nfcont_2.miz
begin
reserve n,m for
Nat,
x,X,X1 for
set,
s,g,r,p for
Real,
S,T for
RealNormSpace,
f,f1,f2 for
PartFunc of S, T,
s1,s2,q1 for
sequence of S,
x0,x1,x2 for
Point of S,
Y for
Subset of S;
definition
let X, S, T;
let f;
::
NFCONT_2:def1
pred f
is_uniformly_continuous_on X means X
c= (
dom f) & for r st
0
< r holds ex s st
0
< s & for x1, x2 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r;
end
definition
let X, S;
let f be
PartFunc of the
carrier of S,
REAL ;
::
NFCONT_2:def2
pred f
is_uniformly_continuous_on X means X
c= (
dom f) & for r st
0
< r holds ex s st
0
< s & for x1, x2 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
|.((f
/. x1)
- (f
/. x2)).|
< r;
end
theorem ::
NFCONT_2:1
Th1: f
is_uniformly_continuous_on X & X1
c= X implies f
is_uniformly_continuous_on X1
proof
assume that
A1: f
is_uniformly_continuous_on X and
A2: X1
c= X;
X
c= (
dom f) by
A1;
hence X1
c= (
dom f) by
A2,
XBOOLE_1: 1;
let r;
assume
0
< r;
then
consider s such that
A3:
0
< s and
A4: for x1, x2 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1;
take s;
thus
0
< s by
A3;
let x1, x2;
assume x1
in X1 & x2
in X1 &
||.(x1
- x2).||
< s;
hence thesis by
A2,
A4;
end;
theorem ::
NFCONT_2:2
f1
is_uniformly_continuous_on X & f2
is_uniformly_continuous_on X1 implies (f1
+ f2)
is_uniformly_continuous_on (X
/\ X1)
proof
assume that
A1: f1
is_uniformly_continuous_on X and
A2: f2
is_uniformly_continuous_on X1;
A3: f2
is_uniformly_continuous_on (X
/\ X1) by
A2,
Th1,
XBOOLE_1: 17;
then
A4: (X
/\ X1)
c= (
dom f2);
A5: f1
is_uniformly_continuous_on (X
/\ X1) by
A1,
Th1,
XBOOLE_1: 17;
then (X
/\ X1)
c= (
dom f1);
then (X
/\ X1)
c= ((
dom f1)
/\ (
dom f2)) by
A4,
XBOOLE_1: 19;
hence
A6: (X
/\ X1)
c= (
dom (f1
+ f2)) by
VFUNCT_1:def 1;
let r;
assume
0
< r;
then
A7:
0
< (r
/ 2) by
XREAL_1: 215;
then
consider s such that
A8:
0
< s and
A9: for x1, x2 st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< s holds
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A5;
consider g such that
A10:
0
< g and
A11: for x1, x2 st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< g holds
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A3,
A7;
take p = (
min (s,g));
thus
0
< p by
A8,
A10,
XXREAL_0: 15;
let x1, x2;
assume that
A12: x1
in (X
/\ X1) and
A13: x2
in (X
/\ X1) and
A14:
||.(x1
- x2).||
< p;
p
<= g by
XXREAL_0: 17;
then
||.(x1
- x2).||
< g by
A14,
XXREAL_0: 2;
then
A15:
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A11,
A12,
A13;
p
<= s by
XXREAL_0: 17;
then
||.(x1
- x2).||
< s by
A14,
XXREAL_0: 2;
then
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A9,
A12,
A13;
then
A16: (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||)
< ((r
/ 2)
+ (r
/ 2)) by
A15,
XREAL_1: 8;
A17:
||.(((f1
/. x1)
- (f1
/. x2))
+ ((f2
/. x1)
- (f2
/. x2))).||
<= (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||) by
NORMSP_1:def 1;
||.(((f1
+ f2)
/. x1)
- ((f1
+ f2)
/. x2)).||
=
||.(((f1
/. x1)
+ (f2
/. x1))
- ((f1
+ f2)
/. x2)).|| by
A6,
A12,
VFUNCT_1:def 1
.=
||.(((f1
/. x1)
+ (f2
/. x1))
- ((f1
/. x2)
+ (f2
/. x2))).|| by
A6,
A13,
VFUNCT_1:def 1
.=
||.((f1
/. x1)
+ ((f2
/. x1)
- ((f1
/. x2)
+ (f2
/. x2)))).|| by
RLVECT_1:def 3
.=
||.((f1
/. x1)
+ (((f2
/. x1)
- (f1
/. x2))
- (f2
/. x2))).|| by
RLVECT_1: 27
.=
||.((f1
/. x1)
+ (((
- (f1
/. x2))
+ (f2
/. x1))
- (f2
/. x2))).||
.=
||.((f1
/. x1)
+ ((
- (f1
/. x2))
+ ((f2
/. x1)
- (f2
/. x2)))).|| by
RLVECT_1:def 3
.=
||.(((f1
/. x1)
- (f1
/. x2))
+ ((f2
/. x1)
- (f2
/. x2))).|| by
RLVECT_1:def 3;
hence thesis by
A16,
A17,
XXREAL_0: 2;
end;
theorem ::
NFCONT_2:3
f1
is_uniformly_continuous_on X & f2
is_uniformly_continuous_on X1 implies (f1
- f2)
is_uniformly_continuous_on (X
/\ X1)
proof
assume that
A1: f1
is_uniformly_continuous_on X and
A2: f2
is_uniformly_continuous_on X1;
A3: f2
is_uniformly_continuous_on (X
/\ X1) by
A2,
Th1,
XBOOLE_1: 17;
then
A4: (X
/\ X1)
c= (
dom f2);
A5: f1
is_uniformly_continuous_on (X
/\ X1) by
A1,
Th1,
XBOOLE_1: 17;
then (X
/\ X1)
c= (
dom f1);
then (X
/\ X1)
c= ((
dom f1)
/\ (
dom f2)) by
A4,
XBOOLE_1: 19;
hence
A6: (X
/\ X1)
c= (
dom (f1
- f2)) by
VFUNCT_1:def 2;
let r;
assume
0
< r;
then
A7:
0
< (r
/ 2) by
XREAL_1: 215;
then
consider s such that
A8:
0
< s and
A9: for x1, x2 st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< s holds
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A5;
consider g such that
A10:
0
< g and
A11: for x1, x2 st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< g holds
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A3,
A7;
take p = (
min (s,g));
thus
0
< p by
A8,
A10,
XXREAL_0: 15;
let x1, x2;
assume that
A12: x1
in (X
/\ X1) and
A13: x2
in (X
/\ X1) and
A14:
||.(x1
- x2).||
< p;
p
<= g by
XXREAL_0: 17;
then
||.(x1
- x2).||
< g by
A14,
XXREAL_0: 2;
then
A15:
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A11,
A12,
A13;
p
<= s by
XXREAL_0: 17;
then
||.(x1
- x2).||
< s by
A14,
XXREAL_0: 2;
then
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A9,
A12,
A13;
then
A16: (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||)
< ((r
/ 2)
+ (r
/ 2)) by
A15,
XREAL_1: 8;
A17:
||.(((f1
/. x1)
- (f1
/. x2))
- ((f2
/. x1)
- (f2
/. x2))).||
<= (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||) by
NORMSP_1: 3;
||.(((f1
- f2)
/. x1)
- ((f1
- f2)
/. x2)).||
=
||.(((f1
/. x1)
- (f2
/. x1))
- ((f1
- f2)
/. x2)).|| by
A6,
A12,
VFUNCT_1:def 2
.=
||.(((f1
/. x1)
- (f2
/. x1))
- ((f1
/. x2)
- (f2
/. x2))).|| by
A6,
A13,
VFUNCT_1:def 2
.=
||.((f1
/. x1)
- ((f2
/. x1)
+ ((f1
/. x2)
- (f2
/. x2)))).|| by
RLVECT_1: 27
.=
||.((f1
/. x1)
- (((f1
/. x2)
+ (f2
/. x1))
- (f2
/. x2))).|| by
RLVECT_1:def 3
.=
||.((f1
/. x1)
- ((f1
/. x2)
+ ((f2
/. x1)
- (f2
/. x2)))).|| by
RLVECT_1:def 3
.=
||.(((f1
/. x1)
- (f1
/. x2))
- ((f2
/. x1)
- (f2
/. x2))).|| by
RLVECT_1: 27;
hence thesis by
A16,
A17,
XXREAL_0: 2;
end;
theorem ::
NFCONT_2:4
Th4: f
is_uniformly_continuous_on X implies (p
(#) f)
is_uniformly_continuous_on X
proof
assume
A1: f
is_uniformly_continuous_on X;
then X
c= (
dom f);
hence
A2: X
c= (
dom (p
(#) f)) by
VFUNCT_1:def 4;
now
per cases ;
suppose
A3: p
=
0 ;
let r;
assume
A4:
0
< r;
then
consider s such that
A5:
0
< s and for x1, x2 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1;
take s;
thus
0
< s by
A5;
let x1, x2;
assume that
A6: x1
in X and
A7: x2
in X and
||.(x1
- x2).||
< s;
||.(((p
(#) f)
/. x1)
- ((p
(#) f)
/. x2)).||
=
||.((p
* (f
/. x1))
- ((p
(#) f)
/. x2)).|| by
A2,
A6,
VFUNCT_1:def 4
.=
||.((
0. T)
- ((p
(#) f)
/. x2)).|| by
A3,
RLVECT_1: 10
.=
||.((
0. T)
- (p
* (f
/. x2))).|| by
A2,
A7,
VFUNCT_1:def 4
.=
||.((
0. T)
- (
0. T)).|| by
A3,
RLVECT_1: 10
.=
||.(
0. T).|| by
RLVECT_1: 13
.=
0 by
NORMSP_0:def 6;
hence
||.(((p
(#) f)
/. x1)
- ((p
(#) f)
/. x2)).||
< r by
A4;
end;
suppose
A8: p
<>
0 ;
then
A9:
0
<>
|.p.| by
COMPLEX1: 47;
let r;
A10:
0
<
|.p.| by
A8,
COMPLEX1: 47;
assume
0
< r;
then
0
< (r
/
|.p.|) by
A10,
XREAL_1: 139;
then
consider s such that
A11:
0
< s and
A12: for x1, x2 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< (r
/
|.p.|) by
A1;
take s;
thus
0
< s by
A11;
let x1, x2;
assume that
A13: x1
in X and
A14: x2
in X and
A15:
||.(x1
- x2).||
< s;
A16:
||.(((p
(#) f)
/. x1)
- ((p
(#) f)
/. x2)).||
=
||.((p
* (f
/. x1))
- ((p
(#) f)
/. x2)).|| by
A2,
A13,
VFUNCT_1:def 4
.=
||.((p
* (f
/. x1))
- (p
* (f
/. x2))).|| by
A2,
A14,
VFUNCT_1:def 4
.=
||.(p
* ((f
/. x1)
- (f
/. x2))).|| by
RLVECT_1: 34
.= (
|.p.|
*
||.((f
/. x1)
- (f
/. x2)).||) by
NORMSP_1:def 1;
(
|.p.|
*
||.((f
/. x1)
- (f
/. x2)).||)
< ((r
/
|.p.|)
*
|.p.|) by
A10,
A12,
A13,
A14,
A15,
XREAL_1: 68;
hence
||.(((p
(#) f)
/. x1)
- ((p
(#) f)
/. x2)).||
< r by
A9,
A16,
XCMPLX_1: 87;
end;
end;
hence thesis;
end;
theorem ::
NFCONT_2:5
f
is_uniformly_continuous_on X implies (
- f)
is_uniformly_continuous_on X
proof
A1: (
- f)
= ((
- 1)
(#) f) by
VFUNCT_1: 23;
assume f
is_uniformly_continuous_on X;
hence thesis by
A1,
Th4;
end;
theorem ::
NFCONT_2:6
f
is_uniformly_continuous_on X implies
||.f.||
is_uniformly_continuous_on X
proof
assume
A1: f
is_uniformly_continuous_on X;
then X
c= (
dom f);
hence
A2: X
c= (
dom
||.f.||) by
NORMSP_0:def 3;
let r;
assume
0
< r;
then
consider s such that
A3:
0
< s and
A4: for x1, x2 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1;
take s;
thus
0
< s by
A3;
let x1, x2;
assume that
A5: x1
in X and
A6: x2
in X and
A7:
||.(x1
- x2).||
< s;
|.((
||.f.||
/. x1)
- (
||.f.||
/. x2)).|
=
|.((
||.f.||
. x1)
- (
||.f.||
/. x2)).| by
A2,
A5,
PARTFUN1:def 6
.=
|.((
||.f.||
. x1)
- (
||.f.||
. x2)).| by
A2,
A6,
PARTFUN1:def 6
.=
|.(
||.(f
/. x1).||
- (
||.f.||
. x2)).| by
A2,
A5,
NORMSP_0:def 3
.=
|.(
||.(f
/. x1).||
-
||.(f
/. x2).||).| by
A2,
A6,
NORMSP_0:def 3;
then
A8:
|.((
||.f.||
/. x1)
- (
||.f.||
/. x2)).|
<=
||.((f
/. x1)
- (f
/. x2)).|| by
NORMSP_1: 9;
||.((f
/. x1)
- (f
/. x2)).||
< r by
A4,
A5,
A6,
A7;
hence thesis by
A8,
XXREAL_0: 2;
end;
theorem ::
NFCONT_2:7
Th7: f
is_uniformly_continuous_on X implies f
is_continuous_on X
proof
assume
A1: f
is_uniformly_continuous_on X;
A2:
now
let x0;
let r be
Real;
assume that
A3: x0
in X and
A4:
0
< r;
consider s be
Real such that
A5:
0
< s and
A6: for x1, x2 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1,
A4;
take s;
thus
0
< s by
A5;
let x1;
assume x1
in X &
||.(x1
- x0).||
< s;
hence
||.((f
/. x1)
- (f
/. x0)).||
< r by
A3,
A6;
end;
X
c= (
dom f) by
A1;
hence thesis by
A2,
NFCONT_1: 19;
end;
theorem ::
NFCONT_2:8
Th8: for f be
PartFunc of the
carrier of S,
REAL st f
is_uniformly_continuous_on X holds f
is_continuous_on X
proof
let f be
PartFunc of the
carrier of S,
REAL ;
assume
A1: f
is_uniformly_continuous_on X;
A2:
now
let x0;
let r be
Real;
assume that
A3: x0
in X and
A4:
0
< r;
consider s be
Real such that
A5:
0
< s and
A6: for x1, x2 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
|.((f
/. x1)
- (f
/. x2)).|
< r by
A1,
A4;
take s;
thus
0
< s by
A5;
let x1;
assume x1
in X &
||.(x1
- x0).||
< s;
hence
|.((f
/. x1)
- (f
/. x0)).|
< r by
A3,
A6;
end;
X
c= (
dom f) by
A1;
hence thesis by
A2,
NFCONT_1: 20;
end;
theorem ::
NFCONT_2:9
Th9: f
is_Lipschitzian_on X implies f
is_uniformly_continuous_on X
proof
assume
A1: f
is_Lipschitzian_on X;
hence X
c= (
dom f) by
NFCONT_1:def 9;
consider r be
Real such that
A2:
0
< r and
A3: for x1, x2 st x1
in X & x2
in X holds
||.((f
/. x1)
- (f
/. x2)).||
<= (r
*
||.(x1
- x2).||) by
A1,
NFCONT_1:def 9;
let p be
Real such that
A4:
0
< p;
take s = (p
/ r);
thus
0
< s by
A2,
A4,
XREAL_1: 139;
let x1, x2;
assume x1
in X & x2
in X &
||.(x1
- x2).||
< s;
then (r
*
||.(x1
- x2).||)
< (s
* r) &
||.((f
/. x1)
- (f
/. x2)).||
<= (r
*
||.(x1
- x2).||) by
A2,
A3,
XREAL_1: 68;
then
||.((f
/. x1)
- (f
/. x2)).||
< ((p
/ r)
* r) by
XXREAL_0: 2;
hence thesis by
A2,
XCMPLX_1: 87;
end;
theorem ::
NFCONT_2:10
for f, Y st Y is
compact & f
is_continuous_on Y holds f
is_uniformly_continuous_on Y
proof
let f, Y such that
A1: Y is
compact and
A2: f
is_continuous_on Y;
A3: Y
c= (
dom f) by
A2,
NFCONT_1:def 7;
assume not thesis;
then
consider r such that
A4:
0
< r and
A5: for s st
0
< s holds ex x1, x2 st x1
in Y & x2
in Y &
||.(x1
- x2).||
< s & not
||.((f
/. x1)
- (f
/. x2)).||
< r by
A3;
defpred
P[
Nat,
Point of S] means $2
in Y & ex x2 st x2
in Y &
||.($2
- x2).||
< (1
/ ($1
+ 1)) & not
||.((f
/. $2)
- (f
/. x2)).||
< r;
A6: for n holds
0
< (1
/ (n
+ 1)) by
XREAL_1: 139;
A7:
now
let n be
Element of
NAT ;
consider x1 such that
A8: ex x2 st x1
in Y & x2
in Y &
||.(x1
- x2).||
< (1
/ (n
+ 1)) & not
||.((f
/. x1)
- (f
/. x2)).||
< r by
A5,
A6;
take x1;
thus
P[n, x1] by
A8;
end;
consider s1 such that
A9: for n be
Element of
NAT holds
P[n, (s1
. n)] from
FUNCT_2:sch 3(
A7);
defpred
P[
Nat,
Point of S] means $2
in Y &
||.((s1
. $1)
- $2).||
< (1
/ ($1
+ 1)) & not
||.((f
/. (s1
. $1))
- (f
/. $2)).||
< r;
A10: for n be
Element of
NAT holds ex x2 st
P[n, x2] by
A9;
consider s2 such that
A11: for n be
Element of
NAT holds
P[n, (s2
. n)] from
FUNCT_2:sch 3(
A10);
now
let x be
object;
assume x
in (
rng s1);
then
consider n such that
A12: x
= (s1
. n) by
NFCONT_1: 6;
n
in
NAT by
ORDINAL1:def 12;
hence x
in Y by
A9,
A12;
end;
then
A13: (
rng s1)
c= Y by
TARSKI:def 3;
then
consider q1 such that
A14: q1 is
subsequence of s1 and
A15: q1 is
convergent and
A16: (
lim q1)
in Y by
A1,
NFCONT_1:def 2;
consider Ns1 be
increasing
sequence of
NAT such that
A17: q1
= (s1
* Ns1) by
A14,
VALUED_0:def 17;
set q2 = (q1
- ((s1
- s2)
* Ns1));
A18: (f
| Y)
is_continuous_in (
lim q1) by
A2,
A16,
NFCONT_1:def 7;
now
let x be
object;
assume x
in (
rng s2);
then
consider n such that
A19: x
= (s2
. n) by
NFCONT_1: 6;
n
in
NAT by
ORDINAL1:def 12;
hence x
in Y by
A11,
A19;
end;
then
A20: (
rng s2)
c= Y by
TARSKI:def 3;
now
let n be
Element of
NAT ;
thus (q2
. n)
= (((s1
* Ns1)
. n)
- (((s1
- s2)
* Ns1)
. n)) by
A17,
NORMSP_1:def 3
.= ((s1
. (Ns1
. n))
- (((s1
- s2)
* Ns1)
. n)) by
FUNCT_2: 15
.= ((s1
. (Ns1
. n))
- ((s1
- s2)
. (Ns1
. n))) by
FUNCT_2: 15
.= ((s1
. (Ns1
. n))
- ((s1
. (Ns1
. n))
- (s2
. (Ns1
. n)))) by
NORMSP_1:def 3
.= (((s1
. (Ns1
. n))
- (s1
. (Ns1
. n)))
+ (s2
. (Ns1
. n))) by
RLVECT_1: 29
.= ((
0. S)
+ (s2
. (Ns1
. n))) by
RLVECT_1: 15
.= (s2
. (Ns1
. n)) by
RLVECT_1: 4
.= ((s2
* Ns1)
. n) by
FUNCT_2: 15;
end;
then
A21: q2
= (s2
* Ns1) by
FUNCT_2: 63;
then (
rng q2)
c= (
rng s2) by
VALUED_0: 21;
then
A22: (
rng q2)
c= Y by
A20,
XBOOLE_1: 1;
then (
rng q2)
c= (
dom f) by
A3,
XBOOLE_1: 1;
then (
rng q2)
c= ((
dom f)
/\ Y) by
A22,
XBOOLE_1: 19;
then
A23: (
rng q2)
c= (
dom (f
| Y)) by
RELAT_1: 61;
A24:
now
let p be
Real such that
A25:
0
< p;
consider k be
Nat such that
A26: (p
" )
< k by
SEQ_4: 3;
take k;
let m be
Nat;
A27: m
in
NAT by
ORDINAL1:def 12;
assume k
<= m;
then (k
+ 1)
<= (m
+ 1) by
XREAL_1: 6;
then (1
/ (m
+ 1))
<= (1
/ (k
+ 1)) by
XREAL_1: 118;
then
A28:
||.((s1
. m)
- (s2
. m)).||
< (1
/ (k
+ 1)) by
A11,
XXREAL_0: 2,
A27;
k
< (k
+ 1) by
NAT_1: 13;
then (p
" )
< (k
+ 1) by
A26,
XXREAL_0: 2;
then (1
/ (k
+ 1))
< (1
/ (p
" )) by
A25,
XREAL_1: 76;
then
A29: (1
/ (k
+ 1))
< p by
XCMPLX_1: 216;
||.(((s1
- s2)
. m)
- (
0. S)).||
=
||.(((s1
. m)
- (s2
. m))
- (
0. S)).|| by
NORMSP_1:def 3
.=
||.((s1
. m)
- (s2
. m)).|| by
RLVECT_1: 13;
hence
||.(((s1
- s2)
. m)
- (
0. S)).||
< p by
A29,
A28,
XXREAL_0: 2;
end;
then
A30: (s1
- s2) is
convergent by
NORMSP_1:def 6;
then
A31: ((s1
- s2)
* Ns1) is
convergent by
LOPBAN_3: 7;
then
A32: q2 is
convergent by
A15,
NORMSP_1: 20;
(
rng q1)
c= (
rng s1) by
A14,
VALUED_0: 21;
then
A33: (
rng q1)
c= Y by
A13,
XBOOLE_1: 1;
then (
rng q1)
c= (
dom f) by
A3,
XBOOLE_1: 1;
then (
rng q1)
c= ((
dom f)
/\ Y) by
A33,
XBOOLE_1: 19;
then
A34: (
rng q1)
c= (
dom (f
| Y)) by
RELAT_1: 61;
then
A35: ((f
| Y)
/. (
lim q1))
= (
lim ((f
| Y)
/* q1)) by
A15,
A18,
NFCONT_1:def 5;
A36: ((f
| Y)
/* q1) is
convergent by
A15,
A18,
A34,
NFCONT_1:def 5;
(
lim (s1
- s2))
= (
0. S) by
A24,
A30,
NORMSP_1:def 7;
then (
lim ((s1
- s2)
* Ns1))
= (
0. S) by
A30,
LOPBAN_3: 8;
then
A37: (
lim q2)
= ((
lim q1)
- (
0. S)) by
A15,
A31,
NORMSP_1: 26
.= (
lim q1) by
RLVECT_1: 13;
then
A38: ((f
| Y)
/* q2) is
convergent by
A18,
A32,
A23,
NFCONT_1:def 5;
then
A39: (((f
| Y)
/* q1)
- ((f
| Y)
/* q2)) is
convergent by
A36,
NORMSP_1: 20;
((f
| Y)
/. (
lim q1))
= (
lim ((f
| Y)
/* q2)) by
A18,
A32,
A37,
A23,
NFCONT_1:def 5;
then
A40: (
lim (((f
| Y)
/* q1)
- ((f
| Y)
/* q2)))
= (((f
| Y)
/. (
lim q1))
- ((f
| Y)
/. (
lim q1))) by
A36,
A35,
A38,
NORMSP_1: 26
.= (
0. T) by
RLVECT_1: 15;
now
let n;
reconsider r as
Real;
consider k be
Nat such that
A41: for m be
Nat st k
<= m holds
||.(((((f
| Y)
/* q1)
- ((f
| Y)
/* q2))
. m)
- (
0. T)).||
< r by
A4,
A39,
A40,
NORMSP_1:def 7;
A42: k
in
NAT by
ORDINAL1:def 12;
A43: (q1
. k)
in (
rng q1) by
NFCONT_1: 6;
A44: (q2
. k)
in (
rng q2) by
NFCONT_1: 6;
||.(((((f
| Y)
/* q1)
- ((f
| Y)
/* q2))
. k)
- (
0. T)).||
=
||.((((f
| Y)
/* q1)
- ((f
| Y)
/* q2))
. k).|| by
RLVECT_1: 13
.=
||.((((f
| Y)
/* q1)
. k)
- (((f
| Y)
/* q2)
. k)).|| by
NORMSP_1:def 3
.=
||.(((f
| Y)
/. (q1
. k))
- (((f
| Y)
/* q2)
. k)).|| by
A34,
FUNCT_2: 109,
A42
.=
||.(((f
| Y)
/. (q1
. k))
- ((f
| Y)
/. (q2
. k))).|| by
A23,
FUNCT_2: 109,
A42
.=
||.((f
/. (q1
. k))
- ((f
| Y)
/. (q2
. k))).|| by
A34,
A43,
PARTFUN2: 15
.=
||.((f
/. (q1
. k))
- (f
/. (q2
. k))).|| by
A23,
A44,
PARTFUN2: 15
.=
||.((f
/. (s1
. (Ns1
. k)))
- (f
/. ((s2
* Ns1)
. k))).|| by
A17,
A21,
FUNCT_2: 15,
A42
.=
||.((f
/. (s1
. (Ns1
. k)))
- (f
/. (s2
. (Ns1
. k)))).|| by
FUNCT_2: 15,
A42;
hence contradiction by
A11,
A41;
end;
hence contradiction;
end;
theorem ::
NFCONT_2:11
Y
c= (
dom f) & Y is
compact & f
is_uniformly_continuous_on Y implies (f
.: Y) is
compact by
Th7,
NFCONT_1: 32;
theorem ::
NFCONT_2:12
for f be
PartFunc of the
carrier of S,
REAL holds for Y st Y
<>
{} & Y
c= (
dom f) & Y is
compact & f
is_uniformly_continuous_on Y holds ex x1, x2 st x1
in Y & x2
in Y & (f
/. x1)
= (
upper_bound (f
.: Y)) & (f
/. x2)
= (
lower_bound (f
.: Y)) by
Th8,
NFCONT_1: 37;
theorem ::
NFCONT_2:13
X
c= (
dom f) & (f
| X) is
constant implies f
is_uniformly_continuous_on X by
Th9,
NFCONT_1: 43;
begin
definition
let M be non
empty
NORMSTR;
let f be
Function of M, M;
::
NFCONT_2:def3
attr f is
contraction means
:
Def3: ex L be
Real st
0
< L & L
< 1 & for x,y be
Point of M holds
||.((f
. x)
- (f
. y)).||
<= (L
*
||.(x
- y).||);
end
registration
let M be
RealNormSpace;
cluster
contraction for
Function of M, M;
existence
proof
set x = the
Point of M;
reconsider f = (the
carrier of M
--> x) as
Function of the
carrier of M, the
carrier of M;
reconsider jd = (1
/ 2) as
Real;
take f, jd;
thus
0
< jd & jd
< 1;
let z,y be
Point of M;
(f
. z)
= x & (f
. y)
= x by
FUNCOP_1: 7;
then
A1:
||.((f
. z)
- (f
. y)).||
=
0 by
NORMSP_1: 6;
thus thesis by
A1;
end;
end
definition
let M be
RealNormSpace;
mode
Contraction of M is
contraction
Function of M, M;
end
Lm1: (for X be
RealNormSpace holds for x,y be
Point of X holds
||.(x
- y).||
=
0 iff x
= y) & (for X be
RealNormSpace holds for x,y be
Point of X holds
||.(x
- y).||
<>
0 iff x
<> y) & (for X be
RealNormSpace holds for x,y be
Point of X holds
||.(x
- y).||
>
0 iff x
<> y) & (for X be
RealNormSpace holds for x,y be
Point of X holds
||.(x
- y).||
=
||.(y
- x).||) & (for X be
RealNormSpace holds for x,y,z be
Point of X holds for e be
Real st e
>
0 holds ((
||.(x
- z).||
< (e
/ 2) &
||.(z
- y).||
< (e
/ 2)) implies
||.(x
- y).||
< e)) & (for X be
RealNormSpace holds for x,y,z be
Point of X holds for e be
Real st e
>
0 holds ((
||.(x
- z).||
< (e
/ 2) &
||.(y
- z).||
< (e
/ 2)) implies
||.(x
- y).||
< e)) & (for X be
RealNormSpace holds for x be
Point of X st (for e be
Real st e
>
0 holds
||.x.||
< e) holds x
= (
0. X)) & for X be
RealNormSpace holds for x,y be
Point of X st (for e be
Real st e
>
0 holds
||.(x
- y).||
< e) holds x
= y
proof
A1: for X be
RealNormSpace holds for x,y,z be
Point of X holds for e be
Real st e
>
0 holds (
||.(x
- z).||
< (e
/ 2) &
||.(z
- y).||
< (e
/ 2) implies
||.(x
- y).||
< e)
proof
let X be
RealNormSpace;
let x,y,z be
Point of X;
let e be
Real such that e
>
0 ;
assume
||.(x
- z).||
< (e
/ 2) &
||.(z
- y).||
< (e
/ 2);
then (
||.(x
- z).||
+
||.(z
- y).||)
< ((e
/ 2)
+ (e
/ 2)) by
XREAL_1: 8;
then (
||.(x
- y).||
+ (
||.(x
- z).||
+
||.(z
- y).||))
< ((
||.(x
- z).||
+
||.(z
- y).||)
+ e) by
NORMSP_1: 10,
XREAL_1: 8;
then ((
||.(x
- y).||
+ (
||.(x
- z).||
+
||.(z
- y).||))
+ (
- (
||.(x
- z).||
+
||.(z
- y).||)))
< ((e
+ (
||.(x
- z).||
+
||.(z
- y).||))
+ (
- (
||.(x
- z).||
+
||.(z
- y).||))) by
XREAL_1: 8;
hence thesis;
end;
A2: for X be
RealNormSpace holds for x,y,z be
Point of X holds for e be
Real st e
>
0 holds (
||.(x
- z).||
< (e
/ 2) &
||.(y
- z).||
< (e
/ 2) implies
||.(x
- y).||
< e)
proof
let X be
RealNormSpace;
let x,y,z be
Point of X;
let e be
Real such that
A3: e
>
0 ;
assume that
A4:
||.(x
- z).||
< (e
/ 2) and
A5:
||.(y
- z).||
< (e
/ 2);
||.(
- (y
- z)).||
< (e
/ 2) by
A5,
NORMSP_1: 2;
then
||.(z
- y).||
< (e
/ 2) by
RLVECT_1: 33;
hence thesis by
A1,
A3,
A4;
end;
A6: for X be
RealNormSpace holds for x,y be
Point of X holds
||.(x
- y).||
>
0 iff x
<> y
proof
let X be
RealNormSpace;
let x,y be
Point of X;
0
<
||.(x
- y).|| implies (x
- y)
<> (
0. X) by
NORMSP_0:def 6;
hence
0
<
||.(x
- y).|| implies x
<> y by
RLVECT_1: 15;
now
assume x
<> y;
then
0
<>
||.(x
- y).|| by
NORMSP_1: 11;
hence
0
<
||.(x
- y).||;
end;
hence thesis;
end;
A7: for X be
RealNormSpace holds for x,y be
Point of X holds
||.(x
- y).||
=
||.(y
- x).||
proof
let X be
RealNormSpace;
let x,y be
Point of X;
thus
||.(x
- y).||
=
||.(
- (x
- y)).|| by
NORMSP_1: 2
.=
||.(y
- x).|| by
RLVECT_1: 33;
end;
A8: for X be
RealNormSpace holds for x be
Point of X st (for e be
Real st e
>
0 holds
||.x.||
< e) holds x
= (
0. X)
proof
let X be
RealNormSpace;
let x be
Point of X such that
A9: for e be
Real st e
>
0 holds
||.x.||
< e;
now
assume x
<> (
0. X);
then
0
<>
||.x.|| by
NORMSP_0:def 5;
then
0
<
||.x.||;
hence contradiction by
A9;
end;
hence thesis;
end;
thus thesis by
A6,
A7,
A1,
A2,
A8;
end;
Lm2: for K,L,e be
Real st
0
< K & K
< 1 &
0
< e holds ex n be
Nat st
|.(L
* (K
to_power n)).|
< e
proof
let K,L,e be
Real such that
A1:
0
< K & K
< 1 and
A2:
0
< e;
deffunc
P(
Nat) = (K
to_power ($1
+ 1));
consider rseq be
Real_Sequence such that
A3: for n be
Nat holds (rseq
. n)
=
P(n) from
SEQ_1:sch 1;
A4: (L
(#) rseq) is
convergent by
A1,
A3,
SEQ_2: 7,
SERIES_1: 1;
A5: (
lim rseq)
=
0 by
A1,
A3,
SERIES_1: 1;
(
lim (L
(#) rseq))
= (L
* (
lim rseq)) by
A1,
A3,
SEQ_2: 8,
SERIES_1: 1
.=
0 by
A5;
then
consider n be
Nat such that
A6: for m be
Nat st n
<= m holds
|.(((L
(#) rseq)
. m)
-
0 ).|
< e by
A2,
A4,
SEQ_2:def 7;
|.(((L
(#) rseq)
. n)
-
0 ).|
< e by
A6;
then
|.(L
* (rseq
. n)).|
< e by
SEQ_1: 9;
then
|.(L
* (K
to_power (n
+ 1))).|
< e by
A3;
hence thesis;
end;
theorem ::
NFCONT_2:14
Th14: for X be
RealBanachSpace holds for f be
Function of X, X st f is
Contraction of X holds ex xp be
Point of X st (f
. xp)
= xp & for x be
Point of X st (f
. x)
= x holds xp
= x
proof
let X be
RealBanachSpace;
set x0 = the
Element of X;
let f be
Function of X, X;
assume f is
Contraction of X;
then
consider K be
Real such that
A1:
0
< K and
A2: K
< 1 and
A3: for x,y be
Point of X holds
||.((f
. x)
- (f
. y)).||
<= (K
*
||.(x
- y).||) by
Def3;
deffunc
G(
set,
set) = (f
. $2);
consider g be
Function such that
A4: (
dom g)
=
NAT & (g
.
0 )
= x0 & for n be
Nat holds (g
. (n
+ 1))
=
G(n,.) from
NAT_1:sch 11;
defpred
P[
Nat] means (g
. $1)
in the
carrier of X;
A5: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A6:
P[k];
(g
. (k
+ 1))
= (f
. (g
. k)) by
A4;
hence thesis by
A6,
FUNCT_2: 5;
end;
A7:
P[
0 ] by
A4;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A7,
A5);
then for n be
object st n
in
NAT holds (g
. n)
in the
carrier of X;
then
reconsider g as
sequence of X by
A4,
FUNCT_2: 3;
A8:
now
let n be
Nat;
||.(((g
^\ 1)
. n)
- (f
. (
lim g))).||
=
||.((g
. (n
+ 1))
- (f
. (
lim g))).|| by
NAT_1:def 3
.=
||.((f
. (g
. n))
- (f
. (
lim g))).|| by
A4;
hence
||.(((g
^\ 1)
. n)
- (f
. (
lim g))).||
<= (K
*
||.((g
. n)
- (
lim g)).||) by
A3;
end;
A9: for n be
Nat holds
||.((g
. (n
+ 1))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power n))
proof
defpred
P[
Nat] means
||.((g
. ($1
+ 1))
- (g
. $1)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power $1));
A10: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
then
A11: (K
*
||.((g
. (k
+ 1))
- (g
. k)).||)
<= (K
* (
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power k))) by
A1,
XREAL_1: 64;
||.((f
. (g
. (k
+ 1)))
- (f
. (g
. k))).||
<= (K
*
||.((g
. (k
+ 1))
- (g
. k)).||) by
A3;
then
||.((f
. (g
. (k
+ 1)))
- (f
. (g
. k))).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (K
* (K
to_power k))) by
A11,
XXREAL_0: 2;
then
A12:
||.((f
. (g
. (k
+ 1)))
- (f
. (g
. k))).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power 1)
* (K
to_power k))) by
POWER: 25;
(g
. (k
+ 1))
= (f
. (g
. k)) by
A4;
then
||.((g
. ((k
+ 1)
+ 1))
- (g
. (k
+ 1))).||
=
||.((f
. (g
. (k
+ 1)))
- (f
. (g
. k))).|| by
A4;
hence thesis by
A1,
A12,
POWER: 27;
end;
||.((g
. (
0
+ 1))
- (g
.
0 )).||
= (
||.((g
. 1)
- (g
.
0 )).||
* 1)
.= (
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power
0 )) by
POWER: 24;
then
A13:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A13,
A10);
hence thesis;
end;
A14: for k,n be
Nat holds
||.((g
. (n
+ k))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))
proof
defpred
P[
Nat] means for n be
Nat holds
||.((g
. (n
+ $1))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ $1)))
/ (1
- K)));
A15:
now
let k be
Nat such that
A16:
P[k];
now
let n be
Nat;
(1
- K)
<>
0 by
A2;
then
A17: ((
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))
+ (
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power (n
+ k))))
= ((
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))
+ (((
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power (n
+ k)))
* (1
- K))
/ (1
- K))) by
XCMPLX_1: 89
.= ((
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))
+ ((
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power (n
+ k))
* (1
- K)))
/ (1
- K)))
.= ((
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))
+ (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power (n
+ k))
* (1
- K))
/ (1
- K)))) by
XCMPLX_1: 74
.= (
||.((g
. 1)
- (g
.
0 )).||
* ((((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K))
+ (((K
to_power (n
+ k))
* (1
- K))
/ (1
- K))))
.= (
||.((g
. 1)
- (g
.
0 )).||
* ((((K
to_power n)
- (K
to_power (n
+ k)))
+ ((K
to_power (n
+ k))
* (1
- K)))
/ (1
- K))) by
XCMPLX_1: 62
.= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
* (K
to_power (n
+ k))))
/ (1
- K)))
.= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- ((K
to_power 1)
* (K
to_power (n
+ k))))
/ (1
- K))) by
POWER: 25
.= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power ((n
+ k)
+ 1)))
/ (1
- K))) by
A1,
POWER: 27;
||.((g
. (n
+ k))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K))) &
||.((g
. ((n
+ k)
+ 1))
- (g
. (n
+ k))).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power (n
+ k))) by
A9,
A16;
then
||.((g
. (n
+ (k
+ 1)))
- (g
. n)).||
<= (
||.((g
. (n
+ (k
+ 1)))
- (g
. (n
+ k))).||
+
||.((g
. (n
+ k))
- (g
. n)).||) & (
||.((g
. (n
+ (k
+ 1)))
- (g
. (n
+ k))).||
+
||.((g
. (n
+ k))
- (g
. n)).||)
<= ((
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power (n
+ k)))
+ (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))) by
NORMSP_1: 10,
XREAL_1: 7;
hence
||.((g
. (n
+ (k
+ 1)))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ (k
+ 1))))
/ (1
- K))) by
A17,
XXREAL_0: 2;
end;
hence
P[(k
+ 1)];
end;
now
let n be
Nat;
||.((g
. (n
+
0 ))
- (g
. n)).||
=
||.(
0. X).|| by
RLVECT_1: 15
.=
0 by
NORMSP_1: 1;
hence
||.((g
. (n
+
0 ))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+
0 )))
/ (1
- K)));
end;
then
A18:
P[
0 ];
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A18,
A15);
hence thesis;
end;
A19: for k,n be
Nat holds
||.((g
. (n
+ k))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power n)
/ (1
- K)))
proof
let k be
Nat;
now
let n be
Nat;
(K
to_power (n
+ k))
>
0 by
A1,
POWER: 34;
then
A20: ((K
to_power n)
- (K
to_power (n
+ k)))
<= ((K
to_power n)
-
0 ) by
XREAL_1: 13;
(1
- K)
> (1
- 1) by
A2,
XREAL_1: 15;
then (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K))
<= ((K
to_power n)
/ (1
- K)) by
A20,
XREAL_1: 72;
then
A21: (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))
<= (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power n)
/ (1
- K))) by
XREAL_1: 64;
||.((g
. (n
+ k))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K))) by
A14;
hence
||.((g
. (n
+ k))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power n)
/ (1
- K))) by
A21,
XXREAL_0: 2;
end;
hence thesis;
end;
now
let e be
Real such that
A22: e
>
0 ;
(e
/ 2)
>
0 by
A22,
XREAL_1: 215;
then
consider n be
Nat such that
A23:
|.((
||.((g
. 1)
- (g
.
0 )).||
/ (1
- K))
* (K
to_power n)).|
< (e
/ 2) by
A1,
A2,
Lm2;
reconsider nn = (n
+ 1) as
Nat;
take nn;
((
||.((g
. 1)
- (g
.
0 )).||
/ (1
- K))
* (K
to_power n))
<=
|.((
||.((g
. 1)
- (g
.
0 )).||
/ (1
- K))
* (K
to_power n)).| by
ABSVALUE: 4;
then ((
||.((g
. 1)
- (g
.
0 )).||
/ (1
- K))
* (K
to_power n))
< (e
/ 2) by
A23,
XXREAL_0: 2;
then
A24: (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power n)
/ (1
- K)))
< (e
/ 2) by
XCMPLX_1: 75;
now
let m,l be
Nat such that
A25: nn
<= m and
A26: nn
<= l;
n
< m by
A25,
NAT_1: 13;
then
consider k1 be
Nat such that
A27: (n
+ k1)
= m by
NAT_1: 10;
n
< l by
A26,
NAT_1: 13;
then
consider k2 be
Nat such that
A28: (n
+ k2)
= l by
NAT_1: 10;
reconsider k2 as
Nat;
||.((g
. (n
+ k2))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power n)
/ (1
- K))) by
A19;
then
A29:
||.((g
. l)
- (g
. n)).||
< (e
/ 2) by
A24,
A28,
XXREAL_0: 2;
reconsider k1 as
Nat;
||.((g
. (n
+ k1))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power n)
/ (1
- K))) by
A19;
then
||.((g
. m)
- (g
. n)).||
< (e
/ 2) by
A24,
A27,
XXREAL_0: 2;
hence
||.((g
. l)
- (g
. m)).||
< e by
A22,
A29,
Lm1;
end;
hence for n,m be
Nat st n
>= nn & m
>= nn holds
||.((g
. n)
- (g
. m)).||
< e;
end;
then g is
Cauchy_sequence_by_Norm by
RSSPACE3: 8;
then
A30: g is
convergent by
LOPBAN_1:def 15;
then
A31: (K
(#)
||.(g
- (
lim g)).||) is
convergent by
NORMSP_1: 24,
SEQ_2: 7;
A32: (
lim (K
(#)
||.(g
- (
lim g)).||))
= (K
* (
lim
||.(g
- (
lim g)).||)) by
A30,
NORMSP_1: 24,
SEQ_2: 8
.= (K
*
0 ) by
A30,
NORMSP_1: 24
.=
0 ;
A33: for e be
Real st e
>
0 holds ex n be
Nat st for m be
Nat st n
<= m holds
||.(((g
^\ 1)
. m)
- (f
. (
lim g))).||
< e
proof
let e be
Real;
assume e
>
0 ;
then
consider n be
Nat such that
A34: for m be
Nat st n
<= m holds
|.(((K
(#)
||.(g
- (
lim g)).||)
. m)
-
0 ).|
< e by
A31,
A32,
SEQ_2:def 7;
take n;
now
let m be
Nat;
assume n
<= m;
then
|.(((K
(#)
||.(g
- (
lim g)).||)
. m)
-
0 ).|
< e by
A34;
then
|.(K
* (
||.(g
- (
lim g)).||
. m)).|
< e by
SEQ_1: 9;
then
|.(K
*
||.((g
- (
lim g))
. m).||).|
< e by
NORMSP_0:def 4;
then
A35:
|.(K
*
||.((g
. m)
- (
lim g)).||).|
< e by
NORMSP_1:def 4;
(K
*
||.((g
. m)
- (
lim g)).||)
<=
|.(K
*
||.((g
. m)
- (
lim g)).||).| by
ABSVALUE: 4;
then
A36: (K
*
||.((g
. m)
- (
lim g)).||)
< e by
A35,
XXREAL_0: 2;
||.(((g
^\ 1)
. m)
- (f
. (
lim g))).||
<= (K
*
||.((g
. m)
- (
lim g)).||) by
A8;
hence
||.(((g
^\ 1)
. m)
- (f
. (
lim g))).||
< e by
A36,
XXREAL_0: 2;
end;
hence thesis;
end;
take xp = (
lim g);
A37: (g
^\ 1) is
convergent & (
lim (g
^\ 1))
= (
lim g) by
A30,
LOPBAN_3: 9;
then
A38: (
lim g)
= (f
. (
lim g)) by
A33,
NORMSP_1:def 7;
now
let x be
Point of X such that
A39: (f
. x)
= x;
A40: for k be
Nat holds
||.(x
- xp).||
<= (
||.(x
- xp).||
* (K
to_power k))
proof
defpred
P[
Nat] means
||.(x
- xp).||
<= (
||.(x
- xp).||
* (K
to_power $1));
A41: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
then
A42: (K
*
||.(x
- xp).||)
<= (K
* (
||.(x
- xp).||
* (K
to_power k))) by
A1,
XREAL_1: 64;
||.((f
. x)
- (f
. xp)).||
<= (K
*
||.(x
- xp).||) by
A3;
then
||.((f
. x)
- (f
. xp)).||
<= (
||.(x
- xp).||
* (K
* (K
to_power k))) by
A42,
XXREAL_0: 2;
then
||.((f
. x)
- (f
. xp)).||
<= (
||.(x
- xp).||
* ((K
to_power 1)
* (K
to_power k))) by
POWER: 25;
hence thesis by
A1,
A38,
A39,
POWER: 27;
end;
||.(x
- xp).||
= (
||.(x
- xp).||
* 1)
.= (
||.(x
- xp).||
* (K
to_power
0 )) by
POWER: 24;
then
A43:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A43,
A41);
hence thesis;
end;
for e be
Real st
0
< e holds
||.(x
- xp).||
< e
proof
let e be
Real;
assume
0
< e;
then
consider n be
Nat such that
A44:
|.(
||.(x
- xp).||
* (K
to_power n)).|
< e by
A1,
A2,
Lm2;
(
||.(x
- xp).||
* (K
to_power n))
<=
|.(
||.(x
- xp).||
* (K
to_power n)).| by
ABSVALUE: 4;
then
A45: (
||.(x
- xp).||
* (K
to_power n))
< e by
A44,
XXREAL_0: 2;
||.(x
- xp).||
<= (
||.(x
- xp).||
* (K
to_power n)) by
A40;
hence thesis by
A45,
XXREAL_0: 2;
end;
hence x
= xp by
Lm1;
end;
hence thesis by
A37,
A33,
NORMSP_1:def 7;
end;
theorem ::
NFCONT_2:15
for X be
RealBanachSpace holds for f be
Function of X, X st ex n0 be
Nat st (
iter (f,n0)) is
Contraction of X holds ex xp be
Point of X st (f
. xp)
= xp & for x be
Point of X st (f
. x)
= x holds xp
= x
proof
let X be
RealBanachSpace;
let f be
Function of X, X;
given n0 be
Nat such that
A1: (
iter (f,n0)) is
Contraction of X;
consider xp be
Point of X such that
A2: ((
iter (f,n0))
. xp)
= xp and
A3: for x be
Point of X st ((
iter (f,n0))
. x)
= x holds xp
= x by
A1,
Th14;
A4:
now
let x be
Point of X such that
A5: (f
. x)
= x;
for n be
Nat holds ((
iter (f,n))
. x)
= x
proof
defpred
P[
Nat] means ((
iter (f,$1))
. x)
= x;
A6:
now
let n be
Nat such that
A7:
P[n];
((
iter (f,(n
+ 1)))
. x)
= ((f
* (
iter (f,n)))
. x) by
FUNCT_7: 71
.= x by
A5,
A7,
FUNCT_2: 15;
hence
P[(n
+ 1)];
end;
((
iter (f,
0 ))
. x)
= ((
id the
carrier of X)
. x) by
FUNCT_7: 84
.= x;
then
A8:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A8,
A6);
hence thesis;
end;
then ((
iter (f,n0))
. x)
= x;
hence xp
= x by
A3;
end;
((
iter (f,n0))
. (f
. xp))
= (((
iter (f,n0))
* f)
. xp) by
FUNCT_2: 15
.= ((
iter (f,(n0
+ 1)))
. xp) by
FUNCT_7: 69
.= ((f
* (
iter (f,n0)))
. xp) by
FUNCT_7: 71
.= (f
. xp) by
A2,
FUNCT_2: 15;
then (f
. xp)
= xp by
A3;
hence thesis by
A4;
end;
theorem ::
NFCONT_2:16
for K,L,e be
Real st
0
< K & K
< 1 &
0
< e holds ex n be
Nat st
|.(L
* (K
to_power n)).|
< e by
Lm2;