
assume
A9: n
<= m;
consider k be
Nat such that
A10: m
= (2
* k) or m
= ((2
* k)
+ 1) by
Th14;
reconsider k1 = k, m1 = m as
Element of
NAT by
ORDINAL1:def 12;
per cases by
A10;
suppose
A11: m
= (2
* k);
((
delta T1)
. m1)
= (
delta (T1
. m1)) by
INTEGRA3:def 2;
then ((
delta T1)
. m1)
= (
delta (T0
. k1)) by
A11,
A3;
then
A12: ((
delta T1)
. m1)
= ((
delta T0)
. k1) by
INTEGRA3:def 2;
A13: (2
* n3)
<= ((2
* k)
- 1) by
XREAL_1: 19,
A9,
A11;
((2
* k)
- 1)
< (((2
* k)
- 1)
+ 1) by
XREAL_1: 145;
then (2
* n3)
<= (2
* k) by
A13,
XXREAL_0: 2;
then ((2
* n3)
/ 2)
<= ((2
* k)
/ 2) by
XREAL_1: 72;
then n1
<= k by
A8,
XXREAL_0: 2;
hence
|.(((
delta T1)
. m)
-
0 ).|
< p by
A12,
A6;
end;
suppose
A14: m
= ((2
* k)
+ 1);
((
delta T1)
. m1)
= (
delta (T1
. m1)) by
INTEGRA3:def 2;
then ((
delta T1)
. m1)
= (
delta (T
. k1)) by
A14,
A3;
then
A15: ((
delta T1)
. m1)
= ((
delta T)
. k1) by
INTEGRA3:def 2;
(((2
* n3)
+ 1)
- 1)
<= (((2
* k)
+ 1)
- 1) by
XREAL_1: 13,
A9,
A14;
then ((2
* n3)
/ 2)
<= ((2
* k)
/ 2) by
XREAL_1: 72;
then n2
<= k by
A8,
XXREAL_0: 2;
hence
|.(((
delta T1)
. m)
-
0 ).|
< p by
A15,
A7;
end;
end;
hence (
delta T1) is
convergent by
SEQ_2:def 6;
hence (
lim (
delta T1))
=
0 by
A4,
SEQ_2:def 7;
end;
theorem ::
INTEGR20:17
Th17: for X be
RealNormSpace, A be non
empty
closed_interval
Subset of
REAL , h be
Function of A, the
carrier of X, T0,T,T1 be
DivSequence of A, S0 be
middle_volume_Sequence of h, T0, S be
middle_volume_Sequence of h, T st for i be
Nat holds (T1
. (2
* i))
= (T0
. i) & (T1
. ((2
* i)
+ 1))
= (T
. i) holds ex S1 be
middle_volume_Sequence of h, T1 st for i be
Nat holds (S1
. (2
* i))
= (S0
. i) & (S1
. ((2
* i)
+ 1))
= (S
. i)
proof
let X be
RealNormSpace, A be non
empty
closed_interval
Subset of
REAL , h be
Function of A, the
carrier of X, T0,T,T1 be
DivSequence of A, S0 be
middle_volume_Sequence of h, T0, S be
middle_volume_Sequence of h, T;
assume
A1: for k be
Nat holds (T1
. (2
* k))
= (T0
. k) & (T1
. ((2
* k)
+ 1))
= (T
. k);
reconsider SS0 = S0, SS = S as
sequence of (the
carrier of X
* );
deffunc
F(
Nat) = (SS0
/. $1);
deffunc
G(
Nat) = (SS
/. $1);
consider S1 be
sequence of (the
carrier of X
* ) such that
A2: for n be
Nat holds (S1
. (2
* n))
=
F(n) & (S1
. ((2
* n)
+ 1))
=
G(n) from
ExRealSeq2X;
for i be
Element of
NAT holds (S1
. i) is
middle_volume of h, (T1
. i)
proof
let i be
Element of
NAT ;
consider k be
Nat such that
A3: i
= (2
* k) or i
= ((2
* k)
+ 1) by
Th14;
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
per cases by
A3;
suppose
A4: i
= (2
* k);
then (S1
. i)
= (SS0
/. k) by
A2
.= (S0
. k);
hence (S1
. i) is
middle_volume of h, (T1
. i) by
A4,
A1;
end;
suppose
A5: i
= ((2
* k)
+ 1);
then (S1
. i)
= (SS
/. k) by
A2
.= (S
. k);
hence (S1
. i) is
middle_volume of h, (T1
. i) by
A5,
A1;
end;
end;
then
reconsider S1 as
middle_volume_Sequence of h, T1 by
INTEGR18:def 3;
take S1;
let i be
Nat;
i
in
NAT by
ORDINAL1:def 12;
then
A6: i
in (
dom SS0) & i
in (
dom SS) by
FUNCT_2:def 1;
A7: (S1
. (2
* i))
= (SS0
/. i) by
A2
.= (S0
. i) by
PARTFUN1:def 6,
A6;
(S1
. ((2
* i)
+ 1))
= (SS
/. i) by
A2
.= (S
. i) by
PARTFUN1:def 6,
A6;
hence thesis by
A7;
end;
theorem ::
INTEGR20:18
Th18: for X be
RealNormSpace, Sq0,Sq,Sq1 be
sequence of X st Sq1 is
convergent & for i be
Nat holds (Sq1
. (2
* i))
= (Sq0
. i) & (Sq1
. ((2
* i)
+ 1))
= (Sq
. i) holds Sq0 is
convergent & (
lim Sq0)
= (
lim Sq1) & Sq is
convergent & (
lim Sq)
= (
lim Sq1)
proof
let X be
RealNormSpace, Sq0,Sq,Sq1 be
sequence of X;
assume that
A1: Sq1 is
convergent and
A2: for i be
Nat holds (Sq1
. (2
* i))
= (Sq0
. i) & (Sq1
. ((2
* i)
+ 1))
= (Sq
. i);
A3: for r be
Real st
0
< r holds ex m1 be
Nat st for i be
Nat st m1
<= i holds
||.((Sq0
. i)
- (
lim Sq1)).||
< r
proof
let r be
Real;
assume
0
< r;
then
consider m be
Nat such that
A4: for n be
Nat st m
<= n holds
||.((Sq1
. n)
- (
lim Sq1)).||
< r by
A1,
NORMSP_1:def 7;
consider k be
Nat such that
A5: m
= (2
* k) or m
= ((2
* k)
+ 1) by
Th14;
((2
* k)
+ 1)
<= (((2
* k)
+ 1)
+ 1) by
NAT_1: 11;
then
A6: m
<= ((2
* k)
+ 2) by
A5,
XREAL_1: 31;
reconsider m1 = (k
+ 1) as
Nat;
take m1;
thus for i be
Nat st m1
<= i holds
||.((Sq0
. i)
- (
lim Sq1)).||
< r
proof
let i be
Nat;
assume m1
<= i;
then (2
* m1)
<= (2
* i) by
XREAL_1: 64;
then m
<= (2
* i) by
A6,
XXREAL_0: 2;
then
||.((Sq1
. (2
* i))
- (
lim Sq1)).||
< r by
A4;
hence
||.((Sq0
. i)
- (
lim Sq1)).||
< r by
A2;
end;
end;
hence Sq0 is
convergent;
hence (
lim Sq0)
= (
lim Sq1) by
A3,
NORMSP_1:def 7;
A7: for r be
Real st
0
< r holds ex m1 be
Nat st for i be
Nat st m1
<= i holds
||.((Sq
. i)
- (
lim Sq1)).||
< r
proof
let r be
Real;
assume
0
< r;
then
consider m be
Nat such that
A8: for n be
Nat st m
<= n holds
||.((Sq1
. n)
- (
lim Sq1)).||
< r by
A1,
NORMSP_1:def 7;
consider k be
Nat such that
A9: m
= (2
* k) or m
= ((2
* k)
+ 1) by
Th14;
((2
* k)
+ 1)
<= (((2
* k)
+ 1)
+ 1) by
NAT_1: 11;
then
A10: m
<= ((2
* k)
+ 2) by
A9,
XREAL_1: 31;
reconsider m1 = (k
+ 1) as
Nat;
take m1;
thus for i be
Nat st m1
<= i holds
||.((Sq
. i)
- (
lim Sq1)).||
< r
proof
let i be
Nat;
assume m1
<= i;
then (2
* m1)
<= (2
* i) by
XREAL_1: 64;
then m
<= (2
* i) by
A10,
XXREAL_0: 2;
then m
<= ((2
* i)
+ 1) by
XREAL_1: 145;
then
||.((Sq1
. ((2
* i)
+ 1))
- (
lim Sq1)).||
< r by
A8;
hence
||.((Sq
. i)
- (
lim Sq1)).||
< r by
A2;
end;
end;
hence Sq is
convergent;
hence (
lim Sq)
= (
lim Sq1) by
NORMSP_1:def 7,
A7;
end;
theorem ::
INTEGR20:19
for X be
RealBanachSpace, f be
continuous
PartFunc of
REAL , the
carrier of X st a
<= b &
['a, b']
c= (
dom f) holds f
is_integrable_on
['a, b']
proof
let X be
RealBanachSpace, f be
continuous
PartFunc of
REAL , the
carrier of X;
set A =
['a, b'];
assume
A1: a
<= b &
['a, b']
c= (
dom f);
then
reconsider h = (f
| A) as
Function of A, the
carrier of X by
Lm1;
A2: (f
| A) is
uniformly_continuous by
A1,
Th3;
consider T0 be
DivSequence of A such that
A3: (
delta T0) is
convergent & (
lim (
delta T0))
=
0 by
INTEGRA4: 11;
set S0 = the
middle_volume_Sequence of h, T0;
set I = (
lim (
middle_sum (h,S0)));
for T be
DivSequence of A, S be
middle_volume_Sequence of h, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (h,S)) is
convergent & (
lim (
middle_sum (h,S)))
= I
proof
let T be
DivSequence of A, S be
middle_volume_Sequence of h, T;
assume
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
hence (
middle_sum (h,S)) is
convergent by
A2,
Th13;
consider T1 be
DivSequence of A such that
A5: for i be
Nat holds (T1
. (2
* i))
= (T0
. i) & (T1
. ((2
* i)
+ 1))
= (T
. i) by
Th15;
consider S1 be
middle_volume_Sequence of h, T1 such that
A6: for i be
Nat holds (S1
. (2
* i))
= (S0
. i) & (S1
. ((2
* i)
+ 1))
= (S
. i) by
A5,
Th17;
(
delta T1) is
convergent & (
lim (
delta T1))
=
0 by
A4,
A5,
A3,
Th16;
then
A7: (
middle_sum (h,S1)) is
convergent by
A2,
Th13;
A8: for i be
Nat holds ((
middle_sum (h,S1))
. (2
* i))
= ((
middle_sum (h,S0))
. i) & ((
middle_sum (h,S1))
. ((2
* i)
+ 1))
= ((
middle_sum (h,S))
. i)
proof
let i be
Nat;
reconsider S1 as
middle_volume_Sequence of h, T1;
((
middle_sum (h,S1))
. (2
* i))
= (
middle_sum (h,(S1
. (2
* i)))) & ((
middle_sum (h,S1))
. ((2
* i)
+ 1))
= (
middle_sum (h,(S1
. ((2
* i)
+ 1)))) by
INTEGR18:def 4;
then ((
middle_sum (h,S1))
. (2
* i))
= (
middle_sum (h,(S0
. i))) & ((
middle_sum (h,S1))
. ((2
* i)
+ 1))
= (
middle_sum (h,(S
. i))) by
A6;
hence thesis by
INTEGR18:def 4;
end;
(
lim (
middle_sum (h,S)))
= (
lim (
middle_sum (h,S1))) by
A7,
A8,
Th18;
hence (
lim (
middle_sum (h,S)))
= (
lim (
middle_sum (h,S0))) by
A7,
A8,
Th18;
end;
then h is
integrable;
hence thesis;
end;