nfcont_2.miz
    
    begin
    
    reserve n,m for
    Nat, 
    
x,X,X1 for
    set, 
    
s,g,r,p for
    Real, 
    
S,T for
    RealNormSpace, 
    
f,f1,f2 for
    PartFunc of S, T, 
    
s1,s2,q1 for
    sequence of S, 
    
x0,x1,x2 for
    Point of S, 
    
Y for
    Subset of S; 
    
    definition
    
      let X, S, T;
    
      let f;
    
      :: 
    
    NFCONT_2:def1
    
      pred f
    
    is_uniformly_continuous_on X means X 
    c= ( 
    dom f) & for r st 
    0  
    < r holds ex s st 
    0  
    < s & for x1, x2 st x1 
    in X & x2 
    in X & 
    ||.(x1
    - x2).|| 
    < s holds 
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    < r; 
    
    end
    
    definition
    
      let X, S;
    
      let f be
    PartFunc of the 
    carrier of S, 
    REAL ; 
    
      :: 
    
    NFCONT_2:def2
    
      pred f
    
    is_uniformly_continuous_on X means X 
    c= ( 
    dom f) & for r st 
    0  
    < r holds ex s st 
    0  
    < s & for x1, x2 st x1 
    in X & x2 
    in X & 
    ||.(x1
    - x2).|| 
    < s holds 
    |.((f
    /. x1) 
    - (f 
    /. x2)).| 
    < r; 
    
    end
    
    theorem :: 
    
    NFCONT_2:1
    
    
    
    
    
    Th1: f 
    is_uniformly_continuous_on X & X1 
    c= X implies f 
    is_uniformly_continuous_on X1 
    
    proof
    
      assume that
    
      
    
    A1: f 
    is_uniformly_continuous_on X and 
    
      
    
    A2: X1 
    c= X; 
    
      X
    c= ( 
    dom f) by 
    A1;
    
      hence X1
    c= ( 
    dom f) by 
    A2,
    XBOOLE_1: 1;
    
      let r;
    
      assume
    0  
    < r; 
    
      then
    
      consider s such that
    
      
    
    A3: 
    0  
    < s and 
    
      
    
    A4: for x1, x2 st x1 
    in X & x2 
    in X & 
    ||.(x1
    - x2).|| 
    < s holds 
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    < r by 
    A1;
    
      take s;
    
      thus
    0  
    < s by 
    A3;
    
      let x1, x2;
    
      assume x1
    in X1 & x2 
    in X1 & 
    ||.(x1
    - x2).|| 
    < s; 
    
      hence thesis by
    A2,
    A4;
    
    end;
    
    theorem :: 
    
    NFCONT_2:2
    
    f1
    is_uniformly_continuous_on X & f2 
    is_uniformly_continuous_on X1 implies (f1 
    + f2) 
    is_uniformly_continuous_on (X 
    /\ X1) 
    
    proof
    
      assume that
    
      
    
    A1: f1 
    is_uniformly_continuous_on X and 
    
      
    
    A2: f2 
    is_uniformly_continuous_on X1; 
    
      
    
      
    
    A3: f2 
    is_uniformly_continuous_on (X 
    /\ X1) by 
    A2,
    Th1,
    XBOOLE_1: 17;
    
      then
    
      
    
    A4: (X 
    /\ X1) 
    c= ( 
    dom f2); 
    
      
    
      
    
    A5: f1 
    is_uniformly_continuous_on (X 
    /\ X1) by 
    A1,
    Th1,
    XBOOLE_1: 17;
    
      then (X
    /\ X1) 
    c= ( 
    dom f1); 
    
      then (X
    /\ X1) 
    c= (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    A4,
    XBOOLE_1: 19;
    
      hence
    
      
    
    A6: (X 
    /\ X1) 
    c= ( 
    dom (f1 
    + f2)) by 
    VFUNCT_1:def 1;
    
      let r;
    
      assume
    0  
    < r; 
    
      then
    
      
    
    A7: 
    0  
    < (r 
    / 2) by 
    XREAL_1: 215;
    
      then
    
      consider s such that
    
      
    
    A8: 
    0  
    < s and 
    
      
    
    A9: for x1, x2 st x1 
    in (X 
    /\ X1) & x2 
    in (X 
    /\ X1) & 
    ||.(x1
    - x2).|| 
    < s holds 
    ||.((f1
    /. x1) 
    - (f1 
    /. x2)).|| 
    < (r 
    / 2) by 
    A5;
    
      consider g such that
    
      
    
    A10: 
    0  
    < g and 
    
      
    
    A11: for x1, x2 st x1 
    in (X 
    /\ X1) & x2 
    in (X 
    /\ X1) & 
    ||.(x1
    - x2).|| 
    < g holds 
    ||.((f2
    /. x1) 
    - (f2 
    /. x2)).|| 
    < (r 
    / 2) by 
    A3,
    A7;
    
      take p = (
    min (s,g)); 
    
      thus
    0  
    < p by 
    A8,
    A10,
    XXREAL_0: 15;
    
      let x1, x2;
    
      assume that
    
      
    
    A12: x1 
    in (X 
    /\ X1) and 
    
      
    
    A13: x2 
    in (X 
    /\ X1) and 
    
      
    
    A14: 
    ||.(x1
    - x2).|| 
    < p; 
    
      p
    <= g by 
    XXREAL_0: 17;
    
      then
    ||.(x1
    - x2).|| 
    < g by 
    A14,
    XXREAL_0: 2;
    
      then
    
      
    
    A15: 
    ||.((f2
    /. x1) 
    - (f2 
    /. x2)).|| 
    < (r 
    / 2) by 
    A11,
    A12,
    A13;
    
      p
    <= s by 
    XXREAL_0: 17;
    
      then
    ||.(x1
    - x2).|| 
    < s by 
    A14,
    XXREAL_0: 2;
    
      then
    ||.((f1
    /. x1) 
    - (f1 
    /. x2)).|| 
    < (r 
    / 2) by 
    A9,
    A12,
    A13;
    
      then
    
      
    
    A16: ( 
    ||.((f1
    /. x1) 
    - (f1 
    /. x2)).|| 
    +  
    ||.((f2
    /. x1) 
    - (f2 
    /. x2)).||) 
    < ((r 
    / 2) 
    + (r 
    / 2)) by 
    A15,
    XREAL_1: 8;
    
      
    
      
    
    A17: 
    ||.(((f1
    /. x1) 
    - (f1 
    /. x2)) 
    + ((f2 
    /. x1) 
    - (f2 
    /. x2))).|| 
    <= ( 
    ||.((f1
    /. x1) 
    - (f1 
    /. x2)).|| 
    +  
    ||.((f2
    /. x1) 
    - (f2 
    /. x2)).||) by 
    NORMSP_1:def 1;
    
      
    ||.(((f1
    + f2) 
    /. x1) 
    - ((f1 
    + f2) 
    /. x2)).|| 
    =  
    ||.(((f1
    /. x1) 
    + (f2 
    /. x1)) 
    - ((f1 
    + f2) 
    /. x2)).|| by 
    A6,
    A12,
    VFUNCT_1:def 1
    
      .=
    ||.(((f1
    /. x1) 
    + (f2 
    /. x1)) 
    - ((f1 
    /. x2) 
    + (f2 
    /. x2))).|| by 
    A6,
    A13,
    VFUNCT_1:def 1
    
      .=
    ||.((f1
    /. x1) 
    + ((f2 
    /. x1) 
    - ((f1 
    /. x2) 
    + (f2 
    /. x2)))).|| by 
    RLVECT_1:def 3
    
      .=
    ||.((f1
    /. x1) 
    + (((f2 
    /. x1) 
    - (f1 
    /. x2)) 
    - (f2 
    /. x2))).|| by 
    RLVECT_1: 27
    
      .=
    ||.((f1
    /. x1) 
    + ((( 
    - (f1 
    /. x2)) 
    + (f2 
    /. x1)) 
    - (f2 
    /. x2))).|| 
    
      .=
    ||.((f1
    /. x1) 
    + (( 
    - (f1 
    /. x2)) 
    + ((f2 
    /. x1) 
    - (f2 
    /. x2)))).|| by 
    RLVECT_1:def 3
    
      .=
    ||.(((f1
    /. x1) 
    - (f1 
    /. x2)) 
    + ((f2 
    /. x1) 
    - (f2 
    /. x2))).|| by 
    RLVECT_1:def 3;
    
      hence thesis by
    A16,
    A17,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    NFCONT_2:3
    
    f1
    is_uniformly_continuous_on X & f2 
    is_uniformly_continuous_on X1 implies (f1 
    - f2) 
    is_uniformly_continuous_on (X 
    /\ X1) 
    
    proof
    
      assume that
    
      
    
    A1: f1 
    is_uniformly_continuous_on X and 
    
      
    
    A2: f2 
    is_uniformly_continuous_on X1; 
    
      
    
      
    
    A3: f2 
    is_uniformly_continuous_on (X 
    /\ X1) by 
    A2,
    Th1,
    XBOOLE_1: 17;
    
      then
    
      
    
    A4: (X 
    /\ X1) 
    c= ( 
    dom f2); 
    
      
    
      
    
    A5: f1 
    is_uniformly_continuous_on (X 
    /\ X1) by 
    A1,
    Th1,
    XBOOLE_1: 17;
    
      then (X
    /\ X1) 
    c= ( 
    dom f1); 
    
      then (X
    /\ X1) 
    c= (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    A4,
    XBOOLE_1: 19;
    
      hence
    
      
    
    A6: (X 
    /\ X1) 
    c= ( 
    dom (f1 
    - f2)) by 
    VFUNCT_1:def 2;
    
      let r;
    
      assume
    0  
    < r; 
    
      then
    
      
    
    A7: 
    0  
    < (r 
    / 2) by 
    XREAL_1: 215;
    
      then
    
      consider s such that
    
      
    
    A8: 
    0  
    < s and 
    
      
    
    A9: for x1, x2 st x1 
    in (X 
    /\ X1) & x2 
    in (X 
    /\ X1) & 
    ||.(x1
    - x2).|| 
    < s holds 
    ||.((f1
    /. x1) 
    - (f1 
    /. x2)).|| 
    < (r 
    / 2) by 
    A5;
    
      consider g such that
    
      
    
    A10: 
    0  
    < g and 
    
      
    
    A11: for x1, x2 st x1 
    in (X 
    /\ X1) & x2 
    in (X 
    /\ X1) & 
    ||.(x1
    - x2).|| 
    < g holds 
    ||.((f2
    /. x1) 
    - (f2 
    /. x2)).|| 
    < (r 
    / 2) by 
    A3,
    A7;
    
      take p = (
    min (s,g)); 
    
      thus
    0  
    < p by 
    A8,
    A10,
    XXREAL_0: 15;
    
      let x1, x2;
    
      assume that
    
      
    
    A12: x1 
    in (X 
    /\ X1) and 
    
      
    
    A13: x2 
    in (X 
    /\ X1) and 
    
      
    
    A14: 
    ||.(x1
    - x2).|| 
    < p; 
    
      p
    <= g by 
    XXREAL_0: 17;
    
      then
    ||.(x1
    - x2).|| 
    < g by 
    A14,
    XXREAL_0: 2;
    
      then
    
      
    
    A15: 
    ||.((f2
    /. x1) 
    - (f2 
    /. x2)).|| 
    < (r 
    / 2) by 
    A11,
    A12,
    A13;
    
      p
    <= s by 
    XXREAL_0: 17;
    
      then
    ||.(x1
    - x2).|| 
    < s by 
    A14,
    XXREAL_0: 2;
    
      then
    ||.((f1
    /. x1) 
    - (f1 
    /. x2)).|| 
    < (r 
    / 2) by 
    A9,
    A12,
    A13;
    
      then
    
      
    
    A16: ( 
    ||.((f1
    /. x1) 
    - (f1 
    /. x2)).|| 
    +  
    ||.((f2
    /. x1) 
    - (f2 
    /. x2)).||) 
    < ((r 
    / 2) 
    + (r 
    / 2)) by 
    A15,
    XREAL_1: 8;
    
      
    
      
    
    A17: 
    ||.(((f1
    /. x1) 
    - (f1 
    /. x2)) 
    - ((f2 
    /. x1) 
    - (f2 
    /. x2))).|| 
    <= ( 
    ||.((f1
    /. x1) 
    - (f1 
    /. x2)).|| 
    +  
    ||.((f2
    /. x1) 
    - (f2 
    /. x2)).||) by 
    NORMSP_1: 3;
    
      
    ||.(((f1
    - f2) 
    /. x1) 
    - ((f1 
    - f2) 
    /. x2)).|| 
    =  
    ||.(((f1
    /. x1) 
    - (f2 
    /. x1)) 
    - ((f1 
    - f2) 
    /. x2)).|| by 
    A6,
    A12,
    VFUNCT_1:def 2
    
      .=
    ||.(((f1
    /. x1) 
    - (f2 
    /. x1)) 
    - ((f1 
    /. x2) 
    - (f2 
    /. x2))).|| by 
    A6,
    A13,
    VFUNCT_1:def 2
    
      .=
    ||.((f1
    /. x1) 
    - ((f2 
    /. x1) 
    + ((f1 
    /. x2) 
    - (f2 
    /. x2)))).|| by 
    RLVECT_1: 27
    
      .=
    ||.((f1
    /. x1) 
    - (((f1 
    /. x2) 
    + (f2 
    /. x1)) 
    - (f2 
    /. x2))).|| by 
    RLVECT_1:def 3
    
      .=
    ||.((f1
    /. x1) 
    - ((f1 
    /. x2) 
    + ((f2 
    /. x1) 
    - (f2 
    /. x2)))).|| by 
    RLVECT_1:def 3
    
      .=
    ||.(((f1
    /. x1) 
    - (f1 
    /. x2)) 
    - ((f2 
    /. x1) 
    - (f2 
    /. x2))).|| by 
    RLVECT_1: 27;
    
      hence thesis by
    A16,
    A17,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    NFCONT_2:4
    
    
    
    
    
    Th4: f 
    is_uniformly_continuous_on X implies (p 
    (#) f) 
    is_uniformly_continuous_on X 
    
    proof
    
      assume
    
      
    
    A1: f 
    is_uniformly_continuous_on X; 
    
      then X
    c= ( 
    dom f); 
    
      hence
    
      
    
    A2: X 
    c= ( 
    dom (p 
    (#) f)) by 
    VFUNCT_1:def 4;
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A3: p 
    =  
    0 ; 
    
          let r;
    
          assume
    
          
    
    A4: 
    0  
    < r; 
    
          then
    
          consider s such that
    
          
    
    A5: 
    0  
    < s and for x1, x2 st x1 
    in X & x2 
    in X & 
    ||.(x1
    - x2).|| 
    < s holds 
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    < r by 
    A1;
    
          take s;
    
          thus
    0  
    < s by 
    A5;
    
          let x1, x2;
    
          assume that
    
          
    
    A6: x1 
    in X and 
    
          
    
    A7: x2 
    in X and 
    ||.(x1
    - x2).|| 
    < s; 
    
          
    ||.(((p
    (#) f) 
    /. x1) 
    - ((p 
    (#) f) 
    /. x2)).|| 
    =  
    ||.((p
    * (f 
    /. x1)) 
    - ((p 
    (#) f) 
    /. x2)).|| by 
    A2,
    A6,
    VFUNCT_1:def 4
    
          .=
    ||.((
    0. T) 
    - ((p 
    (#) f) 
    /. x2)).|| by 
    A3,
    RLVECT_1: 10
    
          .=
    ||.((
    0. T) 
    - (p 
    * (f 
    /. x2))).|| by 
    A2,
    A7,
    VFUNCT_1:def 4
    
          .=
    ||.((
    0. T) 
    - ( 
    0. T)).|| by 
    A3,
    RLVECT_1: 10
    
          .=
    ||.(
    0. T).|| by 
    RLVECT_1: 13
    
          .=
    0 by 
    NORMSP_0:def 6;
    
          hence
    ||.(((p
    (#) f) 
    /. x1) 
    - ((p 
    (#) f) 
    /. x2)).|| 
    < r by 
    A4;
    
        end;
    
          suppose
    
          
    
    A8: p 
    <>  
    0 ; 
    
          then
    
          
    
    A9: 
    0  
    <>  
    |.p.| by
    COMPLEX1: 47;
    
          let r;
    
          
    
          
    
    A10: 
    0  
    <  
    |.p.| by
    A8,
    COMPLEX1: 47;
    
          assume
    0  
    < r; 
    
          then
    0  
    < (r 
    /  
    |.p.|) by
    A10,
    XREAL_1: 139;
    
          then
    
          consider s such that
    
          
    
    A11: 
    0  
    < s and 
    
          
    
    A12: for x1, x2 st x1 
    in X & x2 
    in X & 
    ||.(x1
    - x2).|| 
    < s holds 
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    < (r 
    /  
    |.p.|) by
    A1;
    
          take s;
    
          thus
    0  
    < s by 
    A11;
    
          let x1, x2;
    
          assume that
    
          
    
    A13: x1 
    in X and 
    
          
    
    A14: x2 
    in X and 
    
          
    
    A15: 
    ||.(x1
    - x2).|| 
    < s; 
    
          
    
          
    
    A16: 
    ||.(((p
    (#) f) 
    /. x1) 
    - ((p 
    (#) f) 
    /. x2)).|| 
    =  
    ||.((p
    * (f 
    /. x1)) 
    - ((p 
    (#) f) 
    /. x2)).|| by 
    A2,
    A13,
    VFUNCT_1:def 4
    
          .=
    ||.((p
    * (f 
    /. x1)) 
    - (p 
    * (f 
    /. x2))).|| by 
    A2,
    A14,
    VFUNCT_1:def 4
    
          .=
    ||.(p
    * ((f 
    /. x1) 
    - (f 
    /. x2))).|| by 
    RLVECT_1: 34
    
          .= (
    |.p.|
    *  
    ||.((f
    /. x1) 
    - (f 
    /. x2)).||) by 
    NORMSP_1:def 1;
    
          (
    |.p.|
    *  
    ||.((f
    /. x1) 
    - (f 
    /. x2)).||) 
    < ((r 
    /  
    |.p.|)
    *  
    |.p.|) by
    A10,
    A12,
    A13,
    A14,
    A15,
    XREAL_1: 68;
    
          hence
    ||.(((p
    (#) f) 
    /. x1) 
    - ((p 
    (#) f) 
    /. x2)).|| 
    < r by 
    A9,
    A16,
    XCMPLX_1: 87;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    NFCONT_2:5
    
    f
    is_uniformly_continuous_on X implies ( 
    - f) 
    is_uniformly_continuous_on X 
    
    proof
    
      
    
      
    
    A1: ( 
    - f) 
    = (( 
    - 1) 
    (#) f) by 
    VFUNCT_1: 23;
    
      assume f
    is_uniformly_continuous_on X; 
    
      hence thesis by
    A1,
    Th4;
    
    end;
    
    theorem :: 
    
    NFCONT_2:6
    
    f
    is_uniformly_continuous_on X implies 
    ||.f.||
    is_uniformly_continuous_on X 
    
    proof
    
      assume
    
      
    
    A1: f 
    is_uniformly_continuous_on X; 
    
      then X
    c= ( 
    dom f); 
    
      hence
    
      
    
    A2: X 
    c= ( 
    dom  
    ||.f.||) by
    NORMSP_0:def 3;
    
      let r;
    
      assume
    0  
    < r; 
    
      then
    
      consider s such that
    
      
    
    A3: 
    0  
    < s and 
    
      
    
    A4: for x1, x2 st x1 
    in X & x2 
    in X & 
    ||.(x1
    - x2).|| 
    < s holds 
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    < r by 
    A1;
    
      take s;
    
      thus
    0  
    < s by 
    A3;
    
      let x1, x2;
    
      assume that
    
      
    
    A5: x1 
    in X and 
    
      
    
    A6: x2 
    in X and 
    
      
    
    A7: 
    ||.(x1
    - x2).|| 
    < s; 
    
      
    |.((
    ||.f.||
    /. x1) 
    - ( 
    ||.f.||
    /. x2)).| 
    =  
    |.((
    ||.f.||
    . x1) 
    - ( 
    ||.f.||
    /. x2)).| by 
    A2,
    A5,
    PARTFUN1:def 6
    
      .=
    |.((
    ||.f.||
    . x1) 
    - ( 
    ||.f.||
    . x2)).| by 
    A2,
    A6,
    PARTFUN1:def 6
    
      .=
    |.(
    ||.(f
    /. x1).|| 
    - ( 
    ||.f.||
    . x2)).| by 
    A2,
    A5,
    NORMSP_0:def 3
    
      .=
    |.(
    ||.(f
    /. x1).|| 
    -  
    ||.(f
    /. x2).||).| by 
    A2,
    A6,
    NORMSP_0:def 3;
    
      then
    
      
    
    A8: 
    |.((
    ||.f.||
    /. x1) 
    - ( 
    ||.f.||
    /. x2)).| 
    <=  
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| by 
    NORMSP_1: 9;
    
      
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    < r by 
    A4,
    A5,
    A6,
    A7;
    
      hence thesis by
    A8,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    NFCONT_2:7
    
    
    
    
    
    Th7: f 
    is_uniformly_continuous_on X implies f 
    is_continuous_on X 
    
    proof
    
      assume
    
      
    
    A1: f 
    is_uniformly_continuous_on X; 
    
      
    
    A2: 
    
      now
    
        let x0;
    
        let r be
    Real;
    
        assume that
    
        
    
    A3: x0 
    in X and 
    
        
    
    A4: 
    0  
    < r; 
    
        consider s be
    Real such that 
    
        
    
    A5: 
    0  
    < s and 
    
        
    
    A6: for x1, x2 st x1 
    in X & x2 
    in X & 
    ||.(x1
    - x2).|| 
    < s holds 
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    < r by 
    A1,
    A4;
    
        take s;
    
        thus
    0  
    < s by 
    A5;
    
        let x1;
    
        assume x1
    in X & 
    ||.(x1
    - x0).|| 
    < s; 
    
        hence
    ||.((f
    /. x1) 
    - (f 
    /. x0)).|| 
    < r by 
    A3,
    A6;
    
      end;
    
      X
    c= ( 
    dom f) by 
    A1;
    
      hence thesis by
    A2,
    NFCONT_1: 19;
    
    end;
    
    theorem :: 
    
    NFCONT_2:8
    
    
    
    
    
    Th8: for f be 
    PartFunc of the 
    carrier of S, 
    REAL st f 
    is_uniformly_continuous_on X holds f 
    is_continuous_on X 
    
    proof
    
      let f be
    PartFunc of the 
    carrier of S, 
    REAL ; 
    
      assume
    
      
    
    A1: f 
    is_uniformly_continuous_on X; 
    
      
    
    A2: 
    
      now
    
        let x0;
    
        let r be
    Real;
    
        assume that
    
        
    
    A3: x0 
    in X and 
    
        
    
    A4: 
    0  
    < r; 
    
        consider s be
    Real such that 
    
        
    
    A5: 
    0  
    < s and 
    
        
    
    A6: for x1, x2 st x1 
    in X & x2 
    in X & 
    ||.(x1
    - x2).|| 
    < s holds 
    |.((f
    /. x1) 
    - (f 
    /. x2)).| 
    < r by 
    A1,
    A4;
    
        take s;
    
        thus
    0  
    < s by 
    A5;
    
        let x1;
    
        assume x1
    in X & 
    ||.(x1
    - x0).|| 
    < s; 
    
        hence
    |.((f
    /. x1) 
    - (f 
    /. x0)).| 
    < r by 
    A3,
    A6;
    
      end;
    
      X
    c= ( 
    dom f) by 
    A1;
    
      hence thesis by
    A2,
    NFCONT_1: 20;
    
    end;
    
    theorem :: 
    
    NFCONT_2:9
    
    
    
    
    
    Th9: f 
    is_Lipschitzian_on X implies f 
    is_uniformly_continuous_on X 
    
    proof
    
      assume
    
      
    
    A1: f 
    is_Lipschitzian_on X; 
    
      hence X
    c= ( 
    dom f) by 
    NFCONT_1:def 9;
    
      consider r be
    Real such that 
    
      
    
    A2: 
    0  
    < r and 
    
      
    
    A3: for x1, x2 st x1 
    in X & x2 
    in X holds 
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    <= (r 
    *  
    ||.(x1
    - x2).||) by 
    A1,
    NFCONT_1:def 9;
    
      let p be
    Real such that 
    
      
    
    A4: 
    0  
    < p; 
    
      take s = (p
    / r); 
    
      thus
    0  
    < s by 
    A2,
    A4,
    XREAL_1: 139;
    
      let x1, x2;
    
      assume x1
    in X & x2 
    in X & 
    ||.(x1
    - x2).|| 
    < s; 
    
      then (r
    *  
    ||.(x1
    - x2).||) 
    < (s 
    * r) & 
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    <= (r 
    *  
    ||.(x1
    - x2).||) by 
    A2,
    A3,
    XREAL_1: 68;
    
      then
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    < ((p 
    / r) 
    * r) by 
    XXREAL_0: 2;
    
      hence thesis by
    A2,
    XCMPLX_1: 87;
    
    end;
    
    theorem :: 
    
    NFCONT_2:10
    
    for f, Y st Y is
    compact & f 
    is_continuous_on Y holds f 
    is_uniformly_continuous_on Y 
    
    proof
    
      let f, Y such that
    
      
    
    A1: Y is 
    compact and 
    
      
    
    A2: f 
    is_continuous_on Y; 
    
      
    
      
    
    A3: Y 
    c= ( 
    dom f) by 
    A2,
    NFCONT_1:def 7;
    
      assume not thesis;
    
      then
    
      consider r such that
    
      
    
    A4: 
    0  
    < r and 
    
      
    
    A5: for s st 
    0  
    < s holds ex x1, x2 st x1 
    in Y & x2 
    in Y & 
    ||.(x1
    - x2).|| 
    < s & not 
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    < r by 
    A3;
    
      defpred
    
    P[
    Nat, 
    Point of S] means $2 
    in Y & ex x2 st x2 
    in Y & 
    ||.($2
    - x2).|| 
    < (1 
    / ($1 
    + 1)) & not 
    ||.((f
    /. $2) 
    - (f 
    /. x2)).|| 
    < r; 
    
      
    
      
    
    A6: for n holds 
    0  
    < (1 
    / (n 
    + 1)) by 
    XREAL_1: 139;
    
      
    
    A7: 
    
      now
    
        let n be
    Element of 
    NAT ; 
    
        consider x1 such that
    
        
    
    A8: ex x2 st x1 
    in Y & x2 
    in Y & 
    ||.(x1
    - x2).|| 
    < (1 
    / (n 
    + 1)) & not 
    ||.((f
    /. x1) 
    - (f 
    /. x2)).|| 
    < r by 
    A5,
    A6;
    
        take x1;
    
        thus
    P[n, x1] by
    A8;
    
      end;
    
      consider s1 such that
    
      
    
    A9: for n be 
    Element of 
    NAT holds 
    P[n, (s1
    . n)] from 
    FUNCT_2:sch 3(
    A7);
    
      defpred
    
    P[
    Nat, 
    Point of S] means $2 
    in Y & 
    ||.((s1
    . $1) 
    - $2).|| 
    < (1 
    / ($1 
    + 1)) & not 
    ||.((f
    /. (s1 
    . $1)) 
    - (f 
    /. $2)).|| 
    < r; 
    
      
    
      
    
    A10: for n be 
    Element of 
    NAT holds ex x2 st 
    P[n, x2] by
    A9;
    
      consider s2 such that
    
      
    
    A11: for n be 
    Element of 
    NAT holds 
    P[n, (s2
    . n)] from 
    FUNCT_2:sch 3(
    A10);
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    rng s1); 
    
        then
    
        consider n such that
    
        
    
    A12: x 
    = (s1 
    . n) by 
    NFCONT_1: 6;
    
        n
    in  
    NAT by 
    ORDINAL1:def 12;
    
        hence x
    in Y by 
    A9,
    A12;
    
      end;
    
      then
    
      
    
    A13: ( 
    rng s1) 
    c= Y by 
    TARSKI:def 3;
    
      then
    
      consider q1 such that
    
      
    
    A14: q1 is 
    subsequence of s1 and 
    
      
    
    A15: q1 is 
    convergent and 
    
      
    
    A16: ( 
    lim q1) 
    in Y by 
    A1,
    NFCONT_1:def 2;
    
      consider Ns1 be
    increasing  
    sequence of 
    NAT such that 
    
      
    
    A17: q1 
    = (s1 
    * Ns1) by 
    A14,
    VALUED_0:def 17;
    
      set q2 = (q1
    - ((s1 
    - s2) 
    * Ns1)); 
    
      
    
      
    
    A18: (f 
    | Y) 
    is_continuous_in ( 
    lim q1) by 
    A2,
    A16,
    NFCONT_1:def 7;
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    rng s2); 
    
        then
    
        consider n such that
    
        
    
    A19: x 
    = (s2 
    . n) by 
    NFCONT_1: 6;
    
        n
    in  
    NAT by 
    ORDINAL1:def 12;
    
        hence x
    in Y by 
    A11,
    A19;
    
      end;
    
      then
    
      
    
    A20: ( 
    rng s2) 
    c= Y by 
    TARSKI:def 3;
    
      now
    
        let n be
    Element of 
    NAT ; 
    
        
    
        thus (q2
    . n) 
    = (((s1 
    * Ns1) 
    . n) 
    - (((s1 
    - s2) 
    * Ns1) 
    . n)) by 
    A17,
    NORMSP_1:def 3
    
        .= ((s1
    . (Ns1 
    . n)) 
    - (((s1 
    - s2) 
    * Ns1) 
    . n)) by 
    FUNCT_2: 15
    
        .= ((s1
    . (Ns1 
    . n)) 
    - ((s1 
    - s2) 
    . (Ns1 
    . n))) by 
    FUNCT_2: 15
    
        .= ((s1
    . (Ns1 
    . n)) 
    - ((s1 
    . (Ns1 
    . n)) 
    - (s2 
    . (Ns1 
    . n)))) by 
    NORMSP_1:def 3
    
        .= (((s1
    . (Ns1 
    . n)) 
    - (s1 
    . (Ns1 
    . n))) 
    + (s2 
    . (Ns1 
    . n))) by 
    RLVECT_1: 29
    
        .= ((
    0. S) 
    + (s2 
    . (Ns1 
    . n))) by 
    RLVECT_1: 15
    
        .= (s2
    . (Ns1 
    . n)) by 
    RLVECT_1: 4
    
        .= ((s2
    * Ns1) 
    . n) by 
    FUNCT_2: 15;
    
      end;
    
      then
    
      
    
    A21: q2 
    = (s2 
    * Ns1) by 
    FUNCT_2: 63;
    
      then (
    rng q2) 
    c= ( 
    rng s2) by 
    VALUED_0: 21;
    
      then
    
      
    
    A22: ( 
    rng q2) 
    c= Y by 
    A20,
    XBOOLE_1: 1;
    
      then (
    rng q2) 
    c= ( 
    dom f) by 
    A3,
    XBOOLE_1: 1;
    
      then (
    rng q2) 
    c= (( 
    dom f) 
    /\ Y) by 
    A22,
    XBOOLE_1: 19;
    
      then
    
      
    
    A23: ( 
    rng q2) 
    c= ( 
    dom (f 
    | Y)) by 
    RELAT_1: 61;
    
      
    
    A24: 
    
      now
    
        let p be
    Real such that 
    
        
    
    A25: 
    0  
    < p; 
    
        consider k be
    Nat such that 
    
        
    
    A26: (p 
    " ) 
    < k by 
    SEQ_4: 3;
    
        take k;
    
        let m be
    Nat;
    
        
    
        
    
    A27: m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        assume k
    <= m; 
    
        then (k
    + 1) 
    <= (m 
    + 1) by 
    XREAL_1: 6;
    
        then (1
    / (m 
    + 1)) 
    <= (1 
    / (k 
    + 1)) by 
    XREAL_1: 118;
    
        then
    
        
    
    A28: 
    ||.((s1
    . m) 
    - (s2 
    . m)).|| 
    < (1 
    / (k 
    + 1)) by 
    A11,
    XXREAL_0: 2,
    A27;
    
        k
    < (k 
    + 1) by 
    NAT_1: 13;
    
        then (p
    " ) 
    < (k 
    + 1) by 
    A26,
    XXREAL_0: 2;
    
        then (1
    / (k 
    + 1)) 
    < (1 
    / (p 
    " )) by 
    A25,
    XREAL_1: 76;
    
        then
    
        
    
    A29: (1 
    / (k 
    + 1)) 
    < p by 
    XCMPLX_1: 216;
    
        
    ||.(((s1
    - s2) 
    . m) 
    - ( 
    0. S)).|| 
    =  
    ||.(((s1
    . m) 
    - (s2 
    . m)) 
    - ( 
    0. S)).|| by 
    NORMSP_1:def 3
    
        .=
    ||.((s1
    . m) 
    - (s2 
    . m)).|| by 
    RLVECT_1: 13;
    
        hence
    ||.(((s1
    - s2) 
    . m) 
    - ( 
    0. S)).|| 
    < p by 
    A29,
    A28,
    XXREAL_0: 2;
    
      end;
    
      then
    
      
    
    A30: (s1 
    - s2) is 
    convergent by 
    NORMSP_1:def 6;
    
      then
    
      
    
    A31: ((s1 
    - s2) 
    * Ns1) is 
    convergent by 
    LOPBAN_3: 7;
    
      then
    
      
    
    A32: q2 is 
    convergent by 
    A15,
    NORMSP_1: 20;
    
      (
    rng q1) 
    c= ( 
    rng s1) by 
    A14,
    VALUED_0: 21;
    
      then
    
      
    
    A33: ( 
    rng q1) 
    c= Y by 
    A13,
    XBOOLE_1: 1;
    
      then (
    rng q1) 
    c= ( 
    dom f) by 
    A3,
    XBOOLE_1: 1;
    
      then (
    rng q1) 
    c= (( 
    dom f) 
    /\ Y) by 
    A33,
    XBOOLE_1: 19;
    
      then
    
      
    
    A34: ( 
    rng q1) 
    c= ( 
    dom (f 
    | Y)) by 
    RELAT_1: 61;
    
      then
    
      
    
    A35: ((f 
    | Y) 
    /. ( 
    lim q1)) 
    = ( 
    lim ((f 
    | Y) 
    /* q1)) by 
    A15,
    A18,
    NFCONT_1:def 5;
    
      
    
      
    
    A36: ((f 
    | Y) 
    /* q1) is 
    convergent by 
    A15,
    A18,
    A34,
    NFCONT_1:def 5;
    
      (
    lim (s1 
    - s2)) 
    = ( 
    0. S) by 
    A24,
    A30,
    NORMSP_1:def 7;
    
      then (
    lim ((s1 
    - s2) 
    * Ns1)) 
    = ( 
    0. S) by 
    A30,
    LOPBAN_3: 8;
    
      
    
      then
    
      
    
    A37: ( 
    lim q2) 
    = (( 
    lim q1) 
    - ( 
    0. S)) by 
    A15,
    A31,
    NORMSP_1: 26
    
      .= (
    lim q1) by 
    RLVECT_1: 13;
    
      then
    
      
    
    A38: ((f 
    | Y) 
    /* q2) is 
    convergent by 
    A18,
    A32,
    A23,
    NFCONT_1:def 5;
    
      then
    
      
    
    A39: (((f 
    | Y) 
    /* q1) 
    - ((f 
    | Y) 
    /* q2)) is 
    convergent by 
    A36,
    NORMSP_1: 20;
    
      ((f
    | Y) 
    /. ( 
    lim q1)) 
    = ( 
    lim ((f 
    | Y) 
    /* q2)) by 
    A18,
    A32,
    A37,
    A23,
    NFCONT_1:def 5;
    
      
    
      then
    
      
    
    A40: ( 
    lim (((f 
    | Y) 
    /* q1) 
    - ((f 
    | Y) 
    /* q2))) 
    = (((f 
    | Y) 
    /. ( 
    lim q1)) 
    - ((f 
    | Y) 
    /. ( 
    lim q1))) by 
    A36,
    A35,
    A38,
    NORMSP_1: 26
    
      .= (
    0. T) by 
    RLVECT_1: 15;
    
      now
    
        let n;
    
        reconsider r as
    Real;
    
        consider k be
    Nat such that 
    
        
    
    A41: for m be 
    Nat st k 
    <= m holds 
    ||.(((((f
    | Y) 
    /* q1) 
    - ((f 
    | Y) 
    /* q2)) 
    . m) 
    - ( 
    0. T)).|| 
    < r by 
    A4,
    A39,
    A40,
    NORMSP_1:def 7;
    
        
    
        
    
    A42: k 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        
    
        
    
    A43: (q1 
    . k) 
    in ( 
    rng q1) by 
    NFCONT_1: 6;
    
        
    
        
    
    A44: (q2 
    . k) 
    in ( 
    rng q2) by 
    NFCONT_1: 6;
    
        
    ||.(((((f
    | Y) 
    /* q1) 
    - ((f 
    | Y) 
    /* q2)) 
    . k) 
    - ( 
    0. T)).|| 
    =  
    ||.((((f
    | Y) 
    /* q1) 
    - ((f 
    | Y) 
    /* q2)) 
    . k).|| by 
    RLVECT_1: 13
    
        .=
    ||.((((f
    | Y) 
    /* q1) 
    . k) 
    - (((f 
    | Y) 
    /* q2) 
    . k)).|| by 
    NORMSP_1:def 3
    
        .=
    ||.(((f
    | Y) 
    /. (q1 
    . k)) 
    - (((f 
    | Y) 
    /* q2) 
    . k)).|| by 
    A34,
    FUNCT_2: 109,
    A42
    
        .=
    ||.(((f
    | Y) 
    /. (q1 
    . k)) 
    - ((f 
    | Y) 
    /. (q2 
    . k))).|| by 
    A23,
    FUNCT_2: 109,
    A42
    
        .=
    ||.((f
    /. (q1 
    . k)) 
    - ((f 
    | Y) 
    /. (q2 
    . k))).|| by 
    A34,
    A43,
    PARTFUN2: 15
    
        .=
    ||.((f
    /. (q1 
    . k)) 
    - (f 
    /. (q2 
    . k))).|| by 
    A23,
    A44,
    PARTFUN2: 15
    
        .=
    ||.((f
    /. (s1 
    . (Ns1 
    . k))) 
    - (f 
    /. ((s2 
    * Ns1) 
    . k))).|| by 
    A17,
    A21,
    FUNCT_2: 15,
    A42
    
        .=
    ||.((f
    /. (s1 
    . (Ns1 
    . k))) 
    - (f 
    /. (s2 
    . (Ns1 
    . k)))).|| by 
    FUNCT_2: 15,
    A42;
    
        hence contradiction by
    A11,
    A41;
    
      end;
    
      hence contradiction;
    
    end;
    
    theorem :: 
    
    NFCONT_2:11
    
    Y
    c= ( 
    dom f) & Y is 
    compact & f 
    is_uniformly_continuous_on Y implies (f 
    .: Y) is 
    compact by 
    Th7,
    NFCONT_1: 32;
    
    theorem :: 
    
    NFCONT_2:12
    
    for f be
    PartFunc of the 
    carrier of S, 
    REAL holds for Y st Y 
    <>  
    {} & Y 
    c= ( 
    dom f) & Y is 
    compact & f 
    is_uniformly_continuous_on Y holds ex x1, x2 st x1 
    in Y & x2 
    in Y & (f 
    /. x1) 
    = ( 
    upper_bound (f 
    .: Y)) & (f 
    /. x2) 
    = ( 
    lower_bound (f 
    .: Y)) by 
    Th8,
    NFCONT_1: 37;
    
    theorem :: 
    
    NFCONT_2:13
    
    X
    c= ( 
    dom f) & (f 
    | X) is 
    constant implies f 
    is_uniformly_continuous_on X by 
    Th9,
    NFCONT_1: 43;
    
    begin
    
    definition
    
      let M be non
    empty  
    NORMSTR;
    
      let f be
    Function of M, M; 
    
      :: 
    
    NFCONT_2:def3
    
      attr f is
    
    contraction means 
    
      :
    
    Def3: ex L be 
    Real st 
    0  
    < L & L 
    < 1 & for x,y be 
    Point of M holds 
    ||.((f
    . x) 
    - (f 
    . y)).|| 
    <= (L 
    *  
    ||.(x
    - y).||); 
    
    end
    
    registration
    
      let M be
    RealNormSpace;
    
      cluster 
    contraction for 
    Function of M, M; 
    
      existence
    
      proof
    
        set x = the
    Point of M; 
    
        reconsider f = (the
    carrier of M 
    --> x) as 
    Function of the 
    carrier of M, the 
    carrier of M; 
    
        reconsider jd = (1
    / 2) as 
    Real;
    
        take f, jd;
    
        thus
    0  
    < jd & jd 
    < 1; 
    
        let z,y be
    Point of M; 
    
        (f
    . z) 
    = x & (f 
    . y) 
    = x by 
    FUNCOP_1: 7;
    
        then
    
        
    
    A1: 
    ||.((f
    . z) 
    - (f 
    . y)).|| 
    =  
    0 by 
    NORMSP_1: 6;
    
        thus thesis by
    A1;
    
      end;
    
    end
    
    definition
    
      let M be
    RealNormSpace;
    
      mode
    
    Contraction of M is 
    contraction  
    Function of M, M; 
    
    end
    
    
    
    
    
    Lm1: (for X be 
    RealNormSpace holds for x,y be 
    Point of X holds 
    ||.(x
    - y).|| 
    =  
    0 iff x 
    = y) & (for X be 
    RealNormSpace holds for x,y be 
    Point of X holds 
    ||.(x
    - y).|| 
    <>  
    0 iff x 
    <> y) & (for X be 
    RealNormSpace holds for x,y be 
    Point of X holds 
    ||.(x
    - y).|| 
    >  
    0 iff x 
    <> y) & (for X be 
    RealNormSpace holds for x,y be 
    Point of X holds 
    ||.(x
    - y).|| 
    =  
    ||.(y
    - x).||) & (for X be 
    RealNormSpace holds for x,y,z be 
    Point of X holds for e be 
    Real st e 
    >  
    0 holds (( 
    ||.(x
    - z).|| 
    < (e 
    / 2) & 
    ||.(z
    - y).|| 
    < (e 
    / 2)) implies 
    ||.(x
    - y).|| 
    < e)) & (for X be 
    RealNormSpace holds for x,y,z be 
    Point of X holds for e be 
    Real st e 
    >  
    0 holds (( 
    ||.(x
    - z).|| 
    < (e 
    / 2) & 
    ||.(y
    - z).|| 
    < (e 
    / 2)) implies 
    ||.(x
    - y).|| 
    < e)) & (for X be 
    RealNormSpace holds for x be 
    Point of X st (for e be 
    Real st e 
    >  
    0 holds 
    ||.x.||
    < e) holds x 
    = ( 
    0. X)) & for X be 
    RealNormSpace holds for x,y be 
    Point of X st (for e be 
    Real st e 
    >  
    0 holds 
    ||.(x
    - y).|| 
    < e) holds x 
    = y 
    
    proof
    
      
    
      
    
    A1: for X be 
    RealNormSpace holds for x,y,z be 
    Point of X holds for e be 
    Real st e 
    >  
    0 holds ( 
    ||.(x
    - z).|| 
    < (e 
    / 2) & 
    ||.(z
    - y).|| 
    < (e 
    / 2) implies 
    ||.(x
    - y).|| 
    < e) 
    
      proof
    
        let X be
    RealNormSpace;
    
        let x,y,z be
    Point of X; 
    
        let e be
    Real such that e 
    >  
    0 ; 
    
        assume
    ||.(x
    - z).|| 
    < (e 
    / 2) & 
    ||.(z
    - y).|| 
    < (e 
    / 2); 
    
        then (
    ||.(x
    - z).|| 
    +  
    ||.(z
    - y).||) 
    < ((e 
    / 2) 
    + (e 
    / 2)) by 
    XREAL_1: 8;
    
        then (
    ||.(x
    - y).|| 
    + ( 
    ||.(x
    - z).|| 
    +  
    ||.(z
    - y).||)) 
    < (( 
    ||.(x
    - z).|| 
    +  
    ||.(z
    - y).||) 
    + e) by 
    NORMSP_1: 10,
    XREAL_1: 8;
    
        then ((
    ||.(x
    - y).|| 
    + ( 
    ||.(x
    - z).|| 
    +  
    ||.(z
    - y).||)) 
    + ( 
    - ( 
    ||.(x
    - z).|| 
    +  
    ||.(z
    - y).||))) 
    < ((e 
    + ( 
    ||.(x
    - z).|| 
    +  
    ||.(z
    - y).||)) 
    + ( 
    - ( 
    ||.(x
    - z).|| 
    +  
    ||.(z
    - y).||))) by 
    XREAL_1: 8;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A2: for X be 
    RealNormSpace holds for x,y,z be 
    Point of X holds for e be 
    Real st e 
    >  
    0 holds ( 
    ||.(x
    - z).|| 
    < (e 
    / 2) & 
    ||.(y
    - z).|| 
    < (e 
    / 2) implies 
    ||.(x
    - y).|| 
    < e) 
    
      proof
    
        let X be
    RealNormSpace;
    
        let x,y,z be
    Point of X; 
    
        let e be
    Real such that 
    
        
    
    A3: e 
    >  
    0 ; 
    
        assume that
    
        
    
    A4: 
    ||.(x
    - z).|| 
    < (e 
    / 2) and 
    
        
    
    A5: 
    ||.(y
    - z).|| 
    < (e 
    / 2); 
    
        
    ||.(
    - (y 
    - z)).|| 
    < (e 
    / 2) by 
    A5,
    NORMSP_1: 2;
    
        then
    ||.(z
    - y).|| 
    < (e 
    / 2) by 
    RLVECT_1: 33;
    
        hence thesis by
    A1,
    A3,
    A4;
    
      end;
    
      
    
      
    
    A6: for X be 
    RealNormSpace holds for x,y be 
    Point of X holds 
    ||.(x
    - y).|| 
    >  
    0 iff x 
    <> y 
    
      proof
    
        let X be
    RealNormSpace;
    
        let x,y be
    Point of X; 
    
        
    0  
    <  
    ||.(x
    - y).|| implies (x 
    - y) 
    <> ( 
    0. X) by 
    NORMSP_0:def 6;
    
        hence
    0  
    <  
    ||.(x
    - y).|| implies x 
    <> y by 
    RLVECT_1: 15;
    
        now
    
          assume x
    <> y; 
    
          then
    0  
    <>  
    ||.(x
    - y).|| by 
    NORMSP_1: 11;
    
          hence
    0  
    <  
    ||.(x
    - y).||; 
    
        end;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A7: for X be 
    RealNormSpace holds for x,y be 
    Point of X holds 
    ||.(x
    - y).|| 
    =  
    ||.(y
    - x).|| 
    
      proof
    
        let X be
    RealNormSpace;
    
        let x,y be
    Point of X; 
    
        
    
        thus
    ||.(x
    - y).|| 
    =  
    ||.(
    - (x 
    - y)).|| by 
    NORMSP_1: 2
    
        .=
    ||.(y
    - x).|| by 
    RLVECT_1: 33;
    
      end;
    
      
    
      
    
    A8: for X be 
    RealNormSpace holds for x be 
    Point of X st (for e be 
    Real st e 
    >  
    0 holds 
    ||.x.||
    < e) holds x 
    = ( 
    0. X) 
    
      proof
    
        let X be
    RealNormSpace;
    
        let x be
    Point of X such that 
    
        
    
    A9: for e be 
    Real st e 
    >  
    0 holds 
    ||.x.||
    < e; 
    
        now
    
          assume x
    <> ( 
    0. X); 
    
          then
    0  
    <>  
    ||.x.|| by
    NORMSP_0:def 5;
    
          then
    0  
    <  
    ||.x.||;
    
          hence contradiction by
    A9;
    
        end;
    
        hence thesis;
    
      end;
    
      thus thesis by
    A6,
    A7,
    A1,
    A2,
    A8;
    
    end;
    
    
    
    
    
    Lm2: for K,L,e be 
    Real st 
    0  
    < K & K 
    < 1 & 
    0  
    < e holds ex n be 
    Nat st 
    |.(L
    * (K 
    to_power n)).| 
    < e 
    
    proof
    
      let K,L,e be
    Real such that 
    
      
    
    A1: 
    0  
    < K & K 
    < 1 and 
    
      
    
    A2: 
    0  
    < e; 
    
      deffunc
    
    P(
    Nat) = (K
    to_power ($1 
    + 1)); 
    
      consider rseq be
    Real_Sequence such that 
    
      
    
    A3: for n be 
    Nat holds (rseq 
    . n) 
    =  
    P(n) from
    SEQ_1:sch 1;
    
      
    
      
    
    A4: (L 
    (#) rseq) is 
    convergent by 
    A1,
    A3,
    SEQ_2: 7,
    SERIES_1: 1;
    
      
    
      
    
    A5: ( 
    lim rseq) 
    =  
    0 by 
    A1,
    A3,
    SERIES_1: 1;
    
      (
    lim (L 
    (#) rseq)) 
    = (L 
    * ( 
    lim rseq)) by 
    A1,
    A3,
    SEQ_2: 8,
    SERIES_1: 1
    
      .=
    0 by 
    A5;
    
      then
    
      consider n be
    Nat such that 
    
      
    
    A6: for m be 
    Nat st n 
    <= m holds 
    |.(((L
    (#) rseq) 
    . m) 
    -  
    0 ).| 
    < e by 
    A2,
    A4,
    SEQ_2:def 7;
    
      
    |.(((L
    (#) rseq) 
    . n) 
    -  
    0 ).| 
    < e by 
    A6;
    
      then
    |.(L
    * (rseq 
    . n)).| 
    < e by 
    SEQ_1: 9;
    
      then
    |.(L
    * (K 
    to_power (n 
    + 1))).| 
    < e by 
    A3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    NFCONT_2:14
    
    
    
    
    
    Th14: for X be 
    RealBanachSpace holds for f be 
    Function of X, X st f is 
    Contraction of X holds ex xp be 
    Point of X st (f 
    . xp) 
    = xp & for x be 
    Point of X st (f 
    . x) 
    = x holds xp 
    = x 
    
    proof
    
      let X be
    RealBanachSpace;
    
      set x0 = the
    Element of X; 
    
      let f be
    Function of X, X; 
    
      assume f is
    Contraction of X; 
    
      then
    
      consider K be
    Real such that 
    
      
    
    A1: 
    0  
    < K and 
    
      
    
    A2: K 
    < 1 and 
    
      
    
    A3: for x,y be 
    Point of X holds 
    ||.((f
    . x) 
    - (f 
    . y)).|| 
    <= (K 
    *  
    ||.(x
    - y).||) by 
    Def3;
    
      deffunc
    
    G(
    set, 
    set) = (f
    . $2); 
    
      consider g be
    Function such that 
    
      
    
    A4: ( 
    dom g) 
    =  
    NAT & (g 
    .  
    0 ) 
    = x0 & for n be 
    Nat holds (g 
    . (n 
    + 1)) 
    =  
    G(n,.) from
    NAT_1:sch 11;
    
      defpred
    
    P[
    Nat] means (g
    . $1) 
    in the 
    carrier of X; 
    
      
    
      
    
    A5: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat such that 
    
        
    
    A6: 
    P[k];
    
        (g
    . (k 
    + 1)) 
    = (f 
    . (g 
    . k)) by 
    A4;
    
        hence thesis by
    A6,
    FUNCT_2: 5;
    
      end;
    
      
    
      
    
    A7: 
    P[
    0 ] by 
    A4;
    
      for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A7,
    A5);
    
      then for n be
    object st n 
    in  
    NAT holds (g 
    . n) 
    in the 
    carrier of X; 
    
      then
    
      reconsider g as
    sequence of X by 
    A4,
    FUNCT_2: 3;
    
      
    
    A8: 
    
      now
    
        let n be
    Nat;
    
        
    ||.(((g
    ^\ 1) 
    . n) 
    - (f 
    . ( 
    lim g))).|| 
    =  
    ||.((g
    . (n 
    + 1)) 
    - (f 
    . ( 
    lim g))).|| by 
    NAT_1:def 3
    
        .=
    ||.((f
    . (g 
    . n)) 
    - (f 
    . ( 
    lim g))).|| by 
    A4;
    
        hence
    ||.(((g
    ^\ 1) 
    . n) 
    - (f 
    . ( 
    lim g))).|| 
    <= (K 
    *  
    ||.((g
    . n) 
    - ( 
    lim g)).||) by 
    A3;
    
      end;
    
      
    
      
    
    A9: for n be 
    Nat holds 
    ||.((g
    . (n 
    + 1)) 
    - (g 
    . n)).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (K 
    to_power n)) 
    
      proof
    
        defpred
    
    P[
    Nat] means
    ||.((g
    . ($1 
    + 1)) 
    - (g 
    . $1)).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (K 
    to_power $1)); 
    
        
    
        
    
    A10: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
        proof
    
          let k be
    Nat;
    
          assume
    P[k];
    
          then
    
          
    
    A11: (K 
    *  
    ||.((g
    . (k 
    + 1)) 
    - (g 
    . k)).||) 
    <= (K 
    * ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (K 
    to_power k))) by 
    A1,
    XREAL_1: 64;
    
          
    ||.((f
    . (g 
    . (k 
    + 1))) 
    - (f 
    . (g 
    . k))).|| 
    <= (K 
    *  
    ||.((g
    . (k 
    + 1)) 
    - (g 
    . k)).||) by 
    A3;
    
          then
    ||.((f
    . (g 
    . (k 
    + 1))) 
    - (f 
    . (g 
    . k))).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (K 
    * (K 
    to_power k))) by 
    A11,
    XXREAL_0: 2;
    
          then
    
          
    
    A12: 
    ||.((f
    . (g 
    . (k 
    + 1))) 
    - (f 
    . (g 
    . k))).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * ((K 
    to_power 1) 
    * (K 
    to_power k))) by 
    POWER: 25;
    
          (g
    . (k 
    + 1)) 
    = (f 
    . (g 
    . k)) by 
    A4;
    
          then
    ||.((g
    . ((k 
    + 1) 
    + 1)) 
    - (g 
    . (k 
    + 1))).|| 
    =  
    ||.((f
    . (g 
    . (k 
    + 1))) 
    - (f 
    . (g 
    . k))).|| by 
    A4;
    
          hence thesis by
    A1,
    A12,
    POWER: 27;
    
        end;
    
        
    ||.((g
    . ( 
    0  
    + 1)) 
    - (g 
    .  
    0 )).|| 
    = ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * 1) 
    
        .= (
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (K 
    to_power  
    0 )) by 
    POWER: 24;
    
        then
    
        
    
    A13: 
    P[
    0 ]; 
    
        for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A13,
    A10);
    
        hence thesis;
    
      end;
    
      
    
      
    
    A14: for k,n be 
    Nat holds 
    ||.((g
    . (n 
    + k)) 
    - (g 
    . n)).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    / (1 
    - K))) 
    
      proof
    
        defpred
    
    P[
    Nat] means for n be
    Nat holds 
    ||.((g
    . (n 
    + $1)) 
    - (g 
    . n)).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power (n 
    + $1))) 
    / (1 
    - K))); 
    
        
    
    A15: 
    
        now
    
          let k be
    Nat such that 
    
          
    
    A16: 
    P[k];
    
          now
    
            let n be
    Nat;
    
            (1
    - K) 
    <>  
    0 by 
    A2;
    
            
    
            then
    
            
    
    A17: (( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    / (1 
    - K))) 
    + ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (K 
    to_power (n 
    + k)))) 
    = (( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    / (1 
    - K))) 
    + ((( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (K 
    to_power (n 
    + k))) 
    * (1 
    - K)) 
    / (1 
    - K))) by 
    XCMPLX_1: 89
    
            .= ((
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    / (1 
    - K))) 
    + (( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * ((K 
    to_power (n 
    + k)) 
    * (1 
    - K))) 
    / (1 
    - K))) 
    
            .= ((
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    / (1 
    - K))) 
    + ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power (n 
    + k)) 
    * (1 
    - K)) 
    / (1 
    - K)))) by 
    XCMPLX_1: 74
    
            .= (
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * ((((K 
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    / (1 
    - K)) 
    + (((K 
    to_power (n 
    + k)) 
    * (1 
    - K)) 
    / (1 
    - K)))) 
    
            .= (
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * ((((K 
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    + ((K 
    to_power (n 
    + k)) 
    * (1 
    - K))) 
    / (1 
    - K))) by 
    XCMPLX_1: 62
    
            .= (
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    * (K 
    to_power (n 
    + k)))) 
    / (1 
    - K))) 
    
            .= (
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - ((K 
    to_power 1) 
    * (K 
    to_power (n 
    + k)))) 
    / (1 
    - K))) by 
    POWER: 25
    
            .= (
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power ((n 
    + k) 
    + 1))) 
    / (1 
    - K))) by 
    A1,
    POWER: 27;
    
            
    ||.((g
    . (n 
    + k)) 
    - (g 
    . n)).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    / (1 
    - K))) & 
    ||.((g
    . ((n 
    + k) 
    + 1)) 
    - (g 
    . (n 
    + k))).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (K 
    to_power (n 
    + k))) by 
    A9,
    A16;
    
            then
    ||.((g
    . (n 
    + (k 
    + 1))) 
    - (g 
    . n)).|| 
    <= ( 
    ||.((g
    . (n 
    + (k 
    + 1))) 
    - (g 
    . (n 
    + k))).|| 
    +  
    ||.((g
    . (n 
    + k)) 
    - (g 
    . n)).||) & ( 
    ||.((g
    . (n 
    + (k 
    + 1))) 
    - (g 
    . (n 
    + k))).|| 
    +  
    ||.((g
    . (n 
    + k)) 
    - (g 
    . n)).||) 
    <= (( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (K 
    to_power (n 
    + k))) 
    + ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    / (1 
    - K)))) by 
    NORMSP_1: 10,
    XREAL_1: 7;
    
            hence
    ||.((g
    . (n 
    + (k 
    + 1))) 
    - (g 
    . n)).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power (n 
    + (k 
    + 1)))) 
    / (1 
    - K))) by 
    A17,
    XXREAL_0: 2;
    
          end;
    
          hence
    P[(k
    + 1)]; 
    
        end;
    
        now
    
          let n be
    Nat;
    
          
    ||.((g
    . (n 
    +  
    0 )) 
    - (g 
    . n)).|| 
    =  
    ||.(
    0. X).|| by 
    RLVECT_1: 15
    
          .=
    0 by 
    NORMSP_1: 1;
    
          hence
    ||.((g
    . (n 
    +  
    0 )) 
    - (g 
    . n)).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power (n 
    +  
    0 ))) 
    / (1 
    - K))); 
    
        end;
    
        then
    
        
    
    A18: 
    P[
    0 ]; 
    
        for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A18,
    A15);
    
        hence thesis;
    
      end;
    
      
    
      
    
    A19: for k,n be 
    Nat holds 
    ||.((g
    . (n 
    + k)) 
    - (g 
    . n)).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * ((K 
    to_power n) 
    / (1 
    - K))) 
    
      proof
    
        let k be
    Nat;
    
        now
    
          let n be
    Nat;
    
          (K
    to_power (n 
    + k)) 
    >  
    0 by 
    A1,
    POWER: 34;
    
          then
    
          
    
    A20: ((K 
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    <= ((K 
    to_power n) 
    -  
    0 ) by 
    XREAL_1: 13;
    
          (1
    - K) 
    > (1 
    - 1) by 
    A2,
    XREAL_1: 15;
    
          then (((K
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    / (1 
    - K)) 
    <= ((K 
    to_power n) 
    / (1 
    - K)) by 
    A20,
    XREAL_1: 72;
    
          then
    
          
    
    A21: ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    / (1 
    - K))) 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * ((K 
    to_power n) 
    / (1 
    - K))) by 
    XREAL_1: 64;
    
          
    ||.((g
    . (n 
    + k)) 
    - (g 
    . n)).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * (((K 
    to_power n) 
    - (K 
    to_power (n 
    + k))) 
    / (1 
    - K))) by 
    A14;
    
          hence
    ||.((g
    . (n 
    + k)) 
    - (g 
    . n)).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * ((K 
    to_power n) 
    / (1 
    - K))) by 
    A21,
    XXREAL_0: 2;
    
        end;
    
        hence thesis;
    
      end;
    
      now
    
        let e be
    Real such that 
    
        
    
    A22: e 
    >  
    0 ; 
    
        (e
    / 2) 
    >  
    0 by 
    A22,
    XREAL_1: 215;
    
        then
    
        consider n be
    Nat such that 
    
        
    
    A23: 
    |.((
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    / (1 
    - K)) 
    * (K 
    to_power n)).| 
    < (e 
    / 2) by 
    A1,
    A2,
    Lm2;
    
        reconsider nn = (n
    + 1) as 
    Nat;
    
        take nn;
    
        ((
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    / (1 
    - K)) 
    * (K 
    to_power n)) 
    <=  
    |.((
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    / (1 
    - K)) 
    * (K 
    to_power n)).| by 
    ABSVALUE: 4;
    
        then ((
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    / (1 
    - K)) 
    * (K 
    to_power n)) 
    < (e 
    / 2) by 
    A23,
    XXREAL_0: 2;
    
        then
    
        
    
    A24: ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * ((K 
    to_power n) 
    / (1 
    - K))) 
    < (e 
    / 2) by 
    XCMPLX_1: 75;
    
        now
    
          let m,l be
    Nat such that 
    
          
    
    A25: nn 
    <= m and 
    
          
    
    A26: nn 
    <= l; 
    
          n
    < m by 
    A25,
    NAT_1: 13;
    
          then
    
          consider k1 be
    Nat such that 
    
          
    
    A27: (n 
    + k1) 
    = m by 
    NAT_1: 10;
    
          n
    < l by 
    A26,
    NAT_1: 13;
    
          then
    
          consider k2 be
    Nat such that 
    
          
    
    A28: (n 
    + k2) 
    = l by 
    NAT_1: 10;
    
          reconsider k2 as
    Nat;
    
          
    ||.((g
    . (n 
    + k2)) 
    - (g 
    . n)).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * ((K 
    to_power n) 
    / (1 
    - K))) by 
    A19;
    
          then
    
          
    
    A29: 
    ||.((g
    . l) 
    - (g 
    . n)).|| 
    < (e 
    / 2) by 
    A24,
    A28,
    XXREAL_0: 2;
    
          reconsider k1 as
    Nat;
    
          
    ||.((g
    . (n 
    + k1)) 
    - (g 
    . n)).|| 
    <= ( 
    ||.((g
    . 1) 
    - (g 
    .  
    0 )).|| 
    * ((K 
    to_power n) 
    / (1 
    - K))) by 
    A19;
    
          then
    ||.((g
    . m) 
    - (g 
    . n)).|| 
    < (e 
    / 2) by 
    A24,
    A27,
    XXREAL_0: 2;
    
          hence
    ||.((g
    . l) 
    - (g 
    . m)).|| 
    < e by 
    A22,
    A29,
    Lm1;
    
        end;
    
        hence for n,m be
    Nat st n 
    >= nn & m 
    >= nn holds 
    ||.((g
    . n) 
    - (g 
    . m)).|| 
    < e; 
    
      end;
    
      then g is
    Cauchy_sequence_by_Norm by 
    RSSPACE3: 8;
    
      then
    
      
    
    A30: g is 
    convergent by 
    LOPBAN_1:def 15;
    
      then
    
      
    
    A31: (K 
    (#)  
    ||.(g
    - ( 
    lim g)).||) is 
    convergent by 
    NORMSP_1: 24,
    SEQ_2: 7;
    
      
    
      
    
    A32: ( 
    lim (K 
    (#)  
    ||.(g
    - ( 
    lim g)).||)) 
    = (K 
    * ( 
    lim  
    ||.(g
    - ( 
    lim g)).||)) by 
    A30,
    NORMSP_1: 24,
    SEQ_2: 8
    
      .= (K
    *  
    0 ) by 
    A30,
    NORMSP_1: 24
    
      .=
    0 ; 
    
      
    
      
    
    A33: for e be 
    Real st e 
    >  
    0 holds ex n be 
    Nat st for m be 
    Nat st n 
    <= m holds 
    ||.(((g
    ^\ 1) 
    . m) 
    - (f 
    . ( 
    lim g))).|| 
    < e 
    
      proof
    
        let e be
    Real;
    
        assume e
    >  
    0 ; 
    
        then
    
        consider n be
    Nat such that 
    
        
    
    A34: for m be 
    Nat st n 
    <= m holds 
    |.(((K
    (#)  
    ||.(g
    - ( 
    lim g)).||) 
    . m) 
    -  
    0 ).| 
    < e by 
    A31,
    A32,
    SEQ_2:def 7;
    
        take n;
    
        now
    
          let m be
    Nat;
    
          assume n
    <= m; 
    
          then
    |.(((K
    (#)  
    ||.(g
    - ( 
    lim g)).||) 
    . m) 
    -  
    0 ).| 
    < e by 
    A34;
    
          then
    |.(K
    * ( 
    ||.(g
    - ( 
    lim g)).|| 
    . m)).| 
    < e by 
    SEQ_1: 9;
    
          then
    |.(K
    *  
    ||.((g
    - ( 
    lim g)) 
    . m).||).| 
    < e by 
    NORMSP_0:def 4;
    
          then
    
          
    
    A35: 
    |.(K
    *  
    ||.((g
    . m) 
    - ( 
    lim g)).||).| 
    < e by 
    NORMSP_1:def 4;
    
          (K
    *  
    ||.((g
    . m) 
    - ( 
    lim g)).||) 
    <=  
    |.(K
    *  
    ||.((g
    . m) 
    - ( 
    lim g)).||).| by 
    ABSVALUE: 4;
    
          then
    
          
    
    A36: (K 
    *  
    ||.((g
    . m) 
    - ( 
    lim g)).||) 
    < e by 
    A35,
    XXREAL_0: 2;
    
          
    ||.(((g
    ^\ 1) 
    . m) 
    - (f 
    . ( 
    lim g))).|| 
    <= (K 
    *  
    ||.((g
    . m) 
    - ( 
    lim g)).||) by 
    A8;
    
          hence
    ||.(((g
    ^\ 1) 
    . m) 
    - (f 
    . ( 
    lim g))).|| 
    < e by 
    A36,
    XXREAL_0: 2;
    
        end;
    
        hence thesis;
    
      end;
    
      take xp = (
    lim g); 
    
      
    
      
    
    A37: (g 
    ^\ 1) is 
    convergent & ( 
    lim (g 
    ^\ 1)) 
    = ( 
    lim g) by 
    A30,
    LOPBAN_3: 9;
    
      then
    
      
    
    A38: ( 
    lim g) 
    = (f 
    . ( 
    lim g)) by 
    A33,
    NORMSP_1:def 7;
    
      now
    
        let x be
    Point of X such that 
    
        
    
    A39: (f 
    . x) 
    = x; 
    
        
    
        
    
    A40: for k be 
    Nat holds 
    ||.(x
    - xp).|| 
    <= ( 
    ||.(x
    - xp).|| 
    * (K 
    to_power k)) 
    
        proof
    
          defpred
    
    P[
    Nat] means
    ||.(x
    - xp).|| 
    <= ( 
    ||.(x
    - xp).|| 
    * (K 
    to_power $1)); 
    
          
    
          
    
    A41: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
          proof
    
            let k be
    Nat;
    
            assume
    P[k];
    
            then
    
            
    
    A42: (K 
    *  
    ||.(x
    - xp).||) 
    <= (K 
    * ( 
    ||.(x
    - xp).|| 
    * (K 
    to_power k))) by 
    A1,
    XREAL_1: 64;
    
            
    ||.((f
    . x) 
    - (f 
    . xp)).|| 
    <= (K 
    *  
    ||.(x
    - xp).||) by 
    A3;
    
            then
    ||.((f
    . x) 
    - (f 
    . xp)).|| 
    <= ( 
    ||.(x
    - xp).|| 
    * (K 
    * (K 
    to_power k))) by 
    A42,
    XXREAL_0: 2;
    
            then
    ||.((f
    . x) 
    - (f 
    . xp)).|| 
    <= ( 
    ||.(x
    - xp).|| 
    * ((K 
    to_power 1) 
    * (K 
    to_power k))) by 
    POWER: 25;
    
            hence thesis by
    A1,
    A38,
    A39,
    POWER: 27;
    
          end;
    
          
    ||.(x
    - xp).|| 
    = ( 
    ||.(x
    - xp).|| 
    * 1) 
    
          .= (
    ||.(x
    - xp).|| 
    * (K 
    to_power  
    0 )) by 
    POWER: 24;
    
          then
    
          
    
    A43: 
    P[
    0 ]; 
    
          for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A43,
    A41);
    
          hence thesis;
    
        end;
    
        for e be
    Real st 
    0  
    < e holds 
    ||.(x
    - xp).|| 
    < e 
    
        proof
    
          let e be
    Real;
    
          assume
    0  
    < e; 
    
          then
    
          consider n be
    Nat such that 
    
          
    
    A44: 
    |.(
    ||.(x
    - xp).|| 
    * (K 
    to_power n)).| 
    < e by 
    A1,
    A2,
    Lm2;
    
          (
    ||.(x
    - xp).|| 
    * (K 
    to_power n)) 
    <=  
    |.(
    ||.(x
    - xp).|| 
    * (K 
    to_power n)).| by 
    ABSVALUE: 4;
    
          then
    
          
    
    A45: ( 
    ||.(x
    - xp).|| 
    * (K 
    to_power n)) 
    < e by 
    A44,
    XXREAL_0: 2;
    
          
    ||.(x
    - xp).|| 
    <= ( 
    ||.(x
    - xp).|| 
    * (K 
    to_power n)) by 
    A40;
    
          hence thesis by
    A45,
    XXREAL_0: 2;
    
        end;
    
        hence x
    = xp by 
    Lm1;
    
      end;
    
      hence thesis by
    A37,
    A33,
    NORMSP_1:def 7;
    
    end;
    
    theorem :: 
    
    NFCONT_2:15
    
    for X be
    RealBanachSpace holds for f be 
    Function of X, X st ex n0 be 
    Nat st ( 
    iter (f,n0)) is 
    Contraction of X holds ex xp be 
    Point of X st (f 
    . xp) 
    = xp & for x be 
    Point of X st (f 
    . x) 
    = x holds xp 
    = x 
    
    proof
    
      let X be
    RealBanachSpace;
    
      let f be
    Function of X, X; 
    
      given n0 be
    Nat such that 
    
      
    
    A1: ( 
    iter (f,n0)) is 
    Contraction of X; 
    
      consider xp be
    Point of X such that 
    
      
    
    A2: (( 
    iter (f,n0)) 
    . xp) 
    = xp and 
    
      
    
    A3: for x be 
    Point of X st (( 
    iter (f,n0)) 
    . x) 
    = x holds xp 
    = x by 
    A1,
    Th14;
    
      
    
    A4: 
    
      now
    
        let x be
    Point of X such that 
    
        
    
    A5: (f 
    . x) 
    = x; 
    
        for n be
    Nat holds (( 
    iter (f,n)) 
    . x) 
    = x 
    
        proof
    
          defpred
    
    P[
    Nat] means ((
    iter (f,$1)) 
    . x) 
    = x; 
    
          
    
    A6: 
    
          now
    
            let n be
    Nat such that 
    
            
    
    A7: 
    P[n];
    
            ((
    iter (f,(n 
    + 1))) 
    . x) 
    = ((f 
    * ( 
    iter (f,n))) 
    . x) by 
    FUNCT_7: 71
    
            .= x by
    A5,
    A7,
    FUNCT_2: 15;
    
            hence
    P[(n
    + 1)]; 
    
          end;
    
          ((
    iter (f, 
    0 )) 
    . x) 
    = (( 
    id the 
    carrier of X) 
    . x) by 
    FUNCT_7: 84
    
          .= x;
    
          then
    
          
    
    A8: 
    P[
    0 ]; 
    
          for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A8,
    A6);
    
          hence thesis;
    
        end;
    
        then ((
    iter (f,n0)) 
    . x) 
    = x; 
    
        hence xp
    = x by 
    A3;
    
      end;
    
      ((
    iter (f,n0)) 
    . (f 
    . xp)) 
    = ((( 
    iter (f,n0)) 
    * f) 
    . xp) by 
    FUNCT_2: 15
    
      .= ((
    iter (f,(n0 
    + 1))) 
    . xp) by 
    FUNCT_7: 69
    
      .= ((f
    * ( 
    iter (f,n0))) 
    . xp) by 
    FUNCT_7: 71
    
      .= (f
    . xp) by 
    A2,
    FUNCT_2: 15;
    
      then (f
    . xp) 
    = xp by 
    A3;
    
      hence thesis by
    A4;
    
    end;
    
    theorem :: 
    
    NFCONT_2:16
    
    for K,L,e be
    Real st 
    0  
    < K & K 
    < 1 & 
    0  
    < e holds ex n be 
    Nat st 
    |.(L
    * (K 
    to_power n)).| 
    < e by 
    Lm2;